

Electron Projects

Build over 9 cross-platform desktop applications from scratch

Denys Vuika

BIRMINGHAM - MUMBAI

Electron Projects
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Karan Gupta
Content Development Editor: Divya Vijayan
Senior Editor: Mohammed Yusuf Imaratwale
Technical Editor: Jinesh Topiwala
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Jyoti Chauhan

First published: November 2019

Production reference: 1281119

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83855-220-6

www.packt.com

http://www.packt.com

To my dear wife, Iuliia, who always inspires me and supports me in anything I try.

– Denys Vuika

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

About the author
Denys Vuika is an application platform developer and tech lead at Alfresco Software
Inc. He is a full stack developer and a constant open source contributor. He has more than
16 years of programming experience, including 10 years of frontend development with
AngularJS, Angular, ASP.NET, React.js, and other modern web technologies, and more
than three years of experience of Node.js development. Denys works with web technologies
on a daily basis. He has a good understanding of cloud development and the
containerization of web applications.

He is a frequent Medium blogger and is the author of the Developing with Angular book on
Angular, JavaScript, and TypeScript development. He also maintains a series of Angular-
based open source projects.

About the reviewer
Mats Lindblad has worked as a developer for more than 20 years. His experience covers
everything from the backend with Java and PHP to the frontend using React, Angular, and
Vue. And, of course, Electron!

He's dabbled with Rust and C/C++, but is more passionate about frontend technologies and
the magic they enable.

He runs his own consultancy company.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Building Your First Electron Application 6
Technical requirements 6
What is Electron? 7
Preparing a development environment 8

Installing Visual Studio Code 8
Installing Visual Studio Code for Ubuntu 9

Setting up the environment for macOS 9
Installing Git on macOS 9
Installing Node.js on macOS 10

Setting up the environment for Ubuntu Linux 11
Installing Git on Ubuntu 11
Installing Node.js on Ubuntu 11

Setting up the environment for Windows 12
Installing Git on Windows 12
Installing Node.js on Windows 14

Verifying the installation 15
Creating a simple application 15
Packaging for multiple platforms 20

Packaging for macOS 21
Packaging for Ubuntu 24
Packaging for Windows 26

Summary 29

Chapter 2: Building a Markdown Editor 30
Technical requirements 30
Configuring a new project 31
Integrating the editor component 34
Fitting the screen size 37
Integrating the application menu 38

Creating a custom menu item 40
Defining menu item roles 43
Providing menu separators 45
Supporting keyboard accelerators 46
Supporting platform-specific menus 48
Configuring the application name in the menu 49
Hiding menu items 51
Sending messages between processes 53

Introducing editor-event 54
Sending confirmation messages to the main process 54

Table of Contents

[ii]

Sending messages to the renderer process 56
Wiring the toggle bold menu 58

Saving files to a local system 59
Using the save dialog 63

Loading files from a local system 68
Creating a file menu 72

Adding drag and drop support 74
Supporting automatic updates 77

Testing automatic updates 85
Changing the title of the application 88
Summary 89

Chapter 3: Integrating with Angular, React, and Vue 90
Technical requirements 91
Building an Electron application with Angular 91

Generating our Angular project scaffold 92
Integrating the Angular project with Electron 95
Configuring Live Reloading 99

Why test in the browser? 102
Setting up production builds 102
Setting up conditional loading 104
Using Angular Material components 106

Modifications made by installing Angular Material 107
Adding the Material Toolbar component 108

Angular routing 110
Building an Electron application with React 117

Generating a React project 118
Live reloading 122
Setting up production builds 125
Setting up conditional loading 127
Using the Blueprint UI toolkit 128

Adding an application menu 129
Adding routing 131
Final touches 133

Building an Electron application with Vue.js 135
Creating a Vue configuration file 139
Live reloading 141
Production builds 143
Setting up conditional loading 144
Adding routing 146
Configuring Vue Material 148

Creating an application toolbar 149
Summary 152

Chapter 4: Building a Screenshot Snipping Tool 153
Technical requirements 154

Table of Contents

[iii]

Preparing the project 154
Configuring frameless windows 155

Additional options for macOS 158
Using the hidden titleBarStyle 158
Using the hiddenInset titleBarStyle 159
Using the customButtonsOnHover titleBarStyle 159

Transparent windows 160
Making application windows draggable 165
Adding a snip toolbar button 166
Using the desktopCapturer API 167
Calculating the primary display size 169
Generating and saving a thumbnail image 170
Resizing and cropping the image 172
Testing the application's behavior 175
Integrating with the system tray 176
Hiding the main application window on startup 178
Registering global keyboard shortcuts 179
Summary 181

Chapter 5: Making a 2D Game 182
Technical requirements 183
Configuring a game project 183
Running a Hello World example 187
Rendering background images 190
Preventing window resizing 192
Rendering a sprite 192
Scaling sprites 193
Handling keyboard input 195
Flipping sprites based on their direction 197
Controlling sprite coordinates 198
Controlling sprite speed 201
Summary 203

Chapter 6: Building a Music Player 204
Technical requirements 204
Creating a project scaffold 205
Exploring the music player component 207

Downloading music files 209
Providing basic player setup 212

Using AmplitudeJS elements 213
Implementing the global play button 214
Implementing the global pause button 215
Implementing the global play/pause button 216

Styling buttons 216
Exploring the playback control buttons 219

Table of Contents

[iv]

Stop button 220
Mute and unmute buttons 222
Volume buttons 224

Implementing a song progress bar 227
Displaying music metadata 229
Improving the user interface 234
Reviewing the final structure 237
Summary 240

Chapter 7: Analytics, Bug Tracking, and Licensing 241
Technical requirements 242
Understanding analytics and tracking 242
Creating your own solution or using an existing service 243

Creating your own analytics services 244
Using third-party analytics services 244

Using Nucleus for Electron applications 245
Creating a new Nucleus account 246
Creating a new project with tracking support 250
Installing the Nucleus Electron library 252
Inspecting real-time analytics data 254

Identifying users 259
Disabling tracking per user request 259
Verifying real-time user statistics 260
Supporting offline mode 261
Handling application updates 262
Loading global server settings 264
License checking and policies 266

Creating a new policy and license 267
Checking licenses in the application 271

Summary 272

Chapter 8: Building a Group Chat Application with Firebase 273
Technical requirements 274
Creating an Angular project 275

Configuring the Electron Shell 277
Creating a Firebase account 280
Creating a Firebase application 284
Configuring Angular Material components 287

Adding a Browser Animations module 287
Configuring the default theme 288
Adding the Material Icons library 288
Adding a navigation bar 288
Testing the application with the material toolbar 290

Building a login dialog 290

Table of Contents

[v]

Implementing the Material interface 292
Supporting error handling 294
Preparing the chat component placeholder 295

Connecting the login dialog to Firebase Authentication 297
Enabling the sign-in provider 297
Creating demo accounts 300
Integrating the Login dialog with Firebase 302

Configuring the Realtime Database 306
Creating demo groups 308

Rendering the group list 310
Testing real-time updates 312

Implementing the group messages page 314
Displaying group messages 316

Improving query performance 320
Sending group messages 321

Updating the message list interface 324
Ideas for further enhancements 325

Verifying the Electron Shell 325
Summary 326

Chapter 9: Building an eBook Editor and Generator 327
Technical requirements 328
Creating the project structure 328

Generating a new React application 328
Installing the editor component 330
Testing the web application 335
Integrating with the Electron shell 337

Updating the code to use React Hooks 339
Controlling keyboard shortcuts 340

Loading files 342
Saving files 345

Integrating with the application menu 348
Setting up the book generator 351

Installing Docker 352
Running the Pandoc container 356
Sending documents to the main (Node.js) process 359

Invoking Docker commands from Electron 362
Sending the markdown text to the Node.js process 362
Saving the markdown text to the local drive 363

Generating PDF books 366
Generating ePub books 369
Summary 372

Chapter 10: Building a Digital Wallet for Desktops 373
Technical requirements 374

Table of Contents

[vi]

Generating the project scaffold with React 374
Integrating the Ant Design library 376
Setting up a personal Ethereum blockchain 379
Configuring the Ethereum JavaScript API 384
Displaying Ethereum Node information 386

Getting node information 386
Rendering node information in the header 387

Integrating with the application menu 389
Rendering a list of accounts 390
Showing our account balance 395
Transferring Ether to another account 397
Packaging the application for distribution 404
Summary 407

Other Books You May Enjoy 408

Index 411

Preface
The goal of this book is to provide you with practical experience and guide you through
setting up, configuring, building, and distributing Electron applications. You are going to
build multiple projects, address common challenges and pitfalls, and integrate with
modern JavaScript frameworks and underlying toolchains.

Who this book is for
The target audience of this book is beginner or experienced web developers. Readers
should have a basic understanding of HTML, CSS, and JavaScript. Familiarity with one of
the modern web frameworks and libraries such as React, Angular and Vue.js is
recommended.

No prior knowledge of desktop development is required to get started.

What this book covers
Chapter 1, Building Your First Electron Application, prepares the environment and gets you
started with Electron development.

Chapter 2, Building a Markdown Editor, gets you familiar with the main building blocks of
the typical Electron-based application.

Chapter 3, Integrating with Angular, React, and Vue, covers modern frontend Javascript
frameworks, such as Angular, React.js, and Vue.js, and explains how to integrate them with
Electron apps to build cross-platform desktop applications that can share their code base
with their website counterparts.

Chapter 4, Building a Screenshot Snipping Tool, covers working with the native image
capturing API in Electron, system tray integration, and keyboard handling.

Chapter 5, Making a 2D Game, covers integrating a JavaScript-based game engine and
handling game loops, loading external resources, and practicing communication between
Main and Renderer processes.

Preface

[2]

Chapter 6, Building a Music Player, covers building a simple desktop music player with
playlist support and custom album art.

Chapter 7, Analytics, Bug Tracking, and Licensing, gives essential information for developers
that want to monitor Electron application in production, track errors and crashes, analyze a
real-time user base, and more.

Chapter 8, Building a Group Chat Application with Firebase, covers creating an Electron
application with group chat features, integrating with Google Firebase services for mobile
apps, configuring Google Authentication, and storing application data in the cloud.

Chapter 9, Building an eBook Editor and Generator, covers creating a simple cross-platform
book editor, utilizing Docker to generate PDF and ePub books, and previewing the
resulting PDF files in the separate Electron windows.

Chapter 10, Building a Digital Wallet for Desktops, covers developing a simple digital wallet
application that integrates with external services and connecting to locally running servers.

Release cycle note
Please note that we are using Electron 7 in the book. The Electron project has moved to a
12-week release cadence starting on May 13, 2019. You can see the official announcement
on the Electron blog post at https:/ /electronjs. org/ blog/ 12-week- cadence.

Having shorter release cycles means you are getting features, bug fixes, and security fixes
faster. However, that also means there will most probably be newer versions of the Electron
released once this book is out.

The good news is the Electron team is going to support the last three major versions. Be
sure to check the schedule and more details by visiting https:/ /electronjs. org/ docs/
tutorial/support#supported- versions. Besides that, it is relatively easy to upgrade your
application project to the latest version of the Electron. You can do that by running the
following command:

npm install electron@latest

It is highly recommended to watch the Electron team blog for more details on each
release: https:// electronjs. org/ blog.

https://electronjs.org/blog/12-week-cadence
https://electronjs.org/blog/12-week-cadence
https://electronjs.org/blog/12-week-cadence
https://electronjs.org/blog/12-week-cadence
https://electronjs.org/blog/12-week-cadence
https://electronjs.org/blog/12-week-cadence
https://electronjs.org/blog/12-week-cadence
https://electronjs.org/blog/12-week-cadence
https://electronjs.org/blog/12-week-cadence
https://electronjs.org/blog/12-week-cadence
https://electronjs.org/blog/12-week-cadence
https://electronjs.org/blog/12-week-cadence
https://electronjs.org/blog/12-week-cadence
https://electronjs.org/blog/12-week-cadence
https://electronjs.org/blog/12-week-cadence
https://electronjs.org/docs/tutorial/support#supported-versions
https://electronjs.org/docs/tutorial/support#supported-versions
https://electronjs.org/docs/tutorial/support#supported-versions
https://electronjs.org/docs/tutorial/support#supported-versions
https://electronjs.org/docs/tutorial/support#supported-versions
https://electronjs.org/docs/tutorial/support#supported-versions
https://electronjs.org/docs/tutorial/support#supported-versions
https://electronjs.org/docs/tutorial/support#supported-versions
https://electronjs.org/docs/tutorial/support#supported-versions
https://electronjs.org/docs/tutorial/support#supported-versions
https://electronjs.org/docs/tutorial/support#supported-versions
https://electronjs.org/docs/tutorial/support#supported-versions
https://electronjs.org/docs/tutorial/support#supported-versions
https://electronjs.org/docs/tutorial/support#supported-versions
https://electronjs.org/blog
https://electronjs.org/blog
https://electronjs.org/blog
https://electronjs.org/blog
https://electronjs.org/blog
https://electronjs.org/blog
https://electronjs.org/blog
https://electronjs.org/blog
https://electronjs.org/blog

Preface

[3]

To get the most out of this book
It is recommended that readers get familiar with the Node.js runtime (https:/ /nodejs.
org/en/) and basic commands such as npm install.

Readers who prefer the Angular ecosystem may want to read the details on the Angular
CLI (https://cli. angular. io/) and its commands.

For the React development, getting familiar with the Create React App (https:/ /github.
com/facebook/create- react- app) tool is recommended.

If you want to use the Vue.js framework for Electron development, the Vue CLI (https:/ /
cli.vuejs.org/) application documentation should give a lot of details and examples.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Electron- Projects. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://cli.angular.io/
https://cli.angular.io/
https://cli.angular.io/
https://cli.angular.io/
https://cli.angular.io/
https://cli.angular.io/
https://cli.angular.io/
https://cli.angular.io/
https://cli.angular.io/
https://cli.angular.io/
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
https://cli.vuejs.org/
http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Electron-Projects
https://github.com/PacktPublishing/Electron-Projects
https://github.com/PacktPublishing/Electron-Projects
https://github.com/PacktPublishing/Electron-Projects
https://github.com/PacktPublishing/Electron-Projects
https://github.com/PacktPublishing/Electron-Projects
https://github.com/PacktPublishing/Electron-Projects
https://github.com/PacktPublishing/Electron-Projects
https://github.com/PacktPublishing/Electron-Projects
https://github.com/PacktPublishing/Electron-Projects
https://github.com/PacktPublishing/Electron-Projects
https://github.com/PacktPublishing/Electron-Projects
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in the text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here
is an example: "Just type code or visual studio code into the search box—you should
get the link to the corresponding package."

A block of code is set as follows:

win = new BrowserWindow({
 width: 800,
 height: 600,
 webPreferences: {
 nodeIntegration: true
 }
 frame: false
 });

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

function createWindow() {
 win = new BrowserWindow({ titleBarStyle: 'hidden' });

 win.loadURL(`http://localhost:3000`);

 win.on('closed', () => {
 win = null;
 });
}

Any command-line input or output is written as follows:

git --version

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"If you click on the icon, you should get the Quit menu entry."

Warnings or important notes appear like this.

Preface

[5]

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Building Your First Electron

Application
The goal of this book is to provide you with practical experience and guide you through
setting up, configuring, building, and distributing Electron applications. You are going to
learn how to build multiple projects, address common challenges and pitfalls, and how to
integrate with modern JavaScript frameworks and underlying toolchains.

In this chapter, you are going to get a brief overview of the Electron framework, its history,
and its architecture. You will learn how to get all the prerequisites installed for multiple
platforms, get your first Electron project up and running with Node.js and NPM, and learn
how the apps are packaged for various platforms.

By the end of this chapter, you should have a basic project template so that you can
complete future practical tasks.

In this chapter, we will cover the following topics:

What is Electron?
Preparing a development environment
Creating a simple application
Packaging for multiple platforms

Technical requirements
To get started with Electron application development, you will need a standard laptop or
desktop that's running macOS, Windows, or Linux.

Building Your First Electron Application Chapter 1

[7]

Before we dive into Electron development, we need to prepare the prerequisites for your
platform of choice. We are going to focus on all the major platforms, that is, macOS,
Ubuntu (Linux), and Windows.

To get started, we need the following software:

Git, a version control system
Node.js with Node Package Manager (NPM)
Visual Studio Code, a free and open-source code editor

You can find the code files for this chapter on GitHub at https:/ /github. com/
PacktPublishing/Electron- Projects/ tree/ master/ Chapter01.

What is Electron?
Electron is an open-source framework for building cross-platform applications with the
modern web technology stack: HTML, CSS, and JavaScript.

It is developed and maintained by GitHub Inc. and has had an active community of
contributors since it appeared and was released on July 15, 2013 (its first commit appeared
in April 2013) as part of the Atom editor, a free and open-source code editor for Linux,
Windows, and macOS. Initially, it was called Atom Shell until GitHub renamed it Electron
and started shipping it as a separate project.

The secret sauce of Electron is a combination of Chromium, an open-source project behind
the Google Chrome browser and Google Chrome OS, and Node.js, a JavaScript runtime
built on Chrome's V8 JavaScript engine.

Electron uses Chromium for the frontend and Node.js for the backend. It provides a rich set
of application programming interfaces (APIs) that allow developers to build cross-
platform applications that share the same HTML, CSS, and JavaScript code. Also, Electron
provides us with access to operating system resources and specific platform features and
supports thousands of JavaScript libraries and utilities that you can use with the Node.js
portion of the application.

Since its release, the Electron framework has won the hearts of all web and desktop
developers. Many popular applications have been built with Electron that you may have
used in the past or are using daily, such as Skype, Slack, WhatsApp, Discord, Signal, Visual
Studio Code, Microsoft Teams, Keybase, and many others. Please check out the official list
of Electron-based applications that are featured online at https:/ /electronjs. org/
apps—it has more than 700 entries and counting.

https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter01
https://electronjs.org/apps
https://electronjs.org/apps
https://electronjs.org/apps
https://electronjs.org/apps
https://electronjs.org/apps
https://electronjs.org/apps
https://electronjs.org/apps
https://electronjs.org/apps

Building Your First Electron Application Chapter 1

[8]

Preparing a development environment
In this section, we are going to look at the setup process for each operating system. You can
skip the sections that do not correspond to your current platform. Note, however, that you
may still need to have multiple operating systems available in case you ever want to test
how the packaging and deployment of your applications work across all platforms.

Keep in mind that most of the code for the application projects in this book are universal;
the blocks or steps that are different for a particular system will be highlighted and
explained.

Installing Visual Studio Code
We are going to be using Visual Studio Code for all the projects and examples in this book.
It's a free, open-source, and cross-platform code editor based on Electron. However, feel
free to use Atom, Sublime, Vim, or any other editor of your choice.

Setting up Visual Studio Code is very simple and, thanks to Electron's support, the process
doesn't differ much across platforms. Let's get started:

Navigate to https:/ /code. visualstudio. com/ . An installation package will be1.
suggested to you regarding your current operating system. It is also possible to
choose from a list of available distributions:

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

Building Your First Electron Application Chapter 1

[9]

Click the big Download button to get a .dmg installer for macOS, an .msi file for2.
Windows, or a .deb package for Debian-based Linux distributions.
Run the corresponding file and follow the on screen instructions. You don't need3.
to customize anything during the setup process.

If you are using or plan to use Ubuntu Linux for development purposes, the process is
slightly easier than it is for other operating systems.

Installing Visual Studio Code for Ubuntu
If you are using Ubuntu Linux as your primary development machine, you can download
Visual Studio Code from the Ubuntu Software Center. Just type code or visual studio
code into the search box—you should get the link to the corresponding package.

Note that there is also an Insiders Version for Visual Studio Code. This
version is updated daily and is for experienced developers that want to
see the latest features. If you are getting started with Visual Studio Code,
then it is better to stick to the regular version as it is usually more stable
than the Insiders edition.

Setting up the environment for macOS
This section describes how to install and configure the required software for macOS. Feel
free to skip this section if you are using a Linux or Windows platform.

Installing Git on macOS
Git comes preinstalled with all macOS versions. To verify this, launch the Terminal
application and run the following command:

git --version

The output should be similar to the following:

git version 2.17.2 (Apple Git-113)

Please note that it isn't critical if your system's version of Git doesn't
match the one in this example.

Building Your First Electron Application Chapter 1

[10]

Installing Node.js on macOS
Next, let's install Node.js and NPM using the following steps. You can find the necessary
installation packages by navigating to https:/ /nodejs. org:

Note that Node.js typically comes in two flavors: the Long-Term Support
(LTS) version, which is suitable for most users, and the Current version,
which provides the most cutting-edge features and enhancements.

First, we need to download and install Node.js. The website automatically1.
detects your browser and platform and suggests the appropriate packages for
you to download. For macOS, you are going to see the Download for macOS
(x64) label and two big download buttons, as shown in the following screenshot:

Choose any version and click the corresponding button to get the relevant2.
installer package. The installation process for the macOS platform is pretty
straightforward. Keep all the default settings; proceed with the wizard's steps
until the setup is over.
In the Terminal application, run the following commands to verify that you have3.
Node.js and NPM installed on your machine:

 node -v
 npm -v

The system's output should be similar to the following, though their versions4.
may vary:

 v12.13.0
 6.12.1

Congratulations! You've successfully installed Node.js on your macOS.

https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org

Building Your First Electron Application Chapter 1

[11]

Setting up the environment for Ubuntu Linux
In this section, we are going to use the latest Ubuntu desktop version, 18.10, though
previous LTS versions should also run fine. You can skip this section and jump to the
Windows or macOS setup section if you don't use Linux. However, you may find this
section useful once you start testing cross-platform deployment for your Electron
applications.

Installing Git on Ubuntu
You can check whether you have Git installed by running the following command:

git --version

Typically, Git is not present on fresh installations of Ubuntu. To get it, run the following
command:

sudo apt install -y git

Please note that you need to enter the administrator password to proceed.

Installing Node.js on Ubuntu
Ubuntu usually doesn't ship with the Node.js and NPM tools out of the box. You need to
install them separately.

To install Node.js, follow these steps:

Run the following command:1.

 sudo apt install -y nodejs

Now, we need to verify that Node.js has been installed. You can check the2.
version that you've installed in the Terminal application by using the following
command:

 node --version

Building Your First Electron Application Chapter 1

[12]

The system's output, which will be the version's value, will be v8.11.4 or higher.

To install NPM, follow these steps:

Use the following command:1.

 sudo apt install -y npm

The fastest way to check that NPM has been installed is to check its version. You2.
can do so by using the following command:

 npm --version

The version number should be 5.8.0 or higher.

Setting up the environment for Windows
In this section, we are going to walk through the installation process for Windows 10.

Installing Git on Windows
I recommend installing Git after Visual Studio Code because the Git setup wizard allows
you to enable integration between the two.

The process of installing Git on Windows 10 is slightly different compared to macOS and
Ubuntu. Follow these steps to install it:

Navigate to https:/ /git- scm. com. The website will detect your platform and1.
suggest a proper distribution.
Click the button that says Download 2.20.1 for Windows, wait for the file to2.
download, and run the installer package.
The Git installer for Windows sets all the respective defaults for you. Just3.
proceed with the questions until you reach the Select Components dialog.

https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com

Building Your First Electron Application Chapter 1

[13]

I suggest checking the Use a TrueType font in all console windows option, as4.
shown in the following screenshot:

This is optional, but it helps improve readability slightly.

Follow the installation steps and use the predefined settings until you get to the5.
Choosing the default editor used by Git dialog.
If you have already installed Visual Studio Code, I strongly recommend selecting6.
the Use Visual Studio Code as Git's default editor option from the drop-down
list, as shown in the following screenshot:

Accept all the defaults in the subsequent dialogs until the setup is over.7.

Building Your First Electron Application Chapter 1

[14]

Installing Node.js on Windows
Once Visual Studio Code and Git are ready, we can install Node.js and NPM on Windows:

Navigate to https:/ /nodejs. org/ en and get the corresponding installer. Note1.
that the website detects your platform for you and suggests the corresponding
installer package. For Windows, you are going to see the Download for
Windows (x64) label and two buttons where you can select either the LTS, that is,
the stable LTS version, or a current one, with the most recent cutting-edge
features.
Download and run the installation file. Proceed with the setup wizard and use2.
the default settings—these are usually pretty reasonable.

Optionally, in the Tools for Native Modules dialog, you can allow the automatic
installation of a set of the tools so that you can compile native modules. This is shown in the
following screenshot:

The option for the native module instructs the setup wizard to download and configure all
the necessary tooling after the installation of Node.js is over.

Please note that the extra tools require about 3 GB of additional space on
your disk and may take a few minutes to install. However, I recommend
installing those tools as you may come across third-party modules and
libraries for the system's integration that require those tools.

https://nodejs.org/en
https://nodejs.org/en
https://nodejs.org/en
https://nodejs.org/en
https://nodejs.org/en
https://nodejs.org/en
https://nodejs.org/en
https://nodejs.org/en
https://nodejs.org/en

Building Your First Electron Application Chapter 1

[15]

Alternatively, you can always download the latest copy of the Node.js installer again, go
through the setup wizard steps, and check the Tools for Native Modules option if you
forgot to do that previously.

Verifying the installation
Launch the Command Prompt utility and execute the following two commands to ensure
that both Node.js and NPM are present on your machine:

node --version
npm --version

You should receive the following system output:

v12.13.0
6.12.1

Please note that your versions may vary, depending on the last published
packages you downloaded. At the time of writing, it is essential to get any
output for each command to prove the tool is there, rather than a version
value.

In this section, we covered the installation of Node.js and NPM for the Windows, macOS,
and Linux systems so that you can start creating a simple application project. In the next
section, we are going to walk through the minimal configuration process to help you get
started.

Creating a simple application
Let's walk through a typical hello world application with Electron, package it, and see it
running on all platforms. Let's get started:

Somewhere in your projects folder, create a new directory called my-first-app1.
and navigate to it, as shown in the following code:

 mkdir my-first-app
 cd my-first-app

Now, we need to initialize our new project with the NPM tool by using the2.
following command:

 npm init

Building Your First Electron Application Chapter 1

[16]

The tool asks a series of questions, such as the name of the project, a user-
friendly description, version, author information, and a license. Feel free
to enter any details you want. For our first example project, you can
specify any values you want.

Next time, if you want to set up quickly with a single command and with reasonable
defaults, you can use the same command with the -y switch. This switch, as shown in the
following code, instructs NPM to accept all the questions and use predefined values:

npm init -y

This tool generates the following file, called package.json:

{
 "name": "my-first-app",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC"
}

Feel free to update the description, author, license, or other fields as necessary.

Please note that the value of the main field is index.js. This means that the primary entry
point for NPM commands and your Electron app is going to be that file. We are going to
create it shortly, but, first, let's install the Electron framework library for our project:

Run the following command:1.

 npm i -D electron

If you take a look at the package.json file, you may notice a new section called2.
devDependencies, which has an Electron library. Its version may vary,
depending on Electron's release frequency:

 {
 "devDependencies": {
 "electron": "^7.0.0"
 }
 }

Building Your First Electron Application Chapter 1

[17]

Now, it's time to get back to the index.js file. Create it in the root folder of your3.
project, next to the package.json file.
Let's take a closer look at the minimum code you need to run an Electron4.
window. The following snippet demonstrates the steps we have to perform in the
index.js file:

 // 1. import electron objects
 const { app, BrowserWindow } = require('electron');

 // 2. reserve a reference to window object
 let window;

 // 3. wait till application started
 app.on('ready', () => {
 // 4. create a new window
 window = new BrowserWindow({
 width: 800,
 height: 600,
 webPreferences: {
 nodeIntegration: true
 }
 });

 // 5. load window content
 window.loadFile('index.html');
 });

First, you need to import the required objects and classes from the electron
namespace. Then, reserve a reference to an object or the BrowserWindow type
that you are going to instantiate and display to your users. After that, you need to
wait for the application to become ready and create a small window that's 800 x
600 in size. Finally, load and display the content of the index.html file, which
contains the main content of your Electron application.

Now, we need to define the main application's content in the form of an HTML5.
page. Create a new index.html file next to the package.json and index.js
files. With Visual Studio Code, it is effortless to generate an initial web page. Just
type an exclamation mark, !—the code editor will auto suggest a template for
you to use:

Building Your First Electron Application Chapter 1

[18]

Press the Tab or Enter key. Visual Studio Code will generate and fill in the HTML6.
page's content in the place of your cursor. It even moves the cursor inside the
body element so that you can continue working on the markup:

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0" />
 <meta
 http-equiv="Content-Security-Policy"
 content="script-src 'self' 'unsafe-inline';"
 />
 <title>Document</title>
 </head>
 <body>
 </body>
 </html>

Let's put the traditional Hello World example between the body tags so that we7.
can inspect the Electron component's versions:

 <h1>Hello World!</h1>
 We are using node <script>document.write(process.versions.node)
 </script>,
 Chrome <script>document.write(process.versions.chrome)
 </script>,
 and Electron <script>document.write(process.versions.electron)
 </script>.

Building Your First Electron Application Chapter 1

[19]

We are going to see the versions of Node.js that are powering our application, our
embedded version of Chrome, and, of course, the Electron library version.

The final step of the initial setup is to update the package scripts. Update the8.
package.json file and add the start entry for the scripts section to invoke
the Electron binary app against our project folder, as shown in the following
code:

 "scripts": {
 "start": "electron ."
 }

To launch, develop, and test the application, we only need to run npm start
from the command line. If you need to add more parameters, you can always
update the script once again—there's no need to memorize long commands.

The content of your package.json file should look like this:9.

 {
 "name": "my-first-app",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "start": "electron ."
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "devDependencies": {
 "electron": "^7.0.0"
 }
 }

You are now ready to launch your first Electron application. Let's get started:

In the application menu of Visual Studio Code, select View and then Terminal to1.
access the embedded Terminal tool.
Run the start command, as shown in the following code:2.

 npm start

Building Your First Electron Application Chapter 1

[20]

Congratulations! You now have your first Electron application up and running:

If you want to stop the application, press Ctrl + C in the Terminal window.

Now that we have a new application up and running, let's understand how our application
will be packaged for different platforms.

Packaging for multiple platforms
Please note that running on all platforms does not necessarily mean that you can test and run
all the installation packages on a single platform. This means you cannot, for example,
launch Windows installers on Linux, or macOS installers on Windows. You may need to
have access to either real machines with their respective platforms, or virtual machines,
running with VirtualBox, Parallels, or any other modern virtualization software.

There are many community tools that you can use to build and package Electron
applications for production. We are going to use electron-builder (https:/ /www.
electron.build/) for this purpose.

According to its documentation, electron-builder is as follows:

A complete solution to package and build a ready for distribution—Electron app for
macOS, Windows, and Linux with auto update support out of the box.

The list of supported features is outstanding; it is recommended that you
take a look at the documentation of electron-builder if you want to find
out more.

https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/
https://www.electron.build/

Building Your First Electron Application Chapter 1

[21]

With this tool, for example, you can create distribution packages for all platforms when
developing only on macOS, or any other platform.

Before we continue, let's install it for our project with the following command:

npm i -D electron-builder

Now, let's look at how we can set up the packaging scripts, depending on your target
platform. We are going to package our Electron application for macOS, Ubuntu Linux, and
Windows 10 with a minimal set of configuration parameters.

Packaging for macOS
If you intend to publish our application to the App Store, you should provide an
application ID and category settings. Open the project's package.json file for editing, and
append the following section to the end of the file:

{
 "build": {
 "appId": "com.my.app.id",
 "mac": {
 "category": "public.app-category.utilities"
 }
 }
}

Feel free to customize the values and provide the relevant information later. For now, you
can leave those values as they are.

There are two ways you can build your application: through the development and
production modes. Let's start with the development script, which allows you to quickly run
and see that your application is working as expected:

Update the package.json file and add the build:macos entry to the scripts1.
section, as shown in the following code:

 {
 "scripts": {
 "start": "electron .",
 "build:macos": "electron-builder --macos --dir"
 }
 }

Building Your First Electron Application Chapter 1

[22]

Just like the npm start command we used earlier, you can customize all the
parameters in a single place. You only need to remember and document a simple
command npm run build:macos.

To build the application for development, open the Terminal window in VS Code2.
and run the build:macos script, as follows:

 npm run build:macos

After a few seconds, you will see the build's output in the dist/mac folder:3.

Double-click on the icon to run your simple Electron application locally.4.
Let's also add the necessary script so that we can create production or5.
distribution packages. Append the dist:macos entry to the scripts section, as
shown in the following code:

 {
 "scripts": {
 "start": "electron .",
 "build:macos": "electron-builder --macos --dir",
 "dist:macos": "electron-builder --macos"
 }
 }

Now, you have two scripts that handle running and packaging on your macOS machine.

Building Your First Electron Application Chapter 1

[23]

Running the dist:macos script takes a bit longer than the build:macos one. After
running the script, you get several different packages in the dist folder of your project:
my-first-app-1.0.0.dmg, a typical macOS installer; my-first-app-1.0.0-mac.zip,
an archived installer so that you can distribute it easily; and, of course, mac/my-first-
app, which includes the ready-to-launch application:

Try running the .dmg file; you should see the typical macOS installer:

Please refer to the electron-builder documentation for ideas and tips on
how to customize it: https:/ /www. electron. build/ configuration/ dmg.

Congratulations—you've got your first cross-platform Electron application installer up and
running on macOS!

https://www.electron.build/configuration/dmg
https://www.electron.build/configuration/dmg
https://www.electron.build/configuration/dmg
https://www.electron.build/configuration/dmg
https://www.electron.build/configuration/dmg
https://www.electron.build/configuration/dmg
https://www.electron.build/configuration/dmg
https://www.electron.build/configuration/dmg
https://www.electron.build/configuration/dmg
https://www.electron.build/configuration/dmg
https://www.electron.build/configuration/dmg
https://www.electron.build/configuration/dmg
https://www.electron.build/configuration/dmg

Building Your First Electron Application Chapter 1

[24]

Packaging for Ubuntu
The process of packaging your application for Ubuntu doesn't differ much from that of
macOS. Let's get started:

You need to provide an application identifier and a category in the linux section1.
of the package.json file:

 {
 "build": {
 "appId": "com.my.app.id",
 "linux": {
 "category": "Utility"
 }
 }
 }

Please note that you can declare settings for Linux alongside those for
other platforms, which is handy when you're developing for multiple
operating systems or switching between them. The same applies to the
scripts section. In this book, we are going to use different script names so
that you can merge them into a single configuration.

Update your package.json file and append the following scripts to it so that2.
you can build your application in development mode and distribution mode:

 {
 "scripts": {
 "start": "electron .",
 "build:linux": "electron-builder --linux --dir",
 "dist:linux": "electron-builder --linux"
 }
 }

Let's ensure that we can build the application for local testing. Run the first script3.
in the Terminal window:

 npm run build:linux

Building Your First Electron Application Chapter 1

[25]

In the project's root, you should see the dist/linux-unpacked folder, which4.
contains several build artifacts:

Now, let's see what you get when you're building packages for distribution. Run5.
the second command, as shown in the following code:

 npm run dist:linux

This time, you are going to get multiple packages in the dist folder, as shown in6.
the following screenshot:

Building Your First Electron Application Chapter 1

[26]

The files that will be in your output folder are as follows:

my-first-app 1.0.0.AppImage: The AppImage format is a universal
software packaging format for all GNU/Linux distros.
my-first-app_1.0.0_amd64.snap: This is a snap file, another popular
format for sandboxed applications.
linux-unpacked/my-first-app: This is the unpacked build for local
testing and custom distributions.

For now, double-click on my-first-app 1.0.0.AppImage to run the app. If7.
you get the Would you like to integrate my-first-app with your system dialog,
click No.
This will be your final output:8.

Congratulations—you've got your first cross-platform Electron application package up and
running on Ubuntu Linux!

Packaging for Windows
Now that you know how to set up build scripts for macOS and Ubuntu Linux, configuring
for Windows shouldn't be a problem for you.

As I mentioned earlier, it is possible and also recommended to keep the configuration files
for all platforms in a single code repository, inside the package.json file. The build scripts
for Windows are shown in the following code:

{
 "scripts": {
 "start": "electron .",
 "build:windows": "electron-builder --win --dir",
 "dist:windows": "electron-builder --win"
 }
}

Building Your First Electron Application Chapter 1

[27]

Both scripts should be familiar to you. The build:windows script creates an unpacked
local build for development and testing purposes, while the dist:windows script prepares
the application for distribution.

Let's try to build and run the development version of the application:

Open the Terminal window in Visual Studio Code, or a Command Prompt tool,1.
and run the following script:

 npm run build:windows

Note that you can build Windows packages with macOS or Ubuntu Linux
if you have the Wine tool installed, but I recommend having a virtual
machine nearby for testing purposes. It should also be possible to build
for Linux on a Windows machine, but you may want to have a real Linux
machine for application testing purposes.

Once the script exits, you should see the prebuilt application, that is, my-first-2.
app.exe, in the dist/win-unpacked folder.
Double-click on the my-first-app.exe file to run the application:3.

Building Your First Electron Application Chapter 1

[28]

We need to use the build:windows script to create a distribution package for4.
testing purposes. Let's check that we can build packages for redistribution:

 npm run dist:windows

Check the dist folder once again. You should see the my-first-app Setup5.
1.0.0.exe installer file alongside the win-unpacked folder:

Now, double-click the installer file. The setup wizard should set up the6.
application and automatically launch it.

Congratulations—you've got your first cross-platform Electron application package up and
running on Windows 10!

Building Your First Electron Application Chapter 1

[29]

Summary
In this chapter, we walked through a brief history of Electron and learned how to configure
a development environment on popular platforms such as macOS, Windows, and Ubuntu
Linux. You also looked at the various configuration options you can implement for your
Electron applications so that you can build, distribute, and run them on the corresponding
platforms.

As you can see, not just the applications that are built with the Electron framework are
cross-platform—the development process is nearly identical too, thanks to Node.js and
NPM. You can work on a single platform and even build distribution packages for other
platforms, though you usually need to have access to real or virtual machines to run and
test apps.

In the next chapter, we are going to focus on application development and our first project
implementation. We are going to build a markdown editor project so that you can
understand how a web application can be integrated with the desktop shell.

2
Building a Markdown Editor

In this chapter, we are going to build a minimal Markdown Editor application. This mini
exercise is going to help you get an idea of how to build a web application that integrates
with the Electron shell on desktops.

You are about to walk through the process of integrating a third-party editor component,
learning how to support application menus, and establishing communication channels
between the rendering (browser) and the main (Node.js) processes. We are doing this so
that you become confident with Electron and can build more complex projects.

As part of this chapter, we will also create a new GitHub repository to store application
releases, publish multiple versions of the Markdown Editor to GitHub, configure automatic
updates, and see them in action.

In this chapter, we will cover the following topics:

Configuring a new project
Integrating the editor component
Fitting the screen size
Integrating the application menu
Adding drag and drop support
Supporting automatic updates
Changing the title of the application

Technical requirements
To get started with this chapter, you will need a standard laptop or desktop running
macOS, Windows, or Linux.

Building a Markdown Editor Chapter 2

[31]

The software that you need to have installed for this chapter is as follows:

Git, a version control system
Node.js with node package manager (NPM)
Visual Studio Code, a free and open-source code editor

You can find the code files for this chapter in this book's GitHub repository: https:/ /
github.com/PacktPublishing/ Electron- Projects/ tree/ master/ Chapter02.

Configuring a new project
Let's start our journey by configuring a new Electron project and naming it markdown-
editor since we are building a markdown editor application. You can create a
corresponding folder with the following commands:

mkdir markdown-editor
cd markdown-editor

As you may recall from Chapter 1, Building Your First Electron Application, we need to
initialize a new project with the npm init command. You should also install electron,
the core library that provides an application shell. In addition, your project needs an
electron-builder library, which allows you to publish and distribute features for
multiple platforms. Let's get started:

Run the following commands to set up a new project:1.

 npm init -y
 npm i -D electron
 npm i -D electron-builder

The npm init command should generate a package.json file with the
following content:

 {
 "name": "markdown-editor",
 "version": "1.0.0",
 "main": "index.js",
 "devDependencies": {
 "electron": "^7.0.0",
 "electron-builder": "^21.2.0"
 }
 }

https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter02

Building a Markdown Editor Chapter 2

[32]

The -D switch means that the libraries should be installed in the
devDependencies section.

Now, create an index.js file with a bare minimum amount of JavaScript code in2.
it so that you can run an empty application:

 const { app, BrowserWindow } = require('electron');

 let window;

 app.on('ready', () => {
 window = new BrowserWindow({
 width: 800,
 height: 600,
 webPreferences: {
 nodeIntegration: true
 }
 });
 window.loadFile('index.html');
 });

Finally, create the index.html file, which is the HTML template for our new3.
project, next to index.js. For now, just put in a dummy string as the content for
the body element:

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0">
 <meta
 http-equiv="Content-Security-Policy"
 content="script-src 'self' 'unsafe-inline';"
 />
 <title>Document</title>
 </head>
 <body>
 <h1>Editor</h1>
 </body>
 </html>

At this point in time, our focus is on quickly setting up a project structure that we
can turn into a markdown editor application.

Building a Markdown Editor Chapter 2

[33]

The last piece of the puzzle lies in supporting the npm start script so that we4.
can run and test our application without having to know all the command
parameters and switches off by heart. Let's update the package.json file and
extend the scripts section, as shown in the following code:

 {
 "name": "markdown-editor",
 "version": "1.0.0",
 "main": "index.js",
 "scripts": {
 "start": "electron ."
 },
 "devDependencies": {
 "electron": "^7.0.0",
 "electron-builder": "^21.2.0"
 }
 }

Note that your versions of the libraries may vary.

We are ready to create our Electron application. For all the updates to the files5.
that we are going to create throughout this chapter, the testing process will run
the following command:

 npm start

Press Ctrl + C to stop the running application.

We will look at more project configuration options and live reloading in Chapter 3,
Integrating with Angular, React, and Vue. For the time being, you should just be stopping the
application with Ctrl + C and starting it with the npm start or npm run start command
every time you change the code and want to see it live.

Now that the project is up and running, let's switch to the user interface and integrate the
editor component with our Electron application.

Building a Markdown Editor Chapter 2

[34]

Integrating the editor component
For our project, we don't need to build everything from scratch, including the components
that edit and format text in markdown format. There are lots of free, open source
components you can use to save time and focus on building the application and delivering
value to your users, rather than spending months reinventing the wheel.

For the sake of simplicity, we are going to use the SimpleMDE component, which stands for
Simple Markdown Editor. You can find more details about the project on its home page:
https://simplemde. com/ . The project is open source and has an MIT license. Follow these
steps to incorporate the component:

Similarly to how we installed the Electron framework itself, you can use NPM1.
commands to get SimpleMDE into your project:

 npm install simplemde

Don't forget to stop the application before installing a new library.

Like any other typical JavaScript component, the SimpleMDE component comes
with a JavaScript file and a CSS stylesheet so that we can integrate with the web
page.

Append the following lines to the bottom of the head block in the index.html2.
file:

 <head>
 <link rel="stylesheet" href="./node_modules/simplemde/dist/
 simplemde.min.css">
 <script src="./node_modules/simplemde/dist/
 simplemde.min.js"></script>
 </head>

Note how we are referencing the node_modules folder from the index.html
page. Now, to update the SimpleMDE component to a newer version, you just
need to run npm install simplemde once again. There's no need to update the
web page each time; as soon as you build and run the application, it will use the
updated libraries.

https://simplemde.com/
https://simplemde.com/
https://simplemde.com/
https://simplemde.com/
https://simplemde.com/
https://simplemde.com/
https://simplemde.com/
https://simplemde.com/

Building a Markdown Editor Chapter 2

[35]

Now, let's run the newly installed component inside the Electron shell.3.
According to the component's requirements, we need an empty textarea
element defined on the page and a script block that turns that element into a
markdown editor at runtime. Take a look at the following code, which shows a
basic implementation of this:

 <textarea id="editor"></textarea>

 <script>
 var editor = new SimpleMDE({
 element: document.getElementById('editor')
 });
 </script>

At this point, the content of the HTML page for your application should look as4.
follows:

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0">
 <meta
 http-equiv="Content-Security-Policy"
 content="script-src 'self' 'unsafe-inline';"
 />
 <title>Document</title>
 <link rel="stylesheet" href="./node_modules/simplemde
 /dist/simplemde.min.css">
 <script src="./node_modules/simplemde/dist
 /simplemde.min.js"></script>
 </head>
 <body>
 <textarea id="editor"></textarea>
 <script>
 var editor = new SimpleMDE({
 element: document.getElementById('editor')
 });
 </script>
 </body>
 </html>

Save your changes and run the application.5.

Building a Markdown Editor Chapter 2

[36]

You should see a window with the markdown editor component in the middle, a6.
toolbar with a set of default buttons used to format the text, and word and line
counter labels at the bottom:

The SimpleMDE component provides a nice live formatting feature so that your
end users can see the final formatting alongside the markdown syntax. To see that
in action, type something into the editor and press the H button on the toolbar.
This turns the block into a Heading or <h1> element:

Feel free to experiment with the controls and see how they affect the text. Check the
formatting options and Preview mode, which allows you to see what the final document
looks like when it's rendered to HTML markup.

There are many other options and features that you can enable or
customize. Be sure to check out the documentation for SimpleMDE here:
https:/ /github. com/ sparksuite/ simplemde- markdown- editor. The out-
of-the-box experience is pretty basic, and you may want to toggle
additional settings later on.

https://github.com/sparksuite/simplemde-markdown-editor
https://github.com/sparksuite/simplemde-markdown-editor
https://github.com/sparksuite/simplemde-markdown-editor
https://github.com/sparksuite/simplemde-markdown-editor
https://github.com/sparksuite/simplemde-markdown-editor
https://github.com/sparksuite/simplemde-markdown-editor
https://github.com/sparksuite/simplemde-markdown-editor
https://github.com/sparksuite/simplemde-markdown-editor
https://github.com/sparksuite/simplemde-markdown-editor
https://github.com/sparksuite/simplemde-markdown-editor
https://github.com/sparksuite/simplemde-markdown-editor
https://github.com/sparksuite/simplemde-markdown-editor
https://github.com/sparksuite/simplemde-markdown-editor
https://github.com/sparksuite/simplemde-markdown-editor
https://github.com/sparksuite/simplemde-markdown-editor

Building a Markdown Editor Chapter 2

[37]

One of the most important things you need to address is keeping your web application
inside the Electron window. Let's see what it takes to match the content to the screen size.

Fitting the screen size
If you keep experimenting with your application at runtime, you may notice that the editor
component doesn't fit the whole application area once you start resizing the window or
maximizing it. To address this, we need to add some CSS styles to tell the component it
needs to fit the parent width and height.

Please note that, at the lower level, SimpleMDE wraps another great component called
CodeMirror.

CodeMirror is a versatile text editor that's implemented in JavaScript for
the browser. It is specialized for editing code and comes with a number of
language modes and addons that implement more advanced editing
functionality.

Here, we are going to add flex layout features to the whole body of the HTML base and
add some styling support for the CodeMirror part, which is part of SimpleMDE. Let's get
started:

Update the styles in the index.html file according to the following code:1.

 <style>
 html, body {
 height: 100%;
 display: flex;
 flex: 1;
 flex-direction: column;
 }
 .CodeMirror {
 flex: 1;
 }
 </style>

Building a Markdown Editor Chapter 2

[38]

Run the application and try resizing the window to make it wider or taller.2.
Notice that, now, the markdown editor area perfectly fits the entire page area:

Now, let's move on to integrating the application menu.

Integrating the application menu
As you already know, your application is essentially an HTML5 stack running inside
Chromium, and Electron provides all necessary integration with the underlying operating
system, whether that's macOS, Windows, or Linux.

The concept of application menus is slightly different across platforms. macOS, for instance,
provides a single application menu that reflects the active application and displays the
corresponding menu items. The Windows system tends to provide a separate menu for
each instance of the application window. Finally, Linux systems usually vary based on the
window manager's implementations.

Handling every case would be quite cumbersome for developers; that is why the Electron
framework provides a unified interface for building application menus from the JSON
definition and takes care of integration details.

Building a Markdown Editor Chapter 2

[39]

Let's take a macOS application menu as an example. As soon as you launch your
application, Electron provides a set of predefined menu items. For development, one of the
most popular menu items is View as it provides access to application reloading and
Chrome Developer Tools:

To see the Developer Tools in action, run the application with npm start and click the
View | Toggle Developer Tools menu item.

Note that you instantly get access to the whole set of debugging capabilities for the running
application. Later on, you are probably going to use this feature a lot during development.
In the following screenshot, you can see what the Chrome Developer Tools look like when
you've invoked the menu item:

Building a Markdown Editor Chapter 2

[40]

Now, let's see what it takes to create such menus from within application code. We are
going to perform the following actions with the system menu component:

Create a custom menu item
Define the roles menu item
Provide menu separators
Support keyboard accelerators
Support platform-specific menus

The first thing we need to address is how to create a custom menu item and render it at
runtime.

Creating a custom menu item
Check out the Help menu item:

Like the other menu items, if you don't provide a custom application menu template, the
Electron shell does this for you at runtime. Let's change that and provide a simple About
Editor Component menu item that opens the home page of the SimpleMDE markdown
editor component we are using for our application:

First of all, create a new file called menu.js in the project's root folder.1.

It's good practice to put menus into a separate file so that each time your
application needs changing or improving, you can find the menu items
quickly.

Building a Markdown Editor Chapter 2

[41]

Here, you need to import the Menu and shell objects from the Electron
framework. The Menu object provides an API that we can use to build an
application menu from a JSON template. The shell object is going to help us
invoke a browser window with a URL address that we can use to navigate:

 const { Menu, shell } = require('electron');

Next, we need a template for our application menu that's in JSON format.2.
Append the following code to the end of the menu.js file so that it holds a
simple menu template:

 const template = [
 {
 role: 'help',
 submenu: [
 {
 label: 'About Editor Component',
 click() {
 shell.openExternal('https://simplemde.com/');
 }
 }
]
 }
];

Note that the root object of the JSON template must be an array since we
define the whole application menu with multiple top-level menu items.

As you can see, there is an object with the role property set to help. This defines
a top-level menu item called Help. We are going to focus on what role means in
a minute, so for now take it as it is. After that, we create a submenu array to hold
submenu items and declare an About Editor Component array with a click
handler in order to invoke an external browser.

This is a minimal template, just to show you how to assemble a custom
application menu. To compile our first template into a real menu, we need to call
the Menu.buildFromTemplate function, which converts our JSON content into
an Electron Menu object:

 const menu = Menu.buildFromTemplate(template);

 module.exports = menu;

Building a Markdown Editor Chapter 2

[42]

We build a new instance of the menu and export it through the module.exports
call. Module exporting is a Node.js feature that allows us to import the Menu
instance to other files. In our case, we need to export the menu from the menu.js
file and import it to index.js, which is where the central part of our program
lives.

Switch to the index.js file and update its content so that it looks as follows:3.

 const { app, BrowserWindow, Menu } = require('electron');
 const menu = require('./menu');
 let window;
 app.on('ready', () => {
 window = new BrowserWindow({
 width: 800,
 height: 600,
 webPreferences: {
 nodeIntegration: true
 }
 });
 window.loadFile('index.html');
 });

 Menu.setApplicationMenu(menu);

Most of the files should be familiar to you. We import the menu object from the
menu.js file that we created earlier. Then, we build the main application window
and load the index.html file into it. Finally, we set a new application menu
based on our custom template:

Now, save the changes if you haven't done so already and launch the application.4.
Given that we just redefined the whole application menu, you should see only
two menu items: Electron and Help. The Electron menu is something you get
out of the box when running on macOS, and the Help menu is what we defined
in our code earlier.

Building a Markdown Editor Chapter 2

[43]

Click the Help menu and ensure that you can see the About Editor Component5.
entry. If you click the About.. menu entry, your system browser should open
with the https:/ /simplemde. com/ address loaded.

Now that you can create menu items, let's take a look at the different menu item roles.

Defining menu item roles
The Electron framework supports a set of standard actions that you can associate with
menu items. Instead of providing a label text, click handlers, and other settings, you can
pick one of the role presets, and the Electron shell will handle it on the fly. Using menu
presets saves a lot of time and effort as you don't need to type a lot of code to replicate
standard and system entries.

