

Full-Stack React Projects

Modern web development using React 16, Node, Express, and MongoDB

Shama Hoque

BIRMINGHAM - MUMBAI

Full-Stack React Projects
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing
or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this
book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Amarabha Banerjee
Acquisition Editor: Akshay Ghadi
Content Development Editor: Francis Carneiro
Technical Editor: Diksha Wakode
Copy Editor: Safis Editing
Project Coordinator: Devanshi Doshi
Proofreader: Safis Editing
Indexer: Aishwarya Gangawane
Graphics: Jason Monteiro
Production Coordinator: Shraddha Falebhai

Production reference: 1230518

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-553-4

www.packtpub.com

http://www.packtpub.com/

mapt.io

Mapt is an online digital library that gives you full access to over 5,000
books and videos, as well as industry leading tools to help you plan your
personal development and advance your career. For more information,
please visit our website.

https://mapt.io/

Why subscribe?
Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.PacktPub.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at service@packtpub.com for
more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and
offers on Packt books and eBooks.

http://www.packtpub.com/
http://www.packtpub.com/

Contributors

About the author
Shama Hoque has 8 years of experience as a software developer and
mentor, with a master’s in software engineering from Carnegie Mellon
University.

From Java programming to full-stack development with JavaScript, the
applications she has worked on include national Olympiad registration
websites, universally accessible widgets, video conferencing apps, and
medical 3D reconstruction software.

Currently, she makes web-based prototypes for R&D start-ups in
California, while training aspiring software engineers and teaching web
development to CS undergrads in Bangladesh.

This book would not have been possible without the continuous support of my family and friends.
First and foremost, I want to thank my brother, Shamiul, for providing valuable technical insight
and guidance. I am also grateful to my parents and my friend, Shahrukh, for doing their part in
boosting my morale and encouraging me when I needed it the most.

About the reviewer
Sai Kishore Komanduri does software architecture and engineering at
MGRM NET, where he leads a team of engineers building e-governance
enterprise applications.

Prior to this, he was a software engineer and developer evangelist at
Hashnode, a premier social network for software developers, where he
worked across the whole breadth of Hashnode's MERN tech stack.

I would like to offer my profound thanks to Dr. Murthy, Chairman of MGRM, for his invaluable,
and all-round mentorship.

Packt is searching for authors like
you
If you're interested in becoming an author for Packt, please visit authors.pac
ktpub.com and apply today. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for
a specific hot topic that we are recruiting an author for, or submit your
own idea.

http://authors.packtpub.com/

Table of Contents
Title Page

Copyright and Credits

Full-Stack React Projects

Packt Upsell

Why subscribe?

PacktPub.com

Contributors

About the author

About the reviewer

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Conventions used

Get in touch

Reviews

1. Unleashing React Applications with MERN
MERN stack

Node

Express

MongoDB

React

Relevance of MERN

Consistency across the technology stack

Less time to learn, develop, deploy, and extend

Widely adopted in the industry

Community support and growth

Range of MERN applications

MERN applications developed in this book

Social media platform

Online marketplace

Media streaming application

VR game for the web

Book structure

Getting started with MERN

Building MERN from the ground up – a skeleton application

Developing basic web applications with MERN

Advancing to complex MERN applications

Going forward with MERN

Getting the most out of this book

Summary

2. Preparing the Development Environment
Selecting development tools

Workspace options

Local and cloud development

IDE or text editors

Chrome Developer Tools

Git

Installation

Remote Git hosting services

Setting up MERN stack technologies

MongoDB

Installation

Running the mongo shell

Node

Installation

Upgrading npm versions

Node version management with nvm

npm modules for MERN

Key modules

devDependency modules

Checking your development setup

Initializing package.json and installing npm modules

Configuring Babel, Webpack, and Nodemon

Babel

Webpack

Client-side Webpack configuration for development

Server-side Webpack configuration

Client-side Webpack configuration for production

Nodemon

Frontend views with React

Server with Express and Node

Express app

Bundle React app during development

Serving static files from the dist folder

Rendering templates at the root

Connecting the server to MongoDB

npm run scripts

Developing and debugging in real time

Summary

3. Building a Backend with MongoDB, Express, and Node
Skeleton application overview

Feature breakdown

Focus of this chapter – the backend

User model

API endpoints for user CRUD

Auth with JSON Web Tokens

How JWT works

Implementing the skeleton backend

Folder and file structure

Setting up the project

Initializing package.json

Development dependencies

Babel

Webpack

Nodemon

Config variables

Running scripts

Preparing the server

Configuring Express

Starting the server

Setting up Mongoose and connecting to MongoDB

Serving an HTML template at a root URL

User model

User schema definition

Name

Email

Created and updated timestamps

Hashed password and salt

Password for auth

As a virtual field

Encryption and authentication

Password field validation

Mongoose error handling

User CRUD API

User routes

User controller

Creating a new user

Listing all users

Loading a user by ID to read, update, or delete

Loading

Reading

Updating

Deleting

User auth and protected routes

Auth routes

Auth controller

Sign-in

Sign-out

Protecting routes with express-jwt

Requiring sign-in

Authorizing signed in users

Protecting user routes

Auth error handling for express-jwt

Checking the standalone backend

Creating a new user

Fetching the user list

Trying to fetch a single user

Signing in

Fetching a single user successfully

Summary

4. Adding a React Frontend to Complete MERN

Skeleton frontend

Folder and file structure

Setting up for React development

Configuring Babel and Webpack

Babel

Webpack

Loading Webpack middleware for development

Serving static files with Express

Updating the template to load a bundled script

Adding React dependencies

React

React Router

Material-UI

Implementing React views

Rendering a home page

Entry point at main.js

Root React component

Customizing the Material-UI theme

Wrapping the root component with MUI theme and BrowserRout

er

Marking the root component as hot-exported

Adding a home route to MainRouter

Home component

Imports

Style declarations

Component definition

PropTypes validation

Export component

Bundling image assets

Running and opening in the browser

Backend API integration

Fetch for User CRUD

Creating a user

Listing users

Reading a user profile

Updating a user's data

Deleting a user

Fetch for auth API

Sign-in

Sign-out

Auth in the frontend

Managing auth state

PrivateRoute component

User and auth components

Users component

Signup component

Signin component

Profile component

EditProfile component

DeleteUser component

Menu component

Basic server-side rendering

Modules for server-side rendering

Preparing Material-UI styles for SSR

Generating markup

Sending a template with markup and CSS

Updating template.js

Updating MainRouter

Hydrate instead of render

Summary

5. Starting with a Simple Social Media Application
MERN Social

Updating the user profile

Adding an about description

Uploading a profile photo

Updating the user model to store a photo in MongoDB

Uploading a photo from the edit form

File input with Material-UI

Form submission with the file attached

Processing a request containing a file upload

Retrieving a profile photo

Profile photo URL

Showing a photo in a view

Following users in MERN Social

Follow and unfollow

Updating the user model

Updating the userByID controller method

API to follow and unfollow

Accessing follow and unfollow APIs in views

Follow and unfollow buttons

FollowProfileButton component

Update Profile component

Listing followings and followers

FollowGrid component

Finding people to follow

Fetching users not followed

FindPeople component

Posts

Mongoose schema model for Post

Newsfeed component

Listing posts

List in Newsfeed

Newsfeed API for posts

Fetching Newsfeed posts in the view

Listing by user in Profile

API for posts by a user

Fetching user posts in the view

Creating a new post

Creating post API

Retrieving a post's photo

Fetching the create post API in the view

NewPost component

Post component

Layout

Header

Content

Actions

Comments

Deleting a post

Likes

Like API

Unlike API

Checking if liked and counting likes

Handling like clicks

Comments

Adding a comment

Comment API

Writing something in the view

Listing comments

Deleting a comment

Uncomment API

Removing a comment from view

Comment count update

Summary

6. Exercising New MERN Skills with an Online Marketplace
MERN Marketplace

Users as sellers

Updating the user model

Updating the Edit Profile view

Updating the menu

Shops in the Marketplace

Shop model

Create a new shop

Create shop API

Fetch the create API in the view

NewShop component

List shops

List all shops

Shops list API

Fetch all shops for the view

Shops component

List shops by owner

Shops by owner API

Fetch all shops owned by a user for the view

MyShops component

Display a shop

Read a shop API

Fetch the shop in the view

Shop component

Edit a shop

Edit shop API

Fetch the edit API in the view

EditShop component

Delete a shop

Delete shop API

Fetch the delete API in the view

DeleteShop component

Products

Product model

Create a new product

Create product API

Fetching the create API in the view

The NewProduct component

List products

List by shop

Products by shop API

Products component for buyers

MyProducts component for shop owners

List product suggestions

Latest products

Related products

Suggestions component

Display a product

Read a product API

Product component

Edit and delete a product

Edit

Delete

Product search with category

Categories API

Search products API

Fetch search results for the view

Search component

Categories component

Summary

7. Extending the Marketplace for Orders and Payments
The MERN Marketplace with a cart, payments, and orders

Shopping cart

Adding to cart

Cart icon on the menu

Cart view

The CartItems component

Retrieving cart details

Modifying quantity

Removing item

Showing total price

Option to check out

Using Stripe for payments

Stripe

Stripe-connected account for each seller

Updating user model

Button to connect with Stripe

The StripeConnect component

Stripe auth update API

Stripe Card Elements for checkout

Stripe Customer to record card details

Updating user model

Updating user controller

Creating a new Stripe Customer

Updating an existing Stripe Customer

Creating a charge for each product processed

Checkout

Initializing checkout details

Customer information

Delivery address

The PlaceOrder component

Stripe CardElement component

Placing an order

Empty cart

Redirecting to Order view

Creating new order

Order model

Ordered by and for customer

Delivery address

Payment reference

Products ordered

The CartItem schema

Create order API

Decrease product stock quantity

Create order controller method

Orders by shop

List by shop API

The ShopOrders component

List orders

The ProductOrderEdit component

APIs for products ordered

Get status values

Update order status

Cancel product order

Process charge for product

View order details

Summary

8. Building a Media Streaming Application
MERN Mediastream

Uploading and storing media

Media model

MongoDB GridFS to store large files

Creating a media API

Route to create media

Controller method to handle create request

Fetch create API in the view

New media form view

Adding media menu button

React route for NewMedia view

NewMedia component

Retrieve and stream media

Get video API

React media player to render the video

Media list

MediaList component

List popular media

List media by users

Display, update, and delete media

Display media

Read media API

Media component

Update media details

Media update API

Media edit form

Deleting media

The Delete media API

The DeleteMedia component

Summary

9. Customizing the Media Player and Improving SEO
MERN Mediastream with a custom media player

The play media page

Component structure

Related media list

Related list API

The RelatedMedia component

The PlayMedia component

Media player

Updating the Media component

Initializing the media player

Custom media controls

Play, pause, and replay

Play next

Loop on ended

Volume control

Progress control

Fullscreen

Played duration

Autoplaying related media

Toggling autoplay

Handle autoplay across components

Update state when video ends in MediaPlayer

Server-side rendering with data

Route config

Updating SSR code for the Express server

Using route config to load data

Isomorphic-fetch

Absolute URL

Injecting data into React app

Applying server-injected data in client code

Passing data props to PlayMedia from MainRouter

Rendering received data in PlayMedia

Checking the implementation of SSR with data

Test in Chrome

Loading a page with JS enabled

Disabling JS from settings

PlayMedia view with JS blocked

Summary

10. Developing a Web-Based VR Game
MERN VR Game

Game features

Focus of this chapter

React 360

Getting started with React 360

Key concepts for developing the VR game

Equirectangular panoramic images

3D position – coordinates and transforms

3D coordinate system

Transform

React 360 components

Core components

View

Text

Components for 3D VR experience

Entity

VrButton

React 360 API

Environment

Native Modules

AudioModule

Location

StyleSheet

VrHeadModel

Assets

React 360 input events

Game details

Game data structure

Details of VR objects

OBJ and MTL links

Translation values

Rotation values

Scale value

Color

Static data versus dynamic data

Sample data

Building the game view in React 360

Update client.js and mount to Location

Defining styles with StyleSheet

World background

Adding 3D VR objects

Interacting with VR objects

Rotation

Animation with requestAnimationFrame

Clicking the 3D objects

Collecting the correct object on click

Game completed state

Bundling for production and integration with MERN

Bundling React 360 files

Integrating with MERN application

Add the React 360 production files

Updating references in index.html

Trying out the integration

Summary

11. Making the VR Game Dynamic Using MERN
Dynamic MERN VR Game

Game model

Game schema

VRObject schema

Array length validation in the game schema

Game APIs

The create API

Route

Controller

Fetch

List API

Route

Controller

Fetch

List by maker API

Route

Controller

Fetch

Read API

Route

Controller

Fetch

Edit API

Route

Controller

Fetch

Delete API

Route

Controller

Fetch

Creating and editing games

Making a new game

Updating the menu

NewGame component

Editing the game

EditGame component

The GameForm component

Inputing simple game details

Form title

Game world image

Game name

Clue text

Handle input

Modifying arrays of VR objects

Iterating and rendering the object details form

Adding a new object to the array

Removing an object from the array

Handling the object detail change

VRObjectForm component

3D object file input

Translate value input

Rotate value input

Scale value input

Object color input

Delete object button

Handling the input change

Game list views

All games

Games by a maker

GameDetail component

Game details

Play Game button

Edit and delete buttons

Deleting a game

DeleteGame component

Playing the VR game

API to render the VR game view

Updating the game code in React 360

Getting the game ID from a link

Fetching the game data with the read API

Bundling and integrating the updated code

Summary

12. Following Best Practices and Developing MERN Further
Separation of concerns with modularity

Revisiting the application folder structure

Server-side code

Client-side code

Adding CSS styles

External style sheets

Inline styles

JSS

Selective server-side rendering with data

When is SSR with data relevant?

Using ES6 class for stateful vs pure functional components

React components with ES6 class

React components as pure functions

Designing the UI with stateful components and stateless functional com

ponents

Using Redux or Flux

Enhancing security

JSON web tokens – client-side or server-side storage

Securing password storage

Writing test code

Testing with Jest

Adding a test to the MERN Social application

Installing the packages

Defining the script to run tests

Adding a tests folder

Test case

Adding the test

Generating a snapshot of the correct Post view

Running and checking the test

Optimizing the bundle size

Code splitting

Dynamic import()

Extending the applications

Extending the server code

Adding a model

Implementing the APIs

Adding controllers

Adding routes

Extending the client code

Adding the API fetch methods

Adding components

Loading new components

Updating frontend routes

Integrating with existing components

Summary

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface
This book explores the potential of developing full-stack JavaScript web
applications by combining the power of React with industry tested server-
side technologies, such as Node, Express, and MongoDB. The JavaScript
landscape has been growing rapidly for some time now. With an
abundance of options and resources available on this subject matter, it is
easy to get lost when you need to choose from these frequently changing
parts, learn about them, and make them work together to build your own
web applications. In an attempt to address this pain point, the book adopts
a practical approach to help you set up and build a diverse range of
working applications using this popular JavaScript stack.

Who this book is for
This book is aimed at JavaScript developers who may have some
experience with React, but no previous experience with full-stack
development involving Node, Express, and MongoDB, and who want
practical guidelines to start building different types of web applications
with this stack.

What this book covers
Chapter 1, Unleashing React Applications with MERN, introduces the
MERN stack technologies and the applications developed in this book. We
will discuss the context and relevance of developing web applications with
React, Node, Express, and MongoDB.

Chapter 2, Preparing the Development Environment, helps set up the MERN
stack technologies for development. We will explore essential
development tools, install Node, MongoDB, Express, React, and other
required libraries, and then run code to check the setup.

Chapter 3, Building a Backend with MongoDB, Express, and Node,
implements the backend of a skeleton MERN application. We will build a
standalone server-side application with MongoDB, Express, and Node,
which stores user details and has APIs for user authentication and CRUD
operations.

Chapter 4, Adding a React Frontend to Complete MERN, completes the
MERN skeleton application by integrating a React frontend. We will
implement a working frontend with React views for interacting with the
user CRUD and auth APIs on the server.

Chapter 5, Starting with a Simple Social Media Application, builds a social
media application by extending the skeleton application. We will explore
the capabilities of the MERN stack by implementing social media
features, such as post sharing, liking, and commenting; following friends;
and an aggregated newsfeed.

Chapter 6, Exercising New MERN Skills with an Online Marketplace,
implements basic features in an online marketplace application. We will
implement buying- and selling- related features with support for seller
accounts, product listings, and product search by category.

Chapter 7, Extending the Marketplace for Orders and Payments, builds the
marketplace application further with a shopping cart, order management,
and payments processing. We will add a shopping cart feature and allow
users to place orders with the items in their carts. We will also integrate
Stripe to collect and process payments.

Chapter 8, Building a Media Streaming Application, implements media
uploading and streaming using MongoDB GridFS. We will start building a
basic media streaming application, allowing registered users to upload
video files that will be stored on MongoDB and streamed back so that
viewers can play each video in a simple React media player.

Chapter 9, Customizing the Media Player and Improving SEO, upgrades the
media viewing capabilities with a custom media player and autoplay
media list. We will implement customized controls on the default React
media player, add a playlist that can be autoplayed, and improve SEO for
the media details by adding selective server-side rendering with data for
just the media detail view.

Chapter 10, Developing a Web-Based VR Game, uses React 360 to develop a
3D virtual reality infused game for the web. We will explore the 3D and
VR capabilities of React 360 and build a simple web-based VR game.

Chapter 11, Making the VR Game Dynamic using MERN, builds a dynamic
VR game application by extending the MERN skeleton application and
integrating React 360. We will implement a game data model that allows
users to create their own VR games and incorporate the dynamic game
data with the game developed using React 360.

Chapter 12, Following Best Practices and Developing MERN
Further, reflects on the lessons learned in previous chapters and suggests
improvements for further MERN-based application development. We will
expand on some of the best practices already applied, such as modularity
in the app structure, other practices that should be applied, such as writing
test code, and possible improvements, such as optimizing bundle size.

To get the most out of this book
The content in this book is organized with the assumption that you have
familiarity with basic web-based technologies, a working knowledge of
programming constructs in JavaScript, and a general idea of how React
applications work. As you go through the book, you will uncover how
these concepts come together when building full-fledged web applications
with React, Node, Express, and MongoDB.

In order to maximize your learning experience while reading through the
chapters, it is recommended that you run the associated version of the
application code in parallel, using the relevant instructions provided in
each chapter.

Download the example code files
You can download the example code files for this book from your account
at www.packtpub.com. If you purchased this book elsewhere, you can visit www.pa
cktpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/P
acktPublishing/Full-Stack-React-Projects. If there's an update to the code, it will
be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Full-Stack-React-Projects
https://github.com/PacktPublishing/

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input,
and Twitter handles. Here is an example: "Mount the downloaded WebStorm-
10*.dmg disk image file as another disk in your system."

A block of code is set as follows:

import path from 'path'

const CURRENT_WORKING_DIR = process.cwd()

app.use('/dist', express.static(path.join(CURRENT_WORKING_DIR, 'dist')))

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

{

 "presets": [

 "env",

 "stage-2",

 "react"

],

 "plugins": [

 "react-hot-loader/babel"

]

}

Any command-line input or output is written as follows:

npm install babel-preset-react --save-dev

Bold: Indicates a new term, an important word, or words that you see on
screen. For example, words in menus or dialog boxes appear in the text
like this. Here is an example: "Select System info from the Administration
panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in
the subject of your message. If you have questions about any aspect of this
book, please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit www.packtpub.co
m/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at copyright@packtpub.com
with a link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to
a book, please visit authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions, we at
Packt can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

Unleashing React Applications with
MERN
React may have opened up new frontiers for frontend web development
and changed the way we program JavaScript user interfaces, but we still
need a solid backend to build a complete web application. Although there
are myriad options when selecting backend technologies, the benefits and
appeal of using a full JavaScript stack are undeniable, especially when
there are robust and widely-adopted backend technologies such as Node,
Express, and MongoDB. Combining the potential of React with these
industry-tested, server-side technologies creates a diverse array of
possibilities when developing real-world web applications.

This book guides you through setting up for MERN-based web
development, to building real-world web applications of varying
complexities.

Before diving into the development of these web applications, we are
going to answer the following questions in this chapter to set the context
for using MERN:

What is the MERN stack?
Why is MERN relevant today?
When is MERN a good fit for developing web apps?
How is this book organized to help master MERN?

MERN stack
MongoDB, Express, React, and Node are used in tandem to build web
applications and make up the MERN stack. In this lineup, Node and
Express bind the web backend together, MongoDB serves as the NoSQL
database, and React makes the frontend that the user sees and interacts
with.

All four of these technologies are free, open-source, cross-platform, and
JavaScript-based, with extensive community and industry support. Each
technology has a unique set of attributes, which when integrated together
make a simple but effective full JavaScript stack for web development.

Node
Node was developed as a JavaScript runtime environment built on
Chrome's V8 JavaScript engine. Node made it possible to start using
JavaScript on the server-side to build a variety of tools and applications
beyond previous use cases that were limited to within a browser.

Node has an event-driven architecture capable of asynchronous, non-
blocking I/O. Its unique non-blocking I/O model eliminates the waiting
approach to serving requests. This allows building scalable and
lightweight real-time web applications that can efficiently handle many
requests.

Node's default package management system, the Node package manager or
npm, comes bundled with the Node installation. Npm gives access to
hundreds of thousands of reusable Node packages built by developers all
over the world and boasts that it is currently the largest ecosystem of open
source libraries in the world.

Learn more about Node at https://nodejs.org/en/ and browse through available npm
modules at https://www.npmjs.com/.

https://nodejs.org/en/
https://www.npmjs.com/

Express
Express is a basic framework for building web applications and APIs with
a Node server. It provides a simple layer of fundamental web application
features that complements Node.

In any web application developed with Node, Express can be used as a
routing and middleware web framework that has minimal functionality of
its own—an Express application is essentially a series of middleware
function calls.

Middleware functions are functions that have access to the HTTP request and
response objects, and also the next middleware function in the web application's
request-response cycle.

It is possible to insert almost any compatible middleware of your choice
into the request handling chain, in almost any order, making Express very
flexible to work with.

Find out what is possible with Express.js at expressjs.com.

http://expressjs.com/

MongoDB
MongoDB is a top choice when deciding on a NoSQL database for any
application. It is a document-oriented database that stores data in flexible,
JSON-like documents. This means fields can vary from document to
document and data models can evolve over time in response to changing
application requirements.

Applications that place a high priority on availability and scalability
benefit from MongoDB's distributed architecture features. It comes with
built-in support for high availability, horizontal scaling using sharding,
and multi-data center scalability across geographic distributions.

MongoDB has an expressive query language, enabling ad hoc queries,
indexing for fast lookups, and real-time aggregation that provides
powerful ways to access and analyze data while maintaining performance
even when data size grows exponentially.

Explore MongoDB features and services at https://www.mongodb.com/.

https://www.mongodb.com/

React
React is a declarative and component-based JavaScript library for building
user interfaces. Its declarative and modular nature makes it easy for
developers to create and maintain reusable, interactive, and complex user
interfaces.

Large applications that display a lot of changing data can be fast and
responsive if built with React, as it takes care of efficiently updating and
rendering just the right UI components when specific data changes. React
does this efficient rendering with its notable implementation of a virtual
DOM, setting React apart from other web UI libraries that handle page
updates with expensive manipulations directly in the browser's DOM.

Developing user interfaces using React also forces frontend programmers
to write well-reasoned and modular code that is reusable, easier to debug,
test, and extend.

Check out resources on React at https://reactjs.org/.

Since all four technologies are JavaScript-based, these are inherently
optimized for integration. However, how these are actually put together in
practice to form the MERN stack can vary based on application
requirements and developer preferences, making MERN customizable and
extensible to specific needs.

https://reactjs.org/

Relevance of MERN
JavaScript has come a long way since its inception and it is ever-growing.
The MERN stack technologies have challenged the status quo and broken
new ground for what is possible with JavaScript. But when it comes to
developing real-world applications that need to be sustainable, is it a
worthy choice? Some of the reasons that make a strong case for choosing
MERN for your next web application are briefly outlined in the following.

Consistency across the technology
stack
As JavaScript is used throughout, developers don't need to learn and
change gears frequently to work with very different technologies. This
also enables better communication and understanding across teams
working on different parts of the web application.

Less time to learn, develop, deploy,
and extend
Consistency across the stack also makes it easy to learn and work with
MERN, reducing the overhead of adopting a new stack and the time to
develop a working product. Once the working base of a MERN application
is set up and a workflow established, it takes less effort to replicate,
further develop, and extend any application.

Widely adopted in the industry
Organizations of all sizes have been adopting the technologies in this stack
based on their needs because they can build applications faster, handle
highly diverse requirements, and manage applications more efficiently at
scale.

Community support and growth
Developer communities surrounding the very popular MERN stack
technologies are quite diverse and growing on a regular basis. With lots of
people continuously using, fixing, updating, and willing to help grow these
technologies, the support system will remain strong for the foreseeable
future. These technologies will continue to be maintained, and resources
are very likely to be available in terms of documentation, add-on libraries,
and technical support.

The ease and benefits of using these technologies are already widely
recognized. Because of the high-profile companies that continue adoption
and adaptation, and the growing number of people contributing to the code
bases, providing support, and creating resources, technologies in the
MERN stack will continue to be relevant for a long time to come.

Range of MERN applications
Given the unique features attributed to each technology, along with the
ease of extending functionalities of this stack by integrating other
technologies, the range of applications that can be built with this stack is
actually quite diverse.

These days, web applications are, by default, expected to be rich client
apps that are immersive, interactive, and don't fall short on performance
and availability. The grouping of MERN strengths makes it perfect for
developing web applications that meet these very aspects and demands.

Moreover, novel and upcoming attributes of some of these technologies,
such as low-level operation manipulation with Node, large file streaming
capabilities with MongoDB GridFS, and virtual reality features on the web
using React 360, make it possible to build even more complex and unique
applications with MERN.

It may seem reasonable to pick specific features in the MERN
technologies, and argue why these don't work for certain applications. But
given the versatile nature of how a MERN stack can come together and be
extended; these concerns can be addressed in MERN on a case-by-case
basis. In this book, we will demonstrate how to make such considerations
when faced with specific requirements and demands in the application
being built.

MERN applications developed in this book
To demonstrate the breadth of possibilities with MERN and how you can easily start building a web application
with varying features, this book will showcase everyday use web applications alongside complex and rare web
experiences:

The preceding screenshot gives a glimpse of the four different MERN applications developed in the rest of this book

Social media platform
For the first MERN application, we will build a basic social media
application inspired by Twitter and Facebook. This social media platform
will implement simple features such as post sharing, liking and
commenting, following friends, and an aggregated news feed.

Online marketplace
E-commerce web applications of all sorts are abundant on the internet, and
these will not go out of style anytime soon. Using MERN, we will build an
online marketplace application covering core aspects, such as support for
seller accounts, product listings, a shopping cart for customers, and
payment processing.

Media streaming application
To test out some advanced MERN capabilities, a more immersive
application, such as a media streaming application, is the next pick.
Inspired by features from Netflix and YouTube, this application will
implement content uploading and viewing capabilities with a media
content upload feature for content providers, and real-time content
streaming for viewers.

VR game for the web
The release of React 360 makes it possible to apply web VR capabilities to
React user interfaces. We will explore how to create rare web experiences
with React 360 in MERN by putting together a basic virtual reality game
application for the web. Users will be able to make and play VR games,
where each game will have animated VR objects that the player can collect
to complete the game.

Book structure
This book aims to help JavaScript developers who have zero-to-some
experience with the MERN stack, to set up and start developing web
applications of varying complexity. It includes guidelines for building out
and running the different applications supplemented with code snippets
and explanations of key concepts.

The book is organized into five parts, progressing from basic to advanced
topics, taking you on a journey of building MERN from the ground up,
then using it to develop different applications with simple to complex
features, while demonstrating how to extend the capabilities of the MERN
stack based on application requirements.

Getting started with MERN
Chapter 1, Unleashing React Applications with MERN and Chapter 2,
Preparing the Development Environment set the context for developing
web applications in a MERN stack and guide you through setting up your
development environment.

Building MERN from the ground
up – a skeleton application
Chapter 3, Building a Backend with MongoDB, Express, and Node and Chapter
4, Adding a React Frontend to Complete MERN show how to bring the
MERN stack technologies together to form a skeleton web application
with minimal and basic features. This skeletal MERN application acts as a
base for the four main applications developed in the rest of the book.

Developing basic web applications
with MERN
In this part, you will become familiar with the core attributes of a MERN
stack web application by building out two real-world applications—a
simple social media platform in Chapter 5, Starting with a Simple Social
Media Application, and an online marketplace in Chapter 6, Exercising New
MERN Skills with an Online Marketplace and Chapter 7, Extending the
Marketplace for Orders and Payments.

Advancing to complex MERN
applications
Chapter 8, Building a Media Streaming Application, Chapter 9, Customizing
Media Player and Improve SEO, Chapter 10, Developing a Web-Based VR
Game, and Chapter 11, Making the VR Game Dynamic using MERN show
how this stack can be used to develop applications with more complex and
immersive features, such as media streaming and virtual reality using
React 360.

Going forward with MERN
Finally Chapter 12, Following Best Practices and Developing MERN
Further wraps up the preceding chapters and applications developed by
expanding on best practices to follow to make successful MERN
applications, suggesting improvements and further developments.

You may choose to use the book out of the prescribed order based on your
experience level and preference. A developer who is very new to MERN
can follow the path set out in the book. For a more seasoned JS developer,
the chapters in the Building MERN from the ground up - a skeleton
application section would be a good place to start setting up the base
application, then pick any of the four applications to build and extend.

Getting the most out of this book
The content in this book is practical-oriented and covers the implementation
steps, code, and concepts relevant to building out each MERN application. It is
recommended that, rather than attempting to just read through the chapters, you
should run the relevant code in parallel, and browse through the application
features while following the explanations in the book.

Chapters that discuss code implementations will point to GitHub repositories
containing the complete code with instructions on how to run the code. You can
pull the code, install, and run it before reading through the chapter:

You may consider the recommended following steps outlined to follow
the implementations in this book:

Before diving into the implementation details discussed in the chapter, pull
code from the relevant GitHub repository
Follow instructions with the code to install and run the application

Browse the features of the running application, while reading the feature
descriptions in the relevant chapter
With the code running in development mode and also open in the editor,
refer to the steps and explanations in the book to get a deeper understanding
of the implementations

This book aims to provide a quick onboarding with working code for each
application. You can experiment with, improve, and extend this code as desired.
For an active learning experience, you are encouraged to refactor and modify the
code while following the book. In some examples, the book chooses verbose code
over succinct and cleaner code because it is easier to reason about for newcomers.
In some other implementations, the book sticks with more widely used and
traditional conventions over modern and upcoming JavaScript conventions. This
is done to minimize disparity when you refer to online resources and
documentation while researching the discussed technologies and concepts on your
own. These instances where the code in the book can be updated, serve as good
opportunities to explore and grow skills beyond what is covered in the book.

Summary
In this chapter, we discovered the context for developing web applications
in the MERN stack, and how this book will help you develop with this
stack.

MERN stack projects integrate MongoDB, Express, React, and Node to
build web applications. Each of the technologies in this stack has made
relevant strides in the world of web development. These are widely
adopted and continue to improve with the support of growing
communities. It is possible to develop MERN applications with diverse
requirements, ranging from everyday use applications to more complex
web experiences. The practical-oriented approach in this book can be used
to grow MERN skills from basic to advanced, or for diving right into
building the more complex applications.

In the next chapter, we will start gearing up for MERN application
development by setting up the development environment.

Preparing the Development
Environment
Before building applications with the MERN stack, we first need to
prepare the development environment with each technology, and also with
tools to aid development and debugging. This chapter guides you through
understanding workspace options, essential development tools, how to set
up the MERN technologies in your workspace, and the steps to check this
setup with actual code.

We are going to cover the following topics:

Workspace options
Code editors
Chrome Developer Tools
Git setup
MongoDB setup
Node setup
npm modules to complete the MERN stack
Code to check MERN setup

Selecting development tools
There are plenty of options available when it comes to selecting basic
development tools such as text editors or IDEs, version control software,
and even the development workspace itself. In this section, we go over
options and recommendations relevant to web development with MERN so
you can make informed decisions when selecting these tools based on
individual preferences.

Workspace options
Developing on a local machine is the most common practice among
programmers, but with the advent of good cloud development services,
such as Cloud9 (https://aws.amazon.com/cloud9/?origin=c9io), it's now possible to
use either or both. You can set up your local workspace with MERN
technologies, and this will be assumed to be the case in the rest of the
book, but you can also choose to run and develop the code in the cloud
services that come equipped for Node development.

https://aws.amazon.com/cloud9/?origin=c9io

Local and cloud development
You can choose to use both types of workspaces to enjoy the benefits of
working locally without worrying about bandwidth/internet issues and to
work remotely when you don't physically have your favorite local
machine. To do this, you can use Git to version control your code, store
your latest code on remote Git hosting services such as GitHub or
BitBucket, and then share the same code across all your workspaces.

IDE or text editors
Most cloud development environments will come integrated with source
code editors. But for your local workspace, you can pick any based on your
preference as a programmer, then customize it for MERN development.
For example, the following popular options can each be customized as
required:

Atom (https://atom.io/): A free, open-source text editor for GitHub that
has many MERN stack relevant packages available from other
developers
SublimeText (https://www.sublimetext.com/): A proprietary, cross-
platform text editor that also has many MERN stack relevant
packages available, along with support for JavaScript development
Visual Studio Code (https://code.visualstudio.com/): A feature-rich
source code editor by Microsoft with extensive support for modern
web application development workflow, including support for MERN
stack technologies
WebStorm (https://www.jetbrains.com/webstorm/): A full-fledged
JavaScript IDE by JetBrains, with support for MERN stack-based
development

https://atom.io/
https://www.sublimetext.com/
https://code.visualstudio.com/
https://www.jetbrains.com/webstorm/

Chrome Developer Tools
Loading, viewing and debugging the frontend is a very crucial part of the
web development process. The Chrome Developer Tools, which are a part
of the Chrome Browser, have many great features that allow debugging,
testing, and experimenting with the frontend code, and the look, feel,
responsiveness, and performance of the UI. Additionally, the React
Developer Tools extension is available as a Chrome plugin, and it adds
React debugging tools to the Chrome Developer Tools.

Git
Any development workflow is incomplete without a version control
system that enables tracking code changes, code sharing, and
collaboration. Over the years, Git has become the de facto version control
system for many developers and is the most widely used distributed source
code management tool. For code development in this book, Git will help
primarily to track progress as we go through the steps to build out each
application.

Installation
To start using Git, first install it on your local machine or cloud
development environment based on your system specifications. Relevant
instructions to download and install the latest Git, along with
documentation on using Git commands can be found at: https://git-scm.com/d
ownloads.

https://git-scm.com/downloads

Remote Git hosting services
Cloud-based Git repository hosting services such as GitHub and
BitBucket help share your latest code across workspaces and deployment
environments, and also to back up your code. These services pack in a lot
of useful features to help with code management and the development
workflow. To get started, you can create an account and set up remote
repositories for your code bases.

All these essential tools will enrich your web development workflow and
increase productivity once you complete the necessary setup in your
workspace and start building MERN applications.

Setting up MERN stack
technologies
MERN stack technologies are being developed and upgraded as this book
is being written, so for the work demonstrated throughout this book, we
use the latest stable versions at the time of writing. Installation guidelines
for most of these technologies are dependent on the system environment
of your workspaces, so this section points to all relevant installation
resources, and also acts as a guide for setting up a fully functioning MERN
stack.

MongoDB
MongoDB must be set up and running in the development environment
before any database features are added to MERN applications. At the time
of writing, the current stable version of MongoDB is 3.6.3, and this
version of the MongoDB Community Edition is used for developing the
applications in this book. The rest of this section provides resources on
how to install and run MongoDB.

Installation
You need to install and start MongoDB on your workspace to be able to
use it for development. The installation and startup process for
MongoDB depends on workspace specifications:

Cloud development services will have their own instructions for
installing and setting up MongoDB. For example, the how-to steps for
Cloud9 can be found at: https://community.c9.io/t/setting-up-mongodb/1717.
The guides for installation on your local machine are detailed at: http
s://docs.mongodb.com/manual/installation/.

https://community.c9.io/t/setting-up-mongodb/1717
https://docs.mongodb.com/manual/installation/

Running the mongo shell
The mongo shell is an interactive tool for MongoDB and a good place to
get familiar with MongoDB operations. Once MongoDB is installed and
running, you can run the mongo shell on the command line. In the mongo
shell, you can try commands to query and update data as well as perform
administrative operations.

Node
Backend server implementation for the MERN applications relies on
Node, and also npm. At the time of writing, 8.11.1 is the latest stable Node
version available, and it comes bundled with npm version 5.6.0. However,
the latest version available for npm is 5.8.0, so after installing Node, npm
will need to be upgraded as discussed in the following section.

Installation
Node can be installed via direct download, installers, or the Node version
manager:

You can install Node by directly downloading the source code or a
pre-built installer specific to your workspace platform. Downloads
are available at nodejs.org/en/download.
Cloud development services may come with Node preinstalled, such
as in Cloud9, or will have specific instructions for adding and
updating Node.

To test if the installation was successful, you can open the command line
and run node -v to see if it correctly returns the version number.

https://nodejs.org/en/download/

Upgrading npm versions
In order to install npm version 5.8.0, run the following install command
from the command line, and check the version with npm -v:

npm install -g npm@5.8.0

npm -v

Node version management with
nvm
If you need to maintain multiple versions of Node and npm for different
projects, nvm is a useful command-line tool to install and manage
different versions on the same workspace. You have to install nvm
separately. Instructions for setup can be found at: github.com/creationix/nvm.

https://github.com/creationix/nvm

npm modules for MERN
The remaining MERN stack technologies are all available as npm modules
and can be added to each project using npm install. These include key
modules, such as React and Express, which are required to run each
MERN application, and also modules that will be necessary during
development. In this section, we list and discuss the modules, then see
how to use the modules in a working project in the following section.

Key modules
To integrate the MERN stack technologies and run your applications, we
will need the following npm modules:

React: To start using React, we will need two modules:
react

react-dom

Express: To use Express in your code, you will need the express
module
MongoDB: To use MongoDB with Node applications, you also need
to add the driver, which is available as an npm module named mongodb

devDependency modules
To maintain consistency throughout the development of the MERN
applications, we will use JavaScript ES6 across the stack. As a
consequence, and also to aid the development process, we will use the
following additional npm modules to compile and bundle the code and to
automatically reload the server and browser app as the code is updated
during development:

Babel modules are needed for converting ES6 and JSX to suitable
JavaScript for all browsers. The modules needed to get Babel working
are:

babel-core

babel-loader for transpiling JavaScript files with Webpack
babel-preset-env, babel-preset-react, and babel-preset-stage-2 to provide
support for React, the latest JS features, and some stage-x
features such as declaring class fields that are not currently
covered under babel-preset-env

Webpack modules will help bundle the compiled JavaScript, both for
the client-side and server-side code. Modules needed to get Webpack
working are:

webpack

webpack-cli to run Webpack commands
webpack-node-externals to ignore external Node module files when
bundling in Webpack
webpack-dev-middleware to serve the files emitted from Webpack over
a connected server during development of the code
webpack-hot-middleware to add hot module reloading into an existing
server by connecting a browser client to a Webpack server and
receiving updates as code changes during development

nodemon to watch server-side changes during development, so the server
can be reloaded to put changes into effect.
react-hot-loader for faster development on the client side. Every time a
file changes in the React frontend, react-hot-loader enables the browser

app to update without re-bundling the whole frontend code.

Although react-hot-loader is meant for aiding development flow, it is safe to install this
module as a regular dependency rather than a devDependency. It automatically
ensures hot reloading is disabled in production and the footprint is minimal.

Checking your development setup
In this section, we will go through the development workflow and write
code step-by-step to ensure the environment is correctly set up to start
developing and running MERN applications.

We will generate these project files in the following folder structure to run
a simple setup project:

| mern-simplesetup/

 | -- client/

 | --- HelloWorld.js

 | --- main.js

 | -- server/

 | --- devBundle.js

 | --- server.js

 | -- .babelrc

 | -- nodemon.json

 | -- package.json

 | -- template.js

 | -- webpack.config.client.js

 | -- webpack.config.client.production.js

 | -- webpack.config.server.js

The code discussed in this section is available on GitHub in the repository at: github.
com/shamahoque/mern-simplesetup. You can clone this code and run it as you go through the
code explanations in the rest of this chapter.

https://github.com/shamahoque/mern-simplesetup

Initializing package.json and
installing npm modules
We will begin by using npm to install all the required modules. It is a best
practice to add a package.json file in every project folder to maintain,
document, and share the npm modules being used in the MERN
application. The package.json file will contain meta information about the
application, as well as list the module dependencies.

Perform the steps outlined in the following to generate a package.json file,
modify it, and use it to install the npm modules:

npm init: From the command line, enter your project folder and run npm
init. You will be asked a series of questions and then a package.json file
will be auto-generated with your answers.
dependencies: Open the package.json in your editor and modify the JSON
object to add the key modules and react-hot-loader as regular
dependencies.

The file path mentioned before a code block indicates the location of the code in the
project directory. This convention has been maintained throughout the book to
provide better context and guidance as you follow along with the code.

 mern-simplesetup/package.json:

"dependencies": {

 "express": "^4.16.3",

 "mongodb": "^3.0.7",

 "react": "^16.3.2",

 "react-dom": "^16.3.2",

 "react-hot-loader": "^4.1.2"

}

devDependencies: Modify package.json further to add the following npm
modules required during development as devDependencies.

 mern-simplesetup/package.json:

"devDependencies": {

 "babel-core": "^6.26.2",

 "babel-loader": "^7.1.4",

 "babel-preset-env": "^1.6.1",

 "babel-preset-react": "^6.24.1",

 "babel-preset-stage-2": "^6.24.1",

 "nodemon": "^1.17.3",

 "webpack": "^4.6.0",

 "webpack-cli": "^2.0.15",

 "webpack-dev-middleware": "^3.1.2",

 "webpack-hot-middleware": "^2.22.1",

 "webpack-node-externals": "^1.7.2"

}

npm install: Save package.json and from the command line, run npm install
to fetch and add all these modules to your project.

Configuring Babel, Webpack, and
Nodemon
Before we start coding up the web application, we need to configure Babel,
Webpack, and Nodemon to compile, bundle, and auto reload the changes in
the code during development.

Babel
Create a .babelrc file in your project folder and add the following JSON
with presets and plugins specified.

mern-simplesetup/.babelrc:

{

 "presets": [

 "env",

 "stage-2"

 "react"

],

 "plugins": [

 "react-hot-loader/babel"

]

}

The react-hot-loader/babel plugin is required by the react-hot-loader module to
compile React components.

Webpack
We will have to configure Webpack for bundling both the client and server
code and the client code separately for production code. Create
webpack.config.client.js, webpack.config.server.js, and
webpack.config.client.production.js files in your project folder. All three files
will have the following code structure:

const path = require('path')

const webpack = require('webpack')

const CURRENT_WORKING_DIR = process.cwd()

const config = { ... }

module.exports = config

The config JSON object will differ with values specific to the client or
server-side code, and development versus production code.

Client-side Webpack configuration
for development
Update the config object with the following in your webpack.config.client.js
file, to configure Webpack for bundling and hot loading React code during
development.

mern-simplesetup/webpack.config.client.js:

const config = {

 name: "browser",

 mode: "development",

 devtool: 'eval-source-map',

 entry: [

 'react-hot-loader/patch',

 'webpack-hot-middleware/client?reload=true',

 path.join(CURRENT_WORKING_DIR, 'client/main.js')

],

 output: {

 path: path.join(CURRENT_WORKING_DIR , '/dist'),

 filename: 'bundle.js',

 publicPath: '/dist/'

 },

 module: {

 rules: [

 {

 test: /\.jsx?$/,

 exclude: /node_modules/,

 use: [

 'babel-loader'

]

 }

]

 }, plugins: [

 new webpack.HotModuleReplacementPlugin(),

 new webpack.NoEmitOnErrorsPlugin()

]

}

mode sets process.env.NODE_ENV to the given value and tells Webpack to use
its built-in optimizations accordingly. If not explicitly set, it defaults
to the value 'production'. It can also be set via the command line by
passing the value as a CLI argument.

devtool specifies how source maps are generated, if at all. Generally, a
source map provides a way of mapping code within a compressed file
back to its original position in a source file to aid debugging.
entry specifies the entry file where Webpack starts bundling, in this
case with the main.js file in the client folder.
output specifies the output path for the bundled code, in this case, set
to dist/bundle.js.
publicPath allows specifying the base path for all assets in the
application.
module sets the regex rule for the file extension to be used for
transpilation, and the folders to be excluded. The transpilation tool to
be used here is babel-loader.
HotModuleReplacementPlugin enables hot module replacement for react-hot-
loader.
NoEmitOnErrorsPlugin allows skipping emitting when there are compile
errors.

Server-side Webpack configuration
Modify the code to require nodeExternals, and update the config object with
the following in your webpack.config.server.js file to configure Webpack for
bundling server-side code.

mern-simplesetup/webpack.config.server.js:

const config = {

 name: "server",

 entry: [path.join(CURRENT_WORKING_DIR , './server/server.js')],

 target: "node",

 output: {

 path: path.join(CURRENT_WORKING_DIR , '/dist/'),

 filename: "server.generated.js",

 publicPath: '/dist/',

 libraryTarget: "commonjs2"

 },

 externals: [nodeExternals()],

 module: {

 rules: [

 {

 test: /\.js$/,

 exclude: /node_modules/,

 use: ['babel-loader']

 }

]

 }

}

The mode option is not set here explicitly but will be passed as required
when running the Webpack commands with respect to running for
development or building for production.

Webpack starts bundling from the server folder with server.js, then outputs
the bundled code in server.generated.js in the dist folder.

Client-side Webpack configuration
for production
For preparing the client-side code for production, update the config object
with the following code in your webpack.config.client.production.js file.

mern-simplesetup/webpack.config.client.production.js:

const config = {

 mode: "production",

 entry: [

 path.join(CURRENT_WORKING_DIR, 'client/main.js')

],

 output: {

 path: path.join(CURRENT_WORKING_DIR , '/dist'),

 filename: 'bundle.js',

 publicPath: "/dist/"

 },

 module: {

 rules: [

 {

 test: /\.jsx?$/,

 exclude: /node_modules/,

 use: [

 'babel-loader'

]

 }

]

 }

}

This will configure Webpack for bundling the React code to be used in
production mode, where the hot reloading plugin or debug configuration
will no longer be required.

Nodemon
Create a nodemon.js file in your project folder, and add the following
configuration.

mern-simplesetup/nodemon.js:

{

 "verbose": false,

 "watch": ["./server"],

 "exec": "webpack --mode=development --config

 webpack.config.server.js

 && node ./dist/server.generated.js"

}

This configuration will set up nodemon to watch for changes in the server
files during development, then execute compile and build commands as
necessary.

Frontend views with React
In order to start developing a frontend, first create a root template file
called template.js in the project folder, which will render the HTML with
React components.

mern-simplesetup/template.js:

export default () => {

 return `<!doctype html>

 <html lang="en">

 <head>

 <meta charset="utf-8">

 <title>MERN Kickstart</title>

 </head>

 <body>

 <div id="root"></div>

 <script type="text/javascript" src="/dist/bundle.js">

 </script>

 </body>

 </html>`

}

When the server receives a request to the root URL, this HTML template
will be rendered in the browser, and the div element with ID "root" will
contain our React component.

Next, create a client folder where we will add two React files, main.js and
HelloWorld.js.

The main.js file simply renders the top-level entry React component in the
div element in the HTML document.

mern-simplesetup/client/main.js:

import React from 'react'

import { render } from 'react-dom'

import HelloWorld from './HelloWorld'

render(<HelloWorld/>, document.getElementById('root'))

In this case, the entry React component is the HelloWorld component imported
from HelloWorld.js.

HelloWorld.js contains a basic HelloWorld component, which is hot-exported to
enable hot reloading with react-hot-loader during development.

mern-simplesetup/client/HelloWorld.js:

import React, { Component } from 'react'

import { hot } from 'react-hot-loader'

class HelloWorld extends Component {

 render() {

 return (

 <div>

 <h1>Hello World!</h1>

 </div>

)

 }

}

export default hot(module)(HelloWorld)

To see the React component rendered in the browser when the server
receives a request to the root URL, we need to use the Webpack and Babel
setup to compile and bundle this code, and add server-side code that
responds to the root route request with the bundled code.

Server with Express and Node
In the project folder, create a folder called server, and add a file called
server.js that will set up the server. Then, add another file called devBundle.js,
which will help compile the React code using Webpack configurations
while in development mode.

Express app
In server.js, we will first add code to import the express module in order to
initialize an Express app.

mern-simplesetup/server/server.js:

import express from 'express'

const app = express()

Then we will use this Express app to build out the rest of the Node server
application.

Bundle React app during
development
In order to keep the development flow simple, we will initialize Webpack
to compile the client-side code when the server is run. In devBundle.js, we
will set up a compile method that takes the Express app and configures
it to use the Webpack middleware to compile, bundle, and serve code, as
well as enable hot reloading in development mode.

mern-simplesetup/server/devBundle.js:

import webpack from 'webpack'

import webpackMiddleware from 'webpack-dev-middleware'

import webpackHotMiddleware from 'webpack-hot-middleware'

import webpackConfig from './../webpack.config.client.js'

const compile = (app) => {

 if(process.env.NODE_ENV == "development"){

 const compiler = webpack(webpackConfig)

 const middleware = webpackMiddleware(compiler, {

 publicPath: webpackConfig.output.publicPath

 })

 app.use(middleware)

 app.use(webpackHotMiddleware(compiler))

 }

}

export default {

 compile

}

We will call this compile method in server.js by adding the following lines
while in development mode.

mern-simplesetup/server/server.js:

import devBundle from './devBundle'

const app = express()

devBundle.compile(app)

These two highlighted lines are only meant for development mode and
should be commented out when building the application code for
production. In development mode, when these lines are executed, Webpack
will compile and bundle the React code to place it in dist/bundle.js.

Serving static files from the dist
folder
Webpack will compile client-side code in both development and
production mode, then place the bundled files in the dist folder. To make
these static files available on requests from the client side, we will add the
following code in server.js to serve static files from dist/folder.

mern-simplesetup/server/server.js:

import path from 'path'

const CURRENT_WORKING_DIR = process.cwd()

app.use('/dist', express.static(path.join(CURRENT_WORKING_DIR, 'dist')))

Rendering templates at the root
When the server receives a request at the root URL /, we will render
template.js in the browser. In server.js, add the following route handling code
to the Express app to receive GET requests at /.

mern-simplesetup/server/server.js:

import template from './../template'

app.get('/', (req, res) => {

 res.status(200).send(template())

})

Finally, add server code to listen on the specified port for incoming
requests.

mern-simplesetup/server/server.js:

let port = process.env.PORT || 3000

app.listen(port, function onStart(err) {

 if (err) {

 console.log(err)

 }

 console.info('Server started on port %s.', port)

})

Connecting the server to MongoDB
To connect your Node server to MongoDB, add the following code to
server.js, and make sure you have MongoDB running in your workspace.

mern-simplesetup/server/server.js:

import { MongoClient } from 'mongodb'

const url = process.env.MONGODB_URI || 'mongodb://localhost:27017/mernSimpleSetup'

MongoClient.connect(url, (err, db)=>{

 console.log("Connected successfully to mongodb server")

 db.close()

})

In this code example, MongoClient is the driver that connects to the running
MongoDB instance using its url and allows us to implement the database
related code in the backend.

npm run scripts
Update the package.json file to add the following npm run scripts for
development and production.

mern-simplesetup/package.json:

"scripts": {

 "development": "nodemon",

 "build": "webpack --config webpack.config.client.production.js

 && webpack --mode=production --config

 webpack.config.server.js",

 "start": "NODE_ENV=production node ./dist/server.generated.js"

}

npm run development: This command will get Nodemon, Webpack, and the
server started for development
npm run build: This will generate the client and server code bundles for
production mode (before running this script, make sure to remove the
devBundle.compile code from server.js)
npm run start: This command will run the bundled code in production

Developing and debugging in real
time
To run the code developed so far, and to ensure everything is working, you
can go through the following steps:

1. Run the application from the command line: npm run development.
2. Load in browser: Open the root URL in the browser, which is

http://localhost:3000 if you are using your local machine setup. You
should see a page with the title MERN Kickstart that just shows Hello
World!.

3. Develop code and debug live: Change the HelloWorld.js component
text 'Hello World!' to just 'hello'. Save the changes to see the
instantaneous update in the browser, and also check the command
line output to see that bundle.js is not re-created. Similarly, you can
also see instant updates when you change the server-side code,
increasing productivity during development.

If you have made it this far, congratulations, you are all set to start
developing exciting MERN applications.

Summary
In this chapter, we discussed development tool options and how to install
MERN technologies, and then we wrote code to check whether the
development environment is set up correctly.

We began by looking at the recommended workspace, IDE, version control
software, and browser options suitable for web development. You can
select from these options based on your preferences as a developer.

Next, we set up the MERN stack technologies by first installing
MongoDB, Node, and npm, and then adding the remaining required
libraries using npm.

Before moving on to writing code to check this setup, we configured
Webpack and Babel to compile and bundle code during development, and
to build production ready code. We learned that it is necessary to compile
the ES6 and JSX code that is used for developing a MERN application
before opening the application on browsers.

Additionally, we made the development flow efficient by including React
Hot Loader for frontend development, configuring Nodemon for backend
development, and compiling both the client and server code in one
command when the server is run during development.

In the next chapter, we use this setup to start building a skeleton MERN
application that will function as a base for full-featured applications.

Building a Backend with
MongoDB, Express, and Node
During the development of most web applications, there are common
tasks, basic features, and implementation code repeated across the process.
The same is true for the MERN applications developed in this book.
Taking these similarities into consideration, we will first lay the
foundations for a skeleton MERN application that can be easily modified
and extended to implement a variety of MERN applications.

In this chapter, we will cover the following topics and start with the
backend implementation of the MERN skeleton, using Node, Express, and
MongoDB:

User CRUD and auth in a MERN application
Handling HTTP requests with an Express server
Using a Mongoose schema for a user model
APIs for user CRUD and auth
Auth with JWT for protected routes
Running backend code and checking APIs

Skeleton application overview
The skeleton application will encapsulate rudimentary features and a
workflow repeated for most MERN applications. We will build the
skeleton essentially as a basic but fully functioning MERN web
application with user create, update, delete (CRUD), and authentication-
authorization (auth) capabilities, which will also lay out how to develop,
organize, and run code for general web applications built using this
stack. The aim is to keep the skeleton as simple as possible so it is easy to
extend, and can be used as a base application for developing different
MERN applications.

Feature breakdown
In the skeleton application, we will add the following use cases with user
CRUD and auth functionality implementations:

Sign up: Users can register by creating a new account using an email
address
User list: Any visitor can see the list of all registered users
Authentication: Registered users can sign in and sign out
Protected user profile: Only registered users can view individual
user details after signing in
Authorized user edit and delete: Only a registered and authenticated
user can edit or remove their own user account details

Focus of this chapter – the backend
In this chapter, we will focus on building a working backend for the
skeleton application with Node, Express, and MongoDB. The completed
backend will be a standalone server-side application that can handle HTTP
requests to create a user, list all users, and view, update, or delete a user in
the database while taking user authentication and authorization into
consideration.

User model
The user model will define user details to be stored in the MongoDB
database, and also handle user-related business logic such as password
encryption and user data validation. The user model for this skeletal
version will be basic with support for the following attributes:

Field
name Type Description

name String Required field to store user's name

email String
Required unique field to store user's email and
identify each account (only one account allowed per
unique email)

password String
Required field for authentication, the database will
store the encrypted password and not the actual
string for security purposes

created Date Automatically generated timestamp when a new
user account is created

updated Date Automatically generated timestamp when existing
user details are updated

API endpoints for user CRUD
To enable and handle user CRUD operations on the user database, the
backend will implement and expose API endpoints that the frontend can
utilize in the views, as follows:

Operation API route HTTP method

Create a user /api/users POST

List all users /api/users GET

Fetch a user /api/users/:userId GET

Update a user /api/users/:userId PUT

Delete a user /api/users/:userId DELETE

User sign-in /auth/signin POST

User sign-out (optional) /auth/signout GET

Some of these user CRUD operations will have protected access, which
will require the requesting client to be either authenticated, authorized, or
both. The last two routes are for authentication and will allow the user to
sign in and sign out.

Auth with JSON Web Tokens
To restrict and protect access to the user API endpoints according to the
skeleton features, the backend will need to incorporate authentication and
authorization mechanisms. There are a number of options when it comes
to implementing user auth for web applications. The most common and
time tested option is the use of sessions to store user state on both the
client and server side. But a newer approach is the use of JSON Web
Token (JWT) as a stateless authentication mechanism that does not
require storing user state on the server side.

