
M A N N I N G

Nader Dabit

Developing iOS and Android apps with JavaScript

React Native in Action

MANN I NG
Shelter Island

React Native in Action
Developing iOS and Android apps with JavaScript

NADER DABIT

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

	 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN: 9781617294051
Printed in the United States of America
1  2  3  4  5  6  7  8  9  10 – SP – 24  23  22  21  20  19

	 Development editor:	 Marina Michaels
	 Project editor:	 Tiffany Taylor
	 Copy editor:	 Tiffany Taylor
	 Proofreader:	 Melody Dolab
	 Typesetter:	 Happenstance Type-O-Rama
	 Cover designer:	 Marija Tudor

iii

brief contents

Part 1	 Getting started with React Native.......................... 1
1	 ■	 Getting started with React Native  3
2	 ■	 Understanding React  27
3	 ■	 Building your first React Native app  45

Part 2	 Developing applications in React Native...............73
4	 ■	 Introduction to styling  75
5	 ■	 Styling in depth  115
6	 ■	 Navigation  145
7	 ■	 Animations   162
8	 ■	 Using the Redux data architecture library  179

Part 3	 API reference..197
9	 ■	 Implementing cross‑platform APIs  199

10	 ■	 Implementing iOS-specific components and APIs  222
11	 ■	 Implementing Android-specific components and APIs  242

Part 4	 Bringing it all together...261
12	 ■	 Building a Star Wars app using cross-platform components  263

v

contents
preface  xi
acknowledgments  xiii
about this book  xv
about the author  xviii
about the cover illustration  xix

Part 1	 Getting started with React Native...........1

	 1	Getting started with React Native  3
	1.1	 Introducing React and React Native  4

A basic React class  5  ■  React lifecycle  6

	1.2	 What you’ll learn  7

	1.3	 What you should know  7

	1.4	 Understanding how React Native works  8
JSX  8  ■  Threading  8  ■  React  8  ■  Unidirectional data
flow  8  ■  Diffing  8  ■  Thinking in components  9

	1.5	 Acknowledging React Native’s strengths  10
Developer availability  11  ■  Developer productivity  11
Performance  12  ■  One-way data flow  12  ■  Developer
experience  13  ■  Transpilation  13  ■  Productivity and
efficiency  13  ■  Community  14  ■  Open source  14  ■  Immediate
updates  14  ■  Other solutions for building cross-platform mobile
applications  14

vivi contents

	1.6	 React Native’s drawbacks  15

	1.7	 Creating and using basic components  15
An overview of components  16  ■  Native components  16
Component composition  17  ■  Exportable components  19
Combining components  21

	1.8	 Creating a starter project  22
Create React Native App CLI  22  ■  React Native CLI  23

	 2	Understanding React  27
	2.1	 Managing component data using state  28

Correctly manipulating component state  28

	2.2	 Managing component data using props  32

	2.3	 React component specifications  39
Using the render method to create a UI  39  ■  Using property
initializers and constructors  40

	2.4	 React lifecycle methods  41
The static getDerivedStateFromProps method  42
The componentDidMount lifecycle method  42
The shouldComponentUpdate lifecycle method  43
The componentDidUpdate lifecycle method  43
The componentWillUnmount lifecycle method  44

	 3	 Building your first React Native app  45
	3.1	 Laying out the todo app  46

	3.2	 Coding the todo app  47

	3.3	 Opening the developer menu  52
Opening the developer menu in the iOS simulator  52  ■  Opening
the developer menu in the Android emulator  53  ■  Using the
developer menu  53

	3.4	 Continuing building the todo app  55

Part 2	� Developing applications in
React Native... 73

	 4	 Introduction to styling  75
	4.1	 Applying and organizing styles in React Native  76

Applying styles in applications  76  ■  Organizing
styles  78  ■  Styles are code  80

	 vii	 viicontents

	4.2	 Styling view components  83
Setting the background color  84  ■  Setting border
properties  86  ■  Specifying margins and padding  92  ■  Using
position to place components  97  ■  Profile Card positioning  99

	4.3	 Styling Text components  100
Text components vs. View components  100  ■  Font
styles  104  ■  Using decorative text styles  107

	 5	 Styling in depth  115
	5.1	 Platform-specific sizes and styles  116

Pixels, points, and DPs  116  ■  Creating drop shadows with
ShadowPropTypesIOS and Elevation  118  ■  Putting it into
practice: drop shadows in the ProfileCard  121

	5.2	 Using transformations to move, rotate, scale, and skew
components  122
3D effects with perspective  123  ■  Moving elements along the x- and
y-axes with translateX and translateY  123  ■  Rotating elements
with rotateX, rotateY, and rotateZ (rotate)  124  ■  Setting visibility
when rotating an element more than 90°  127  ■  Scaling objects
on the screen with scale, scaleX, and scaleY  128  ■  Using the scale
transform to create a thumbnail of the ProfileCard  129  ■  Skewing
elements along the x- and y-axes with skewX and skewY  132
Transformation key points  134

	5.3	 Using flexbox to lay out components  135
Altering a component’s dimensions with flex  135  ■  Specifying the
direction of the flex with flexDirection  136  ■  Defining how space
is used around a component with justifyContent  137  ■  Aligning
children in a container with alignItems  139  ■  Overriding the
parent container’s alignment with alignSelf  140  ■  Preventing
clipped items with flexWrap  142

	 6	Navigation  145
	6.1	 React Native navigation vs. web navigation  146

	6.2	 Building a navigation-based app  146

	6.3	 Persisting data  159

	6.4	 Using DrawerNavigator to create drawer-based
navigation  160

	 7	 Animations   162
	7.1	 Introducing the Animated API  163

viiiviii contents

	7.2	 Animating a form input to expand on focus  165

	7.3	 Creating a custom loading animation using
interpolation  167

	7.4	 Creating multiple parallel animations  170

	7.5	 Creating an animated sequence  172

	7.6	 Using Animated.stagger to stagger animation start
times  175

	7.7	 Other useful tips for using the Animated library  177
Resetting an animated value  177  ■  Invoking a
callback  177  ■  Offloading animations to the native
thread  177  ■  Creating a custom animatable component using
createAnimatedComponent  178

	 8	Using the Redux data architecture library  179
	8.1	 What is Redux?  179

	8.2	 Using context to create and manage global state in a React
application  180

	8.3	 Implementing Redux with a React Native app  181

	8.4	 Creating Redux reducers to hold Redux state  183

	8.5	 Adding the provider and creating the store  184

	8.6	 Accessing data using the connect function  185

	8.7	 Adding actions  187

	8.8	 Deleting items from a Redux store in a reducer  192

Part 3	 API reference... 197

	 9	 Implementing cross‑platform APIs  199
	9.1	 Using the Alert API to create cross-platform

notifications  200
Use cases for alerts  200  ■  Example of using alerts  201

	9.2	 Using the AppState API to detect the current application
state  202
Use cases for AppState  203  ■  Example of using AppState  203

	9.3	 Using the AsyncStorage API to persist data  204
Use cases for AsyncStorage  204  ■  Example of using
AsyncStorage  205

	 ix	 ixcontents

	9.4	 Using the Clipboard API to copy text into the
user’s clipboard  207
Use cases for Clipboard  207  ■  Example of using Clipboard  207

	9.5	 Using the Dimensions API to get the user’s
screen information  208
Use cases for the Dimensions API  209  ■  Example of using the
Dimensions API  209

	9.6	 Using the Geolocation API to get the user’s current
location information  209
Use cases for the Geolocation API  210  ■  Example of using
Geolocation  210

	9.7	 Using the Keyboard API to control the location and
functionality of the native keyboard  212
Use cases for the Keyboard API  212  ■  Example of using the
Keyboard API  213

	9.8	 Using NetInfo to get the user’s current online/offline
status  214
Use cases for NetInfo  215  ■  Example of using NetInfo  216

	9.9	 Getting information about touch and gesture events with
PanResponder  216
Use cases for the PanResponder API  217  ■  Example of using
PanResponder  218

	 10	 Implementing iOS-specific components and APIs  222
	10.1	 Targeting platform-specific code  223

iOS and Android file extensions  223  ■  Detecting the platform
using the Platform API  224

	10.2	 DatePickerIOS  226
Example of using DatePickerIOS  226

	10.3	 Using PickerIOS to work with lists of values  228
Example of using PickerIOS  230

	10.4	 Using ProgressViewIOS to show loading indicators  231
Use cases for ProgressViewIOS  232  ■  Example of using
ProgressViewIOS  232

	10.5	 Using SegmentedControlIOS to create horizontal tab bars  233
Use cases for SegmentedControlIOS  234  ■  Example of using
SegmentedControlIOS  234

xx contents

	10.6	 Using TabBarIOS to render tabs at the bottom of
the UI  235
Use cases for TabBarIOS  236  ■  Example of using
TabBarIOS  237

	10.7	 Using ActionSheetIOS to show action or share sheets  238
Use cases for ActionSheetIOS  239  ■  Example of using
ActionSheetIOS  239

	 11	 Implementing Android-specific components and APIs  242
	11.1	 Creating a menu using DrawerLayoutAndroid  243

	11.2	 Creating a toolbar with ToolbarAndroid  247

	11.3	 Implementing scrollable paging with
ViewPagerAndroid  248

	11.4	 Using the DatePickerAndroid API to show a native date
picker  251

11.5	 Creating a time picker with TimePickerAndroid  253

11.6	 Implementing Android toasts using ToastAndroid  256

Part 4	 Bringing it all together......................... 261

	 12	 Building a Star Wars app using cross-platform components  263
	12.1	 Creating the app and installing dependencies  265

Importing the People component and creating the Container
component  266  ■  Creating the navigation component and
registering routes  267  ■  Creating the main class for the initial
view  267

12.2	 Creating the People component using FlatList, Modal,
and Picker  270
Creating the state and setting up a fetch call to
retrieve data  271  ■  Adding the remaining class
methods  273  ■  Implementing the render method  274

	12.3	 Creating the HomeWorld component  276
Creating the HomeWorld class and initializing
state  276  ■  Fetching data from the API using the url
prop  278  ■  Wrapping up the HomeWorld component  279

			 appendix  281

			 index  285

xi

preface
I’ve always been fascinated with the idea of mobile application development. Building
mobile apps was one of the reasons I wanted to learn how to code. This fascination has
lead me down many paths, from Objective-C to jQuery mobile to Cordova and now to
React Native.

Because my career has centered around writing JavaScript, I’ve also always been
drawn to technologies that increase my efficiency by using my existing skillset, allowing
me to do more than just web development. Finding ways to be more efficient has been
core to my career when choosing paths to follow and rabbit holes to dive into.

When React Native first landed, I knew that it was going to be something signifi-
cant. There were already thousands of React and JavaScript developers in the world.
React Native gave these developers a way to extend their existing skillset into the realm
of mobile application development in a way that Cordova and other options didn’t,
and also appealed heavily to React developers who were at the time the most rapidly
growing segment of all frontend developers. The framework also delivered a substantial
increase in quality of applications that could be built versus other options available in
the same space.

After writing my first application and shipping it to the app store, I had learned quite
a bit and decided to start answering questions on Stack Overflow. I quickly realized that
I had valuable knowledge I could share, while helping the community as well my career,
so I began hanging out there more and more, answering questions.

I learned a lot while answering these questions, and eventually I made a conscious
decision to specialize 100% in the React Native framework. I heard from many suc-
cessful developers and consultants that specializing had helped them in their careers:
they were more productive, got more business, and could demand a higher rate. So, I

xii prefacexii

decided to try being a specialist for the first time in my career. This decision turned out
to be great for me; I quickly began getting leads for consulting and, later, training.

I’ve watched the React Native framework grow from its infancy to what it is today
and have seen many developers and companies rapidly increase their efficiency and
productivity by taking advantage of what the framework has to offer. I think we’re at an
exciting time for React Native: many Fortune 500 companies and enterprises are pick-
ing it up, finally solidifying it as a first-class choice in their developer toolkits and giving
more confidence to people who are considering betting their companies and applica-
tions on the framework. It will be exciting to watch the framework evolve and to see the
new apps that will be shipped using React Native!

xiii

acknowledgments
This is the first time I’ve written a book. It has been a good learning experience,
and also much more work than I anticipated. While I’ve been writing, my career has
changed a couple of times and my obligations along with it, affecting the amount of
time I could commit to the book. Nickie Buckner and Marina Michaels are the reason
this book is complete. If it wasn’t for them, it would have been in editing indefinitely; I
was unable to rewrite a couple of chapters in a reasonable amount of time, and Nickie
stepped up in a huge way to finish the book. Marina also did more than what was called
for in helping the book make it the last 20% of the way as my time became increasingly
constrained.

Thank you to my wife, Lilly, who worked overtime in addition to her already exceed-
ingly high normal duties as I worked late nights in the office and sometimes at home
to write this book. Thank you to my kids, Victor and Eli, who are awesome; I love them
very much. And thank you to my parents for putting me in a position to be able to learn
things and get second, third, and fourth chances at life.

My thanks go to many groups and individuals: to the React Native community and
the React Native team (Jordan Walke, Christopher Chedeau, Adam Wolff, and every-
one at Facebook over the years whom I didn’t mention); to Monte Thakkar, who took
over React Native Elements’ open source while I was writing (and to all React Native
Training open source contributors); to Eric Vicenti and Brent Vatne and all the people
who have worked on Navigation and many other projects I use day to day; to Charlie
Cheever, who has, with Expo, pushed the development of many React Native projects
and, by extension, of Expo, and who has helped many open source projects; to Parasha-
rum N, who has been committed to building things around React Native for years, now
works on React Native at Facebook, and has always been a great asset to the community

xiv acknowledgmentsxiv

and ecosystem; to Peter Piekarczyk, Kevin Old, Lee Johnson, Gant Laborde, and Spen-
cer Carli, who have consistently helped with the “React Native Radio” podcast; to Russ
Davis and SchoolStatus, for the opportunity to learn React Native on the job, which is
how I got started with it in the first place; to Orta Therox and the people at Artsy, for
their commitment to the React Native community with their amazing blog and open
source; to Leland Richardson, Devin Abbott, and the team at Airbnb, who gave React
Native a fair shot and contributed extensively to the ecosystem even though the frame-
work didn’t work out for Airbnb in the long run; to the Wix team, who have contributed
many amazing projects to the React Native open source ecosystem; to Mike Grabowski
and Anna Lankauf, of Callstack, for being in charge of releasing React Native open
source, for many contributions to the React Native open source ecosystem, and for col-
laborating with me on things over the years; and to Jason Brown for pushing amazing
blog posts and teaching me about animations early on. I’m sure I left out many people,
and if that person is you, I apologize and thank you for your contribution, as well.

Finally, I want to thank the people at Manning who made this book possible: pub-
lisher Marjan Bace and everyone behind the scenes on the editorial and production
teams. My thanks also to the technical peer reviewers led by Aleksandar Dragosavljević:
Alessandro Campeis, Andriy Kharchuk, Francesco Strazzullo, Gonzalo Barba López,
Ian Lovell, Jason Rogers, Jose San Leandro, Joseph Tingsanchali, Markus Matzker,
Matej Strašek, Mattias Lundell, Nickie Buckner, Olaoluwa Oluro, Owen Morris, Roger
Sperberg, Stuart Rivero, Thomas Overby Hansen, Ubaldo Pescatore, and Zhuo Hong
Wei. On the technical side, my thanks to Michiel Trimpe, who served as the book’s tech-
nical editor; and Jason Rogers, who served as the book’s technical proofreader.

xv

about this book
React Native in Action was written to get you up and running with the React Native
framework as quickly and seamlessly as possible. It uses a combination of real-world
examples, discussions around APIs and development techniques, and a focus on learn-
ing things that will translate into real-world scenarios.

The book begins with an overview of React Native in chapter 1, following by a look
at how React works in chapter 2. From chapter 3 through the end of the book, you
build applications containing functionality you’ll use to build applications in the real
world. The book dives deep into topics such as data architecture, navigation, and ani-
mations, giving you a well-rounded understanding of how to build mobile apps using
React Native.

The book is divided into 4 parts and 12 chapters:

¡	Part 1, “Getting Started with React Native”:

¡	Chapter 1 gets you up and running with React Native by going over what React
Native is, how it works, its relationship with React, and when you might want
to use React Native (and when you might not). This chapter includes an over-
view of React Native’s components, which are at the core of React Native. It
concludes with creating a small React Native project.

¡	Chapter 2 covers state and props: what they are, how they work, and why
they’re important in React Native application development. It also covers the
React Component specification and React lifecycle methods.

¡	In chapter 3, you build your first React Native app—a todo app—from the
ground up, and you’ll learn about using the developer menu in iOS and
Android to, among other things, debug your app.

xvi about this bookxvi

¡	Part 2, “Developing Applications in React Native.” With the basics covered, you
can start adding features to your React Native app. The chapters in this part cover
styling, navigation, animations, and elegant ways to handle data using data archi-
tectures (with a focus on Redux):

¡	Chapters 4 and 5 teach you how to apply styles: either in line, with compo-
nents, or in stylesheets that components can reference. Because React Native
components are the main buildings blocks of your app’s UI, chapter 4 spends
some time teaching useful things you can do with the View component. Chap-
ter 5 builds on the skills taught in chapter 4; it covers aspects of styling that
are platform-specific, as well as some advanced techniques, including using
flexbox to make it easier to lay out applications.

¡	Chapter 6 shows how to use the two most-recommended and most-used
navigation libraries: React Navigation and React Native Navigation. We’ll
walk through creating the three main types of navigators—tabs, stack, and
drawer—and discuss how to control the navigation state.

¡	Chapter 7 covers the four things you need to do to create animations, the four
types of animatable components that ship with the Animated API, how to cre-
ate custom animatable components, and several other useful skills.

¡	In chapter 8, we explore handling data with data architectures. Because Redux
is the most widely adopted method of handling data in the React ecosystem,
you’ll use it to build an app. Through doing so, you’ll learn the skills needed
to handle data. You’ll see how to use the Context API and how to implement
Redux with a React Native app by using reducers to hold the Redux state and
delete items from the example app. You’ll also learn how to use providers to
pass global state to the rest of the app, how to use the connect function to
access the example app from a child component, and how to use actions to
add functionality.

¡	Part 3, “API Reference.” React Native offers a wealth of APIs. The chapters in
this part cover cross-platform APIs as well as APIs that are specific to the iOS and
Android platforms:

¡	Chapter 9 explores using React Native’s cross-platform APIs: APIs that can be
used on either iOS or Android to create alerts; detect whether the app is in the
foreground, in the background, or inactive; persist, retrieve, and remove data;
store and update text to the device clipboard; and perform a number of other
useful features.

¡	Chapters 10 and 11 look at React Native’s APIs that are specific to either the
iOS platform or the Android platform.

¡	Part 4, “Bringing It All Together.” This part pulls together everything covered
in the previous chapters—styling, navigation, animations, and some of the
cross-platform components—into a single app:

	 xviiabout this book 	 xvii

¡	Chapter 12 starts by looking at the final design and walking through a basic
overview of what the app will do. Then, you’ll create a new React Native appli-
cation and install the React Navigation library, dive deep into styling both the
components as well as the navigation UI, work with data from external net-
work resources by using the fetch API, and ultimately build out an application
that allows users to view information about their favorite Star Wars characters.

Source code
This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥).

Additionally, comments in the source code have often been removed from the list-
ings when the code is described in the text. Code annotations accompany many of the
listings, highlighting important concepts.

Source code for the book’s examples is available from the publisher’s website at www.
manning.com/books/react-native-in-action and on GitHub at https://github.com/
dabit3/react-native-in-action.

Book forum
Purchase of React Native in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to https://livebook.manning.com/#!/book/react-native-in-action/discussion. You
can also learn more about Manning’s forums and the rules of conduct at https://live-
book.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest his interest stray! The forum and the
archives of previous discussions will be accessible from the publisher’s website as long as
the book is in print.

http://www.manning.com/books/react-native-in-action
http://www.manning.com/books/react-native-in-action
https://github.com/dabit3/react-native-in-action
https://github.com/dabit3/react-native-in-action
https://livebook.manning.com/#!/book/react-native-in-action/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion

xviii

about the author
Nader Dabit is a developer advocate at AWS Mobile, where he works on tools and ser-
vices to allow developers to build full-stack web and mobile applications using their
existing skillset. He is also the founder of React Native Training and the host of the
“React Native Radio” podcast.

xix

about the cover illustration
The figure on the cover of React Native in Action is captioned “Insulaire D’Amboine”
or “Islander of Amboine.” The illustration is taken from a nineteenth-century edition
of Sylvain Maréchal’s four-volume compendium of regional dress customs published
in France. Each illustration is finely drawn and colored by hand. The rich variety of
Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and
regions were just 200 years ago. Isolated from each other, people spoke different dia-
lects and languages. Whether on city streets, in small towns, or in the countryside, it
was easy to identify where they lived and what their trade or station in life was just by
their dress.

Dress codes have changed since then and the diversity by region and class, so rich at
the time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity for a
more varied personal life—certainly for a more varied and fast-paced technological life.

At a time when it is hard to tell one computer book from another, Manning cel-
ebrates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

Part 1

Getting started with
React Native

Chapter 1 will get you up and running by going over what React Native is,
how it works, what its relationship with React is, and when you might want to use
React Native (and when you might not). This chapter provides an overview of
React Native’s components, which are at the core of React Native. It concludes
with creating a small React Native project.

Chapter 2 covers state and properties: what they are, how they work, and why
they’re important in React Native application development. It also covers the
React Component specification and React lifecycle methods.

In chapter 3, you’ll build your first React Native app—a Todo app—from the
ground up. You’ll also learn about using the developer menu in iOS and Android
for, among other things, debugging apps.

3

1Getting started with
React Native

This chapter covers
¡	Introducing React Native

¡	The strengths of React Native

¡	Creating components

¡	Creating a starter project

Native mobile application development can be complex. With the complicated
environments, verbose frameworks, and long compilation times developers face,
developing a quality native mobile application is no easy task. It’s no wonder the
market has seen its share of solutions come onto the scene that attempt to solve the
problems that go along with native mobile application development and try to make
it easier.

At the core of this complexity is the obstacle of cross-platform development. The
various platforms are fundamentally different and don’t share much of their devel-
opment environments, APIs, or code. Because of this, we must have separate teams
working on each platform, which is both expensive and inefficient.

But this is an exciting time in mobile application development. We’re witnessing
a new paradigm in the mobile development landscape, and React Native is on the
forefront of this shift in how we build and engineer mobile applications. It’s now

4 Chapter 1  Getting started with React Native

possible to build native performing cross-platform apps as well as web applications with
a single language and a single team. With the rise of mobile devices and the subse-
quent increase in demand for talent driving developer salaries higher and higher, React
Native brings to the table the ability to deliver quality applications across all platforms at
a fraction of the time and cost, while still delivering a high-quality user experience and
a delightful developer experience.

1.1	 Introducing React and React Native
React Native is a framework for building native mobile apps in JavaScript using the
React JavaScript library; React Native code compiles to real native components. If
you’re not sure what React is, it’s a JavaScript library open sourced by and used within
Facebook. It was originally used to build user interfaces for web applications. It has
since evolved and can now also be used to build server-side and mobile applications
(using React Native).

React Native has a lot going for it. In addition to being backed and open sourced by
Facebook, it also has a tremendous community of motivated people behind it. Face-
book groups, with their millions of users, are powered by React Native as well as Face-
book Ads Manager. Airbnb, Bloomberg, Tesla, Instagram, Ticketmaster, SoundCloud,
Uber, Walmart, Amazon, and Microsoft are some of the other companies either invest-
ing in or using React Native in production.

With React Native, developers can build native views and access native platform-specific
components using JavaScript. This sets React Native apart from other hybrid app frame-
works like Cordova and Ionic, which package web views built using HTML and CSS into a
native application. Instead, React Native takes JavaScript and compiles it into a true native
application that can use platform-specific APIs and components. Alternatives like Xama-
rin take the same approach, but Xamarin apps are built using C#, not JavaScript. Many web
developers have JavaScript experience, which helps ease the transition from web to mobile
app development.

There are many benefits to choosing React Native as a mobile application frame-
work. Because the application renders native components and APIs directly, speed and
performance are much better than with hybrid frameworks such as Cordova and Ionic.
With React Native, we’re writing entire applications using a single programming lan-
guage: JavaScript. We can reuse a lot of code, thereby reducing the time it takes to ship
a cross-platform application. And hiring and finding quality JavaScript developers is
much easier and cheaper than hiring Java, Objective C, or Swift developers, leading to
an overall less-expensive process.

NOTE   React Native applications are built using JavaScript and JSX. We’ll dis-
cuss JSX in depth in this book, but for now think of it as a JavaScript syntax
extension that looks like HTML or XML.

We’ll dive much deeper into React in chapter 2. Until then, let’s touch on a few core
concepts as an introduction.

	 5Introducing React and React Native

1.1.1	 A basic React class

Components are the building blocks of a React or React Native application. The entry
point of an application is a component that requires and is made of other compo-
nents. These components may also require other components, and so on.

There are two main types of React Native components: stateful and stateless. Here’s an
example of a stateful component using an ES6 class:

class HelloWorld extends React.Component {
 constructor() {
 super()
 this.state = { name: 'Chris' }
 }

 render () {
 return (
 <SomeComponent />
)
 }
}

And here’s an example of a stateless component:

const HelloWorld = () => (
 <SomeComponent />
)

The main difference is that stateless components don’t hook into any lifecycle meth-
ods and hold no state of their own, so any data to be rendered must be received as
properties (props). We’ll go through the lifecycle methods in depth in chapter 2, but
for now let’s take a first look at them and look at a class.

Listing 1.1   Creating a basic React Native class

import React from 'react'
import { View, Text, StyleSheet } from 'react-native'

class HelloWorld extends React.Component {
 constructor () {
 super()
 this.state = {
 name: 'React Native in Action'
 }
 }
 componentDidMount () {
 console.log('mounted..')
 }
 render () {
 return (
 <View style={styles.container}>
 <Text>{this.state.name}</Text>
 </View>
)
 }

Constructor sets a state object
with a name property

Final lifecycle method

Calls render()

6 Chapter 1  Getting started with React Native

}

const styles = StyleSheet.create({
 container: {
 marginTop: 100,
 flex: 1
 }
})

NOTE   Something to keep in mind when we discuss the following methods is
the concept of mounting. When a component is created, the React component
lifecycle is instantiated, triggering the methods used in listing 1.1.

At the top of the file, you require React from 'react', as well as View, Text, and
StyleSheet from 'react-native'. View is the most fundamental building block for
creating React Native components and the UI in general and can be thought of like a
div in HTML. Text allows you to create text elements and is comparable to a span tag
in HTML. StyleSheet lets you create style objects to use in an application. These two
packages (react and react-native) are available as npm modules.

When the component first loads, you set a state object with the property name in the
constructor. For data in a React Native application to be dynamic, it needs to be either
set in the state or passed down as props. Here, you set the state in the constructor and
can therefore change it if desired by calling

this.setState({
 name: 'Some Other Name'
})

which rerenders the component. Setting the variable in state allows you to update the
value elsewhere in the component.

render is then called: it examines the props and state and then must return a single
React Native element, null, or false. If you have multiple child elements, they must be
wrapped in a parent element. Here, the components, styles, and data are combined to
create what will be rendered to the UI.

The final method in the lifecycle is componentDidMount. If you need to do any API
calls or AJAX requests to reset the state, this is usually the best place to do so. Finally, the
UI is rendered to the device, and you can see the result.

1.1.2	 React lifecycle

When a React Native class is created, methods are instantiated that you can hook into.
These methods are called lifecycle methods, and we’ll cover them in depth in chapter 2.
The methods in listing 1.1 are constructor, componentDidMount, and render, but
there are a few more, and they all have their own use cases.

Lifecycle methods happen in sync and help manage the state of components as well
as execute code at each step of the way, if you wish. The only required lifecycle method is
render; all the others are optional. When working with React Native, you’re fundamen-
tally working with the same lifecycle methods and specifications you’d use with React.

	 7What you should know

1.2	 What you’ll learn
In this book, we’ll cover everything you need to know to build robust mobile applica-
tions for iOS and Android using the React Native framework. Because React Native
is built using the React library, we’ll begin in chapter 2 by covering and thoroughly
explaining how React works.

We’ll then cover styling, touching on most of the styling properties available in the
framework. Because React Native uses flexbox for laying out the UI, we’ll dive deep into
how flexbox works and discuss all the flexbox properties. If you’ve used flexbox in CSS
for layout on the web, all of this will be familiar to you, but keep in mind that the flexbox
implementation used by React Native isn’t 100% the same.

We’ll then go through many of the native components that come with the framework
out of the box and walk through how each of them works. In React Native, a component
is basically a chunk of code that provides a specific functionality or UI element and can
easily be used in the application. Components are covered extensively throughout this
book because they’re the building blocks of a React Native application.

There are many ways to implement navigation, each with its own nuances, pros, and
cons. We’ll discuss navigation in depth and cover how to build robust navigation using
the most important of the navigation APIs. We’ll cover not only the native navigation
APIs that come out of the box with React Native, but also a couple of community proj-
ects available through npm.

Next, we’ll discuss in depth both cross-platform and platform-specific APIs avail-
able in React Native and how they work. It will then be time for you to start working
with data using network requests, AsyncStorage (a form of local storage), Firebase, and
WebSocket. Then we’ll dive into the different data architectures and how each of them
works to handle the state of the application. Finally, we’ll look at testing and a few differ-
ent ways to test in React Native.

1.3	 What you should know
To get the most out of this book, you should have beginner to intermediate knowledge
of JavaScript. Much of your work will be done with the command line, so a basic under-
standing of how to use the command line is also needed. You should also understand
what npm is and how it works on at least a fundamental level. If you’ll be building in
iOS, a basic understanding of Xcode is beneficial and will speed things along but isn’t
required. Similarly, if you’re building for Android, a basic understanding of Android
Studio will be beneficial but not required.

Fundamental knowledge of newer JavaScript features implemented in the ES2015
release of the JavaScript programming language is beneficial but not necessary. Some
conceptual knowledge of MVC frameworks and single-page architecture is also good
but not required.

8 Chapter 1  Getting started with React Native

1.4	 Understanding how React Native works
Let’s look at how React Native works by discussing JSX, the threading model, React,
unidirectional data flow, and more.

1.4.1	 JSX

React and React Native both encourage the use of JSX. JSX is basically a syntax exten-
sion to JavaScript that looks similar to XML. You can build React Native components
without JSX, but JSX makes React and React Native a lot more readable and easier to
maintain. JSX may seem strange at first, but it’s extremely powerful, and most people
grow to love it.

1.4.2	 Threading

All JavaScript operations, when interacting with the native platform, are done in a sep-
arate thread, allowing the user interface as well as any animations to perform smoothly.
This thread is where the React application lives, and where all API calls, touch events,
and interactions are processed. When there’s a change to a native-backed component,
updates are batched and sent to the native side. This happens at the end of each iter-
ation of the event loop. For most React Native applications, the business logic runs on
the JavaScript thread.

1.4.3	 React

A great feature of React Native is that it uses React. React is an open source JavaScript
library that’s also backed by Facebook. It was originally designed to build applications
and solve problems on the web. This framework has become extremely popular since
its release, with many established companies taking advantage of its quick rendering,
maintainability, and declarative UI, among other things.

Traditional DOM manipulation is slow and expensive in terms of performance and
should be minimized. React bypasses the traditional DOM with something called the
virtual DOM: basically, a copy of the actual DOM in memory that only changes when
comparing new versions of the virtual DOM to old versions of the virtual DOM. This
minimizes the number of DOM operations required to achieve the new state.

1.4.4	 Unidirectional data flow

React and React Native emphasize unidirectional, or one-way, data flow. Because of
how React Native applications are built, this one-way data flow is easy to achieve.

1.4.5	 Diffing

React takes the idea of diffing and applies it to native components. It takes your UI and
sends the smallest amount of data to the main thread to render it with native compo-
nents. The UI is declaratively rendered based on the state, and React uses diffing to
send the necessary changes over the bridge.

	 9Understanding how React Native works

1.4.6	 Thinking in components

When building a UI in React Native, it’s useful to think of your application as being
composed of a collection of components. Thinking about how a page is set up, you
already do this conceptually, but using concepts, names, or class names like header,
footer, body, sidebar, and so on. With React Native, you can give these components names
that make sense to you and other developers who may be using your code, making it
easy to bring new people into a project or hand a project off to someone else.

Suppose a designer has handed you the example mockup shown in figure 1.1. Let’s
think of how to conceptualize this into components.

The first thing to do is to mentally break the UI elements into what they represent.
The example mockup has a header bar, and within the header bar are a title and a

Figure 1.1   Example app design

10 Chapter 1  Getting started with React Native

menu button. Below the header is a tab bar, and within the tab bar are three individual
tabs. Go through the rest of the mockup and think of what the other items are. These
items you’re identifying will be translated into components. This is the way you should
think about composing a UI when working with React Native: break down common
elements in the UI into reusable components, and define their interface accordingly.
When you need an element in the future, it will be available for reuse.

Breaking UI elements into reusable components is good for code reuse and also
makes your code declarative and understandable. For instance, instead of 12 lines of
code implementing a footer, the element could be called footer. Looking at code built
this way, it’s much easier to reason about and know exactly what’s going on.

Figure 1.2 shows how the design in figure 1.1 could be broken up as I just
described. The names can be whatever makes sense to you. Some of the items are
grouped together—I logically separated the items individually and grouped compo-
nents conceptually.

Next, let’s see how this would look using actual React Native code. First, let’s look at
how the main UI elements appear on the page:

<Header />
<TabBar />
<ProjectList />
<Footer />

Next, let’s see how the child elements look:

TabBar:
 <TabBarItem />
 <TabBarItem />
 <TabBarItem />

ProjectList:
 // Add a Project component for each project in the list:
 <Project />

I’ve used the names declared in figure 1.2, but they could be whatever makes sense to
you.

1.5	 Acknowledging React Native’s strengths
As discussed earlier, one of the main strengths React Native has going for it is that it
uses React. React, like React Native, is an open source project backed by Facebook. As
of the time of this writing, React has over 100,000 stars and more than 1,100 contrib-
utors on GitHub—that’s a lot of interest and community involvement in the project,
making it easier to bet on as a developer or as a project manager. Because React is
developed, maintained, and used by Facebook, it has some of the most talented engi-
neers in the world overseeing it, pushing it forward, and adding new features, and it
probably won’t be going away anytime soon.

Figure 1.2   App structure broken down into separate components

	 11Acknowledging React Native’s strengths

1.5.1	 Developer availability

With the rising cost and decreasing availability of native mobile developers, React
Native enters the market with a key advantage over native development: it takes advan-
tage of the wealth of existing talented web and JavaScript developers and gives them
another platform on which to build without having to learn a new language.

1.5.2	 Developer productivity

Traditionally, to build a cross-platform mobile application, you needed both an Android
team and an iOS team. React Native allows you to build Android, iOS, and (soon)
Windows applications using a single programming language, JavaScript, and possibly
even a single team, dramatically decreasing development time and development cost

menu button. Below the header is a tab bar, and within the tab bar are three individual
tabs. Go through the rest of the mockup and think of what the other items are. These
items you’re identifying will be translated into components. This is the way you should
think about composing a UI when working with React Native: break down common
elements in the UI into reusable components, and define their interface accordingly.
When you need an element in the future, it will be available for reuse.

Breaking UI elements into reusable components is good for code reuse and also
makes your code declarative and understandable. For instance, instead of 12 lines of
code implementing a footer, the element could be called footer. Looking at code built
this way, it’s much easier to reason about and know exactly what’s going on.

Figure 1.2 shows how the design in figure 1.1 could be broken up as I just
described. The names can be whatever makes sense to you. Some of the items are
grouped together—I logically separated the items individually and grouped compo-
nents conceptually.

Next, let’s see how this would look using actual React Native code. First, let’s look at
how the main UI elements appear on the page:

<Header />
<TabBar />
<ProjectList />
<Footer />

Next, let’s see how the child elements look:

TabBar:
 <TabBarItem />
 <TabBarItem />
 <TabBarItem />

ProjectList:
 // Add a Project component for each project in the list:
 <Project />

I’ve used the names declared in figure 1.2, but they could be whatever makes sense to
you.

1.5	 Acknowledging React Native’s strengths
As discussed earlier, one of the main strengths React Native has going for it is that it
uses React. React, like React Native, is an open source project backed by Facebook. As
of the time of this writing, React has over 100,000 stars and more than 1,100 contrib-
utors on GitHub—that’s a lot of interest and community involvement in the project,
making it easier to bet on as a developer or as a project manager. Because React is
developed, maintained, and used by Facebook, it has some of the most talented engi-
neers in the world overseeing it, pushing it forward, and adding new features, and it
probably won’t be going away anytime soon.

Figure 1.2   App structure broken down into separate components

12 Chapter 1  Getting started with React Native

while increasing productivity. As a native developer, the great thing about coming to a
platform like this is the fact that you’re no longer tied down to being only an Android
or iOS developer, opening the door for a lot of opportunity. This is great news for
JavaScript developers as well, allowing them to spend all their time in one state of mind
when switching between web and mobile projects. It’s also a win for teams who were
traditionally split between Android and iOS, because they can now work together on
a single codebase. To underscore these points, you can share your data architecture
not only cross platform, but also on the web, if you’re using something like Redux (dis-
cussed in chapter 12).

1.5.3	 Performance

If you follow other cross-platform solutions, you’re probably aware of solutions such as
PhoneGap, Cordova, and Ionic. Although these are also viable solutions, the consen-
sus is that performance hasn’t yet caught up to the experience a native app delivers.
This is where React Native also shines, because the performance is usually not notice-
ably different from that of a native mobile app built using Objective-C/Swift or Java.

1.5.4	 One-way data flow

One-way data flow separates React and React Native from most other JavaScript frame-
works and also any MVC framework. React incorporates a one-way data flow from top-
level components all the way down (see figure 1.3). This makes applications much easier
to reason about, because there’s one source of truth for the data layer as opposed to hav-
ing it scattered about the application. We’ll look at this in more detail later in the book.

Data gets passed
into the top level
component.

Child components receive
this data as props.
When top level data
changes, child components
receive new data.

Home

BrowseAccount

Category 2Category 1

Subcategory 2Subcategory 1

Data

Subcategory 2 item

Figure 1.3   How one-way data flow works

	 13Acknowledging React Native’s strengths

1.5.5	 Developer experience

The developer experience is a major win for React Native. If you’ve ever developed
for the web, you’re aware of the browser’s snappy reload times. Web development has
no compilation step: just refresh the screen, and your changes are there. This is a far
cry from the long compile times of native development. One of the reasons Facebook
decided to develop React Native was to overcome the lengthy compile times of the
Facebook application when using native iOS and Android build tools. To make a small
UI change or any other change, Facebook developers had to wait a long time while the
program compiled to see the results. Long compilation times result in decreased pro-
ductivity and increased developer cost. React Native solves this issue by giving you the
quick reload times of the web, as well as Chrome and Safari debugging tools, making
the debugging experience feel a lot like the web.

React Native also has something called hot reloading built in. What does this mean?
Well, while developing an application, imagine having to click a few times into your app
to get to the place you’re developing. While using hot reloading, when you make a code
change, you don’t have to reload and click back through the app to get to the current
state. Using this feature, you save the file, and the application reloads only the compo-
nent you’ve changed, instantly giving you feedback and updating the current state of
the UI.

1.5.6	 Transpilation

Transpilation is typically when something known as a transpiler takes source code written
in one programming language and produces the equivalent code in another language.
With the rise of new ECMAScript features and standards, transpilation has spilled over
to also include taking newer versions and yet-to-be-implemented features of certain
languages, in this case JavaScript, and producing transpiled standard JavaScript, mak-
ing the code usable by platforms that can only process older versions of the language.

React Native uses Babel to do this transpilation step, and it’s built in by default. Babel
is an open source tool that transpiles the most bleeding-edge JavaScript language fea-
tures into code that can be used today. You don’t have to wait for the bureaucratic pro-
cess of language features being proposed, approved, and then implemented before you
can use them. You can start using a feature as soon as it makes it into Babel, which is
usually very quickly. JavaScript classes, arrow functions, and object destructuring are
all examples of powerful ES2015 features that haven’t made it into all browsers and
runtimes yet; but with Babel and React Native, you can use them today with no worries
about whether they will work. If you like using the latest language features, you can use
the same transpilation process to develop web applications.

1.5.7	 Productivity and efficiency

Native mobile development is becoming more and more expensive, so engineers who
can deliver applications across platforms and stacks will become increasingly valuable
and in demand. Once React Native—or something similar, if it comes along—makes

14 Chapter 1  Getting started with React Native

developing desktop and web as well as mobile applications using a single framework
mainstream, there will be a restructuring and rethinking of how engineering teams are
organized. Instead of a developer being specialized in a certain platform, such as iOS
or web, they’ll oversee features across platforms. In this new era of cross-platform and
cross-stack engineering teams, developers delivering native mobile, web, and desktop
applications will be more productive and efficient and will therefore be able to demand
a higher wage than a traditional web developer who can only deliver web applications.

Companies that are hiring developers for mobile development stand to benefit the
most from using React Native. Having everything written in one language makes hiring a
lot easier and less expensive. Productivity also soars when a team is all on the same page,
working within a single technology, which simplifies collaboration and knowledge sharing.

1.5.8	 Community

The React community, and by extension the React Native community, is one of the
most open and helpful groups I’ve ever interacted with. When I’ve run into issues I
couldn’t resolve on my own by searching online or on Stack Overflow, I’ve reached out
directly to either a team member or someone in the community and have had nothing
but positive feedback and help.

1.5.9	 Open source

React Native is open source. This offers a wealth of benefits. First, in addition to the
Facebook team, hundreds of developers contribute to React Native. Bugs are pointed
out much faster than in proprietary software, which has only the employees on a spe-
cific team working on bug fixes and improvements. Open source usually gets closer to
what users want because the users can have a hand in making the software what they
want it to be. Given the cost of purchasing proprietary software, licensing fees, and sup-
port costs, open source also wins when measuring price.

1.5.10	 Immediate updates

Traditionally, when publishing new versions of an app, you’re at the mercy of the app
store approval process and schedule. This long, tedious process can take up to two
weeks. Making a change, even if it’s extremely small, is painful and requires releasing a
new version of the application.

React Native, as well as hybrid application frameworks, allow you to deploy mobile
app updates directly to the user’s device, without going through an app store approval
process. If you’re used to the web and the rapid release cycle it offers, you can now do
the same thing with React Native and other hybrid application frameworks.

1.5.11	 Other solutions for building cross-platform mobile applications

React Native isn’t the only option for building a cross-platform mobile application. Multi-
ple other options are available, with the main ones being Cordova, Xamarin, and Flutter:

¡	Cordova is basically a native shell around a web application that allows the
developer to access native APIs within the application. Unlike traditional web

	 15Creating and using basic components

applications, Cordova apps can be deployed to the App Store and Google Play
Store. The benefit of using something like Cordova is that there isn’t much more
to learn if you’re already a web developer: you can use HTML, JavaScript, CSS,
and your JavaScript framework of choice. The main drawback of Cordova is that
you’ll have a hard time matching the performance and smooth UI that React
Native offers: you’re relying on the DOM, because you’re mainly working with
web technologies.

¡	Xamarin is a framework that allows developers to build iOS, Android, Windows,
and macOS applications using a single codebase written in C#. Xamarin com-
piles to a native app in different ways depending on the platform being targeted.
Xamarin has a free tier that lets developers build and deploy mobile applications
and a paid tier for larger or enterprise companies. Xamarin will probably appeal
more to native developers because it doesn’t have similarities to web technolo-
gies like React Native and Cordova.

¡	Flutter is a framework open sourced by Google that uses the Dart programming
language to build applications that run on iOS and Android platforms.

1.6	 React Native’s drawbacks
Now that we’ve gone over the benefits of using React Native, let’s look at a few rea-
sons and circumstances where you may not want to choose the framework. First, React
Native is still immature when compared to other platforms such as native iOS, Android,
and Cordova. Feature parity isn’t there yet with either native iOS or Cordova. Most
functionality is now built in, but there may be times when you need functionality that
isn’t yet available, and this means you must dig into the native code to build it yourself,
hire someone to do it, or not implement the feature.

Another thing to think about is the fact that you and/or your team must learn a com-
pletely new technology if you aren’t familiar with React. Most people agree that React
is easy to pick up; but if you’re already proficient with Angular and Ionic, for example,
and you have an application deadline coming up, it may be wise to go with what you
already know instead of spending the time it takes to learn and train your team on a new
tech. In addition to learning React and React Native, you must also become familiar
with Xcode and the Android development environments, which can take some getting
used to.

Finally, React Native is an abstraction built on top of existing platform APIs. When
newer versions of iOS, Android, and other future platforms are released, there may be a
time when React Native will be behind on new features, forcing you to either build cus-
tom implementations to interact with these new APIs or wait until React Native regains
feature parity with the new release.

1.7	 Creating and using basic components
Components are the fundamental building blocks of React Native, and they can vary in
functionality and type. Examples of components in popular use cases include buttons,

16 Chapter 1  Getting started with React Native

headers, footers, and navigation components. They can vary in type from an entire
view, complete with its own state and functionality, to a single stateless component that
receives all its props from its parent.

1.7.1	 An overview of components

As I’ve said, the core of React Native is the concept of components. Components are
collections of data and UI elements that make up views and, ultimately, applications.
React Native has built-in components that are described as native components in this
book, but you can also build custom components using the framework. We’ll go into
depth on how to build, create, and use components.

As mentioned earlier, React Native components are built using JSX. Table 1.1 shows
a few basic examples of what JSX in React Native looks like versus HTML. As you can
see, JSX looks similar to HTML or XML.

Table 1.1   JSX components vs. HTML elements

Component type HTML React Native JSX

Text Hello World <Text>Hello World</Text>

View <div>
 Hello World 2
</div>

<View>
 <Text>Hello World 2</Text>
</View>

Touchable highlight <button>
 Hello World 2
</button >

<TouchableHighlight>
 <Text>Hello World 2</Text>
</TouchableHighlight>

1.7.2	 Native components

The framework offers native components out of the box, such as View, Text, and
Image, among others. You can create components using these Native components as
building blocks. For example, you can use the following markup to create a Button
component using React Native TouchableHighlight and Text components.

Listing 1.4   Creating a Button component

import { Text, TouchableHighlight } from 'react-native'
const Button = () => (
 <TouchableHighlight>
 <Text>Hello World</Text>
 </TouchableHighlight>
)
export default Button

You can then import and use the new button.

	 17Creating and using basic components

Listing 1.5   Importing and using the Button component

import React from 'react'
import { Text, View } from 'react-native'
import Button from './components/Button'
const Home = () => (
 <View>
 <Text>Welcome to the Hello World Button!</Text>
 <Button />
 </View>
)

Next, we’ll go through the fundamentals of what a component is, how components fit
into the workflow, and common use cases and design patterns for building them.

1.7.3	 Component composition

Components are usually composed using JSX, but they can also be composed using
JavaScript. In this section, you’ll create a component several different ways to see all
the options. You’ll be creating this component:

<MyComponent />

This component outputs “Hello World” to the screen. Now, let’s see how to build this
basic component. The only out-of-the-box components you’ll use to build this custom
component are the View and Text elements discussed earlier. Remember, a View compo-
nent is similar to an HTML <div>, and a Text component is similar to an HTML .

Let’s look at a few ways to create a component. The entire application doesn’t have to
be consistent in its component definitions, but it’s usually recommended that you stay
consistent and follow the same pattern for defining classes throughout your application.

createClass syntax (ES5, JSX)
This is the way to create a React Native component using ES5 syntax. You’ll probably
still see this syntax in use in some older documentation and examples, but it isn’t being
used in newer documentation and is now deprecated. We’ll focus on the ES2015 class
syntax for the rest of the book but will review the createClass syntax here in case you
come across it in older code:

 const React = require('react')
 const ReactNative = require('react-native')
 const { View, Text } = ReactNative

 const MyComponent = React.createClass({
 render() {
 return (
 <View>
 <Text>Hello World</Text>
 </View>)
 }
 })

18 Chapter 1  Getting started with React Native

Class syntax (ES2015, JSX)
The main way to create stateful React Native components is using ES2015 classes. This
is the way you’ll create stateful components for the rest of the book and is now the
approach recommended by the community and creators of React Native:

import React from 'react'
import { View, Text } from ‘react-native’

class MyComponent extends React.Component {
 render() {
 return (
 <View>
 <Text>Hello World</Text>
 </View>)
 }
}

Stateless (reusable) component (JSX)
Since the release of React 0.14, we’ve had the ability to create stateless components. We
haven’t yet dived into state, but just remember that stateless components are basically
pure functions that can’t mutate their own data and don’t contain their own state. This
syntax is much cleaner than the class or createClass syntax:

import React from 'react'
import { View, Text } from 'react-native'

const MyComponent = () => (
 <View>
 <Text>Hello World</Text>
 </View>
)

or

import React from 'react'
import { View, Text } from 'react-native'

function MyComponent () {
 return <View><Text>HELLO FROM STATELESS</Text></View>
}

createElement (JavaScript)
React.createElement is rarely used, and you’ll probably never need to create a React
Native element using this syntax. But it may come in handy if you ever need more con-
trol over how you’re creating a component, or if you’re reading someone else’s code.
It will also give you a look at how JavaScript compiles JSX. React.createElement takes
a few arguments:

React.createElement(type, props, children) {}

	 19Creating and using basic components

Let’s walk through them:

¡	type—The element you want to render
¡	props—Any properties you want the component to have
¡	children—Child components or text

In the following example, you pass in a view as the first argument to the first instance of
React.createElement, an empty object as the second argument, and another element
as the last argument. In the second instance, you pass in text as the first argument, an
empty object as the second argument, and “Hello” as the final argument:

 class MyComponent extends React.Component {
 render() {
 return (
 React.createElement(View, {},
 React.createElement(Text, {}, "Hello")
)
)
 }
 }

This is the same as declaring the component as follows:

class MyComponent extends React.Component {
 render () {
 return (
 <View>
 <Text>Hello</Text>
 </View>
)
 }
}

1.7.4	 Exportable components

Next, let’s look at another, more in-depth implementation of a React Native compo-
nent. You’ll create an entire component that you can export and use in another file:

import React, { Component } from 'react'
import {
 Text,
 View
} from 'react-native'

class Home extends Component {
 render() {
 return (
 <View>
 <Text>Hello from Home</Text>
 </View>)
 }
}

export default Home

20 Chapter 1  Getting started with React Native

Let’s go over all the pieces that make up this component and discuss what’s going on.

Importing

The following code imports React Native variable declarations:

import React, { Component } from 'react'
import {
 Text,
 View
} from 'react-native'

Here, you’re importing React directly from the React library using a default import
and importing Component from the React library using a named import. You’re also
using named imports to pull Text and View into your file.

The import statement using ES5 would look like this:

var React = require('react')

This statement without using named imports would look like this:

import React = from 'react'
const Component = React.Component
import ReactNative from 'react-native'
const Text = ReactNative.Text
const View = ReactNative.View

The import statement is used to import functions, objects, or variables that have been
exported from another module, file, or script.

Component declaration

The following code declares the component:

class Home extends Component { }

Here you’re creating a new instance of a React Native Component class by extending it
and naming it Home. Before, you declared React.Component; now you’re just declar-
ing Component, because you imported the Component element in the object destruc-
turing statement, giving you access to Component as opposed to having to call React.
Component.

The render method

Next, look at the render method:

render() {
 return (
 <View>
 <Text>Hello from Home</Text>
 </View>)
}

The code for the component is executed in the render method, and the content
after the return statement returns what’s rendered on the screen. When the render
method is called, it should return a single child element. Any variables or functions
declared outside of the render function can be executed here. If you need to do any
calculations, declare any variables using state or props, or run any functions that don’t

	 21Creating and using basic components

manipulate the state of the component, you can do so between the render method
and the return statement.

Exports

Now, you export the component to be used elsewhere in the application:

 export default Home

If you want to use the component in the same file, you don’t need to export it. After it’s
declared, you can use it in the file or export it to be used in another file. You may also
use module.exports = 'Home', which is ES5 syntax.

1.7.5	 Combining components

Let’s look at how to combine components. First, create Home, Header, and Footer com-
ponents in a single file. Begin by creating the Home component:

import React, { Component } from 'react'
import {
 Text,
 View
} from 'react-native'

class Home extends Component {
 render() {
 return (
 <View>

 </View>)
 }
 }

In the same file, below the Home class declaration, build out a Header component:

class Header extends Component {
 render() {
 return <View>
 <Text>HEADER</Text>
 </View>
 }
 }

This looks nice, but let’s see how to rewrite Header into a stateless component. We’ll
discuss when and why it’s good to use a stateless component versus a regular React
Native class in depth later in the book. As you’ll begin to see, the syntax and code are
much cleaner when you use stateless components:

const Header = () => (
 <View>
 <Text>HEADER</Text>
 </View>
)

Now, insert Header into the Home component:

 class Home extends Component {
 render() {

22 Chapter 1  Getting started with React Native

 return (
 <View>
 <Header />
 </View>
)
 }
 }

Create a Footer and a Main view, as well:

const Footer = () => (
 <View>
 <Text>Footer</Text>
 </View>
)

const Main = () => (
 <View>
 <Text> Main </Text>
 </View>
)

Now, drop those into your application:

class Home extends Component {
 render() {
 return (
 <View>
 <Header />
 <Main />
 <Footer />
 </View>
)
 }
}

The code you just wrote is extremely declarative, meaning it’s written in such a way that
it describes what you want to do and is easy to understand in isolation. This is a high-
level overview of how you’ll create components and views in React Native, but should
give you a good idea of how the basics work.