Let's learn how to run Chrome's Developer Tools from our custom menu, without writing a
single line of code in JavaScript:

Switch back to the menu template in the menu.js file and insert the following1.
block to create a new Debugging menu:

 const template = [
 {
 role: 'help',
 submenu: [
 {
 label: 'About Editor Component',
 click() {
 shell.openExternal('https://simplemde.com/');
 }
 }
]
 },
 {
 label: 'Debugging',
 submenu: [
 {
 role: 'toggleDevTools'
 }
]
 }
];

https://simplemde.com/
https://simplemde.com/
https://simplemde.com/
https://simplemde.com/
https://simplemde.com/
https://simplemde.com/
https://simplemde.com/
https://simplemde.com/

Building a Markdown Editor Chapter 2

[44]

Note how we set only a single attribute, that is, role, to the value of
toggleDevTools in the submenu array. toggleDevTools is one of the
numerous predefined roles that the Electron framework supports. With a single
role reference, your application usually gets a label, keyboard shortcut, and a click
handler. In some cases, you may get even a complex menu structure with child
items, such as when you use a Help role.

Run the application to see the toggleDevTools role in action:2.

 npm start

Note that you now have two custom top-level menus. One of those is Debugging,
which contains the Toggle Developer Tools menu item. Once you click it, you
should get the standard Chrome Developer Tools on your screen:

Changing the title of the predefined role item is easy. Just add the label3.
attribute, as shown in the following code:

 {
 label: 'Debugging',
 submenu: [
 {
 label: 'Dev Tools',
 role: 'toggleDevTools'
 }
]
 }

Now, if you run the application once again, the title of the menu item will be Dev4.
Tools, but the behavior is still the same—it opens Chrome's Developer Tools
when it's clicked.

You can find out more about supported role values at https:/ /
electronjs. org/ docs/ api/ menu- item#roles.

https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles
https://electronjs.org/docs/api/menu-item#roles

Building a Markdown Editor Chapter 2

[45]

A typical application may contain lots of menu items. In the next section, we are going to
learn how to gather actions into groups and use menu separators.

Providing menu separators
Let's stop for a moment. Traditionally, in large applications, developers collect menu items
into logical groups so that it is much easier for end users to remember and use them.

The following is an example of the File menu from Visual Studio Code, which you are
probably using right now to edit project files:

The keyboard shortcuts may differ, depending on the platform you are using, but the
structure should be the same with all operating systems.

Building a Markdown Editor Chapter 2

[46]

Note how developers group multiple items into separate areas. If you want to separate two
menu items, follow these steps:

You can use an extra entry that has the type attribute set to separator. This1.
instructs Electron to render a horizontal line to separate items visually.
Update the code for your Debugging menu so that it looks as follows:2.

 {
 label: 'Debugging',
 submenu: [
 {
 label: 'Dev Tools',
 role: 'toggleDevTools'
 },
 { type: 'separator' },
 { role: 'reload' }
]
 }

Restart the application. Inside the Debugging menu item, you should see two3.
entries: Dev Tools and Reload:

Notice How the horizontal line separates both entries. This is our separator role in action,
and you can use as many separators as you like in your menus.

Now, let's learn how Electron handles keyboard shortcuts, also known as accelerators, and
key combinations.

Supporting keyboard accelerators
Accelerators are strings that can contain multiple modifiers and a single key code,
combined by the + character, and are used to define keyboard shortcuts throughout your
application.

Building a Markdown Editor Chapter 2

[47]

Traditionally, menu items in applications provide support for keyboard shortcuts.
Nowadays, everyone is used to using the Cmd + S or Ctrl + S combinations to save a file,
Cmd + P or Ctrl + P to print a document, and so on.

Electron provides support for keyboard shortcuts, or accelerators, that you can use either
globally or with a particular menu item. To create a new keyboard shortcut, you need to
add a new attribute called accelerator to your menu item and specify the key
combination in plain text.

In the previous examples, when you created a menu item separator, we introduced an
additional menu item called Reload. This reloads the embedded browser with each click
and allows you to see the updated HTML code. The reload role covers this functionality,
but the item has no keyboard shortcut by default. Let's fix this by adding an Alt + R
shortcut:

Edit the menu.js file and add the object, as shown in the following code:1.

 {
 role: 'reload',
 accelerator: 'Alt+R'
 }

Save the file and restart the application once again.2.

This time, the Reload menu item has shortcut details listed next to the label. If you are
using macOS, for instance, it will be a special Alt symbol, but for Windows and Linux, it
may be just the word Alt:

Note that, for many predefined menu roles, the Electron framework provides the most
commonly used combinations out of the box.

You can find out more about accelerators and their use cases at https:/ /
electronjs. org/ docs/ api/ accelerator.

The next thing we need to address is menus that are specific to a particular platform.

https://electronjs.org/docs/api/accelerator
https://electronjs.org/docs/api/accelerator
https://electronjs.org/docs/api/accelerator
https://electronjs.org/docs/api/accelerator
https://electronjs.org/docs/api/accelerator
https://electronjs.org/docs/api/accelerator
https://electronjs.org/docs/api/accelerator
https://electronjs.org/docs/api/accelerator
https://electronjs.org/docs/api/accelerator
https://electronjs.org/docs/api/accelerator
https://electronjs.org/docs/api/accelerator
https://electronjs.org/docs/api/accelerator

Building a Markdown Editor Chapter 2

[48]

Supporting platform-specific menus
While Electron provides a unified and convenient way to build application menus across
platforms, there are still scenarios where you may want to tune the behavior or appearance
of certain items based on the platform your users use.

An excellent example of a platform-specific rendering is a macOS deployment. If you are a
macOS user, you already know that each application has a specific item that always goes
first in the application menu. This menu item always has the same label as the application
name, and it provides some application-specific facilities, such as quitting the running
instance, navigating to preferences, often showing the About link, and so on.

Let's create a macOS-specific menu item that allows your users to see the About dialog and
also quit the application:

First of all, we need to fetch the name of the application somehow. You can do1.
that by importing the app object from the Electron framework:

 const { app, Menu, shell } = require('electron');

The app object includes the getName method, which fetches the application name
from the package.json file.

Of course, you can hardcode the name as a string, but it is much more convenient
to get the value dynamically at runtime from the package configuration file. This
allows us to keep a single centralized place for the application name and makes
our code reusable across multiple applications.

Node.js exposes a global object called process, which provides access to
environment variables. This object can also provide information about the current
platform architecture. We are going to check this against the darwin value to
detect the macOS platform.

Append the following code right after the template declaration:2.

 if (process.platform === 'darwin') {
 template.unshift({
 label: app.getName(),
 submenu: [
 { role: 'about' },
 { type: 'separator' },
 { role: 'quit' }
]
 })
 }

Building a Markdown Editor Chapter 2

[49]

As you can see, we check for the darwin string. In the case of an application running on
macOS, a new menu entry is inserted at the beginning of the application menu.

For the time being, it is going to show Electron every time you run the npm start
command, but don't worry—we are going to change that shortly:

The following options are available when you're checking for process architecture:

aix
darwin
freebsd
linux
openbsd
sunos
win32

Typically, you are going to check for darwin (macOS), linux (Ubuntu and other Linux
systems), and win32 (Windows platforms).

For more details regarding process.platform, please refer to the
following Node.js documentation: https:/ /nodejs. org/ api/process.
html#process_ process_ platform.

Configuring the application name in the menu
You may have already noticed the Electron label in the main application menu. This has
happened because we launched a generic Electron shell to run and test our application with
the npm start command. As you may recall, we defined the start command like so:

{
 "name": "markdown-editor",
 "version": "1.1.0",
 "main": "index.js",

https://nodejs.org/api/process.html#process_process_platform
https://nodejs.org/api/process.html#process_process_platform
https://nodejs.org/api/process.html#process_process_platform
https://nodejs.org/api/process.html#process_process_platform
https://nodejs.org/api/process.html#process_process_platform
https://nodejs.org/api/process.html#process_process_platform
https://nodejs.org/api/process.html#process_process_platform
https://nodejs.org/api/process.html#process_process_platform
https://nodejs.org/api/process.html#process_process_platform
https://nodejs.org/api/process.html#process_process_platform
https://nodejs.org/api/process.html#process_process_platform
https://nodejs.org/api/process.html#process_process_platform
https://nodejs.org/api/process.html#process_process_platform
https://nodejs.org/api/process.html#process_process_platform
https://nodejs.org/api/process.html#process_process_platform
https://nodejs.org/api/process.html#process_process_platform

Building a Markdown Editor Chapter 2

[50]

 "scripts": {
 "start": "electron ."
 },

 "devDependencies": {
 "electron": "^7.0.0",
 "electron-builder": "^21.2.0"
 },
 "dependencies": {
 "simplemde": "^1.11.2"
 }
}

But when you package the application for distribution, it is going to have its own version of
Electron embedded in it. In that case, the name of your application renders as expected.

Let's test the package with the macOS build:

Append the build:macos command to the scripts section of the1.
package.json file:

 {
 "scripts": {
 "start": "electron .",
 "build:macos": "electron-builder --macos --dir"
 }
 }

Now, execute the npm run build:macos command in the Terminal to create a2.
quick package for local development and testing.
Next, go to the dist/mac folder and run the markdown-editor application by3.
double-clicking on its icon:

Building a Markdown Editor Chapter 2

[51]

Note that the application menu now shows the correct value. Here, the
application is called markdown-editor.

The code in the menu.js file now takes the following values from the4.
package.json settings:

 {
 "name": "markdown-editor",
 "version": "1.0.0"
 }

The same behavior applies to the application version. When you run your project in testing
mode, the About box will show the Electron framework version. For the packaged
application, however, you should see the correct value.

Hiding menu items
There's one more important topic we should touch on when it comes to the conditional
visibility of menu items. Besides platform-specific entries, developers usually provide
utility functions that are relevant only for local development and debugging.

Let's take Chrome Developer Tools as an example. This is an extremely convenient set of
utilities that help you debug code and inspect the layout at runtime. However, you don't
want your end users accessing the code when they're using the application in real life. In
most cases, it is going to be harmful rather than useful. That's why we're going to learn how
to use particular menu items for development but hide them in production mode.

It may be a good idea to clean up the menu a bit first. Perform the following steps to do so:

Remove the Debugging menu from the template and only leave the Help entry,1.
as shown in the following code:

 const template = [
 {
 role: 'help',
 submenu: [
 {
 label: 'About Editor Component',
 click() {
 shell.openExternal('https://simplemde.com/');
 }
 }

Building a Markdown Editor Chapter 2

[52]

]
 }
];

 const menu = Menu.buildFromTemplate(template);

 module.exports = menu;

Run the project with npm start and ensure there is no Debugging item in the2.
application menu.

We have already used the process object from Node.js to detect the platform.
process also provides access to environment variables by utilizing the
process.env object. Each property of this object is a runtime environment
variable.

Let's assume that we would like to use extra menus when the DEBUG environment
variable is provided. In this case, the application needs to check for
process.env.DEBUG.

Take a look at the following code to get a better understanding of how to check3.
for environment variables:

 if (process.env.DEBUG) {
 template.push({
 label: 'Debugging',
 submenu: [
 {
 label: 'Dev Tools',
 role: 'toggleDevTools'
 },
 { type: 'separator' },
 {
 role: 'reload',
 accelerator: 'Alt+R'
 }
]
 });
 }

As you can see, once you have defined the DEBUG environment variable, the
application pushes an extra Debugging item to the main application menu. This
process is similar to the one we used earlier to add an extra menu item for macOS
platforms.

Building a Markdown Editor Chapter 2

[53]

Now, let's modify our start script so that we always start in debugging mode for4.
local development and testing:

 {
 "name": "markdown-editor",
 "version": "1.1.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "start": "DEBUG=true electron ."
 }
 }

On Windows, you will need to use the set DEBUG=true & electron
command since the Windows Command Prompt uses set to define
environment variables.

You can use environment variables with production applications too. However, while you
can add some debugging capabilities, please don't hide any security-sensitive features
behind these flags.

With the help of environment variables, you can enable or disable certain features in your
application. This is excellent since it allows you to have better debugging and testing
utilities without confusing your application users with technical and low-level
functionalities.

In the next section, we are going to learn how Node.js and Chrome processes can
communicate and how menu items can help us send messages between both.

Sending messages between processes
Let's take a closer look at keyboard handling with our editor. By default, the SimpleMDE
component provides support for most common editing shortcuts, such as the following:

Cmd + B (Mac) or Ctrl + B (PC) to toggle the bold feature
Cmd + H (Mac) or Ctrl + H (PC) to toggle the heading feature
Cmd + I (Mac) or Ctrl + I (PC) to toggle the italics feature

Building a Markdown Editor Chapter 2

[54]

Note, however, that these commands are supported by the web
component itself, not by the Electron shell. You can find out more about
supported keyboard shortcuts at https:/ /github. com/ sparksuite/
simplemde- markdown- editor#keyboard- shortcuts.

The application menu isn't part of the web page. Therefore, we need a way to handle clicks
and let the web page know that something has happened, or to trigger some code in
JavaScript.

As you already know, the Electron framework is a combination of Chromium (rendering
process) and Node.js (main process). Those processes are running side by side but isolated,
and the only way to communicate between both processes is by sending messages.

This is why we are going to build the following data flow. The users of your application
should get the Edit menu with the Bold item. Every time the Bold menu item is clicked, the
Node.js (main process) handles the keyboard event and sends the message to the web page
(rendering process) that the user wants to toggle the Bold feature for. Through JavaScript,
the web page invokes the underlying functionality in the markdown editor component it
uses.

Introducing editor-event
Let's introduce editor-event so that we can handle messages from Node.js . We need to
import an ipcRenderer object from the Electron framework and listen to any channel. In
this case, it is going to be editor-event. For the sake of simplicity, let's output the
message's content to the browser console:

<script>
 const { ipcRenderer } = require('electron');
 ipcRenderer.on('editor-event', (event, arg) => {
 console.log(arg);
 });
</script>

The preceding code listens to the editor-event channel and writes the message to the
browser console's output.

Sending confirmation messages to the main process
You can also send messages back to the main process with the send function:

ipcRenderer.send('<channel-name>', arg);

https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts
https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts
https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts
https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts
https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts
https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts
https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts
https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts
https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts
https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts
https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts
https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts
https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts
https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts
https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts
https://github.com/sparksuite/simplemde-markdown-editor#keyboard-shortcuts

Building a Markdown Editor Chapter 2

[55]

As an exercise, let's send a confirmation back to the main process. Electron provides
convenient access to the sender of the message via the event argument. This allows us to
have generic message handlers wired with multiple channels.

The Node.js part of the application is going to listen to the editor-reply channel to
receive feedback from the web page.

Update the code of the index.html page to reflect the following example:1.

<script>
 const { ipcRenderer } = require('electron');
 ipcRenderer.on('editor-event', (event, arg) => {
 console.log(arg);
 // send message back to main process
 event.sender.send('editor-reply', `Received ${arg}`);
 });
</script>

At the renderer side, we need to create a reply handler. First, we need to import2.
the ipcMain project from the Electron framework. Update the menu.js file and
add the following import to the top of the file:

 const { ipcMain } = require('electron');

Next, write the handler, similar to what we did for the web page scripts:3.

 ipcMain.on('editor-reply', (event, arg) => {
 console.log(`Received reply from web page: ${arg}`);
 });

To keep things simple and understandable, we also put the content of the
message in the output.

Now, it's time to see the messages go from the renderer to the main process.

For testing purposes, append the following code to the bottom of the script in the4.
index.html page:

 ipcRenderer.send('editor-reply', 'Page Loaded');

The whole script block should look as follows:5.

 <script>
 var editor = new SimpleMDE({
 element: document.getElementById('editor')
 });

Building a Markdown Editor Chapter 2

[56]

 const { ipcRenderer } = require('electron');
 ipcRenderer.on('editor-event', (event, arg) => {
 console.log(arg);
 event.sender.send('editor-reply', `Received ${arg}`);
 });

 ipcRenderer.send('editor-reply', 'Page Loaded');
 </script>

As you can see, as soon as the page is rendered to the users, the script sends the Page
Loaded message to the main process while utilizing the editor-reply channel. We
enabled logging to the console for all reply messages once you run your application with
the npm start script, the command's output should contain the following text:

> DEBUG=true electron .

Received reply from web page: hello world

This message means that your first messaging channel works from the renderer process to
the main one.

Sending messages to the renderer process
Now, we can send messages from the main process back to the renderer. According to our
initial scenario, we are going to handle application menu clicks and let the renderer process
know about user interactions.

To send messages to the renderer process, we need to know what window we should
address. Electron supports multiple windows with different content, and our code needs to
know or figure out which window contains the editor component. For the sake of
simplicity, let's access the focused window object since we have only a single-window
application right now:

Import the BrowserWindow object from the Electron framework:1.

 const { BrowserWindow } = require('electron');

The format of the call is as follows:

 const window = BrowserWindow.getFocusedWindow();
 window.webContents.send('<channel>', args);

At this point, we have communication handlers from both areas, that is, the
browser and Node.js. It is time to wire everything with a menu item.

Building a Markdown Editor Chapter 2

[57]

Update your menu.js file and provide a Toggle Bold entry that sends a2.
toggle-bold message using our newly introduced editor-event channel.
Refer to the following code for implementation details:

 const template = [
 {
 label: 'Format',
 submenu: [
 {
 label: 'Toggle Bold',
 click() {
 const window = BrowserWindow.getFocusedWindow();
 window.webContents.send(
 'editor-event',
 'toggle-bold'
);
 }
 }
]
 }
];

Let's check whether the messaging process works as expected.

Run the application with the npm start command, or restart it, and toggle the3.
Developer Tools.
Note that you also have the Format menu, which contains the Toggle bold4.
subitem. Click it and see what happens in the browser console output in the
Developer Tools:

The Terminal output should contain the following text:5.

 > DEBUG=true electron .

 Received reply from web page: Page Loaded
 Received reply from web page: Received toggle-bold

Building a Markdown Editor Chapter 2

[58]

This is a great result! As soon as we click on the application menu button, the main process
finds the focused window and sends the toggle-bold message. The renderer process
handles the message in Javascript and posts it to the browser console. After that, it replies
to the message, and the main process receives and outputs the response in the Terminal
window.

Wiring the toggle bold menu
Finally, let's wire the command with the toggle-bold functionality:

The markdown editor component we are using for this application provides1.
multiple functions that developers can invoke from code. One of those functions
is toggleBold(). Our code can check the content of the message, and if it's the
toggle-bold one, it will run the corresponding component function:

 if (arg === 'toggle-bold') {
 editor.toggleBold();
 }

The whole script section should look as follows:2.

 <script>
 var editor = new SimpleMDE({
 element: document.getElementById('editor')
 });

 const { ipcRenderer } = require('electron');

 ipcRenderer.on('editor-event', (event, arg) => {
 console.log(arg);
 event.sender.send('editor-reply', `Received ${arg}`);
 if (arg === 'toggle-bold') {
 editor.toggleBold();
 }
 });

 ipcRenderer.send('editor-reply', 'Page Loaded');
 </script>

Building a Markdown Editor Chapter 2

[59]

Restart the application once again, type something into the editor, and then select3.
the text. Next, click the Format | Toggle Bold menu item and see what happens.
The text you previously selected will be emboldened and the markdown editor
will render special ** symbols around the selection, as shown in the following
screenshot:

Congratulations! You have got cross-process messaging up and running in your Electron
application.

You have also integrated the Electron application menu with the web component hosted
inside the application. This employs specific messages that allow Javascript code to trigger
formatting features.

As an exercise, try to provide support for more formatting features, such as italic and
strikethrough, styles. The markdown editor functions of interest are
editor.toggleItalic() and editor.toggleStrikethrough().

The editor component supports many other useful functions. For a list of
available methods and properties, please refer to the corresponding
documentation: https:/ /github. com/ sparksuite/ simplemde- markdown-
editor#toolbar- icons.

Saving files to a local system
In this section, we are going to provide support for saving files to the local filesystem, as
well as handling global keyboard shortcuts.

Depending on the platform, you may want to support either Cmd + S for macOS or Ctrl + S
for Windows or Linux desktops.

https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons
https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons
https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons
https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons
https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons
https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons
https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons
https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons
https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons
https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons
https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons
https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons
https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons
https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons
https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons
https://github.com/sparksuite/simplemde-markdown-editor#toolbar-icons

Building a Markdown Editor Chapter 2

[60]

Let's start by switching back to the menu.js file and registering a new global shortcut. The
Electron framework is going to handle it regardless of the focused window. It can handle
globally registered shortcuts even if no window is present. This is often used when the
application provides support for the minimize to tray feature:

Update the menu.js file and import the globalShortcut object from the1.
Electron framework:

 const { globalShortcut } = require('electron');

This object allows you to access shortcut registration utilities. Check out the
following code, which shows you how to register a universal shortcut that
addresses every platform:

 app.on('ready', () => {
 globalShortcut.register('CommandOrControl+S', () => {
 console.log('Saving the file');
 });
 });

Please note that the shortcut is called CommandOrControl+S. This means that, if
your application is running on macOS, then Electron is going for listen to Cmd + S
clicks. In any other case, it accepts the Ctrl + S click. How convenient!

Now, run or restart the application and, depending on the platform you are2.
using right now, press either Cmd + S or Ctrl + S a few times.
Switch to the Terminal window and check the application's output. You should3.
see the initial message we created earlier, as well as a Saving the file string for
each of your clicks:

 Received reply from web page: Page Loaded
 Saving the file
 Saving the file
 Saving the file

This proves that the code is working and our Electron application is able to handle global
shortcuts. Next, we need to get the content of the markdown editor somehow and save it to
a file.

Work through the following these steps to practice with the event bus:

Node.js is going to send a message to the browser window and notify it that we1.
are about to save a file.
The rendering process should extract the raw text value of the user content and2.
send it back to the main process via another message.

Building a Markdown Editor Chapter 2

[61]

Finally, the Node.js side is going to receive the data, invoke the system dialog to3.
save the file, and write some content to the local disk.
You already know how to send messages. We used the editor-event channel4.
to send toggle-bold commands to the renderer process. Feel free to reuse the
same channel to send an extra save command, as shown in the following code:

 app.on('ready', () => {
 globalShortcut.register('CommandOrControl+S', () => {
 console.log('Saving the file');
 const window = BrowserWindow.getFocusedWindow();
 window.webContents.send('editor-event', 'save');
 });
 });

On the renderer process side, we also have an event listener. Now, we need an
additional condition handler.

As soon as the save message arrives, we call editor.getValue() to get the5.
actual text inside the markdown editor and send it back using the save channel
name:

 if (arg === 'save') {
 event.sender.send('save', editor.getValue());
 }

Like all the previous implementations, the client-side handler should look as6.
follows:

 const { ipcRenderer } = require('electron');

 ipcRenderer.on('editor-event', (event, arg) => {
 console.log(arg);
 event.sender.send('editor-reply', `Received ${arg}`);

 if (arg === 'toggle-bold') {
 editor.toggleBold();
 }

 if (arg === 'save') {
 event.sender.send('save', editor.value());
 }
 });

Building a Markdown Editor Chapter 2

[62]

Now, switch back to the menu.js file and place the listener for the save event7.
that the renderer process should now be raising:

 ipcMain.on('save', (event, arg) => {
 console.log(`Saving content of the file`);
 console.log(arg);
 });

As you can see, this isn't doing much. For the sake of simplicity, it is just putting
received data into the Terminal output so that we can verify that the messaging is
working as expected.

Before we start testing the data flow, we need to verify that our messaging8.
implementation in menu.js looks as follows:

 app.on('ready', () => {
 globalShortcut.register('CommandOrControl+S', () => {
 console.log('Saving the file');

 const window = BrowserWindow.getFocusedWindow();
 window.webContents.send('editor-event', 'save');
 });
 });

 ipcMain.on('save', (event, arg) => {
 console.log(`Saving content of the file`);
 console.log(arg);
 });

 ipcMain.on('editor-reply', (event, arg) => {
 console.log(`Received reply from web page: ${arg}`);
 });

This should help us understand where all the strings in the Terminal window are
coming from.

Building a Markdown Editor Chapter 2

[63]

Restart the application and type hello world. Then, click the H button to turn9.
the text into a Heading element:

As soon as you check the Terminal window while the application is running, you
should see the following output from all the message handlers we set up earlier:

 Received reply from web page: Page Loaded
 Saving the file
 Received reply from web page: Received save
 Saving content of the file
 # hello world

Note that you can also see the entirety of the text content. Try editing the text some more
and press Cmd + S or Ctrl + S from time to time. Ensure that the latest text value ends up in
the Terminal output.

Now, it's time to save the file to the local disk.

Using the save dialog
The Electron framework provides support for saving, opening, confirmation, and many
more. These dialogs are native to each platform. We are going to use the macOS platform to
see the native save dialog that macOS users are familiar with. The same code running on
Windows machines triggers Windows-like dialogs.

Building a Markdown Editor Chapter 2

[64]

Let's start by importing a dialog object into the menu.js file from the Electron framework:

const {
 app,
 Menu,
 shell,
 ipcMain,
 BrowserWindow,
 globalShortcut,
 dialog
} = require('electron');

You can now use the showSaveDialog method, which requires a parent window object
reference and a set of options before it can customize the behavior of the dialog.

In our case, we are going to set the title of the dialog and restrict the format to .md,
which is a markdown file extension:

ipcMain.on('save', (event, arg) => {
 console.log(`Saving content of the file`);
 console.log(arg);

 const window = BrowserWindow.getFocusedWindow();
 const options = {
 title: 'Save markdown file',
 filters: [
 {
 name: 'MyFile',
 extensions: ['md']
 }
]
 };

 dialog.showSaveDialog(window, options);
});

You can find out more about dialogs, and a list of available options, in the
following Electron documentation: https:/ /electronjs. org/ docs/ api/
dialog.

showSaveDialog receives the third parameter, that is, the callback function that gets
invoked if the user closes the dialog with the Save or Cancel button. The first callback
parameter provides you with the path of the file to use when saving content.

https://electronjs.org/docs/api/dialog
https://electronjs.org/docs/api/dialog
https://electronjs.org/docs/api/dialog
https://electronjs.org/docs/api/dialog
https://electronjs.org/docs/api/dialog
https://electronjs.org/docs/api/dialog
https://electronjs.org/docs/api/dialog
https://electronjs.org/docs/api/dialog
https://electronjs.org/docs/api/dialog
https://electronjs.org/docs/api/dialog
https://electronjs.org/docs/api/dialog
https://electronjs.org/docs/api/dialog

Building a Markdown Editor Chapter 2

[65]

Let's see how the whole thing works.

Add the console.log the path to output the file name to the terminal window:1.

dialog.showSaveDialog(window, options, filename => {
 console.log(filename);
});

Restart your application, type # hello world, and press Cmd + S or Ctrl + S.2.
You should see the native Save dialog, as shown in the following screenshot:

Change the name to test so that the final filename is test.md and click the3.
Save button.
Switch to the Terminal window and check out the output. It should contain the4.
full path to the file that you have provided via the Save dialog. In this case, for
the macOS platform, it should look as follows:

 /Users/<username>/Desktop/test.md

Sometimes, you may see the following message in the Terminal if you are a
macOS user:

 objc[4988]: Class FIFinderSyncExtensionHost is implemented in both
 /System/Library/PrivateFrameworks/FinderKit.framework/Versions/
 A/FinderKit (0x7fff9c38e210) and
 /System/Library/PrivateFrameworks/FileProvider.framework/
 OverrideBundles/FinderSyncCollaborationFileProviderOverride.bundle/
 Contents/MacOS/FinderSyncCollaborationFileProviderOverride
 (0x11ad85dc8).
 One of the two will be used. Which one is undefined.

This is a known issue and should be fixed in future versions of macOS and
Electron. Don't pay attention to this for the time being.

Building a Markdown Editor Chapter 2

[66]

At this point, we have our keyboard combinations working and the application
showing the Save dialog and passing the resulting file path to the main process.
Now, we need to save the file.

To deal with files, we need to import the fs object from the Node.js filesystem5.
utils:

 const fs = require('fs');

We are mainly interested in the writeFileSync function, which receives the
path to the file and the data and invokes the callback as soon as writing finishes.

The callback returns String or undefined, the path of the file that was chosen6.
by the user if a callback was provided, or if the dialog was canceled, it returns
undefined. This is why the null-check is very important.
Check if the filename value has been provided and save the file using the7.
fs.writeFileSync method, as shown in the following code:

 dialog.showSaveDialog(window, options, filename => {
 if (filename) {
 console.log(`Saving content to the file: ${filename}`);
 fs.writeFileSync(filename, arg);
 }
 });

Restart the application and repeat the previous steps. Type in some text, press the8.
shortcut, and pick the location and name for the file.
This time, however, the file should appear in your filesystem. You can find it9.
using the File browser and open it with the text editor. It should contain the
content that you previously typed in:

Building a Markdown Editor Chapter 2

[67]

That's all we need to do. The final implementation of the save event handler is as10.
follows:

 ipcMain.on('save', (event, arg) => {
 console.log(`Saving content of the file`);
 console.log(arg);

 const window = BrowserWindow.getFocusedWindow();
 const options = {
 title: 'Save markdown file',
 filters: [
 {
 name: 'MyFile',
 extensions: ['md']
 }
]
 };

 dialog.showSaveDialog(window, options, filename => {
 if (filename) {
 console.log(`Saving content to the file: ${filename}`);
 fs.writeFileSync(filename, arg);
 }
 });
 });

In this section, we achieved the following:

We sent the save event to the client-side (browser).
The browser code handles the event, fetches the current value of the text editor,
and sends it back to the Node.js side.
The Node.js side handles the event and invokes the system save dialog.
Once the user defines a file name and clicks Save, the content gets saved to the
local filesystem.

Congratulations—you are now able to invoke system-level Save dialogs from your
applications! Now, let's learn how to load files from a local system.

Building a Markdown Editor Chapter 2

[68]

Loading files from a local system
Now that you have got the Open File functionality and registered the global keyboard
shortcut for it, let's see what it takes to load a file from the local filesystem back into the
editor component:

Let's start by updating the menu.js file and registering a second global shortcut1.
for Cmd + O or Ctrl + O, depending on the user's desktop platform:

 globalShortcut.register('CommandOrControl+O', () => {
 // show open dialog
 });

We have already imported the dialog object from the Electron framework. You
can use it to invoke the system's Open dialog as well.

Update the menu.js file according to the following code:2.

 globalShortcut.register('CommandOrControl+O', () => {
 const window = BrowserWindow.getFocusedWindow();

 const options = {
 title: 'Pick a markdown file',
 filters: [
 { name: 'Markdown files', extensions: ['md'] },
 { name: 'Text files', extensions: ['txt'] }
]
 };

 dialog.showOpenDialog(window, options);
 });

Note that, this time, we are providing more than one file filter. This allows users
to open multiple file formats in a grouped fashion. For the sake of simplicity, we
are allowing our users to open markdown and plain text files.

Building a Markdown Editor Chapter 2

[69]

Run the application and press Cmd + O or Ctrl + O, depending on the platform3.
you are using for development. Note that the system dialog appears and allows
us to select markdown files by default:

You can also switch to the Text files group by means of the native Open dialog:4.

Building a Markdown Editor Chapter 2

[70]

Now, let's get back to the menu.js file. Similar to the Save dialog, the Open5.
dialog supports a callback function that provides us with information about
selected files. The user can also close the dialog without picking anything, so you
should always validate the results.
Given the nature of our editor application, we are only providing support for6.
editing one file at a time. That 's why you only need to pick the first file if the
user performs multi-selection, as follows:

 dialog.showOpenDialog(window, options, paths => {
 if (paths && paths.length > 0) {
 // read file and send to the renderer process
 }
 });

Finally, we use the fs object that we imported from Node.js earlier to support the7.
Save dialog. This time, however, we are looking for the fs.readFileSync
method.
As soon as we've read the file, we need to emit the cross-process event via the8.
load channel so that the rendering process can listen and perform additional
actions.
Update the dialog.showOpenDialog call so that it looks as follows:9.

 dialog.showOpenDialog(window, options, paths => {
 if (paths && paths.length > 0) {
 const content = fs.readFileSync(paths[0]).toString();
 window.webContents.send('load', content);
 }
 });

Before we move on to the rendering side, please ensure that the implementation10.
of your new global shortcut looks as follows:

 globalShortcut.register('CommandOrControl+O', () => {
 const window = BrowserWindow.getFocusedWindow();
 const options = {
 title: 'Pick a markdown file',
 filters: [
 { name: 'Markdown files', extensions: ['md'] },
 { name: 'Text files', extensions: ['txt'] }
]
 };
 dialog.showOpenDialog(window, options, paths => {
 if (paths && paths.length > 0) {
 const content = fs.readFileSync(paths[0]).toString();
 window.webContents.send('load', content);

Building a Markdown Editor Chapter 2

[71]

 }
 });
 });

Open the index.html file for editing and scroll to the scripts section, where we11.
already have some process communication handling in place.
Add a new handler that listens to the load channel and the corresponding12.
messages coming from the renderer process:

 ipcRenderer.on('load', (event, content) => {
 if (content) {
 // do something with content
 }
 });

As you can see, we're validating the input to ensure that the text content is13.
indeed there and using the editor.value(<text>) method to replace the
markdown editor content with new text:

 ipcRenderer.on('load', (event, content) => {
 if (content) {
 editor.value(content);
 }
 });

This is all we need to implement for the Open File feature. Run or restart your14.
Electron application, press Cmd + O or Ctrl + O, and select a markdown file:

You should now see the content of the file on the screen. As soon as we call the value()
function, the SimpleMDE component will reformat everything according to the markdown
rules.

Building a Markdown Editor Chapter 2

[72]

Creating a file menu
Given that we have two file management features, that is, Open and Save, now is an
excellent time to introduce a dedicated application menu entry so that users can use a
mouse to perform these operations.

Before we proceed with the application menu templates, let's refactor our file handling a bit
to make the code more reusable. Don't forget that we need to call the dialogs from the
menu item click handlers as well. Let's get started:

Move the code that's responsible for saving to a new saveFile function, as1.
shown in the following code:

 function saveFile() {
 console.log('Saving the file');

 const window = BrowserWindow.getFocusedWindow();
 window.webContents.send('editor-event', 'save');
 }

Refactor and move the file loading code to the loadFile function:2.

 function loadFile() {
 const window = BrowserWindow.getFocusedWindow();
 const options = {
 title: 'Pick a markdown file',
 filters: [
 { name: 'Markdown files', extensions: ['md'] },
 { name: 'Text files', extensions: ['txt'] }
]
 };
 dialog.showOpenDialog(window, options, paths => {
 if (paths && paths.length > 0) {
 const content = fs.readFileSync(paths[0]).toString();
 window.webContents.send('load', content);
 }
 });
 }

Now, our app.ready event handler should be concise and readable:3.

 app.on('ready', () => {
 globalShortcut.register('CommandOrControl+S', () => {
 saveFile();
 });

 globalShortcut.register('CommandOrControl+O', () => {

Building a Markdown Editor Chapter 2

[73]

 loadFile();
 });
 });

Now, let's build a File menu template. This shouldn't be difficult as we have4.
already touched on this. Update the template constant in the menu.js file, as
shown in the following code:

 const template = [
 {
 label: 'File',
 submenu: [
 {
 label: 'Open',
 accelerator: 'CommandOrControl+O',
 click() {
 loadFile();
 }
 },
 {
 label: 'Save',
 accelerator: 'CommandOrControl+S',
 click() {
 saveFile();
 }
 }
]
 }
];

Note that, if you are running on macOS, the menu item is going to show macOS-5.
related keyboard accelerators, that is, Cmd + O or Cmd + S, in the menu. For Linux
and Windows, you should see Ctrl + O or Ctrl + S, respectively:

Try clicking the menu items or pressing the corresponding keyboard combinations. You
can now use the mouse and the keyboard to manage your files.

Building a Markdown Editor Chapter 2

[74]

Congratulations on integrating menu and keyboard shortcuts. We have achieved the
following milestones:

We can access the local filesystem
We can read and write files
We can use the Save and Load dialogs
We can wire keyboard shortcuts (accelerators)

Our end users will probably expect our application to support drag and drop functionality
as well. This is something we are going to address in the next section.

Adding drag and drop support
Another nice feature you can provide for your small markdown editor application is the
ability to drag and drop files onto the window. Users of your application should have the
ability to drop a markdown file onto the editor's surface and have the content of the file
immediately available to them. This scenario also helps us address some extra features of
the Electron framework that you may use later. Let's get started:

The easiest way to enable drop support for an entire web page running in1.
Electron is to set the ondrop event handler for the body element:

 <body ondrop="dropHandler(event);">
 <!-- page content -->
 </body>

For now, the drop handler implementation can be as simple as putting a message2.
into the browser console's output. The most important part here is to prevent the
default behavior and tell other DOM elements that we are now responsible for
drop operations:

 <script>
 function dropHandler(event) {
 console.log('File(s) dropped');
 event.preventDefault();
 }
 </script>

Building a Markdown Editor Chapter 2

[75]

Run the Chrome Developer Tools with the Console tab open and drag and drop3.
a file from your system onto the markdown editor area:

You can find out more about drag and drop handling in HTML5 at
https:/ /developer. mozilla. org/en- US/ docs/ Web/API/ HTML_ Drag_ and_
Drop_ API/ File_ drag_ and_ drop.

For the next step, let's have some code that reads the content of the file that the4.
user drags and drops, and shows the text in the browser console. Please refer to
the following listing to see what the code should look like:

 function dropHandler(event) {
 event.preventDefault();

 if (event.dataTransfer.items) {
 if (event.dataTransfer.items[0].kind === 'file') {
 var file = event.dataTransfer.items[0].getAsFile();
 if (file.type === 'text/markdown') {
 var reader = new FileReader();
 reader.onload = e => {
 console.log(e.target.result);
 };

 reader.readAsText(file);
 }
 }
 }
 }

Notice that we are filtering out dropped files by the mime type. It should be5.
equal to the text/markdown value, meaning that you need to use files with the
.md extension. Also, we only take the first file entry if the user drops multiples.
Run the application, open Chrome Developer tools, and drop a markdown file6.
onto the editor. It can be anything. In our example, it's a README.md file:

https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop
https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API/File_drag_and_drop

Building a Markdown Editor Chapter 2

[76]

As you can see, the text of the markdown file should be present in the browser's
console output.

The final part of the implementation is straightforward. We already have a7.
reference to the SimpleMDE editor instance, so the only thing we need to do is
call the codemirror function in order to set the new text value, as follows:

 var reader = new FileReader();
 reader.onload = e => {
 // console.log(e.target.result);
 editor.codemirror.setValue(e.target.result);
 };

Building a Markdown Editor Chapter 2

[77]

Try the application once again. You should see the text from the dropped file8.
appear directly inside the markdown editor:

Our implementation had succeeded, so feel free to clean the code from the console.log
calls. Now, let's learn how we can support automatic updates with our markdown editor
application.

Supporting automatic updates
The electron-builder project that we are using with our Electron application also
provides support for automatic updates. In this section, we will learn how to set up a
GitHub repository so that we can store and distribute application updates.

Building a Markdown Editor Chapter 2

[78]

Our Markdown Editor application is going to check for new versions on each start-up and
notify users if a new version is available. Let's set up automatic updates for Electron
applications:

First, let's create a new GitHub repository and call it electron-updates.1.
Initialize it with the README file to save time cloning and setting up the initial
content:

Please select Public mode for the new GitHub repository. This is going to
simplify the entire configuration and update process significantly.

Building a Markdown Editor Chapter 2

[79]

It is possible to use private GitHub repositories too. However, private
updates require authentication tokens and should only be used for edge
cases, according to the documentation.

Next, we need to generate a separate authentication token to allow our2.
application to access GitHub and fetch updates:

Follow the procedure documented at https:/ /help. github. com/en/
articles/ creating- a- personal- access- token- for- the-command- line
to do this. You can generate a new token by going to https:/ /github.
com/settings/ tokens/ new.

Please note that the access token you create with GitHub's web interface should
have the scope/permission repository set.

Once you get the token, save it somewhere—you are going to use it from the3.
command line as a GH_TOKEN environment variable:

https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://github.com/settings/tokens/new
https://github.com/settings/tokens/new
https://github.com/settings/tokens/new
https://github.com/settings/tokens/new
https://github.com/settings/tokens/new
https://github.com/settings/tokens/new
https://github.com/settings/tokens/new
https://github.com/settings/tokens/new
https://github.com/settings/tokens/new
https://github.com/settings/tokens/new
https://github.com/settings/tokens/new
https://github.com/settings/tokens/new

Building a Markdown Editor Chapter 2

[80]

In my case, for demonstration purposes, the token is a value like this:

 cec93ac1cc2d42d422c20c554ca30a4cabf661b4

Please note, however, that the token is exclusive and is equivalent to a password.
Never share it with others and don't push it to the source code. For the rest of the
examples in this chapter, we are only going to use the access token from the
command line in the form of an environment variable.

Install the electron-updater dependency to enable support for automatic4.
update checks in our markdown editor project:

 npm i electron-updater

Update the package.json file and append the build and publish settings:5.

 {
 "name": "markdown-editor",
 "version": "1.1.0",
 "description": "",
 "main": "index.js",

 "scripts": {
 "start": "DEBUG=true electron ."
 },

 "build": {
 "appId": "com.my.markdown-editor",
 "publish": {
 "provider": "github",
 "owner": "<username>",
 "repo": "electron-updates"

Building a Markdown Editor Chapter 2

[81]

 }
 }
 }

Use your GitHub account name as the owner property value and electron-6.
updates as the repo value. This is how we call our GitHub project upon
creation.

Now, let's learn how to publish the macOS distribution:

Update the scripts section of your package.json file according to the1.
following code:

 {
 "scripts": {
 "publish:github": "build --mac -p always"
 }
 }

For more details on automatic update configuration, please refer to the
corresponding documentation online: https:/ /www. electron. build/
auto- update.

Don't run the publish command yet; we still need to wire the automatic update2.
checks with the code.
Switch to the index.js file and import the autoUpdater object from the3.
electron-updater library:

 const { autoUpdater } = require('electron-updater');

Checking for a new version of the application is extremely easy. All you need to4.
do is call the checkForUpdatesAndNotify method of the autoUpdater
object—the Electron library will handle the rest of the functionality.
Update the ready event in the index.js file, as follows:5.

 app.on('ready', () => {
 window = new BrowserWindow({
 ...
 });
 window.loadFile('index.html');
 autoUpdater.checkForUpdatesAndNotify();
 });

https://www.electron.build/auto-update
https://www.electron.build/auto-update
https://www.electron.build/auto-update
https://www.electron.build/auto-update
https://www.electron.build/auto-update
https://www.electron.build/auto-update
https://www.electron.build/auto-update
https://www.electron.build/auto-update
https://www.electron.build/auto-update
https://www.electron.build/auto-update
https://www.electron.build/auto-update
https://www.electron.build/auto-update

Building a Markdown Editor Chapter 2

[82]

Here, we're creating a window, loading the index.html file to display the user
interface, and then initiating the update check. The updater will performs the
check against the GitHub repository and releases it in the background so that our
users can keep using the application without interruptions.

The final content of your index.js file should look as follows:6.

 const { app, BrowserWindow, Menu } = require('electron');
 const menu = require('./menu');
 const { autoUpdater } = require('electron-updater');

 let window;

 app.on('ready', () => {
 window = new BrowserWindow({
 width: 800,
 height: 600,
 webPreferences: {
 nodeIntegration: true
 }
 });
 window.loadFile('index.html');

 autoUpdater.checkForUpdatesAndNotify();
 });

 Menu.setApplicationMenu(menu);

Now, you can run the following command to publish your first application7.
version to GitHub:

 GH_TOKEN=cec93ac1cc2d42d422c20c554ca30a4cabf661b4
 npm run publish:github

Don't forget to provide your token value for the GH_TOKEN environment variable.8.
There may be many output messages in the Terminal window. The tool is going
to compile the application, sign it, upload it to your GitHub repository, and issue
the release draft.
The end of the log should look similar to the following:9.

 building target=macOS zip arch=x64 file=dist/
 markdown-editor-1.0.0-mac.zip
 building target=DMG arch=x64 file=dist/
 markdown-editor-1.0.0.dmg
 building block map blockMapFile=dist/
 markdown-editor-1.0.0.dmg.blockmap

Building a Markdown Editor Chapter 2

[83]

 publishing publisher=Github (owner: DenysVuika, project:
 electron-updates, version: 1.0.0)
 uploading file=markdown-editor-1.0.0.dmg.blockmap provider=GitHub
 uploading file=markdown-editor-1.0.0.dmg provider=GitHub
 creating GitHub release reason=release doesn't exist tag=v1.0.0
 version=1.0.0 [========] 38% 25.6s | markdown-editor-1.0.0.dmg
 to GitHub
 building embedded block map file=dist/markdown-editor-1.0.0-mac.zip
 [========] 40% 24.4s | markdown-editor-1.0.0.dmg
 to GitHub
 uploading file=markdown-editor-1.0.0-mac.zip provider=GitHub
 [====================] 100% 0.0s | markdown-editor-1.0.0.dmg
 to GitHub
 [====================] 100% 0.0s | markdown-editor-1.0.0-mac.zip
 to GitHub

Note the primary steps in the execution: building, uploading, and creating
GitHub release. If there are no errors in the output, then the publishing
went well and as expected.

Navigate to your GitHub repository and switch to the Releases section. You10.
should see a new Release Draft there with a few files that we are going to
distribute:

Building a Markdown Editor Chapter 2

[84]

As you may have recalled, we have configured the macOS target for building and
packaging. This is why multiple different download links refer to the macOS
platform. As soon as you enable other targets, you should see more entries on the
release draft page, including Windows installers and Linux packages.

You can publish multiple times to the save release version draft. The version
number depends on the version field value inside your package.json file.

Once you are happy with the first version, you can click the Edit button, write11.
some details about the current release, and press the Publish release button:

As soon as you publish the release, the application becomes available for all users. Now,
let's see automatic updates in action.

Building a Markdown Editor Chapter 2

[85]

Testing automatic updates
Testing the whole auto-update process takes a few steps since you need to install one
version of the app, publish a new one, and then see what happens. Let's see those steps in
practice:

Go to the release page and download the installer package. For macOS, this is1.
going to be in .dmg format:

Install the app and run it to ensure it works as expected. Close the application for2.
now; we are going to return to it shortly.
Update the package.json file and set the version attribute to 1.1.0.3.
Alternatively, you can run the following command to update the file:

 npm version minor

The output should be as follows:4.

 v1.1.0

Run the publish command once again to create a new release draft:5.

 GH_TOKEN=<YOUR-TOKEN> npm run publish:github

Now, you should have two releases on GitHub, including a new draft for version6.
1.1.0:

Building a Markdown Editor Chapter 2

[86]

Perform the same steps you performed earlier and publish the new release. Then,7.
run the application you downloaded and installed earlier.
In a few seconds, after startup, the automatic updater will raise a system8.
notification, saying that a new version of the application has been downloaded
and ready to install:

Quit the application and run it once again. At this point, you should be using the9.
latest version, that is, 1.1.0 (at the time of writing).

Building a Markdown Editor Chapter 2

[87]

You can use the standard Electron framework out of the box to check that your10.
application version is the latest one:

Note the vision value; it is now 1.1.0:11.

Well done and congratulations on setting up publishing and automatic updates for your
application!

As an exercise, try to configure building and publishing for other platforms. Be sure to test
the installation and upgrade process with Windows or Ubuntu Linux if you have real or
virtual machines nearby.

In the next section, we are going to provide a proper title for our application.

Building a Markdown Editor Chapter 2

[88]

Changing the title of the application
Throughout the whole process of application development, you may have noticed that our
window is called Document, as shown in the following screenshot:

This is not an issue with the Electron framework; the title of the page comes from the
<title> tag inside the index.html file:

Change the value of the title to something more meaningful, for example, My
Markdown Application, and restart the application. You should see the new title, as
follows:

Building a Markdown Editor Chapter 2

[89]

Feel free to provide a different value for the name. Usually, it is the same value you are
going to have in the package.json file, inside the name property.

Summary
In this chapter, we have successfully created a minimalistic markdown editor. We have
walked through the process of integrating third-party editor components, wiring keyboard
combinations, and performing messaging between the browser and Node.js parts of the
Electron application. You should now have a better understanding of application
deployments and automatic updates, as well as simple release management via the GitHub
repository.

Then, you learned how to build a basic desktop application with system menu integration
and access to the local filesystem. This is essentially the bare bones of a typical Electron
project you are going to work on in the future. However, the Electron framework provides
you with a wrapper around your web application. You still need to decide whether to use
plain JavaScript, HTML, and CSS or employ an existing web framework to move faster.
This is something we are going to look at in the next chapter.

3
Integrating with Angular, React,

and Vue
With the rapid evolution of web technologies and frameworks, we no longer need to build
our web applications from scratch. There's a vast variety of component libraries, feature
libraries, extensions, and frameworks that combine the most reusable building blocks for
our needs.

In this chapter, we are going to focus on three essential frameworks that most modern
developers use, as follows:

Angular, which is backed by Google
React, which is backed by Facebook
Vue.js, which is backed by Evan You and its sponsors

You are about to go through the process of setting up three different projects for each web
framework. As part of this practical exercise, you will learn how to configure the live
reloading feature, integrate UI toolkits and component libraries, and set up application
routing.

In this chapter, we will cover the following topics:

Building an Electron application with Angular
Building an Electron application with React
Building an Electron application with Vue.js

Let's get started!

Integrating with Angular, React, and Vue Chapter 3

[91]

Technical requirements
To get started with this chapter, you will need a standard laptop or desktop running
macOS, Windows, or Linux.

The software that you'll need to have installed to complete this chapter is as follows:

Git, a version control system
Node.js with node package manager (NPM)
Visual Studio Code, a free and open-source code editor

You can find the code files for this chapter is this book's GitHub repository: https:/ /
github.com/PacktPublishing/ Electron- Projects/ tree/ master/ Chapter03.

Let's start with the Angular framework.

Building an Electron application with
Angular
This section assumes that you already have experience with the Angular framework. To
find out more, please refer to the Angular Quickstart section at https:/ /angular. io/
guide/quickstart.

To get the application up and running fast, we are going to use the Angular CLI. The
Angular CLI is a project that's maintained by the Angular team. It's described in the official
documentation (https:/ /angular. io/ cli#cli- overview- and- command- reference) as
follows:

The Angular CLI is a command-line interface tool that you use to initialize, develop,
scaffold, and maintain Angular applications. You can use the tool directly in a command
shell, or indirectly through an interactive UI such as Angular Console.

You can install the latest version of the Angular CLI through the NPM package manager.
Typically, developers install it as a global tool so that they can generate a new project in any
folder using the command-line tool or Terminal application.

To find out more about the Angular CLI, and globally get a list of all supported commands
with a detailed explanation of what they do, please go to https:/ /angular. io/cli.

https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter03
https://angular.io/guide/quickstart
https://angular.io/guide/quickstart
https://angular.io/guide/quickstart
https://angular.io/guide/quickstart
https://angular.io/guide/quickstart
https://angular.io/guide/quickstart
https://angular.io/guide/quickstart
https://angular.io/guide/quickstart
https://angular.io/guide/quickstart
https://angular.io/guide/quickstart
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli#cli-overview-and-command-reference
https://angular.io/cli
https://angular.io/cli
https://angular.io/cli
https://angular.io/cli
https://angular.io/cli
https://angular.io/cli
https://angular.io/cli
https://angular.io/cli
https://angular.io/cli

Integrating with Angular, React, and Vue Chapter 3

[92]

Run the following command to install the CLI:

npm i -g @angular/cli@latest

The output should look similar to the following:

/usr/local/bin/ng -> /usr/local/lib/node_modules/@angular/cli/bin/ng
+ @angular/cli@7.3.8

The NPM package manager downloads and installs the Angular CLI and all its
dependencies. Upon completion, it also registers a new global ng command that you can
use anywhere.

Now, let's create our Angular project scaffold, which we will use with the Electron shell.