Both approaches have strengths for relevant real-world use cases.
However, for the purpose of keeping the code simple in this book, and
because it pairs well with the MERN stack and our example applications,
we will use JWT for auth implementation. Additionally, the book will also
suggest security enhancement options in future chapters.

How JWT works
When a user successfully signs in using their credentials, the server side
generates a JWT signed with a secret key and a unique user detail. Then,
this token is returned to the requesting client to be saved locally either in
localStorage, sessionStorage, or a cookie in the browser, essentially handing
over the responsibility of maintaining user state to the client side:

For HTTP requests made following a successful sign-in, specially requests
for API endpoints that are protected and have restricted access, the client

side has to attach this token to the request. More specifically, the JSON Web
Token must be included in the request Authorization header as a Bearer:

Authorization: Bearer <JSON Web Token>

When the server receives a request for a protected API endpoint, it checks
the Authorization header of the request for a valid JWT, then verifies the
signature to identify the sender and ensures the request data was not
corrupted. If the token is valid, the requesting client is given access to the
associated operation or resource, otherwise an authorization error is
returned.

In the skeleton application, when a user signs in with email and password,
the backend will generate a signed JWT with the user's ID and with a
secret key available only on the server. This token will then be required for
verification when a user tries to view any user profiles, update their
account details, or delete their user account.

Implementing the user model to store and validate user data, then
integrating it with APIs to perform CRUD operations based on auth with
JWT, will produce a functioning standalone backend. In the rest of the
chapter, we will look at how to achieve this in the MERN stack and setup.

Implementing the skeleton backend
To start developing the backend part of the MERN skeleton, we will first
set up the project folder, install and configure the necessary npm modules,
and then prepare the run scripts to aid development and run the code.
Then, we will go through the code step by step to implement the user
model, API endpoints, and JWT-based auth to meet the specifications we
defined earlier for the user-oriented features.

The code discussed in this chapter, and for the complete skeleton application is
available on GitHub in the repository at github.com/shamahoque/mern-skeleton. The code for
just the backend is available at the same repository in the branch named mern-
skeleton-backend. You can clone this code and run the application as you go through
the code explanations in the rest of this chapter.

https://github.com/shamahoque/mern-skeleton

Folder and file structure
The following folder structure only shows the files that are relevant for the
MERN skeleton backend. With these files, we will produce a functioning,
standalone server-side application:

| mern_skeleton/

 | -- config/

 | --- config.js

 | -- server/

 | --- controllers/

 | ---- auth.controller.js

 | ---- user.controller.js

 | --- helpers/

 | ---- dbErrorHandler.js

 | --- models/

 | ---- user.model.js

 | --- routes/

 | ---- auth.routes.js

 | ---- user.routes.js

 | --- express.js

 | --- server.js

 | -- .babelrc

 | -- nodemon.json

 | -- package.json

 | -- template.js

 | -- webpack.config.server.js

This structure will be further expanded in the next chapter, where we
complete the skeleton application by adding a React frontend.

Setting up the project
If the development environment is already set up, we can initialize the
MERN project to start developing the backend. First, we will
initialize package.json in the project folder, configure and install
development dependencies, set configuration variables to be used in the
code, and update package.json with run scripts to help develop and run the
code.

Initializing package.json
We will need a package.json file to store meta information about the project,
list the module dependencies with version numbers, and to define run
scripts. To initialize a package.json file in the project folder, go to the project
folder from the command line and run npm init, then follow the instructions
to add the necessary details. With package.json created, we can proceed with
setup and development, and update the file as more modules are
required throughout code implementation.

Development dependencies
In order to begin with development and to run the backend server code, we
will configure and install Babel, Webpack, and Nodemon as discussed in Ch
apter 2, Preparing the Development Environment, with some minor
adjustments for just the backend.

Babel
Since we will be using ES6 to write the backend code, we will configure
and install Babel modules to convert ES6.

First, we configure Babel in the .babelrc file with presets for the latest JS
features and some stage-x features not currently covered under babel-preset-
env.

mern-skeleton/.babelrc:

{

 "presets": [

 "env",

 "stage-2"

]

}

Next, we install the Babel modules as devDependencies from the command
line:

npm install --save-dev babel-core babel-loader babel-preset-env babel-preset-stage-2

Once the module installations are done, you will notice that the
devDependencies list has been updated in the package.json file.

Webpack
We will need Webpack to compile and bundle the server-side code using
Babel, and for configuration we can use the same webpack.config.server.js
discussed in Chapter 2, Preparing the Development Environment.

From the command line, run the following command to install webpack,
webpack-cli, and the webpack-node-externals module:

npm install --save-dev webpack webpack-cli webpack-node-externals

This will install the Webpack modules and update the package.json file.

Nodemon
To automatically restart the Node server as we update the code during
development, we will use Nodemon to monitor the server code for
changes. We can use the same installation and configuration guidelines
discussed in Chapter 2, Preparing the Development Environment.

Config variables
In the config/config.js file, we will define some server-side configuration
related variables that will be used in the code, but should not be hardcoded
as a best practice, as well as for security purposes.

mern-skeleton/config/config.js:

const config = {

 env: process.env.NODE_ENV || 'development',

 port: process.env.PORT || 3000,

 jwtSecret: process.env.JWT_SECRET || "YOUR_secret_key",

 mongoUri: process.env.MONGODB_URI ||

 process.env.MONGO_HOST ||

 'mongodb://' + (process.env.IP || 'localhost') + ':' +

 (process.env.MONGO_PORT || '27017') +

 '/mernproject'

}

export default config

The config variables defined are:

env: To differentiate between development and production mode
port: To define the listening port for the server
jwtSecret: The secret key to be used to sign JWT
mongoUri: The location of the MongoDB database for the project

Running scripts
To run the server as we develop the code for only the backend, we can start
with the npm run development script in the package.json file. For the complete
skeleton application, we will use the same run scripts defined in Chapter 2,
Preparing the Development Environment.

mern-skeleton/package.json:

"scripts": {

 "development": "nodemon"

 }

npm run development: Running this in the command line from your project
folder will basically start Nodemon according to the configuration in
nodemon.js. The configuration instructs Nodemon to monitor the server files
for updates, and on update to build the files again, then restart the server
so the changes are immediately available.

Preparing the server
In this section, we will integrate Express, Node, and MongoDB to run a
completely configured server before we start implementing the user
specific features.

Configuring Express
To use Express, we will first install Express, then add and configure it in
the server/express.js file.

From the command line, run the following command to install the express
module with the --save flag, so the package.json file is automatically updated:

npm install express --save

Once Express is installed, we can import it into the express.js file,
configure as required, and make it available to the rest of the app.

mern-skeleton/server/express.js:

import express from 'express'

const app = express()

 /*... configure express ... */

export default app

To handle HTTP requests and serve responses properly, we will use the
following modules to configure Express:

body-parser: Body parsing middleware to handle the complexities of
parsing streamable request objects, so we can simplify browser-
server communication by exchanging JSON in the request body:

Install the body-parser module: npm install body-parser --save
Configure Express: bodyParser.json() and bodyParser.urlencoded({
extended: true })

cookie-parser: Cookie parsing middleware to parse and set cookies in
request objects:
Install the cookie-parser module: npm install cookie-parser --save
compression: Compression middleware that will attempt to compress
response bodies for all requests that traverse through the middleware:
Install the compression module: npm install compression --save
helmet: A collection of middleware functions to help secure Express
apps by setting various HTTP headers:

Install the helmet module: npm install helmet --save
cors: Middleware to enable CORS (Cross-origin resource sharing):
Install the cors module: npm install cors --save

After the preceding modules are installed, we can update express.js to
import these modules and configure the Express app before exporting it
for use in the rest of the server code.

The updated mern-skeleton/server/express.js code should be as follows:

import express from 'express'

import bodyParser from 'body-parser'

import cookieParser from 'cookie-parser'

import compress from 'compression'

import cors from 'cors'

import helmet from 'helmet'

const app = express()

app.use(bodyParser.json())

app.use(bodyParser.urlencoded({ extended: true }))

app.use(cookieParser())

app.use(compress())

app.use(helmet())

app.use(cors())

export default app

Starting the server
With the Express app configured to accept HTTP requests, we can go
ahead and use it to implement the server to listen for incoming requests.

In the mern-skeleton/server/server.js file, add the following code to implement
the server:

import config from './../config/config'

import app from './express'

app.listen(config.port, (err) => {

 if (err) {

 console.log(err)

 }

 console.info('Server started on port %s.', config.port)

})

We first import the config variables to set the port number that the server
will listen on, and then the configured Express app to start the server.

To get this code running and continue development, you can now run npm
run development from the command line. If the code has no errors, the server
should start running with Nodemon monitoring for code changes.

Setting up Mongoose and
connecting to MongoDB
We will be using the Mongoose module to implement the user model in this
skeleton, and also all future data models for our MERN applications. Here,
we will start by configuring Mongoose, and utilizing it to define a
connection with the MongoDB database.

First, to install the mongoose module, run the following command:

npm install mongoose --save

Then, update the server.js file to import the mongoose module, configure it to
use native ES6 promises, and finally use it to handle the connection to the
MongoDB database for the project.

mern-skeleton/server/server.js:

import mongoose from 'mongoose'

mongoose.Promise = global.Promise

mongoose.connect(config.mongoUri)

mongoose.connection.on('error', () => {

 throw new Error(`unable to connect to database: ${mongoUri}`)

})

If you have the code running in development, saving this update should
restart the server that is now integrated with Mongoose and MongoDB.

Mongoose is a MongoDB object modeling tool that provides a schema-based
solution to model application data. It includes built-in type casting, validation,
query building, and business logic hooks. Using Mongoose with this backend stack
provides a higher layer over MongoDB with more functionality including mapping
object models to database documents. Thus, making it simpler and more productive
to develop with a Node and MongoDB backend. To learn more about Mongoose,
visit mongoosejs.com.

http://mongoosejs.com/

Serving an HTML template at a
root URL
With a Node, Express, and MongoDB enabled server now running, we can
extend it to serve an HTML template in response to an incoming request at
the root URL /.

In the template.js file, add a JS function that returns a simple HTML
document that will render Hello World on the browser screen.

mern-skeleton/template.js:

export default () => {

 return `<!doctype html>

 <html lang="en">

 <head>

 <meta charset="utf-8">

 <title>MERN Skeleton</title>

 </head>

 <body>

 <div id="root">Hello World</div>

 </body>

 </html>`

}

To serve this template at the root URL, update the express.js file to import
this template, and send it in the response to a GET request for the '/' route.

mern-skeleton/server/express.js:

import Template from './../template'

...

app.get('/', (req, res) => {

 res.status(200).send(Template())

})

...

With this update, opening the root URL in a browser should show Hello
World rendered on the page.

If you are running the code on your local machine, the root URL will be
http://localhost:3000/.

User model
We will implement the user model in the server/models/user.model.js file,
using Mongoose to define the schema with the necessary user data fields,
to add built-in validation for the fields and to incorporate business logic
such as password encryption, authentication, and custom validation.

We will begin by importing the mongoose module and use it to generate a
UserSchema.

mern-skeleton/server/models/user.model.js:

import mongoose from 'mongoose'

const UserSchema = new mongoose.Schema({ … })

The mongoose.Schema() function takes a schema definition object as a
parameter to generate a new Mongoose schema object that can be used in
the rest of the backend code.

User schema definition
The user schema definition object needed to generate the new Mongoose
schema will declare all the user data fields and associated properties.

Name
The name field is a required field of type String.

mern-skeleton/server/models/user.model.js:

name: {

 type: String,

 trim: true,

 required: 'Name is required'

 },

Email
The email field is a required field of type String, which must match a valid
email format and must also be unique in the user collection.

mern-skeleton/server/models/user.model.js:

email: {

 type: String,

 trim: true,

 unique: 'Email already exists',

 match: [/.+\@.+\..+/, 'Please fill a valid email address'],

 required: 'Email is required'

},

Created and updated timestamps
The fields created and updated are Date values that will be programmatically
generated to record timestamps for a user being created and updated.

mern-skeleton/server/models/user.model.js:

created: {

 type: Date,

 default: Date.now

},

updated: Date,

Hashed password and salt
The hashed_password and salt fields represent the encrypted user password that
we will use for authentication.

mern-skeleton/server/models/user.model.js:

hashed_password: {

 type: String,

 required: "Password is required"

},

salt: String

The actual password string is not stored directly in the database for
security purposes and is handled separately.

Password for auth
The password field is very crucial for providing secure user authentication
in any application, and it needs to be encrypted, validated, and
authenticated securely as a part of the user model.

As a virtual field
The password string provided by the user is not stored directly in the user
document. Instead, it is handled as a virtual field.

mern-skeleton/server/models/user.model.js:

UserSchema

 .virtual('password')

 .set(function(password) {

 this._password = password

 this.salt = this.makeSalt()

 this.hashed_password = this.encryptPassword(password)

 })

 .get(function() {

 return this._password

 })

When the password value is received on user creation or update, it is
encrypted into a new hashed value and set to the hashed_password field, along
with the salt value in the salt field.

Encryption and authentication
The encryption logic and salt generation logic, which are used to generate
the hashed_password and salt values representing the password value, are defined
as UserSchema methods.

mern-skeleton/server/models/user.model.js:

UserSchema.methods = {

 authenticate: function(plainText) {

 return this.encryptPassword(plainText) === this.hashed_password

 },

 encryptPassword: function(password) {

 if (!password) return ''

 try {

 return crypto

 .createHmac('sha1', this.salt)

 .update(password)

 .digest('hex')

 } catch (err) {

 return ''

 }

 },

 makeSalt: function() {

 return Math.round((new Date().valueOf() * Math.random())) + ''

 }

}

Additionally, the authenticate method is also defined as a UserSchema method,
which is used when a user supplied password must be authenticated for
sign-in.

The crypto module in Node is used to encrypt the user-provided password
string into a hashed_password with a randomly generated salt value. The
hashed_password and the salt is stored in the user document when the user
details are saved to the database on a create or update. Both the
hashed_password and salt values are required in order to match and
authenticate a password string provided during user sign-in, using the
authenticate method defined previously.

Password field validation
To add validation constraints on the actual password string selected by the
end user, we will need to add custom validation logic and associate it with
the hashed_password field in the schema.

mern-skeleton/server/models/user.model.js:

UserSchema.path('hashed_password').validate(function(v) {

 if (this._password && this._password.length < 6) {

 this.invalidate('password', 'Password must be at least 6 characters.')

 }

 if (this.isNew && !this._password) {

 this.invalidate('password', 'Password is required')

 }

}, null)

To ensure that a password value is indeed provided, and has a length of at
least six characters when a new user is created or existing password is
updated, custom validation is added to check the password value before
Mongoose attempts to store the hashed_password value. If validation fails, the
logic will return the relevant error message.

Once the UserSchema is defined, and all the password related business logic is
added as discussed previously, we can finally export the schema at the
bottom of the user.model.js file, in order to use it in other parts of the
backend code.

mern-skeleton/server/models/user.model.js:

export default mongoose.model('User', UserSchema)

Mongoose error handling
The validation constraints added to the user schema fields will throw error messages, if
violated when user data is saved to the database. To handle these validation errors and other
errors that the database may throw when we make queries to it, we will define a helper
method to return a relevant error message that can be propagated in the request-response
cycle as appropriate.

We will add the getErrorMessage helper method in the server/helpers/dbErrorHandler.js file. This
method will parse and return the error message associated with the specific validation error
or other error that occurred while querying MongoDB using Mongoose.

mern-skeleton/server/helpers/dbErrorHandler.js:

const getErrorMessage = (err) => {

 let message = ''

 if (err.code) {

 switch (err.code) {

 case 11000:

 case 11001:

 message = getUniqueErrorMessage(err)

 break

 default:

 message = 'Something went wrong'

 }

 } else {

 for (let errName in err.errors) {

 if (err.errors[errName].message)

 message = err.errors[errName].message

 }

 }

 return message

}

export default {getErrorMessage}

Errors that are not thrown because of a Mongoose validator violation will contain an error
code and in some cases need to be handled differently. For example, errors caused due to a
violation of the unique constraint will return a different error object than Mongoose
validation errors. The unique option is not a validator but a convenient helper for building
MongoDB unique indexes, and thus we will add another getUniqueErrorMessage method to parse
the unique constraint related error object and construct an appropriate error message.

mern-skeleton/server/helpers/dbErrorHandler.js:

const getUniqueErrorMessage = (err) => {

 let output

 try {

 let fieldName =

 err.message.substring(err.message.lastIndexOf('.$') + 2,

 err.message.lastIndexOf('_1'))

 output = fieldName.charAt(0).toUpperCase() + fieldName.slice(1) +

 ' already exists'

 } catch (ex) {

 output = 'Unique field already exists'

 }

 return output

}

By using the getErrorMessage function exported from this helper file, we will add meaningful
error messages when handling errors thrown by Mongoose operations performed for user
CRUD.

User CRUD API
The user API endpoints exposed by the Express app will allow the
frontend to do CRUD operations on the documents generated according to
the user model. To implement these working endpoints, we will write
Express routes and corresponding controller callback functions that should
be executed when HTTP requests come in for these declared routes. In this
section, we will look at how these endpoints will work without any auth
restrictions.

The user API routes will be declared using Express router in
server/routes/user.routes.js, and then mounted on the Express app we
configured in server/express.js.

mern-skeleton/server/express.js:

import userRoutes from './routes/user.routes'

...

app.use('/', userRoutes)

...

User routes
The user routes defined in the user.routes.js file will use express.Router() to
declare the route paths with relevant HTTP methods, and assign the
corresponding controller function that should be called when these
requests are received by the server.

We will keep the user routes simple, by using the following:

/api/users for:
Listing users with GET
Creating a new user with POST

/api/users/:userId for:
Fetching a user with GET
Updating a user with PUT
Deleting a user with DELETE

The resulting user.routes.js code will look as follows (without the auth
considerations that need to be added for protected routes).

mern-skeleton/server/routes/user.routes.js:

import express from 'express'

import userCtrl from '../controllers/user.controller'

const router = express.Router()

router.route('/api/users')

 .get(userCtrl.list)

 .post(userCtrl.create)

router.route('/api/users/:userId')

 .get(userCtrl.read)

 .put(userCtrl.update)

 .delete(userCtrl.remove)

router.param('userId', userCtrl.userByID)

export default router

User controller
The server/controllers/user.controller.js file will contain the controller
methods used in the preceding user route declarations as callbacks when a
route request is received by the server.

The user.controller.js file will have the following structure:

import User from '../models/user.model'

import _ from 'lodash'

import errorHandler from './error.controller'

const create = (req, res, next) => { … }

const list = (req, res) => { … }

const userByID = (req, res, next, id) => { … }

const read = (req, res) => { … }

const update = (req, res, next) => { … }

const remove = (req, res, next) => { … }

export default { create, userByID, read, list, remove, update }

The controller will make use of the errorHandler helper to respond to the
route requests with meaningful messages when a Mongoose error occurs.
It will also use a module called lodash when updating an existing user with
changed values.

lodash is a JavaScript library which provides utility functions for common
programming tasks including manipulation of arrays and objects. To install lodash,
run npm install lodash --save from command line.

Each of the controller functions defined previously are related to a route
request, and will be elaborated on in relation to each API use case.

Creating a new user
The API endpoint to create a new user is declared in the following route.

mern-skeleton/server/routes/user.routes.js:

router.route('/api/users').post(userCtrl.create)

When the Express app gets a POST request at '/api/users', it calls the create
function defined in the controller.

mern-skeleton/server/controllers/user.controller.js:

const create = (req, res, next) => {

 const user = new User(req.body)

 user.save((err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.status(200).json({

 message: "Successfully signed up!"

 })

 })

}

This function creates a new user with the user JSON object received in the
POST request from the frontend within req.body. The user.save attempts to
save the new user into the database after Mongoose does a validation
check on the data, consequently an error or success response is returned to
the requesting client.

Listing all users
The API endpoint to fetch all the users is declared in the following route.

mern-skeleton/server/routes/user.routes.js:

router.route('/api/users').get(userCtrl.list)

When the Express app gets a GET request at '/api/users', it executes the list
controller function.

mern-skeleton/server/controllers/user.controller.js:

const list = (req, res) => {

 User.find((err, users) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(users)

 }).select('name email updated created')

}

The list controller function finds all the users from the database, populates
only the name, email, created and updated fields in the resulting user list,
and then returns this list of users as JSON objects in an array to the
requesting client.

Loading a user by ID to read,
update, or delete
All three API endpoints for read, update, and delete require a user to be
retrieved from the database based on the user ID of the user being
accessed. We will program the Express router to do this action first before
responding to the specific request to read, update, or delete.

Loading
Whenever the Express app receives a request to a route that matches a path
containing the :userId param in it, the app will first execute the userByID
controller function before propagating to the next function specific to the
request that came in.

mern-skeleton/server/routes/user.routes.js:

router.param('userId', userCtrl.userByID)

The userByID controller function uses the value in the :userId param to query
the database by _id, and load the matching user's details.

mern-skeleton/server/controllers/user.controller.js:

const userByID = (req, res, next, id) => {

 User.findById(id).exec((err, user) => {

 if (err || !user)

 return res.status('400').json({

 error: "User not found"

 })

 req.profile = user

 next()

 })

}

If a matching user is found in the database, the user object is appended to
the request object in the profile key. Then, the next() middleware is used to
propagate control to the next relevant controller function. For example, if
the original request was to read a user profile, the next() call in userById
would go to the read controller function.

Reading
The API endpoint to read a single user's data is declared in the following
route.

mern-skeleton/server/routes/user.routes.js:

router.route('/api/users/:userId').get(userCtrl.read)

When the Express app gets a GET request at '/api/users/:userId', it executes
the userByID controller function to load the user by the userId value in the
param, and then the read controller function.

mern-skeleton/server/controllers/user.controller.js:

const read = (req, res) => {

 req.profile.hashed_password = undefined

 req.profile.salt = undefined

 return res.json(req.profile)

}

The read function retrieves the user details from req.profile and removes
sensitive information, such as the hashed_password and salt values, before
sending the user object in the response to the requesting client.

Updating
The API endpoint to update a single user is declared in the following
route.

mern-skeleton/server/routes/user.routes.js:

router.route('/api/users/:userId').put(userCtrl.update)

When the Express app gets a PUT request at '/api/users/:userId', similar to
the read, it first loads the user with the :userId param value, and then the
update controller function is executed.

mern-skeleton/server/controllers/user.controller.js:

const update = (req, res, next) => {

 let user = req.profile

 user = _.extend(user, req.body)

 user.updated = Date.now()

 user.save((err) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 user.hashed_password = undefined

 user.salt = undefined

 res.json(user)

 })

}

The update function retrieves the user details from req.profile, then uses the
lodash module to extend and merge the changes that came in the request
body to update the user data. Before saving this updated user to the
database, the updated field is populated with the current date to reflect the
last updated at timestamp. On successful save of this update, the updated
user object is cleaned by removing the sensitive data, such as hashed_password
and salt, before sending the user object in the response to the requesting
client.

Deleting
The API endpoint to delete a user is declared in the following route.

mern-skeleton/server/routes/user.routes.js:

router.route('/api/users/:userId').delete(userCtrl.remove)

When the Express app gets a DELETE request at '/api/users/:userId', similar
to the read and update, it first loads the user by ID, and then the remove
controller function is executed.

mern-skeleton/server/controllers/user.controller.js:

const remove = (req, res, next) => {

 let user = req.profile

 user.remove((err, deletedUser) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 deletedUser.hashed_password = undefined

 deletedUser.salt = undefined

 res.json(deletedUser)

 })

}

The remove function retrieves the user from req.profile and uses the remove()
query to delete the user from the database. On successful deletion, the
requesting client is returned the deleted user object in the response.

With the implementation of the API endpoints so far, any client can
perform CRUD operations on the user model, but we want to restrict
access to some of these operations with authentication and authorization.

User auth and protected routes
To restrict access to user operations such as user profile view, user update,
and user delete, we will implement sign-in authentication with JWT, then
protect and authorize the read, update, and delete routes.

The auth-related API endpoints for sign-in and sign-out will be declared in
server/routes/auth.routes.js and then mounted on the Express app in
server/express.js.

mern-skeleton/server/express.js:

import authRoutes from './routes/auth.routes'

 ...

 app.use('/', authRoutes)

 ...

Auth routes
The two auth APIs are defined in the auth.routes.js file using express.Router()
to declare the route paths with relevant HTTP methods, and assigned
corresponding auth controller functions that should be called when
requests are received for these routes.

The auth routes are as follows:

'/auth/signin': POST request to authenticate the user with email and
password
'/auth/signout': GET request to clear the cookie containing a JWT that
was set on the response object after sign-in

The resulting mern-skeleton/server/routes/auth.routes.js file will be as follows:

import express from 'express'

import authCtrl from '../controllers/auth.controller'

const router = express.Router()

router.route('/auth/signin')

 .post(authCtrl.signin)

router.route('/auth/signout')

 .get(authCtrl.signout)

export default router

Auth controller
The auth controller functions in server/controllers/auth.controller.js will not
only handle requests to the sign-in and sign-out routes, but also provide
JWT and express-jwt functionality to enable authentication and
authorization for protected user API endpoints.

The auth.controller.js file will have the following structure:

import User from '../models/user.model'

import jwt from 'jsonwebtoken'

import expressJwt from 'express-jwt'

import config from './../../config/config'

const signin = (req, res) => { … }

const signout = (req, res) => { … }

const requireSignin = …

const hasAuthorization = (req, res) => { … }

export default { signin, signout, requireSignin, hasAuthorization }

The four controller functions are elaborated on in the following to show
how the backend implements user auth using JSON Web Tokens.

Sign-in
The API endpoint to sign in a user is declared in the following route.

mern-skeleton/server/routes/auth.routes.js:

router.route('/auth/signin').post(authCtrl.signin)

When the Express app gets a POST request at '/auth/signin', it executes the
signin controller function.

mern-skeleton/server/controllers/auth.controller.js:

const signin = (req, res) => {

 User.findOne({

 "email": req.body.email

 }, (err, user) => {

 if (err || !user)

 return res.status('401').json({

 error: "User not found"

 })

 if (!user.authenticate(req.body.password)) {

 return res.status('401').send({

 error: "Email and password don't match."

 })

 }

 const token = jwt.sign({

 _id: user._id

 }, config.jwtSecret)

 res.cookie("t", token, {

 expire: new Date() + 9999

 })

 return res.json({

 token,

 user: {_id: user._id, name: user.name, email: user.email}

 })

 })

}

The POST request object receives the email and password in req.body. This
email is used to retrieve a matching user from the database. Then, the

password authentication method defined in the UserSchema is used to verify
the password received in the req.body from the client.

If the password is successfully verified, the JWT module is used to
generate a JWT signed using a secret key and the user's _id value.

Install the jsonwebtoken module to make it available to this controller in the import by
running npm install jsonwebtoken --save from the command line.

Then, the signed JWT is returned to the authenticated client along with
user details. Optionally, we can also set the token to a cookie in the
response object so it is available to the client side if cookies is the chosen
form of JWT storage. On the client side, this token must be attached as an
Authorization header when requesting protected routes from the server.

Sign-out
The API endpoint to sign out a user is declared in the following route.

mern-skeleton/server/routes/auth.routes.js:

router.route('/auth/signout').get(authCtrl.signout)

When the Express app gets a GET request at '/auth/signout', it executes the
signout controller function.

mern-skeleton/server/controllers/auth.controller.js:

const signout = (req, res) => {

 res.clearCookie("t")

 return res.status('200').json({

 message: "signed out"

 })

}

The signout function clears the response cookie containing the signed JWT.
This is an optional endpoint and not really necessary for auth purposes if
cookies are not used at all in the frontend. With JWT, user state storage is
the client's responsibility, and there are multiple options for client-side
storage besides cookies. On sign-out, the client needs to delete the token
on the client side to establish that the user is no longer authenticated.

Protecting routes with express-jwt
To protect access to the read, update, and delete routes, the server will
need to check that the requesting client is actually an authenticated and
authorized user.

To check if the requesting user is signed in and has a valid JWT when a
protected route is accessed, we will use the express-jwt module.

The express-jwt module is middleware that validates JSON Web Tokens. Run npm install
express-jwt --save from the command line to install express-jwt.

Requiring sign-in
The requireSignin method in auth.controller.js uses express-jwt to verify that the
incoming request has a valid JWT in the Authorization header. If the token is
valid, it appends the verified user's ID in an 'auth' key to the request
object, otherwise it throws an authentication error.

mern-skeleton/server/controllers/auth.controller.js:

const requireSignin = expressJwt({

 secret: config.jwtSecret,

 userProperty: 'auth'

})

We can add requireSignin to any route that should be protected against
unauthenticated access.

Authorizing signed in users
For some of the protected routes such as update and delete, on top of
checking for authentication we also want to make sure the requesting user
is only updating or deleting their own user information. To achieve this,
the hasAuthorization function defined in auth.controller.js checks if the
authenticated user is the same as the user being updated or deleted before
the corresponding CRUD controller function is allowed to proceed.

mern-skeleton/server/controllers/auth.controller.js:

const hasAuthorization = (req, res, next) => {

 const authorized = req.profile && req.auth && req.profile._id ==

 req.auth._id

 if (!(authorized)) {

 return res.status('403').json({

 error: "User is not authorized"

 })

 }

 next()

}

The req.auth object is populated by express-jwt in requireSignin after
authentication verification, and the req.profile is populated by the userByID
function in the user.controller.js. We will add the hasAuthorization function to
routes that require both authentication and authorization.

Protecting user routes
We will add requireSignin and hasAuthorization to the user route declarations
that need to be protected with authentication and also authorization.

Update the read, update, and delete routes in user.routes.js as follows.

mern-skeleton/server/routes/user.routes.js:

import authCtrl from '../controllers/auth.controller'

...

router.route('/api/users/:userId')

 .get(authCtrl.requireSignin, userCtrl.read)

 .put(authCtrl.requireSignin, authCtrl.hasAuthorization,

 userCtrl.update)

 .delete(authCtrl.requireSignin, authCtrl.hasAuthorization,

 userCtrl.remove)

...

The route to read a user's information only needs authentication
verification, whereas the update and delete routes should check for both
authentication and authorization before these CRUD operations are
executed.

Auth error handling for express-
jwt
To handle the auth-related errors thrown by express-jwt when it tries to
validate JWT tokens in incoming requests, we need to add the following
error-catching code to the Express app configuration in mern-
skeleton/server/express.js, near the end of the code, after the routes are
mounted and before the app is exported:

app.use((err, req, res, next) => {

 if (err.name === 'UnauthorizedError') {

 res.status(401).json({"error" : err.name + ": " + err.message})

 }

})

express-jwt throws an error named UnauthorizedError when the token cannot be
validated for some reason. We catch this error here to return a 401 status
back to the requesting client.

With user auth implemented for protecting routes, we have covered all the
desired features of a working backend for the skeleton MERN application.
In the next section, we will look at how we can check if this standalone
backend is functioning as desired without implementing a frontend.

Checking the standalone backend
There are a number of options when it comes to selecting tools to check
backend APIs, ranging from the command-line tool curl (https://github.com/c
url/curl) to Advanced REST Client (https://chrome.google.com/webstore/detail/adv
anced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo)—a Chrome extension app
with an interactive user interface.

To check the APIs implemented in this chapter, first have the server
running from the command line, and use either of these tools to request
the routes. If you are running the code on your local machine, the root
URL is http://localhost:3000/.

Using ARC, we will showcase the expected behavior for five use cases of
checking the implemented API endpoints.

https://github.com/curl/curl
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo

Creating a new user
First, we will create a new user with the /api/users POST request, and pass
name, email, and password values in the request body. When the user is
successfully created in the database without any validation errors, we will
see a 200 OK success message as shown in the following screenshot:

Fetching the user list
We can see if the new user is in the database by fetching a list of all users with a GET request to /api/users. The
response should contain an array of all the user objects stored in the database:

Trying to fetch a single user
Next, we will try to access a protected API without signing in first. A GET request to read any one of
the users will return a 401 Unauthorized, such as in the following example, a GET request to
/api/users/5a1c7ead1a692aa19c3e7b33 returns a 401:

Signing in
To be able to access the protected route, we will sign in using the credentials of the user created in the first
example. To sign in, a POST request is sent at /auth/signin with the email and password in the request body. On
successful sign-in, the server returns a signed JWT and user details. We will need this token to access the
protected route for fetching a single user:

Fetching a single user successfully
Using the token received after sign-in, we can now access the protected route that failed before. The token is set
in the Authorization header in the Bearer scheme when making the GET request to /api/users/5a1c7ead1a692aa19c3e7b33,
and this time the user object is returned successfully:

Summary
In this chapter, we developed a fully functioning standalone server-side
application using Node, Express, and MongoDB, covering the first part of
the MERN skeleton application. In the backend, we implemented the
following features:

A user model for storing user data, implemented with Mongoose
User API endpoints to perform CRUD operations, implemented with
Express
User auth for protected routes, implemented with JWT and express-jwt

We also set up the development flow by configuring Webpack to compile
ES6 code, and Nodemon to restart the server when the code changes.
Finally, we checked the implementation of the APIs using the Advanced
Rest API Client extension app for Chrome.

We are now ready to extend this backend application code in the following
chapter, to add the React frontend and complete the MERN skeleton
application.

Adding a React Frontend to
Complete MERN
A web application is incomplete without a frontend. It is the part that users
interact with and it is crucial to any web experience. In this chapter, we
will use React to add an interactive user interface to the basic user and
auth features implemented for the backend of the MERN skeleton
application that we started building in the previous chapter.

We will cover the following topics to add a working frontend and complete
the MERN skeleton application:

Frontend features of the skeleton
Setting up development with React, React Router, and Material-UI
Backend user API integration
Auth integration
Home, Users, Sign-Up, Sign-In, User Profile, Edit, and Delete views
Navigation menu
Basic server-side rendering

Skeleton frontend
In order to fully implement the skeleton application features discussed in the Feature
breakdown section of Chapter 3, Building a Backend with MongoDB, Express, and Node,
we will add the following user interface components to our base application:

Home page: A view that renders at the root URL to welcome users to the web
application
User list page: A view that fetches and shows a list of all the users in the database,
and also links to individual user profiles
Sign-up page: A view with a form for user sign-up, allowing new users to create a
user account and redirecting them to a sign in page when successfully created
Sign-in page: A view with a sign-in form that allows existing users to sign in so
they have access to protected views and actions
Profile page: A component that fetches and displays an individual user's
information, is only accessible by signed-in users, and also contains edit and delete
options, which are visible only if the signed-in user is looking at their own profile
Edit profile page: A form that fetches the user's information in the form, allows
them to edit the information, and is accessible only if the logged-in user is trying
to edit their own profile
Delete user component: An option that allows the signed-in user to delete only
their own profile after confirming their intent
Menu navigation bar: A component that lists all the available and relevant views
to the user, and also helps to indicate the user's current location in the application

The following React component tree diagram shows all the React components we will
develop to build out the views for this base application:

MainRouter will be the root React component that contains all the other custom React
views in the application. Home, Signup, Signin, Users, Profile, and EditProfile will
render at individual routes declared with React Router, whereas the Menu component
will render across all these views, and DeleteUser will be a part of the Profile view.

The code discussed in this chapter, and for the complete skeleton, is available on GitHub in the
repository at github.com/shamahoque/mern-skeleton. You can clone this code and run the application as you go
through the code explanations in the rest of this chapter.

https://github.com/shamahoque/mern-skeleton

Folder and file structure
The following folder structure shows the new folders and files to be added
to the skeleton to complete it with a React frontend:

| mern_skeleton/

 | -- client/

 | --- assets/

 | ---- images/

 | --- auth/

 | ---- api-auth.js

 | ---- auth-helper.js

 | ---- PrivateRoute.js

 | ---- Signin.js

 | --- core/

 | ---- Home.js

 | ---- Menu.js

 | --- user/

 | ---- api-user.js

 | ---- DeleteUser.js

 | ---- EditProfile.js

 | ---- Profile.js

 | ---- Signup.js

 | ---- Users.js

 | --- App.js

 | --- main.js

 | --- MainRouter.js

 | -- server/

 | --- devBundle.js

 | -- webpack.config.client.js

 | -- webpack.config.client.production.js

The client folder will contain the React components, helpers, and frontend
assets, such as images and CSS. Besides this folder and the Webpack
config for compiling and bundling the client code, we will also modify
some of the other existing files to integrate the complete skeleton.

Setting up for React development
Before we can start developing with React in our existing skeleton code
base, we first need to add configuration to compile and bundle the
frontend code, add the React-related dependencies necessary to build the
interactive interface, and tie it all together in the MERN development
flow.

Configuring Babel and Webpack
To compile and bundle the client code to run it during development and
also bundle it for production, we will update the configuration for Babel
and Webpack.

Babel
For compiling React, first install the Babel React preset module as a
development dependency:

npm install babel-preset-react --save-dev

Then, update .babelrc to include the module and also configure the react-hot-
loader Babel plugin as required for the react-hot-loader module.

mern-skeleton/.babelrc:

{

 "presets": [

 "env",

 "stage-2",

 "react"

],

 "plugins": [

 "react-hot-loader/babel"

]

}

Webpack
To bundle client-side code after compiling it with Babel, and also to
enable react-hot-loader for faster development, install the following
modules:

npm install --save-dev webpack-dev-middleware webpack-hot-middleware file-loader

npm install --save react-hot-loader

Then, to configure Webpack for the frontend development and to build the
production bundle, we will add a webpack.config.client.js file and
a webpack.config.client.production.js file with the same configuration code
described in Chapter 2, Preparing the Development Environment.

Loading Webpack middleware for
development
During development, when we run the server, the Express app should load
the Webpack middleware relevant to the frontend with respect to the
configuration set for the client-side code, so that the frontend and backend
development workflow is integrated. To enable this, we will use the
devBundle.js file discussed in Chapter 2, Preparing the Development
Environment, to set up a compile method that takes the Express app and
configures it to use the Webpack middleware. The devBundle.js in the server
folder will be as follows.

mern-skeleton/server/devBundle.js:

import config from './../config/config'

import webpack from 'webpack'

import webpackMiddleware from 'webpack-dev-middleware'

import webpackHotMiddleware from 'webpack-hot-middleware'

import webpackConfig from './../webpack.config.client.js'

const compile = (app) => {

 if(config.env === "development"){

 const compiler = webpack(webpackConfig)

 const middleware = webpackMiddleware(compiler, {

 publicPath: webpackConfig.output.publicPath

 })

 app.use(middleware)

 app.use(webpackHotMiddleware(compiler))

 }

}

export default {

 compile

}

Then, import and call this compile method in express.js by adding the
following highlighted lines only while developing.

mern-skeleton/server/express.js:

import devBundle from './devBundle'

const app = express()

devBundle.compile(app)

These two highlighted lines are only meant for development mode and
should be commented out when building the code for production. This
code will import the middleware and the Webpack configuration before
initiating Webpack to compile and bundle the client-side code when the
Express app runs in development mode. The bundled code will be placed
in the dist folder.

Serving static files with Express
To ensure that the Express server properly handles the requests to static
files such as CSS files, images, or the bundled client-side JS, we will
configure it to serve static files from the dist folder by adding the
following configuration in express.js.

mern-skeleton/server/express.js:

import path from 'path'

const CURRENT_WORKING_DIR = process.cwd()

app.use('/dist', express.static(path.join(CURRENT_WORKING_DIR, 'dist')))

Updating the template to load a
bundled script
In order to add the bundled frontend code in the HTML view, we will
update the template.js file to add the script file from the dist folder to the
end of the <body> tag.

mern-skeleton/template.js:

...

<body>

 <div id="root"></div>

 <script type="text/javascript" src="/dist/bundle.js"></script>

</body>

Adding React dependencies
The frontend views will primarily be implemented using React. In
addition, to enable client-side routing we will use React Router, and to
enhance the user experience with a sleek look and feel we will use
Material-UI.

React
Throughout this book, we will use React 16 to code up the frontend. To
start writing the React component code, we will need to install the
following modules as regular dependencies:

npm install --save react react-dom

React Router
React Router provides a collection of navigational components that enable
routing on the frontend for React applications. To utilize declarative
routing and have bookmarkable URL routes, we will add the following
React Router modules:

npm install --save react-router react-router-dom

Material-UI
In order to keep the UI in our MERN applications sleek without delving too
much into UI design and implementation, we will utilize the Material-UI
library. It provides ready-to-use and customizable React components that
implement Google's material design. To start using Material-UI components
to make the frontend, we need to install the following modules:

npm install --save material-ui@1.0.0-beta.43 material-ui-icons

At the time of writing, the latest pre-release version of Material-UI is 1.0.0-beta.43 and it is
recommended to install this exact version in order to ensure the code for the example
projects do not break.

To add the Roboto fonts as recommended by Material-UI, and use the Material-UI
icons, we will add the relevant style links into the template.js file, in the
HTML document's <head> section:

<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:100,300,400">

<link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet">

With development configuration all set up, and the necessary React modules
added to the code base, we can now start implementing the custom React
components.

Implementing React views
A functional frontend should integrate React components with the backend
API and allow users to navigate seamlessly within the application based
on authorization. To demonstrate how to implement a functional frontend
view for this MERN skeleton, we will start by detailing how to render the
home page component at the root route, then cover the backend API and
user auth integration, before highlighting the unique aspects of
implementing the remaining view components.

Rendering a home page
The process of implementing and rendering a working Home component at
the root route will also expose the basic structure of the frontend code in
the skeleton. We will start with the top-level entry component that houses
the whole React app and renders the main router component that links all
the React components in the application.

Entry point at main.js
The client/main.js file in the client folder will be the entry point to render
the complete React app. In this code, we import the root or top-level React
component that will contain the complete frontend and render it to the div
element with the ID 'root' specified in the HTML document in template.js.

mern-skeleton/client/main.js:

import React from 'react'

import { render } from 'react-dom'

import App from './App'

render(<App/>, document.getElementById('root'))

Root React component
The top-level React component that will contain all the components for
the application's frontend is defined in the client/App.js file. In this file,
we configure the React app to render the view components with a
customized Material-UI theme, enable frontend routing, and ensure that
React Hot Loader can instantly load changes as we develop the
components.

Customizing the Material-UI theme
The Material-UI theme can be easily customized using the MuiThemeProvider
component, and by configuring custom values to theme variables in
createMuiTheme().

mern-skeleton/client/App.js:

import {MuiThemeProvider, createMuiTheme} from 'material-ui/styles'

import {indigo, pink} from 'material-ui/colors'

const theme = createMuiTheme({

 palette: {

 primary: {

 light: '#757de8',

 main: '#3f51b5',

 dark: '#002984',

 contrastText: '#fff',

 },

 secondary: {

 light: '#ff79b0',

 main: '#ff4081',

 dark: '#c60055',

 contrastText: '#000',

 },

 openTitle: indigo['400'],

 protectedTitle: pink['400'],

 type: 'light'

 }

})

For the skeleton, we only apply minimal customization by setting some
color values to be used in the UI. The theme variables generated here will
be passed to, and available in, all the components we build.

Wrapping the root component with
MUI theme and BrowserRouter
The custom React components that we create to make up the user interface
will be accessed with frontend routes specified in the MainRouter component.
Essentially, this component houses all the custom views developed for the
application. When defining the root component in App.js, we wrap the
MainRouter component with the MuiThemeProvider to give it access to the
Material-UI theme, and BrowserRouter to enable frontend routing with React
Router. The custom theme variables defined previously are passed as a
prop to the MuiThemeProvider, making the theme available in all our custom
React components.

mern-skeleton/client/App.js:

import React from 'react'

import MainRouter from './MainRouter'

import {BrowserRouter} from 'react-router-dom'

const App = () => (

 <BrowserRouter>

 <MuiThemeProvider theme={theme}>

 <MainRouter/>

 </MuiThemeProvider>

 </BrowserRouter>

)

Marking the root component as
hot-exported
The last line of code in App.js to export the App component uses the hot
module from react-hot-loader to mark the root component as hot. This will
enable live reloading of the React components during development.

mern-skeleton/client/App.js:

import { hot } from 'react-hot-loader'

...

export default hot(module)(App)

For our MERN applications, we won't have to change the main.js and App.js
code all that much after this point, and we can continue building out the
rest of the React app by injecting new components in the MainRouter
component.

Adding a home route to
MainRouter
The MainRouter.js code will help render our custom React components with
respect to routes or locations in the application. In this first version, we
will only add the root route to render the Home component.

mern-skeleton/client/MainRouter.js:

import React, {Component} from 'react'

import {Route, Switch} from 'react-router-dom'

import Home from './core/Home'

class MainRouter extends Component {

 render() {

 return (<div>

 <Switch>

 <Route exact path="/" component={Home}/>

 </Switch>

 </div>)

 }

}

export default MainRouter

As we develop more view components, we will update the MainRouter to add
routes for the new components inside the Switch component.

The Switch component in React Router renders a route exclusively. In other words, it
only renders the first child that matches the requested route path. Whereas, without
being nested in a Switch, every Route component renders inclusively when there is a
path match. For example, a request at '/' also matches a route at '/contact'.

Home component
The Home component will be rendered on the browser when the user visits
the root route, and we will compose it with Material-UI components. The
following screenshot shows the Home component and the Menu component,
which will be implemented later in the chapter as an individual component
to provide navigation across the application:

The Home component and other view components that will be rendered in
the browser for the user to interact with will follow a common code
structure containing the following parts in the given order.

Imports
The component file will start with imports from React, Material-UI, React
Router modules, images, CSS, API fetch, and auth helpers from our code
as required by the specific component. For example, for the Home
component code in Home.js, we use the following imports.

mern-skeleton/client/core/Home.js:

import React, {Component} from 'react'

import PropTypes from 'prop-types'

import {withStyles} from 'material-ui/styles'

import Card, {CardContent, CardMedia} from 'material-ui/Card'

import Typography from 'material-ui/Typography'

import seashellImg from './../assets/images/seashell.jpg'

The image file is kept in the client/assets/images/ folder and imported/added
to the Home component.

Style declarations
After the imports, we will define CSS styles utilizing the Material-UI theme
variables as required to style the elements in the component. For the Home
component in Home.js, we have the following styles.

mern-skeleton/client/core/Home.js:

const styles = theme => ({

 card: {

 maxWidth: 600,

 margin: 'auto',

 marginTop: theme.spacing.unit * 5

 },

 title: {

 padding:`${theme.spacing.unit * 3}px ${theme.spacing.unit * 2.5}px

 ${theme.spacing.unit * 2}px`,

 color: theme.palette.text.secondary

 },

 media: {

 minHeight: 330

 }

})

The JSS style objects defined here will be injected into the component and
used to style the elements in the component, as shown in the following Home
component definition.

Material-UI uses JSS, which is a CSS-in-JS styling solution to add styles to the
components. JSS uses JavaScript as a language to describe styles. This book will
not cover CSS and styling implementations in detail. It will most rely on the default
look and feel of Material-UI components. To learn more about JSS, visit http://cssinj
s.org/?v=v9.8.1. For examples of how to customize the Material-UI component styles,
check out the Material-UI documentation at https://material-ui-next.com/.

http://cssinjs.org/?v=v9.8.1
https://material-ui-next.com/

Component definition
In the component definition, we will compose the content and behavior of
the component. The Home component will contain a Material-UI Card with a
headline, an image, and a caption, all styled with the classes defined
earlier and passed in as props.

mern-skeleton/client/core/Home.js:

class Home extends Component {

 render() {

 const {classes} = this.props

 return (

 <div>

 <Card className={classes.card}>

 <Typography type="headline" component="h2" className=

 {classes.title}>

 Home Page

 </Typography>

 <CardMedia className={classes.media} image={seashellImg}

 title="Unicorn Shells"/>

 <CardContent>

 <Typography type="body1" component="p">

 Welcome to the Mern Skeleton home page

 </Typography>

 </CardContent>

 </Card>

 </div>

)

 }

}

PropTypes validation
To validate the required injection of style declarations as props to the
component, we add the PropTypes requirement validator to the defined
component.

mern-skeleton/client/core/Home.js:

Home.propTypes = {

 classes: PropTypes.object.isRequired

}

Export component
Finally, in the last line of code in the component file, we will export the
component with the defined styles passed in using withStyles from Material-
UI. Using withStyles like this creates a Higher-order component (HOC)
that has access to the defined style objects as props.

mern-skeleton/client/core/Home.js:

export default withStyles(styles)(Home)

The exported component can now be used for composition within other
components, as we did with this Home component in a route in the MainRouter
component discussed earlier.

The other view components to be implemented in our MERN applications
will adhere to the same structure. In the rest of the book, we will focus
mainly on the component definition, highlighting the unique aspects of the
implemented component.

Bundling image assets
The static image file that we imported into the Home component view must
also be included in the bundle with the rest of the compiled JS code so that
the code can access and load it. To enable this, we need to update the
Webpack configuration files to add a module rule to load, bundle, and emit
image files to the output directory, which contains the compiled frontend
and backend code.

Update the webpack.config.client.js, webpack.config.server.js, and
webpack.config.client.production.js files to add the following module rule after
the use of babel-loader:

[…

 {

 test: /\.(ttf|eot|svg|gif|jpg|png)(\?[\s\S]+)?$/,

 use: 'file-loader'

 }

]

This module rule uses the file-loader npm module for Webpack, which
needs to be installed as a development dependency, as follows:

npm install --save-dev file-loader

Running and opening in the
browser
The client code up to this point can be run to view the Home component in
the browser at the root URL. To run the application, use the following
command:

npm run development

Then, open the root URL (http://localhost:3000) in the browser to see the Home
component.

The Home component developed here is a basic view component without
interactive features and does not require the use of the backend APIs for
user CRUD or auth. However, the remaining view components for our
skeleton frontend will need the backend APIs and auth.

Backend API integration
Users should be able to use the frontend views to fetch and modify user
data in the database based on authentication and authorization. To
implement these functionalities, the React components will access the API
endpoints exposed by the backend using the Fetch API.

The Fetch API is a newer standard to make network requests similar to
XMLHttpRequest (XHR) but using promises instead, enabling a simpler and
cleaner API. To learn more about the Fetch API, visit https://developer.mozilla.org/en-US/do
cs/Web/API/Fetch_API.

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

Fetch for User CRUD
In the client/user/api-user.js file, we will add methods for accessing each of
the user CRUD API endpoints, which the React components can use to
exchange user data with the server and database as required.

Creating a user
The create method will take user data from the view component, use fetch to
make a POST call to create a new user in the backend, and finally return the
response from the server to the component as a promise.

mern-skeleton/client/user/api-user.js:

const create = (user) => {

 return fetch('/api/users/', {

 method: 'POST',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json'

 },

 body: JSON.stringify(user)

 })

 .then((response) => {

 return response.json()

 }).catch((err) => console.log(err))

}

Listing users
The list method will use fetch to make a GET call to retrieve all the users in
the database, and then return the response from the server as a promise to
the component.

mern-skeleton/client/user/api-user.js:

const list = () => {

 return fetch('/api/users/', {

 method: 'GET',

 }).then(response => {

 return response.json()

 }).catch((err) => console.log(err))

}

Reading a user profile
The read method will use fetch to make a GET call to retrieve a specific user
by ID. Since this is a protected route, besides passing the user ID as a
parameter, the requesting component must also provide valid credentials,
which in this case will be a valid JWT received after successful sign-in.

mern-skeleton/client/user/api-user.js:

const read = (params, credentials) => {

 return fetch('/api/users/' + params.userId, {

 method: 'GET',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 }

 }).then((response) => {

 return response.json()

 }).catch((err) => console.log(err))

}

The JWT is attached to the GET fetch call in the Authorization header using the
Bearer scheme, and then the response from the server is returned to the
component in a promise.

Updating a user's data
The update method will take changed user data from the view component
for a specific user, then use fetch to make a PUT call to update the existing
user in the backend. This is also a protected route that will require a valid
JWT as credential.

mern-skeleton/client/user/api-user.js:

const update = (params, credentials, user) => {

 return fetch('/api/users/' + params.userId, {

 method: 'PUT',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: JSON.stringify(user)

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

Deleting a user
The remove method will allow the view component to delete a specific user
from the database, using fetch to make a DELETE call. This, again, is a
protected route that will require a valid JWT as a credential, similar to the
read and update methods. The response from the server to the delete request
will be returned to the component as a promise.

mern-skeleton/client/user/api-user.js:

const remove = (params, credentials) => {

 return fetch('/api/users/' + params.userId, {

 method: 'DELETE',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 }

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

Finally, export the user API helper methods to be imported and used by the
React components as required.

mern-skeleton/client/user/api-user.js:

export { create, list, read, update, remove }

Fetch for auth API
In order to integrate the auth API endpoints from the server with the
frontend React components, we will add methods for fetching sign-in and
sign-out API endpoints in the client/auth/api-auth.js file.

Sign-in
The signin method will take user sign-in data from the view component,
then use fetch to make a POST call to verify the user with the backend. The
response from the server will be returned to the component in a promise,
which may contain the JWT if sign-in was successful.

mern-skeleton/client/user/api-auth.js:

const signin = (user) => {

 return fetch('/auth/signin/', {

 method: 'POST',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json'

 },

 credentials: 'include',

 body: JSON.stringify(user)

 })

 .then((response) => {

 return response.json()

 }).catch((err) => console.log(err))

}

Sign-out
The signout method will use fetch to make a GET call to the signout API
endpoint on the server.

mern-skeleton/client/user/api-auth.js:

const signout = () => {

 return fetch('/auth/signout/', {

 method: 'GET',

 }).then(response => {

 return response.json()

 }).catch((err) => console.log(err))

}

At the end of the api-auth.js file, export the signin and signout methods.

mern-skeleton/client/user/api-auth.js:

export { signin, signout }

With these API fetch methods, the React frontend has complete access to
the endpoints available in the backend.

Auth in the frontend
As discussed in the previous chapter, implementing authentication with
JWT relinquishes responsibility to the client side to manage and store user
auth state. To this end, we need to write code that will allow the client-side
to store the JWT received from the server on successful sign-in, make it
available when accessing protected routes, delete or invalidate the token
when the user signs out, and also restrict access to views and components
on the frontend based on the user auth state.

Using examples of auth workflow from the React Router documentation,
we will write helper methods to manage auth state across the components,
and also use a custom PrivateRoute component to add protected routes to the
frontend.

Managing auth state
In client/auth/auth-helper.js, we will define the following helper methods to
store and retrieve JWT credentials from client-side sessionStorage, and also
clear out the sessionStorage on user sign-out:

authenticate(jwt, cb): Save credentials on successful sign-in:

authenticate(jwt, cb) {

 if(typeof window !== "undefined")

 sessionStorage.setItem('jwt', JSON.stringify(jwt))

 cb()

}

isAuthenticated(): Retrieve credentials if signed-in:

isAuthenticated() {

 if (typeof window == "undefined")

 return false

 if (sessionStorage.getItem('jwt'))

 return JSON.parse(sessionStorage.getItem('jwt'))

 else

 return false

}

signout(cb): Delete credentials and sign out:

signout(cb) {

 if(typeof window !== "undefined")

 sessionStorage.removeItem('jwt')

 cb()

 signout().then((data) => {

 document.cookie = "t=; expires=Thu, 01 Jan 1970 00:00:00

 UTC; path=/;"

 })

}

Using the methods defined here, the React components we build will be
able to check and manage user auth state to restrict access in the frontend,
as demonstrated in the following with the custom PrivateRoute.

PrivateRoute component
The client/auth/PrivateRoute.js defines the PrivateRoute component as shown in
an auth flow example from https://reacttraining.com/react-router/web/example/auth
-workflow in the React Router documentation. It will allow us to declare
protected routes for the frontend to restrict view access based on user auth.

mern-skeleton/client/auth/PrivateRoute.js:

import React, { Component } from 'react'

import { Route, Redirect } from 'react-router-dom'

import auth from './auth-helper'

const PrivateRoute = ({ component: Component, ...rest }) => (

 <Route {...rest} render={props => (

 auth.isAuthenticated() ? (

 <Component {...props}/>

) : (

 <Redirect to={{

 pathname: '/signin',

 state: { from: props.location }

 }}/>

)

)}/>

)

export default PrivateRoute

Components to be rendered in this PrivateRoute will only load when the user
is authenticated, otherwise the user will be redirected to the Signin
component.

With the backend APIs integrated, and auth management helper methods
ready for use in the components, we can start building the remaining view
components.

https://reacttraining.com/react-router/web/example/auth-workflow

User and auth components
The React components described in this section complete the interactive
features defined for the skeleton by allowing users to view, create, and
modify user data stored in the database with respect to auth restrictions.
For each of the following components, we will go over the unique aspects
of each component, and how to add the component to the application in the
MainRouter.