1.8	 Creating a starter project
Now that we’ve gone over a lot of details about React Native, let’s dig into some more
code. We’ll focus on building apps using the React Native CLI, but you can also use the
Create React Native App CLI to create a new project.

1.8.1	 Create React Native App CLI

You can create React Native projects using the Create React Native App CLI, a project
generator that’s maintained in the React Community GitHub repository, mainly by the
Expo team. Expo created the React Native App project as a way to allow developers to
get up and running with React Native without having to worry about installing all the
native SDKs involved with running a React Native project using the CLI.

	 23Creating a starter project

To create a new project using Create React Native App, first install the CLI:

npm install -g create-react-native-app

Here’s how to create a new project using create-react-native-app from the com-
mand line:

create-react-native-app myProject

1.8.2	 React Native CLI

Before we go any further, check this book’s appendix to verify that you have the neces-
sary tools installed on your machine. If you don’t have the required SDKs installed, you
won’t be able to continue building your first project using the React Native CLI.

To get started with the React Native starter project and the React Native CLI, open
the command line and then create and navigate to an empty directory. Once you’re
there, install the react-native CLI globally by typing the following:

npm install -g react-native-cli

After React Native is installed on your machine, you can initialize a new project by typ-
ing react-native init followed by the project name:

react-native init myProject

myProject can be any name you choose. The CLI will then spin up a new project in
whatever directory you’re in. Open the project in a text editor.

First, let’s look at the main files and folders this process has generated for you:

¡	android —This folder contains all the Android platform-specific code and depen-
dencies. You won’t need to go into this folder unless you’re implementing a cus-
tom bridge into Android or you install a plugin that calls for some type of deep
configuration.

¡	ios —This folder contains all the iOS platform-specific code and dependencies.
You won’t need to go into this folder unless you’re implementing a custom bridge
into iOS or you install a plugin that calls for some type of deep configuration.

¡	node_modules —React Native uses npm (node package manager) to manage
dependencies. These dependencies are identified and versioned in the .package.
json file and stored in the node_modules folder. When you install any new pack-
ages from the npm/node ecosystem, they’ll go here. These can be installed using
either npm or yarn.

¡	.flowconfig —Flow (also open sourced by Facebook) offers type checking for
JavaScript. Flow is like Typescript, if you’re familiar with that. This file is the con-
figuration for flow, if you choose to use it.

¡	.gitignore —This is the place to store any file paths you don’t want in version
control.

24 Chapter 1  Getting started with React Native

¡	.watchmanconfig —Watchman is a file watcher that React Native uses to watch
files and record when they change. This is the configuration for Watchman. No
changes to this will be needed except in rare use cases.

¡	index.js —This is the entry point of the application. In this file, App.js is imported
and AppRegistry.registerComponent is called, initializing the app.

¡	App.js —This is the default main import used in index.js containing the base
project. You can change it by deleting this file and replacing the main import in
index.js.

¡	package.json —This file holds your npm configuration. When you npm install
files, you can save them here as dependencies. You can also set up scripts to run
different tasks.

The following listing shows App.js.

Listing 1.6   App.js

/**
 * Sample React Native App
 * https://github.com/facebook/react-native
 * @flow
 */

import React, { Component } from 'react';
import {
 Platform,
 StyleSheet,
 Text,
 View
} from 'react-native';

const instructions = Platform.select({
 ios: 'Press Cmd+R to reload,\n' +
 'Cmd+D or shake for dev menu',
 android: 'Double tap R on your keyboard to reload,\n' +
 'Shake or press menu button for dev menu',
});

export default class App extends Component<{}> {
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>
 Welcome to React Native!
 </Text>
 <Text style={styles.instructions}>
 To get started, edit App.js
 </Text>
 <Text style={styles.instructions}>
 {instructions}
 </Text>

	 25Creating a starter project

 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 welcome: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10,
 },
 instructions: {
 textAlign: 'center',
 color: '#333333',
 marginBottom: 5,
 },
});

This code looks much like what we went over in the last section. There are a couple of
new items you haven’t yet seen:

StyleSheet
Platform

Platform is an API that allows you to detect the current type of operating system you’re
running on: web, iOS, or Android.

StyleSheet is an abstraction like CSS stylesheets. In React Native, you can declare
styles either inline or using stylesheets. As you can see in the first view, a container style
is declared:

<View style={styles.container}>

This corresponds directly to

container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
}

At the bottom of the index.js file, you see

AppRegistry.registerComponent('myProject', () => App);

26 Chapter 1  Getting started with React Native

This is the JavaScript entry point to run-
ning all React Native apps. In the index file
is the only place you’ll call this function.
The root component of the app should
register itself with AppRegistry.regis-
terComponent. The native system can then
load the bundle for the app and run the
app when it’s ready.

Now that we’ve gone over what’s in the
file, run the project in either your iOS sim-
ulator or your Android emulator (see fig-
ure 1.4). In the text element that contains
“Welcome to React Native,” enter “Wel-
come to Hello World!” or other text of your
choice. Refresh the screen, and you should
see your changes.

Summary

¡	React Native is a framework for build-
ing native mobile apps in JavaScript
using the React JavaScript library.

¡	Some of React Native’s strengths are
its performance, developer experi-
ence, ability to build cross platform
with a single language, one-way
data flow, and community. You may
consider React Native over a hybrid
mainly because of its performance,
and over Native mainly because of the developer experience and cross-platform
ability with a single language.

¡	JSX is a preprocessor step that adds an XML-like syntax to JavaScript. You can use
JSX to create a UI in React Native.

¡	Components are the fundamental building blocks in React Native. They can vary
in functionality and type. You can create custom components to implement com-
mon design elements.

¡	Components that require state or lifecycle methods need to be created using a
JavaScript class by extending the React.Component class.

¡	Stateless components can be created with less boilerplate for components that
don’t need to keep up with their own state.

¡	Larger components can be created by combining smaller subcomponents.

Figure 1.4   React Native starter project: what
you should see after running the starter project
on the emulator

27

2Understanding React

This chapter covers
¡	How state works and why it’s important

¡	How properties work and why they’re important

¡	Understanding the React component
specification

¡	Implementing React lifecycle methods

Now that we’ve gone over the basics, it’s time to dive into some other fundamen-
tal pieces that make up React and React Native. We’ll discuss how to manage state
and data, and how data is passed through an application. We’ll also dive deeper
by demonstrating how to pass properties (props) between components and how to
manipulate these props from the top down.

After you’re equipped with knowledge about state and props, we’ll go deeper into
how to use the built-in React lifecycle methods. These methods allow you to perform
certain actions when a component is created or destroyed. Understanding them is
key to understanding how React and React Native work and how to take full advan-
tage of the framework. The lifecycle methods are also conceptually the biggest part
of React and React Native.

28 Chapter 2  Understanding React

NOTE   You’ll see both React and React Native referenced in this chapter. Keep
in mind that when I mention React, I’m talking not about things that are spe-
cific to React Native, but concepts that are related to both React and React
Native. For example, state and props work the same in both React and React
Native, as do the React lifecycle and the React component specifications.

2.1	 Managing component data using state
One of the ways data is created and managed in a React or React Native component
is by using state. Component state is declared when the component is created, and its
structure is a plain JavaScript object. State can be updated within the component using
a function called setState that we’ll look at in depth shortly.

The other way data can be handled is by using props. Props are passed down as
parameters when the component is created; unlike state, they can’t be updated within
the component.

2.1.1	 Correctly manipulating component state

State is a collection of values that a component manages. React thinks of UIs as simple
state machines. When the state of a component changes using the setState function,
React rerenders the component. If any child components are inheriting this state as
props, then all of the child components are rerendered as well.

When building an application using React Native, understanding how state works is
fundamental because state determines how stateful components render and behave.
Component state is what allows you to create components that are dynamic and interac-
tive. The main point to understand when differentiating between state and props is that
state is mutable, whereas props are immutable.

Setting Initial State

State is initialized when a component is created either in the constructor or with a
property initializer. Once the state is initialized, it’s available in the component as
this.state. The following listing shows an example.

Listing 2.1   Setting state with a property initializer

import React from 'react'

class MyComponent extends React.Component {
 state = {
 year: 2016,
 name: 'Nader Dabit',
 colors: ['blue']
 }

 render() {
 return (
 <View>
 <Text>My name is: { this.state.name }</Text>

	 29Managing component data using state

 <Text>The year is: { this.state.year }</Text>
 <Text>My colors are { this.state.colors[0] }</Text>
 </View>
)
 }
}

The constructor function is called the moment a JavaScript class is instantiated, as
shown in the next listing. This isn’t a React lifecycle method, but a regular JavaScript
class method.

Listing 2.2   Setting state with a constructor

import React {Component} from 'react'

class MyComponent extends Component {
 constructor(){
 super()
 this.state = {
 year: 2016,
 name: 'Nader Dabit',
 colors: ['blue']
 }
 }
 render() {
 return (
 <View>
 <Text>My name is: { this.state.name }</Text>
 <Text>The year is: { this.state.year }</Text>
 <Text>My colors are { this.state.colors[0] }</Text>
 </View>
)
 }
}

The constructor and property initializer both work exactly the same, and which
approach you use is based on preference.

Updating state

State can be updated by calling this.setState(object), passing in an object with the
new state you want to use. setState merges the previous state with the current state,
so if you only pass in a single item (key-value pair), the rest of the state will remain the
same, while the new item in the state will be overwritten.

Let’s look at how to use setState (see listing 2.3). To do so, we’ll introduce a new
method, a touch handler called onPress. onPress can be called on a few types of “tap-
pable” React Native components, but here you’ll attach it to a Text component to get
started with this basic example. You’ll call a function called updateYear when the text
is pressed, to update the state with setState. This function will be defined before the
render function, because it’s usually best practice to define any custom methods before
the render method, but keep in mind that the order of the definition of the functions
doesn’t affect the actual functionality.

30 Chapter 2  Understanding React

Listing 2.3   Updating state

import React {Component} from 'react'

class MyComponent extends Component {
 constructor(){
 super()
 this.state = {
 year: 2016,
 }
 }
 updateYear() {
 this.setState({
 year: 2017
 })
 }
 render() {
 return (
 <View>
 <Text
 onPress={() => this.updateYear()}>
 The year is: { this.state.year }
 </Text>
 </View>
)
 }
 }

Figure 2.1 shows how the state is updated each time the text element in listing 2.3 is
pressed. Every time setState is called, React will rerender the component (calling
the render method again) and any child components. Calling this.setState is the
way to change a state variable and trigger the render method again, because changing
the state variable directly won’t trigger a rerender of the component and therefore no
changes will be visible in the UI. A common mistake for beginners is updating the state
variable directly. For example, something like the following doesn’t work when trying

Figure 2.1   The flow of setState, with arrows indicating when the text
element is pressed. The state year property is initialized to 2016 in the
constructor. Each time the text is pressed, the state year property is set
to 2017.

	 31Managing component data using state

to update state—the state object is updated, but the UI isn’t updated because set-
State isn’t called and the component isn’t rerendered:

class MyComponent extends Component {
 constructor(){
 super()
 this.state = {
 year: 2016,
 }
 }
 updateYear() {
 this.state.year = 2017
 }
 render() {
 return (
 <View>
 <Text
 onPress={() => this.updateYear()}>
 The year is: { this.state.year }
 </Text>
 </View>
)
 }
}

But a method is available in React that can force an update once a state variable has
been changed as in the previous snippet. This method is called forceUpdate; see list-
ing 2.4. Calling forceUpdate causes render to be called on the component, triggering
a rerendering of the UI. Using forceUpdate isn’t usually necessary or recommended,
but it’s good to know about in case you run into it in examples or documentation. Most
of the time, this rerendering can be handled using other methods such as calling set-
State or passing in new props.

Listing 2.4   Forcing rerender with forceUpdate

class MyComponent extends Component {
 constructor(){
 super()
 this.state = {
 year: 2016
 }
 }
 updateYear() {
 this.state.year = 2017
 }
 update() {
 this.forceUpdate()
 }
 render() {
 return (
 <View>

32 Chapter 2  Understanding React

 <Text onPress={ () => this.updateYear() }>
 The year is: { this.state.year }
 </Text>
 <Text
 onPress={ () => this. update () }>Force Update
 </Text>
 </View>
)
 }
}

Now that we’ve gone over how to work with state using a basic string, let’s look at a few
other data types. You’ll attach a Boolean, an array, and an object to the state and use it
in the component. You’ll also conditionally show a component based on a Boolean in
the state.

Listing 2.5   State with other data types

class MyComponent extends Component {
 constructor(){
 super()
 this.state = {
 year: 2016,
 leapYear: true,
 topics: ['React', 'React Native', 'JavaScript'],
 info: {
 paperback: true,
 length: '335 pages',
 type: 'programming'
 }
 }
 }
 render() {
 let leapyear = <Text>This is not a leapyear!</Text>
 if (this.state.leapYear) {
 leapyear = <Text>This is a leapyear!</Text>
 }
 return (
 <View>
 <Text>{ this.state.year }</Text>
 <Text>Length: { this.state.info.length }</Text>
 <Text>Type: { this.state.info.type }</Text>
 { leapyear }
 </View>
)
 }
}

2.2	 Managing component data using props
Props (short for properties) are a component’s inherited values or properties that have
been passed down from a parent component. Props can be either static or dynamic

	 33Managing component data using props

values when they’re declared, but when they’re inherited they’re immutable; they can
only be altered by changing the initial values at the top level where they’re declared
and passed down. React’s “Thinking in React” documentation says that props are best
explained as “a way of passing data from parent to child.” Table 2.1 highlights some of
the differences and similarities between props and state.

Table 2.1   Props vs. state

Props State

External data Internal data

Immutable Mutable

Inherited from a parent Created in the component

Can be changed by a parent component Can only be updated in the component

Can be passed down as props Can be passed down as props

Can’t change inside the component Can change inside the component

A good way to explain how props work is to show an example. The following listing
declares a book value and passes it down to a child component as a static prop.

Listing 2.6   Static props

class MyComponent extends Component {
 render() {
 return (
 <BookDisplay book="React Native in Action" />
)
 }
}
class BookDisplay extends Component {
 render() {
 return (
 <View>
 <Text>{ this.props.book }</Text>
 </View>
)
 }
}

This code creates two components: <MyComponent /> and <BookDisplay />. When
you create <BookDisplay />, you pass in a property called book and set it to the string
“React Native in Action”. Anything passed as a property in this way is available on the
child component as this.props.

You can also pass down literals as you would variables, by using curly braces and a
string value as shown next.

34 Chapter 2  Understanding React

Listing 2.7   Displaying static props

class MyComponent extends Component {
 render() {
 return (
 <BookDisplay book={"React Native in Action"} />
)
 }
}
class BookDisplay extends Component {
 render() {
 return (
 <View>
 <Text>{ this.props.book }</Text>
 </View>
)
 }
}

Dynamic props

Next, pass a dynamic property to the component. In the render method, before the
return statement, declare a variable book and pass it in as a prop.

Listing 2.8   Dynamic props

class MyComponent extends Component {
 render() {
 let book = 'React Native in Action'
 return (
 <BookDisplay book={ book } />
)
 }
 }

class BookDisplay extends Component {
 render() {
 return (
 <View>
 <Text>{ this.props.book }</Text>
 </View>
)
 }
}

Now, pass a dynamic property to the component using state.

Listing 2.9   Dynamic props using state

class MyComponent extends Component {
 constructor() {
 super()
 this.state = {
 book: 'React Native in Action'

	 35Managing component data using props

 }
 }
 render() {
 return (
 <BookDisplay book={this.state.book} />
)
 }
}
class BookDisplay extends Component {
 render() {
 return (
 <View>
 <Text>{ this.props.book }</Text>
 </View>
)
 }
}

Next, let’s look at how to update the state and, consequently, the value passed down as
the prop to BookDisplay. Remember, props are immutable, so you’ll change the state
of the parent component (MyComponent), which will supply a new value to the Book-
Display book prop and trigger a rerender of both the component and the child com-
ponent. Breaking this idea into individual parts, here’s what needs to be done:

1	 Declare the state variable:

this.state = {
 book: 'React Native in Action'
}

2	 Write a function that will update the state variable:

updateBook() {
 this.setState({
 book: 'Express in Action'
 })
}

3	 Pass the function and the state down to the child component as props:

<BookDisplay
 updateBook={ () => this.updateBook() }
 book={ this.state.book } />

4	 Attach the function to the touch handler in the child component:

<Text onPress={ this.props.updateBook }>

Now that you know the pieces you need, you can write the code to put this into action.
You’ll use the components from the previous examples and add the new functionality.

Listing 2.10   Updating dynamic props

class MyComponent extends Component {
 constructor(){
 super()

36 Chapter 2  Understanding React

 this.state = {
 book: 'React Native in Action'
 }
 }
 updateBook() {
 this.setState({
 book: 'Express in Action'
 })
 }
 render() {
 return (
 <BookDisplay
 updateBook={ () => this.updateBook() }
 book={ this.state.book } />
)
 }
}
class BookDisplay extends Component {
 render() {
 return (
 <View>
 <Text
 onPress={ this.props.updateBook }>
 { this.props.book }
 </Text>
 </View>
)
 }
}

Destructuring props and state

Constantly referring to state and props as this.state and this.props can get repet-
itive, violating the DRY (don’t repeat yourself) principle that many of us try to follow.
To fix this, you can try using destructuring. Destructuring is a new JavaScript feature that
was added as part of the ES2015 spec and is available in React Native applications. The
basic idea is that you can take properties from an object and use them as variables in
an app:

const person = { name: 'Jeff', age: 22 }

const { age } = person

console.log(age) #22

Write a component using destructuring, as shown next.

Listing 2.11   Destructuring state and props

class MyComponent extends Component {
 constructor(){
 super()
 this.state = {
 book: 'React Native in Action'
 }

	 37Managing component data using props

 }
 updateBook() {
 this.setState({ book: 'Express in Action' })
 }
 render() {
 const { book } = this.state
 return (
 <BookDisplay
 updateBook={ () => this.updateBook() }
 book={ book } />
)
 }
}
class BookDisplay extends Component {
 render() {
 const { book, updateBook } = this.props
 return (
 <View>
 <Text
 onPress={ updateBook }>
 { book }
 </Text>
 </View>
)
 }
}

You no longer have to refer to this.state or this.props in the component when
referencing the book; instead, you’ve taken the book variable out of the state and the
props and can reference the variable itself. This starts to make more sense and will
keep your code cleaner as your state and props become larger and more complex.

Props with stateless components

Because stateless components only have to worry about props and don’t have their own
state, they can be extremely useful when creating reusable components. Let’s see how
props are used in a stateless component.

To access props using a stateless component, pass in props as the first argument to
the function.

Listing 2.12   Props with stateless components

const BookDisplay = (props) => {
 const { book, updateBook } = props
 return (
 <View>
 <Text
 onPress={ updateBook }>
 { book }
 </Text>
 </View>
)
}

38 Chapter 2  Understanding React

You can also destructure props in the function argument.

Listing 2.13   Destructuring props in a stateless component

const BookDisplay = ({ updateBook, book }) => {
 return (
 <View>
 <Text
 onPress={ updateBook }>
 { book }
 </Text>
 </View>
)
 }

That looks much nicer and cleans up a lot of unnecessary code! You should use state-
less components wherever you can, simplifying your codebase and logic.

NOTE   Stateless components are often referred to as functional components,
because they can be written as functions in JavaScript.

Passing arrays and objects as props

Other data types work exactly as you might expect. For example, to pass an array, you
pass in the array as a prop. To pass an object, you pass in the object as a prop. Let’s look
at a basic example.

Listing 2.14   Passing other data types as props

class MyComponent extends Component {
 constructor(){
 super()
 this.state = {
 leapYear: true,
 info: {
 type: 'programming'
 }
 }
 }
 render() {
 return (
 <BookDisplay
 leapYear={ this.state.leapYear }
 info={ this.state.info }
 topics={['React', 'React Native', 'JavaScript']} />
)
 }
}
const BookDisplay = (props) => {
 let leapyear
 let { topics } = props
 const { info } = props
 topics = topics.map((topic, i) => {
 return <Text>{ topic }</Text>

	 39React component specifications

 })
 if (props.leapYear) {
 leapyear = <Text>This is a leapyear!</Text>
 }
 return (
 <View>
 { leapyear }
 <Text>Book type: { info.type }</Text>
 { topics }
 </View>
)
}

2.3	 React component specifications
When creating React and React Native components, you can hook into several speci-
fications and lifecycle methods to control what’s going on in your component. In this
section, we’ll discuss them and give you a good understanding of what each one does
and when you should use them.

First we’ll go over the basics of the component specifications. A component specifica-
tion basically lays out how a component should react to different things happening in
the lifecycle of the component. The specifications are as follows:

¡	render method
¡	constructor method
¡	statics object, used to define static methods available to a class

2.3.1	 Using the render method to create a UI

The render method is the only method in the component specification that’s required
when creating a component. It must return either a single child element, null, or
false. This child element can be a component you declared (such as a View or Text
component), or another component you defined (maybe a Button component you
created and imported into the file):

render() {
 return (
 <View>
 <Text>Hello</Text>
 </View>
)
}

You can use the render method with or without parentheses. If you don’t use paren-
theses, then the returned element must of course be on the same line as the return
statement:

render() {
 return <View><Text>Hello</Text></View>
}

40 Chapter 2  Understanding React

The render method can also return another component that was defined elsewhere:

render() {
 return <SomeComponent />
}
#or
render() {
 return (
 <SomeComponent />
)
}

You can also check for conditionals in the render method, perform logic, and return
components based on their value:

render() {
 if(something === true) {
 return <SomeComponent />
 } else return <SomeOtherComponent />
}

2.3.2	 Using property initializers and constructors

State can be created in a constructor or using a property initializer. Property initializers
are an ES7 specification to the JavaScript language, but they work out of the box with
React Native. They provide a concise way to declare state in a React class:

class MyComponent extends React.Component {
 state = {
 someNumber: 1,
 someBoolean: false
 }

You can also use a constructor method to set the initial state when using classes. The
concept of classes, as well as the constructor function, isn’t specific to React or React
Native; it’s an ES2015 specification and is just syntactic sugar on top of JavaScript’s
existing prototype-based inheritance for creating and initializing an object created
with a class. Other properties can also be set for a component class in the constructor
by declaring them with the syntax this.property (property being the name of the
property). The keyword this refers to the current class instance you’re in:

constructor(){
 super()
 this.state = {
 someOtherNumber: 19,
 someOtherBoolean: true
 }
 this.name = 'Hello World'
 this.type = 'class'
 this.loaded = false
}

When using a constructor to create a React class, you must use the super keyword
before you can use the this keyword, because you’re extending another class. Also, if
you need access to any props in the constructor, they must be passed as an argument to
the constructor and the super call.

	 41React lifecycle methods

Setting the state based on props usually isn’t good practice unless you’re intention-
ally setting some type of seed data for the component’s internal functionality, because
the data will no longer be consistent across components if it’s changed. State is only cre-
ated when the component is first mounted or created. If you rerender the same com-
ponent using different prop values, then any instances of that component that have
already been mounted won’t use the new prop values to update state.

The following example shows props being used to set state values within the con-
structor. Let’s say you pass in “Nader Dabit” as the props to the component initially: the
fullName property in the state will be “Nader Dabit”. If the component is then reren-
dered with “Another Name”, the constructor won’t be called a second time, so the state
value for fullName will remain “Nader Dabit”:

constructor(props){
 super(props)
 this.state = {
 fullName: props.first + ' ' + props.last,
 }
 }

2.4	 React lifecycle methods
Various methods are executed at specific points in a component’s lifecycle: these are
called the lifecycle methods. Understanding how they work is important because they
allow you to perform specific actions at different points in the creation and destruction
of a component. For example, suppose you wanted to make an API call that returned
some data. You’d probably want to make sure the component was ready to render this
data, so you’d make the API call once the component was mounted in a method called
componentDidMount. In this section, we’ll go over the lifecycle methods and explain
how they work.

The life of a React component has three stages: creation (mounting), updating, and
deletion (unmounting). During these three stages, you can hook into three sets of life-
cycle methods:

¡	Mounting (creation) —When a component is created, a series of lifecycle methods
are triggered and you have the option to hook into any or all of them: construc-
tor, getDerivedStateFromProps, render, and componentDidMount. The one
such method you’ve used so far is render, which renders and returns a UI.

¡	Updating —When a component updates, the update lifecycle methods are trig-
gered: getDerivedStateFromProps (when props change), shouldComponentUp-
date, render, getSnapshotBeforeUpdate, and componentDidUpdate. An update
can happen in one of two ways:

–	 When setState or forceUpdate is called within a component

–	 When new props are passed down into the component
¡	Unmounting —When the component is unmounted (destroyed), a final lifecycle

method is triggered: componentWillUnmount.

42 Chapter 2  Understanding React

2.4.1	 The static getDerivedStateFromProps method

getDerivedStateFromProps is a static class method that is called both when the com-
ponent is created and when it receives new props. This method receives the new props
and most up-to-date state as arguments and returns an object. The data in the object is
updated to the state. The following listing shows an example.

Listing 2.15   static getDerivedStateFromProps

export default class App extends Component {
 state = {
 userLoggedIn: false
 }
 static getDerivedStateFromProps(nextProps, nextState) {
 if (nextProps.user.authenticated) {
 return {
 userLoggedIn: true
 }
 }
 return null
 }
 render() {
 return (
 <View style={styles.container}>
 {
 this.state.userLoggedIn && (
 <AuthenticatedComponent />>
)
 }
 </View>
);
 }
}

2.4.2	 The componentDidMount lifecycle method

componentDidMount is called exactly once, just after the component has been loaded.
This method is a good place to fetch data with AJAX calls, perform setTimeout func-
tions, and integrate with other JavaScript frameworks.

Listing 2.16   componentDidMount

class MainComponent extends Component {
 constructor() {
 super()
 this.state = { loading: true, data: {} }
 }
 componentDidMount() {
 #simulate ajax call
 setTimeout(() => {
 this.setState({
 loading: false,
 data: {name: 'Nader Dabit', age: 35}

	 43React lifecycle methods

 })
 }, 2000)
 }
 render() {
 if(this.state.loading) {
 return <Text>Loading</Text>
 }
 const { name, age } = this.state.data
 return (
 <View>
 <Text>Name: {name}</Text>
 <Text>Age: {age}</Text>
 </View>
)
 }
}

2.4.3	 The shouldComponentUpdate lifecycle method

shouldComponentUpdate returns a Boolean and lets you decide when a component
renders. If you know the new state or props won’t require the component or any of
its children to render, you can return false. If you want the component to rerender,
return true.

Listing 2.17   shouldComponentUpdate

class MainComponent extends Component {
 shouldComponentUpdate(nextProps, nextState) {
 if(nextProps.name !== this.props.name) {
 return true
 }
 return false
 }
 render() {
 return <SomeComponent />
 }
 }

2.4.4	 The componentDidUpdate lifecycle method

componentDidUpdate is invoked immediately after the component has been updated
and rerendered. You get the previous state and previous props as arguments.

Listing 2.18   componentDidUpdate

class MainComponent extends Component {
 componentDidUpdate(prevProps, prevState) {
 if(prevState.showToggled === this.state.showToggled) {
 this.setState({
 showToggled: !showToggled
 })
 }
 }

44 Chapter 2  Understanding React

 render() {
 return <SomeComponent />
 }
 }

2.4.5	 The componentWillUnmount lifecycle method

componentWillUnmount is called before the component is removed from the applica-
tion. Here, you can perform any necessary cleanup, remove listeners, and remove tim-
ers that were set up in componentDidMount.

Listing 2.19   componentWillUnmount

class MainComponent extends Component {

 handleClick() {
 this._timeout = setTimeout(() => {
 this.openWidget();
 }, 2000);
 }
 componentWillUnmount() {
 clearTimeout(this._timeout);
 }
 render() {
 return <SomeComponent
 handleClick={() => this.handleClick()} />
 }
}

Summary

¡	State is a way to handle data in React components. Updating state rerenders the
UI of the component and any child component relying on this data as props.

¡	Properties (props) are how data is passed down through a React Native appli-
cation to child components. Updating props automatically updates any compo-
nents receiving the same props.

¡	A React component specification is a group of methods and properties in a React
component that specifies the declaration of the component. render is the only
required method when creating a React component; all other methods and
properties are optional.

¡	There are three main stages in a React component’s lifecycle: creation (mount-
ing), updating, and deletion (unmounting). Each has its own set of lifecycle
methods.

¡	React lifecycle methods are available in a React component and are executed at
specific points in the component’s lifecycle. They control how the component
functions and updates.

45

3Building your first
React Native app

This chapter covers
¡	Building a todo app from the ground up

¡	Light debugging

When learning a new framework, technology, language, or concept, diving directly
into the process by building a real app is a great way to jump-start the learning pro-
cess. Now that you understand the basics of how React and React Native work, let’s
put these pieces together to make your first app: a todo app. Going through the pro-
cess of building a small app and using the information we’ve gone over so far will be
a good way to reinforce your understanding of how to use React Native.

You’ll use some functionality in the app that we haven’t yet covered in depth, and
some styling nuances we’ve yet to discuss, but don’t worry. Instead of going over these
new ideas one by one now, you’ll build the basic app and then learn about these con-
cepts in detail in later chapters. Take this opportunity to play around with the app as
you build it to learn as much as possible in the process: feel free to break and fix styles
and components to see what happens.

46 Chapter 3  Building your first React Native app

3.1	 Laying out the todo app
Let’s get started building the todo app. It will be similar in style and functionality to the
apps on the TodoMVC site (http://todomvc.com). Figure 3.1 shows how the app will
look when you’re finished, so you can conceptualize what components you need and
how to structure them. As in chapter 1, figure 3.2 breaks the app into components and
container components. Let’s see how this will look in the app using a basic implementa-
tion of React Native components.

Listing 3.1   Basic todo app implementation

<View>
 <Heading />
 <Input />
 <TodoList />
 <Button />
 <TabBar />
</View>

The app will display a heading, a text input, a button, and a tab bar. When you add a
todo, the app will add it to the array of todos and display the new todo beneath the input.
Each todo will have two buttons: Done and Delete. The Done button will mark it as com-
plete, and the Delete button will remove it from the array of todos. At the bottom of the
screen, the tab bar will filter the todos based on whether they’re complete or still active.

Figure 3.1   Todo app design Figure 3.2   Todo app with descriptions

http://todomvc.com

	 47Coding the todo app

3.2	 Coding the todo app
Let’s get started coding the app. Create a new React Native project by typing react-na-
tive init TodoApp in your terminal (see figure 3.3). Now, go into your index file: if
you’re developing for iOS, open index.iOS.js; and if you’re developing for Android,
open index.Android.js. The code for both platforms will be the same.

NOTE   I’m using React Native version 0.51.0 for this example. Newer versions
may have API changes, but nothing should be broken for building the todo
app. You’re welcome to use the most recent version of React Native, but if you
run into issues, use the exact version I’m using here.

In the index file, import an App component (which you’ll create soon), and delete the
styling along with any extra components you’re no longer using.

Listing 3.2   index.js

import React from 'react'
import { AppRegistry } from 'react-native'
import App from './app/App'

 const TodoApp = () => <App />

AppRegistry.registerComponent('TodoApp', () => TodoApp)

Here, you bring in AppRegistry from react-native. You also bring in the main App
component, which you’ll create next.

In the AppRegistry method, you initiate the application. AppRegistry is the JS entry
point to running all React Native apps. It takes two arguments: the appKey, or the name
of the application you defined when you initialized the app; and a function that returns
the React Native component you want to use as the entry point of the app. In this case,
you’re returning the TodoApp component declared in listing 3.2.

Now, create a folder called app in the root of the application. In the app folder, cre-
ate a file called App.js and add the basic code shown in the next listing.

Figure 3.3   Initializing a new React Native app

3.1	 Laying out the todo app
Let’s get started building the todo app. It will be similar in style and functionality to the
apps on the TodoMVC site (http://todomvc.com). Figure 3.1 shows how the app will
look when you’re finished, so you can conceptualize what components you need and
how to structure them. As in chapter 1, figure 3.2 breaks the app into components and
container components. Let’s see how this will look in the app using a basic implementa-
tion of React Native components.

Listing 3.1   Basic todo app implementation

<View>
 <Heading />
 <Input />
 <TodoList />
 <Button />
 <TabBar />
</View>

The app will display a heading, a text input, a button, and a tab bar. When you add a
todo, the app will add it to the array of todos and display the new todo beneath the input.
Each todo will have two buttons: Done and Delete. The Done button will mark it as com-
plete, and the Delete button will remove it from the array of todos. At the bottom of the
screen, the tab bar will filter the todos based on whether they’re complete or still active.

Figure 3.1   Todo app design Figure 3.2   Todo app with descriptions

http://todomvc.com

48 Chapter 3  Building your first React Native app

Listing 3.3   Creating the App component

import React, { Component } from 'react'
import { View, ScrollView, StyleSheet } from 'react-native'

class App extends Component {
 render() {
 return (
 <View style={styles.container}>
 <ScrollView keyboardShouldPersistTaps='always'
 style={styles.content}>
 <View/>
 </ScrollView>
 </View>
)
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#f5f5f5'
 },
 content: {
 flex: 1,
 paddingTop: 60
 }
})

export default App

You import a new component called ScrollView, which wraps the platform Scroll-
View and is basically a scrollable View component. A keyboardShouldPersistTaps
prop of always is added: this prop will dismiss the keyboard if it’s open and allow the
UI to process any onPress events. You make sure both the ScrollView and the parent
View of the ScrollView have a flex:1 value. flex:1 is a style value that makes the
component fill the entire space of its parent container.

Now, set up an initial state for some of the values you’ll need later. You need an array
to keep your todos, which you’ll name todos; a value to hold the current state of the
TextInput that will add the todos, named inputValue; and a value to store the type of
todo that you’re currently viewing (All, Current, or Active), named type.

In App.js, before the render function, add a constructor and an initial state to the
class, and initialize these values in the state.

Listing 3.4   Setting the initial state

...

class App extends Component {
 constructor() {
 super()

	 49Coding the todo app

 this.state = {
 inputValue: '',
 todos: [],
 type: 'All'
 }
 }
 render() {
 ...
 }
}

...

Next, create the Heading component and give it some styling. In the app folder, create
a file called Heading.js. This will be a stateless component.

Listing 3.5   Creating the Heading component

import React from 'react'
import { View, Text, StyleSheet } from 'react-native'

const Heading = () => (
 <View style={styles.header}>
 <Text style={styles.headerText}>
 todos
 </Text>
 </View>
)

const styles = StyleSheet.create({
 header: {
 marginTop: 80
 },
 headerText: {
 textAlign: 'center',
 fontSize: 72,
 color: 'rgba(175, 47, 47, 0.25)',
 fontWeight: '100'
 }
})

export default Heading

Note that in the styling of headerText, you pass an rgba value to color. If you aren’t
familiar with RGBA, the first three values make up the RGB color values, and the last
value represents the alpha or opacity (red, blue, green, alpha). You pass in an alpha
value of 0.25, or 25%. You also set the font weight to 100, which will give the text a
thinner weight and look.

Go back into App.js, bring in the Heading component, and place it in the Scroll-
View, replacing the empty View you originally placed there.

50 Chapter 3  Building your first React Native app

Run the app to see the new heading and app layout: see figure 3.4. To run the app in
iOS, use react-native run-ios. To run in Android, use react-native run-android
in your terminal from the root of your React Native application.

Listing 3.6   Importing and using the Heading component

import React, { Component } from 'react'
import {View, ScrollView, StyleSheet} from 'react-native'
import Heading from './Heading'

class App extends Component {
 ...
 render() {
 return (
 <View style={styles.container}>
 <ScrollView
 keyboardShouldPersistTaps='always'
 style={styles.content}>
 <Heading />
 </ScrollView>
 </View>
)
 }
}
...

Figure 3.4   Running the app

	 51Coding the todo app

Next, create the TextInput component and give it some styling. In the app folder, create
a file called Input.js.

Listing 3.7   Creating the TextInput component

import React from 'react'
import { View, TextInput, StyleSheet } from 'react-native'

const Input = () => (
 <View style={styles.inputContainer}>
 <TextInput
 style={styles.input}
 placeholder='What needs to be done?'
 placeholderTextColor='#CACACA'
 selectionColor='#666666' />
 </View>
)

const styles = StyleSheet.create({
 inputContainer: {
 marginLeft: 20,
 marginRight: 20,
 shadowOpacity: 0.2,
 shadowRadius: 3,
 shadowColor: '#000000',
 shadowOffset: { width: 2, height: 2 }
 },
 input: {
 height: 60,
 backgroundColor: '#ffffff',
 paddingLeft: 10,
 paddingRight: 10
 }
})

export default Input

You’re using a new React Native component called TextInput here. If you’re famil-
iar with web development, this is similar to an HTML input. You also give both the
TextInput and the outer View their own styling.

TextInput takes a few other props. Here, you specify a placeholder to show text
before the user starts to type, a placeholderTextColor that styles the placeholder text,
and a selectionColor that styles the cursor for the TextInput.

The next step, in section 3.4, will be to wire up a function to get the value of the
TextInput and save it to the state of the App component. You’ll also go into App.js and
add a new function called inputChange below the constructor and above the render
function. This function will update the state value of inputValue with the value passed
in, and for now will also log out the value of inputValue for you to make sure the func-
tion is working by using console.log(). But to view console.log() statements in React
Native, you first need to open the developer menu. Let’s see how it works.

52 Chapter 3  Building your first React Native app

3.3	 Opening the developer menu
The developer menu is a built-in menu available as a part of React Native; it gives you
access to the main debugging tools you’ll use. You can open it in the iOS simulator or
in the Android emulator. In this section, I’ll show you how to open and use the devel-
oper menu on both platforms.

NOTE   If you aren’t interested in the developer menu or want to skip this sec-
tion for now, go to section 3.4 to continue building the todo app.

3.3.1	 Opening the developer menu in the iOS simulator

While the project is running in the iOS simulator, you can open the developer menu in
one of three ways:

¡	Press Cmd-D on the keyboard.
¡	Press Cmd-Ctrl-Z on the keyboard.
¡	Open the Hardware > Shake Gesture menu in the simulator options (see

figure 3.5).

When you do, you should see the developer menu, shown in figure 3.6.

NOTE   If Cmd-D or Cmd-Ctrl-Z doesn’t open the menu, you may need to con-
nect your hardware to the keyboard. To do this, go to Hardware > Keyboard >
Connect Hardware Keyboard in your simulator menu.

Figure 3.5   Manually opening the developer
menu (iOS simulator)

Figure 3.6   React Native developer menu
(iOS simulator)

	 53Opening the developer menu

3.3.2	 Opening the developer menu in the Android emulator

With the project open and running in the Android emulator, the developer menu can
be opened in one of three ways:

¡	Press F2 on the keyboard.
¡	Press Cmd-M on the keyboard.
¡	Press the Hardware button (see figure 3.7).

When you do, you should see the developer menu shown in figure 3.8.

3.3.3	 Using the developer menu

When the developer menu opens, you should see the following options:

¡	Reload (iOS and Android) —Reloads the app. This can also be done by pressing
Cmd-R on the keyboard (iOS) or pressing R twice (Android).

¡	Debug JS Remotely (iOS and Android) —Opens the Chrome dev tools and gives you
full debugging support through the browser (figure 3.9). Here, you have access
not only to logging statements in your code, but also to breakpoints and whatever
you’re used to while debugging web apps (with the exception of the DOM). If you
need to log any information or data in your app, this is usually the place to do so.

Hardware menu

Figure 3.7   Manually opening the hardware
menu (Android emulator)

Figure 3.8   React Native developer menu
(Android emulator)

54 Chapter 3  Building your first React Native app

¡	Enable Live Reload (iOS and Android)—Enables live reload. When you make
changes in your code, the entire app will reload and refresh in the simulator.

¡	Start Systrace (iOS only)—Systrace is a profiling tool. This will give you a good idea
of where your time is being spent during each 16 ms frame while your app is run-
ning. Profiled code blocks are surrounded by start/end markers that are then
visualized in a colorful chart format. Systrace can also be enabled manually from
the command line in Android. If you want to learn more, check out the docs for a
very comprehensive overview.

¡	Enable Hot Reloading (iOS and Android)—A great feature added in version .22 of
React Native. It offers an amazing developer experience, giving you the ability
to see your changes immediately as files are changed without losing the current
state of the app. This is especially useful for making UI changes deep in your app
without losing state. It’s different than live reloading because it retains the current
state of your app, only updating the components and state that have been changed
(live reloading reloads the entire app, therefore losing the current state).

¡	Toggle Inspector (iOS and Android)—Brings up a property inspector similar to what
you see in the Chrome dev tools. You can click an element and see where it is in the
hierarchy of components, as well as any styling applied to the element (figure 3.10).

¡	Show Perf Monitor (iOS and Android)—Brings up a small box in the upper-left cor-
ner of the app, giving some information about the app’s performance. Here
you’ll see the amount of RAM being used and the number of frames per second
at which the app is currently running. If you click the box, it will expand to show
even more information (figure 3.11).

¡	Dev Settings (Android emulator only)—Brings up additional debugging options,
including an easy way to toggle between the __DEV__ environment variable being
true or false (figure 3.12).

Figure 3.9   Debugging in Chrome

Figure 3.10   Using the inspector (left: iOS, right: Android)

Figure 3.11   Perf Monitor (left: iOS, right: Android)

Figure 3.12   Dev Settings (Android emulator)

	 55Continuing building the todo app

3.4	 Continuing building the todo app
Now that you know how the developer menu works, open it and press Debug JS
Remotely to open the Chrome dev tools. You’re ready to start logging information to
the JavaScript console.

You’ll import the Input component into app/App.js and attach a method to
TextInput, which you’ll give as a prop to the Input. You’ll also pass the inputValue
stored on the state to Input as a prop.

Listing 3.8   Creating the inputChange function

...
import Heading from './Heading'

¡	Enable Live Reload (iOS and Android)—Enables live reload. When you make
changes in your code, the entire app will reload and refresh in the simulator.

¡	Start Systrace (iOS only)—Systrace is a profiling tool. This will give you a good idea
of where your time is being spent during each 16 ms frame while your app is run-
ning. Profiled code blocks are surrounded by start/end markers that are then
visualized in a colorful chart format. Systrace can also be enabled manually from
the command line in Android. If you want to learn more, check out the docs for a
very comprehensive overview.

¡	Enable Hot Reloading (iOS and Android)—A great feature added in version .22 of
React Native. It offers an amazing developer experience, giving you the ability
to see your changes immediately as files are changed without losing the current
state of the app. This is especially useful for making UI changes deep in your app
without losing state. It’s different than live reloading because it retains the current
state of your app, only updating the components and state that have been changed
(live reloading reloads the entire app, therefore losing the current state).

¡	Toggle Inspector (iOS and Android)—Brings up a property inspector similar to what
you see in the Chrome dev tools. You can click an element and see where it is in the
hierarchy of components, as well as any styling applied to the element (figure 3.10).

¡	Show Perf Monitor (iOS and Android)—Brings up a small box in the upper-left cor-
ner of the app, giving some information about the app’s performance. Here
you’ll see the amount of RAM being used and the number of frames per second
at which the app is currently running. If you click the box, it will expand to show
even more information (figure 3.11).

¡	Dev Settings (Android emulator only)—Brings up additional debugging options,
including an easy way to toggle between the __DEV__ environment variable being
true or false (figure 3.12).

Figure 3.9   Debugging in Chrome

Figure 3.10   Using the inspector (left: iOS, right: Android)

Figure 3.11   Perf Monitor (left: iOS, right: Android)

Figure 3.12   Dev Settings (Android emulator)

56 Chapter 3  Building your first React Native app

import Input from './Input'
class App extends Component {
 constructor() {
 …
 }
 inputChange(inputValue) {
 console.log(' Input Value: ' , inputValue)
 this.setState({ inputValue })
 }
 render() {
 const { inputValue } = this.state
 return (
 <View style={styles.container}>
 <ScrollView
 keyboardShouldPersistTaps='always'
 style={styles.content}>
 <Heading />
 <Input
 inputValue={inputValue}
 inputChange={(text) => this.inputChange(text)} />
 </ScrollView>
 </View>
)
 }}

inputChange takes one argument, the value of the TextInput, and updates the input-
Value in the state with the returned value from the TextInput.

Now, you need to wire up the function with the TextInput in the Input component.
Open app/Input.js, and update the TextInput component with the new inputChange
function and the inputValue property.

Listing 3.9   Adding inputChange and inputValue to the TextInput

...
const Input = ({ inputValue, inputChange }) => (
 <View style={styles.inputContainer}>
 <TextInput
 value={inputValue}
 style={styles.input}
 placeholder='What needs to be done?'
 placeholderTextColor='#CACACA'
 selectionColor='#666666'
 onChangeText={inputChange} />
 </View>
)
...

You destructure the props inputValue and inputChange in the creation of the stateless
component. When the value of the TextInput changes, the inputChange function is
called, and the value is passed to the parent component to set the state of inputValue.
You also set the value of the TextInput to be inputValue, so you can later control and
reset the TextInput. onChangeText is a method that will be called every time the value
of the TextInput component is changed and will be passed the value of the TextInput.

Creates the inputChange method, which
takes inputValue as an argument

Logs out the inputValue value to
make sure the method is working

Sets the state with the new value—same as
this.setState({inputValue: inputValue})

Passes inputValue as a property
to the Input component

Passes inputChange as a property
to the Input component

Destructures the inputValue
and inputChange props

Sets the onChangeText
method to inputChange

	 57Continuing building the todo app

Run the project again and see how it looks (figure 3.13). You’re logging the value
of the input, so as you type you should see the value being logged out to the console
(figure 3.14).

Figure 3.13   Updated view after adding the TextInput

Figure 3.14   Logging out the TextInput value with the inputChange method

58 Chapter 3  Building your first React Native app

Now that the value of the inputValue is being stored in the state, you need to create a
button to add the items to a list of todos. Before you do, create a function that you’ll
bind to the button to add the new todo to the array of todos defined in the constructor.
Call this function submitTodo, and place it after the inputChange function and before
the render function.

Listing 3.10   Adding the submitTodo function

...
submitTodo () {
 if (this.state.inputValue.match(/^\s*$/)) {
 return
 }
 const todo = {
 title: this.state.inputValue,
 todoIndex,
 complete: false
 }
 todoIndex++
 const todos = [...this.state.todos, todo]
 this.setState({ todos, inputValue: '' }, () => {
 console.log('State: ', this.state)
 })
}
...

Next, create the todoIndex at the top of the App.js file, below the last import statement.

Listing 3.11   Creating the todoIndex variable

...
import Input from './Input'

let todoIndex = 0

class App extends Component {
...

Now that the submitTodo function has been created, create a file called Button.js and
wire up the function to work with the button.

Listing 3.12   Creating the Button component

import React from 'react'
import { View, Text, StyleSheet, TouchableHighlight } from 'react-native'

Checks whether inputValue is empty or
only contains whitespace. If it’s empty,
returns without doing anything else.

If inputValue isn’t empty, creates and assigns a todo
variable an object with a title, a todoIndex, and a
complete Boolean (you’ll create the todoIndex shortly).

Increments the todoIndex
Pushes the new todo to the
existing array of todos

Sets the state of the todos to match the
updated array of this.state.todos, and
resets inputValue to an empty string

Once the state is set, you have the option to pass a
callback function. Here, a callback function from setState

logs out the state to make sure everything is working.

	 59Continuing building the todo app

const Button = ({ submitTodo }) => (
 <View style={styles.buttonContainer}>
 <TouchableHighlight
 underlayColor='#efefef'
 style={styles.button}
 onPress={submitTodo}>
 <Text style={styles.submit}>
 Submit
 </Text>
 </TouchableHighlight>
 </View>
)

const styles = StyleSheet.create({
 buttonContainer: {
 alignItems: 'flex-end'
 },
 button: {
 height: 50,
 paddingLeft: 20,
 paddingRight: 20,
 backgroundColor: '#ffffff',
 width: 200,
 marginRight: 20,
 marginTop: 15,
 borderWidth: 1,
 borderColor: 'rgba(0,0,0,.1)',
 justifyContent: 'center',
 alignItems: 'center'
 },
 submit: {
 color: '#666666',
 fontWeight: '600'
 }
})

export default Button

In this component, you use TouchableHighlight for the first time. TouchableHigh-
light is one of the ways you can create buttons in React Native and is fundamentally
comparable to the HTML button element.

With TouchableHighlight, you can wrap views and make them respond properly to
touch events. On press down, the default backgroundColor is replaced with a specified
underlayColor property that you’ll provide as a prop. Here you specify an underlay-
Color of '#efefef', which is a light gray; the background color is white. This will give
the user a good sense of whether the touch event has registered. If no underlayColor is
defined, it defaults to black.

TouchableHighlight supports only one main child component. Here, you pass in
a Text component. If you want multiple components in a TouchableHighlight, wrap
them in a single View, and pass this View as the child of the TouchableHighlight.

Destructures the submitTodo function, which
was passed as a prop to the component

Attaches submitTodo to the onPress function available to
the TouchableHighlight component. This function will be
called when the TouchableHighlight is touched or pressed.

60 Chapter 3  Building your first React Native app

NOTE   There’s also quite a bit of styling going on in listing 3.12. Don’t worry
about styling specifics in this chapter: we cover them in depth in chapters 4
and 5. But do look at them, to get an idea how styling works in each compo-
nent. This will help a lot in the in-depth later chapters, because you’ll already
have been exposed to some styling properties and how they work.

You’ve created the Button component and wired it up with the function defined in
App.js. Now bring this component into the app (app/App.js) and see if it works!

Listing 3.13   Importing the Button component

...
import Button from './Button'

let todoIndex = 0

...
constructor() {
 super()
 this.state = {
 inputValue: '',
 todos: [],
 type: 'All'
 }
 this.submitTodo = this.submitTodo.bind(this)
 }
...
render () {
 let { inputValue } = this.state
 return (
 <View style={styles.container}>
 <ScrollView
 keyboardShouldPersistTaps='always'
 style={styles.content}>
 <Heading />
 <Input
 inputValue={inputValue}
 inputChange={(text) => this.inputChange(text)} />
 <Button submitTodo={this.submitTodo} />
 </ScrollView>
 </View>
)
 }

You import the Button component and place it under the Input component in the
render function. submitTodo is passed in to the Button as a property called this.
submitTodo.

Now, refresh the app. It should look like figure 3.15. When you add a todo, the
TextInput should clear, and the app state should log to the console, showing an array
of todos with the new todo in the array (figure 3.16).

Imports the new Button component

Binds the method to the class in
the constructor. Because you’re
using classes, functions won’t be
auto-bound to the class.

Place the Button below the
Input component, and pass in

submitTodo as a prop. Figure 3.15   Updated app with the Button
component

Figure 3.16   Logging the state

	 61Continuing building the todo app

Now that you’re adding todos to the array of todos, you need to render them to the
screen. To get started with this, you need to create two new components: TodoList and
Todo. TodoList will render the list of Todos and will use the Todo component for each
individual todo. Begin by creating a file named Todo.js in the app folder.

NOTE   There’s also quite a bit of styling going on in listing 3.12. Don’t worry
about styling specifics in this chapter: we cover them in depth in chapters 4
and 5. But do look at them, to get an idea how styling works in each compo-
nent. This will help a lot in the in-depth later chapters, because you’ll already
have been exposed to some styling properties and how they work.

You’ve created the Button component and wired it up with the function defined in
App.js. Now bring this component into the app (app/App.js) and see if it works!

Listing 3.13   Importing the Button component

...
import Button from './Button'

let todoIndex = 0

...
constructor() {
 super()
 this.state = {
 inputValue: '',
 todos: [],
 type: 'All'
 }
 this.submitTodo = this.submitTodo.bind(this)
 }
...
render () {
 let { inputValue } = this.state
 return (
 <View style={styles.container}>
 <ScrollView
 keyboardShouldPersistTaps='always'
 style={styles.content}>
 <Heading />
 <Input
 inputValue={inputValue}
 inputChange={(text) => this.inputChange(text)} />
 <Button submitTodo={this.submitTodo} />
 </ScrollView>
 </View>
)
 }

You import the Button component and place it under the Input component in the
render function. submitTodo is passed in to the Button as a property called this.
submitTodo.

Now, refresh the app. It should look like figure 3.15. When you add a todo, the
TextInput should clear, and the app state should log to the console, showing an array
of todos with the new todo in the array (figure 3.16).