Generating our Angular project scaffold
In this section, we are going to learn how to set up a new project that follows Angular's
development practices. Let's get started:

Run the following commands to generate a new Angular project called1.
integrate-angular:

 ng new integrate-angular
 cd integrate-angular

The Angular CLI tool usually asks a series of questions to clarify what extra
features you want to have in the resulting application.

If you're asked about routing support, type Y and press Enter:2.

 Would you like to add Angular routing? (y/N)
 Y

Next, if the tool asks you about the stylesheet format, choose SCSS, as shown in3.
the following code:

 Which stylesheet format would you like to use? (Use arrow keys)
 SCSS

Integrating with Angular, React, and Vue Chapter 3

[93]

The output of the preceding code is as follows:4.

Note how the Angular CLI generates a set of files for you. The tool provides you
with various ignore rules for NPM and Git inside the .gitignore file,
configuration files for Typescript and the Karma test runner, and even a set of
unit and end-to-end tests as part of the initial scaffold.

Check out what the package.json file looks like, especially its general5.
information and the scripts section:

 {
 "name": "integrate-angular",
 "version": "0.0.0",
 "scripts": {
 "ng": "ng",
 "start": "ng serve",
 "build": "ng build",
 "test": "ng test",
 "lint": "ng lint",
 "e2e": "ng e2e"
 },
 }

Integrating with Angular, React, and Vue Chapter 3

[94]

The Angular CLI also performs dependency library installation, so all you need6.
to do is run the following command to get your web application up and running:

 npm start

Historically, every web app that we generate with the help of the Angular CLI
runs on port 4200 by default. You can quickly change the port in the future, but
for now let's stick to the defaults.

Launch your preferred browser and navigate to http://locahost:4200. You7.
should see a landing page called Welcome to integrate-angular! that the Angular
CLI has created for you:

Now, let's configure the Electron shell so that it works with Angular code.

Integrating with Angular, React, and Vue Chapter 3

[95]

Integrating the Angular project with Electron
Now that you have an Angular project scaffold, let's integrate it with the Electron shell:

Open the project in Visual Studio Code. You can do that from the Terminal using1.
the following command:

 code .

First, though it's not mandatory, let's change the application's title.

Open the src/index.html file and change the content of the title tag to2.
Angular with Electron, or any title of your choice:

 <title>Angular with Electron</title>

Now, we need to update the base application path to ./:3.

 <base href="./" />

This makes all resources relative to the index.html file. This is what we need
when we're running an Angular application from within the Electron shell.

This results in the following output:4.

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Angular with Electron</title>
 <base href="./" />
 <meta name="viewport" content="width=device-width,
 initial-scale=1" />
 <link rel="icon" type="image/x-icon" href="favicon.ico" />
 </head>
 <body>
 <app-root></app-root>
 </body>
 </html>

Switch to the Command Prompt or a Terminal window. We need to install the5.
electron library into the project. You can do this with the following command:

 npm i electron -D

Integrating with Angular, React, and Vue Chapter 3

[96]

We need to provide a main.js file and register it with the package.json file so6.
that it acts as the main entry point for the Electron shell that will be loaded upon
startup. Every time Electron starts, it checks for the entry and uses that file.
Open the package.json file so that you can edit it. Update it so that the code7.
looks as follows:

 {
 "name": "integrate-angular",
 "version": "0.0.0",
 "main": "main.js",
 "scripts": {
 "ng": "ng",
 "start": "ng serve",
 "build": "ng build",
 "test": "ng test",
 "lint": "ng lint",
 "e2e": "ng e2e"
 },
 }

Now, create a main.js file in the project root folder and add the following8.
content to it:

 const { app, BrowserWindow } = require('electron');

 let win;

 function createWindow() {
 win = new BrowserWindow({ width: 800, height: 600 });

 win.loadFile('index.html');

 win.on('closed', () => {
 win = null;
 });
 }

 app.on('ready', createWindow);

 app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') {
 app.quit();
 }
 });

 app.on('activate', () => {
 if (win === null) {

Integrating with Angular, React, and Vue Chapter 3

[97]

 createWindow();
 }
 });

To find out more, please refer to https:/ /electronjs. org/docs/
tutorial/ first- app. The Electron team has provided a great set of
examples and code blocks that you can copy and paste into your
application.

The preceding code is a minimal implementation of an Electron window. We are
going to use similar snippets throughout this book.

The first thing that we need to change in the main.js code is where we can find9.
the index.html file. If we compile an Angular project in production mode, we'll
get the final application artifacts in the dist subfolder. Change the
win.loadURL call to reflect that:

 win.loadURL(`file://${__dirname}/dist/index.html`)

For experienced developers, if you have multiple projects in the workspace, you
may also need to specify the project folder name within the output, as follows
globally:

 win.loadURL(`file://${__dirname}/dist/integrate-angular/index.html`);

Before we finish the configuration, switch back to the package.json file and10.
rename the start script to serve. Then, add a new start script entry to invoke
the Electron application:

 {
 "name": "integrate-angular",
 "version": "0.0.0",
 "main": "main.js",
 "scripts": {
 "ng": "ng",
 "serve": "ng serve",
 "start": "electron .",
 "build": "ng build",
 "test": "ng test",
 "lint": "ng lint",
 "e2e": "ng e2e"
 },
 }

https://electronjs.org/docs/tutorial/first-app
https://electronjs.org/docs/tutorial/first-app
https://electronjs.org/docs/tutorial/first-app
https://electronjs.org/docs/tutorial/first-app
https://electronjs.org/docs/tutorial/first-app
https://electronjs.org/docs/tutorial/first-app
https://electronjs.org/docs/tutorial/first-app
https://electronjs.org/docs/tutorial/first-app
https://electronjs.org/docs/tutorial/first-app
https://electronjs.org/docs/tutorial/first-app
https://electronjs.org/docs/tutorial/first-app
https://electronjs.org/docs/tutorial/first-app
https://electronjs.org/docs/tutorial/first-app
https://electronjs.org/docs/tutorial/first-app

Integrating with Angular, React, and Vue Chapter 3

[98]

Launch the Terminal window in VS Code, or use any other Command Prompt11.
tool, and execute the following scripts:

 npm run build
 npm start

The first command builds the application in production mode. This provides you
with a dist folder that contains optimized scripts, styles, and HTML files. The
second command launches an Electron shell with your application inside it so
that you can test or debug your features.

The application window should look as follows:12.

Now, the project is ready to be worked on. However, as you may have noticed, to test a
change in the code or user interface, you have to perform the following actions:

Stop the Electron app.1.
Stop the running web server.2.

Integrating with Angular, React, and Vue Chapter 3

[99]

Change the code.3.
Start the web server.4.
Start the Electron app.5.

Let's learn how to improve our setup so that we can automatically rebuild and reload the
application when code changes are made.

Configuring Live Reloading
Live Reloading (or Hot Reloading) is a feature that allows you to reload your browser every
time code changes. Developers often use this feature when they're building and testing web
applications. Given that Electron contains a browser instance, the Live Reloading feature
can apply to desktop applications as well.

You already know how to serve an Angular CLI application locally and that you can
navigate to http:/ /localhost:4200 to use it in the browser. The solution for local
development is to make your Electron application use the same address to load the main
index.html content, instead of the prebuilt file. Let's get started:

To see this in action, update the main.js file according to the following code:1.

 // win.loadURL(`file://${__dirname}/dist/integrate-angular
 /index.html`);

 win.loadURL(`http://localhost:4200`);

Now, it's time to see the live reloading feature in action.

Run the serve command and ensure that the application is up and running:2.

 npm run serve

You should see the following output if everything is OK:

 Hash: 580d684324c23500227d
 Time: 10770ms
 chunk {es2015-polyfills} es2015-polyfills.js, es2015-polyfills.js.map
 (es2015-polyfills) 284 kB [initial] [rendered]
 chunk {main} main.js, main.js.map (main) 11.5 kB [initial] [rendered]
 chunk {polyfills} polyfills.js, polyfills.js.map (polyfills)
 236 kB [initial] [rendered]
 chunk {runtime} runtime.js, runtime.js.map (runtime) 6.08 kB
 [entry] [rendered]
 chunk {styles} styles.js, styles.js.map (styles) 16.7 kB

Integrating with Angular, React, and Vue Chapter 3

[100]

 [initial] [rendered]
 chunk {vendor} vendor.js, vendor.js.map (vendor) 3.76 MB
 [initial] [rendered]
 i ⌈wdm⌋: Compiled successfully.

Remember the number of files that Angular CLI builds; we are going to get back
to that in a minute.

Now, switch to another Terminal window and start the Electron app in parallel3.
to it:

 npm start

Note that the web server should still be running.

The good news is that you can test your application against your desktop and4.
browser at the same time. Feel free to open http:/ /localhost:4200 in your
browser. You should see the same code running in both windows, and that both
of them are reloaded when changes are made to them:

Integrating with Angular, React, and Vue Chapter 3

[101]

Now, with the browser tab open and the Electron application running, go to the5.
src/app/app.component.ts file and change the tile by updating its content
with the following code:

 import { Component } from '@angular/core';

 @Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.scss']
 })
 export class AppComponent {
 title = 'Angular Electron';
 }

Take a look at the Terminal instance where the web server is running. Notice that6.
the main.js and main.js.map files recompile when an update occurs:

 Hash: 042ed91436c7c2fe2749 - Time: 2046ms
 5 unchanged chunks
 chunk {main} main.js, main.js.map (main) 11.5 kB [initial] [rendered]
 i ⌈wdm⌋: Compiled successfully.

If you have a browser or an Electron shell—or both—running, the applications7.
will automatically reload. You should see the updated title:

Integrating with Angular, React, and Vue Chapter 3

[102]

Why test in the browser?
Often, applications that run in the Electron shell share their code with the web client's
implementations. Let's take Slack or Skype as an example. You can use a web client with
your browser or download the desktop client based on Electron. The desktop client usually
provides better integration with the underlying operating system in terms of file
management, downloads, system notifications, and the system tray.

It is good practice to build the web client with a desktop in mind, so you may want to check
how well the same code base behaves in the browser. This is why it's very convenient to
run both a desktop shell and a web tab.

Setting up production builds
When developing locally, you may want to use live reloading (or hot reloading). However,
when packaging for distribution, the application needs to have access to the production
output.

The Angular CLI allows us to quickly compile a web application in production mode. You
can do this by running the following command:

ng build --prod

According to the Angular documentation, the —prod switch does the following:

When true, it sets the build configuration to the production target. All builds make use of
bundling and limited tree-shaking. A production build also runs limited dead code
elimination.

This means that you get a minimal and highly optimized output, as follows:

Integrating with Angular, React, and Vue Chapter 3

[103]

You will probably run this command often when preparing production builds. It would be
a good idea to have a shortcut command to avoid typing out all the parameters. The best
way to achieve this is to have an entry in the package.json file. Let's create one now:

Let's update the package.json file and so we have build.prod script that1.
contains various flags that will save us time in future:

 "build.prod": "ng build --prod",

Don't forget that, for Electron, we also have to change the base path property2.
inside the index.html file:

 <base href="./" />

The ng build command in the Angular CLI provides support for that scenario3.
as well. You can use the —baseHref parameter to provide a custom value:

 "build.prod": "ng build --prod --baseHref=./",

Excluding the dependencies and devDependencies sections, your4.
package.json file should now look as follows:

 {
 "name": "integrate-angular",
 "version": "0.0.0",
 "main": "main.js",
 "scripts": {
 "ng": "ng",
 "serve": "ng serve",
 "start": "electron .",
 "build": "ng build",
 "build.prod": "ng build --prod --baseHref=./",
 "test": "ng test",
 "lint": "ng lint",
 "e2e": "ng e2e"
 },
 }

Let's test the whole setup. Switch to your Terminal or console window and run5.
the following command:

 npm run build.prod

Integrating with Angular, React, and Vue Chapter 3

[104]

Check out the index.html file in the dist folder; it should now contain a6.
custom base path value:

In the next section, we are going to learn how to set up conditional loading support.

Setting up conditional loading
Let's review the application startup process:

If you switch to the package.json file, the start script will looks as follows:1.

 "start": "electron ."

As you already know, Node.js provides us with access to environment variables
so that the application can perform different behaviors, depending on external
parameters.

Supporting the DEBUG parameter is a standard practice:2.

 {
 "start": "DEBUG=true electron ."
 }

For Windows users, the start script should be slightly different:

 {
 "start": "SET DEBUG=true && electron ."
 }

Integrating with Angular, React, and Vue Chapter 3

[105]

In this case, our set of scripts will look similar to the following:3.

 {
 "scripts": {
 "ng": "ng",
 "serve": "ng serve",
 "start": "DEBUG=true electron .",
 "build": "ng build",
 "build.prod": "ng build --prod --baseHref=./",
 "test": "ng test",
 "lint": "ng lint",
 "e2e": "ng e2e"
 },
 }

In the main.js file, you can now check the process.env object, which contains4.
the DEBUG value, and perform conditional loading.
Here, we need to run this from http://localhost:4200 for development 5.
mode and use dist/index.html when in production:

 if (process.env.DEBUG) {
 // load from running server on port 4200
 } else {
 // load production build from the "dist" folder
 }

Update the main.js file and make the corresponding changes to the6.
createWindow function:

 function createWindow() {
 win = new BrowserWindow({ width: 800, height: 600 });

 if (process.env.DEBUG) {
 win.loadURL(`http://localhost:4200`);
 } else {
 win.loadURL(`file://${__dirname}/dist/integrate-angular
 /index.html`);
 }

 win.on('closed', () => {
 win = null;
 });
 }

Integrating with Angular, React, and Vue Chapter 3

[106]

Now, we are all set. Run npm run serve in one Terminal window, wait until7.
the server starts, and then run npm start in another window:

 npm run serve
 npm start

Since we are running the application with the DEBUG parameter, the Electron shell is going
to display content from http:/ / localhost:4200 with live reloading support. This is what
we should expect when we're working on the application locally.

Now, it's time to learn how to use the UI toolkit with our Angular project.

Using Angular Material components
In most cases, you aren't going to write every UI component from scratch. There are many
libraries that can save you time and allow you to focus on what matters most—the business
logic of your application.

There are many component libraries out there. Among the most popular are the following:

Angular Material, by Google (https:/ /material. angular. io/)
PrimeNG, by PrimeTek (https:/ /www. primefaces. org/ primeng/ #/)

In this section, we are going to use Angular Material by Google, but you can always
experiment with additional component libraries later on.

Installing Angular Material into your project is effortless. The ng add command is
supported by the Angular CLI and is provided by Angular Material, which makes the
process straightforward. Let's learn how to install it:

Run the following command:1.

 ng add @angular/material

For our current experiment, select the Indigo/Pink theme if the Angular CLI asks2.
about prebuilt themes:

 Q: Choose a prebuilt theme name, or "custom" for a custom theme:
 A: Indigo/Pink

https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://www.primefaces.org/primeng/#/
https://www.primefaces.org/primeng/#/
https://www.primefaces.org/primeng/#/
https://www.primefaces.org/primeng/#/
https://www.primefaces.org/primeng/#/
https://www.primefaces.org/primeng/#/
https://www.primefaces.org/primeng/#/
https://www.primefaces.org/primeng/#/
https://www.primefaces.org/primeng/#/
https://www.primefaces.org/primeng/#/
https://www.primefaces.org/primeng/#/
https://www.primefaces.org/primeng/#/
https://www.primefaces.org/primeng/#/
https://www.primefaces.org/primeng/#/

Integrating with Angular, React, and Vue Chapter 3

[107]

I also suggest enabling HammerJS support for gestures, as well as the browser3.
animations module:

 Q: Set up HammerJS for gesture recognition?
 A: Y

 Q: Set up browser animations for Angular Material?
 A: Y

Once you've answered all the questions, the Angular CLI will install the4.
corresponding dependencies and even modify a few files to integrate the library
with your project:

 UPDATE src/main.ts (391 bytes)
 UPDATE src/app/app.module.ts (502 bytes)
 UPDATE angular.json (4158 bytes)
 UPDATE src/index.html (522 bytes)
 UPDATE src/styles.scss (181 bytes)

You can take a look at the files the Angular CLI generated for you and check out their
content if you wish. In the next section, we are going to discuss the project's structure and
the modifications that the Angular CLI makes now that we've installed Angular Material.

Modifications made by installing Angular Material
Let's quickly review what modifications the Angular CLI makes to install the Angular
Material library. This is quite common when we install third-party libraries that don't
support ng add schematics. In this section, we'll take a look at what we should do when
we see a new component library for Angular. Let's take a look at these modifications:

The angular.json file gets an extra reference in the styles array:1.

 "styles":
 [
 "./node_modules/@angular/material/prebuilt-themes/indigo-pink.css",
 "src/styles.scss"
],

The index.html page now contains two extra fonts, Roboto and Material2.
Icons. Check out https:/ /material. io/ tools/ icons to see what icons are
available for your application when you install Angular Material components
such as MatIcon:

 <link href="https://fonts.googleapis.com/css?
 family=Roboto:300,400,500" rel="stylesheet">

https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons

Integrating with Angular, React, and Vue Chapter 3

[108]

 <link href="https://fonts.googleapis.com/icon?family=Material+Icons"
 rel="stylesheet">

The main.ts file gets an additional import for the hammerjs library. This is a3.
prerequisite for various Angular Material components when we need to deal
with various touch and gesture operations.
The styles.scss files has been updated with some minor enhancements to the4.
application style and to the new default font that points to Roboto:

 html, body { height: 100%; }
 body { margin: 0; font-family: Roboto, "Helvetica Neue",
 sans-serif; }

Finally, the src/app/app.module.ts file now imports and uses5.
BrowserAnimationsModule.

As you can see, you have just managed to update numerous files by running a single ng
add command. In the future, you may see more and more libraries supporting this form of
installation since it's straightforward and convenient compared to the manual setup option.

Now, let's look at how to use components from the Angular Material package.

Adding the Material Toolbar component
The simplest thing to start with is the Toolbar component. You can find details about the
API, as well as examples of how to use it, here: https:/ /material. angular. io/
components/toolbar.

Let's learn how to easily integrate the Material Toolbar component:

Open the src/app/app.module.ts file for editing and append the1.
MatToolbarModule import to the top of the file, in the import section:

 import { MatToolbarModule } from '@angular/material/toolbar';

However, importing a type from the Angular Material library isn't enough. You2.
also need to register with the application module's imports:

 @NgModule({
 declarations: [AppComponent],
 imports: [
 BrowserModule,
 AppRoutingModule,
 BrowserAnimationsModule,

https://material.angular.io/components/toolbar
https://material.angular.io/components/toolbar
https://material.angular.io/components/toolbar
https://material.angular.io/components/toolbar
https://material.angular.io/components/toolbar
https://material.angular.io/components/toolbar
https://material.angular.io/components/toolbar
https://material.angular.io/components/toolbar
https://material.angular.io/components/toolbar
https://material.angular.io/components/toolbar
https://material.angular.io/components/toolbar
https://material.angular.io/components/toolbar

Integrating with Angular, React, and Vue Chapter 3

[109]

 MatToolbarModule
],
 providers: [],
 bootstrap: [AppComponent]
 })
 export class AppModule {}

Now, you can use the <mat-toolbar> component in your HTML templates. Let's see how
this works:

Switch to the src/app/app.component.html file and put the following code at1.
the top of the file:

 <mat-toolbar>
 My Application
 </mat-toolbar>

At runtime, your Electron application should now look as follows:2.

Integrating with Angular, React, and Vue Chapter 3

[110]

You can also clean up the HTML template a bit. The main things we need to3.
retain are our Toolbar, the Welcome label, and the Router Outlet component:

 <mat-toolbar color="primary">
 My Application
 </mat-toolbar>

 <div style="text-align:center">
 <h1>Welcome to {{ title }}!</h1>
 </div>

 <router-outlet></router-outlet>

Restart the application if you aren't using Live Reloading. The main page will4.
now look as follows:

Most applications consist of multiple views. You're probably going to have different pages,
such as Settings, About, and more. For this situation, Angular provides support for
routing or linking parts of the URL address to particular components.

Angular routing
We are about to implement two routes to see routing in action. The first route is our main
page, which shows the Welcome screen. The second page shows the About screen. We are
also going to need some links or buttons to switch between the two pages.

Since the Angular CLI provides the ng generate component command, which creates a
new component scaffold with all the necessary files and project modifications, let's generate
an About page first:

Run the following command:1.

 ng generate component about

Integrating with Angular, React, and Vue Chapter 3

[111]

Pay attention to the command's output. As a result, you get a Typescript file with
the component; a spec.ts file, which contains a unit testing placeholder; and an
HTML template, which contains the SCSS stylesheet. The Angular CLI also
updates the main application module in the app.module.ts file to include the
newly generated component in the application's structure.

The output should be similar to the following:2.

 CREATE src/app/about/about.component.scss (0 bytes)
 CREATE src/app/about/about.component.html (24 bytes)
 CREATE src/app/about/about.component.spec.ts (621 bytes)
 CREATE src/app/about/about.component.ts (266 bytes)
 UPDATE src/app/app.module.ts (651 bytes)

Once our new About component is ready, we can register an application route to
display it to the user.

Update the src/app/app-routing.module.ts file and add a new entry to the3.
routes array, as shown in the following code:

 import { NgModule } from '@angular/core';
 import { Routes, RouterModule } from '@angular/router';
 import { AboutComponent } from './about/about.component';

 const routes: Routes = [
 {
 path: 'about',
 component: AboutComponent
 }
];

 @NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
 })
 export class AppRoutingModule {}

The preceding code introduces a new URL fragment, /about, which displays the
About component when we visit that link. We are going to see this in action
shortly, but first let's add some buttons to allow users to switch between screens.

Integrating with Angular, React, and Vue Chapter 3

[112]

Update the app.module.ts file and import the MatButtonModule and4.
MatIconModule modules from Angular Material. Don't forget to provide them
inside the module's imports section as well:

 import { MatButtonModule } from '@angular/material/button';
 import { MatIconModule } from '@angular/material/icon';

 @NgModule({
 declarations: [AppComponent, AboutComponent],
 imports: [
 BrowserModule,
 AppRoutingModule,
 BrowserAnimationsModule,
 MatToolbarModule,
 MatButtonModule,
 MatIconModule
],
 providers: [],
 bootstrap: [AppComponent]
 })
 export class AppModule {}

The Angular Material library provides different kinds of buttons and button5.
styling. For the sake of simplicity, let's use the Icon Button component with the
help_outline image from Material Icons.
Update your HTML code according to the following listing:6.

 <mat-toolbar color="primary">
 My Application

 <button mat-icon-button>
 <mat-icon>help_outline</mat-icon>
 </button>
 </mat-toolbar>

 <!--The content below is only a placeholder and can be
 replaced.-->
 <div style="text-align:center">
 <h1>Welcome to {{ title }}!</h1>
 </div>

 <router-outlet></router-outlet>

Integrating with Angular, React, and Vue Chapter 3

[113]

Note the use of an extra span element within the spacer class. We need it to take
up space in the middle of the toolbar and move the buttons to the right corner
while leaving the application title on the left. This is a typical layout for
application toolbars or menus.

To make our spacer work as expected, we also need to update the7.
app.component.scss file and declare the following style:

 .spacer {
 flex: 1 1 auto;
 }

If you run the application now, you should see a nice-looking application toolbar8.
with a ? button on the right-hand side:

You may have noticed, however, that the button on the toolbar does nothing so far. The
application title label also does nothing. Traditionally, the application's title redirects the
user to the main page, that is, the home page.

The Angular Router component allows us to map buttons to particular routes and hides all
the complexity related to navigation. You can use the routerLink attribute with your
components to inform the router that this button expects navigation to occur.

Let's learn how to use attributes to configure routing in our application:

Update your HTML template according to the following code:1.

 <mat-toolbar color="primary">
 <button mat-button routerLink="/">My Application</button>

 <button mat-icon-button routerLink="/about">
 <mat-icon>help_outline</mat-icon>
 </button>
 </mat-toolbar>

 <div style="text-align:center">

Integrating with Angular, React, and Vue Chapter 3

[114]

 <h1>Welcome to {{ title }}!</h1>
 </div>

 <router-outlet></router-outlet>

Switch to your running application and try to click on the ? button again. Notice2.
that the main content area underneath the Welcome label changes to about
works!. This string is part of the auto-generated About component, and it proves
that the About route works for us:

Click the My Application label to get back to the home page.3.
Notice, however, that extra content gets displayed within the <router-outlet>4.
tags:

 <router-outlet></router-outlet>

The Welcome to Angular Electron heading is placed above the router outlet so that you can
see it on every page. Note that you have static content that should be visible on every page,
such as the toolbar component, and some dynamic content that changes according to the
user's actions.

As an exercise, let's move the heading into a separate Home component so that we can see
the About and Home content take up all the space:

Generate a new component that will store the content of the Home page:1.

 ng generate component home

Like the previous component, the Angular CLI generates output so that you can
see what files have been affected by your change. Also, if you are using a source
control program, such as Git, you can always roll-back these changes.

Integrating with Angular, React, and Vue Chapter 3

[115]

The output from using the preceding command is as follows:

 CREATE src/app/home/home.component.scss (0 bytes)
 CREATE src/app/home/home.component.html (23 bytes)
 CREATE src/app/home/home.component.spec.ts (614 bytes)
 CREATE src/app/home/home.component.ts (262 bytes)
 UPDATE src/app/app.module.ts (878 bytes)

Proceed to the app.routing-module.ts file and prepend the Home route to the2.
routes collection:

 import { AboutComponent } from './about/about.component';
 import { HomeComponent } from './home/home.component';

 const routes: Routes = [
 {
 path: '',
 component: HomeComponent
 },
 {
 path: 'about',
 component: AboutComponent
 }
];

Note that we are using an empty path value this time. This means that the
HomeComponent will be displayed on the default application path, for example, at
http://localhost:4200.

Now, we need to move the Welcome label to the new location in the3.
home.component.ts file. Update the src/app/home/home.component.html
template according to the following code:

 <div style="text-align:center">
 <h1>Welcome to {{ title }}!</h1>
 </div>

 <p>
 home works!
 </p>

Integrating with Angular, React, and Vue Chapter 3

[116]

The component template relies on the title property, so don't forget to move4.
that property from the app.component.ts file to the home.component.ts file
as well:

 import { Component, OnInit } from '@angular/core';

 @Component({
 selector: 'app-home',
 templateUrl: './home.component.html',
 styleUrls: ['./home.component.scss']
 })
 export class HomeComponent implements OnInit {
 title = 'Angular Electron';

 constructor() {}

 ngOnInit() {}
 }

Finally, we can clean up the main application component and leave only the5.
toolbar and the router outlet, which are our placeholders for the active route's
content:

 <mat-toolbar color="primary">
 <button mat-button routerLink="/">My Application</button>

 <button mat-icon-button routerLink="/about">
 <mat-icon>help_outline</mat-icon>
 </button>
 </mat-toolbar>

 <router-outlet></router-outlet>

At runtime, you should see the same Welcome heading and a home works!6.
string:

Integrating with Angular, React, and Vue Chapter 3

[117]

This time, however, all the text on the screen comes from the Home component that we
loaded for the default route. Click on the ? button once again to ensure that you can see the
About screen taking up the content area:

At this point, you are ready to build multi-page applications and display different areas by
navigating users via the Angular Routing system.

The application we have just built can share the same code base as the web client.

Now, you know how to build Electron applications with the Angular framework and
Google's ecosystem of components and libraries. In the next section, we are going to walk
through the process of setting up React projects and using the Facebook ecosystem.

Building an Electron application with React
React is a highly popular view library for building web applications. It is maintained by
Facebook and has a huge community of developers. There are lots of component libraries,
tutorials, blog posts, and other informational resources available in the internet.

If you decide to build an Electron application with the React library, you are going to find a
lot of reusable code and resources that will be very useful and save you time.

Now, let's see what it takes to integrate the React library with an Electron application.

Integrating with Angular, React, and Vue Chapter 3

[118]

Generating a React project
Perform the following steps to learn how to create a React project:

Similarly to the Angular CLI, React has its own application scaffold generator,1.
Create React App. You can generate a new project by running the following
command:

npx create-react-app integrate-react

You should see the following output:2.

Success! Created integrate-react at <path>/integrate-react
Inside that directory, you can run several commands:

 yarn start
 Starts the development server.

 yarn build
 Bundles the app into static files for production.

 yarn test
 Starts the test runner.

 yarn eject
 Removes this tool and copies build dependencies,
 configuration files
 and scripts into the app directory. If you do this, you can't
 go back!

We suggest that you begin by typing:

 cd integrate-react
 yarn start

Note that create-react-app uses the Yarn package manager. However, you
can still use the same commands with npm run if you wish; for example, npm
run build instead of yarn build, and so on. Alternatively, you can install Yarn
and use its commands. You can find out more about Yarn at https:/ /yarnpkg.
com.

Run the application with the start command to see if it's working:3.

cd integrate-react/
npm start

https://yarnpkg.com
https://yarnpkg.com
https://yarnpkg.com
https://yarnpkg.com
https://yarnpkg.com
https://yarnpkg.com

Integrating with Angular, React, and Vue Chapter 3

[119]

Run your preferred browser and navigate to http://localhost:3000. You4.
should see the following screen with the animated React logo:

Press Ctrl + C to stop the server. I always recommend checking the5.
package.json scripts after generating a project. They provide us with a clear
understanding of what actions the project supports out of the box.

When generated with the Create React App application, the scripts section
of the package.json file looks as follows:

{
 "scripts": {
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject"
 },
}

Integrating with Angular, React, and Vue Chapter 3

[120]

The next step is to install the electron library as a development dependency.6.
The following command should be familiar to you from the previous chapters:

npm i -D electron

Now, we need to make modifications to the package.json file. First of all, add7.
the main entry so that it's pointing to the main.js file:

{
 "main": "main.js"
}

Next, we need to set the base path of the application so that it's relative to the8.
index.html file. In Angular projects, you did this by modifying the
index.html file. React, however, supports the homepage field in the
package.json file.

You can find out more about React and relative paths at https:/ /
facebook. github. io/ create- react- app/ docs/ deployment#building-
for-relative- paths.

This will make sure that all asset paths are relative to index.html. Now, you9.
will be able to move your app from http://mywebsite.com to
http://mywebsite.com/relativepath or even
http://mywebsite.com/relative/path without having to rebuild it.
Modify the package.json file according to the following code:10.

{
 "homepage": ".",
 "scripts": {
 "serve": "react-scripts start",
 "start": "electron .",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject"
 },
}

As you can see, we have added a homepage attribute, renamed the start script
to serve, and introduced a new start one to launch the Electron shell.

https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths
https://facebook.github.io/create-react-app/docs/deployment#building-for-relative-paths

Integrating with Angular, React, and Vue Chapter 3

[121]

The content of a minimal main.js file implementation is pretty much standard11.
for every framework:

const { app, BrowserWindow } = require('electron');

let win;

function createWindow() {
 win = new BrowserWindow({ width: 800, height: 600 });

 win.loadFile('index.html');

 win.on('closed', () => {
 win = null;
 });
}

app.on('ready', createWindow);

app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') {
 app.quit();
 }
});

app.on('activate', () => {
 if (win === null) {
 createWindow();
 }
});

When you build a React application, the production output goes into the build12.
folder. This is why we need to load the index.html file from there:

function createWindow() {
 win = new BrowserWindow({ width: 800, height: 600 });

 // win.loadFile('index.html');
 win.loadURL(`file://${__dirname}/build/index.html`);

 win.on('closed', () => {
 win = null;
 });
}

Integrating with Angular, React, and Vue Chapter 3

[122]

Before we move on, let's verify that the application builds and runs fine. In the13.
Terminal window, run the following commands, one by one:

npm run build
npm start

You should see the default application up and running on your desktop inside an14.
Electron shell, as shown in the following screenshot:

You have successfully created an initial React-based Electron application. Feel free to make
a backup so that you can use it as a template for future applications with the same stack.

Now, we need to wire the Electron shell with the locally running web server so that we can
test our application while we develop it. This is called live reloading, and we are going to
configure it in the next section.

Live reloading
Instead of stopping and restarting the application each time you need to verify a code
change, you can enable the live reloading feature and have the browser or Electron window
automatically refresh as you save the changes.

Integrating with Angular, React, and Vue Chapter 3

[123]

When you start the application with the npm run serve script (or npm start by default),
you will see the following output:

You can now view integrate-react in the browser.

 Local: http://localhost:3000/
 On Your Network: http://192.168.0.10:3000/

Note that you need to use port 3000 in this case. Let's update the createWindow function
accordingly:

Open the main.js file and update the createWindow function according to the1.
following code:

function createWindow() {
 win = new BrowserWindow({ width: 800, height: 600 });

 // win.loadURL(`file://${__dirname}/build/index.html`);
 win.loadURL(`http://localhost:3000`);

 win.on('closed', () => {
 win = null;
 });
}

To verify the application, you are going to need two Terminal windows.

In the first Terminal window, run the serve command, as follows:2.

npm run serve

Give the web server a few seconds to start and run the following command in the3.
second Terminal:

npm start

You should see an Electron window showing the React home page.

Now, go to the src/App.js file and edit its content to see the live reload feature4.
in action. For instance, insert the React Electron label:

import React, { Component } from 'react';
import logo from './logo.svg';
import './App.css';

class App extends Component {
 render() {

Integrating with Angular, React, and Vue Chapter 3

[124]

 return (
 <div className="App">
 <header className="App-header">

 <h1>React Electron</h1>
 <p>
 Edit <code>src/App.js</code> and save to reload.
 </p>
 <a
 className="App-link"
 href="https://reactjs.org"
 target="_blank"
 rel="noopener noreferrer"
 >
 Learn React

 </header>
 </div>
);
 }
}

export default App;

Please note that a typical React application requires a single element tag so that it
can wrap the rest of the components, similar to the following structure:

class App extends Component {
 render() {
 return (
 <div>...</div>
);
 }
}

All the examples in this chapter assume that you have a root element in the App
component.

Integrating with Angular, React, and Vue Chapter 3

[125]

Switch to the Electron window and notice how it updates on the fly with the new5.
text:

You have successfully configured live reloading for your Electron application. This should
help you develop and test your project fast as you'll be able to see changes almost instantly.

When development is over and you need to distribute the application, live reloading is not
needed. Instead, you need to have a production build output with all the static assets for
the application. This is what we are going to address in the next section.

Setting up production builds
Unlike the Angular CLI, you don't need extra scripts to perform a production build with
the Create React App tool. You should already have the build command in your
package.json file for that:

{
 "scripts": {
 "serve": "react-scripts start",
 "start": "electron .",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject"
 },
}

Integrating with Angular, React, and Vue Chapter 3

[126]

Whenever you need to perform a production build, use the following command in the
Terminal:

npm run build

In this case, the output should look as follows:

Creating an optimized production build...
Compiled successfully.

File sizes after gzip:

 36.83 KB build/static/js/2.6efc73d3.chunk.js
 763 B build/static/js/runtime~main.d653cc00.js
 725 B (+15 B) build/static/js/main.dff8d9a2.chunk.js
 540 B build/static/css/main.0e186509.chunk.css

The project was built assuming it is hosted at ./.
You can control this with the homepage field in your package.json.

As you can see, all the production assets reside in the build folder. Now, you can
distribute or host the resulting web application without the need for Node.js or any other
tool:

Integrating with Angular, React, and Vue Chapter 3

[127]

Many developers prefer to host web applications in a local server to greatly reduce the time
they need to spend testing the end result. You may also want to follow that path and only
have the build folder before you package your Electron application for the final testing and
publishing stages.

Now, let's learn how to configure the use of local web servers for development purposes.

Setting up conditional loading
If you have read the Building an Electron application with Angular section, the process of
setting up conditional loading is going to be familiar to you.

In this section, we are going to focus on running the web server with the application in the
way that Create React App does. Then, we will render our locally running application from
within the Electron shell when developing, debugging, and testing on the local machine.
For production mode, however, the application is going to use production output.

Let's configure the package scripts so that we don't have to use as many parameters during
the development and testing phase:

Update the scripts section in the package.json file according to the following1.
code:

{
 "scripts": {
 "serve": "react-scripts start",
 "start": "DEBUG=true electron .",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject"
 },
}

For Windows users, the start script should be as follows:

{
 "start": "SET DEBUG=true && electron ."
}

Integrating with Angular, React, and Vue Chapter 3

[128]

The format of the call is simple: depending on the value, you either use a web2.
server on port 3000 or load the precompiled index.html file:

if (process.env.DEBUG) {
 // load from running server on port 3000
} else {
 // load production build from the "build" folder
}

Now, update the main.js file and make the following changes to the3.
createWindow function:

function createWindow() {
 win = new BrowserWindow({ width: 800, height: 600 });

 if (process.env.DEBUG) {
 win.loadURL(`http://localhost:3000`);
 } else {
 win.loadURL(`file://${__dirname}/build/index.html`);
 }

 win.on('closed', () => {
 win = null;
 });
}

Note that, traditionally, Angular CLI applications run on port 4200; the Create
React App tool prefers port 3000.

Now, it's time to test how things work. Run the following two commands in4.
separate Terminal windows:

npm run serve
npm start

Since we are running the application with the DEBUG parameter, the Electron shell is going
to display content from http://localhost:3000 with live reloading support.

Now, let's move on to the user interface and integrate the Blueprint component library.

Using the Blueprint UI toolkit
For Angular, it is recommended that you use an Angular Material library of components
for any UI toolkit. For React.js, I strongly recommend starting with the Blueprint toolkit,
which you can find at https:/ / blueprintjs. com/.

https://blueprintjs.com/
https://blueprintjs.com/
https://blueprintjs.com/
https://blueprintjs.com/
https://blueprintjs.com/
https://blueprintjs.com/
https://blueprintjs.com/
https://blueprintjs.com/

Integrating with Angular, React, and Vue Chapter 3

[129]

Blueprint is an open source project that's developed by Palantir. It's a React-based UI toolkit
for the web and has been optimized for building complex data-dense interfaces for desktop
applications.

Run the following command to install the library for your project:

npm i @blueprintjs/core

Now we have the Blueprint library installed, let's start using it in our application.

Adding an application menu
To see how easy it is to consume Bluprint components, let's add an application menu or
application toolbar:

First, append the following code to the index.css file:1.

@import '~normalize.css';
@import '~@blueprintjs/core/lib/css/blueprint.css';
@import '~@blueprintjs/icons/lib/css/blueprint-icons.css';

Then, go to the src/App.js file and import the following types from the2.
@blueprintjs/core package:

import { Navbar, Button, Alignment } from '@blueprintjs/core';

This allows you to use the Navbar and Button components, as well as the3.
Alignment enumerable, in your JSX templates. Update the code according to the
following listing:

<Navbar>
 <Navbar.Group align={Alignment.LEFT}>
 <Navbar.Heading>Blueprint</Navbar.Heading>
 <Navbar.Divider />
 <Button className="bp3-minimal" icon="home" text="Home" />
 <Button className="bp3-minimal" icon="document" text="Files" />
 </Navbar.Group>
</Navbar>

Integrating with Angular, React, and Vue Chapter 3

[130]

At runtime, you should see a nice-looking toolbar with a Blueprint label and4.
two buttons, Home and Files:

If you like dark themes, you will be pleased to know that Blueprint supports them. Given
that the default React template is dark, let's update the Navbar to match the theme:

All you need to do is add the bp3-dark class name to the navbar:1.

<Navbar className="bp3-dark">
 <Navbar.Group align={Alignment.LEFT}>
 <Navbar.Heading>Blueprint</Navbar.Heading>
 <Navbar.Divider />
 <Button className="bp3-minimal" icon="home" text="Home" />
 <Button className="bp3-minimal" icon="document" text="Files" />
 </Navbar.Group>
</Navbar>

Integrating with Angular, React, and Vue Chapter 3

[131]

Check out your application. Notice that the application menu bar now has a dark2.
theme:

Now, let's see what it takes to enable routing features for a React application and Electron
shell.

Adding routing
The tool we are going to use is called React Router, maintained by React Training (https:/ /
reacttraining.com/ react- router/ web).

Integrating routing support is straightforward. Let's learn how to do this for our Electron
project:

Stop the application if it's running and install the library using the following1.
command:

npm install react-router-dom

https://reacttraining.com/react-router/web
https://reacttraining.com/react-router/web
https://reacttraining.com/react-router/web
https://reacttraining.com/react-router/web
https://reacttraining.com/react-router/web
https://reacttraining.com/react-router/web
https://reacttraining.com/react-router/web
https://reacttraining.com/react-router/web
https://reacttraining.com/react-router/web
https://reacttraining.com/react-router/web
https://reacttraining.com/react-router/web
https://reacttraining.com/react-router/web

Integrating with Angular, React, and Vue Chapter 3

[132]

Now, we are going to have some simple Screens or Views backed by two routes:2.
Index and Files. Update the App.js file with the following functional
components:

import { BrowserRouter as Router, Route, Link } from 'react-router-
dom';

function Index() {
 return <h2>Home</h2>;
}

function Files() {
 return <h2>Files</h2>;
}

We have just imported a few types from the react-router-dom package. One3.
of these is a Link component, which allows us to navigate to a particular route.
For example, you can create a Hyperlink element that points to the /files/
URL fragment using the following syntax:

<Link to="/files/">Files</Link>

First, update the navbar code according to the following listing:4.

<Navbar className="bp3-dark">
 <Navbar.Group align={Alignment.LEFT}>
 <Navbar.Heading>Blueprint</Navbar.Heading>
 <Navbar.Divider />
 <Button className="bp3-minimal" icon="home">
 <Link to="/">Home</Link>
 </Button>
 <Button className="bp3-minimal" icon="document">
 <Link to="/files/">Files</Link>
 </Button>
 </Navbar.Group>
</Navbar>

Now, modify its main content, as follows:5.

<header className="App-header">

 <Route path="/" exact component={Index} />
 <Route path="/files/" component={Files} />
</header>

Integrating with Angular, React, and Vue Chapter 3

[133]

Run the application and try clicking the Home and Files links in the application6.
menu component. Notice how the content of the page reflects the route you click:

At this point, you have a nice Electron application based on React with routing and UI
library support up and running. Feel free to make a backup of this project in its current
state so that you can use it for similar applications in the future.

Let's see what else we can do to improve the look and feel of the application.

Final touches
You may have noticed that the toolbar buttons don't look very good now that we've wired
them with the Link component. You don't need to have button components here since
Blueprint allows us to style other elements, such as hyperlinks, so that we can make them
look like buttons.

Integrating with Angular, React, and Vue Chapter 3

[134]

To use Link components without button wrappers, we need to update the code for the
application component so that it looks as follows:

<Link
 className="bp3-button bp3-minimal bp3-icon-home"
 to="/">
 Home
</Link>

<Link
 className="bp3-button bp3-minimal bp3-icon-document"
 to="/files/">
 Files
</Link>

Now, the application toolbar should look much better:

Congratulations—you have an initial React application project wired with the Electron
shell! You have also integrated an external UI toolkit to save time creating components and
focus on the business logic.

Integrating with Angular, React, and Vue Chapter 3

[135]

In the next section, we are going to build a similar application with another highly popular
framework: Vue.js. You are going to explore the differences in project configuration and
libraries for the user interface and decide which application stack to use for production.

Building an Electron application with Vue.js
We've already looked at how to use Electron applications with the Angular and React
frameworks. Now, it's time to look at another popular framework: Vue.js. This framework
will help you boost your productivity when building desktop applications with web
technologies.

Similar to the Angular CLI and Create React App, Vue.js has its own CLI tool too. You can
install it and generate a new application called integrate-vue by following these steps:

Run the following two commands:1.

npm install -g @vue/cli
vue create integrate-vue

If you are a Windows user, please refer to the Vue documentation on how
to set up commands: https:/ /cli. vuejs. org/ guide/ creating- a-
project. html#vue- create.

The tool is going to ask you a few questions so that it can figure out the final2.
configuration of the project. For preset, please select the default option. You can
use the Manually select features option later:

? Please pick a preset: (Use arrow keys)
> default (babel, eslint)
 Manually select features

There are two different Node package managers that the community uses3.
nowadays: NPM and Yarn. Vue.js is going to ask you to pick your favorite one.
We will use it later to install dependencies:

? Pick the package manager to use when installing dependencies:
(Use arrow keys)
 Use Yarn
> Use NPM

https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create

Integrating with Angular, React, and Vue Chapter 3

[136]

We are going to use NPM, so select the corresponding entry and press Enter.4.
Depending on the tool's version, you may see a lot of output during the process5.
of project generation. Make sure you see a successful-completion output, similar
to the one shown in the following code:

Successfully created project integrate-vue.
Get started with the following commands:

 $ cd integrate-vue
 $ npm run serve

Now, open to the integrate-vue folder in the Visual Studio Code6.

Let's inspect the scripts that are available in the package.json file out of the7.
box:

{
 "name": "integrate-vue",
 "version": "0.1.0",
 "private": true,
 "scripts": {
 "serve": "vue-cli-service serve",
 "build": "vue-cli-service build",
 "lint": "vue-cli-service lint"
 },
}

Here, we have three main scripts so that we can serve the web application locally,
build it for distribution, and perform code quality checks and linting.

Let's start the application and verify that the project compiles and runs as8.
expected:

npm run serve

Your output should look similar to the following. Please take note of the URL9.
address and port number of the application:

 App running at:
 - Local: http://localhost:8080/
 - Network: http://192.168.0.10:8080/

 Note that the development build is not optimized.
 To create a production build, run npm run build.

Integrating with Angular, React, and Vue Chapter 3

[137]

Use your favorite browser and navigate to http://localhost:8080. Verify10.
that you can see a standard home page for all the projects you generated with the
Vue CLI:

Now, it's time to install the Electron dependency:

Use the following command to grab the most recent version that's available on1.
the NPM registry:

npm i -D electron

The next step is to configure the main entry in the package.json file so that it2.
points to the main.js file. This is how Electron finds the main entry point and
execute it on startup:

{
 "name": "integrate-vue",
 "version": "0.1.0",
 "private": true,
 "main": "main.js",

Integrating with Angular, React, and Vue Chapter 3

[138]

 "scripts": {
 "serve": "vue-cli-service serve",
 "build": "vue-cli-service build",
 "lint": "vue-cli-service lint"
 },
}

Finally, as you may already know from the previous chapters, we need to put a3.
minimal main.js implementation in the project's root folder:

const { app, BrowserWindow } = require('electron');

let win;

function createWindow() {
 win = new BrowserWindow({ width: 800, height: 600 });

 win.loadFile('index.html');

 win.on('closed', () => {
 win = null;
 });
}

app.on('ready', createWindow);

app.on('window-all-closed', () => {
 if (process.platform !== 'darwin') {
 app.quit();
 }
});

app.on('activate', () => {
 if (win === null) {
 createWindow();
 }
});

The Vue CLI generates a start script that runs a local web server for testing and4.
development purposes. Given that our primary focus is on Electron and desktop
development, I recommend renaming the existing start script to serve and
using a new start implementation that launches the Electron shell:

{
 "scripts": {
 "serve": "vue-cli-service serve",
 "start": "electron .",

Integrating with Angular, React, and Vue Chapter 3

[139]

 "build": "vue-cli-service build",
 "lint": "vue-cli-service lint"
 },
}

As soon as you run the npm run build command, the Vue CLI is going to5.
perform a production build with the output artifacts that live in the dist folder.
This means that our Electron shell needs to load the dist/index.html file at
runtime when we launch it locally:

function createWindow() {
 win = new BrowserWindow({ width: 800, height: 600 });

 // win.loadFile('index.html');
 win.loadURL(`file://${__dirname}/dist/index.html`);

 win.on('closed', () => {
 win = null;
 });
}

Now, let's take a quick look at the Vue configuration files and how we can change the base
path of our application.

Creating a Vue configuration file
The next step is to create a Vue configuration file, vue.config.js. Perform the following
steps to do so:

According to the official documentation (https:/ /cli. vuejs. org/
config/ #vue- config- js), vue.config.js is an optional config file that
will be automatically loaded by @vue/cli-service if it's present in your
project root (next to package.json). You can also use the vue field in
package.json, but note that you will be limited to JSON-compatible
values only.

https://cli.vuejs.org/config/#vue-config-js
https://cli.vuejs.org/config/#vue-config-js
https://cli.vuejs.org/config/#vue-config-js
https://cli.vuejs.org/config/#vue-config-js
https://cli.vuejs.org/config/#vue-config-js
https://cli.vuejs.org/config/#vue-config-js
https://cli.vuejs.org/config/#vue-config-js
https://cli.vuejs.org/config/#vue-config-js
https://cli.vuejs.org/config/#vue-config-js
https://cli.vuejs.org/config/#vue-config-js
https://cli.vuejs.org/config/#vue-config-js
https://cli.vuejs.org/config/#vue-config-js
https://cli.vuejs.org/config/#vue-config-js
https://cli.vuejs.org/config/#vue-config-js
https://cli.vuejs.org/config/#vue-config-js
https://cli.vuejs.org/config/#vue-config-js

Integrating with Angular, React, and Vue Chapter 3

[140]

Let's start with the basic configuration stub, as shown in the following code:1.

// vue.config.js
module.exports = {
 // options...
}

You can find out more about supported parameters in the official
documentation: https:/ /cli.vuejs. org/config/ #global- cli- config.

The field we are looking for is called publicPath. We need to switch the value2.
so that the relative paths work correctly in the Electron shell:

// vue.config.js
module.exports = {
 publicPath: './'
};

Now, run the production build with the following command:3.

npm run build

The output should be similar to the following:4.

To verify that the application loads as expected, run the start script:5.

npm start

https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config
https://cli.vuejs.org/config/#global-cli-config

Integrating with Angular, React, and Vue Chapter 3

[141]

After a few seconds, you should see the Electron application with a traditional UI6.
example that the Vue CLI generates for you:

You're doing great! Now, it's time to simplify our lives as developers by enabling the live
reloading feature.

Live reloading
As you may already know, the CLI tool for each popular framework provides facilities so
that we can serve the web application locally for testing and development purposes. In the
case of Vue, we execute the npm run serve script and usually get the following output:

 App running at:
 - Local: http://localhost:8081
 - Network: http://192.168.0.10:8081

Integrating with Angular, React, and Vue Chapter 3

[142]

The traditional ports that are used across different frameworks are as follows:

Angular: 4200
React: 3000
Vue: 8080

However, for demonstration purposes, port 8080 is busy with another application on my
machine. This is why the development server takes the next free port. In my case, this is
8081. The tool is going to increment the port number until it reaches a free one, so it is
essential to pay attention to the console's output when running the application. For now,
let's use the default port, that is, 8080:vue-cli-service serve

vue-cli-service servefunction createWindow() {
 win = new BrowserWindow({ width: 800, height: 600 });

 // win.loadURL(`file://${__dirname}/dist/index.html`);
 win.loadURL('http://localhost:8080');

 win.on('closed', () => {
 win = null;
 });
}

For the next step, you are going to need two Terminal windows. In the first one, start the
local development server, as follows:

npm run serve

While the server is running, launch the Electron application with the following command:

npm start

You should get the same window that we got with the Vue UI. This time, however, the web
server is watching for changes under the hood and instructing the web client to reload. This
also applies to our Electron window. To see the live reload feature in action, switch to the
src/App.js file and update the label:

<template>
 <div id="app">

 <HelloWorld msg="Welcome to Your Vue.js and Electron App"/>
 </div>
</template>

Integrating with Angular, React, and Vue Chapter 3

[143]

As soon as you save the file, the application reflects these changes on the screen:

You now have a basic project template for an Electron application that is powered by
Vue.js. Now, it's time to prepare our application for production compilation.

Production builds
Many CLI tools for web frameworks have the concept of production and development
builds. The Vue CLI provides you with a script that produces highly optimized and
minimized artifacts for distribution. Just run the build command, as shown in the
following code:

npm run build

Integrating with Angular, React, and Vue Chapter 3

[144]

You can find the final bits you'll need in the dist folder. The dist folder contains
everything you need in order to distribute or serve your web application:

Note that you don't need Vue.js or Node.js to run the application on a web
server.

Let's move on and learn how to set up conditional loading so that our desktop application
uses a web server for development but references the production output when distributing.