Users component
The Users component in client/user/Users.js, shows the names of all the users fetched from the
database, and links each name to the user profile. This component can be viewed by any visitor to
the application and will render at the path '/users':

In the component definition, we first initialize the state with an empty array of users.

mern-skeleton/client/user/Users.js:

class Users extends Component {

 state = { users: [] }

...

Next, in componentDidMount, we use the list method from the api-user.js helper methods, to fetch the user
list from the backend, and load the user data into the component by updating the state.

mern-skeleton/client/user/Users.js:

 componentDidMount = () => {

 list().then((data) => {

 if (data.error)

 console.log(data.error)

 else

 this.setState({users: data})

 })

 }

The render function contains the actual view content of the Users component, and is composed with
Material-UI components such as Paper, List, and ListItems. The elements are styled with the CSS
defined and passed in as props.

mern-skeleton/client/user/Users.js:

render() {

 const {classes} = this.props

 return (

 <Paper className={classes.root} elevation={4}>

 <Typography type="title" className={classes.title}>

 All Users

 </Typography>

 <List dense>

 {this.state.users.map(function(item, i) {

 return <Link to={"/user/" + item._id} key={i}>

 <ListItem button="button">

 <ListItemAvatar>

 <Avatar>

 <Person/>

 </Avatar>

 </ListItemAvatar>

 <ListItemText primary={item.name}/>

 <ListItemSecondaryAction>

 <IconButton>

 <ArrowForward/>

 </IconButton>

 </ListItemSecondaryAction>

 </ListItem>

 </Link>

 })}

 </List>

 </Paper>

)

 }

To generate each list item, we iterate through the array of users in the state using the map function.

To add this Users component to the React application, we need to update the MainRouter component with
a Route that renders this component at the '/users' path. Add the Route inside the Switch component after
the Home route.

mern-skeleton/client/MainRouter.js:

<Route path="/users" component={Users}/>

To see this view rendered in the browser, you can temporarily add a Link component in the Home
component to route to the Users component:

<Link to="/users">Users</Link>

Signup component
The Signup component in client/user/Signup.js, presents a form with name, email, and
password fields to the user for sign-up at the '/signup' path:

In the component definition, we first initialize the state with empty input field values,
empty error message, and set the dialog open variable to false.

mern-skeleton/client/user/Signup.js:

 constructor() {

 state = { name: '', password: '', email: '', open: false, error: '' }

 ...

We also define two handler functions to be called when the input value changes or
the submit button is clicked. The handleChange function takes the new value entered in the
input field and sets it to state.

mern-skeleton/client/user/Signup.js:

handleChange = name => event => {

 this.setState({[name]: event.target.value})

}

The clickSubmit function is called when the form is submitted. It takes the input values
from state and calls the create fetch method to sign up the user with the backend. Then,
depending on the response from the server, either an error message is shown or a success
dialog is shown.

mern-skeleton/client/user/Signup.js:

 clickSubmit = () => {

 const user = {

 name: this.state.name || undefined,

 email: this.state.email || undefined,

 password: this.state.password || undefined

 }

 create(user).then((data) => {

 if (data.error)

 this.setState({error: data.error})

 else

 this.setState({error: '', open: true})

 })

 }

In the render function we compose and style the form components in the Sign-up view
using components such as TextField from Material-UI.

mern-skeleton/client/user/Signup.js:

 render() {

 const {classes} = this.props

 return (<div>

 <Card className={classes.card}>

 <CardContent>

 <Typography type="headline" component="h2"

 className={classes.title}>

 Sign Up

 </Typography>

 <TextField id="name" label="Name"

 className={classes.textField}

 value={this.state.name}

 onChange={this.handleChange('name')}

 margin="normal"/>

 <TextField id="email" type="email" label="Email"

 className={classes.textField} value=

 {this.state.email}

 onChange={this.handleChange('email')}

 margin="normal"/>

 <TextField id="password" type="password"

 label="Password" className={classes.textField}

 value={this.state.password}

 onChange={this.handleChange('password')}

 margin="normal"/>

 {this.state.error && (<Typography component="p"

 color="error">

 <Icon color="error"

 className={classes.error}>error</Icon>

 {this.state.error}</Typography>)}

 </CardContent>

 <CardActions>

 <Button color="primary" raised="raised"

 onClick={this.clickSubmit}

 className={classes.submit}>Submit</Button>

 </CardActions>

 </Card>

 <Dialog> ... </Dialog>

 </div>)

 }

The render also contains an error message block along with a Dialog component that is
conditionally rendered depending on the sign up response from the server. The Dialog
component in Signup.js is composed as follows.

mern-skeleton/client/user/Signup.js:

<Dialog open={this.state.open} disableBackdropClick={true}>

 <DialogTitle>New Account</DialogTitle>

 <DialogContent>

 <DialogContentText>

 New account successfully created.

 </DialogContentText>

 </DialogContent>

 <DialogActions>

 <Link to="/signin">

 <Button color="primary" autoFocus="autoFocus" variant="raised">

 Sign In

 </Button>

 </Link>

 </DialogActions>

</Dialog>

On successful account creation, the user is given confirmation, and asked to sign in
using this Dialog component, which links to the Signin component:

To add the Signup component to the app, add the following Route to the MainRouter in the
Switch component.

mern-skeleton/client/MainRouter.js:

<Route path="/signup" component={Signup}/>

This will render the Signup view at '/signup'.

Signin component
The Signin component in client/auth/Signin.js is also a form with only email
and password fields for signing in. This component is quite similar to the
Signup component and will render at the '/signin' path. The key difference is
in the implementation of redirection after successful sign-in and storing of
the received JWT:

For redirection, we will use the Redirect component from React Router.
First, initialize a redirectToReferrer value to false in the state with the other
fields:

mern-skeleton/client/auth/Signin.js:

class Signin extends Component {

 state = { email: '', password: '', error: '', redirectToReferrer: false }

...

The redirectToReferrer should be set to true when the user successfully signs
in after submitting the form and the received JWT is stored in the
sessionStorage. To store the JWT and redirect afterwords, we will call the

authenticate() method defined in auth-helper.js. This code will go in the
clickSubmit() function to be called on form submit.

mern-skeleton/client/auth/Signin.js:

clickSubmit = () => {

 const user = {

 email: this.state.email || undefined,

 password: this.state.password || undefined

 }

 signin(user).then((data) => {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 auth.authenticate(data, () => {

 this.setState({redirectToReferrer: true})

 })

 }

 })

}

The redirection will happen conditionally based on the redirectToReferrer
value with the Redirect component in the render function. Add the redirect
code in the render function before the return as follows:

mern-skeleton/client/auth/Signin.js:

render() {

 const {classes} = this.props

 const {from} = this.props.location.state || {

 from: {pathname: '/' }

 }

 const {redirectToReferrer} = this.state

 if (redirectToReferrer)

 return (<Redirect to={from}/>)

 return (...)

 }

}

The Redirect component, if rendered, will take the app to the last location or
to the Home component at the root.

The return will contain the form elements similar to that of Signup, with just
email and password fields, a conditional error message, and the submit button.

To add the Signin component to the app, add the following Route to the
MainRouter in the Switch component.

mern-skeleton/client/MainRouter.js:

<Route path="/signin" component={Signin}/>

This will render the Signin component at "/signin".

Profile component
The Profile component in client/user/Profile.js shows a single user's information in the view at the
'/user/:userId' path, where the userId parameter represents the ID of the specific user:

This profile information can be fetched from the server only if the user is signed in, and to verify this, the
component has to provide the JWT to the read fetch call, otherwise, the user should be redirected to the Sign
In view.

In the Profile component definition, we first need to initialize the state with an empty user and set
redirectToSignin to false.

mern-skeleton/client/user/Profile.js:

class Profile extends Component {

 constructor({match}) {

 super()

 this.state = { user: '', redirectToSignin: false }

 this.match = match

 } ...

We also need to get access to the match props passed by the Route component, which will contain :userId
param value and can be accessed as this.match.params.userId when the component mounts.

The Profile component should fetch user information and render it when the userId parameter changes in the
route. However, when the app goes from one profile view to the other, and it is just a param change in the
route path, the React component does not re-mount. Rather, it passes the new props in componentWillReceiveProps.
In order to make sure the component loads the relevant user's information when the route param updates, we
will place the read fetch call in the init() function, which can then be called in both componentDidMount and
componentWillReceiveProps.

mern-skeleton/client/user/Profile.js:

init = (userId) => {

 const jwt = auth.isAuthenticated()

 read({

 userId: userId

 }, {t: jwt.token}).then((data) => {

 if (data.error)

 this.setState({redirectToSignin: true})

 else

 this.setState({user: data})

 })

}

The init(userId) function takes the userId value, and calls the read user fetch method. Since this method also
requires credentials to authorize the signed-in user, the JWT is retrieved from sessionStorage using the

isAuthenticated method from auth-helper.js. Once the server responds, either the state is updated with the user
information or the view is redirected to the Sign-in view.

This init function is called in componentDidMount and componentWillReceiveProps with the relevant userId value passed
in as a parameter so that the correct user information is fetched and loaded in the component.

mern-skeleton/client/user/Profile.js:

componentDidMount = () => {

 this.init(this.match.params.userId)

}

componentWillReceiveProps = (props) => {

 this.init(props.match.params.userId)

}

In the render function, we set up the conditional redirect to Signin view, and return the content of the Profile
view:

mern-skeleton/client/user/Profile.js

render() {

 const {classes} = this.props

 const redirectToSignin = this.state.redirectToSignin

 if (redirectToSignin)

 return <Redirect to='/signin'/>

 return (...)

 }

The render function will return the Profile view with the following elements if the user currently signed-in is
viewing another user's profile.

mern-skeleton/client/user/Profile.js:

<div>

 <Paper className={classes.root} elevation={4}>

 <Typography type="title" className={classes.title}> Profile </Typography>

 <List dense>

 <ListItem>

 <ListItemAvatar>

 <Avatar>

 <Person/>

 </Avatar>

 </ListItemAvatar>

 <ListItemText primary={this.state.user.name}

 secondary={this.state.user.email}/>

 </ListItem>

 <Divider/>

 <ListItem>

 <ListItemText primary={"Joined: " +

 (new Date(this.state.user.created)).toDateString()}/>

 </ListItem>

 </List>

 </Paper>

</div>

However, if the user currently signed-in is viewing their own profile, they will be able to see an edit and
delete option in the Profile component, as shown in the following screenshot:

To implement this feature, in the first ListItem component in the Profile, add a ListItemSecondaryAction component
containing the Edit button and a DeleteUser component, which will render conditionally based on whether the
current user is viewing their own profile.

mern-skeleton/client/user/Profile.js:

{ auth.isAuthenticated().user && auth.isAuthenticated().user._id == this.state.user._id &&

 (<ListItemSecondaryAction>

 <Link to={"/user/edit/" + this.state.user._id}>

 <IconButton color="primary">

 <Edit/>

 </IconButton>

 </Link>

 <DeleteUser userId={this.state.user._id}/>

 </ListItemSecondaryAction>)}

The Edit button will route to the EditProfile component, and the custom DeleteUser component used here will
handle the delete operation with the userId passed to it as a prop.

To add the Profile component to the app, add the Route to the MainRouter in the Switch component.

mern-skeleton/client/MainRouter.js:

<Route path="/user/:userId" component={Profile}/>

EditProfile component
The EditProfile component in client/user/EditProfile.js has similarities in implementation with both the
Signup and Profile components. It will allow the authorized user to edit their own profile information in a
form similar to the sign up form:

Upon load at '/user/edit/:userId', the component will fetch the user's information with ID after verifying
JWT for auth, then load the form with the received user information. The form will allow the user to edit
and submit only the changed information to the update fetch call, and on successful update, redirect the
user to the Profile view with updated information.

EditProfile will load the user information the same way as in the Profile component, by fetching with read
in componentDidMount using the userId param from this.match.params, and credentials from auth.isAuthenticated.
The form view will have the same elements as the Signup component with input values updated in the
state on change.

On form submit, the component will call the update fetch method with the userId, JWT, and updated user
data.

mern-skeleton/client/user/EditProfile.js:

clickSubmit = () => {

 const jwt = auth.isAuthenticated()

 const user = {

 name: this.state.name || undefined,

 email: this.state.email || undefined,

 password: this.state.password || undefined

 }

 update({

 userId: this.match.params.userId

 }, {

 t: jwt.token

 }, user).then((data) => {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 this.setState({'userId': data._id, 'redirectToProfile': true})

 }

 })

}

Depending on the response from the server, the user will either see an error message or be redirected to
the updated Profile page with the following Redirect component in the render function.

mern-skeleton/client/user/EditProfile.js:

if (this.state.redirectToProfile)

 return (<Redirect to={'/user/' + this.state.userId}/>)

To add the EditProfile component to the app, we will use a PrivateRoute this time, to restrict the component
from loading at all if the user is not signed in. The order of placement in MainRouter will also be important.

mern-skeleton/client/MainRouter.js:

<Switch>

 ...

 <PrivateRoute path="/user/edit/:userId" component={EditProfile}/><>

 <Route path="/user/:userId" component={Profile}/>

</Switch>

The route with path '/user/edit/:userId' needs to be placed before the route with path '/user/:userId', so that
the edit path is matched first exclusively in the Switch component when this route is requested, and not
confused with the Profile route.

DeleteUser component
The DeleteUser component in client/user/DeleteUser.js is basically a button that
we will add to the Profile view, which when clicked opens a Dialog
component asking the user to confirm the delete action:

The component first initializes the state with open set to false for the Dialog
component, and redirect also set to false so it isn't rendered first.

mern-skeleton/client/user/DeleteUser.js:

class DeleteUser extends Component {

 state = { redirect: false, open: false }

...

Next, we need handler methods to open and close the dialog button. The
dialog is opened when the user clicks the delete button.

mern-skeleton/client/user/DeleteUser.js:

clickButton = () => {

 this.setState({open: true})

}

The dialog is closed when the user clicks cancel on the dialog.

mern-skeleton/client/user/DeleteUser.js:

 handleRequestClose = () => {

 this.setState({open: false})

 }

The component will have access to the userId passed in as a prop from the
Profile component, which is needed to call the remove fetch method along
with the JWT, after the user confirms the delete action in the dialog.

mern-skeleton/client/user/DeleteUser.js:

deleteAccount = () => {

 const jwt = auth.isAuthenticated()

 remove({

 userId: this.props.userId

 }, {t: jwt.token}).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 auth.signout(() => console.log('deleted'))

 this.setState({redirect: true})

 }

 })

 }

On confirmation, the deleteAccount function calls the remove fetch method
with the userId from props and JWT from isAuthenticated. On successful
deletion in the server, the user will be signed out and redirected to the
Home view.

The render function contains the conditional Redirect to Home view and
returns the DeleteUser component elements, a DeleteIcon button and the
confirmation Dialog:

mern-skeleton/client/user/DeleteUser.js:

render() {

 const redirect = this.state.redirect

 if (redirect) {

 return <Redirect to='/'/>

 }

 return (

 <IconButton aria-label="Delete" onClick={this.clickButton}

 color="secondary">

 <DeleteIcon/>

 </IconButton>

 <Dialog open={this.state.open} onClose={this.handleRequestClose}>

 <DialogTitle>{"Delete Account"}</DialogTitle>

 <DialogContent>

 <DialogContentText>

 Confirm to delete your account.

 </DialogContentText>

 </DialogContent>

 <DialogActions>

 <Button onClick={this.handleRequestClose} color="primary">

 Cancel

 </Button>

 <Button onClick={this.deleteAccount} color="secondary"

 autoFocus="autoFocus">

 Confirm

 </Button>

 </DialogActions>

 </Dialog>

)

}

DeleteUser takes the userId as a prop to be used in the delete fetch call, so we
add a propType check for the required prop userId.

mern-skeleton/client/user/DeleteUser.js:

DeleteUser.propTypes = {

 userId: PropTypes.string.isRequired

}

As we are using the DeleteUser component in the Profile component, it gets
added to the application view when Profile is added in MainRouter.

Menu component
The Menu component will function as a navigation bar across the frontend application by providing
links to all the available views, and also be indicating the current location in the application.

To implement these navigation bar functionalities, we will use the HOC withRouter from React Router
to get access to the history object's properties. The following code in the Menu component adds just
the title, the Home icon linked to the root Route, and Users button linked to the '/users' route.

mern-skeleton/client/core/Menu.js:

const Menu = withRouter(({history}) => (<div>

 <AppBar position="static">

 <Toolbar>

 <Typography type="title" color="inherit">

 MERN Skeleton

 </Typography>

 <Link to="/">

 <IconButton aria-label="Home" style={isActive(history, "/")}>

 <HomeIcon/>

 </IconButton>

 </Link>

 <Link to="/users">

 <Button style={isActive(history, "/users")}>Users</Button>

 </Link>

 </Toolbar>

 </AppBar>

</div>))

To indicate the current location of the application on the Menu, we will highlight the link that matches
with the current location path by changing the color conditionally.

mern-skeleton/client/core/Menu.js:

const isActive = (history, path) => {

 if (history.location.pathname == path)

 return {color: '#ff4081'}

 else

 return {color: '#ffffff'}

}

The isActive function is used to apply color to the buttons in the Menu as follows:

style={isActive(history, "/users")}

The remaining links such as SIGN IN, SIGN UP, MY PROFILE, and SIGN OUT will show up on the
Menu based on whether the user is signed in or not:

For example, the links to SIGN UP and SIGN IN should only show on the menu when the user is not
signed in. So we need to add it to the Menu component after the Users button with a condition.

mern-skeleton/client/core/Menu.js:

{!auth.isAuthenticated() && (

 <Link to="/signup">

 <Button style={isActive(history, "/signup")}> Sign Up </Button>

 </Link>

 <Link to="/signin">

 <Button style={isActive(history, "/signin")}> Sign In </Button>

 </Link>

)}

Similarly, the link to MY PROFILE and the SIGN OUT button should only show on the menu when the user is
signed in, and should be added to the Menu component with this condition check.

mern-skeleton/client/core/Menu.js:

{auth.isAuthenticated() && (

 <Link to={"/user/" + auth.isAuthenticated().user._id}>

 <Button style={isActive(history, "/user/" + auth.isAuthenticated().user._id)}>

 My Profile

 </Button>

 </Link>

 <Button color="inherit"

 onClick={() => { auth.signout(() => history.push('/')) }}>

 Sign out

 </Button>

)}

The MY PROFILE button uses the signed-in user's information to link to the user's own profile, and the
SIGN OUT button calls the auth.signout() method when clicked. When the user is signed in, the Menu will
look as follows:

To have the Menu navigation bar present in all the views, we need to add it to the MainRouter before all
the other routes, and outside the Switch component.

mern-skeleton/client/MainRouter.js:

 <Menu/>

 <Switch>

 …

 </Switch>

This will make the Menu component render on top of all the other components when the component is
accessed at a route.

The skeleton frontend is complete with all components necessary to enable a user to sign up, view,
and modify user data on the backend with consideration to authentication and authorization
restrictions. However, it is still not possible to visit the frontend routes directly in the browser
address bar, and can only be accessed when linked from within the frontend view. To enable this
functionality in the skeleton application, we need to implement basic server-side rendering.

Basic server-side rendering
Currently, when the React Router routes or pathnames are directly entered
in the browser address bar or when a view that is not at the root path is
refreshed, the URL does not work. This happens because the server does
not recognize the React Router routes. We have to implement basic server-
side rendering on the backend, so the server is able to respond when it
receives a request to a frontend route.

To render relevant React components properly when the server receives
requests to the frontend routes, we need to render the React components
server side with regard to the React Router and Material-UI components.

The basic idea behind server-side rendering of React apps is to use the
renderToString method from react-dom to convert the root React component to
markup string, and attach it to the template that the server renders when it
receives a request.

In express.js, we will replace the code that returns template.js in response to
the GET request for '/', with code, which on receiving any incoming GET
request, generates server-side rendered markup of the relevant React
components, and adds this markup to the template. This code will have the
following structure:

app.get('*', (req, res) => {

 // 1. Prepare Material-UI styles

 // 2. Generate markup with renderToString

 // 3. Return template with markup and CSS styles in the response

})

Modules for server-side rendering
To implement basic server-side rendering, we will need to import the following React,
React Router, and Material-UI-specific modules into the server code. In our code
structure, these modules will be imported into server/express.js:

React modules: Required to render the React components and use renderToString:

import React from 'react'

import ReactDOMServer from 'react-dom/server'

Router modules: The StaticRouter is a stateless router that takes the requested URL
to match the frontend route and the MainRouter component, which is the root
component in our frontend:

import StaticRouter from 'react-router-dom/StaticRouter'

import MainRouter from './../client/MainRouter'

Material-UI modules: The following modules will help generate the CSS styles for
the frontend components based on the Material-UI theme used on the frontend:

import { SheetsRegistry } from 'react-jss/lib/jss'

import JssProvider from 'react-jss/lib/JssProvider'

import { MuiThemeProvider, createMuiTheme, createGenerateClassName } from 'material-ui/styles'

import { indigo, pink } from 'material-ui/colors'

With these modules, we can prepare, generate, and return server-side rendered frontend
code.

Preparing Material-UI styles for
SSR
When the server receives any request, prior to responding with the
generated markup containing the React view, we need to prepare the CSS
styles that should also be added to the markup, so the UI does not break on
initial render.

mern-skeleton/server/express.js:

const sheetsRegistry = new SheetsRegistry()

const theme = createMuiTheme({

 palette: {

 primary: {

 light: '#757de8',

 main: '#3f51b5',

 dark: '#002984',

 contrastText: '#fff',

 },

 secondary: {

 light: '#ff79b0',

 main: '#ff4081',

 dark: '#c60055',

 contrastText: '#000',

 },

 openTitle: indigo['400'],

 protectedTitle: pink['400'],

 type: 'light'

 },

})

const generateClassName = createGenerateClassName()

In order to inject the Material-UI styles, on every request we first generate
a new SheetsRegistry and MUI theme instance, matching what is used in the
frontend code.

Generating markup
The purpose of using renderToString is to generate an HTML string version
of the React component that is to be shown to the user in response to the
requested URL:

mern-skeleton/server/express.js:

const context = {}

const markup = ReactDOMServer.renderToString(

 <StaticRouter location={req.url} context={context}>

 <JssProvider registry={sheetsRegistry} generateClassName=

 {generateClassName}>

 <MuiThemeProvider theme={theme} sheetsManager={new Map()}>

 <MainRouter/>

 </MuiThemeProvider>

 </JssProvider>

 </StaticRouter>

)

The client app's root component, MainRouter, is wrapped with the Material-
UI theme and JSS to provide the styling props needed by the MainRouter
child components. The stateless StaticRouter is used here instead of the
BrowserRouter used on the client side, to wrap MainRouter and provide the
routing props used in implementing the client-side components. Based on
these values, such as the requested location route and theme passed in as
props to the wrapping components, the renderToString will return markup
containing the relevant view.

Sending a template with markup
and CSS
Once the markup is generated, we first check if there was a redirect
rendered in the component to be sent in the markup. If there was no
redirect, then we generate the CSS string from the sheetsRegistry, and in the
response send the template back with the markup and CSS injected.

mern-skeleton/server/express.js:

if (context.url) {

 return res.redirect(303, context.url)

}

const css = sheetsRegistry.toString()

res.status(200).send(Template({

 markup: markup,

 css: css

}))

An example of a case where redirect is rendered in the component is when
trying to access a PrivateRoute via server-side render. As the server side
cannot access the auth token from client-side sessionStorage, the redirect in
the PrivateRoute will render. The context.url, in this case, will have the
'/signin' route, and hence instead of trying to render the PrivateRoute
component, it will redirect to the '/signin' route.

Updating template.js
The markup and CSS generated on the server must be added to the
template.js HTML code as follows for it to be loaded when the server
renders the template.

mern-skeleton/template.js:

export default ({markup, css}) => {

 return `...

 <div id="root">${markup}</div>

 <style id="jss-server-side">${css}</style>

 ...`

}

Updating MainRouter
Once the code rendered on the server side reaches the browser, and the
frontend script takes over, we need to remove the server-side injected CSS
when the main component mounts. This will give back full control over
rendering the React app to the client side:

mern-skeleton/client/MainRouter.js:

componentDidMount() {

 const jssStyles = document.getElementById('jss-server-side')

 if (jssStyles && jssStyles.parentNode)

 jssStyles.parentNode.removeChild(jssStyles)

}

Hydrate instead of render
Now that the React components will be rendered on the server side, we can
update the main.js code to use ReactDOM.hydrate() instead of ReactDOM.render():

import React from 'react'

import { hydrate } from 'react-dom'

import App from './App'

hydrate(<App/>, document.getElementById('root'))

The hydrate function hydrates a container that already has HTML content
rendered by ReactDOMServer. This means the server-rendered markup is
preserved and only event-handlers are attached when React takes over in
the browser, allowing the initial load performance to be better.

With basic server-side rendering implemented, direct requests to the
frontend routes from the browser address bar can now be handled properly
by the server, making it possible to bookmark the React frontend views.

The skeleton MERN application developed here is now a completely
functioning MERN web application with basic user features. We can
extend the code in this skeleton to add a variety of features for different
applications.

Summary
In this chapter, we completed the MERN skeleton application by adding a
working React frontend, including frontend routing and basic server-side
rendering of the React views.

We started off by updating the development flow to include client-side
code bundling for the React views. We updated configuration for Webpack
and Babel to compile the React code and discussed how to load the
configured Webpack middleware from the Express app to initiate server-
side and client-side code compilation from one place during development.

With the development flow updated and before building out the frontend,
we added the relevant React dependencies along with React Router for
frontend routing and Material-UI to use their existing components in the
skeleton app's user interface.

Then, we implemented the top-level root React components, and
integrated React Router that allowed us to add client-side routes for
navigation. Using these routes, we loaded the custom React components
that we developed using Material-UI components to make up the skeleton
application's user interface.

To make these React views dynamic and interactive with data fetched from
the backend, we used the Fetch API to connect to the backend user APIs.
Then we incorporated authentication and authorization on the frontend
views using sessionStorage to store user-specific details and JWT fetched
from the server on successful sign-in, and also by limiting access to
certain views using a PrivateRoute component.

Finally, we modified the server code to implement basic server-side
rendering that allows loading the frontend routes directly in the browser
with server-side rendered markup after the server recognizes that the
incoming request is actually for a React route.

In the next chapter, we will use the concepts learned while developing this
basic MERN application, and extend the skeleton application code to build
a fully-featured social media application.

Starting with a Simple Social
Media Application
Social media is an integral part of the web these days, and many of the
user-centric web applications we build end up requiring a social
component down the line to drive user engagement.

For our first real-world MERN application, we will modify and extend the
MERN skeleton application developed in the previous chapter to build a
simple social media application.

In this chapter, we will go over the implementation of the following social
media-flavored features:

User profile with a description and a photo
Users following each other
Who to follow suggestions
Posting messages with photos
News feed with posts from followed users
Listing posts by user
Liking posts
Commenting on posts

MERN Social
MERN Social is a social media application with rudimentary features inspired by existing social media
platforms such as Facebook and Twitter. The main purpose of this application is to demonstrate how to use the
MERN stack technologies to implement features that allow users to connect and interact over content.You can
extend these implementations further, as desired, for more complex features:

Code for the complete MERN Social application is available on GitHub in the repository at github.com/shamahoque/mern-social. You can clone
this code and run the application as you go through the code explanations in the rest of this chapter.

The views needed for the MERN Social application will be developed by extending and modifying the
existing React components in the MERN skeleton application. We will also add new custom components to
compose views, including a Newsfeed view where the user can create a new post and also browse a list of all the
posts from people they follow on MERN Social. The following component tree shows all the custom React
components that make up the MERN Social frontend and also exposes the composition structure we will use to
build out the views in the rest of the chapter:

https://github.com/shamahoque/mern-social

Updating the user profile
The skeleton application only has support for a user's name, email, and
password. But in MERN Social we will allow users to add a description
about themselves, and also upload a profile photo while editing the profile
after signing up:

Adding an about description
In order to store the description entered in the about field by a user, we need
to add an about field to the user model in server/models/user.model.js:

about: {

 type: String,

 trim: true

 }

Then, to get the description as input from the user, we add a multiline
TextField to the EditProfile form and handle the value change the same way
we did for the user's name input.

mern-social/client/user/EditProfile.js:

 <TextField

 id="multiline-flexible"

 label="About"

 multiline

 rows="2"

 value={this.state.about}

 onChange={this.handleChange('about')}

 />

Finally, to show the description text added to the about field on the user
profile page, we can add it to the existing profile view.

mern-social/client/user/Profile.js:

<ListItem> <ListItemText primary={this.state.user.about}/> </ListItem>

With this modification to the user feature in the MERN skeleton code,
users can now add and update a description about themselves to be
displayed on their profiles.

Uploading a profile photo
Allowing a user to upload a profile photo will require that we store the
uploaded image file, and retrieve it on request to load in the view. There
are multiple ways of implementing this upload feature considering the
different file storage options:

Server filesystem: Upload and save files to a server filesystem and
store the URL to MongoDB
External file storage: Save files to external storage such as Amazon
S3 and store the URL in MongoDB
Store as data in MongoDB: Save files of a small size (less than 16
MB) to MongoDB as data of type Buffer

For MERN Social, we will assume that the photo files uploaded by the
user will be of small sizes, and demonstrate how to store these files in
MongoDB for the profile photo upload feature. In Chapter 8, Building a
Media Streaming Application, we will discuss how to store larger files in
MongoDB using GridFS.

Updating the user model to store a
photo in MongoDB
In order to store the uploaded profile photo directly in the database, we
will update the user model to add a photo field that stores the file as data of
type Buffer, along with its contentType.

mern-social/server/models/user.model.js:

photo: {

 data: Buffer,

 contentType: String

}

Uploading a photo from the edit
form
Users will be able to upload an image file from their local files when
editing the profile. We will update the EditProfile component in
client/user/EditProfile.js with an upload photo option, then attach the user
selected file in the form data submitted to the server.

File input with Material-UI
We will utilize the HTML5 file input type to let the user select an image
from their local files. The file input will return the filename in the change
event when the user selects a file.

mern-social/client/user/EditProfile.js:

<input accept="image/*" type="file"

 onChange={this.handleChange('photo')}

 style={{display:'none'}}

 id="icon-button-file" />

To integrate this file input with Material-UI components, we apply
display:none to hide the input element from view, then add a Material-UI
button inside the label for this file input. This way, the view displays the
Material-UI button instead of the HTML5 file input element.

mern-social/client/user/EditProfile.js:

<label htmlFor="icon-button-file">

 <Button variant="raised" color="default" component="span">

 Upload <FileUpload/>

 </Button>

</label>

With the Button's component prop set to span, the Button component renders
as a span element inside the label element. A click on the Upload span or label
is registered by the file input with the same ID as the label, and as a result,
the file select dialog is opened. Once the user selects a file, we can set it to
state in the call to handleChange(...) and display the name in the view.

mern-social/client/user/EditProfile.js:

 {this.state.photo ? this.state.photo.name : ''}

Form submission with the file
attached
Uploading files to the server with a form requires a multipart form
submission in contrast to the stringed object sent in the previous
implementation. We will modify the EditProfile component to use the
FormData API to store the form data in the format needed for encoding type
multipart/form-data.

First, we need to initialize FormData in componentDidMount().

mern-social/client/user/EditProfile.js:

this.userData = new FormData()

Next, we will update the input handleChange function to store input values for
both the text fields and the file input in FormData.

mern-social/client/user/EditProfile.js:

handleChange = name => event => {

 const value = name === 'photo'

 ? event.target.files[0]

 : event.target.value

 this.userData.set(name, value)

 this.setState({ [name]: value })

}

Then on submit, this.userData is sent with the fetch API call to update the
user. As the content type of the data sent to the server is no longer
'application/json', we also need to modify the update fetch method in api-
user.js to remove Content-Type from the headers in the fetch call.

mern-social/client/user/api-user.js:

const update = (params, credentials, user) => {

 return fetch('/api/users/' + params.userId, {

 method: 'PUT',

 headers: {

 'Accept': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: user

 }).then((response) => {

 return response.json()

 }).catch((e) => {

 console.log(e)

 })

}

Now if the user chooses to upload a profile photo when editing profile, the
server will receive a request with the file attached along with the other
field values.

Learn more about the FormData API at developer.mozilla.org/en-US/docs/Web/API/FormData.

https://developer.mozilla.org/en-US/docs/Web/API/FormData

Processing a request containing a
file upload
On the server, to process the request to the update API that may now
contain a file, we will use the formidable npm module:

npm install --save formidable

Formidable will allow us to read the multipart form data, giving access to
the fields and the file, if any. If there is a file, formidable will store it
temporarily in the filesystem. We will read it from the filesystem, using
the fs module to retrieve the file type and data, and store it to the photo
field in the user model. The formidable code will go in the update controller
in user.controller.js as follows.

mern-social/server/controllers/user.controller.js:

import formidable from 'formidable'

import fs from 'fs'

const update = (req, res, next) => {

 let form = new formidable.IncomingForm()

 form.keepExtensions = true

 form.parse(req, (err, fields, files) => {

 if (err) {

 return res.status(400).json({

 error: "Photo could not be uploaded"

 })

 }

 let user = req.profile

 user = _.extend(user, fields)

 user.updated = Date.now()

 if(files.photo){

 user.photo.data = fs.readFileSync(files.photo.path)

 user.photo.contentType = files.photo.type

 }

 user.save((err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 user.hashed_password = undefined

 user.salt = undefined

 res.json(user)

 })

 })

}

This will store the uploaded file as data in the database. Next, we will set
up file retrieval to be able to access and display the photo uploaded by the
user in the frontend views.

Retrieving a profile photo
The simplest option to retrieve the file stored in the database and show it
in a view is to set up a route that will fetch the data and return it as an
image file to the requesting client.

Profile photo URL
We will set up a route to the photo stored in the database for each user, and
also add another route that will fetch a default photo if the given user has
not uploaded a profile photo.

mern-social/server/routes/user.routes.js:

router.route('/api/users/photo/:userId')

 .get(userCtrl.photo, userCtrl.defaultPhoto)

router.route('/api/users/defaultphoto')

 .get(userCtrl.defaultPhoto)

We will look for the photo in the photo controller method and if found, send
it in the response to the request at the photo route, otherwise we call next()
to return the default photo.

mern-social/server/controllers/user.controller.js:

const photo = (req, res, next) => {

 if(req.profile.photo.data){

 res.set("Content-Type", req.profile.photo.contentType)

 return res.send(req.profile.photo.data)

 }

 next()

}

The default photo is retrieved and sent from the server's file system.

mern-social/server/controllers/user.controller.js:

import profileImage from './../../client/assets/images/profile-pic.png'

const defaultPhoto = (req, res) => {

 return res.sendFile(process.cwd()+profileImage)

}

Showing a photo in a view
With the photo URL routes set up to retrieve the photo, we can simply use these in
the img element's src attribute to load the photo in the view. For example, in the Profile
component, we get the user ID from state and use it to construct the photo URL.

mern-social/client/user/Profile.js:

const photoUrl = this.state.user._id

 ? `/api/users/photo/${this.state.user._id}?${new Date().getTime()}`

 : '/api/users/defaultphoto'

To ensure the img element reloads in the Profile view after the photo is updated in the
edit, we also add a time value to the photo URL to bypass the browser's default
image caching behavior.

Then, we can set the photoUrl to the Material-UI Avatar component, which renders the
linked image in the view:

 <Avatar src={photoUrl}/>

The updated user profile in MERN Social can now display a user uploaded profile
photo and an about description:

Following users in MERN Social
In MERN Social, the users will be able to follow each other. Each user will
have a list of followers and a list of people they follow. Users will also be
able to see a list of users they can follow; in other words, the users in
MERN Social they are not already following.

Follow and unfollow
In order to keep track of which user is following which other users, we
will have to maintain two lists for each user. When one user follows or
unfollows another user, we will update one's following list and the other's
followers list.

Updating the user model
To store the list of following and followers in the database, we will update the
user model with two arrays of user references.

mern-social/server/models/user.model.js:

following: [{type: mongoose.Schema.ObjectId, ref: 'User'}],

followers: [{type: mongoose.Schema.ObjectId, ref: 'User'}]

These references will point to the users in the collection being followed by
or following the given user.

Updating the userByID controller
method
When a single user is retrieved from the backend, we want the user object
to include the names and IDs of the users referenced in the following and
followers arrays. To retrieve these details, we need to update the userByID
controller method to populate the returned user object.

mern-social/server/controllers/user.controller.js:

const userByID = (req, res, next, id) => {

 User.findById(id)

 .populate('following', '_id name')

 .populate('followers', '_id name')

 .exec((err, user) => {

 if (err || !user) return res.status('400').json({

 error: "User not found"

 })

 req.profile = user

 next()

 })

}

We use the Mongoose populate method to specify that the user object
returned from the query should contain the name and ID of the users
referenced in the following and followers lists. This will give us the names
and IDs of the user references in the followers and following lists when we
fetch the user with the read API call.

API to follow and unfollow
When a user follows or unfollows another user from the view, both users' records in the
database will be updated in response to the follow or unfollow requests.

We will set up follow and unfollow routes in user.routes.js as follows.

mern-social/server/routes/user.routes.js:

router.route('/api/users/follow')

 .put(authCtrl.requireSignin, userCtrl.addFollowing, userCtrl.addFollower)

router.route('/api/users/unfollow')

 .put(authCtrl.requireSignin, userCtrl.removeFollowing, userCtrl.removeFollower)

The addFollowing controller method in the user controller will update the 'following' array for
the current user by pushing the followed user's reference into the array.

mern-social/server/controllers/user.controller.js:

const addFollowing = (req, res, next) => {

 User.findByIdAndUpdate(req.body.userId, {$push: {following: req.body.followId}}, (err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 next()

 })

}

On successful update of the following array, the addFollower method is executed to add the
current user's reference to the followed user's 'followers' array.

mern-social/server/controllers/user.controller.js:

const addFollower = (req, res) => {

 User.findByIdAndUpdate(req.body.followId, {$push: {followers: req.body.userId}}, {new: true})

 .populate('following', '_id name')

 .populate('followers', '_id name')

 .exec((err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 result.hashed_password = undefined

 result.salt = undefined

 res.json(result)

 })

}

For unfollowing, the implementation is similar. The removeFollowing and removeFollower
controller methods update the respective 'following' and 'followers' arrays by removing the

user references with $pull instead of $push.

mern-social/server/controllers/user.controller.js:

const removeFollowing = (req, res, next) => {

 User.findByIdAndUpdate(req.body.userId, {$pull: {following: req.body.unfollowId}}, (err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 next()

 })

}

const removeFollower = (req, res) => {

 User.findByIdAndUpdate(req.body.unfollowId, {$pull: {followers: req.body.userId}}, {new: true})

 .populate('following', '_id name')

 .populate('followers', '_id name')

 .exec((err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 result.hashed_password = undefined

 result.salt = undefined

 res.json(result)

 })

}

Accessing follow and unfollow APIs
in views
In order to access these API calls in the views, we will update api-user.js
with follow and unfollow fetch methods. The follow and unfollow methods will
be similar, making calls to the respective routes with the current user's ID
and credentials, and the followed or unfollowed user's ID. The follow
method will be as follows.

mern-social/client/user/api-user.js:

const follow = (params, credentials, followId) => {

 return fetch('/api/users/follow/', {

 method: 'PUT',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: JSON.stringify({userId:params.userId, followId: followId})

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

The unfollow fetch method is similar, it takes the unfollowed user's ID and
calls the unfollow API.

mern-social/client/user/api-user.js:

const unfollow = (params, credentials, unfollowId) => {

 return fetch('/api/users/unfollow/', {

 method: 'PUT',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: JSON.stringify({userId:params.userId, unfollowId: unfollowId})

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

Follow and unfollow buttons
The button that will allow a user to follow or unfollow another user will
appear conditionally depending on whether the user is already followed or
not by the current user:

FollowProfileButton component
We will create a separate component for the follow button called FollowProfileButton, which will be added to the
Profile component. This component will show either Follow or Unfollow buttons depending on whether the
current user is already a follower of the user in the profile. The FollowProfileButton component will be as
follows.

mern-social/client/user/FollowProfileButton.js:

class FollowProfileButton extends Component {

 followClick = () => {

 this.props.onButtonClick(follow)

 }

 unfollowClick = () => {

 this.props.onButtonClick(unfollow)

 }

 render() {

 return (<div>

 { this.props.following

 ? (<Button variant="raised" color="secondary" onClick=

 {this.unfollowClick}>Unfollow</Button>)

 : (<Button variant="raised" color="primary" onClick=

 {this.followClick}>Follow</Button>)

 }

 </div>)

 }

}

FollowProfileButton.propTypes = {

 following: PropTypes.bool.isRequired,

 onButtonClick: PropTypes.func.isRequired

}

When the FollowProfileButton is added to the profile, the 'following' value will be determined and sent from the
Profile component as a prop to the FollowProfileButton, along with the click handler that takes the specific follow
or unfollow fetch API to be called as a parameter:

Update Profile component
In the Profile view, the FollowProfileButton should only be shown when the user views
the profile of other users, so we need to modify the condition for showing Edit and
Delete buttons when viewing a profile as follows:

{auth.isAuthenticated().user && auth.isAuthenticated().user._id == this.state.user._id

 ? (edit and delete buttons)

 : (follow button)

}

In the Profile component, after the user data is successfully fetched on
componentDidMount, we will check if the signed in user is already following the user in
the profile or not, and set the following value to the state.

mern-social/client/user/Profile.js:

let following = this.checkFollow(data)

this.setState({user: data, following: following})

To determine the value to set in following, the checkFollow method will check if the
signed-in user exists in the fetched user's followers list, then return the match if
found, otherwise return undefined if a match is not found.

mern-social/client/user/Profile.js:

checkFollow = (user) => {

 const jwt = auth.isAuthenticated()

 const match = user.followers.find((follower)=> {

 return follower._id == jwt.user._id

 })

 return match

}

The Profile component will also define the click handler for FollowProfileButton, so
the state of the Profile can be updated when the follow or unfollow action
completes.

mern-social/client/user/Profile.js:

clickFollowButton = (callApi) => {

 const jwt = auth.isAuthenticated()

 callApi({

 userId: jwt.user._id

 }, {

 t: jwt.token

 }, this.state.user._id).then((data) => {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 this.setState({user: data, following: !this.state.following})

 }

 })

}

The click handler definition takes the fetch API call as a parameter and is passed
as a prop to the FollowProfileButton along with the following value when it is added to
the Profile view.

mern-social/client/user/Profile.js:

<FollowProfileButton following={this.state.following} onButtonClick={this.clickFollowButton}/>

Listing followings and followers
In each user's profile, we will add a list of their followers and the people they
are following:

The details of the users referenced in the following and followers lists are already
in the user object fetched using the read API when the profile is loaded. In
order to render these separate lists of followers and followings, we will create
a new component called FollowGrid.

FollowGrid component
The FollowGrid component will take a list of users as props, display the
avatars of the users with their names, and link to each user's profile. We
can add this component as desired to the Profile view to display followings or
followers.

mern-social/client/user/FollowGrid.js:

class FollowGrid extends Component {

 render() {

 const {classes} = this.props

 return (<div className={classes.root}>

 <GridList cellHeight={160} className={classes.gridList} cols={4}>

 {this.props.people.map((person, i) => {

 return <GridListTile style={{'height':120}} key={i}>

 <Link to={"/user/" + person._id}>

 <Avatar src={'/api/users/photo/'+person._id} className=

 {classes.bigAvatar}/>

 <Typography className={classes.tileText}>{person.name}

 </Typography>

 </Link>

 </GridListTile>

 })}

 </GridList>

 </div>)

 }

}

FollowGrid.propTypes = {

 classes: PropTypes.object.isRequired,

 people: PropTypes.array.isRequired

}

To add the FollowGrid component to the Profile view, we can place it as
desired in the view and pass the list of followers or followings as the people
prop:

<FollowGrid people={this.state.user.followers}/>

<FollowGrid people={this.state.user.following}/>

As pictured previously, in MERN Social we chose to display the FollowGrid
components in tabs within the Profile component. We created a separate
ProfileTabs component using Material-UI tab components and added that to

the Profile component. This ProfileTabs component contains the two FollowGrid
components with following and followers lists, along with a PostList
component that shows the posts by the user. This will be discussed later in
the chapter.

Finding people to follow
The Who to follow feature will show the signed in user a list of people in
MERN Social that they are not currently following, giving the option to
follow them or view their profiles:

Fetching users not followed
We will implement a new API on the server to query the database and
fetch this list of users the current user is not following.

mern-social/server/routes/user.routes.js:

router.route('/api/users/findpeople/:userId')

 .get(authCtrl.requireSignin, userCtrl.findPeople)

In the findPeople controller method, we will query the User collection in the
database to find the users not in the current user's following list.

mern-social/server/controllers/user.controller.js:

const findPeople = (req, res) => {

 let following = req.profile.following

 following.push(req.profile._id)

 User.find({ _id: { $nin : following } }, (err, users) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(users)

 }).select('name')

}

To use this list of users in the frontend, we will update the api-user.js to add
a fetch for this find people API.

 mern-social/client/user/api-user.js:

const findPeople = (params, credentials) => {

 return fetch('/api/users/findpeople/' + params.userId, {

 method: 'GET',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 }

 }).then((response) => {

 return response.json()

 }).catch((err) => console.log(err))

}

FindPeople component
To display the who to follow feature, we will create a component called
FindPeople, which can be added to any of the views or rendered on its own.
In this component, we will first fetch the users not followed by calling the
findPeople method in componentDidMount.

mern-social/client/user/FindPeople.js:

componentDidMount = () => {

 const jwt = auth.isAuthenticated()

 findPeople({

 userId: jwt.user._id

 }, {

 t: jwt.token

 }).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.setState({users: data})

 }

 })

}

The fetched list of users will be iterated over and rendered in a Material-
UI List component, with each list item containing the user's avatar, name, a
link to the profile page, and a Follow button.

mern-social/client/user/FindPeople.js:

<List>{this.state.users.map((item, i) => {

 return

 <ListItem>

 <ListItemAvatar className={classes.avatar}>

 <Avatar src={'/api/users/photo/'+item._id}/>

 </ListItemAvatar>

 <ListItemText primary={item.name}/>

 <ListItemSecondaryAction className={classes.follow}>

 <Link to={"/user/" + item._id}>

 <IconButton variant="raised" color="secondary"

 className={classes.viewButton}>

 <ViewIcon/>

 </IconButton>

 </Link>

 <Button aria-label="Follow" variant="raised"

 color="primary"

 onClick={this.clickFollow.bind(this, item, i)}>

 Follow

 </Button>

 </ListItemSecondaryAction>

 </ListItem>

 })

 }

</List>

Clicking the Follow button will make a call to the follow API, and update
the list of users to follow by splicing out the newly followed user.

mern-social/client/user/FindPeople.js:

clickFollow = (user, index) => {

 const jwt = auth.isAuthenticated()

 follow({

 userId: jwt.user._id

 }, {

 t: jwt.token

 }, user._id).then((data) => {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 let toFollow = this.state.users

 toFollow.splice(index, 1)

 this.setState({users: toFollow, open: true, followMessage:

 `Following ${user.name}!`})

 }

 })

}

We will also add a Material-UI Snackbar component that will open
temporarily when the user is successfully followed, to tell the user that
they started following this new user.

mern-social/client/user/FindPeople.js:

<Snackbar

 anchorOrigin={{ vertical: 'bottom', horizontal: 'right'}}

 open={this.state.open}

 onClose={this.handleRequestClose}

 autoHideDuration={6000}

 message={{this.state.followMessage}}

/>

The Snackbar will display the message in the bottom-right corner of the
page, and auto-hide after the set duration:

MERN Social users can now follow each other, view lists of followings
and followers for each user, and also see a list of people they can follow.
The main purpose of following another user in MERN Social is to track
their social posts, so next we will look at the implementation of the post
feature.

Posts
The posting feature in MERN Social will allow users to share content on
the MERN Social application platform and also interact with each other
over the content by commenting on or liking a post:

Mongoose schema model for Post
To store each post, we will first define the Mongoose Schema in
server/models/post.model.js. The Post schema will store a post's text content, a
photo, a reference to the user who posted, time of creation, likes on the
post from users, and comments on the post by users:

Post text: The text will be a required field to be provided by the user
on new post creation from the view:

text: {

 type: String,

 required: 'Name is required'

}

Post photo: The photo will be uploaded from the user's local files
during post creation, and stored in MongoDB similar to the user
profile photo upload feature. The photo will be optional for each post:

photo: {

 data: Buffer,

 contentType: String

}

Post by: Creating a post will require a user to be signed in first, so we
can store a reference to the user who is posting in the postedBy field:

postedBy: {type: mongoose.Schema.ObjectId, ref: 'User'}

Created time: The created time will be generated automatically at the
time of post creation in the database:

created: { type: Date, default: Date.now }

Likes: References to the users who liked a specific post will be stored
in a likes array:

likes: [{type: mongoose.Schema.ObjectId, ref: 'User'}]

Comments: Each comment on a post will contain text content, the
time of creation, and a reference to the user who posted the comment.
Each post will have an array of comments:

comments: [{

 text: String,

 created: { type: Date, default: Date.now },

 postedBy: { type: mongoose.Schema.ObjectId, ref: 'User'}

 }]

This schema definition will enable us to implement all the post-related
features in MERN Social.

Newsfeed component
Before delving further into the implementations of the posting features in
MERN Social, we will look at the composition of the Newsfeed view to
showcase a basic example of how to design nested UI components that
share state. The Newsfeed component will contain two main child
components—a new post form and a list of posts from followed users:

The basic structure of the Newsfeed component will be as follows, with the
NewPost component and the PostList component.

mern-social/client/post/Newsfeed.js:

<Card>

 <Typography type="title"> Newsfeed </Typography>

 <Divider/>

 <NewPost addUpdate={this.addPost}/>

 <Divider/>

 <PostList removeUpdate={this.removePost} posts={this.state.posts}/>

</Card>

As the parent component, Newsfeed will control the state of the posts' data
rendered in the child components. It will provide a way to update the state
of posts across the components when the post data is modified within the
child components, such as the addition of a new post in the NewPost
component, or removal of a post from the PostList component.

Here specifically, a loadPosts function in Newsfeed makes the call to the server
initially to fetch a list of posts from people the currently signed in user
follows and sets it to the state to be rendered in the PostList component.
The Newsfeed component provides the addPost and removePost functions to
NewPost and PostList, which will be used when a new post is created or an
existing post is deleted to update the list of posts in Newsfeed's state and
ultimately reflect it in the PostList.

The addPost function defined in the Newsfeed component will take the new
post created in the NewPost component and add it to the posts in the state.

mern-social/client/post/Newsfeed.js:

addPost = (post) => {

 const updatedPosts = this.state.posts

 updatedPosts.unshift(post)

 this.setState({posts: updatedPosts})

}

The removePost function defined in the Newsfeed component will take the
deleted post from the Post component in PostList, and remove it from the
posts in the state.

mern-social/client/post/Newsfeed.js:

removePost = (post) => {

 const updatedPosts = this.state.posts

 const index = updatedPosts.indexOf(post)

 updatedPosts.splice(index, 1)

 this.setState({posts: updatedPosts})

}

As the posts are updated in Newsfeed's state this way, the PostList will render
the changed list of posts to the viewer. This mechanism of relaying state
updates from parent to child components and back will be applied across
other features, such as comment updates in a post and also when a PostList
is rendered for an individual user in the Profile component.

Listing posts
In MERN Social, we will list posts in the Newsfeed and in the profile of each
user. We will create a generic PostList component that will render any list
of posts provided to it, and we can use it in both the Newsfeed and the Profile
component.

mern-social/client/post/PostList.js:

class PostList extends Component {

 render() {

 return (

 <div style={{marginTop: '24px'}}>

 {this.props.posts.map((item, i) => {

 return <Post post={item} key={i}

 onRemove={this.props.removeUpdate}/>

 })

 }

 </div>

)

 }

}

PostList.propTypes = {

 posts: PropTypes.array.isRequired,

 removeUpdate: PropTypes.func.isRequired

}

The PostList component will iterate through the list of posts passed to it as
props from the Newsfeed or the Profile, and pass the data of each post to a Post
component that will render details of the post. The PostList will also pass
the removeUpdate function that was sent as a prop from the parent component
to the Post component, so the state can be updated when a single post is
deleted.

List in Newsfeed
We will set up an API on the server that queries the Post collection, and
returns posts from the people a specified user is following. So these posts
may be displayed in the PostList in Newsfeed.

Newsfeed API for posts
This Newsfeed-specific API will receive a request at the following route to
be defined in server/routes/post.routes.js:

router.route('/api/posts/feed/:userId')

 .get(authCtrl.requireSignin, postCtrl.listNewsFeed)

We are using the :userID param in this route to specify the currently signed-
in user, and we will utilize the userByID controller method in the
user.controller to fetch the user details as we did before and append them to
the request object that is accessed in the listNewsFeed post controller method.
So, also add the following to the mern-social/server/routes/post.routes.js:

router.param('userId', userCtrl.userByID)

The post.routes.js file will be very similar to the user.routes.js file, and to
load these new routes in the Express app we need to mount the post routes
in express.js like we did for the auth and user routes.

mern-social/server/express.js:

app.use('/', postRoutes)

The listNewsFeed controller method in post.controller.js will query the Post
collection in the database to get the matching posts.

mern-social/server/controllers/post.controller.js:

const listNewsFeed = (req, res) => {

 let following = req.profile.following

 following.push(req.profile._id)

 Post.find({postedBy: { $in : req.profile.following } })

 .populate('comments', 'text created')

 .populate('comments.postedBy', '_id name')

 .populate('postedBy', '_id name')

 .sort('-created')

 .exec((err, posts) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(posts)

 })

}

In the query to the Post collection, we find all the posts that have postedBy
user references that match the current user's followings and the current
user.

Fetching Newsfeed posts in the view
To use this API in the frontend, we will add a fetch method to client/post/api-
post.js:

const listNewsFeed = (params, credentials) => {

 return fetch('/api/posts/feed/'+ params.userId, {

 method: 'GET',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 }

 }).then(response => {

 return response.json()

 }).catch((err) => console.log(err))

}

This is the fetch method that will load the posts rendered in the PostList,
which is added as a child component to the Newsfeed component. So this fetch
needs to be called in the loadPosts method in the Newsfeed component.

mern-social/client/post/Newsfeed.js:

 loadPosts = () => {

 const jwt = auth.isAuthenticated()

 listNewsFeed({

 userId: jwt.user._id

 }, {

 t: jwt.token

 }).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.setState({posts: data})

 }

 })

 }

The loadPosts method will be called in the componentDidMount of the Newsfeed
component to initially load the state with posts that are rendered in the
PostList component:

Listing by user in Profile
The implementation for getting a list of posts created by a specific user
and showing it in the Profile will be similar to the discussion in the
previous section. We will set up an API on the server that queries the Post
collection, and returns posts from a specific user to the Profile view.

API for posts by a user
The route that will receive a query to return posts by a specific user will be
added in mern-social/server/routes/post.routes.js:

router.route('/api/posts/by/:userId')

 .get(authCtrl.requireSignin, postCtrl.listByUser)

The listByUser controller method in post.controller.js will query the Post
collection to find posts that have a matching reference in the postedBy field
to the user specified in the userId param in the route.

mern-social/server/controllers/post.controller.js:

const listByUser = (req, res) => {

 Post.find({postedBy: req.profile._id})

 .populate('comments', 'text created')

 .populate('comments.postedBy', '_id name')

 .populate('postedBy', '_id name')

 .sort('-created')

 .exec((err, posts) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(posts)

 })

}

Fetching user posts in the view
To use this API in the frontend, we will add a fetch method to mern-social/client/post/api-
post.js:

const listByUser = (params, credentials) => {

 return fetch('/api/posts/by/'+ params.userId, {

 method: 'GET',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 }

 }).then(response => {

 return response.json()

 }).catch((err) => console.log(err))

}

This fetch method will load the required posts for the PostList that is added to the Profile
view. We will update the Profile component to define a loadPosts method that calls the
listByUser fetch method.

mern-social/client/user/Profile.js:

loadPosts = (user) => {

 const jwt = auth.isAuthenticated()

 listByUser({

 userId: user

 }, {

 t: jwt.token

 }).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.setState({posts: data})

 }

 })

}

In the Profile component, the loadPosts method will be called with the user ID of the user
whose profile is being loaded, after the user details have been fetched from the server
in the init() function. The posts loaded for the specific user are set to state and rendered
in the PostList component that is added to the Profile component. The Profile component
also provides a removePost function, similar to the Newsfeed component, as a prop to the
PostList component, so the list of posts can be updated if a post is removed:

Creating a new post
The create new post feature will allow a signed in user to post a message
and optionally add an image to the post by uploading it from their local
files.