Imports the new Button component

Binds the method to the class in
the constructor. Because you’re
using classes, functions won’t be
auto-bound to the class.

Place the Button below the
Input component, and pass in

submitTodo as a prop. Figure 3.15   Updated app with the Button
component

Figure 3.16   Logging the state

62 Chapter 3  Building your first React Native app

Listing 3.14   Creating the Todo component

import React from 'react'
import { View, Text, StyleSheet } from 'react-native'

const Todo = ({ todo }) => (
 <View style={styles.todoContainer}>
 <Text style={styles.todoText}>
 {todo.title}
 </Text>
 </View>
)

const styles = StyleSheet.create({
 todoContainer: {
 marginLeft: 20,
 marginRight: 20,
 backgroundColor: '#ffffff',
 borderTopWidth: 1,
 borderRightWidth: 1,
 borderLeftWidth: 1,
 borderColor: '#ededed',
 paddingLeft: 14,
 paddingTop: 7,
 paddingBottom: 7,
 shadowOpacity: 0.2,
 shadowRadius: 3,
 shadowColor: '#000000',
 shadowOffset: { width: 2, height: 2 },
 flexDirection: 'row',
 alignItems: 'center'
 },
 todoText: {
 fontSize: 17
 }
})

export default Todo

The Todo component takes one property for now—a todo—and renders the title in a
Text component. You also add styling to the View and Text components.

Next, create the TodoList component (app/TodoList.js).

Listing 3.15   Creating the TodoList component

import React from 'react'
import { View } from 'react-native'
import Todo from './Todo'

const TodoList = ({ todos }) => {
 todos = todos.map((todo, i) => {
 return (
 <Todo
 key={todo.todoIndex}
 todo={todo} />

	 63Continuing building the todo app

)
 })
 return (
 <View>
 {todos}
 </View>
)
}

export default TodoList

The TodoList component takes one property for now: an array of todos. You then map
over these todos and create a new Todo component (imported at the top of the file)
for each todo, passing in the todo as a property to the Todo component. You also spec-
ify a key and pass in the index of the todo item as a key to each component. The key
property helps React identify the items that have changed when the diff with the virtual
DOM is computed. React will give you a warning if you leave this out.

The last thing you need to do is import the TodoList component into the App.js file
and pass in the todos as a property.

Listing 3.16   Importing the TodoList component

...
import TodoList from './TodoList'
...
render () {
 const { inputValue, todos } = this.state
 return (
 <View style={styles.container}>
 <ScrollView
 keyboardShouldPersistTaps='always'
 style={styles.content}>
 <Heading />
 <Input inputValue={inputValue} inputChange={(text) => this.

inputChange(text)} />
 <TodoList todos={todos} />
 <Button submitTodo={this.submitTodo} />
 </ScrollView>
 </View>
)
 }
...

Run the app. When you add a todo, you should see it pop up in the list of todos
(figure 3.17).

The next steps are to mark a todo as complete, and to delete a todo. Open App.js,
and create toggleComplete and deleteTodo functions below the submitTodo function.
toggleComplete will toggle whether the todo is complete, and deleteTodo will delete
the todo.

64 Chapter 3  Building your first React Native app

Listing 3.17   Adding toggleComplete and deleteTodo functions

constructor () {
 ...
 this.toggleComplete = this.toggleComplete.bind(this)
 this.deleteTodo = this.deleteTodo.bind(this)
}
...
deleteTodo (todoIndex) {
 let { todos } = this.state
 todos = todos.filter((todo) => todo.todoIndex !== todoIndex)
 this.setState({ todos })
}

Figure 3.17   Updated app with the
TodoList component

Binds the toggleComplete method
to the class in the constructor

Binds the deleteTodo method to
the class in the constructor

deleteTodo takes the todoIndex
as an argument, filters the todos
to return all but the todo with
the index that was passed in,
and then resets the state to the
remaining todos.

	 65Continuing building the todo app

toggleComplete (todoIndex) {
 let todos = this.state.todos
 todos.forEach((todo) => {
 if (todo.todoIndex === todoIndex) {
 todo.complete = !todo.complete
 }
 })
 this.setState({ todos })
}
...

To hook in these functions, you need to create a button component to pass in to the
todo. In the app folder, create a new file called TodoButton.js.

Listing 3.18   Creating TodoButton.js

import React from 'react'
import { Text, TouchableHighlight, StyleSheet } from 'react-native'

const TodoButton = ({ onPress, complete, name }) => (
 <TouchableHighlight
 onPress={onPress}
 underlayColor='#efefef'
 style={styles.button}>
 <Text style={[
 styles.text,
 complete ? styles.complete : null,
 name === 'Delete' ? styles.deleteButton : null]}
 >
 {name}
 </Text>
 </TouchableHighlight>
)

const styles = StyleSheet.create({
 button: {
 alignSelf: 'flex-end',
 padding: 7,
 borderColor: '#ededed',
 borderWidth: 1,
 borderRadius: 4,
 marginRight: 5
 },
 text: {
 color: '#666666'
 },
 complete: {
 color: 'green',
 fontWeight: 'bold'
 },
 deleteButton: {
 color: 'rgba(175, 47, 47, 1)'
 }
})
export default TodoButtton

toggleComplete also takes the todoIndex as
an argument, and loops through the todos
until it finds the todo with the given index.
It changes the complete Boolean to the
opposite of complete’s current setting, and
then resets the state of the todos.

Takes onPress, complete,
and name as props

Checks whether complete is
true, and applies a style

Checks whether the name property
equals “Delete” and, if so, applies a style

66 Chapter 3  Building your first React Native app

Now, pass the new functions as props to the TodoList component.

Listing 3.19   Passing toggleComplete and deleteTodo as props to TodoList

render () {
 ...
 <TodoList
 toggleComplete={this.toggleComplete}
 deleteTodo={this.deleteTodo}
 todos={todos} />
 <Button submitTodo={this.submitTodo} />
 ...
}

Next, pass toggleComplete and deleteTodo as props to the Todo component.

Listing 3.20   Passing toggleComplete and deleteTodo as props to ToDo

...
const TodoList = ({ todos, deleteTodo, toggleComplete }) => {
 todos = todos.map((todo, i) => {
 return (
 <Todo
 deleteTodo={deleteTodo}
 toggleComplete={toggleComplete}
 key={i}
 todo={todo} />
)
 })
...

Finally, open Todo.js and update the Todo component to bring in the new TodoButton
component and some styling for the button container.

Listing 3.21   Updating Todo.js to bring in TodoButton and functionality

import TodoButton from './TodoButton'
...
const Todo = ({ todo, toggleComplete, deleteTodo }) => (
 <View style={styles.todoContainer}>
 <Text style={styles.todoText}>
 {todo.title}
 </Text>
 <View style={styles.buttons}>
 <TodoButton
 name='Done'
 complete={todo.complete}
 onPress={() => toggleComplete(todo.todoIndex)} />
 <TodoButton
 name='Delete'
 onPress={() => deleteTodo(todo.todoIndex)} />
 </View>
 </View>
)

	 67Continuing building the todo app

const styles = StyleSheet.create({
...
 buttons: {
 flex: 1,
 flexDirection: 'row',
 justifyContent: 'flex-end',
 alignItems: 'center'
 },
...
)}

You add two TodoButtons: one named Done, and one named Delete. You also pass
toggleComplete and deleteTodo as functions to be called as the onPress you defined
in TodoButton.js. If you refresh the app and add a todo, you should now see the new
buttons (figure 3.18).

If you click Done, the button text should be bold and green. If you click Delete, the
todo should disappear from the list of todos.

You’re now almost done with the app. The final step is to build a tab bar filter that
will show either all the todos, only the complete todos, or only the incomplete todos. To
get this started, you’ll create a new function that will set the type of todos to show.

Figure 3.18   App with TodoButtons
displayed

68 Chapter 3  Building your first React Native app

In the constructor, you set a state type variable to 'All' when you first created the app.
You’ll now create a function named setType that will take a type as an argument and
update the type in the state. Place this function below the toggleComplete function in
App.js.

Listing 3.22   Adding the setType function

constructor () {
 ...
 this.setType = this.setType.bind(this)
}
...
setType (type) {
 this.setState({ type })
}
...

Next, you need to create the TabBar and TabBarItem components. First, create the
TabBar component: add a file in the app folder named TabBar.js.

Listing 3.23   Creating the TabBar component

import React from 'react'
import { View, StyleSheet } from 'react-native'
import TabBarItem from './TabBarItem'

const TabBar = ({ setType, type }) => (
 <View style={styles.container}>
 <TabBarItem type={type} title='All'
 setType={() => setType('All')} />
 <TabBarItem type={type} border title='Active'
 setType={() => setType('Active')} />
 <TabBarItem type={type} border title='Complete'
 setType={() => setType('Complete')} />
 </View>
)

const styles = StyleSheet.create({
 container: {
 height: 70,
 flexDirection: 'row',
 borderTopWidth: 1,
 borderTopColor: '#dddddd'
 }
})

export default TabBar

This component takes two props: setType and type. Both are passed down from the
main App component.

	 69Continuing building the todo app

You’re importing the yet-to-be-defined TabBarItem component. Each TabBarItem
component takes three props: title, type, and setType. Two of the components also
take a border prop (Boolean), which if set will add a left border style.

Next, create a file in the app folder named TabBarItem.js.

Listing 3.24   Creating the TabBarItem component

import React from 'react'
import { Text, TouchableHighlight, StyleSheet } from 'react-native'

const TabBarItem = ({ border, title, selected, setType, type }) => (
 <TouchableHighlight
 underlayColor='#efefef'
 onPress={setType}
 style={[
 styles.item, selected ? styles.selected : null,
 border ? styles.border : null,
 type === title ? styles.selected : null]}>
 <Text style={[styles.itemText, type === title ? styles.bold : null]}>
 {title}
 </Text>
 </TouchableHighlight>
)

const styles = StyleSheet.create({
 item: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 border: {
 borderLeftWidth: 1,
 borderLeftColor: '#dddddd'
 },
 itemText: {
 color: '#777777',
 fontSize: 16
 },
 selected: {
 backgroundColor: '#ffffff'
 },
 bold: {
 fontWeight: 'bold'
 }
})

export default TabBarItem

In the TouchableHighlight component, you check a few props and set styles based on
the prop. If selected is true, you give it the style styles.selected. If border is true, you
give it the style styles.border. If type is equal to the title, you give it styles.selected.

In the Text component, you also check to see whether type is equal to title. If so,
add a bold style to it.

70 Chapter 3  Building your first React Native app

To implement the TabBar, open app/App.js, bring in the TabBar component, and set
it up. You’ll also bring in type to the render function as part of destructuring this.state.

Listing 3.25   Implementing the TabBar component

...
import TabBar from './TabBar'
class App extends Component {
...
render () {
 const { todos, inputValue, type } = this.state
 return (
 <View style={styles.container}>
 <ScrollView
 keyboardShouldPersistTaps='always'
 style={styles.content}>
 <Heading />
 <Input inputValue={inputValue}
 inputChange={(text) => this.inputChange(text)} />
 <TodoList
 type={type}
 toggleComplete={this.toggleComplete}
 deleteTodo={this.deleteTodo}
 todos={todos} />
 <Button submitTodo={this.submitTodo} />
 </ScrollView>
 <TabBar type={type} setType={this.setType} />
 </View>
)
}
...

Here, you bring in the TabBar component. You then destructure type from the state
and pass it not only to the new TabBar component, but also to the TodoList component; you’ll
use this type variable in just a second when filtering the todos based on this type. You
also pass the setType function as a prop to the TabBar component.

The last thing you need to do is open the TodoList component and add a filter
to return only the todos of the type you currently want back, based on the tab that’s
selected. Open TodoList.js, destructure the type out of the props, and add the following
getVisibleTodos function before the return statement.

Listing 3.26   Updating the TodoList component

...
const TodoList = ({ todos, deleteTodo, toggleComplete, type }) => {
 const getVisibleTodos = (todos, type) => {
 switch (type) {
 case 'All':
 return todos
 case 'Complete':
 return todos.filter((t) => t.complete)
 case 'Active':

	 71Continuing building the todo app

 return todos.filter((t) => !t.complete)
 }
 }

 todos = getVisibleTodos(todos, type)
 todos = todos.map((todo, i) => {
...

You use a switch statement to check which type is currently set. If 'All' is set, you
return the entire list of todos. If 'Complete' is set, you filter the todos and only return
the complete todos. If 'Active' is set, you filter the todos and only return the incom-
plete todos.

You then set the todos variable as the returned value of getVisibleTodos. Now you
should be able to run the app and see the new TabBar (figure 3.19). The TabBar will
filter based on which type is selected.

Figure 3.19   Final todo app

72 Chapter 3  Building your first React Native app

Summary

¡	AppRegistry is the JavaScript entry point to running all React Native apps.
¡	The React Native component TextInput is similar to an HTML input. You can

specify several props, including a placeholder to show text before the user
starts to type, a placeholderTextColor that styles the placeholder text, and a
selectionColor that styles the cursor for the TextInput.

¡	TouchableHighlight is one way to create buttons in React Native; it’s compa-
rable to the HTML button element. You can use TouchableHighlight to wrap
views and make them respond properly to touch events.

¡	You learned how to enable the developer tools in both iOS and Android emulators.
¡	Using the JavaScript console (available from the developer menu) is a good way

to debug your app and log useful information.

Part 2

Developing applications
in React Native

With the basics covered, you can start adding features to your React Native
app. The chapters in this part cover styling, navigation, animations, and elegant
ways to handle data using data architectures (with a focus on Redux).

Chapters 4 and 5 teach how to apply styles either inline with components or
in stylesheets that components can reference. And because React Native compo-
nents are the main building blocks of your app’s UI, chapter 4 spends some time
teaching useful things you can do with the View component. Chapter 5 builds on
the skills taught in chapter 4. It covers aspects of styling that are platform specific,
as well as some advanced techniques, including using flexbox to make it easier to
lay out an application.

Chapter 6 shows how to use the two most-recommended and most-used navi-
gation libraries, React Navigation and React Native Navigation. We walk through
creating the three main types of navigators—tabs, stack, and drawer—and how to
control the navigation state.

Chapter 7 covers the four things you need to do to create animations, the four
types of animatable components that ship with the Animated API, how to create
custom animatable components, and several other useful skills.

In chapter 8, we explore handling data with data architectures. Because Redux
is the most widely adopted method of handling data in the React ecosystem, you
use it to build an app, meanwhile learning data-handling skills. We show how to
use the Context API and how to implement Redux with a React Native app by
using reducers to hold the Redux state and delete items from the example app.
We also cover how to use providers to pass global state to the rest of the app, how
to use the connect function to access the example app from a child component,
and how to use actions to add functionality.

75

4Introduction to styling

This chapter covers
¡	Styling using JavaScript

¡	Applying and organizing styles

¡	Applying styles to View components

¡	Applying styles to Text components

It takes talent to build mobile applications, but it takes style to make them great. If
you’re a graphic designer, you know this intuitively, deep in your bones. If you’re a
developer, you’re probably groaning and rolling your eyes. In either case, understand-
ing the fundamentals of styling Reactive Native components is critical to making an
engaging application that others want to use.

In all likelihood, you have some experience with CSS, even if it’s nothing more than
seeing the syntax. You can easily understand what a CSS rule like background-color:
'red' is meant to do. As you begin reading this chapter, it may appear as though styl-
ing components in React Native is as simple as using camelCase names for CSS rules.
For instance, setting the background color on a React Native component uses almost
the same syntax, backgroundColor: 'red'—but be forewarned, this is where the sim-
ilarities end.

76 Chapter 4  Introduction to styling

Try not to hang on to how you did things in CSS. Embrace the React Native way,
and you’ll find that learning how to style components is a much more pleasant experi-
ence—even for a developer.

The first section of this chapter provides an overview of styling components. We’ll
make sure you understand the various ways to apply styles to components and discuss
how to organize styles in an application. Forming good organizational habits now will
make things easier to manage and will facilitate the use of more advanced techniques
down the road.

Because React Native is styled using JavaScript, we’ll talk about how to start thinking
of styles as code and how to take advantage of JavaScript features like variables and func-
tions. The final two sections explore styling View components and Text components. In
some cases, we’ll use short examples to explain a topic, but for the most part, we’ll walk
through styling something real. You’ll take what you learn and apply it to the construc-
tion of a Profile Card.

For all the example code in this chapter, you can start with the default generated app and
replace the contents of App.js with the code from the individual listings. Complete source
files can be found at www.manning.com/books/react-native-in-action and in the book’s
Git repository at https://github.com/dabit3/react-native-in-action under chapter-4.

4.1	 Applying and organizing styles in React Native
React Native comes with many built-in components, and the community has built many
more you can include with your projects. Components support a specific set of styles.
Those styles may or may not be applicable to other types of components. For example,
the Text component supports the fontWeight property (fontWeight refers to the thick-
ness of the font), but the View component doesn’t. Conversely, the View component
supports the flex property (flex refers to the layout of components within a view), but
the Text component doesn’t.

Some styling elements are similar between components but not the same. For
example, the View component supports the shadowColor property, whereas the Text
component supports the textShadowColor property. Some styles, like ShadowProp-
TypesIOS, only apply to a specific platform (in this case, to iOS).

Learning the various styles and how to manipulate them takes time. That’s why it’s
important to start with fundamentals like how to apply and organize styles. This section
will focus on teaching those styling fundamentals, so you’ll have a good foundation
from which to start exploring styles and building the example Profile Card component.

TIP    For a solid reference on how to make mobile apps usable, see Matt Lacey’s
Usability Matters (Manning, 2018; www.manning.com/books/usability-matters).

4.1.1	 Applying styles in applications

To compete in the marketplace, mobile applications must have a sense of style. You can
develop a fully functional app, but if it looks terrible and isn’t engaging, people aren’t

www.manning.com/books/react-native-in-action
www.manning.com/books/usability-matters

	 77Applying and organizing styles in React Native

going to be interested. You don’t have to build the hottest-looking app in the world,
but you do have to commit to creating a polished product. A polished, sharp-looking
app greatly influences people’s perception of the app’s quality.

You can apply styles to elements in React Native in a number of ways. In chapters
1 and 3, we went over inline styling (shown in the next listing) and styling using a
StyleSheet (listing 4.2).

Listing 4.1   Using inline styles

import React, { Component } from 'react'
import { Text, View } from 'react-native'

export default class App extends Component {
 render () {
 return (
 <View style={{marginLeft: 20, marginTop: 20}}>
 <Text style={{fontSize: 18,color: 'red'}}>Some Text</Text>
 </View>
)
 }
}

As you can see, it’s possible to specify multiple styles at once by supplying an object to
the styles property.

Listing 4.2   Referencing styles defined in a StyleSheet

import React, { Component } from 'react'
import { StyleSheet, Text, View } from 'react-native'

export default class App extends Component {
 render () {
 return (
 <View style={styles.container}>
 <Text style={[styles.message,styles.warning]}>Some Text</Text>
 </View>
)
 }
}

const styles = StyleSheet.create({
 container: {
 marginLeft: 20,
 marginTop: 20
 },
 message: {
 fontSize: 18
 },
 warning: {
 color: 'red'
 }
});

Applies an inline style to a
React Native component

Applies multiple inline styles at once

References the container style
defined in the styles stylesheet

Uses an array to reference
both the message and warning

styles from the stylesheet

Defines the styles using StyleSheet.create

78 Chapter 4  Introduction to styling

Functionally, there’s no difference between using an inline style versus referencing a
style defined in a StyleSheet. With StyleSheet, you create a style object and refer to
each style individually. Separating the styles from the render method makes the code
easier to understand and promotes reuse of styles across components.

When using a style name like warning, it’s easy to recognize the intent of the message.
But the inline style color: 'red' offers no insight into why the message is red. Having
styles specified in one place rather than inline on many components makes it easier to
apply changes across the entire application. Imagine you wanted to change warning mes-
sages to yellow. All you have to do is change the style definition once in the stylesheet,
color: 'yellow'.

Listing 4.2 also shows how to specify multiple styles by supplying an array of style
properties. Remember when doing this that the last style passed in will override the
previous style if there’s a duplicate property. For example, if an array of styles like this is
supplied, the last value for color will override all the previous values:

style={[{color: 'black'},{color: 'yellow'},{color: 'red'}]}

In this example, the color will be red.
It’s also possible to combine the two methodologies by specifying an array of styling

properties using inline styles and references to stylesheets:

style={[{color: 'black'}, styles.message]}

React Native is very flexible in this regard, which can be both good and bad. Specify-
ing inline styles when you’re quickly trying to prototype something is extremely easy,
but in the long haul, you’ll want to be careful how you organize your styles; otherwise
your application can quickly become a mess and difficult to manage. By organizing your
styles, you’ll make it easier to do the following:

¡	Maintain your application’s codebase
¡	Reuse styles across components
¡	Experiment with styling changes during development

4.1.2	 Organizing styles

As you might suspect from the previous section, using inline styles isn’t the recom-
mended way to go: stylesheets are a much more effective way to manage styles. But
what does that mean in practice?

When styling websites, we use stylesheets all the time. Often we use tools like Sass,
Less, and PostCSS to create monolithic stylesheets for the entire application. In the
world of the web, styles are in essence global, but that isn’t the React Native way.

React Native focuses on the component. The goal is to make components as reusable
and standalone as possible. Having a component dependent on an application’s stylesheet
is the antithesis of modularity. In React Native, styles are scoped to the component—not to
the application.

	 79Applying and organizing styles in React Native

How to accomplish this encapsulation depends entirely on your team’s preference.
There’s no right or wrong way, but in the React Native community, you’ll find two common
approaches:

¡	Declaring stylesheets in the same file as the component
¡	Declaring stylesheets in a separate file, outside of the component

Declaring stylesheets in the same file as the component
As you’ve done so far in this book, a popular way to declare styles is within the compo-
nent that will be using them. The major benefit of this approach is that the component
and its styles are completely encapsulated in a single file. This component can then
be moved or used anywhere in the app. This is a common approach to component
design, one you’ll see often in the React Native community.

When including the stylesheet definitions
with the component, the typical convention
is to specify the styles after the component.
All the listings in this book have, so far, fol-
lowed this convention.

Declaring stylesheets in a separate file

If you’re used to writing CSS, putting your
styles into a separate file might seem like a
better approach and feel more familiar. The
stylesheet definitions are created in a sepa-
rate file. You can name it whatever you want
(styles.js is typical), but be sure the extension
is .js; it’s JavaScript, after all. The stylesheet
file and component file are saved in the
same folder.

A file structure like that shown in figure
4.1 retains the close relationship between
components and styles and affords a bit of
clarity by not mixing style definitions with
the functional aspects of the components.
Listing 4.3 corresponds to a styles.js file that
would be used to style a component like
ComponentA and ComponentB in the figure.
Use meaningful names when defining your
stylesheets, so it’s clear what part of a compo-
nent is being styled.

MYREACTPROJECT

COMPONENTS

COMPONENTA

COMPONENTA.JS

APP.JS

INDEX.JS

STYLES.JS

COMPONENTB

COMPONENTB.JS

STYLES.JS

Figure 4.1   An example file structure with
styles separated from components in a single
folder instead of a single file

80 Chapter 4  Introduction to styling

Listing 4.3   Externalizing a component’s stylesheets

import { StyleSheet } from 'react-native'

const styles = StyleSheet.create({
 container: {
 marginTop: 150,
 backgroundColor: '#ededed',
 flexWrap: 'wrap'
 }
})

const buttons = StyleSheet.create({
 primary: {
 flex: 1,
 height: 70,
 backgroundColor: 'red',
 justifyContent: 'center',
 alignItems: 'center',
 marginLeft: 20,
 marginRight: 20
 }
})

export { styles, buttons }

The component imports the external stylesheets and can reference any styles defined
within them.

Listing 4.4   Importing external stylesheets

import { styles, buttons } from './component/styles'

<View style={styles.container}>
 <TouchableHighlight style={buttons.primary} />
 ...
 </TouchableHighlight>
</View>

4.1.3	 Styles are code

You’ve already seen how JavaScript is used to define styles in React Native. Despite hav-
ing a full scripting language with variables and functions, your styles have been rather
static, but they certainly don’t have to be!

Web developers have fought with CSS for years. New technologies like Sass, Less, and
PostCSS were created to work around the many limitations of cascading stylesheets.
Even a simple thing like defining a variable to store the primary color of a site was
impossible without CSS preprocessors. The CSS Custom Properties for Cascading Vari-
ables Module Level 1 candidate recommendation in December 2015 introduced the
concept of custom properties, which are akin to variables; but at the time of writing,
fewer than 80% of browsers in use support this functionality.

Creates a stylesheet, and saves
it in the styles constant

Defines a style for the container.
It can be referenced by the
component as styles.container.

Creates a second stylesheet, and
saves it in the buttons constant

Defines a style for the primary button.
It can be referenced by the component
as buttons.primary.

Exports both the styles and buttons
stylesheets so the component will have
access to the constants

Imports multiple stylesheets
exported from styles.js

Reference
to the styles.
container
style created
in styles.js

Reference to the buttons.primary
style created in styles.js

	 81Applying and organizing styles in React Native

Let’s take advantage of the fact that we’re using JavaScript and start thinking of styles
as code. You’ll build a simple application that gives the user a button to change the
theme from light to dark. But before you start coding, let’s walk through what you’re
trying to build.

The application has a single button on the screen. That button is enclosed by a small
square box. When the button is pressed, the themes will toggle. When the light theme
is selected, the button label will say White, the background will be white, and the box
around the button will be black. When the dark theme is selected, the button label will
say Black, the background will be black, and the box around the button will be white.
Figure 4.2 shows what the screen should look like when the themes are selected.

For this example, organize the styles in a separate file, styles.js. Then, create some con-
stants to hold the color values, and create two stylesheets for the light and dark themes.

Listing 4.5   Dynamic stylesheets extracted from the main component file

import {StyleSheet} from 'react-native';

export const Colors = {
 dark: 'black',
 light: 'white'
};

const baseContainerStyles = {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
};

const baseBoxStyles = {
 justifyContent: 'center',
 alignItems: 'center',
 borderWidth: 2,
 height: 150,
 width: 150
};

const lightStyleSheet = StyleSheet.create({

BLACKWHITE

Click white

button

Click black

button

Figure 4.2   A simple application that supports two themes,
white and black. Users can press the button to toggle between
a white background and a black background.

Constant defining the colors that will
correspond to the light and dark themes

JavaScript object to hold
the base container styles

JavaScript object to hold
the base box styles

Creates the stylesheet
for the light theme

82 Chapter 4  Introduction to styling

 container: {
 ...baseContainerStyles,
 backgroundColor: Colors.light
 },
 box: {
 ...baseBoxStyles,
 borderColor: Colors.dark
 }
});

const darkStyleSheet = StyleSheet.create({
 container: {
 ...baseContainerStyles,
 backgroundColor: Colors.dark
 },
 box: {
 ...baseBoxStyles,
 borderColor: Colors.light
 }
});

export default function getStyleSheet(useDarkTheme){
 return useDarkTheme ? darkStyleSheet : lightStyleSheet;
}

Once the styles have been configured, you can start building the component app in App.
js. Because you only have light and dark themes, create a utility function, getStyleSheet,
which takes a Boolean value. If true is supplied, the dark theme will be returned; other-
wise the light theme will be returned.

Listing 4.6   Application that toggles between light and dark themes

import React, { Component } from 'react';
import { Button, StyleSheet, View } from 'react-native';
import getStyleSheet from './styles';

export default class App extends Component {

 constructor(props) {
 super(props);
 this.state = {
 darkTheme: false
 };
 this.toggleTheme = this.toggleTheme.bind(this);
 }

 toggleTheme() {
 this.setState({darkTheme: !this.state.darkTheme})
 };

 render() {

 const styles = getStyleSheet(this.state.darkTheme);
 const backgroundColor =

Creates the stylesheet
for the dark theme

Function that
will return the
appropriate
theme based
on a Boolean
value

Returns the dark
theme if useDarkTheme

is true; otherwise
returns the light theme

Imports the getStyleSheet function
from the externalized styles

Initializes the component’s state
to show the light theme by default

To avoid exceptions, the
toggleTheme function must
be bound to the component.

Toggles the
theme value
in state
whenever the
function is
called

Uses the imported getStyleSheet function
to get the appropriate stylesheet for

whichever theme should be displayed

	 83Styling view components

 StyleSheet.flatten(styles.container).backgroundColor;

 return (
 <View style={styles.container}>
 <View style={styles.box}>
 <Button title={backgroundColor}
 onPress={this.toggleTheme}/>
 </View>
 </View>
);
 }
}

The application toggles themes: feel free to experiment and take it a bit further. Try
changing the light theme to a different color. Notice how easy it is, because the colors
are defined as constants in one place. Try changing the button label in the dark theme
to be the same color as the background instead of always white. Try creating an entirely
new theme, or modify the code to support many different themes instead of just two—
have fun!

4.2	 Styling view components
Now that you’ve had a proper overview of styling in React Native, let’s talk more about
individual styles. This chapter covers many of the basic properties you’ll use all the
time. In chapter 5, we’ll go into more depth and introduce styles you won’t see every
day and styles that are platform specific. But for now, let’s focus on the basics: in this
section, that’s the View components. The View component is the main building block
of a UI and is one of the most important components to understand to get your styling
right. Remember, a View element is similar to an HTML div tag in the sense that you
can use it to wrap other elements and build blocks of UI code in it.

As you progress through the chapter, you’ll use what you’ve learned to build a real
component: a Profile Card. Building the Profile Card will show how to put everything
together. Figure 4.3 shows what the component will look like at the end of this section.
In the process of creating this component, you’ll learn how to do the following:

¡	Create a border around the profile container using borderWidth
¡	Round the corners of that border with borderRadius
¡	Create a border that looks like a circle by using a borderRadius half the size of

the component’s width
¡	Position everything using margin and padding properties

The next few sections will teach the styling techniques you’ll need to know to create
the Profile Card component. We’ll start easy by talking about how to set a component’s
background color. You’ll be able to use that same technique to set the background
color of the Profile Card.

The React Native StyleSheet.flatten utility
function converts the StyleSheet object
into a JavaScript object, which makes It

much easier to get the backgroundColor.

References
the theme’s
container
style

References the
theme’s box style
(the box border
around the button)

String representation
of the color being
used by the themeWhen the button is pressed, calls

the toggleTheme function to
alternate from one theme to another

84 Chapter 4  Introduction to styling

4.2.1	 Setting the background color

Without a splash of color, a user interface (UI) looks boring and dull. You don’t need
an explosion of color to make things look interesting, but you do need a bit. The
backgroundColor property sets the background color of an element. This property
takes a string of one of the properties shown in table 4.1. The same colors are avail-
able when rendering text to the screen as well.

Table 4.1   Supported color formats

Supported color format Example

#rgb '#06f'

#rgba '#06fc'

#rrggbb '#0066ff'

#rrggbbaa '#ff00ff00'

rgb(number, number, number) 'rgb(0, 102, 255)'

rgb(number, number, number, alpha) 'rgba(0, 102, 255, .5)'

hsl(hue, saturation, lightness) 'hsl(216, 100%, 50%)'

hsla(hue, saturation, lightness, alpha) 'hsla(216, 100%, 50%, .5)'

Transparent background 'transparent'

Any CSS3-specified named color (black, red, blue, and so on) 'dodgerblue'

backgroundColor

Rounded corners

borderWidth

Centered
horizontally

borderRadius half
of width

Figure 4.3   The Profile Card component after the structural
View components have been styled. The Profile Card is a
rectangle with rounded corners and a circular section for a
profile image.

	 85Styling view components

Fortunately, the supported color formats are the same ones supported by CSS. We
won’t go into great detail, but because this may be the first time you’ve seen some of
these formats, here’s a quick explanation:

¡	rgb stands for red, green, and blue. You can specify the values for red, green, and
blue using a scale from 0–255 (or in hexadecimal 00–ff). Higher numbers mean
more of each color.

¡	alpha is similar to opacity (0 is transparent, 1 is solid).
¡	hue represents 1 degree on a 360-degree color wheel, where 0 is red, 120 is green,

and 240 is blue.
¡	saturation is the intensity of the color from a 0% shade of gray to 100% full color.
¡	lightness is a percentage between 0% and 100%. 0% is darker (closer to black),

and 100% is light (closer to white).

You’ve seen backgroundColor applied in previous examples, so let’s take things a step fur-
ther in the next example. To use your new skills to create something real, let’s start build-
ing the Profile Card. Right now, it won’t look like much, as you can see in figure 4.4—it’s
just a 300 × 400 colored rectangle.

The following listing shows the initial code. Don’t worry about the fact that most of it
has nothing to do with styling. We’ll walk through each piece, but you need a founda-
tion from which to start.

Figure 4.4   A simple 300 × 400 colored rectangle
that forms the base of the Profile Card component

86 Chapter 4  Introduction to styling

Listing 4.7   Initial framework for the Profile Card component

import React, { Component } from 'react';
import { StyleSheet, View} from 'react-native';

export default class App extends Component<{}> {
 render() {
 return (
 <View style={styles.container}>
 <View style={styles.cardContainer}/>
 </View>
);
 }
}

const profileCardColor = 'dodgerblue';

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 cardContainer: {
 backgroundColor: profileCardColor,
 width: 300,
 height: 400
 }
});

The first View component is the outermost element. It acts as a container around
everything else. Its sole purpose is to center child components on the device’s display.
The second View component will be the container for the Profile Card. For now, it’s a
300 × 400 colored rectangle.

4.2.2	 Setting border properties

Applying a background color to a component definitely makes it stand out, but with-
out a crisp border line delineating the edge of the component, it looks like the com-
ponent is floating in space. A clear delineation between components will help users
understand how to interact with your mobile application.

Adding a border around a component is the best way to give screen elements a con-
crete, real feeling. There are quite a few border properties, but conceptually there are
only four: borderColor, borderRadius, borderStyle, and borderWidth. These proper-
ties apply to the component as a whole.

For the color and width, there are individual properties for each side of the border:
borderTopColor, borderRightColor, borderBottomColor, borderLeftColor, bor-
derTopWidth, borderRightWidth, borderBottomWidth, and borderLeftWidth. For the
border radius, there are properties for each corner: borderTopRightRadius, border-
BottomRightRadius, borderBottomLeftRadius, and borderTopLeftRadius. But there’s
only one borderStyle.

The outermost View element
references the container style that
centers the child View component.

The inner View element
will become the Profile
Card component.

Defines the color for the Profile
Card in a variable in case you need

to use it in more than one place

Style definition for the
outermost container

Style definition for the
Profile Card container

Sets the Profile Card
backgroundColor to the
constant set earlier

	 87Styling view components

Creating borders with the color, width and style properties
To set a border, you must first set borderWidth. borderWidth is the size of the border,
and it’s always a number. You can either set a borderWidth that applies to the entire
component or choose which borderWidth you want to set specifically (top, right, bot-
tom, or left). You can combine these properties in many different ways to get the effect
you like. See figure 4.5 for some examples.

As you can see, you can combine border styles to create combinations of border effects.
The next listing shows how easy this is to do.

Listing 4.8   Setting various border combinations

import React, { Component } from 'react';
import { StyleSheet, Text, View} from 'react-native';

export default class App extends Component<{}> {
 render() {
 return (
 <View style={styles.container}>
 <Example style={{borderWidth: 1}}>
 <Text>borderWidth: 1</Text>
 </Example>
 <Example style={{borderWidth: 3, borderLeftWidth: 0}}>
 <Text>borderWidth: 3, borderLeftWidth: 0</Text>
 </Example>
 <Example style={{borderWidth: 3, borderLeftColor: 'red'}}>
 <Text>borderWidth: 3, borderLeftColor: 'red'</Text>
 </Example>
 <Example style={{borderLeftWidth: 3}}>
 <Text>borderLeftWidth: 3</Text>
 </Example>
 <Example style={{borderWidth: 1, borderStyle: 'dashed'}}>
 <Text>borderWidth: 1, borderStyle: 'dashed'</Text>
 </Example>
 </View>
);
 }
}

const Example = (props) => (
 <View style={[styles.example,props.style]}>
 {props.children}
 </View>
);

Figure 4.5   Examples of various combinations of border
style settings

Sets borderWidth to 1

Increases borderWidth to 3,
removes the left border, and

sets borderLeftWidth to 0Sets borderWidth
to 3, adds back the
left border, and sets
the color to red

Sets only a left border, with
borderLeftWidth set to 3

Changes borderStyle from
the default solid to dashedReusable Example component with a

default set of styles that can easily be
overridden by passing in style properties

88 Chapter 4  Introduction to styling

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 example: {
 marginBottom: 15
 }
});

When only borderWidth is specified, borderColor defaults to 'black' and borderStyle
defaults to 'solid'. If borderWidth or borderColor is set at the component level, those
properties can be overridden by using a more specific property like borderWidthLeft;
specificity takes precedence over generality.

NOTE   borderStyle is a bit buggy, and I suggest sticking with the default, solid
border. If you try to change the border width of any side and have borderStyle
set to 'dotted' or 'dashed', you’ll get an error. This will probably be fixed at
some point, but for now don’t spend too much time scratching your head if
borderStyle doesn’t work the way you expect. File that away in your brain, and
let’s move along.

Using border radius to create shapes

Another border property that can be used to great effect is borderRadius. A lot of
objects in the real world have straight edges, but seldom does a straight line convey any
sense of style. You wouldn’t buy an automobile that looked like a box. You want your
car to have nice curved lines that look sleek. Using the borderRadius style gives you
the ability to add a bit of style to your applications. You can make many different, inter-
esting shapes by adding curves in the right spots.

With borderRadius, you can define how rounded border corners appear on ele-
ments. As you may suspect, borderRadius applies to the entire component. If you set
borderRadius and don’t set one of the more specific values, like borderTopLeftRadius,
all four corners will be rounded. Look at figure 4.6 to see how to round different borders
to create cool effects.

Example 1:
Four rounded

corners

Example 3:
Leaf shape

Example 4:
Circle

Example 2:
D shape

Figure 4.6   Examples of various border radius combinations.
Example 1: a square with four rounded corners. Example
2: a square with the right two corners rounded, making a
D shape. Example 3: a square with the opposite corners
rounded, which looks like a leaf. Example 4: a square with a
border radius equal to half the length of a side, which results
in a circle.

	 89Styling view components

Creating the shapes in figure 4.6 is relatively simple, as shown in listing 4.9. Honestly,
the trickiest part about this code is making sure you don’t make the text too big or too
long. I’ll show you what I mean shortly, in listing 4.10.

Listing 4.9   Setting various border radius combinations

import React, { Component } from 'react';
import { StyleSheet, Text, View} from 'react-native';

export default class App extends Component<{}> {
 render() {
 return (
 <View style={styles.container}>
 <Example style={{borderRadius: 20}}>
 <CenteredText>
 Example 1:{"\n"}4 Rounded Corners
 </CenteredText>
 </Example>
 <Example style={{borderTopRightRadius: 60,
 borderBottomRightRadius: 60}}>
 <CenteredText>
 Example 2:{"\n"}D Shape
 </CenteredText>
 </Example>
 <Example style={{borderTopLeftRadius: 30,
 borderBottomRightRadius: 30}}>
 <CenteredText>
 Example 3:{"\n"}Leaf Shape
 </CenteredText>
 </Example>
 <Example style={{borderRadius: 60}}>
 <CenteredText>
 Example 4:{"\n"}Circle
 </CenteredText>
 </Example>
 </View>
);
 }
}

const Example = (props) => (
 <View style={[styles.example,props.style]}>
 {props.children}
 </View>
);

const CenteredText = (props) => (
 <Text style={[styles.centeredText, props.style]}>
 {props.children}
 </Text>
);

const styles = StyleSheet.create({
 container: {
 flex: 1,
 flexDirection: 'row',
 flexWrap: 'wrap',

Example 1: a square with
four rounded corners

This is JavaScript, so
you can specify a hard
return inline with the
text by using {"\n"}.

Example 2: a square with the
right two corners rounded

Example 3: a square with the
opposite corners rounded

Example 4: a square with a border
radius equal to half the length of a side

Reusable component
for rendering the
centered text elements

React Native uses flexbox
to control layout.

90 Chapter 4  Introduction to styling

 marginTop: 75
 },
 example: {
 width: 120,
 height: 120,
 marginLeft: 20,
 marginBottom: 20,
 backgroundColor: 'grey',
 borderWidth: 2,
 justifyContent: 'center'
 },
 centeredText: {
 textAlign: 'center',
 margin: 10
 }
});

Pay particular attention to the style that centers the text. You got lucky by using
margin: 10. If you used padding: 10, the background of the text component would
occlude the underlying border stroke of the View component (see figure 4.7).

By default, a Text component inherits the background color of its parent com-
ponent. Because the bounding box of the Text component is a rectangle, the back-
ground overlaps the nice rounded corners. Obviously, using the margin property solves
the problem, but it’s also possible to remedy the situation another way. You could add
backgroundColor: 'transparent' to the centeredText style. Making the text compo-
nent’s background transparent allows the underlying border to show through and look
normal again, as in figure 4.6.

Adding borders to your Profile Card component

With your newfound knowledge of border properties, you can almost complete the
initial layout of the Profile Card component. Using only the border properties from
the last section, you can transform the 300 × 400 colored rectangle into something that
more closely resembles what you want. Figure 4.8 shows how far you can get with an
image and the techniques you’ve learned so far. It includes an image to use as a place-
holder for a person’s photo; you’ll find it in the source code. But the circle is created
by manipulating the border radius as described in the previous examples.

Style that centers the text
within the text components

Example 1:
Four rounded

corners

Example 3:
Leaf shape

Example 4:
Circle

Example 2:
D shape

Figure 4.7   This is what figure 4.6 would look like if
the centeredText style used padding: 10 instead
of margin: 10 to position the text. The small circles
highlight the points at which the bounding box of the Text
component overlaps the border of the View component.

Figure 4.8   Incorporating border properties into the Profile
Card component transforms the 300 × 400 colored rectangle
into something more akin to what you want for the final Profile
Card component.

	 91Styling view components

Clearly there are some layout issues with the Profile Card, but you’re almost there.
We’ll discuss how to use the margin and padding styles in the next section to get every-
thing aligned correctly.

Listing 4.10   Incorporating border properties into the Profile Card

import React, { Component } from 'react';
import { Image, StyleSheet, View} from 'react-native';

export default class App extends Component<{}> {
 render() {
 return (
 <View style={styles.container}>
 <View style={styles.cardContainer}>
 <View style={styles.cardImageContainer}>
 <Image style={styles.cardImage}
 source={require('./user.png')}/>
 </View>
 </View>
 </View>
);
 }
}

const profileCardColor = 'dodgerblue';

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 cardContainer: {
 borderColor: 'black',
 borderWidth: 3,
 borderStyle: 'solid',

Imports the Image
component from
react-native

user.png is located in the same
directory as the application code.

Adds the border properties
to the Profile Card

 marginTop: 75
 },
 example: {
 width: 120,
 height: 120,
 marginLeft: 20,
 marginBottom: 20,
 backgroundColor: 'grey',
 borderWidth: 2,
 justifyContent: 'center'
 },
 centeredText: {
 textAlign: 'center',
 margin: 10
 }
});

Pay particular attention to the style that centers the text. You got lucky by using
margin: 10. If you used padding: 10, the background of the text component would
occlude the underlying border stroke of the View component (see figure 4.7).

By default, a Text component inherits the background color of its parent com-
ponent. Because the bounding box of the Text component is a rectangle, the back-
ground overlaps the nice rounded corners. Obviously, using the margin property solves
the problem, but it’s also possible to remedy the situation another way. You could add
backgroundColor: 'transparent' to the centeredText style. Making the text compo-
nent’s background transparent allows the underlying border to show through and look
normal again, as in figure 4.6.

Adding borders to your Profile Card component

With your newfound knowledge of border properties, you can almost complete the
initial layout of the Profile Card component. Using only the border properties from
the last section, you can transform the 300 × 400 colored rectangle into something that
more closely resembles what you want. Figure 4.8 shows how far you can get with an
image and the techniques you’ve learned so far. It includes an image to use as a place-
holder for a person’s photo; you’ll find it in the source code. But the circle is created
by manipulating the border radius as described in the previous examples.

Style that centers the text
within the text components

Example 1:
Four rounded

corners

Example 3:
Leaf shape

Example 4:
Circle

Example 2:
D shape

Figure 4.7   This is what figure 4.6 would look like if
the centeredText style used padding: 10 instead
of margin: 10 to position the text. The small circles
highlight the points at which the bounding box of the Text
component overlaps the border of the View component.

Figure 4.8   Incorporating border properties into the Profile
Card component transforms the 300 × 400 colored rectangle
into something more akin to what you want for the final Profile
Card component.

92 Chapter 4  Introduction to styling

 borderRadius: 20,
 backgroundColor: profileCardColor,
 width: 300,
 height: 400
 },
 cardImageContainer: {
 backgroundColor: 'white',
 borderWidth: 3,
 borderColor: 'black',
 width: 120,
 height: 120,
 borderRadius: 60,
 },
 cardImage: {
 width: 80,
 height: 80
 }
});

The differences between listing 4.10 and the previous Profile Card code (listing 4.7)
have been bolded to highlight the incremental changes.

4.2.3	 Specifying margins and padding

You could explicitly position every component on
the screen and lay it out exactly like you want, but
that would be extremely tedious if the layout needed
to be responsive to user actions. It makes more sense
to position items relative to one another, so if you
move one component, the other components can
move in response based on their relative positions.

The margin style allows you to define this relation-
ship between components. The padding style lets
you define the relative position of a component to
its border. Using these properties together provides a
great deal of flexibility when laying out components.
You’ll use these properties every day, so it’s important
to understand what they mean and do.

Conceptually, margins and padding work exactly
the same as they do in CSS. The customary depiction of how margins and padding
relate to borders and the content area still applies (see figure 4.9).

Functionally, you’re likely to run into bugs when dealing with margins and padding.
You might be tempted to call them “quirks,” but either way they’re a pain. For the most
part, margins on View components behave reasonably well and work across iOS and
Android. Padding tends to work a little differently between OSs. At the time of writing,
padding text components in an Android environment doesn’t work at all; I suspect that
will change in an upcoming release.

The image container is a 120 × 120 square
with a borderRadius of 60 (half of 120), which
results in a circle.

Styles for the actual image

Margin

Border

Padding

Component

Figure 4.9   A common depiction of
how margins, padding, and borders
interrelate

	 93Styling view components

Using the margin property

When laying out components, one of the first problems to solve is how far the com-
ponents are from one another. To avoid specifying a distance for each component,
you need a way to specify a relative position. The margin property allows you to define
the perimeter of the component, which determines how far an element is from the
previous or parent component. Articulating the layout this way allows the container
to figure out where the components should be positioned with respect to one another
rather than you having to calculate the position of every single component.

The available margin properties are margin, marginTop, marginRight, margin-
Bottom, and marginLeft. If only the general margin property is set, without another,
more-specific value such as marginLeft or marginTop, then that value applies to all
sides of the component (top, right, bottom, and left). If both margin and a more-spe-
cific margin property are specified (for example, marginLeft), then the more-specific
margin property takes precedence. It works exactly the same as the border properties.
Let’s apply some of these styles: see figure 4.10.

The margins all position the components as expected, but notice how the Android
device clips the component when negative margins are applied. If you plan to support
both iOS and Android, test on each device from the beginning of your project. Don’t
develop on iOS and think everything you styled will behave the same on Android. List-
ing 4.11 shows the code for the examples in figure 4.10.

Listing 4.11   Applying various margins to components

import React, { Component } from 'react';
import { StyleSheet, Text, View} from 'react-native';

export default class App extends Component<{}> {

D

iOS Android

No margin

A

marginTop

marginLeft

Negative
marginTop &
marginLeft

Negative margin clipping

marginTop

C

B

C

D

A

B

Figure 4.10   Examples of applying margins to components. In iOS, example A has no margins
applied. Example B has a top margin applied. Example C has top and left margins. Example D has
both negative top and negative left margins. In Android, negative margins behave a bit differently:
the component is clipped by the parent container.

94 Chapter 4  Introduction to styling

 render() {
 return (
 <View style={styles.container}>
 <View style={styles.exampleContainer}>
 <Example>
 <CenteredText>A</CenteredText>
 </Example>
 </View>
 <View style={styles.exampleContainer}>
 <Example style={{marginTop: 50}}>
 <CenteredText>B</CenteredText>
 </Example>
 </View>
 <View style={styles.exampleContainer}>
 <Example style={{marginTop: 50, marginLeft: 10}}>
 <CenteredText>C</CenteredText>
 </Example>
 </View>
 <View style={styles.exampleContainer}>
 <Example style={{marginLeft: -10, marginTop: -10}}>
 <CenteredText>D</CenteredText>
 </Example>
 </View>
 </View>
);
 }
}

const Example = (props) => (
 <View style={[styles.example,props.style]}>
 {props.children}
 </View>
);

const CenteredText = (props) => (
 <Text style={[styles.centeredText, props.style]}>
 {props.children}
 </Text>
);

const styles = StyleSheet.create({
 container: {
 alignItems: 'center',
 flex: 1,
 flexDirection: 'row',
 flexWrap: 'wrap',
 justifyContent: 'center',
 marginTop: 75
 },
 exampleContainer: {
 borderWidth: 1,
 width: 120,
 height: 120,
 marginLeft: 20,
 marginBottom: 20,

Base example with
no margins applied

marginTop of 50

marginTop of 50 and
marginLeft of 10

Applies negative margins to
marginTop and marginLeft

	 95Styling view components

 },
 example: {
 width: 50,
 height: 50,
 backgroundColor: 'grey',
 borderWidth: 1,
 justifyContent: 'center'
 },
 centeredText: {
 textAlign: 'center',
 margin: 10
 }
});

Using the padding property

You can think of margins as the distance between elements, but padding represents the
space between the content of the element and the border of the same element. When
padding is specified, it allows the content of the component to not be flush against the
border. In figure 4.9, the backgroundColor property bleeds through the component’s
edges up to the border, which is the space defined by padding. The available proper-
ties available for padding are padding, paddingLeft, paddingRight, paddingTop, and
paddingBottom. If only the main padding property is set without another, more-specific
value such as paddingLeft or paddingTop, then that value is passed to all sides of the
component (top, right, bottom, and left). If both padding and a more-specific padding
property are specified, such as paddingLeft, then the more-specific padding property
takes precedence. This behavior is exactly like borders and margins.

Rather than create a new example to show how padding is different than margins,
let’s reuse the code from listing 4.11 and make a few tweaks. Change the margin styles
on the example components to padding styles, and add a border around the Text com-
ponents and change their background color. Figure 4.11 shows what you’ll end up with.

Listing 4.12   Modifying listing 4.11 to replace margins with padding

import React, { Component } from 'react';

...

 <View style={styles.container}>
 <View style={styles.exampleContainer}>
 <Example style={{}}>
 <CenteredText>A</CenteredText>
 </Example>
 </View>
 <View style={styles.exampleContainer}>
 <Example style={{paddingTop: 50}}>
 <CenteredText>B</CenteredText>
 </Example>
 </View>
 <View style={styles.exampleContainer}>
 <Example style={{paddingTop: 50, paddingLeft: 10}}>
 <CenteredText>C</CenteredText>

Example A: unchanged, with
no margins or padding

Example B: marginTop
changed to paddingTop

Example C: marginTop and marginLeft changed
to paddingTop and paddingLeft, respectively

96 Chapter 4  Introduction to styling

 </Example>
 </View>
 <View style={styles.exampleContainer}>
 <Example style={{paddingLeft: -10, paddingTop: -10}}>
 <CenteredText>D</CenteredText>
 </Example>
 </View>
 </View>

...

 },
 centeredText: {
 textAlign: 'center',
 margin: 10,
 borderWidth: 1,
 backgroundColor: 'lightgrey'
 }
});

Unlike margins, which specify the space between the component and its parent compo-
nent, padding applies from the border of the component to its children. In example B,
padding is calculated from the top border, which pushes the Text component B down
from the top border. Example C adds a paddingLeft value, which also pushes the Text
component C inward from the left border. Example D applies negative padding values
to paddingTop and paddingLeft.

Example D: marginLeft and marginTop
changed to paddingLeft and marginTop,

respectively. The negative values remain.

Adds a border and background
color to the Text component

iOS

No padding

paddingTop

paddingLeft

Negative
paddingTop &
paddingLeft

Padding clipping

paddingTop

Android

A

B

C

D D

C

Padding
clipping

A

B

Figure 4.11   Changing the margin styles from the previous example to padding styles. Example A,
with no padding, looks the same as when no margins are applied. Example B shows the component
with paddingTop applied. Example C is the same, but it also applies paddingLeft. Example D
applies negative padding values to paddingTop and paddingLeft, which are ignored.

	 97Styling view components

A few interesting observations can be made. Example B and example C are both
clipped on the Android device. Example C’s Text component’s width is compressed,
and the negative values for padding are ignored in example D.