Setting up conditional loading
We are going to use the DEBUG environment variable as an indicator that the application
needs to connect to a local development server. Let's learn how to enable this in application
scripts:

Update the package.json file and set the following variable as the default1.
option:

{
 "scripts": {
 "serve": "vue-cli-service serve",
 "start": "DEBUG=true electron .",
 "build": "vue-cli-service build",
 "lint": "vue-cli-service lint"
 },
}

Integrating with Angular, React, and Vue Chapter 3

[145]

For Windows users, the start script should look as follows:

{
 "start": "SET DEBUG=true && electron ."
}

Once you've defined an environment variable, the format of the check inside the2.
main.js file should be similar to the following:

if (process.env.DEBUG) {
 // load from running server on port 3000
} else {
 // load production build from the "dist" folder
}

Update the main.js file and make the following changes to the createWindow3.
function:

function createWindow() {
 win = new BrowserWindow({ width: 800, height: 600 });

 if (process.env.DEBUG) {
 win.loadURL(`http://localhost:8080`);
 } else {
 win.loadURL(`file://${__dirname}/build/index.html`);
 }

 win.on('closed', () => {
 win = null;
 });
}

Note that, depending on what applications or development servers are running on your
machine, the port may differ. Update the code according to the output you receive when
you run the npm run serve command.

Integrating with Angular, React, and Vue Chapter 3

[146]

Now, you can run against the development server with live reloads when working on
application code and have static production build assets when preparing the application for
distribution.

Adding routing
The routing feature is an essential part of any modern web application. Routing allows us
to switch between different screens and have dedicated URL addresses for particular
features.

The Vue CLI allows us to utilize the vue add command so that we can add additional
plugins. Let's use it to install the router library:

Run the following command in the project root:1.

vue add router

When asked about history mode, type Y as your answer:2.

? Use history mode for router? (Requires proper server setup for
index fallback in production) (Y/n)
A: Y

Now, you should have multiple modified files, as shown in the following code: 3.

 Successfully invoked generator for plugin: core:router
 The following files have been updated / added:

 src/router.js
 src/views/About.vue
 src/views/Home.vue
 package-lock.json
 package.json
 src/App.vue
 src/main.js

Integrating with Angular, React, and Vue Chapter 3

[147]

Start the application and pay attention to the bottom of the screen. It now4.
contains two new links: Home and About:

Now, click the About link to see what happens. The Electron application should5.
switch to the About component:

Integrating with Angular, React, and Vue Chapter 3

[148]

Now, you are able to build multiple views for your application. Let's learn how we can use
UI toolkits to save time.

Configuring Vue Material
The are many libraries out there for Vue.js. In this section, we are going to use the Vue
Material toolkit. You can find out more at https:/ /vuematerial. io. Let's get started:

Run the following NPM command to install the vue-material library in the1.
project:

npm install vue-material

As part of Vue Material's integration, you may want to set up the Roboto font as2.
well. Update the public/index.html file with the following code:

<link
 rel="stylesheet"
href="//fonts.googleapis.com/css?family=Roboto:400,500,700,400itali
c|Material+Icons"
 />

The easiest way to enable all Vue Material components is to import all the scope3.
that's inside the src/main.js file. Later, you can optimize the imports and
declare the components you are using:

import Vue from 'vue';
import App from './App.vue';
import router from './router';

Vue.config.productionTip = false;

import VueMaterial from 'vue-material';
import 'vue-material/dist/vue-material.min.css';
import 'vue-material/dist/theme/default.css';

Vue.use(VueMaterial);

new Vue({
 router,
 render: h => h(App)
}).$mount('#app');

https://vuematerial.io
https://vuematerial.io
https://vuematerial.io
https://vuematerial.io
https://vuematerial.io
https://vuematerial.io
https://vuematerial.io

Integrating with Angular, React, and Vue Chapter 3

[149]

You should already have the essential configuration for routes since it was4.
generated as part of the router plugin's installation. To integrate the routing
component with Vue Material, please update the code inside the
src/router.js file according to the next listing:

Vue.use(Router);

Vue.component('router-link', Vue.options.components.RouterLink);
Vue.component('router-view', Vue.options.components.RouterView);

Now that you have routing support in your Electron application, it's time to integrate the
application toolbar.

Creating an application toolbar
As a simple exercise, let's create an application toolbar that can redirect us to different
routes:

In the src/App.vue file, declare the md-app-toolbar component, as follows:1.

<md-app>
 <md-app-toolbar class="md-primary">
 My Title
 </md-app-toolbar>
</md-app>

Also, remove the margin from the #app style. Now, the file should look as2.
follows:

<template>
 <div id="app">
 <md-app>
 <md-app-toolbar class="md-primary">
 My Title
 </md-app-toolbar>
 </md-app>
 <div id="nav">
 <router-link to="/">Home</router-link>|
 <router-link to="/about">About</router-link>
 </div>
 <router-view/>
 </div>
</template>

<style>
#app {

Integrating with Angular, React, and Vue Chapter 3

[150]

 font-family: "Avenir", Helvetica, Arial, sans-serif;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 text-align: center;
 color: #2c3e50;
}
</style>

Run the application if you haven't done so already. The main screen should now3.
contain a nice blue application toolbar, as shown in the following screenshot:

Now, let's insert two buttons and redirect them to the Home and About routes4.
when they're clicked:

<template>
 <div id="app">

Integrating with Angular, React, and Vue Chapter 3

[151]

 <md-app>
 <md-app-toolbar class="md-primary">
 <h3 class="md-title" style="flex: 1; text-align:
 left;">Title</h3>
 <md-button to="/">Home</md-button>
 <md-button to="/about" class="md-primary">About</md-button>
 </md-app-toolbar>
 </md-app>
 <router-view/>
 </div>
</template>

Note that we also have a spacer element so that we can move the buttons to the
right-hand side of the screen while leaving the Title element on the left. This
pattern is widely used when developers build application toolbars.

Switch back to your Electron application and check out the buttons. They should5.
switch your screens according to the rules we have just added:

Integrating with Angular, React, and Vue Chapter 3

[152]

At this point, you are ready to build complex applications that involve multiple screens and
routing.

Summary
In this chapter, you successfully configured three Electron projects based on popular web
frameworks: Angular, React, and Vue.js. Now, you can work efficiently with the live
reloading feature, which provides instant feedback on changes you make.

You also have a better understanding of how to integrate different UI toolkit libraries so
that you can save time when you're developing primitives and focus on your application's
business logic instead.

Keep the routing feature in mind when you're building applications. This feature allows
you to switch Views in your Electron application quickly and follow the separation-of-
concerns design principle.

In the next chapter, we are going to build a screenshot snipping tool so that you can see
various Electron development tasks at work in the real world.

4
Building a Screenshot Snipping

Tool
In this chapter, we are going to build a small screenshot snipping tool using the latest
Electron framework, React.js, and the Blueprint UI toolkit for React.

As part of the practical exercise in this chapter, you are going to generate screenshots using
the Electron API and manage the application's window state and visibility. This will help
you understand how to control application windows in Electron. You will also be working
with desktopCapture features and generating thumbnails from code. Finally, you will
learn how to integrate with the System Tray and invoke its functionality with the global
keyboard shortcut.

In this chapter, we will learn about the following topics:

Preparing the project
Configuring frameless windows
Transparent windows
Making application windows draggable
Adding a Snip toolbar button
Using the desktopCapturer API
Calculating the primary display size
Generating and saving a thumbnail image
Resizing and cropping the image
Testing the application's behavior
Integrating with the system tray
Hiding the main application window on startup
Registering global keyboard shortcuts

Building a Screenshot Snipping Tool Chapter 4

[154]

Technical requirements
To get started with this chapter, you will need a standard laptop or desktop running
macOS, Windows, or Linux.

The minimal set of software you need to have installed for this chapter is as follows:

Git, a version control system
Node.js with NPM
Visual Studio Code, a free and open source code editor

You can find the code files for this chapter in this book's GitHub repository: https:/ /
github.com/PacktPublishing/ Electron- Projects/ tree/ master/ Chapter04.

Preparing the project
We aren't going to repeat the project setup procedure. By now, you should already know
how to bootstrap an Electron application using multiple frameworks, or even plain
JavaScript. If you want a recap, please refer to Chapter 3, Integrating with Angular, React,
and Vue.

Let's use the React library to create a React app utility so that we can build a screenshot
snipping tool.

Note that if you are using Electron 5.0.0 or later, you need to enable
Node.js integration explicitly. In later versions of Electron, Node.js
integration is disabled due to security reasons.

As you already know, Electron applications can also display remote websites. This gives a
remote web page access to your local resources and potentially allows them to perform
malicious activities. That is why Node.js integration is disabled. For fully offline
applications, we need to enable Node.js support explicitly.

We are going to be using local resources and assets, so you should use the
webPreferences object to allow window.require and other Node.js features to be used
in the web renderer process. You can enable all the necessary features by using the
following code:

webPreferences: {
 nodeIntegration: true
}

https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter04

Building a Screenshot Snipping Tool Chapter 4

[155]

Please refer to the following code and update the createWindow function in your main.js
file accordingly:

function createWindow() {
 win = new BrowserWindow({
 transparent: true,
 frame: false,
 webPreferences: {
 nodeIntegration: true
 }
 });

 win.loadURL(`http://localhost:3000`);

 win.on('closed', () => {
 win = null;
 });
}

There are many other options you can toggle or tune. You can find the full list at https:/ /
electronjs.org/docs/ api/ browser- window.

Now that we have prepared our project, let's move on to the first step of creating our
application. Let's see what it takes to create a frameless window with Electron.

Configuring frameless windows
For the screenshot snipping tool, we need a minimal window, known as a Chrome, so that
we can select a portion of the screen to make a screenshot. Due to this, we need to use an
Electron feature called frameless windows, which allows you to open a window without
toolbars, borders, or other graphical chromes.

Refer to the following resource to find out more: https:/ /electronjs.
org/docs/ api/ frameless- window.

We are only going to touch on the basics that you will need to implement for the
application. For now, let's learn how to create a basic frameless window:

Update the code of the main.js file so that it looks as follows:1.

 win = new BrowserWindow({
 width: 800,

https://electronjs.org/docs/api/browser-window
https://electronjs.org/docs/api/browser-window
https://electronjs.org/docs/api/browser-window
https://electronjs.org/docs/api/browser-window
https://electronjs.org/docs/api/browser-window
https://electronjs.org/docs/api/browser-window
https://electronjs.org/docs/api/browser-window
https://electronjs.org/docs/api/browser-window
https://electronjs.org/docs/api/browser-window
https://electronjs.org/docs/api/browser-window
https://electronjs.org/docs/api/browser-window
https://electronjs.org/docs/api/browser-window
https://electronjs.org/docs/api/browser-window
https://electronjs.org/docs/api/browser-window
https://electronjs.org/docs/api/frameless-window
https://electronjs.org/docs/api/frameless-window
https://electronjs.org/docs/api/frameless-window
https://electronjs.org/docs/api/frameless-window
https://electronjs.org/docs/api/frameless-window
https://electronjs.org/docs/api/frameless-window
https://electronjs.org/docs/api/frameless-window
https://electronjs.org/docs/api/frameless-window
https://electronjs.org/docs/api/frameless-window
https://electronjs.org/docs/api/frameless-window
https://electronjs.org/docs/api/frameless-window
https://electronjs.org/docs/api/frameless-window
https://electronjs.org/docs/api/frameless-window
https://electronjs.org/docs/api/frameless-window

Building a Screenshot Snipping Tool Chapter 4

[156]

 height: 600,
 webPreferences: {
 nodeIntegration: true
 }
 frame: false
 });

If you run the application now, you will see that it is missing the traditional2.
menu bar and traffic light buttons (minimize, maximize, and close):

Feel free to change the toolbar buttons to something more meaningful for the3.
type of application you're creating. For example, we can do this for the Settings
and About routes. Use the following code to do so:

 import React from 'react';
 import './App.css';
 import { Navbar, Button, Alignment, Icon } from '@blueprintjs/core';
 function App() {
 return (
 <div className="App">
 <Navbar>
 <Navbar.Group align={Alignment.LEFT}>
 <Navbar.Heading>Electron Snip</Navbar.Heading>
 <Navbar.Divider />
 <Button className="bp3-minimal" icon="settings"

Building a Screenshot Snipping Tool Chapter 4

[157]

 text="Settings" />
 <Button className="bp3-minimal" icon="help" text="About" />
 </Navbar.Group>
 </Navbar>
 <main className="App-main">
 <Icon icon="camera" iconSize={100} />
 <p>Electron Snip</p>
 </main>
 </div>
);
 }
 export default App;

You are probably running the live reloading configuration right now since we4.
discussed it in the previous chapters. Switch to the running application instance
and ensure that the toolbar now displays the expected buttons:

As you can see, we can't drag the application window across the screen at the moment.
Don't worry, though, as we are going to address this shortly. First, let's take a look at the
extra options we have when we're working with macOS.

Building a Screenshot Snipping Tool Chapter 4

[158]

Additional options for macOS
When running on macOS, you can use the titleBarStyle property. Here's what the
official documentation says about this feature:

Instead of setting frame to false, which disables both the title bar and window controls,
you may want to have the title bar hidden and your content extend to the full window size,
yet still preserve the window controls (traffic lights) for standard window actions. You
can find out more here: https:/ /electronjs. org/docs/ api/ frameless-
window#alternatives- on- macos.

Let's take a look at how each of these features works in practice.

Using the hidden titleBarStyle
When you set the titleBarStyle property to hidden, you instruct Electron to hide the
title bar but leave the traffic light controls in the top-left corner. This allows us to continue
controlling the look and feel of the application window but preserve the behavior behind
the control buttons.

Update the createWindow function in the main.js file as follows:

function createWindow() {
 win = new BrowserWindow({ titleBarStyle: 'hidden' });

 win.loadURL(`http://localhost:3000`);

 win.on('closed', () => {
 win = null;
 });
}

At this point, you need to restart the application as live reloading won't help. Once the
Electron shell has been restarted, take a closer look at the control button area and notice the
missing title bar:

https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos

Building a Screenshot Snipping Tool Chapter 4

[159]

Imagine that instead of the navigation bar, you have a beautiful border picture or CSS style.

Using the hiddenInset titleBarStyle
The second option you have is the hiddenInset value for the titleBarStyle property.
The only difference to the hidden style is that, with hiddenInset, the buttons have an
inset-like style, but the overall behavior is still the same:

function createWindow() {
 win = new BrowserWindow({ titleBarStyle: 'hiddenInset' });

 win.loadURL(`http://localhost:3000`);

 win.on('closed', () => {
 win = null;
 });
}

Restart your Electron application. When you check the positioning and style of the window
control buttons, you will see something like this:

As you can see, this time, the buttons are above the application title in the toolbar.

Using the customButtonsOnHover titleBarStyle
Last but not least, we have the customButtonsOnHover value, which you can exclusively
use with the titleBarStyle property for macOS and only when running in frameless
mode:

function createWindow() {
 win = new BrowserWindow({
 titleBarStyle: 'customButtonsOnHover',
 frame: false
 });

 win.loadURL(`http://localhost:3000`);

Building a Screenshot Snipping Tool Chapter 4

[160]

 win.on('closed', () => {
 win = null;
 });
}

This option is very nice and convenient when you want your custom window to look
completely non-standard. The window control buttons, also known as traffic light buttons,
stay hidden by default, but your users can still get them by moving their mouse cursor over
the top left corner. Let's see how that works:

Restart or launch your application one more time and pay attention to where the1.
buttons should be:

The buttons are invisible by default. Now, move the mouse cursor over that2.
region and see what happens:

To find out more about macOS support for the title bar styles, please refer
to the following resource: https:/ /electronjs. org/ docs/ api/
frameless- window#alternatives- on- macos.

The next important thing we need to look at is transparent windows.

Transparent windows
Given that we are working on the screenshot snipping tool, it is vital to be able to select an
area of the screen to create a screenshot. Traditionally, such tools offer a transparent and
resizable window so that users can imagine the result more clearly.

https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos
https://electronjs.org/docs/api/frameless-window#alternatives-on-macos

Building a Screenshot Snipping Tool Chapter 4

[161]

You can enable window transparency by using the transparent property like so:

function createWindow() {
 win = new BrowserWindow({
 transparent: true,
 frame: false
 });

 win.loadURL(`http://localhost:3000`);

 win.on('closed', () => {
 win = null;
 });
}

Please note that transparency mode has its own platform-specific
limitations. You can find all the details here: https:/ /electronjs. org/
docs/ api/ frameless- window#limitations.

However, if you try to run your application right now, it won't be transparent. This is
because of the default background color that Create React App generates for the initial
application scaffolds. You can easily change that by updating the App.css file and
commenting out the background-color style, like so:

.App {
 text-align: center;
}

.App-main {
 /* background-color: #282c34; */
 min-height: 100vh;
 display: flex;
 flex-direction: column;
 align-items: center;
 justify-content: center;
 font-size: calc(10px + 2vmin);
 color: white;
}

https://electronjs.org/docs/api/frameless-window#limitations
https://electronjs.org/docs/api/frameless-window#limitations
https://electronjs.org/docs/api/frameless-window#limitations
https://electronjs.org/docs/api/frameless-window#limitations
https://electronjs.org/docs/api/frameless-window#limitations
https://electronjs.org/docs/api/frameless-window#limitations
https://electronjs.org/docs/api/frameless-window#limitations
https://electronjs.org/docs/api/frameless-window#limitations
https://electronjs.org/docs/api/frameless-window#limitations
https://electronjs.org/docs/api/frameless-window#limitations
https://electronjs.org/docs/api/frameless-window#limitations
https://electronjs.org/docs/api/frameless-window#limitations
https://electronjs.org/docs/api/frameless-window#limitations
https://electronjs.org/docs/api/frameless-window#limitations

Building a Screenshot Snipping Tool Chapter 4

[162]

This time, as you can see, the application body is genuinely transparent; you can see the
content of Visual Studio Code or any other application in the background:

The only non-transparent element that remains is the toolbar. This happens because of our
custom background color. This is perfectly fine for our scenario as we intend to use that
area to drag the application around.

Let's polish the application's look a bit by setting a distinctive application border style and
centering the application icon:

First, update the App.css file according to the following code:1.

 .App {
 text-align: center;
 height: 100vh;
 }
 .App-main {
 height: 100%;

Building a Screenshot Snipping Tool Chapter 4

[163]

 display: flex;
 flex-direction: column;
 align-items: center;
 justify-content: center;
 font-size: calc(10px + 2vmin);
 }

The preceding code does content centering for us.

Next, switch to the index.css file to add a border around the application's body2.
element:

 @import '~normalize.css';
 @import '~@blueprintjs/core/lib/css/blueprint.css';
 @import '~@blueprintjs/icons/lib/css/blueprint-icons.css';
 body {
 margin: 0;
 padding: 0;
 font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI',
 'Roboto', 'Oxygen', 'Ubuntu', 'Cantarell',
 'Fira Sans', 'Droid Sans', 'Helvetica Neue',
 sans-serif;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;

 border: 1px solid black;
 height: 100vh;
 overflow: hidden;
 border-radius: 4px;
 }

 code {
 font-family: source-code-pro, Menlo, Monaco, Consolas,
 'Courier New',
 monospace;
 }

Building a Screenshot Snipping Tool Chapter 4

[164]

Now, the users of your application can see the boundaries of the application and3.
imagine the resulting screenshot area:

As you may recall, the main application window of our project is still static. We don't have
an application title to drag it around as we have made it frameless. Instead, let's make the
whole window draggable.

Building a Screenshot Snipping Tool Chapter 4

[165]

Making application windows draggable
You may have already noticed that you cannot drag the application window as soon as it
becomes frameless. That is the default behavior of Electron windows, but you can easily
change it by applying the -webkit-app-region: drag style to the body element of the
HTML document:

<body style="-webkit-app-region: drag">
</body>

Note, however, that once you apply the -webkit-app-region: drag style, the whole
application area becomes draggable, including all the buttons and input elements on the
page. You can whitelist certain areas or HTML elements by utilizing the -webkit-app-
region: no-drag; CSS value. In this case, the marked element is excluded from the drag
feature.

Let's whitelist all the buttons from the dragging area so that the users of our application can
click them:

Update the App.css file and add the button rule:1.

 .App {
 text-align: center;
 height: 100vh;
 }

 .App-main {
 height: 100%;
 display: flex;
 flex-direction: column;
 align-items: center;
 justify-content: center;
 font-size: calc(10px + 2vmin);
 }

 button {
 -webkit-app-region: no-drag;
 }

Run the application, click somewhere on the screen, and try to drag the window.2.

Notice that you can drag the window by pressing any element except buttons. This is what
we expect from our application's behavior.

Now, we need to create a button so that we can invoke the image snipping functionality.
This is what we are going to address in the next section.

Building a Screenshot Snipping Tool Chapter 4

[166]

Adding a snip toolbar button
Now that we have a draggable window and non-draggable menu buttons, let's add a
button so that we can take a screenshot:

Update the App.js code and append a new button component with the icon1.
value of camera and with the text Snip, as shown in the following example:

 <Navbar>
 <Navbar.Group align={Alignment.LEFT}>
 <Navbar.Heading>Electron Snip</Navbar.Heading>
 <Navbar.Divider />
 <Button className="bp3-minimal" icon="settings"
 text="Settings" />
 <Button className="bp3-minimal" icon="help" text="About" />
 <Button className="bp3-minimal" icon="camera"
 text="Snip"/>
 </Navbar.Group>
 </Navbar>

We also need to add an onSnipClick function stub. This is going to handle our2.
Snip button clicks.
For now, let's create a simple console.log call to ensure that the handler works3.
at runtime. We are going to get back to the real implementation shortly:

 const onSnipClick = () => {
 console.log('todo: making screenshot');
 };

The complete implementation of the App.js file should now look as follows:4.

 import React from 'react';
 import './App.css';
 import { Navbar, Button, Alignment, Icon } from '@blueprintjs/core';
 function App() {
 const onSnipClick = () => {
 console.log('todo: making screenshot');
 };
 return (
 <div className="App">
 <Navbar>
 <Navbar.Group align={Alignment.LEFT}>
 <Navbar.Heading>Electron Snip</Navbar.Heading>
 <Navbar.Divider />
 <Button className="bp3-minimal" icon="settings"
 text="Settings" />

Building a Screenshot Snipping Tool Chapter 4

[167]

 <Button className="bp3-minimal" icon="help" text="About" />
 <Button
 className="bp3-minimal"
 icon="camera"
 text="Snip"
 onClick={onSnipClick}
 />
 </Navbar.Group>
 </Navbar>

 <main className="App-main">
 <Icon icon="camera" iconSize={100} />
 <p>Electron Snip</p>
 </main>
 </div>
);
 }

 export default App;

Now, we are going to focus on the onSnipClick function's implementation.

Using the desktopCapturer API
First of all, you need to be familiar with the desktopCapturer API that Electron provides.
According to the official documentation, this API allows you to do the following:

Access information about media sources that can be used to capture audio and video from
the desktop using the navigator.mediaDevices.getUserMedia (https:/ /
developer.mozilla. org/ en/ docs/ Web/ API/ MediaDevices/ getUserMedia) API.

Now, we are going to walk through the basics and introduce the Snip button click event,
which has access to the capturing sources:

Update the onSnipClick function implementation according to the following1.
code:

 const onSnipClick = async () => {
 const { desktopCapturer, remote } = window.require('electron');
 const screen = remote.screen;
 try {
 const sources = await desktopCapturer.getSources({ types:
 ['screen'] });
 const entireScreenSource = sources.find(
 source => source.name === 'Entire Screen'

https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en/docs/Web/API/MediaDevices/getUserMedia

Building a Screenshot Snipping Tool Chapter 4

[168]

);
 if (entireScreenSource) {
 console.log(entireScreenSource);
 }
 } catch (err) {
 console.error(err);
 }
 };

Please note that your users may be using more than one monitor when they use
your application. In such cases, Electron may find multiple different sources.
Instead of Entire Screen, you may have Screen 1, Screen 2, and so on.

For the sake of simplicity, let's make use of the first screen.

Update the code so that we can take multiple screens into account and check for2.
Screen 1:

 const entireScreenSource = sources.find(
 source => source.name === 'Entire Screen'
 || source.name === 'Screen 1'
);

As you can see, if Electron fails to find the Entire screen source, it is going to check for
Screen 1 as well.

In a real-world application, you may want to provide some sort of dialog or settings page to
allow users to configure these sources. For example, we could present the user with a list of
available sources and allow them to make some of them defaults.

You can always find more details and examples in the following
documentation article: https:/ /electronjs. org/ docs/ api/ desktop-
capturer.

Your users may have different types of monitors with various resolutions and aspect ratios.
A good example is a MacBook with a Retina display. This is why we need to calculate the
primary display size for the resulting thumbnail. Let's see how we can do this.

https://electronjs.org/docs/api/desktop-capturer
https://electronjs.org/docs/api/desktop-capturer
https://electronjs.org/docs/api/desktop-capturer
https://electronjs.org/docs/api/desktop-capturer
https://electronjs.org/docs/api/desktop-capturer
https://electronjs.org/docs/api/desktop-capturer
https://electronjs.org/docs/api/desktop-capturer
https://electronjs.org/docs/api/desktop-capturer
https://electronjs.org/docs/api/desktop-capturer
https://electronjs.org/docs/api/desktop-capturer
https://electronjs.org/docs/api/desktop-capturer
https://electronjs.org/docs/api/desktop-capturer
https://electronjs.org/docs/api/desktop-capturer
https://electronjs.org/docs/api/desktop-capturer

Building a Screenshot Snipping Tool Chapter 4

[169]

Calculating the primary display size
Here, we are requesting a screen source for capturing. Since more than one result is
possible, we will select the capturing source named Entire Screen. This is one of the
ways we can get access to the current screen content so that we can record a video, audio,
or an image thumbnail.

In our initial implementation, we retrieved the Entire Screen source and logged it to the
browser console to show you its structure:

One of the convenient features that the screen capturing source object provides is
Thumbnail generation. You can generate a preview thumbnail from the source with
custom parameters. The Source object is going to generate a NativeImage instance that
we can manipulate further. This is what we are going to reuse for our tool.

Also, the Electron framework allows you to access the screen's details. When working with
multi-display operating systems, you probably want to get the primary display. In any
case, we are going to import the screen and calculate the maximum possible square size of
the potential thumbnail image, as follows:

const screenSize = screen.getPrimaryDisplay().workAreaSize;

const maxDimension = Math.max(
 screenSize.width,
 screenSize.height
);

const sources = await desktopCapturer.getSources({
 types: ['screen'],
 thumbnailSize: {
 width: maxDimension * window.devicePixelRatio,
 height: maxDimension * window.devicePixelRatio
 }
});

Building a Screenshot Snipping Tool Chapter 4

[170]

As you may have noticed, we also took the window.devicePixelRatio property value
into account, which supports HiDPI or Retina displays.

You can find out more about the difference between rendering on a
standard display versus a HiDPI or Retina display at https:/ / developer.
mozilla. org/ en- US/ docs/ Web/ API/ Window/ devicePixelRatio.

Now it's time to generate our first screenshot and save it as a thumbnail image.

Generating and saving a thumbnail image
When we requested the capturing source, we provided a thumbnail size that's equal to the
size of the main screen. Now you can use the NativeImage methods to perform any
necessary image conversion and manipulation.

Many useful APIs are exposed by the NativeImage class. You can find out more at
https://electronjs. org/ docs/ api/ native- image#class- nativeimage.

For now, you need the following functions to finish the application:

toPNG: This converts image data into png format.
resize: This manipulates the size of the resulting image.
crop: This cuts out a portion of the image.

You can convert the screen thumbnail into a png image using the following code:

const image = entireScreenSource.thumbnail.toPNG();

Follow these steps to get started:

First, let's import the os, path, and fs classes from Node.js so that we can1.
generate temporary file names. Now, we need to use the writeFile function to
store the file locally. We also need shell from Electron so that we can invoke
shell commands:

 const { desktopCapturer, remote, shell } =
 window.require('electron');
 const screen = remote.screen;
 const path = window.require('path');
 const os = window.require('os');
 const fs = window.require('fs');

https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio.
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage
https://electronjs.org/docs/api/native-image#class-nativeimage

Building a Screenshot Snipping Tool Chapter 4

[171]

Next, update your code so that it looks as follows. Here, we are generating a2.
temporary file, saving the PNG image, and using shell.openExternal to
launch the file outside the Electron shell:

 try {
 const screenSize = screen.getPrimaryDisplay().workAreaSize;
 const maxDimension = Math.max(screenSize.width,
 screenSize.height);
 const sources = await desktopCapturer.getSources({
 types: ['screen'],
 thumbnailSize: {
 width: maxDimension * window.devicePixelRatio,
 height: maxDimension * window.devicePixelRatio
 }
 });

 const entireScreenSource = sources.find(
 source => source.name === 'Entire Screen' || source.name ===
 'Screen 1'
);
 if (entireScreenSource) {
 const outputPath = path.join(os.tmpdir(), 'screenshot.png');
 const image = entireScreenSource.thumbnail.toPNG();
 fs.writeFile(outputPath, image, err => {
 if (err) return console.error(err);
 shell.openExternal(`file://${outputPath}`);
 });

 }
 } catch (err) {
 console.error(err);
 }

Your operating system will automatically fetch the default application for3.
previewing files. For macOS, for example, you should expect a standard preview
to appear.
Update the code so that it can handle the missing screen source:4.

 if (entireScreenSource) {
 // ...
 } else {
 window.alert('Screen source not found.');
 }

Now, let's look at how we can manipulate the resulting image. It's time to learn how to
resize and crop the image.

Building a Screenshot Snipping Tool Chapter 4

[172]

Resizing and cropping the image
Now that we have a thumbnail image, we need to perform two additional steps before
saving it to local storage:

The first thing we need to do is resize the image so that it fits the screen size. As1.
you may recall, we make a square image based on the maximum dimension,
which is based on either the screen's height or the screen's width. It is easy to
resize the NativeImage instance because you already have a dedicated resize
method for this very purpose.
The second step is to crop the image. When we take a screenshot of the whole2.
screen area, our users may only want a portion of the screen or a frameless and
transparent window. Therefore, we need to crop it and leave only the rectangle
based on the window boundaries.

The NativeImage class allows us to perform method chaining. This allows us to call
multiple methods before we convert the final result into PNG format:

const image = entireScreenSource.thumbnail
 .resize({
 width: screenSize.width,
 height: screenSize.height
 })
 .crop({
 x: window.screenLeft,
 y: window.screenTop,
 width: window.innerWidth,
 height: window.outerHeight
 })
 .toPNG();

We can improve our code slightly by getting access to the application window from the
web renderer side. This means that we can access window boundaries, as well as
manipulate the window's state. Let's look at an example:

const { remote } = window.require('electron');

const win = remote.getCurrentWindow();
const windowRect = win.getBounds();

Building a Screenshot Snipping Tool Chapter 4

[173]

As you can see, we are accessing the remote object and fetching the current application
window. After that, it's easy to get the bounds rectangle and pass it to the crop method, as
shown in the following code:

const image = entireScreenSource.thumbnail
 .resize({
 width: screenSize.width,
 height: screenSize.height
 })
 .crop(windowRect)
 .toPNG();

Finally, when taking a screenshot, we have to hide the window and then show it again.
This ensures that the window isn't part of the resulting image.

Your web renderer already has access to the active application window, so you can simply
call the win.hide() or win.show() methods to control its visibility.

Please refer to the full implementation details that are provided in the following code:

const onSnipClick = async () => {
 const { desktopCapturer, screen, shell, remote } = window.require(
 'electron'
);
 const path = window.require('path');
 const os = window.require('os');
 const fs = window.require('fs');
 const win = remote.getCurrentWindow();
 const windowRect = win.getBounds();

 win.hide();

 try {
 const screenSize = screen.getPrimaryDisplay().workAreaSize;
 const maxDimension = Math.max(screenSize.width, screenSize.height);

 const sources = await desktopCapturer.getSources({
 types: ['screen'],
 thumbnailSize: {
 width: maxDimension * window.devicePixelRatio,
 height: maxDimension * window.devicePixelRatio
 }
 });

 const entireScreenSource = sources.find(
 source => source.name === 'Entire Screen' || source.name ===
 'Screen 1'

Building a Screenshot Snipping Tool Chapter 4

[174]

);

 if (entireScreenSource) {
 const outputPath = path.join(os.tmpdir(), 'screenshot.png');

 const image = entireScreenSource.thumbnail
 .resize({
 width: screenSize.width,
 height: screenSize.height
 })
 .crop(windowRect)
 .toPNG();

 fs.writeFile(outputPath, image, err => {
 win.show();

 if (err) return console.error(err);
 shell.openExternal(`file://${outputPath}`);
 });
 } else {
 window.alert('Screen source not found.');
 }
 } catch (err) {
 console.error(err);
 }
 };

Note that we call win.hide() to hide the window before taking a screenshot and then
enable visibility by calling win.show() when writing the resized and cropped result to the
disk.

We have made very good progress. Now, it's time to test the application to see if everything
we've built so far works as expected.

Building a Screenshot Snipping Tool Chapter 4

[175]

Testing the application's behavior
Now, let's test our screenshot tool:

Run the Electron application and drag the window around to select a portion of1.
the screen. In this case, we are using the Visual Studio Code window as the
source:

Building a Screenshot Snipping Tool Chapter 4

[176]

When you are ready, click the Snip button. Notice how the window disappears2.
for a moment, and then you get the default system viewer showing an image:

Users can then use the default Save As functionality of the preview tool to save3.
the file.

Congratulations on getting your first screenshot tool up and running! Now, let's improve it
by adding support for the system tray and keyboard shortcuts.

Integrating with the system tray
In most cases, the users of your application may only use it when required and then
minimize or close the app.

Building a Screenshot Snipping Tool Chapter 4

[177]

You can significantly improve user experience by keeping the application up and running
in the background and displaying it in the system tray area. Another essential feature is to
have a global keyboard shortcut so that the users of your application can quickly invoke it
without needing to use the mouse.

Let's start by integrating the system tray:

First, you need to import the Menu and Tray objects from the Electron1.
framework, the Tray integration, and also the path from Node.js to resolve the
path to the Tray icon image:

 const { Menu, Tray } = require('electron');
 const path = require('path');
 let tray;

Next, create a folder called assets and put a small 16 x 16 image in png format2.
inside it. For the sake of simplicity, let's call it icon.png.
The following code shows how we can create a basic Tray entry with a custom3.
image:

 function createTray() {
 const iconPath = path.join(__dirname, 'assets/icon.png');
 tray = new Tray(iconPath);
 const contextMenu = Menu.buildFromTemplate([
 {
 label: 'Quit',
 type: 'normal',
 click() {
 app.quit();
 }
 }
]);

 tray.setToolTip('Screenshot Snipping Tool');
 tray.setContextMenu(contextMenu);
 }

Here, we have created a function called createTray that builds and sets up the4.
Tray component. Now, you need to call this function from within the ready
handler:

 app.on('ready', () => {
 createTray();
 createWindow();
 });

Building a Screenshot Snipping Tool Chapter 4

[178]

Run or restart your Electron application and check out the system tray area. We5.
are using macOS is this example. Notice the custom tooltip content if you hover
the mouse cursor over the icon:

If you click on the icon, you should get the Quit menu entry, which is the one we6.
have just defined in the createMenu function:

Now, we can make some minor enhancements to the application's user experience. Let's
hide the application window on startup.

Hiding the main application window on
startup
Let's try to hide the main application window on startup and show it only when it's
invoked from the system tray menu:

The BrowserWindow class provides the show and hide methods, which we can1.
use to control the visibility of the window instance. This means that we can call
the hide method when building the window object at startup:

 function createWindow() {
 win = new BrowserWindow({
 transparent: true,
 frame: false,
 webPreferences: {
 nodeIntegration: true
 }
 });

 win.hide();
 win.loadURL(`http://localhost:3000`);
 win.on('closed', () => {
 win = null;

Building a Screenshot Snipping Tool Chapter 4

[179]

 });
 }

Finally, you can create an additional Show menu entry to invoke win.show and2.
display the main application window to the user:

 function createTray() {
 const iconPath = path.join(__dirname, 'assets/icon.png');
 tray = new Tray(iconPath);
 const contextMenu = Menu.buildFromTemplate([
 {
 label: 'Show',
 type: 'normal',
 click() {
 win.show();
 }
 },
 {
 label: 'Quit',
 type: 'normal',
 click() {
 app.quit();
 }
 }
]);

 tray.setToolTip('Screenshot Snipping Tool');
 tray.setContextMenu(contextMenu);
 }

Don't start the application just yet. Let's register some global keyboard shortcuts while
we're here.

Registering global keyboard shortcuts
Now that the minimal system tray menu is up and running, let's provide keyboard support.
You can use any key combination of your choice; for example, try Cmd + Alt + Shift + S for
macOS or Ctrl + Alt + Shift + S for Linux and Windows. Let's get started:

First, import globalShortcut from the Electron framework, as shown in the1.
following code:

 const { app, BrowserWindow, Menu, Tray,
 globalShortcut } = require('electron');

Building a Screenshot Snipping Tool Chapter 4

[180]

As you already know, you can provide and render keyboard combinations by2.
utilizing the accelerator property of the menu item:

 function createTray() {
 const iconPath = path.join(__dirname, 'assets/icon.png');
 tray = new Tray(iconPath);
 const contextMenu = Menu.buildFromTemplate([
 {
 label: 'Show',
 type: 'normal',
 accelerator: 'CommandOrControl+Alt+Shift+S',
 click() {
 win.show();
 }
 },
 {
 label: 'Quit',
 type: 'normal',
 click() {
 app.quit();
 }
 }
]);

 tray.setToolTip('Screenshot Snipping Tool');
 tray.setContextMenu(contextMenu);
 }

However, the preceding code doesn't invoke the window when the application is3.
minimized; it mainly serves as a hint that tells your users what combination they
should use. We still need to register a global handler, as shown in the following
code:

 globalShortcut.register('CommandOrControl+Alt+Shift+S', () => {
 if (win) {
 win.show();
 }
 });

Building a Screenshot Snipping Tool Chapter 4

[181]

As you can see, this was very easy to implement. Once the global shortcut4.
handler has been invoked, we can call win.show() to display the main
application window so that that end user can take a desktop screenshot:

Finally, disable the window after taking a screenshot, as shown in the following5.
code:

 fs.writeFile(outputPath, image, err => {
 // win.show();

 if (err) return console.error(err);
 shell.openExternal(`file://${outputPath}`);
 });

Congratulations on reaching the end of this chapter! Feel free to extend and improve your
desktop snipping tool as you see fit.

Summary
In this chapter, you have managed to create a lightweight screenshot snipping tool with the
help of Rect and Electron and can apply this knowledge to other projects.

Now, you have an understanding of the desktop capturing API in Electron and you know
how to detect multiple screens and how to work with pixel ratios, and you also know how
to make screenshots of the entire desktop and control application transparency and
visibility. We have also covered the Tray API and global keyboard shortcuts so that we can
invoke our application. Feel free to extend the project with more features.

In the next chapter, we are going to build a simple 2D game to study graphics and gaming
with Electron applications.

5
Making a 2D Game

In this chapter, we are going to build a simple 2D game that can run on the desktops of all
major platforms by utilizing the Electron framework. We aren't going to build the game
engine, though. To save time and to focus on the result, I am going to use Phaser. Phaser is
a fast, free, and fun open source framework for Canvas and WebGL that powers browser
and mobile games. You can check out Phaser at https:/ /www. phaser. io/ .

First, I am going to guide you through the process of creating a new game project scaffold.
We will be packaging simple Phaser examples as a desktop application in order to render
images and manipulate game sprites.

A sprite is a computer graphics term for a two-dimensional bitmap that is integrated into a
larger scene, most often in a 2D video game. Essentially, a sprite is a game object that we
can move, flip, manipulate, and so on.

We will also learn about handling keyboard events. By the end of this chapter, you will
know how to get started with game development for multiple platforms.

In this chapter, we will cover the following topics:

Configuring a game project
Running a Hello World example
Rendering background images
Preventing window resizing
Rendering a sprite
Scaling sprites
Handling keyboard input
Flipping sprites based on their direction
Controlling sprite coordinates
Controlling sprite speed

https://www.phaser.io/
https://www.phaser.io/
https://www.phaser.io/
https://www.phaser.io/
https://www.phaser.io/
https://www.phaser.io/
https://www.phaser.io/
https://www.phaser.io/
https://www.phaser.io/
https://www.phaser.io/

Making a 2D Game Chapter 5

[183]

Technical requirements
To get started with this chapter, you will need a standard laptop or desktop running
macOS, Windows, or Linux.

The minimal amount of software you need to have installed for this chapter is as follows:

Git, a version control system
Node.js with NPM
Visual Studio Code, a free and open source code editor

You can find the code files for this chapter in this book's GitHub repository: https:/ /
github.com/PacktPublishing/ Electron- Projects/ tree/ master/ Chapter05.

Configuring a game project
We need to configure at least a basic Electron application. Choose a destination for the
project files and follow these steps to get started:

Let's start by creating a new folder called game so that we can store the game1.
project's files and assets:

 mkdir game
 cd game

Next, we'll initialize the project and install the Electron and Phaser libraries:2.

 npm init -y
 npm i electron
 npm i phaser

As you already know, we need to have a start script in the scripts section of3.
the package.json file. Also, don't forget to update the main entry point.
Your file should look as follows:4.

 {
 "name": "game",
 "version": "1.0.0",
 "description": "",
 "main": "main.js",
 "scripts": {
 "start": "electron ."
 },

https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter05

Making a 2D Game Chapter 5

[184]

 "keywords": [],
 "author": "",
 "license": "ISC",
 "dependencies": {
 "electron": "^7.0.0",
 "phaser": "^3.20.1"
 }
 }

Finally, you need to place the main.js file in the project's root folder. The5.
minimum amount of content that we need so that the game can run is shown in
the following code:

 const { app, BrowserWindow } = require('electron');

 function createWindow() {
 const win = new BrowserWindow({
 width: 800,
 height: 600,
 webPreferences: {
 nodeIntegration: true
 }
 });
 win.loadFile('index.html');
 }

 app.on('ready', createWindow);

While you can declare the JavaScript code directly in the index.html file, I
strongly recommend storing the game's content in a separate game.js file.

The minimum amount of content that we need for the game.js file is shown in6.
the following code:

 var config = {
 type: Phaser.AUTO,
 width: 800,
 height: 600,
 backgroundColor: '#03187D',
 scene: {
 preload: preload,
 create: create,
 update: update
 }
 };
 var game = new Phaser.Game(config);

Making a 2D Game Chapter 5

[185]

 function preload() {}
 function create() {}
 function update() {}

As you can see, the initial configuration is self-explanatory. We create a window that's 800 x
600 pixels in size with a predefined background color and a few function references.

There are three common functions that you are often going to use when you start a new
game, that is, preload, create, and update. Let's go over these now:

The preload function is called when the game is about to start. This is useful
when you want to render a beautiful Loading screen with a progress bar. That is
also where you can load all of the game's assets.
The create function is the primary builder of your game. All of the initialization
logic happens here, for example, setting the background, creating game
characters, and configuring keyboard and mouse input.
Last but not least, the update function is called every time the game needs to
update its state. This is the most frequently called function and is usually
invoked numerous times per second.

We will look into the main functions in more detail shortly, but first, let's finish the project's
setup by following these steps:

To finish the project's setup, we need to place the index.html file in the1.
project's root folder and import the phaser.min.js and game.js files:

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="UTF-8" />
 <title>Hello World!</title>
 </head>
 <body>
 <script src="node_modules/phaser/dist/phaser.min.js"></script>
 <script src="game.js"></script>
 </body>
 </html>

Also, I suggest creating a dedicated CSS stylesheet file for the game. We need it2.
so that we can remove all of the document margins and disable the scrollbars.
Create a game.css file next to the game.js file and put the following content3.
inside it:

 body {
 margin: 0;

Making a 2D Game Chapter 5

[186]

 overflow: hidden;
 }

Update the game window title and import the stylesheet. The content of the4.
index.html file should now look as follows:

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="UTF-8" />
 <title>Electron Game</title>
 <link rel="stylesheet" href="game.css" />
 </head>
 <body>
 <script src="node_modules/phaser/dist/phaser.min.js"></script>
 <script src="game.js"></script>
 </body>
 </html>

To see our first game project in action, run the following command in a Terminal5.
window or Command Prompt:

 npm start

Once the application is started up, you should see a window with a dark blue6.
surface, as shown in the following screenshot, which means that our Phaser
game is up and running and that we can render the background as expected:

Making a 2D Game Chapter 5

[187]

Our game doesn't do much yet, but it's a good template for all of your future game
projects. To practice with this more, let's look at an official Phaser example and wrap it with
our project's scaffold.

Running a Hello World example
Let's take the official Hello World example and turn it into a desktop application powered
by Electron. Follow these steps to do so:

First, create the configuration file shown in the following code. It is almost the1.
same one that we had earlier, but with an extra physics configuration section:

 var config = {
 type: Phaser.AUTO,
 width: 800,
 height: 600,
 backgroundColor: '#03187D',
 physics: {
 default: 'arcade',
 arcade: {
 gravity: { y: 200 }
 }
 },
 scene: {
 preload: preload,
 create: create,
 update: update
 }
 };

Next, let's implement the preload function and load some image resources:2.

 function preload() {
 this.load.setBaseURL('http://labs.phaser.io');
 this.load.image('sky', 'assets/skies/space3.png');
 this.load.image('logo', 'assets/sprites/phaser3-logo.png');
 this.load.image('red', 'assets/particles/red.png');
 }

Making a 2D Game Chapter 5

[188]

There are two essential points of interest in the preceding code. Notice that we
can set the base URL for all the game assets. This can be a local or a remote
address, depending on your scenario. Sometimes, you may want to store your
assets remotely so that you can, for example, update the game server and apply
changes to all the clients. For the current demo, we're instructing the game to
fetch all the resources from the http://labs.phaser.io web address.

Another point of interest is how we load the game assets. The Phaser framework
allows us to load an image file and give it a unique key that can be used in the
game's code. This is very convenient as it allows us to change the asset image in a
single place without changing its key in multiple places.

Now, update the create function according to the following code:3.

 function create() {
 this.add.image(400, 300, 'sky');
 var particles = this.add.particles('red');

 var emitter = particles.createEmitter({
 speed: 100,
 scale: { start: 1, end: 0 },
 blendMode: 'ADD'
 });

 var logo = this.physics.add.image(400, 100, 'logo');

 logo.setVelocity(100, 200);
 logo.setBounce(1, 1);
 logo.setCollideWorldBounds(true);

 emitter.startFollow(logo);
 }

Making a 2D Game Chapter 5

[189]

Restart the application. This time, you should see a Phaser logo bouncing around4.
the custom background. Apart from this, the particle emitter adds some special
effects to the logo sprite:

Based on our previous experience, let's change the game so that it loads our custom
background and renders some different sprites. I suggest that we find a space background
image and use a spaceship image on top of it. It would also be nice to have keyboard input
handling so that users can control where the ship flies.

Making a 2D Game Chapter 5

[190]

Rendering background images
We are going to store all our game assets locally, and our game is going to be running fully
offline. Let's look at how we can render the background images:

Create a new assets folder in the project root so that you have somewhere to1.
store your files.
After that, find and download a beautiful space picture, like the one shown in the2.
following screenshot:

You can find the preceding background image in this book's GitHub
repository: https:/ / github. com/ PacktPublishing/ Electron- Projects/
blob/ master/ Chapter05/ assets/ background. jpg.

Save it as an assets/background.jpg file.3.
Update the preload function and set the base URL to the local application4.
folder. Then, fetch the background image. Here, we're giving it the background
key. Use the following code to reference this image:

 function preload() {
 this.load.setBaseURL('.');
 this.load.image('background', 'assets/background.jpg');
 }

https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg
https://github.com/PacktPublishing/Electron-Projects/blob/master/Chapter05/assets/background.jpg

Making a 2D Game Chapter 5

[191]

To display this image as the game's background, we need to perform some more5.
image manipulation. The original image may not necessarily be 800 x 600 pixels
size, or we may want to have different window sizes. In any case, our image
needs to fit the entire window and should be scaled.
Adding to the game scene and scaling the background image is what our update6.
function is going to do:

 function create() {
 const image = this.add.image(
 this.cameras.main.width / 2,
 this.cameras.main.height / 2,
 'background'
);
 let scaleX = this.cameras.main.width / image.width;
 let scaleY = this.cameras.main.height / image.height;
 let scale = Math.max(scaleX, scaleY);
 image.setScale(scale).setScrollFactor(0);
 }

We have already defined the preload and create function implementations.7.
Before we take a look at the update function, let's take a look at the application:

Making a 2D Game Chapter 5

[192]

The application looks amazing. The image fits the main content area, but for the sake of
simplicity, let's see how we can switch off resizing for our Electron shell.

Preventing window resizing
So far, we've created an Electron window that's 800 x 600 pixels in size. We also initialized a
Phaser game with the same size parameters. If you don't want to deal with scaling and
resizing and want to restrict the size of the screen, you can do so in the main.js file:

const { app, BrowserWindow } = require('electron');

function createWindow() {
 const win = new BrowserWindow({
 width: 800,
 height: 600,
 webPreferences: {
 nodeIntegration: true
 },
 resizable: false
 });

 win.loadFile('index.html');
}

app.on('ready', createWindow);

You can always disable this option later and adopt the game in multiple screen sizes. Now,
let's create a spaceship sprite.

Rendering a sprite
Let's learn how to can render a sprite:

Find an image of a spaceship and upload it to the assets folder. In my example,1.
I'm using the phaser-ship.png file.
Now, load the image into the game as a ship asset:2.

 function preload() {
 this.load.setBaseURL('.');
 this.load.image('background', 'assets/background.jpg');
 this.load.image('ship', 'assets/phaser-ship.png');
 }

Making a 2D Game Chapter 5

[193]

Next, create a global variable called ship. This is going to contain our spaceship3.
sprite:

 const game = new Phaser.Game(config);
 let ship;

Now, assign the ship variable from within the create function. We need to4.
reuse the variable inside the update function:

 // Create ship
 ship = this.add.sprite(100, 100, 'ship');

Notice how we passed the initial coordinates and the asset key to add a new sprite to the
game. You can control the position of the sprite on the screen when it first appears. In our
case, it has coordinates of 100 pixels from the left and 100 pixels from the top.

You can also scale the image if you want the sprite to be bigger or smaller. This is
something we are going to address in the next section.

Scaling sprites
Just like the background, the original image for our spaceship may be either too big or too
small. In my case, it is tiny, and I need to scale it a bit. Let's see how we can do that:

To set custom scaling in the form of a float number, use1.
the sprite.setScale(x, y) method:

 // Create ship
 ship = this.add.sprite(100, 100, 'ship');
 ship.setScale(4, 4);

Along with the global variables, the create implementation of our game should2.
look as follows:

 const game = new Phaser.Game(config);
 let ship;

 function create() {
 // Create background
 const image = this.add.image(
 this.cameras.main.width / 2,
 this.cameras.main.height / 2,
 'background'
);
 let scaleX = this.cameras.main.width / image.width;

Making a 2D Game Chapter 5

[194]

 let scaleY = this.cameras.main.height / image.height;
 let scale = Math.max(scaleX, scaleY);
 image.setScale(scale).setScrollFactor(0);

 // Create ship
 ship = this.add.sprite(100, 100, 'ship');
 ship.setScale(4, 4);
 }

Now, restart the application. You should see a spaceship image displayed at the3.
position 100:100 on the screen. It has also been scaled to be four times bigger than
the original image:

Typically, you want your assets to be the size that the game requires them to be so that you
don't waste CPU and RAM on scaling things at runtime. However, you should still know
how to scale images; that is why we used a smaller ship and then resized it.

Now, let's look at how we can handle keyboard input to move the ship around the screen.

Making a 2D Game Chapter 5

[195]

Handling keyboard input
In this section, we are going to provide keyboard support for our minigame. Our users
should be able to use the cursor keys to move the ship in all directions. To access the state
of the keyboard keys, we need a global variable to hold the state of the pressed keys. Let's
learn how to do this:

Let's call it cursors and put it under the game instance:1.

 const game = new Phaser.Game(config);
 let cursors;

The create function allows you to access the input.keyboard object. You can2.
use this object to retrieve a reference to the cursor keys' state:

 // Create cursors
 cursors = this.input.keyboard.createCursorKeys();

According to the official documentation, this creates a new object called cursors.
It contains four objects: up, down, left, and right. These are all Phaser.Key
objects, so anything you can do with a Key object you can do with these.