Creating post API
On the server, we will define an API to create the post in the database,
starting with declaring a route to accept a POST request
at /api/posts/new/:userId in mern-social/server/routes/post.routes.js:

router.route('/api/posts/new/:userId')

 .post(authCtrl.requireSignin, postCtrl.create)

The create method in the post.controller.js will use the formidable module to
access the fields and the image file, if any, as we did for the user profile
photo update.

mern-social/server/controllers/post.controller.js:

const create = (req, res, next) => {

 let form = new formidable.IncomingForm()

 form.keepExtensions = true

 form.parse(req, (err, fields, files) => {

 if (err) {

 return res.status(400).json({

 error: "Image could not be uploaded"

 })

 }

 let post = new Post(fields)

 post.postedBy= req.profile

 if(files.photo){

 post.photo.data = fs.readFileSync(files.photo.path)

 post.photo.contentType = files.photo.type

 }

 post.save((err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(result)

 })

 })

}

Retrieving a post's photo
To retrieve the uploaded photo, we will also set up a photo route URL that
returns the photo with a specific post.

mern-social/server/routes/post.routes.js:

router.route('/api/posts/photo/:postId').get(postCtrl.photo)

The photo controller will return the photo data stored in MongoDB as an
image file.

mern-social/server/controllers/post.controller.js:

const photo = (req, res, next) => {

 res.set("Content-Type", req.post.photo.contentType)

 return res.send(req.post.photo.data)

}

As the photo route uses the :postID parameter, we will set up a postByID
controller method to fetch the specific post by its ID before returning to
the photo request. We will add the param call to post.routes.js.

mern-social/server/routes/post.routes.js:

 router.param('postId', postCtrl.postByID)

The postByID will be similar to the userByID method, and it will attach the post
retrieved from the database to the request object, to be accessed by the next
method. The attached post data in this implementation will also contain
the ID and name of the postedBy user reference.

mern-social/server/controllers/post.controller.js:

const postByID = (req, res, next, id) => {

 Post.findById(id).populate('postedBy', '_id name').exec((err, post) => {

 if (err || !post)

 return res.status('400').json({

 error: "Post not found"

 })

 req.post = post

 next()

 })

}

Fetching the create post API in the
view
We will update the api-post.js to add a create method to make a fetch call to
the create API.

mern-social/client/post/api-post.js:

const create = (params, credentials, post) => {

 return fetch('/api/posts/new/'+ params.userId, {

 method: 'POST',

 headers: {

 'Accept': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: post

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

This method, like the user edit fetch, will send a multipart form
submission using a FormData object that can contain the text field and the
image file.

NewPost component
The NewPost component added in the Newsfeed component will allow users to write a
new post containing a text message and optionally an image:

The NewPost component will be a standard form with a Material-UI TextField and a
file upload button as implemented in EditProfile, that takes the values and sets
them in a FormData object to be passed in the call to the create fetch method on post
submission.

mern-social/client/post/NewPost.js:

clickPost = () => {

 const jwt = auth.isAuthenticated()

 create({

 userId: jwt.user._id

 }, {

 t: jwt.token

 }, this.postData).then((data) => {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 this.setState({text:'', photo: ''})

 this.props.addUpdate(data)

 }

 })

}

The NewPost component is added as a child component in the Newsfeed, and given the
addUpdate method as a prop. On successful post creation, the form view is emptied

and addUpdate is executed so the post list in the Newsfeed is updated with the new
post.

Post component
Post details in each post will be rendered in the Post component, which will
receive the post data as props from the PostList component, as well as the
onRemove prop to be applied if a post is deleted.

Layout
The Post component layout will have a header showing details of the poster,
content of the post, an actions bar with likes and comment count, and the
Comments section:

Header
The header will contain information such as the name, avatar, link to the
profile of the user who posted, and the date the post was created.

mern-social/client/post/Post.js:

<CardHeader

 avatar={<Avatar src={'/api/users/photo/'+this.props.post.postedBy._id}/>}

 action={this.props.post.postedBy._id ===

 auth.isAuthenticated().user._id &&

 <IconButton onClick={this.deletePost}>

 <DeleteIcon />

 </IconButton>

 }

 title={<Link to={"/user/" + this.props.post.postedBy._id}>

 {this.props.post.postedBy.name}

 </Link>}

 subheader={(new Date(this.props.post.created)).toDateString()}

 className={classes.cardHeader}

/>

The header will also conditionally show a delete button if the signed-in
user is viewing their own post.

Content
The content section will show the text of the post and the image if the post
contains a photo.

mern-social/client/post/Post.js:

<CardContent className={classes.cardContent}>

 <Typography component="p" className={classes.text}>

 {this.props.post.text}

 </Typography>

 {this.props.post.photo &&

 (<div className={classes.photo}>

 <img className={classes.media}

 src={'/api/posts/photo/'+this.props.post._id}/>

 </div>)

 }

</CardContent>

Actions
The actions section will contain an interactive "like" option with the total
number of likes on the post and a comment icon with the total number of
comments on the post.

mern-social/client/post/Post.js:

<CardActions>

 { this.state.like

 ? <IconButton onClick={this.like} className={classes.button}

 aria-label="Like" color="secondary">

 <FavoriteIcon />

 </IconButton>

 :<IconButton onClick={this.like} className={classes.button}

 aria-label="Unlike" color="secondary">

 <FavoriteBorderIcon />

 </IconButton>

 } {this.state.likes}

 <IconButton className={classes.button}

 aria-label="Comment" color="secondary">

 <CommentIcon/>

 </IconButton> {this.state.comments.length}

</CardActions>

Comments
The comments section will contain all the comment related elements in
the Comments component and will get props such as the postId, and the comments
data, along with a state updating method that can be called when a
comment is added or deleted in the Comments component.

mern-social/client/post/Post.js:

<Comments postId={this.props.post._id}

 comments={this.state.comments}

 updateComments={this.updateComments}/>

Deleting a post
The delete button is only visible if the signed-in user and postedBy user are
the same for the specific post being rendered. For the post to be deleted
from the database, we will have to set up a delete post API that will also
have a fetch method in the frontend to be applied when delete is clicked.

mern-social/server/routes/post.routes.js:

router.route('/api/posts/:postId')

 .delete(authCtrl.requireSignin,

 postCtrl.isPoster,

 postCtrl.remove)

The delete route will check for authorization before calling remove on the
post, by ensuring the authenticated user and postedBy user are the same
users. The isPoster method checks if the signed-in user is the original
creator of the post before executing the next method.

mern-social/server/controllers/post.controller.js:

const isPoster = (req, res, next) => {

 let isPoster = req.post && req.auth &&

 req.post.postedBy._id == req.auth._id

 if(!isPoster){

 return res.status('403').json({

 error: "User is not authorized"

 })

 }

 next()

}

The rest of the implementation for the delete API with a remove controller
method and fetch method for the frontend are the same as other API
implementations. The important difference here, in the delete post feature,
is the call to the onRemove update method in the Post component when delete
succeeds. The onRemove method is sent as a prop from either Newsfeed or
Profile, to update the list of posts in the state when the delete is successful.

The following deletePost method defined in the Post component is called
when the delete button is clicked on a post.

mern-social/client/post/Post.js:

deletePost = () => {

 const jwt = auth.isAuthenticated()

 remove({

 postId: this.props.post._id

 }, {

 t: jwt.token

 }).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.props.onRemove(this.props.post)

 }

 })

}

This method makes a fetch call to the delete post API, and on success
updates the list of posts in the state by executing the onRemove method
received as a prop from the parent component.

Likes
The like option in the Post component's action bar section will allow the
user to like or unlike a post, and also show the total number of likes for the
post. To record a like, we will have to set up like and unlike APIs that can
be called in the view.

Like API
The like API will be a PUT request to update the likes array in the Post
document. The request will be received at the route api/posts/like.

mern-social/server/routes/post.routes.js:

 router.route('/api/posts/like')

 .put(authCtrl.requireSignin, postCtrl.like)

In the like controller method, the post ID received in the request body will
be used to find the Post document and update it by pushing the current
user's ID to the likes array.

mern-social/server/controllers/post.controller.js:

const like = (req, res) => {

 Post.findByIdAndUpdate(req.body.postId,

 {$push: {likes: req.body.userId}}, {new: true})

 .exec((err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(result)

 })

}

To use this API, a fetch method called like will be added to api-post.js,
which will be used when the user clicks the like button.

mern-social/client/post/api-post.js:

const like = (params, credentials, postId) => {

 return fetch('/api/posts/like/', {

 method: 'PUT',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: JSON.stringify({userId:params.userId, postId: postId})

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

Unlike API
The unlike API will be implemented similar to the like API, with its own route
at mern-social/server/routes/post.routes.js:

 router.route('/api/posts/unlike')

 .put(authCtrl.requireSignin, postCtrl.unlike)

The unlike method in the controller will find the post by its ID and update the
likes array by removing the current user's ID using $pull instead of $push.

mern-social/server/controllers/post.controller.js:

const unlike = (req, res) => {

 Post.findByIdAndUpdate(req.body.postId, {$pull: {likes: req.body.userId}}, {new: true})

 .exec((err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(result)

 })

}

The unlike API will also have a corresponding fetch method similar to the
like method in api-post.js.

Checking if liked and counting likes
When the Post component is rendered, we need to check if the currently signed in user
has liked the post or not, so the appropriate like option can be shown.

mern-social/client/post/Post.js:

checkLike = (likes) => {

 const jwt = auth.isAuthenticated()

 let match = likes.indexOf(jwt.user._id) !== -1

 return match

}

The checkLike function can be called during componentDidMount and componentWillReceiveProps of
the Post component, to set the like state for the post after checking if the current user is
referenced in the post's likes array:

The like value set in the state using the checkLike method can be used to render a heart
outline button or a full heart button. A heart outline button will render if the user has
not liked the post, and clicking which will make a call to the like API, show the full
heart button, and increment the likes count. The full heart button will indicate the
current user has already liked this post, and clicking this will call the unlike API, render
the heart outline button, and decrement the likes count.

The likes count is also set initially when the Post component mounts and props are
received by setting the likes value to state with this.props.post.likes.length.

mern-social/client/post/Post.js:

componentDidMount = () => {

 this.setState({like:this.checkLike(this.props.post.likes),

 likes: this.props.post.likes.length,

 comments: this.props.post.comments})

}

componentWillReceiveProps = (props) => {

 this.setState({like:this.checkLike(props.post.likes),

 likes: props.post.likes.length,

 comments: props.post.comments})

}

The likes related values are updated again when a like or unlike action takes place, and
the updated post data is returned from the API call.

Handling like clicks
To handle clicks on the like and unlike buttons, we will set up a like method
that will call the appropriate fetch method based on whether it is a like or
unlike action, and update the state of like and likes count for the post.

mern-social/client/post/Post.js:

like = () => {

 let callApi = this.state.like ? unlike : like

 const jwt = auth.isAuthenticated()

 callApi({

 userId: jwt.user._id

 }, {

 t: jwt.token

 }, this.props.post._id).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.setState({like: !this.state.like, likes:

 data.likes.length})

 }

 })

 }

Comments
The Comments section in each post will allow signed in users to add comments, see
the list of comments, and delete their own comments. Any changes to the comment
list, such as a new addition or a removal, will update the comments and also the
comment count in the action bar section of the Post component:

Adding a comment
When a user adds a comment, the post document will be updated in the
database with the new comment.

Comment API
To implement the add comment API, we will set up a PUT route as follows
to update the post.

mern-social/server/routes/post.routes.js:

router.route('/api/posts/comment')

 .put(authCtrl.requireSignin, postCtrl.comment)

The comment controller method will find the relevant post to be updated by
its ID, and push the comment object received in the request body to the
comments array of the post.

mern-social/server/controllers/post.controller.js:

const comment = (req, res) => {

 let comment = req.body.comment

 comment.postedBy = req.body.userId

 Post.findByIdAndUpdate(req.body.postId,

 {$push: {comments: comment}}, {new: true})

 .populate('comments.postedBy', '_id name')

 .populate('postedBy', '_id name')

 .exec((err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(result)

 })

}

In the response, the updated post object will be sent back with details of
the postedBy users populated in the post and in the comments.

To use this API in the view, we will set up a fetch method in api-post.js that
takes the current user's ID, the post ID, and the comment object from the
view, to send with the add comment request.

mern-social/client/post/api-post.js:

const comment = (params, credentials, postId, comment) => {

 return fetch('/api/posts/comment/', {

 method: 'PUT',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: JSON.stringify({userId:params.userId, postId: postId,

 comment: comment})

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

Writing something in the view
The add comment section in the Comments component will allow the signed-
in user to type in the comment text:

It will contain an avatar with the user's photo and a text field, which will
add the comment when the user presses the Enter key.

mern-social/client/post/Comments.js:

<CardHeader

 avatar={<Avatar className={classes.smallAvatar}

 src={'/api/users/photo/'+auth.isAuthenticated().user._id}/>}

 title={<TextField

 onKeyDown={this.addComment}

 multiline

 value={this.state.text}

 onChange={this.handleChange('text')}

 placeholder="Write something ..."

 className={classes.commentField}

 margin="normal"/>}

 className={classes.cardHeader}

/>

The text will be stored in state when the value changes, and on the onKeyDown
event the addComment method will call the comment fetch method if the Enter
key is pressed.

mern-social/client/post/Comments.js:

addComment = (event) => {

 if(event.keyCode == 13 && event.target.value){

 event.preventDefault()

 const jwt = auth.isAuthenticated()

 comment({

 userId: jwt.user._id

 }, {

 t: jwt.token

 }, this.props.postId, {text: this.state.text}).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.setState({text: ''})

 this.props.updateComments(data.comments)

 }

 })

 }

}

The Comments component receives the updateComments method (discussed in the
last section) as a prop from the Post component. This will be executed
when the new comment is added, in order to update the comments and the
comment count in the Post view.

Listing comments
The Comments component receives the list of comments for the specific post
as props from the Post component, then iterates over the individual
comments to render the details of the commenter and the comment
content.

mern-social/client/post/Comments.js:

{this.props.comments.map((item, i) => {

 return <CardHeader

 avatar={

 <Avatar src=

 {'/api/users/photo/'+item.postedBy._id}/>

 }

 title={commentBody(item)}

 className={classes.cardHeader}

 key={i}/>

 })

}

The commentBody renders the content including the name of the commenter
linked to their profile, the comment text, and the date of comment
creation.

mern-social/client/post/Comments.js:

const commentBody = item => {

 return (

 <p className={classes.commentText}>

 <Link to={"/user/" + item.postedBy._id}>{item.postedBy.name}

 </Link>

 {item.text}

 {(new Date(item.created)).toDateString()} |

 {auth.isAuthenticated().user._id === item.postedBy._id &&

 <Icon onClick={this.deleteComment(item)}

 className={classes.commentDelete}>delete</Icon> }

 </p>

)

}

The commentBody will also render a delete option for the comment if the
postedBy reference of the comment matches the currently signed-in user.

Deleting a comment
Clicking the delete button in a comment will update the post in the
database by removing the comment from the comments array:

Uncomment API
We will implement an uncomment API at the following PUT route.

mern-social/server/routes/post.routes.js:

router.route('/api/posts/uncomment')

 .put(authCtrl.requireSignin, postCtrl.uncomment)

The uncomment controller method will find the relevant post by ID, then pull the
comment with the deleted comment's ID from the comments array in the post.

mern-social/server/controllers/post.controller.js:

const uncomment = (req, res) => {

 let comment = req.body.comment

 Post.findByIdAndUpdate(req.body.postId, {$pull: {comments: {_id: comment._id}}}, {new: true})

 .populate('comments.postedBy', '_id name')

 .populate('postedBy', '_id name')

 .exec((err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(result)

 })

}

The updated post will be returned in the response as in the comment API.

To use this API in the view, we will also set up a fetch method in api-post.js, similar
to the add comment fetch method, that takes the current user's ID, the post ID, and the
deleted comment object to send with the uncomment request.

Removing a comment from view
When a comment's delete button is clicked by the commenter, the Comments
component will call the deleteComment method to fetch the uncomment API, and
update the comments along with the comment count when the comment is
successfully removed from the server.

mern-social/client/post/Comments.js:

deleteComment = comment => event => {

 const jwt = auth.isAuthenticated()

 uncomment({

 userId: jwt.user._id

 }, {

 t: jwt.token

 }, this.props.postId, comment).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.props.updateComments(data.comments)

 }

 })

 }

Comment count update
The updateComments method, which will enable the comments and comment count
to be updated when a comment is added or deleted, is defined in the Post
component and passed as a prop to the Comments component.

mern-social/client/post/Post.js:

updateComments = (comments) => {

 this.setState({comments: comments})

}

This method takes the updated list of comments as a parameter and
updates the state that holds the list of comments rendered in the view. The
initial state of comments in the Post component is set when the Post
component mounts, and receives the post data as props. The comments set
here are sent as props to the Comments component, and also used to render the
comment count next to the likes action in the action bar of the Post layout,
as follows.

mern-social/client/post/Post.js:

<IconButton aria-label="Comment" color="secondary">

 <CommentIcon/>

</IconButton> {this.state.comments.length}

This relation between the comment count in the Post component, and the
comments rendered and updated in the Comments component, once again
gives a simple demonstration of how changing data is shared among
nested components in React to create dynamic and interactive user
interfaces.

The MERN Social application is complete with the set of features we
defined earlier for the application. Users are able to update their profiles
with a photo and description, follow each other on the application, and
create posts with photos and text, as well as like and comment on posts.
The implementations shown here can be tuned and extended further to add

more features, utilizing the revealed mechanisms of working with the
MERN stack.

Summary
The MERN Social application developed in this chapter demonstrated how
the MERN stack technologies can be used together to build out a fully-
featured and functioning web application with social media features.

We began by updating the user feature in the skeleton application to allow
anyone with an account on MERN Social to add a description about
themselves, and also to upload a profile picture from their local files. In
the implementation of uploading a profile picture, we explored how to
upload multipart form data from the client, then receive it on the server to
store the file data directly in the MongoDB database, and then be able to
retrieve it back for viewing.

Next, we updated the user feature further, to allow users to follow each
other on the MERN Social platform. In the user model, we added the
capability to maintain arrays of user references to represent lists of
followers and followings for each user. Extending this capability, we
incorporated follow and unfollow options in the view, and displayed lists
of followers, followings, and even lists of users not followed yet.

Then, we added the ability to allow users to post content and interact over
the content by liking or commenting on the post. On the backend, we set
up the Post model and corresponding APIs, capable of storing the post
content that may or may not include an image, and maintaining records of
likes and comments incurred on a post by any user.

Finally, while implementing the views for posting, liking, and commenting
features, we explored how to use component composition and share
changing state values across the components to create complex and
interactive views.

In the next chapter, we will expand further on these abilities in the MERN
stack, and unlock new possibilities as we develop an online marketplace

application by extending the MERN skeleton application.

Exercising New MERN Skills with
an Online Marketplace
As more businesses continue to move to the web, the ability to buy and
sell in an online marketplace setting has become a core requirement for
many web platforms. In this and the next chapter, we will utilize the
MERN stack technologies to develop an online marketplace application
complete with features that enable users to buy and sell.

In this chapter, we will start building the online marketplace by extending
the MERN skeleton with the following features:

Users with seller accounts
Shop management
Product management
Product search by name and category

MERN Marketplace
The MERN Marketplace application will allow users to become sellers, who can manage multiple shops, and add
the products they want to sell in each shop. Users who visit MERN Marketplace will be able to search for and
browse products they want to buy, and add products to their shopping cart to place an order:

The code for the complete MERN Marketplace application is available on GitHub: github.com/shamahoque/mern-marketplace. The
implementations discussed in this chapter can be accessed in the seller-shops-products branch of the repository. You can clone this
code and run the application as you go through the code explanations in the rest of this chapter.

The views needed for the features related to seller accounts, shops, and products will be developed by extending
and modifying the existing React components in the MERN skeleton application. The component tree pictured
next shows all the custom React components that make up the MERN Marketplace frontend developed in this
chapter:

https://github.com/shamahoque/mern-marketplace

Users as sellers
Any user that signs up on the MERN Marketplace can choose to become a
seller by updating their profile:

In contrast to being a regular user, becoming sellers will allow users to
create and manage their own shops where they can manage products:

To add this seller feature, we need to update the user model, the Edit
Profile view, and add a MY SHOPS link to the menu that will only be
visible to sellers.

Updating the user model
The user model will need a seller value that will be set to false by default
to represent regular users, and can be set to true to represent users who are
also sellers.

mern-marketplace/server/models/user.model.js:

seller: {

 type: Boolean,

 default: false

}

The seller value must be sent to the client with the user details received on
successful sign-in, so the view can be rendered accordingly to show information
relevant to the seller.

Updating the Edit Profile view
A signed-in user will see a toggle in the Edit Profile view, to either
activate or deactivate the seller feature. We will update the EditProfile
component to add a Material-UI Switch component in FormControlLabel.

mern-marketplace/client/user/EditProfile.js:

<Typography type="subheading" component="h4" className={classes.subheading}>

 Seller Account

</Typography>

<FormControlLabel

 control = { <Switch classes={{ checked: classes.checked, bar: classes.bar}}

 checked={this.state.seller}

 onChange={this.handleCheck}

 /> }

 label={this.state.seller? 'Active' : 'Inactive'}

/>

Any changes to the switch will be set to the value of the seller in state by
calling the handleCheck method.

mern-marketplace/client/user/EditProfile.js:

handleCheck = (event, checked) => {

 this.setState({'seller': checked})

}

On submit, the seller value is added to details sent in the update to the
server.

mern-marketplace/client/user/EditProfile.js:

clickSubmit = () => {

 const jwt = auth.isAuthenticated()

 const user = {

 name: this.state.name || undefined,

 email: this.state.email || undefined,

 password: this.state.password || undefined,

 seller: this.state.seller

 }

 update({

 userId: this.match.params.userId

 }, {

 t: jwt.token

 }, user).then((data) => {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 auth.updateUser(data, ()=> {

 this.setState({'userId':data._id,'redirectToProfile':true})

 })

 }

 })

 }

On successful update, the user details stored in sessionStorage for auth
purposes should also be updated. The auth.updateUser method is called to do
this sessionStorage update. It is defined with the other auth-helper.js methods,
and passed the updated user data and a callback function that updates the
view, as parameters.

mern-marketplace/client/auth/auth-helper.js:

updateUser(user, cb) {

 if(typeof window !== "undefined"){

 if(sessionStorage.getItem('jwt')){

 let auth = JSON.parse(sessionStorage.getItem('jwt'))

 auth.user = user

 sessionStorage.setItem('jwt', JSON.stringify(auth))

 cb()

 }

 }

}

Updating the menu
In the navigation bar, to conditionally display a link to My Shops, which is
only visible to the signed-in users who are also sellers, we will update the
Menu component, as follows, within the previous code that only renders
when a user is signed in.

mern-marketplace/client/core/Menu.js:

{auth.isAuthenticated().user.seller &&

 (<Link to="/seller/shops">

 <Button color = {isPartActive(history, "/seller/")}> My Shops </Button>

 </Link>)

}

Shops in the Marketplace
Sellers on MERN Marketplace can create shops and add products to each
shop. To store the shop data and enable shop management, we will
implement a Mongoose Schema for shops, backend APIs to access and
modify the shop data, and frontend views for the shop owner and buyers
browsing through the marketplace.

Shop model
The Shop schema defined in server/models/shop.model.js will have simple
fields to store shop details, along with a logo image, and a reference to the
user who owns the shop.

Shop name and description: Name and description fields will be
string types, with name as a required field:

name: {

 type: String,

 trim: true,

 required: 'Name is required'

},

description: {

 type: String,

 trim: true

},

Shop logo image: The image field will store the logo image file to be
uploaded by the user, as data in the MongoDB database:

image: {

 data: Buffer,

 contentType: String

},

Shop owner: The owner field will reference the user who is creating
the shop:

owner: {

 type: mongoose.Schema.ObjectId,

 ref: 'User'

}

Created and updated at times: The created and updated fields will be
Date types, with created generated when a new shop is added, and updated
changed when any shop details are modified:

updated: Date,

created: {

 type: Date,

 default: Date.now

},

The fields in this schema definition will enable us to implement all shop-
related features in MERN Marketplace.

Create a new shop
In MERN Marketplace, a user who is signed in and also a seller will be
able to create new shops.

Create shop API
In the backend, we will add a POST route that verifies that the current user
is a seller and creates a new shop with the shop data passed in the request.

mern-marketplace/server/routes/shop.routes.js:

router.route('/api/shops/by/:userId')

 .post(authCtrl.requireSignin,authCtrl.hasAuthorization,

 userCtrl.isSeller, shopCtrl.create)

The shop.routes.js file will be very similar to the user.routes file, and to load
these new routes in the Express app, we need to mount the shop routes in
express.js, like we did for the auth and user routes.

mern-marketplace/server/express.js:

app.use('/', shopRoutes)

We will update the user controller to add the isSeller method, this will
ensure the current user is actually a seller before creating the new shop.

mern-marketplace/server/controllers/user.controller.js:

const isSeller = (req, res, next) => {

 const isSeller = req.profile && req.profile.seller

 if (!isSeller) {

 return res.status('403').json({

 error: "User is not a seller"

 })

 }

 next()

}

The create method, in the shop controller, uses the formidable npm module to
parse the multipart request that may contain an image file uploaded by the
user for the shop logo. If there is a file, formidable will store it temporarily
in the filesystem, and we will read it using the fs module to retrieve the
file type and data to store it to the image field in the shop document.

mern-marketplace/server/controllers/shop.controller.js:

const create = (req, res, next) => {

 let form = new formidable.IncomingForm()

 form.keepExtensions = true

 form.parse(req, (err, fields, files) => {

 if (err) {

 res.status(400).json({

 message: "Image could not be uploaded"

 })

 }

 let shop = new Shop(fields)

 shop.owner= req.profile

 if(files.image){

 shop.image.data = fs.readFileSync(files.image.path)

 shop.image.contentType = files.image.type

 }

 shop.save((err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.status(200).json(result)

 })

 })

}

The logo image file for the shop is uploaded by the user and stored in MongoDB as
data. Then, in order to be shown in the views, it is retrieved from the database as an
image file at a separate GET API. The GET API is set up as an Express route at
/api/shops/logo/:shopId, which gets the image data from MongoDB and sends it as a file
in the response. The implementation steps for file upload, storage, and retrieval are
outlined in detail in the Upload profile photo section in Chapter 5, Starting with a
Simple Social Media Application.

Fetch the create API in the view
In the frontend, to use this create API, we will set up a fetch method in
client/shop/api-shop.js to make a post request to the create API by passing
the multipart form data:

const create = (params, credentials, shop) => {

 return fetch('/api/shops/by/'+ params.userId, {

 method: 'POST',

 headers: {

 'Accept': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: shop

 })

 .then((response) => {

 return response.json()

 }).catch((err) => console.log(err))

}

NewShop component
In the NewShop component, we will render a form that allows a seller to create
a shop by entering a name and description, and uploading a logo image file
from their local filesystem:

We will add the file upload elements using a Material-UI button and an
HTML5 file input element.

mern-marketplace/client/shop/NewShop.js:

<input accept="image/*" onChange={this.handleChange('image')}

 style={display:'none'} id="icon-button-file" type="file" />

<label htmlFor="icon-button-file">

 <Button raised color="secondary" component="span">

 Upload Logo <FileUpload/>

 </Button>

</label>

 {this.state.image ? this.state.image.name : ''}

The name and description form fields will be added with the TextField
components.

mern-marketplace/client/shop/NewShop.js:

<TextField

 id="name"

 label="Name"

 value={this.state.name}

 onChange={this.handleChange('name')}/>

<TextField

 id="multiline-flexible"

 label="Description"

 multiline rows="2"

 value={this.state.description}

 onChange={this.handleChange('description')}/>

These form field changes will be tracked with the handleChange method.

mern-marketplace/client/shop/NewShop.js:

handleChange = name => event => {

 const value = name === 'image'

 ? event.target.files[0]

 : event.target.value

 this.shopData.set(name, value)

 this.setState({ [name]: value })

}

The handleChange method updates the state with the new values and populates
shopData, which is a FormData object that ensures the data is stored in the correct
format needed for the multipart/form-data encoding type. The shopData object is
initialized in componentDidMount.

mern-marketplace/client/shop/NewShop.js:

componentDidMount = () => {

 this.shopData = new FormData()

}

On form submit, the create fetch method is called in the clickSubmit function.

mern-marketplace/client/shop/NewShop.js:

 clickSubmit = () => {

 const jwt = auth.isAuthenticated()

 create({

 userId: jwt.user._id

 }, {

 t: jwt.token

 }, this.shopData).then((data) => {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 this.setState({error: '', redirect: true})

 }

 })

 }

On successful shop creation, the user is redirected back to the MyShops view.

mern-marketplace/client/shop/NewShop.js:

if (this.state.redirect) {

 return (<Redirect to={'/seller/shops'}/>)

}

The NewShop component can only be viewed by a signed-in user who is also a
seller. So we will add a PrivateRoute in the MainRouter component, that will
render this form only for authorized users at /seller/shop/new.

mern-marketplace/client/MainRouter.js:

<PrivateRoute path="/seller/shop/new" component={NewShop}/>

This link can be added to any of the view components that may be accessed
by the seller.

List shops
In MERN Marketplace, regular users will be able to browse through a list
of all the shops on the platform, and a shop owner will manage a list of
their own shops.

List all shops
A list of all the shops will be fetched from the backend and displayed to
the end user.

Shops list API
In the backend, we will add a route in server/routes/shop.routes.js to retrieve
all the shops stored in the database when the server receives a GET request
at '/api/shops':

router.route('/api/shops')

 .get(shopCtrl.list)

The list controller method in shop.controller.js will query the Shop
collection in the database to return all the shops.

mern-marketplace/server/controllers/shop.controller.js:

const list = (req, res) => {

 Shop.find((err, shops) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(shops)

 })

}

Fetch all shops for the view
In the frontend, to fetch the shops using this list API, we will set up a fetch
method in client/shop/api-shop.js:

const list = () => {

 return fetch('/api/shops', {

 method: 'GET',

 }).then(response => {

 return response.json()

 }).catch((err) => console.log(err))

}

Shops component
In the Shops component, we will render the list of shops in a Material-UI
List, after fetching the data when the component mounts and setting the
data to state:

The loadShops method is called in componentDidMount to load the shops when the
component mounts.

mern-marketplace/client/shop/Shops.js:

componentDidMount = () => {

 this.loadShops()

}

It uses the list fetch method to retrieve the shop list and sets the data to
state.

mern-marketplace/client/shop/Shops.js:

loadShops = () => {

 list().then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.setState({shops: data})

 }

 })

 }

In the Shops component, the retrieved shops array is iterated over using map,
with each shop's data rendered in the view in a Material-UI ListItem, and
each ListItem is also linked to the individual shop's view.

mern-marketplace/client/shop/Shops.js:

{this.state.shops.map((shop, i) => {

 return <Link to={"/shops/"+shop._id} key={i}>

 <Divider/>

 <ListItem button>

 <ListItemAvatar>

 <Avatar src={'/api/shops/logo/'+shop._id+"?" + new

 Date().getTime()}/>

 </ListItemAvatar>

 <div>

 <Typography type="headline" component="h2"

 color="primary">

 {shop.name}

 </Typography>

 <Typography type="subheading" component="h4">

 {shop.description}

 </Typography>

 </div>

 </ListItem><Divider/>

 </Link>})}

The Shops component will be accessed by the end user at /shops/all, set up
with React Router and declared in MainRouter.js.

mern-marketplace/client/MainRouter.js:

 <Route path="/shops/all" component={Shops}/>

List shops by owner
Authorized sellers will see a list of the shops they created, which they can
manage by editing or deleting any shop on the list.

Shops by owner API
We will add a GET route to retrieve the shops owned by a specific user to
the shop routes declared in the backend.

mern-marketplace/server/routes/shop.routes.js:

router.route('/api/shops/by/:userId')

 .get(authCtrl.requireSignin, authCtrl.hasAuthorization, shopCtrl.listByOwner)

To process the :userId param and retrieve the associated user from the
database, we will utilize the userByID method in user controller. We will add
the following to the Shop routes in shop.routes.js, so the user is available in
the request object as profile.

mern-marketplace/server/routes/shop.routes.js:

router.param('userId', userCtrl.userByID)

The listByOwner controller method in shop.controller.js will query the Shop
collection in the database to get the matching shops.

mern-marketplace/server/controllers/shop.controller.js:

const listByOwner = (req, res) => {

 Shop.find({owner: req.profile._id}, (err, shops) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(shops)

 }).populate('owner', '_id name')

}

In the query to the Shop collection, we find all the shops where the owner
field matches the user specified with the userId param.

Fetch all shops owned by a user for
the view
In the frontend, to fetch the shops for a specific user using this list by
owner API, we will add a fetch method in client/shop/api-shop.js:

const listByOwner = (params, credentials) => {

 return fetch('/api/shops/by/'+params.userId, {

 method: 'GET',

 headers: {

 'Accept': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 }

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

MyShops component
The MyShops component is similar to the Shops component, it fetches the list of shops owned
by the current user in componentDIdMount, and renders each shop in a ListItem:

Additionally, each shop has an edit and a delete option, unlike the list of items in shops.

mern-marketplace/client/shop/MyShops.js:

<ListItemSecondaryAction>

 <Link to={"/seller/shop/edit/" + shop._id}>

 <IconButton aria-label="Edit" color="primary">

 <Edit/>

 </IconButton>

 </Link>

 <DeleteShop shop={shop} onRemove={this.removeShop}/>

</ListItemSecondaryAction>

The Edit button links to the Edit Shop view. The DeleteShop component handles the delete
action, and updates the list by calling the removeShop method passed from MyShops, to update
the state with the modified list of shops for the current user.

mern-marketplace/client/shop/MyShops.js:

removeShop = (shop) => {

 const updatedShops = this.state.shops

 const index = updatedShops.indexOf(shop)

 updatedShops.splice(index, 1)

 this.setState({shops: updatedShops})

}

The MyShops component can only be viewed by a signed-in user who is also a seller. So we
will add a PrivateRoute in the MainRouter component, which will render this component only
for authorized users, at /seller/shops.

mern-marketplace/client/MainRouter.js:

<PrivateRoute path="/seller/shops" component={MyShops}/>

Display a shop
Any users browsing MERN Marketplace will be able to browse each
individual shop.

Read a shop API
In the backend, we will add a GET route that queries the Shop collection with
an ID and returns the shop in the response.

mern-marketplace/server/routes/shop.routes.js:

router.route('/api/shop/:shopId')

 .get(shopCtrl.read)

router.param('shopId', shopCtrl.shopByID)

The :shopId param in the route URL will call the shopByID controller method,
which is similar to the userByID controller method, retrieves the shop from
the database, and attaches it to the request object to be used in the next
method.

mern-marketplace/server/controllers/shop.controller.js:

const shopByID = (req, res, next, id) => {

 Shop.findById(id).populate('owner', '_id name').exec((err, shop) => {

 if (err || !shop)

 return res.status('400').json({

 error: "Shop not found"

 })

 req.shop = shop

 next()

 })

}

The read controller method then returns this shop object in the response to
the client.

mern-marketplace/server/controllers/shop.controller.js:

const read = (req, res) => {

 return res.json(req.shop)

}

Fetch the shop in the view
In api-shop.js, we will add a fetch method to use this read API in the
frontend.

mern-marketplace/client/shop/api-shop.js:

const read = (params, credentials) => {

 return fetch('/api/shop/' + params.shopId, {

 method: 'GET'

 }).then((response) => {

 return response.json()

 }).catch((err) => console.log(err))

}

Shop component
The Shop component will render the shop details and also a list of products in the specified
shop using a product list component, which will be discussed in the Products section:

The Shop component can be accessed in the browser at the /shops/:shopId route, which is defined
in MainRouter as follows.

mern-marketplace/client/MainRouter.js:

<Route path="/shops/:shopId" component={Shop}/>

In componentDidMount, the shop details are fetched using the read method from api-shop.js.

mern-marketplace/client/shop/Shop.js:

componentDidMount = () => {

 read({

 shopId: this.match.params.shopId

 }).then((data) => {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 this.setState({shop: data})

 }

 })

}

The retrieved shop data is set to state and rendered in the view to display the shop's name,
logo, and description.

mern-marketplace/client/shop/Shop.js:

<CardContent>

 <Typography type="headline" component="h2">

 {this.state.shop.name}

 </Typography>

 <Avatar src={logoUrl}/>

 <Typography type="subheading" component="h2">

 {this.state.shop.description}

 </Typography>

</CardContent>

The logoUrl points to the route that retrieves the logo image from the database if it exists, and
it's defined as follows.

mern-marketplace/client/shop/Shop.js:

const logoUrl = this.state.shop._id

 ? `/api/shops/logo/${this.state.shop._id}?${new Date().getTime()}`

 : '/api/shops/defaultphoto'

Edit a shop
Authorized sellers will also be able to edit the details of the shops they
own.

Edit shop API
In the backend, we will add a PUT route that allows an authorized seller to
edit one of their shops.

mern-marketplace/server/routes/shop.routes.js:

router.route('/api/shops/:shopId')

 .put(authCtrl.requireSignin, shopCtrl.isOwner, shopCtrl.update)

The isOwner controller method ensures that the signed-in user is actually the
owner of the shop being edited.

mern-marketplace/server/controllers/shop.controller.js:

const isOwner = (req, res, next) => {

 const isOwner = req.shop && req.auth && req.shop.owner._id ==

 req.auth._id

 if(!isOwner){

 return res.status('403').json({

 error: "User is not authorized"

 })

 }

 next()

}

The update controller method will use formidable and fs modules as in the
create controller method discussed earlier, to parse the form data and
update the existing shop in the database.

mern-marketplace/server/controllers/shop.controller.js:

const update = (req, res, next) => {

 let form = new formidable.IncomingForm()

 form.keepExtensions = true

 form.parse(req, (err, fields, files) => {

 if (err) {

 res.status(400).json({

 message: "Photo could not be uploaded"

 })

 }

 let shop = req.shop

 shop = _.extend(shop, fields)

 shop.updated = Date.now()

 if(files.image){

 shop.image.data = fs.readFileSync(files.image.path)

 shop.image.contentType = files.image.type

 }

 shop.save((err) => {

 if (err) {

 return res.status(400).send({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(shop)

 })

 })

}

Fetch the edit API in the view
The edit API is called in the view using a fetch method that takes the form
data and sends the multipart request to the backend.

mern-marketplace/client/shop/api-shop.js:

const update = (params, credentials, shop) => {

 return fetch('/api/shops/' + params.shopId, {

 method: 'PUT',

 headers: {

 'Accept': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: shop

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

EditShop component
The EditShop component will show a form similar to the create new shop form,
pre-populated with the existing shop details. This component will also show
a list of the products in this shop, to be discussed in the Products section:

The form part is similar to the form in the NewShop component, with the same
form fields and a formData object that holds the multipart form data sent with
the update fetch method.

The EditShop component is only accessible by authorized shop owners. So we
will add a PrivateRoute in the MainRouter component, which will render this
component only for authorized users at /seller/shop/edit/:shopId.

mern-marketplace/client/MainRouter.js:

<PrivateRoute path="/seller/shop/edit/:shopId" component={EditShop}/>

This link is added with an edit icon for each shop in the MyShops component.

Delete a shop
An authorized seller can delete any of their own shops from the MyShops list.

Delete shop API
In the backend, we will add a DELETE route that allows an authorized seller
to delete one of their own shops.

mern-marketplace/server/routes/shop.routes.js:

router.route('/api/shops/:shopId')

 .delete(authCtrl.requireSignin, shopCtrl.isOwner, shopCtrl.remove)

The remove controller method deletes the specified shop from the database,
if isOwner confirms that the signed-in user is the owner of the shop.

mern-marketplace/server/controllers/shop.controller.js:

const remove = (req, res, next) => {

 let shop = req.shop

 shop.remove((err, deletedShop) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(deletedShop)

 })

}

Fetch the delete API in the view
We will add a corresponding method in the frontend to make a delete
request to the delete API.

mern-marketplace/client/shop/api-shop.js:

const remove = (params, credentials) => {

 return fetch('/api/shops/' + params.shopId, {

 method: 'DELETE',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 }

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

DeleteShop component
The DeleteShop component is added to the MyShops component for each shop in
the list. It takes the shop object and a onRemove method as props from MyShops:

This component is basically an icon button that, on click, opens a confirm
dialog to ask the user whether they are sure they want to delete their shop.

mern-marketplace/client/shop/DeleteShop.js:

<IconButton aria-label="Delete" onClick={this.clickButton} color="secondary">

 <DeleteIcon/>

</IconButton>

<Dialog open={this.state.open} onRequestClose={this.handleRequestClose}>

 <DialogTitle>{"Delete "+this.props.shop.name}</DialogTitle>

 <DialogContent>

 <DialogContentText>

 Confirm to delete your shop {this.props.shop.name}.

 </DialogContentText>

 </DialogContent>

 <DialogActions>

 <Button onClick={this.handleRequestClose} color="primary">

 Cancel

 </Button>

 <Button onClick={this.deleteShop} color="secondary"

 autoFocus="autoFocus">

 Confirm

 </Button>

 </DialogActions>

</Dialog>

On delete confirmation from the user in the dialog, the delete fetch method
is called in deleteShop.

mern-marketplace/client/shop/DeleteShop.js:

 deleteShop = () => {

 const jwt = auth.isAuthenticated()

 remove({

 shopId: this.props.shop._id

 }, {t: jwt.token}).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.setState({open: false}, () => {

 this.props.onRemove(this.props.shop)

 })

 }

 })

 }

On successful deletion, the dialog is closed and the shop list in MyShops is
updated by calling the onRemove prop, which gets the removeShop method passed
in as a prop from MyShops.

These shop views will allow both buyers and sellers to interact with the
shops. The shops will also have products, discussed next, which the
owners will manage and the buyers will browse through with an option to
add to their cart.

Products
Products are the most crucial aspect in a marketplace application. In the
MERN Marketplace, sellers can manage products in their shops, and
visitors can search for and browse products.

Product model
Products will be stored in a product collection in the database, with a
schema defined using Mongoose. For MERN Marketplace, we will keep
the product schema simple with support for fields such as product name,
description, image, category, quantity, price, created at, updated at, and a
reference to the shop.

Product name and description: The name and description fields will be
String types, with name as a required field:

name: {

 type: String,

 trim: true,

 required: 'Name is required'

},

description: {

 type: String,

 trim: true

},

Product image: The image field will store an image file to be uploaded
by the user as data in the MongoDB database:

image: {

 data: Buffer,

 contentType: String

},

Product category: The category value will allow grouping products of
the same type together:

category: {

 type: String

},

Product quantity: The quantity field will represent the amount
available for selling in the shop:

quantity: {

 type: Number,

 required: "Quantity is required"

},

Product price: The price field will hold the unit price this product
will cost the buyer:

price: {

 type: Number,

 required: "Price is required"

},

Product shop: The shop field will reference the shop in which the
product was added:

shop: {

 type: mongoose.Schema.ObjectId,

 ref: 'Shop'

}

Created and updated at times: The created and updated fields will be
Date types, with created generated when a new product is added, and the
updated time changed when the same product's details are modified:

updated: Date,

created: {

 type: Date,

 default: Date.now

},

The fields in this schema definition will enable us to implement all
product-related features in MERN Marketplace.

Create a new product
Sellers in MERN Marketplace will be able to add new products to the
shops they own and create on the platform.

Create product API
In the backend, we will add a route at /api/products/by/:shopId, which accepts
a POST request containing product data, to create a new product associated
with the shop identified by the :shopId param. The code to handle this
request will first check that the current user is the owner of the shop in
which the new product will be added, before creating the new product in
the database.

This create product API route is declared in the product.routes.js file, and it
utilizes the shopByID and isOwner methods from the shop controller to process
the :shopId param, and to verify the current user as the shop owner.

mern-marketplace/server/routes/product.routes.js:

router.route('/api/products/by/:shopId')

 .post(authCtrl.requireSignin,

 shopCtrl.isOwner,

 productCtrl.create)

router.param('shopId', shopCtrl.shopByID)

The product.routes.js file will be very similar to the shop.routes.js file, and to
load these new routes in the Express app, we need to mount the product
routes in express.js, like we did for the shop routes.

mern-marketplace/server/express.js:

app.use('/', productRoutes)

The create method, in the product controller, uses the formidable npm module
to parse the multipart request that may contain an image file uploaded by
the user along with the product fields. The parsed data is then saved to the
Product collection as a new product.

mern-marketplace/server/controllers/product.controller.js:

const create = (req, res, next) => {

 let form = new formidable.IncomingForm()

 form.keepExtensions = true

 form.parse(req, (err, fields, files) => {

 if (err) {

 return res.status(400).json({

 message: "Image could not be uploaded"

 })

 }

 let product = new Product(fields)

 product.shop= req.shop

 if(files.image){

 product.image.data = fs.readFileSync(files.image.path)

 product.image.contentType = files.image.type

 }

 product.save((err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(result)

 })

 })

}

Fetching the create API in the view
In the frontend, to use this create API, we will set up a fetch method in
client/product/api-product.js to make a post request to the create API by
passing the multipart form data from the view.

mern-marketplace/client/product/api-product.js:

const create = (params, credentials, product) => {

 return fetch('/api/products/by/'+ params.shopId, {

 method: 'POST',

 headers: {

 'Accept': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: product

 })

 .then((response) => {

 return response.json()

 }).catch((err) => console.log(err))

}

The NewProduct component
The NewProduct component will be similar to the NewShop component. It will
contain a form that allows a seller to create a product by entering a name,
description, category, quantity, and price, and uploading a product image
file from their local filesystem:

This NewProduct component will only load at a route that is associated with a
specific shop, so only signed-in users who are sellers can add a product to
a shop they own. To define this route, we add a PrivateRoute in the MainRouter

component, which will render this form only for authorized users at
/seller/:shopId/products/new.

mern-marketplace/client/MainRouter.js:

<PrivateRoute path="/seller/:shopId/products/new" component={NewProduct}/>

List products
In MERN Marketplace, products will be presented to users in multiple
ways, the two main distinctions will be in the way products are listed for
sellers and the way they are listed for buyers.

List by shop
Visitors to the marketplace will browse products in each shop, and sellers
will manage a list of products in each of their shops.

Products by shop API
To retrieve products from a specific shop in the database, we will set up a
GET route at /api/products/by/:shopId, as follows.

mern-marketplace/server/routes/product.routes.js:

router.route('/api/products/by/:shopId')

 .get(productCtrl.listByShop)

The listByShop controller method executed in response to this request will
query the Product collection to return the products matching the given
shop's reference.

mern-marketplace/server/controllers/product.controller.js:

const listByShop = (req, res) => {

 Product.find({shop: req.shop._id}, (err, products) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(products)

 }).populate('shop', '_id name').select('-image')

}

In the frontend, to fetch the products in a specific shop using this list by
shop API, we will add a fetch method in api-product.js.

mern-marketplace/client/product/api-product.js:

const listByShop = (params) => {

 return fetch('/api/products/by/'+params.shopId, {

 method: 'GET'

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

Products component for buyers
The Products component is mainly for displaying the products to visitors who may buy the
products. We will use this component to render product lists relevant to the buyer. It will
receive the product list as props from a parent component displaying a list of products:

The list of products in a shop will be displayed to the user in an individual Shop view. So
this Products component is added to the Shop component and given the list of relevant
products as props. The searched prop relays whether this list is a result of a product search,
so appropriate messages can be rendered.

mern-marketplace/client/shop/Shop.js:

<Products products={this.state.products} searched={false}/></Card>

In the Shop component, we need to add a call to the listByShop fetch method on
componentDidMount to retrieve the relevant products and set it to state.

mern-marketplace/client/shop/Shop.js:

listByShop({

 shopId: this.match.params.shopId

 }).then((data)=>{

 if (data.error) {

 this.setState({error: data.error})

 } else {

 this.setState({products: data})

 }

})

In the Products component, if the product lists sent in the props contains products, the list is
iterated over and the relevant details of each product are rendered in a Material-UI

GridListTile, with a link to the individual product view and an AddToCart component
(implementation for which is discussed in Chapter 7, Extending the Marketplace for Orders
and Payments).

mern-marketplace/client/product/Products.js:

{this.props.products.length > 0 ?

 (<div><GridList cellHeight={200} cols={3}>

 {this.props.products.map((product, i) => (

 <GridListTile key={i}>

 <Link to={"/product/"+product._id}>

 <img src={'/api/product/image/'+product._id}

 alt= {product.name} />

 </Link>

 <GridListTileBar

 title={<Link to={"/product/"+product._id}>{product.name}

 </Link>}

 subtitle={$ {product.price}}

 actionIcon={<AddToCart item={tile}/>}

 />

 </GridListTile>

))}

 </GridList></div>) : this.props.searched &&

 (<Typography type="subheading" component="h4">

 No products found! :(</Typography>)}

This Products component is used to render products in a shop, products by category, and
products in search results.

MyProducts component for shop
owners
In contrast to the Products component, the MyProducts component in
client/product/MyProducts.js is only for displaying products to sellers so they
can manage the products in each shop:

The MyProducts component is added to the EditShop view, so sellers can
manage a shop and its contents in one place. It is provided the shop's ID in
a prop, so relevant products can be fetched.

mern-marketplace/client/shop/EditShop.js:

<MyProducts shopId={this.match.params.shopId}/>

In MyProducts, the relevant products are first loaded in componentDidMount.

mern-marketplace/client/product/MyProducts.js:

componentDidMount = () => {

 this.loadProducts()

}

 The loadProducts method uses the same listByShop fetch method to retrieve
the products in the shop and sets it to state.

mern-marketplace/client/product/MyProducts.js:

loadProducts = () => {

 listByShop({

 shopId: this.props.shopId

 }).then((data)=>{

 if (data.error) {

 this.setState({error: data.error})

 } else {

 this.setState({products: data})

 }

 })

}

This list of products is iterated over and each product is rendered
in ListItem along with an edit and delete option, similar to the MyShops list
view. The edit button links to the Edit Product view. The DeleteProduct
component handles the delete action, and reloads the list by calling
an onRemove method passed from MyProducts, to update the state with the
updated list of products for the current shop.

The removeProduct method, defined in MyProducts, is provided as the onRemove
prop to the DeleteProduct component.

mern-marketplace/client/product/MyProducts.js:

removeProduct = (product) => {

 const updatedProducts = this.state.products

 const index = updatedProducts.indexOf(product)

 updatedProducts.splice(index, 1)

 this.setState({shops: updatedProducts})

}

...

<DeleteProduct

 product={product}

 shopId={this.props.shopId}

 onRemove={this.removeProduct}/>

List product suggestions
Visitors to MERN Marketplace will see product suggestions, such as the
latest products added to the marketplace and products related to the
product they are currently viewing.

Latest products
On the homepage of the MERN Marketplace, we will display five of the
latest products added to the marketplace. To fetch the latest products, we
will set up an API that will receive a GET request at /api/products/latest.

mern-marketplace/server/routes/product.routes.js:

router.route('/api/products/latest')

 .get(productCtrl.listLatest)

The listLatest controller method will sort the list of products in the
database with the created date from newest to oldest and return the first five
from the sorted list in the response.

mern-marketplace/server/controllers/product.controller.js:

const listLatest = (req, res) => {

 Product.find({}).sort('-created').limit(5).populate('shop', '_id

 name').exec((err, products) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(products)

 })

}

In the frontend, we will set up a corresponding fetch method in api-
product.js for this latest products API, similar to the fetch for retrieving the
list by shop. This retrieved list will then be rendered in the Suggestions
component added to the homepage.

Related products
In each individual product view, we will show five related products as
suggestions. To retrieve these related products, we will set up an API that
accepts a request at /api/products/related.

mern-marketplace/server/routes/product.routes.js:

router.route('/api/products/related/:productId')

 .get(productCtrl.listRelated)

router.param('productId', productCtrl.productByID)

The :productId param in the route URL route will call the productByID
controller method, which is similar to the shopByID controller method, and
retrieves the product from the database and attaches it to the request object
to be used in the next method.

mern-marketplace/server/controllers/product.controller.js:

const productByID = (req, res, next, id) => {

 Product.findById(id).populate('shop', '_id name').exec((err, product) => {

 if (err || !product)

 return res.status('400').json({

 error: "Product not found"

 })

 req.product = product

 next()

 })

}

The listRelated controller method queries the Product collection to find other
products with the same category as the given product, excluding the given
product, and returns the first five products in the resulting list.

mern-marketplace/server/controllers/product.controller.js:

const listRelated = (req, res) => {

 Product.find({ "_id": { "$ne": req.product },

 "category": req.product.category}).limit(5)

 .populate('shop', '_id name')

 .exec((err, products) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(products)

 })

}

In order to utilize this related-products API in the frontend, we will set up
a corresponding fetch method in api-product.js. The fetch method will be
called in the Product component with the product ID to populate the
Suggestions component rendered in the product view.

Suggestions component
The Suggestions component will be rendered on the homepage and on an
individual product page to show the latest products and related products,
respectively:

It will receive the relevant list of products from the parent component as
props, along with a title for the list:

<Suggestions products={this.state.suggestions} title={this.state.suggestionTitle}/>

In the Suggestions component, the received list is iterated over and
individual products rendered with relevant details, a link to the individual
product page, and an AddToCart component.

mern-marketplace/client/product/Suggestions.js:

<Typography type="title"> {this.props.title} </Typography>

{this.props.products.map((item, i) => {

 return

 <Card>

 <CardMedia image={'/api/product/image/'+item._id}

 title={item.name}/>

 <CardContent>

 <Link to={'/product/'+item._id}>

 <Typography type="title" component="h3">

 {item.name}</Typography>

 </Link>

 <Link to={'/shops/'+item.shop._id}>

 <Typography type="subheading">

 <Icon>shopping_basket</Icon> {item.shop.name}

 </Typography>

 </Link>

 <Typography component="p">

 Added on {(new

 Date(item.created)).toDateString()}

 </Typography>

 </CardContent>

 <Typography type="subheading" component="h3">$

 {item.price}</Typography>

 <Link to={'/product/'+item._id}>

 <IconButton color="secondary" dense="dense">

 <ViewIcon className={classes.iconButton}/>

 </IconButton>

 </Link>

 <AddToCart item={item}/>

 </Card>

 })}

Display a product
Visitors to the MERN Marketplace will be able to browse each product
with more details displayed in a separate view.

Read a product API
In the backend, we will add a GET route that queries the Product collection
with an ID and returns the product in the response.

mern-marketplace/server/routes/product.routes.js:

router.route('/api/products/:productId')

 .get(productCtrl.read)

The :productId param invokes the productByID controller method, which
retrieves the product from the database and appends it to the request
object. The product in the request object is used by the read controller
method to respond to the read request.

mern-marketplace/server/controllers/product.controller.js:

const read = (req, res) => {

 req.product.image = undefined

 return res.json(req.product)

}

In api-product.js, we will add a fetch method to use this read API in the
frontend.

mern-marketplace/client/product/api-product.js:

const read = (params) => {

 return fetch('/api/products/' + params.productId, {

 method: 'GET'

 }).then((response) => {

 return response.json()

 }).catch((err) => console.log(err))

}

Product component
The Product component will render the product details, include an add to cart option, and also show a list
of related products:

The Product component can be accessed in the browser at the /product/:productID route, which is defined in
MainRouter as follows.

mern-marketplace/client/MainRouter.js:

<Route path="/product/:productId" component={Product}/>

The product details and the related list data will be fetched when the component mounts or will receive
new props when the productId changes in the frontend route path after the user clicks on another product
in the related list.

mern-marketplace/client/product/Product.js:

 componentDidMount = () => {

 this.loadProduct(this.match.params.productId)

 }

 componentWillReceiveProps = (props) => {

 this.loadProduct(props.match.params.productId)

 }

The loadProduct method calls the read and listRelated fetch methods to get the product and related list data,
then sets the data to state.

mern-marketplace/client/product/Product.js:

loadProduct = (productId) => {

 read({productId: productId}).then((data) => {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 this.setState({product: data})

 listRelated({

 productId: data._id}).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.setState({suggestions: data})

 }

 })

 }

 })

}

The product details part of the component displays relevant information about the product and an
AddToCart component in a Material-UI Card component.

mern-marketplace/client/product/Product.js:

<Card>

 <CardHeader

 action={<AddToCart cartStyle={classes.addCart}

 item= {this.state.product}/>}

 title={this.state.product.name}

 subheader={this.state.product.quantity > 0? 'In Stock': 'Out of

 Stock'}

 />

 <CardMedia image={imageUrl} title={this.state.product.name}/>

 <Typography component="p" type="subheading">

 {this.state.product.description}

 $ {this.state.product.price}

 <Link to={'/shops/'+this.state.product.shop._id}>

 <Icon>shopping_basket</Icon> {this.state.product.shop.name}

 </Link>

 </Typography>

</Card>

...

<Suggestions products={this.state.suggestions} title='Related Products'/>

The Suggestions component is added in the Product view with the related list data passed as a prop.