4.2.4	 Using position to place components

So far, everything we’ve looked at has been positioned relative to another component,
which is the default layout position. Sometimes it’s beneficial to take advantage of
absolute positioning and place a component exactly where you want it. The implemen-
tation of the position style in React Native is similar to CSS, but there aren’t as many
options. By default, all elements are laid out relative to one another. If position is set
to absolute, then the element is laid out relative to its parent. The available properties
for position are relative (the default position) and absolute.

CSS has other values, but those are the only two in React Native. When using
absolute positioning, the following properties are also available: top, right, bot-
tom, and left.

Let’s look at a simple example to demonstrate the difference between relative and
absolute positioning. In CSS, positioning can get much more confusing, but in React
Native the “everything has relative positioning by default” makes it much easier to
position items. In figure 4.12, blocks A, B, and C are laid out relative to one another in
a row. Without any margin or padding, they’re lined up one after another. Block D is a
sibling to the ABC row of blocks, meaning the main container is the parent container
for the ABC row and block D.

Block D is set to {position: 'absolute', right: 0, bottom: 0}, so it’s positioned
in the lower-right corner of its container. Block E is also set to {position: 'absolute',
right: 0, bottom: 0}, but its parent container is block B, which means block E is posi-
tioned absolutely but with respect to block B. Block E appears in the lower-right corner
of block B, instead. Listing 4.13 shows the code for this example.

A B C

D

E

Figure 4.12   An example showing blocks A, B, and C laid out
relative to one another. Block D has an absolute position of right:
0 and bottom: 0. Block E also has an absolute position of right: 0
and bottom: 0, but its parent is block B and not the main container,
whereas D’s parent was the main container.

98 Chapter 4  Introduction to styling

Listing 4.13   Relative and absolute positioning comparison

import React, { Component } from 'react';
import { StyleSheet, Text, View} from 'react-native';

export default class App extends Component<{}> {
 render() {
 return (
 <View style={styles.container}>
 <View style={styles.row}>
 <Example>
 <CenteredText>A</CenteredText>
 </Example>
 <Example>
 <CenteredText>B</CenteredText>
 <View style={[styles.tinyExample,
 {position: 'absolute',
 right: 0,
 bottom: 0}]}>
 <CenteredText>E</CenteredText>
 </View>
 </Example>
 <Example>
 <CenteredText>C</CenteredText>
 </Example>
 </View>
 <Example style={{position: 'absolute',
 right: 0, bottom: 0}}>
 <CenteredText>D</CenteredText>
 </Example>
 </View>
);
 }
}

const Example = (props) => (
 <View style={[styles.example,props.style]}>
 {props.children}
 </View>
);

const CenteredText = (props) => (
 <Text style={[styles.centeredText, props.style]}>
 {props.children}
 </Text>
);

const styles = StyleSheet.create({
 container: {
 width: 300,
 height: 300,
 margin: 40,
 marginTop: 100,
 borderWidth: 1
 },
 row: {

Row containing blocks A, B, and C

Block E is absolutely
positioned in the
lower-right corner
of its parent
container, block B.

Block D is absolutely
positioned in the
lower-right corner of
its parent container.

The flexbox direction is specified as row, so
the blocks are in a row across the screen.

	 99Styling view components

 flex: 1,
 flexDirection: 'row'
 },
 example: {
 width: 100,
 height: 100,
 backgroundColor: 'grey',
 borderWidth: 1,
 justifyContent: 'center'
 },
 tinyExample: {
 width: 30,
 height: 30,
 borderWidth: 1,
 justifyContent: 'center',
 backgroundColor: 'lightgrey'
 },
 centeredText: {
 textAlign: 'center',
 margin: 10
 }
});

NOTE   In listing 4.13, the flexDirection property is specified as 'row', so
the blocks are in a row across the screen. React Native uses an open source,
cross-platform layout library called Yoga (https://yogalayout.com). Yoga
implements the flexbox layout mode, which you often see in CSS and is used
frequently in React Native. We’ll spend a lot of time in the next chapter talking
about flexbox. Margins, padding, and position are all great layout tools, but
flexbox is the tool you’ll use most often.

We’re finished with the fundamentals of styling View components. You’ve learned
about some layout techniques: margins, padding, and position. Let’s revisit the Profile
Card component and fix the pieces that aren’t yet laid out properly.

4.2.5	 Profile Card positioning

The following listing has the code changes that need to be made to listing 4.10 to space
the circle and user image properly and center everything. Figure 4.13 shows the result.

Listing 4.14   Modifying Profile Card styles to fix the layout

...
 cardContainer: {
 alignItems: 'center',
 borderColor: 'black',
 borderWidth: 3,
 borderStyle: 'solid',
 borderRadius: 20,
 backgroundColor: profileCardColor,
 width: 300,
 height: 400

Aligns the circle in the horizontal
center of the Profile Card

﻿https://yogalayout.com

100 Chapter 4  Introduction to styling

 },
 cardImageContainer: {
 alignItems: 'center',
 backgroundColor: 'white',
 borderWidth: 3,
 borderColor: 'black',
 width: 120,
 height: 120,
 borderRadius: 60,
 marginTop: 30,
 paddingTop: 15
 },
...

Now, the major View components for the Profile Card are in place. By using the tech-
niques discussed so far, you’ve built a nice-looking foundation for the component, but
you’re not finished. You need to add information about the person: name, occupation,
and a brief profile description. All that information is text based, so the next thing
you’ll learn is how to style Text components.

4.3	 Styling Text components
In this section, we’ll discuss how to style Text components. After you have a working
knowledge of how to make text look great, we’ll take another look at the Profile Card
and add some information about the user. Figure 4.14 is the finished Profile Card com-
ponent with the user’s name and occupation and a brief profile description. But before
we revisit the Profile Card, let’s look at the styling techniques that will enable you to
finish building it.

4.3.1	 Text components vs. View components

With the exception of flex properties, which we have yet to cover, most of the styles
applicable to View elements will also work as expected with Text elements. Text

Aligns the user image in the
horizontal center of the circle

Provides space between the top of the
circle and the top of the Profile Card

Provides padding
between the inner
part of the circle
and the contained
image

Figure 4.13   The Profile Card component after all the View
components have been lined up properly

John Doe
React Native Developer Occupation

Name

John is a really great JavaScript
developer. He loves using JS to
build React Native applications
for iOS and Android.

Profile
description Figure 4.14   The completed Profile Card with

the user’s name and occupation and a brief
profile description

	 101Styling Text components

elements can have borders and backgrounds and are affected by layout properties like
margin, padding, and position.

The reverse can’t be said. Most of the styles Text elements can use won’t work
for View elements, which makes perfect sense. If you’ve ever used a word proces-
sor, you know you can use different fonts for text and change the font color; that
you can resize, bold, and italicize the text; and that you can apply decorations like
underlines.

Before we get into text-specific styling, let’s talk about color, a style common to both
Text and View components. Then you’ll use color along with everything you’ve learned
thus far to start adding text to the Profile Card.

Coloring text

The color property applies to Text components in exactly the same way as it does
to View components. As expected, this property specifies the color of the text in a
Text element. All the color formats listed in table 4.1 still apply—even transparent,
although I can’t imagine how that’s of benefit. By default, the text color is black.

Figure 4.14 showed three Text elements in the Profile Card:

¡	Name
¡	Occupation
¡	Profile description

Using what you’ve already learned, you can center and position the text, change the
color of the name from black to white, and add a simple border to separate the occu-
pation from the description. Figure 4.15 shows what you’ll end up with by applying
techniques in your arsenal.

By this point, you should be able to follow along with listing 4.15 and understand
everything that’s going on. Don’t feel bad if you don’t—if necessary, go back and re-read
the appropriate sections.

 },
 cardImageContainer: {
 alignItems: 'center',
 backgroundColor: 'white',
 borderWidth: 3,
 borderColor: 'black',
 width: 120,
 height: 120,
 borderRadius: 60,
 marginTop: 30,
 paddingTop: 15
 },
...

Now, the major View components for the Profile Card are in place. By using the tech-
niques discussed so far, you’ve built a nice-looking foundation for the component, but
you’re not finished. You need to add information about the person: name, occupation,
and a brief profile description. All that information is text based, so the next thing
you’ll learn is how to style Text components.

4.3	 Styling Text components
In this section, we’ll discuss how to style Text components. After you have a working
knowledge of how to make text look great, we’ll take another look at the Profile Card
and add some information about the user. Figure 4.14 is the finished Profile Card com-
ponent with the user’s name and occupation and a brief profile description. But before
we revisit the Profile Card, let’s look at the styling techniques that will enable you to
finish building it.

4.3.1	 Text components vs. View components

With the exception of flex properties, which we have yet to cover, most of the styles
applicable to View elements will also work as expected with Text elements. Text

Aligns the user image in the
horizontal center of the circle

Provides space between the top of the
circle and the top of the Profile Card

Provides padding
between the inner
part of the circle
and the contained
image

Figure 4.13   The Profile Card component after all the View
components have been lined up properly

John Doe
React Native Developer Occupation

Name

John is a really great JavaScript
developer. He loves using JS to
build React Native applications
for iOS and Android.

Profile
description Figure 4.14   The completed Profile Card with

the user’s name and occupation and a brief
profile description

102 Chapter 4  Introduction to styling

Listing 4.15   Adding text to the Profile Card

import React, { Component } from 'react';
import { Image, StyleSheet, Text, View} from 'react-native';

export default class App extends Component<{}> {
 render() {
 return (
 <View style={styles.container}>
 <View style={styles.cardContainer}>
 <View style={styles.cardImageContainer}>
 <Image style={styles.cardImage}
 source={require('./user.png')}/>
 </View>
 <View>
 <Text style={styles.cardName}>
 John Doe
 </Text>
 </View>
 <View style={styles.cardOccupationContainer}>
 <Text style={styles.cardOccupation}>
 React Native Developer
 </Text>
 </View>
 <View>
 <Text style={styles.cardDescription}>
 John is a really great JavaScript developer. He
 loves using JS to build React Native applications
 for iOS and Android.
 </Text>
 </View>
 </View>
 </View>
);

John Doe

React Native Developer

John is a really great JavaScript
developer. He loves using JS to
build React Native applications
for iOS and Android.

Figure 4.15   The Profile Card with Text elements added
using text styling defaults and the color property for the
name set to white

Imports the Text component
from react-native

Text component
that renders the
person’s name Container around the

occupation text that sets
a bottom border

separating the occupation
from the description

Text component that
renders the occupation

Text component that renders
the profile description

	 103Styling Text components

 }
}

const profileCardColor = 'dodgerblue';

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 cardContainer: {
 alignItems: 'center',
 borderColor: 'black',
 borderWidth: 3,
 borderStyle: 'solid',
 borderRadius: 20,
 backgroundColor: profileCardColor,
 width: 300,
 height: 400
 },
 cardImageContainer: {
 alignItems: 'center',
 backgroundColor: 'white',
 borderWidth: 3,
 borderColor: 'black',
 width: 120,
 height: 120,
 borderRadius: 60,
 marginTop: 30,
 paddingTop: 15
 },
 cardImage: {
 width: 80,
 height: 80
 },
 cardName: {
 color: 'white',
 marginTop: 30,
 },
 cardOccupationContainer: {
 borderColor: 'black',
 borderBottomWidth: 3
 },
 cardOccupation: {
 marginTop: 10,
 marginBottom: 10,
 },
 cardDescription: {
 marginTop: 10,
 marginRight: 40,
 marginLeft: 40,
 marginBottom: 10
 }
});

Styles for the name Text component;
the color is 'white'.

Styles for the occupation container

Styles for the occupation text (currently
only positional styling)

Styles for the profile description

104 Chapter 4  Introduction to styling

At this point, you have all the content for the Profile Card, but it’s pretty plain. In the
next couple of sections, we’ll talk about how to set font properties and add decorative
styles to text.

4.3.2	 Font styles

If you’ve ever used a word processor or written an email with rich text capabilities, you’ve
been able to change fonts, increase or decrease the font size, bold or italicize the text,
and so on. These are the same styles you’ll learn how to change in this section. By adjust-
ing these styles, you can make text more compelling and attractive to the end user. We’ll
discuss these properties: fontFamily, fontSize, fontStyle, and fontWeight.

Specifying a font family

The fontFamily property is deceptively simple. If you stick with the defaults, it’s easy;
but if you want to use a specific font, you can run into trouble quickly. Both iOS and
Android come with a default set of fonts. For iOS, a large number of available fonts can
be implemented out of the box. For Android, there’s Roboto, a monospace font, and
some simple serif and sans serif variants. For a full list of Android and iOS fonts available
out of the box in React Native, go to https://github.com/dabit3/react-native-fonts.

If you wanted to use a monospaced font in an application, you couldn’t specify either
of the following:

¡	fontFamily: 'monospace'—The 'monospace' option isn’t supported on iOS, so
on that platform you’ll get the error “Unrecognized font family 'monospace'.”
But on Android, the font will render correctly without any problems. Unlike CSS,
you can’t supply multiple fonts to the fontFamily property.

¡	fontFamily: 'American Typewriter, monospace'—You’ll again get an error
on iOS, “Unrecognized font family 'American Typewriter, monospace'.” But on
Android, when you supply a font it doesn’t support, it falls back to the default.
That might not be true in every version of Android, but suffice it to say neither
approach will work.

If you want to use different fonts, you’ll have to use React Native’s Platform component.
Well discuss Platform in more detail in chapter 10, but I want to introduce it, so you can
see how to work around this dilemma. Figure 4.16 shows the American Typewriter font
rendered on iOS and the generic monospace font used on Android.

The following listing shows the code that produced this example. Pay attention to
how the fontFamily is set using Platform.select.

Figure 4.16   An example of rendering
monospaced fonts on both iOS and Android

https://github.com/dabit3/react-native-fonts

	 105Styling Text components

Listing 4.16   Displaying monospaced fonts on iOS and Android

import React, { Component } from 'react';
import { Platform, StyleSheet, Text, View} from 'react-native';

export default class App extends Component<{}> {
 render() {
 return (
 <View style={styles.container}>
 <View style={styles.row}>
 <CenteredText>
 I am a monospaced font on both platforms
 </CenteredText>
 <BottomText>
 {Platform.OS}
 </BottomText>
 </View>
 </View>
);
 }
}

const CenteredText = (props) => (
 <Text style={[styles.centeredText, props.style]}>
 {props.children}
 </Text>
);

const BottomText = (props) => (
 <CenteredText style={[{position: 'absolute', bottom: 0},
 props.style]}>
 {props.children}
 </CenteredText>
);

const styles = StyleSheet.create({
 container: {
 width: 300,
 height: 300,
 margin: 40,
 marginTop: 100,
 borderWidth: 1
 },
 row: {
 alignItems: 'center',
 flex: 1,
 flexDirection: 'row',
 justifyContent: 'center'
 },
 centeredText: {
 textAlign: 'center',
 margin: 10,
 fontSize: 24,
 ...Platform.select({
 ios: {

Imports the Platform
component from

react-native

Platform.OS can also tell you
what OS the code is running on.

Takes advantage of your
absolute positioning knowledge

Uses Platform.select to pick the styles
for the appropriate platform

106 Chapter 4  Introduction to styling

 fontFamily: 'American Typewriter'
 },
 android: {
 fontFamily: 'monospace'
 }
 })
 }
});

This example shows how to select fonts based on the OS, but the set of fonts at your dis-
posal is still limited to what comes with React Native out of the box. You can add custom
fonts to a project using font files (TTF, OTF, and so on) and linking them to your applica-
tion as assets. In theory the process is simple, but success varies greatly depending on the
OS and the font files being used. I want you to know it’s possible to do, but if you want to
give it try, break out your search engine of choice and look into react-native link.

Adjusting text size with fontSize

fontSize is pretty simple: it adjusts the size of the text in a Text element. You’ve used
this quite a bit already, so we won’t go into much detail other than the fact that the
default fontSize is 14.

Changing font styles

You can use fontStyle to change the font style to italic. The default is 'normal'. The
only two options at this moment are 'normal' and 'italic'.

Specifying font weights

fontWeight refers to the thickness of the font. The default is 'normal' or '400'. The
options for fontWeight are 'normal', 'bold', '100', '200', '300', '400', '500',
'600', '700', '800', and '900'. The smaller the value, the lighter/thinner the text.
The larger the value, the thicker/bolder the text.

Now that you know how to change the font styles, you can almost finish the Profile
Card component. Let’s change some font styles and see how close you can get to the
final product, as shown in figure 4.17. The next listing shows how to change the styles
from listing 4.16 to achieve this look.

Listing 4.17   Setting font styles for Text elements in the Profile Card

…
cardName: {
 color: 'white',
 fontWeight: 'bold',
 fontSize: 24,
 marginTop: 30,
},
…
cardOccupation: {
 fontWeight: 'bold',
 marginTop: 10,
 marginBottom: 10,
},
cardDescription: {

Changes the font weight
of the name text to bold

Changes the font size
of the name text to 24

Bolds the occupation text

	 107Styling Text components

 fontStyle: 'italic',
 marginTop: 10,
 marginRight: 40,
 marginLeft: 40,
 marginBottom: 10
}
…

Modifying the font styles for the name, occupation, and description text helps differ-
entiate each of the sections, but the name still doesn’t stand out much. The next sec-
tion covers some decorative ways to style text and how to use those techniques to make
the name stand out in the Profile Card.

4.3.3	 Using decorative text styles

In this section, you’ll go beyond the basics of changing font styles and start apply-
ing decorative styles to text. I’ll show you how to do things like underline and strike-
through text and add drop shadows. These techniques can add a lot of visual variety to
applications and help text elements stand out from one another.

Here are the properties we’ll cover in this section:

¡	iOS and Android —lineHeight, textAlign, textDecorationLine, textShadow-
Color, textShadowOffset, and textShadowRadius

¡	Android only —textAlignVertical

¡	iOS only —letterSpacing, textDecorationColor, textDecorationStyle, and
writingDirection.

Notice that some of the properties only apply to one OS or another. Some values that
can be assigned to the properties are also OS-specific. It’s important to keep this in
mind, especially if you’re relying on a specific style to highlight a particular element of
text on the screen.

Italicizes the description text

John Doe
React Native Developer

John is a really great JavaScript
developer. He loves using JS to
build React Native applications
for iOS and Android.

Figure 4.17   The Profile Card with font styles applied to the
Name, Occupation, and Description texts

108 Chapter 4  Introduction to styling

Specifying height of text elements

lineHeight specifies the height of the Text element. Figure 4.18 and listing 4.18 show
an example of how this behaves differently on iOS versus Android. A lineHeight of
100 is applied to the Text B element: the height of that line is significantly greater than
the others. Also notice how iOS and Android position the text within the line differ-
ently. On Android, the text is positioned at the bottom of the line.

Listing 4.18   Applying lineHeight to a Text element in iOS and Android

import React, { Component } from 'react';
import { Platform, StyleSheet, Text, View} from 'react-native';

export default class App extends Component<{}> {
 render() {
 return (
 <View style={styles.container}>
 <TextContainer>
 <LeftText>Text A</LeftText>
 </TextContainer>
 <TextContainer>
 <LeftText style={{lineHeight: 100}}>
 Text B
 </LeftText>
 </TextContainer>
 <TextContainer>
 <LeftText>Text C</LeftText>
 </TextContainer>
 <TextContainer>
 <LeftText>{Platform.OS}</LeftText>
 </TextContainer>
 </View>
);
 }
}

const LeftText = (props) => (
 <Text style={[styles.leftText, props.style]}>
 {props.children}
 </Text>
);

const TextContainer = (props) => (
 <View style={[styles.textContainer, props.style]}>
 {props.children}

Figure 4.18   Example of using lineHeight on iOS
and Android.

Sets lineHeight to 100

mounir
Typewriter
https://avxhm.se/blogs/hill0

	 109Styling Text components

 </View>
);

const styles = StyleSheet.create({
 container: {
 width: 300,
 height: 300,
 margin: 40,
 marginTop: 100
 },
 textContainer: {
 borderWidth: 1
 },
 leftText: {
 fontSize: 20
 }
});

Aligning text horizontally

textAlign refers to how the text in the element will be horizontally aligned. The options
for textAlign are 'auto', 'center', 'right', 'left', and 'justify' ('justify' is
iOS only).

Underlining text or adding lines through text

Use the textDecorationLine property to add either an underline or a line through
the given text. The options for textDecorationLine are 'none', 'underline', 'line-
through', and 'underline line-through'. The default value is 'none'. When you
specify 'underline line-through', a single space separates the values in quotes.

Text-decoration styles (iOS only)
iOS supports several text-decoration styles that Android doesn’t. The first is text-
DecorationColor, which allows you to set a color for textDecorationLine. iOS also
supports styling the line itself. On Android, the line is always solid, but on iOS tex-
tDecorationStyle lets you specify 'solid', 'double', 'dotted', and 'dashed'.
Android will ignore these additional styles.

To use the additional iOS decoration styles, specify them in conjunction with the
primary textDecorationLine style. For example:

{
 textDecorationLine: 'underline',
 textDecorationColor: 'red',
 textDecorationStyle: 'double'
}

Adding shadows to text

You can use the textShadowColor, textShadowOffset, and textShadowRadius prop-
erties to add a shadow to a Text element. To create a shadow, you need to specify
three things:

¡	The color
¡	The offset
¡	The radius

Setting a border lets you easily
see the height of the line.

110 Chapter 4  Introduction to styling

The offset specifies the position of the shadow relative to the component casting the
shadow. The radius basically defines how blurry the shadow appears. You can specify a
text shadow like this:

{
 textShadowColor: 'red',
 textShadowOffset: {width: -2, height: -2},
 textShadowRadius: 4
}

Controlling letter spacing (iOS only)
letterSpacing specifies the spacing between text characters. It’s not something you’ll
use every day, but it can produce some interesting visual effects. Keep in mind that it’s
iOS only, so use it if you need it.

Examples of text styles

We’ve gone through a lot of different styles in this section. Figure 4.19 shows various
styles applied to Text components.

Here’s a quick rundown of the styles being used for each example in figure 4.19:

¡	A is italic text using {fontStyle: 'italic'}.
¡	B shows text decoration with an underline and a line through the text. The style

for this is {textDecorationLine: 'underline line-through'}.
¡	C expands on example B by also applying some iOS-only text styles, {textDec-

orationColor: 'red', textDecorationStyle: 'dotted'}. Notice how these
styles have no effect in Android.

¡	D applies a shadow using {textShadowColor: 'red', textShadowOffset:
{width: -2, height: -2}, textShadowRadius: 4}.

¡	E uses the iOS-only {letterSpacing: 5}, which doesn’t affect Android.
¡	The text ios and android is styled using {textAlign: 'center', fontWeight:

'bold'}.

Use listing 4.19 as a starting point, and see how modifying the styles affects the result.

Figure 4.19   Various examples of styling text components

	 111Styling Text components

Listing 4.19   Examples of styling Text components

import React, { Component } from 'react';
import { Platform, StyleSheet, Text, View} from 'react-native';

export default class App extends Component<{}> {
 render() {
 return (
 <View style={styles.container}>
 <LeftText style={{fontStyle: 'italic'}}>
 A) Italic
 </LeftText>
 <LeftText style={{textDecorationLine: 'underline line-through'}}>
 B) Underline and Line Through
 </LeftText>
 <LeftText style={{textDecorationLine: 'underline line-through',
 textDecorationColor: 'red',
 textDecorationStyle: 'dotted'}}>
 C) Underline and Line Through
 </LeftText>
 <LeftText style={{textShadowColor: 'red',
 textShadowOffset: {width: -2, height: -2},
 textShadowRadius: 4}}>
 D) Text Shadow
 </LeftText>
 <LeftText style={{letterSpacing: 5}}>
 E) Letter Spacing
 </LeftText>
 <LeftText style={{textAlign: 'center', fontWeight: 'bold'}}>
 {Platform.OS}
 </LeftText>
 </View>
);
 }
}

const LeftText = (props) => (
 <Text style={[styles.leftText, props.style]}>
 {props.children}
 </Text>
);

const styles = StyleSheet.create({
 container: {
 width: 300,
 height: 300,
 margin: 40,
 marginTop: 100
 },
 leftText: {
 fontSize: 20,
 paddingBottom: 10
 }
});

112 Chapter 4  Introduction to styling

Now that you know how to create a shadow effect, let’s add a shadow to the person’s
name so it stands out from the other text. Figure 4.20 shows the desired result.

The completed code for the Profile Card is provided next. You only have to add a
tiny snippet to set the text shadow for the name.

Listing 4.20   Completed Profile Card example

import React, { Component } from 'react';
import { Image, StyleSheet, Text, View} from 'react-native';

export default class App extends Component<{}> {
 render() {
 return (
 <View style={styles.container}>
 <View style={styles.cardContainer}>
 <View style={styles.cardImageContainer}>
 <Image style={styles.cardImage}
 source={require('./user.png')}/>
 </View>
 <View>
 <Text style={styles.cardName}>
 John Doe
 </Text>
 </View>
 <View style={styles.cardOccupationContainer}>
 <Text style={styles.cardOccupation}>
 React Native Developer
 </Text>
 </View>
 <View>
 <Text style={styles.cardDescription}>
 John is a really great JavaScript developer.
 He loves using JS to build React Native
 applications for iOS and Android.

John Doe
React Native Developer

John is a really great JavaScript
developer. He loves using JS to
build React Native applications
for iOS and Android.

Figure 4.20   The completed Profile Card example. Textual
information has been added about the person using the text
styling techniques covered in this section.

	 113Styling Text components

 </Text>
 </View>
 </View>
 </View>
);
 }
}

const profileCardColor = 'dodgerblue';

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 cardContainer: {
 alignItems: 'center',
 borderColor: 'black',
 borderWidth: 3,
 borderStyle: 'solid',
 borderRadius: 20,
 backgroundColor: profileCardColor,
 width: 300,
 height: 400
 },
 cardImageContainer: {
 alignItems: 'center',
 backgroundColor: 'white',
 borderWidth: 3,
 borderColor: 'black',
 width: 120,
 height: 120,
 borderRadius: 60,
 marginTop: 30,
 paddingTop: 15
 },
 cardImage: {
 width: 80,
 height: 80
 },
 cardName: {
 color: 'white',
 fontWeight: 'bold',
 fontSize: 24,
 marginTop: 30,
 textShadowColor: 'black',
 textShadowOffset: {
 height: 2,
 width: 2
 },
 textShadowRadius: 3
 },
 cardOccupationContainer: {
 borderColor: 'black',
 borderBottomWidth: 3

Sets the shadow color to black
on the Title text component

Sets the shadow offset to
be down and to the right

Sets the shadow radius

114 Chapter 4  Introduction to styling

 },
 cardOccupation: {
 fontWeight: 'bold',
 marginTop: 10,
 marginBottom: 10,
 },
 cardDescription: {
 fontStyle: 'italic',
 marginTop: 10,
 marginRight: 40,
 marginLeft: 40,
 marginBottom: 10
 }
});

There’s a lot you could do to this basic example to make it even better, but the goal was
to show how beneficial it is to understand styling concepts. You don’t have to be a fan-
tastic graphic designer to make a nice-looking component—a few simple techniques
can make your application look great.

We covered a lot of ground in this chapter, but believe it or not, this has been a short
introduction! We’ll explore some additional advanced topics in chapter 5.

Summary

¡	Styles can be applied inline with components or by creating stylesheets that can
be referenced by components.

¡	Styles should be organized in the same file as the component after the compo-
nent definition or externalized into a separate styles.js file.

¡	Styles are code. The fact that JavaScript is a complete language with variables and
functions affords many advantages over traditional CSS.

¡	View components are the main building blocks of a UI, and they have many styl-
ing properties.

¡	You can use borders in many ways to enhance the look of components. You can
even use borders to create shapes, such as circles.

¡	You can use margins and padding to position components relative to one another.
¡	Absolute positioning lets you place a component anywhere within the parent

container.
¡	Clipping can occur on Android devices, depending on how you set borders, mar-

gins, and padding.
¡	Specifying fonts other than the defaults can be tricky. Use the Platform compo-

nent to select the appropriate font for the OS.
¡	Use general font styles like color, size, and weight to change the size and appear-

ance of Text components.
¡	There are rendering differences between OSs, such as how the line height

behaves differently between iOS and Android.
¡	Text-decorating styles can add underlines or drop shadows to text. The set of

available styles differs from one OS to another.

115

5Styling in depth

This chapter covers
¡	Platform-specific sizes and styles

¡	Adding drop shadows to components

¡	Moving and rotating components on the
x- and y-axes

¡	Scaling and skewing components

¡	Using flexbox for layout

Chapter 4 introduced styling React Native components. It showed how to style View
and Text components, styles you’ll likely use every day and that mostly affect the
look of a component. This chapter continues the discussion and goes into more
depth with platform-specific styles; drop shadows; manipulating components with
transformations such as translation, rotation, scaling, and skewing; and dynamically
laying out components with flexbox.

Some of these topics may feel familiar. You used platform-specific styles and flex-
box in several of the examples in chapter 4. We didn’t cover them in detail, but you
saw them in a few code listings.

116 Chapter 5  Styling in depth

This chapter expands on those topics. Transformations give you the power to manip-
ulate components in two or three dimensions. You can translate components from one
position to another, rotate components, scale components to different sizes, and skew
components. Transforms are useful in their own right, but they will play a much bigger
role in chapter 7, which discusses animation in detail.

We’ll continue talking about some of the differences between platforms and look
more deeply at flexbox. Because flexbox is a fundamental concept, it’s important to
properly understand it so you can create layouts and UIs in React Native. You’ll prob-
ably use flexbox in every application you create. You’ll use some of your new styling
techniques to continue building new features into the ProfileCard example from the
previous chapter.

5.1	 Platform-specific sizes and styles
You’ve seen how to use the Platform.select utility function to choose fonts available
only on iOS or Android. You used Platform.select to choose a monospaced font
supported by each platform. You might not have thought much of that at the time, but
it’s important to keep in mind that you’re developing for two different platforms. The
styles you apply to a component may look or behave differently between the two OSs or
even between different versions of iOS and Android.

You aren’t coding for a single device; you’re not even coding for a single OS. The
beauty of React Native is that you’re using JavaScript to create applications that can run
on both iOS and Android. If you look through the React Native documentation, you’ll
see many components suffixed with IOS or Android, such as ProgressBarAndroid,
ProgressViewIOS, and ToolbarAndroid, so it should come as no surprise that styles can
be platform specific too.

You may not have noticed that you’ve never specified a size in pixels for anything,
like width: 300 vs width: '300px'. That’s because even the concept of size is different
between the iOS and Android operating systems.

5.1.1	 Pixels, points, and DPs

Size can be a confusing topic, but it’s important to keep in mind if you need to be
absolutely precise when positioning components on the screen. Even if you’re not
trying to produce a high-fidelity layout, it will be useful to understand the concepts in
case you encounter small discrepancies in your layouts from one device to another.

Let’s start from the beginning and define a pixel. A pixel is the smallest unit of program-
mable color on a display. A pixel is typically made up of red, green, and blue (RGB) color
components. By manipulating the intensity of each RGB value, the pixel emits a color you
see. A pixel doesn’t tell you anything until you start looking at the physical properties of the
display: screen size, resolution, and dots per inch.

The screen size is the diagonal measurement of the screen, from one corner to another.
For example, the original screen size of the iPhone was 3.5 inches, while the screen size of
the iPhone X is 5.8 inches. Although the iPhone X is considerably bigger, the size doesn’t
mean anything until you understand how many pixels fit within that screen size.

	 117Platform-specific sizes and styles

Resolution is the number of pixels in the display, which is most typically expressed as
the number of pixels along the width and height of the device. The original iPhone was
320 × 480, while the iPhone X is 1125 × 2436.

Screen size and resolution can then be used to calculate the pixel density: pixels per
inch (PPI). You’ll often see this expressed as dots per inch (DPI), which is a holdover term
from the printing world, where a dot of color was printed on the page. PPI and DPI are
often used interchangeably even though that’s not exactly correct, so if you see DPI
used in reference to a screen, know that PPI is what’s truly being discussed.

The PPI gives you a measure of image sharpness. Imagine if two screens had the same
resolution, 320 × 480 (half VGA). What would the same image look like on the 3.5-inch
iPhone display versus a 17-inch HVGA monitor display? The same image would look much
sharper on the iPhone, because it has 163 PPI versus the CRT monitor, which has 34 PPI.
You can fit nearly five times as much information in the same physical space on the original
iPhone. Table 5.1 compares the diagonal size, resolution, and PPI of the two devices.

Table 5.1   Comparison of a 17-inch HVGA monitor’s PPI vs. the original iPhone’s PPI

HVGA monitor Original iPhone

Diagonal size 17 inches 3.5 inches

Resolution 320 × 480 320 × 480

PPI 34 163

Why does this matter? Because neither iOS nor Android uses the actual physical mea-
surements to render content to a device’s screen. iOS uses an abstract measurement of
points, and Android uses a similar abstract measurement of density-independent pixels.

When the iPhone 4 came on the scene, it had the same physical size as its predeces-
sors; but it had a fancy new Retina screen with a resolution of 640 × 960, quadrupling
the resolution of the original device. If the iPhone had rendered images from existing
apps at a 1:1 scale, everything would be drawn at a quarter size on the new Retina dis-
play. It would have been an insane proposition for Apple to make such a change and
break all the existing apps.

Instead, Apple introduced the logical concept of a point. A point is a unit of distance
that can be scaled independently of a device’s resolution, so a 320 × 480 image that took
up the entire screen on an original iPhone could be scaled up 2x to fully fit within the Ret-
ina display. Figure 5.1 provides a visualization of pixel density for several iPhone models.

The original iPhone’s 163 PPI is the basis for the iOS point. An iOS point is 1/163
of an inch. Without going into more detail, Android uses a similar measure called a
device-independent pixel (DIP, often abbreviated DP). An Android DP is 1/160 of an inch.

When defining styles in React Native, you use the logical concept of a pixel, a point
on iOS, and a DP on Android. When working at the native level, you occasionally may
need to work with device pixels by multiplying the logical pixels by the screen scale (for
example, 2x, 3x).

118 Chapter 5  Styling in depth

5.1.2	 Creating drop shadows with ShadowPropTypesIOS and Elevation

In chapter 4, you used the text shadow properties to add a drop shadow to the
ProfileCard title. Both iOS and Android support adding a drop shadow to a Text
component. It would be nice to spruce up more of the ProfileCard by adding drop
shadows to the card and circular image container, but there isn’t a common style
property for View components to use between the two platforms.

That doesn’t mean all is lost. The ShadowPropTypesIOS style can be used to add
a drop shadow on iOS devices; it doesn’t affect the z-order of the component. On
Android, you can use the Elevation style to simulate a drop shadow, but it does affect
the z-order of the component.

Creating drop shadows in iOS with ShadowPropTypesIOS
Let’s look at how to use ShadowPropTypesIOS styles to add drop shadows to a few view
components. Figure 5.2 shows various shadow effects that can be achieved. Table 5.2
lists the specific settings used to achieve each shadow effect. The important takeaways
are as follows:

¡	If you don’t supply a value for shadowOpacity, you won’t see a shadow.
¡	Shadows offsets are expressed in terms of width and height, but you can think of

this as moving the shadow in the x and y directions. You can even specify negative
values for width and height.

¡	A shadowOpacity of 1 is completely solid, whereas a value of 0.2 is more
transparent.

¡	A value for shadowRadius effectively blurs the edges of the shadow. The shadow
is more diffuse.

1x

=

1 POINT = 1 PIXEL
Original iPhones

2x

=

1 POINT = 4 PIXELS
iPhone 4,5,6,7,8

3x

=

1 POINT = 9 PIXELS
iPhone 6+,7+,8+,X

Figure 5.1   A visualization of points compared to pixel density for iPhones. The
original iPhone had a resolution of 320 × 480. The iPhone 4 had a resolution of
640 × 960, quadruple the resolution of the original device. The iPhone 4 has twice
the PPI (326 vs. 163), so images are said to be scaled up 2x.

	 119Platform-specific sizes and styles

Table 5.2   Shadow properties used to create the examples in figure 5.2

shadowOffset

Example shadowColor width (x) height (y) shadowOpacity shadowRadius

1 Black 10 10

2 Black 10 10 1

3 Black 20 20 1

4 Black 20 20 1 20

5 Black 20 20 0.2

6 Red 20 20 1

7 Black 20 1

8 Black -5 -5 1

The code for this figure can be found in the git repository under chapter5/figures/
Figure-5.2-ShadowPropTypesIOS. If you run the code for this example, remember to
run it in the iOS simulator. On an Android device, you’ll just see eight boring squares
with rounded corners. ShadowPropTypesIOS styles are ignored on Android.

Approximating drop shadows on Android devices with elevation

How do you get the same effect on Android devices? The truth is, you can’t. You can
use Android’s elevation style to affect the z-order of components. If two or more

Example 1

Example 5 Example 6 Example 7 Example 8

Example 2 Example 3 Example 4

Figure 5.2   iOS-specific examples of how to apply ShadowPropTypesIOS styles to View
components. Example 1 has a shadow applied but no opacity set, which causes the drop
shadow to not be displayed. Example 2 has the same shadow effect but with opacity set to 1.
Example 3 has a slightly larger shadow, and example 4 has the same size shadow with a
shadow radius. Example 5 has the same shadow size, but opacity is changed from 1 to 0.2.
Example 6 changes the color of the shadow. Example 7 shows the shadow applied in only
one direction, and example 8 shows the shadow applied in the opposite direction.

120 Chapter 5  Styling in depth

components occupy the same space, you can decide which one should be in front by
giving it the larger elevation and therefore the larger z-index, which will create a small
drop shadow, but it isn’t nearly as striking as the shadow effects you can achieve on iOS.
Note that this only applies to Android, because iOS doesn’t support the elevation
style and will gladly ignore it if it’s specified.

Nevertheless, let’s see elevation in action. To do so, you’ll create a View compo-
nent with three boxes, each of which is positioned absolutely. You’ll give them three
different elevations—1, 2, and 3—and then you’ll reverse the assignment of the eleva-
tions and see how that affects the layout. Figure 5.3 shows the results of these elevation
adjustments.

Table 5.3 shows the absolute positions and elevations used for each group of boxes.
Notice that nothing has changed except the elevation assigned to each of the boxes.
iOS ignores the style and always renders box C on top of box B, and box B on top of box
A. But Android respects the style and flips the order in which it renders the boxes, so
box A is now on top of box B, and box B is on top of box C.

Table 5.3   Elevation settings for figure 5.3

Example color top left elevation

A Red 0 0 1

B Orange 20 20 2

C Blue 40 40 3

A Red 0 0 3

B Orange 20 20 2

C Blue 40 40 1

C

B

A

B

C

iOS Android

A

B

C

A A

B

C

Figure 5.3   Examples of using the elevation style on iOS and Android. On iOS, elevation is ignored;
all components retain the same z-order, so whatever component is last in the layout is on top. On
Android, elevation is used, and the z-order is changed; in the second example, where the elevation
assignments are reversed, A is on top.

	 121Platform-specific sizes and styles

5.1.3	 Putting it into practice: drop shadows in the ProfileCard

Let’s go back to the ProfileCard example from the last chapter and add some drop shad-
ows that will look great on iOS and not so great on Android. You’ll add a drop shadow to
the entire ProfileCard container and to the circular image container. Figure 5.4 shows
what you’re shooting for on iOS and what you’ll get on Android.

Notice that even with elevation applied on Android, you don’t see much of a
shadow. The reality is, on Android you’ll never get close to the shadow effects that can
be produced on iOS with React Native out of the box. If you really must have drop shad-
ows on Android, then I suggest looking for a component on npm or yarn that does what
you need. Experiment with different components, and see if you can get the Android
version looking as sharp as the iOS version. I don’t have any recommendations; I stay
away from drop shadows or accept the differences.

The code in this chapter begins with listing 4.20: the completed ProfileCard example
from chapter 4. Listing 5.1 only shows the changes needed to apply the drop shadows to
the component. You don’t need to add a lot of code to get the drop shadows on iOS. Look
at the listing on an Android device, and see how the elevation setting causes the faintest
of shadows.

John Doe
React Native Developer

iOS Android

John is a really great JavaScript
developer. He loves using JS to
build React Native applications
for iOS and Android.

John Doe
React Native Developer

John is a really great JavaScript
developer. He loves using JS to
build React Native applications
for iOS and Android.

Figure 5.4   The ProfileCard on iOS and Android after drop shadows have been
added to the card container and the circular image container. The drop shadows on iOS
are created using the iOS-specific shadow properties: shadowColor, shadowOffset,
and shadowOpacity. On Android, the elevation property is used to try to create
depth. It produces only a minor shadow effect, far inferior to the shadows produced on iOS.

122 Chapter 5  Styling in depth

Listing 5.1   Adding drop shadows to the ProfileCard

import React, { Component } from 'react';
import { Image, Platform, StyleSheet, Text, View} from 'react-native';
...
cardContainer: {
...
 height: 400,
 ...Platform.select({
 ios: {
 shadowColor: 'black',
 shadowOffset: {
 height: 10
 },
 shadowOpacity: 1
 },
 android: {
 elevation: 15
 }
 })
},
cardImageContainer: {
...
 paddingTop: 15,
 ...Platform.select({
 ios: {
 shadowColor: 'black',
 shadowOffset: {
 height: 10,
 },
 shadowOpacity: 1
 },
 android: {
 borderWidth: 3,
 borderColor: 'black',
 elevation: 15
 }
 })
},
...

Just as with font selection in chapter 4, you use the Platform.select function to apply
different styles to components based on the platform: iOS or Android. In some cases,
like the drop shadow, one platform may perform much better than the other; but in
most cases the styles will behave the same on both platforms, which is an amazing ben-
efit of React Native.

5.2	 Using transformations to move, rotate, scale, and
skew components
Up to this point, the styles we’ve discussed have mostly affected the appearance of
components. You learned how to set properties like the style, weight, size, and color
of borders and fonts. You applied background colors and shadow effects, and you saw
how to manipulate the appearance of components relative to one another by using

Imports the Platform utility
component to programmatically

select styles based on the platform

Adds a drop shadow to the card
container based on the platform

Adds a drop shadow to the
circular image container

	 123Using transformations to move, rotate, scale, and skew components

margins and padding. But we haven’t explored how to manipulate a component’s
position or orientation on the screen independent of everything else. How do you
move a component on the screen, or rotate a component in a circle?

The answer is transformations. React Native provides a number of useful transforms
that allow you to modify the shape and position of a component in 3D space. You can
move components from one position to another, rotate components about all three
axes, and scale and skew components in the x and y directions. Alone, transformations
can produce some interesting effects, but their true power comes from sequencing
them together to form animations.

This section will give you a firm understanding of transforms and how they affect the
components to which they’re applied. If you clearly understand what they do, you’ll be
better able to link them together to create meaningful animations later.

The transform style takes an array of transform properties that define how to apply
a transformation to a component. For example, to rotate a component 90 degrees and
shrink it by 50%, apply this transform to the component:

transform: [{rotate: '90deg', scale: .5}]

The transform style supports the following properties:

¡	perspective

¡	translateX and translateY
¡	rotateX, rotateY, and rotateZ (rotate)
¡	scale, scaleX, and scaleY
¡	skewX and skewY

5.2.1	 3D effects with perspective

perspective gives an element 3D space by affecting the distance between the z plane and
the user. This is used with other properties to give a 3D effect. The larger the perspective
value, the greater the z-index of a component, which makes it appear closer to the user. If
the z-index is negative, the farther away the component appears.

5.2.2	 Moving elements along the x- and y-axes with translateX
and translateY

The translation properties move an element along the x (translateX) or y (translateY)
axis from the current position. This isn’t very useful in normal development because you
already have margin, padding, and other position properties available. But this becomes
useful for animations, to move a component across the screen from one position to
another.

Let’s look at how to move a square using the translateX and translateY style prop-
erties. In figure 5.5, a square is placed in the center of the display and then moved in
each of the four cardinal and four ordinal directions: NW (upper left), N (top), NE
(upper right), W (left), E (right), SW (bottom left), S (bottom), and SE (bottom right).
In each case, the center of the square is moved by 1.5 times the square’s size in the x or y
direction or in both directions.

124 Chapter 5  Styling in depth

When studying geometry, you typi-
cally see the positive y-axis drawn going up
instead of down. But on mobile devices, the
convention is to have the positive y-axis go
down the screen, which reflects the most
common interaction of scrolling down the
screen to view more content. Coupled with
that bit of knowledge, it’s pretty easy to see
how moving the center square in figure 5.5
in the positive x direction and in the positive
y direction results in the square ending up
in the bottom right corner. By combining
translateX and translateY, you can move
components in any direction in the Carte-
sian plane (x-y plane).

There’s no corresponding translation for
movement in the z plane. The z-axis is per-
pendicular to the face of the device, which
means you’re looking straight at it. Moving
a component forward or backward would
be imperceptible without some corresponding size change. The perspective trans-
form is intended to handle this type of visual effect.

In the next section, we’ll use the same example and focus on the center row, where
the center square was translated to the left and to the right. You’ll see what happens
when you rotate components along each of the three axes.

5.2.3	 Rotating elements with rotateX, rotateY, and rotateZ (rotate)

The rotation properties do exactly what it sounds like they would: they rotate elements.
Rotation occurs along an axis: x, y, or z. The origin of the rotation is the center point
of the element before any transformations are applied, so if you use translateX or
translateY, keep in mind that the rotation will be around the axis at the original loca-
tion. The amount of rotation can be specified in either degrees (deg) or radians (rad).
The examples use degrees:

transform: [{ rotate: '45deg' }]
transform: [{ rotate: '0.785398rad' }]

Figure 5.6 shows the positive and negative direction of rota-
tion for each axis. The rotate transform does the same thing
as the rotateZ transform.

Let’s rotate a 100 × 100 square about the x-axis in increments
of 35°, as shown in figure 5.7. A center line is drawn through
each square, so it’s easier to see how the squares are rotating.
You can visualize rotation about the x-axis in the positive direc-
tion as the square rotating from the top into the page. The bot-
tom is coming closer to you as the top moves further away.

+X

+Y

� upper
left

� left

� bottom
left

bottom � bottom
right �

right �center

upper right
�

� top

Figure 5.5   A depiction of a center square
being moved in each of the four cardinal and
four ordinal directions: NW (upper left), N (top),
NE (upper right), W (left), E (right), SW (bottom
left), S (bottom), and SE (bottom right)

–
–

–

Z

Y

X

+

+

+

Figure 5.6   The positive
and negative direction of
rotation for each axis

ROTATION

0° 35° 70° 105° 140°

RotateX

ROTATION
ROTATION

ROTATION

ROTATION

Figure 5.7   Rotating a 100 × 100 square about the x-axis in increments of 35°.
After 90°, the “ROTATION” label can be seen through the element, upside down.

	 125Using transformations to move, rotate, scale, and skew components

At 90°, you’re looking at the square on its edge (because it doesn’t
have any thickness, you don’t see a thing). After the square has
rotated past the 90° mark, you start to see the back of the square. If
you look closely in figure 5.7, you can see the “ROTATION” label is
upside down, because you’re looking through what was the back of
the square.

The next example will rotate the same 100 × 100 square about the
y-axis, instead continuing to use increments of 35° to demonstrate the
rotation (see figure 5.8). Picture the right side of the square moving
away from you, into the page. After the square has rotated beyond the
90° mark, you can see the “ROTATION” label through the compo-
nent. Because you’re looking through the back of the component, the
text appears backward.

Compare figure 5.8 to figure 5.7. Fundamentally, rotation about
the y-axis is no different than rotation about the x-axis. I aligned the
squares in figure 5.8 vertically so you can easily see the axis of rotation.
I like to visualize rotation in the y-axis by picturing a book opening and
closing: if you’re opening a book, the cover is rotating in the negative
direction. If you’re closing the book, then you’re rotating the cover in
the positive direction.

Rotation about the z-axis is the easiest to visualize. Rotation in the
positive direction spins the object in a clockwise fashion, and rota-
tion in the negative direction spins the square in a counterclockwise
fashion. For this example, shown in figure 5.9, the axis of rotation is

RotateZ

ROTATION

0° 35° 70° 105° 140°

ROTATION

R
O

TATIO
N

R
O

TATIO
N

ROTATION

Figure 5.9   Rotating a 100 × 100 square about the z-axis in increments
of 35°. The positive rotation is clockwise, and the negative rotation is
counterclockwise.

ROTATION

0°

35°

70°

105°

140°

ROTATION

ROTATION

ROTATION

ROTATION

RotateY

Figure 5.8   Rotating
a 100 × 100 square
about the y-axis in
increments of 35°. After
90°, the “ROTATION”
label can be seen
through the element,
backward.

When studying geometry, you typi-
cally see the positive y-axis drawn going up
instead of down. But on mobile devices, the
convention is to have the positive y-axis go
down the screen, which reflects the most
common interaction of scrolling down the
screen to view more content. Coupled with
that bit of knowledge, it’s pretty easy to see
how moving the center square in figure 5.5
in the positive x direction and in the positive
y direction results in the square ending up
in the bottom right corner. By combining
translateX and translateY, you can move
components in any direction in the Carte-
sian plane (x-y plane).

There’s no corresponding translation for
movement in the z plane. The z-axis is per-
pendicular to the face of the device, which
means you’re looking straight at it. Moving
a component forward or backward would
be imperceptible without some corresponding size change. The perspective trans-
form is intended to handle this type of visual effect.

In the next section, we’ll use the same example and focus on the center row, where
the center square was translated to the left and to the right. You’ll see what happens
when you rotate components along each of the three axes.

5.2.3	 Rotating elements with rotateX, rotateY, and rotateZ (rotate)

The rotation properties do exactly what it sounds like they would: they rotate elements.
Rotation occurs along an axis: x, y, or z. The origin of the rotation is the center point
of the element before any transformations are applied, so if you use translateX or
translateY, keep in mind that the rotation will be around the axis at the original loca-
tion. The amount of rotation can be specified in either degrees (deg) or radians (rad).
The examples use degrees:

transform: [{ rotate: '45deg' }]
transform: [{ rotate: '0.785398rad' }]

Figure 5.6 shows the positive and negative direction of rota-
tion for each axis. The rotate transform does the same thing
as the rotateZ transform.

Let’s rotate a 100 × 100 square about the x-axis in increments
of 35°, as shown in figure 5.7. A center line is drawn through
each square, so it’s easier to see how the squares are rotating.
You can visualize rotation about the x-axis in the positive direc-
tion as the square rotating from the top into the page. The bot-
tom is coming closer to you as the top moves further away.

+X

+Y

� upper
left

� left

� bottom
left

bottom � bottom
right �

right �center

upper right
�

� top

Figure 5.5   A depiction of a center square
being moved in each of the four cardinal and
four ordinal directions: NW (upper left), N (top),
NE (upper right), W (left), E (right), SW (bottom
left), S (bottom), and SE (bottom right)

–
–

–

Z

Y

X

+

+

+

Figure 5.6   The positive
and negative direction of
rotation for each axis

ROTATION

0° 35° 70° 105° 140°

RotateX

ROTATION
ROTATION

ROTATION

ROTATION

Figure 5.7   Rotating a 100 × 100 square about the x-axis in increments of 35°.
After 90°, the “ROTATION” label can be seen through the element, upside down.

126 Chapter 5  Styling in depth

represented as a dot in the center of the square, because the z-axis is, basically, your line
of sight; it goes straight into the screen.

Hopefully, it’s fairly obvious now how the rotation transforms work. Understanding
the direction in which positive and negative rotations affect an object is probably the
most complex part. But when you start combining other transforms in conjunction with
rotation, you may be surprised by the results. Remember that the transform property
is an array of transforms, so multiple transforms can be supplied at once, and order
matters! Specifying a transform and switching the order of the elements in the array will
yield different results.

Let’s investigate how altering the order in which the transforms are specified affects the
final layout. Let’s apply three different transforms to a square: translate in the y direction
50 points, translate in the x direction 150 points, and rotate the square 45°. Figure 5.10
specifies the transform in the order just described. The original/previous position of the
square has a dotted border and the new position of the square has a solid outline, so you
can see how the transformation affects the position and orientation of the original square.

The result in figure 5.10 is pretty much as expected, but what will happen if you apply
the rotation after moving the square in the y direction? Look at figure 5.11 and find out.

Whoa, what happened? The square is completely off the screen after the transfor-
mations are applied! It might not be immediately obvious what happened, which is why
figure 5.11 is annotated with the new axis orientation.

After the rotation, the +x- and +y-axes are no longer oriented vertically and hor-
izontally on the screen: they’re rotated by 45°. When the translateX transform is
applied, the square is moved 150 points in the +x direction, but the +x direction is
now at a 45° angle from the original x-axis.

The next section shows another interesting aspect of rotational transforms.

transform: [{translateY: 50},{translateX: 150},{rotate: ‘45deg’}]

Original square Step 1: {translateY: 50}

Step 2: {translateX: 150} Step 3: {rotate: ‘45deg’}

New axis orientation

+X

Figure 5.10   Applying transform: [{translateY: 50},{translateX:
150},{rotate: '45deg'}] to the original square

transform: [{translateY: 50},{rotate: ‘45deg’},{translateX: 150}]

Original square Step 1: {translateY: 50}

Step 2: {rotate: ‘45deg’} Step 3: {translateX: 150}

New axis orientation

+X

Figure 5.11   Applying transform: [{translateY: 50},{rotate:
'45deg'},{translateX: 150}] to the original square. Rotating the square
changes the orientation of the x- and y-axes, so when the square is translated 150
points in the +x direction, it’s moved diagonally down and out of the viewport.