Now, we can check the state of the keys in the update method. As you may3.
recall, the update method usually gets called multiple times per second, so it is a
perfect place to check the state of the input controls and update the game
accordingly:

 function update() {
 if (cursors.right.isDown) {
 ship.x += 2;
 }
 }

Every time the update method is invoked, we check the state of the right key4.
and increment the horizontal position of the ship by 2 if the key is in the pressed,
or down, state. In the same way, if the left key is pressed, we decrease the
horizontal position of the ship by 2, as shown in the following code:

 function update() {
 if (cursors.right.isDown) {
 ship.x += 2;
 } else if (cursors.left.isDown) {
 ship.x -= 2;
 }
 }

Making a 2D Game Chapter 5

[196]

Now, we can navigate our spaceship horizontally, and it shouldn't difficult for5.
you to support the vertical axes as well. Please refer to the following code snippet
to get an idea of how to perform vertical navigation:

 function update() {
 if (cursors.right.isDown) {
 ship.x += 2;
 } else if (cursors.left.isDown) {
 ship.x -= 2;
 } else if (cursors.up.isDown) {
 ship.y -= 2;
 } else if (cursors.down.isDown) {
 ship.y += 2;
 }
 }

Now, restart your Electron game and try using the keyboard keys. Notice how6.
the ship moves in all four directions:

Making a 2D Game Chapter 5

[197]

In this section, you have successfully implemented keyboard support for your game
project. We received the cursor key's state and changed the coordinates of the ship
according to user actions. Now, let's make the ship's behavior more natural and make it
face the direction it's moving in.

Flipping sprites based on their direction
When navigating the ship, you should notice that it is always facing right. This is the
expected behavior since the original image that we used for the sprite is facing right.

In real life, however, you may want the ship to face the direction that it's moving
in. Luckily, the Photon framework supports flipping sprite images, thereby allowing us to
invert the ship either horizontally or vertically using the following command:

sprite.flipX = true;

Now, let's update the code so that we can flip the image based on the keyboard state:

function update() {
 // RIGHT button
 if (cursors.right.isDown) {
 ship.x += 2;
 ship.flipX = false;
 }
 // LEFT button
 else if (cursors.left.isDown) {
 ship.x -= 2;
 ship.flipX = true;
 }
 // UP button
 else if (cursors.up.isDown) {
 ship.y -= 2;
 }
 // DOWN button
 else if (cursors.down.isDown) {
 ship.y += 2;
 }
}

Restart the game application and try moving the ship left and right. Notice how the image
changes to reflect the direction it's moving in:

Making a 2D Game Chapter 5

[198]

In this section, we have made the ship's behavior more natural by flipping the image
according to the direction it's moving in. Next, we need to prevent the ship from going off
screen.

Controlling sprite coordinates
Let's prevent the sprite from going off screen. Here, we are going to render the ship in
another part of the screen. Follow these steps to do so:

First, let's set the screen size to dedicated constants so that we can use it in our1.
code:

 const screenWidth = 800;
 const screenHeight = 600;
 var config = {
 type: Phaser.AUTO,

Making a 2D Game Chapter 5

[199]

 width: screenWidth,
 height: screenHeight,
 backgroundColor: '#03187D',
 scene: {
 preload: preload,
 create: create,
 update: update
 }
 };

Now, on each update, you can check whether the new coordinates of the ship are2.
off screen and change the value to point to another place, or maybe even prevent
the ship from moving if you want the ship to stay where it is:

 function update() {
 // RIGHT button
 if (cursors.right.isDown) {
 ship.x += 2;
 ship.flipX = false;
 }
 // LEFT button
 else if (cursors.left.isDown) {
 ship.x -= 2;
 if (ship.x <= 0) {
 ship.x = screenWidth;
 }
 ship.flipX = true;
 }
 // UP button
 else if (cursors.up.isDown) {
 ship.y -= 2;
 }
 // DOWN button
 else if (cursors.down.isDown) {
 ship.y += 2;
 }
 }

As you can see, each time the horizontal or x coordinate becomes less than zero,3.
that is, the image is going off the left-hand side of the screen, we reassign it to the
value of the screen's width, that is, the right-hand side of the game screen.
Restart the game and press the Left arrow key until the ship reaches the left-hand4.
side of the game screen:

Making a 2D Game Chapter 5

[200]

Now, try moving the ship further off of the screen. Notice how it appears from5.
the right-hand side and keeps moving to the center:

Now, let's do the same for the vertical axis:6.

 function update() {
 // RIGHT button
 if (cursors.right.isDown) {
 ship.x += 2;
 if (ship.x >= screenWidth) {
 ship.x = 0;
 }
 ship.flipX = false;
 }
 // LEFT button
 else if (cursors.left.isDown) {
 ship.x -= 2;
 if (ship.x <= 0) {
 ship.x = screenWidth;
 }
 ship.flipX = true;
 }

Making a 2D Game Chapter 5

[201]

 // UP button
 else if (cursors.up.isDown) {
 ship.y -= 2;
 if (ship.y <= 0) {
 ship.y = screenHeight;
 }
 }
 // DOWN button
 else if (cursors.down.isDown) {
 ship.y += 2;
 if (ship.y >= screenHeight) {
 ship.y = 0;
 }
 }
 }

When the ship reaches the bottom edge of the screen, we move it to the top, and vice versa.
Now, it's impossible for the ship to leave the screen; the ship always appears on the
opposite edge of the screen.

In this section, we have learned how to control the sprite's coordinates on the screen. Now,
let's learn how to make the ship move faster by controlling its speed.

Controlling sprite speed
In the update calls, we have been incrementing the position of the ship sprite by 2. In real
life, however, you may want to store that value as a global constant or a centralized setting.
In this case, changing the overall speed means that we need to update a single constant or
variable, instead of refactoring the whole game.

We have already moved the screen size into constants; let's do the same with the speed:

Introduce a new constant called shipSpeed and set its value to 2:1.

 const screenWidth = 800;
 const screenHeight = 600;
 const shipSpeed = 2;

Now, update all of the existing code and use the shipSpeed constant in all of the2.
places you need to increment or decrement the position of the ship, as shown in
the following code:

 function update() {
 // RIGHT button
 if (cursors.right.isDown) {

Making a 2D Game Chapter 5

[202]

 ship.x += shipSpeed;
 if (ship.x >= screenWidth) {
 ship.x = 0;
 }
 ship.flipX = false;
 }
 // LEFT button
 else if (cursors.left.isDown) {
 ship.x -= shipSpeed;
 if (ship.x <= 0) {
 ship.x = screenWidth;
 }
 ship.flipX = true;
 }
 // UP button
 else if (cursors.up.isDown) {
 ship.y -= shipSpeed;
 if (ship.y <= 0) {
 ship.y = screenHeight;
 }
 }
 // DOWN button
 else if (cursors.down.isDown) {
 ship.y += shipSpeed;
 if (ship.y >= screenHeight) {
 ship.y = 0;
 }
 }
 }

As you can see, you now have a single place that holds the speed of the ship. Any
changes that are made to the shipSpeed constant will be reflected in all of the
code blocks since we're not refactoring the code in multiple places.

Now, change the speed to 4 and see what happens:3.

 const shipSpeed = 4;

Notice how the ship is now two times faster than before when it moves in all four
directions. You can experiment more and either increase or decrease the speed of the ship
until you find a value that provides the best and smooth movement behavior.

It is good practice to use constants or variables to control various aspects
of the game in a single place. This helps us to avoid code duplication and
the need for refactoring.

Making a 2D Game Chapter 5

[203]

Summary
Congratulations on finishing this chapter, which was related to game development and the
Electron framework. Together, we have created a simple game project that you can extend
to make a genuine cross-platform game. In this chapter, you managed to load and render
window backgrounds, draw and manipulate game sprites, and control keyboard input.
This is an excellent foundation that you can build your knowledge on.

If you liked working with the Phaser framework, make sure you look through the official
learning materials and guides at http:/ /phaser. io/learn. You can find the complete
project's source code in this book's assets, inside the game folder.

In the next chapter, we are going to build a music player that provides playback control,
metadata, and cover albums.

http://phaser.io/learn
http://phaser.io/learn
http://phaser.io/learn
http://phaser.io/learn
http://phaser.io/learn
http://phaser.io/learn
http://phaser.io/learn
http://phaser.io/learn
http://phaser.io/learn

6
Building a Music Player

Now that you know how to create basic Electron applications, let's craft something
interesting that involves multimedia components and your hardware.

In this chapter, we are going to build a simple music player application with playback
controls, sound options, metadata, and album art rendering.

You are going to learn how to use web technologies to build a cross-platform music player
for desktop applications and create a good foundation project that you can make further
enhancements to. By the end of this chapter, we will have a minimal music player
application with cover album art and song metadata support.

In this chapter, we will cover the following topics:

Creating a project scaffold
Exploring the music player component
Exploring the playback control buttons
Implementing a song progress bar
Displaying music metadata
Improving the user interface
Reviewing the final structure

Let's start by configuring a new project scaffold for our music application.

Technical requirements
To get started with this chapter, you will need a standard laptop or desktop running
macOS, Windows, or Linux.

Building a Music Player Chapter 6

[205]

The software you will need to have installed to be able to complete this chapter is as
follows:

Git, a version control system
Node.js with NPM
Visual Studio Code, a free and open source code editor

You can find the code files for this chapter in this book's GitHub repository at https:/ /
github.com/PacktPublishing/ Electron- Projects/ tree/ master/ Chapter06.

Creating a project scaffold
As in all the previous chapters, let's start by creating a project scaffold. We are going to call
our project music-player; it is going to use a pure JavaScript and HTML5 stack without
any additional frameworks. You can always wire a framework of your choice later.

Let's create a new project using the Terminal window or Command Prompt:

Navigate to your projects or home folder.1.
Run the following commands in your Terminal window or Command Prompt:2.

mkdir music-player
cd music-player

The preceding commands create a new directory for your music player
application.

Now it's time to initialize the project and generate the package.json file. Use3.
the following commands to set up an npm project:

npm init -y
echo node_modules > .gitignore
npm i -D electron

As you can see, besides setting up a new project with NPM, we've also generated
a minimal .gitignore file in case we ever decide to use GitHub or GitLab
repositories to store our project code. We have also installed the Electron
framework dependency.

Update the main and scripts sections according to the following code:4.

{
 "name": "music-player",

https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06

Building a Music Player Chapter 6

[206]

 "version": "1.0.0",
 "description": "",
 "main": "main.js",
 "scripts": {
 "start": "electron ."
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "devDependencies": {
 "electron": "^7.0.0"
 }
}

The main.js application file is pretty much the same template we've used in
every chapter so far. For now, let's start with a non-resizeable window that's
800x600 in size with Node.js integration enabled.

Use the following code to create a new main.js file in the project root:5.

const { app, BrowserWindow } = require('electron');

function createWindow() {
 const win = new BrowserWindow({
 width: 800,
 height: 600,
 webPreferences: {
 nodeIntegration: true
 },
 resizable: false
 });

 win.loadFile('index.html');
}

app.on('ready', createWindow);

The index.html content that we'll use to render our main application window6.
will look as follows:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Music Player</title>
 </head>
 <body>
 <h1>Music Player</h1>

Building a Music Player Chapter 6

[207]

 </body>
</html>

Let's try out the application to see if everything works as expected. Run the7.
following command in the Command Prompt:

npm start

Once the Electron application has started up, you should see the following8.
screen:

At this point, we have a basic application template for our upcoming music player project.
Feel free to back it up and use it in the future to save yourself some time when you're
building similar projects.

Now, let's move on to the most significant part of our journey—choosing a music
component library. This will form the foundation of our project.

Exploring the music player component
Modern browsers provide full support for music and video playback through HTML5 and
JavaScript. However, it may take some time to implement all the specifications and study
all the APIs.

Also, building cross-browser music components is not a trivial task. That's why I strongly
recommend that you look for existing third-party components—freeware or
commercial—that already encapsulate the features we need to use.

For our project, we are going to use AmplitudeJS, the HTML5 audio player for the modern
era. It requires no external dependencies:

Building a Music Player Chapter 6

[208]

Follow these steps to add a music player component:

First, install the AmplitudeJS JavaScript library using the following NPM1.
command:

npm i amplitudejs

Although you can write JavaScript in the HTML document by using script tags,
it's good practice to keep the scripts separate from the presentation layer.

Building a Music Player Chapter 6

[209]

Let's separate the concerns and introduce a new file called player.js. This file2.
is going to hold all the code that is related to the music player's implementation
and playback. Create the player.js file with the following stub content:

// player.js
// todo: player configuration

Now, update the index.html file and include the newly created player.js file3.
at the bottom of the body, after the amplitude.js import.
The file's content should look as follows:4.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Music Player</title>
 </head>
 <body>
 <h1>Music Player</h1>
 <script src="./node_modules/amplitudejs/dist/amplitude.js">
 </script>
 <script src="./player.js"></script>
 </body>
</html>

At this point, we have an Electron application that loads and initializes the Amplitude
library at startup. We also loaded our custom script file, player.js, after the
amplitude.js file. This allows us to access all the multimedia APIs that are exposed by
the third-party component library.

Now, it's time to grab some music files to test the application.

Downloading music files
To develop and test the application, you are going to need at least one music file containing
metadata such as author, album title, and cover image.

We are going to use the Free Music Archive website to grab some files and metadata.
However, feel free to use your own content once you've finished this chapter.

Follow these steps to get started:

Navigate to the Free Music Archive website (http:/ /freemusicarchive. org) as1.
follows:

http://freemusicarchive.org
http://freemusicarchive.org
http://freemusicarchive.org
http://freemusicarchive.org
http://freemusicarchive.org
http://freemusicarchive.org
http://freemusicarchive.org

Building a Music Player Chapter 6

[210]

Before you start downloading files, create a separate music directory. This is2.
where we will store all of our media files for our application.
Switch to your Terminal window or Command Prompt and run the following3.
commands:

mkdir music
open .

The preceding commands create a folder called music and open the Finder or
Explorer so that we can observe its contents.

Building a Music Player Chapter 6

[211]

Next, find the Equilibrium I (Cello version) by David Hilowitz file. It should be4.
available at http:/ /freemusicarchive. org/ music/ David_ Hilowitz/
Equilibrium_ I_ Cello_ version/ :

Download the music file; it should be named David_Hilowitz_-5.
_Equilibrium_I_Cello_version.mp3.
Also, right-click the album cover image and save it locally; we are going to use6.
this later.

You can find all the music files for this chapter, along with the complete
project code, in this book's GitHub repository: https:/ /github. com/
PacktPublishing/ Electron- Projects/ tree/ master/ Chapter06/ music.

http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
http://freemusicarchive.org/music/David_Hilowitz/Equilibrium_I_Cello_version/.
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter06/music

Building a Music Player Chapter 6

[212]

At this point, we have created a separate folder so that we can store all of our multimedia
resources. You also have an experimental music file and an image to use as an album cover.
In the next section, we are going to learn how to set up the player component and play the
music file we just retrieved.

Providing basic player setup
In the previous section, we prepared a folder structure and obtained some files to use
within our application. Now, let's learn how to initialize a music player component and
play the sound files we have.

At this point, your project structure should look similar to the following:

Switch to the player.js file and configure a new instance of the player component by
calling the Amplitude.init method with an object of configuration settings, as shown in
the following code:

Amplitude.init({
 songs: [
 {
 name: 'Equilibrium I (Cello version)',
 artist: 'David Hilowitz',
 album: 'Equilibrium I (Cello version)',
 url: './music/David_Hilowitz_-_Equilibrium_I_Cello_version.mp3',
 cover_art_url:
 './music/David_Hilowitz_-_Equilibrium_I_Cello_version-
 20190327141456457.jpg'
 }
]
});

Building a Music Player Chapter 6

[213]

In the preceding example, we are using the following properties:

songs: A list of songs to play. For now, we are using a single entry.
name: The song's name.
artist: The song's artist or band.
album: Name of the album.
url: The link to the music content. Here, we are using a local path, but you can
point it to the remote web address if you wish.
cover_art_url: The link to the album cover image. Similar to the url property,
it can point to either a local or remote location.

Note that these are the basic metadata properties we are going to use when building the
music player application. You can, however, store much more metadata content and use it
on demand. We are going to address this later in this chapter.

In this section, we are going to address the following aspects:

Using AmplitudeJS elements
Implementing the global play button
Implementing the global pause button
Implementing the global play/pause button

Now, let's look at the elements that are available in AmplitudeJS and how we can use them.

Using AmplitudeJS elements
The significant benefits of using the AmplitudeJS library include the absence of external
dependencies and no user interface to enforce their look and feel. Instead, AmplitudeJS
relies on the CSS classes that are prefixed with amplitude-, which you can add to any
HTML element. You can have any nested hierarchy of elements and a fully custom visual
look that fits your application's theme.

Please take a look at the following article to get a good understanding of
what elements are available for your applications: https:/ /
521dimensions. com/ open- source/ amplitudejs/ docs/ elements/ index.
html.

https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html
https://521dimensions.com/open-source/amplitudejs/docs/elements/index.html

Building a Music Player Chapter 6

[214]

Implementing the global play button
To turn an HTML element into a Play button, you need to use the amplitude-play CSS
class like so:

As you can see, adding the amplitude-play class turns an element into a clickable object
that starts music playback. Let's use this class with a button element in our application:

Declare the button element in the index.html file as follows:1.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Music Player</title>
 </head>
 <body>
 <h1>Music Player</h1>
 <div>
 <button class="amplitude-play">Play</button>
 </div>
 <script
src="./node_modules/amplitudejs/dist/amplitude.js"></script>
 <script src="./player.js"></script>
 </body>
</html>

Try out the application by running the following command from the Terminal2.
window or Command Prompt:

npm start

As you can see, at startup, you now have a Play button under the dummy Music3.
Player heading:

Building a Music Player Chapter 6

[215]

Now, if you click the Play button, you should hear the music playing.

We don't have any other music control buttons, so the only way to stop the player is to quit
the application. Don't worry; we are going to address this shortly. Next, we are going to
create a Pause button so that we can stop the music.

Implementing the global pause button
Similar to the global Play button, you can define an element to handle the Pause
functionality as well. You should use the amplitude-pause CSS class for this. The usage
format, according to the official documentation, is as follows:

You can turn any clickable element or complex web component into a Pause button. For
the sake of simplicity, let's use the standard HTML button element. Update the
index.html file according to the following code:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Music Player</title>
 </head>
 <body>
 <h1>Music Player</h1>
 <div>
 <button class="amplitude-play">Play</button>
 <button class="amplitude-pause">Pause</button>
 </div>
 <script src="./node_modules/amplitudejs/dist/amplitude.js"></script>
 <script src="./player.js"></script>
 </body>
</html>

Now, you should have two buttons rendered next to one another:

Building a Music Player Chapter 6

[216]

This time, you can pause music playback with the Pause button and resume or play the file
with the Play button. All you did here was set the CSS class for the HTML button element.

Let's move on and slightly rework our buttons to improve our user experience.

Implementing the global play/pause button
In real life, you aren't going to have two separate buttons for playback. Typically, users
prefer having a single button that both starts and pauses the song.

Luckily, AmplitudeJS provides support for this scenario as well. Here, we can use
amplitude-play-pause to make an HTML element toggle the playback. The usage
format is pretty much the same as it was for the Play and Pause functionality:

Comment out or remove the Play and Pause buttons and use a new unified button, as
shown in the following code:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Music Player</title>
 </head>
 <body>
 <h1>Music Player</h1>
 <div>
 <button class="amplitude-play-pause">Play / Pause</button>
 </div>
 <script src="./node_modules/amplitudejs/dist/amplitude.js"></script>
 <script src="./player.js"></script>
 </body>
</html>

Before we dive into other music controls, let's check out how we can style our elements to
make them look much better than default HTML styles.

Styling buttons
In this section, we are going to render SVG icons for the Play and Pause states instead of
the HTML button. The easiest and quickest way to get the corresponding resources is by
using the Google Material Icons library.

Building a Music Player Chapter 6

[217]

Material Icons is an open source set of icons that have been created and maintained by
Google. You can find these resources at https:/ /material. io/tools/ icons.

Let's learn how to use a button with a custom style and SVG images by following these
steps:

First, create a folder called images in the project root. Download the SVG1.
versions of the Play and Pause buttons and save them in the images folder.
At this point, your project structure should look similar to the following:2.

Next, replace the button element in the index.html file with the div one. We3.
don't need it to be a button anymore as it is going to be an image-based
component. Update your index.html code and use the div element like so:

<html>
 <head>
 <meta charset="UTF-8" />
 <title>Music Player</title>
 <link rel="stylesheet" href="player.css" />
 </head>
 <body>
 <h1>Music Player</h1>
 <div class="controls">
 <div class="amplitude-play-pause"></div>
 </div>
 <script src="./node_modules/amplitudejs/dist/amplitude.js">
 </script>
 <script src="./player.js"></script>
 </body>
</html>

https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons
https://material.io/tools/icons

Building a Music Player Chapter 6

[218]

As you can see, we also added an import of the player.css file. Having a4.
separate file for the player styles is good practice, so let's create it next to the
player.js script file with the following content:

.controls .amplitude-play-pause {
 width: 74px;
 height: 74px;
 cursor: pointer;
}

.controls .amplitude-play-pause.amplitude-paused {
 background: url('./images/baseline-play_circle_filled-24px.svg');
 background-size: cover;
}

The button is going to be 74x74 pixels in size and have a pointer cursor to
emulate a button effect.

Another helpful behavior of AmplitudeJS is the extra CSS classes that are attached
to the amplitude- elements, depending on the player's state. For example, the
element gets the amplitude-paused class appended to it when we pause the
playback, while it gets the amplitude-playing class appended to it when we
start or resume it. This is very convenient if you want to style the buttons
differently.

Now, if you start or restart your application, you should see a cute Play button:5.

Now, let's add a separate style for the Playing mode:6.

.controls .amplitude-play-pause {
 width: 74px;
 height: 74px;
 cursor: pointer;
}

Building a Music Player Chapter 6

[219]

.controls .amplitude-play-pause.amplitude-paused {
 background: url('./images/baseline-play_circle_filled-24px.svg');
 background-size: cover;
}

.controls .amplitude-play-pause.amplitude-playing {
 background: url('./images/baseline-
pause_circle_filled-24px.svg');
 background-size: cover;
}

This time, the button in your application automatically changes to reflect the7.
playback state, like so:

Now, you have a basic understanding of how to use music controls on a web page. Here,
we've added play and pause buttons, provided custom styles, and even improved the user
experience by merging two buttons into a single one.

In the next section, we are going to implement a traditional set of buttons to control
playback.

Exploring the playback control buttons
We have made excellent progress with our music player application so far. You now have a
play/pause button that works and allows you to listen to a song from within the Electron
application. Of course, a single button isn't enough for a music player. In this section, we
are going to implement a traditional set of buttons to control the music playback.

For comfortable user experience, we need to have at least the following buttons:

Play/pause
Stop

Building a Music Player Chapter 6

[220]

Mute/unmute
Volume up/down

You have already implemented the Play / Pause button, so let's move on to the Stop
button.

Stop button
So far, our users can start the playback and pause it. However, there is no way for us to
stop and reset the song's progress so that we can listen to the same song from the
beginning, for example. Let's look at how we can add the Stop button:

Create the new Stop button using the following Amplitude CSS class:1.

Download the stop icon from Material Design Icons (https:/ /material. io/2.
tools/icons/ ? icon= stop style= baseline) and place it into the images folder, as
we did earlier.
After that, update the index.html file and append the button element with the3.
corresponding class to the controls element, which we are using to hold all the
playback controls:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Music Player</title>
 <link rel="stylesheet" href="player.css" />
 </head>
 <body>
 <h1>Music Player</h1>

 <div class="controls">
 <div class="amplitude-play-pause"></div>
 <div class="amplitude-stop"></div>
 </div>

 <script
src="./node_modules/amplitudejs/dist/amplitude.js"></script>
 <script src="./player.js"></script>
 </body>
</html>

https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline
https://material.io/tools/icons/?icon=stop&style=baseline

Building a Music Player Chapter 6

[221]

Finally, we need to get back to the player.css file and provide a new style for4.
the .amplitude-stop class so that we can render our button.
Append the following code to your stylesheet:5.

.controls .amplitude-stop {
 width: 48px;
 height: 48px;
 cursor: pointer;
 display: inline-block;
 background: url('./images/baseline-stop-24px.svg');
 background-size: cover;
}

You can restart the application or press Cmd + R (Ctrl + R) to reload the window.6.
We now have two buttons available, as shown in the following screenshot:

Note that when you click the Stop button, the Play / Pause functionality is
also updated.

Given that we are going to add more buttons, let's optimize the CSS to avoid code
repetition:

Create a separate style addressing all the child div elements inside the1.
.controls parent.
Add the following code to the bottom of our player.css file:2.

.controls > div {
 width: 48px;
 height: 48px;
 cursor: pointer;
 display: inline-block;
}

Building a Music Player Chapter 6

[222]

Now, refactor the player.css file so that it looks as follows:3.

.controls > div {
 width: 48px;
 height: 48px;
 cursor: pointer;
 display: inline-block;
}

.controls .amplitude-play-pause {
 width: 74px;
 height: 74px;
 cursor: pointer;
 display: inline-block;
}

As you can see, all our buttons are going to be 48x48 pixels in size, except for the Play /
Pause button, which we make intentionally bigger. All the buttons have the same cursor
and display settings.

Now it's time to move on and introduce the mute and unmute buttons.

Mute and unmute buttons
Similar to the Play / Pause button, we are going to introduce the Mute / Unmute button
so that our users have more control over the music playback functionality. Let's get started:

Download the following icons from the Material Design Icons website:1.

volume_mute (https:/ / material. io/tools/ icons/ ?icon= volume_ mute
style= baseline)
volume_off (https:/ / material. io/tools/ icons/ ?icon= volume_ off
style= baseline)

You can enable the mute functionality for any HTML element using the2.
following code:

When you click on the element and the player becomes muted, the span gets a3.
secondary class, that is, amplitude-muted.

https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_mute&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline
https://material.io/tools/icons/?icon=volume_off&style=baseline

Building a Music Player Chapter 6

[223]

You can also address amplitude-not-muted if you want some extra styling. Follow these
steps to add the buttons:

Update the index.html file so that it looks as follows:1.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Music Player</title>
 <link rel="stylesheet" href="player.css" />
 </head>
 <body>
 <h1>Music Player</h1>

 <div class="controls">
 <div class="amplitude-play-pause"></div>
 <div class="amplitude-stop"></div>
 <div class="amplitude-mute"></div>
 </div>

 <script src="./node_modules/amplitudejs/dist/amplitude.js">
 </script>
 <script src="./player.js"></script>
 </body>
</html>

Due to all the base classes we defined earlier, we only need to add the following2.
content to the player.css file:

.controls .amplitude-mute {
 background: url('./images/baseline-volume_mute-24px.svg');
 background-size: cover;
}

.controls .amplitude-mute.amplitude-muted {
 background: url('./images/baseline-volume_off-24px.svg');
 background-size: cover;
}

Refresh the window or restart the application to see the changes in action. Your3.
player should now display three buttons, including the Mute one we just created,
as shown in the following screenshot:

Building a Music Player Chapter 6

[224]

Click the Play button to start the playback and then click the Mute button.4.
Notice that you don't hear any sound. The button updates its style to show the
muted icon:

Now, it's time to move on to the volume buttons. These buttons will allow our users to tune
the output so that it's either louder or quieter.

Volume buttons
The Amplitude library provides you with two separate CSS classes so that you can convert
your HTML elements into volume controls. You can use the following code to create the
Volume Up control:

Building a Music Player Chapter 6

[225]

Similar to the preceding code, you can turn any element into the Volume Down control by
attaching the following class to it:

Let's get two more images for our buttons. Follow these steps to do so:

Get the following icons from the Google Material Icons website:1.

volume_down (https:/ / material. io/tools/ icons/ ?icon= volume_ down
style= baseline)
volume_up (https:/ / material. io/tools/ icons/ ?icon= volume_ up style=
baseline)

Update the content of the controls element file according to the following code:2.

<div class="controls">
 <div class="amplitude-play-pause"></div>
 <div class="amplitude-stop"></div>
 <div class="amplitude-mute"></div>
 <div class="amplitude-volume-down"></div>
 <div class="amplitude-volume-up"></div>
</div>

Similar to the Play and Mute buttons, we have to define separate CSS styles for
each state.

Update the player.css file and add the corresponding code:3.

.controls .amplitude-volume-up {
 background: url('./images/baseline-volume_up-24px.svg');
 background-size: cover;
}

.controls .amplitude-volume-down {
 background: url('./images/baseline-volume_down-24px.svg');
 background-size: cover;
}

These style classes are pretty similar. They receive most of the settings from the
parent element rules and only provide the path to the background image.

https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_down&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline
https://material.io/tools/icons/?icon=volume_up&style=baseline

Building a Music Player Chapter 6

[226]

Check out the application. This time, you are going to see five buttons in a row:4.

Note that clicking on the Volume Down button multiple times triggers the Mute button. It
changes its state as soon as you reach a volume level of zero. By default, each click of the
button increases or decreases the volume by 5%. You can change this step value when
initializing the Amplitude object, but the end user's experience may become overwhelmed.

Instead of two buttons, let's have a range slider so that our end users can change the
desired level of volume much faster than when they were using separate buttons:

Luckily, AmplitudeJS already provides support for ranges in the following1.
format:

<input type="range" class="amplitude-volume-slider"/>

For the sake of simplicity, let's comment out the Volume Up and Volume Down2.
buttons and append the input range element, as follows:

<div class="controls">
 <div class="amplitude-play-pause"></div>
 <div class="amplitude-stop"></div>
 <div class="amplitude-mute"></div>
 <!-- <div class="amplitude-volume-down"></div> -->
 <!-- <div class="amplitude-volume-up"></div> -->
 <input type="range" class="amplitude-volume-slider" />
</div>

Building a Music Player Chapter 6

[227]

Restart the application or reload the main window. You should see a range3.
element next to the Mute button. By default, the slider is in the middle, that is, at
the 50% level, as shown in the following screenshot:

Another useful feature is that other elements react to the player state too. This4.
happens because Amplitude updates all the corresponding CSS classes, and the
browser immediately reacts to that. For example, as soon as the range slider
reaches zero, the mute button changes its state:

So far, we can start and stop the music, reset its progress, and even control its volume. Now
it's time to display the progress of the song to our users. In the next section, you will learn
how to declare and use the Progress Bar element, which comes with HTML and is
supported by the Amplitude library.

Implementing a song progress bar
One of the traditional music components in any user interface is the progress element. The
progress bar component usually displays the current position of the song that we're
listening to. In this section, we are going to provide support for the HTML progress
element and wire it with the Amplitude library.

Building a Music Player Chapter 6

[228]

In this case, you should be using the progress HTML element. It should be in the
following format:

<progress class="amplitude-song-played-progress"></progress>

Let's create a separate div to hold our progress element. For the sake of simplicity, let's
leave the style of the element as it is. You can always make it more beautiful later. Follow
these steps to do so:

Update the index.html file according to the following code:1.

<div class="controls">
 <div class="amplitude-play-pause"></div>
 <div class="amplitude-stop"></div>
 <div class="amplitude-mute"></div>
 <!-- <div class="amplitude-volume-down"></div> -->
 <!-- <div class="amplitude-volume-up"></div> -->
 <input type="range" class="amplitude-volume-slider" />
</div>

<div>
 <progress class="amplitude-song-played-progress"></progress>
</div>

Once again, restart the application or use Cmd/Ctrl + R to reload the main2.
window.
Start the playback and pay attention to the progress element; it changes its value3.
while the song plays:

We are making excellent progress. Now that we know how to add a song progress bar, it's
time to render metadata for our music.

Building a Music Player Chapter 6

[229]

Displaying music metadata
Metadata is a piece of additional information about the song you play. Metadata can
contain the name of the album, the year of its release, rating, and many other blocks of
useful information.

In this section, we are going to display the following metadata when playing a music file:

Elapsed time
Remaining time
Cover image
Song name
Artist name

Before we start, let's learn how to deal with the song metadata. You can extract the values
as follows:

<span data-amplitude-song-info="<PROPERTY>">

<PROPERTY> corresponds to one of the metadata properties for the song object that we
defined earlier in the player.js file:

Amplitude.init({
 songs: [
 {
 name: 'Equilibrium I (Cello version)',
 artist: 'David Hilowitz',
 album: 'Equilibrium I (Cello version)',
 url: './music/David_Hilowitz_-_Equilibrium_I_Cello_version.mp3',
 cover_art_url:
 './music/David_Hilowitz_-_Equilibrium_I_Cello_version_-
 _20190327141456457.jpg'
 }
]
});

This means you can use the following class to display the name field in the metadata:

Besides custom fields, Amplitude provides you with a set of time-related elements.

To display the elapsed time, we are going to use the following CSS class:

Building a Music Player Chapter 6

[230]

This gives us a value in minutes. However, for better precision, you may also want to use
seconds:

Similar to the elapsed time, you can render the duration of the entire song in minutes:

Again, we also need to show seconds using the following format:

Let's combine all of these elements and display the timing values. Follow these steps to do
so:

Update the body element of your index.html page and append the following1.
block of code to it:

<div>
 :

 :

</div>

Restart the application, start the playback, and check out the timer values. As you2.
can see, we have played 00:11 of the song, which has a total length of 01:55:

Building a Music Player Chapter 6

[231]

Next, we need to show the cover art for the album. Amplitude allows you to3.
render the metadata value as the source of the image element. All you need to do
is declare the data- attribute, as shown in the following code:

As you may recall, we downloaded the cover art picture and declared it in the4.
song configuration file player.js. Now, you should see the image at runtime:

Building a Music Player Chapter 6

[232]

Finally, let's put the album's name at the top of the cover image:5.

<div>

</div>

The final HTML markup should look as follows:6.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Music Player</title>
 <link rel="stylesheet" href="player.css" />
 </head>
 <body>
 <h1>Music Player</h1>

 <div>

 </div>

 <div>

 by

 </div>

 <div class="controls">
 <div class="amplitude-play-pause"></div>
 <div class="amplitude-stop"></div>
 <div class="amplitude-mute"></div>
 <input type="range" class="amplitude-volume-slider" />
 </div>

 <div>
 <progress class="amplitude-song-played-progress"></progress>
 </div>

 <div>
 :<span
 class="amplitude-current-seconds"
 >
 :<span
 class="amplitude-duration-seconds"
 >

Building a Music Player Chapter 6

[233]

 </div>

 <script src="./node_modules/amplitudejs/dist/amplitude.js">
 </script>
 <script src="./player.js"></script>
 </body>
</html>

Our minimalistic music player application now appears as follows:7.

We have made brilliant progress, and as you can imagine, there are many more features we
can add to the application at this point. However, let's not forget about the user interface
and polish our application a bit.

Building a Music Player Chapter 6

[234]

Improving the user interface
At this point, you have a draft implementation of the user interface, along with a set of
playback control and visualization components. Now is a perfect time to take a break and
revisit the look and feel of our application.

In this section, we are going to polish the interface and make it more appealing to our users.

First of all, let's change the default size of the player. You may have already noticed that, in
its current form, it takes up less space than the size of the window. Follow these steps to get
started:

Switch to the main.js file and set its size to 480x500. This should be enough for1.
now. You can use the following code for reference:

const { app, BrowserWindow } = require('electron');

function createWindow() {
 const win = new BrowserWindow({
 width: 480,
 height: 500,
 webPreferences: {
 nodeIntegration: true
 },
 resizable: false
 });

 win.loadFile('index.html');
}

app.on('ready', createWindow);

Next, remove the h1 element from the Music Player label as you no longer it.2.
Now, we need to tune the cover image.
Declare a new cover-image class in the player.css stylesheet and use the3.
following set of rules to make the image fit the available space nicely:

.cover-image {
 object-fit: contain;
 width: 100%;
 height: 100%;
 max-height: 300px;
}

The style isn't going to work until you update the index.html file and assign it
to the img element, which holds the album cover.

Building a Music Player Chapter 6

[235]

Add the cover-image class, as shown in the following code:4.

<img class="cover-image" data-amplitude-song-info="cover_art_url"
/>

Next, you should wrap up all the time-related elements in the div element using5.
the song-progress-container CSS class. Update the code so that it looks as
follows:

<div class="song-progress-container">
 <div>
 :<span
 class="amplitude-current-seconds"
 >
 </div>

 <progress class="amplitude-song-played-progress"></progress>

 <div>
 :<span
 class="amplitude-duration-seconds"
 >
 </div>
 </div>

Append the following styles to the player.css file:6.

div.song-progress-container {
 display: grid;
 grid-template-columns: 1fr 10fr 1fr;
}

progress.amplitude-song-played-progress {
 width: 100%;
}

Now, gather all the metadata fields inside the div contain with the song-info-7.
container class. This allows us to apply styles to all the fields within it:

<div class="song-info-container">
 <div data-amplitude-song-info="name"></div>
 <div data-amplitude-song-info="album"></div>
 <div data-amplitude-song-info="artist"></div>
</div>

Append the song-info-container style implementation to the player.css8.
file.

Building a Music Player Chapter 6

[236]

For now, we only need to center the text horizontally:9.

.song-info-container {
 text-align: center;
}

Now, our lovely music player application looks like this:10.

Now we can focus on the features we've implemented and add much more functionality.
Don't forget to read the AmplitudeJS documentation and check out all available CSS
elements: https:// 521dimensions. com/ open-source/ amplitudejs/ docs.

In the next section, we are going to review the final structure of our application.

https://521dimensions.com/open-source/amplitudejs/docs
https://521dimensions.com/open-source/amplitudejs/docs
https://521dimensions.com/open-source/amplitudejs/docs
https://521dimensions.com/open-source/amplitudejs/docs
https://521dimensions.com/open-source/amplitudejs/docs
https://521dimensions.com/open-source/amplitudejs/docs
https://521dimensions.com/open-source/amplitudejs/docs
https://521dimensions.com/open-source/amplitudejs/docs
https://521dimensions.com/open-source/amplitudejs/docs
https://521dimensions.com/open-source/amplitudejs/docs
https://521dimensions.com/open-source/amplitudejs/docs
https://521dimensions.com/open-source/amplitudejs/docs
https://521dimensions.com/open-source/amplitudejs/docs
https://521dimensions.com/open-source/amplitudejs/docs
https://521dimensions.com/open-source/amplitudejs/docs

Building a Music Player Chapter 6

[237]

Reviewing the final structure
Now, we have a nice-looking music player application based on Electron and the
Amplitude library. In this section, we are going to review the final state of the code and
verify that we have done everything correctly.

Please refer to the following index.html file in case your application's layout looks
different or you think you may have missed a certain step:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Music Player</title>
 <link rel="stylesheet" href="player.css" />
 </head>
 <body>

 <div class="song-progress-container">
 <div>
 :<span
 class="amplitude-current-seconds"
 >
 </div>

 <progress class="amplitude-song-played-progress"></progress>

 <div>
 :<span
 class="amplitude-duration-seconds"
 >
 </div>
 </div>

 <div class="song-info-container">
 <div data-amplitude-song-info="name"></div>
 <div data-amplitude-song-info="album"></div>
 <div data-amplitude-song-info="artist"></div>
 </div>

 <div class="controls">
 <div class="amplitude-play-pause"></div>
 <div class="amplitude-stop"></div>
 <div class="amplitude-mute"></div>
 <input type="range" class="amplitude-volume-slider" />
 </div>

Building a Music Player Chapter 6

[238]

 <script src="./node_modules/amplitudejs/dist/amplitude.js"></script>
 <script src="./player.js"></script>
 </body>
</html>

The full CSS class implementation in the player.css file should look similar to the
following:

.cover-image {
 object-fit: contain;
 width: 100%;
 height: 100%;
 max-height: 300px;
}

div.song-progress-container {
 display: grid;
 grid-template-columns: 1fr 10fr 1fr;
 grid-gap: 10px;
}

progress.amplitude-song-played-progress {
 width: 100%;
}

.song-info-container {
 text-align: center;
}

.controls > div {
 width: 48px;
 height: 48px;
 cursor: pointer;
 display: inline-block;
}

.controls .amplitude-play-pause {
 width: 74px;
 height: 74px;
 cursor: pointer;
 display: inline-block;
}

.controls .amplitude-play-pause.amplitude-paused {
 background: url('./images/baseline-play_circle_filled-24px.svg');
 background-size: cover;
}

Building a Music Player Chapter 6

[239]

.controls .amplitude-play-pause.amplitude-playing {
 background: url('./images/baseline-pause_circle_filled-24px.svg');
 background-size: cover;
}

.controls .amplitude-stop {
 background: url('./images/baseline-stop-24px.svg');
 background-size: cover;
}

.controls .amplitude-mute {
 background: url('./images/baseline-volume_mute-24px.svg');
 background-size: cover;
}

.controls .amplitude-mute.amplitude-muted {
 background: url('./images/baseline-volume_off-24px.svg');
 background-size: cover;
}

.controls .amplitude-volume-up {
 background: url('./images/baseline-volume_up-24px.svg');
 background-size: cover;
}

.controls .amplitude-volume-down {
 background: url('./images/baseline-volume_down-24px.svg');
 background-size: cover;
}

As you can see, we didn't need to use too much code to make the player work. It's mainly
just a few HTML elements and a set of CSS styles so that we can wire them with Amplitude
or make them look better.

The application may need more work to be done to it so that it's truly useful as a player.
Please feel free to provide support so that you can switch between different songs, support
playlists, fetch album covers from online sources, and much more.

Building a Music Player Chapter 6

[240]

Summary
In this chapter, we looked at building a minimalistic cross-platform music player with the
help of the Electron framework and the AmplitudeJS library.

You have acquired the skills you need in order to build music applications, display
metadata, and handle cover album art. You also know how to style web components so that
they look like music playback buttons.

We have successfully met our goal; now you know how to set up a new Electron
application with multimedia support that's backed by third-party libraries. You can also
create user interfaces based on CSS class names and allow external libraries to turn HTML
elements into music playback or visualization components.

We also used a third-party library to play the sounds files and build a user interface
without much effort. Then, we created a song entry with cover album art and metadata. We
successfully rendered the image and song information onto the screen.

We hope this chapter has given you many ideas on how you can extend your Electron-
based music player even further.

Another essential part of every desktop application life cycle is analytics, especially when it
comes to bug tracking and user feedback. In the next chapter, we are going to learn how to
integrate real-time analytics into our Electron applications.

7
Analytics, Bug Tracking, and

Licensing
This is a pretty big list of features, so let's get started with deciding on whether we need
This chapter provides essential information for developers who want to monitor Electron
applications in production, track errors and crashes, analyze a real-time user base, and
much more. In this chapter, you are going to walk through the processes of integrating with
third-party analytics services, raising custom events, and wiring your Electron applications
with license checks. We are also going to send notifications to installed copies of our
application across all major desktop platforms.

By the end of this chapter, you will have an Electron project with tracking support
integrated. You will also be able to generate some statistics and tracking information for
demonstration purposes. As part of the practical exercise in this chapter, you are going to
integrate with the third party service and get the Nucleus service subscription, which is free
for the first month, so that you can collect and inspect the analytics data. The estimated
project build time is three hours.

In this chapter, we will cover the following topics:

Understanding analytics and tracking
Creating your own solution or using an existing service
Using Nucleus for Electron applications
Creating a new Nucleus account
Creating a new project with tracking support
Installing the Nucleus Electron library
Inspecting real-time analytics data
Disabling tracking per user request
Verifying real-time user statistics
Supporting offline mode
Handling application updates

Analytics, Bug Tracking, and Licensing Chapter 7

[242]

Loading global server settings
License checking and policies

This is a pretty big list of features, so let's get started with deciding on whether we need
analytics and whether we need to build all the features ourselves.

Technical requirements
To get started with this chapter, you will need a standard laptop or desktop running
macOS, Windows, or Linux.

The software that you'll need to have installed for this chapter is as follows:

Git, a version control system
Node.js with NPM
Visual Studio Code, a free and open source code editor

You can find the code files for this chapter in this book's GitHub repository https:/ /
github.com/PacktPublishing/ Electron- Projects/ tree/ master/ Chapter07.

Understanding analytics and tracking
As soon as you release the first version of your Electron-based application into production,
you may need to gather some statistics regarding how your customers use the application.
Then, you can use that information to improve the product and boost the downloads or
sales of your application if it's commercial. Some examples of how we can use this
information are as follows:

Improving distribution and sales: Imagine that, according to analytics, most of
your user base is coming from the macOS world. You may want to provide more
macOS integration or focus on strengthening support for other platforms, for
example. The same goes for geographical locations. You may see the need to
improve advertising for a particular set of countries that lack downloads or
purchases.

https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter07

Analytics, Bug Tracking, and Licensing Chapter 7

[243]

Improving product quality: The critical aspect of any successful application
release is having a bug tracking system. Bugs sometimes happen, and it's not
always easy for our end users to raise issues or provide all the necessary
technical details. Upon releasing a new version of your application to the public,
you definitely want to see error details, as well as the number of systems that
have been affected by any errors that have occurred.
License management: Tracking application licenses is another crucial part of
your product life cycle. You may want to gather statistics on how many licenses
have been sold alongside the analytical statistics. This helps when you are selling
your application or you have different feature tiers or add-ons that users can
purchase separately.

Next, we are going to discuss whether we should start building our homegrown analytics
and tracking solution or use existing services. In addition to this, you will learn how to use
Nucleus (https:// nucleus. sh/) in order to integrate analytics, bug tracking, and license
management for your Electron applications with little effort.

Creating your own solution or using an
existing service
You should start thinking about using analytics and bug tracking in the early stages of
development so that they fit into your code and application architecture nicely.

In most cases, it's just about calling a particular function or API to inform your server about
an event; for example, application loaded, authentication failed, or something crashed in the
code.

The main thing to consider is whether you need to build analytics features yourself or
whether there are existing solutions that can boost you in the early stages.

Let's take a look at the pros and cons of the following:

Creating and using your own analytics services
Using existing services that have been provided by third parties

https://nucleus.sh/
https://nucleus.sh/
https://nucleus.sh/
https://nucleus.sh/
https://nucleus.sh/
https://nucleus.sh/
https://nucleus.sh/
https://nucleus.sh/

Analytics, Bug Tracking, and Licensing Chapter 7

[244]

Creating your own analytics services
In the early stages of application development, you may be tempted to build a complete
analytics service from scratch. Note, however, that this is a time-consuming process that
requires a lot of effort.

The following are the pros of creating your own analytics services:

Full control over the data
Control over the API and the services
Backend server ownership

The following are the cons of creating your own analytics services:

Having to maintain the databases
Having to secure the data yourself
Having to maintain the backend servers
Having to support online availability

As you can see, owning the complete solution comes with considerable responsibility in
terms of storing and securing data, as well as investing in the hardware and hosting
services for the backend servers.

Now, let's take a look at the other side of the coin.

Using third-party analytics services
There are already a lot of different analytics services you can reuse for a fair subscription
price. Let's go over some of the pros and cons.

The following are the pros of using third-party analytics services:

No need to maintain the hardware
Databases are maintained by the vendor
Security is maintained by the vendor
Online availability and scaling

The following are the cons of using third-party analytics services:

Your data is stored externally
Your application relies on the availability of the vendor services

Analytics, Bug Tracking, and Licensing Chapter 7

[245]

Reports and feature sets may be limited
Pricing may change over time

With third-party analytics, you save time, effort, and money in the early stages. This allows
you to move fast and focus on the business side of your application.

As soon as your application installation base starts growing, you can always switch to a
homegrown solution with dedicated support and a good development team. Meanwhile,
however, I strongly recommend getting started with a third-party service.

Now that we have seen all the pros and cons of third-party services, let's learn how to use
one such service. In the next section, we are going to integrate Nucleus into our Electron
application.

Using Nucleus for Electron applications
Nucleus is an analytics platform for Electron applications. You can use it to install an extra
library and emit tracking events from your application code. Nucleus aggregates
information from all the client instances, processes the data, and stores it in its own servers.
By doing this, you can access reports, view statistics, and even send notifications to the
running clients, as shown in the following screenshot:

Analytics, Bug Tracking, and Licensing Chapter 7

[246]

There is a set of browser characteristics that an application can collect and send to the
analytics services. It can also be based on the information that doesn't identify a person, but
this still helps us to improve our projects. According to the official documentation, the
service collects the following information from each client:

Time of the requests
The hashed identifier of the machine (cannot be used to identify the user outside
of Nucleus' context)
Browser locale (language)
The country where the request was made (from Cloudflare)
Operating system family (Mac, Windows, or Linux)
OS version
Your app's version
Nucleus module version
RAM that's available on the device

The following information is not collected:

IP addresses
The user's Chromium browser user agent
The city or region of the request
Screen resolution

Check out the official transparency report to view the changes and
updates that are constantly made to the list of tracking rules: https:/ /
nucleus. sh/ transparency.

Nucleus is a subscription-based project. You need to have an account to use its features.
Luckily, you can start a trial period for testing purposes. Let's learn how to create an
account and start the 30-day trial.

Creating a new Nucleus account
In this section, we are going to walk through the account registration process. Follow these
steps:

Click on the Sign Up button on the main page or navigate to https:/ /nucleus.1.
sh/signup:

https://nucleus.sh/transparency
https://nucleus.sh/transparency
https://nucleus.sh/transparency
https://nucleus.sh/transparency
https://nucleus.sh/transparency
https://nucleus.sh/transparency
https://nucleus.sh/transparency
https://nucleus.sh/transparency
https://nucleus.sh/signup
https://nucleus.sh/signup
https://nucleus.sh/signup
https://nucleus.sh/signup
https://nucleus.sh/signup
https://nucleus.sh/signup
https://nucleus.sh/signup
https://nucleus.sh/signup

Analytics, Bug Tracking, and Licensing Chapter 7

[247]

Here, you have two options. You can either provide an email address and
password to create a new account or sign up with your existing GitHub account.

GitHub authentication works similar to other popular social sign-in
providers you may have come across on numerous websites, including
Facebook, Twitter, and Google. With GitHub authentication, the system
will use the email address you have associated with your GitHub account.
You won't need a password as your authenticated GitHub session will be
your proof of identity.

Select one of the available options and register a new account. You should2.
receive a welcome email shortly after registration. In the following screenshot,
you can see my Gmail confirmation letter:

Analytics, Bug Tracking, and Licensing Chapter 7

[248]

Proceed to the Sign In screen. Here, you are going to see a list of available3.
subscription plans. Select a plan that suits your needs. Each plan has a 30-day
trial period, and I recommend picking the Hobby plan for now. You can always
cancel it or continue using the subscription if you like the service. The available
plans can be seen in the following screenshot:

Upon logging in, you should see an Account page and a dialog suggesting that4.
you create your first application. You need an application so that you can get the
tracking ID that's unique to your application.
The form is pretty minimal, so let's fill it in to register for a new application. Use5.
the default application details shown in the following screenshot and click
Create:

Analytics, Bug Tracking, and Licensing Chapter 7

[249]

Now, you will find yourself on your application's analytics page. There's no data6.
here yet. For now, you are provided with some instructions regarding how to
configure an Electron application with your tracking ID number:

Analytics, Bug Tracking, and Licensing Chapter 7

[250]

Now, you have successfully created an account with Nucleus and have a 30-day trial period
to get familiar with its features and decide whether you want to continue with the
subscription or focus on your own solutions.

In Nucleus, analytics is based on the concept of projects. A project is essentially a single
application that sends the analytics data. You can have multiple projects per account.

Now, it's time to create a new Electron project with tracking support.