Edit and delete a product
Implementations to edit and delete products in the application are similar
to editing and deleting shops, as covered in previous sections. These
functionalities will require corresponding APIs in the backend, fetch
methods in the frontend, and React component views with forms and
actions.

Edit
The edit functionality is very similar to create product and the EditProduct
form component is also only accessible by verified sellers at
/seller/:shopId/:productId/edit.

mern-marketplace/client/MainRouter.js:

<PrivateRoute path="/seller/:shopId/:productId/edit" component={EditProduct}/>

The EditProduct component contains the same form as NewProduct with
populated values of the product retrieved using the read product API, and
it uses a fetch method to send multipart form data with a PUT request to
the edit product API in the backend at /api/products/by/:shopId.

mern-marketplace/server/routes/product.routes.js:

router.route('/api/product/:shopId/:productId')

 .put(authCtrl.requireSignin, shopCtrl.isOwner, productCtrl.update)

The update controller is similar to the product create method and shop update
method; it handles the multipart form data using formidable and extends the
product details to save the updates.

Delete
The DeleteProduct component is added to the MyProducts component for each
product in the list, as discussed earlier. It takes the product object, shopID, and
a loadProducts method as a prop from MyProducts. The component is similar to
DeleteShop, and when the delete intent is confirmed by the user, it calls the
fetch method for delete, which makes the DELETE request to the server
at /api/product/:shopId/:productId.

mern-marketplace/server/routes/product.routes.js:

router.route('/api/product/:shopId/:productId')

 .delete(authCtrl.requireSignin, shopCtrl.isOwner, productCtrl.remove)

Product search with category
In MERN Marketplace, visitors will be able to search for specific products
by name and also in a specific category.

Categories API
To allow users to select a specific category to search in, we will set up an
API that retrieves all the distinct categories present in the Product collection
in the database. A GET request to /api/products/categories will return an array
of unique categories.

mern-marketplace/server/routes/product.routes.js:

router.route('/api/products/categories')

 .get(productCtrl.listCategories)

The listCategories controller method queries the Product collection with a
distinct call against the category field.

mern-marketplace/server/controllers/product.controller.js:

const listCategories = (req, res) => {

 Product.distinct('category',{},(err, products) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(products)

 })

}

This categories API can be used in the frontend with a corresponding fetch
method to retrieve the array of distinct categories and display in the view.

Search products API
The search products API will take a GET request at /api/products?
search=value&category=value, with query parameters in the URL to query the
Product collection with provided search text and category values.

mern-marketplace/server/routes/product.routes.js:

router.route('/api/products')

 .get(productCtrl.list)

The list controller method will first process the query parameters in the
request, then find products in the given category, if any, with names that
partially match with the provided search text.

mern-marketplace/server/controllers/product.controller.js:

const list = (req, res) => {

 const query = {}

 if(req.query.search)

 query.name = {'$regex': req.query.search, '$options': "i"}

 if(req.query.category && req.query.category != 'All')

 query.category = req.query.category

 Product.find(query, (err, products) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(products)

 }).populate('shop', '_id name').select('-image')

}

Fetch search results for the view
To utilize this search API in the frontend, we will set up a method that
constructs the URL with query parameters and calls a fetch to the API.

mern-marketplace/client/product/api-product.js:

import queryString from 'query-string'

const list = (params) => {

 const query = queryString.stringify(params)

 return fetch('/api/products?'+query, {

 method: 'GET',

 }).then(response => {

 return response.json()

 }).catch((err) => console.log(err))

}

In order to construct the query parameters in the correct format, we will
use the query-string npm module, which will help stringify the params
object into a query string that can be attached to the request route.

Search component
The first use case for applying the categories API and search API is the Search
component:

The Search component provides the user with a simple form containing a search
input text field and a dropdown of the category options received from a parent
component that will retrieve the list using the distinct categories API.

mern-marketplace/client/product/Search.js:

<TextField id="select-category" select label="Select category" value={this.state.category}

 onChange={this.handleChange('category')}

 SelectProps={{ MenuProps: { className: classes.menu, } }}>

 <MenuItem value="All"> All </MenuItem>

 {this.props.categories.map(option => (

 <MenuItem key={option} value={option}> {option} </MenuItem>

))}

</TextField>

<TextField id="search" label="Search products" type="search" onKeyDown={this.enterKey}

 onChange={this.handleChange('search')}

/>

<Button raised onClick={this.search}> Search </Button>

<Products products={this.state.results} searched={this.state.searched}/>

Once the user enters a search text and hits Enter, a call is made to the search
API to retrieve the results.

mern-marketplace/client/product/Search.js:

search = () => {

 if(this.state.search){

 list({

 search: this.state.search || undefined, category:

 this.state.category

 }).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.setState({results: data, searched:true})

 }

 })

 }

 }

Then the results array is passed as a prop to the Products component to render
the matching products below the search form.

Categories component
The Categories component is the second use case for the distinct categories and
search APIs. For this component, we first fetch the list of categories in a parent
component and send it as props to display the categories to the user:

When the user selects a category in the displayed list, a call is made to the Search
API with just a category value, and the backend returns all the products in the
selected category. The returned products are then rendered in a Products component.

In this first version of the MERN Marketplace, users can become sellers to create
shops and add products, and visitors can browse shops and search for products,
while the application also suggests products to the visitor.

Summary
In this chapter, we started building an online marketplace application
using the MERN stack. The MERN skeleton was extended to add a seller
role to users, so they can create shops and add products to each shop
intended for selling to other users. We also explored how to utilize the
stack to implement features such as product browsing, searching, and
suggestions for regular users who are interesting in buying. But a
marketplace application is incomplete without a shopping cart for
checkout, order management, and payments processing.

In the next chapter, we will grow our application to add these features and
learn more about how the MERN stack can be used to implement these
core aspects of an e-commerce application.

Extending the Marketplace for
Orders and Payments
Processing payments from customers when they place orders and allowing
sellers to manage these orders are key aspects of e-commerce applications.
In this chapter, we'll extend the online marketplace built in the previous
chapter by introducing the following capabilities:

Shopping cart
Payment processing with Stripe
Order management

The MERN Marketplace with a cart, payments, and
orders
The MERN Marketplace application developed in Chapter 6, Exercising New MERN Skills with an Online
Marketplace will be extended to include a shopping cart feature, Stripe integration for processing credit card
payments, and a basic order-management flow. The implementations that follow are kept simple to serve as
starting points for developing more complex versions of these features.

The following component-tree diagram shows all the custom components that make up the MERN Marketplace
frontend. The features discussed in this chapter modify some of the existing components, such as Profile, MyShops,
Products, and Suggestions, and also add new components, such as AddToCart, MyOrders, Cart, and ShopOrders:

The code for the complete MERN Marketplace application is available on GitHub github.com/shamahoque/mern-marketplace. You can clone this
code and run the application as you go through the code explanations in the rest of this chapter. To get the code for Stripe payments

https://github.com/shamahoque/mern-marketplace

working, you will need to create your own Stripe account and update the config/config.js file with your testing values for the Stripe API
key, secret key, and Stripe Connect client ID.

Shopping cart
Visitors to the MERN Marketplace can add products they wish to buy to a
shopping cart by clicking the add to cart button on each product. A cart icon
in the menu will indicate the number of products already added to their
cart as the user continues to browse through the marketplace. They can
also update the cart contents and begin the checkout by opening the cart
view. But to complete checkout and place an order, users will be required
to sign in.

The shopping cart is mainly a frontend feature, so the cart details will be
stored locally on the client side until the user places the order at checkout.
To implement the shopping cart features, we will set up helper methods in
client/cart/cart-helper.js to help manipulate the cart details with relevant
React components.

Adding to cart
The AddToCart component in client/Cart/AddToCart.js takes a product object and a
CSS styles object as props from the parent component it is added to. For
example, in MERN Marketplace, it is added to a Product view as follows:

<AddToCart cartStyle={classes.addCart} item={this.state.product}/>

The AddToCart component itself displays a cart icon button depending on
whether the passed item is in stock or not:

For example, if the item quantity is more than 0, the AddCartIcon is
displayed, otherwise the DisabledCartIcon is rendered.

mern-marketplace/client/cart/AddToCart.js:

{this.props.item.quantity >= 0 ?

 <IconButton color="accent" dense="dense" onClick={this.addToCart}>

 <AddCartIcon className={this.props.cartStyle ||

 classes.iconButton}/>

 </IconButton> :

 <IconButton disabled={true} color="accent" dense="dense"

 <DisabledCartIcon className={this.props.cartStyle ||

 classes.disabledIconButton}/>

 </IconButton>}

The AddCartIcon button calls an addToCart method when clicked.

mern-marketplace/client/cart/AddToCart.js:

addToCart = () => {

 cart.addItem(this.props.item, () => {

 this.setState({redirect:true})

 })

}

The addItem helper method defined in cart-helper.js, takes the product item and
the state-updating callback function as parameters, then stores the updated
cart details in localStorage and executes the callback passed.

mern-marketplace/client/cart/cart-helper.js:

addItem(item, cb) {

 let cart = []

 if (typeof window !== "undefined") {

 if (localStorage.getItem('cart')) {

 cart = JSON.parse(localStorage.getItem('cart'))

 }

 cart.push({

 product: item,

 quantity: 1,

 shop: item.shop._id

 })

 localStorage.setItem('cart', JSON.stringify(cart))

 cb()

 }

}

The cart data stored in localStorage contains an array of cart item objects,
each containing product details, the quantity of the product added to cart
(which is set to 1 by default), and the ID of the shop the product belongs
to.

Cart icon on the menu
In the menu, we will add a link to the Cart view, and also add a badge that
displays the length of the cart array stored in localStorage, in order to
visually inform the user of how many items are currently in their cart:

The link for the cart will be similar to the other links in the Menu, with the
exception of the Material-UI Badge component that displays the cart length.

mern-marketplace/client/core/Menu.js:

<Link to="/cart">

 <Button color={isActive(history, "/cart")}>

 Cart

 <Badge color="accent" badgeContent={cart.itemTotal()} >

 <CartIcon />

 </Badge>

 </Button>

</Link>

The cart length is returned by the itemTotal helper method in cart-helper.js,
which reads the cart array stored in localStorage and returns the length of the
array.

mern-marketplace/client/cart/cart-helper.js:

itemTotal() {

 if (typeof window !== "undefined") {

 if (localStorage.getItem('cart')) {

 return JSON.parse(localStorage.getItem('cart')).length

 }

 }

 return 0

}

Cart view
The Cart view will contain the cart items and checkout details, but initially
only the cart details will be displayed until the user is ready to check out.

mern-marketplace/client/cart/Cart.js:

<Grid container spacing={24}>

 <Grid item xs={6} sm={6}>

 <CartItems checkout={this.state.checkout}

 setCheckout={this.setCheckout}/>

 </Grid>

 {this.state.checkout &&

 <Grid item xs={6} sm={6}>

 <Checkout/>

 </Grid>}

</Grid>

The CartItems component is passed a checkout Boolean value, and a state
update method for this checkout value, so that the Checkout component and
options can be rendered based on user interaction.

mern-marketplace/client/cart/Cart.js:

setCheckout = val =>{

 this.setState({checkout: val})

}

The Cart component will be accessed at the /cart route, so we need to add
a Route to the MainRouter component as follows.

mern-marketplace/client/MainRouter.js:

<Route path="/cart" component={Cart}/>

The CartItems component
The CartItems component will allow the user to view and update the items
currently in their cart. It will also give them the option to start the
checkout process if they are signed in:

If the cart contains items, the CartItems component iterates over the items
and renders the products in the cart. It there are no items added, the cart
view just displays a message that the cart is empty.

mern-marketplace/client/cart/CartItems.js:

{this.state.cartItems.length > 0 ?

 {this.state.cartItems.map((item, i) => {

 ...

 … Product details

 … Edit quantity

 … Remove product option

 ...

 })

 }

 … Show total price and Checkout options …

 :

 <Typography type="subheading" component="h3" color="primary">

 No items added to your cart.

 </Typography>

}

Each product item shows the details of the product and an editable
quantity text field, along with a remove item option. Finally, it shows the
total price of the items in the cart and the option to start checkout.

Retrieving cart details
The getCart helper method in cart-helper.js retrieves and returns the cart
details from localStorage.

mern-marketplace/client/cart/cart-helper.js:

getCart() {

 if (typeof window !== "undefined") {

 if (localStorage.getItem('cart')) {

 return JSON.parse(localStorage.getItem('cart'))

 }

 }

 return []

}

In the CartItems component, we will retrieve the cart items using the getCart
helper method in componentDidMount and set it to state.

mern-marketplace/client/cart/CartItems.js:

componentDidMount = () => {

 this.setState({cartItems: cart.getCart()})

}

Then the cartItems array retrieved from localStorage is iterated over using the
map function to render the details of each item.

mern-marketplace/client/cart/CartItems.js:

 <Card>

 <CardMedia image={'/api/product/image/'+item.product._id}

 title={item.product.name}/>

 <CardContent>

 <Link to={'/product/'+item.product._id}>

 <Typography type="title" component="h3"

 color="primary">

 {item.product.name}</Typography>

 </Link>

 <Typography type="subheading" component="h3"

 color="primary">

 $ {item.product.price}

 </Typography>

 ${item.product.price * item.quantity}

 Shop: {item.product.shop.name}

 </CardContent>

 <div>

 … Editable quantity …

 … Remove item option ...

 </div>

 </Card>

 <Divider/>

Modifying quantity
The editable quantity TextField rendered for each cart item allows the user
to update the quantity for each product they are buying, and sets a
minimum allowed value of 1.

mern-marketplace/client/cart/CartItems.js:

Quantity: <TextField

 value={item.quantity}

 onChange={this.handleChange(i)}

 type="number"

 inputProps={{ min:1 }}

 InputLabelProps={{

 shrink: true,

 }}

 />

When the user updates this value, the handleChange method is called to
enforce the minimum value validation, update the cartItems in state, and
update the cart in localStorage using the helper method.

mern-marketplace/client/cart/CartItems.js:

handleChange = index => event => {

 let cartItems = this.state.cartItems

 if(event.target.value == 0){

 cartItems[index].quantity = 1

 }else{

 cartItems[index].quantity = event.target.value

 }

 this.setState({cartItems: cartItems})

 cart.updateCart(index, event.target.value)

 }

The updateCart helper method takes the index of the product being updated
in the cart array and the new quantity value as parameters, and updates the
details stored in localStorage.

mern-marketplace/client/cart/cart-helper.js:

updateCart(itemIndex, quantity) {

 let cart = []

 if (typeof window !== "undefined") {

 if (localStorage.getItem('cart')) {

 cart = JSON.parse(localStorage.getItem('cart'))

 }

 cart[itemIndex].quantity = quantity

 localStorage.setItem('cart', JSON.stringify(cart))

 }

}

Removing item
The remove item option rendered for each item in the cart is a button,
which, when clicked, passes the array index of the item to the removeItem
method so that it can be removed from the array.

mern-marketplace/client/cart/CartItems.js:

<Button color="primary" onClick={this.removeItem(i)}>x Remove</Button>

The removeItem click handler method uses the removeItem helper method to
remove the item from the cart in localStorage, then updates the cartItems in
state. This method also checks whether the cart has been emptied, so
checkout can be hidden by using the setCheckout function passed as a prop
from the Cart component.

mern-marketplace/client/cart/CartItems.js:

removeItem = index => event =>{

 let cartItems = cart.removeItem(index)

 if(cartItems.length == 0){

 this.props.setCheckout(false)

 }

 this.setState({cartItems: cartItems})

}

The removeItem helper method in cart-helper.js takes the index of the product
to be removed from the array, then splices it out, and updates the
localStorage before returning the updated cart array.

mern-marketplace/client/cart/cart-helper.js:

removeItem(itemIndex) {

 let cart = []

 if (typeof window !== "undefined") {

 if (localStorage.getItem('cart')) {

 cart = JSON.parse(localStorage.getItem('cart'))

 }

 cart.splice(itemIndex, 1)

 localStorage.setItem('cart', JSON.stringify(cart))

 }

 return cart

}

Showing total price
At the bottom of the CartItems component, we will display the total price of
the items in the cart.

mern-marketplace/client/cart/CartItems.js:

Total: ${this.getTotal()}

The getTotal method will calculate the total price taking into consideration
the unit price and quantity of each item in the cartItems array.

mern-marketplace/client/cart/CartItems.js:

getTotal(){

 return this.state.cartItems.reduce(function(a, b){

 return a + (b.quantity*b.product.price)

 }, 0)

}

Option to check out
The user will see the option to perform the checkout depending on whether
they are signed in and whether the checkout has already been opened.

mern-marketplace/client/cart/CartItems.js:

{!this.props.checkout && (auth.isAuthenticated() ?

 <Button onClick={this.openCheckout}>

 Checkout

 </Button> :

 <Link to="/signin">

 <Button>Sign in to checkout</Button>

 </Link>)

}

When the checkout button is clicked, the openCheckout method will use the
setCheckout method passed as a prop to set the checkout value to true in the
Cart component:

openCheckout = () => {

 this.props.setCheckout(true)

}

Once the checkout value is set to true in the Cart view, the Checkout
component will be rendered to allow the user to enter the checkout details
and place an order.

Using Stripe for payments
Payment processing is required across implementations of the checkout,
order creation, and order management processes. It also involves updates
to both the buyer's and seller's user data. Before we delve into the
implementations of the checkout and order features, we will briefly
discuss payment processing options and considerations using Stripe, and
see how it is to be integrated in MERN Marketplace.

Stripe
Stripe provides an extensive set of tools necessary to integrate payments
in any web application. These tools can be selected and used in different
ways depending on the specific type of the application and the payment
use case being implemented.

In case of the MERN Marketplace setup, the application itself will have a
platform on Stripe and will expect sellers to have connected Stripe
accounts on the platform, so the application can charge users who enter
their credit card details at checkout on behalf of the sellers. In MERN
Marketplace, a user can add products from different shops to their
shopping cart, so charges on their cards will only be created by the
application for the specific product ordered when it is processed by the
seller. Additionally, sellers will have complete control over the charges
created on their behalf from their own Stripe dashboards. We will
demonstrate how to use the tools provided by Stripe to get this payment
setup working.

Stripe provides a complete set of documentations and guidelines for each
tool, and also exposes testing data for accounts and platforms set up on
Stripe. For the purpose of implementing payments in MERN Marketplace,
we will be using testing keys and leave it up to you to extend the
implementation for live payments.

Stripe-connected account for each
seller
In order to create charges on behalf of sellers, the application will let a
user, who is a seller, connect their Stripe account to their MERN
Marketplace user account.

Updating user model
To store the Stripe OAuth credentials after a user's Stripe account is
successfully connected, we will update the user model with the following
field.

mern-marketplace/server/models/user.model.js:

stripe_seller: {}

The stripe_seller field will store the seller's Stripe account credential, and
this will be used when a charge needs to be processed via Stripe for a
product they sold from their shop.

Button to connect with Stripe
In the user profile page of a seller, if the user has not connected their Stripe account yet, we will show a button
that will take the user to Stripe to authenticate and connect their Stripe account:

If the user has successfully connected their Stripe account already, we will show a disabled STRIPE
CONNECTED button instead:

The code added to the Profile component will first check whether the user is a seller before rendering any STRIPE
CONNECTED button. Then, a second check will confirm whether Stripe credentials already exist in the stripe_seller
field for the given user. If Stripe credentials already exist for the user, then the disabled STRIPE CONNECTED button is
shown, otherwise a link to connect to Stripe using their OAuth link is displayed instead.

mern-marketplace/client/user/Profile.js:

{this.state.user.seller &&

 (this.state.user.stripe_seller ?

 (<Button variant="raised" disabled>

 Stripe connected

 </Button>) :

 (<a href={"https://connect.stripe.com/oauth/authorize?response_type=code&client_id="+config.stripe_connect_test_client_id+"

)

)}

The OAuth link takes the platform's client ID, which we will set in a config variable, and other option values as
query parameters. This link takes the user to Stripe and allows the user to connect an existing Stripe account or
create a new one. Then once Stripe's auth process completes, it returns to our application using a Redirect URL
set in the Platform's Connect settings in the dashboard on Stripe. Stripe attaches either an auth code or error
message as query parameters to the Redirect URL.

The MERN Marketplace redirect URI is set at /seller/stripe/connect, which will render the StripeConnect component.

mern-marketplace/client/MainRouter.js:

<Route path="/seller/stripe/connect" component={StripeConnect}/>

The StripeConnect component
The StripeConnect component will basically complete the remaining auth
process steps with Stripe, and render relevant messages based on whether
the Stripe connection was successful:

When the StripeConnect component loads, in componentDidMount, we will first
parse the query parameters attached to the URL from the Stripe redirect.
For parsing, we use the same query-string npm module that we used
previously for the product search. Then, if the URL query parameter
contains an auth code, we make an API call necessary to complete the
Stripe OAuth from our server.

mern-marketplace/client/user/StripeConnect.js:

 componentDidMount = () => {

 const parsed = queryString.parse(this.props.location.search)

 if(parsed.error){

 this.setState({error: true})

 }

 if(parsed.code){

 this.setState({connecting: true, error: false})

 const jwt = auth.isAuthenticated()

 stripeUpdate({

 userId: jwt.user._id

 }, {

 t: jwt.token

 }, parsed.code).then((data) => {

 if (data.error) {

 this.setState({error: true, connected: false,

 connecting:false})

 } else {

 this.setState({connected: true, connecting: false,

 error:false})

 }

 })

 }

 }

The stripeUpdate fetch method is defined in api-user.js, and it passes the auth
code retrieved from Stripe to an API we will set up in our server at
'/api/stripe_auth/:userId'.

mern-marketplace/client/user/api-user.js:

const stripeUpdate = (params, credentials, auth_code) => {

 return fetch('/api/stripe_auth/'+params.userId, {

 method: 'PUT',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: JSON.stringify({stripe: auth_code})

 }).then((response)=> {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

Stripe auth update API
Once the Stripe account connection is successful, in order to complete the
OAuth process, we need to use the retrieved auth code to make a POST
API call to Stripe OAuth from our server and retrieve the credentials to be
stored in the seller's user account for processing charges. The Stripe auth
update API receives a request at /api/stripe_auth/:userId and initiates the
POST API call to retrieve the credentials from Stripe.

The route for this Stripe auth update API will be declared on the server in
user routes as follows.

mern-marketplace/server/routes/user.routes.js:

router.route('/api/stripe_auth/:userId')

 .put(authCtrl.requireSignin, authCtrl.hasAuthorization,

 userCtrl.stripe_auth, userCtrl.update)

A request to this route uses the stripe_auth controller method to retrieve the
credentials from Stripe and passes it to the existing user update method to
be stored in the database.

In order to make a POST request to the Stripe API from our server, we will
use the request npm module:

npm install request --save

The stripe_auth controller method in the user controller will be as follows.

mern-marketplace/server/controllers/user.controller.js:

const stripe_auth = (req, res, next) => {

 request({

 url: "https://connect.stripe.com/oauth/token",

 method: "POST",

 json: true,

 body:

 {client_secret:config.stripe_test_secret_key,code:req.body.stripe,

 grant_type:'authorization_code'}

 }, (error, response, body) => {

 if(body.error){

 return res.status('400').json({

 error: body.error_description

 })

 }

 req.body.stripe_seller = body

 next()

 })

}

The POST API call to Stripe takes the platform's secret key and the
retrieved auth code to complete the authorization and returns the
credentials for the connected account, which is then appended to the
request body so the user can be updated in the next() method.

With these credentials, the application can create charges on customer
credit cards on behalf of the seller.

Stripe Card Elements for checkout
During checkout, to collect credit card details from the user, we will use
Stripe's Card Elements to add the credit card field in the checkout form. To
integrate the Card Elements with our React interface, we will utilize the react-
stripe-elements npm module:

npm install --save react-stripe-elements

We will also need to inject the Stripe.js code in template.js to access Stripe
in the frontend code:

<script id="stripe-js" src="https://js.stripe.com/v3/" async></script>

For MERN Marketplace, Stripe will only be required in the Cart view,
where the Checkout component needs it to render the Card Elements and process
card detail input. Hence, we will initialize the Stripe instance with the
application's Stripe API key, after the Cart component mounts, in its
componentDidMount.

mern-marketplace/client/cart/Cart.js:

componentDidMount = () => {

 if (window.Stripe) {

 this.setState({stripe:

 window.Stripe(config.stripe_test_api_key)})

 } else {

 document.querySelector('#stripe-js')

 .addEventListener('load', ()

 => {

 this.setState({stripe:

 window.Stripe(config.stripe_test_api_key)})

 })

 }

 }

The Checkout component added in Cart.js should be wrapped with the
StripeProvider component from react-stripe-elements, so the Elements in Checkout
have access to the Stripe instance.

mern-marketplace/client/cart/Cart.js:

<StripeProvider stripe={this.state.stripe}>

 <Checkout/>

</StripeProvider>

Then, within the Checkout component, we will use Stripe's Elements
components. Using Stripe's Card Elements will enable the application to
collect the user's credit card details and use the Stripe instance to tokenize
card information rather than handling it on our own servers.
Implementation for this part of collecting the card details and generating
the card token during the checkout process will be discussed in the
Checkout and Creating new order sections.

Stripe Customer to record card
details
When an order is being placed at the end of the checkout process, the
generated card token will be used to create or update a Stripe Customer (ht
tps://stripe.com/docs/api#customers) representing our user, which is a good way
to store credit card information (https://stripe.com/docs/saving-cards) with
Stripe for further usage, such as creating charges for specific products in
the cart only when a seller processes the ordered product from their shop.
This eliminates the complications of having to store user credit card
details securely on your own server.

https://stripe.com/docs/api#customers
https://stripe.com/docs/saving-cards

Updating user model
To keep track of the corresponding Stripe Customer information for a user in
our database, we will update the user model with the following field:

stripe_customer: {},

Updating user controller
We will create a new, or update an existing, Stripe Customer when the user
places an order after entering their credit card details. To implement this,
we will update the user controllers with a stripeCustomer method that will be
called before the order is created when our server receives a request to the
create order API (discussed in the Creating new order section).

In the stripeCustomer controller method, we will need to use the stripe npm
module:

npm install stripe --save

After installing the stripe module, it needs to be imported into the user
controller file and the stripe instance initialized with the application's
Stripe secret key.

mern-marketplace/server/controllers/user.controller.js:

import stripe from 'stripe'

const myStripe = stripe(config.stripe_test_secret_key)

The stripeCustomer controller method will first check whether the current
user already has a corresponding Stripe Customer stored in the database,
and then use the card token received from the frontend to either create a
new Stripe Customer or update the existing one.

Creating a new Stripe Customer
If the current user does not have a corresponding Stripe Customer, in other
words, a value is not stored for the stripe_customer field, we will use the
create a Customer API (https://stripe.com/docs/api#create_customer) from Stripe.

mern-marketplace/server/controllers/user.controller.js:

myStripe.customers.create({

 email: req.profile.email,

 source: req.body.token

 }).then((customer) => {

 User.update({'_id':req.profile._id},

 {'$set': { 'stripe_customer': customer.id }},

 (err, order) => {

 if (err) {

 return res.status(400).send({

 error: errorHandler.getErrorMessage(err)

 })

 }

 req.body.order.payment_id = customer.id

 next()

 })

})

If the Stripe Customer is successfully created, we will update the current
user's data by storing the Stripe Customer ID reference in the stripe_customer
field. We will also add this Customer ID to the order being placed, so it is
simpler to create a charge related to the order.

https://stripe.com/docs/api#create_customer

Updating an existing Stripe
Customer
For an existing Stripe Customer, in other words, the current user has a
value stored for the stripe_customer field, we will use the Stripe API
to update a Stripe Customer.

mern-marketplace/server/controllers/user.controller.js:

 myStripe.customers.update(req.profile.stripe_customer, {

 source: req.body.token

 },

 (err, customer) => {

 if(err){

 return res.status(400).send({

 error: "Could not update charge details"

 })

 }

 req.body.order.payment_id = customer.id

 next()

 })

Once the Stripe Customer is successfully updated, we will add the
Customer ID to the order being created in the next() call.

Though not covered here, the Stripe Customer feature can be used further
to allow users to store and update their credit card information from the
application.

Creating a charge for each product
processed
When a seller updates an order by processing the product ordered in their
shop, the application will create a charge on behalf of the seller on the
Customer's credit card for the cost of the product ordered. To implement
this, we will update the user.controller.js file, with a createCharge controller
method that will use Stripe's create a charge API, and need the seller's
Stripe account ID along with the buyer's Stripe Customer ID.

mern-marketplace/server/controllers/user.controller.js:

const createCharge = (req, res, next) => {

 if(!req.profile.stripe_seller){

 return res.status('400').json({

 error: "Please connect your Stripe account"

 })

 }

 myStripe.tokens.create({

 customer: req.order.payment_id,

 }, {

 stripe_account: req.profile.stripe_seller.stripe_user_id,

 }).then((token) => {

 myStripe.charges.create({

 amount: req.body.amount * 100, //amount in cents

 currency: "usd",

 source: token.id,

 }, {

 stripe_account: req.profile.stripe_seller.stripe_user_id,

 }).then((charge) => {

 next()

 })

 })

}

If the seller has not connected their Stripe account yet, the createCharge
method will return a 400 error response to indicate that a connected Stripe
account is required.

To be able to charge the Stripe Customer on behalf of the seller's Stripe
account, we first need to generate a Stripe token with the Customer ID and

the seller's Stripe account ID, and then use that token to create a charge.

The createCharge controller method will be called when the server receives a
request to update an order with a product status change to Processing (the
API implementation for this order update request will be discussed in the
Orders by shop section).

This covers all the Stripe-related concepts relevant to the implementation
of payments processing for the specific use cases of MERN Marketplace.
Now we will move on to allowing a user to complete checkout and place
their order.

Checkout
Users who are signed in and have added items to the cart will be able to
start the checkout process. The Checkout form will collect customer
details, delivery address information, and credit card information:

Initializing checkout details
In the Checkout component, we will initialize the checkoutDetails object in state
before collecting the details from the form.

mern-marketplace/client/cart/Checkout.js:

state = {

 checkoutDetails: {customer_name: '', customer_email:'',

 delivery_address: {street: '', city: '', state:

 '', zipcode: '', country:''}},

 }

After the component mounts, we will prepopulate the customer details
based on the current user's details and also add the current cart items to
checkoutDetails.

mern-marketplace/client/cart/Checkout.js:

componentDidMount = () => {

 let user = auth.isAuthenticated().user

 let checkoutDetails = this.state.checkoutDetails

 checkoutDetails.products = cart.getCart()

 checkoutDetails.customer_name = user.name

 checkoutDetails.customer_email = user.email

 this.setState({checkoutDetails: checkoutDetails})

}

Customer information
In the checkout form, we will add text fields to collect the customer name and email.

mern-marketplace/client/cart/Checkout.js:

<TextField id="name" label="Name" value={this.state.checkoutDetails.customer_name} onChange={this.handleCustomerChange('customer_n

<TextField id="email" type="email" label="Email" value={this.state.checkoutDetails.customer_email} onChange={this.handleCustomerCh

When the user updates the values, the handleCustomerChange method will update the relevant details in the state:

handleCustomerChange = name => event => {

 let checkoutDetails = this.state.checkoutDetails

 checkoutDetails[name] = event.target.value || undefined

 this.setState({checkoutDetails: checkoutDetails})

}

Delivery address
To collect the delivery address from the user, we will add the following text fields to the checkout form to collect
street address, city, zip code, state, and country.

mern-marketplace/client/cart/Checkout.js:

<TextField id="street" label="Street Address" value={this.state.checkoutDetails.delivery_address.street} onChange={this.handleAddr

<TextField id="city" label="City" value={this.state.checkoutDetails.delivery_address.city} onChange={this.handleAddressChange('cit

<TextField id="state" label="State" value={this.state.checkoutDetails.delivery_address.state} onChange={this.handleAddressChange('

<TextField id="zipcode" label="Zip Code" value={this.state.checkoutDetails.delivery_address.zipcode} onChange={this.handleAddressC

<TextField id="country" label="Country" value={this.state.checkoutDetails.delivery_address.country} onChange={this.handleAddressCh

When the user updates these address fields, the handleAddressChange method will update the relevant details in the
state.

mern-marketplace/client/cart/Checkout.js:

handleAddressChange = name => event => {

 let checkoutDetails = this.state.checkoutDetails

 checkoutDetails.delivery_address[name] = event.target.value ||

 undefined

 this.setState({checkoutDetails: checkoutDetails})

}

The PlaceOrder component
The credit card field will be added to the checkout form using Stripe's
CardElement component from react-stripe-elements.

The CardElement component must be part of a payment form component that
is built with the injectStripe higher-order component (HOC) and wrapped
with the Elements component. So we will create a component called PlaceOrder
with injectStripe, and it will contain Stripe's CardElement and the PlaceOrder
button.

mern-marketplace/client/cart/PlaceOrder.js:

class PlaceOrder extends Component { … }

export default injectStripe(withStyles(styles)(PlaceOrder))

Then we will add this PlaceOrder component in the Checkout form, pass it
the checkoutDetails object as a prop, and wrap it with the Elements component
from react-stripe-elements.

mern-marketplace/client/cart/Checkout.js:

<Elements> <PlaceOrder checkoutDetails={this.state.checkoutDetails} /> </Elements>

The injectStripe HOC provides the this.props.stripe property that manages
the Elements groups. This will allow us to call this.props.stripe.createToken
within PlaceOrder to submit card details to Stripe and get back the card
token.

Stripe CardElement component
Stripe's CardElement is self-contained, so we can just add it to the PlaceOrder
component, then add styles as desired, and the card detail input is taken
care of.

mern-marketplace/client/cart/PlaceOrder.js:

<CardElement className={classes.StripeElement}

 {...{style: {

 base: {

 color: '#424770',

 letterSpacing: '0.025em',

 '::placeholder': {

 color: '#aab7c4',

 },

 },

 invalid: {

 color: '#9e2146',

 },

 }}}/>

Placing an order
The Place Order button is also placed in the PlaceOrder component after the
CardElement.

mern-marketplace/client/cart/PlaceOrder.js:

<Button color="secondary" variant="raised" onClick={this.placeOrder}>Place Order</Button>

Clicking on the Place Order button will call the placeOrder method, which will
attempt to tokenize the card details using stripe.createToken. If unsuccessful, the
user will be informed of the error, but if successful, then the checkout details
and generated card token will be sent to our server's create order API
(covered in the next section).

mern-marketplace/client/cart/PlaceOrder.js:

placeOrder = ()=>{

 this.props.stripe.createToken().then(payload => {

 if(payload.error){

 this.setState({error: payload.error.message})

 }else{

 const jwt = auth.isAuthenticated()

 create({userId:jwt.user._id}, {

 t: jwt.token

 }, this.props.checkoutDetails, payload.token.id).then((data) =>

 {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 cart.emptyCart(()=> {

 this.setState({'orderId':data._id,'redirect': true})

 })

 }

 })

 }

 })

}

The create fetch method that makes a POST request to the create order API in
the backend is defined in client/order/api-order.js. It takes the checkout details,
the card token, and user credentials as parameters and sends it to the API at
/api/orders/:userId.

mern-marketplace/client/order/api-order.js:

const create = (params, credentials, order, token) => {

 return fetch('/api/orders/'+params.userId, {

 method: 'POST',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: JSON.stringify({order: order, token:token})

 })

 .then((response) => {

 return response.json()

 }).catch((err) => console.log(err))

}

Empty cart
If the create order API is successful, we will empty the cart using an
emptyCart helper method in cart-helper.js.

mern-marketplace/client/cart/cart-helper.js:

emptyCart(cb) {

 if(typeof window !== "undefined"){

 localStorage.removeItem('cart')

 cb()

 }

}

The emptyCart method removes the cart object from localStorage, and updates
the state of the view by executing the callback passed.

Redirecting to Order view
With the order placed and the cart emptied, the user is redirected to the
order view that will show them the details of the order just placed.

mern-marketplace/client/cart/PlaceOrder.js:

if (this.state.redirect) {

 return (<Redirect to={'/order/' + this.state.orderId}/>)

}

This will indicate that the checkout process has been completed with a
successful call to the create order API that we will set up in the server to
create and store orders in the database.

Creating new order
When a user places an order, the details of the order confirmed at checkout
will be used to create a new order record in the database, update or create a
Stripe Customer for the user, and decrease the stock quantities of products
ordered.

Order model
To store the orders, we will define a Mongoose Schema for the order
model that will record the customer details along with user account
reference, delivery address information, payment reference, created and
updated-at timestamps, and an array of ordered products where the
structure of each product will be defined in a separate subschema called
CartItemSchema.

Ordered by and for customer
To record the details of the customer who the order is meant for, we will
add customer_name and customer_email fields to the Order schema.

mern-marketplace/server/models/order.model.js:

customer_name: { type: String, trim: true, required: 'Name is required' },

customer_email: { type: String, trim: true,

 match: [/.+\@.+\..+/, 'Please fill a valid email address'],

 required: 'Email is required' }

To reference the signed-in user who placed the order, we will add an
ordered_by field.

mern-marketplace/server/models/order.model.js:

ordered_by: {type: mongoose.Schema.ObjectId, ref: 'User'}

Delivery address
The delivery address information for the order will be stored in the
delivery address subdocument with street, city, state, zipcode, and country
fields.

mern-marketplace/server/models/order.model.js:

delivery_address: {

 street: {type: String, required: 'Street is required'},

 city: {type: String, required: 'City is required'},

 state: {type: String},

 zipcode: {type: String, required: 'Zip Code is required'},

 country: {type: String, required: 'Country is required'}

 },

Payment reference
The payment information will be relevant when the order is updated and a
charge needs to be created after an ordered product is processed by the
seller. We will record the Stripe Customer ID relevant to the credit card
details in a payment_id field in the Order schema.

mern-marketplace/server/models/order.model.js:

payment_id: {},

Products ordered
The main content of the order will be the list of products ordered along
with details, such as quantity of each. We will record this list in a field
called products in the Order schema. The structure of each product will be
defined separately in CartItemSchema.

mern-marketplace/server/models/order.model.js:

products: [CartItemSchema],

The CartItem schema
The CartItem schema will represent each product ordered. It will contain a
reference to the product, the quantity of the product ordered by the user, a
reference to the shop the product belongs to, and a status.

mern-marketplace/server/models/order.model.js:

const CartItemSchema = new mongoose.Schema({

 product: {type: mongoose.Schema.ObjectId, ref: 'Product'},

 quantity: Number,

 shop: {type: mongoose.Schema.ObjectId, ref: 'Shop'},

 status: {type: String,

 default: 'Not processed',

 enum: ['Not processed' , 'Processing', 'Shipped', 'Delivered',

 'Cancelled']}

})

const CartItem = mongoose.model('CartItem', CartItemSchema)

The status of the product can only have the values as defined in the enums,
representing the current state of the product ordered as updated by the
seller.

The Order schema defined here will record details required for the customer
and seller to complete the purchase steps for the ordered products.

Create order API
The create order API route is declared in server/routes/order.routes.js.
The order routes will be very similar to the user routes. To load the order
routes in the Express app, we need to mount the routes in express.js, like we
did for the auth and user routes.

mern-marketplace/server/express.js:

app.use('/', orderRoutes)

A number of actions, in the following sequence, take place when the create
order API receives a POST request at /api/orders/:userId:

It is ensured that the user is signed in
A Stripe Customer is either created or updated using the stripeCustomer
user controller method discussed earlier
The stock quantities are updated for all the ordered products using the
decreaseQuanity product controller method
The order is created in the Order collection with the create order
controller method

The route will be defined as follows.

mern-marketplace/server/routes/order.routes.js:

router.route('/api/orders/:userId')

 .post(authCtrl.requireSignin, userCtrl.stripeCustomer,

 productCtrl.decreaseQuantity, orderCtrl.create)

To retrieve the user associated with the :userId parameter in the route, we
will use the userByID user controller method, which gets the user from the
User collection and attaches it to the request object to be accessed by the
next methods. We will add it with the order routes as follows.

mern-marketplace/server/routes/order.routes.js:

router.param('userId', userCtrl.userByID)

Decrease product stock quantity
We will update the product controller file to add the decreaseQuantity
controller method, which will update the stock quantities of all the
products purchased in the new order.

mern-marketplace/server/controllers/product.controller.js:

const decreaseQuantity = (req, res, next) => {

 let bulkOps = req.body.order.products.map((item) => {

 return {

 "updateOne": {

 "filter": { "_id": item.product._id } ,

 "update": { "$inc": {"quantity": -item.quantity} }

 }

 }

 })

 Product.bulkWrite(bulkOps, {}, (err, products) => {

 if(err){

 return res.status(400).json({

 error: "Could not update product"

 })

 }

 next()

 })

}

Since the update operation in this case involves a bulk update of multiple
products in the collection after matching with an array of products
ordered, we will use the bulkWrite method in MongoDB to send multiple
updateOne operations to the MongoDB server with one command.
The multiple updateOne operations required are first listed in bulkOps using the
map function. This will be faster than sending multiple independent save or
update operations because with bulkWrite() there is only one round trip to
MongoDB.

Create order controller method
The create controller method, defined in order controllers, takes the order
details, creates a new order, and saves it to the Order collection in
MongoDB.

mern-marketplace/server/controllers/order.controller.js:

const create = (req, res) => {

 req.body.order.user = req.profile

 const order = new Order(req.body.order)

 order.save((err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.status(200).json(result)

 })

}

With this implemented, orders can be created and stored in the backend by
any signed-in user on the MERN Marketplace. Now we can set up APIs to
fetch lists of orders by user, orders by shop, or read an individual order
and display the fetched data to views in the frontend.

Orders by shop
An important feature of the marketplace is allowing sellers to see and
update the status of orders they've received for products in their shops. To
implement this, we will first set up APIs to list orders by shop, and then
update an order as a seller changes the status of a purchased product.

List by shop API
We will implement an API to get orders for a specific shop, so
authenticated sellers can view orders for each of their shops. The request
for this API will be received at '/api/orders/shop/:shopId, with the route
defined in order.routes.js as follows.

mern-marketplace/server/routes/order.routes.js:

router.route('/api/orders/shop/:shopId')

 .get(authCtrl.requireSignin, shopCtrl.isOwner, orderCtrl.listByShop)

router.param('shopId', shopCtrl.shopByID)

To retrieve the shop associated with the :shopId parameter in the route, we
will use the shopByID shop controller method, which gets the shop from the
Shop collection and attaches it to the request object to be accessed by the
next methods.

The listByShop controller method will retrieve the orders that have products
purchased with the matching shop ID, then populate the ID, name, and
price fields for each product, with orders sorted by date from most recent
to oldest.

mern-marketplace/server/controllers/order.controller.js:

const listByShop = (req, res) => {

 Order.find({"products.shop": req.shop._id})

 .populate({path: 'products.product', select: '_id name price'})

 .sort('-created')

 .exec((err, orders) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(orders)

 })

}

To fetch this API in the frontend, we will add a corresponding listByShop
method in api-order.js, to be used in the ShopOrders component to show the
orders for each shop.

mern-marketplace/client/order/api-order.js:

const listByShop = (params, credentials) => {

 return fetch('/api/orders/shop/'+params.shopId, {

 method: 'GET',

 headers: {

 'Accept': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 }

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

The ShopOrders component
Sellers will view their list of orders in the ShopOrders component, with each
order showing only the purchased products relevant to the shop, and
allowing the seller to change the status of the product with a dropdown of
possible status values:

We will update MainRouter with a PrivateRoute, to load the ShopOrders
component at the /seller/orders/:shop/:shopId route.

mern-marketplace/client/MainRouter.js:

<PrivateRoute path="/seller/orders/:shop/:shopId" component={ShopOrders}/>

List orders
When the ShopOrders component mounts, we will load the relevant orders by
using the listByShop fetch method and set the retrieved orders to state.

mern-marketplace/client/order/ShopOrders.js:

 loadOrders = () => {

 const jwt = auth.isAuthenticated()

 listByShop({

 shopId: this.match.params.shopId

 }, {t: jwt.token}).then((data) => {

 if (data.error) {

 console.log(data)

 } else {

 this.setState({orders: data})

 }

 })

 }

In the view, we will iterate through the list of orders and render each order
in a collapsible list from Material-UI, which will expand on click.

mern-marketplace/client/order/ShopOrders.js:

<Typography type="title"> Orders in {this.match.params.shop} </Typography>

<List dense> {this.state.orders.map((order, index) => { return

 <ListItem button onClick={this.handleClick(index)}>

 <ListItemText primary={'Order # '+order._id}

 secondary={(new Date(order.created)).toDateString()}/>

 {this.state.open == index ? <ExpandLess /> : <ExpandMore />}

 </ListItem>

 <Collapse component="li" in={this.state.open == index}

 timeout="auto" unmountOnExit>

 <ProductOrderEdit shopId={this.match.params.shopId}

 order={order} orderIndex={index}

 updateOrders={this.updateOrders}/>

 <Typography type="subheading"> Deliver to:</Typography>

 <Typography type="subheading" color="primary">

 {order.customer_name} ({order.customer_email})

 </Typography>

 <Typography type="subheading" color="primary">

 {order.delivery_address.street}</Typography>

 <Typography type="subheading" color="primary">

 {order.delivery_address.city},

 {order.delivery_address.state}

 {order.delivery_address.zipcode}</Typography>

 <Typography type="subheading" color="primary">

 {order.delivery_address.country}</Typography>

 </Collapse>

 })}

</List>

Each expanded order will show the order details and the ProductOrderEdit
component. The ProductOrderEdit component will display the purchased
products and allow the seller to edit the status of each product. The
updateOrders method is passed as a prop to the ProductOrderEdit component so
the status can be updated when a product status is changed.

mern-marketplace/client/order/ShopOrders.js:

updateOrders = (index, updatedOrder) => {

 let orders = this.state.orders

 orders[index] = updatedOrder

 this.setState({orders: orders})

}

The ProductOrderEdit component
The ProductOrderEdit component takes an order object as a prop, and iterates
through the order's products array to display only the products purchased
from the current shop, along with a dropdown to change the status value of
each product.

mern-marketplace/client/order/ProductOrderEdit.js:

{this.props.order.products.map((item, index) => { return

 { item.shop == this.props.shopId &&

 <ListItem button>

 <ListItemText primary={ <div>

 <img src=

 {'/api/product/image/'+item.product._id}/>

 {item.product.name}

 <p>{"Quantity: "+item.quantity}</p>

 </div>}/>

 <TextField id="select-status" select

 label="Update Status" value={item.status}

 onChange={this.handleStatusChange(index)}

 SelectProps={{

 MenuProps: { className: classes.menu },

 }}>

 {this.state.statusValues.map(option => (

 <MenuItem key={option} value={option}>

 {option}

 </MenuItem>

))}

 </TextField>

 </ListItem>}

The possible list of status values is fetched from the server when the
ProductOrderEdit component loads and set to state in statusValues to be
rendered in the dropdown as a MenuItem.

mern-marketplace/client/order/ProductOrderEdit.js:

loadStatusValues = () => {

 getStatusValues().then((data) => {

 if (data.error) {

 this.setState({error: "Could not get status"})

 } else {

 this.setState({statusValues: data, error: ''})

 }

 })

}

When an option is selected from the possible status values, the
handleStatusChange method is called to update the orders in state, and also to
send a request to the appropriate backend API based on the value of the
status selected.

mern-marketplace/client/order/ProductOrderEdit.js:

handleStatusChange = productIndex => event => {

 let order = this.props.order

 order.products[productIndex].status = event.target.value

 let product = order.products[productIndex]

 const jwt = auth.isAuthenticated()

 if(event.target.value == "Cancelled"){

 cancelProduct({ shopId: this.props.shopId,

 productId: product.product._id },

 {t: jwt.token},

 {cartItemId: product._id, status:

 event.target.value,

 quantity: product.quantity

 }).then((data) => {

 if (data.error) {

 this.setState({error: "Status not updated,

 try again"})

 } else {

 this.props.updateOrders(this.props.orderIndex, order)

 this.setState(error: '')

 }

 })

 } else if(event.target.value == "Processing"){

 processCharge({ userId: jwt.user._id, shopId:

 this.props.shopId, orderId: order._id },

 { t: jwt.token},

 { cartItemId: product._id,

 amount: (product.quantity *

 product.product.price)

 status: event.target.value }).then((data) => { ...

 })

 } else {

 update({ shopId: this.props.shopId }, {t:

 jwt.token},

 { cartItemId: product._id,

 status: event.target.value}).then((data) => { ... })

 }

}

The cancelProduct, processCharge, and update fetch methods are defined in api-
order.js to call corresponding APIs in the backend to update a cancelled
product's stock quantity, to create a charge on the customer's credit card

when a product is processing, and to update the order with the product
status change.

APIs for products ordered
Allowing sellers to update the status of a product will require the setup of
four different APIs, including an API to retrieve possible status values.
Then actual status updates will need APIs to handle updates to the order
itself as the status is changed, to initiate related actions such as increasing
stock quantity of a cancelled product, and to create a charge on the
customer's credit card when a product is being processed.

Get status values
The possible status values of an ordered product are set as enums in the
CartItem schema, and to show these values as options in the dropdown view,
we will set up a GET API route at /api/order/status_values that retrieves these
values.

mern-marketplace/server/routes/order.routes.js:

router.route('/api/order/status_values')

 .get(orderCtrl.getStatusValues)

The getStatusValues controller method will return the enum values for the
status field from the CartItem schema.

mern-marketplace/server/controllers/order.controller.js:

const getStatusValues = (req, res) => {

 res.json(CartItem.schema.path('status').enumValues)

}

We will also set up a fetch method in api-order.js, this is used in the view to
make a request to the API route.

mern-marketplace/client/order/api-order.js:

const getStatusValues = () => {

 return fetch('/api/order/status_values', {

 method: 'GET'

 }).then((response) => {

 return response.json()

 }).catch((err) => console.log(err))

}

Update order status
When a product's status is changed to any value other than Processing and
Cancelled, a PUT request to '/api/order/status/:shopId' will directly update
the order in the database given the current user is the verified owner of the
shop with the ordered product.

mern-marketplace/server/routes/order.routes.js:

router.route('/api/order/status/:shopId')

 .put(authCtrl.requireSignin, shopCtrl.isOwner, orderCtrl.update)

The update controller method will query the Order collection and find the
order with the CartItem object that matches the updated product, and set the
status value of this matched CartItem in the products array of the order.

mern-marketplace/server/controllers/order.controller.js:

const update = (req, res) => {

 Order.update({'products._id':req.body.cartItemId}, {'$set': {

 'products.$.status': req.body.status

 }}, (err, order) => {

 if (err) {

 return res.status(400).send({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(order)

 })

}

In api-order.js, we will add an update fetch method to make a call to this
update API with the required parameters passed from the view.

mern-marketplace/client/order/api-order.js:

const update = (params, credentials, product) => {

 return fetch('/api/order/status/' + params.shopId, {

 method: 'PUT',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: JSON.stringify(product)

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

Cancel product order
When a seller decides to cancel the order for a product, a PUT request will
be sent to /api/order/:shopId/cancel/:productId so the product stock quantity can
be increased, and the order updated in the database.

mern-marketplace/server/routes/order.routes.js:

router.route('/api/order/:shopId/cancel/:productId')

 .put(authCtrl.requireSignin, shopCtrl.isOwner,

 productCtrl.increaseQuantity, orderCtrl.update)

 router.param('productId', productCtrl.productByID)

To retrieve the product associated with the productId parameter in the route,
we will use the productByID product controller method.

The increaseQuantity controller method is added to product.controller.js. It
finds the product by the matching ID in the Product collection and
increases the quantity value by the quantity that was ordered by the
customer, now that the order for this product has been cancelled.

mern-marketplace/server/controllers/product.controller.js:

const increaseQuantity = (req, res, next) => {

 Product.findByIdAndUpdate(req.product._id, {$inc:

 {"quantity": req.body.quantity}}, {new: true})

 .exec((err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 next()

 })

}

From the view, we will use a corresponding fetch method, added in api-
order.js, to call the cancel product order API.

mern-marketplace/client/order/api-order.js:

const cancelProduct = (params, credentials, product) => {

 return fetch('/api/order/'+params.shopId+'/cancel/'+params.productId, {

 method: 'PUT',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: JSON.stringify(product)

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

Process charge for product
When a seller changes the status of a product to Processing, we will set up
a backend API to not only update the order but to also create a charge on
the customer's credit card for the price of the product multiplied by the
quantity ordered.

mern-marketplace/server/routes/order.routes.js:

router.route('/api/order/:orderId/charge/:userId/:shopId')

 .put(authCtrl.requireSignin, shopCtrl.isOwner,

 userCtrl.createCharge, orderCtrl.update)

router.param('orderId', orderCtrl.orderByID)

To retrieve the order associated with the orderId parameter in the route, we
will use the orderByID order controller method, which gets the order from
the Order collection and attaches it to the request object to be accessed by
the next methods, shown as follows.

mern-marketplace/server/controllers/order.controller.js:

const orderByID = (req, res, next, id) => {

 Order.findById(id).populate('products.product', 'name price')

 .populate('products.shop', 'name')

 .exec((err, order) => {

 if (err || !order)

 return res.status('400').json({

 error: "Order not found"

 })

 req.order = order

 next()

 })

}

This process charge API will receive a PUT request at
/api/order/:orderId/charge/:userId/:shopId, and after successfully authenticating
the user will create the charge by calling the createCharge user controller as
discussed earlier in the Using Stripe for payments section, and then finally
update the order with the update method.

From the view, we will use the processCharge fetch method in api-order.js, and
provide the required route parameter values, credentials, and product
details, including the amount to charge.

mern-marketplace/client/order/api-order.js:

const processCharge = (params, credentials, product) => {

 return fetch('/api/order/'+params.orderId+'/charge/'+params.userId+'/'

 +params.shopId, {

 method: 'PUT',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: JSON.stringify(product)

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

Sellers can view orders received for their products in each of their shops,
and they can easily update the status of each product ordered, while the
application takes care of additional tasks, such as updating stock quantity
and initiating payment. This covers the basic order management features
for the MERN Marketplace application, which can be extended further as
required.

View order details
With Order collection and the database access all set up, moving forward it is easy
to add the features of listing orders for each user, and showing details of a single
order in a separate view where the user can track the status of each ordered product:

Following the steps repeated throughout this book, for setting up backend APIs to
retrieve data and using it in the frontend to construct frontend views, you can
develop order-related views as desired, taking inspiration from the snapshots of
these sample views in the MERN Marketplace application code:

The MERN Marketplace application developed in this and Chapter 6, Exercising New
MERN Skills with an Online Marketplace, by building on the MERN skeleton
application, covered the crucial features for a standard online marketplace
application. This, in turn, demonstrated how the MERN stack can be extended to
incorporate complex features.

Summary
In this chapter, we extended the MERN Marketplace application, and
explored how to add a shopping cart for buyers, a checkout process with
credit card payments, and order management for the sellers in an online
marketplace application.

We discovered how the MERN stack technologies can work well with
third-party integrations, as we implemented the cart checkout flow, and
processed credit card charges on ordered products using the tools provided
by Stripe for managing online payments.

We also unlocked more of what is possible with MERN, such as optimized
bulk write operations in MongoDB for updating multiple documents in
response to a single API call. This allowed us to decrease the stock
quantities of multiple products in one go, such as when a user placed an
order for multiple products from different stores.

The marketplace features developed in the MERN Marketplace application
revealed how this stack and structure can be utilized to design and build
growing applications by adding features that may be simple or more
complex in nature.

In the next chapter, we will take the lessons learned so far in this book,
and explore more advanced possibilities with MERN as we build a media
streaming application by extending the MERN skeleton.

Building a Media Streaming
Application
Uploading and streaming media content, specifically video content, has
been a growing part of internet culture for some time now. From
individuals sharing personal video content to the entertainment industry
disseminating commercial content on online streaming services, we all
rely on web applications that enable smooth uploading and streaming.
Capabilities within the MERN stack technologies can be used to build and
integrate these core streaming features into any MERN-based web
application.

In this chapter, we will cover the following topics to implement basic
media uploading and streaming by extending the MERN skeleton
application:

Uploading videos to MongoDB GridFS
Storing and retrieving media details
Streaming from GridFS to a basic media player

MERN Mediastream
We will build the MERN Mediastream application by extending the base application. It will be a simple video
streaming application that allows registered users to upload videos that can be streamed by anyone browsing
through the application:

The code for the complete MERN Mediastream application is available on GitHub github.com/shamahoque/mern-mediastream. The
implementations discussed in this chapter can be accessed in the simple-mediastream-gridfs branch of the same repository. You can clone
this code and run the application as you go through the code explanations in the rest of this chapter.