	 127Using transformations to move, rotate, scale, and skew components

5.2.4	 Setting visibility when rotating an element more than 90°

If you look back at figures 5.7 and 5.8, when you rotate the square about the x- or y-axis
and go beyond the 90° point, you can still see the text that was on the front face of the
square. The backfaceVisibility property dictates whether an element is visible when
the element is rotated more than 90°. This property can be set to either 'visible' or
'hidden'. This property isn’t a transform, but it gives you the ability to hide or show
elements when viewing the back face of an object.

The backfaceVisibility property defaults to 'visible', but if you changed back-
faceVisibility to 'hidden', you wouldn’t see the element at all once the component
rotated more than 90° in either the x or y direction. In figures 5.7 and 5.8, the squares
corresponding to the 105° and 140° rotations would disappear. If that sounds confus-
ing, look at figure 5.12.

222222222
3

5

4 1

6

11 3

6

Cube: backfaceVisibility: ‘visible’ Cube: backfaceVisibility: ‘hidden’

Figure 5.12   A demonstration of how setting the backfaceVisibility property
to 'hidden' hides elements that have rotated beyond 90°. The cube on the left
shows faces 2, 4, and 5, all of which have rotated 180°. The cube on the right has
hidden those faces.

represented as a dot in the center of the square, because the z-axis is, basically, your line
of sight; it goes straight into the screen.

Hopefully, it’s fairly obvious now how the rotation transforms work. Understanding
the direction in which positive and negative rotations affect an object is probably the
most complex part. But when you start combining other transforms in conjunction with
rotation, you may be surprised by the results. Remember that the transform property
is an array of transforms, so multiple transforms can be supplied at once, and order
matters! Specifying a transform and switching the order of the elements in the array will
yield different results.

Let’s investigate how altering the order in which the transforms are specified affects the
final layout. Let’s apply three different transforms to a square: translate in the y direction
50 points, translate in the x direction 150 points, and rotate the square 45°. Figure 5.10
specifies the transform in the order just described. The original/previous position of the
square has a dotted border and the new position of the square has a solid outline, so you
can see how the transformation affects the position and orientation of the original square.

The result in figure 5.10 is pretty much as expected, but what will happen if you apply
the rotation after moving the square in the y direction? Look at figure 5.11 and find out.

Whoa, what happened? The square is completely off the screen after the transfor-
mations are applied! It might not be immediately obvious what happened, which is why
figure 5.11 is annotated with the new axis orientation.

After the rotation, the +x- and +y-axes are no longer oriented vertically and hor-
izontally on the screen: they’re rotated by 45°. When the translateX transform is
applied, the square is moved 150 points in the +x direction, but the +x direction is
now at a 45° angle from the original x-axis.

The next section shows another interesting aspect of rotational transforms.

transform: [{translateY: 50},{translateX: 150},{rotate: ‘45deg’}]

Original square Step 1: {translateY: 50}

Step 2: {translateX: 150} Step 3: {rotate: ‘45deg’}

New axis orientation

+X

Figure 5.10   Applying transform: [{translateY: 50},{translateX:
150},{rotate: '45deg'}] to the original square

transform: [{translateY: 50},{rotate: ‘45deg’},{translateX: 150}]

Original square Step 1: {translateY: 50}

Step 2: {rotate: ‘45deg’} Step 3: {translateX: 150}

New axis orientation

+X

Figure 5.11   Applying transform: [{translateY: 50},{rotate:
'45deg'},{translateX: 150}] to the original square. Rotating the square
changes the orientation of the x- and y-axes, so when the square is translated 150
points in the +x direction, it’s moved diagonally down and out of the viewport.

128 Chapter 5  Styling in depth

In the figure, you can easily see the effect of setting backfaceVisibility to 'hidden'.
It’s also easy to see how this behavior might be beneficial during animations. When the
faces of the cube rotate out of sight, you want them to be hidden.

5.2.5	 Scaling objects on the screen with scale, scaleX, and scaleY

This section talks about scaling objects on the screen. There are many practical uses
for scaling and many patterns that take advantage of its capabilities. For instance, scal-
ing can be used to create thumbnails of objects. You’ve seen this in many applications;
the user taps a thumbnail, and an animation gradually scales the object back up to full
size. It’s a common transition technique that provides a nice visual effect.

You’ll learn the basics of scaling objects and then use those skills to create a thumb-
nail of the ProfileCard that opens to full size when pressed. Later, this chapter dis-
cusses flexbox and how it can be used to manage a bunch of ProfileCard thumbnails
in a gallery interface, from which you can press profiles to view them in more detail.

scale multiplies the size of the element by the number passed to it, the default
being 1. To make an element appear larger, pass a value larger than 1; to make it
appear smaller, pass a value smaller than 1.

The element can also be scaled along a single axis using scaleX or scaleY. scaleX
stretches the element horizontally along the x-axis, and scaleY stretches the element
vertically along the y-axis. Let’s create a few squares to show the effects of scaling: see
figure 5.13.

Nothing unusual happens; scaling an object is pretty straightforward. Listing 5.2
shows how simple it is.

Listing 5.2   Scaling squares using scale, scaleX, and scaleY

import React, { Component } from 'react';
import { StyleSheet, Text, View} from 'react-native';

Figure 5.13   Examples of how scaling transforms the original square. All
the squares start the same size and shape as A, which has the default scale
of 1. B scales the square by 0.5, shrinking it. C scales the square by 2,
enlarging it. D uses scaleX, transforming the square along the x-axis by
3x. E uses scaleY, transforming the square along the y-axis by 1.5x.

	 129Using transformations to move, rotate, scale, and skew components

export default class App extends Component<{}> {
 render() {
 return (
 <View style={styles.container}>
 <Example style={{}}>A,1</Example>
 <Example style={{transform: [{scale: 0.5}]}}>B,0.5</Example>
 <Example style={{transform: [{scale: 2}]}}>C,2</Example>
 <Example style={{transform: [{scaleX: 3}]}}>D,X3</Example>
 <Example style={{transform: [{scaleY: 1.5}]}}>E,Y1.5</Example>
 </View>
);
 }
}

const Example = (props) => (
 <View style={[styles.example,props.style]}>
 <Text>
 {props.children}
 </Text>
 </View>
);

const styles = StyleSheet.create({
 container: {
 marginTop: 75,
 alignItems: 'center',
 flex: 1
 },
 example: {
 width: 50,
 height: 50,
 borderWidth: 2,
 margin: 15,
 alignItems: 'center',
 justifyContent: 'center'
 },
});

5.2.6	 Using the scale transform to create a thumbnail of the ProfileCard

Now that you’ve seen scaling in action, let’s use this technique to create a thumbnail
of the ProfileCard. Normally you’d animate what I’m about to show you, to avoid
flickering, but let’s see how to use scaling in a practical way. Figure 5.14 shows a small,
scaled-down version of the ProfileCard component—a thumbnail. If you press the
thumbnail, the component will return to full size. If you press the full-size component,
it will collapse back down into a thumbnail view.

Begin with the code from listing 5.1. As far as styles go, you only need to add one new
style to do the scaling transform from full size to thumbnail. The remainder of the code
reorganizes the component’s pieces into a more reusable structure and provides the
touch capabilities to handle the onPress events.

Default 50 × 50 square
with no scaling applied

Scales the default square
by 0.5, shrinking it

Scales the default square by 2, making it larger

Scales the
default square
only in the x
direction,
stretching it
horizontally

Scales the
default square
only in the y
direction,
stretching it
vertically

130 Chapter 5  Styling in depth

Listing 5.3   Scaling ProfileCard from full size to thumbnail

import React, { Component } from 'react';
import PropTypes from 'prop-types';
import update from 'immutability-helper';
import { Image, Platform, StyleSheet, Text,
 TouchableHighlight, View} from 'react-native';

const userImage = require('./user.png');

const data = [{
 image: userImage,
 name: 'John Doe',
 occupation: 'React Native Developer',
 description: 'John is a really great Javascript developer. ' +
'He loves using JS to build React Native applications ' +
'for iOS and Android',
 showThumbnail: true
 }
];

const ProfileCard = (props) => {

 const { image, name, occupation,
 description, onPress, showThumbnail } = props;
 let containerStyles = [styles.cardContainer];

John Doe

React Native Developer

John is a really great JavaScript
developer. He loves using JS to
build React Native applications
for iOS and Android.

John Doe

React Native Developer

John is a really great JavaScript
developer. He loves using JS to
build React Native applications
for iOS and Android.

Click to collapse
into a thumbnail.

Click to expand.

Figure 5.14   Scaling the full-sized ProfileCard down 80% into a
thumbnail image. Pressing the thumbnail restores the ProfileCard to its
original size, and pressing the full-sized component collapses the component
into a thumbnail.

PropTypes lets you specify what
properties the ProfileCard
component can accept.

The
immutability
helper
function
update lets
you update a
specific piece
of the
component’s
state.

The TouchableHighlight component
enables touch processing.

Data elements have been extracted
to generalize the component.

The ProfileCard component is now
separated from the App code.

	 131Using transformations to move, rotate, scale, and skew components

 if (showThumbnail) {
 containerStyles.push(styles.cardThumbnail);
 }

 return (
 <TouchableHighlight onPress={onPress}>
 <View style={[containerStyles]}>
 <View style={styles.cardImageContainer}>
 <Image style={styles.cardImage} source={image}/>
 </View>
 <View>
 <Text style={styles.cardName}>
 {name}
 </Text>
 </View>
 <View style={styles.cardOccupationContainer}>
 <Text style={styles.cardOccupation}>
 {occupation}
 </Text>
 </View>
 <View>
 <Text style={styles.cardDescription}>
 {description}
 </Text>
 </View>
 </View>
 </TouchableHighlight>
)
};

ProfileCard.propTypes = {
 image: PropTypes.number.isRequired,
 name: PropTypes.string.isRequired,
 occupation: PropTypes.string.isRequired,
 description: PropTypes.string.isRequired,
 showThumbnail: PropTypes.bool.isRequired,
 onPress: PropTypes.func.isRequired
};

export default class App extends Component<{}> {

 constructor(props, context) {
 super(props, context);
 this.state = {
 data: data
 }
 }
 handleProfileCardPress = (index) => {
 const showThumbnail = !this.state.data[index].showThumbnail;
 this.setState({
 data: update(this.state.data,
 {[index]: {showThumbnail: {$set: showThumbnail}}})
 });
 };
 render() {
 const list = this.state.data.map(function(item, index) {

If showThumbnail is true, the
component is scaled down by 80%.

Processes presses to minimize
and maximize the component

Component state is maintained in
the higher-order App component.

Handler function to
process onPress events

List (array) of ProfileCard components

132 Chapter 5  Styling in depth

 const { image, name, occupation, description, showThumbnail } = item;
 return <ProfileCard key={'card-' + index}
 image={image}
 name={name}
 occupation={occupation}
 description={description}
 onPress={this.handleProfileCardPress.bind(this, index)}
 showThumbnail={showThumbnail}/>
 }, this);

 return (
 <View style={styles.container}>
 {list}
 </View>
);
 }
}
...
 cardThumbnail: {
 transform: [{scale: 0.2}]
 },
...

By reorganizing the structure of the component, you can better handle adding more
ProfileCard components to the application. In section 5.3, you’ll add more Profile-
Cards and see how to organize them into a gallery layout.

5.2.7	 Skewing elements along the x- and y-axes with skewX and skewY

Before we leave transforms and talk about layout, let’s look at the skewX and skewY trans-
formations. In the source code that produced the cubes for the backfaceVisibility
example shown in figure 5.12 (github chapter5/figures/Figure-5.12-BackfaceVisibility),
you can see that skewing the squares was essential to producing the three-dimensional
affect for the cube faces. Let’s discuss what skewX and skewY do, so when you explore the
source code in detail, you’ll understand what you’re seeing.

The skewX property skews an element along the x-axis. Similarly, the skewY prop-
erty skews an element along the y-axis. Figure 5.15 shows the results of skewing a
square as follows:

¡	Square A has no transformation applied to it.
¡	Square B is skewed along the x-axis by 45°.
¡	Square C is skewed along the x-axis by –45°.
¡	Square D is skewed along the y-axis by 45°.
¡	Square E is skewed along the y-axis by –45°.

As with scaling, skewing an element is relatively simple: provide an angle, and specify
the axis. The next listing gives all the details.

NOTE   At the time of writing, the skewX transform doesn’t work correctly on
Android.

Renders the list in the overall container

The cardThumbnail style reduces
the component’s size by 80%.

Figure 5.15   Examples of skewing a square along the x-
and y-axes on iOS. Square A has no transformation applied.
Square B is skewed along the x-axis by 45°. Square C is
skewed along the x-axis by –45°. Square D is skewed along
the y-axis by 45°, and square E is skewed along the y-axis
by –45°.

	 133Using transformations to move, rotate, scale, and skew components

Listing 5.4   Examples showing how skewing transforms a square

import React, { Component } from 'react';
import { StyleSheet, Text, View} from 'react-native';

export default class App extends Component<{}> {
 render() {
 return (
 <View style={styles.container}>
 <Example style={{}}>A</Example>
 <Example style={{transform: [{skewX: '45deg'}]}}>
 B X45
 </Example>
 <Example style={{transform: [{skewX: '-45deg'}]}}>
 C X-45
 </Example>
 <Example style={{transform: [{skewY: '45deg'}]}}>
 D Y45
 </Example>
 <Example style={{transform: [{skewY: '-45deg'}]}}>
 E Y-45
 </Example>
 </View>
);

Skews the square 45°
along the x-axis

Skews the square –45°
along the x-axis

Skews the square 45°
along the y-axis

Skews the square –45°
along the y-axis

 const { image, name, occupation, description, showThumbnail } = item;
 return <ProfileCard key={'card-' + index}
 image={image}
 name={name}
 occupation={occupation}
 description={description}
 onPress={this.handleProfileCardPress.bind(this, index)}
 showThumbnail={showThumbnail}/>
 }, this);

 return (
 <View style={styles.container}>
 {list}
 </View>
);
 }
}
...
 cardThumbnail: {
 transform: [{scale: 0.2}]
 },
...

By reorganizing the structure of the component, you can better handle adding more
ProfileCard components to the application. In section 5.3, you’ll add more Profile-
Cards and see how to organize them into a gallery layout.

5.2.7	 Skewing elements along the x- and y-axes with skewX and skewY

Before we leave transforms and talk about layout, let’s look at the skewX and skewY trans-
formations. In the source code that produced the cubes for the backfaceVisibility
example shown in figure 5.12 (github chapter5/figures/Figure-5.12-BackfaceVisibility),
you can see that skewing the squares was essential to producing the three-dimensional
affect for the cube faces. Let’s discuss what skewX and skewY do, so when you explore the
source code in detail, you’ll understand what you’re seeing.

The skewX property skews an element along the x-axis. Similarly, the skewY prop-
erty skews an element along the y-axis. Figure 5.15 shows the results of skewing a
square as follows:

¡	Square A has no transformation applied to it.
¡	Square B is skewed along the x-axis by 45°.
¡	Square C is skewed along the x-axis by –45°.
¡	Square D is skewed along the y-axis by 45°.
¡	Square E is skewed along the y-axis by –45°.

As with scaling, skewing an element is relatively simple: provide an angle, and specify
the axis. The next listing gives all the details.

NOTE   At the time of writing, the skewX transform doesn’t work correctly on
Android.

Renders the list in the overall container

The cardThumbnail style reduces
the component’s size by 80%.

Figure 5.15   Examples of skewing a square along the x-
and y-axes on iOS. Square A has no transformation applied.
Square B is skewed along the x-axis by 45°. Square C is
skewed along the x-axis by –45°. Square D is skewed along
the y-axis by 45°, and square E is skewed along the y-axis
by –45°.

134 Chapter 5  Styling in depth

 }
}

const Example = (props) => (
 <View style={[styles.example,props.style]}>
 <Text>
 {props.children}
 </Text>
 </View>
);

const styles = StyleSheet.create({
 container: {
 marginTop: 50,
 alignItems: 'center',
 flex: 1
 },
 example: {
 width: 75,
 height: 75,
 borderWidth: 2,
 margin: 20,
 alignItems: 'center',
 justifyContent: 'center'
 },
});

5.2.8	 Transformation key points

We’ve covered a lot of transformative ideas in this section! Some of them were relatively
simple, while others may have been hard to visualize at first. I didn’t show many exam-
ples that combine transforms, so you could focus on what individual transforms do. I
encourage you to take any of the examples and include additional transformations, to
experiment and see what happens.

In chapter 7, when we discuss animation, you’ll see how transformations can make
things come alive. For now, take away these key points:

¡	The origin of the x- and y-axes is at upper left, meaning the positive direction for y
is down the screen. You saw this with absolute positioning in the previous chapter,
but it’s likely the opposite of what you’re used to, which can make it hard to reason
about what a transformation will do.

¡	The origin for rotations and translations is always at the element’s original location.
You can’t translate an object in the x or y direction and then rotate it about a new
center point.

Transformations are a great way to move components around the screen, but you won’t
use them on an everyday basis. Most often, you’ll use Yoga, a layout engine that imple-
ments much of the W3C’s flexbox web specification. In the next section, we’ll discuss
Yoga’s flexbox implementation in detail.

	 135Using flexbox to lay out components

5.3	 Using flexbox to lay out components
Flexbox is a layout implementation that React Native uses to provide an efficient way
for users to create UIs and control positioning. The React Native flexbox implementa-
tion is based on the W3C flexbox web specification but doesn’t share 100% of the API.
It aims to give you an easy way to reason about, align, and distribute space among items
in a layout, even when their size isn’t known or is dynamic.

NOTE   Flexbox layout is only available for use on View components.

You’ve already seen flexbox used in many of the examples. It’s powerful and makes
laying out items so much easier than alternative methods that it’s difficult not to use it.
You’ll benefit greatly by taking time to understand the material in this section. Here
are the alignment properties used to control the flexbox layout: flex, flexDirection,
justifyContent, alignItems, alignSelf, and flexWrap.

5.3.1	 Altering a component’s dimensions with flex

The flex property specifies the ability of a component to alter its dimensions to fill the
space of the container it’s in. This value is relative to the flex properties specified for
the rest of the items in the same container.

A 50%

C 33%

E 25%

F 75%

D 66%

B 50%

Figure 5.16   Three examples of layouts using the flex property. The top
example is 1:1, with A = {flex: 1} and B = {flex: 1}, resulting in each
taking up 50% of the space. The middle example is 1:2, with C = {flex: 1}
and D = {flex: 2}, resulting in C taking up 33% of the space and D taking up
66%. The bottom example is 1:3, with E = {flex: 1} and F = {flex: 3},
resulting in E taking up 25% of the space and F taking up 75% of the space.

136 Chapter 5  Styling in depth

If you have a View element with a height of 300 and a width of 300, and a child View
element with a property of flex: 1, then the child view will completely fill the parent
view. If you decide to add another child element with a flex property of flex: 1,
each view will take up equal space in the parent container. The flex number is only
important relative to the other flex items occupying the same space.

Another way to look at this is to think of the flex properties as being percentages.
For example, if you want the child components to take up 66.6% and 33.3%, respec-
tively, you can use flex:66 and flex:33. Rather than flex:66 and flex:33, you can
specify flex:2 and flex:1 and achieve the same layout effect.

To better understand how this works, let’s look at a few examples shown in figure 5.16.
These are easily achieved by setting the appropriate flex value on the individual ele-
ments. The following listing shows the steps necessary to create such a layout.

Listing 5.5   Flex views with 1:1 ratio, 1:2, and 1:3 ratios

…
render() {
 return (
 <View style={styles.container}>
 <View style={[styles.flexContainer]}>
 <Example style={[{flex: 1},styles.darkgrey]}>A 50%</Example>
 <Example style={[{flex: 1}]}>B 50%</Example>
 </View>
 <View style={[styles.flexContainer]}>
 <Example style={[{flex: 1},styles.darkgrey]}>C 33%</Example>
 <Example style={{flex: 2}}>D 66%</Example>
 </View>
 <View style={[styles.flexContainer]}>
 <Example style={[{flex: 1},styles.darkgrey]}>E 25%</Example>
 <Example style={{flex: 3}}>F 75%</Example>
 </View>
 </View>
);
}
…

5.3.2	 Specifying the direction of the flex with flexDirection

In the previous examples, the items in flex containers are laid out in a column (y-axis),
meaning top to bottom. A is stacked on B, C is stacked on D, and E is stacked on F.
Using the flexDirection property, you can change the primary axis of the layout, and
therefore change the direction of the layout. flexDirection is applied to the parent
view that contains

All that’s needed to achieve the layout in figure 5.17 is to add a single line of code to
the flexContainer style, which is the parent container for each of the example com-
ponents. Changing flexDirection on this container affects the layout of all its flex
children. Add flexDirection: 'row' to the style, and see how it changes the layout.

The items have the same flex value,
so they take up the same amount of

space in their parent container.

C takes up 1/3 of the total space, and
D takes up 2/3 of the total space.

E takes up 1/4 of the total space, and
F takes up 3/4 of the total space.

	 137Using flexbox to lay out components

Listing 5.6   Adding flexDirection: 'row' to the parent container

flexContainer: {
 width: 150,
 height: 150,
 borderWidth: 1,
 margin: 10,
 flexDirection: 'row'
},

The child elements now appear left to right. There are two options for flexDirection:
'row' and 'column'. The default setting is 'column'. If you don’t specify a flexDirec-
tion property, content will be laid out in a column. This property is something you’ll
use a lot when developing apps in React Native, so it’s important to grasp it and under-
stand how it works.

5.3.3	 Defining how space is used around a component
with justifyContent

Using the flex property, you can specify how much space each component takes up in
its parent container; but what if you’re not trying to take up the entire space? How can
you use flexbox to lay out components using their original size?

justifyContent defines how space is distributed between and around flex items
along the primary axis of the container (the flex direction). justifyContent is declared
on the parent container. Five options are available:

¡	center causes the children to be centered within the parent container. The free
space is distributed on both sides of the clustered group of children.

¡	flex-start groups the components at the beginning of the flex column or
row, depending on what value is assigned to flexDirection. flex-start is the
default value for justifyContent.

¡	flex-end acts in the opposite manner: it groups items together at the end of the
container.

¡	space-around attempts to evenly distribute space around each element. Don’t
confuse this with distributing the elements evenly in the container; the space is
distributed around the elements. If it were based on the elements, you’d expect
space – element – space – element – space

E
25% F 75%C 33% D 66%A 50% B 50%

Figure 5.17   The same example as in figure 5.16, but with flexDirection
set to 'row'. Now the items take up space horizontally within the row rather
than vertically within the column.

flexContainer is the parent
container of each example.

Causes the children to
be laid out horizontally

138 Chapter 5  Styling in depth

Instead, flexbox allocates the same amount of space on each side of the element,
yielding

space – element – space – space – element – space

In both cases, the amount of whitespace is the same; but in the latter, the space
between elements is greater.

¡	space-between doesn’t apply spacing at the start or end of the container. The
space between any two consecutive elements is the same as the space between any
other two consecutive elements.

Figure 5.18 demonstrates how each of the justifyContent properties distributes
space between and around the flex elements. Every example uses two elements to help
depict what is happening.

Listing 5.7 shows the code used to generate figure 5.18. Look at it carefully, to under-
stand how it works, and then try to do the following: add more elements to each exam-
ple to see what happens as the number of items increases; and set flexDirection to row
to see what happens when the items are laid out horizontally instead of vertically.

Listing 5.7   Examples showing the justifyContent options

...
render() {
 return (
 <View style={styles.container}>
 <FlexContainer style={[{justifyContent: 'center'}]}>
 <Example>center</Example>
 <Example>center</Example>
 </FlexContainer>
 <FlexContainer style={[{justifyContent: 'flex-start'}]}>
 <Example>flex-start</Example>
 <Example>flex-start</Example>
 </FlexContainer>
 <FlexContainer style={[{justifyContent: 'flex-end'}]}>
 <Example>flex-end</Example>
 <Example>flex-end</Example>
 </FlexContainer>
 <FlexContainer style={[{justifyContent: 'space-around'}]}>
 <Example>space-around</Example>
 <Example>space-around</Example>
 </FlexContainer>
 <FlexContainer style={[{justifyContent: 'space-between'}]}>
 <Example>space-between</Example>
 <Example>space-between</Example>
 </FlexContainer>
 </View>
);
}
...

Uses the justifyContent: 'center' option

Uses the justifyContent: 'flex-start' option

Uses the justifyContent: 'flex-end' option

Uses the justifyContent: 'space-around' option

Uses the justifyContent:
'space-between' option

center
center

flex-start
flex-start

flex-end
flex-end

space-around

space-around

space-between

space-between

Figure 5.18   Examples of how justifyContent affects the distribution of space between flexible child
elements for each of the supported options: center, flex-start, flex-end, space-around, and
space-between.

A 50%

B 50%

C 33%

D 66%

E 25%

F 75%

Figure 5.19   Modified examples from figure 5.16, using the non-default
alignItems properties: center, flex-start, and flex-end

	 139Using flexbox to lay out components

5.3.4	 Aligning children in a container with alignItems

alignItems defines how to align children along the secondary axis of their container.
This property is declared on the parent view and affects its flex children just as flex-
Direction did. There are four possible values for alignItems: stretch, center,
flex-start, and flex-end.

stretch is the default, used in figures 5.17 and 5.18. Each example component is
stretched to fill its parent container. Figure 5.19 revisits figure 5.16 and shows what
happens with the other options: center, flex-start, and flex-end. Because a precise
width isn’t specified for the example components, they only take up as much space hor-
izontally as is necessary to render their contents rather than stretching to fill the space.
In the first case, alignItems is set to 'center'. In the second case, alignItems is set to
'flex-start'. And last alignItems is set to 'flex-end'. Use listing 5.8 to change the
alignments on each of the examples from listing 5.5.

Listing 5.8   Using non-default alignItems properties

render() {
 return (
 <View style={styles.container}>
 <View style={[styles.flexContainer,
 {alignItems: 'center'}]}>
 <Example style={[styles.darkgrey]}>A 50%</Example>
 <Example>B 50%</Example>

Changes the alignItems
property to center

Instead, flexbox allocates the same amount of space on each side of the element,
yielding

space – element – space – space – element – space

In both cases, the amount of whitespace is the same; but in the latter, the space
between elements is greater.

¡	space-between doesn’t apply spacing at the start or end of the container. The
space between any two consecutive elements is the same as the space between any
other two consecutive elements.

Figure 5.18 demonstrates how each of the justifyContent properties distributes
space between and around the flex elements. Every example uses two elements to help
depict what is happening.

Listing 5.7 shows the code used to generate figure 5.18. Look at it carefully, to under-
stand how it works, and then try to do the following: add more elements to each exam-
ple to see what happens as the number of items increases; and set flexDirection to row
to see what happens when the items are laid out horizontally instead of vertically.

Listing 5.7   Examples showing the justifyContent options

...
render() {
 return (
 <View style={styles.container}>
 <FlexContainer style={[{justifyContent: 'center'}]}>
 <Example>center</Example>
 <Example>center</Example>
 </FlexContainer>
 <FlexContainer style={[{justifyContent: 'flex-start'}]}>
 <Example>flex-start</Example>
 <Example>flex-start</Example>
 </FlexContainer>
 <FlexContainer style={[{justifyContent: 'flex-end'}]}>
 <Example>flex-end</Example>
 <Example>flex-end</Example>
 </FlexContainer>
 <FlexContainer style={[{justifyContent: 'space-around'}]}>
 <Example>space-around</Example>
 <Example>space-around</Example>
 </FlexContainer>
 <FlexContainer style={[{justifyContent: 'space-between'}]}>
 <Example>space-between</Example>
 <Example>space-between</Example>
 </FlexContainer>
 </View>
);
}
...

Uses the justifyContent: 'center' option

Uses the justifyContent: 'flex-start' option

Uses the justifyContent: 'flex-end' option

Uses the justifyContent: 'space-around' option

Uses the justifyContent:
'space-between' option

center
center

flex-start
flex-start

flex-end
flex-end

space-around

space-around

space-between

space-between

Figure 5.18   Examples of how justifyContent affects the distribution of space between flexible child
elements for each of the supported options: center, flex-start, flex-end, space-around, and
space-between.

A 50%

B 50%

C 33%

D 66%

E 25%

F 75%

Figure 5.19   Modified examples from figure 5.16, using the non-default
alignItems properties: center, flex-start, and flex-end

140 Chapter 5  Styling in depth

 </View>
 <View style={[styles.flexContainer,
 {alignItems: 'flex-start'}]}>
 <Example style={[styles.darkgrey]}>C 33%</Example>
 <Example style={{flex: 2}}>D 66%</Example>
 </View>
 <View style={[styles.flexContainer,
 {alignItems: 'flex-end'}]}>
 <Example style={[styles.darkgrey]}>E 25%</Example>
 <Example style={{flex: 3}}>F 75%</Example>
 </View>
 </View>
);
 }

Now that you’ve seen how to use the other alignItems properties and their effects on
the default column layout, why don’t you set flexDirection to 'row' and see what
happens?

5.3.5	 Overriding the parent container’s alignment with alignSelf

So far, all the flex properties have been applied to the parent con-
tainer. alignSelf is applied directly to an individual flex child.

With alignSelf, you can access the alignItems property for
individual elements within the container. In essence, alignSelf
gives you the ability to override whatever alignment was set on the
parent container, so a child object can be aligned independently of
its peers. The available options are auto, stretch, center, flex-
start, and flex-end. The default value is auto, which takes the
value from the parent container’s alignItems setting. The remain-
ing properties affect the layout in the same way as their correspond-
ing properties on alignItems.

In figure 5.20, the parent container doesn’t have alignItems set,
so it defaults to stretch. In the first example, the auto value inher-
its stretch from its parent container. The next four examples lay
out exactly as you’d expect. The final example has no alignSelf
property set, so it defaults to auto and is laid out the same as the first
example.

Listing 5.9 does something a little different. Rather than supply the style directly to the
Example element, you create a new component property: align. It’s passed down to
the Example component and used to set alignSelf. Otherwise, the example is the same as
many others in this chapter; it explores the effects of each value applied to the style.

Listing 5.9   Using alignSelf to override the parent’s alignItems

import React, { Component } from 'react';
import { StyleSheet, Text, View} from 'react-native';

Changes alignItems to flex-start

Changes alignItems to flex-end

stretch

auto

center

flex-start

flex-end

default

Figure 5.20   How
each alignSelf
property affects
the layout when its
parent container’s
alignItems
property is set to
the default value
of stretch

	 141Using flexbox to lay out components

export default class App extends Component<{}> {
 render() {
 return (
 <View style={styles.container}>
 <FlexContainer style={[]}>
 <Example align='auto'>auto</Example>
 <Example align='stretch'>stretch</Example>
 <Example align='center'>center</Example>
 <Example align='flex-start'>flex-start</Example>
 <Example align='flex-end'>flex-end</Example>
 <Example>default</Example>
 </FlexContainer>
 </View>
);
 }
}

const FlexContainer = (props) => (
 <View style={[styles.flexContainer,props.style]}>
 {props.children}
 </View>
);

const Example = (props) => (
 <View style={[styles.example,
 styles.lightgrey,
 {alignSelf: props.align || 'auto'},
 props.style
]}>
 <Text>
 {props.children}
 </Text>
 </View>
);

const styles = StyleSheet.create({
 container: {
 marginTop: 50,
 alignItems: 'center',
 flex: 1
 },
 flexContainer: {
 backgroundColor: '#ededed',
 width: 120,
 height: 180,
 borderWidth: 1,
 margin: 10
 },
 example: {
 height: 25,
 marginBottom: 5,
 backgroundColor: '#666666'
 },
});

Sets alignSelf to auto,
which picks up the
parent container’s

value of stretch
Sets alignSelf
explicitly to
stretch

Sets alignSelf
to center

Sets alignSelf to flex-start
Sets alignSelf to flex-end

The default value for alignSelf is auto.

Uses the align
property to set the
Example component’s
alignItems style

142 Chapter 5  Styling in depth

5.3.6	 Preventing clipped items with flexWrap

You learned earlier in this section that the flexDirection property takes two values:
column (the default) and row. column lays out items vertically, and row lays out items
horizontally. What you haven’t seen is a situation in which items flow off the screen
because they don’t fit.

flexWrap takes two values: nowrap and wrap. The default value is nowrap, meaning
items will flow off the screen if they don’t fit. The items are clipped, and the user can’t
see them. To work around this problem, use the wrap value.

In figure 5.21, the first example uses nowrap, and the squares flow off the screen. The
row of squares is chopped off at the right edge. The second example uses wrap, and the
squares wrap around and start a new row. Listing 5.10 shows the code.

Listing 5.10   Example of how flexWrap values affect layout

import React, { Component } from 'react';
import { StyleSheet, Text, View} from 'react-native';

export default class App extends Component<{}> {
 render() {
 return (
 <View style={styles.container}>
 <NoWrapContainer>
 <Example>A nowrap</Example>

A nowrap

B wrap

1

1 2

3 4

2 3

Figure 5.21   An example of two overflowing containers:
one with flexWrap set to nowrap and the other with
flexWrap set to wrap

flexWrap is set to nowrap: the
squares overflow off the screen.

	 143Using flexbox to lay out components

 <Example>1</Example>
 <Example>2</Example>
 <Example>3</Example>
 <Example>4</Example>
 </NoWrapContainer>
 <WrapContainer>
 <Example>B wrap</Example>
 <Example>1</Example>
 <Example>2</Example>
 <Example>3</Example>
 <Example>4</Example>
 </WrapContainer>
 </View>
);
 }
}

const NoWrapContainer = (props) => (
 <View style={[styles.noWrapContainer,props.style]}>
 {props.children}
 </View>
);

const WrapContainer = (props) => (
 <View style={[styles.wrapContainer,props.style]}>
 {props.children}
 </View>
);

const Example = (props) => (
 <View style={[styles.example,props.style]}>
 <Text>
 {props.children}
 </Text>
 </View>
);

const styles = StyleSheet.create({
 container: {
 marginTop: 150,
 flex: 1
 },
 noWrapContainer: {
 backgroundColor: '#ededed',
 flexDirection: 'row',
 flexWrap: 'nowrap',
 borderWidth: 1,
 margin: 10
 },
 wrapContainer: {
 backgroundColor: '#ededed',
 flexDirection: 'row',
 flexWrap: 'wrap',
 borderWidth: 1,
 margin: 10
 },

flexWrap is set to wrap:
the row of squares wraps
around to start a new line.

Uses the noWrapContainer
style for the first example

Uses the wrapContainer
style for the second example

Sets flexDirection to row
and flexWrap to nowrap

Sets flexDirection to row
and flexWrap to wrap

144 Chapter 5  Styling in depth

 example: {
 width: 100,
 height: 100,
 margin: 5,
 backgroundColor: '#666666'
 },
});

It’s easy to see which behavior is preferable when laying out tiles, but you may come
across a situation in which nowrap will serve you better. Either way, you should now
have a clear understanding of flexbox and the many ways it can help you build respon-
sive layouts in React Native.

Summary

¡	When sizing items for display, iOS uses points and Android uses density-inde-
pendent pixels. The systems of measurement are different but should have little
impact on development unless you need pixel-perfect graphics.

¡	Some styles are only available on one platform or another. ShadowPropTypeIOS is
only available on iOS, and elevation is only recognized on Android.

¡	Components can be moved in the x and y directions using the translateX and
translateY transforms.

¡	Components can be rotated about the x-, y-, and z-axes using rotateX, rotateY,
and rotateZ. The point of rotation is the original location of the object before
any transforms have been applied.

¡	Components can be scaled in the x and y directions to make the components
grow or shrink.

¡	Components can also be skewed in the x and y directions.
¡	Several transformations can be applied at the same time, but the order in which

they’re specified matters. Rotating a component changes the orientation of the
component for subsequent transformations.

¡	The flexDirection property defines the primary axis, the default being column
(y-axis).

¡	The justifyContent property defines how items should be laid out along the
primary axis.

¡	The alignItems property defines how items should be laid out along the second-
ary axis.

¡	The alignSelf property can be used to override the alignItems property speci-
fied by a parent container.

¡	The flexWrap property tells flexbox how to handle items that would typically
overflow off the screen.

145

6Navigation

This chapter covers
¡	Navigation in React Native vs. the web

¡	Navigating using tabs, stacks, and drawers

¡	Managing nested navigators

¡	Passing data and methods between routes

One of the core pieces of functionality in any mobile application is navigation.
Before building an application, I recommend that you spend some time strategizing
how you want the app to handle navigation and routing. This chapter covers the
three main types of navigation typical to mobile applications: tab-based, stack-based,
and drawer-based navigation.

Tab-based navigation typically has tabs either at the top or bottom of the screen;
pressing a tab takes you to the screen that correlates with the tab. Many popular apps
like Twitter, Instagram, and Facebook implement this type of navigation on their
main screens.

Stack-based navigation transitions from one screen to another, replacing the cur-
rent screen, and usually implements some sort of animated transition. You can then
go backward or continue moving forward in the stack. You can think of stack-based
navigation like an array of components: pushing a new component into the array

146 Chapter 6  Navigation

takes you to the screen of the new component. To go back, you pop the last screen from
the stack and are navigated to the previous screen. Most navigation libraries handle this
popping and pushing for you.

Drawer-based navigation is typically a side menu that pops out from either the left
or right side of the screen and shows a list of options. When you press an option, the
drawer closes, and you’re taken to the new screen.

The React Native framework doesn’t include a navigation library. When building
navigation in a React Native app, you have to go with a third-party navigation library. A
few good navigation libraries are available, but in this chapter, I use React Navigation
as the navigation library of choice to build out the demo app. The React Navigation
library is recommended by the React Native team and is maintained by many people in
the React and React Native community.

React Navigation is a JavaScript-based navigation implementation. All the transitions
and controls are handled by JavaScript. Some teams prefer a native solution for many
reasons: for instance, they may be adding React Native to an existing native app and
want navigation to be consistent throughout the app. If you’re interested in a native
navigation solution, check out React Native Navigation, an open source React Native
navigation library built and maintained by the engineers at Wix.

6.1	 React Native navigation vs. web navigation
Because the paradigm of navigation on the web is much different than that of React
Native, navigation is a stumbling block for many developers new to React Native. On
the web, we’re used to working with URLs. There are many ways to navigate to a new
route, depending on the framework or environment, but typically you want to send the
user to a new URL and maybe add some URL parameters if needed.

In React Native, routes are based around components. You load or show a compo-
nent using the navigator you’re working with. Depending on whether it’s tab based,
stack based, drawer based, or a combination of these, the routing will also differ. We’ll
walk through all this when you build the demo app in the next section.

You also need to keep up with the data and state throughout the routes and possibly
access methods defined elsewhere in the app, so having a strategy around data and method
sharing is important. You can manage data and methods either at the top level, where the
navigation is defined, or using a state-management library such as Redux or MobX. In the
example, you’ll manage data and methods in the class at the top level of the app.

6.2	 Building a navigation-based app
In this chapter, you’ll learn how to implement navigation by building out an app that
uses both tab-based and stack-based navigation. The app you’ll create is called Cities;
it’s shown in figure 6.1. It’s a travel app that lets you keep up with all the cities you visit
or want to visit. You can also add locations in each city you want to visit.

The main navigation is tab based, and one of the tabs includes a stack-based naviga-
tion. The left tab shows the list of cities you’ve created, and the right tab contains a form
to create new cities. On the left tab, you can press an individual city to view it as well as
view and create locations in the city.

Figure 6.1   Completed Cities app with screens for adding a city, listing cities, viewing city details, and
viewing locations within the city

	 147Building a navigation-based app

To get started, create a new React Native application. In your terminal, navigate to an
empty directory, and install the new React Native application using the React Native CLI:

react-native init CitiesApp

Next, navigate into the new directory, and install two dependencies: React Navigation
and uuid. React Navigation is the navigation library, and uuid will be used to create
unique IDs for cities in order to identify them uniquely:

cd CitiesApp
npm install react-navigation uuid

Now, let’s get to work creating components! Create a new main directory called src in
the root of the application. This directory will hold most of the new code for the app.
In this new directory, add three main subdirectories: Cities, AddCity, and components.

Because the main navigation is tab based, you’ll separate the main application into
two main components (Cities and AddCity), each having its own tab. The AddCity
folder will only contain a single component, AddCity.js. The Cities folder will contain
two components: Cities.js to view the list of cities, and City.js to view an individual city.
The components folder will hold any reusable components; in this case, it will hold a
single component.

You’ll also have src/index.js and src/theme.js files. src/index.js will hold all the nav-
igation configuration, and theme.js will be where you keep themeable configuration—
in this case, a primary color configuration. Figure 6.2 shows the project’s complete
folder structure.

Now that you’ve created the folder structure and installed the necessary dependen-
cies, let’s write some code. The first file you’ll work with is src/theme.js. Here, you’ll
set the primary color and make it exportable for use in the app. The theme color I’ve
chosen for the app is blue, but feel free to use any color you want; the app will work the
same if you change the color value in this file.

takes you to the screen of the new component. To go back, you pop the last screen from
the stack and are navigated to the previous screen. Most navigation libraries handle this
popping and pushing for you.

Drawer-based navigation is typically a side menu that pops out from either the left
or right side of the screen and shows a list of options. When you press an option, the
drawer closes, and you’re taken to the new screen.

The React Native framework doesn’t include a navigation library. When building
navigation in a React Native app, you have to go with a third-party navigation library. A
few good navigation libraries are available, but in this chapter, I use React Navigation
as the navigation library of choice to build out the demo app. The React Navigation
library is recommended by the React Native team and is maintained by many people in
the React and React Native community.

React Navigation is a JavaScript-based navigation implementation. All the transitions
and controls are handled by JavaScript. Some teams prefer a native solution for many
reasons: for instance, they may be adding React Native to an existing native app and
want navigation to be consistent throughout the app. If you’re interested in a native
navigation solution, check out React Native Navigation, an open source React Native
navigation library built and maintained by the engineers at Wix.

6.1	 React Native navigation vs. web navigation
Because the paradigm of navigation on the web is much different than that of React
Native, navigation is a stumbling block for many developers new to React Native. On
the web, we’re used to working with URLs. There are many ways to navigate to a new
route, depending on the framework or environment, but typically you want to send the
user to a new URL and maybe add some URL parameters if needed.

In React Native, routes are based around components. You load or show a compo-
nent using the navigator you’re working with. Depending on whether it’s tab based,
stack based, drawer based, or a combination of these, the routing will also differ. We’ll
walk through all this when you build the demo app in the next section.

You also need to keep up with the data and state throughout the routes and possibly
access methods defined elsewhere in the app, so having a strategy around data and method
sharing is important. You can manage data and methods either at the top level, where the
navigation is defined, or using a state-management library such as Redux or MobX. In the
example, you’ll manage data and methods in the class at the top level of the app.

6.2	 Building a navigation-based app
In this chapter, you’ll learn how to implement navigation by building out an app that
uses both tab-based and stack-based navigation. The app you’ll create is called Cities;
it’s shown in figure 6.1. It’s a travel app that lets you keep up with all the cities you visit
or want to visit. You can also add locations in each city you want to visit.

The main navigation is tab based, and one of the tabs includes a stack-based naviga-
tion. The left tab shows the list of cities you’ve created, and the right tab contains a form
to create new cities. On the left tab, you can press an individual city to view it as well as
view and create locations in the city.

Figure 6.1   Completed Cities app with screens for adding a city, listing cities, viewing city details, and
viewing locations within the city

148 Chapter 6  Navigation

Listing 6.1   Creating a theme file with a primary color

const colors = {
 primary: '#1976D2'
}

export {
 colors
}

You can import this primary color throughout the application if you wish, and change
it in one place if you choose to do so.

Next, edit src/index.js to create the main navigation configuration. You’ll create
both navigation instances here: the tab-based navigation and the stack-based navigation.

Listing 6.2   Creating the navigation configuration

import React from 'react'

import Cities from './Cities/Cities'
import City from './Cities/City'
import AddCity from './AddCity/AddCity'

import { colors } from './theme'

import { createBottomTabNavigator,
 createStackNavigator } from 'react-navigation'

const options = {
 navigationOptions: {
 headerStyle: {
 backgroundColor: colors.primary
 },

Figure 6.2   The complete src folder structure

Imports the three components
to have in the scope of the file

Imports colors from the theme

Imports the two
navigators to access
from React Navigation

Creates an options object to hold
configuration for the stack navigator

	 149Building a navigation-based app

 headerTintColor: '#fff'
 }
}

const CitiesNav = createStackNavigator({
 Cities: { screen: Cities },
 City: { screen: City }
}, options)

const Tabs = createBottomTabNavigator({
 Cities: { screen: CitiesNav },
 AddCity: { screen: AddCity }
})

export default Tabs

When you create the options object, the stack navigator automatically places a header
at the top of each route. The header is usually where you’ll have the title of the current
route as well as buttons like a Back button. The options object also defines the back-
ground color and the tint color of the header.

For the first navigation instance, createStackNavigator takes two arguments: the
route configuration and any configuration regarding things like styling to apply to the
navigation. You pass in two routes as the first argument, and the options object as the
second argument.

Next, update App.js to include the new navigation and render it as the main entry
point. In addition to rendering the navigation component, App.js will contain and con-
trol any methods and data to be made available to the application.

Listing 6.3   Updating App.js to use the navigation configuration

import React, { Component } from 'react';
import {
 Platform,
 StyleSheet,
 Text,
 View
} from 'react-native';

import Tabs from './src'

export default class App extends Component {
 state = {
 cities: []

 }
 addCity = (city) => {
 const cities = this.state.cities
 cities.push(city)
 this.setState({ cities })
 }
 addLocation = (location, city) => {
 const index = this.state.cities.findIndex(item => {
 return item.id === city.id
 })

Creates the first navigation instance

Creates the tab navigator using
the CitiesNav stack navigator
for one tab and the AddCity
component for the second tab

Imports the navigation from src/index.js

Creates an initial state
of cities, an empty array

Adds a new city to the existing list
of cities stored in the state

Adds a location to the array
of locations in a chosen city

150 Chapter 6  Navigation

 const chosenCity = this.state.cities[index]
 chosenCity.locations.push(location)
 const cities = [
 ...this.state.cities.slice(0, index),
 chosenCity,
 ...this.state.cities.slice(index + 1)
]
 this.setState({
 cities
 })
 }
 render() {
 return (
 <Tabs
 screenProps={{
 cities: this.state.cities,
 addCity: this.addCity,
 addLocation: this.addLocation
 }}
 />
)
 }
}

App.js has three main pieces of functionality. It creates the initial state of the app: an
empty array called cities. Each city will be an object and will have a name, country,
ID, and array of locations. The addCity method lets you add new cities to the cities
array stored in the state. The addLocation method identifies the city you want to add a
location to, updates the city, and resets the state with the new data.

React Navigation has a way to pass these methods and the state down to all the routes
being used by the navigator. To do this, pass a prop called screenProps containing
whatever you want access to. Then, from within any route, this.props.screenProps
gives access to the data or methods.

Next, you’ll create a reusable component called CenterMessage, which is used in
Cities.js and City.js (src/components/CenterMessage.js). It displays a message when
the array is empty. For example, when the app first starts, it won’t have any cities to list;
you can display a message as shown in figure 6.3, instead of just showing a blank screen.

Listing 6.4   CenterMessage component

import React from 'react'
import {
 Text,
 View,
 StyleSheet
} from 'react-native'

import { colors } from '../theme'

const CenterMessage = ({ message }) => (
 <View style={styles.emptyContainer}>

Returns the Tabs component and passes
in a screenProps object containing the
cities array, the addCity method, and
the addLocation method

	 151Building a navigation-based app

 <Text style={styles.message}>{message}</Text>
 </View>
)

const styles = StyleSheet.create({
 emptyContainer: {
 padding: 10,
 borderBottomWidth: 2,
 borderBottomColor: colors.primary
 },
 message: {
 alignSelf: 'center',
 fontSize: 20
 }
})

export default CenterMessage

This component is straightforward. It’s a stateless component that receives only a mes-
sage as a prop and displays the message along with some styling.

Next, in src/AddCity/AddCity.js, create the AddCity component that will allow you
to add new cities to the cities array (see figure 6.4). This component will contain a

Figure 6.3   The reusable CenterMessage
component displays a message centered
within the display.

Figure 6.4   AddCity tab allows the
user to enter a new city name and the
country name.

152 Chapter 6  Navigation

form with two text inputs: one to hold the city name and one to hold the country name.
In addition, a button will call the addCity method from App.js.

Listing 6.5   AddCity tab (functionality)

import React from 'react'
import {
 View,
 Text,
 StyleSheet,
 TextInput,
 TouchableOpacity
} from 'react-native'

import uuidV4 from 'uuid/v4'

import { colors } from '../theme'

export default class AddCity extends React.Component {
 state = {
 city: '',
 country: '',
 }
 onChangeText = (key, value) => {
 this.setState({ [key]: value })
 }
 submit = () => {
 if (this.state.city === '' || this.state.country === '') {
 alert('please complete form')
 }
 const city = {
 city: this.state.city,
 country: this.state.country,
 id: uuidV4(),
 locations: []
 }
 this.props.screenProps.addCity(city)
 this.setState({
 city: '',
 country: ''
 }, () => {
 this.props.navigation.navigate('Cities')
 })
 }
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.heading}>Cities</Text>
 <TextInput
 placeholder='City name'
 onChangeText={val => this.onChangeText('city', val)}
 style={styles.input}
 value={this.state.city}

The initial state holds a city name and a country
name, both initially set as empty strings.

Updates the state with either the city or
name value. This will be attached to the
TextInput and will fire whenever the
input value changes.

Holds much
of the
functionality
for this
component

	 153Building a navigation-based app

 />
 <TextInput
 placeholder='Country name'
 onChangeText={val => this.onChangeText('country', val)}
 style={styles.input}
 value={this.state.country}
 />
 <TouchableOpacity onPress={this.submit}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Add City</Text>
 </View>
 </TouchableOpacity>
 </View>
)
 }
}

First, you check to make sure neither the city nor the country is an empty string. If
either or both are empty, you return, because you don’t want to store the data unless
both fields are filled out. Next, you create an object to hold the city being adding to
the cities array. Take the existing city and country values stored on the state, and add
an ID value using the uuidV4 method and an empty locations array. Call this.props.
screenProps.addCity, passing in the new city. Next, reset the state to clear out any
values stored in the state. Finally, navigate the user to the Cities tab to show them their
list of cities with the new city added, by calling this.props.navigation.navigate and
passing in the string of the route to navigate to—in this case, 'Cities'.

Every component that’s a screen in a navigator automatically has access to two props:
screenProps and navigation. In listing 6.3, when you created the navigation compo-
nent, you passed in three screenProps. In the submit method, you called this.props.
screenProps.addCity, accessing and invoking this screenProps method. You also
access the navigation prop by calling this.props.navigation.navigate. navigate is
what you use to navigate between routes in React Navigation.

Next, add the styles for this component. This code goes below the class definition in
src/AddCity/AddCity.js.

Listing 6.6   AddCity tab (styling)

const styles = StyleSheet.create({
 button: {
 height: 50,
 backgroundColor: '#666',
 justifyContent: 'center',
 alignItems: 'center',
 margin: 10
 },
 buttonText: {
 color: 'white',
 fontSize: 18
 },

154 Chapter 6  Navigation

 heading: {
 color: 'white',
 fontSize: 40,
 marginBottom: 10,
 alignSelf: 'center'
 },
 container: {
 backgroundColor: colors.primary,
 flex: 1,
 justifyContent: 'center'
 },
 input: {
 margin: 10,
 backgroundColor: 'white',
 paddingHorizontal: 8,
 height: 50
 }
})

Now, create src/Cities/Cities.js to list all the cities the app is storing and allow the user
to navigate to an individual city (see figure 6.5). The functionality is shown in the fol-
lowing listing, and the styling is in listing 6.8.

Figure 6.5   Cities.js displays a list of cities that have been
added to the application.

	 155Building a navigation-based app

Listing 6.7   Cities route (functionality)

import React from 'react'
import {
 View,
 Text,
 StyleSheet,
 TouchableWithoutFeedback,
 ScrollView
} from 'react-native'

import CenterMessage from '../components/CenterMessage'

import { colors } from '../theme'

export default class Cities extends React.Component {
 static navigationOptions = {
 title: 'Cities',
 headerTitleStyle: {
 color: 'white',
 fontSize: 20,
 fontWeight: '400'
 }
 }
 navigate = (item) => {
 this.props.navigation.navigate('City', { city: item })
 }
 render() {
 const { screenProps: { cities } } = this.props
 return (
 <ScrollView contentContainerStyle={[!cities.length && { flex: 1 }]}>
 <View style={[!cities.length &&
 { justifyContent: 'center', flex: 1 }]}>
 {
 !cities.length && <CenterMessage message='No saved cities!'/>
 }
 {
 cities.map((item, index) => (
 <TouchableWithoutFeedback
 onPress={() => this.navigate(item)} key={index} >
 <View style={styles.cityContainer}>
 <Text style={styles.city}>{item.city}</Text>
 <Text style={styles.country}>{item.country}</Text>
 </View>
 </TouchableWithoutFeedback>
))
 }
 </View>
 </ScrollView>
)
 }
}

In this listing, you first import the CenterMessage component. React Navigation has a
way to control certain options around the navigation within a route. To do so, you can
declare a static navigationOptions property on the class and declare the configuration

Imports the CenterMessage
component created in listing 6.4

Declares a static navigationOptions
property on the class and declares
the configuration for this route

Passes in the city as the second argument
to this.props.navigation.navigate

Accesses and
destructures the
cities array from
the screenProps
prop available in
the component

Checks if the
cities array is
empty. If so,
shows the user
a message that
there are no
cities currently
in the app.