Creating a new project with tracking support
Let's set up a new project called analytics-tracking, as follows:

Create a new folder so that you can store all of the project files:1.

mkdir analytics-tracking
cd analytics-tracking

Perform a quick setup of the repository using the following commands:2.

npm init -y
echo node_modules > .gitignore
npm i -D electron

Drop an index.html file into the project root along with a primary template, as3.
shown in the following code:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8"/>
 <title>Electron Analytics</title>
 </head>
 <body>
 </body>
</html>

Create a main.js file in the project root with a minimal set of instructions4.
regarding how to create a new Electron window:

const { app, BrowserWindow } = require('electron');

function createWindow() {
 const win = new BrowserWindow({
 width: 800,

Analytics, Bug Tracking, and Licensing Chapter 7

[251]

 height: 600,
 webPreferences: {
 nodeIntegration: true
 },
 resizable: false
 });

 win.loadFile('index.html');
}

app.on('ready', createWindow);

For the sake of simplicity, we're creating a non-resizable window that's
800x600 pixels in size with Node.js integration enabled by default. Feel
free to add any other settings to the code if you need them.

Update the package.json file:5.

{
 "name": "analytics-tracking",
 "version": "1.0.0",
 "description": "",
 "main": "main.js",
 "scripts": {
 "start": "electron ."
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "devDependencies": {
 "electron": "^7.1.1"
 }
}

At this point, you have a barebones setup for a new Electron project so that6.
you're ready to perform analytics and tracking integration. You can check that
everything runs as expected using the following command:

npm start

Analytics, Bug Tracking, and Licensing Chapter 7

[252]

You are going to see a blank Electron window entitled Electron Analytics, as7.
shown in the following screenshot:

That is the expected behavior so far.

Now, you have a basic application project that you can use for analytics testing. You can
copy the configuration and use it as a template for future experiments. For now, let's move
on and integrate the Nucleus library into this project.

Installing the Nucleus Electron library
Configuring Nucleus support is easy since all the required APIs are published as a single
Node.js library. Follow these steps to install the library:

In the root folder of your project, run the following command to install the1.
electron-nucleus library from NPM:

npm i electron-nucleus

To integrate the library, you need to have the tracking ID number that you2.
retrieved from the Nucleus website earlier. All you need to do to get your
tracking ID number is run the following code somewhere in the main.js file:

const Nucleus = require('electron-nucleus')('Your App ID', {
 onlyMainProcess: true
});

You can also raise a custom tracking event, as follows:

Nucleus.track(<NAME>, <DATA>);

NAME is the name of your event and can be anything that gives you meaning when
you're inspecting analytics. DATA is an optional JSON object that you can use to
pass details about the event; this can be error details or tracking details, for
example.

Analytics, Bug Tracking, and Licensing Chapter 7

[253]

Update the main.js file according to the following code:3.

const { app, BrowserWindow } = require('electron');

const Nucleus = require('electron-nucleus')('Your App ID', {
 onlyMainProcess: true
});

function createWindow() {
 const win = new BrowserWindow({
 width: 800,
 height: 600,
 webPreferences: {
 nodeIntegration: true
 },
 resizable: false
 });

 win.loadFile('index.html');

 // Optional: report an event
 Nucleus.track('APP_LAUNCHED');
}

app.on('ready', createWindow);

Don't forget to use your tracking ID instead of the one shown in this
example. You can find your tracking ID value online at any time.

Note that, besides Nucleus library initialization, we can also raise an
APP_LAUNCHED event within the createWindow function. This event is invoked
every time the application starts and is a simple example of how we can use
custom events in our applications. We are going to see how this works shortly.

Run the following command to test your application:4.

npm start

Nothing extra should happen from a visual standpoint. You should still see the blank
Electron window with the Electron Analytics title. This time, however, your application
should send tracking data to the Nucleus server.

Analytics, Bug Tracking, and Licensing Chapter 7

[254]

At this point, you have an Electron application that has the Nucleus library installed. Each
time the application starts, the Nucleus library sends a notification to the server. We also
send an extra event called APP_LAUNCHED so that we can view the default and custom
events in action.

Leave the application running for now. In the next section, we are going to see what the
analytics data looks like in real life.

Inspecting real-time analytics data
Your Electron application is up and running, so now is an excellent time to see real-time
analytics in action. Let's get started:

Navigate to your Nucleus account and select the application you created earlier.1.

If you have only one application, it is going to be automatically displayed
next time you log in.

The first thing you are going to see is the real-time user statistics, as shown in the2.
following screenshot:

As you can see, the service reflects our running application and displays one real-
time user in the chart.

Analytics, Bug Tracking, and Licensing Chapter 7

[255]

This analysis provides the following information:

The number of real-time users
The number of users that used your application in the last 24 hours
The number of new users that used your application in the last 24 hours
The number of sessions that were opened in the last 24 hours (the users
launched your application multiple times)
The number of errors the applications raised in the last 24 hours

Next comes the detailed analytics. You will be able to beautiful graphs of existing3.
users compared to new users over time. This service allows you to select
different time ranges as well.
Below this detailed analytics information, you will be able to see the events our4.
application instances raise:

As you can see, the service already contains data about the APP_LAUNCHED event
we raised in our code. Here, we can check all kinds of events, as well as the graph
of calls over time.

Other important information you can inspect here is as follows:

The version of your application (always 0.0.0 when you're running in debug
mode; this can also be detected from your application properties).
The platform. As you can see, I'm using macOS to run the demo.

Analytics, Bug Tracking, and Licensing Chapter 7

[256]

The system languages that are being used by the users of our application
(this helps us detect whether we need to localize the user interface based on
our audience).

Note that you can also provide custom values for the application's version and5.
language. You should do this in case the Nucleus library fails to auto-detect them
or if you want to use a custom mechanism to detect and track that data. You may
want to pass these custom options when you create a new instance of Nucleus in
the main.js file:

const Nucleus = require("electron-nucleus")("<App Id>", {
 version: '1.0.0',
 language: 'en'
});

Other valuable indicators are geographical location and usage in terms of the6.
time of the day:

Analytics, Bug Tracking, and Licensing Chapter 7

[257]

Nucleus provides a nice-looking chart showing all the countries of origin for the
users of your application. This provides a good overview of your user base, as
well as insight into where your application is popular.

If you scroll a little bit further, you should see the following sets of charts:7.

Sessions
RAM Available
Server usage (all events)
Events use

These can be seen in the following screenshot:

You may see all of these in use at some point, especially RAM Available, since
this helps us detect memory leaks or a lack of RAM on our user's machines.

Analytics, Bug Tracking, and Licensing Chapter 7

[258]

In the middle of the left sidebar, there's also a beta version of the Live View8.
chart, as shown in the following screenshot:

This chart shows you the users who are actively using your application on a
geographical map, alongside information about them, including the following:

Country
Language
Platform
User ID

As you can see, right now, there's a single user from those United Kingdom using the
application. The application is running on the macOS Mojave operating system, and no
dedicated user ID has been provided.

Analytics, Bug Tracking, and Licensing Chapter 7

[259]

Identifying users
The Nucleus service allows us to identify our users if we need that level of tracking. When
working with analytics data, you may want to know the user's or machine's information.

You can do this when you create a new instance of the Nucleus object. Check out the
following example:

const Nucleus = require("electron-nucleus")("<App Id>", {
 userId: '<unique-identifier>'
});

In the preceding code, <unique-identifier> is any value that you can generate on the
first application run, such as the GUID. Alternatively, you can have the user provide it, in
which case you'll be provided with something such as a login or email address.

You can also specify the user ID at runtime if you don't know the value beforehand. In this
case, we would use the following code:

Nucleus.setUserId('<unique-identifier>')

As you have seen, you have access to a wide range of very useful charts and analysis
capabilities. All of this rich visualization may help you make the right decisions regarding
how you evolve and maintain your project.

However, there are cases where you will need to allow users to opt out of tracking. Let's
take a look at how we can toggle tracking features programmatically.

Disabling tracking per user request
Many countries have laws that require you to get a user's consent before you enable
tracking.

You may also want to provide some dialog on the first run that asks users whether they
want to provide anonymous feedback to help you improve the service. If the user rejects
this feedback option, you should probably disable Nucleus integration at the application
level.

Analytics, Bug Tracking, and Licensing Chapter 7

[260]

The Nucleus library provides specific APIs that allow developers to switch tracking
features off and on. If the user explicitly states (via the user interface) that anonymous
feedback should be disabled, use the following code:

Nucleus.disableTracking()

You can save the user's decision somewhere in the configuration file as a flag and run the
code on each application startup.

Depending on the scenario, on each application upgrade, you may also want to ask users
whether they wish to enable tracking or keep it disabled. If the user decides to enable
automatic feedback, you can use the following function to enable Nucleus integration once
more:

Nucleus.enableTracking()

Alternatively, you can set the disableTracking flag when creating a new instance of the
Nucleus object at application startup:

const Nucleus = require("electron-nucleus")("<App Id>", {
 disableTracking: false
});

We still have our Electron application running in the background. Let's see what happens
to the analytics data when we shut the application down.

Verifying real-time user statistics
In this section, we are going to verify that our real-time user statistics are getting updated
on the fly. Follow these steps to do so:

Shut down your Electron application and wait for about a minute. It may take1.
some time for these changes to be propagated. Sometimes, you need to wait for a
minute, but sometimes waiting a few seconds will be enough. Be patient and give
the backend server time to organize the data.
Switch back to the Analytics tab and reload the page. You should see the2.
updated data. In our case, the Real-time users chart shows zero, as shown in the
following screenshot:

Analytics, Bug Tracking, and Licensing Chapter 7

[261]

This makes perfect sense as we have just unloaded the application. Note, however, that our
session is still present in other charts:

24h users: 1
24h new users: 1
24h sessions: 1

Now, you can track real-time usage of your Electron application. However, there may be
cases when your users are offline or have no internet connectivity. In the next section, we
are going to provide support for offline mode.

Supporting offline mode
By default, the Nucleus library expects your users to have an internet connection to send
tracking events. However, you may be wondering what happens if users run your
application when they're offline, for example, during a flight or when they're on the tube.

The good news is that you can turn on offline support for Nucleus-enabled Electron
applications. This allows us to store the application events locally, cached to disk, and send
them to the analytics server once the application is back online.

Analytics, Bug Tracking, and Licensing Chapter 7

[262]

Use the persist property to enable or disable caching for events:

const Nucleus = require("electron-nucleus")("<App Id>", {
 persist: true
});

As you can see, enabling offline mode support for your application's analytics is not
difficult with the Nucleus library.

Next, let's learn how to handle application updates in a centralized manner.

Handling application updates
At this point, you should have at least one application with a tracking ID in your Nucleus
account.

In this chapter, you have an app called My App whose current version is 0.0.1, as shown in
the following screenshot:

Your application can track version changes and execute certain pieces of code each time an
update happens.

The API is in the following format:

Nucleus.onUpdate = version => {
 // do something with the vesion
}

Analytics, Bug Tracking, and Licensing Chapter 7

[263]

For the sake of simplicity, let's raise a standard JavaScript alert message on each version
update:

Update the main.js file according to the following code:1.

const { app, BrowserWindow } = require('electron');

const Nucleus = require('electron-nucleus')('Your App ID', {
 onlyMainProcess: true,
 version:'0.0.1'
});

function createWindow() {
 const win = new BrowserWindow({
 width: 800,
 height: 600,
 webPreferences: {
 nodeIntegration: true
 },
 resizable: false
 });

 win.loadFile('index.html');

 // Optional: report an event
 Nucleus.track('APP_LAUNCHED');

 Nucleus.onUpdate = version => {
 win.webContents.executeJavaScript(`
 alert('There is a new version available: ${version}');
 `);
 };}

app.on('ready', createWindow);

Note that we have provided an explicit version of the application this time.

Save these changes and launch the application using the npm start command.2.
Wait a few seconds before navigating to Analytics and reloading the page. You3.
should see a counter increase in the Real-time users chart. If you don't see these
changes, wait a little bit longer and reload the page from time to time.
Go to Account and click the Edit button for the My App entry.4.

Analytics, Bug Tracking, and Licensing Chapter 7

[264]

Change the version value to 0.0.2, as shown in the following screenshot:5.

As you can see, we can only change the version field. The form allows you to
notify every client application that a new version of the application has been
registered.

Click the Save button and switch back to your Electron application.6.
You should see a simple dialog saying that there is a new version available:7.

Note that you can build a more sophisticated user interface with extra buttons to take a
look at the release notes, for example, or navigate to your website.

In the next section, we are going to learn how to introduce global server settings.

Loading global server settings
Another exciting feature of the Nucleus service I would like to talk about is Custom JSON
payload. You can find it in the Other section of your Nucleus account:

Analytics, Bug Tracking, and Licensing Chapter 7

[265]

From here, you can create a JSON document on the server side that each of your Electron
application instances can fetch upon startup and use for configuration or business logic
purposes.

Imagine, for instance, having global settings that you would like to be able to change over
time, or even API keys. There's a great variety of scenarios where your applications can
benefit from having access to dynamically changing data.

Let's try to create a simple configuration document and deliver it to the client instance:

Navigate to the Other section in your Nucleus web account and fill in the1.
following JSON content:

{
 "message": "hello, world"
}

Click the Save button. Your page should now appear as follows:2.

Analytics, Bug Tracking, and Licensing Chapter 7

[266]

Switch back to the application code and append the following code to the3.
createWindow function:

// Fetch global settings
Nucleus.getCustomData((err, data) => {
 if (err) {
 console.error(err);
 } else {
 console.log(data);
 }
});

As you can see, we are using the Nucleus.getCustomData API to fetch the
JSON object from the server. Your callback function is always going to receive
two parameters: err, which provides any error details, and data, which provides
the content of your server-side document.

We are going to redirect both parameters to the console output so that we can see4.
what is coming as a response from the server.
Run the application with the npm start command. As soon as your Electron5.
application starts, switch back to Command Prompt and check out the program's
output.
You should see the following output:6.

$ electron .
{ message: 'hello, world' }

You have successfully integrated with the server-side settings. Feel free to provide the code
that relies on the JSON document coming from the server.

As an experiment, try to modify the values and then restart your client.
Note that the application fetches the updated data and that you don't need
to issue a full release to update a few parameters.

Now, we are ready to check out licensing support.

License checking and policies
Last but not least, we are going to see the license checking feature in action.

The Nucleus service provides you with a minimalistic license checking mechanism that you
can use with your Electron applications.

Analytics, Bug Tracking, and Licensing Chapter 7

[267]

If you are looking for more sophisticated solutions, please check out the
Keygen (https:/ / keygen. sh/) service, a "dead-simple software licensing
API built for developers."

The Nucleus service allows you to manage a list of licenses in the Other / License Policies
section of your online account and then let the client application check their status.

Based on this check, you can either enable or disable certain features or notify users that the
license has expired. You can even provide an in-app way to buy a new one or upgrade to a
different tier if your application supports that.

Creating a new policy and license
Let's take a look at a license and perform a simple application-level check. Follow these
steps to do so:

Navigate to the Other section of your Nucleus account. The initial screen should1.
appear as follows:

You can provide the following values for a new license policy:

Policy ID: The unique identifier of the license policy.
Validity: The life term of the license. Select either Always, 1 week, 1 month,
90 days, or 1 year.
Version: The version of the application to use. Select either All versions or
Only current.

https://keygen.sh/
https://keygen.sh/
https://keygen.sh/
https://keygen.sh/
https://keygen.sh/
https://keygen.sh/
https://keygen.sh/
https://keygen.sh/

Analytics, Bug Tracking, and Licensing Chapter 7

[268]

Machines allowed: The number of machines that can be used with the given
license policy. You can pick Unlimited or either 1, 2, 5, or 10.
Price: The associated price.

Fill in the details for the new license policy using the following values:2.

Policy ID: a409f54f-b799-48e6-99ec-4d46bc4101a6
Validity: always
Version: all
Machines allowed: unlimited
Price: 9.99

Click the Create button to save your changes and create a new policy. As soon as3.
your license policy is created, you should see the following screen:

Click Manually create a license. Feel free to provide your email address in the4.
New License form. Notice the dropdown where you can pick the License policy
you wish to use if you have more than one:

Analytics, Bug Tracking, and Licensing Chapter 7

[269]

Use your real email address here – you're going to need it for the steps
that follow.

Click on the Create license button. As soon as you click this button, the system5.
sends an email confirmation with the license number. If you have provided a
valid email address, you are going to get the following notification email for the
My App application:

Analytics, Bug Tracking, and Licensing Chapter 7

[270]

Notice that the web page view changes. Now, you should have a list of available6.
licenses, along with their details:

You can control individual licenses by clicking the plus (+) icon next to one of the7.
license's names and either temporarily disable the license or delete it completely:

Now, let's integrate a license check into our Electron application.

Analytics, Bug Tracking, and Licensing Chapter 7

[271]

Checking licenses in the application
So far, we have generated a new license, and we've received the license ID in our
confirmation email. Now, it's time to validate this ID in the application code:

Switch to the main.js file and append the following code to the createWindow1.
function:

Nucleus.checkLicense('556e3bb5e9f5e230d884', (err, license) => {
 if (err) return console.error(err);

 if (license.valid) {
 console.log('License is valid :) Using policy ' +
 license.policy);
 } else {
 console.log('License is invalid :(');
 }
});

Here, we're using the Nucleus.checkLicense function to get a callback with
two parameters: an err, which provides any error details, and license, which
provides details about the license.

For the sake of simplicity, we're going to redirect the check to the console output.

Run the application with the npm start script and check the console's output.2.
You should see the following line in your console:

License is valid :) Using policy a409f54f-
b799-48e6-99ec-4d46bc4101a6

For testing purposes, try to change the license ID to some other value and restart3.
the application once again. This time, the console's output should be as follows:

License is invalid :(

Congratulations on integrating license checking into your Electron application.

In a real-life project, you will probably see a dialog asking for a license key. After doing so,
you should store it somewhere and provide the different behaviors of the application based
on the license's validation checks.

Analytics, Bug Tracking, and Licensing Chapter 7

[272]

Please note that we have only touched on the basics of licensing and
policies. You may want to harden storage and security, as well as
encryption for your locally stored license values. Check out the Keygen
(https:/ /keygen. sh/) service if you want to find out more about
sophisticated services and APIs.

Now, let's summarize what we have learned in this chapter.

Summary
In this chapter, you have successfully configured an Electron application with the online
tracking and license checking features.

You are now able to use third-party analytics services with your projects, maintain and load
global settings from the server, and perform license generation and validation.

In the next chapter, we are going to talk about chat applications and build a group chat
with Google Firebase support.

https://keygen.sh/
https://keygen.sh/
https://keygen.sh/
https://keygen.sh/
https://keygen.sh/
https://keygen.sh/
https://keygen.sh/
https://keygen.sh/

8
Building a Group Chat

Application with Firebase
So far, we have been building offline Electron applications. For offline-first applications, we
store all the HTML, CSS, and JavaScript content locally and then embed all the files into the
resulting package. Then, you can redistribute the package and release new versions of the
application in case you need to change the code to bring new features to your application.
We also store all the application data locally.

Another popular way of developing Electron applications is storing resources remotely on
a server and using your application as a thin client. In this case, you can reduce the number
of feature releases and give your application an evergreen. This means that you deploy new
changes to the server and all the client applications automatically get new content on the
next restart, for instance, or even in real time.

In this chapter, we are going to build a Slack-like chat application with the group chat
feature. We are going to store all the data in the remote server and render group and
message lists in real time. You are also going to learn how to store new messages on the
server. The estimated build time for this project is three hours.

In this chapter, we will cover the following topics:

Creating an Angular project
Creating a Firebase account
Creating a Firebase application
Configuring Angular Material components
Building a login dialog
Connecting the login dialog to Firebase Authentication
Configuring the Realtime database
Rendering the group list
Implementing the group messages page

Building a Group Chat Application with Firebase Chapter 8

[274]

Displaying group messages
Sending group messages
Verifying the Electron Shell

We have a pretty big agenda, so let's get started and build our chat application. First,
however, we are going to define the stack we are about to use.

Technical requirements
Before we dive into coding, let's decide on the stack we wish to use with the application. In
this chapter, we are going to use the following:

The Angular framework, for the overall application
Angular components (also known as Angular Material) so that we can build user
interfaces with the Google Material Design specification
Firebase, for authentication, real-time databases, and hosting

Let's provide a quick overview of each item and discuss why we need it for this project:

Angular: We plan to build a simple chat application with the remote backend.
This means you are going to need the HTTP client, routing to support multiple
pages, such as the Login and Chat windows, and many other smaller pieces. To
achieve our goal fast, we need to focus on the implementation of our application
features, rather than building the whole ecosystem from scratch. This is why we
aren't going to start with plain JavaScript and use the Angular CLI tool. We are
about to generate a ready to use web application that we can package as an
Electron project.

We described how we can get started with Electron and the Angular
framework in Chapter 3, Integrating with Angular, React, and Vue. Feel free
to jump to that chapter and revisit the steps that are provided there.

Angular Material: Our chat application is going to need some UI components.
We need at least a Login dialog, a Chat window, the input components, and
many other blocks. To save time, we shall be using Angular Material components
as an easy and natural way to build a typical Angular application. The Angular
Material library already contains a great variety of components. Ensure that you
check out the main website if you wish to view any documentation, guides, and
examples: https:/ /material. angular. io/ .

https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/
https://material.angular.io/

Building a Group Chat Application with Firebase Chapter 8

[275]

Next, we need to pick our data storage solution. In this chapter, we are going to be using
Google Firebase.

Google Firebase: We need to store our chat data somewhere in the cloud. For
this purpose, we are going to use Firebase. Firebase is a very popular mobile and
web application development platform. It provides a wide variety of services
that you can use to boost your applications, including the following:

A real-time database that allows us to sync data across devices and
platforms
An authentication service with multiple protocols and integrations
Hosting
Push notifications
Analytics

You can find out more about Firebase at https:/ /firebase. google. com/ .

Please note that Google Firebase is not the only solution out there. Check out the following
link for the top 10 Firebase alternatives: https:/ / blog. back4app. com/ 2018/ 01/ 12/
firebase-alternatives/ .

It is effortless to get started with Google Firebase, and we are going to walk through that
process in this chapter. First, though, let's create a new Angular project.

You can find the code files for this chapter in this book's GitHub repository: https:/ /
github.com/PacktPublishing/ Electron- Projects/ tree/ master/ Chapter08.

Creating an Angular project
In this chapter, we are going to craft a basic scaffold for our project that suits the needs of
our chat application. Let's get started:

Create a new project folder.1.
Run the following command to initialize a new project:2.

 ng new chat-app

https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://blog.back4app.com/2018/01/12/firebase-alternatives/
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter08

Building a Group Chat Application with Firebase Chapter 8

[276]

Regarding the question about Angular routing support, answer Yes or type y:3.

 Would you like to add Angular routing? (y/N)
 y

Regarding the question about stylesheet format, pick SCSS:4.

 Which stylesheet format would you like to use?
 SCSS

In the Angular CLI, you will see the following output:5.

Try out the app using the ng serve --open command:6.

Building a Group Chat Application with Firebase Chapter 8

[277]

We are doing well so far. Now, it's time to configure the Electron Shell.

Configuring the Electron Shell
To configure the Electron Shell's integration, we need to make a few changes to the project
files. Let's get started:

Update the src/index.html file so that it contains the following code:1.

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>ChatApp</title>
 <base href="./" />

 <meta name="viewport" content="width=device-width,
 initial-scale=1" />
 <link rel="icon" type="image/x-icon" href="favicon.ico" />
 </head>
 <body>

Building a Group Chat Application with Firebase Chapter 8

[278]

 <app-root></app-root>
 </body>
 </html>

Install the Electron library with the following command:2.

 npm i electron -D

Update the package.json file:3.

 {
 "name": "chat-app",
 "version": "0.0.0",
 "main": "main.js",
 "scripts": {
 "ng": "ng",
 "serve": "ng serve",
 "start": "electron .",
 "build": "ng build",
 "test": "ng test",
 "lint": "ng lint",
 "e2e": "ng e2e"
 },
 // other content

We are going to use the npm run serve command to run the Angular
application and npm run start or npm start to launch the Electron
application.

More details about script configuration are provided in Chapter 3,
Integrating with Angular, React, and Vue. Make sure that you check out the
examples regarding how to set up production builds.

Put the main.js file, along with the following code, into the project's root4.
folder:

 const { app, BrowserWindow } = require('electron');

 function createWindow() {
 const win = new BrowserWindow({
 width: 800,
 height: 600,
 webPreferences: {
 nodeIntegration: true
 },
 resizable: false

Building a Group Chat Application with Firebase Chapter 8

[279]

 });

 win.loadURL(`http://localhost:4200`);
 }

 app.on('ready', createWindow);

Run the following commands in two separate console instances:5.

 # first console
 npm run serve

 # second console
 npm start

As a result, you should see the window of the application, as shown in the6.
following screenshot:

The bare application scaffold is ready. Now, it's time to create a new Firebase account.

Building a Group Chat Application with Firebase Chapter 8

[280]

Creating a Firebase account
In this section, we are going to create a new Firebase account and gain access to the
Firebase console. The good news is that all you need is an active Google account. Let's get
started:

Navigate to https:/ /firebase. google. com/ and click the Get started button:1.

Click the Create a project button:2.

https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/

Building a Group Chat Application with Firebase Chapter 8

[281]

Fill in the form; call the project electron-chat-app.3.
Take note of the unique project ID value that's generated.4.

Your project's globally unique identifier is used in your real-time database
URL, Firebase Hosting subdomains, and more. You cannot change your
project ID after the project has been created.

It has a value of electron-chat-app-df7eb, but this value varies for every
project. Leave it as it is and click Continue:

Building a Group Chat Application with Firebase Chapter 8

[282]

Now, we need to choose whether we want to enable Google Analytics for our5.
project or not. Select Not right now since we aren't going to look at analytics in
this chapter:

You can always enable the Setup Google Analytics for my project feature
later when you get more familiar with Firebase.

Click the Create project button.6.
It may take a few seconds to create your new project. Watch the animated7.
progress bar; it should show the Your project is ready label as soon as your
project has been generated:

Building a Group Chat Application with Firebase Chapter 8

[283]

After clicking Continue, you should be able to see the console dashboard for8.
your application:

Building a Group Chat Application with Firebase Chapter 8

[284]

Firebase provides multiple pricing plans; find out more at https:/ /
firebase. google. com/ pricing. What you need to know is that, by
default, every Firebase application gets the free "Spark" plan, which has
generous limits for hobbyists. This plan is more than enough for you to
get started with application development and testing.

At this point, you have an empty electron-chat-app project. At the time of writing, you
have the option to create and register four different types of applications:

An iOS application
An Android application
A web application
A Unity game for either iOS or Android

Now that we have created a Firebase account, we are going to create a web application
entry.

Creating a Firebase application
In this section, we are going to register a web application. Follow these steps to do so:

Click the corresponding button on the screen to get to the Create an application1.
dialog:

https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing
https://firebase.google.com/pricing

Building a Group Chat Application with Firebase Chapter 8

[285]

Next, you need to provide an application nickname. Enter electron-client as2.
the nickname:

The app nickname will be used throughout the Firebase console to
represent this app. Nicknames aren't visible to users.

It is also possible to set up Firebase Hosting for your application. Leave the value3.
unchecked for now. Click the Register app button.

Building a Group Chat Application with Firebase Chapter 8

[286]

Now, you will be presented with an HTML snippet that you will need in order to4.
set up a brand new web application with your Firebase project. It should look
similar to the one shown in the following screenshot:

This code contains all the values that are relevant to your current project. Please
note that all the keys and identifiers may be different for you.

You can copy this code and save it somewhere in case you need it later.
Alternatively, there's is a section in the project settings where you can
retrieve this block again.

Click the Continue to console button to finish setting up the application.5.

Now, let's quickly set up the Angular Material libraries.

Building a Group Chat Application with Firebase Chapter 8

[287]

Configuring Angular Material components
In this section, we are going to install the dependencies for the Angular Material
components. We are also going to integrate the necessary bits and pieces into the project.
Run the following command:

npm install --save @angular/material @angular/cdk @angular/animations

Usually, developers need to perform a series of steps to set up Angular Material
components with a new Angular project. You can find out more at https:/ /material.
angular.io/guide/ getting- started.

This time, we need to walk through the following steps:

Adding an animations module
Configuring the default theme
Adding the Material Icons library

We are also going to test the overall setup by adding a material toolbar component that
serves as the navigation bar.

Adding a Browser Animations module
You need to integrate the Browser Animations module for the material components to
work correctly. Follow these steps to do so:

Switch to the src/app/app.module.ts file.1.
Import BrowserAnimationsModule:2.

 import { BrowserAnimationsModule } from '@angular/platform-browser
 /animations';

 @NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule, BrowserAnimationsModule,
 AppRoutingModule],
 providers: [],
 bootstrap: [AppComponent]
 })
 export class AppModule {}

The next step is configuring the default theme settings.

https://material.angular.io/guide/getting-started
https://material.angular.io/guide/getting-started
https://material.angular.io/guide/getting-started
https://material.angular.io/guide/getting-started
https://material.angular.io/guide/getting-started
https://material.angular.io/guide/getting-started
https://material.angular.io/guide/getting-started
https://material.angular.io/guide/getting-started
https://material.angular.io/guide/getting-started
https://material.angular.io/guide/getting-started
https://material.angular.io/guide/getting-started
https://material.angular.io/guide/getting-started
https://material.angular.io/guide/getting-started
https://material.angular.io/guide/getting-started

Building a Group Chat Application with Firebase Chapter 8

[288]

Configuring the default theme
This step is pretty simple: you need to set one of the themes as the application's default
theme. Let's use the same one that comes with the documentation examples.

Update the src/styles.scss file by using the following command:

@import "~@angular/material/prebuilt-themes/indigo-pink.css";

Now, we need the Material Icons library.

Adding the Material Icons library
Later in this chapter, we are going to use some icons for the group chat lists. Let's integrate
the Google Material Icons library into the project.

Update the src/index.html file and place the following code in the head section:

<link href="https://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">

Let's test the overall setup and provide a navigation bar for our application.

Adding a navigation bar
In this section, we are going to use the material toolbar component as an application header
bar. This bar allows our application to navigate to the Login screen and possibly other areas
as well.

To get the material toolbar into the application, we need the corresponding module. Let's
get started:

Import MatToolbarModule into the main application module, that is,1.
src/app/app.module.ts:

 import { MatToolbarModule } from '@angular/material/toolbar';

 @NgModule({
 declarations: [AppComponent],
 imports: [
 BrowserModule,
 BrowserAnimationsModule,
 AppRoutingModule,

Building a Group Chat Application with Firebase Chapter 8

[289]

 MatToolbarModule
],
 providers: [],
 bootstrap: [AppComponent]
 })
 export class AppModule {}

Replace the contents of the src/app/app.component.html file with the2.
following code:

 <mat-toolbar color="primary">
 Electron Chat

 <!-- This fills the remaining space of the current row -->

 Login
 </mat-toolbar>

 <router-outlet></router-outlet>

Update the src/app/app.component.scss file so that it contains the following3.
code:

 .fill-space {
 /* This fills the remaining space, by using flexbox.
 Every toolbar row uses a flexbox row layout. */
 flex: 1 1 auto;
 }

Finally, add some UI polishing to the src/styles.scss file. Now, we are ready4.
to go:

 @import '~@angular/material/prebuilt-themes/indigo-pink.css';

 body,
 html {
 height: 100%;
 }

 body {
 margin: 0;
 }

Now, it's time to test our application's structure and see it in action.

Building a Group Chat Application with Firebase Chapter 8

[290]

Testing the application with the material toolbar
Let's switch to Command Prompt or a Terminal window and test the application to ensure
that everything goes as expected.

Run the following command:

ng serve --open

The preceding command starts the web server and opens your default browser with the
application running inside it. You should see the following page:

Everything looks good so far. Now, we will build the login dialog.

Building a login dialog
At this point, you may be wondering why we need a Login dialog in our application. The
answer is for application data security. In real life, all data access must be protected, and
you are going to enable all kinds of security restrictions when you release your application
into production. This is why we need to implement a login dialog and authenticate the
session with the remote server.

Follow these steps to build a Login dialog:

Generate a login component scaffold by running the following command:1.

 ng g component login

Building a Group Chat Application with Firebase Chapter 8

[291]

In the src/app/app-routing.module.ts file, create a new Route with a2.
/login URL that points to the Login Dialog component:

 // ...
 import { LoginComponent } from './login/login.component';

 const routes: Routes = [
 {
 path: 'login',
 component: LoginComponent
 }
];
 @NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
 })
 export class AppRoutingModule {}

We need to make a title area so that we can navigate to the default home page and
so that the Login link navigates to our /login route.

Update the src/app/app.component.html file and replace the span elements3.
with hyperlinks:

 <mat-toolbar color="primary">
 <a [routerLink]="'/'">Electron Chat

 <a [routerLink]="'login'">Login
 </mat-toolbar>

 <router-outlet></router-outlet>

Update the src/app/app.component.scss file by making some styling4.
changes to make the hyperlinks look better on the blue background:

 .mat-toolbar {
 & > a {
 text-decoration: none;
 color: white;
 }
 }

Building a Group Chat Application with Firebase Chapter 8

[292]

Run the web application in the local web server once more with the ng serve -5.
-open command. Click the Login link to navigate to the Login Dialog
component's implementation. By default, it should contain the text login works!:

Click on the title area to make sure you can navigate back to the home page. The6.
home page should be blank for the time being. This is fine; we will add some
content to it later.

Now that we have a placeholder for the Login dialog, let's build the traditional user
interface. This interface will contain the username and password input fields, as well as a
submit button.

Implementing the Material interface
We need at least two additional Material modules in order to implement a basic Login
form, that is, the Input and Button component modules. Let's look at how we can add
them:

Update the src/app/app.module.ts file so that it contains the following code:1.

 import { MatButtonModule } from '@angular/material/button';
 import { MatInputModule } from '@angular/material/input';

 @NgModule({
 declarations: [AppComponent, LoginComponent],
 imports: [
 // ...
 MatInputModule,
 MatButtonModule
],
 providers: [],
 bootstrap: [AppComponent]
 })
 export class AppModule {}

Building a Group Chat Application with Firebase Chapter 8

[293]

Replace the contents of the src/app/login/login.component.html file with2.
the following code:

 <div class="login-form-container">
 <div class="login-form">
 <h1>Login</h1>

 <mat-form-field class="login-field">
 <input #loginField matInput placeholder="Username"
 autocomplete="off" />
 </mat-form-field>

 <mat-form-field class="login-field">
 <input #passwordField type="password" matInput
 placeholder="Password" />
 </mat-form-field>
 <div class="login-actions">
 <button mat-raised-button>Login</button>
 </div>
 </div>
 </div>

In the preceding code, we are declaring a heading with the Login text. We have
also provided two input fields and a button to perform authentication.

Next, we need to provide styling for the login form. Let's have the form centered
horizontally. The Login button should be on the right-hand side of the screen. Let's get
started:

Update the src/app/login/login.component.scss file so that it contains the1.
following code:

 .login-form-container {
 display: flex;
 .login-form {
 margin: auto;
 min-width: 150px;
 max-width: 500px;
 width: 100%;

 .login-field {
 width: 100%;
 }

 .login-actions {
 text-align: right;
 }

Building a Group Chat Application with Firebase Chapter 8

[294]

 }
 }

Run or restart the web server and check out the /login route.2.
The application should now look as follows:3.

We need to provide at least basic validation and error handling for the dialog.

Supporting error handling
Given that the authentication may fail, let's provide some minimalistic error handling:

Update the login.component.html file with an extra h2 element under the1.
dialog title:

 <h1>Login</h1>
 <h2 class="error" *ngIf="error">Error: {{ error }}</h2>

As you can see, we only display the h2 element if the error property value is
provided for us.

We need the label to be red, so update the login.component.scss stylesheet2.
with the corresponding color for the error class:

 .error {
 color: red;
 }

Building a Group Chat Application with Firebase Chapter 8

[295]

Finally, update the code of the login.component.ts file and provide an empty3.
error property:

 // ...
 export class LoginComponent implements OnInit {
 error = '';
 // ...
 }

In the next section, we are going to address the result of successfully navigating and the
Chat view that our users are going to be using. Let's build the placeholder component first
and then add more content to it.

Preparing the chat component placeholder
In this section, we are going to create a placeholder component for the chat groups list.
Follow these steps to do so:

Generate a new Chat component by running the following command:1.

 ng g component chat

Update the routes in the app-routes.module.ts file:2.

 import { ChatComponent } from './chat/chat.component';

 const routes: Routes = [
 {
 path: 'login',
 component: LoginComponent
 },
 {
 path: 'chat',
 component: ChatComponent
 }
];

Update the login form so that it invokes the login method:3.

 <div class="login-actions">
 <button
 mat-raised-button
 (click)="login(loginField.value, passwordField.value)"
 >Login</button>
 </div>

Building a Group Chat Application with Firebase Chapter 8

[296]

We need to update the Login component's code. We need to import the Router4.
object and implement the login function. For now, we can navigate to the
successful chat route without authentication.
Update the chat.component.ts file:5.

 import { Router } from '@angular/router';

 @Component({...})
 export class LoginComponent {
 error = '';
 constructor(private router: Router) {}

 login(username: string. password: string) {
 // perform login here
 this.router.navigate(['chat']);
 }
 }

Restart the web server, navigate to the Login page, and fill in the username and6.
password input boxes.
Click the Login button; you should end up on the Chat page, which has the7.
/chat route, as shown in the following screenshot:

At this point, we are ready to wire the Login dialog to Firebase Authentication. Let's learn
how to integrate Firebase with the Login dialog.

Building a Group Chat Application with Firebase Chapter 8

[297]

Connecting the login dialog to Firebase
Authentication
In the previous section, you created a login dialog component that receives Username and
Password inputs and which should redirect us to the Chats page upon successful
authentication. Now, we need to configure the Firebase project and provide an
authentication mechanism that our application can use.

In this section, we are going to perform the following actions:

Enable the sign-in provider so that we can use email/password authentication.
Create some demo accounts to test the login dialog.
Integrate the login dialog component with the remote authentication.

Let's start by enabling the sign-in provider.

Enabling the sign-in provider
Let's enable Firebase's authentication features and pick the sign-in provider by following
these steps:

Switch back to the Firebase console and click the Authentication link in the1.
Develop section of the navigation sidebar:

Building a Group Chat Application with Firebase Chapter 8

[298]

You should see a list of supported sign-in providers in the main content area. As2.
shown in the following screenshot, Firebase provides support for a wide variety
of authentication mechanisms. For the sake of simplicity, let's use the traditional
Email/Password provider:

Click the Email/Password list item to get the corresponding dialog.3.

Later on, you can provide more than one sign-in provider in the Login
dialog if you like, for example, Twitter, Facebook, Google, and more.

Building a Group Chat Application with Firebase Chapter 8

[299]

In the dialog, click the Enable toggle option and then press Save:4.

Now, the provider should be enabled in the list of sign-in providers, as shown in5.
the following screenshot:

If you don't have the provider enabled, you can always perform the same
steps again. We can also do this to disable it in case we ever want to
switch to another sign-in provider.

We have just Enabled the Email/Password authentication provider. Let's learn how to
create accounts directly within the Firebase console.

Building a Group Chat Application with Firebase Chapter 8

[300]

Creating demo accounts
By default, when you click the Authentication link in the sidebar, you will see the Sign-in
method tab in the main content area. Scroll up and check out the other tabs we have here:

The Firebase console allows us to access all of our registered accounts. We can view them
and even manually create new or edit existing accounts within the Users tab. Follow these
steps to do so:

Click Users to view the content of that page:1.

Building a Group Chat Application with Firebase Chapter 8

[301]

We don't have any users so far. Let's create at least two so that we can test our2.
chat features with two different accounts. Click the Add user button to invoke
the user creation dialog:

Fill in the input boxes and click the Add user button. Repeat this process at least3.
one more time.
Now, you should have a list of users that can sign in from within our web4.
application:

Now, let's switch to our Angular application and integrate the Login dialog with Firebase.

Building a Group Chat Application with Firebase Chapter 8

[302]

Integrating the Login dialog with Firebase
First of all, we need to store the Firebase configuration settings inside the project
environment variables. Follow these steps to do so:

Update the src/environments/environment.ts file with the Firebase1.
configuration that you received earlier in this chapter when setting up the
Firebase project:

 export const environment = {
 production: false,
 firebaseConfig: {
 apiKey: 'AIzaSyDPgAiN7dFqjp17HVFRWT2QaChHx5oGeBo',
 authDomain: 'electron-chat-app-df7eb.firebaseapp.com',
 databaseURL: 'https://electron-chat-app-df7eb.firebaseio.com',
 projectId: 'electron-chat-app-df7eb',
 storageBucket: '',
 messagingSenderId: '610931503152',
 appId: '1:610931503152:web:f2ccc78969eb58a3'
 }
 };

Note that the actual values are going to be different for you.

Install the AngularFire2 library with the following command:2.

 npm install @angular/fire firebase

AngularFire 2 is the official library for Firebase and Angular. It saves a lot
of your time and effort when it comes to using Firebase APIs in
applications. You can find out more about this library at https:/ /github.
com/angular/ angularfire2.

Next, import and set up the Angular Fire modules in the3.
src/app/app.module.ts file according to the following code:

 import { AngularFireModule } from '@angular/fire';
 import { AngularFireAuthModule } from '@angular/fire/auth';
 import { environment } from '../environments/environment';

 @NgModule({
 // ...
 imports: [

https://github.com/angular/angularfire2
https://github.com/angular/angularfire2
https://github.com/angular/angularfire2
https://github.com/angular/angularfire2
https://github.com/angular/angularfire2
https://github.com/angular/angularfire2
https://github.com/angular/angularfire2
https://github.com/angular/angularfire2
https://github.com/angular/angularfire2
https://github.com/angular/angularfire2

Building a Group Chat Application with Firebase Chapter 8

[303]

 // ...
 AngularFireModule.initializeApp(
 environment.firebaseConfig
),
 AngularFireAuthModule
],
 // ...
 })
 export class AppModule {}

As you can see, we've imported AngularFireModule and initialized it with
firebaseConfig from the environment.ts file. We've also imported the
AngularFireAuthModule module, which carries all the structures that our
application may require to get our authentication up and running.

Switch back to the login.component.ts file and import the AngularFireAuth4.
service. You also need to inject it via the constructor, as shown in the following
code:

 import { AngularFireAuth } from '@angular/fire/auth';

 // ...
 export class LoginComponent {
 // ...

 constructor(
 private router: Router,
 private firebaseAuth: AngularFireAuth) {}
 // ...
 }

Next, update the implementation of the login function using the following code:5.

 login(username: string, password: string) {
 this.firebaseAuth.auth.signInWithEmailAndPassword(username,
 password).then(
 credential => {
 console.log(credential);
 this.router.navigate(['chat']);
 },
 err => {
 this.error = err.message || 'Unknown error';
 }
);
 }

Building a Group Chat Application with Firebase Chapter 8

[304]

The preceding code is self-explanatory. Here, we call the signInWithEmailAndPassword
function that AngularFire provides and pass our username and password to it. Upon a
successful call, we log the resulting credential object to the console (for testing purposes)
and then navigate to the /chat page. If an error occurs, we update the error property and
display the error to the user.

Let's try the failure scenario first:

Enter some incorrect credentials and press the Login button. You should see the1.
following error on your screen:

Now, use the credentials that you created earlier in the Firebase console.2.

Building a Group Chat Application with Firebase Chapter 8

[305]

This time, you should see no errors. The application will display the /chat page3.
after we click on the Login button:

We also dump the server response into the console log. If you switch to the4.
developer tools, you should see the following data:

As you can see, the server provides you with a set of additional information that your
application may require. Please refer to the Firebase documentation to see what those fields
are and how you can use them.

You have made significant progress so far. We have set up a Firebase project that's running
authentication checks for our application. We also have a fully working, though
minimalistic, Login dialog. So far, it isn't possible to log into the application and be
redirected to the Chat page.

In the next section, we are going to start working on the chat functionality, starting with the
database configuration.

Building a Group Chat Application with Firebase Chapter 8

[306]

Configuring the Realtime Database
In the previous sections, we successfully configured authentication. Now, it's time to get
the database ready. We need some storage for the group chat information and messages.
Let's get started:

Navigate to the Firebase console and click on the Database link in the project1.
sidebar. By default, Firebase offers two different tiers of databases: Cloud
Firestore and Realtime Database. For this project, you need the Realtime
Database.
Scroll down until you reach the Realtime Database selector:2.

Click the Create database button to launch the corresponding dialog.3.
The first thing that Firebase asks you for is the security rule preset. You can4.
choose from the following options:

Locked mode: This makes your database private by denying all reads and
writes.
Test mode: This allows all reads and writes access to your database.

We are going to use Test Mode right now as it is the simplest and quickest way to5.
get your application up and running. However, note that you must provide
proper security configuration before launching your application into production.
Select the Start in test mode option and click the Enable button, as shown in the6.
following screenshot:

Building a Group Chat Application with Firebase Chapter 8

[307]

As soon as you click this button, you should see the Database page, along with7.
the newly created root object:

Note how Google Firebase shows you a warning label about security. For
now, keep the label on and don't worry about it. This is expected and is an
excellent reminder that you need to address the database security settings
later on.

Let's create a few chat groups for testing and development purposes.

Building a Group Chat Application with Firebase Chapter 8

[308]

Creating demo groups
Let's create a few groups by following these steps:

Hover over the root object in the central database area until you see the plus (+)1.
button. This button allows us to add child properties and complex objects in
JSON format.
Click the plus button. You should see an inline editor for the property:2.

With the inline editor, we can build a basic tree hierarchy of chat groups or
rooms.

Create three groups, as shown in the following screenshot:3.

As we can see, we have a groups tree with three branches: room1, room2, and
room3. We can also define the description properties so that we can display
some user-friendly details on the Angular interface.

Building a Group Chat Application with Firebase Chapter 8

[309]

You can introduce more metadata for groups later, such as creation date,
logo image, and many more.

Click the Add button as soon as you are ready. Firebase will apply your changes4.
and render the following tree hierarchy:

As a practical experiment, update the data one more time. Add a name property5.
to each room, as shown in the following screenshot:

Building a Group Chat Application with Firebase Chapter 8

[310]

This data is more than enough for us to implement the group list picker in our web
interface. Now, let's move on and learn how to this with Angular and Material components.

Rendering the group list
From a web interface perspective, we have a fully functional Login component that
navigates users to the /chat page, which contains the chat works! text label. Let's replace
this content with a list of chat groups that users can join:

Import the AngularFireDatabaseModule module into the main application1.
module using the following code:

 import { AngularFireDatabaseModule } from '@angular/fire/database';

 @NgModule({
 // ...
 imports: [
 // ...
 AngularFireModule.initializeApp(environment.firebaseConfig),
 AngularFireAuthModule,
 AngularFireDatabaseModule
],
 // ...
 })
 export class AppModule {}

The preceding code is going to enable additional APIs so that we can
communicate with Firebase's databases.

Next, import the following classes into the chat.component.ts file:2.

 import { AngularFireDatabase } from '@angular/fire/database';
 import { Observable } from 'rxjs';

Now, let's introduce the groups property, which will hold a list of our group3.
instances. Update the chat.component.ts code so that it looks as follows:

 @Component({...})
 export class ChatComponent implements OnInit {
 groups: Observable<any>;

 constructor(private firebase: AngularFireDatabase) {}

 ngOnInit() {
 this.groups = this.firebase.list('groups').valueChanges();

Building a Group Chat Application with Firebase Chapter 8

[311]

 }
 }

The AngularFire library is going to watch these changes and automatically
update the collection.

Now, we need some HTML templates to render the list items. For testing4.
purposes, let's output the raw JSON content. Update the chat.component.html
file so that it looks as follows:

 <li *ngFor="let group of groups | async">
 {{ group | json }}

Save your changes and run or restart the web server. Then, log in to see the5.
/chat route. You should see a list of objects that contain name and description
properties:

As you can see, we can successfully connect to the Firebase realtime database and
display the data.

Let's make the user interface better by utilizing the Material List component.6.
Import the MatListModule and MatIconModule modules into the main
application module:

 import { MatListModule } from '@angular/material/list';
 import { MatIconModule } from '@angular/material/icon';

Building a Group Chat Application with Firebase Chapter 8

[312]

Replace the content of the chat.component.html file with the Material List7.
implementation, as shown in the following code:

 <mat-list>
 <h3 mat-subheader>Groups</h3>
 <mat-list-item *ngFor="let group of groups | async">
 <mat-icon mat-list-icon>chat</mat-icon>
 <h4 mat-line>{{ group.name }}</h4>
 <p mat-line>{{ group.description }}</p>
 </mat-list-item>
 </mat-list>

Switch to the running web application and check out what the user interface8.
looks like now:

The list of groups now looks perfect. Now, let's learn how the AngularFire library handles
real-time updates.

Testing real-time updates
When we defined the groups property earlier in this chapter, we used the valueChanges
API to get an Observable instance. This Observable helps us build a list that reacts to
changes. Each time the underlying data changes, the Material List component is going to
redraw everything.

Building a Group Chat Application with Firebase Chapter 8

[313]

Let's see if that behavior works with our chat application:

Run the application and ensure that you are facing the group list.1.
Switch to the Firebase console and navigate to the Database section.2.

For better visibility, I recommend having both tabs open side by side so
that you see the changes we make on both pages simultaneously.

Add a new group entry to the list of groups, as shown in the following3.
screenshot:

Building a Group Chat Application with Firebase Chapter 8

[314]

When you are ready, click the Add button to confirm these changes. Notice how4.
the Chats page updates in real time and that you can see the newly added entry
in the list:

As you can see, Firebase provides compelling features for automatic data synchronization
across all clients.

In the next section, we are going to make the group list items clickable and redirect users to
the corresponding chat room details.

Implementing the group messages page
In this section, we are going to redirect users to a dedicated Messages page when they click
the group entry. Let's get started:

Run the following command to generate a Messages component:1.

 ng g component messages

The output of the preceding command should be similar to the following:2.

 CREATE src/app/messages/messages.component.scss (0 bytes)
 CREATE src/app/messages/messages.component.html (23 bytes)
 CREATE src/app/messages/messages.component.spec.ts (642 bytes)

Building a Group Chat Application with Firebase Chapter 8

[315]

 CREATE src/app/messages/messages.component.ts (278 bytes)
 UPDATE src/app/app.module.ts (1477 bytes)

Next, you need to update the app-routing.module.ts file. We are doing this3.
because we need to register a new route that we're going to map to the
MessagesComponent we have just generated.
Let's use a URL path such as chat/:group/messages, where :group is going4.
to be the name of the chat group that Angular substitutes at runtime.
Update the routes collection using the following code:5.

 import { MessagesComponent } from './messages/messages.component';

 const routes: Routes = [
 {
 path: 'login',
 component: LoginComponent
 },
 {
 path: 'chat',
 component: ChatComponent
 },
 {
 path: 'chat/:group/messages',
 component: MessagesComponent
 }
];

Now, it's time to update the HTML templates to perform a redirect. Add the6.
routerLink directive to the chat.component.html template, as shown in the
following code:

 <mat-list>
 <h3 mat-subheader>Groups</h3>
 <mat-list-item
 *ngFor="let group of groups | async"
 [routerLink]="[group.name, 'messages']"
 >
 <mat-icon mat-list-icon>chat</mat-icon>
 <h4 mat-line>{{ group.name }}</h4>
 <p mat-line>{{ group.description }}</p>
 </mat-list-item>
 </mat-list>

Building a Group Chat Application with Firebase Chapter 8

[316]

Let's improve the styling a bit. It would be nice to at least change the cursor so7.
that users understand that the element is clickable and can be used for
navigation. Use the following code for the content of chat.component.scss:

 .mat-list-item {
 cursor: pointer;

 &:hover h4 {
 text-decoration: underline;
 }
 }

Here, we've changed the cursor to a pointer and also underlined the group name.
Feel free to improve the look and feel of the list elements further as you see fit.

Restart the application and click on any of the groups. You should end up on the8.
Messages page:

Notice how the browser URL changes to reflect the group name's value. Try doing the same
with other groups to ensure that the result is what you expected.

In the next section, we are going to allow users to post and view messages.

Displaying group messages
At this point, we have an initial structure for our groups. Now, we need each of the group
entries to contain a list of messages. We don't have support for posting messages to the
server, so let's update the database directly and provide some dummy data for one of the
groups. We will replace this dummy data with real messages later in this chapter. Let's get
started:

Switch to the Firebase console and provide the messages object for the root1.
entry, as shown in the following screenshot:

Building a Group Chat Application with Firebase Chapter 8

[317]

As you can see, we are keeping the data in separate branches to simplify real-time
access. The groups branch contains information about the chat groups, while the
messages branch stores the actual user messages. Each message object has a
reference to the group. This is a very minimalistic implementation and is purely
for demonstration purposes.