The views needed for the features related to media upload, editing, and streaming in a simple media player will
be developed by extending and modifying the existing React components in the MERN skeleton application. The
component-tree pictured next shows all the custom React components that make up the MERN Mediastream
frontend developed in this chapter:

https://github.com/shamahoque/mern-mediastream

Uploading and storing media
Registered users on MERN Mediastream will be able to upload videos
from their local files to store the video and related details directly on
MongoDB using GridFS.

Media model
In order to store media details, we will add a Mongoose Schema for the
media model in server/models/media.model.js with fields to record the media
title, description, genre, number of views, created time, updated time, and
reference to the user who posted the media.

mern-mediastream/server/models/media.model.js:

import mongoose from 'mongoose'

import crypto from 'crypto'

const MediaSchema = new mongoose.Schema({

 title: {

 type: String,

 required: 'title is required'

 },

 description: String,

 genre: String,

 views: {type: Number, default: 0},

 postedBy: {type: mongoose.Schema.ObjectId, ref: 'User'},

 created: {

 type: Date,

 default: Date.now

 },

 updated: {

 type: Date

 }

})

export default mongoose.model('Media', MediaSchema)

MongoDB GridFS to store large
files
In previous chapters, we discussed how files uploaded by users could be
stored directly in MongoDB as binary data. But this only worked for files
smaller than 16 MB. In order to store larger files in MongoDB, we will
need to use GridFS.

GridFS stores large files in MongoDB by dividing the file into several
chunks of a maximum of 255 KB each, and then storing each chunk as a
separate document. When the file has to be retrieved in response to a
query to GridFS, the chunks are reassembled as needed. This opens up the
option to fetch and load only parts of the file as required, rather than
retrieving the whole file.

In the case of storing and retrieving video files for MERN Mediastream,
we will utilize GridFS to store video files, and also to stream parts of the
video depending on which part the user skips to and starts playing from.

We will use the gridfs-stream npm module to add GridFS features to our
server-side code:

npm install gridfs-stream --save

To configure gridfs-stream with our database connection, we will use
Mongoose to link it up as follows.

mern-mediastream/server/controllers/media.controller.js:

import mongoose from 'mongoose'

import Grid from 'gridfs-stream'

Grid.mongo = mongoose.mongo

let gridfs = null

mongoose.connection.on('connected', () => {

 gridfs = Grid(mongoose.connection.db)

})

The gridfs object will give access to the GridFS functionalities required to
store the file when new media is created and to fetch the file when the
media is to be streamed back to the user.

Creating a media API
We will set up a create media API on the Express server that will receive a
POST request at '/api/media/new/:userId' with the multipart body content
containing the media fields and the uploaded video file.

Route to create media
In server/routes/media.routes.js, we will add the create route, and utilize the
userByID method from the user controller. The userByID method processes the
:userId parameter passed in the URL and retrieves the associated user from
the database.

mern-mediastream/server/routes/media.routes.js:

router.route('/api/media/new/:userId')

 .post(authCtrl.requireSignin, mediaCtrl.create)

router.param('userId', userCtrl.userByID)

A POST request to the create route will first make sure the user is signed
in and then initiate the create method in the media controller.

Similar to the user and auth routes, we will have to mount the media
routes on the Express app in express.js as follows.

mern-mediastream/server/express.js:

app.use('/', mediaRoutes)

Controller method to handle create
request
The create controller method in the media controller will use the formidable
npm module to parse the multipart request body that will contain the
media details and video file uploaded by the user:

npm install formidable --save

The media fields received in the form data, and parsed with formidable, will
be used to generate a new Media object and saved to the database.

mern-mediastream/server/controllers/media.controller.js:

const create = (req, res, next) => {

 let form = new formidable.IncomingForm()

 form.keepExtensions = true

 form.parse(req, (err, fields, files) => {

 if (err) {

 return res.status(400).json({

 error: "Video could not be uploaded"

 })

 }

 let media = new Media(fields)

 media.postedBy= req.profile

 if(files.video){

 let writestream = gridfs.createWriteStream({_id: media._id})

 fs.createReadStream(files.video.path).pipe(writestream)

 }

 media.save((err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(result)

 })

 })

}

If there is a file in the request, formidable will store it temporarily in the
filesystem, and we will use the media object's ID to create
a gridfs.writeStream to read the temporary file and write it into MongoDB.

This will generate the associated chunks and file information documents
in MongoDB. When it is time to retrieve this file, we will identify it with
the media ID.

Fetch create API in the view
In api-media.js, we will add a corresponding method to make a POST request
to the create API by passing the multipart form data from the view.

mern-mediastream/client/user/api-user.js:

const create = (params, credentials, media) => {

 return fetch('/api/media/new/'+ params.userId, {

 method: 'POST',

 headers: {

 'Accept': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: media

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

This create fetch method will be used when the user submits the new media
form to upload a new video.

New media form view
A registered user will see a link on the menu to add new media. This link
will take them to the new media form view and allow them to upload a
video file along with details of the video.

Adding media menu button
In client/core/Menu.js, we will update the existing code that renders the My
Profile and Signout links to add the Add Media button link:

This will only render on the menu if the user is currently signed in.

mern-mediastream/client/core/Menu.js/:

<Link to="/media/new">

 <Button style={isActive(history, "/media/new")}>

 <AddBoxIcon style={{marginRight: '8px'}}/> Add Media

 </Button>

</Link>

React route for NewMedia view
To take the user to the new media form view when they click the Add
Media link, we will update the MainRouter file to add the /media/new React
route, which will render the NewMedia component.

mern-mediastream/client/MainRouter.js:

<PrivateRoute path="/media/new" component={NewMedia}/>

As this new media form should only be accessed by a signed-in user, we
will add it as a PrivateRoute.

NewMedia component
In the NewMedia component, we will render a form that allows a user to
create media by entering the title, description, and genre, and uploading a
video file from their local file system:

We will add the file upload elements using a Material-UI Button and an
HTML5 file input element.

mern-mediastream/client/media/NewMedia.js:

<input accept="video/*"

 onChange={this.handleChange('video')}

 id="icon-button-file"

 type="file"

 style={{display: none}}/>

<label htmlFor="icon-button-file">

 <Button color="secondary" variant="raised" component="span">

 Upload <FileUpload/>

 </Button>

</label>

{this.state.video ? this.state.video.name : ''}

The Title, Description, and Genre form fields will be added with TextField
components.

mern-mediastream/client/media/NewMedia.js:

<TextField id="title" label="Title" value={this.state.title}

 onChange={this.handleChange('title')} margin="normal"/>

<TextField id="multiline-flexible" label="Description"

 multiline rows="2"

 value={this.state.description}

 onChange={this.handleChange('description')}/>

<TextField id="genre" label="Genre" value={this.state.genre}

 onChange={this.handleChange('genre')}/>

These form field changes will be tracked with the handleChange method.

mern-mediastream/client/media/NewMedia.js:

handleChange = name => event => {

 const value = name === 'video'

 ? event.target.files[0]

 : event.target.value

 this.mediaData.set(name, value)

 this.setState({ [name]: value })

}

The handleChange method updates the state with the new values and populates
mediaData, which is a FormData object. The FormData API ensures that the data to
be sent to the server is stored in the correct format needed for the
encoding-type multipart/form-data. This mediaData object is initialized in
componentDidMount.

mern-mediastream/client/media/NewMedia.js:

componentDidMount = () => {

 this.mediaData = new FormData()

}

Upon form submit, the create fetch method is called with the necessary
credentials and the form data passed as parameters:

 clickSubmit = () => {

 const jwt = auth.isAuthenticated()

 create({

 userId: jwt.user._id

 }, {

 t: jwt.token

 }, this.mediaData).then((data) => {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 this.setState({redirect: true, mediaId: data._id})

 }

 })

 }

On successful media creation, the user may be redirected to a different
view as desired, for example, to a Media view with the new media details.

mern-mediastream/client/media/NewMedia.js:

if (this.state.redirect) {

 return (<Redirect to={'/media/' + this.state.mediaId}/>)

}

In order to allow users to stream and view this video file stored in
MongoDB, next we will implement how to retrieve and render the video in
the view.

Retrieve and stream media
On the server, we will set up a route to retrieve a single video file, which
we will then use as a source in a React media player to render the
streaming video.

Get video API
We will add a route in the media routes to fetch a video when a GET
request is received at '/api/medias/video/:mediaId'.

mern-mediastream/server/routes/media.routes.js:

router.route('/api/medias/video/:mediaId')

 .get(mediaCtrl.video)

router.param('mediaId', mediaCtrl.mediaByID)

The :mediaId parameter in the route URL will be processed in the mediaByID
controller to fetch the associated document from the Media collection and
attached to the request object, so it may be used in the video controller
method as required.

mern-mediastream/server/controllers/media.controller.js:

const mediaByID = (req, res, next, id) => {

 Media.findById(id).populate('postedBy', '_id name').exec((err, media) => {

 if (err || !media)

 return res.status('400').json({

 error: "Media not found"

 })

 req.media = media

 next()

 })

}

The video controller method in media.controller.js will use gridfs to find the
video associated with the mediaId in MongoDB. Then, if the matching video
is found and depending on whether the request contains range headers, the
response will send back the correct chunks of video with the related
content information set as response headers.

mern-mediastream/server/controllers/media.controller.js:

const video = (req, res) => {

 gridfs.findOne({

 _id: req.media._id

 }, (err, file) => {

 if (err) {

 return res.status(400).send({

 error: errorHandler.getErrorMessage(err)

 })

 }

 if (!file) {

 return res.status(404).send({

 error: 'No video found'

 })

 }

 if (req.headers['range']) {

 ...

 ... consider range headers and send only relevant chunks in

 response ...

 ...

 } else {

 res.header('Content-Length', file.length)

 res.header('Content-Type', file.contentType)

 gridfs.createReadStream({

 _id: file._id

 }).pipe(res)

 }

 })

}

4If the request contains range headers, for example when the user drags to
the middle of the video and starts playing from that point, we need to
convert the range headers to start and end positions that will correspond
with the correct chunks stored using GridFS. Then we will pass these start
and end values as a range to the gridfs-stream's createReadStream method, and
also set the response headers with additional file details including content
length, range, and type.

mern-mediastream/server/controllers/media.controller.js:

let parts = req.headers['range'].replace(/bytes=/, "").split("-")

let partialstart = parts[0]

let partialend = parts[1]

let start = parseInt(partialstart, 10)

let end = partialend ? parseInt(partialend, 10) : file.length - 1

let chunksize = (end - start) + 1

res.writeHead(206, {

 'Accept-Ranges': 'bytes',

 'Content-Length': chunksize,

 'Content-Range': 'bytes ' + start + '-' + end + '/' + file.length,

 'Content-Type': file.contentType

})

gridfs.createReadStream({

 _id: file._id,

 range: {

 startPos: start,

 endPos: end

 }

}).pipe(res)

The final readStream piped to the response can be rendered directly in a basic
HTML5 media player or a React-flavored media player in the frontend
view.

React media player to render the
video
A good option for a React-flavored media player is the ReactPlayer
component available as an npm, which can be customized as required:

It can be used in the application by installing the corresponding npm
module:

npm install react-player --save

For basic usage with default controls provided by the browser, we can add
it to any React view in the application that has access to the ID of the
media to be rendered:

<ReactPlayer url={'/api/media/video/'+media._id} controls/>

In the next chapter, we will look into advanced options for customizing
this ReactPlayer with our own controls.

To learn more about what is possible with ReactPlayer, visit cookpete.com/react-player.

https://cookpete.com/react-player

Media list
In MERN Mediastream, we will add list views of relevant media with a snapshot of each
video to give visitors easier access and an overview of the videos on the application. We
will set up list APIs in the backend to retrieve different lists, such as videos uploaded by a
single user and the most popular videos with the highest views in the application. Then,
these retrieved lists can be rendered in the MediaList component, which will receive a list as
a prop from a parent component that fetches the specific API:

In the preceding screenshot, the Profile component uses the list by user API to fetch the list
of media posted by the user seen in the preceding profile, and passes the received list to the
MediaList component to render each video and media details.

MediaList component
The MediaList component is a reusable component that will take a list of
media and iterate through it to render each item in the view. In MERN
Mediastream, we use it to render a list of the most popular media in the
home view and a list of media uploaded by a specific user in their profile.

mern-mediastream/client/media/MediaList.js:

<GridList cols={3}>

 {this.props.media.map((tile, i) => (

 <GridListTile key={i}>

 <Link to={"/media/"+tile._id}>

 <ReactPlayer url={'/api/media/video/'+tile._id}

 width='100%' height='inherit'/>

 </Link>

 <GridListTileBar

 title={<Link to={"/media/"+tile._id}>{tile.title}</Link>}

 subtitle={{tile.views} views

 {tile.genre}}/>

 </GridListTile>

))}

</GridList>

The MediaList component uses the Material-UI GridList components as it
iterates through the list sent in the props, and renders media details for
each item in the list, along with a ReactPlayer component that renders the
video URL without showing any controls. In the view, this gives the visitor
a brief overview of the media and also a glimpse of the video content.

List popular media
In order to retrieve specific lists of media from the database, we need to
set up relevant APIs on the server. For popular media, we will set up a
route that receives a GET request at /api/media/popular.

mern-mediastream/server/routes/media.routes.js:

 router.route('/api/media/popular')

 .get(mediaCtrl.listPopular)

The listPopular controller method will query the Media collection to
retrieve ten media documents that have the highest views in the whole
collection.

mern-mediastream/server/controllers/media.controller.js:

const listPopular = (req, res) => {

 Media.find({}).limit(10)

 .populate('postedBy', '_id name')

 .sort('-views')

 .exec((err, posts) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(posts)

 })

}

To use this API in the view, we will set up a corresponding fetch method in
api-media.js.

mern-mediastream/client/media/api-media.js:

const listPopular = (params) => {

 return fetch('/api/media/popular', {

 method: 'GET',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json'

 }

 }).then(response => {

 return response.json()

 }).catch((err) => console.log(err))

}

This fetch method will be called when the Home component mounts so the
list can be set to state and passed to the MediaList component in the view.

mern-mediastream/client/core/Home.js:

componentDidMount = () => {

 listPopular().then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.setState({media: data})

 }

 })

 }

In the Home view, we will add the MediaList as follows, with the list
provided as a prop:

<MediaList media={this.state.media}/>

List media by users
To retrieve a list of media uploaded by a specific user, we will set up an
API with a route that accepts a GET request at '/api/media/by/:userId'.

mern-mediastream/server/routes/media.routes.js:

router.route('/api/media/by/:userId')

 .get(mediaCtrl.listByUser)

The listByUser controller method will query the Media collection to find
media documents that have postedBy values matching the userId.

mern-mediastream/server/controllers/media.controller.js:

const listByUser = (req, res) => {

 Media.find({postedBy: req.profile._id})

 .populate('postedBy', '_id name')

 .sort('-created')

 .exec((err, posts) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(posts)

 })

}

To use this list by user API in the frontend view, we will set up a
corresponding fetch method in api-media.js.

mern-mediastream/client/user/api-user.js:

const listByUser = (params) => {

 return fetch('/api/media/by/'+ params.userId, {

 method: 'GET',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json'

 }

 }).then(response => {

 return response.json()

 }).catch((err) => console.log(err))

}

This fetch method can be used in the Profile component, similar to the
listPopular fetch method used in the home view, to retrieve the list data, set
to state, and then pass to the MediaList component.

Display, update, and delete media
Any visitor to MERN Mediastream will be able to view media details and
stream the video, while only registered users will be able to edit the details
and delete the media any time after they post it on the application.

Display media
Any visitor to the MERN Mediastream will be able to browse to a single
media view to play the video and read the details associated with the
media. Every time a specific video is loaded on the application, we will
also increment the number of views associated with the media.

Read media API
To fetch media information for a specific media record, we will set up a
route that accepts a GET request at '/api/media/:mediaId'.

mern-mediastream/server/routes/media.routes.js:

router.route('/api/media/:mediaId')

 .get(mediaCtrl.incrementViews, mediaCtrl.read)

The mediaId in the request URL will cause the mediaByID controller method to
execute and attach the retrieved media document to the request object.
Then this media data will be returned in the response by the read controller
method.

mern-mediastream/server/controllers/media.controller.js:

const read = (req, res) => {

 return res.json(req.media)

}

A GET request to this API will also execute the incrementViews controller
method, which will find the matching media record and increment the views
value by 1 before saving the updated record to the database.

mern-mediastream/server/controllers/media.controller.js:

const incrementViews = (req, res, next) => {

 Media.findByIdAndUpdate(req.media._id, {$inc: {"views": 1}}, {new: true})

 .exec((err, result) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 next()

 })

}

In order to use this read API in the frontend, we will set up a
corresponding fetch method in api-media.js.

mern-mediastream/client/user/api-user.js:

const read = (params) => {

 return fetch(config.serverUrl+'/api/media/' + params.mediaId, {

 method: 'GET'

 }).then((response) => {

 return response.json()

 }).catch((err) => console.log(err))

}

The read API can be used to render individual media details in a view or to
pre-populate a media edit form.

Media component
The Media component will render details of an individual media record and stream the video in a basic
ReactPlayer with default browser controls:

The Media component can call the read API to fetch the media data itself or receive the data as props from a
parent component that makes the call to the read API. In the latter case, the parent component will add the
Media component, as follows.

mern-mediastream/client/media/PlayMedia.js:

<Media media={this.state.media}/>

In MERN Mediastream, we add the Media component in a PlayMedia component that fetches the media content
from the server using the read API, and passes it to Media as a prop. The Media component will take this data
and render it in the view to display the details and load the video in a ReactPlayer component.

The title, genre, and view count can be rendered in a Material-UI CardHeader component.

mern-mediastream/client/media/Media.js:

<CardHeader

 title={this.props.media.title}

 action={

 {this.props.media.views + ' views'}

 }

 subheader={this.props.media.genre}

/>

The video URL, which is basically the GET API route we set up in the backend, is loaded in a ReactPlayer with
default browser controls.

mern-mediastream/client/media/Media.js:

const mediaUrl = this.props.media._id

 ? `/api/media/video/${this.props.media._id}`

 : null

 …

<ReactPlayer url={mediaUrl}

 controls

 width={'inherit'}

 height={'inherit'}

 style={{maxHeight: '500px'}}

 config={{ attributes:

 { style: { height: '100%', width: '100%'} }

}}/>

The Media component renders additional details about the user who posted the video, and the media description,
along with the date the media was created.

mern-mediastream/client/media/Media.js:

<ListItem>

 <ListItemAvatar>

 <Avatar>

 {this.props.media.postedBy.name &&

 this.props.media.postedBy.name[0]}

 </Avatar>

 </ListItemAvatar>

 <ListItemText primary={this.props.media.postedBy.name}

 secondary={"Published on " +

 (new Date(this.props.media.created))

 .toDateString()}/>

</ListItem>

<ListItem>

 <ListItemText primary={this.props.media.description}/>

</ListItem>

The Media component also conditionally shows an edit and a delete option if the currently-signed-in user is also
the one who posted the media being displayed.

mern-mediastream/client/media/Media.js:

{(auth.isAuthenticated().user && auth.isAuthenticated().user._id)

 == this.props.media.postedBy._id && (<ListItemSecondaryAction>

 <Link to={"/media/edit/" + this.props.media._id}>

 <IconButton aria-label="Edit" color="secondary">

 <Edit/>

 </IconButton>

 </Link>

 <DeleteMedia mediaId={this.props.media._id} mediaTitle=

 {this.props.media.title}/>

 </ListItemSecondaryAction>)}

The edit option links to the media edit form, and the delete option opens a dialog box that can initiate the
deletion of this particular media document from the database.

Update media details
Registered users will have access to an edit form for each of their media
uploads, updating and submitting this form will save the changes to the
document in the Media collection.

Media update API
To allow users to update media details, we will set up a media update API
that accepts a PUT request at '/api/media/:mediaId' with the updated details in
the request body.

mern-mediastream/server/routes/media.routes.js:

router.route('/api/media/:mediaId')

 .put(authCtrl.requireSignin,

 mediaCtrl.isPoster,

 mediaCtrl.update)

When this request is received, the server will first ensure the signed-in
user is the original poster of the media content by calling the isPoster
controller method.

mern-mediastream/server/controllers/media.controller.js:

const isPoster = (req, res, next) => {

 let isPoster = req.media && req.auth

 && req.media.postedBy._id == req.auth._id

 if(!isPoster){

 return res.status('403').json({

 error: "User is not authorized"

 })

 }

 next()

}

If the user is authorized, the update controller method will be called next, to
update the existing media document with the changes and then save it to
the database.

mern-mediastream/server/controllers/media.controller.js:

const update = (req, res, next) => {

 let media = req.media

 media = _.extend(media, req.body)

 media.updated = Date.now()

 media.save((err) => {

 if (err) {

 return res.status(400).send({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(media)

 })

}

To access the update API in the frontend, we will add a corresponding
fetch method in api-media.js that takes the necessary credentials and media
details as parameters.

mern-mediastream/client/user/api-user.js:

const update = (params, credentials, media) => {

 return fetch('/api/media/' + params.mediaId, {

 method: 'PUT',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: JSON.stringify(media)

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

This fetch method will be used in the media edit form when the user
makes updates and submits the form.

Media edit form
The media edit form will be similar to the new media form, but without
the upload option, and the fields will be pre-populated with the existing
details:

The EditMedia component containing this form, which can only be accessed
by signed-in users, will be rendered at '/media/edit/:mediaId'. This private
route will be declared in MainRouter with the other frontend routes.

mern-mediastream/client/MainRouter.js:

<PrivateRoute path="/media/edit/:mediaId" component={EditMedia}/>

Once the EditMedia component mounts on the view, a fetch call will be made
to the read media API to retrieve the media details and set to state so the

values are rendered in the text fields.

mern-mediastream/client/media/EditMedia.js:

 componentDidMount = () => {

 read({mediaId: this.match.params.mediaId}).then((data) => {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 this.setState({media: data})

 }

 })

 }

The form field elements will be the same as in the NewMedia component.
When a user updates any of the values in the form, the changes will be
registered in the media object in state with a call to the handleChange method.

mediastream/client/media/EditMedia.js:

handleChange = name => event => {

 let updatedMedia = this.state.media

 updatedMedia[name] = event.target.value

 this.setState({media: updatedMedia})

}

When the user is done editing and clicks submit, a call will be made to the
update API with the required credentials and the changed media values.

mediastream/client/media/EditMedia.js:

 clickSubmit = () => {

 const jwt = auth.isAuthenticated()

 update({

 mediaId: this.state.media._id

 }, {

 t: jwt.token

 }, this.state.media).then((data) => {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 this.setState({error: '', redirect: true, media: data})

 }

 })

}

This will update the media details, and the video file associated with the
media will remain as it is in the database.

Deleting media
An authenticated user can delete the media they uploaded to the
application completely, including the media document in the Media
collection, and the file chunks stored in MongoDB using GridFS.

The Delete media API
In the backend, we will add a DELETE route that allows an authorized
user to delete their uploaded media records.

mern-mediastream/server/routes/media.routes.js:

router.route('/api/media/:mediaId')

 .delete(authCtrl.requireSignin,

 mediaCtrl.isPoster,

 mediaCtrl.remove)

When the server receives a DELETE request at '/api/media/:mediaId', it will
first make sure the signed-in user is the original poster of the media that
needs to be deleted. Then the remove controller method will delete the
specified media details from the database.

mern-mediastream/server/controllers/media.controller.js:

const remove = (req, res, next) => {

 let media = req.media

 media.remove((err, deletedMedia) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 gridfs.remove({ _id: req.media._id })

 res.json(deletedMedia)

 })

}

Besides deleting the media record from the Media collection, we also use
gridfs to remove the associated file details and chunks stored in the
database.

We will also add a corresponding method in api-media.js to fetch the delete
API from the view.

mern-mediastream/client/user/api-user.js:

const remove = (params, credentials) => {

 return fetch('/api/media/' + params.mediaId, {

 method: 'DELETE',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 }

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

The DeleteMedia component
The DeleteMedia component is added to the Media component and is only
visible to the signed-in user who added this specific media. This
component takes the media ID and title as props:

This DeleteMedia component is basically an icon button that on click opens a
confirm dialog to ask the user whether they are sure they want to delete
their video.

mern-mediastream/client/media/DeleteMedia.js:

<IconButton aria-label="Delete" onClick={this.clickButton} color="secondary">

 <DeleteIcon/>

</IconButton>

<Dialog open={this.state.open} onClose={this.handleRequestClose}>

 <DialogTitle>{"Delete "+this.props.mediaTitle}</DialogTitle>

 <DialogContent>

 <DialogContentText>

 Confirm to delete {this.props.mediaTitle} from your account.

 </DialogContentText>

 </DialogContent>

 <DialogActions>

 <Button onClick={this.handleRequestClose} color="primary">

 Cancel

 </Button>

 <Button onClick={this.deleteMedia}

 color="secondary"

 autoFocus="autoFocus"

 variant="raised">

 Confirm

 </Button>

 </DialogActions>

</Dialog>

When the user confirms the delete intent, the delete fetch method is called.

mern-mediastream/client/media/DeleteMedia.js:

deleteMedia = () => {

 const jwt = auth.isAuthenticated()

 remove({

 mediaId: this.props.mediaId

 }, {t: jwt.token}).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.setState({redirect: true})

 }

 })

}

Then on successful deletion, the user is redirected to the home page.

mern-mediastream/client/media/DeleteMedia.js:

if (this.state.redirect) {

 return <Redirect to='/'/>

}

The MERN Mediastream application developed in this chapter is a
complete media streaming application with capabilities of uploading video
files to the database, streaming stored videos back to the viewers, support
for CRUD operations such as media create, update, read, and delete, along
with options to list media by uploader or popularity.

Summary
In this chapter, we developed a media streaming application by extending
the MERN Skeleton application and leveraging MongoDB GridFS.

Besides adding basic add, update, delete, and listing features for media, we
looked into how MERN-based applications can allow users to upload
video files, store these files into MongoDB GridFS as chunks, and stream
the video back to the viewer partially or fully as required. We also covered
a basic use of ReactPlayer with default browser controls to stream the video
file.

In the next chapter, we will see how we can customize ReactPlayer with our
own controls and functionality so users have more options, such as playing
the next video in a list. In addition, we will discuss how to improve the
SEO of the media details by implementing server-side rendering with data
for the media view.

Customizing the Media Player and
Improving SEO
Users visit a media-streaming application mainly to play the media and
explore other related media. This makes the media player, and the view
that renders the related media details, crucial to a streaming application.

In this chapter, we will focus on developing the play media page for the
MERN Mediastream application that we started building in the previous
chapter. We will address the following topics to bolster the media-playing
functionalities, and to help boost the presence of the media content across
the web so that it reaches more users:

Customize controls on ReactPlayer
Play next from a list of related videos
Autoplay a list of related media
Server-side render the Media view with data to improve SEO

MERN Mediastream with a custom media player
The MERN Mediastream application developed in the previous chapter implemented a simple media player with
default browser controls that played one video at a time. In this chapter, we will update the view that plays the
media with a customized ReactPlayer and a related media list that can be set to play automatically when the current
video ends. The updated view with the custom player and related playlist will look as pictured in this screenshot:

The code for the complete MERN Mediastream application is available on GitHub at github.com/shamahoque/mern-mediastream. You can clone
this code and run the application as you go through the code explanations in the rest of this chapter.

The following component tree diagram shows all the custom components that make up the MERN Mediastream
frontend, highlighting the components that will be improved or added in this chapter:

https://github.com/shamahoque/mern-mediastream

New components added in this chapter include the MediaPlayer component, which adds a ReactPlayer with custom
controls, and a RelatedMedia component, which contains a list of related videos.

The play media page
When visitors want to view specific media on MERN Mediastream, they
will be taken to the play media page, which will contain the media details,
a media player to stream the video, and a list of related media that can be
played next.

Component structure
We will compose the component structure in the play media page in a way that allows the
media data to trickle down to the inner components from the parent component. In this
case, the PlayMedia component will be the parent component, containing the RelatedMedia
component, and the Media component with a nested MediaPlayer component:

When individual media links are accessed, the PlayMedia component will mount and retrieve
the media data and related media list from the server. Then, the relevant data will
be passed as props to the Media and RelatedMedia child components.

The RelatedMedia component will link to a list of other related media, and clicking each will
re-render the PlayMedia component and inner components with the new data.

We will update the Media component we developed in Chapter 8, Building a Media-Streaming
Application, to add a customized media player as a child component. This customized
MediaPlayer component will also utilize the data passed from PlayMedia to stream the current
video and link to the next video in the related media list.

In the PlayMedia component, we will add an autoplay toggle that will let users choose to
autoplay the videos in the related media list, one after the other. The autoplay state will be
managed from the PlayMedia component but this feature will require the data in state to re-
render when a video ends in the MediaPlayer, which is a nested child component, so the next
video can start playing automatically while keeping track of the related list.

To achieve this, the PlayMedia component will need to provide a state updating method as a
prop, which will be used in the MediaPlayer component to update the shared and
interdependent state values across these components.

Taking this component structure into consideration, we will extend and update the MERN
Mediastream application to implement a functional play media page.

Related media list
The related media list will consist of other media records that belong to
the same genre as the given video and is sorted by the highest number of
views.

Related list API
In order to retrieve the list of related media from the database, we will set
up an API on the server that will receive a GET request at
'/api/media/related/:mediaId'.

mern-mediastream/server/routes/media.routes.js:

router.route('/api/media/related/:mediaId')

 .get(mediaCtrl.listRelated)

The listRelated controller method will query the Media collection to find
records with the same genre as the media provided, and also exclude this
media record from the results returned. The results returned will be sorted
by the highest number of views and limited to the top four media records.
Each media object in the returned results will also contain the name and ID
of the user who posted the media.

mern-mediastream/server/controllers/media.controller.js:

const listRelated = (req, res) => {

 Media.find({ "_id": { "$ne": req.media },

 "genre": req.media.genre}).limit(4)

 .sort('-views')

 .populate('postedBy', '_id name')

 .exec((err, posts) => {

 if (err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(posts)

 })

}

On the client side, we will set up a corresponding fetch method that will be
used in the PlayMedia component to retrieve the related list of media using
this API.

mern-mediastream/client/media/api-media.js:

const listRelated = (params) => {

 return fetch('/api/media/related/'+ params.mediaId, {

 method: 'GET',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json'

 }

 }).then(response => {

 return response.json()

 }).catch((err) => console.log(err))

}

The RelatedMedia component
The RelatedMedia component takes the list of related media as a prop from
the PlayMedia component, and renders the details along with a video
snapshot of each video in the list.

We iterate through the media list using the map function to render each
media item.

mern-mediastream/client/media/RelatedMedia.js:

{this.props.media.map((item, i) => {

 return

 ... video snapshot ... | ... media details ...

 })

}

To show the video snapshot, we will use a basic ReactPlayer without the
controls.

mern-mediastream/client/media/RelatedMedia.js:

<Link to={"/media/"+item._id}>

 <ReactPlayer url={'/api/media/video/'+item._id} width='160px'

 height='140px'/>

</Link>

Clicking on the snapshot will re-render the PlayMedia view to load the
linked media details:

Beside the snapshot, we will display the details of each video including
title, genre, created date, and number of views.

mern-mediastream/client/media/RelatedMedia.js:

<Typography type="title" color="primary">{item.title}</Typography>

<Typography type="subheading"> {item.genre} </Typography>

<Typography component="p">

 {(new Date(item.created)).toDateString()}

</Typography>

<Typography type="subheading">{item.views} views</Typography>

To use this RelatedMedia component in the view, we will add it in the PlayMedia
component.

The PlayMedia component
The PlayMedia component consists of the Media and RelatedMedia child
components along with an autoplay toggle, and it provides data to these
components when it loads in the view. To render the PlayMedia component
when individual media links are accessed by the user, we will add a Route in
MainRouter to mount PlayMedia at '/media/:mediaId'.

mern-mediastream/client/MainRouter.js:

<Route path="/media/:mediaId" component={PlayMedia}/>

When the PlayMedia component mounts, it will fetch the media data and the
related media list from the server using the loadMedia function based on the
media ID parameter in the route link.

mern-mediastream/client/media/PlayMedia.js:

loadMedia = (mediaId) => {

 read({mediaId: mediaId}).then((data) => {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 this.setState({media: data})

 listRelated({

 mediaId: data._id}).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.setState({relatedMedia: data})

 }

 })

 }

 })

 }

The loadMedia function uses the media ID and the read API fetch method to
retrieve the media details from the server. Then, it uses the listRelated API
fetch method to retrieve the related media list from the server and sets the
values to state.

The loadMedia function is called with the mediaId value when the component
mounts and also when it will receive props.

mern-mediastream/client/media/PlayMedia.js:

componentDidMount = () => {

 this.loadMedia(this.match.params.mediaId)

}

componentWillReceiveProps = (props) => {

 this.loadMedia(props.match.params.mediaId)

}

To access the mediaId parameter in the route URL when the component
mounts, we need to access the react-router match object in the component's
constructor.

mern-mediastream/client/media/PlayMedia.js:

constructor({match}) {

 super()

 this.state = {

 media: {postedBy: {}},

 relatedMedia: [],

 autoPlay: false,

 }

 this.match = match

}

The media and related media list values stored in the component's state are
used to pass relevant props to the child components that are added in the
view. For example, the RelatedMedia component is only rendered if the list of
related media contains any items, and passed to the list as a prop.

mern-mediastream/client/media/PlayMedia.js:

{this.state.relatedMedia.length > 0 &&

 (<RelatedMedia media={this.state.relatedMedia}/>)}

Later in the chapter, in the Autoplaying related media section, we will add
the autoplay toggle component above the RelatedMedia component only if the
length of the related media list is greater than zero. We will also discuss
the implementation of the handleAutoPlay method that will be passed as a
prop to the Media component, along with the media detail object, and the

video URL for the first media in the related media list as the next URL to
play.

mern-mediastream/client/media/PlayMedia.js:

const nextUrl = this.state.relatedMedia.length > 0

 ? `/media/${this.state.relatedMedia[0]._id}` : ''

<Media media={this.state.media}

 nextUrl={nextUrl}

 handleAutoplay={this.handleAutoplay}/>

The Media component renders the media details, and also a media player
that allows viewers to control the streaming of the video.

Media player
We will customize the player controls on ReactPlayer to replace the default browser controls
with a custom look and functionality, as seen in this screenshot:

The controls will be added below the video and will include the progress seekbar, the play,
pause, next, volume, loop, and fullscreen options, and also display the played-duration time.

Updating the Media component
We will create a new MediaPlayer component that will contain the
customized ReactPlayer. In the Media component, we will replace the
previously used ReactPlayer with the new MediaPlayer component, and pass on
the video source URL, the next video's URL and the handleAutoPlay method,
which are received as props from the PlayMedia component.

mern-mediastream/client/media/Media.js:

const mediaUrl = this.props.media._id

 ? `/api/media/video/${this.props.media._id}`

 : null

...

<MediaPlayer srcUrl={mediaUrl}

 nextUrl={this.props.nextUrl}

 handleAutoplay={this.props.handleAutoplay}/>

Initializing the media player
The MediaPlayer component will contain the ReactPlayer component, starting with the initial control values
before we add the custom controls and handling code.

First, we will set the initial control values to state.

mern-mediastream/client/media/MediaPlayer.js:

state = {

 playing: true,

 volume: 0.8,

 muted: false,

 played: 0,

 loaded: 0,

 duration: 0,

 ended:false,

 playbackRate: 1.0,

 loop: false,

 fullscreen: false,

 videoError: false

}

In the view, we will add ReactPlayer with the control values and source URL, using the prop sent from the
Media component.

mern-mediastream/client/media/MediaPlayer.js:

const { playing, ended, volume, muted, loop, played, loaded, duration, playbackRate, fullscreen, videoError } = this.state

...

 <ReactPlayer

 ref={this.ref}

 width={fullscreen ? '100%':'inherit'}

 height={fullscreen ? '100%':'inherit'}

 style={fullscreen ? {position:'relative'} : {maxHeight: '500px'}}

 config={{ attributes: { style: { height: '100%', width: '100%'} } }}

 url={this.props.srcUrl}

 playing={playing}

 loop={loop}

 playbackRate={playbackRate}

 volume={volume}

 muted={muted}

 onEnded={this.onEnded}

 onError={this.videoError}

 onProgress={this.onProgress}

 onDuration={this.onDuration}/>

We will get a reference to this player, so it can be used in the change-handling code for the custom
controls.

mern-mediastream/client/media/MediaPlayer.js:

ref = player => {

 this.player = player

}

If the source video cannot be loaded, we will catch the error.

mern-mediastream/client/media/MediaPlayer.js:

videoError = e => {

 this.setState({videoError: true})

}

Then we will conditionally show an error message in the view.

mern-mediastream/client/media/MediaPlayer.js:

{videoError && <p className={classes.videoError}>Video Error. Try again later.</p>}

Custom media controls
We will add custom player control elements below the video and
manipulate their functionality using the options and events provided by
the ReactPlayer API.

Play, pause, and replay
Users will be able to play, pause, and replay the current video, and we will
implement these three options using Material-UI components bound to
ReactPlayer attributes and events:

To implement the play, pause, and replay functionality, we will add a play,
pause, or replay icon button conditionally depending on whether the video
is playing, paused, or has ended.

mern-mediastream/client/media/MediaPlayer.js:

<IconButton color="primary" onClick={this.playPause}>

 <Icon>{playing ? 'pause': (ended ? 'replay' : 'play_arrow')}</Icon>

</IconButton>

When the user clicks the button, we will update the playing value in state,
so that ReactPlayer is updated.

mern-mediastream/client/media/MediaPlayer.js:

playPause = () => {

 this.setState({ playing: !this.state.playing })

}

Play next
Users will be able to play the next video in the related media list using the
next button:

The next button will be disabled if the related list does not contain any
media. The play next icon will basically link to the next URL value passed
in as a prop from PlayMedia.

mern-mediastream/client/media/MediaPlayer.js:

<IconButton disabled={!this.props.nextUrl} color="primary">

 <Link to={this.props.nextUrl}>

 <Icon>skip_next</Icon>

 </Link>

</IconButton>

Clicking on this next button will reload the PlayMedia component with the
new media details and start playing the video.

Loop on ended
Users will also be able to set the current video to keep playing in a loop
using the loop button:

We will set up a loop icon button that will render in a different color to
indicate whether it is set or unset.

mern-mediastream/client/media/MediaPlayer.js:

<IconButton color={loop? 'primary' : 'default'}

 onClick={this.onLoop}>

 <Icon>loop</Icon>

</IconButton>

When the loop icon button is clicked, it updates the loop value in state.

mern-mediastream/client/media/MediaPlayer.js:

onLoop = () => {

 this.setState({ loop: !this.state.loop })

}

We will need to catch the onEnded event, to check whether loop has been set
to true, so the playing value can be updated accordingly.

mern-mediastream/client/media/MediaPlayer.js:

onEnded = () => {

 if(this.state.loop){

 this.setState({ playing: true})

 }else{

 this.setState({ ended: true, playing: false })

 }

}

So if the loop is set to true, when the video ends, it will start playing again,
otherwise it will stop playing and render the replay button.

Volume control
In order to control the volume on the video being played, users will have
the option to increase or decrease the volume, as well as to mute or un-
mute. The rendered volume controls will be updated based on the user
action and current value of the volume:

A volume up icon will be rendered if the volume is raised:

A volume off icon will be rendered if the user decreases the volume
to zero:

A volume mute icon button will be shown if the user clicks the icon
to mute the volume:

To implement this, we will conditionally render the different icons in an
IconButton, based on the volume, muted, volume_up, and volume_off values:

<IconButton color="primary" onClick={this.toggleMuted}>

 <Icon> {volume > 0 && !muted && 'volume_up' ||

 muted && 'volume_off' ||

 volume==0 && 'volume_mute'} </Icon>

</IconButton>

When this volume button is clicked, it will either mute or unmute the
volume.

mern-mediastream/client/media/MediaPlayer.js:

toggleMuted = () => {

 this.setState({ muted: !this.state.muted })

}

To allow users to increase or decrease the volume, we will add an input
range that will allow users to set a volume value between 0 and 1.

mern-mediastream/client/media/MediaPlayer.js:

<input type="range"

 min={0}

 max={1}

 step='any'

 value={muted? 0 : volume}

 onChange={this.setVolume}/>

Changing the value on the input range will set the volume value accordingly.

mern-mediastream/client/media/MediaPlayer.js:

 setVolume = e => {

 this.setState({ volume: parseFloat(e.target.value) })

 }

Progress control
We will use a Material-UI LinearProgress component to indicate how much of the video has been
buffered, and how much has been played. Then we'll combine this component with a range input
to give users the ability to move the time slider to a different part of the video and play from
there:

The LinearProgress component will take the played and loaded values to show each in a different
color:

<LinearProgress color="primary" variant="buffer"

 value={played*100} valueBuffer={loaded*100}

 style={{width: '100%'}}

 classes={{ colorPrimary: classes.primaryColor,

 dashedColorPrimary: classes.primaryDashed,

 dashed: {animation: 'none'} }}

/>

To update the LinearProgress component when the video is playing or loading, we will use the
onProgress event listener to set the current values for played and loaded.

mern-mediastream/client/media/MediaPlayer.js:

onProgress = progress => {

 if (!this.state.seeking) {

 this.setState({played: progress.played, loaded: progress.loaded})

 }

}

For time-sliding control, we will add the range input element and use CSS styles to place it over
the LinearProgress component. The current value of the range will update as the played value
changes, so the range value seems to be moving with the progression of the video.

mern-mediastream/client/media/MediaPlayer.js:

<input type="range" min={0} max={1}

 value={played} step='any'

 onMouseDown={this.onSeekMouseDown}

 onChange={this.onSeekChange}

 onMouseUp={this.onSeekMouseUp}

 style={{ position: 'absolute',

 width: '100%',

 top: '-7px',

 zIndex: '999',

 '-webkit-appearance': 'none',

 backgroundColor: 'rgba(0,0,0,0)' }}

/>

In the case where the user drags and sets the range picker on their own, we will add code to
handle the onMouseDown, onMouseUp, and onChange events to start the video from the desired position.

When the user starts dragging by holding the mouse down, we will set seeking to true, so that
the progress values are not set to played and loaded.

mern-mediastream/client/media/MediaPlayer.js:

onSeekMouseDown = e => {

 this.setState({ seeking: true })

}

As the range value change occurs, we will set the played value and also the ended value, after
checking whether the user dragged the time slider to the end of the video.

mern-mediastream/client/media/MediaPlayer.js:

onSeekChange = e => {

 this.setState({ played: parseFloat(e.target.value),

 ended: parseFloat(e.target.value) >= 1 })

}

When the user is done dragging and lifts their click on the mouse, we will set seeking to false,
and set the seekTo value for the player to the current value in the range input.

mern-mediastream/client/media/MediaPlayer.js:

onSeekMouseUp = e => {

 this.setState({ seeking: false })

 this.player.seekTo(parseFloat(e.target.value))

}

This way, the user will be able to select any part of the video and also get visual information of
the time progress of the video being streamed.

Fullscreen
Users will be able to view the video in fullscreen by clicking the fullscreen
button in the controls:

In order to implement a fullscreen option for the video, we will use the
screenfull npm module to track when the view is in fullscreen,
and findDOMNode from react-dom to specify which DOM element will be made
fullscreen with screenfull.

To set up the fullscreen code, we first install screenfull:

npm install screenfull --save

Then import screenfull and findDOMNode into the MediaPlayer component.

mern-mediastream/client/media/MediaPlayer.js:

import screenfull from 'screenfull'

import { findDOMNode } from 'react-dom'

When the MediaPlayer component mounts, we will add a screenfull change
event listener that will update the fullscreen value in state to indicate
whether the screen is in fullscreen or not.

mern-mediastream/client/media/MediaPlayer.js:

componentDidMount = () => {

 if (screenfull.enabled) {

 screenfull.on('change', () => {

 let fullscreen = screenfull.isFullscreen ? true : false

 this.setState({fullscreen: fullscreen})

 })

 }

}

In the view, we will add an icon button for fullscreen with the other control
buttons.

mern-mediastream/client/media/MediaPlayer.js:

<IconButton color="primary" onClick={this.onClickFullscreen}>

 <Icon>fullscreen</Icon>

</IconButton>

When the user clicks this button, we will use screenfull and findDOMNode to
make the video player fullscreen.

mern-mediastream/client/media/MediaPlayer.js:

onClickFullscreen = () => {

 screenfull.request(findDOMNode(this.player))

}

The user can then watch the video in fullscreen, where they can press
Esc at any time to exit fullscreen and get back to the PlayMedia view.

Played duration
In the custom media controls section of the media player, we want to show
the time that has already passed, and the total duration of the video in a
readable time format:

To show the time, we can utilize the HTML time element.

mern-mediastream/client/media/MediaPlayer.js:

<time dateTime={`P${Math.round(duration * played)}S`}>

 {this.format(duration * played)}

</time> /

<time dateTime={`P${Math.round(duration)}S`}>

 {this.format(duration)}

</time>

We will get the duration value for a video by using the onDuration event and
then set it to state, so it can be rendered in the time element.

mern-mediastream/client/media/MediaPlayer.js:

onDuration = (duration) => {

 this.setState({ duration })

}

To make the duration value readable, we will use the following format
function.

mern-mediastream/client/media/MediaPlayer.js:

format = (seconds) => {

 const date = new Date(seconds * 1000)

 const hh = date.getUTCHours()

 let mm = date.getUTCMinutes()

 const ss = ('0' + date.getUTCSeconds()).slice(-2)

 if (hh) {

 mm = ('0' + date.getUTCMinutes()).slice(-2)

 return `${hh}:${mm}:${ss}`

 }

 return `${mm}:${ss}`

}

The format function takes the duration value in seconds, and converts it to
the hh/mm/ss format.

The controls added to the custom media player are all mostly based on
some of the available functionality in the ReactPlayer module, and its
examples provided as documentation. There are more options available for
further customizations and extensions, which may be explored more
depending on specific feature requirements.

Autoplaying related media
We will complete the autoplay functionality discussed earlier by adding a
toggle in PlayMedia, and implementing the handleAutoplay method, which needs
to be called when a video ends, in the MediaPlayer component.

Toggling autoplay
Besides letting the user set autoplay, the toggle will also indicate whether
it is currently set or not:

For the autoplay toggle, we will use a Material-UI Switch component along
with a FormControlLabel, and add it to the PlayMedia component over the
RelatedMedia component to be rendered only when there are media in the
related media list.

mern-mediastream/client/media/PlayMedia.js:

<FormControlLabel

 control={

 <Switch

 checked={this.state.autoPlay}

 onChange={this.handleChange}

 color="primary"

 />

 }

 label={this.state.autoPlay? 'Autoplay ON':'Autoplay OFF'}

/>

To handle the change to the toggle and reflect it in the state's autoplay value,
we will use the following onChange handler function.

mern-mediastream/client/media/PlayMedia.js:

handleChange = (event) => {

 this.setState({ autoPlay: event.target.checked })

}

Handle autoplay across
components
PlayMedia passes the handleAutoPlay method to the Media component as a prop to
be used by the MediaPlayer component when a video ends.

The functionality desired here is that when a video ends, if autoplay is set
to true and the current related list of media is not empty, PlayMedia should
load the media details of the first video in the related list. In turn, the Media
and MediaPlayer components should update with the new media details, start
playing the new video and render the controls on the player appropriately.
The list in the RelatedMedia component should also update with the current
media removed from the list, so only the remaining playlist items are
visible.

mern-mediastream/client/media/PlayMedia.js:

handleAutoplay = (updateMediaControls) => {

 let playList = this.state.relatedMedia

 let playMedia = playList[0]

 if(!this.state.autoPlay || playList.length == 0)

 return updateMediaControls()

 if(playList.length > 1){

 playList.shift()

 this.setState({media: playMedia, relatedMedia:playList})

 }else{

 listRelated({

 mediaId: playMedia._id}).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.setState({media: playMedia, relatedMedia: data})

 }

 })

 }

 }

The handleAutoplay method takes care of the following when a video ends in
the MediaPlayer component:

It takes a callback function from the onEnded event listener in the
MediaPlayer component. This callback will be executed if autoplay is
not set or the related media list is empty, so that the controls on the
MediaPlayer are rendered to show that the video has ended.
If autoplay is set and there is more than one related media in the list,
then:

The first item in the related media list is set as the current media
object in state so it can be rendered
The related media list is updated by removing this first item that
will now start playing in the view

If autoplay is set and there is only one item in the related media list,
this last item is set to media so it can start playing, and
the listRelated fetch method is called to repopulate the RelatedMedia
view with the related media of this last item.

Update state when video ends in
MediaPlayer
The MediaPlayer receives the handleAutoplay method as a prop from PlayMedia.
We will update the listener code for the onEnded event to execute this
method only when the loop is set to false for the current video.

mern-mediastream/client/media/MediaPlayer.js:

onEnded = () => {

 if(this.state.loop){

 this.setState({ playing: true})

 }else{

 this.props.handleAutoplay(() => {

 this.setState({ ended: true,

 playing: false })

 })

 }

}

A callback function is passed to the handleAutoplay method, in order to set
playing to false and render the replay icon button instead of the play or
pause icon button, after it is determined in PlayMedia that the autoplay has
not been set or that the related media list is empty.

The autoplay functionality will continue playing the related videos one
after the other with this implementation. This implementation
demonstrates another way to update state across the components when the
values are interdependent.

Server-side rendering with data
Search engine optimization is important for any web application that
delivers content to its users, and wants to make the content easy to find.
Generally, content on any webpage will have a better chance of getting
more viewers if the content is easily readable to search engines. When a
search engine bot accesses a web URL, it will get the server-side rendered
output. Hence to make the content discoverable, the content should be part
of the server-side rendered output.

In MERN Mediastream, we will use the case of making media details
popular across search engine results, to demonstrate how to inject data
into a server-side rendered view in a MERN application. We will focus on
implementing server-side rendering with data injected for the PlayMedia
component that is returned at the '/media/:mediaId' path. The general steps
outlined here can be used to implement SSR with data for other views.

Route config
In order to load data for the React views when these are rendered on the
server, we will use the React Router Config npm module, which provides
static route configuration helpers for React Router:

npm install react-router-config --save

We will create a route configuration file that will be used to match routes
with incoming request URLs on the server to check whether data must be
injected before the server returns the rendered markup.

For the route configuration in MERN Mediastream, we will only list the
route that renders the PlayMedia component.

mern-mediastream/client/routeConfig.js:

import PlayMedia from './media/PlayMedia'

import { read } from './media/api-media.js'

const routes = [

 {

 path: '/media/:mediaId',

 component: PlayMedia,

 loadData: (params) => read(params)

 }

]

export default routes

For this route and component, we will specify the read fetch method from
api-media.js as the load data method. Then it will be used to retrieve and
inject the data into the PlayMedia view when the server generates the
markup.

Updating SSR code for the Express
server
We will update the existing basic server-side rendering code in
server/express.js to add the data-loading functionality for the React views
that will get rendered server side.

Using route config to load data
We will define loadBranchData to use matchRoutes from react-router-config, and the
routes defined in the route configuration file to look for a route matching
the incoming request URL.

mern-mediastream/server/express.js:

import { matchRoutes } from 'react-router-config'

import routes from './../client/routeConfig'

const loadBranchData = (location) => {

 const branch = matchRoutes(routes, location)

 const promises = branch.map(({ route, match }) => {

 return route.loadData

 ? route.loadData(branch[0].match.params)

 : Promise.resolve(null)

 })

 return Promise.all(promises)

}

If a matching route is found, then any associated loadData method will be
executed to return a Promise containing the fetched data or null if there were
no loadData methods.

The loadBranchData defined here will need to be called whenever the server
receives a request, so if any matching route is found, we can fetch the
relevant data and inject it into the React components while rendering
server side.

Isomorphic-fetch
We will also import isomorphic-fetch in express.js so that the read fetch
method, or any other fetch that we defined for the client, can now be used
on the server.

mern-mediastream/server/express.js:

import 'isomorphic-fetch'

Absolute URL
One issue with using isomorphic-fetch is that it currently requires the fetch
URLs to be absolute. So we need to update the URL used in the read fetch
method, defined in api-media.js, into an absolute URL.

Instead of hardcoding a server address in the code, we will set a config
variable in config.js.

mern-mediastream/config/config.js:

serverUrl: process.env.serverUrl || 'http://localhost:3000'

Then we will update the read method in api-media.js to make it use an
absolute URL to call the read API on the server.

mern-mediastream/client/media/api-media.js:

import config from '../../config/config'

const read = (params) => {

 return fetch(config.serverUrl +'/api/media/' + params.mediaId, {

 method: 'GET'

 }).then((response) => { ... })

This will make the read fetch call compatible with isomorphic-fetch so it can
be used without a problem on the server.

Injecting data into React app
In the existing server-side render code in the backend, we use ReactDOMServer
to convert the React app to markup. We will update this code in express.js
to inject data as a prop into MainRouter after it is fetched using the
loadBranchData method.

mern-mediastream/server/express.js:

...

loadBranchData(req.url).then(data => {

 const markup = ReactDOMServer.renderToString(

 <StaticRouter location={req.url} context={context}>

 <JssProvider registry={sheetsRegistry}

 generateClassName={generateClassName}>

 <MuiThemeProvider theme={theme} sheetsManager={new Map()}>

 < MainRouter data={data}/>

 </MuiThemeProvider>

 </JssProvider>

 </StaticRouter>

)

...

}).catch(err => {

 res.status(500).send("Data could not load")

 })

...

For this data to be added in the rendered PlayMedia component when the
server generates the markup, we need to update the client-side code to
consider server injected data.

Applying server-injected data in
client code
On the client side, we will access the data passed from the server and add
it to the PlayMedia view.

Passing data props to PlayMedia
from MainRouter
While generating markup with ReactDOMServer.renderToString, we pass the
preloaded data to MainRouter as a prop. We can access that data prop in the
constructor for MainRouter.

mern-mediastream/client/MainRouter.js:

 constructor({data}) {

 super()

 this.data = data

 }

To give PlayMedia access to this data, we will change the Route component for
PlayMedia to pass this data as a prop.

mern-mediastream/client/MainRouter.js:

<Route path="/media/:mediaId"

 render={(props) => (

 <PlayMedia {...props} data={this.data} />

)} />

Rendering received data in
PlayMedia
In the PlayMedia component, we will check for data passed from the server
and set the values to state so the media details are rendered in the view.

mern-mediastream/client/media/PlayMedia.js:

...

render() {

 if (this.props.data && this.props.data[0] != null) {

 this.state.media = this.props.data[0]

 this.state.relatedMedia = []

 }

...

}

This will produce server-generated markup with media data injected in the
PlayMedia view.

Checking the implementation of
SSR with data
For MERN Mediastream, any of the links that render PlayMedia should
now generate markup on the server side with media details preloaded. We
can verify that the implementation for server-side rendering with data is
working properly by opening the app URL in a browser with JavaScript
turned off. We will look into how to achieve this in the Chrome browser
and what the resulting view should show to the user and to the search
engine.

Test in Chrome
Testing this implementation in Chrome just requires updating the Chrome
settings and loading the application in a tab with JS blocked.

Loading a page with JS enabled
First, open the application in Chrome, then browse to any media link and
let it render normally with JavaScript enabled. This should show the
implemented PlayMedia view with the functioning media player and the
related media list.

Disabling JS from settings
Next, disable JavaScript on Chrome. For this you can go to advanced settings at
chrome://settings/content/javascript, and use the toggle to block JavaScript:

Now, refresh the media link in the MERN Mediastream tab, and there will be an icon next to the
address URL showing that JavaScript is indeed disabled:

PlayMedia view with JS blocked
The PlayMedia view should render similar to the following picture, with only the media
details populated. But the user interface is no longer interactive as JavaScript is blocked
and only the default browser controls are operational:

This is what a search engine bot will read for media content and what a user will see when
no JavaScript loads on the browser.

MERN Mediastream now has fully operational media-playing tools that will allow users
to browse and play videos with ease. In addition, the media views that display individual

media content are now search-engine optimized because of server-side rendering with
preloaded data.

Summary
In this chapter, we completely upgraded the play media page on MERN
Mediastream by adding custom media player controls using options
available with ReactPlayer enabling the autoplay functionality for a related
media playlist after retrieving the related media from the database and
making the media details search engine readable by injecting data from
the server when the view is rendered on the server.

Now that we have explored advanced capabilities, such as streaming and
SEO, with the MERN stack technologies, in the upcoming chapters, we
will test the potential of this stack further by incorporating virtual reality
elements into a web application.

Developing a Web-Based VR Game
The advent of virtual reality (VR) and augmented reality (AR)
technologies are transforming how users interact with software and, in
turn, the world around them. The possible applications of VR and AR are
innumerable, and though the game industry has been an early adopter,
these rapidly developing technologies have the potential to shift
paradigms across multiple disciplines and industries.

In order to demonstrate how the MERN stack paired with React 360 can
easily add VR capabilities to any web application, we will discuss and
develop a dynamic, web-based VR game in this and the next chapter.