Maps over all the cities in
the array, displaying the

city name and country
name. Also attaches the
navigate method to the

TouchableWithoutFeedback
component.

156 Chapter 6  Navigation

for a route. In this case, you want to set a title and style the title, so give the configuration a
title and headerTitleStyle property.

The navigate method calls this.props.navigation.navigate and passes in the
route name as well as the city to access to in the City route. Pass in the city as the second
argument; in the City route, you’ll have access to this property in props.navigation.
state.params. The render method accesses and destructures the cities array. It also
includes logic to check whether the cities array is empty; if it is, show the user an
appropriate message. You map over all the cities in the array, displaying the city name
and country name. Attaching the navigate method to the TouchableWithoutFeedback
component lets users navigate to the city by pressing anywhere on the city.

Listing 6.8   Cities route (styling)

const styles = StyleSheet.create({
 cityContainer: {
 padding: 10,
 borderBottomWidth: 2,
 borderBottomColor: colors.primary
 },
 city: {
 fontSize: 20,
 },
 country: {
 color: 'rgba(0, 0, 0, .5)'
 },
})

Figure 6.6   City.js shows locations within the city.

	 157Building a navigation-based app

Next, create the City component (src/Cities/City.js) to hold the locations for each
city as well as a form that lets users create a new location in a city; see figure 6.6. This
component will access the cities from screenProps and will also use the addLocation
method from screenProps to add a location to the city.

Listing 6.9   City route (functionality)

import React from 'react'
import {
 View,
 Text,
 StyleSheet,
 ScrollView,
 TouchableWithoutFeedback,
 TextInput,
 TouchableOpacity
} from 'react-native'

import CenterMessage from '../components/CenterMessage'
import { colors } from '../theme'

class City extends React.Component {
 static navigationOptions = (props) => {
 const { city } = props.navigation.state.params
 return {
 title: city.city,
 headerTitleStyle: {
 color: 'white',
 fontSize: 20,
 fontWeight: '400'
 }
 }
 }
 state = {
 name: '',
 info: ''
 }
 onChangeText = (key, value) => {
 this.setState({
 [key]: value
 })
 }
 addLocation = () => {
 if (this.state.name === '' || this.state.info === '') return
 const { city } = this.props.navigation.state.params
 const location = {
 name: this.state.name,
 info: this.state.info
 }
 this.props.screenProps.addLocation(location, city)
 this.setState({ name: '', info: '' })
 }
 render() {
 const { city } = this.props.navigation.state.params
 return (
 <View style={{ flex: 1 }}>

Creates the static navigationOptions
property as in Cities.js

Destructures the city object,
creates a location object, and
calls this.props.screenProps.
addLocation to add the location
and reset the state

Destructures city

158 Chapter 6  Navigation

 <ScrollView
 contentContainerStyle={
 [!city.locations.length && { flex: 1 }]
 }>
 <View style={[
 styles.locationsContainer,
 !city.locations.length && { flex: 1,
 justifyContent: 'center' }
]}>
 {
 !city.locations.length &&
 <CenterMessage message='No locations for this city!' />
 }
 {
 city.locations.map((location, index) => (
 <View key={index} style={styles.locationContainer}>
 <Text style={styles.locationName}>{location.name}</Text>
 <Text style={styles.locationInfo}>{location.info}</Text>
 </View>
))
 }
 </View>
 </ScrollView>
 <TextInput
 onChangeText={val => this.onChangeText('name', val)}
 placeholder='Location name'
 value={this.state.name}
 style={styles.input}
 placeholderTextColor='white'
 />
 <TextInput
 onChangeText={val => this.onChangeText('info', val)}
 placeholder='Location info'
 value={this.state.info}
 style={[styles.input, styles.input2]}
 placeholderTextColor='white'
 />
 <View style={styles.buttonContainer}>
 <TouchableOpacity onPress={this.addLocation}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Add Location</Text>
 </View>
 </TouchableOpacity>
 </View>
 </View>
)
 }
}

This code first creates the navigationOptions property. You use a callback function
to return an object instead of just declaring an object, because you need access to the
props in order to have access to the city information passed down by the navigation.
You need to know the city title for use as the route title instead of a hard-coded string.

The addLocation method destructures the city object available from this.props.
navigation.state.params for use later in the function. You then create a location

Maps over the cities in the
cities array, and returns a

component that displays the
city’s name and information

Creates the form

	 159Persisting data

object holding the location name and info. Calling this.props.screenProps.addLoca-
tion adds the location to the city you’re currently viewing and then resets the state. Again,
destructure city from the navigation state. You need city in order to map over the loca-
tions in the city and also to use as an argument when creating a new location, to identify
the city you’re referencing. Finally, you map over the cities, returning a component that
displays both the city name and city information, and create the form with two text inputs
and a button.

6.3	 Persisting data
You’re finished and should be able to run the app. Play around with the app, add cities
and locations, and then refresh it. Notice that all the cities disappear when you refresh.
This is because you’re only storing the data in memory. Let’s use AsyncStorage to
persist the state, so if the user closes or refreshes the app, their data remains available.

To do so, you’ll work in the App component in App.js and do the following:

¡	Store the cities array in AsyncStorage every time a new city is added.
¡	Store the cities array in AsyncStorage every time a new location is added to a city.
¡	When the user opens the app, check AsyncStorage to see whether any cities are

stored there. If so, update the state with those cities.
¡	AsyncStorage only accepts strings for stored values. So, when storing a value, call

JSON.stringify on the value if it isn’t already a string, and JSON.parse if you
want to parse the stored value before using it.

Open App.js and make the changes:

1	 Import AsyncStorage, and create a key variable.

import {
 #omitting previous imports
 AsyncStorage
} from 'react-native';

const key = 'state'

export default class App extends Component {
 #omitting class definition

2	 Create a componentDidMount function that will check for AsyncStorage and get
any item stored there with the key value you set:

 async componentDidMount() {
 try {
 let cities = await AsyncStorage.getItem(key)
 cities = JSON.parse(cities)
 this.setState({ cities })
 } catch (e) {
 console.log('error from AsyncStorage: ', e)
 }
 }

160 Chapter 6  Navigation

3	 In the addCity method, store the cities array in AsyncStorage after the new
cities array has been created:

addCity = (city) => {
 const cities = this.state.cities
 cities.push(city)
 this.setState({ cities })
 AsyncStorage.setItem(key, JSON.stringify(cities))
 .then(() => console.log('storage updated!'))
 .catch(e => console.log('e: ', e))
}

4	 Update the addLocation method to store the city array after setState has been
called.

 addLocation = (location, city) => {
 #previous code omitted
 this.setState({
 cities
 }, () => {
 AsyncStorage.setItem(key, JSON.stringify(cities))
 .then(() => console.log('storage updated!'))
 .catch(e => console.log('e: ', e))
 })
 }

Now, when the user opens the app after closing it, their data will still be available.

6.4	 Using DrawerNavigator to create drawer-based
navigation
We’ve gone over how to create stack-based and tab-based navigation. Let’s look at the
API for creating drawer-based navigation.

The drawer navigator has an API very similar to that of the stack and tab naviga-
tors. You’ll use the createDrawerNavigator function from React Navigation to cre-
ate a drawer-based navigation. First define the routes to use:

import Page1 from './routeToPage1'
import Page2 from './routeToPoage2'

Next, define the screens you want used in the navigator:

const screens = {
 Page1: { screen: Page1 },
 Page2: { screen: Page2 }
}

Now you can define the navigator using the screen configuration and use it in the app:

const DrawerNav = createDrawerNavigator(screens)

// somewhere in our app

<DrawerNav />

	 161Summary

Summary

¡	Before building an application, spend time strategizing how you want it to handle
navigation and routing.

¡	Many navigation libraries are available for React Native, but the two most rec-
ommended are React Navigation and React Native Navigation. React Navigation
is a JavaScript-based navigation library, and React Native Navigation is a native
implementation.

¡	There are three main types of navigators:

–	 Tab-based navigation typically has tabs either at the top or bottom of the screen.
When you press a tab, you’re taken to the screen that correlates with that tab. For
example, createBottomTabNavigator creates tabs at the bottom of the screen.

–	 Stack-based navigation transitions from one screen to another, replacing the
current screen. You can go backward or continue moving forward in the stack.
Stack-based navigation usually implements some sort of animated transition.
You create stack-based navigation using the createStackNavigator function.

–	 Drawer-based navigation is typically a menu that pops out from either the
left or right side of the screen and shows a list of options. When you press an
option, the drawer closes and you’re taken to the new screen. You create draw-
er-based navigation using the createDrawerNavigator function.

¡	Depending on which kind of navigation you use—tab-based, stack-based,
drawer-based, or a combination of these—the routing will also differ. Every
route or screen managed by the React Navigation library has a navigation
prop you can use to control the navigation state.

¡	Use AsyncStorage to persist state so if the user closes or refreshes the app, their
data is still available.

162

7Animations

This chapter covers
¡	Creating basic animations using

Animated.timing

¡	Using interpolation with animated values

¡	Creating animations and in parallel

¡	Staggering animations using
Animated.stagger

¡	Using the native driver to offload animations
to the native UI thread

One of the great things about React Native is the ability to easily create animations
using the Animated API. This is one of the more stable and easy to use React Native
APIs, and it’s one of the few places in the React Native ecosystem where, unlike areas
such as navigation and state management, there’s almost 100% agreement on how a
problem should be solved.

Animations are usually used to enhance the UI of an application and bring
more life to the existing design. Sometimes, the difference between an average and
above-average user experience can be attributed to using the right animations at the
right time, thus setting an app apart from other, similar apps.

	 163Introducing the Animated API

Real-world use cases that we cover in this chapter include the following:

¡	Expanding user inputs that animate when focused
¡	Animated welcome screens that have more life than a basic static welcome screen
¡	A custom animated loading indicator

In this chapter, we dive deeply into how to create animations. We’ll cover everything
you need to know to take full advantage of the Animated API.

7.1	 Introducing the Animated API
The Animated API ships with React Native, so to use it, all you have to do is import it
as you would any other React Native API or component. When creating an animation,
you always need to do the following four things:

1	 Import Animated from React Native.

2	 Create an animatable value using the Animated API.

3	 Attach the value to a component as a style.

4	 Animate the animatable value using a function.

Out of the box, four types of animatable components ship with the Animated API:

¡	View

¡	ScrollView

¡	Text

¡	Image

The examples in this chapter work exactly the same across any of these components.
In section 7.5, we also cover how to create a custom animated component using any
element or component with createAnimatedComponent.

Let’s take a quick look at what a basic animation might look like using Animated. In
the example, you’ll animate the top margin of a box (see figure 7.1).

Listing 7.1   Using Animated and updating the marginTop property

import React, { Component } from 'react';
import {
 StyleSheet,
 View,
 Animated,
 Button
} from 'react-native';

export default class RNAnimations extends Component {
 marginTop = new Animated.Value(20);
 animate = () => {
 Animated.timing(
 this.marginTop,
 {
 toValue: 200,
 duration: 500,

Imports the Animated API
from React Native

Creates a class property called
marginTop and assigns it to an
animated value, passing in the
starting value (20 in this case)

Creates a function that will animate the value

164 Chapter 7  Animations

 }
).start();
 }
 render() {
 return (
 <View style={styles.container}>
 <Button
 title='Animate Box'
 onPress={this.animate}
 />
 <Animated.View
 style={[styles.box, { marginTop: this.marginTop }]} />
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 padding: 10,
 paddingTop: 50,
 },
 box: {
 width: 150,
 height: 150,
 backgroundColor: 'red'
 }
});

Attach the animate method to an
onPress handler so you can call it

Use the Animated.View component instead
of the regular View component

Before animation After animation

Figure 7.1   Animating the top margin of a square box using Animated

	 165Animating a form input to expand on focus

This example uses the timing function to animate a value. The timing function takes
two arguments: a starting value and a configuration object. The configuration object is
passed a toValue to set the value the animation should animate to, and a duration in
milliseconds to set the length of the animation.

Rather than a View component, you use an Animated.View. Animated has four
components that can be animated out of the box: View, Image, ScrollView, and Text.
In the styling of the Animated.View, you pass in an array of styles consisting of a base
style (styles.box) and an animated style (marginTop).

Now that you’ve created a basic animated component, you’ll create a few more
animations using real-world use cases that may come in handy.

7.2	 Animating a form input to expand on focus
In this example, you’ll create a basic form input that expands when the user focuses it,
and contracts when the input is blurred. This is a popular UI pattern.

Along with the props that you’ve used with the TextInput component so far in this
book, such as value, placeholder, and onChangeText, you can also use onFocus and
onBlur to call functions when the inputs are focused and blurred. That’s how you’ll
achieve this animation (shown in figure 7.2).

Listing 7.2   Animating a TextInput to expand when the input is focused

import React, { Component } from 'react';
import {
 StyleSheet,
 View,
 Animated,
 Button,
 TextInput,
 Text,
} from 'react-native';

export default class RNAnimations extends Component {
 animatedWidth = new Animated.Value(200);
 animate = (value) => {
 Animated.timing(
 this.animatedWidth,
 {
 toValue: value,
 duration: 750,
 }
).start()
 }
 render() {
 return (
 <View style={styles.container}>
 <Animated.View style={{ width: this.animatedWidth }}>
 <TextInput
 style={[styles.input]}
 onBlur={() => this.animate(200)}
 onFocus={() => this.animate(325)}

Creates an initial value for the
animation, calling it animatedWidth

Creates an animate function that will animate
the animated value of animatedWidth

Attach the animatedWidth value to the style of
the container View holding the Input component.

Attach the animate method to the onBlur
and onFocus handlers, passing in the desired
width for when each event is fired.

166 Chapter 7  Animations

 ref={input => this.input = input}
 />
 </Animated.View>
 <Button
 title='Submit'
 onPress={() => this.input.blur()}
 />
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 padding: 10,
 paddingTop: 50,
 },
 input: {
 height: 50,
 marginHorizontal: 15,
 backgroundColor: '#ededed',
 marginTop: 10,
 paddingHorizontal: 9,
 },
});

Before animation After animation

Figure 7.2   Animating a TextInput component when the input is focused

	 167Creating a custom loading animation using interpolation

7.3	 Creating a custom loading animation using interpolation
Many times, you need to create animations that are infinite loops, such as loading indi-
cators and activity indicators. One easy way to create such animations is to use the
Animated.loop function. In this section, you use Animated.loop along with the Easing
module to create a loading indicator, spinning an image in an infinite loop!

So far, we’ve only looked at calling an animation using Animated.timing. In this
example, you want the animation to run continuously without stopping. To do this,
you’ll use a new static method called loop. Animated.loop runs a given animation con-
tinuously: each time it reaches the end, it resets to the beginning and starts again.

You’ll also deal with styling a little differently than in the past. In listings 7.1 and 7.2,
you used the animated value directly in the style prop of the component. In subse-
quent examples, you’ll store these animation values in variables and interpolate the
values before using the new interpolated variables in the style prop. Because you’re
creating a spinning effect, you’ll use strings instead of numbers: for example, you’ll
reference a value such as 360deg for style.

Animated has a class method called interpolate that you can use to manipulate ani-
mated values, changing them into other values that you can also use. The interpolate
method takes a configuration object with two keys: inputRange (array) and outputRange
(also an array). inputRange is the original animated values you work with in a class, and
outputRange specifies the values the original values should be changed to.

Finally, you’ll change the easing value of the animation. Easing basically allows you to
control the animation’s motion. In this example, you want a smooth, even motion for
the spin effect, so you’ll use a linear easing function.

React Native has a built-in way to implement common easing functions. Just as you’ve
imported other APIs and components, you can import the Easing module and use it
along with Animated. Easing can be configured in the configuration object where you
set values like toValue and duration, in the second argument of Animated.timing.
Let’s look at an example with an animated value called animatedMargin. Setting ani-
matedMargin to 0 and animating the value to 200 would normally achieve the easing
effect by directly animating the value between 0 and 200 in the timing function. Using
interpolation, you can instead animate a value between 0 and 1 in the timing function
and later interpolate the value by using the Animated interpolate class method, sav-
ing the value into another variable, and then referencing that variable in the style, usu-
ally in the render method:

const marginTop = animatedMargin.interpolate({
 inputRange: [0, 1],
 outputRange: [0, 200],
});

Now, use interpolation to create the loading indicator. You’ll show the indicator when
the application loads; in componentDidMount, you’ll call setTimeout, which cancels the
loading state after 2,000 milliseconds (see figure 7.3). The icon used here is located at
https://github.com/dabit3/react-native-in-action/blob/chapter7/assets/35633-200.png;
feel free to use it or any other image you want.

https://github.com/dabit3/react-native-in-action/blob/chapter7/assets/35633-200.png

168 Chapter 7  Animations

Listing 7.3   Creating an infinitely spinning loading animation

import React, { Component } from 'react';
import {
 Easing,
 StyleSheet,
 View,
 Animated,
 Button,
 Text,
} from 'react-native';

export default class RNAnimations extends Component {
 state = {
 loading: true,
 }
 componentDidMount() {
 this.animate();

Figure 7.3   Creating a spinning loading indicator using interpolation and an animated loop

Initializes the state with a
Boolean loading value of true

Triggers the animation by calling this.
animate, and invokes a setTimeout
function to set loading to false in the
state after 2 seconds

	 169Creating a custom loading animation using interpolation

 setTimeout(() => this.setState({ loading: false }), 2000)
 }
 animatedRotation = new Animated.Value(0);
 animate = () => {
 Animated.loop(
 Animated.timing(
 this.animatedRotation,
 {
 toValue: 1,
 duration: 1800,
 easing: Easing.linear,
 }
)
).start()
 }
 render() {
 const rotation = this.animatedRotation.interpolate({
 inputRange: [0, 1],
 outputRange: ['0deg', '360deg'],
 });
 const { loading } = this.state;
 return (
 <View style={styles.container}>
 {
 loading ? (
 <Animated.Image
 source={require('./pathtoyourimage.png')}
 style={{ width: 40,
 height: 40,
 transform: [{ rotate: rotation }] }}
 />
) : (
 <Text>Welcome</Text>
)
 }
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 padding: 10,
 paddingTop: 50,
 },
 input: {
 height: 50,
 marginHorizontal: 15,
 backgroundColor: '#ededed',
 marginTop: 10,
 paddingHorizontal: 9,
 },
});

Sets an initial animatedRotation value of 0

Creates an animate class method that passes
Animated.timing into a call to Animated.loop

Uses the animatedRotation value to create a new
rotation value using the interpolate method

Passes in the
animation’s
beginning and end
values (0 and 1)

Passes in the values for inputRange to map to

Checks whether loading is true,
and responds accordingly

170 Chapter 7  Animations

The animate class method passes Animated.timing into a call to Animated.loop. In the
configuration, you set toValue to 1, duration to 1800, and easing to Easing.linear,
to create a smooth spinning movement.

The animatedRotation value creates a new value called rotation, using the
interpolate method. inputRange gives the animation’s beginning and end values,
and outputRange gives the values inputRange should map to: a beginning value of
0 degrees and a final value of 360 degrees, creating a full 360-degree rotation.

In the return statement, first check to see whether loading is true. If it is, show the
animated loading indicator (update this path to that of the image in your application);
if it’s false, show a welcome message. Attach the rotation variable to the transform
rotate value in the styling of Animated.Image.

7.4	 Creating multiple parallel animations
Sometimes you need to create multiple animations at once and have them run simul-
taneously. The Animated library has a class method called parallel you can use to do
this. parallel starts an array of animations at the same time.

For example, to make a welcome screen with two messages and a button all appear
to move into the screen at once, you could create three separate animations and

Figure 7.4   Welcome screen using parallel animations
(shown after the animations are complete)

	 171Creating multiple parallel animations

call .start() on each of them. But a more efficient way would be to use the Animated.
parallel function and pass in the array of animations to run at the same time.

In this example, you’ll create a welcome screen that animates in two messages and a
button when the component mounts (see figure 7.4). Because you’re using Animated.
parallel, all three animations will begin at exactly the same time. You’ll add a delay
property to the configuration to control the start time of two of the animations.

Listing 7.4   Creating an animated welcome screen

import React, { Component } from 'react';
import {
 Easing,
 StyleSheet,
 View,
 Animated,
 Text,
 TouchableHighlight,
} from 'react-native';

export default class RNAnimations extends Component {
 animatedTitle = new Animated.Value(-200);
 animatedSubtitle = new Animated.Value(600);
 animatedButton = new Animated.Value(800);

 componentDidMount() {
 this.animate();
 }
 animate = () => {
 Animated.parallel([
 Animated.timing(
 this.animatedTitle,
 {
 toValue: 200,
 duration: 800,
	 }
),
 Animated.timing(
 this.animatedSubtitle,
 {
 toValue: 0,
 duration: 1400,
 delay: 800,
 }
),
 Animated.timing(
 this.animatedButton,
 {
 toValue: 0,
 duration: 1000,
 delay: 2200,
 }
)
]).start();
 }

When you create the class, also
create three new animated values.

Calls the animate() method
on componentDidMount

Calls Animated.parallel and
passes in three Animated.timing
animations to trigger all three
animations to start at once

Calls Animated.parallel and
passes in three Animated.timing
animations to trigger all three
animations to start at once

172 Chapter 7  Animations

 render() {
 return (
 <View style={styles.container}>
 <Animated.Text style={[styles.title,
 { marginTop: this.animatedTitle}]}>
 Welcome
 </Animated.Text>
 <Animated.Text style={[styles.subTitle,
 { marginLeft: this.animatedSubtitle }]}>
 Thanks for visiting our app!
 </Animated.Text>
 <Animated.View style={{ marginTop: this.animatedButton }}>
 <TouchableHighlight style={styles.button}>
 <Text>Get Started</Text>
 </TouchableHighlight>
 </Animated.View>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 },
 title: {
 textAlign: 'center',
 fontSize: 20,
 marginBottom: 12,
 },
 subTitle: {
 width: '100%',
 textAlign: 'center',
 fontSize: 18,
 opacity: .8,
 },
 button: {
 marginTop: 25,
 backgroundColor: '#ddd',
 height: 55,
 justifyContent: 'center',
 alignItems: 'center',
 marginHorizontal: 10,
 }
});

7.5	 Creating an animated sequence
An animated sequence is a series of animations that occur one after another, with each
animation waiting for the previous animation to complete before it begins. You can
create an animated sequence with sequence. Like parallel, sequence takes an array
of animations:

Animated.sequence([
 animationOne,

Attach the animated values to
each component you’re animating.

	 173Creating an animated sequence

 animationTwo,
 animationThree
]).start()

In this example, you’ll create a sequence that drops the numbers 1, 2, and 3 into the
screen, 500 milliseconds apart (figure 7.5).

Listing 7.5   Creating a sequence of animations

import React, { Component } from 'react';
import {
 StyleSheet,
 View,
 Animated
} from 'react-native';

export default class RNAnimations extends Component {
 componentDidMount() {
 this.animate();
 }

Figure 7.5   Creating an animated sequence of numbers

Imports Animated from React Native

Calls the animate function
when the component mounts

174 Chapter 7  Animations

 AnimatedValue1 = new Animated.Value(-30);
 AnimatedValue2 = new Animated.Value(-30);
 AnimatedValue3 = new Animated.Value(-30);
 animate = () => {
 const createAnimation = (value) => {
 return Animated.timing(
 value, {
 toValue: 290,
 duration: 500
 })
 }
 Animated.sequence([
 createAnimation(this.AnimatedValue1),
 createAnimation(this.AnimatedValue2),
 createAnimation(this.AnimatedValue3)
]).start()
 }
 render() {
 return (
 <View style={styles.container}>
 <Animated.Text style={[styles.text,
 { marginTop: this.AnimatedValue1}]}>
 1
 </Animated.Text>
 <Animated.Text style={[styles.text,
 { marginTop: this.AnimatedValue2}]}>
 2
 </Animated.Text>
 <Animated.Text style={[styles.text,
 { marginTop: this.AnimatedValue3}]}>
 3
 </Animated.Text>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 flexDirection: 'row',
 },
 text: {
 marginHorizontal: 20,
 fontSize: 26
 }
});

This example uses beginning animated values of -30 because they’re the marginTop val-
ues for the text elements: the text is pulled off the top of the screen and hidden before
the animation begins. The createAnimation function also receives an animated value
as its argument.

Creates three animated values,
passing in -30 for the beginning value

Creates a createAnimation
function as a helper for making
a new timing animation

Starts the sequence, calling
createAnimation once for
each animated value

Passes the animated values to the
three Animated.Text components

Passes the animated values to the
three Animated.Text components

	 175Using Animated.stagger to stagger animation start times

7.6	 Using Animated.stagger to stagger animation start times
The last type of animation we’ll go over is Animated.stagger. Like parallel and
sequence, stagger takes an array of animations. The array of animations starts in par-
allel, but the start time is staggered equally across all the animations. Unlike parallel
and sequence, the first argument to stagger is the stagger time, and the second argu-
ment is the array of animations:

Animated.stagger(
 100,
 [
 Animation1,
 Animation2,
 Animation3
]
).start()

In this example, you’ll dynamically create a large number of animations that are used
to stagger a series of red boxes onto the screen (figure 7.6).

Figure 7.6   Using Animated.stagger to create an
array of staggered animations

176 Chapter 7  Animations

Listing 7.6   Using Animated.stagger to stagger a series of animations

import React, { Component } from 'react'
import {
 StyleSheet,
 View,
 Animated
} from 'react-native'

export default class RNAnimations extends Component {
 constructor () {
 super()
 this.animatedValues = []
 for (let i = 0; i < 1000; i++) {
 this.animatedValues[i] = new Animated.Value(0)
 }
 this.animations = this.animatedValues.map(value => {
 return Animated.timing(
 value,
 {
 toValue: 1,
 duration: 6000
 }
)
 })
 }
 componentDidMount() {
 this.animate()
 }
 animate = () => {
 Animated.stagger(15, this.animations).start()
 }
 render() {
 return (
 <View style={styles.container}>
 {
 this.animatedValues.map((value, index) => (
 <Animated.View key={index}
 style={[{opacity: value},
 styles.box]} />
))
 }
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 flexDirection: 'row',
 flexWrap: 'wrap'
 },
 box: {

Imports Animated from React Native

Creates an array
that will contain 1,000
animated values of 0

Creates an array of
Animated.timing
animations
referencing the
animated values
created in the
animatedValues array

Calls the animate method

Calls Animated.stagger().start(), passing in
the timing of 15 ms and array of

animations

Maps over the animations, creating an
Animated.View for each item in the array

	 177Other useful tips for using the Animated library

 width: 15,
 height: 15,
 margin: .5,
 backgroundColor: 'red'
 }
})

7.7	 Other useful tips for using the Animated library
In addition to the parts of the Animated API we’ve already covered, a few more tech-
niques are useful to know about: resetting an animated value, invoking callbacks, off-
loading animations to the native thread, and creating custom animatable components.
This section takes a quick look at each of these.

7.7.1	 Resetting an animated value

If you’re calling an animation, you can reset the value to whatever you want by using
setValue(value). This is useful if you’ve already called an animation on a value and
need to call the animation again, and you want to reset the value to either the original
value or a new value:

animate = () => {
 this.animatedValue.setValue(300);
 #continue here with the new animated value
}

7.7.2	 Invoking a callback

When an animation is completed, an optional callback function can be fired, as
shown here:

Animated.timing(
 this.animatedValue,
 {
 toValue: 1,
 duration: 1000
 }
).start(() => console.log('animation is complete!'))

7.7.3	 Offloading animations to the native thread

Out of the box, the Animated library performs animations using the JavaScript thread.
In most cases, this works fine, and you shouldn’t have many performance problems.
But if anything is blocking the JavaScript thread, you may see issues like frames being
skipped, causing laggy or jumpy animations.

There’s a way around using the JavaScript thread: you can use a configuration
Boolean called useNativeDriver. useNativeDriver offloads the animation to the
native UI thread, and the native code can then update the views directly on the UI
thread, as shown here:

Animated.timing(
 this.animatedValue,

178 Chapter 7  Animations

 {
 toValue: 100,
 duration: 1000,
 useNativeDriver: true
 }
).start();

Not every animation can be offloaded using useNativeDriver, so be sure to check the
Animated API documentation when you use it. As of this writing, only non-layout prop-
erties can be animated using this method; flexbox properties as well as properties like
margins and padding can’t be animated.

7.7.4	 Creating a custom animatable component using
createAnimatedComponent

We mentioned in section 7.1 that the only animatable components out of the box are
View, Text, Image, and ScrollView. There’s also a way to create an animated component
from any existing or custom React Native element or component. You can do this by
wrapping the component in a call to createAnimatedComponent. Here’s an example:

const Button = Animated.createAnimatedComponent(TouchableHighlight)

<Button onPress={somemethod} style={styles.button}>
 <Text>Hello World</Text>
</Button>

Now you can use the button just like a regular React Native component.

Summary

¡	The built-in Animated API is the recommended way to create animations in
React Native.

¡	Animated.timing is the main method to use to create animations using the
Animated library.

¡	The only components that are animatable out of the box are View, Text,
ScrollView, and Image, but you can create custom animatable components
using createAnimatedComponent.

¡	To interpolate and reuse animated values, use the Animated interpolate
method.

¡	To create and trigger an array of animations at the same time, use Animated
.parallel.

¡	To create an infinitely looping animation, use Animated.loop.
¡	Use Animated.sequence to create a sequence of animations that execute one

after another.
¡	Use Animated.stagger to create an array of animations that happen in parallel,

but whose start times are staggered based on the time passed in.

179

8Using the Redux data
architecture library

This chapter covers
¡	How the React context API works

¡	Creating a Redux store

¡	How to use Redux actions and reducers to
manage global state

¡	Reducer composition using combineReducers

When building React and React Native applications in the real world, you’ll quickly
learn that the data layer can become complex and unmanageable if it isn’t handled
very precisely and deliberately. One way to handle data is to keep it in component
state and pass it around as props, as we’ve done throughout this book. Another way
is to use a data architecture pattern or library. This chapter covers the Redux library:
it’s the most widely adopted method of handling data in the React ecosystem, and it’s
maintained by Facebook, the same team that maintains both React and React Native.

8.1	 What is Redux?
In the Redux documentation, the library is described as “a predictable state con-
tainer for JavaScript apps.” Redux is basically a global state object that’s the single
source of truth in an application. This global state object is received as props into

180 Chapter 8  Using the Redux data architecture library

React Native components. Any time a piece of data is changed in the Redux state, the
entire application receives this new data as props.

Redux simplifies application state by moving it all into one place called a store; this
makes it much easier to reason about and understand. When you need the value of
something, you’ll know exactly where to look in a Redux application and can expect the
same value to be available and up-to-date elsewhere in the application, too.

So how does Redux work? It takes advantage of a React feature called context, a
mechanism for creating and managing global state.

8.2	 Using context to create and manage global state
in a React application
Context is a React API that creates global variables that can be accessed anywhere in
the application, as long as the component receiving the context is a child of the com-
ponent that created it. Normally you’d have to do this by passing props down each level
of the component structure. With context, you don’t need to use props. You can use
the context anywhere in the app and access it without passing it down to each level.

NOTE   Although context is good to understand and is used in numerous open
source libraries, you probably won’t need to use it in apps unless you’re building
an open source library or can’t find another way around a problem. We’re dis-
cussing it in order for you to fully understand how Redux works under the hood.

Let’s look at how to create context in a basic component structure of three compo-
nents: Parent, Child1, and Child2. This example shows how to apply application-wide
theming from a parent level, which could make it possible to control the styling of an
entire application if needed.

Listing 8.1   Creating context

const ThemeContext = React.createContext()

class Parent extends Component {
 state = { themeValue: 'light' }
 toggleThemeValue = () => {
 const value = this.state.themeValue === 'dark' ? 'light' : 'dark'
 this.setState({ themeValue: value })
 }
 render() {
 return (
 <ThemeContext.Provider
 value={{
 themeValue: this.state.themeValue,
 toggleThemeValue: this.toggleThemeValue
 }}
 >
 <View style={styles.container}>

Creates a new variable called ThemeContext

Creates a themeValue state
variable with the value ‘light’

Checks the current theme value
and toggles it to ‘light’ or ‘dark’

Provides the
context to child
components.
Anything
wrapped in a
Provider is
available to
children of a
component in
a Consumer.

	 181Implementing Redux with a React Native app

 <Text>Hello World</Text>
 </View>
 <Child1 />
 </ThemeContext.Provider>
);
 }
}

const Child1 = () => <Child2 />

const Child2 = () => (
 <ThemeContext.Consumer>
 {(val) => (
 <View style={[styles.container,
 val.themeValue === 'dark' &&
 { backgroundColor: 'black' }]}>
 <Text style={styles.text}>Hello from Component2</Text>
 <Text style={styles.text}
 onPress={val.toggleThemeValue}>
 Toggle Theme Value
 </Text>
 </View>
)}
 </ThemeContext.Consumer>
)

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 text: {
 fontSize: 22,
 color: '#666'
 }
})

The Child2 stateless function returns a component that’s wrapped in a ThemeCon-
text.Consumer. ThemeContext.Consumer requires a function as its child. The func-
tion receives an argument containing whatever context is available (in this case, the
val object containing two properties). You can now use the context values in the
component.

When you use Redux with React, you’ll take advantage of a function called connect,
which basically takes pieces of context and makes them available as props in the compo-
nent. Understanding context should make learning Redux much easier!

8.3	 Implementing Redux with a React Native app
Now that you’ve know the fundamentals of what Redux is and have seen what’s going
on under the hood with context, let’s create a new React Native app and start adding

Stateless function that returns a component,
demonstrating that you aren’t passing props
between Parent and Child2

Stateless function that returns a component
wrapped in a ThemeContext.Consumer

182 Chapter 8  Using the Redux data architecture library

Redux. You’ll be creating a basic list app you can use to keep up with books you’ve read
(see figure 8.1). Follow these steps:

1	 Create a new React Native application, and call it RNRedux:

react-native init RNRedux

2	 Change into the new directory:

cd RNRedux

3	 Install the Redux-specific dependencies you’ll need:

npm i redux react-redux –-save

4	 In the root of the directory, create a folder called src, and add to it the following
files: Books.js and actions.js. Also, in src, create a folder called reducers, contain-
ing two files: bookReducer.js and index.js. The src folder structure should now
look like figure 8.2.

The next thing to do is create the first piece of Redux state. You’ll do this in
bookReducer.js. In section 8.1, I described Redux as a global object. To create this
global object, you’ll piece together smaller objects using what are known as reducers.

Figure 8.1   Completed book list application Figure 8.2   RNRedux src folder structure

	 183Creating Redux reducers to hold Redux state

8.4	 Creating Redux reducers to hold Redux state
A reducer is a function that returns an object; when combined with other reducers, they
create the global state. Reducers can be more easily thought of as data stores. Each store
contains a piece of data, which is exactly what reducers do in the Redux architecture.

In the reducers folder are two files: bookReducer.js and index.js. In index.js, you’ll
combine all the reducers in the app to create the global state. The app will have only
one reducer to start with (bookReducer), so the global state object will look something
like this:

{
 bookReducer: {}
}

You’ve yet to decide what to put in bookReducer. An array in which to store a list of books
will be a good start. This reducer will create and return a piece of state that you’ll access
later from the Redux store. In reducers/bookReducer.js, create your first reducer. This
code creates a function whose only purpose (for now) is to return the state.

Listing 8.2   Creating a reducer

const initialState = { #A
 books: [{ name: 'East of Eden', author: 'John Steinbeck' }]
} #A

const bookReducer = (state = initialState) => {
 return state
}

export default bookReducer

The initialState object will hold the beginning state. In this case, that’s an array of
books that you’ll populate with objects containing name and author props. You create a
function that takes an argument, state, and sets the default value to the initial state. When
this function is first called, state will be undefined and will return the initialState
object. At this time, the function’s only purpose is to return the state.

Now that you’ve created the first reducer, go into rootReducer (reducers/index.js)
and create what will be the global state. The root reducer gathers all the reducers in the
application and allows you to make a global store (state object) by combining them.

Listing 8.3   Creating a root reducer

import { combineReducers } from 'redux'
import bookReducer from './bookReducer'

const rootReducer = combineReducers({
 bookReducer
})

export default rootReducer

Next, to hook this all together, you’ll go into App.js, create the Redux store, and make the
store available to all child components using a couple of Redux and React-Redux helpers.

Creates the initialState object

Takes a state argument and sets
the default to the initial stateReturns the state

Imports the combineReducers
function from ReduxImports the

bookReducer
reducer Creates a root reducer containing

all the reducers; in this case it contains
the single property bookReducer

184 Chapter 8  Using the Redux data architecture library

8.5	 Adding the provider and creating the store
In this section, you’ll add a provider to the app. A provider is usually a parent component
that passes data of some kind along to all child components. In Redux, the provider passes
the global state/store to the rest of the application. In App.js, update the code as follows.

Listing 8.4   Adding the provider and store

import React from 'react'

import Books from './src/Books'
import rootReducer from './src/reducers'

import { Provider } from 'react-redux'
import { createStore } from 'redux'

const store = createStore(rootReducer)

export default class App extends React.Component {
 render() {
 return (
 <Provider store={store} >
 <Books />
 </Provider>
)
 }
}

Figure 8.3   Rendering the list of books from the
Redux store

Imports the Books component
(created in listing 8.5)

Imports rootReducer

Imports the Provider wrapper from react-redux

Imports createStore

Creates a store, passing
in the rootReducer

Returns the Books component wrapped
in a Provider component, passing in the
store as a prop to the Provider

	 185Accessing data using the connect function

The Provider wrapper is used to wrap the main component. Any child of Provider
will have access to the Redux store. createStore is a utility from Redux that you use to
create the Redux store by passing in the rootReducer. You’re finished with the basic
Redux setup, and you can now access the Redux store in the app.

In the Books component, you’ll hook into the Redux store, pull out the books array,
and map over the books, displaying them in the UI (figure 8.3). Because Books is a child
of Provider, it can access anything in the Redux store.

8.6	 Accessing data using the connect function
You access the Redux store from a child component by using the connect function
from react-redux. The first argument to connect is a function that gives you access to
the entire Redux state. You can then return an object with whatever pieces of the store
you want access to.

connect is a curried function, meaning in the most basic sense a function that returns
another function. You’ll have two sets of arguments, and a blueprint that looks some-
thing like this: connect(args)(args). The properties in the object returned from the
first argument to connect are then made available to the component as props.

Let’s see what this means by looking at the connect function you’ll use in the Books.
js component.

Listing 8.5   connect function in Books.js

connect(
 (state) => {
 return {
 books: state.bookReducer.books
 }
 }
)(Books)

The first argument to connect is a function that gives the global Redux state object as
an argument. You can then reference this state object and have access to anything in
the Redux state. You return an object from this function. Whatever keys are returned
in the object become available as props in the component you’re wrapping: in this
case, Books. You pass in Books as the only argument to the connect function’s second
function call.

Often, you’ll separate this function and store it in a variable to make this easier to read:

const mapStateToProps = state => ({
 books: state.bookReducer.books
})

In this connected component is a new property called this.props.books, which is the
books array from bookReducer. Tie all this together, access the books array, and map
over the books to display them in the UI, as shown in the following listing (Books.js).

Function that gives the
global Redux state object

Returns
an object
from this
function

Passes in Books

186 Chapter 8  Using the Redux data architecture library

Listing 8.6   Accessing the Redux store and bookReducer data

import React from 'react'
import {
 Text,
 View,
 ScrollView,
 StyleSheet
} from 'react-native'

import { connect } from 'react-redux'

class Books extends React.Component<{}> {
 render() {
 const { books } = this.props

 return (
 <View style={styles.container}>
 <Text style={styles.title}>Books</Text>
 <ScrollView
 keyboardShouldPersistTaps='always'
 style={styles.booksContainer}
 >
 {
 books.map((book, index) => (
 <View style={styles.book} key={index}>
 <Text style={styles.name}>{book.name}</Text>
 <Text style={styles.author}>{book.author}</Text>
 </View>
))
 }
 </ScrollView>
 </View>
)
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1
 },
 booksContainer: {
 borderTopWidth: 1,
 borderTopColor: '#ddd',
 flex: 1
 },
 title: {
 paddingTop: 30,
 paddingBottom: 20,
 fontSize: 20,
 textAlign: 'center'
 },
 book: {
 padding: 20
 },
 name: {

Imports connect from react-redux

Because the books array was returned
from the connect function (at the bottom
of the code listing), you have access to it
as props.

Maps over the array, displaying
the name and author of each book

	 187Adding actions

 fontSize: 18
 },
 author: {
 fontSize: 14,
 color: '#999'
 }
})

const mapStateToProps = (state) => ({
 books: state.bookReducer.books
})

export default connect(mapStateToProps)(Books)

You begin by importing connect from react-redux. In listing 8.5, you wrote the func-
tion returning the props inline. This listing separates it and names it mapStateToProps,
following the convention of the Redux ecosystem. This naming convention makes a lot
of sense, because you’re essentially mapping Redux state to component props. This
function takes the Redux state as an argument and returns an object with one key con-
taining the books array from bookReducer. Finally, you export the connect function,
passing in mapStateToProps as the first argument to connect and Books as the only
argument in the second set of arguments to connect.

After launching the application, you should see a basic list of books, as shown earlier
in figure 8.3.

8.7	 Adding actions
Now that you have access to the Redux state, a logical next step is to add some function-
ality that will allow you to add books to the books array Redux store. To do this, you’ll use
actions. Actions are basically functions that return objects that send data to the store and
update reducers; they’re the only way to change the store. Each action should contain a
type property in order for reducers to be able to use them. Here are a couple of examples
of actions:

function fetchBooks() {
 return {
 type: 'FETCH_BOOKS'
 }
 }

 function addBook(book) {
 return {
 type: 'Add_BOOK',
 book: book
 }
 }

Actions, when called using a Redux dispatch function, are sent to all reducers in the
application as the second argument to the reducer. (We’ll cover how to attach the Redux
dispatch function later in this chapter.) When the reducer receives the action, you

Takes the Redux state, and returns an object
with a key containing the books array

Exports the connect function

188 Chapter 8  Using the Redux data architecture library

check the action’s type property and update what the reducer returns based on whether
the action is one that it’s listening for.

In this case, the only action you need for the next step is addBook, to add additional
books to the array of books. In actions.js, create the following action.

Listing 8.7   Creating the first action

export const ADD_BOOK = 'ADD_BOOK'

export function addBook (book) {
 return {
 type: ADD_BOOK,
 book
 }
}

Next, wire up bookReducer to use the addBook action.

Listing 8.8   Updating bookReducer to use the addBook action

import { ADD_BOOK } from '../actions'

const initialState = {
 books: [{ name: 'East of Eden', author: 'John Steinbeck' }]
}

const bookReducer = (state = initialState, action) => {
 switch(action.type) {
 case ADD_BOOK:
 return {
 books: [
 ...state.books,
 action.book
]
 }
 default:
 return state
 }
}

export default bookReducer

In the listing, if the action type is equal to ADD_BOOK, you return a new books array con-
taining all the previous items in the array. You do so by creating a new array, using the
spread operator to add the contents of the existing books array to the new array, and
adding to the array a new item that’s the book property of the action.

That’s all you need to do in the Redux configuration to get this working. The last
step is to go into the UI and wire it all together. To get the user’s book info, you need to
create a form. Figure 8.4 shows what the UI will look like.

This form has two inputs: one for the book name and one for the author name. It
also has a submit button. When the user types into the form, you need to keep up with
the values in the local state. You can then pass those values on to the action when the
user clicks the submit button.

Creates and exports an ADD_BOOK
constant for reuse in reducers

Creates the addBook function,
which takes a single book object
and returns an object containing
a type and the passed-in book

Imports the ADD_BOOK constant
from the actions file

Adds a second
argument to
bookReducer:
the action

Creates a switch statement that
will switch on the action type

If the action type equals ADD_BOOK,
returns a new books array

If the switch statement doesn’t
hit, returns the existing state

	 189Adding actions

Open Books.js, and import the additional components needed for this functionality,
as well as the addBook function from the actions. You’ll also create an initialState
variable to use as the local component state.

Listing 8.9   Additional imports in Books.js

import React from 'react'
import {
 Text,
 View,
 ScrollView,
 StyleSheet,
 TextInput,
 TouchableOpacity
} from 'react-native'
import { addBook } from './actions'

import { connect } from 'react-redux'

const initialState = {
 name: '',
 author: ''
}

...

Figure 8.4   UI with added text inputs to capture the
book and the author name

Imports TextInput and TouchableOpacity

Imports the addBook function
from the actions file

Creates an initialState object
containing name and author fields

190 Chapter 8  Using the Redux data architecture library

Next, in the body of the class, you need to create three things: the component state, a
method that keeps up with the component state when the textInput values change, and a
method that will send the action to Redux containing the book values (name and author)
when the submit button is pressed. Before the render method, add the following code.

Listing 8.10   Adding state and class methods to Books.js

class Books extends React.Component {

 state = initialState

 updateInput = (key, value) => {
 this.setState({
 ...this.state,
 [key]: value
 })
 }

 addBook = () => {
 this.props.dispatchAddBook(this.state)
 this.setState(initialState)
 }

...

The addBook method calls a function that you have access to as props from the connect
function: dispatchAddBook. This function accepts the entire state as an argument,
which is an object with name and author properties. After the dispatch action has been
called, you then clear the component state by resetting it to the initialState value.

With the functionality in place, you can create the UI and hook these methods up to
it. Under the closing tag of the ScrollView in Books.js, add the form UI.

Listing 8.11   Adding the UI for the form

class Books extends React.Component {
 ...
 render() {
 ...
 </ScrollView>
 <View style={styles.inputContainer}>
 <View style={styles.inputWrapper}>
 <TextInput
 value={this.state.name}
 onChangeText={value => this.updateInput('name', value)}
 style={styles.input}
 placeholder='Book name'
 />
 <TextInput
 value={this.state.author}
 onChangeText={value => this.updateInput('author', value)}
 style={styles.input}
 placeholder='Author Name'
 />
 </View>

Gives the component state the
value of the initialState variable

Creates an updateInput method that
takes two arguments: key and value.
You’ll update the state by using the
spread operators to add the existing
state key-value pairs to the new state
and then adding the new key-value pair.

Calls dispatchAddBook,
accessible as props from

the connect function

Receives the updateInput method as the
property of onChangeText, passing ‘name’

or ‘author’ as the first argument and the
value of TextInput as the second argument

	 191Adding actions

 <TouchableOpacity onPress={this.addBook}>
 <View style={styles.addButtonContainer}>
 <Text style={styles.addButton}>+</Text>
 </View>
 </TouchableOpacity>
 </View>
 </View>
 }
 }

const styles = StyleSheet.create({
 inputContainer: {
 padding: 10,
 backgroundColor: '#ffffff',
 borderTopColor: '#ededed',
 borderTopWidth: 1,
 flexDirection: 'row',
 height: 100
 },
 inputWrapper: {
 flex: 1
 },
 input: {
 height: 44,
 padding: 7,
 backgroundColor: '#ededed',
 borderColor: '#ddd',
 borderWidth: 1,
 borderRadius: 10,
 flex: 1,
 marginBottom: 5
 },
 addButton: {
 fontSize: 28,
 lineHeight: 28
 },
 addButtonContainer: {
 width: 80,
 height: 80,
 backgroundColor: '#ededed',
 marginLeft: 10,
 justifyContent: 'center',
 alignItems: 'center',
 borderRadius: 20
 },
 ...
}

const mapDispatchToProps = {
 dispatchAddBook: (book) => addBook(book)
}

export default connect(mapStateToProps, mapDispatchToProps)(Books)

}

Calls the addBook method. TouchableOpacity
wraps the View component, allowing it to

respond properly to touches.

Adds new styles

Creates a mapDispatchToProps object

Passes in mapDispatchToProps as
the second argument to connect

192 Chapter 8  Using the Redux data architecture library

In the mapDispatchToProps object, you can declare functions you want access to as
props in the component. You create a new function called dispatchAddBook and have
it call the addBook action, passing in book as an argument. Similar to how mapStateTo-
Props maps state to component props, mapDispatchToProps maps actions (that need
to be dispatched to reducers) to component props. In order for an action to be recog-
nized by the Redux reducers, it must be declared in this mapDispatchToProps object.
You pass in mapDispatchToProps as the second argument to the connect function.

Now you should be able to easily add books to the book list.

8.8	 Deleting items from a Redux store in a reducer
The next logical step is to add a way to remove books you’ve already read. Given every-
thing you’ve put together, this won’t require too much more work (figure 8.5).

The first thing to think about when removing an item from an array such as this is
how to identify a book as being unique. Right now, a user could have multiple books
with the same author or multiple books with the same name, so using the existing prop-
erties won’t work. Instead, you can use a library such as uuid to create unique identifiers
on the fly. To begin setting this up, from the command line, install the uuid library into
node_modules:

npm i uuid --save

Figure 8.5   Adding the Remove button to the
Books.js UI

	 193Deleting items from a Redux store in a reducer

Next, you’ll implement a unique identifier in the reducer for the items in the
initialState books array. In reducers/bookReducer.js, update the imports
and initialState to look like the next listing.

Listing 8.12   Importing and using uuid

import uuidV4 from 'uuid/v4'
import { ADD_BOOK } from '../actions'

const initialState = {
 books: [{ name: 'East of Eden', author: 'John Steinbeck', id: uuidV4() }]
}

The uuid library has a few algorithms to choose from. Here, you import only the v4 algo-
rithm, which creates a random 32-character string. Then you add a new property to the
initialState books array, id, and generate a new unique identifier by calling uuidV4().

Now that you have a way to uniquely identify the items in the books array, you’re
ready to move forward with the rest of the functionality. The next step is to create a
new action in actions.js; you’ll call it when you want to remove a book. You also need to
update the addBook action to add an ID to newly created books.

Listing 8.13   Creating the removeBook action

export const ADD_BOOK = 'ADD_BOOK'
export const REMOVE_BOOK = 'REMOVE_BOOK'
import uuidV4 from 'uuid/v4'

export function addBook (book) {
 return {
 type: ADD_BOOK,
 book: {
 ...book,
 id: uuidV4()
 }
 }
}

export function removeBook (book) {
 return {
 type: REMOVE_BOOK,
 book
 }
}

Next, the reducer needs to be aware of the new action. In reducers/bookReducer.js,
create a new type listener, this one for REMOVE_BOOK, and add the necessary functional-
ity to remove a book from the array of books stored in the Redux state.

Imports the
v4 algorithm

Adds an id property to initialState and
generates a new unique identifier

Creates a reusable constant, REMOVE_
BOOK, used here and in the reducer

Imports the uuid library

Adds a new key to the book, assigning
id a property of a newly created unique
identifier using the uuidV4 function

Creates a new removeBook function
that returns an object with a type and
the book parameter that’s passed in

194 Chapter 8  Using the Redux data architecture library

Listing 8.14   Removing an item from an array in a Redux reducer

import uuidV4 from 'uuid/v4'
import { ADD_BOOK, REMOVE_BOOK } from '../actions'

const initialState = {
 books: [{ name: 'East of Eden', author: 'John Steinbeck', id: uuidV4() }]
}
const bookReducer = (state = initialState, action) => {
 switch(action.type) {
 ...
 case REMOVE_BOOK:
 const index = state.books.findIndex(
 book => book.id === action.book.id)
 return {
 books: [
 ...state.books.slice(0, index),
 ...state.books.slice(index + 1)
]
 }
 ...
 }
}

export default bookReducer

The last thing to do is implement this new removeBook functionality in the UI of the
Books component (Books.js). You’ll import the removeBook action, add a remove but-
ton to each rendered item, and wire the remove button up to the removeBook action.

Listing 8.15   Adding removeBook functionality

...
import { addBook, removeBook } from './actions'
...
 removeBook = (book) => {
 this.props.dispatchRemoveBook(book)
 }
...

{
 books.map((book, index) => (
 <View style={styles.book} key={index}>
 <Text style={styles.name}>{book.name}</Text>
 <Text style={styles.author}>{book.author}</Text>
 <Text onPress={() => this.removeBook(book)}>
 Remove
 </Text>
 </View>
))
 }

...