Now, it's time to display this message in our Angular application. As you may2.
recall, we have a route template called chat/:group/messages where :group
is dynamic.
Our next task is to access the :group portion of the URL because we need to3.
know the name of the group before asking for the corresponding messages. We
can get the value of the group parameter using ActivatedRoute.
Update the messages.component.ts file so that it contains the following code:4.

 import { ActivatedRoute } from '@angular/router';

 @Component({...})
 export class MessagesComponent implements OnInit {
 group = '';
 constructor(private route: ActivatedRoute) {}

 ngOnInit() {
 this.route.params.subscribe(params => {
 this.group = params.group;
 });
 }
 }

Building a Group Chat Application with Firebase Chapter 8

[318]

Next, we need to import AngularFireDatabase and Observable, similar to 5.
what we did with the groups:

 import { AngularFireDatabase } from '@angular/fire/database';
 import { Observable } from 'rxjs';

 @Component({...})
 export class MessagesComponent implements OnInit {
 messages: Observable<any>;

 constructor(
 private route: ActivatedRoute,
 private firebase: AngularFireDatabase
) {}

 ngOnInit() {
 // ...
 }
 }

This time, however, we should use the AngularFire API to filter out the messages
that belong to our current group.

Update ngOnInit, as shown in the following code:6.

 ngOnInit() {
 this.route.params.subscribe(params => {
 this.group = params.group;

 if (this.group) {
 this.messages = this.firebase
 .list('messages', ref => ref.orderByChild('group')
 .equalTo(this.group))
 .valueChanges();
 }
 });
 }

You can find out more about the Querying Lists API at https:/ /github.
com/angular/ angularfire2/ blob/ master/ docs/ rtdb/ querying- lists.
md.

https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md

Building a Group Chat Application with Firebase Chapter 8

[319]

Finally, update the HTML template with a simple list element:7.

 <li *ngFor="let message of messages | async">
 {{ message | json }}

Reload the page or restart the web server and navigate to the first chat group:8.

As you can see, the messages are associated with the room1 group. Congratulations on
achieving this significant milestone!

If you open the developer tools, you may see a few warnings about performance:

In the next section, we are going to address these performance warnings.

Building a Group Chat Application with Firebase Chapter 8

[320]

Improving query performance
Let's spend some time fixing our application's potential performance problems. According
to the warning, we need to add an index for the group field in the /messages list. Let's get
started:

Switch to the Firebase console and click the Rules tab of the Database section.1.
Update the rules, as shown in the following screenshot:2.

Once you are ready, press the Publish button. At this point, Firebase builds an3.
index and updates the data. You don't need to perform any extra steps at the
client-side.
Reload the page and check out the console's output.4.
This time, you should see no performance warnings:5.

Building a Group Chat Application with Firebase Chapter 8

[321]

That's all when it comes to performance tuning our messages list. Now, let's learn how to
implement the message editor.

Sending group messages
Now, let's implement some support so that we can send messages to particular groups:

Import FormsModule into the main application module:1.

 import { FormsModule } from '@angular/forms';

You are going to need it later to establish two-way binding to the message's text.

Let's introduce the message editor. Append the following code to the2.
messages.component.html template:

 <div class="message-editor">
 <mat-form-field class="message-editor-field">
 <input
 [(ngModel)]="newMessage"
 matInput
 placeholder="Message the group"
 autocomplete="off"
 (keyup.enter)="send()"
 />
 </mat-form-field>
 </div>

Here, we are binding the input element to the newMessage property in a two-way
fashion, and we're also handling the keyup.enter event by calling the send()
function. We'll come back to these later in this section.

In terms of styling, I suggest at least stretching the input element horizontally so
that it takes up all the available space.

Update the messages.component.scss file so that it matches the following3.
code:

 .message-editor {
 padding: 0 10px;

 .message-editor-field {
 width: 100%;
 }
 }

Building a Group Chat Application with Firebase Chapter 8

[322]

Finally, we need to handle the Enter key being pressed and send the message to4.
the server. The AngularFire library makes this whole process trivial. Switch to
messages.component.ts and update the code according to the following
listing:

 @Component({...})
 export class MessagesComponent implements OnInit {
 newMessage = '';
 // ...

 send() {
 if (this.newMessage) {
 const messages = this.firebase.list('messages');

 messages.push({
 group: this.group,
 text: this.newMessage
 });

 this.newMessage = '';
 }
 }
 }

We take the newMessage value and use it with group to compose and send the5.
JSON object to the /messages list. Let's see how this works in practice. Switch to
the application and write a message, like so:

Building a Group Chat Application with Firebase Chapter 8

[323]

Now, press the Enter key and ensure that the message is erased from the input6.
element. At the same time, because of the Firebase Realtime Database, our
message list is updated from the server:

If you check the Firebase console, it should contain a new entry:7.

Try moving to another group and leaving the message there, too. Note that you only see the
messages that correspond to the selected group.

I suggest that we move on and update the user interface so that it's more friendly for our
users.

Building a Group Chat Application with Firebase Chapter 8

[324]

Updating the message list interface
At this point, we are displaying the raw JSON content of the messages. Let's replace this
with the Material List. We also need a link so that we can get back to the list of chat groups.
Let's get started:

Replace the ul element in the messages.component.html file with the1.
following code:

 <button mat-button [routerLink]="['/chat']">Back to Groups</button>

 <mat-list>
 <h3 mat-subheader>{{ group }}</h3>
 <mat-list-item *ngFor="let message of messages | async">
 {{ message.text }}
 </mat-list-item>
 </mat-list>

The output of the preceding code is as follows:2.

Congratulations! You can now navigate between groups with ease. The messages list also
looks cleaner.

Building a Group Chat Application with Firebase Chapter 8

[325]

Now, let's take a look at the possible improvements we can make in our spare time.

Ideas for further enhancements
The very first thing you may want to do in your application is sort messages by their
creation date. You already know how to filter messages by group name. Feel free to update
this code in order to assign the created date property to now each time you create and send
a new message to the server.

Next, you can update the list query to order messages by date. You can find out more about
this at https://github. com/ angular/ angularfire2/ blob/ master/ docs/ rtdb/ querying-
lists.md.

Another essential feature is to preserve the sender's information. You should retrieve the
current username from the authentication layer and save it as part of the message object. By
doing this, you can display author names in the user interface. Don't hesitate when it comes
to experimenting; there are plenty of examples in the Google Firebase and AngularFire
documentation.

In the next section, we are going to verify that the application works correctly with the
Electron Shell and that it's ready to be packaged.

Verifying the Electron Shell
Now, we're going to verify that the application is ready for packaging. Let's get started:

Switch to index.html and ensure that the base path has a proper value, as1.
shown in the following code:

 <base href="./" />

Run npm run serve. Wait until the web server starts and then run npm start2.
in a separate Terminal or Command Prompt window.

https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md
https://github.com/angular/angularfire2/blob/master/docs/rtdb/querying-lists.md

Building a Group Chat Application with Firebase Chapter 8

[326]

Test the Login dialog with your credentials. Make sure that you can still see the3.
list of groups and that you can post messages:

Congratulations! You have created a basic chat application that you can now expand and
improve.

Summary
In this chapter, you became familiar with the Google Firebase service and built a chat
application that stores data in a real-time database.

You also learned how to configure databases and build user interfaces that self-update as
soon as the database is updated. We created a list of groups/chat rooms that are rendered
with the server-side data. Moreover, we have provided support so that messages can be
rendered for a particular chat group.

Now, you can set up an authentication layer with a customizable sign-in provider based on
email and password credentials.

In the next chapter, we are going to build an eBook editor that we can use to generate books
in PDF format.

9
Building an eBook Editor and

Generator
In this chapter, we are going to build an Electron application that allows users to author
markdown documents and generate electronic books as a result. You are going to learn
how to use the Monaco Editor by Microsoft in your Electron applications and how to
process text with Pandoc (https:/ /pandoc. org/) by utilizing Docker containers.

Why do we need Pandoc as a Docker container rather than as a standalone installation? The
typical installation of Pandoc utils is pretty huge, and the setup instructions depend on the
type of platform you are using. Moreover, you may need to install various supplementary
tools, as well as keep them up to date.

With Docker, you get an image of Pandoc that is universal across all platforms. Besides, the
containers are isolated from your operating system. When you don't need Pandoc on your
machine, you can delete its containers and images so that you have no unused files in your
filesystem.

If you need a new version of the tools, you can fetch a new image from the Docker registry
and get some new tools up and running. There's no need for any additional installation
steps. The project build time is about two hours.

In this chapter, we will cover the following topics:

Creating the project structure
Updating the code to use React Hooks
Controlling keyboard shortcuts
Integrating with the application menu
Setting up the book generator
Invoking Docker commands from Electron
Generating PDF books
Generating ePub books

https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/

Building an eBook Editor and Generator Chapter 9

[328]

Let's start our journey by creating the project structure, which is based on the React web
application.

Technical requirements
To get started with this chapter, you will need a standard laptop or desktop running
macOS, Windows, or Linux.

The software you need to have installed to complete this chapter is as follows:

Git, a version control system
Node.js with NPM
Visual Studio Code, a free and open-source code editor

You can find the code files for this chapter in this book's GitHub repository: https:/ /
github.com/PacktPublishing/ Electron- Projects/ tree/ master/ Chapter09.

Creating the project structure
In this section, we are going to create a new project structure and use the React view library
to set up the frontend. You are also going to set up the Monaco Editor and its React
wrapper component with your Electron application.

We are going to cover the following important aspects when setting up the project:

Generating a new React application with the official create-react-app tool
Installing the Monaco Editor, which has been developed by Microsoft
Configuring and testing the web application
Integrating the Electron shell wrapper and verifying that it works

First, let's learn how to generate a new application scaffold.

Generating a new React application
When creating a new Electron project, the most important part is to decide on the stack and
tooling to use. For this project, we are going to use the React view library, as well as the
popular create-react-app tool, which allows you to generate a full-fledged application
structure in a matter of seconds.

https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter09

Building an eBook Editor and Generator Chapter 9

[329]

Let's generate a new application called ebook-generator:

Run the following code to generate a new React application:1.

npx create-react-app ebook-generator

The output should be similar to the following:

Compiled successfully!

You can now view ebook-generator in the browser.

 Local: http://localhost:3000/
 On Your Network: http://192.168.0.10:3000/

Note that the development build is not optimized.
To create a production build, use yarn build.

Switch to the project folder and run the project using the following command:2.

cd ebook-generator
npm start

If you navigate to http://localhost:3000, you should see the following as a3.
result:

Building an eBook Editor and Generator Chapter 9

[330]

Now, let's install the Monaco Editor component and integrate it with our React application
for Electron.

Installing the editor component
First of all, to have full integration with the Monaco Editor, we need to eject the React
application. You can read about the ejection process in the React documentation by
following this link: https:/ /create- react- app. dev/ docs/ available- scripts#npm- run-
eject. Follow these steps to install the editor:

Run the following command:1.

npm run eject

The tool is going to ask for your confirmation. Press y to confirm:

$ react-scripts eject
NOTE: Create React App 2+ supports TypeScript, Sass, CSS Modules
and more without ejecting:
https://reactjs.org/blog/2018/10/01/create-react-app-v2.html

? Are you sure you want to eject? This action is permanent. (y/N)

Now, you need to install the monaco-editor library:2.

npm i monaco-editor

Next, we need the react-monaco-editor dependency. This is the component3.
library that provides React bindings for the Monaco Editor component. Run the
following command to install the dependency:

npm i react-monaco-editor

The monaco-editor library has a slightly complex configuration. There is a
project called monaco-editor-webpack-plugin that will save you the time and
effort of doing this manually.

https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject
https://create-react-app.dev/docs/available-scripts#npm-run-eject

Building an eBook Editor and Generator Chapter 9

[331]

Install the webpack plugin library by executing the following command:4.

npm i monaco-editor-webpack-plugin

To integrate the monaco-editor-webpack-plugin library, you need to update5.
the config/webpack.config.js file. Import the MonacoWebPlugin type at the
bottom of the file:

const MonacoWebpackPlugin = require('monaco-editor-webpack-
plugin');

Find the plugins section of the configuration file. The file is pretty big, so you6.
may want to use the text search functionality. HtmlWebpackPlugin should look
as follows:

Building an eBook Editor and Generator Chapter 9

[332]

Insert the new MonacoWebpackPlugin() line at the beginning of the plugins7.
section, at the top of HtmlWebpackPlugin. Please refer to the following
screenshot:

Update the index.css file by appending the following code to the bottom of the8.
file:

html, body, #root {
 height: 100%;
 width: 100%;
}

Replace the contents of the App.css file with the following code:9.

.App {
 width: 100%;
 height: 100%;
}

Create a new Editor.js file so that we can store our editor component and its10.
configuration settings.
Now, import the MonacoEditor object from the react-monaco-editor11.
namespace:

import MonacoEditor from 'react-monaco-editor';

Building an eBook Editor and Generator Chapter 9

[333]

In this chapter, we are going to be using a functional React component. Follow these steps
to get started:

First, put the initial component scaffold inside the Editor.js file:1.

import React from 'react';
import MonacoEditor from 'react-monaco-editor';

const Editor = () => {
 return (
 <div></div>
);
};

export default Editor;

We need to provide at least two properties so that we can run the MonacoEditor
component: the code property, which will display the default text inside the
editor, and the options property, which will provide our configuration details.

Create the following constants inside the component function:2.

const Editor = () => {
 const code = '# hello';
 const options = {
 selectOnLineNumbers: true,
 minimap: {
 enabled: false
 }
 };
 return (
 <div></div>
);
};

For demonstration and development purposes, let's also add the3.
editorDidMount and onChange handlers. Update the code inside the
component function and include the following functions:

const editorDidMount = (editor, monaco) => {
 console.log('editorDidMount', editor, monaco);
 editor.focus();
};

const onChange = (newValue, e) => {
 console.log('onChange', newValue, e);
};

Building an eBook Editor and Generator Chapter 9

[334]

As you can see, when editorDidMount is fired, we send a message to the console
log and focus the editor. Each time the text value is changed, onChange executes,
and we send event details to the console's output.

Let's finish the component implementation by rendering the MonacoEditor4.
component with all the necessary properties:

return (
 <MonacoEditor
 language="markdown"
 theme="vs-dark"
 value={code}
 options={options}
 onChange={onChange}
 editorDidMount={editorDidMount}
 />
);

The final code for our Editor component looks as follows:5.

Building an eBook Editor and Generator Chapter 9

[335]

As a final step, replace the content of the App.js file with the following code:6.

import React from 'react';
import './App.css';
import Editor from './Editor';

function App() {
 return (
 <div className="App">
 <Editor></Editor>
 </div>
);
}

export default App;

Now, let's test the application and see the component in action.

Testing the web application
Now, it's time to test the web portion of our application and see how the component
behaves. Let's get started:

Run the application with the npm start command. You should see the1.
following in the window:

Note that the # hello value that we provide from within our Editor
component is default text.

Building an eBook Editor and Generator Chapter 9

[336]

Navigate to https:/ /microsoft. github. io/ monaco- editor/ , as shown in the2.
following screenshot:

Select the markdown example from the dropdown and copy the content of the3.
example.
Switch back to your application and paste the content into the text editing area.4.

https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/

Building an eBook Editor and Generator Chapter 9

[337]

Your editor should now look as follows:5.

Notice how the editor formats the text and provides syntax highlighting. This means you
have got your component up and running successfully.

Integrating with the Electron shell
Now that you have got a working application, we need to install the Electron dependency
and wire the Electron shell window with our code. Let's start by installing the library and
updating the package file:

Run the following command to install the Electron dependency:1.

npm i electron

Building an eBook Editor and Generator Chapter 9

[338]

Update the package.json file and include the main property. Ensure that it2.
points to the main.js file:

{
 "name": "ebook-generator",
 "version": "0.1.0",
 "private": true,
 "main": "main.js",
 // ...
}

While you have the package.json file open, update the scripts section and3.
add the electron script to invoke the shell:

"scripts": {
 "electron": "electron .",
 "start": "node scripts/start.js",
 "build": "node scripts/build.js",
 "test": "node scripts/test.js"
},

Now, you should be able to run the web server with the npm start command
and launch the desktop shell with the npm run electron script.

Create the main.js file and include the following content:4.

const { app, BrowserWindow } = require('electron');

function createWindow() {
 const win = new BrowserWindow({
 width: 800,
 height: 600,
 webPreferences: {
 nodeIntegration: true
 },
 resizable: false
 });

 win.loadURL(`http://localhost:3000`);
}

app.on('ready', createWindow);

Now our project development environment is ready.

Building an eBook Editor and Generator Chapter 9

[339]

Try out the application by running the following commands in parallel console5.
windows:

npm start
npm run electron

The application window should look as follows:6.

Given that we have configured the Electron app so that we can connect to
localhost:3000 directly, you also have the live reloading feature up
and running as well. Try to update the code and see how the application's
content changes inside the Electron window.

In this section, you have learned how to generate a new React project and install the famous
Monaco Editor, which also backs Visual Studio Code. You have also configured the project
for testing, both in the browser and in the Electron shell.

Now, we need to upgrade our code so that we can use the new React Hooks feature and load
and save our files.

Updating the code to use React Hooks
Before we move on to keyboard handling, let's refactor our Editor implementation a bit so
that we can use React Hooks. We need do so this so that we can simplify how the code is
handled significantly during load and save operations.

React Hooks is a relatively new feature, and if you have a background in React
development, then you may have already heard of it or even used it.

Check out the official documentation on React Hooks to find out more:
https:/ /reactjs. org/ docs/hooks- intro. html.

https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html

Building an eBook Editor and Generator Chapter 9

[340]

The most essential hook is the useState one. You are going to use it a lot in your projects.
Let's import and use the useState hook so that we can provide a pair of getters and setters
for the code text:

Import the useState hook from the react namespace:1.

import React, { useState } from 'react';

Replace the code variable initializer with the useState hook:2.

// let code = '# hello world';
const [code, setCode] = useState('# hello world');

Finally, update the onChange handler in order to set the code value according to3.
the Monaco Editor's state:

const onChange = newValue => {
 console.log('onChange', newValue);
 setCode(newValue);
};

Now that we know how to set up and use React Hooks, we are ready to implement
keyboard support.

Controlling keyboard shortcuts
With Monaco Editor, you can provide custom commands that handle keyboard
combinations. For example, the format of the Open command may look as follows:

editor.addCommand(monaco.KeyMod.CtrlCmd | monaco.KeyCode.KEY_O, () => {
 // do something
});

Note that the same command works as Cmd + O on macOS and is Ctrl + O
on other systems, such as Windows and Linux. Apply this logic
throughout.

Building an eBook Editor and Generator Chapter 9

[341]

Let's create two stubs for the Open and Save functions, which will be handled by the Ctrl +
O/Cmd + O and Ctrl + S/Cmd + S commands, respectively:

In the Editor.js file, update the editorDidMount handler so that it looks as1.
follows:

const editorDidMount = (editor, monaco) => {
 console.log('editorDidMount', editor, monaco);
 editor.focus();

 editor.addCommand(monaco.KeyMod.CtrlCmd | monaco.KeyCode.KEY_O,
() => {
 console.log('open');
 });

 editor.addCommand(monaco.KeyMod.CtrlCmd | monaco.KeyCode.KEY_S,
() => {
 console.log('save');
 });
};

Run the web application and check out the developer tools. You can also do this2.
from within the Electron shell.
Try the Cmd + O and Cmd + S combinations in the editor. Notice how our 3.
commands handle the keyboard events and log the messages to the console's
output:

Next, let's implement the handler for Cmd + O and add support so that we can load files.

Building an eBook Editor and Generator Chapter 9

[342]

Loading files
In this section, we are going to provide support for loading files.

We learned about keyboard handling and Open Dialog in more detail in
Chapter 2, Building a Markdown Editor.

For the sake of simplicity, instead of redirecting events to Node.js, let's handle loading files
via the client side. Follow these steps to do so:

Wrap the MonacoEditor element with an extra div element and the container1.
class name:

return (
 <div className="container">
 <MonacoEditor
 language="markdown"
 theme="vs-dark"
 value={code}
 options={options}
 onChange={onChange}
 editorDidMount={editorDidMount}
 />
 </div>
);

Update the App.css file so that it includes the container styling; we need it to2.
take up the entirety of the window:

.App,

.container {
 width: 100%;
 height: 100%;
}

Traditionally, the programmatic way of triggering the file dialog is to have a
hidden input type=file element that includes all the necessary settings and
then invoke its click event.

Building an eBook Editor and Generator Chapter 9

[343]

In React, we need to have a reference to the input element, so let's define the3.
fileInputRef constant. Update the Editor.js file and insert the
fileInputRef constant at the bottom of the body:

import React, { useState, useRef } from 'react';

const Editor = () => {
 const [code, setCode] = useState('# hello world');
 const fileInputRef = useRef();

 // ...
}

Next, we need a hidden input element of the file type that accepts only4.
text/markdown types. The input element should also be wired to the
fileInputRef constant so that we can trigger its methods from the code. In the
return block, place the input element as follows:

<div className="container">
 <input
 ref={fileInputRef}
 type="file"
 style={{ display: 'none' }}
 accept="text/markdown"
 onChange={onFileOpened}
 ></input>

 <MonacoEditor ... />
</div>

As you can see, the input element also requires the onFileOpened handler.

Add the following implementation for the onFileOpened function:5.

const onFileOpened = event => {
 if (event.target.files && event.target.files.length > 0) {
 const firstFile = event.target.files[0];

 const fileReader = new FileReader();
 fileReader.onload = e => setCode(e.target.result);
 fileReader.readAsText(firstFile);

 event.target.value = null;
 }
};

Building an eBook Editor and Generator Chapter 9

[344]

The code is pretty self-explanatory. We take the first file and use the FileReader
API to get its content as text. As soon as the file's content has been loaded, we call
the setCode hook to update the state of the code.

We also have the code hook, which is bound to the MonacoEditor.value
property. This means that as soon as we set the value via the setCode hook, the
Monaco Editor gets these changes and updates itself.

The last piece of the puzzle is to wire Cmd + O (or Ctrl + O) with the dialog.6.
Update the editorDidMount implementation to invoke click, as shown in the
following code:

editor.addCommand(monaco.KeyMod.CtrlCmd |
monaco.KeyCode.KEY_O, () => {
 fileInputRef.current.click();
});

That's all you need to do to load a file and run it. Now, let's test the implementation:

Start the web application with the npm start command.1.
Press Cmd + O if you're using macOS; otherwise, press Ctrl + O.2.
In the resulting dialog, select a markdown file.3.

I have saved an example from the Monaco Editor demo (https:/ /
microsoft. github. io/ monaco- editor/). You can find any markdown file
on GitHub, such as a README.md file, and save it locally.

Ensure that the editor loads and displays the file correctly:4.

https://microsoft.github.io/monaco-editor/.
https://microsoft.github.io/monaco-editor/.
https://microsoft.github.io/monaco-editor/.
https://microsoft.github.io/monaco-editor/.
https://microsoft.github.io/monaco-editor/.
https://microsoft.github.io/monaco-editor/.
https://microsoft.github.io/monaco-editor/.
https://microsoft.github.io/monaco-editor/.
https://microsoft.github.io/monaco-editor/.
https://microsoft.github.io/monaco-editor/.
https://microsoft.github.io/monaco-editor/.
https://microsoft.github.io/monaco-editor/.
https://microsoft.github.io/monaco-editor/.

Building an eBook Editor and Generator Chapter 9

[345]

Next, let's implement the handler for Cmd + S and add support so that we can save files.

Saving files
In this section, we are going to provide support for saving files. Similar to the Open file
functionality, web developers need to perform some easy workarounds to invoke the file
download feature from the code.

Building an eBook Editor and Generator Chapter 9

[346]

The most popular way to do this is to dynamically create an invisible hyperlink element
with the download attribute set to the filename and then invoke a click. This is what we are
going to implement for our project. Follow these steps to get started:

Update the code in the Editor.js file and add the saveFile function, as shown1.
in the following code:

const saveFile = contents => {
 const blob = new Blob([contents], { type: 'octet/stream' });
 const url = window.URL.createObjectURL(blob);

 const a = document.createElement('a');
 document.body.appendChild(a);
 a.style.display = 'none';
 a.href = url;
 a.download = 'markdown.md';
 a.click();

 window.URL.revokeObjectURL(url);
 document.body.removeChild(a);
};

We have just created a helper function, saveFile(contents), that takes a string
value as input and invokes a file download called markdown.md.

To make the saveFile function work, we are going to use the
URL.createObjectURL API, which is supported by all web browsers. This static
method allows us to create a URL object with the content of the file embedded
into it. Then, you pass that URL to a dynamic hyperlink element and invoke the
click event.

You can find out more about the URL.createObjectURL static method at
https:/ /developer. mozilla. org/en- US/ docs/ Web/API/ URL/
createObjectURL.

Now, it's time to reuse the function we have just created. Update the2.
editorDidMount function in order to invoke the saveFile upon clicking Cmd +
S (or Ctrl + S):

editor.addCommand(monaco.KeyMod.CtrlCmd | monaco.KeyCode.KEY_S, ()
=> {
 const code = editor.getModel().getValue();
 saveFile(code);
});

https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL

Building an eBook Editor and Generator Chapter 9

[347]

Run the application and try saving the file with the keyboard combinations we3.
have just provided. Notice that the browser automatically changes its name if
you download the file more than once:

This is the traditional behavior of browsers.

There is a difference, however, if you run the same code in the Electron shell. By default,
Electron asks you where you want to put the file upon clicking Cmd + S (or Ctrl + S):

At this point, you've got the Save and Open functionality working. This should allow you
to work on multiple documents and make backup copies of the files.

Next, we will introduce application menu integration.

Building an eBook Editor and Generator Chapter 9

[348]

Integrating with the application menu
In this section, we are going to provide support for the application menu. For the sake of
simplicity, let's integrate the Open and Save features for now and extend the menu as we
introduce new features to the application:

You can find out more about how to work with menus in Chapter 2,
Building a Markdown Editor. Examples are also provided.

In the project root folder, create a menu.js file with the following content:1.

const { Menu, BrowserWindow, dialog } = require('electron');
const fs = require('fs');

module.exports = Menu.buildFromTemplate([
 {
 label: 'File',
 submenu: [
 {
 label: 'Open',
 accelerator: 'CommandOrControl+O',
 click() {
 loadFile();
 }
 },
 {
 label: 'Save',
 accelerator: 'CommandOrControl+S',
 click() {
BrowserWindow.getFocusedWindow().webContents.send('commands', {
 command: 'file.save'
 });
 }
 }
]
 }
]);

As you can see, we're declaring a File menu (the application menu on macOS)
with Open and Save entries. Each menu item does nothing except send a JSON
payload to the client-side code.

Building an eBook Editor and Generator Chapter 9

[349]

To make processing easy and universal, we've introduced a convention—each
payload has the command parameter, along with the enclosed key of the action the
client needs to execute. To open files, we're using the file.open key, while to
save files, we're using the file.save key.

Later, we can introduce even more commands. The command handlers at
the client side won't require rewrites or significant refactoring.

Add the loadFile function implementation, as shown in the following code:2.

function loadFile() {
 const window = BrowserWindow.getFocusedWindow();
 const options = {
 title: 'Pick a markdown file',
 filters: [{ name: 'Markdown files', extensions: ['md'] }]
 };
 dialog.showOpenDialog(window, options, paths => {
 if (paths && paths.length > 0) {
 const content = fs.readFileSync(paths[0]).toString();
 window.webContents.send('commands', {
 command: 'file.open',
 value: content
 });
 }
 });
}

We invoke the native Open Dialog, read the file, and send it back to the client-side
code with the file.open command and a value property.

We need a native dialog here because modern browsers don't allow us to
invoke file-related operations when the code isn't related to user
interaction. Unfortunately, sending a message from the Node.js process to
the Chrome-based process isn't going to work for the input type=file
elements due to security reasons. This is why we use native code in the
main process and provide the renderer process with the result.

Building an eBook Editor and Generator Chapter 9

[350]

To enable the application menu that we have just declared in the menu.js file,3.
we need to update the main.js file. Import Menu from the electron namespace
and use it to build the custom menu instance, as shown in the following code:

const { app, BrowserWindow, Menu } = require('electron');
const menu = require('./menu');

Menu.setApplicationMenu(menu);

function createWindow() {
 // ...
}

app.on('ready', createWindow);

At the client side, we need to implement a universal command handler function.4.
Update the Editor.js file and add the handleCommand function, as shown in
the following code:

const handleCommand = payload => {
 if (payload) {
 switch (payload.command) {
 case 'file.open':
 setCode(payload.value || '');
 break;
 case 'file.save':
 saveFile(code);
 break;
 default:
 break;
 }
 }
};

The preceding code should be easy to understand. Upon using the file.open
command, we get payload.value and pass it to the setCode hook. Also, once
the file.save command arrives, we invoke the saveFile function.

Building an eBook Editor and Generator Chapter 9

[351]

Now, we need to update the Editor component function so that we can handle5.
the commands. I suggest adding some safety checks to make the code compatible
with both browsers and Electron applications. Append the following function
after the handleCommand one:

if (window.require) {
 const electron = window.require('electron');
 const ipcRenderer = electron.ipcRenderer;

 ipcRenderer.on('commands', (_, args) => handleCommand(args));
}

The preceding code is an excellent example of cross-application compatibility.
Upon running the code in the Electron shell, the code finds the window.require
object and performs additional configuration. If you ever decide to run your
application with regular browsers, where window.require is missing, the code
isn't going to break.

Run the Electron shell with the npm run electron command and check out the6.
application menu:

Click the Open menu item and check that it loads markdown files into the editor7.
correctly.

Congratulations on reaching the end of this section. Now, you are able to send commands
from the application menu back to the client-side code.

Now, let's learn how to generate a digital book out of the markdown's content.

Setting up the book generator
In this section, we are going to prepare the environment for PDF and eBook generation. We
are going to install Docker, a famous containerization software that allows us to run
applications as containers across all platforms.

Building an eBook Editor and Generator Chapter 9

[352]

Once you have Docker up and running, we will walk through the process of downloading
and running Pandoc, a universal document converter tool, as a container on our local
machine.

The Pandoc tool allows us to convert a massive number of different text formats into
another format. Among the supported formats is markdown, which is what we are using
for our Electron editor application.

Let's start with the Docker installation process.

Installing Docker
In this section, you are going to install Docker for desktop. There are two versions of
Docker: Enterprise and Community. The Community version is free and is more than
enough for development purposes as it handles all our scenarios perfectly well. Let's get
started:

Navigate to the official website (https:/ /www. docker. com/). You should see a1.
landing page that looks similar to the one shown in the following screenshot:

https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/

Building an eBook Editor and Generator Chapter 9

[353]

Feel free to explore the website and read the documentation and guides
on Docker if you've never used it before.

Scroll to the top of the page and click on Products. Here, Desktop should be one2.
of the available options:

Building an eBook Editor and Generator Chapter 9

[354]

Click Desktop.3.

Alternatively, you can navigate to the following address: https:/ /www.
docker. com/ products/ docker- desktop.

On the Docker Desktop page, you can either watch an overview video or
download the installation package.

Click the Download Desktop for Mac and Windows button. Note that the4.
button name is slightly misleading. Typically, you should be redirected to the
Docker Hub portal. If you don't have an account yet, please create one—it's free.
As soon as you log into the Docker Hub, you will find the real download button:5.

In the Quick Start dialog, you will find the download links for macOS and6.
Windows:

https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop

Building an eBook Editor and Generator Chapter 9

[355]

You can also use the direct links for macOS (https:/ /download. docker.
com/mac/ stable/ Docker. dmg) and Windows (https:/ /download. docker.
com/win/ stable/ Docker%20for%20Windows%20Installer. exe).

https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/mac/stable/Docker.dmg
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe
https://download.docker.com/win/stable/Docker%20for%20Windows%20Installer.exe

Building an eBook Editor and Generator Chapter 9

[356]

In my case, I have downloaded and launched the installer for macOS:

Please follow the instructions for your operating system and refer to the online
documentation if you have any questions regarding the setup and configuration of Docker
Community Edition.

Next, we are going to test the Pandoc container and see it in action.

Running the Pandoc container
Given that anyone can create a Docker image with most applications and tools, you will
find more than one Pandoc implementation on the internet. I have prepared a stable
example in this book's GitHub repository: https:/ /github. com/ DenysVuika/ pandoc-
docker.

The image for this section was initially forked from https:/ /github. com/
jagregory/ pandoc- docker, so credit goes to the author, James Gregory. In
my version, I am keeping the base image and Pandoc libraries up to date.

https://github.com/DenysVuika/pandoc-docker
https://github.com/DenysVuika/pandoc-docker
https://github.com/DenysVuika/pandoc-docker
https://github.com/DenysVuika/pandoc-docker
https://github.com/DenysVuika/pandoc-docker
https://github.com/DenysVuika/pandoc-docker
https://github.com/DenysVuika/pandoc-docker
https://github.com/DenysVuika/pandoc-docker
https://github.com/DenysVuika/pandoc-docker
https://github.com/DenysVuika/pandoc-docker
https://github.com/DenysVuika/pandoc-docker
https://github.com/DenysVuika/pandoc-docker
https://github.com/jagregory/pandoc-docker
https://github.com/jagregory/pandoc-docker
https://github.com/jagregory/pandoc-docker
https://github.com/jagregory/pandoc-docker
https://github.com/jagregory/pandoc-docker
https://github.com/jagregory/pandoc-docker
https://github.com/jagregory/pandoc-docker
https://github.com/jagregory/pandoc-docker
https://github.com/jagregory/pandoc-docker
https://github.com/jagregory/pandoc-docker
https://github.com/jagregory/pandoc-docker
https://github.com/jagregory/pandoc-docker

Building an eBook Editor and Generator Chapter 9

[357]

Let's learn how the conversion process works:

Start Docker.1.
Navigate to the Monaco Editor demo page (https:/ /microsoft. github. io/2.
monaco-editor/) and copy the contents of the markdown example.

Save the markdown example somewhere on your local drive with the name3.
test.md.

In the Terminal window, navigate to the location of the test.md file and run the4.
following command:

// for Linux and macOS
docker run -v `pwd`:/source denysvuika/pandoc -f markdown -t html5
test.md -o test.html

// for Windows
docker run -v %cd%:/source denysvuika/pandoc -f markdown -t html5
test.md -o test.html

Here, we're taking test.md as input and using the denysvuika/pandoc image
to convert it into an HTML5 page called test.html. After a while, you should
see the following output:

Unable to find image 'denysvuika/pandoc:latest' locally
latest: Pulling from denysvuika/pandoc
bc9ab73e5b14: Pull complete
d553ba08f210: Pull complete
a5e51e378eb4: Pull complete
858ca3975bae: Pull complete
c3ecb06ceeb4: Pull complete
Digest:
sha256:010d68dcc6a3de0a8ca2a6b812ccd5be16b515524270fb4996413990a6e5
0776
Status: Downloaded newer image for denysvuika/pandoc:latest

The first run may take a while because of Docker downloading and
caching the images. All subsequent runs are usually instant.

https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/

Building an eBook Editor and Generator Chapter 9

[358]

Now, if you check the output folder, you should see the test.html file. Open5.
the file in your preferred browser and check its contents:

You have successfully generated HTML output from the markdown file. Feel free to
experiment with changing the content of the markdown file and converting init to HTML5.
Check out all the possible conversion scenarios at https:/ /pandoc. org/ .

Next, we need to find out how we can run the same command from within our Electron
application. However, before doing that, we need to update the save process so that we can
use the Node.js process.

https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/

Building an eBook Editor and Generator Chapter 9

[359]

Sending documents to the main (Node.js)
process
In this section, we're going to send the document to the main process. Follow these steps to
do so:

Import ipcMain into the menu.js file, as shown in the following code:1.

const { Menu, BrowserWindow, dialog, ipcMain } =
require('electron');

Now, we need to implement the saveFile function. You may have done this
already in Chapter 2, Building a Markdown Editor.

Add the following code either at the beginning or at the bottom of the menu.js2.
file:

function saveFile(contents) {
 const window = BrowserWindow.getFocusedWindow();
 const options = {
 title: 'Save markdown file',
 filters: [
 { name: 'MyFile', extensions: ['md'] }
]
 };
 dialog.showSaveDialog(window, options, filename => {
 if (filename) {
 fs.writeFileSync(filename, contents);
 }
 });
}

The saveFile function expects a contents parameter, which is where we pass
the contents of the markdown file. After that, it displays the system Save
Dialog, where you can pick the destination and save the file to our local drive.

We are going to listen to the save channel so that we can invoke the saveFile
feature. The renderer (Chrome) part should now send the markdown's contents to
the save channel to initiate the save dialog.

Building an eBook Editor and Generator Chapter 9

[360]

Update the menu.js file with the listener code, as follows:3.

ipcMain.on('save', (_, contents) => {
 saveFile(contents);
});

Now, you need to update the client-side part. At this point, you have the option4.
to either remove the previous code or have a dual behavior. With the dual
behavior, you can save the file using a regular browser. Alternatively, you can
send the file's content to Node.js when you're running the Electron shell.

The code for the dual behavior can be created with a simple if... else
statement, as follows:

const saveFile = contents => {
 if (window.require) {
 // send to the node.js
 } else {
 // invoke download of the file
 }
 };

Update the saveFile implementation of the Editor.js file according to the5.
following code:

const saveFile = contents => {
 // save via node.js process
 if (window.require) {
 const electron = window.require('electron');
 const ipcRenderer = electron.ipcRenderer;

 ipcRenderer.send('save', contents);
 }
 // save via the browser
 else {
 // ...
 }
};

Run the web server and use your preferred browser to test the Cmd + S or Ctrl + S6.
feature.
Run the Electron shell with the npm run electron command and perform the7.
same test once again. Everything should be working as expected.

Building an eBook Editor and Generator Chapter 9

[361]

In the next section, we are going to get the HTML conversion into the application. Similar
to the Save channel, we can introduce a separate messaging channel for content
conversion. Follow these steps to do so:

Let's put a new keyboard combination into the application. This can be anything1.
you like. For the sake of simplicity, let's use Cmd + Shift + H to generate the
HTML. Later in this chapter, we will use Cmd + Shift + P to generate a PDF.
Update the editorDidMount function's implementation with the new keyboard2.
handler, as shown in the following code:

editor.addCommand(
 monaco.KeyMod.CtrlCmd | monaco.KeyMod.Alt |
monaco.KeyCode.KEY_H,
 () => {
 const code = editor.getModel().getValue();
 generateHTML(code);
 }
);

Create the generateHTML function so that you can send the markdown content3.
of the code editor to the generate channel:

const generateHTML = contents => {
 if (window.require) {
 const electron = window.require('electron');
 const ipcRenderer = electron.ipcRenderer;

 ipcRenderer.send('generate', {
 format: 'html',
 text: contents
 });
 }
 };

Note how we pass the format as a payload option. This allows us to have a single
channel for all kinds of formats in case we decide to provide support for more
than one. This also simplifies the Node.js process as you can have a single
function that parses the payload and invokes different features.

Update the code in menu.js with the following stub:4.

ipcMain.on('generate', (_, payload) => {
 if (payload && payload.format) {
 switch (payload.format) {
 case 'html':
 generateHTML(payload.text);

Building an eBook Editor and Generator Chapter 9

[362]

 break;
 default:
 break;
 }
 }
});

function generateHTML(contents) {
 // todo: implementation
}

As you can see, the preceding code is pretty universal, and you can extend the support for
different formats without rewriting significant portions of the code.

Now, it's time to use Docker to generate the HTML output from the markdown and invoke
the browser to see the results.

Invoking Docker commands from Electron
We have already generated an example HTML file from the markdown source earlier in
this chapter. You used the following command to do so:

docker run -v `pwd`:/source denysvuika/pandoc -f markdown -t html5 test.md
-o test.html

Our editor needs to perform the following steps to run the same command
programmatically:

Send the markdown text to the Node.js process.
Save the markdown text to the local drive.
Invoke the Docker command to generate the HTML output.
Open the browser with the end result (this is optional).

Let's go through this now, starting with sending the markdown text to the Node.js process.

Sending the markdown text to the Node.js
process
You already have the first bullet point implemented. The generate channel in the main
process watches the messages and invokes the generateHTML function in case the format
parameter has an html value.

Building an eBook Editor and Generator Chapter 9

[363]

All we need to do now is save the markdown context in a temporary location.

Saving the markdown text to the local drive
In this section, we are going to save the markdown into a temporary file. Follow these steps
to do so:

Import the os and path objects from Node.js:1.

const os = require('os');
const path = require('path');

Now, import the file generation function. For the sake of simplicity, we're going2.
to build a very minimalistic happy path function without validation or safety
checks. Append the following code to the menu.js file:

function writeTempFile(contents, callback) {
 const tempPath = path.join(os.tmpdir(), 'markdown');

 fs.mkdtemp(tempPath, (err, folderName) => {
 const filePath = path.join(folderName, 'markdown.md');

 fs.writeFile(filePath, contents, 'utf8', () => {
 callback(filePath);
 });
 });
}

The preceding code is for demonstration purposes only. You may want to
improve this function later on with some error handling and error checks.

Update the generateHTML code so that it looks as follows:3.

function generateHTML(contents) {
 writeTempFile(contents, fileName => {
 console.log('converting', fileName);
 });
}

Building an eBook Editor and Generator Chapter 9

[364]

Run the application and press Cmd + Alt + H for macOS or Ctrl + Alt + H for other4.
platforms. We are just testing that the function works correctly. The console's
output should look similar to the following:

converting
/var/folders/6r/_zpzk77x67x5kg4h9dq8fb2w0000gp/T/markdownl9bsMt/mar
kdown.md

You can even navigate to that file and see its contents. It should be the same text
that you entered in the editor.

Now is an excellent time to learn how to invoke a child process from within
Node.js. Running child processes allows you to execute external commands,
including console scripts and other applications.

Import the exec function from the child_process namespace, as well as the5.
shell object from electron, as shown in the following code:

const { exec } = require('child_process');
const { shell } = require('electron');

We need the shell object to invoke the file in the default browser. For more
details, please refer to the official documentation: https:/ /electronjs. org/
docs/api/ shell#shell.

Next, update the implementation of the generateHTML function according to the6.
following code:

function generateHTML(contents) {
 writeTempFile(contents, fileName => {
 const name = 'markdown';
 const filePath = path.dirname(fileName);
 const command = `docker run -v ${filePath}:/source
denysvuika/pandoc -f markdown -t html5 ${name}.md -o
${name}.html`;
 exec(command, () => {
 const outputPath = path.join(filePath, `${name}.html`);
 shell.openItem(outputPath);
 }).stderr.pipe(process.stderr);
 });
}

https://electronjs.org/docs/api/shell#shell
https://electronjs.org/docs/api/shell#shell
https://electronjs.org/docs/api/shell#shell
https://electronjs.org/docs/api/shell#shell
https://electronjs.org/docs/api/shell#shell
https://electronjs.org/docs/api/shell#shell
https://electronjs.org/docs/api/shell#shell
https://electronjs.org/docs/api/shell#shell
https://electronjs.org/docs/api/shell#shell
https://electronjs.org/docs/api/shell#shell
https://electronjs.org/docs/api/shell#shell
https://electronjs.org/docs/api/shell#shell

Building an eBook Editor and Generator Chapter 9

[365]

You may be wondering what the code in the generateHTML function does. Let's go over
this now:

First, it generates a markdown.md file, along with its contents, in a temporary1.
folder.
Then, it generates a shell command to execute the docker command. This takes2.
the markdown.md file and produces the markdown.html file in the same
temporary folder.
After that, the code runs the exec function to execute the command. As soon as3.
the command finishes running, the code executes a second command to open the
resulting markdown.html file with a default program that handles .html files.
Typically, this action triggers your default web browser.

In some cases, you may see the following error in the console's output:

The path
/var/folders/6r/_zpzk77x67x5kg4h9dq8fb2w0000gp/T/markdownAQbH2t
is not shared from OS X and is not known to Docker.
You can configure shared paths from Docker -> Preferences... ->
File Sharing.

This means that your default temporary folder is not present in Docker's settings.

You can add any extra folders in the File Sharing configuration, as shown in the4.
following screenshot:

Building an eBook Editor and Generator Chapter 9

[366]

Now it's time to test the whole workflow:

Run the Electron version of the application with the npm run electron1.
command.
Press Cmd + Alt + H for macOS or Ctrl + Alt + H for other platforms. You should2.
see the browser open with the HTML version of your markdown:

Congratulations on achieving another milestone. Now you can save and convert
markdown files. You now know how to invoke external applications and execute shell
commands from the Node.js process.

Let's see what it takes to generate a PDF version of our markdown content.

Generating PDF books
In this section, we are going to introduce support for PDF generation based on the
markdown source. Once we've finished, the users of our application should be able to
generate PDF output with Cmd + Alt + P on macOS and Ctrl + Alt + P on other systems.

Let's update the code in order to provide PDF output support:

Edit the Editor.js component so that it supports another keyboard1.
combination:

editor.addCommand(
 monaco.KeyMod.CtrlCmd | monaco.KeyMod.Alt |
monaco.KeyCode.KEY_P,
 () => {
 const code = editor.getModel().getValue();

Building an eBook Editor and Generator Chapter 9

[367]

 generatePDF(code);
 }
);

The generatePDF function implementation should be reasonably easy for you. It
resembles the genereateHTML one, but in our case, we're passing pdf as a format
attribute.

Add the following function to the Editor.js code:2.

const generatePDF = contents => {
 if (window.require) {
 const electron = window.require('electron');
 const ipcRenderer = electron.ipcRenderer;

 ipcRenderer.send('generate', {
 format: 'pdf',
 text: contents
 });
 }
 };

Update the menu.js code so that it matches the pdf format and call the3.
generatePDF function from within the generate channel listener:

ipcMain.on('generate', (_, payload) => {
 if (payload && payload.format) {
 switch (payload.format) {
 case 'html':
 generateHTML(payload.text);
 break;
 case 'pdf':
 generatePDF(payload.text);
 break;
 default:
 break;
 }
 }
});

Next, add the generatePDF function:4.

function generatePDF(contents) {
 writeTempFile(contents, fileName => {
 const name = 'markdown';
 const filePath = path.dirname(fileName);
 const command = `docker run -v ${filePath}:/source

Building an eBook Editor and Generator Chapter 9

[368]

denysvuika/pandoc -f markdown -t latex ${name}.md -o ${name}.pdf`;
 exec(command, () => {
 const outputPath = path.join(filePath, `${name}.pdf`);
 shell.openItem(outputPath);
 }).stderr.pipe(process.stderr);
 });
}

The implementation that we use to generate and open PDFs is similar to the
implementation for HTML. Note, however, that we pass different parameters to the Docker
container.

Let's test this generation now:

Run the application and enter some markdown text; for example, a heading,1.
subheading, and a bit of text.
Press Cmd + Alt + P if you are using macOS or Ctrl + Alt + P for other platforms.2.
Check out the default PDF viewer that appears as soon as the generation process3.
ends:

You have successfully generated a simple PDF document out of the markdown content.

Building an eBook Editor and Generator Chapter 9

[369]

As you can imagine, Pandoc provides much more than this for PDF
generation, such as templates, paper and font settings, and many other
options. You can find out more at https:/ / pandoc. org/ .

Finally, let's learn how to produce ePub books as output from the markdown.

Generating ePub books
In this section, we are going to create a book in ePub format from the markdown content.
The implementation steps should already be familiar to you now that you've gone through
the HTML and PDF conversions.

On the browser side, let's slightly optimize the function so that we can run the conversion.
Previously, we created separate functions, that is, generateHTML and generatePDF, to
send a message to the generate channel.

If you take a look at the implementations of these functions carefully, you should notice
that they only differ in terms of the format field. Instead of creating a third function called
generateEPUB, I would suggest making the code more reusable.

Let's refactor our code and introduce the generateOutput function:

Create the generateOutput function, which covers every generation scenario:1.

const generateOutput = (format, text) => {
 if (window.require) {
 const electron = window.require('electron');
 const ipcRenderer = electron.ipcRenderer;

 ipcRenderer.send('generate', {
 format,
 text
 });
 }
 };

https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/
https://pandoc.org/

Building an eBook Editor and Generator Chapter 9

[370]

Update the keyboard handlers so that we can reuse the universal function we2.
have just introduced:

editor.addCommand(
 monaco.KeyMod.CtrlCmd | monaco.KeyMod.Alt | monaco.KeyCode.KEY_H,
 () => generateOutput(editor, 'html')
);

editor.addCommand(
 monaco.KeyMod.CtrlCmd | monaco.KeyMod.Alt | monaco.KeyCode.KEY_P,
 () => generateOutput(editor, 'pdf')
);

At this point, we can remove the generateHTML and generatePDF functions as3.
we no longer need them. Now, adding support for a new format conversion
process is very trivial.
Add the Cmd + Alt + E combination (Ctrl + Alt + E) so that we can invoke ePub4.
generation:

editor.addCommand(
 monaco.KeyMod.CtrlCmd | monaco.KeyMod.Alt | monaco.KeyCode.KEY_E,
 () => generateOutput(editor, 'epub')
);

Now, switch to the main.js file and append the generateEPUB function to the5.
code:

function generateEPUB(contents) {
 writeTempFile(contents, fileName => {
 const name = 'markdown';
 const filePath = path.dirname(fileName);
 const command = `docker run -v ${filePath}:/source
denysvuika/pandoc -f markdown ${name}.md -o ${name}.epub`;
 exec(command, () => {
 const outputPath = path.join(filePath, `${name}.epub`);
 shell.openItem(outputPath);
 }).stderr.pipe(process.stderr);
 });
}

Building an eBook Editor and Generator Chapter 9

[371]

Next, update the channel listener code so that it takes the epub format into6.
account and triggers the correct function:

ipcMain.on('generate', (_, payload) => {
 if (payload && payload.format) {
 switch (payload.format) {
 case 'html':
 generateHTML(payload.text);
 break;
 case 'pdf':
 generatePDF(payload.text);
 break;
 case 'epub':
 generateEPUB(payload.text);
 break;
 default:
 break;
 }
 }
});

You can find out more about the eBook generation process at https:/ /
pandoc. org/ epub. html.

Start your Electron application to test the resulting code.7.
Pandoc requires a document to include some specific metadata so that it can8.
generate the eBook correctly. The bare minimum is the title value. Update the
text in the editor and provide some title metadata, as shown in the following
code:

title: My First eBook

hello world

Press Cmd + Alt + E if you are on macOS or Ctrl + Alt + E for other platforms.9.

https://pandoc.org/epub.html
https://pandoc.org/epub.html
https://pandoc.org/epub.html
https://pandoc.org/epub.html
https://pandoc.org/epub.html
https://pandoc.org/epub.html
https://pandoc.org/epub.html
https://pandoc.org/epub.html
https://pandoc.org/epub.html
https://pandoc.org/epub.html

Building an eBook Editor and Generator Chapter 9

[372]

This should make your operating system invoke the default application so that10.
we can view epub files. In my case, I am using macOS and have the Books
application running and displaying the resulting book:

Well done, and congratulations on finishing this minimalistic book generator
implementation!

There are still many features you can introduce yourself if you wish to take on a practical
exercise. Try adding export functionality so that you can export your files to a particular
place while utilizing Save Dialog. Optionally, you can display generation errors on the
screen.

Summary
In this chapter, you have learned how to build an Electron application so that you can
generate various types of files. You have also learned how to use the Microsoft Monaco
Editor component to build a markdown editing experience. In addition to that, we have
walked through the process of setting up Pandoc with Docker, and you got familiar with
invoking shell commands and applications from Node.js and Electron applications.

In the next chapter, we are going to walk through another exciting exercise—building a
digital wallet application for the desktop.

10
Building a Digital Wallet for

Desktops
In this chapter, we are going to build a simple digital wallet application based on Ethereum
blockchain.

This chapter has been organized in a way that allows you to create your first Ethereum
application without in-depth knowledge of blockchain and related technologies.

You are going to use the React library with the fantastic Ant Design components. You will
also learn how to set up a personal blockchain for development purposes.