By covering the following topics, this chapter will focus on defining the
features of the VR game and developing the game view using React 360:

VR game specifications
Key concepts for developing 3D VR applications
Getting started with React 360
Defining game data
Implementing the game view
Bundling the React 360 code for integration with the MERN skeleton

MERN VR Game
The MERN VR Game web application will be developed by extending the MERN skeleton and integrating VR
capabilities using React 360. It will be a dynamic, web-based VR game application, in which registered users can
make their own games, and any visitor to the application can play these games:

The features of the game itself will be simple enough to expose the capabilities of introducing VR into a MERN-
based application, without delving too deeply into advanced concepts of React 360 that may be used to
implement more complex VR features.

The code to implement features of the VR game using React 360 is available on GitHub at github.com/shamahoque/MERNVR. You can clone this
code and run the application as you go through the code explanations in the rest of this chapter.

https://github.com/shamahoque/MERNVR

Game features
Each game in MERN VR Game will basically be a different VR world,
where users can interact with 3D objects placed at different locations in
the 360 degree panoramic world.

The gameplay will be similar to that of a scavenger hunt, and to complete
each game, users will have to find and collect the 3D objects that are
relevant to the clue or description for each game. This means the game
world will contain some VR objects that can be collected by the player,
and some VR objects that cannot be collected, but that may be placed by
makers of the game as props or hints.

Focus of this chapter
In this chapter, we will build out the game features using React 360,
focusing primarily on concepts that will be relevant to implement the
features defined earlier. Once the game features are ready, we will discuss
how the React 360 code can be bundled and prepared to be integrated with
the MERN application code developed in Chapter 11, Making the VR Game
Dynamic Using MERN.

React 360
React 360 makes it possible to build VR experiences using the same
declarative and component-based approach in React. The underlying
technology of React 360 makes use of the Three.js JavaScript 3D engine to
render 3D graphics with WebGL within any compatible web browser, and
also provides access to VR headsets with the Web VR API.

Though React 360 builds on top of React and the apps run in the browser,
React 360 has a lot in common with React Native, thus making React
360 apps cross-platform. This also means concepts from React Native are
also applicable for React 360. Covering all the React 360 concepts is
outside the scope of this book, hence we will focus on concepts required to
build the game and integrate it with the MERN stack web application.

Getting started with React 360
React 360 provides developer tools that make it easy to start developing a
new React 360 project. The steps to get started are detailed in the React
360 docs, so we will only summarize the steps, and point out the files
relevant to developing the game.

Since we already have Node installed for the MERN applications, we can
start by installing the React 360 CLI tool:

npm install -g react-360-cli

Use this React 360 CLI tool to create a new application and install the
required dependencies:

react-360 init MERNVR

This will add the application with all the necessary files in a folder named
MERNVR in the current directory. Finally, we can go into this folder from the
command line, and run the application:

npm start

The start command will initialize the local development server, and the
default React 360 application can be viewed in the browser at
http://localhost:8081/index.html.

To update the starter application and implement our game features, we will
modify code mainly in the index.js file with some minor updates in the
client.js file found in the MERNVR project folder.

The default code in index.js for the starter application should be as follows,
and it renders a Welcome to React 360 text in a 360 world in the browser:

import React from 'react'

import { AppRegistry, StyleSheet, Text, View } from 'react-360'

export default class MERNVR extends React.Component {

 render() {

 return (

 <View style={styles.panel}>

 <View style={styles.greetingBox}>

 <Text style={styles.greeting}>

 Welcome to React 360

 </Text>

 </View>

 </View>

)

 }

}

const styles = StyleSheet.create({

 panel: {

 // Fill the entire surface

 width: 1000,

 height: 600,

 backgroundColor: 'rgba(255, 255, 255, 0.4)',

 justifyContent: 'center',

 alignItems: 'center',

 },

 greetingBox: {

 padding: 20,

 backgroundColor: '#000000',

 borderColor: '#639dda',

 borderWidth: 2,

 },

 greeting: {

 fontSize: 30,

 }

})

AppRegistry.registerComponent('MERNVR', () => MERNVR)

This index.js file contains the application's content and the main code. The
code in client.js contains the boilerplate that connects the browser to the
React application in index.js. The default client.js in the starter project
folder should look as follows:

import {ReactInstance} from 'react-360-web'

function init(bundle, parent, options = {}) {

 const r360 = new ReactInstance(bundle, parent, {

 // Add custom options here

 fullScreen: true,

 ...options,

 })

 // Render your app content to the default cylinder surface

 r360.renderToSurface(

 r360.createRoot('MERNVR', { /* initial props */ }),

 r360.getDefaultSurface()

)

 // Load the initial environment

 r360.compositor.setBackground(r360.getAssetURL('360_world.jpg'))

}

window.React360 = {init}

This code basically executes the React code defined in index.js, essentially
creating a new instance of React 360 and loading the React code by
attaching it to the DOM.

With the default React 360 project set up, and before modifying the code
to implement the game, we will first look at some of the key concepts
related to developing 3D VR experiences in the context of how these
concepts are applied with React 360.

Key concepts for developing the
VR game
Before creating VR content and an interactive 360 degree experience for
the game, it is important to first understand some key aspects of the
virtual world and how React 360 components can be used to work with
these VR concepts.

Equirectangular panoramic images
The VR world for the game will be composed of a panoramic image which
is added to the React 360 Environment as a background image.

Panorama images are generally 360 degree images or spherical panoramas
projected onto a sphere that completely surrounds the viewer. A common
and popular format for 360 degree panorama images is the equirectangular
format. React 360 degree currently supports mono and stereo formats for
equirectangular images.

To learn more about the 360 image and video support in React 360, refer to the
React 360 docs at facebook.github.io/react-360/docs/setup.html.

The image shown here is an example of an equirectangular, 360 degree
panoramic image. To set the world background for a game in MERN VR
Game, we will use this kind of image:

An equirectangular panoramic image consists of a single image with an aspect ratio
of 2:1, where the width is twice the height. These images are created with a special
360 degree camera. An excellent source of equirectangular images is Flickr, you
just need to search for the equirectangular tag.

https://facebook.github.io/react-360/docs/setup.html

Creating the game world by setting the background scene using a
equirectangular image in a React 360 Environment will make the VR
experience immersive and transport the user to a virtual location. To
enhance this experience and add 3D objects in this VR world effectively,
we need to learn more about the layout and coordinate system relevant to
the 3D space.

3D position – coordinates and
transforms
We need to understand positions and orientation in the VR world space, in
order to place 3D objects at desired locations, and to make the VR
experience feel more real.

3D coordinate system
For mapping in a 3D space, React 360 uses a three-dimensional meter
based coordinate system similar to the OpenGL® 3D Coordinate System,
allowing individual components to be transformed, moved, or rotated in
3D relative to the layout in their parent component.

The 3D coordinate system used in React 360 is a right-handed system. This means
the positive x-axis is to the right, the positive y-axis is up, and the positive z-axis is
backwards. This provides a better mapping with common coordinate systems of the
world space in assets and 3D world modeling.

If we try to visualize the 3D space, the user starts out at the center of the
X-Y-Z axes pictured in the next image. The Z-axis points forward toward
the user and the user is looking out at the -Z-axis direction. The Y-axis
runs up and down, whereas the X-axis runs from side to side.

The curved arrow in the image shows the direction of positive rotation
values:

Transform
In the following two images, the 3D book object is placed in two different
positions and orientations by changing the transform properties in the style
attribute of the React 360 Entity component that is rendering the 3D object.
The transform here is based on the transform style of React, which React
360 extends to be fully 3D, considering the X-Y-Z axes:

The transform properties are added to components in the style attribute as an
array of keys and values in the following form:

style={{ ...

 transform: [

 {TRANSFORM_COMMAND: TRANSFORM_VALUE},

 ...

]

... }}

The transform commands and values relevant to the 3D objects to be placed
in our games are translate [x, y, z], with values in meters, rotate [x, y, z], with
values in degrees, and scale, to determine the size of the object across all

axes. We will also utilize the matrix command, which accepts a value as an
array of 16 numbers representing the translation, rotation, and scale values.

To learn more about the React 360 3D coordinates and transforms, take a look at the
React 360 docs at facebook.github.io/react-360/docs/setup.html.

https://facebook.github.io/react-360/docs/setup.html

React 360 components
React 360 provides a range of components that can be used out of the box
to create the VR user interface for the game. Next, we will summarize the
specific components that will be used to build out the game features.

Core components
The core components in React 360 include React Native's built-in
components: Text and View. In the game, we will use these two
components to add content in the game world.

View
The View component is the most fundamental component for building a user
interface in React Native, and it maps directly to the native view
equivalent on whatever platform React Native is running on. In our case, it
will be <div> on the browser:

<View>

 <Text>Hello</Text>

</View>

The View component is typically used as a container for other components,
it can be nested inside other views and can have zero to many children of
any type.

We will use View components to hold the game world view, and to add 3D
object entities and text to the game.

Text
The Text component is a React Native component for displaying text and
we will use it to render strings in a 3D space, by placing Text components
in View components:

<View>

 <Text>Welcome to the MERN VR Game</Text>

</View>

Components for 3D VR experience
React 360 provides a set of its own components to create the VR
experience. Specifically, we will use the Entity component to add 3D
objects and a VrButton component to capture clicks from the user.

Entity
In order to add 3D objects to the game world, we will use the Entity
component, which allows us to render 3D objects in React 360:

<Entity

 source={{

 obj: {uri: "http://linktoOBJfile.obj "},

 mtl: {uri: "http://linktoMTLfile.obj "}

 }}

/>

Files containing the specific 3D object's information are added to the Entity
component using a source attribute. The source attribute takes an object of
key-value pairs to map resource file types to their locations. React 360
supports the Wavefront OBJ file format, a common representation for 3D
models. So in the source attribute, the Entity component supports the
following keys:

obj: Location of an OBJ-formatted model
mtl: Location of an MTL-formatted material (the companion to OBJ)

The values for the obj and mtl properties point to the location of these files
and can be static strings, asset() calls, require() statements, or URI strings.

OBJ (or .OBJ) is a geometry definition file format first developed by Wavefront
Technologies. It is a simple data format that represents 3D geometry as a list of
vertices and texture vertices. OBJ coordinates have no units, but OBJ files can
contain scale information in a human-readable comment line. Learn more about
this format at paulbourke.net/dataformats/obj/.
MTL (or .MTL) are material library files that contain one or more material
definitions, each of which includes the color, texture, and reflection map of
individual materials. These are applied to the surfaces and vertices of objects.
Learn more about this format at paulbourke.net/dataformats/mtl/.

The Entity component also takes transform property values in the style
attribute, so the objects can be placed at the desired positions and
orientations in the 3D world space. In our MERN VR Game application,
makers will add URLs pointing to the VR object files (both .obj and .mtl)

http://paulbourke.net/dataformats/obj/
http://paulbourke.net/dataformats/mtl/

for each of their Entity objects in a game, and also specify the transform
property values to indicate where and how the 3D objects should be placed
in the game world.

A good source of 3D objects is https://clara.io/, with multiple file formats available for
download and use.

https://clara.io/

VrButton
The VrButton component in React 360 will help to implement a simple,
button-style, onClick behavior for the objects and Text buttons that will be
added to the game. A VrButton is not visible in the view by default and will
only act as a wrapper to capture events, but it can be styled in the same
ways as a View component:

<VrButton onClick={this.clickHandler}>

 <View>

 <Text>Click me to make something happen!</Text>

 </View>

 </VrButton>

This component is a helper for managing click-type interactions from the
user across different input devices. Input events that will trigger the click
event include a space button press on the keyboard, a left-click on the
mouse, and a touch on the screen.

React 360 API
Besides the React 360 components discussed previously, we will utilize
the APIs provided by React 360 to implement functionality such as setting
the background scene, playing audio, dealing with external links, adding
styles, capturing the current orientation of the user’s view, and using static
asset files.

Environment
We will use the Environment API to change the background scene from the
React code using its setBackgroundImage method:

Environment.setBackgroundImage({uri: 'http://linktopanoramaimage.jpg' })

This method sets the current background image with the resource at the
specified URL. When we integrate the React 360 game code with the
MERN stack containing the game application backend, we can use this to
set the game world image dynamically using image links provided by the
user.

Native Modules
Native Modules in React 360 give the ability to access functionality only
available in the main browser environment. In the game, we will use the
AudioModule in Native Modules to play sounds in response to user activity,
and the Location module that gives access to window.location in the browser to
handle external links. These modules can be accessed in index.js as
follows:

import {

 ...

 NativeModules

} from 'react-360'

const { AudioModule, Location } = NativeModules

AudioModule
When the user interacts with the 3D objects, we will play sounds based on
whether the object can be collected or not, and also whether the game has
been completed. The AudioModule in Native Modules allows adding sound to
the VR world as background environmental audio, one-off sound effects,
and spatialized audio. In our game, we will use environmental audio and
one-off sound effects.

Environmental audio: To play an audio on loop and set the mood
when the game is successfully completed, we will use the
playEnvironmental method that takes an audio file path as the source and
loop option as a playback parameter:

AudioModule.playEnvironmental({

 source: asset('happy-bot.mp3'),

 loop: true

})

Sound effects: To play a single sound once when the user clicks on
3D objects, we will use the playOneShot method that takes an audio file
path as the source:

AudioModule.playOneShot({

 source: asset('clog-up.mp3'),

})

The source attribute in the options passed to playEnvironmental and playOneShot
takes a resource file location to load the audio. It can be an asset()
statement, or a resource URL declaration in the form of {uri: 'PATH'}.

Location
After we integrate the React 360 code with the MERN stack containing the
game application backend, the VR game will be launched from the MERN
server at a declared route containing the specific game's ID. Then, once a
user completes a game, they will also have the option to leave the VR
space, and go to a URL containing a list of other games. To handle these
incoming and outgoing app links in the React 360 code, we will utilize the
Location module in Native Modules.

The Location module is essentially the Location object returned by the read-
only window.location property in the browser. We will use the replace method
and search property in the Location object to implement features related to
external links.

Handling outgoing links: When we want to direct the user out of the
VR application to another link, we can use the replace method in
Location:

Location.replace(url)

Handling incoming links: When the React 360 app is launched from
an external URL and after the registered component mounts, we can
access the URL and retrieve its query string part using the search
property in Location:

componentDidMount = () => {

 let queryString = Location.search

 let gameId = queryString.split('?id=')[1]

}

For the purpose of integrating this React 360 component with MERN VR
Game, and dynamically loading game details, we will capture this initial
URL to parse the game ID from a query parameter and then use it to make
a read API call to the MERN application server. This implementation is
elaborated upon in Chapter 11, Making the VR Game Dynamic Using MERN.

StyleSheet
The StyleSheet API from React Native can also be used in React 360 to
define several styles in one place rather than adding styles to individual
components:

const styles = StyleSheet.create({

 subView: {

 width: 10,

 borderColor: '#d6d7da',

 },

 text: {

 fontSize: '1em',

 fontWeight: 'bold',

 }

})

The defined styles can be added to components as required:

<View style={styles.subView}>

 <Text style={styles.text}>hello</Text>

</View>

The default distance units for CSS properties, such as width and height, are in
meters when mapping to 3D space in React 360, whereas the default distance units
are in pixels for 2D interfaces, as in React Native.

VrHeadModel
VrHeadModel is a utility module in React 360 that simplifies obtaining the
current orientation of the headset. Since the user is moving around in a VR
space, when a desired feature requires that an object or text should be
placed in front of or with respect to the user's current orientation, it
becomes necessary to know where exactly the user is currently gazing.

In MERN VR Game, we will use this to show the game completed
message to the user in front of their view, no matter where they end up
turning to from the initial position.

For example, the user may be looking up or down when collecting the final
object, and the completed message should pop up wherever the user is
gazing. To implement this, we will retrieve the current head matrix as an
array of numbers using getHeadMatrix() from VrHeadModel, and set it as a value
for the transform property in the style attribute of the View containing the
game completed message.

Assets
The asset() functionality in React 360 allows us to retrieve external
resource files, such as audio and image files. We will place the sound
audio files for the game in the static_assets folder, to be retrieved using
asset() for each audio added to the game:

AudioModule.playOneShot({

 source: asset('collect.mp3'),

})

React 360 input events
In order to make the game interface interactive, we will utilize some of the
input event handlers exposed in React 360. Input events are collected from
mouse, keyboard, touch, and gamepad interactions, and also with the gaze
button click on a VR headset. The specific input events we will work with
are the onEnter, onExit, and onClick events.

onEnter: This event is fired whenever the platform cursor begins
intersecting with a component. We will capture this event for the VR
objects in the game, so the objects can start rotating around the Y-axis
when the platform cursor enters the specific object.
onExit: This event is fired whenever the platform cursor stops
intersecting with a component. It has the same properties as
the onEnter event and we will use it to stop rotating the VR object just
exited.
onClick: The onClick event is used with the VrButton component, and is
fired when there is click interaction with VrButton. We will use this to
set click event handlers on the VR objects, and also on the game
complete message to redirect the user out of the VR application to a
link containing a list of games.

With the VR-related concepts and React 360 components discussed in this
section, we are ready to define the game data details and start
implementing the complete VR game.

Game details
Each game in MERN VR Game will be defined in a common data
structure that the React 360 application will also adhere to when rendering
the individual game details.

Game data structure
The game data structure will hold details such as the game's name, a URL
pointing to the location of the equirectangular image for the game world,
and two arrays containing details for each VR object to be added to the
game world:

name: A string representing the name of the game
world: A string with the URL pointing to the equirectangular image
either hosted on cloud storage, CDNS, or stored on MongoDB
answerObjects: An array of objects containing details of the VR
objects that can be collected by the player
wrongObjects: An array of objects containing details of the other VR
objects to be placed in the VR world that cannot be collected by the
player

Details of VR objects
The answerObjects array will contain details of the 3D objects that can be
collected, and the wrongObjects array will contain details of 3D objects that
cannot be collected. Each object will contain links to the 3D data resource
files and transform style property values.

OBJ and MTL links
The 3D data information resources for the VR objects will be added in the
objUrl and mtlUrl keys:

objUrl: Link to the .obj file for the 3D object
mtlUrl: Link to the accompanying .mtl file

The objUrl and mtlUrl links may point to files either hosted on cloud storage,
CDNS, or stored on MongoDB. For MERN VR Game, we will assume
makers will add URLs to their own hosted OBJ, MTL, and equirectangular
image files.

Translation values
The position of the VR object in the 3D space will be defined with the
translate values in the following keys:

translateX: Translation value of the object along the X-axis
translateY: Translation value of the object along the Y-axis
translateZ: Translation value of the object along the Z-axis

All translation values are numbers in meters.

Rotation values
The orientation of the 3D object will be defined with the rotate values in
the following keys:

rotateX: Rotation value of the object around the X-axis, in other
words, turning the object up or down
rotateY: Rotation value of the object around the Y-axis that would
turn the object left or right
rotateZ: Rotation value of the object around the Z-axis, making the
object tilt forward or backward

All rotation values are in numbers or string representations of a number in
degrees.

Scale value
The scale value will define the relative size appearance of the 3D object:

scale: A number value that defines uniform scale across all axes

Color
If the 3D object's material texture is not provided in an MTL file, the color
value can define the default color of the object.

color: A string value representing color values allowed in CSS

With this game data structure capable of holding details of the game and
its VR objects, we can implement the game in React 360 accordingly with
sample data values.

Static data versus dynamic data
In the next chapter, we will update the React 360 code to fetch game data
dynamically from the backend database. For now, we will start developing
the game features here with dummy game data set to state with the defined
game data structure.

Sample data
For initial development purposes, the following sample game data can be
set to state to be rendered in the game view:

game: {

 name: 'Space Exploration',

 world: 'https://s3.amazonaws.com/mernbook/vrGame/milkyway.jpg',

 answerObjects: [

 {

 objUrl: 'https://s3.amazonaws.com/mernbook/vrGame/planet.obj',

 mtlUrl: 'https://s3.amazonaws.com/mernbook/vrGame/planet.mtl',

 translateX: -50,

 translateY: 0,

 translateZ: 30,

 rotateX: 0,

 rotateY: 0,

 rotateZ: 0,

 scale: 7,

 color: 'white'

 }

],

 wrongObjects: [

 {

 objUrl: 'https://s3.amazonaws.com/mernbook/vrGame/tardis.obj',

 mtlUrl: 'https://s3.amazonaws.com/mernbook/vrGame/tardis.mtl',

 translateX: 0,

 translateY: 0,

 translateZ: 90,

 rotateX: 0,

 rotateY: 20,

 rotateZ: 0,

 scale: 1,

 color: 'white'

 }

]

}

Building the game view in React
360
We will apply the React 360 concepts, and use the game data structure to
implement the game features by updating the code in index.js and client.js.
For a working version, we will start with the state initialized using the
sample game data from the previous section.

 /MERNVR/index.js:

export default class MERNVR extends React.Component {

 constructor() {

 super()

 this.state = {

 game: sampleGameData

 ...

 }

 }

...

}

Update client.js and mount to
Location
The default code in client.js attaches the mount point declared in index.js to
the Default Surface in the React 360 app, where the Surface is a
cylindrical layer for placing 2D UI. In order to use the 3D meter-based
coordinate system for a layout in 3D space, we need to mount to a Location
instead of a Surface. So update client.js to replace the renderToSurface with a
renderToLocation.

/MERNVR/client.js:

 r360.renderToLocation(

 r360.createRoot('MERNVR', { /* initial props */ }),

 r360.getDefaultLocation()

)

You can also customize the initial background scene by updating the
code r360.compositor.setBackground(r360.getAssetURL('360_world.jpg')) in client.js to use your
desired image.

Defining styles with StyleSheet
In index.js, we will update the default styles created using StyleSheet.create
with our own CSS rules, to be used with the components in the game.

/MERNVR/index.js:

const styles = StyleSheet.create({

 completeMessage: {

 margin: 0.1,

 height: 1.5,

 backgroundColor: 'green',

 transform: [{translate: [0, 0, -5] }]

 },

 congratsText: {

 fontSize: 0.5,

 textAlign: 'center',

 marginTop: 0.2

 },

 collectedText: {

 fontSize: 0.2,

 textAlign: 'center'

 },

 button: {

 margin: 0.1,

 height: 0.5,

 backgroundColor: 'blue',

 transform: [{ translate: [0, 0, -5] }]

 },

 buttonText: {

 fontSize: 0.3,

 textAlign: 'center'

 }

 })

World background
In order to set the the game's 360 degree world background, we will update
the current background scene using the setBackgroundImage method from the
Environment API inside componentDidMount.

/MERNVR/index.js:

componentDidMount = () => {

 Environment.setBackgroundImage(

 {uri: this.state.game.world}

)

}

This will replace the default 360 background in the starter React 360
project with our sample game's world image fetched from cloud storage. If
you are editing the default React 360 application and have it running,
refreshing the http://localhost:8081/index.html link on the browser should
show an outer space background, that can be panned around using the
mouse:

To generate the preceding screenshot, the View and Text components in the
default code were also updated with custom CSS rules to show this hello
text on the screen.

Adding 3D VR objects
We will add 3D objects to the game world using Entity components and the
sample object details in the answerObjects and wrongObjects arrays.

First, we will concatenate the answerObjects and wrongObjects arrays in
componentDidMount to form a single array containing all the VR objects.

 /MERNVR/index.js:

componentDidMount = () => {

 let vrObjects = this.state.game.answerObjects.concat(this.state.game.wrongObjects)

 this.setState({vrObjects: vrObjects})

 ...

}

Then in the main view, we will iterate over the vrObjects array to add the
Entity components with details of each object.

/MERNVR/index.js:

{this.state.vrObjects.map((vrObject, i) => {

 return (

 <Entity key={i} style={this.setModelStyles(vrObject, i)}

 source={{

 obj: {uri: vrObject.objUrl},

 mtl: {uri: vrObject.mtlUrl}

 }}

 />

)

 })

}

The obj and mtl file links are added to source and the transform style details
are applied in the Entity component's styles with setModelStyles(vrObject,
index).

/MERNVR/index.js:

setModelStyles = (vrObject, index) => {

 return {

 display: this.state.collectedList[index] ? 'none' : 'flex',

 color: vrObject.color,

 transform: [

 {

 translateX: vrObject.translateX

 }, {

 translateY: vrObject.translateY

 }, {

 translateZ: vrObject.translateZ

 }, {

 scale: vrObject.scale

 }, {

 rotateY: vrObject.rotateY

 }, {

 rotateX: vrObject.rotateX

 }, {

 rotateZ: vrObject.rotateZ

 }

]

 }

 }

The display property will allow us to show or hide an object based on
whether it has been already collected by the player or not.

The translate and rotate values will render the 3D objects in the desired
positions and orientations across the VR world.

Next, we will update the Entity code further to enable user interactions with
the 3D objects.

Interacting with VR objects
In order to make the VR game objects interactive, we will use the React
360 event handlers, such as onEnter and onExit with Entity, and onClick with
VrButton, to add rotation animation and gameplay behavior.

Rotation
We want to add a feature that starts rotating a 3D object around its Y-axis
whenever a player focuses on the 3D object, that is, the platform cursor
begins intersecting with the Entity rendering the specific 3D object.

We will update the Entity component from the previous section to add the
onEnter and onExit handlers.

/MERNVR/index.js:

<Entity

 ...

 onEnter={this.rotate(i)}

 onExit={this.stopRotate}

/>

The object will start rotating on enter, and stop when the platform cursor
exits the object and it is no longer in the player's focus.

Animation with
requestAnimationFrame
In the rotate(index) and stopRotate() methods, we will implement rotation
animation behavior using requestAnimationFrame for smooth animations on the
browser.

The window.requestAnimationFrame() method asks the browser to call a specified callback
function to update an animation before the next repaint. With requestAnimationFrame, the
browser optimizes the animations to make them smoother and more resource-
efficient.

Using the rotate method, we will update the rotateY transform value of the
given object at a steady rate on a set time interval with
requestionAnimationFrame.

/MERNVR/index.js:

this.lastUpdate = Date.now()

rotate = index => event => {

 const now = Date.now()

 const diff = now - this.lastUpdate

 const vrObjects = this.state.vrObjects

 vrObjects[index].rotateY = vrObjects[index].rotateY + diff / 200

 this.lastUpdate = now

 this.setState({vrObjects: vrObjects})

 this.requestID = requestAnimationFrame(this.rotate(index))

}

The requestAnimationFrame will take the rotate method as a recursive callback
function, then execute it to redraw each frame of the rotation animation
with the new values, and in turn update the animation on the screen.

The requestAnimateFrame method returns a requestID, which we will use in
stopRotate to cancel the animation in the stopRotate method.

/MERNVR/index.js:

stopRotate = () => {

 if (this.requestID) {

 cancelAnimationFrame(this.requestID)

 this.requestID = null

 }

}

This will implement the functionality of animating the 3D object only
when it is in the viewer's focus. As seen in the following image, the 3D
Rubik's cube rotates clockwise around its Y-axis while it is in focus:

Though not covered here, it is also worth exploring the React 360 Animated library,
which can be used to compose different types of animations. Core components can
be animated natively with this library, and it is possible to make other components
animatable using createAnimatedComponent(). This library was originally implemented from
React Native, and to learn more you can refer to the React Native documentation.

Clicking the 3D objects
In order to register the click behavior on each 3D object added to the
game, we need to wrap the Entity component with a VrButton component that
can call the onClick handler.

We will update the Entity component added inside the vrObjects array
iteration code, to wrap it with the VrButton component. The VrButton will call
the collectItem method when clicked, and pass it the current object's details.

/MERNVR/index.js:

<VrButton onClick={this.collectItem(vrObject)} key={i}>

 <Entity … />

</VrButton>

When a 3D object is clicked, the collectItem method needs to perform the
following actions with respect to the game features:

Check whether the clicked object is an answerObject or a wrongObject
Based on the object type, play the associated sound
If the object is an answerObject, it should be collected and disappear
from view

Update collected objects list
Check whether all instances of answerObject were successfully collected
with this click

If yes, show the game completed message to the player and play
the sound for game completed

Hence, the collectItem method will have the following structure and steps:

collectItem = vrObject => event => {

 if (vrObject is an answerObject) {

 ... update collected list ...

 ... play sound for correct object collected ...

 if (all answer objects collected) {

 ... show game completed message in front of user ...

 ... play sound for game completed ...

 }

 } else {

 ... play sound for wrong object clicked ...

 }

}

Next, we will look at the implementation for these steps.

Collecting the correct object on click
When a user clicks on a 3D object, we need to first check whether the clicked
object is an answer object. If it is, this collected object will be hidden from
view and a list of collected objects will be updated along with the total number
to keep track of the user's progress in the game.

To check whether the clicked VR object is an answerObject, we will use the indexOf
method to find a match in the answerObjects array:

let match = this.state.game.answerObjects.indexOf(vrObject)

If the vrObject is an answerObject, indexOf will return the array index of the matched
object, otherwise it will return -1 if no match is found.

To keep track of collected objects in the game, we will also maintain an array
of Boolean values in collectedList, and the total number of objects collected so
far in collectedNum:

let updateCollectedList = this.state.collectedList

let updateCollectedNum = this.state.collectedNum + 1

updateCollectedList[match] = true

this.setState({collectedList: updateCollectedList,

 collectedNum: updateCollectedNum})

Using the collectedList array, we will also determine which Entity component
should be hidden from the view because the associated object was
collected. The display style property of the relevant Entity will be set based on
the Boolean value of the corresponding index in the collectedList array, while
setting the style for the Entity component using the setModelStyles method, as
shown earlier in the Adding 3D VR objects section:

display: this.state.collectedList[index] ? 'none' : 'flex'

In the following image, the treasure chest can be clicked to be collected as it is
an answerObject, whereas the flower pot cannot be collected because it is a
wrongObject:

When the treasure chest is clicked, it disappears from the view as the
collectedList is updated, and we also play the sound effect for collection using
AudioModule.playOneShot:

AudioModule.playOneShot({

 source: asset('collect.mp3'),

})

But when the flower pot is clicked, and it is identified as a wrong object, we
play another sound effect indicating it cannot be collected:

AudioModule.playOneShot({

 source: asset('clog-up.mp3'),

})

As the flower pot was identified to be a wrong object, the collectedList was not
updated and it remains on the screen as seen in the following screenshot:

The complete code in the collectItem method that executes all these steps when
an object is clicked will be as follows.

/MERNVR/index.js:

 collectItem = vrObject => event => {

 let match = this.state.game.answerObjects.indexOf(vrObject)

 if (match != -1) {

 let updateCollectedList = this.state.collectedList

 let updateCollectedNum = this.state.collectedNum + 1

 updateCollectedList[match] = true

 this.checkGameCompleteStatus(updateCollectedNum)

 AudioModule.playOneShot({

 source: asset('collect.mp3'),

 })

 this.setState({collectedList: updateCollectedList, collectedNum: updateCollectedNum})

 } else {

 AudioModule.playOneShot({

 source: asset('clog-up.mp3'),

 })

 }

 }

After a clicked object is collected, we will also check whether all the
answerObjects have been collected, and the game is complete with the
checkGameCompleteStatus method, as discussed in the next section.

Game completed state
Every time an answerObject is collected, we will check whether the total number of
collected items is equal to the total number of objects in the answerObjects array to
determine whether the game is complete by calling checkGameCompleteStatus.

/MERNVR/index.js:

 if (collectedTotal == this.state.game.answerObjects.length) {

 AudioModule.playEnvironmental({

 source: asset('happy-bot.mp3'),

 loop: true

 })

 this.setState({hide: 'flex', hmMatrix: VrHeadModel.getHeadMatrix()})

 }

If the game is indeed complete, we will perform the following actions:

Play the audio for game completed, using AudioModule.playEnvironmental
Fetch the current headMatrix value using VrHeadModel so it can be set as the
transform matrix value for the View component containing the game
completion message
Set the display style property of the message View to flex, so the message
renders to the viewer

The View component containing the message congratulating the player for
completing the game will be added to the parent View component as follows.

/MERNVR/index.js:

<View style={this.setGameCompletedStyle}>

 <View style={this.styles.completeMessage}>

 <Text style={this.styles.congratsText}>Congratulations!</Text>

 <Text style={this.styles.collectedText}>

 You have collected all items in {this.state.game.name}

 </Text>

 </View>

 <VrButton onClick={this.exitGame}>

 <View style={this.styles.button}>

 <Text style={this.styles.buttonText}>Play another game</Text>

 </View>

 </VrButton>

</View>

The call to the setGameCompletedStyle() method will set the styles for the message
View with the updated display value and transform matrix value.

/MERNVR/index.js:

setGameCompletedStyle = () => {

 return {

 position: 'absolute',

 display: this.state.hide,

 layoutOrigin: [0.5, 0.5],

 width: 6,

 transform: [{translate: [0, 0, 0]}, {matrix: this.state.hmMatrix}]

 }

}

This will render the View with the completion message at the center of the user's
current view, regardless of whether they are looking up, down, behind, or
forward in the 360 degree VR world:

The final text in the View message will act as a button, as we wrapped this View in a
VrButton component that calls the exitGame method when clicked.

/MERNVR/index.js:

exitGame = () => {

 Location.replace('/')

}

The exitGame method will use the Location.replace method to redirect the user to an
external URL that may contain a list of games.

The replace method can be passed any valid URL, and once this React 360 game
code is integrated with the MERN VR Game application in Chapter 11, Making the
VR Game Dynamic Using MERN, replace('/') will take the user to the home page
of the application.

Bundling for production and
integration with MERN
Now that we have features of the VR game implemented and functional
with sample game data, we can prepare it for production and add it to our
MERN base application to see how VR can be added to an existing web
application.

React 360 tools provide a script to bundle all the React 360 application
code into a few files that we can just place on the MERN web server and
serve as content at a specified route.

Bundling React 360 files
To create the bundled files, we can run the following command from the
React 360 project directory:

npm run bundle

This generates compiled versions of the React 360 application files in a
folder called build. The compiled bundle files are client.bundle.js and
index.bundle.js. These two files, in addition to index.html and the static-assets/
folder, make up the production version of the whole React 360 application
that was developed:

-- static_assets/

-- index.html

-- index.bundle.js

-- client.bundle.js

Integrating with MERN
application
We will need to add these three files and the static_assets folder to our
MERN application, then make sure the bundle file references are accurate
in index.html, and finally load the index.html at a specified route in the
Express app.

Add the React 360 production files
With consideration to the folder structure in the MERN skeleton
application, we will add the static_assets folder and the bundle files to the
dist/ folder to keep our MERN code organized and have all the bundles in
the same location. The index.html file will be placed in a new folder, named
vr, in the server folder:

-- ...

-- client/

-- dist/

 --- static_assets/

 --- ...

 --- client.bundle.js

 --- index.bundle.js

-- ...

-- server/

 --- ...

 --- vr/

 ---- index.html

-- ...

Updating references in index.html
The generated index.html file, as shown here, references the bundle files,
expecting these files to be in the same folder:

<html>

 <head>

 <title>MERNVR</title>

 <style>body { margin: 0 }</style>

 <meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">

 </head>

 <body>

 <!-- Attachment point for your app -->

 <div id="container"></div>

 <script src="./client.bundle.js"></script>

 <script>

 // Initialize the React 360 application

 React360.init(

 'index.bundle.js',

 document.getElementById('container'),

 {

 assetRoot: 'static_assets/',

 }

)

 </script>

 </body>

</html>

We need to update index.html to refer to the correct location of
the client.bundle.js, index.bundle.js, and static_assets folders.

First, update the reference to client.bundle.js as follows:

<script src="/dist/client.bundle.js" type="text/javascript"></script>

Then, update React360.init with the correct reference to index.bundle.js, and
assetRoot set to the correct location of the static_assets folder:

React360.init(

 './../dist/index.bundle.js',

 document.getElementById('container'),

 { assetRoot: '/dist/static_assets/' }

)

The assetRoot will tell React 360 where to look for asset files when we use
asset() to set resources in the components.

Now, if we set up an Express route in the MERN application to return the
index.html file in the response, then visiting the route in the browser will render
the React 360 game.

Trying out the integration
To test out this integration, we can set up an example route, as follows:

router.route('/game/play')

 .get((req, res) => {

 res.sendFile(process.cwd()+'/server/vr/index.html')

})

Then run the MERN server, and open the route in the browser at
localhost:3000/game/play. This should render the React 360 game implemented
in this chapter from within our MERN application.

Summary
In this chapter, we used React 360 to develop a web-based VR game that
can be easily integrated into MERN applications.

We began by defining simple VR features for the gameplay, then set up
React 360 for development, and looked at key VR concepts such as
equirectangular panoramic images, 3D positions, and coordinate systems
in the 360-degree VR world. We explored the React 360 components and
API required to implement the game features, including components such
as View, Text, Entity, and VrButton, along with the Environment, VrHeadModel and
NativeModules APIs.

Finally, we updated the code in the starter React 360 project to implement
the game with sample game data, then bundled the code files and
discussed how to add these compiled files to an existing MERN
application.

In the next chapter, we will develop the MERN VR Game application,
complete with a game database and APIs so we can make the game
developed in this chapter dynamic by fetching data from the game
collection in MongoDB.

Making the VR Game Dynamic
Using MERN
In this chapter, we will extend the MERN skeleton application to build the
MERN VR game application, and use it to make the static React 360 game
developed in the previous chapter dynamic by replacing the sample game
data with game details fetched directly from the MERN server.

To make MERN VR Game a complete and dynamic game application, we
will implement the following:

A game model schema to store game details in MongoDB
APIs for game CRUD operations
React views for game create, edit, list, and delete
Updating the React 360 game to fetch data from API
Loading the VR game with dynamic game data

Dynamic MERN VR Game
Registered users on MERN VR Game will be able to make and modify their own games by providing an
equirectangular image for the game world, and the VR object resources, including transform property values for
each object to be placed in the game world. Any visitor to the application will be able to browse through all the
games added by the makers, and play any game to find and collect the 3D objects in the game world that are
relevant to the clue or description of each game:

The code for the complete MERN VR Game application is available on GitHub at github.com/shamahoque/mern-vrgame. You can clone this code
and run the application as you go through the code explanations in the rest of this chapter.

The views needed for the features related to creating, editing, and listing VR games will be developed by
extending and modifying the existing React components in the MERN skeleton application. The component-tree
pictured next shows all the custom React components that make up the MERN VR Game frontend developed in
this chapter:

https://github.com/shamahoque/mern-vrgame

Game model
In Chapter 10, Developing a Web-Based VR Game, the Game data
structure section laid out the details needed for each game in order to
implement the scavenger hunt features defined for the gameplay. We will
design the game schema based on these specific details about the game, its
VR objects, and also a reference to the game maker.

Game schema
In the Mongoose schema for the game model defined in game.model.js, we
will add fields for the

Game's name
World image URL
Clue text
An array containing details of the VR objects to be added as
collectable answer objects
An array containing details of the VR objects that are wrong objects
and cannot be collected
Timestamps indicating when a game is created and updated
A reference to the user who made the game

The GameSchema will be defined as follows.

mern-vrgame/server/models/game.model.js:

const GameSchema = new mongoose.Schema({

 name: {

 type: String,

 trim: true,

 required: 'Name is required'

 },

 world: {

 type: String, trim: true,

 required: 'World image is required'

 },

 clue: {

 type: String,

 trim: true

 },

 answerObjects: [VRObjectSchema],

 wrongObjects: [VRObjectSchema],

 updated: Date,

 created: {

 type: Date,

 default: Date.now

 },

 maker: {type: mongoose.Schema.ObjectId, ref: 'User'}

})

VRObject schema
The answerObjects and wrongObjects fields in the game schema will both be
arrays of VRObject documents, and the VRObject Mongoose schema will
be defined separately with fields for storing the URLs of the OBJ file and
MTL file, along with the React 360 transform values for each VR object, the
scale value, and color value.

mern-vrgame/server/models/game.model.js:

const VRObjectSchema = new mongoose.Schema({

 objUrl: {

 type: String, trim: true,

 required: 'ObJ file is required'

 },

 mtlUrl: {

 type: String, trim: true,

 required: 'MTL file is required'

 },

 translateX: {type: Number, default: 0},

 translateY: {type: Number, default: 0},

 translateZ: {type: Number, default: 0},

 rotateX: {type: Number, default: 0},

 rotateY: {type: Number, default: 0},

 rotateZ: {type: Number, default: 0},

 scale: {type: Number, default: 1},

 color: {type: String, default: 'white'}

})

When a new game document is saved to the database, the answerObjects and
wrongObjects arrays will be populated with VRObject documents that adhere
to this schema definition.

Array length validation in the game
schema
The answerObjects and wrongObjects arrays in a game document must contain at
least one VRObject document in each array when being saved in the game
collection. To add validation for a minimum array length to the game
schema, we will add the following custom validation checks to the
answerObjects and wrongObjects paths in GameSchema.

mern-vrgame/server/models/game.model.js:

GameSchema.path('answerObjects').validate(function(v) {

 if (v.length == 0) {

 this.invalidate('answerObjects',

 'Must add alteast one VR object to collect')

 }

}, null)

GameSchema.path('wrongObjects').validate(function(v) {

 if (v.length == 0) {

 this.invalidate('wrongObjects',

 'Must add alteast one other VR object')

 }

}, null)

These schema definitions will cater to all the requirements for developing
a dynamic VR game according to the specifications of the MERN VR
Game.

Game APIs
The backend in the MERN VR Game will expose a set of CRUD APIs for
creating, editing, reading, listing, and deleting games from the database,
which can be used in the frontend of the application, including in the React
360 game implementation, with fetch calls.

The create API
A user who is signed in to the application will be able to create new games
in the database using the create API.

Route
In the backend, we will add a POST route in game.routes.js, that verifies that
the current user is signed in and authorized, and then creates a new game
with the game data passed in the request.

mern-vrgame/server/routes/game.routes.js:

router.route('/api/games/by/:userId')

 .post(authCtrl.requireSignin,authCtrl.hasAuthorization, gameCtrl.create)

To process the :userId param and retrieve the associated user from the
database, we will utilize the userByID method from the user controller. We
will also add the following to the game routes, so the user is available in
the request object as profile.

mern-vrgame/server/routes/game.routes.js:

router.param('userId', userCtrl.userByID)

The game.routes.js file will be very similar to the user.routes file, and to load
these new routes in the Express app, we need to mount the game routes in
express.js, just as we did for the auth and user routes.

mern-vrgame/server/express.js:

app.use('/', gameRoutes)

Controller
The create controller method is executed when a POST request is received
at '/api/games/by/:userId' with the request body containing the new game
data.

mern-vrgame/server/controllers/game.controller.js:

const create = (req, res, next) => {

 const game = new Game(req.body)

 game.maker= req.profile

 game.save((err, result) => {

 if(err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.status(200).json(result)

 })

}

In this create method, a new game document is created using the game
schema and the data passed in the request body from the client side. Then
this document is saved in the Game collection after the user reference is set
as the game maker.

Fetch
On the frontend, we will add a corresponding fetch method in api-game.js to
make a POST request to the create API by passing the form data collected
from the signed-in user.

mern-vrgame/client/game/api-game.js:

const create = (params, credentials, game) => {

 return fetch('/api/games/by/'+ params.userId, {

 method: 'POST',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: JSON.stringify(game)

 })

 .then((response) => {

 return response.json();

 }).catch((err) => console.log(err))

}

List API
It will be possible to fetch a list of all the games in the Game collection from
the backend using the list API.

Route
We will add a GET route to the game routes to retrieve all the games
stored in the database.

mern-vrgame/server/routes/game.routes.js:

router.route('/api/games')

 .get(gameCtrl.list)

A GET request to /api/games will execute the list controller method.

Controller
The list controller method will query the Game collection in the database to
return all the games in the response to the client.

mern-vrgame/server/controllers/game.controller.js:

const list = (req, res) => {

 Game.find({}).populate('maker', '_id name')

 .sort('-created').exec((err, games) => {

 if(err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(games)

 })

}

Fetch
In the frontend, to fetch the games using this list API, we will set up a fetch
method in api-game.js.

mern-vrgame/client/game/api-game.js:

const list = () => {

 return fetch('/api/games', {

 method: 'GET',

 }).then(response => {

 return response.json()

 }).catch((err) => console.log(err))

}

List by maker API
The application will also allow us to fetch the games made by a specific
user with the list by maker API.

Route
In the game routes, we will add a GET route to retrieve the games made by a
specific user.

mern-vrgame/server/routes/game.routes.js:

router.route('/api/games/by/:userId')

 .get(gameCtrl.listByMaker)

A GET request to this route will execute the listByMaker method in the game
controller.

Controller
The listByMaker controller method will query the Game collection in the
database to get the matching games.

mern-vrgame/server/controllers/game.controller.js:

const listByMaker = (req, res) => {

 Game.find({maker: req.profile._id}, (err, games) => {

 if(err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(games)

 }).populate('maker', '_id name')

}

In the query to the Game collection, we find all the games where the maker
field matches the user specified in req.profile.

Fetch
In the frontend, to fetch the games for a specific user with this list by the
maker API, we will add a fetch method in api-game.js.

mern-vrgame/client/game/api-game.js:

const listByMaker = (params) => {

 return fetch('/api/games/by/'+params.userId, {

 method: 'GET',

 headers: {

 'Accept': 'application/json'

 }

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

Read API
Individual game data will be retrieved from the database using the read API
at '/api/game/:gameId'.

Route
In the backend, we will add a GET route that queries the Game collection with
an ID and returns the game in the response.

mern-vrgame/server/routes/game.routes.js:

router.route('/api/game/:gameId')

 .get(gameCtrl.read)

The :gameId param in the route URL will be processed first to retrieve the
individual game from the database. So we will also add the following to
the game routes:

router.param('gameId', gameCtrl.gameByID)

Controller
The :gameId param in the request to the read API will call the gameByID
controller method, which is similar to the userByID controller method. It will
retrieve the game from the database and attach it to the request object to be
used in the next method.

mern-vrgame/server/controllers/game.controller.js:

const gameByID = (req, res, next, id) => {

 Game.findById(id).populate('maker', '_id name').exec((err, game) => {

 if (err || !game)

 return res.status('400').json({

 error: "Game not found"

 })

 req.game = game

 next()

 })

}

The next method, in this case the read controller method, simply returns this
game object in the response to the client.

mern-vrgame/server/controllers/game.controller.js:

const read = (req, res) => {

 return res.json(req.game)

}

Fetch
In the frontend code, we will add a fetch method to utilize this read API to
retrieve the details of an individual game according to its ID.

mern-vrgame/client/game/api-game.js:

const read = (params, credentials) => {

 return fetch('/api/game/' + params.gameId, {

 method: 'GET'

 }).then((response) => {

 return response.json()

 }).catch((err) => console.log(err))

}

This read API will be used for the React views fetching a game detail and
also the React 360 game view, which will render the game interface.

Edit API
Authorized users who are signed in and also the maker of a specific game
will be able to edit the details of that game using the edit API.

Route
In the backend, we will add a PUT route that allows an authorized user to
edit one of their games.

mern-vrgame/server/routes/game.routes.js:

router.route('/api/games/:gameId')

 .put(authCtrl.requireSignin, gameCtrl.isMaker, gameCtrl.update)

A PUT request to '/api/games/:gameId' will first execute the gameByID controller
method to retrieve the specific game’s details. The requireSignin auth
controller method will also be called to ensure the current user is signed
in. Then the isMaker controller method will determine whether the current
user is the maker of this specific game before finally running the game
update controller method to modify the game in the database.

Controller
The isMaker controller method ensures that the signed-in user is actually the
maker of the game being edited.

mern-vrgame/server/controllers/game.controller.js:

const isMaker = (req, res, next) => {

 let isMaker = req.game && req.auth && req.game.maker._id == req.auth._id

 if(!isMaker){

 return res.status('403').json({

 error: "User is not authorized"

 })

 }

 next()

}

The update method in the game controller will take the existing game
details and the form data received in the request body to merge the
changes, and save the updated game to the Game collection in the
database.

mern-vrgame/server/controllers/game.controller.js:

const update = (req, res) => {

 let game = req.game

 game = _.extend(game, req.body)

 game.updated = Date.now()

 game.save((err) => {

 if(err) {

 return res.status(400).send({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(game)

 })

}

Fetch
The edit API is called in the view using a fetch method that takes the form
data and sends it with the request to the backend along with user
credentials.

mern-vrgame/client/game/api-game.js:

const update = (params, credentials, game) => {

 return fetch('/api/games/' + params.gameId, {

 method: 'PUT',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 },

 body: JSON.stringify(game)

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

Delete API
An authenticated and authorised user will be able to delete any of the
games they made on the application using the delete game API.

Route
In the backend, we will add a DELETE route that allows an authorized maker
to delete one of their own games.

mern-vrgame/server/routes/game.routes.js:

router.route('/api/games/:gameId')

 .delete(authCtrl.requireSignin, gameCtrl.isMaker, gameCtrl.remove)

The flow of the controller method execution on the server after receiving
the DELETE request at 'api/games/:gameId' will be similar to the edit API,
with the final call made to the remove controller method instead of update.

Controller
The remove controller method deletes the specified game from the database,
when a DELETE request is received at '/api/games/:gameId' and it has been
verified that the current user is the original maker of the given game.

mern-vrgame/server/controllers/game.controller.js:

const remove = (req, res) => {

 let game = req.game

 game.remove((err, deletedGame) => {

 if(err) {

 return res.status(400).json({

 error: errorHandler.getErrorMessage(err)

 })

 }

 res.json(deletedGame)

 })

}

Fetch
We will add a corresponding remove method in api-game.js to make a delete
fetch request to the delete API.

mern-vrgame/client/game/api-game.js:

const remove = (params, credentials) => {

 return fetch('/api/games/' + params.gameId, {

 method: 'DELETE',

 headers: {

 'Accept': 'application/json',

 'Content-Type': 'application/json',

 'Authorization': 'Bearer ' + credentials.t

 }

 }).then((response) => {

 return response.json()

 }).catch((err) => {

 console.log(err)

 })

}

With these game APIs in place, we can build out the React views for the
application and also update the React 360 game view code to fetch and
render dynamic game details.

Creating and editing games
Users registered on MERN VR Game will be able to make new games and
modify these games from within the application. We will add React
components that allow users to modify game details and VR object details
for each game.

Making a new game
When a user signs into the application, they will see a MAKE GAME link
on the menu that will navigate them to the NewGame component containing a
form to create a new game.

Updating the menu
We will update the navigation menu to add the MAKE GAME button, as
shown in the following screenshot:

In the Menu component, we will add the Link to the route for the NewGame
component, right before the MY PROFILE Link, in the section that
renders only when the user is authenticated.

mern-vrgame/client/core/Menu.js:

<Link to="/game/new">

 <Button style={isActive(history, "/game/new")}>

 <AddBoxIcon color="secondary"/> Make Game

 </Button>

</Link>

NewGame component
The NewGame component uses the GameForm component to render the form elements the user
will fill out to create a new game:

The GameForm contains all the form fields, and it takes the onSubmit method that should be
executed when the user submits the form, as a prop from the NewGame component along
with any server-returned error messages.

mern-vrgame/client/game/NewGame.js:

<GameForm onSubmit={this.clickSubmit} errorMsg={this.state.error}/>

The clickSubmit method uses the create fetch method from api-game.js to make a POST
request to the create API with the game form data and user details.

mern-vrgame/client/game/NewGame.js:

 clickSubmit = game => event => {

 const jwt = auth.isAuthenticated()

 create({

 userId: jwt.user._id

 }, {

 t: jwt.token

 }, game).then((data) => {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 this.setState({error: '', redirect: true})

 }

 })

 }

We will add a PrivateRoute in MainRouter, so the NewGame component loads in the browser at
the /game/new path.

mern-vrgame/client/MainRouter.js:

<PrivateRoute path="/game/new" component={NewGame}/>

Editing the game
Users will be able to edit the games they made using the EditGame
component, which will render the game form fields pre-populated with the
existing game's details.

EditGame component
Just like in the NewGame component, the EditGame component will also use the GameForm component to
render the form elements, but this time the fields will show the current values of the game fields,
and users will be able to update these values:

In the case of the EditGame component, GameForm will take the given game's ID as a prop so it can
fetch the game details, in addition to the onSubmit method and server-generated error message, if
any.

mern-vrgame/client/game/EditGame.js:

<GameForm gameId={this.match.params.gameId} onSubmit={this.clickSubmit} errorMsg={this.state.error}/>

The clickSubmit method for the edit form will use the update fetch method in api-game.js to make a
PUT request to the edit API with the form data and user details.

mern-vrgame/client/game/EditGame.js:

clickSubmit = game => event => {

 const jwt = auth.isAuthenticated()

 update({

 gameId: this.match.params.gameId

 }, {

 t: jwt.token

 }, game).then((data) => {

 if (data.error) {

 this.setState({error: data.error})

 } else {

 this.setState({error: '', redirect: true})

 }

 })

 }

The EditGame component will load in the browser at the /game/edit/:gameId path, declared in a
PrivateRoute in MainRouter.

mern-vrgame/client/MainRouter.js:

<PrivateRoute path="/game/edit/:gameId" component={EditGame}/>

The GameForm component
The GameForm component used in both the NewGame and EditGame components
contains the elements that allow users to enter game details and VR object
details for a single game. It may start with a blank game object or load an
existing game in componentDidMount.

mern-vrgame/client/game/GameForm.js:

state = {

 game: {name: '', clue:'', world:'', answerObjects:[], wrongObjects:[]},

 redirect: false,

 readError: ''

 }

If the GameForm component receives a gameId prop from the parent component,
such as from the EditGame component, then it will use the read API to
retrieve the game's details and set it to state to be rendered in the form
view.

mern-vrgame/client/game/GameForm.js:

componentDidMount = () => {

 if(this.props.gameId){

 read({gameId: this.props.gameId}).then((data) => {

 if (data.error) {

 this.setState({readError: data.error})

 } else {

 this.setState({game: data})

 }

 })

 }

}

The form view in the GameForm component will essentially have two parts,
one part that takes simple game details, such as name, world image link,
and clue text as input, and a second part that allows users to add a variable
number of VR objects to either the answer objects array or wrong objects
array.

Inputing simple game details
The simple game details section will mostly be text input added using the
Material-UI TextField component, with a change handling method passed to
onChange.

Form title
The form title will either be New Game or Edit Game, depending on whether an
existing game ID is passed as a prop to GameForm.

mern-vrgame/client/game/GameForm.js:

<Typography type="headline" component="h2">

 {this.props.gameId? 'Edit': 'New'} Game

</Typography>

Game world image
We will render the background image URL in an img element at the very
top to show users the image they added as the game world image URL.

mern-vrgame/client/game/GameForm.js:

<TextField id="world" label="Game World Equirectangular Image (URL)"

value={this.state.game.world} onChange={this.handleChange('world')}/>

Game name
The game name will be added in a single TextField of default type text.

mern-vrgame/client/game/GameForm.js:

<TextField id="name" label="Name" value={this.state.game.name} onChange={this.handleChange('name')}/>

Clue text
The clue text will be added to a multiline TextField component.

mern-vrgame/client/game/GameForm.js:

<TextField id="multiline-flexible" label="Clue Text" multiline rows="2" value={this.state.game.clue} onChange={this.handleChange('

Handle input
All the input changes will be handled by the handleChange method that will
update the game values in state with the user input.

mern-vrgame/client/game/GameForm.js:

handleChange = name => event => {

 const newGame = this.state.game

 newGame[name] = event.target.value

 this.setState({game: newGame})

}

Modifying arrays of VR objects
In order to allow users to modify the arrays of answerObjects and wrongObjects that they wish to add to their VR
game, GameForm will iterate through each array and render a VRObjectForm component for each object. With this, it will
become possible to add, remove, and modify VR objects from the GameForm component:

Iterating and rendering the object
details form
Using the Material-UI ExpansionPanel components, we will add the form
interface seen previously to create a modifiable array of VR object details for
each type of VR object array in the given game.

Inside the ExpansionPanelDetails component, we will iterate through the
answerObjects array or the wrongObjects array to render a VRObjectForm component for
each VR object.

mern-vrgame/client/game/GameForm.js:

<ExpansionPanel>

 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon/>}>

 <Typography>VR Objects to collect</Typography>

 </ExpansionPanelSummary>

 <ExpansionPanelDetails>{

 this.state.game.answerObjects.map((item, i) => {

 return <div key={i}>

 <VRObjectForm index={i} type={'answerObjects'}

 vrObject={item}

 handleUpdate={this.handleObjectChange}

 removeObject={this.removeObject}/>

 </div> })}

 <Button color="primary" variant="raised" onClick={this.addObject('answerObjects')}>

 <AddBoxIcon color="secondary"/> Add Object

 </Button>

 </ExpansionPanelDetails>

</ExpansionPanel>

Each VRObjectForm will take as props the vrObject itself, the current index in the
array, the type of object array, and two methods for updating the state in
GameForm when the array details are modified by changing details or deleting an
object from within the VRObjectForm component.