Imports the new REMOVE_BOOK
constant from the actions folder

Adds a new case to the switch statement that
listens for the REMOVE_BOOK action type

Finds the index of the book to be deleted

Returns a
new array
containing
the first and
second half
of the
existing
books array,
leaving out
the index of
the book to
be removed

Adds removeBook as an import
from the actions file

Creates a new class method removeBook,
calling this.props.dispatchRemoveBook
as a new key in mapDispatchToProps

Returns a new Text component and
attaches removeBook to its onPress event

	 195Summary

const mapDispatchToProps = {
 dispatchAddBook: (book) => addBook(book),
 dispatchRemoveBook: (book) => removeBook(book)
}
...

Summary

¡	With context, you can pass properties and data to children in a React Native
application without explicitly passing the properties to each individual child.

¡	Reducers are similar to a traditional data store in the sense that they keep up with
and return data, but also allow you to update data in the store.

¡	You can create and use actions to update a Redux store.
¡	With the connect function, you can access data from the Redux state as props

and also create dispatch functions that interact with reducers using actions.
¡	Any time data needs to be changed in a reducer, it must be done by using an action.

Adds the new dispatchAddBook
function to mapDispatchToProps

Part 3

API reference

React Native offers a wealth of APIs. The chapters in this part cover
cross-platform APIs as well as APIs that are specific to the iOS and Android
platforms.

In chapter 9, we explore using React Native’s cross-platform APIs: APIs that can
be used on either iOS or Android to create alerts; detect whether the app is in the
foreground, is in the background, or is inactive; persist, retrieve, and remove data;
store and update text to the device clipboard; and perform a number of other use-
ful tasks. In chapters 10 and 11, we’ll look at React Native’s APIs that are specific to
either the iOS platform or the Android platform.

199

9Implementing
cross‑platform APIs

This chapter covers
¡	Creating native application alert dialogs

¡	Detecting whether the app is in the foreground,
background, or inactive

¡	Storing and updating text to the device clipboard

¡	Using geolocation to retrieve and use latitude,
longitude, speed, and altitude of the user’s
device

¡	Detecting device attributes such as the height
and width of the screen and the connection type

One of the key benefits of using React Native is the ease with which native APIs can be
accessed and used with JavaScript. In this chapter, we’ll cover most of the cross-platform
APIs available in the framework. When accessing these APIs, you’ll be able to use a sin-
gle codebase to implement platform-specific behavior on both iOS and Android.

The main difference between the native APIs discussed in this chapter and native
components is that native components usually have something to do with the UI, such
as showing a specific UI element. APIs, on the other hand, are more about accessing
native features and hardware in the phone, such as interacting with or accessing data
held in the device (geolocation, application state, and so on).

200 Chapter 9  Implementing cross‑platform APIs

This chapter covers the following cross-platform APIs:

¡	Alert
¡	AppState
¡	AsyncStorage
¡	Clipboard
¡	Dimensions
¡	Geolocation
¡	Keyboard
¡	NetInfo
¡	PanResponder

Although React Native offers other cross-platform APIs, you’ll find these to be the
most useful.

In addition to its cross-platform APIs, React Native also offers platform-specific APIs
(that is, APIs that work only on either iOS or Android). We’ll cover iOS-specific APIs in
chapter 10 and Android-specific APIs in chapter 11.

NOTE   You can find the code for this chapter at www.manning.com/books/react-
native-in-action and also at https://github.com/dabit3/react-native-in-action/
tree/chapter9.

9.1	 Using the Alert API to create cross-platform notifications
Alert launches a platform-specific alert dialog with a title, a message, and optional
methods that can be called when an alert button is pressed. Alert can be triggered by
calling the alert method (Alert.alert), which takes four arguments (see table 9.1):

Alert.alert(title, message, buttons, options)

Table 9.1   Alert.alert method arguments

Argument Type Description

title String Main message of the alert button

message String Secondary message of the alert button

buttons Array Array of buttons, each of which is an object with two keys:
title (string) and onPress (function)

options Object Object containing a cancelable Boolean (options:
{ cancelable: true })

9.1.1	 Use cases for alerts

An alert is a common UI pattern across both the web and mobile devices, and it’s an
easy way to let the user know about something happening in the application such as an

	 201Using the Alert API to create cross-platform notifications

error or success. Many times, an alert is used if a download has finished, an error has
occurred, or an asynchronous process (such as logging in) has completed.

9.1.2	 Example of using alerts

You can trigger an alert by calling the Alert.alert() method and passing in one or
more arguments. In this example, you’ll create an alert with two options: Cancel and
Show Message (see figure 9.1). If cancel is pressed, you’ll dismiss the alert; if Show Mes-
sage is pressed, you’ll update the state to show the message.

Listing 9.1   Binding an alert to a touch event

import React, { Component } from 'react'
import { TouchableHighlight, View, Text, StyleSheet, Alert }
 from 'react-native'
let styles = {}

export default class App extends Component {
 constructor () {
 super()
 this.state = {
 showMessage: false
 }
 this.showAlert = this.showAlert.bind(this)
 }
 showAlert () {
 Alert.alert(
 'Title',
 'Message!',
 [
 {
 text: 'Cancel',
 onPress: () => console.log('Dismiss called...'),
 style: 'destructive'
 },
 {
 text: 'Show Message',
 onPress: () => this.setState({ showMessage: true })
 }
]
)
 }
 render () {
 const { showMessage } = this.state
 return (
 <View style={styles.container}>
 <TouchableHighlight onPress={this.showAlert} style={styles.button}>
 <Text>SHOW ALERT</Text>
 </TouchableHighlight>
 {
 showMessage && <Text>Showing message - success</Text>
 }
 </View>
)
 }

Imports alert from React Native

Instantiates the state with
showMessage set to false

Defines the showAlert method,
passing in a title of ‘Title’, a message
of ‘Message!’, and two buttons

If Show Message is pressed, updates
the state to showMessage being true

Hides the message unless
showMessage is set to true

202 Chapter 9  Implementing cross‑platform APIs

}

styles = StyleSheet.create({
 container: {
 justifyContent: 'center',
 flex: 1
 },
 button: {
 height: 70,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#ededed'
 }
})

9.2	 Using the AppState API to detect the current
application state
AppState will tell you whether the app is active, inactive, or in the background. It basi-
cally calls a method whenever the app state changes, allowing you to perform actions
or call other methods based on the state of the app.

Figure 9.1   onPress alert with two options: Cancel and Show Message (left: iOS, right: Android)

	 203Using the AppState API to detect the current application state

AppState triggers whenever the app state changes and then returns active, inac-
tive, or background. To respond to app state changes, add an event listener and call a
method when the event is fired. The events that AppState uses to respond are change
and memorywarning. This section’s example uses change because it’s what you’ll primar-
ily use in a real-world scenario.

9.2.1	 Use cases for AppState

AppState is a useful API, and frequently comes in handy. Many times, when the app is
pulled into the foreground, you may want to do things such as fetch fresh data from
your API—and that’s a great use case for AppState.

Another use case is authentication. When the app is set into the foreground, you may
want to add another layer of security, such as a PIN or fingerprint.

If you’re doing polling, such as hitting a database every 15 seconds or so to check for
new data, you may want to disable the polling when the user pushes the app into the
background. AppState is a great use case for this as well.

9.2.2	 Example of using AppState

In this example, you’ll add an event listener that listens for the change event in compo-
nentDidMount and then displays the current state in the console.

Listing 9.2   Using AppState to log out the current app state

import React, { Component } from 'react'
import { AppState, View, Text, StyleSheet } from 'react-native'
let styles = {}

class App extends Component {
 componentDidMount () {
 AppState.addEventListener('change', this.handleAppStateChange)
 }
 handleAppStateChange (currentAppState) {
 console.log('currentAppState:', currentAppState)
 }
 render () {
 return (
 <View style={styles.container}>
 <Text>Testing App State</Text>
 </View>
)
 }
}

styles = StyleSheet.create({
 container: {
 justifyContent: 'center',
 flex: 1
 }
})

export default App

Imports the AppState
API from React Native

Calls AppState.
addEventListener, passing

in the type of event to
listen for (change) and a

callback function
(handleAppStateChange)

Logs the
currentAppState

204 Chapter 9  Implementing cross‑platform APIs

Run the project, and test it by either pressing CMD-Shift-H in iOS Simulator or press-
ing the home button in the Android emulator. The console should log the current app
state (active, inactive, or background).

9.3	 Using the AsyncStorage API to persist data
Next up is AsyncStorage. AsyncStorage is a great way to persist and store data: it’s asyn-
chronous, meaning you can retrieve data using a promise or async await, and it uses a
key-value system to store and retrieve data.

When you use an application and then close it, its state will be reset the next time
you open it. One of the main benefits of AsyncStorage is that it lets you store the data
directly to the user’s device and retrieve it whenever you need it!

AsyncStorage’s methods and arguments are listed in table 9.2.

Table 9.2   AsyncStorage methods and arguments

Method Arguments Description

setItem key, value, callback Stores an item in AsyncStorage

getItem key, callback Retrieves an item from AsyncStorage

removeItem key, callback Removes an item from AsyncStorage

mergeItem key, value, callback Merges an existing value with another existing
value (both values must be stringified JSON)

clear callback Erases all values in AsyncStorage

getAllKeys callback Gets all keys stored in your app

flushGetRequests None Flushes any pending requests

multiGet [keys], callback Allows you to get multiple values using an array
of keys

multiSet [keyValuePairs],
callback

Allows you to set multiple key-value pairs at
once

multiRemove [keys], callback Allows you to delete multiple values using an
array of keys

multiMerge [keyValuePairs],
callback

Allows you to merge multiple key-value pairs
into one method

9.3.1	 Use cases for AsyncStorage

AsyncStorage is often used for authentication purposes, persisting user data and infor-
mation that you don’t want lost when the application is closed. For example, when
a user logs in and you get their name, user ID, avatar, and so on from the API, you
don’t want to force that user to log in every time they open the app. You can save their
information to AsyncStorage when they log in the first time, and from then on, use the
original information and only update it when necessary.

	 205Using the AsyncStorage API to persist data

Another use case is when you’re working with large data sets or slow APIs and don’t
want to wait for them more than once. For example, if a data set takes a few seconds to
retrieve, you may want to cache that data in AsyncStorage, show it to the user when they
open the app, and refresh the data in a background process so the user doesn’t have to
wait to begin interacting with the data or the UI.

9.3.2	 Example of using AsyncStorage

In this example, you’ll take a user object and store it into the AsyncStorage in component-
DidMount. You’ll then use a button to extract the data from AsyncStorage, populate the
state with the data, and render it to the view.

Listing 9.3   Persisting and retrieving data using AsyncStorage

import React, { Component } from 'react'
import { TouchableHighlight, AsyncStorage, View,
 Text, StyleSheet } from 'react-native'
let styles = {}

const person = {
 name: 'James Garfield',
 age: 50,
 occupation: 'President of the United States'
}

const key = 'president'

export default class App extends Component {
 constructor () {
 super()
 this.state = {
 person: {}
 }
 this.getPerson= this.getPerson.bind(this)
 }
 componentDidMount () {
 AsyncStorage.setItem(key, JSON.stringify(person))
 .then(() => console.log('item stored...'))
 .catch((err) => console.log('err: ', err))
 }
 getPerson () {
 AsyncStorage.getItem(key)
 .then((res) => this.setState({ person: JSON.parse(res) }))
 .catch((err) => console.log('err: ', err))
 }
 render () {
 const { person } = this.state
 return (
 <View style={styles.container}>
 <Text style={{textAlign: 'center'}}>Testing AsyncStorage</Text>
 <TouchableHighlight onPress={this.getPerson}

Imports AsyncStorage
from React Native

Creates a person object and
stores the information in it

Creates a key you’ll use to add and
remove data from AsyncStorage

Creates a person object in the state

Calls AsyncStorage.setItem,
passing in the key as well as

the person. Calls JSON.stringify
because the value stored in
AsyncStorage needs to be a
string; JSON.stringify turns

objects and arrays into strings.

Creates the
getPerson
method

Calls AsyncStorage.getItem, passing
in the key created earlier. You receive
a callback function with the data
retrieved from AsyncStorage.

Calls JSON.parse, which turns the
returned data back into a JavaScript

object; and populates the state

206 Chapter 9  Implementing cross‑platform APIs

 style={styles.button}>
 <Text>Get President</Text>
 </TouchableHighlight>
 <Text>{person.name}</Text>
 <Text>{person.age}</Text>
 <Text>{person.occupation}</Text>
 </View>
)
 }
}

styles = StyleSheet.create({
 container: {
 justifyContent: 'center',
 flex: 1,
 margin: 20
 },
 button: {
 justifyContent: 'center',
 marginTop: 20,
 marginBottom: 20,
 alignItems: 'center',
 height: 55,
 backgroundColor: '#dddddd'
 }
})

As you can see, promises are used to set and return the values from AsyncStorage.
There’s also another way to do this: let’s look at async await.

Listing 9.4   Using async await to fetch data asynchronously

async componentDidMount () {
 try {
 await AsyncStorage.setItem(key, JSON.stringify(person))
 console.log('item stored')
 } catch (err) {
 console.log('err:', err)
 }
}
async getPerson () {
 try {
 var data = await AsyncStorage.getItem(key)
 var person = await data
 this.setState({ person: JSON.parse(person) })
 } catch (err) {
 console.log('err: ', err)
 }
}

async await first requires you to mark the function as async by adding the async key-
word before the function name. You’re then able to use the await keyword to wait for
the returned value of a function, allowing you to write promise-based code as if it were
synchronous. When you await a promise, the function waits until the promise settles,
but it does so in a nonblocking way; it then assigns the value to the variable.

Wires up getPerson to
a TouchableHighlight
in the view. When the
TouchableHighlight is

pressed, the data from
AsyncStorage is

rendered to the View.

	 207Using the Clipboard API to copy text into the user’s clipboard

9.4	 Using the Clipboard API to copy text into the
user’s clipboard
Clipboard lets you save and retrieve content from the clipboard on both iOS and
Android. Clipboard has two methods: getString() and setString() (see table 9.3).

Table 9.3   Clipboard methods

Method Arguments Description

getString None Gets the contents of the clipboard

setString content Sets the contents of the clipboard

9.4.1	 Use cases for Clipboard

The most common use case for Clipboard is when a user needs to copy a string of text.
Rather than have to remember it, the user can copy it to the clipboard using Clipboard
and then paste it anywhere they want to use the information!

9.4.2	 Example of using Clipboard

In this example, you’ll set an initial clipboard value of “Hello World” in component-
DidMount and then use a method attached to a TextInput to update the clipboard.
You’ll add a button that pushes the current ClipboardValue to an array and renders
it to the View.

Listing 9.5   Saving and replacing clipboard content

import React, { Component } from 'react'
import { TextInput, Clipboard, TouchableHighlight, View,
 Text, StyleSheet } from 'react-native'
let styles = {}

export default class App extends Component {
 constructor() {
 super()
 this.state = {
 clipboardData: []
 }
 this.pushClipboardToArray = this.pushClipboardToArray.bind(this)
 }
 componentDidMount () {
 Clipboard.setString('Hello World! ');
 }
 updateClipboard (string) {
 Clipboard.setString(string);
 }
 async pushClipboardToArray() {
 const { clipboardData } = this.state
 var content = await Clipboard.getString();

Imports Clipboard
from React Native

Sets an empty array called
clipboardData in the state

Updates the Clipboard
value to “Hello World”

Adds an updateClipboard method that
will replace the existing slipboard value

Adds an async method pushClipboardToArray,
using the async await syntax from listing 9.4

Stores the
clipboard value
in a variable
named content

208 Chapter 9  Implementing cross‑platform APIs

 clipboardData.push(content)
 this.setState({clipboardData})
 }
 render () {
 const { clipboardData } = this.state
 return (
 <View style={styles.container}>
 <Text style={{textAlign: 'center'}}>Testing Clipboard</Text>
 <TextInput style={styles.input}
 onChangeText={
 (text) => this.updateClipboard(text)
 } />
 <TouchableHighlight onPress={this.pushClipboardToArray}
 style={styles.button}>
 <Text>Click to Add to Array</Text>
 </TouchableHighlight>
 {
 clipboardData.map((d, i) => {
 return <Text key={i}>{d}</Text>
 })
 }
 </View>
)
 }
}

styles = StyleSheet.create({
 container: {
 justifyContent: 'center',
 flex: 1,
 margin: 20
 },
 input: {
 padding: 10,
 marginTop: 15,
 height: 60,
 backgroundColor: '#dddddd'
 },
 button: {
 backgroundColor: '#dddddd',
 justifyContent: 'center',
 alignItems: 'center',
 height: 60,
 marginTop: 15,
 }
})

9.5	 Using the Dimensions API to get the user’s
screen information
Dimensions gives you a way to get the device screen’s height and width. This is a good
way to perform calculations based on the screen’s dimensions.

Pushes to the clipboardData array

Resets the array’s state

Attaches the
TextInput with the
updateClipboard
method

Attaches the
pushClipboardToArray
method to be called when
the TouchableHighlight
is pressed

Maps through the items in
the clipboardData array and
renders them to the screen

	 209Using the Geolocation API to get the user’s current location information

9.5.1	 Use cases for the Dimensions API

Many times, you want to know the exact dimensions of the user’s device, in order to
create the perfect UI. When creating a global theme, having the width and the height
to set global variables (such as font sizes) is a great way to provide consistent styling
across your app, regardless of device size. Using the width of the device to make consis-
tent grid elements is another easy way to create a consistent experience. Bottom line:
whenever you need the device screen’s height and width, use Dimensions.

9.5.2	 Example of using the Dimensions API

To use Dimensions, import the API from React Native, and then call the get() method,
passing in either window or screen as a parameter. Return width, height, or both.

Listing 9.6   Using Dimensions to retrieve the width and height of the device

import React, { Component } from 'react'
import { View, Text, Dimensions, StyleSheet } from 'react-native'
let styles = {}

const { width, height } = Dimensions.get('window')
const windowWidth = Dimensions.get('window').width

const App = () => (
 <View style={styles.container}>
 <Text>{width}</Text>
 <Text>{height}</Text>
 <Text>{windowWidth}</Text>
 </View>
)

styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 }
})

One way to access the dimensions is to destructure what’s returned from calling
Dimensions.get on the window, in this case width and height. You can also get the
scale of the window. Another way is to call Dimensions.get and access the object
property directly, calling .width on Dimensions.get.

9.6	 Using the Geolocation API to get the user’s current
location information
Geolocation is achieved in React Native using the same API used in the browser, with
the navigator.geolocation global variable available anywhere in the app. You don’t
need to import anything to begin using this, because it’s again available as a global.

Imports
Dimensions
from React
Native

Destructures the
width and height

Accesses the width object
property directly

In the View, render the dimensions that
were stored in the variables you retrieved
off the Dimensions.get method.

210 Chapter 9  Implementing cross‑platform APIs

9.6.1	 Use cases for the Geolocation API

If you’re building an application that requires the user’s latitude and longitude, then
you’ll need to use geolocation. react-native-maps, the map component that was cre-
ated and open sourced by Airbnb, is a great use case for geolocation. Many times you’ll
want to have the map load to the user’s current location; to do that, you have to pass in
the correct coordinates. Use Geolocation to get those coordinates.

9.6.2	 Example of using Geolocation

To get started with Geolocation, you must enable it to be used in the app if you’re
developing for Android (iOS is enabled by default):

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

Table 9.4 lists the available methods.

Table 9.4   Geolocation methods

Method Arguments Description

getCurrentPosition successcallback, errcall-
back, optionsobject{enable-
HighAccuracy: Boolean,
timeout: number, maximum-
Age: number}

Gets the current position. Suc-
cess returns an object with a
coords object and a timestamp.

watchPosition successcallback, errcallback,
optionsobject{enable-
HighAccuracy: Boolean,
timeout: number, maximum-
Age: number}

Gets the current position and is
automatically called when the
device position changes.

clearWatch watchId Cancels a watch. Store the
watchPosition method in a
variable when created to have
access to the watchId.

stopObserving None Cancels all geolocation watches
that have been set up.

getCurrentPosition and watchPosition return
coordinates as an object with information about
the current user’s location (see figure 9.2). The
information returned contains not only the lati-
tude and longitude, but also the speed and altitude
as well as a few other data points.

To see this in action, you’ll set up an instance
of Geolocation getCurrentPosition and watch-
Position. You’ll also have a button to call
clearWatch, which will clear the watch position
functionality enabled by the call to watchPosition.

Figure 9.2   Coordinates object returned from
Geolocation

mounir
Typewriter
https://avxhm.se/blogs/hill0

	 211Using the Geolocation API to get the user’s current location information

watchPosition will only change if you physically change the coordinates. For example,
if you run this on a device and walk around, you should see the coordinates update. This
watch can be cancelled at any time by calling navigator.geolocation.clearWatch(id),
passing in the ID of the watch you want to cancel. You’ll then display both the original
coordinates as well as the updated coordinates (latitude and longitude).

Listing 9.7   Retrieving user coordinates using the Geolocation API

import React, { Component } from 'react'
import { TouchableHighlight, View, Text, StyleSheet } from 'react-native'
let styles = {}

export default class App extends Component {
 constructor () {
 super()
 this.state = {
 originalCoords: {},
 updatedCoords: {},
 id: ''
 }
 this.clearWatch = this.clearWatch.bind(this)
 }
 componentDidMount() {
 navigator.geolocation.getCurrentPosition(
 (success) => {
 this.setState({originalCoords: success.coords})
 },
 (err) => console.log('err:', err)
)
 let id = navigator.geolocation.watchPosition(
 (success) => {
 this.setState({
 id,
 updatedCoords: success.coords
 })
 },
 (err) => console.log('err:', err)
)
 }
 clearWatch () {
 navigator.geolocation.clearWatch(this.state.id)
 }
 render () {
 const { originalCoords, updatedCoords } = this.state
 return (
 <View style={styles.container}>
 <Text>Original Coordinates</Text>
 <Text>Latitude: {originalCoords.latitude}</Text>
 <Text>Longitude: {originalCoords.longitude}</Text>
 <Text>Updated Coordinates</Text>
 <Text>Latitude: {updatedCoords.latitude}</Text>
 <Text>Longitude: {updatedCoords.longitude}</Text>
 <TouchableHighlight

Creates an initial state with originalCoords
and updatedCoords set as an empty object
and id set as an empty string

Calls getCurrentPosition
on navigator.geolocation

Sets the state of
originalCoords to
success.coords

Calls watchPosition, and stores
the result of the function in a
variable named id that you’ll
use later to clear the watch

Resets the
state with

the id

Creates a clearWatch method to clear the watch

Displays the latitude
and longitude from
both the original
coordinates as well
as the updated
coordinates

212 Chapter 9  Implementing cross‑platform APIs

 onPress={this.clearWatch}
 style={styles.button}>
 <Text>Clear Watch</Text>
 </TouchableHighlight>
 </View>
)
 }
}

styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 padding: 20,
 },
 button: {
 height: 60,
 marginTop: 15,
 backgroundColor: '#ededed',
 justifyContent: 'center',
 alignItems: 'center'
 }
})

9.7	 Using the Keyboard API to control the location and
functionality of the native keyboard
The Keyboard API gives you access to the native keyboard. You can use this to either
listen to keyboard events (and call methods based on these events) or dismiss the key-
board. The Keyboard methods are listed in table 9.5.

Table 9.5   Keyboard methods

Method Arguments Description

addListener event, callback Connects a method to be called based on native
keyboard events such as keyboardWillShow,
keyboardDidShow, keyboardWillHide, key-
boardDidHide, keyboardWillChangeFrame,
and keyboardDidChangeFrame

removeAllLis-
teners

eventType Removes all listeners of the type specified

dismiss None Dismisses the keyboard

9.7.1	 Use cases for the Keyboard API

Many times, the default behavior of text inputs and the keyboard is exactly what you
want, but not always. If you simulate a text input using some other type of component,

	 213Using the Keyboard API to control the location and functionality of the native keyboard

the keyboard won’t slide up. In this case, you can import Keyboard and get manual and
granular control over when the keyboard is shown and hidden.

In some cases, you may want to manually dismiss the keyboard even when the text
input is in focus. For example, if a PIN number input accepts four numbers and auto-
matically checks to see if the input value is correct on the last input value, you may want
to provide a UI that fetches or checks after the last value is typed in. Hiding the key-
board may make sense, and you can achieve this using the Keyboard API.

9.7.2	 Example of using the Keyboard API

In this example, you’ll set up a text input and have listeners for all available events.
When the event is fired, you’ll log the event to the console. You’ll also have two but-
tons: one to dismiss the keyboard and another to remove all event listeners set up in
componentWillMount.

Listing 9.8   Controlling the device keyboard using the Keyboard API

import React, { Component } from 'react'
import { TouchableHighlight, Keyboard, TextInput, View,
 Text, StyleSheet } from 'react-native'

let styles = {}

export default class App extends Component {
 componentWillMount () {
 this.keyboardWillShowListener =
 Keyboard.addListener('keyboardWillShow',
 () => this.logEvent('keyboardWillShow'))
 this.keyboardDidShowListener =
 Keyboard.addListener('keyboardDidShow',
 () => this.logEvent('keyboardDidShow'))
 this.keyboardWillHideListener =
 Keyboard.addListener('keyboardWillHide',
 () => this.logEvent('keyboardWillHide'))
 this.keyboardDidHideListener =
 Keyboard.addListener('keyboardDidHide',
 () => this.logEvent('keyboardDidHide'))
 this.keyboardWillChangeFrameListener =
 Keyboard.addListener('keyboardWillChangeFrame',
 () => this.logEvent('keyboardWillChangeFrame'))
 this.keyboardDidChangeFrameListener =
 Keyboard.addListener('keyboardDidChangeFrame',
 () => this.logEvent('keyboardDidChangeFrame'))
 }
 logEvent(event) {
 console.log('event: ', event)
 }
 dismissKeyboard () {
 Keyboard.dismiss()
 }

Imports the Keyboard
API from React Native

Sets up event listeners for all
available keyboard events, and
then calls the logEvent method

to log out the event name

Takes in the event name, and
logs out the name of the event

Dismisses the keyboard if it’s in view

214 Chapter 9  Implementing cross‑platform APIs

 removeListeners () {
 Keyboard.removeAllListeners('keyboardWillShow')
 Keyboard.removeAllListeners('keyboardDidShow')
 Keyboard.removeAllListeners('keyboardWillHide')
 Keyboard.removeAllListeners('keyboardDidHide')
 Keyboard.removeAllListeners('keyboardWillChangeFrame')
 Keyboard.removeAllListeners('keyboardDidChangeFrame')
 }
 render () {
 return (
 <View style={styles.container}>
 <TextInput style={styles.input} />
 <TouchableHighlight
 onPress={this.dismissKeyboard}
 style={styles.button}>
 <Text>Dismiss Keyboard</Text>
 </TouchableHighlight>
 <TouchableHighlight
 onPress={this.removeListeners}
 style={styles.button}>
 <Text>Remove Listeners</Text>
 </TouchableHighlight>
 </View>
)
 }
}

styles = StyleSheet.create({
 container: {
 flex: 1,
 marginTop: 150,
 },
 input: {
 margin: 10,
 backgroundColor: '#ededed',
 height: 50,
 padding: 10
 },
 button: {
 height: 50,
 backgroundColor: '#dddddd',
 margin: 10,
 justifyContent: 'center',
 alignItems: 'center'
 }
})

9.8	 Using NetInfo to get the user’s current online/
offline status
NetInfo is an API that allows you to access data describing whether the device is online
or offline. In order to use the NetInfo API on Android, you need to add the required
permission to AndroidManifest.xml:

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

Calls Keyboard
.removeAllListeners,
passing in each of the
listeners declared in
componentWillMount

Wires up the dismissKeyboard
method to a button in the UI

Wires up the removeListeners
method to a button in the UI

	 215Using NetInfo to get the user’s current online/offline status

iOS and Android have different connectivity types, listed in table 9.6. Access to them
depends on the actual connectivity type of the user’s connection. To determine the
connection, you can use the methods in table 9.7.

Table 9.6   Cross platform and Android specific connectivity types

Cross platform (iOS and Android) Android

none bluetooth

wifi ethernet

cellular wimax

unknown

Table 9.7   NetInfo methods

Method Arguments Description

isConnectionExpensive None Returns a promise that returns a Boolean
specifying whether the connection is or
isn’t expensive

isConnected None Returns a promise that returns a Boolean
specifying whether the device is or isn’t
connected

addEventListener eventName, callback Adds an event listener for the specified
event

removeEventListener eventName, callback Removes an event listener for the speci-
fied event

getConnectionInfo None Returns a promise that returns an object
with type and effectiveType.

9.8.1	 Use cases for NetInfo

NetInfo is often used to prevent other API calls from happening, or to provide an offline
UI that provides some but not all features of an online application. For example, suppose
you have a feed of items that, when pressed, shows a new view with fetched information
about that item. You can show some indication of the application being offline and not
navigate to the item detail when the device is offline. NetInfo will give you this type of
device information, allowing you to interact with the user in a useful way.

Another use case is to set different API configurations based on the type of connec-
tion. For example, on Wi-Fi you may want to be more generous about the amount of
data you allow to be requested and sent: if the user is on a cellular network, you may
fetch only 10 items at a time; but on Wi-Fi, you’ll bump that to 20. With NetInfo, you can
determine what type of connection the user has, if any.

216 Chapter 9  Implementing cross‑platform APIs

9.8.2	 Example of using NetInfo

Let’s set up a NetInfo.getConnectionInfo method to get the initial connection informa-
tion. Then you’ll set up a listener to log out the current NetInfo if and when it changes.

Listing 9.9   Fetching and displaying the user connection type using NetInfo

import React, { Component } from 'react'
import { NetInfo, View, Text, StyleSheet } from 'react-native'

class App extends Component {
 constructor () {
 super()
 this.state = {
 connectionInfo: {}
 }
 this.handleConnectivityChange =
 this.handleConnectivityChange.bind(this)
 }
 componentDidMount () {
 NetInfo.getConnectionInfo().then((connectionInfo) => {
 console.log('type: ' + connectionInfo.type +
 ', effectiveType: ' + connectionInfo.effectiveType)
 this.setState({connectionInfo})
 })
 NetInfo.addEventListener('connectionChange',
 this.handleConnectivityChange)
 }
 handleConnectivityChange (connectionInfo) {
 console.log('new connection:', connectionInfo)
 this.setState({connectionInfo})
 }
 render () {
 return (
 <View style={styles.container}>
 <Text>{this.state.connectionInfo.type}</Text>
 </View>
)
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 }
})

9.9	 Getting information about touch and gesture events
with PanResponder
The PanResponder API offers a way to use data from touch events. With it, you can gran-
ularly respond to and manipulate the application state based on single and multiple
touch events, such as swiping, tapping, pinching, scrolling, and more.

Imports NetInfo from React Native

Sets the initial state of connectionInfo
to an empty object

Gets the initial connection
type, and sets the state

Creates an event listener to
call handleConnectivityChange
when the connection changes

Updates the state with the
new connection information

Renders the connection
information to the view

	 217Getting information about touch and gesture events with PanResponder

9.9.1	 Use cases for the PanResponder API

Because the fundamental functionality of PanResponder is to determine the current
touches happening on the user’s device, the use cases are unlimited. In my experience,
I’ve used this API often to do things like the following:

¡	Create a swipeable stack of cards where an item is removed from the stack when
swiped out of view (think Tinder)

¡	Create an animatable overlay that the user can close by clicking a button or move
out of view by swiping down

¡	Give the user the ability to rearrange items in a list by pressing part of a list item
and moving to the desired location

The use cases for PanResponder are many, but the most apparent and frequently used
let the user move items around in the UI based on their press/swipe position.

Let’s look at a basic gesture event using onPanResponderMove(event, gestureState),
which gives you data about the current position of the touch event, including current posi-
tion, accumulated difference between current position and original position, and more:

onPanResponderMove(evt, gestureState) {
 console.log(evt.nativeEvent)
 console.log(gestureState)
}

To use this API, you first create an instance of PanResponder in the componentWill-
Mount method. In this instance, you can then set all the configuration and callback
methods for the PanResponder, using the methods to manipulate the state and View.

Let’s look at the create method, which is the only available method for PanRe-
sponder. It creates the configuration for the PanResponder instance. Table 9.8 shows
the configuration options available to the create method.

Table 9.8   Configuration arguments for the PanResponder create method

Configuration property Description

onStartShouldSetPanResponder Determines whether to enable the PanResponder. Gets
called after the element is touched.

onMoveShouldSetPanResponder Determines whether to enable the PanResponder. Gets
called after the initial touch has first move.

onPanResponderReject Gets called if the PanResponder does not register.

onPanResponderGrant Gets called if the PanResponder does register.

onPanResponderStart Gets called after the PanResponder registers.

onPanResponderEnd Gets called after the PanResponder has finished.

onPanResponderMove Gets called when the PanResponder moves.

onPanResponderTerminationRequest Gets called when something else wants to become
responder.

onPanResponderRelease Gets called when the touch has been released.

onPanResponderTerminate This responder has been taken by another one.

218 Chapter 9  Implementing cross‑platform APIs

Each configuration option is supplied with the Native Event and Gesture State. Table 9.9
describes all the available properties of both evt.nativeEvent and gestureState.

Table 9.9   evt and gestureState properties

evt.nativeEvent properties Description

changedTouches Array of all touch events that have changed since the last event

identifier ID of the touch

locationX X position of the touch, relative to the element

locationY Y position of the touch, relative to the element

pageX X position of the touch, relative to the root element

pageY Y position of the touch, relative to the root element

target Node ID of the element receiving the touch event

timestamp Time identifier for the touch; useful for velocity calculations

touches Array of all current touches on the screen

gestureState properties Description

stateID ID of the gestureState, persisted as long as there is at least
one touch on the screen

moveX Latest screen coordinates of the recently moved touch

moveY Latest screen coordinates of the recently moved touch

x0 Screen coordinates of the responder

y0 Screen coordinates of the responder

dx Accumulated distance of the gesture since the touch started

dy Accumulated distance of the gesture since the touch started

vx Current velocity of the gesture

vy Current velocity of the gesture

numberActiveTouches Number of touches currently on screen

9.9.2	 Example of using PanResponder

For this example, you’ll create a draggable square and display its x and y coordinates in
the view. The result is shown in figure 9.3.

Figure 9.3   PanResponder used to make the square draggable

	 219Getting information about touch and gesture events with PanResponder

Listing 9.10   Using PanResponder to create a draggable element

import React, { Component } from 'react'
import { Dimensions, TouchableHighlight, PanResponder, TextInput,
 View, Text, StyleSheet } from 'react-native'
const { width, height } = Dimensions.get('window')
let styles = {}

class App extends Component {
 constructor () {
 super()
 this.state = {
 oPosition: {
 x: (width / 2) - 100,
 y: (height / 2) - 100,
 },
 position: {
 x: (width / 2) - 100,
 y: (height / 2) - 100,
 },
 }

Imports
Dimensions,
PanResponder,
and everything
else needed for
this component

Stores the window width and
height in variables for later use

Creates an object called oPosition to store
the original square position x and y axes to
center the square, and stores it into the state

Creates an object called
position to store the actual
square position x and y axes
to center the square, and
stores it into the state

Each configuration option is supplied with the Native Event and Gesture State. Table 9.9
describes all the available properties of both evt.nativeEvent and gestureState.

Table 9.9   evt and gestureState properties

evt.nativeEvent properties Description

changedTouches Array of all touch events that have changed since the last event

identifier ID of the touch

locationX X position of the touch, relative to the element

locationY Y position of the touch, relative to the element

pageX X position of the touch, relative to the root element

pageY Y position of the touch, relative to the root element

target Node ID of the element receiving the touch event

timestamp Time identifier for the touch; useful for velocity calculations

touches Array of all current touches on the screen

gestureState properties Description

stateID ID of the gestureState, persisted as long as there is at least
one touch on the screen

moveX Latest screen coordinates of the recently moved touch

moveY Latest screen coordinates of the recently moved touch

x0 Screen coordinates of the responder

y0 Screen coordinates of the responder

dx Accumulated distance of the gesture since the touch started

dy Accumulated distance of the gesture since the touch started

vx Current velocity of the gesture

vy Current velocity of the gesture

numberActiveTouches Number of touches currently on screen

9.9.2	 Example of using PanResponder

For this example, you’ll create a draggable square and display its x and y coordinates in
the view. The result is shown in figure 9.3.

Figure 9.3   PanResponder used to make the square draggable

220 Chapter 9  Implementing cross‑platform APIs

 this._handlePanResponderMove = this._handlePanResponderMove.bind(this)
 this._handlePanResponderRelease =
 this._handlePanResponderRelease.bind(this)
 }
 componentWillMount () {
 this._panResponder = PanResponder.create({
 onStartShouldSetPanResponder: () => true,
 onPanResponderMove: this._handlePanResponderMove,
 onPanResponderRelease: this._handlePanResponderRelease
 })
 }
 _handlePanResponderMove (evt, gestureState) {
 let ydiff = gestureState.y0 - gestureState.moveY
 let xdiff = gestureState.x0 - gestureState.moveX
 this.setState({
 position: {
 y: this.state.oPosition.y - ydiff,
 x: this.state.oPosition.x - xdiff
 }
 })
 }
 _handlePanResponderRelease () {
 this.setState({
 oPosition: this.state.position
 })
 }
 render () {
 return (
 <View style={styles.container}>
 <Text style={styles.positionDisplay}>
 x: {this.state.position.x} y:{this.state.position.y}
 </Text>
 <View
 {...this._panResponder.panHandlers}
 style={[styles.box,
 { marginLeft: this.state.position.x,
 marginTop: this.state.position.y }]}
 />
 </View>
)
 }
}

styles = StyleSheet.create({
 container: {
 flex: 1,
 },
 positionDisplay: {
 textAlign: 'center',
 marginTop: 50,
 zIndex: 1,
 position: 'absolute',
 width
 },
 box: {

Creates a new PanResponder, returning
true for onStartShouldSetPanResponder,

and setting up onPanResponderMove
and onPanResponderRelease methods

Finds the total movement
of x and y by calculating
the difference between the
location that the pan started
and the current total of
movement since the pan
started. Updates the state
position with these values.

Sets the state of oPosition with
the updated position in the view

Displays the
current position
values in the view

Attaches the PanResponder
to the view by passing in
{...this._panResponder.
panHandlers} as props

Attaches the position x and y
values to the view to update
the margins, making the item
draggable

	 221Summary

 position: 'absolute',
 width: 200,
 height: 200,
 backgroundColor: 'red'
 }
})

Summary

¡	Alert gives you the ability to prompt or alert the user to important information or
events in the app.

¡	AppState provides information about whether the current app is in use. You can
then use this information in the app in a useful way.

¡	AsyncStorage lets you persist data to the user’s device, so that if the user closes the
app, you can still access the data.

¡	Clipboard copies information to the user’s device clipboard so they can access
it later.

¡	Dimensions provides useful information about the user’s device, most impor-
tantly the screen width and height.

¡	Geolocation provides the location as well as other important information about
the user’s device, and allows you to check the location data when the user moves.

¡	NetInfo provides the user’s current connection information, including the type
of connection and whether they’re currently connected.

¡	PanResponder provides the current touch location(s) happening on the user’s
device. You can use this information to enhance the UX and UI.

222

10Implementing iOS-specific
components and APIs

This chapter covers
¡	Strategies for effectively targeting platform-

specific code

¡	Using the picker components, DatePickerIOS,
and PickerIOS

¡	Showing loading progress using
ProgressViewIOS

¡	Choosing views using SegmentedControlIOS
and TabBarIOS

¡	Calling and choosing items in an action sheet
using ActionSheetIOS

One of the end goals of the React Native project is to have a minimal amount of
platform-specific logic and code. Most APIs can be built so the platform-specific
code is abstracted away by the framework, giving you a single way to interact with
them and easily create cross-platform functionality.

Unfortunately, there will always be platform-specific APIs that can’t be com-
pletely abstracted away using an approach that makes sense cross-platform. There-
fore, you’ll need to use at least a handful of platform-specific APIs and components.

	 223Targeting platform-specific code

In this chapter, we cover iOS-specific APIs and components, discuss their props and
methods, and create examples that mimic functionality and logic that will get you up to
speed quickly.

10.1	 Targeting platform-specific code
The main idea of platform-specific code is writing components and files in a way that
renders iOS- or Android-specific code based on the platform you’re on. There are a
few techniques that can be implemented to show components based on what platform
the app is running, and we cover the two most useful of those techniques here: using
the correct file extension, and using the Platform API.

10.1.1	 iOS and Android file extensions

The first way to target platform-specific code is to name the file with the correct file
extension, depending on the platform you wish to target. For example, one com-
ponent that differs quite a bit between iOS and Android is DatePicker. If you want
specific styling around DatePicker, writing all the code in the main component may
become verbose and difficult to maintain. Instead, you create two files—DatePicker.
ios.js and DatePicker.android.js—and import them into the main component. When
you run the project, React Native will automatically choose the correct file and render
it based on the platform you’re using. Let’s look at a basic example in listings 10.1,
10.2, and 10.3. (Note that this example will throw an error as is—DatePicker requires
both props and methods to function correctly.)

Listing 10.1   iOS platform-specific code

import React from 'react'
import { View, Text, DatePickerIOS } from 'react-native'

export default () => (
 <View>
 <Text>This is an iOS specific component</Text>
 <DatePickerIOS />
 </View>
)

Listing 10.2   Android platform-specific code

import React from 'react'
import { View, Text, DatePickerAndroid } from 'react-native'

export default () => (
 <View>
 <Text>This is an Android specific component</Text>
 <DatePickerAndroid />
 </View>
)

224 Chapter 10  Implementing iOS-specific components and APIs

Listing 10.3   Rendering the cross-platform component

import React from 'react'
import DatePicker from './DatePicker'

const MainComponent = () => (
 <View>
 ...
 <DatePicker />
 ...
 </View>
)

You import the date picker without giving a specific file extension. React Native knows
which component to import depending on the platform. From there, you can use it in
the application without having to worry about which platform you’re on.

10.1.2	 Detecting the platform using the Platform API

Another way to detect and perform logic based on the platform is to use the Plat-
form API. Platform has two properties. The first is an OS key that reads either ios or
android, depending on the platform.

Listing 10.4   Platform module detecting using Platform.OS property

import React from 'react'
import { View, Text, Platform } from 'react-native'

const PlatformExample = () => (
 <Text
 style={{ marginTop: 100, color: Platform.OS === 'ios' ? 'blue' : 'green'

}}
 >
 Hello { Platform.OS }
 </Text>
)

Here, you check whether the value of Platform.OS is equal to the string 'ios' and, if it
is, return a color of 'blue'. If it isn’t, you return 'green'.

The second property of Platform is a method called select. select takes in an
object containing the Platform.OS strings as keys (either ios or android) and returns
the value for the platform you’re running.

Listing 10.5   Using Platform.select to render components based on Platform

import React from 'react'
import { View, Text, Platform } from 'react-native'

const ComponentIOS = () => (
 <Text>Hello from IOS</Text>
)

	 225Targeting platform-specific code

const ComponentAndroid = () => (
 <Text>Hello from Android</Text>
)

const Component = Platform.select({
 ios: () => ComponentIOS,
 android: () => ComponentAndroid,
})();

const PlatformExample = () => (
 <View style={{ marginTop: 100 }}>
 <Text>Hello from my App</Text>
 <Component />
 </View>
)

You can also use the ES2015 spread syntax to return objects and use those objects to
apply styling. You may recall seeing the Platform.select function used in a couple of
examples in chapter 4.

Listing 10.6   Using Platform.select to apply styles based on Platform

import React from 'react'
import { View, Text, Platform } from 'react-native'

let styles = {}

const PlatformExample = () => (
 <View style={styles.container}>
 <Text>
 Hello { Platform.OS }
 </Text>
 </View>
)

styles = {
 container: {
 marginTop: 100,
 ...Platform.select({
 ios: {
 backgroundColor: 'red'
 }
 })
 }
}

226 Chapter 10  Implementing iOS-specific components and APIs

10.2	 DatePickerIOS
DatePickerIOS provides an easy way to implement a native date picker component on
iOS. It has three modes that come in handy when working with dates and times: date,
time, and dateTime, shown in figure 10.1.

DatePickerIOS has the props listed in table 10.1. The minimum props that need to
be passed are date (the date that’s the beginning or current date choice) and an
onDateChange method. When any of the date values are changed, onDateChange is
called, passing the function the new date value.

Table 10.1   DatePickerIOS props and method

Prop Type Description

date Date Currently selected date

maximumDate Date Maximum allowed date

minimumDate Date Minimum allowed date

minuteInterval Enum Interval at which minutes can be
selected

mode String: date, time, or
datetime

Date picker mode

onDateChange Function: on
DateChange(date) { }

Function called when the date
changes

timeZoneOffsetInMinutes Number Time zone offset in minutes; overrides
the default (the device time zone)

10.2.1	 Example of using DatePickerIOS

In the following example, you’ll set up a DatePickerIOS component and display the
time in the view. You won’t pass in a mode prop, because the mode defaults to datetime.
Figure 10.2 shows the result.

date time datetime

Figure 10.1   DatePickerIOS with date mode, time mode, and datetime mode

Figure 10.2   DatePickerIOS rendering
chosen date and time

	 227DatePickerIOS

10.2	 DatePickerIOS
DatePickerIOS provides an easy way to implement a native date picker component on
iOS. It has three modes that come in handy when working with dates and times: date,
time, and dateTime, shown in figure 10.1.

DatePickerIOS has the props listed in table 10.1. The minimum props that need to
be passed are date (the date that’s the beginning or current date choice) and an
onDateChange method. When any of the date values are changed, onDateChange is
called, passing the function the new date value.

Table 10.1   DatePickerIOS props and method

Prop Type Description

date Date Currently selected date

maximumDate Date Maximum allowed date

minimumDate Date Minimum allowed date

minuteInterval Enum Interval at which minutes can be
selected

mode String: date, time, or
datetime

Date picker mode

onDateChange Function: on
DateChange(date) { }

Function called when the date
changes

timeZoneOffsetInMinutes Number Time zone offset in minutes; overrides
the default (the device time zone)

10.2.1	 Example of using DatePickerIOS

In the following example, you’ll set up a DatePickerIOS component and display the
time in the view. You won’t pass in a mode prop, because the mode defaults to datetime.
Figure 10.2 shows the result.

date time datetime

Figure 10.1   DatePickerIOS with date mode, time mode, and datetime mode

Figure 10.2   DatePickerIOS rendering
chosen date and time

Listing 10.7   Using DatePicker to show and update time values

import React, { Component } from 'react'
import { Text, View, DatePickerIOS } from 'react-native'

class App extends Component {

 constructor() {
 super()
 this.state = {
 date: new Date(),
 }
 this.onDateChange = this.onDateChange.bind(this)
 }

 onDateChange(date) {
 this.setState({date: date});
 };

Imports DatePickerIOS
from React Native

Creates a date value,
and stores it in the state

Creates a method called onDateChange that
updates the state with the new date value

228 Chapter 10  Implementing iOS-specific components and APIs

 render() {
 return (
 <View style={{ marginTop: 50 }}>
 <DatePickerIOS
 date={this.state.date}
 onDateChange={this.onDateChange}
 />
 <Text style={{ marginTop: 40, textAlign: 'center' }}>
 { this.state.date.toLocaleDateString() } { this.state.date.

toLocaleTimeString() }
 </Text>
 </View>)
 }
}

10.3	 Using PickerIOS to work with lists of values
Using PickerIOS, you can access the native iOS Picker component. This component
basically allows you to scroll through and choose from a list of values using the native
UI (see figure 10.3). PickerIOS has the methods and props listed in table 10.2.

Table 10.2   PickerIOS methods and props

Prop Type Description

itemStyle Object (style) The text style for items within the
container

onValueChange Function (value) Called when the PickerIOS
value changes

selectedValue Number or string Currently selected PickerIOS
value

PickerIOS wraps a list of items to be rendered as children. Each child item must be
a PickerIOS.Item:

import { PickerIOS } from 'react-native'
const PickerItem = PickerIOS.Item

<PickerIOS>
 <PickerItem />
 <PickerItem />
 <PickerItem />
</PickerIOS>

It’s possible to declare each PickerIOS.Item individually as done here, but most of the
time you’ll be mapping over elements in an array and returning a PickerIOS.Item for
each item in the array. The following listing shows an example.

Returns the DatePickerIOS
component, and passes in the
date and onDateChange as props

Renders the date value as text

Figure 10.3   PickerIOS rendering a list of
people

	 229Using PickerIOS to work with lists of values

 render() {
 return (
 <View style={{ marginTop: 50 }}>
 <DatePickerIOS
 date={this.state.date}
 onDateChange={this.onDateChange}
 />
 <Text style={{ marginTop: 40, textAlign: 'center' }}>
 { this.state.date.toLocaleDateString() } { this.state.date.

toLocaleTimeString() }
 </Text>
 </View>)
 }
}

10.3	 Using PickerIOS to work with lists of values
Using PickerIOS, you can access the native iOS Picker component. This component
basically allows you to scroll through and choose from a list of values using the native
UI (see figure 10.3). PickerIOS has the methods and props listed in table 10.2.

Table 10.2   PickerIOS methods and props

Prop Type Description

itemStyle Object (style) The text style for items within the
container

onValueChange Function (value) Called when the PickerIOS
value changes

selectedValue Number or string Currently selected PickerIOS
value

PickerIOS wraps a list of items to be rendered as children. Each child item must be
a PickerIOS.Item:

import { PickerIOS } from 'react-native'
const PickerItem = PickerIOS.Item

<PickerIOS>
 <PickerItem />
 <PickerItem />
 <PickerItem />
</PickerIOS>

It’s possible to declare each PickerIOS.Item individually as done here, but most of the
time you’ll be mapping over elements in an array and returning a PickerIOS.Item for
each item in the array. The following listing shows an example.

Returns the DatePickerIOS
component, and passes in the
date and onDateChange as props

Renders the date value as text

Figure 10.3   PickerIOS rendering a list of
people

Listing 10.8   Using PickerIOS with an array of PickerIOS.Items

const people = [#an array of people];

render() {
 <PickerIOS>
 {
 people.map((p, i) =>(
 <PickerItem key={i} value={p} label={p}/>
))
 }
 <PickerIOS>

}
PickerIOS and PickerIOS.Item receive their own props. For PickerIOS, the main
props are onValueChange and selectedValue. The onValueChange method is called
whenever the picker is changed. The selectedValue is the value the picker shows as
selected in the UI.

230 Chapter 10  Implementing iOS-specific components and APIs

For PickerIOS.Item, the main props are key, value, and label. key is a unique identi-
fier, value is what will be passed to the onValueChange method of the PickerIOS compo-
nent, and label is what is displayed in the UI as the label for the PickerIOS.Item.

10.3.1	 Example of using PickerIOS

In this example, you’ll render an array of people in the PickerIOS. When the value
changes, you’ll update the UI to show the new value.

Listing 10.9   Using PickerIOS to render an array of people

import React, { Component } from 'react'
import { Text, View, PickerIOS } from 'react-native'

const people = [
 {
 name: 'Nader Dabit',
 age: 36
 },
 {
 name: 'Christina Jones',
 age: 39
 },
 {
 name: 'Amanda Nelson',
 age: 22
 }
];

const PickerItem = PickerIOS.Item

class App extends Component {

 constructor() {
 super()
 this.state = {
 value: 'Christina Jones'
 }
 this.onValueChange = this.onValueChange.bind(this)
 }

 onValueChange(value) {
 this.setState({ value });
 };

 render() {
 return (
 <View style={{ marginTop: 50 }}>
 <PickerIOS
 onValueChange={this.onValueChange}
 selectedValue={this.state.value}
 >
 {
 people.map((p, i) => {
 return (
 <PickerItem

Imports PickerIOS
from React Native

Creates an array of people that’s used to
populate the PickerItem values

Creates an initial value in the state to
hold the chosen picker value

Creates an onValueChange method to
update the state value with the new
value from the PickerIOS

Renders the PickerIOS, passing on
ValueChange and selectedValue as props

Renders a PickerIOS.Item for every
person in the people array

	 231Using ProgressViewIOS to show loading indicators

 key={i}
 value={p.name}
 label={p.name}
 />
)
 })
 }
 </PickerIOS>
 <Text style={{ marginTop: 40, textAlign: 'center' }}>
 {this.state.value}
 </Text>
 </View>)
 }
}

10.4	 Using ProgressViewIOS to show loading indicators
ProgressViewIOS lets you render the native UIProgressView in the UI. Basically, it’s a
native way to show a loading-percentage indication, download-percentage indication,
or any indication of a task that’s being completed (see figure 10.4). It has the props
shown in table 10.3.

Renders the value of
this.state.value in the UI

Figure 10.4   Rendering ProgressViewIOS in the UI

232 Chapter 10  Implementing iOS-specific components and APIs

Table 10.3   ProgressViewIOS methods and props

Prop Type Description

progress Number Progress value (between 0 and 1)

progressImage Image source Stretchable image to display as the progress bar

progressTintColor String (color) Tint color of the progress bar

progressViewStyle Enum (default or bar) Progress bar style

trackImage Image source Stretchable image to display behind the progress bar

trackTintColor String Tint color of the progress bar track

10.4.1	 Use cases for ProgressViewIOS

The most common use case for ProgressViewIOS is working with an external API that
tells you how much information has been passed across the wire when you’re fetching
or posting data or working with a local API that does the same. For example, if you’re
saving a video to the user’s camera roll, you can use ProgressViewIOS to show the user
how much longer the download will take and how much has been completed.