By the end of this chapter, you should have a good foundation project to build financial
applications that can work with the Ethereum blockchain.

In this chapter, we will cover the following topics:

Generating the project scaffold with React
Integrating the Ant Design library
Setting up a personal Ethereum blockchain
Configuring the Ethereum JavaScript API
Displaying Ethereum Node information
Integrating with the application menu
Rendering a list of accounts
Showing our account balance
Transferring ether from one account to another
Packaging the application for distribution

Let's start our journey by generating a new React-based project that suits our digital wallet
application's needs. But before that, let's quickly take a look at the technical requirements
for this project.

Building a Digital Wallet for Desktops Chapter 10

[374]

Technical requirements
To get started with this chapter, you will need a standard laptop or desktop running
macOS, Windows, or Linux.

The software you will need to complete this chapter is as follows:

Git, a version control system
Node.js with NPM
Visual Studio Code, a free and open source code editor

You can find the code files for this chapter in this book's GitHub repository: https:/ /
github.com/PacktPublishing/ Electron- Projects/ tree/ master/ Chapter10.

Generating the project scaffold with React
The fastest way to start the project is to use the React library and the Create React App tool.
Follow these steps to get started:

Run the following commands to generate a new React application called1.
crypto-wallet:

npx create-react-app crypto-wallet
cd crypto-wallet

Install the latest electron library with the following command:2.

npm install -D electron

As you already know, a typical Electron application requires a main entry in the
package.json file. We are going to use the public/electron.js file so that
we can create a distributable package without any effort.

Update the package.json file and add the main entry:3.

{
 "name": "crypto-wallet",
 "version": "0.1.0",
 "private": true,
 "main": "public/electron.js",
 // ...
}

https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10
https://github.com/PacktPublishing/Electron-Projects/tree/master/Chapter10

Building a Digital Wallet for Desktops Chapter 10

[375]

The scripts for React applications usually reserve the start script in order to run
the local development web server. You can use the electron script to run the
desktop version.

Append the electron command to the scripts section:4.

"scripts": {
 "electron": "electron .",
 "start": "node scripts/start.js",
 "build": "node scripts/build.js",
 "test": "node scripts/test.js"
 },

The final thing we need to do is create an electron.js file with a minimal
amount of code so that we can run the application window.

Create the electron.js file with the following content in the public folder:5.

const { app, BrowserWindow } = require('electron');

function createWindow() {
 const win = new BrowserWindow({
 width: 800,
 height: 600,
 webPreferences: {
 nodeIntegration: true
 },
 resizable: false
 });

 win.loadURL(`http://localhost:3000`);
}

app.on('ready', createWindow);

That is pretty much all you need to do to have a minimal project configuration. From now
on, you can test the web version by running the following commands in parallel Terminal
or Command Prompts windows:

npm start
npm run electron

Building a Digital Wallet for Desktops Chapter 10

[376]

Once the application is up and running, you should see an Electron window that looks as
follows:

Now that we've got the project scaffold up and running, let's integrate the Ant Design
component library so that we can build our application quickly and make it look good.

Integrating the Ant Design library
For the digital wallet application, we are going to use Ant Design components for React.

Ant Design is a design system that uses the values of nature and determinacy to enhance
the user experience of enterprise applications. Using Ant Design, you can gain access to an
extensive collection of fantastic components so that you can build your applications
quickly. Make sure you visit https:/ /ant. design/ to find out more, as well as examples
and documentation.

https://ant.design/
https://ant.design/
https://ant.design/
https://ant.design/
https://ant.design/
https://ant.design/
https://ant.design/
https://ant.design/

Building a Digital Wallet for Desktops Chapter 10

[377]

The first thing we are going to do is install the Ant Design library. We are also going to
implement a traditional application layout that contains a header, footer, sidebar, and main
content area. Let's take a look at the steps for installation:

Run the following command to install the antd library into your project:1.

npm install antd

There are multiple ways to configure antd with your project. Please refer
to the following link if you need more information: https:/ /ant. design/
docs/ react/ introduce.

Open index.css and append the following style to it:2.

html,
body,
#root {
 height: 100%;
 width: 100%;
}

In the preceding code, we are making the application take up the full page size.
You should also update App.css with a couple of new style rules to make the
layout look neat and tidy.

Replace the content of the App.css file with the following content:3.

.App {
 height: 100%;
}

.App > .ant-layout {
 height: 100%;
}

Besides this, we are going to take some styling from the Ant examples for the
Layout component.

Append a few additional rules to make the layout look good:4.

.ant-layout-header,

.ant-layout-footer {
 background: #7dbcea;
 color: #fff;
}
.ant-layout-footer {

https://ant.design/docs/react/introduce
https://ant.design/docs/react/introduce
https://ant.design/docs/react/introduce
https://ant.design/docs/react/introduce
https://ant.design/docs/react/introduce
https://ant.design/docs/react/introduce
https://ant.design/docs/react/introduce
https://ant.design/docs/react/introduce
https://ant.design/docs/react/introduce
https://ant.design/docs/react/introduce
https://ant.design/docs/react/introduce
https://ant.design/docs/react/introduce

Building a Digital Wallet for Desktops Chapter 10

[378]

 line-height: 1.5;
}
.ant-layout-sider {
 background: #3ba0e9;
 color: #fff;
 line-height: 120px;
}
.ant-layout-content {
 background: rgba(16, 142, 233, 1);
 color: #fff;
 min-height: 120px;
 line-height: 120px;
}

All of the styles we need for the initial setup are now in place. Switch to the
App.js component code to build the component tree.

Update the imports section by adding the antd styles and components:5.

import React from 'react';

import 'antd/dist/antd.css';
import './App.css';

import { Layout } from 'antd';
const { Header, Footer, Sider, Content } = Layout;

Note how we import App.css after antd.css. The order of imports is
essential as it allows you to customize the styles of the components on top
of what Ant Design already provides.

Replace the component function with the updated template according to the6.
following code:

function App() {
 return (
 <div className="App">
 <Layout>
 <Header>Header</Header>
 <Layout>
 <Sider>Sider</Sider>
 <Content>Content</Content>
 </Layout>
 <Footer>Footer</Footer>
 </Layout>
 </div>

Building a Digital Wallet for Desktops Chapter 10

[379]

);
}

You can find multiple layout examples at https:/ /ant. design/
components/ layout/ .

Run the application to see what the main page looks like:7.

This is the initial layout for our digital wallet application. It has header and footer blocks,
along with a sidebar and main content area.

Now, it's time to set up a personal Ethereum blockchain so that we can test the application
on demo data and accounts without spending real money.

Setting up a personal Ethereum blockchain
You don't need to create a real Ethereum wallet or register any accounts to test the
application. In this section, we are going to set up a personal Ethereum blockchain that you
can use for application development purposes. You also need an amount of virtual money
to test how the application works without putting any real money at risk.

https://ant.design/components/layout/
https://ant.design/components/layout/
https://ant.design/components/layout/
https://ant.design/components/layout/
https://ant.design/components/layout/
https://ant.design/components/layout/
https://ant.design/components/layout/
https://ant.design/components/layout/
https://ant.design/components/layout/
https://ant.design/components/layout/
https://ant.design/components/layout/

Building a Digital Wallet for Desktops Chapter 10

[380]

The easiest way to get started with Ethereum development is to use the Ganache tool.
Ganache positions itself as a One-Click Blockchain for developers and allows you to do the
following:

Quickly fire up a personal Ethereum blockchain that you can use to run tests, execute
commands, and inspect state while controlling how the chain operates

(https://www. trufflesuite. com/ ganache)

You can find out more about this tool at https:/ /www. trufflesuite. com/ ganache.

Setting up the tool is straightforward and doesn't take much time. Follow these steps to
install it on your local machine:

Navigate to the https:/ /www. trufflesuite. com/ ganache website and find the1.
download button on the main page, as shown in the following screenshot:

https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache

Building a Digital Wallet for Desktops Chapter 10

[381]

You should see different buttons, depending on the operating system
you're using. In my case, I received macOS option, but you can always
click the Need another OS download? link to see of all the available
downloads.

Run the application installer. For macOS, you should see a standard installer2.
experience where you can drag and drop the executable into the Applications
folder:

Building a Digital Wallet for Desktops Chapter 10

[382]

Run the application. On the first run, you should see an Analytics consent3.
dialog, asking you to enable or disable application analytics:

It is up to you to choose whether to leave with analytics enabled or go fully
anonymous.

Click the Continue button. At this point, you should see the standard landing4.
page for the application. It should look as follows:

Building a Digital Wallet for Desktops Chapter 10

[383]

You are going to see Quickstart and New Workspace each time the application
starts so that you can decide on what type of actions you want to perform. For
now, I strongly recommend going to Quickstart so that you have a one-click
blockchain ready for development and testing.

Click the Quickstart button. You should see the main application interface, along5.
with a list of accounts on the main page.

Feel free to explore the options you have and all of the pages and dialog.
You can also refer to the online documentation (https:/ /www.
trufflesuite. com/ docs/ ganache/ overview) and examples if you want to
find out more about the tool.

Note that you also get a few out-of-the-box accounts that have 100 Ether each:

This should be more than enough for you to build a digital wallet application that works
with multiple accounts. Having some Ether on each account also helps us to develop and
test the transfer functionality without having to spend any money.

https://www.trufflesuite.com/docs/ganache/overview
https://www.trufflesuite.com/docs/ganache/overview
https://www.trufflesuite.com/docs/ganache/overview
https://www.trufflesuite.com/docs/ganache/overview
https://www.trufflesuite.com/docs/ganache/overview
https://www.trufflesuite.com/docs/ganache/overview
https://www.trufflesuite.com/docs/ganache/overview
https://www.trufflesuite.com/docs/ganache/overview
https://www.trufflesuite.com/docs/ganache/overview
https://www.trufflesuite.com/docs/ganache/overview
https://www.trufflesuite.com/docs/ganache/overview
https://www.trufflesuite.com/docs/ganache/overview
https://www.trufflesuite.com/docs/ganache/overview
https://www.trufflesuite.com/docs/ganache/overview

Building a Digital Wallet for Desktops Chapter 10

[384]

Leave the Ganache application running for now. It is going to be our backend service for
the rest of this chapter.

Next, let's learn how to enable a typical Electron application with Ethereum support. I am
going to explain how to install and configure the JavaScript library so that it can work with
Ethereum protocols.

Configuring the Ethereum JavaScript API
In this section, we are going to set up a web3.js library with our Electron application.
web3.js is a collection of libraries that allow you to interact with a local or remote
Ethereum node using an HTTP or IPC connection. You can find out more on the official
documentation website: https:/ /web3js. readthedocs. io.

Make sure you also visit the GitHub repository if you are interested in the
library: https:/ / github. com/ ethereum/ web3. js/ .

Let's learn how to set up and integrate the web3 library with our Electron application and
see how it works:

Install the web3 library with the following command:1.

npm i web3

Update the App.js file and add the following code to import the Web3 client,2.
which works with port 7545, onto your local machine:

import Web3 from 'web3';
const web3 = new Web3('ws://localhost:7545');

function App() {
 console.log(web3);

 return (
 <div className="App">
 <Layout>
 <Header>Header</Header>
 <Layout>
 <Sider>Sider</Sider>
 <Content>Content</Content>
 </Layout>
 <Footer>Footer</Footer>

https://web3js.readthedocs.io
https://web3js.readthedocs.io
https://web3js.readthedocs.io
https://web3js.readthedocs.io
https://web3js.readthedocs.io
https://web3js.readthedocs.io
https://web3js.readthedocs.io
https://web3js.readthedocs.io
https://web3js.readthedocs.io
https://github.com/ethereum/web3.js/
https://github.com/ethereum/web3.js/
https://github.com/ethereum/web3.js/
https://github.com/ethereum/web3.js/
https://github.com/ethereum/web3.js/
https://github.com/ethereum/web3.js/
https://github.com/ethereum/web3.js/
https://github.com/ethereum/web3.js/
https://github.com/ethereum/web3.js/
https://github.com/ethereum/web3.js/
https://github.com/ethereum/web3.js/
https://github.com/ethereum/web3.js/
https://github.com/ethereum/web3.js/
https://github.com/ethereum/web3.js/

Building a Digital Wallet for Desktops Chapter 10

[385]

 </Layout>
 </div>
);
}

By default, Ganache runs on port 7545. We are going to use this port in all
the following examples, but you can change it to serve another port in the
application settings.

Make sure you import the Web3 object at the top of the file; otherwise, you may
get runtime errors.

The preceding code doesn't do much. Here, we created a new client and sent the
instance to the console log output to see its contents. Right now, we need to
ensure that the library works as expected.

Run the application and enable the developer tools. You should see the following3.
output in the Console window:

Building a Digital Wallet for Desktops Chapter 10

[386]

As you can see, the console output contains a JavaScript object with multiple properties and
methods. This means that our React application has the Web3.js library embedded inside
it and is running on startup.

At this point, you are ready to make a cross-platform Electron application that utilizes the
Ethereum protocols. The web3 library is up and running, and you are ready to make API
calls against the locally running node.

In the next section, we are going to connect to the Ganache instance on our local machine
and display information about the current Ethereum node.

Displaying Ethereum Node information
Retrieving node information is the first thing we can do to test that the application can
connect to our locally running blockchain via the Ganache server.

In this section, we are going to retrieve some basic information and display it in the Header
section of the main application page.

We shall touch on the following important aspects in this section:

Getting information about the currently running Ethereum node
Presenting node information to users on the screen

First, let's learn how to fetch node information.

Getting node information
We already have a web3 client instance. We can use the following API to gather
information about the current node:

web3.eth.getNodeInfo(callback)

Let's see how this works in the React application that we are building:

Insert the following code right after creating the Web3 instance:1.

const web3 = new Web3('ws://localhost:7545');
console.log(web3);

web3.eth.getNodeInfo(function(error, result) {
 if (error) {

Building a Digital Wallet for Desktops Chapter 10

[387]

 console.error(error);
 } else {
 console.log('result', result);
 }
});

As soon as you run the application, the console log should contain the following2.
information:

result EthereumJS TestRPC/v2.8.0/ethereum-js

You are making good progress so far. Let's display the node information in the user
interface on startup. We are going to use the React Hooks feature for this.

To find out more about React Hooks, please refer to the official
documentation: https:/ /reactjs. org/ docs/ hooks- intro. html.

Rendering node information in the header
You already know how to get information about your local Ethereum node, so now is a
good time to render this information in the user interface. For the sake of simplicity, I
recommend putting it into the Header area so that our users can always see what node they
are working with.

Let's introduce the node and setNode React Hooks:

Update the App.js implementation according to the following code:1.

import React, { useState } from 'react';

function App() {
 const [node, setNode] = useState('Unknown Node');

 // ...
}

Now, you can use the node hook to display the node's information or Unknown
Node in case errors occur. You can also use setNode to update the node's
information. This is what we are now going to do.

https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html

Building a Digital Wallet for Desktops Chapter 10

[388]

Update the getNodeInfo call, as shown in the following code:2.

web3.eth.getNodeInfo(function(error, result) {
 if (error) {
 console.error(error);
 } else {
 setNode(result);
 }
 });

Switch to the web application and check the Header area. The main page should 3.
now look as follows:

Congratulations on scoring another goal. Now, your application has a header component
that displays information about the current Ethereum node that you created with the
Ganache tool.

Now that you're familiar with how the web3.js library works, we are going to display a
list of accounts that you have in your Ethereum node.

It is a good idea to integrate the application menu as well. We're going to allow our users to
see node information from the Help menu.

Building a Digital Wallet for Desktops Chapter 10

[389]

Integrating with the application menu
In this section, we are going to perform a basic integration with the application menu. You
are going to create a Help/About Node menu that sends the show-node-info command to
the renderer process. Our React application is going to handle the command and display a
simple alert box with the Ethereum node information. Later on, you can provide a more
sophisticated dialog with detailed information.

Let's start with the main process and the Menu template:

Switch to the public/electron.js file and import the Menu object from the1.
Electron framework:

const { app, BrowserWindow, Menu } = require('electron');

Append the Menu code from the following listing to the bottom of file:2.

Menu.setApplicationMenu(
 Menu.buildFromTemplate([
 {
 label: 'Help',
 submenu: [
 {
 label: 'About Node',
 click() {
 const window = BrowserWindow.getFocusedWindow();
 window.webContents.send('commands', 'show-node-info');
 }
 }
]
 }
])
);

As you can see, we find the browser window and send the show-node-info
payload via the commands channel. Now, it's time to update the renderer process
and the src/App.js file.

Building a Digital Wallet for Desktops Chapter 10

[390]

Update the useEffect block in the App.js file according to the following code:3.

useEffect(() => {
 // ...
 if (window.require) {
 const electron = window.require('electron');
 const ipcRenderer = electron.ipcRenderer;
 const showNodeInfo = (_, command) => {
 if (command === 'show-node-info') {
 window.alert(`Node: ${node}`);
 }
 }
 ipcRenderer.on('commands', showNodeInfo);
 return () => {
 ipcRenderer.off('commands', showNodeInfo);
 }
 }
 }, [node]);

The preceding code is pretty straightforward. We gain access to ipcRenderer
and start listening to the commands channel. In the show-node-info payload, we
show the alert, along with the node information.

Start the web server and then the Electron application. Now, we can check out4.
the Help/About Node menu.

You should be able to see the same node information that the application displays in the
header. The next thing we need to do is render the list of the accounts we have inside our
node.

Rendering a list of accounts
You have already managed to configure the Ethereum JavaScript client with the Electron
application and got the node information in the Header area. In this section, we are going to
display a list of accounts in the tree component and place it into the sidebar area.

As you may have noticed, the account names are quite long and may not fit in their
dedicated area. We are going to make the sidebar scrollable vertically and stop the content
from overlapping so that it's hidden under the main content area.

Building a Digital Wallet for Desktops Chapter 10

[391]

Let's start by changing the main application stylesheet and disabling the layout overflow
for our sider component:

Update the App.css file and extend the ant-layout-sider style:1.

.ant-layout-sider {
 background: #3ba0e9;
 color: #fff;
 line-height: 120px;

 overflow: hidden;
 overflow-y: scroll;
}

Now, we need to have a dedicated pair of hooks to store the account list.

Update the App.js file and add the new hooks, as shown in the following code:2.

function App() {
 const [node, setNode] = useState('Unknown Node');
 const [accounts, setAccounts] = useState([]);

 // ...
}

Import useEffect from the React namespace and create the following effect,3.
which loads the account list from Ganache:

import React, { useState, useEffect } from 'react';

function App() {
 //...

 useEffect(() => {
 web3.eth.getAccounts(function(error, accounts) {
 if (error) {
 console.error(error);
 } else {
 setAccounts(accounts);
 }
 });
 // ...
});

Building a Digital Wallet for Desktops Chapter 10

[392]

As you can see, we're using the web3.eth.getAccounts API that the web3
library provides to retrieve a list of accounts. If there are no errors during the API
call, we can use the setAccounts hook with the newly received value. This value
is going to be an array of strings.

Import the Tree and TreeNode components from the Ant Design library:4.

import { Tree } from 'antd';
const { TreeNode } = Tree;

You can find examples of the Tree component in the official
documentation: https:/ /ant.design/ components/ tree/ . Make sure you
check the API and the documentation on the component if you decide to
have more complicated scenarios that contain Tree nodes.

Replace the Slider placeholder block with the following code:5.

<Sider>
 <Tree>
 <TreeNode title="Accounts" key="accounts">
 {accounts.map(account => (
 <TreeNode key={account} title={account}></TreeNode>
))}
 </TreeNode>
 </Tree>
</Sider>

Here, we've built a root Accounts node and dynamically created child nodes
according to the state of the accounts hook.

Run the web application and check out the sidebar. The left sidebar area should6.
now look as follows:

https://ant.design/components/tree/
https://ant.design/components/tree/
https://ant.design/components/tree/
https://ant.design/components/tree/
https://ant.design/components/tree/
https://ant.design/components/tree/
https://ant.design/components/tree/
https://ant.design/components/tree/
https://ant.design/components/tree/
https://ant.design/components/tree/
https://ant.design/components/tree/
https://ant.design/components/tree/

Building a Digital Wallet for Desktops Chapter 10

[393]

Now, your application displays a list of Ethereum accounts.

Before we move on to the next section, let's improve the application's presentation. We are
going to trim the account names to 10 characters and append the ellipsis symbol to the end
of each name. Follow these steps to do so:

Add the formatAccountName function inside the component:1.

const formatAccountName = name => {
 if (name && name.length > 10) {
 return `${name.substring(0, 10)}...`;
 }
 return 'Noname';
};

Building a Digital Wallet for Desktops Chapter 10

[394]

Update the Tree component according to the following code:2.

<TreeNode title="Accounts" key="accounts">
 {accounts.map(account => (
 <TreeNode
 key={account}
 title={formatAccountName(account)}
 ></TreeNode>
))}
</TreeNode>

This time, the list of accounts should look slightly better:3.

You can keep improving the look and feel of your application even more
if you want to. For example, you can add a tooltip with the full account
name, show icons next to titles, change the colors of the element
backgrounds, and so on.

Another essential part of our wallet application is a display of the account balance. This is
what we are going to address in the next section.

Building a Digital Wallet for Desktops Chapter 10

[395]

Showing our account balance
At this point, you have a few accounts in the local Ethereum node. We have also managed
to render a tree of account names so that our users can see all of them in the user interface.

Given that each account may contain various amounts of money, it is very important to
allow users to see the balance of each account from the application.

Using the following steps, we are going to wire the account tree component to the main
content area and display the balance of the selected account:

Introduce a pair of hooks for the current account balance:1.

function App() {
 const [node, setNode] = useState('Unknown Node');
 const [accounts, setAccounts] = useState([]);
 const [balance, setBalance] = useState(0);

 //
}

To get the balance of a particular account, you need to use the
web3.eth.getBalance API from the Web3 library. This means we need a
selection handler for the Tree component, and the handler needs to call the API
and use the setBalance hook to save the value.

Add the onSelectAccount function inside the component function:2.

const onSelectAccount = keys => {
 const [account] = keys;

 if (account && account !== 'accounts') {
 web3.eth.getBalance(account).then(function(result) {
 setBalance(web3.utils.fromWei(result, 'ether'));
 });
 } else {
 setBalance(0);
 }
};

Now, we need to assign onSelectAccount to the Tree selection event.

Building a Digital Wallet for Desktops Chapter 10

[396]

Update the Tree component declaration with the onSelect attribute, as shown3.
in the following code:

<Tree onSelect={onSelectAccount}>
 <TreeNode title="Accounts" key="accounts">
 {accounts.map(account => (
 <TreeNode
 key={account}
 title={formatAccountName(account)}
 ></TreeNode>
))}
 </TreeNode>
</Tree>

Now, all we need to do is display the value to the users. To do this, we can use
the Statistic component from the Ant Design library.

Import the Statistic component using the following code:4.

import { Layout, Tree, Statistic } from 'antd';

Replace the Content element placeholder with the following code:5.

<Content>
 <Statistic
 title="Account Balance (Eth)"
 value={balance}
 precision={2}
 />
</Content>

This is the minimal amount of configuration we need in order to get the balance
feature working in our application.

Reload the page and try clicking on the account entries. The main content area6.
should show the different account balances, as shown in the following
screenshot:

Building a Digital Wallet for Desktops Chapter 10

[397]

Notice that you can click on the same account a second time to deselect it. The account
balance label should revert to zero, as per our selection handler implementation.

Now that we know how to display the account balance, let's learn how the transfer process
works.

Transferring Ether to another account
So far, you have a list of accounts in the sidebar and can see the balance of each account by
selecting them. Now, it's time to implement transfers between accounts.

First of all, we need at least three parameters to perform a successful transaction:

Source account
Target account
Amount to transfer

Building a Digital Wallet for Desktops Chapter 10

[398]

We are going to use React Hooks since this is the most efficient and fastest way to get
started. You need at least three pairs of hooks. Let's get started:

Introduce a pair of React hooks for each attribute:1.

const [account, setAccount] = useState(null);
const [targetAccount, setTargetAccount] = useState(null);
const [transferAmount, setTransferAmount] = useState(0);

We already handle account selection via the onSelectAccount function. This
function can also be updated to keep track of the selected account so that we can
use that value to perform transactions.

Update the onSelectAccount function so that you can set and reset the2.
account state:

const onSelectAccount = keys => {
 const [account] = keys;

 if (account && account !== 'accounts') {
 web3.eth.getBalance(account).then(function(result) {
 setBalance(web3.utils.fromWei(result, 'ether'));
 setAccount(account);
 });
 } else {
 setBalance(0);
 setAccount(null);
 }
 };

Now, you need a form to collect all of the user input and a button to perform the
transaction. The Ant Design library can provide you with everything you need.

Import the following extra components to build the form:3.

import { Layout, Tree, Statistic, Select, Form, Input, Button,
message } from 'antd';

At this point, you can start building the form layout. You already have the
account state maintained, so let's display it at the top of the form.

Insert the following code inside the Form component:4.

<Content>
 <Statistic
 title="Account Balance (Eth)"
 value={balance}

Building a Digital Wallet for Desktops Chapter 10

[399]

 precision={2}
 />
 <Form style={{ width: 450 }}>
 <Form.Item>
 <Input value={account} disabled={true}></Input>
 </Form.Item>
 </Form>
 </Content>

As you can see, we're showing the input element but are preventing our users
from editing it. The only way to change the field is to pick another account from
the tree component in the sidebar.

The next field should allow users to pick the target account. We should already
have a list of accounts to back the tree component. We can use the account list to
build the picker component.

Append the following input to the Form component:5.

<Form.Item>
 <Select
 placeholder="Select target account"
 onChange={value => setTargetAccount(value)}
 >
 {accounts
 .filter(acc => acc !== account)
 .map(account => (
 <Select.Option key={account} value={account}>
 {account}
 </Select.Option>
))}
 </Select>
</Form.Item>

Note that we don't allow the target account to be used as the source
account. Each time Select is rendered, we filter out the selected account
from the list.

The third field in Form is the number input so that we can provide the amount we
wish to transfer.

Append the Input component to Form, as shown in the following code:6.

<Form.Item>
 <Input
 type="number"

Building a Digital Wallet for Desktops Chapter 10

[400]

 min="0"
 placeholder="Amount"
 value={transferAmount}
 onChange={e => setTransferAmount(e.target.value)}
 ></Input>
</Form.Item>

Add the Transfer button to the bottom of the Form:7.

<Button disabled={!canTransfer()} onClick={onTransferClick}>
 Transfer
</Button>

As you can see, the button needs two additional functions: canTransfer, which
controls the state of the button, and the onTransferClick event handler for the
click event.

Add the button-related functions to the component function:8.

const canTransfer = () => {
 return account && targetAccount && transferAmount &&
transferAmount > 0;
};

const onTransferClick = () => {
 console.log('from', account);
 console.log('to', targetAccount);
 console.log('amount', transferAmount);
};

canTransfer allows you to disable button unless the following criteria are met:

The account is selected in the sidebar.
The target account is selected.
The transfer amount is provided and it's a non-zero number.

As for the onTransferClick code, we send the form values to the console log for
now.

Building a Digital Wallet for Desktops Chapter 10

[401]

Run the web application and try entering some data. However, leave the amount9.
input with the default zero value. Note that the Transfer button is disabled:

Building a Digital Wallet for Desktops Chapter 10

[402]

Set the transfer amount field to a non-zero value such as 5. This time, the10.
Transfer button will be enabled:

You can try changing the value to see how the button reacts to the values
you enter in real time.

Building a Digital Wallet for Desktops Chapter 10

[403]

Click the Transfer button and check the browser's console log. You should see11.
the following output:

from 0x528D7a95fCc59C5CCcb3e7f76Ad36b512b223776
to 0xcc188bbcEA06832AB2ce4F5677D07b922a96bF0a
amount 5

As you can see, all three parameters are collected upon the Transfer button being
clicked. Now is an excellent time to implement the transaction functionality.

Replace onTransferClick with the following code:12.

const onTransferClick = () => {
 const transaction = {
 from: account,
 to: targetAccount,
 value: web3.utils.toWei(transferAmount, 'ether')
 };
 web3.eth.sendTransaction(transaction, function(error, hash) {
 if (error) {
 console.error('Transaction error', error);
 } else {
 message.info(`Successfully transferred ${transferAmount}.
Hash: ${hash}`);
 onSelectAccount([account]);
 setTransferAmount(0);
 }
 });
};

In the preceding code, we built the transaction payload and converted the
number value into the expected format. Then, we used the
web3.eth.sendTransaction API to perform the actual transaction and raised a
message popup as soon as the function call succeeded.

Finally, we reloaded the current account information by invoking the
onSelectAccount handler. We also reset the current transfer amount input so
that our users can't perform another transaction by mistake.

Building a Digital Wallet for Desktops Chapter 10

[404]

Fill in all of the form parameters and click on the Transfer button. You should13.
see the following output:

We have successfully transferred some Ether from one account to another.

For more details about the message component, as well as documentation
and examples, please refer to https://ant.design/components/message/.

Congratulations on completing this section! Now, you have a working digital wallet
application. Finally, let's learn how to prepare the application for packaging.

Packaging the application for distribution
In this section, we are going to learn how to package the Electron application for
distribution.

https://ant.design/components/message/

Building a Digital Wallet for Desktops Chapter 10

[405]

Let's start by installing the electron-builder library and configuring the package scripts:

Run the following command to install the library:1.

npm install -D electron-builder

You can find more information, examples, and documentation about the
electron-builder library by visiting the official repository: https:/ /
github. com/ electron- userland/ electron- builder.

Update the package.json file and include the pack-app and dist-app scripts.2.
Also, provide the homepage address, as shown in the following code:

"homepage": "./",
"scripts": {
 "electron": "electron .",
 "start": "react-scripts start",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject",
 "pack-app": "electron-builder --dir -c.mac.identity=null",
 "dist-app": "electron-builder"
 },

We are going to use the pack-app script for testing purposes. With the --dir
switch, the Electron Builder tool generates the output without actually packaging
it for production use. Developers typically use this mode to test the packaging
and structure. For production use, you should use the dist-app script.

Don't run the scripts just yet—we still need to configure the project so that we can
use the compiled resources (instead of the http://localhost:3000 address)
with live reloading for development purposes.

Update the package.json file and append the Electron builder configuration, as3.
shown in the following code:

"build": {
 "files": [
 "build/**/*"
]
}

https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder

Building a Digital Wallet for Desktops Chapter 10

[406]

Install the electron-is-dev library with the following command:4.

npm install electron-is-dev

This library allows you to detect whether your Electron project is running in
development mode or whether the code is being executed by the packaged
application.

You can find the source code for this library in the following GitHub
repository: https:/ / github. com/ sindresorhus/ electron- is- dev.

Update the public/electron.js file, as follows:5.

const { app, BrowserWindow } = require('electron');
const isDev = require('electron-is-dev');

function createWindow() {
 const win = new BrowserWindow({
 width: 800,
 height: 600,
 webPreferences: {
 nodeIntegration: true
 },
 resizable: false
 });

 win.loadURL(
 isDev
 ? 'http://localhost:3000'
 : 'index.html'
);
}

app.on('ready', createWindow);

Update the public/index.html file and add the following meta element:6.

<meta
 http-equiv="Content-Security-Policy"
 content="script-src 'self' 'unsafe-inline';"
/>

https://github.com/sindresorhus/electron-is-dev
https://github.com/sindresorhus/electron-is-dev
https://github.com/sindresorhus/electron-is-dev
https://github.com/sindresorhus/electron-is-dev
https://github.com/sindresorhus/electron-is-dev
https://github.com/sindresorhus/electron-is-dev
https://github.com/sindresorhus/electron-is-dev
https://github.com/sindresorhus/electron-is-dev
https://github.com/sindresorhus/electron-is-dev
https://github.com/sindresorhus/electron-is-dev
https://github.com/sindresorhus/electron-is-dev
https://github.com/sindresorhus/electron-is-dev
https://github.com/sindresorhus/electron-is-dev
https://github.com/sindresorhus/electron-is-dev
https://github.com/sindresorhus/electron-is-dev

Building a Digital Wallet for Desktops Chapter 10

[407]

Now, you can create and test the application package by running the following7.
commands:

npm run build
npm run pack-app

For production use, you may need to run the following commands:

npm run build
npm run dist-app

We have successfully prepared the installation packages for the distribution of our Electron
application. If you want to find out more about the Electron Builder application, please refer
to the official repository: https:/ /github. com/ electron- userland/ electron- builder.

Summary
In this chapter, you successfully created a basic digital wallet application that talks to the
Ethereum blockchain and provides Ether transfer capabilities between your accounts. Now,
you can build Electron applications that are powered by the stunning Ant Design language
and its vast component library.

We also walked through the process of setting up a local Ethereum blockchain that we can
use across multiple projects without putting real money at risk. You can find the final
source code for this project in the crypto-wallet folder. Good luck with extending the
application and providing even more great features!

Now, you have reached the end of this book. I hope you have liked building Electron
projects with various features backed by modern and popular frameworks.

Throughout this book, you have how to create and package Electron applications. We also
addressed window management, keyboard handling, and native application menus. You
built multiple projects that demonstrate the ease of Electron development.

I wish you luck in using the knowledge you have attained from this book to build feature-
rich and cross-platform applications that are powered by web technologies and the Electron
framework.

https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder
https://github.com/electron-userland/electron-builder

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Getting Started with Qt 5
Benjamin Baka

ISBN: 978-1-78995-603-0

Set up and configure your machine to begin developing Qt applications
Discover different widgets and layouts for constructing UIs
Understand the key concept of signals and slots
Understand how signals and slots help animate a GUI
Explore how to create customized widgets along with signals and slots
Understand how to subclass and create a custom windows application
Understand how to write applications that can talk to databases.

https://www.packtpub.com/application-development/getting-started-qt-5

Other Books You May Enjoy

[409]

Angular Projects
Zama Khan Mohammed

ISBN: 978-1-83855-935-9

Set up Angular applications using Angular CLI and Angular Console
Understand lazy loading using dynamic imports for routing
Perform server-side rendering by building an SEO application
Build a Multi-Language NativeScript Application with Angular
Explore the components library for frontend web using Angular CDK
Scale your Angular applications using Nx, NgRx, and Redux

https://www.packtpub.com/web-development/angular-projects

Other Books You May Enjoy

[410]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
account balance
 displaying 395, 396, 397
analytics 242, 243
analytics services
 creating 244
analytics-tracking
 setting up 250
Angular Material components
 application, testing with material toolbar 290
 Browser Animations module, adding 287
 creating 287
 default theme, configuring 288
 Material Icons library, adding 288
 navigation bar, adding 288, 289
 reference link 106
 using 106, 107
Angular Material
 installing, for modifications 107, 108
Angular project scaffold
 generating 92, 93, 94
Angular project
 creating 275, 276
 Electron shell, configuring 277, 279
 integrating, with Electron 95, 97, 98, 99
Angular Quickstart
 URL 91
Angular
 routing 110, 111, 113, 114, 115, 116, 117
Ant Design library
 integrating 376, 377, 378, 379
 URL 376
application menu
 integrating 38, 39, 40
 Open and Save features, integrating with 348,

349, 350, 351

application name
 configuring, in menu 49, 50, 51
application programming interfaces (APIs) 7
application title
 modifying 88
application updates
 handling 262, 263, 264
application windows
 dragging 165
 hiding, on startup 178, 179
application
 behavior, testing 175, 176
 integrating, with system tray 176, 177, 178
automatic update configuration
 reference link 81
automatic updates
 supporting 77, 78, 79, 81, 82, 84
 testing 85, 86, 87

B
background images
 rendering 190, 191, 192
blueprint UI toolkit
 URL 128
book generator
 Docker, installing 352, 354, 356
 documents, sending to Node.js process 359,

360, 361, 362
 Pandoc container, executing 356, 358
 setting up 351, 352

C
chat component placeholder
 preparing 295, 296
chromes 155
code
 updating, with React Hooks 339, 340

[412]

conditional loading
 setting up 104, 105, 106
confirmation messages
 sending, to main process 54, 55
custom menu item
 creating 40, 41, 42, 43

D
desktopCapturer API
 reference link 168
 using 167, 168
development environment
 preparing 8
dialogs
 reference link 64
digital wallet application
 account balance, displaying 395, 396, 397
 Ant Design library, integrating 376, 377, 378,

379

 Ether, transferring to another account 397, 399,
400, 402, 403, 404

 Ethereum JavaScript API, configuring 384, 385,
386

 Ethereum node information, displaying 386
 Ethereum node information, rendering in header

387, 388
 list of accounts, rendering 390, 391, 392, 394
 menu, integrating 389, 390
 packaging, for distribution 404, 406, 407
 personal Ethereum blockchain, setting up 379,

380, 381, 382, 383, 384
 project scaffold, generating with React 374, 375,

376

Docker commands, invoking from Electron
 about 362
 markdown text, saving to local drive 363, 364,

365, 366
 markdown text, sending to Node.js process 362
Docker Desktop
 reference link 354
Docker
 installing 352, 354, 356
 URL 352
documents
 sending, to Node.js process 359, 360, 361, 362

drag and drop support
 adding 74, 75, 76
drag and drop, HTML5
 reference link 75

E
eBook generation process
 reference link 371
editor component
 installing 330, 332, 333, 334, 335
 integrating 34
editor-event 54
ejection process
 reference link 330
Electron application, building with Angular
 about 91, 92
 Angular Material components, using 106, 107
 Angular project scaffold, generating 92, 93, 94
 Angular project scaffold, integrating with Electron

95, 97, 98, 99
 Angular, routing 110, 111, 113, 114, 115, 116,

117

 conditional loading, setting up 104, 105, 106
 live reloading, configuring 99, 100, 101
 Material Toolbar component, adding 108, 109,

110

 modifications, creating by Angular Material
installation 107, 108

 production builds, setting up 102, 103, 104
 testing, in browser 102
Electron application, building with React
 about 117
 application menu, adding 129, 130, 131
 blueprint UI toolkit, using 128
 conditional loading, setting up 127, 128
 final touches 133, 134
 live reloading 122, 123, 124, 125
 production builds, setting up 125, 126, 127
 React project, generating 118, 119, 120, 121,

122

 routing, adding 131, 132, 133
Electron application, building with Vue.js
 about 135, 136, 137, 138, 139
 application toolbar, creating 149, 150, 152
 conditional loading, setting up 144, 145, 146

[413]

 live reloading 141, 142, 143
 production builds 143, 144
 reference link 135
 routing, adding 146, 147, 148
 Vue configuration file, creating 139, 140, 141
 Vue Material, configuring 148, 149
Electron applications
 licenses, checking 271
 Nucleus, using for 245, 246
Electron Builder
 reference link 407
Electron shell
 configuring 277, 279
 integrating 337, 338, 339
 verifying 325, 326
Electron-based applications
 reference link 7
electron-builder
 about 20
 reference link 20
Electron
 about 7
 Angular project, integrating with 95, 97, 98, 99
environment
 setting up, for macOS 9
 setting up, for Ubuntu Linux 11
 setting up, for Windows 12
ePub books
 generating 369, 370, 371, 372
error handling 294
Ethereum JavaScript API
 configuring 384, 385, 386
Ethereum node information
 displaying 386
 obtaining 386
 rendering, in header 387, 388

F
file menu
 creating 72, 73, 74
files
 loading 342, 343, 344, 345
 loading, from local system 68, 69, 70, 71
 saving 346, 347
 saving, to local system 59, 61, 62, 63

final structure
 reviewing 237, 238, 239
Firebase account
 creating 280, 281, 282, 283, 284
Firebase application
 creating 284, 285, 286
Firebase authentication
 login dialog, connecting to 297
frameless windows
 configuring 155, 156, 157
 reference link 155
Free Music Archive website
 reference link 209

G
game project
 configuring 183, 184, 185, 186, 187
Git
 installing, on macOS 9
 installing, on Ubuntu 11
 installing, on Windows 12, 13
global keyboard shortcuts
 registering 179, 180, 181
global server settings
 loading 264, 266
Google Firebase, pricing plans
 reference link 284
Google Firebase
 URL 280
Google Material Icons
 download link 225
group list
 real-time updates, testing 312, 314
 rendering 310, 311, 312
group messages page
 implementing 314, 316
group messages
 displaying 316, 318, 319
 ideas, for enhancements 325
 message list interface, updating 324
 query performance, improving 320, 321
 sending 321, 322, 323

[414]

H
hello world application
 creating 15, 16, 17, 18, 19, 20
Hello World example
 running 187, 188, 189

K
keyboard accelerators 46, 47
keyboard input
 handling 195, 196, 197
keyboard shortcuts
 controlling 340, 341
 files, loading 342, 343, 344, 345
 files, saving 345, 347
Keygen
 URL 267

L
license policies
 about 266, 267
 creating 267, 268, 269, 270
licenses
 checking 266, 267
 checking, in Electron application 271
list of accounts
 rendering 390, 391, 392, 394
list query
 reference link 325
live reloading
 about 122
 configuring 99, 100, 101
local system
 files, loading from 68, 69, 70, 71
 files, saving to 59, 61, 62, 63
locked mode 306
login dialog
 building 290, 291, 292
 chat component placeholder, preparing 295, 296
 connecting, to Firebase authentication 297
 demo accounts, creating 300, 301
 error handling 294
 integrating, with Firebase 302, 303, 305
 Material interface, implementing 292, 293, 294
 sign-in provider, enabling 297, 298, 299

Long-Term Support (LTS) version 10, 14

M
macOS, additional options
 about 158
 customButtonsOnHover titleBarStyle, using 159,

160

 hidden titleBarStyle, using 158, 159
 hiddenInset titleBarStyle, using 159
macOS
 environment, setting up for 9
 Git, installing on 9
 Node.js, installing on 10
 reference link 356
main process
 confirmation messages, sending to 54, 55
Markdown Editor application
 component, integrating 34, 35, 36, 37
 project, configuring 31, 32, 33
Material Design Icons
 download link 220, 222
Material interface
 implementing 292, 293, 294
Material Toolbar component
 adding 108, 109, 110
 URL 108
menu item roles
 defining 43, 44
 reference link 44
menu items
 hiding 51, 52, 53
menu separators
 providing 45, 46
menu
 application name, configuring in 49, 50, 51
messages
 sending, between processes 53, 54
 sending, to renderer process 56, 57
Monaco Editor
 reference link 357
music metadata
 displaying 229, 230, 231, 232, 233
music player application
 user interface, improving 234, 235, 236
music player component

[415]

 AmplitudeJS elements, using 213
 buttons, styling 216, 217, 218, 219
 exploring 207, 209
 global pause button, implementing 215, 216
 global play button, implementing 214, 215
 global play/pause button, implementing 216
 music files, downloading 209, 210, 211
 setup, providing 212, 213

N
Node Package Manager (NPM) 10
Node.js process
 documents, sending 359, 360, 361, 362
Node.js
 installation, verifying 15
 installing, on macOS 10
 installing, on Ubuntu 11, 12
 installing, on Windows 14
 URL 14
Nucleus account
 creating 246, 247, 248, 249, 250
 sign up link 246
Nucleus Electron library
 installing 252, 253, 254
Nucleus
 reference link 243
 using, for Electron applications 245, 246

O
offline mode
 supporting 261, 262

P
packaging
 for macOS 21, 22, 23
 for multiple platforms 20, 21
 for Ubuntu 24, 25, 26
 for Windows 26, 27, 28
Pandoc container
 executing 356, 358
pandoc-docker
 reference link 356
Pandoc
 URL 327, 358
PDF books

 generating 366, 368
personal Ethereum blockchain
 setting up 379, 380, 381, 382, 383, 384
platform-specific menus 48, 49
playback control buttons
 exploring 219
 mute buttons 222, 223, 224
 stop button 220, 221, 222
 unmute buttons 222, 223, 224
 volume buttons 224, 226, 227
primary display size
 calculating 169, 170
process.platform
 reference link 49
processes
 messages, sending between 53, 54
production builds
 setting up 102, 103, 104
project scaffold
 creating 205, 206, 207
project structure
 creating 328
 editor component, installing 330, 332, 333, 334,

335

 Electron shell, integrating 337, 338, 339
 React application, generating 328, 329
 web application, testing 335, 336, 337
project
 creating, with tracking support 250, 252

Q
Querying Lists API
 reference link 318

R
React application
 generating 328, 329
React Hooks
 reference link 339
 used, for updating code 339, 340
real-time analytics data
 inspecting 254, 255, 256, 257, 258
 users, identifying 259
real-time user statistics
 verifying 260, 261

Realtime Database
 configuring 306, 307
 demo groups 309
 demo groups, creating 308
renderer process
 messages, sending to 56, 57

S
save dialog
 using 63, 64, 65, 66, 67
screen size
 fitting 37, 38
Screenshot Snipping Tool
 project, preparing 154, 155
services
 using 243
shell object
 reference link 364
Simple Markdown Editor
 URL 34, 36
snip toolbar button
 adding 166, 167
solution
 creating 243
song progress bar
 implementing 227, 228
sprite coordinates
 controlling 198, 199, 200, 201
sprite speed
 controlling 201, 202
sprites
 flipping, based on their direction 197, 198
 rendering 192, 193
 scaling 193, 194
system tray
 application, integrating with 176, 177, 178

T
test mode 306
third-party analytics services
 creating 245
 using 244
thumbnail image

 cropping 172, 173, 174
 generating 170, 171
 resizing 172, 173, 174
 saving 170, 171
toggle bold menu
 wiring 58, 59
toolbar icons, Markdown editor
 reference link 59
tracking 242, 243
tracking per user request
 disabling 259, 260
transparent windows
 about 160, 161, 162, 164
 limitation, reference link 161

U
Ubuntu Linux
 environment, setting up for 11
Ubuntu
 Git, installing on 11
 Node.js, installing on 11, 12
 Visual Studio Code, installing for 9
URL.createObjectURL static method
 reference link 346

V
Visual Studio Code
 installing 8, 9
 installing, for Ubuntu 9
 URL 8
Vue configuration file
 reference link 140

W
web application
 testing 335, 336, 337
window resizing
 preventing 192
Windows
 environment, setting up for 12
 Git, installing on 12, 13
 Node.js, installing on 14

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Building Your First Electron Application
	Technical requirements
	What is Electron?
	Preparing a development environment
	Installing Visual Studio Code
	Installing Visual Studio Code for Ubuntu

	Setting up the environment for macOS
	Installing Git on macOS
	Installing Node.js on macOS

	Setting up the environment for Ubuntu Linux
	Installing Git on Ubuntu
	Installing Node.js on Ubuntu

	Setting up the environment for Windows
	Installing Git on Windows
	Installing Node.js on Windows
	Verifying the installation

	Creating a simple application
	Packaging for multiple platforms
	Packaging for macOS
	Packaging for Ubuntu
	Packaging for Windows

	Summary

	Chapter 2: Building a Markdown Editor
	Technical requirements
	Configuring a new project
	Integrating the editor component
	Fitting the screen size
	Integrating the application menu
	Creating a custom menu item
	Defining menu item roles
	Providing menu separators
	Supporting keyboard accelerators
	Supporting platform-specific menus
	Configuring the application name in the menu
	Hiding menu items
	Sending messages between processes
	Introducing editor-event
	Sending confirmation messages to the main process
	Sending messages to the renderer process
	Wiring the toggle bold menu

	Saving files to a local system
	Using the save dialog

	Loading files from a local system
	Creating a file menu

	Adding drag and drop support
	Supporting automatic updates
	Testing automatic updates

	Changing the title of the application
	Summary

	Chapter 3: Integrating with Angular, React, and Vue
	Technical requirements
	Building an Electron application with Angular
	Generating our Angular project scaffold
	Integrating the Angular project with Electron
	Configuring Live Reloading
	Why test in the browser?

	Setting up production builds
	Setting up conditional loading
	Using Angular Material components
	Modifications made by installing Angular Material
	Adding the Material Toolbar component

	Angular routing

	Building an Electron application with React
	Generating a React project
	Live reloading
	Setting up production builds
	Setting up conditional loading
	Using the Blueprint UI toolkit
	Adding an application menu
	Adding routing
	Final touches

	Building an Electron application with Vue.js
	Creating a Vue configuration file
	Live reloading
	Production builds
	Setting up conditional loading
	Adding routing
	Configuring Vue Material
	Creating an application toolbar

	Summary

	Chapter 4: Building a Screenshot Snipping Tool
	Technical requirements
	Preparing the project
	Configuring frameless windows
	Additional options for macOS
	Using the hidden titleBarStyle
	Using the hiddenInset titleBarStyle
	Using the customButtonsOnHover titleBarStyle

	Transparent windows
	Making application windows draggable
	Adding a snip toolbar button
	Using the desktopCapturer API
	Calculating the primary display size
	Generating and saving a thumbnail image
	Resizing and cropping the image
	Testing the application's behavior
	Integrating with the system tray
	Hiding the main application window on startup
	Registering global keyboard shortcuts
	Summary

	Chapter 5: Making a 2D Game
	Technical requirements
	Configuring a game project
	Running a Hello World example
	Rendering background images
	Preventing window resizing
	Rendering a sprite
	Scaling sprites
	Handling keyboard input
	Flipping sprites based on their direction
	Controlling sprite coordinates
	Controlling sprite speed
	Summary

	Chapter 6: Building a Music Player
	Technical requirements
	Creating a project scaffold
	Exploring the music player component
	Downloading music files
	Providing basic player setup
	Using AmplitudeJS elements
	Implementing the global play button
	Implementing the global pause button
	Implementing the global play/pause button

	Styling buttons

	Exploring the playback control buttons
	Stop button
	Mute and unmute buttons
	Volume buttons

	Implementing a song progress bar
	Displaying music metadata
	Improving the user interface
	Reviewing the final structure
	Summary

	Chapter 7: Analytics, Bug Tracking, and Licensing
	Technical requirements
	Understanding analytics and tracking
	Creating your own solution or using an existing service
	Creating your own analytics services
	Using third-party analytics services

	Using Nucleus for Electron applications
	Creating a new Nucleus account
	Creating a new project with tracking support
	Installing the Nucleus Electron library
	Inspecting real-time analytics data
	Identifying users

	Disabling tracking per user request
	Verifying real-time user statistics
	Supporting offline mode
	Handling application updates
	Loading global server settings
	License checking and policies
	Creating a new policy and license
	Checking licenses in the application

	Summary

	Chapter 8: Building a Group Chat Application with Firebase
	Technical requirements
	Creating an Angular project
	Configuring the Electron Shell

	Creating a Firebase account
	Creating a Firebase application
	Configuring Angular Material components
	Adding a Browser Animations module
	Configuring the default theme
	Adding the Material Icons library
	Adding a navigation bar
	Testing the application with the material toolbar

	Building a login dialog
	Implementing the Material interface
	Supporting error handling
	Preparing the chat component placeholder

	Connecting the login dialog to Firebase Authentication
	Enabling the sign-in provider
	Creating demo accounts
	Integrating the Login dialog with Firebase

	Configuring the Realtime Database
	Creating demo groups

	Rendering the group list
	Testing real-time updates

	Implementing the group messages page
	Displaying group messages
	Improving query performance

	Sending group messages
	Updating the message list interface
	Ideas for further enhancements

	Verifying the Electron Shell
	Summary

	Chapter 9: Building an eBook Editor and Generator
	Technical requirements
	Creating the project structure
	Generating a new React application
	Installing the editor component
	Testing the web application
	Integrating with the Electron shell

	Updating the code to use React Hooks
	Controlling keyboard shortcuts
	Loading files
	Saving files

	Integrating with the application menu
	Setting up the book generator
	Installing Docker
	Running the Pandoc container
	Sending documents to the main (Node.js) process

	Invoking Docker commands from Electron
	Sending the markdown text to the Node.js process
	Saving the markdown text to the local drive

	Generating PDF books
	Generating ePub books
	Summary

	Chapter 10: Building a Digital Wallet for Desktops
	Technical requirements
	Generating the project scaffold with React
	Integrating the Ant Design library
	Setting up a personal Ethereum blockchain
	Configuring the Ethereum JavaScript API
	Displaying Ethereum Node information
	Getting node information
	Rendering node information in the header

	Integrating with the application menu
	Rendering a list of accounts
	Showing our account balance
	Transferring Ether to another account
	Packaging the application for distribution
	Summary

	Other Books You May Enjoy
	Index