Adding a new object to the array
The button to add an object will allow users to add a new VRObjectForm
component to take the details of a new VR object.

mern-vrgame/client/game/GameForm.js:

addObject = name => event => {

 const newGame = this.state.game

 newGame[name].push({})

 this.setState({game: newGame})

}

This will basically just add an empty object to the array being iterated
with a call to the addObject method with the array type specified in the name
value.

Removing an object from the array
Each VRObjectForm component can also be deleted to remove the object from
the given array. GameForm will pass a removeObject method to the VRObjectForm
component as a prop so the array can be updated in state when a user
clicks delete on a specific VRObjectForm.

mern-vrgame/client/game/GameForm.js:

removeObject = (type, index) => event => {

 const newGame = this.state.game

 newGame[type].splice(index, 1)

 this.setState({game: newGame})

}

The object will be removed from the array by slicing at the given index
from the array of the specified array type in name.

Handling the object detail change
The VR object details will update in the GameForm component state when the
user changes input values in any of the VRObjectForm fields. To register this
update, the GameForm passes the handleObjectChange method to the VRObjectForm
component.

mern-vrgame/client/game/GameForm.js:

handleObjectChange = (index, type, name, val) => {

 var newGame = this.state.game

 newGame[type][index][name] = val

 this.setState({game: newGame})

}

The handleObjectChange method updates the field value of the specific object
at the index in the array with the given type, so it is reflected in the game
object stored in the state in GameForm.

VRObjectForm component
The VRObjectForm component will render the input fields to modify an
individual VR object's details, which is added to the answerObjects and
wrongObjects arrays of the game in the GameForm component:

It may start with a blank VR object or load an existing VR object's details
in componentDidMount.

mern-vrgame/client/game/VRObjectForm.js:

state = {

 objUrl: '', mtlUrl: '',

 translateX: 0, translateY: 0, translateZ: 0,

 rotateX: 0, rotateY: 0, rotateZ: 0,

 scale: 1, color:'white'

}

In componentDidMount, the state will be set with details of the vrObject passed as
a prop from the GameForm component.

mern-vrgame/client/game/VRObjectForm.js:

componentDidMount = () => {

 if(this.props.vrObject &&

 Object.keys(this.props.vrObject).length != 0){

 const vrObject = this.props.vrObject

 this.setState({

 objUrl: vrObject.objUrl,

 mtlUrl: vrObject.mtlUrl,

 translateX: Number(vrObject.translateX),

 translateY: Number(vrObject.translateY),

 translateZ: Number(vrObject.translateZ),

 rotateX: Number(vrObject.rotateX),

 rotateY: Number(vrObject.rotateY),

 rotateZ: Number(vrObject.rotateZ),

 scale: Number(vrObject.scale),

 color:vrObject.color

 })

 }

}

The input fields to modify these values will be added using Material-UI
TextField components.

3D object file input
The OBJ and MTL file links will be added for each VR object as text input
using the TextField components.

mern-vrgame/client/game/VRObjectForm.js:

<TextField

 id="obj"

 label=".obj url"

 value={this.state.objUrl}

 onChange={this.handleChange('objUrl')}

/>

<TextField

 id="mtl"

 label=".mtl url"

 value={this.state.mtlUrl}

 onChange={this.handleChange('mtlUrl')}

/>

Translate value input
The translate values of the VR object across the X, Y, and Z axes will be
input in the TextField components of the number type.

mern-vrgame/client/game/VRObjectForm.js:

<TextField

 value={this.state.translateX}

 label="TranslateX"

 onChange={this.handleChange('translateX')}

 type="number"

/>

<TextField

 value={this.state.translateY}

 label="TranslateY"

 onChange={this.handleChange('translateY')}

 type="number"

/>

<TextField

 value={this.state.translateZ}

 label="TranslateZ"

 onChange={this.handleChange('translateZ')}

 type="number"

/>

Rotate value input
The rotate values of the VR object around the X, Y, and Z axes will be
input in the TextField components of the number type.

mern-vrgame/client/game/VRObjectForm.js:

<TextField

 value={this.state.rotateX}

 label="RotateX"

 onChange={this.handleChange('rotateX')}

 type="number"

/>

<TextField

 value={this.state.rotateY}

 label="RotateY"

 onChange={this.handleChange('rotateY')}

 type="number"

/>

<TextField

 value={this.state.rotateZ}

 label="RotateZ"

 onChange={this.handleChange('rotateZ')}

 type="number"

/>

Scale value input
The scale value for the VR object will be input in a TextField component of
the number type.

mern-vrgame/client/game/VRObjectForm.js:

<TextField

 value={this.state.scale}

 label="Scale"

 onChange={this.handleChange('scale')}

 type="number"

/>

Object color input
The color value for the VR object will be input in a TextField component of
the text type:

mern-vrgame/client/game/VRObjectForm.js:

<TextField

 value={this.state.color}

 label="Color"

 onChange={this.handleChange('color')}

/>

Delete object button
The VRObjectForm will contain a Delete button that will execute the removeObject
method received in the GameForm props form:

mern-vrgame/client/game/VRObjectForm.js:

<Button onClick={this.props.removeObject(this.props.type, this.props.index)}>

 <Icon>cancel</Icon> Delete

</Button>

The removeObject method will take the value of the object array type and the
array index position to remove the given object from the relevant VR
objects array in the GameForm state.

Handling the input change
When any of the VR object details are changed in the input fields, the
handleChange method will update the state of the VRObjectForm component, and
use the handleUpdate method passed as a prop from GameForm to update the VR
object in the GameForm state with the changed value for the object detail.

mern-vrgame/client/game/VRObjectForm.js:

handleChange = name => event => {

 this.setState({[name]: event.target.value})

 this.props.handleUpdate(this.props.index,

 this.props.type,

 name,

 event.target.value)

}

With this implementation, the create and edit game forms are in place,
complete with VR object input forms for arrays of varying sizes. Any
registered user can use these forms to add and edit games on the MERN
VR Game application.

Game list views
Visitors to MERN VR Game will access the games on the application from
lists rendered on the home page and individual user profiles. The home
page will list all the games on the application, and the games by a specific
maker will be listed on their user profile page. The list views will iterate
through game data fetched using the list APIs and render details of each
game in the GameDetail component.

All games
The Home component will fetch the list of all the games in the game collection using the list API when the
component mounts.

mern-vrgame/client/core/Home.js:

componentDidMount = () => {

 list().then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.setState({games: data})

 }

 })

}

The list of games retrieved from the server will be set to state and iterated over to render a GameDetail component
with each game in the list.

mern-vrgame/client/core/Home.js:

{this.state.games.map((game, i) => {

 return <GameDetail key={i} game={game} updateGames={this.updateGames}/>

})}

The GameDetail component will be passed the game details and an updateGames method.

mern-vrgame/client/core/Home.js:

updateGames = (game) => {

 const updatedGames = this.state.games

 const index = updatedGames.indexOf(game)

 updatedGames.splice(index, 1)

 this.setState({games: updatedGames})

}

The updateGames method will update the list in the Home component when a user deletes their game from the GameDetail
component that renders with an edit and delete option for the maker of the game:

Games by a maker
The user Profile component will fetch the list of just the games made by the
given user with the list by the maker API. We will update the init method in
the Profile component to call the listByMaker fetch method after the user details
are retrieved.

mern-vrgame/client/user/Profile.js:

 init = (userId) => {

 const jwt = auth.isAuthenticated()

 read({

 userId: userId

 }, {t: jwt.token}).then((data) => {

 if (data.error) {

 this.setState({redirectToSignin: true})

 } else {

 this.setState({user: data})

 listByMaker({userId: data._id}).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.setState({games: data})

 }

 })

 }

 })

 }

Similar to how the game list is rendered in the Home component, we will set the
list of games retrieved from the server to state in the Profile component, and
iterate over it in the view to render the GameDetail components, which will be
passed the individual game details and an updateGames method.

mern-vrgame/client/user/Profile.js:

{this.state.games.map((game, i) => {

 return <GameDetail key={i} game={game} updateGames={this.updateGames}/>

})}

This will render a GameDetail component for each game made by the specific
user:

GameDetail component
The GameDetail component takes a game object as a prop, and renders the details
of the game, along with a PLAY GAME button that links to the VR game view.
It also shows edit and delete buttons if the current user is the maker of the game:

Game details
The game details, such as the name, world image, clue text, and maker
name, are rendered to give the user an overview of the game.

mern-vrgame/client/game/GameDetail.js:

<Typography type="headline" component="h2">

 {this.props.game.name}

</Typography>

<CardMedia image={this.props.game.world}

 title={this.props.game.name}/>

<Typography type="subheading" component="h4">

 by

 {this.props.game.maker.name}

</Typography>

<CardContent>

 <Typography type="body1" component="p">

 {this.props.game.clue}

 </Typography>

</CardContent>

Play Game button
The Play Game button in the GameDetail component will simply be a Link
component that points to the route that opens the React 360-generated
index.html (implementation for this route on the server is discussed in the
Playing the VR game section).

mern-vrgame/client/game/GameDetail.js:

<Link to={"/game/play?id=" + this.props.game._id} target='_self'>

 <Button variant="raised" color="secondary">

 Play Game

 </Button>

</Link>

The route to the game view takes the game ID as a query parameter. We set
target='_self' on the Link so React Router skips transitioning to the next state
and lets the browser handle this link. What this will do is allow the
browser to directly make the request at this route, and render the index.html
file sent by the server in response to this request.

Edit and delete buttons
The GameDetail component will show the edit and delete options only if the
currently signed-in user is also the maker of the game being rendered.

mern-vrgame/client/game/GameDetail.js:

{auth.isAuthenticated().user

 && auth.isAuthenticated().user._id == this.props.game.maker._id &&

 (<div>

 <Link to={"/game/edit/" + this.props.game._id}>

 <Button variant="raised" color="primary"

 className={classes.editbutton}>

 Edit

 </Button>

 </Link>

 <DeleteGame game={this.props.game}

 removeGame={this.props.updateGames}/>

 </div>)}

If the user ID of the signed-in user matches the maker ID in the game, the
edit button linking to the edit form view and the DeleteGame component are
shown in the view.

Deleting a game
A signed-in user will be able to delete a specific game they made by
clicking on the delete button visible to makers in the GameDetail component.
The GameDetail component adds this delete option using a DeleteGame
component.

DeleteGame component
The DeleteGame component added to the GameDetail component for each game
takes the game details, and a removeGame method, as props from GameDetail that
updates the parent component that GameDetail is a part of.

mern-vrgame/client/game/GameDetail.js:

<DeleteGame game={this.props.game} removeGame={this.props.updateGames}/>

This DeleteGame component is basically a button that, when clicked, opens a
confirm dialog to ask the user whether they are sure they want to delete
their game:

The dialog is implemented using the Dialog component from Material-UI.

mern-vrgame/client/game/DeleteGame.js:

<Button variant="raised" onClick={this.clickButton}>

 Delete

</Button>

<Dialog open={this.state.open} onClose={this.handleRequestClose}>

 <DialogTitle>{"Delete "+this.props.game.name}</DialogTitle>

 <DialogContent>

 <DialogContentText>

 Confirm to delete your game {this.props.game.name}.

 </DialogContentText>

 </DialogContent>

 <DialogActions>

 <Button onClick={this.handleRequestClose} color="primary">

 Cancel

 </Button>

 <Button onClick={this.deleteGame} color="secondary"

 autoFocus="autoFocus">

 Confirm

 </Button>

 </DialogActions>

</Dialog>

Upon successful deletion, the dialog is closed and the parent component
containing the GameDetail component is updated by calling the removeGame
method passed in as a prop.

mern-vrgame/client/game/DeleteGame.js:

deleteGame = () => {

 const jwt = auth.isAuthenticated()

 remove({

 gameId: this.props.game._id

 }, {t: jwt.token}).then((data) => {

 if (data.error) {

 console.log(data.error)

 } else {

 this.props.removeGame(this.props.game)

 this.setState({open: false})

 }

 })

 }

The removeGame method called in this deleteGame handler method updates the
state of the parent, which could be the Home component or the user Profile
component, so the deleted game is no longer shown in the view.

Playing the VR game
Users on MERN VR Game will be able to open and play any of the games
from within the application. To enable this, we will set up a route on the
server that renders index.html, which was generated with React 360, in the
response to a GET request at the following path:

/game/play?id=<game ID>

The path takes a game ID value as a query parameter, which is used in the
React 360 code to fetch the game details with the read API.

API to render the VR game view
The GET request to open the React 360 index.html page will be declared in
game.routes.js, as follows.

mern-vrgame/server/routes/game.routes.js:

router.route('/game/play')

 .get(gameCtrl.playGame)

This will execute the playGame controller method to return the index.html page
in response to the incoming request.

mern-vrgame/server/controllers/game.controller.js:

const playGame = (req, res) => {

 res.sendFile(process.cwd()+'/server/vr/index.html')

}

The playGame controller method will send the index.html placed in
the /server/vr/ folder to the requesting client.

In the browser, this will render the React 360 game code, which will fetch
the game details from the database using the read API, and render the
game world along with the VR objects that the user can interact with.

Updating the game code in React
360
With the game backend all set up in the MERN application, we can update
the React 360 project code we developed in Chapter 10, Developing a Web-
Based VR Game, to make it render games directly from the game
collection in the database.

We will use the game ID in the link that opens the React 360 application to
fetch game details with the read API from within the React 360 code, and
then set the data to state so the game loads details retrieved from the
database instead of the static sample data we used in Chapter 10, Developing
a Web-Based VR Game.

Once the code is updated, we can bundle it again and place the compiled
files in the MERN application.

Getting the game ID from a link
In the index.js file of the React 360 project folder, update the
componentDidMount method to retrieve the game ID from the incoming URL
and make a fetch call to the read game API.

/MERNVR/index.js:

componentDidMount = () => {

 let gameId = Location.search.split('?id=')[1]

 read({

 gameId: gameId

 }).then((data) => {

 if (data.error) {

 this.setState({error: data.error});

 } else {

 this.setState({

 vrObjects: data.answerObjects.concat(data.wrongObjects),

 game: data

 });

 Environment.setBackgroundImage(

 {uri: data.world}

)

 }

 })

}

Location.search gives us access to the query string in the incoming URL that
loads index.html. The retrieved query string is split to get the game ID value
from the id query parameter attached in the URL. We need this game ID
value to fetch the game details with the read API from the server, and set
it to state for the game and vrObjects values.

Fetching the game data with the
read API
In the React 360 project folder, we will add an api-game.js file that will
contain a read fetch method that makes a call to the read game API on the
server using the provided game ID.

/MERNVR/api-game.js:

const read = (params) => {

 return fetch('/api/game/' + params.gameId, {

 method: 'GET'

 }).then((response) => {

 return response.json()

 }).catch((err) => console.log(err))

}

export {

 read

}

This fetch method is used in componentDidMount of the React 360 entry
component to retrieve the game details.

This updated React 360 code is available in the branch named 'dynamic-game' on
the GitHub repository at: github.com/shamahoque/MERNVR.

https://github.com/shamahoque/MERNVR

Bundling and integrating the
updated code
With the React 360 code updated to fetch and render game details
dynamically from the server, we can bundle this code using the provided
bundle script and place the newly compiled files in the dist folder of the
MERN VR Game project directory.

To bundle the React 360 code from the command line, go to the React 360
MERNVR project folder and run:

npm run bundle

This will generate the client.bundle.js and index.bundle.js bundle files in the
build/ folder with the updated React 360 code. These files, along with the
index.html and static_assets folders, need to be added to the MERN VR Game
application code as discussed in Chapter 10, Developing a Web-Based VR
Game, to integrate the latest VR game code.

With this integration completed, if we run the MERN VR Game
application, and click the Play Game link on any of the games, it should
open up the game view with the details of the specific game rendered in
the VR scene, and allow interaction with the VR objects as specified in the
gameplay.

Summary
In this chapter, we integrated the capabilities of the MERN stack
technologies with React 360 to develop a dynamic VR game application
for the web.

We extended the MERN skeleton application to build a working backend
that stores VR game details. And allows us to make API calls to
manipulate these details. We added React views that let users modify
games and browse through the games with the option to launch and play
the VR game at a specified route rendered directly by the server.

Finally, we updated the React 360 project code to pass data between the
MERN application and the VR game view, by retrieving query parameters
from the incoming URL, and using fetch to retrieve data with the game
API.

This integration of the React 360 code with the MERN stack application
produced a fully functioning and dynamic web-based VR game
application, demonstrating how MERN stack technologies can be used and
extended to create unique user experiences.

In the next chapter, we will reflect on the MERN applications built in this
book, discussing not just the best practices the were followed, but also the
scope for improvements and further development.

Following Best Practices and
Developing MERN Further
In this chapter, we elaborate on some of the best practices applied while
building the four MERN applications in this book, along with other
practices not applied in this book, but that should be considered for real-
world applications to ensure reliability and scalability as complexity
grows. Finally, we wrap up with suggestions on enhancing, and steps for
extending the applications built.

The topics covered in this chapter include the following:

Separation of concerns with modularity in the app structure
Considering the options for CSS styling solutions
Server-side rendering with data for selected views
Using ES6 class for stateful vs purely functional components
Deciding on using Redux or Flux
Security enhancements for storing user credentials
Writing test code
Optimizing bundle size
How to add new features to existing applications

Separation of concerns with
modularity
While building out the MERN stack applications, we followed a common
folder structure across each application, which divided and grouped the
code based on relevance and common functionality. The idea behind
creating these smaller and distinct sections in the code is to make sure
each section addresses a separate concern, so individual sections can be
reused, as well as developed and updated independently.

Revisiting the application folder
structure
More specifically, in the application folder structure, we kept the client-
side and server-side code separate with further subdivisions within these
two sections. This gave us some freedom to design and build the frontend
and backend of the application independently:

| mern_application/

 | -- client/

 | -- server/

In the client and server sections, we divided the code further into subfolders
that mapped to unique functionalities, such as models, controllers, and
routes in the server to a specific feature, such as grouping all components
related to a user on the client side.

Server-side code
On the server side, we divided the code according to functionality by
separating code that defines business models from code implementing
routing logic and code that responds to client requests at these routes:

 | -- server/

 | --- controllers/

 | --- models/

 | --- routes/

In this structure, each folder contains code with a specific purpose:

models: This folder is meant to contain all the Mongoose schema
model definitions in separate files, each file representing a single
model.
routes: This folder contains all routes that allow the client to interact
with the server - placed in separate files where each file may be
associated with a model in the models folder.
controllers: This contains all the controller functions that define
logic to respond to incoming requests at the defined routes, divided
into separate files corresponding to relevant model and route files.

As demonstrated throughout the book, these specific separations of
concerns for the code on the server side allowed us to extend the server
developed for the skeleton application by just adding the required model,
route, and controller files.

Client-side code
The client-side code for the MERN applications consist primarily of React
components. In order to organize the component code and related helper
code in a reasonable and understandable manner, we separated the code
into folders related to a feature entity or unique functionality:

 | -- client/

 | --- auth/

 | --- core/

 | --- post/

 | --- user/

 | --- componentFolderN/

In the preceding structure, we placed all the auth-related components and
helper code in the auth folder, common and basic components, such as
the Home and Menu components, in the core folder, then we made post and user
folders for all post-related or user-related components in the respective
folders.

This separation and grouping of components based on features allowed us
to extend the frontend views in the skeleton application for each
application that followed, by adding a new feature-related component code
folder, as required, to the client folder.

In the final section of this chapter, we demonstrate further the advantages
of this modularized approach of separating the application code, as we
outline the general workflow that can be adopted to add a new feature to
any of the existing applications developed in this book.

Adding CSS styles
When discussing user interface implementations for the applications in
this book, we chose not to focus on the details of the CSS styling code
applied and relied mostly on the default Material-UI stylings. But given
that implementing any user interface requires considering styling
solutions, we will briefly look at some of the options available.

When it comes to adding CSS styles to the frontend, there are a number of
options, each with pros and cons. In this section, we will discuss the two
most common options, which are external style sheets and inline styles,
along with a newer approach of writing CSS in JavaScript, or more
specifically JSS, which is used in Material-UI components and hence also
for the applications in this book.

External style sheets
External style sheets allow us to define CSS rules in separate files that can
be injected into the necessary view. Placing CSS styles this way in external
style sheets was once considered the better practice because it enforced the
separation of style and content, allowing reusability and also maintaining
modularity if a separate CSS file is created for each component.

However, as web development technologies continue evolving, the
demands of better CSS organization and performance are no longer met by
this approach. For example, using external style sheets while developing
frontend views with React components limits control over updating styles
based on the component state. Moreover, loading external CSS for React
applications requires additional Webpack configurations with css-loader and
style-loader.

When applications grow and share multiple style sheets, it also becomes
impossible to avoid selector conflicts because CSS has a single global
namespace. Hence, though external style sheets may be enough for simple
and trivial applications, as an application grows, other options for using
CSS become more relevant.

Inline styles
Inline CSS is a style defined and applied directly to individual elements in
the view. Though this takes care of some of the problems faced with
external style sheets, such as eliminating the issue of selector conflicts and
allowing state-dependent styles, it takes away reusability and introduces a
few problems of its own, such as limiting the CSS features that can be
applied.

Using only inline CSS for a React-based frontend has important
limitations for growing applications, such as poor performance because all
the inline styles are recomputed at each render, and inline styles are
slower than class names to begin with.

Inline CSS may seem like an easy fix in some cases, but does not serve as
a good option for overall usage.

JSS
JSS allows us to write CSS styles using JavaScript in a declarative way.
This also means all the features of JavaScript are now available for writing
CSS, making it possible to write reusable and maintainable styling code.

JSS works as a JS to CSS compiler that takes JS objects, where keys
represent class names, with values representing corresponding CSS rules,
and then generates the CSS along with scoped class names.

In this way, JSS generates unique class names by default when it compiles
JSON representations to CSS, eliminating the chances of selector conflicts
faced with external style sheets. Moreover, unlike inline styles, CSS rules
defined with JSS can be shared across multiple elements and all CSS
features can be used in the definitions.

Material-UI uses JSS to style its components, and as a result we used JSS
to apply Material-UI themes and also custom CSS to the components
developed for the frontend views in all the applications.

Selective server-side rendering with
data
When we developed the frontend of the base skeleton application in Chapter
4, Adding a React Frontend to Complete MERN, we integrated basic
server-side rendering to be able to load client-side routes directly from the
browser address bar when the request goes to the server. In this SSR
implementation, while rendering the React components server-side, we did
not consider loading the data from the database for the components that
displayed data. The data only loads in these components when the client-
side JavaScript takes over after the initial load of the server-side rendered
markup.

We did update this implementation to add server-side rendering with data
for the individual media detail pages in the MERN Mediastream
application discussed in Chapter 9, Customizing Media Player and Improve
SEO. In this case, we decided to render this specific view with data by
injecting data into the server-side generated markup of the React frontend.
The reasoning behind this selective server-side rendering with data only
for specific views can be based on certain desired behaviors for the view
in question.

When is SSR with data relevant?
Implementing server-side rendering with data for all the React views in an
application can become complicated and additional work when it is
necessary to consider views with client-side authentication or consisting
of multiple data sources. In many cases, it may be unnecessary to tackle
these complexities if the view does not require server-side rendering with
data. In order to judge whether a view needs to be server-rendered with
data, answer the following questions for the specific view to make your
decision:

Is it important for the data to be displayed in the initial load of the
view when JavaScript may not be available in the browser?
Do the view and its data need to be SEO-friendly?

Loading data in the initial load of the page may be relevant from a
usability persepective, so it really depends on the use case for the specific
view. For SEO, server-side rendering with data will give search engines
easier access to the data content in the view, so if this is crucial for the
view in question, then adding server-side rendering with data is a good
idea.

Using ES6 class for stateful vs pure
functional components
While building UI with React components, composing the views with
more stateless functional components can make the frontend code
manageable, clean, and easier to test. But some components will need the
state or lifecycle hooks to be more than pure presentational components.
In this section, we look at what it takes to build stateful and stateless
functional React components, when to use one or the other and how often.

React components with ES6 class
React components defined using ES6 class have access to lifecycle
methods, the this keyword, and can manage state with setState when
building stateful components. Stateful components allow us to build
interactive components that can manage changing data in state, and
propagate any business logic that needs to be applied across the UI.
Generally, for complex UI, stateful components should be higher-level
container components that manage the state of the smaller stateless
functional components they are composed of.

React components as pure
functions
React components can be defined as stateless functional components using
the ES6 class syntax or as pure functions. The main idea is a stateless
component does not modify state and receives props.

The following code defines a stateless component using the ES6 class
syntax:

class Greeting extends React.Component {

 render() {

 return <h1>Hello, {this.props.name}</h1>

 }

}

The same can also be defined using JavaScript pure functions, as follows:

function Greeting(props) {

 return <h1>Hello, {props.name}</h1>

}

A pure function always gives the same output when given the same input
without any side effects. Modeling React components as pure functions
enforces creation of smaller, more defined, and self-contained components
that emphasize UI over business logic as there is no state manipulation in
these components. These kinds of components are composable, reusable,
and easy to debug and test.

Designing the UI with stateful
components and stateless
functional components
While thinking about the component composition for a UI, design the root
or a parent component as a stateful component that will contain child
components or the composable components that only receive props and
cannot manipulate state. All the state-changing actions using setState and
life-cycle issues will be handled by the root or parent component.

In the applications developed for this book, there is a mixture of stateful
higher-level components and smaller stateless components. For example,
in the MERN Social application, the Profile component modifies the state
for stateless child components, such as the FollowProfileButton and FollowGrid
components. There is scope for refactoring some of the larger components
that were developed in this book into smaller, more self-contained
components, and this should be considered before extending the
applications to incorporate more features.

The main takeaway that can be applied to new component design or
refactoring existing components, is that as the React application grows and
gets more complex, it is better to have more stateless functional
components added to higher-level stateful components that are in charge
of managing state for its inner components.

Using Redux or Flux
When React applications begin to grow and get more complex, managing
communication between components can become problematic. When
using regular React, the way to communicate is to pass down values and
callback functions as props to the child components. But this can be
tedious if there are a lot of intermediary components that the callback
must pass through. To address these state communication and
management-related issues as the React application grows, people turn to
using React with libraries and architecture patterns such as Redux and
Flux.

It is outside the scope of this book to delve into the details of integrating
React with the Redux library or the Flux architecture, but the reader may
consider these options for their growing MERN applications while keeping
the following in mind:

Redux and Flux utilize patterns that enforce changing states in a
React application from a central location. A trick to avoid using
Redux or Flux in React applications of manageable sizes, is moving
all state changes up the component tree to parent components.
Smaller applications work just as well without Flux or Redux.

You can learn more about using React with Redux at https://redux.js.org/, and Flux at f
acebook.github.io/flux/.

https://redux.js.org/
http://facebook.github.io/flux/

Enhancing security
In the MERN applications developed for this book, we kept the auth-
related security implementations simple by using JSON Web Tokens as an
authentication mechanism and by storing hashed passwords in the User
collection. In this section, we will go over these choices and point to
possible enhancements.

JSON web tokens – client-side or
server-side storage
With the JWT authentication mechanism, the client side becomes
responsible for maintaining user state. Once the user signs in, the token
sent by the server is stored and maintained by the client-side code on
browser storage, such as sessionStorage. Hence, it is also up to the client-side
code to invalidate the token by removing it when a user signs out or needs
to be signed out. This mechanism works out well for most applications
that need minimal authentication to protect access to resources. However,
for instances where it may be necessary to track user sign-ins, sign-outs,
and to let the server know that a specific token is no longer valid for sign-
in, just the client-side handling of the tokens is not enough.

For these cases, the implementation discussed for handling JWT tokens on
the client side can be extended to storage on the server side as well. In the
specific case of keeping track of invalidated tokens, a MongoDB
collection can be maintained by the server to store these invalidated
tokens as reference, somewhat similar to how it is done for storing session
data on the server side.

The thing to be cautious about and to keep in mind is that storing and
maintaining auth-related information on both the client and server side
may be overkill in most cases. Hence it is entirely up to the specific use
case and the related trade-offs to be considered.

Securing password storage
While storing user credentials for authentication in the User collection, we
made sure that the original password string provided by the user is never
stored directly in the database. Instead we generated a hash of the
password along with a salt value using the crypto module in Node.

In user.model.js from our applications, we defined the following functions to
generate the hashed password and salt value:

encryptPassword: function(password) {

 if (!password) return ''

 try {

 return crypto

 .createHmac('sha1', this.salt)

 .update(password)

 .digest('hex')

 } catch (err) {

 return ''

 }

 },

 makeSalt: function() {

 return Math.round((new Date().valueOf() * Math.random())) + ''

 }

With this implementation, every time a user enters a password to sign in, a
hash is generated with the salt. If the generated hash matches the stored
hash, then the password is correct, otherwise the password is wrong. So in
order to check whether a password is correct, the salt is required, and
hence it is stored with the user details in the database along with the hash.

This is standard practice for securing passwords stored for user
authentication, but there are other advanced approaches that may be
explored if a specific application's security requirements demand it. Some
options that can be considered include multi-iteration hashing approaches,
other secure hashing algorithms, limiting login attempts per user account,
and multi-level authentication with additional steps such as answering
security questions or entering security codes.

Writing test code
Though discussing and writing test code is outside the scope of this book,
it is crucial for developing reliable software. In this section, first we will
look at the testing tools available to test the different parts of a MERN
application. Then, to help get started with writing test code for the MERN
applications developed in this book, we will also discuss a real example of
adding a client-side test to the MERN Social application from Chapter 5,
Starting with a Simple Social Media Application.

Testing with Jest
Jest is a comprehensive testing framework for JavaScript. Though it is
more commonly known for testing React components, it can be used for
general-purpose testing with any JavaScript library or framework. Among
the many JavaScript testing solutions in Jest, it provides support for
mocking and snapshot testing, comes with an assertion library, and tests in
Jest are written in the behavior driven development (BDD) style. Besides
testing the React components, Jest can be also be adapted to write test
code for the Node-Express-Mongoose-based backend as required. Hence,
it is a solid testing option to add test code for the MERN applications.

To learn more about Jest, read the docs at https://facebook.github.io/jest/docs/en/getting-star
ted.html.

https://facebook.github.io/jest/docs/en/getting-started.html

Adding a test to the MERN Social
application
Using Jest, we will add a client-side test to the MERN Social application
and demonstrate how to get started with adding tests to MERN
applications.

Before writing the test code, first we will set up for testing by installing
the necessary packages, defining the test run script, and creating a tests
folder for the test code.

Installing the packages
The following npm packages will be required in order to write test code
and run the tests:

jest: To include the Jest testing framework
babel-jest: To compile JS code for Jest
react-test-renderer: To make a snapshot of the DOM tree rendered
by a React DOM without using a browser

To install these packages as devDependencies, run the following npm install
command from the command line:

npm install --save-dev jest babel-jest react-test-renderer

Defining the script to run tests
In order to run the test code, we will update the run scripts defined in
package.json, to add a script for running tests with jest:

 "scripts": {

 "test": "jest"

 }

In the command line, if we run npm run test, it will prompt Jest to find the
test code in the application folders and run the tests.

Adding a tests folder
To add the client-side test in the MERN Social application, we will create
a folder called tests in the client folder, which will contain test files
relevant to testing the React components. When the test command is run,
Jest will look for the test code in these files.

The test case for this example will be a test on the Post component, and
tests for the Post component will be added in a file called post.test.js in the
tests folder.

Test case
We will write a test to check whether the delete button on a post is only
visible when the signed-in user is also the creator of the post. This means
that the delete button will only be a part of the Post view, if the user._id of
the authenticated user is the same as the postedby value of the post data
being rendered.

Adding the test
In order to implement this test case, we will add code which takes care of
the following:

Defines dummy data for a post and an auth object
Mocks auth-helper.js
Defines the test and within the test definition

Declares the post and auth variables
Sets the return value of the mocked isAuthenticated method to the
dummy auth object
Uses renderer.create to create the Post component with the required
dummy props passed and wrapped in MemoryRouter to provide the
props related to react-router
Generates and matches snapshots

The code in post.test.js to incorporate the steps described for this specific
test will be as follows:

import auth from './../auth/auth-helper.js'

import Post from './../post/Post.js'

import React from 'react'

import renderer from 'react-test-renderer'

import { MemoryRouter } from 'react-router-dom'

jest.mock('./../auth/auth-helper.js')

const dummyPostObject = {"_id":"5a3cb2399bcc621874d7e42f",

 "postedBy":{"_id":"5a3cb1779bcc621874d7e428",

 "name":"Joe"}, "text":"hey!",

 "created":"2017-12-22T07:20:25.611Z",

 "comments":[], "likes":[]}

const dummyAuthObject = {user: {"_id":"5a3cb1779bcc621874d7e428",

 "name":"Joe",

 "email":"abc@def.com"}}

test('delete option visible only to authorized user', () => {

 const post = dummyPostObject

 const auth = dummyAuthObject

 auth.isAuthenticated.mockReturnValue(auth)

 const component = renderer.create(

 <MemoryRouter>

 <Post post={post} key={post._id} ></Post>

 </MemoryRouter>

)

 let tree = component.toJSON()

 expect(tree).toMatchSnapshot()

})

Generating a snapshot of the
correct Post view
The first time this test is run, we will provide it with the values required to
generate the correct snapshot of the Post view. The correct snapshot for
this test case will contain the delete button when the user._id of the auth
object is equal to the postedBy value of the post object. This snapshot
generated when the test is first run will be used for comparison for future
test executions.

Snapshot testing in Jest basically records snapshots of rendered component
structures to compare them to future renderings. When the recorded snapshot and
the current rendering don’t match, the test fails, indicating that something has
changed.

Running and checking the test
In the code that we just added to the post.test.js, the dummy auth object and post object refer to
the same user, thus running this test in the command line will prompt Jest to generate a
snapshot that will contain the delete option and also pass the test.

To run the test, go into the project folder from the command line:

npm run test

The test output will show that the test passed:

The recorded snapshot that is generated, when this test runs successfully for the first time, is
added automatically to a _snapshots_ folder in the tests folder. This snapshot represents the state
where the delete button is rendered in the view since the authenticated user is also the creator
of the post.

We can now check whether the test actually fails when the component is rendered with an
authenticated user that is not the creator of the post. To perform this check, we will update the
dummy data objects by changing user._id to not match the postedBy value, then run the test again.
This will give us a failed test, as the current rendering will no longer have a delete button that
is present in the recorded snapshot.

As seen in the test log pictured next, the test fails and indicates that the rendered tree does not
match the recorded snapshot since the elements representing the delete button are missing in
the received value:

With this screenshot, we have a client-side test for checking whether a signed-in user can view
the delete button on their posts. Using this setup, more tests can be added for the MERN
application utilizing the capabilities of Jest.

Writing test code will make the application you develop reliable and also help ensure code quality. Another
good practice for improving and maintaining code quality is using a linting tool with your project. Linting
tools perform static analysis on the code to find problematic patterns or behaviors that violate specified rules
and guidelines. Linting code in a JavaScript project can improve overall code readability and also help find
syntax errors before the code is executed. For linting in MERN-based projects, you can explore ESLint, which
is a JavaScript linting utility that allows developers to create their own linting rules.

Optimizing the bundle size
As you develop and grow a MERN application, chances are the size of the
bundles produced with Webpack will also grow, especially if large third-
party libraries are used. Larger bundle sizes will effect performance and
increase the initial load time of the application. We can make changes in
the code to ensure we don’t end up with large bundles and also utilize
features packed in Webpack 4 to help optimize bundling. In this section,
we will highlight some key concepts that can give us control in producing
smaller bundles and decreasing load time.

Before going into the code to update it for bundle size optimization, you can also
get familiar with the default optimization options that are now part of Webpack 4. In
the MERN applications, we used the mode config to utilize the default settings for both
development and production mode. To get an overview of the options available,
check out this article at https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a.

https://medium.com/webpack/webpack-4-mode-and-optimization-5423a6bc597a

Code splitting
Instead of loading all the code at once in one bundle, we can use the code-
splitting feature supported by Webpack to lazy-load parts of the
application code as currently needed by the user. After we modify the
application code to introduce code splitting, Webpack can create multiple
bundles rather than one large bundle. These bundles can be loaded
dynamically at runtime, allowing us to improve the performance of the
application.

To learn more about code splitting support in Webpack and how to make necessary
changes to the setup and configuration, check out the guides in the documentation
at https://webpack.js.org/guides/code-splitting/.

There are several ways to introduce code splitting for the application code,
but the most important syntax you will come across for this purpose is the
dynamic import(). In the next section, we will look at how to use import()
with our MERN applications.

https://webpack.js.org/guides/code-splitting/

Dynamic import()
Dynamic import() is a new function-like version of the regular import and it
enables the dynamic loading of JS modules. Using import(moduleSpecifier)
will return a promise for the module namespace object of the requested
module. When using regular static imports, we import a module at the top
of the code and then use it in the code:

import { convert } from './metric'

...

console.log(convert('km', 'miles', 202))

If we were to use dynamic import() instead of adding the static import at the
beginning, the code would look like this:

import('./metric').then({ convert } => {

 console.log(convert('km', 'miles', 202))

})

This allows importing and loading the module when the code requires it.
While bundling the application code, Webpack will treat calls to import() as
split points and automatically start code splitting by placing the requested
module and its children into a separate chunk from the main bundle.

In order to optimize the bundling of the frontend React code by applying
code splitting at a given component, we need to pair dynamic import() with
React Loadable—a higher-order component for loading components with
promises. As an example, we will look at the shopping cart developed in Ch
apter 7, Extending the Marketplace for Orders and Payments. While
building the interface of the cart, we composed the Cart component
by importing and adding the Checkout component to the view as follows:

import Checkout from './Checkout'

class Cart extends Component {

 ...

 render(){

 ...

 <Checkout/>

 }

 ...

}

To introduce code splitting here and import the Checkout component
dynamically, we can replace the static import at the beginning with a
Loadable Checkout, as shown in the following code:

import Loadable from 'react-loadable'

const Checkout = Loadable({

 loader: () => import('./Checkout'),

 loading: () => <div>Loading...</div>,

})

Making this change and using Webpack to build the code again will
produce a bundle.js file of reduced size, and generate another smaller
bundle file representing the split code, which will now only load when the
Cart component is rendered.

Using this mechanism, we can apply code splitting across our application
code as required. The thing to keep in mind is that effective code splitting
will depend on using it correctly and applying it at the right places in the
code—places that will benefit in optimization from resource-load
prioritization.

Route-based code splitting can be an effective approach for introducing code
splitting in React apps that use routes to load components in the view. To learn more
about implementing code splitting, specifically with React Router, check out the
article at https://tylermcginnis.com/react-router-code-splitting/.

https://tylermcginnis.com/react-router-code-splitting/

Extending the applications
Throughout the chapters in this book, as we developed each application,
we added features by extending the existing code in a common and
repeatable number of steps. In this final section, we will review these steps
and set a guideline for adding more features to the current versions of the
applications.

Extending the server code
For a specific feature, that will require data persistence and APIs to allow
the views to manipulate the data, we can start by extending the server code
and adding the necessary models, routes, and controller functions.

Adding a model
For the data persistence aspect of the feature, design the data model
considering the fields and values that need to be stored. Then, define and
export a Mongoose schema for this data model in a separate file in the
server/models folder.

Implementing the APIs
Next, design the APIs relevant for the desired feature, in order to
manipulate and access the data that will be stored in the database based on
the model.

Adding controllers
With the APIs decided, add the corresponding controller functions that
will respond to the requests to these APIs in a separate file in
the server/controllers folder. The controller functions in this file should
access and manipulate the data for the model defined for this feature.

Adding routes
To complete the implementation of the server-side APIs, corresponding
routes need to be declared and mounted on the Express app. In a separate
file in the server/routes folder, first declare and export the routes for these
APIs, assigning the relevant controller functions that should be executed
when a specific route is requested. Then, load these new routes on the
Express app in the server/express.js file, like the other existing routes in the
application.

This will produce a working version of the new backend APIs that can be
run and checked from a REST API client application, before going on to
build and integrate frontend views for the feature being developed.

Extending the client code
On the client side, first design the views required for the feature, and
determine how these views will incorporate user interaction with the data
relevant to the feature. Then add the fetch API code to integrate with the
new backend APIs, define the new components that represent these new
views, and update the existing code to include these new components in
the frontend of the application.

Adding the API fetch methods
In the client folder, create a new folder to house the components and
helper code relevant to the feature module being developed. Then to
integrate the new backend APIs, add and export the corresponding fetch
methods in a separate file in this new components folder.

Adding components
Create and export new React components that represent views for the
desired feature, in separate files in the new folder. Integrate auth into these
new components using the existing auth-helper methods.

Loading new components
In order to incorporate these new components into the frontend, the
components either need to be added into existing components or rendered
at their own client-side routes.

Updating frontend routes
If these new components need to be rendered at individual routes, update
the MainRouter.js code to add new routes that load these components at given
URL paths.

Integrating with existing
components
If the new components will become part of existing views, import the
component into the existing component to add it to the view as desired.
The new components can also be integrated with existing components,
such as in the Menu component, by linking to new components that were
added with individual routes.

With the components integrated and connected with the backend, the new
feature implementation is complete. These steps can be repeated to add on
new features to the applications.

Summary
In this final chapter, we reviewed and elaborated on some of the best
practices used while building the MERN applications in this book,
highlighted areas of improvement, gave pointers to address issues that
may crop up when applications grow, and finally set down the guidelines
to continue developing more features into the existing applications.

We saw that modularizing the application's code structure helped extend
the application easily, choosing to use JSS over inline CSS and external
style sheets kept the styling code contained and easy to work with, and
only implementing server-side rendering for specific views as required
kept unnecessary complications out of the code.

We discussed the benefits of creating fewer stateful components that are
composed of smaller and more defined stateless functional components,
and how this can be applied while refactoring existing components or
designing new components to extend the applications. For growing
applications that may run into issues of managing and communicating
state across hundreds of components, we pointed to options such as Redux
or Flux that may be considered to address these issues.

For applications that may have higher demands for stricter security
enforcement, we looked back at our existing implementation of user auth
with JWT and password encryption, and discussed possible extensions for
improved security.

We used Jest to demonstrate how test code can be added to the MERN
applications, and discussed how good practices, such as writing test code
and using a linting tool, can improve code quality besides ensuring
reliability in an application.

We also looked at bundle optimization features, such as code splitting, that
can help to improve performance by reducing the initial bundle size, and

by lazy-loading parts of the application as required.

Finally, we reviewed and set down the repeatabe steps that were used
throughout the book, and can be used as a guideline moving forward to
extend the MERN applications by adding more features.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

React Design Patterns and Best Practices
Michele Bertoli

ISBN: 978-1-78646-453-8

Write clean and maintainable code
Create reusable components applying consolidated techniques
Use React effectively in the browser and node
Choose the right styling approach according to the needs of the
applications
Use server-side rendering to make applications load faster
Build high-performing applications by optimizing components

https://www.packtpub.com/web-development/react-design-patterns-and-best-practices
https://www.packtpub.com/application-development/full-stack-vuejs-2-and-laravel-5

Full-Stack Vue.js 2 and Laravel 5
Anthony Gore

ISBN: 978-1-78829-958-9

Core features of Vue.js to create sophisticated user interfaces
Build a secure backend API with Laravel
Learn a state-of-the-art web development workflow with Webpack
Full-stack app design principles and best practices
Learn to deploy a full-stack app to a cloud server and CDN
Managing complex application state with Vuex
Securing a web service with Laravel Passport

Leave a review - let other readers
know what you think
Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital
so that other potential readers can see and use your unbiased opinion to
make purchasing decisions, we can understand what our customers think
about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of
your time, but is valuable to other potential customers, our authors, and
Packt. Thank you!

	Title Page
	Copyright and Credits
	Full-Stack React Projects

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	Unleashing React Applications with MERN
	MERN stack
	Node
	Express
	MongoDB
	React

	Relevance of MERN
	Consistency across the technology stack
	Less time to learn, develop, deploy, and extend
	Widely adopted in the industry
	Community support and growth

	Range of MERN applications
	MERN applications developed in this book
	Social media platform
	Online marketplace
	Media streaming application
	VR game for the web

	Book structure
	Getting started with MERN
	Building MERN from the ground up – a skeleton application
	Developing basic web applications with MERN
	Advancing to complex MERN applications
	Going forward with MERN

	Getting the most out of this book
	Summary

	Preparing the Development Environment
	Selecting development tools
	Workspace options
	Local and cloud development

	IDE or text editors
	Chrome Developer Tools
	Git
	Installation
	Remote Git hosting services

	Setting up MERN stack technologies
	MongoDB
	Installation
	Running the mongo shell

	Node
	Installation
	Upgrading npm versions

	Node version management with nvm

	npm modules for MERN
	Key modules
	devDependency modules

	Checking your development setup
	Initializing package.json and installing npm modules
	Configuring Babel, Webpack, and Nodemon
	Babel
	Webpack
	Client-side Webpack configuration for development
	Server-side Webpack configuration
	Client-side Webpack configuration for production

	Nodemon

	Frontend views with React
	Server with Express and Node
	Express app
	Bundle React app during development
	Serving static files from the dist folder
	Rendering templates at the root

	Connecting the server to MongoDB
	npm run scripts
	Developing and debugging in real time

	Summary

	Building a Backend with MongoDB, Express, and Node
	Skeleton application overview
	Feature breakdown
	Focus of this chapter – the backend
	User model
	API endpoints for user CRUD
	Auth with JSON Web Tokens
	How JWT works

	Implementing the skeleton backend
	Folder and file structure
	Setting up the project
	Initializing package.json
	Development dependencies
	Babel
	Webpack
	Nodemon

	Config variables
	Running scripts

	Preparing the server
	Configuring Express
	Starting the server
	Setting up Mongoose and connecting to MongoDB
	Serving an HTML template at a root URL

	User model
	User schema definition
	Name
	Email
	Created and updated timestamps
	Hashed password and salt

	Password for auth
	As a virtual field
	Encryption and authentication
	Password field validation

	Mongoose error handling

	User CRUD API
	User routes
	User controller
	Creating a new user
	Listing all users
	Loading a user by ID to read, update, or delete
	Loading
	Reading
	Updating
	Deleting

	User auth and protected routes
	Auth routes
	Auth controller
	Sign-in
	Sign-out
	Protecting routes with express-jwt
	Requiring sign-in
	Authorizing signed in users
	Protecting user routes
	Auth error handling for express-jwt

	Checking the standalone backend
	Creating a new user
	Fetching the user list
	Trying to fetch a single user
	Signing in
	Fetching a single user successfully

	Summary

	Adding a React Frontend to Complete MERN
	Skeleton frontend
	Folder and file structure
	Setting up for React development
	Configuring Babel and Webpack
	Babel
	Webpack

	Loading Webpack middleware for development
	Serving static files with Express
	Updating the template to load a bundled script
	Adding React dependencies
	React
	React Router
	Material-UI

	Implementing React views
	Rendering a home page
	Entry point at main.js
	Root React component
	Customizing the Material-UI theme
	Wrapping the root component with MUI theme and BrowserRouter
	Marking the root component as hot-exported

	Adding a home route to MainRouter
	Home component
	Imports
	Style declarations
	Component definition
	PropTypes validation
	Export component

	Bundling image assets
	Running and opening in the browser

	Backend API integration
	Fetch for User CRUD
	Creating a user
	Listing users
	Reading a user profile
	Updating a user's data
	Deleting a user

	Fetch for auth API
	Sign-in
	Sign-out

	Auth in the frontend
	Managing auth state
	PrivateRoute component

	User and auth components
	Users component
	Signup component
	Signin component
	Profile component
	EditProfile component
	DeleteUser component
	Menu component

	Basic server-side rendering
	Modules for server-side rendering
	Preparing Material-UI styles for SSR
	Generating markup
	Sending a template with markup and CSS
	Updating template.js
	Updating MainRouter
	Hydrate instead of render

	Summary

	Starting with a Simple Social Media Application
	MERN Social
	Updating the user profile
	Adding an about description
	Uploading a profile photo
	Updating the user model to store a photo in MongoDB
	Uploading a photo from the edit form
	File input with Material-UI
	Form submission with the file attached

	Processing a request containing a file upload

	Retrieving a profile photo
	Profile photo URL
	Showing a photo in a view

	Following users in MERN Social
	Follow and unfollow
	Updating the user model
	Updating the userByID controller method
	API to follow and unfollow
	Accessing follow and unfollow APIs in views
	Follow and unfollow buttons
	FollowProfileButton component
	Update Profile component

	Listing followings and followers
	FollowGrid component

	Finding people to follow
	Fetching users not followed
	FindPeople component

	Posts
	Mongoose schema model for Post
	Newsfeed component
	Listing posts
	List in Newsfeed
	Newsfeed API for posts
	Fetching Newsfeed posts in the view

	Listing by user in Profile
	API for posts by a user
	Fetching user posts in the view

	Creating a new post
	Creating post API
	Retrieving a post's photo
	Fetching the create post API in the view
	NewPost component

	Post component
	Layout
	Header
	Content
	Actions
	Comments

	Deleting a post

	Likes
	Like API
	Unlike API
	Checking if liked and counting likes
	Handling like clicks

	Comments
	Adding a comment
	Comment API
	Writing something in the view

	Listing comments
	Deleting a comment
	Uncomment API
	Removing a comment from view

	Comment count update

	Summary

	Exercising New MERN Skills with an Online Marketplace
	MERN Marketplace
	Users as sellers
	Updating the user model
	Updating the Edit Profile view
	Updating the menu

	Shops in the Marketplace
	Shop model
	Create a new shop
	Create shop API
	Fetch the create API in the view
	NewShop component

	List shops
	List all shops
	Shops list API
	Fetch all shops for the view
	Shops component

	List shops by owner
	Shops by owner API
	Fetch all shops owned by a user for the view
	MyShops component

	Display a shop
	Read a shop API
	Fetch the shop in the view
	Shop component

	Edit a shop
	Edit shop API
	Fetch the edit API in the view
	EditShop component

	Delete a shop
	Delete shop API
	Fetch the delete API in the view
	DeleteShop component

	Products
	Product model
	Create a new product
	Create product API
	Fetching the create API in the view
	The NewProduct component

	List products
	List by shop
	Products by shop API
	Products component for buyers
	MyProducts component for shop owners

	List product suggestions
	Latest products
	Related products
	Suggestions component

	Display a product
	Read a product API
	Product component

	Edit and delete a product
	Edit
	Delete

	Product search with category
	Categories API
	Search products API
	Fetch search results for the view

	Search component
	Categories component

	Summary

	Extending the Marketplace for Orders and Payments
	The MERN Marketplace with a cart, payments, and orders
	Shopping cart
	Adding to cart
	Cart icon on the menu
	Cart view
	The CartItems component
	Retrieving cart details
	Modifying quantity
	Removing item
	Showing total price
	Option to check out

	Using Stripe for payments
	Stripe
	Stripe-connected account for each seller
	Updating user model
	Button to connect with Stripe
	The StripeConnect component
	Stripe auth update API

	Stripe Card Elements for checkout
	Stripe Customer to record card details
	Updating user model
	Updating user controller
	Creating a new Stripe Customer
	Updating an existing Stripe Customer

	Creating a charge for each product processed

	Checkout
	Initializing checkout details
	Customer information
	Delivery address

	The PlaceOrder component
	Stripe CardElement component
	Placing an order
	Empty cart
	Redirecting to Order view

	Creating new order
	Order model
	Ordered by and for customer
	Delivery address
	Payment reference
	Products ordered
	The CartItem schema

	Create order API
	Decrease product stock quantity
	Create order controller method

	Orders by shop
	List by shop API
	The ShopOrders component
	List orders
	The ProductOrderEdit component

	APIs for products ordered
	Get status values
	Update order status
	Cancel product order
	Process charge for product

	View order details
	Summary

	Building a Media Streaming Application
	MERN Mediastream
	Uploading and storing media
	Media model
	MongoDB GridFS to store large files
	Creating a media API
	Route to create media
	Controller method to handle create request
	Fetch create API in the view

	New media form view
	Adding media menu button
	React route for NewMedia view
	NewMedia component

	Retrieve and stream media
	Get video API
	React media player to render the video

	Media list
	MediaList component
	List popular media
	List media by users

	Display, update, and delete media
	Display media
	Read media API
	Media component

	Update media details
	Media update API
	Media edit form

	Deleting media
	The Delete media API
	The DeleteMedia component

	Summary

	Customizing the Media Player and Improving SEO
	MERN Mediastream with a custom media player
	The play media page
	Component structure

	Related media list
	Related list API
	The RelatedMedia component

	The PlayMedia component
	Media player
	Updating the Media component
	Initializing the media player
	Custom media controls
	Play, pause, and replay
	Play next
	Loop on ended
	Volume control
	Progress control
	Fullscreen
	Played duration

	Autoplaying related media
	Toggling autoplay
	Handle autoplay across components
	Update state when video ends in MediaPlayer

	Server-side rendering with data
	Route config
	Updating SSR code for the Express server
	Using route config to load data
	Isomorphic-fetch
	Absolute URL

	Injecting data into React app

	Applying server-injected data in client code
	Passing data props to PlayMedia from MainRouter
	Rendering received data in PlayMedia

	Checking the implementation of SSR with data
	Test in Chrome
	Loading a page with JS enabled
	Disabling JS from settings
	PlayMedia view with JS blocked

	Summary

	Developing a Web-Based VR Game
	MERN VR Game
	Game features
	Focus of this chapter

	React 360
	Getting started with React 360

	Key concepts for developing the VR game
	Equirectangular panoramic images
	3D position – coordinates and transforms
	3D coordinate system
	Transform

	React 360 components
	Core components
	View
	Text

	Components for 3D VR experience
	Entity
	VrButton

	React 360 API
	Environment
	Native Modules
	AudioModule
	Location

	StyleSheet
	VrHeadModel
	Assets

	React 360 input events

	Game details
	Game data structure
	Details of VR objects
	OBJ and MTL links
	Translation values
	Rotation values
	Scale value
	Color

	Static data versus dynamic data
	Sample data

	Building the game view in React 360
	Update client.js and mount to Location
	Defining styles with StyleSheet
	World background
	Adding 3D VR objects
	Interacting with VR objects
	Rotation
	Animation with requestAnimationFrame

	Clicking the 3D objects
	Collecting the correct object on click

	Game completed state

	Bundling for production and integration with MERN
	Bundling React 360 files
	Integrating with MERN application
	Add the React 360 production files
	Updating references in index.html

	Trying out the integration

	Summary

	Making the VR Game Dynamic Using MERN
	Dynamic MERN VR Game
	Game model
	Game schema
	VRObject schema
	Array length validation in the game schema

	Game APIs
	The create API
	Route
	Controller
	Fetch

	List API
	Route
	Controller
	Fetch

	List by maker API
	Route
	Controller
	Fetch

	Read API
	Route
	Controller
	Fetch

	Edit API
	Route
	Controller
	Fetch

	Delete API
	Route
	Controller
	Fetch

	Creating and editing games
	Making a new game
	Updating the menu
	NewGame component

	Editing the game
	EditGame component

	The GameForm component
	Inputing simple game details
	Form title
	Game world image
	Game name
	Clue text
	Handle input

	Modifying arrays of VR objects
	Iterating and rendering the object details form
	Adding a new object to the array
	Removing an object from the array
	Handling the object detail change

	VRObjectForm component
	3D object file input
	Translate value input
	Rotate value input
	Scale value input
	Object color input
	Delete object button
	Handling the input change

	Game list views
	All games
	Games by a maker
	GameDetail component
	Game details
	Play Game button
	Edit and delete buttons

	Deleting a game
	DeleteGame component

	Playing the VR game
	API to render the VR game view

	Updating the game code in React 360
	Getting the game ID from a link
	Fetching the game data with the read API
	Bundling and integrating the updated code

	Summary

	Following Best Practices and Developing MERN Further
	Separation of concerns with modularity
	Revisiting the application folder structure
	Server-side code
	Client-side code

	Adding CSS styles
	External style sheets
	Inline styles
	JSS

	Selective server-side rendering with data
	When is SSR with data relevant?

	Using ES6 class for stateful vs pure functional components
	React components with ES6 class
	React components as pure functions
	Designing the UI with stateful components and stateless functional components

	Using Redux or Flux
	Enhancing security
	JSON web tokens – client-side or server-side storage
	Securing password storage

	Writing test code
	Testing with Jest
	Adding a test to the MERN Social application
	Installing the packages
	Defining the script to run tests
	Adding a tests folder
	Test case
	Adding the test
	Generating a snapshot of the correct Post view
	Running and checking the test

	Optimizing the bundle size
	Code splitting
	Dynamic import()

	Extending the applications
	Extending the server code
	Adding a model
	Implementing the APIs
	Adding controllers
	Adding routes

	Extending the client code
	Adding the API fetch methods
	Adding components
	Loading new components
	Updating frontend routes
	Integrating with existing components

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