10.4.2	 Example of using ProgressViewIOS

The main prop you need to know about to create this functionality is progress. prog-
ress takes a number between 0 and 1 and fills the ProgressViewIOS with a percentage
fill between 0% and 100%.

In this example, you’ll simulate some data loading by setting a setInterval method
that’s called in componentDidMount. You’ll increment the state value by 0.01 every 0.01
seconds until you’re at 1, starting with the initial value 0.

Listing 10.10   Using ProgressViewIOS to increment progress bar from 0% to 100%

import React, { Component } from 'react'
import { Text, View, ProgressViewIOS } from 'react-native'

class App extends Component {

 constructor() {
 super()
 this.state = {
 progress: 0,
 }
 }

 componentDidMount() {
 this.interval = setInterval(() => {
 if (this.state.progress >= 1) {
 return clearInterval(this.interval)
 }
 this.setState({
 progress: this.state.progress + .01
 })
 }, 10)

Imports ProgressVIewIOS
from React Native

Creates an initial state
value of progress, set to 0

Stores a setInterval method in a
variable, and increments the state
value of progress every 1/100 of a
second by .01. If this.state.progress
is greater than or equal to 1, you
clear and cancel the interval by
calling clearInterval and return.

	 233Using SegmentedControlIOS to create horizontal tab bars

 }

 render() {
 return (
 <View style={{ marginTop: 50 }}>
 <ProgressViewIOS
 progress={this.state.progress}
 />
 <Text style={{ marginTop: 10, textAlign: 'center' }}>
 {Math.floor(this.state.progress * 100)}% complete
 </Text>
 </View>)
 }
}

10.5	 Using SegmentedControlIOS to create horizontal
tab bars
SegmentedControlIOS allows you to access the native iOS UISegmentedControl com-
ponent. It’s a horizontal tab bar made up of individual buttons, as shown in figure 10.5.

Renders the ProgressViewIOS, passing in
this.state.progress as the progress prop

Rounds and renders the value of this.
state.progress in the UI

Figure 10.5   Basic SegmentedControlIOS
implementation with two values (one and two)

234 Chapter 10  Implementing iOS-specific components and APIs

SegmentedControlIOS has the methods and props in table 10.4. At a minimum, it takes
an array of values to render the control values, a selectedIndex as the index of the
control selected, and an onChange method that will be called when a control is pressed.

Table 10.4   SegmentedControlIOS methods and props

Prop Type Description

enabled Boolean If false, the user can’t interact with the control. Default
value is true.

momentary Boolean If true, selecting a segment won’t persist visually.
onValueChange will still work as expected.

onChange Function (event) Callback called when the user taps a segment; passes the
event as an argument.

onValueChange Function (value) Callback called when the user taps a segment; passes the
segment’s value as an argument.

selectedIndex Number Index in props.values of the segment to be (pre)selected.

tintColor String (color) Accent color of the control.

values Array of strings Labels for the control’s segment buttons, in order.

10.5.1	 Use cases for SegmentedControlIOS

SegmentedControlIOS is a good place to separate and display certain filterable/sort-
able data in the UI. For example, if an app had information listed and viewable by
week, you could use SegmentedControlIOS to separate that data even further by day of
the week, with a separate view for each day.

10.5.2	 Example of using SegmentedControlIOS

In this example, you’ll render an array of three items as a SegmentedControlIOS. You’ll
also show a value in the UI based on which item is selected.

Listing 10.11   SegmentedControlIOS rendering three values

import React, { Component } from 'react'
import { Text, View, SegmentedControlIOS } from 'react-native'

const values = ['One', 'Two', 'Three']

class App extends Component {

 constructor() {
 super()
 this.state = {
 selectedIndex: 0,
 }
 }

Imports SegmentedControlIOS
from React Native

Creates an array of values to use
in the SegmentedControlIOS

Creates a state value of
selectedIndex set to 0

	 235Using TabBarIOS to render tabs at the bottom of the UI

 render() {
 const { selectedIndex } = this.state
 let selectedItem = values[selectedIndex]
 return (
 <View style={{ marginTop: 40, padding: 20 }}>
 <SegmentedControlIOS
 values={values}
 selectedIndex={this.state.selectedIndex}
 onChange={(event) => {
 this.setState({selectedIndex:
 event.nativeEvent.selectedSegmentIndex});
 }}
 />
 <Text>{selectedItem}</Text>
 </View>)
 }
}

10.6	 Using TabBarIOS to render tabs at the bottom of the UI
TabBarIOS allows you to access the native iOS tab bar. It renders tabs at the bottom of
the UI, as shown in figure 10.6, giving you a nice, easy way to separate an application
into sections. Its methods and props are listed in table 10.5.

Table 10.5   TabBarIOS props

Prop Type Description

barTintColor String (color) Background color of the tab bar.

itemPositioning Enum
("fill",
"center",
"auto")

Tab bar item positioning. fill distributes items
across the entire width of the tab bar. center
centers items in the available tab bar space. auto
(default) distributes items dynamically according to
the UI idiom; in a horizontally compact environment,
defaults to fill; otherwise defaults to center.

style Object (style) Style of the TabBarIOS.

tintColor String (color) Color of the currently selected tab icon.

translucent Boolean Indicates whether the tab bar is translucent.

unselectedItemTintColor String (color) Color of unselected tab icons (available since iOS 10).

unselectedTintColor String (color) Color of the text on unselected tabs.

TabBarIOS takes a list of TabBarIOS.Item components as children:

const Item = TabBarIOS.Item

<TabBarIOS>
 <Item>

Creates a variable called selectedItem,
set to the value of the selectedIndex of
the values array

Renders the SegmentedControlIOS
component, passing in the values

array as the values prop, this.state.
selectedIndex as the selectedIndex,

and an onChange method that
updates the selectedIndex state value

with the index of the pressed item
Renders the value of
selectedItem in the UI

236 Chapter 10  Implementing iOS-specific components and APIs

 <View> #some content here </View>
 </Item>
 <Item>
 <View> #some other content here </View>
 </Item>
</TabBarIOS>

To show the content in the TabBarIOS.Item, the selected prop of the TabBarIOS.
Item must be true:

<Item
 selected={this.state.selectedComponent === 'home'}
>
 #your content here
</Item>

10.6.1	 Use cases for TabBarIOS

The main use case for TabBarIOS is for navigation. Many times, on mobile, the best
type of navigation is a tab bar. Separating the UI and displaying content in sections
separated by tabs is a common pattern and is encouraged because it delivers a good
user experience.

Figure 10.6   TabBarIOS with two tabs:
History and Favorites

	 237Using TabBarIOS to render tabs at the bottom of the UI

10.6.2	 Example of using TabBarIOS

In this example, you’ll create an app with two views: History and Favorites. When the
TabBarIOS.Item is pressed, you’ll switch between views by calling an onPress method
to update the state.

Listing 10.12   Rendering tabs using TabBarIOS

import React, { Component } from 'react'
import { Text, View, TabBarIOS } from 'react-native'

const Item = TabBarIOS.Item

class App extends Component {

 constructor() {
 super()
 this.state = {
 selectedTab: 'history',
 }
 this.renderView = this.renderView.bind(this)
 }

 renderView(tab) {
 return (
 <View style={{ flex: 1, justifyContent: 'center',
 alignItems: 'center' }}>
 <Text>Hello from {tab}</Text>
 </View>
)
 }

 render() {
 return (
 <TabBarIOS>
 <Item
 systemIcon="history"
 onPress={() => this.setState({ selectedTab: 'history' })}
 selected={this.state.selectedTab === 'history'}
 >
 {this.renderView('History')}
 </Item>
 <Item
 systemIcon='favorites'
 onPress={() => this.setState({ selectedTab: 'favorites' })}
 selected={this.state.selectedTab === 'favorites'}
 >
 {this.renderView('Favorites')}
 </Item>
 </TabBarIOS>
)
 }

You can set icons either with a system icon or by passing in an icon prop and requiring
a local image. For a list of all system icons, see http://mng.bz/rYNJ.

Imports TabBarIOS
from React Native

Creates a variable called Item to
hold the TabBarIOS.Item component

Creates an initial state value of
selectedTab, and sets it to history

Creates a reusable renderView method
that takes in tab as an argument

Renders a TabBarIOS in the UI, passing in
two Item components as children

Sets the systemIcon prop to history

Attaches an onPress method to the item,
updating the selectedTab value in the state

with the value passed in to this.setState({})

Renders the view by
calling this.renderView

238 Chapter 10  Implementing iOS-specific components and APIs

10.7	 Using ActionSheetIOS to show action or share sheets
ActionSheetIOS allows you to access the native iOS UIAlertController to show a
native iOS action sheet or share sheet (see figure 10.7).

The two main methods that you can call on ActionSheetIOS are showAction-
SheetWithOptions and showShareActionSheetWithOptions; these methods have
the options listed in tables 10.6 and 10.7, respectively. showActionSheetWithOptions
lets you pass an array of buttons and attach methods to each of the buttons. It’s called
with two arguments: an options object and a callback function. showShareAction-
SheetWithOptions displays the native iOS share sheet, passing in a URL, message, and
subject to share. It’s called with three arguments: an options object, a failure callback
function, and a success callback function.

Table 10.6   ActionSheetIOS showActionSheetWithOptions options

Option Type Description

options Array of strings List of button titles (required)

cancelButtonIndex Integer Index of the Cancel button in options

destructiveButtonIndex Integer Index of the Destructive button in options

title String Title to show above the action sheet

message String Message to show below the title

Figure 10.7   ActionSheetIOS rendering an action sheet (left) and a share
sheet (right)

	 239Using ActionSheetIOS to show action or share sheets

Table 10.7   ActionSheetIOS showShareActionSheetWithOptions options

Option Type Description

url String URL to share

message String Message to share

subject String Subject for the message

excludedActivityTypes Array Activities to exclude from the action sheet

10.7.1	 Use cases for ActionSheetIOS

The main use case for ActionSheetIOS is to give the user a set of options to choose
from and then call a function based on their selection. For example, in the Twitter
app, the action sheet is used when the Retweet button is pressed, giving the user a few
options including retweet, quote retweet, and cancel. This is a common use case, dis-
playing an action sheet after a user presses a button and giving the user a set of options
to choose from.

10.7.2	 Example of using ActionSheetIOS

In this example, you’ll create a view with two buttons. One button will call showAction-
SheetWithOptions, and the other will call showShareActionSheetWithOptions.

Listing 10.13   Using ActionSheetIOS to create action sheets and share sheets

import React, { Component } from 'react'
import { Text, View, ActionSheetIOS,
 TouchableHighlight } from 'react-native'

const BUTTONS = ['Cancel', 'Button One', 'Button Two', 'Button Three']

class App extends Component {
 constructor() {
 super()
 this.state = {
 clicked: null
 }
 this.showActionSheet = this.showActionSheet.bind(this)
 this.showShareActionSheetWithOptions =
 this.showShareActionSheetWithOptions.bind(this)
 }

 showActionSheet() {
 ActionSheetIOS.showActionSheetWithOptions({
 options: BUTTONS,
 cancelButtonIndex: 0,
 },
 (buttonIndex) => {
 if (buttonIndex > 0) {
 this.setState({ clicked: BUTTONS[buttonIndex] });

Imports ActionSheetIOS
from React Native

Creates an array of buttons
to use in the action sheetCreates a variable clicked

and sets it to null

Creates a showActionSheet method

240 Chapter 10  Implementing iOS-specific components and APIs

 }
 });
 }

 showShareActionSheetWithOptions() {
 ActionSheetIOS.showShareActionSheetWithOptions({
 url: 'http://www.reactnative.training',
 message: 'React Native Training',
 },
 (error) => console.log('error:', error),
 (success, method) => {
 if (success) {
 console.log('successfully shared!', success)
 }
 });
 };
 render() {
 return (
 <View style={styles.container}>
 <TouchableHighlight onPress={this.showActionSheet}
 style={styles.button}>
 <Text style={styles.buttonText}>
 Show ActionSheet
 </Text>
 </TouchableHighlight>
 <TouchableHighlight onPress={this.showShareActionSheetWithOptions}
 style={styles.button}>
 <Text style={styles.buttonText}>
 Show ActionSheet With Options
 </Text>
 </TouchableHighlight>
 <Text>
 {this.state.clicked}
 </Text>
 </View>
)
 }
}

styles = {
 container: {
 flex: 1,
 justifyContent: 'center',
 padding: 20,
 },
 button: {
 height: 50,
 marginBottom: 20,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: 'blue'
 },
 buttonText: {
 color: 'white'
 }
}

Creates a showShareActionSheetWithOptions
method

The success callback takes a Boolean
signifying success or failure, and a string
that indicates the method of sharing.

Creates two buttons in the view, and
attaches the showActionSheet and

showShareActionSheetWithOptions to them

	 241Summary

In the showActionSheet method, you pass in the buttons as the options. Setting
cancelButtonIndex to zero positions Cancel at the bottom of the action sheet.
The callback method takes the button index as an argument; if the button index is
greater than 0, the clicked state value is set to the new button value. When you cre-
ate the showShareActionSheetWithOptions method, you pass in url and a message
to share. The first callback function checks to see if there’s an error, and the second
checks whether success is true.

Summary

¡	To import cross-platform files, use platform-specific android.js and ios.jsfile
extensions.

¡	To render platform-specific code, use the Platform API.
¡	Use DatePickerIOS to choose and save dates in your app.
¡	Use PickerIOS to render and save values from a list.
¡	Use ProgressViewIOS to show loading progress.
¡	Use SegmentedControlIOS to choose from an array of options.
¡	Use TabBarIOS to create and switch between tabs in your app.
¡	With ActionSheetIOS, you can call a native iOS action sheet or share sheet in

an app.

242

11Implementing
Android-specific

components and APIs

This chapter covers
¡	Using DrawerLayoutAndroid to create a

side menu

¡	Creating a native toolbar with ToolbarAndroid

¡	Create paging views using ViewPagerAndroid

¡	Create date/time pickers using
DatePickerAndroid and TimePickerAndroid

¡	Creating toasts using ToastAndroid

In this chapter, we’ll implement the most used Android-specific APIs and compo-
nents, discuss their props and methods, and create examples that will mimic func-
tionality and logic that will get you up to speed quickly. To see how these work, you’ll
create a demo app with a menu, a toolbar, scrollable paging, a date picker, and a time
picker. The app will also implement Android toasts. As you implement each of these
features, you’ll learn the capabilities of the most commonly used Android-specific
APIs and components.

NOTE   Section 10.1 covered how to target platform-specific code. If you
skipped that chapter on iOS-specific components and APIs and don’t
already know how to target platform-specific code, you should read that sec-
tion before continuing.

	 243Creating a menu using DrawerLayoutAndroid

11
11.1	 Creating a menu using DrawerLayoutAndroid

To get started, you’ll first create a slide-out menu (see figure 11.1). This menu will
link to each of the app’s pieces of functionality. It will basically serve as a way to navi-
gate between components. You’ll create this menu using the DrawerLayoutAndroid
component.

The first thing to do is create a new Android application. From the command line in
the folder you’ll be working in, create a new application, replacing YourApplication in
the following command with whatever application name you choose:

react-native init YourApplication

Next, create the files you’ll use to create all this functionality. In the root of the
application, add a folder named app and four files: App.js, Home.js, Menu.js, and
Toolbar.js.

Now you need to update index.android.js to use your first Android-specific compo-
nent, DrawerLayoutAndroid, which is a sliding toolbar from the left side of the screen.
Edit index.android.js to include and implement this component.

Figure 11.1   Initial layout of the application using DrawerLayoutAndroid. The button at the top in the
first screen, Open Drawer, will call a method that opens the drawer. The second screen is the opened drawer.

244 Chapter 11  Implementing Android-specific components and APIs

Listing 11.1   Implementing the DrawerLayoutAndroid component

import React from 'react'
import {
 AppRegistry,
 DrawerLayoutAndroid,
 Button,
 View
} from 'react-native'

import Menu from './app/Menu'
import App from './app/App'

class mycomponent extends React.Component {

 constructor () {
 super()
 this.state = {
 scene: 'Home'
 }
 this.jump = this.jump.bind(this)
 this.openDrawer = this.openDrawer.bind(this)
 }

 openDrawer () {
 this.drawer.openDrawer()
 }

 jump (scene) {
 this.setState({
 scene
 })
 this.drawer.closeDrawer()
 }

 render () {
 return (
 <DrawerLayoutAndroid
 ref={drawer => this.drawer = drawer}
 drawerWidth={300}
 drawerPosition={DrawerLayoutAndroid.positions.Left}
 renderNavigationView={() => <Menu onPress={this.jump} />}>
 <View style={{ margin: 15 }}>
 <Button onPress={() => this.openDrawer()} title='Open Drawer' />
 </View>
 <App
 openDrawer={this.openDrawer}
 jump={this.jump}
 scene={this.state.scene} />
 </DrawerLayoutAndroid>
)
 }
}

AppRegistry.registerComponent('mycomponent', () => mycomponent)

Next, create the menu you’ll use in the drawer, in app/Menu.js.

Imports DrawerLayoutAndroid
from React Native

Imports the Menu component
(not yet created)

Imports the App component
(not yet created)

Creates a component state
setting scene to ‘Home’

Creates a method to open the Drawer

Creates a method to update the scene
state, and then calls closeDrawer()

Implements the DrawerLayoutAndroid component

Creates a reference to the drawer to
call methods on the component

Gives the drawer a width of 300

Positions the
drawer to the left

Renders the
navigation view,

which is the Menu
component

Attaches the jump method to the
menu and creates a button that will

be used to open the drawer

Also passes in the App component as a
child, giving the openDrawer, jump, and
scene as props

	 245Creating a menu using DrawerLayoutAndroid

Listing 11.2   Creating the DrawerLayoutAndroid menu component

import React from 'react'
import { View, StyleSheet, Button } from 'react-native'

let styles

const Menu = ({onPress }) => {
 const {
 button
 } = styles

 return (
 <View style={{ flex: 1 }}>
 <View style={button} >
 <Button onPress={() => onPress('Home')} title='Home' />
 </View>
 <View style={button} >
 <Button onPress={() => onPress('Toolbar')} title='Toolbar Android' />
 </View>
 </View>
)
}

styles = StyleSheet.create({
 button: {
 margin: 10,
 marginBottom: 0
 }
})

export default Menu

Now, in app/App.js, create the following component, which basically takes in a scene
as a prop and returns a component based on the prop.

Listing 11.3   Creating the DrawerLayoutAndroid App component

import React from 'react'

import Home from './Home'
import Toolbar from './Toolbar'

function getScene (scene) {
 switch (scene) {
 case 'Home':
 return Home
 case 'Toolbar':
 return Toolbar
 default:
 return Home
 }
}

const App = (props) => {
 const Scene = getScene(props.scene)

Imports the Home component (not yet created)

Imports the Toolbar component (not yet created)

Creates a getScene method that checks the
scene and returns the correct component

Creates a component based on
the current scene prop

246 Chapter 11  Implementing Android-specific components and APIs

 return (
 <Scene openDrawer={props.openDrawer} jump={props.jump} />
)
}

export default App

Now you can start creating components to interact with the menu. For the current
setup to work, you need to create a Home component and a Toolbar component.
Although you’ve seen the imports, you haven’t actually created those components yet.
In app/Home.js, create the following component, which is a basic introduction page.

Listing 11.4   Creating the DrawerLayoutAndroid Home component

import React, { Component } from 'react'
import {
 View,
 Text,
 StyleSheet
} from 'react-native'

let styles

class Home extends Component {
 render () {
 return (
 <View style={styles.container}>
 <Text style={styles.text}>
 Hello, this is an example application showing off some
 android-specific APIs and Components!
 </Text>
 </View>
)
 }
}

styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 text: {
 margin: 20,
 textAlign: 'center',
 fontSize: 18
 }
})

export default Home

In app/Toolbar.js, create the following component, which will show that you’re in the
toolbar by displaying a “Hello from Toolbar” message.

Renders the component, passing in
openDrawer and jump as props

	 247Creating a toolbar with ToolbarAndroid

Listing 11.5   Creating the DrawerLayoutAndroid Toolbar component

import React from 'react'
import {
 View,
 Text
} from 'react-native'

class ToolBar extends React.Component {
 render () {
 return (
 <View style={{ flex: 1 }}>
 <Text>Hello from Toolbar</Text>
 </View>
)
 }
}

export default ToolBar

Start the application, and you should see the menu shown in figure 11.1.

11.2	 Creating a toolbar with ToolbarAndroid
With everything set up, let’s add a new component, ToolbarAndroid. ToolbarAndroid
is a React Native component that wraps the native Android toolbar. This component
can display a variety of things, including a title, a subtitle, a log, a navigation icon, and
action buttons.

In this example, you’ll implement ToolbarAndroid with a title, a subtitle, and two
actions (Options and Menu; see figure 11.2). When Menu is clicked, you’ll trigger the
openDrawer method, which will open the menu.

In app/Toolbar.js, update the code as follows to implement the toolbar.

Listing 11.6   Implementing ToolbarAndroid

import React from 'react'
import {
 ToolbarAndroid,
 View
} from 'react-native'

class Toolbar extends React.Component {
 render () {
 const onActionSelected = (index) => {
 if (index === 1) {
 this.props.openDrawer()
 }
 }

 return (
 <View style={{ flex: 1 }}>
 <ToolbarAndroid
 subtitleColor='white'
 titleColor='white'
 style={{ height: 56, backgroundColor: '#52998c' }}

Imports the ToolbarAndroid component

Creates an onActionSelected method.
This method takes in an index and calls
this.props.openDrawer if index is 1.
You’ll have an array of actions, each of
which will call this method when
clicked, passing in its own index.

Returns ToolbarAndroid

248 Chapter 11  Implementing Android-specific components and APIs

 title='React Native in Action'
 subtitle='ToolbarAndroid'
 actions={[{ title: 'Options', show: 'always' },
 { title: 'Menu', show: 'always' }]}
 onActionSelected={onActionSelected}
 />
 </View>
)
 }
}
export default Toolbar

When you refresh your device, you should not only see the ToolbarAndroid but also
be able to open the DrawerLayoutAndroid menu by pressing the button labeled Menu.

11.3	 Implementing scrollable paging with ViewPagerAndroid
Next, you’ll create a new example page and component using ViewPagerAndroid. This
component allows you to easily swipe left and right between views. Every child of View-
PagerAndroid is treated as its own separate, swipeable view (see figure 11.3).

To get started, create an app/ViewPager.js file and add the code in listing 11.7 to
implement the ViewPagerAndroid component.

Passes in an array of actions. Pressing
these actions calls them with their array

index as an argument.

Passes in the onActionSelected function
to the onActionSelected property

Figure 11.2   ToolbarAndroid with
title, subtitle, and two actions. This menu is
configurable, but you’re only working with the
default settings in this example.

Figure 11.3   ViewPagerAndroid with two child views. When you swipe the pages, they scroll left and
right to show the next page.

	 249Implementing scrollable paging with ViewPagerAndroid

 title='React Native in Action'
 subtitle='ToolbarAndroid'
 actions={[{ title: 'Options', show: 'always' },
 { title: 'Menu', show: 'always' }]}
 onActionSelected={onActionSelected}
 />
 </View>
)
 }
}
export default Toolbar

When you refresh your device, you should not only see the ToolbarAndroid but also
be able to open the DrawerLayoutAndroid menu by pressing the button labeled Menu.

11.3	 Implementing scrollable paging with ViewPagerAndroid
Next, you’ll create a new example page and component using ViewPagerAndroid. This
component allows you to easily swipe left and right between views. Every child of View-
PagerAndroid is treated as its own separate, swipeable view (see figure 11.3).

To get started, create an app/ViewPager.js file and add the code in listing 11.7 to
implement the ViewPagerAndroid component.

Passes in an array of actions. Pressing
these actions calls them with their array

index as an argument.

Passes in the onActionSelected function
to the onActionSelected property

Figure 11.2   ToolbarAndroid with
title, subtitle, and two actions. This menu is
configurable, but you’re only working with the
default settings in this example.

Figure 11.3   ViewPagerAndroid with two child views. When you swipe the pages, they scroll left and
right to show the next page.

Listing 11.7   Using ViewPagerAndroid to enable a scrollable paging view

import React, { Component } from 'react'
import {
 ViewPagerAndroid,
 View,
 Text
} from 'react-native'

let styles

class ViewPager extends Component {
 render () {
 const {
 pageStyle,
 page1Style,
 page2Style,
 textStyle
 } = styles
 return (
 <ViewPagerAndroid
 style={{ flex: 1 }}

Imports ViewPagerAndroid from React Native

Returns ViewPagerAndroid with two child
views, one with an orange background and
one with a red background

250 Chapter 11  Implementing Android-specific components and APIs

 initialPage={0}>
 <View style={[pageStyle, page1Style]}>
 <Text style={textStyle}>First page</Text>
 </View>
 <View style={[pageStyle, page2Style]}>
 <Text style={textStyle}>Second page</Text>
 </View>
 </ViewPagerAndroid>
)
 }
}

styles = {
 pageStyle: {
 justifyContent: 'center',
 alignItems: 'center',
 padding: 20,
 flex: 1,
 },
 page1Style: {
 backgroundColor: 'orange'
 },
 page2Style: {
 backgroundColor: 'red'
 },
 textStyle: {
 fontSize: 18,
 color: 'white'
 }
}

export default ViewPager

Next, update Menu.js to add the button to view the new component. In Menu.js, add
this button below the Toolbar Android button:

<View style={button} >
 <Button onPress={() => onPress('ViewPager')} title='ViewPager Android' />
</View>

Finally, import the new component and update the switch statement in App.js to ren-
der the component.

Listing 11.8   App.js with the new ViewPager component

import React from 'react'

import Home from './Home'
import Toolbar from './Toolbar'
import ViewPager from './ViewPager'

function getScene (scene) {
 switch (scene) {
 case 'Home':
 return Home
 case 'Toolbar':
 return Toolbar

	 251Using the DatePickerAndroid API to show a native date picker

 case 'ViewPager':
 return ViewPager
 default:
 return Home
 }
}

const App = (props) => {
 const Scene = getScene(props.scene)
 return (
 <Scene openDrawer={props.openDrawer} jump={props.jump} />
)
}

export default App

Run the app. You should see the new ViewPager Android button in the side menu, and
you can view and interact with the new component.

11.4	 Using the DatePickerAndroid API to show a native date picker
DatePickerAndroid lets you open and interact with the native Android date-picker
dialog as shown in figure 11.4. To open and use the DatePickerAndroid component,
import DatePickerAndroid and call DatePickerAndroid.open(). To get started, cre-
ate app/DatePicker.js and then the DatePicker component in it (listing 11.9).

Figure 11.4   DatePickerAndroid with a button that opens the date picker and then shows the
selected date in the view

252 Chapter 11  Implementing Android-specific components and APIs

Listing 11.9   Implementing a DatePicker component

import React, { Component } from 'react'
import { DatePickerAndroid, View, Text } from 'react-native'

let styles

class DatePicker extends Component {

 constructor() {
 super()
 this.state = {
 date: new Date()
 }
 this.openDatePicker = this.openDatePicker.bind(this)
 }

 openDatePicker () {
 DatePickerAndroid.open({
 date: this.state.date
 })
 .then((date) => {
 const { year, month, day, action } = date
 if (action === 'dateSetAction') {
 this.setState({ date: new Date(year, month, day) })
 }
 }) }

 render() {
 const {
 container,
 text
 } = styles

 return (
 <View style={container}>
 <Text onPress={this.openDatePicker} style={text}>
 Open Datepicker
 </Text>
 <Text style={text}>{this.state.date.toString()}</Text>
 </View>
)
 }
}

styles = {
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 text: {
 marginBottom: 15,
 fontSize: 20
 }
}

export default DatePicker

Imports DatePickerAndroid
from React Native

Creates the state, setting the
date as a new Date()

Creates the openDatePicker method that
will be used when the button is pressed

DatePickerAndroid.open returns a promise,
giving you an object with the selected day,

month, year, and the action that was chosen.

If you choose a date, then the action is
dateSetAction. If the modal is dismissed,

then the action is dismissedAction.

Creates a button that calls the openDatePicker
method and displays the date in the view.

	 253Creating a time picker with TimePickerAndroid

Now that you have the component, update app/App.js to include it.

Listing 11.10   app/App.js with the new DatePicker component

import React from 'react'

import Home from './Home'
import Toolbar from './Toolbar'
import ViewPager from './ViewPager'
import DatePicker from './DatePicker'

function getScene (scene) {
 switch (scene) {
 case 'Home':
 return Home
 case 'Toolbar':
 return Toolbar
 case 'ViewPager':
 return ViewPager
 case 'DatePicker':
 return DatePicker
 default:
 return Home
 }
}

const App = (props) => {
 const Scene = getScene(props.scene)
 return (
 <Scene openDrawer={props.openDrawer} jump={props.jump} />
)
}

export default App

Finally, update the menu to add the new button that will open the DatePicker compo-
nent. In app/Menu.js, add the following button below the ViewPager Android button:

<View style={button} >
 <Button onPress={() => onPress('DatePicker')} title='DatePicker Android' />
</View>

11.5	 Creating a time picker with TimePickerAndroid
Next up is TimePickerAndroid. It’s like DatePickerAndroid in that you import it and
call the open method to interact with it. This component brings up a time picker dialog
that allows you to choose a time and use it in your application (figure 11.5).

To standardize the time formats, you’ll use a third party library called moment.js. To
get started with this library, you must first install it. In the root directory of the project,
install moment using either npm or yarn (your preference—both npm and yarn will
work exactly the same here):

npm install moment –save

or

yarn add moment

254 Chapter 11  Implementing Android-specific components and APIs

Next, in app/TimePicker.js, create the following TimePicker component.

Listing 11.11   TimePickerAndroid using moment.js

import React, { Component } from 'react'
import { TimePickerAndroid, View, Text } from 'react-native'
import moment from 'moment'

let styles

class TimePicker extends Component {

 constructor () {
 super()
 this.state = {
 time: moment().format('h:mm a')
 }
 this.openTimePicker = this.openTimePicker.bind(this)
 }

 openTimePicker () {
 TimePickerAndroid.open({
 time: this.state.time
 })
 .then((time) => {
 const { hour, minute, action } = time
 if (action === 'timeSetAction') {
 const time = moment().minute(minute).hour(hour).format('h:mm a')
 this.setState({ time })
 }

Figure 11.5   TimePickerAndroid with both hour and minute views

Imports TimePickerAndroid from React Native

Imports moment from moment.js

Creates an initial time and stores it in
the state with a format 'h:mm a',
hour:minutes a.m. or p.m.

Creates the openTimePicker method

The TimePickerAndroid.open method
returns a promise, with a time object
that contains hour, minute, and action.

Check to see if the action is timeSetAction, and
if so, update the state to reflect the new time.

	 255Creating a time picker with TimePickerAndroid

 })
 }

 render () {
 const {
 container,
 text
 } = styles

 return (
 <View style={container}>
 <Text onPress={this.openTimePicker} style={text}>Open Time Picker</

Text>
 <Text style={text}>{this.state.time.toString()}</Text>
 </View>
)
 }
}

styles = {
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 text: {
 marginBottom: 15,
 fontSize: 20
 }
}

export default TimePicker

Next, update app/App.js to include the new component.

Listing 11.12   app/App.js with the added TimePicker component

import React from 'react'

import Home from './Home'
import Toolbar from './Toolbar'
import ViewPager from './ViewPager'
import DatePicker from './DatePicker'
import TimePicker from './TimePicker'

function getScene (scene) {
 switch (scene) {
 case 'Home':
 return Home
 case 'Toolbar':
 return Toolbar
 case 'ViewPager':
 return ViewPager
 case 'DatePicker':
 return DatePicker
 case 'TimePicker':
 return TimePicker

Creates a button to call openTimePicker
and display the time in the view

256 Chapter 11  Implementing Android-specific components and APIs

 default:
 return Home
 }
}

const App = (props) => {
 const Scene = getScene(props.scene)
 return (
 <Scene openDrawer={props.openDrawer} jump={props.jump} />
)
}

export default App

Finally, update the menu to add the button that will open the new TimePicker compo-
nent. In app/Menu.js, add the following below the DatePicker Android button:

<View style={button} >
 <Button onPress={() => onPress('TimePicker')} title='TimePicker Android' />
</View>

11.6	 Implementing Android toasts using ToastAndroid
ToastAndroid allows you to easily call native Android toasts from a React Native appli-
cation. An Android toast is a popup with a message that goes away after a given period
of time (see figure 11.6). To get started building out this component, create app/
Toast.js, as shown in the next listing.

Listing 11.13   Implementing ToastAndroid

import React from 'react'
import { View, Text, ToastAndroid } from 'react-native'

let styles

const Toast = () => {
 let {
 container,
 button
 } = styles

 const basicToast = () => {
 ToastAndroid.show('Hello World!', ToastAndroid.LONG)
 }

 const gravityToast = () => {
 ToastAndroid.showWithGravity('Toast with Gravity!',
 ToastAndroid.LONG, ToastAndroid.CENTER)
 }

 return (
 <View style={container}>
 <Text style={button} onPress={basicToast}>
 Open basic toast
 </Text>

Imports ToastAndroid from React Native

Creates a basicToast
method that will call
ToastAndroid.show()

Creates a gravityToast method that will
call ToastAndroid.showWithGravity()

Creates two buttons in the view: Open
basic toast and Open gravity toast

Opens the basicToast
popup when the
button is pressed

	 257Implementing Android toasts using ToastAndroid

 <Text style={button} onPress={gravityToast}>
 Open gravity toast
 </Text>
 </View>
)
}

styles = {
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 button: {
 marginBottom: 10,
 color: 'blue'
 }
}

export default Toast

The ToastAndroid.show() takes two arguments: a message and a length of time to
show the toast. The time can be either SHORT (about 2 seconds) or LONG (about 4 sec-
onds); this example uses LONG. The ToastAndroid.showWithGravity() method is like
ToastAndroid.show(), but you can pass it a third argument to position the toast at the

Opens the gravityToast popup
when the button is pressed

Figure 11.6   ToastAndroid with toasts in the default and middle positions

258 Chapter 11  Implementing Android-specific components and APIs

top, bottom, or center of the view. In this case, you’re positioning the toast in the mid-
dle of the screen with ToastAndroid.CENTER as the third argument.

Now, update app/App.js to include the new component.

Listing 11.14   Adding the toast component to the app

import React from 'react'

import Home from './Home'
import Toolbar from './Toolbar'
import ViewPager from './ViewPager'
import DatePicker from './DatePicker'
import TimePicker from './TimePicker'
import Toast from './Toast'

function getScene (scene) {
 switch (scene) {
 case 'Home':
 return Home
 case 'Toolbar':
 return Toolbar
 case 'ViewPager':
 return ViewPager
 case 'DatePicker':
 return DatePicker
 case 'TimePicker':
 return TimePicker
 case 'Toast':
 return Toast
 default:
 return Home
 }
}

const App = (props) => {
 const Scene = getScene(props.scene)
 return (
 <Scene openDrawer={props.openDrawer} jump={props.jump} />
)
}

export default App

Finally, update the menu to add the new button that will open the toast component. In
app/Menu.js, add the following button below the TimePicker Android button:

<View style={button} >
 <Button onPress={() => onPress('Toast')} title='Toast Android' />
</View>

	 259Summary

Summary

¡	You can use DrawerLayoutAndroid to create the main menu of an application.
¡	You can use ToolbarAndroid to create an interactive app toolbar.
¡	You can use ViewPagerAndroid to create swipeable views.
¡	With DatePickerAndroid, you can access the native date picker, allowing you to

create and manipulate dates in the application.
¡	TimePickerAndroid lets you access the native time picker, making it possible to

create and manipulate time in the application.
¡	You can easily create native Android toast notifications with ToastAndroid.

Part 4

Bringing it all together

This part of the book pulls together everything covered in the previous
chapters—styling, navigation, animations, and some of the cross-platform com-
ponents—into a single app. We’ll start by looking at the final design and walking
through a basic overview of what the app will do.

You’ll create a new React Native application and install the React Navigation
library, dive deep into styling both the components as well as the navigation UI,
work with data from external network resources by using the Fetch API, and ulti-
mately build out an application that allows users to view information about their
favorite Star Wars characters.

263

12Building a Star Wars
app using cross-

platform components

This chapter covers
¡	The basics of fetching data using the Fetch API

¡	Using a Modal component to show and
hide views

¡	Creating a list using the FlatList component

¡	Using the ActivityIndicator to show
loading state

¡	Using React Navigation in a real-world project to
handle navigation

React Native ships with many components that are ready to use in your apps. Some of
these components work cross-platform: that is, they work regardless of whether you’re
running an app on iOS or Android. Other components are platform-specific: for
example, ActionSheetIOS only runs on iOS, and ToolbarAndroid only runs on the
Android platform (cross-platform components were covered in Chapters 10 and 11).

This chapter covers some of the most-used cross-platform components and
how to implement each one as you build a demo application. For this purpose,

264 Chapter 12  Building a Star Wars app using cross-platform components

you’ll implement the following cross-platform components and APIs by building a
cross-platform Star Wars information app:

¡	Fetch API
¡	Modal

¡	ActivityIndicator

¡	FlatList

¡	Picker

¡	React-Navigation

This app will access SWAPI, the Star Wars API (https://swapi.co), and return informa-
tion about Star Wars characters, starships, home planets, and more, as shown in figure
12.1. When a user clicks People, the app fetches the movie’s main cast from https://
swapi.co/api/people and displays their information. In the process, the app uses sev-
eral React Native cross-platform components. In this chapter, you’ll learn how to use
these components as you do the following:

1	 Set up a new React Native application and install dependencies

2	 Import the People component and create the Container component

3	 Create the Navigation component and register routes

4	 Create the main class for the view

5	 Create the People component

6	 Use the cross-platform components FlatList, Modal, and Picker to create the
state and set up a fetch call to retrieve data

Figure 12.1   The completed Star Wars app that you’ll build with React Native cross-platform
components. You’ll focus on the first link: People.

https://swapi.co)
https://swapi.co/api/people
https://swapi.co/api/people

	 265Creating the app and installing dependencies

NOTE   You can download this chapter’s code from the book’s website (www.
manning.com/books/react-native-in-action) and also from GitHub (https://
github.com/dabit3/react-native-in-action/tree/chapter12/StarWars).

12.1	 Creating the app and installing dependencies
The first thing you need to do is set up a new React Native application and install any
dependencies required to build this app. Go to the command line, and create a React
Native app by typing in the following:

react-native init StarWarsApp

Next, change into the newly created StarWarsApp directory:

cd StarWarsApp

The only thing you’ll need to install for this app is react-navigation, so install it using
either npm or yarn:

¡	Using npm: npm i react-navigation
¡	Using yarn: yarn add react-navigation

Now that the project is created, open App.js and create the components needed for the
screen shown in figure 12.2. At the top of the file, import the components shown next.

Listing 12.1   Importing the initial components

import React, { Component } from 'react';
import {
 StyleSheet,
 Text,
 FlatList,
 TouchableHighlight
} from 'react-native';
import { createStackNavigator } from 'react-navigation';

In this listing you import the required React Native components, as well as createS-
tackNavigator from react-navigation. FlatList is a component that will allow you
to render performant lists in an app using any array of data. createStackNavigator
is a navigator from react-navigation that provides an easy way to navigate between
scenes; each scene is pushed on top of a route stack. All the animations are configured
for you and give the default iOS and Android feel and transitions.

www.manning.com/books/react-native-in-action
www.manning.com/books/react-native-in-action
https://github.com/dabit3/react-native-in-action/tree/chapter
https://github.com/dabit3/react-native-in-action/tree/chapter
12
/StarWars
).

266 Chapter 12  Building a Star Wars app using cross-platform components

12.1.1	 Importing the People component and
creating the Container component

Next, you need to import the two views you’ll
use in this app. Take another look at the first
screen in figure 12.2. As you can see, there are
links for People, Films, and so on. When the
user clicks People, the app should navigate
to a component that lists the people (main
characters) in the Star Wars films. To do this,
you’ll create a People component in section
12.2—you’ll import the component now and
create it later. Below the last import in list-
ing 12.1, import the yet-to-be-created People
component:

import People from './People'

Because the design uses a black color back-
ground and you don’t want to repeat styl-
ing code across components, let’s create a
Container component that you’ll use as a
wrapper for your views. This Container com-
ponent will be strictly used for styling. In the
root of the app, create a new file called Con-
tainer.js, and enter the following code.

Listing 12.2   Creating a reusable Container component

import React from 'react'
import { StyleSheet, View } from 'react-native'

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: 'black',
 },
})

const Container = ({ children }) => (
 <View style={styles.container}>
 {children}
 </View>
)

export default Container

Figure 12.2   The initial view of the app

Stylesheet, covered in
chapter 4, lets you create a
set of reusable styles.

Container takes a single
property, children—in this

case, the component
wrapped in the Container.

Wraps the children
component in a View and
assigns it a style of
container, which will give
the component a black
background and a flex
property of 1

	 267Creating the app and installing dependencies

Import the Container into the App.js file, below the last import of the People
component:

import Container from './Container'

Below the Container import, create an array of data that you’ll use for the links. The
items in the array will be passed to the FlatList component to create the list of links.
This array should contain objects, and each object should contain a title key. You
need the title key to display the name of the link:

const links = [
 { title: 'People' },
 { title: 'Films' },
 { title: 'StarShips' },
 { title: 'Vehicles' },
 { title: 'Species' },
 { title: 'Planets' }
]

12.1.2	 Creating the navigation component and registering routes

At the bottom of the App.js file, you’ll next create the main navigation component
and pass it to the AppRegistry. You’re using createStackNavigator as the navigation
component, and you need to register the routes you’ll use in the application.

Initialize createStackNavigator and pass the navigator to the AppRegistry method,
replacing the default StarWars component with the navigation component as shown in the
following listing. createStackNavigator provides a way for the app to transition between
screens: each new screen is placed on top of a stack and is a cross-platform component.

Listing 12.3   Using createStackNavigator

const App = createStackNavigator({
 StarWars: {
 screen: StarWars
 },
 People: {
 screen: People
 }
})
export default App

12.1.3	 Creating the main class for the initial view

In App.js, below the links array you created in section 12.1.1, add the main class for the
view (listing 12.4). This class returns a list that will render all the movie characters who
come back from the API. You’ll also set the header title using the navigationOptions
static property and set the logo in the header. You’ll render this list using FlatList from
React Native. It’s a built-in interface for rendering simple lists in a React Native app.

The first argument to createStackNavigator is the
route configuration: an object with the routes you
want to define. The route name is defined by the key,
and the value passed to the key defines the
component you want to use for the named route.

The first key is automatically rendered as the initial
route. In this case, you pass in the StarWars component
(created in listing 12.4) as the initial route.

The other route in the app is People: you
pass in the People component (created in
listing 12.5).

268 Chapter 12  Building a Star Wars app using cross-platform components

Listing 12.4   Creating the main StarWars component

class StarWars extends Component {

 static navigationOptions = {

 headerTitle: <Text
 style={{
 fontSize: 34, color: 'rgb(255,232,31)'
 }}
 >Star Wars</Text>,
 headerStyle: { backgroundColor: "black", height: 110 }
 }
 navigate = (link) => {
 const { navigate } = this.props.navigation
 navigate(link)
 }

 renderItem = ({ item, index }) => {
 return (
 <TouchableHighlight
 onPress={() => this.navigate(item.title)}
 style={[styles.item, { borderTopWidth: index === 0 ? 1 : null}]}>
 <Text style={styles.text}>{item.title}</Text>
 </TouchableHighlight>
)
 }

 render() {
 return (
 <Container>
 <FlatList
 data={links}
 keyExtractor={(item) => item.title}
 renderItem={this.renderItem}
 />
 </Container>
)
 }
}

const styles = StyleSheet.create({
 item: {
 padding: 20,
 justifyContent: 'center',
 borderColor: 'rgba(255,232,31, .2)',
 borderBottomWidth: 1
 },
 text: {
 color: '#ffe81f',
 fontSize: 18
 }
});

Because you’re using createStackNavigator from react-navigation, you can pass
in configuration for each route. In this route, you want to change the default header

Creates a static
navigationOptions
object, and passes
in a headerTitle
component and a
headerStyle object

Creates a navigate method that
takes a link as an argument

Loops through the data array and returns
an item and an index for each item

Returns the Container, wraps the FlatList
component in it, and passes in links,
renderItem, and a keyExtractor method

Title

<FlatList />

renderItem returns a row
on each iteration.

Figure 12.3   Components and title for the
StarWars component

	 269Creating the app and installing dependencies

configuration and styling. To do so, you create a static navigationOptions object, and
in it you pass in a headerTitle component containing a title and a headerStyle object
containing some specific styling. The headerTitle is the text you’ll use as the logo, and
headerStyle sets the background color to black and gives a set height to fit the text.

The navigate method takes a link as an argument. Any component rendered
by StackNavigation receives the navigation object as a prop. You use this prop to
destructure the navigate method and then navigate to the link passed in. The link,
in this case the title property in the links array, correlates with the keys passed in to
createStackNavigator.

FlatList takes a renderItem method that loops through the array of data passed in
as the data property and returns an object with an item and an index for each item in
the array. The item is the actual item with all its properties, and the index is the index of
the item. You destructure these as arguments, pass item as an argument to navigate to
display the title, and use index to apply a borderTop style if it’s the first array item.

render() returns the Container, and in it you wrap the FlatList passing in links
as the data and the renderItem method you created earlier. You also pass in a keyEx-
tractor method. If there’s no item labeled key in the array, you have to tell the Flat-
List which item to use as its key; otherwise it will throw an error. Figure 12.3 shows the
initial application view with its components. The final code for App.js is at www.man-
ning.com/books/react-native-in-action and on GitHub at https://github.com/dabit3/
react-native-in-action/blob/chapter12/StarWars/App.js.

Listing 12.4   Creating the main StarWars component

class StarWars extends Component {

 static navigationOptions = {

 headerTitle: <Text
 style={{
 fontSize: 34, color: 'rgb(255,232,31)'
 }}
 >Star Wars</Text>,
 headerStyle: { backgroundColor: "black", height: 110 }
 }
 navigate = (link) => {
 const { navigate } = this.props.navigation
 navigate(link)
 }

 renderItem = ({ item, index }) => {
 return (
 <TouchableHighlight
 onPress={() => this.navigate(item.title)}
 style={[styles.item, { borderTopWidth: index === 0 ? 1 : null}]}>
 <Text style={styles.text}>{item.title}</Text>
 </TouchableHighlight>
)
 }

 render() {
 return (
 <Container>
 <FlatList
 data={links}
 keyExtractor={(item) => item.title}
 renderItem={this.renderItem}
 />
 </Container>
)
 }
}

const styles = StyleSheet.create({
 item: {
 padding: 20,
 justifyContent: 'center',
 borderColor: 'rgba(255,232,31, .2)',
 borderBottomWidth: 1
 },
 text: {
 color: '#ffe81f',
 fontSize: 18
 }
});

Because you’re using createStackNavigator from react-navigation, you can pass
in configuration for each route. In this route, you want to change the default header

Creates a static
navigationOptions
object, and passes
in a headerTitle
component and a
headerStyle object

Creates a navigate method that
takes a link as an argument

Loops through the data array and returns
an item and an index for each item

Returns the Container, wraps the FlatList
component in it, and passes in links,
renderItem, and a keyExtractor method

Title

<FlatList />

renderItem returns a row
on each iteration.

Figure 12.3   Components and title for the
StarWars component

www.manning.com/books/react-native-in-action
www.manning.com/books/react-native-in-action
https://github.com/dabit3/react-native-in-action/blob/chapter12/StarWars/App.js
https://github.com/dabit3/react-native-in-action/blob/chapter12/StarWars/App.js

270 Chapter 12  Building a Star Wars app using cross-platform components

12.2	 Creating the People component using FlatList, Modal,
and Picker
Next you’ll create a People component to fetch and display information about the Star
Wars cast that you get from the Star Wars API (figure 12.4). As part of this component,
you’ll use the React Native cross-platform components Modal and Picker. Modal lets
you display an element on top of whatever view you’re currently working in. Picker
displays a scrollable list of options or values; this component provides a convenient
means of capturing input from a user and making their selection available to the rest
of the application.

When the People component loads, it will start with an empty data array, a loading
state of true, and with a few other pieces of state:

state = {
 data: [],
 loading: true,
 modalVisible: false,
 gender: 'all',
 pickerVisible: false
 }

When the component mounts, you’ll fetch the data you need from the Star Wars API
at https://swapi.co/api/people; and when this data returns, you’ll populate the data
array with the returned data, and set the loading Boolean to false.

You’ll use the modalVisble Boolean to show and hide the Modal component that
will fetch information about the character’s home world. You’ll use pickerVisible to
show and hide a Picker component that will let you choose the gender of the person
you want to view, and will pass the result to a filter that will filter the results accordingly.

Figure 12.4   This component will display the Loading (left) and Loaded (middle) state of the People.
js screen. It will also allow you to view each character’s home world information (right).

https://swapi.co/api/people

	 271Creating the People component using FlatList, Modal, and Picker

Creating a new file, People.js, and begin coding.

Listing 12.5   People.js imports

import React, { Component } from 'react'
import {
 StyleSheet,
 Text,
 View,
 Image,
 TouchableHighlight,
 ActivityIndicator,
 FlatList,
 Modal,
 Picker
} from 'react-native'
import _ from 'lodash'

import Container from './Container'
import HomeWorld from './HomeWorld'

The Lodash utility library provides many convenience functions. You’ll need to install
it via npm or yarn prior to importing it here.

The next step is to create the main class for the component and set up the naviga-
tionOptions to give the header a title as well as some styling. Under the last import in
People.js, create the following People class.

Listing 12.6   Creating the People class and setting up the page title

export default class People extends Component {
 static navigationOptions = {
 headerTitle: 'People',
 headerStyle: {
 borderBottomWidth: 1,
 borderBottomColor: '#ffe81f',
 backgroundColor: 'black'
 },
 headerTintColor: '#ffe81f',
 pressColorAndroid: 'white'
 }
}

The static navigationOptions property is created here, as in the App.js file, but
instead of passing in a component as the headerTitle, you pass in the string “People”.
You also add some styling.

12.2.1	 Creating the state and setting up a fetch call to retrieve data

Now you’ll create the state and set up a fetch call on componentDidMount. Fetch is a
cross-platform API for fetching network resources that’s supplanting XMLHttpRequest.
Fetch isn’t yet 100% compatible with all internet browsers, but React Native provides
a polyfill (an API that mimics the behavior of the original API, in this case Fetch). The
Fetch API is an easy-to-use-out-of-the-box way to work with network requests, including

Imports components from React Native

Imports the lodash utility library

Imports the Container component used in App.js,
because you’ll need the same styling here

Imports the HomeWorld component
(not yet created) that will populate
with a character’s information when
you click View Homeworld

Creates the static navigationOptions property

headerStyle is the style object for the title header.

Sets the color to use the “material
ripple” animation used when the button
is pressed (Android >= 5.0 only)

272 Chapter 12  Building a Star Wars app using cross-platform components

GET, POST, PUT, and DELETE. fetch returns a promise, which makes it easy to work with
asynchronously.

A fetch request usually looks something like this:

fetch('https://swapi.co/api/people/')
 .then(response => response.json())
 .then(json => {
 #do something with the returned data / json
 })
 .catch(err => {
 #handle error here
 })

In the example, the fetch call will hit the Star Wars API at https://swapi.co/api/people
and return an object containing a results array. This results array will contain the char-
acters to display on this page. To view this dataset, open the URL in a browser to check
out the data structure.

The data set looks like the following, with results being the array of movie characters
you’re interested in using:

{
 "count": 87,
 "next": "http://swapi.co/api/people/?page=2",
 "previous": null,
 "results": [
 { "name": "Luke Skywalker",
 "height": "172",
 "mass": "77",
 ...
 },
 ...
}

Once the data is returned from the API, you update the data array in the state with the
results.

Below the navigationOptions object in People.js, create the state and the component
DidMount fetch call.

Listing 12.7   Setting up the initial state and fetching data

state = {
 data: [],
 loading: true,
 modalVisible: false,
 gender: 'all',
 pickerVisible: false
 }
 componentDidMount() {
 fetch('https://swapi.co/api/people/')
 .then(res => res.json())
 .then(json => this.setState({ data: json.results, loading: false }))
 .catch((err) => console.log('err:', err))
 }

https://swapi.co/api/people

	 273Creating the People component using FlatList, Modal, and Picker

In componentDidMount, you fetch the data from the API using fetch(). fetch returns
a promise. You then take the returned data and call the .json() method to read the
response and transform the data. .json() returns a promise containing the JSON
data. Finally, you set the state again, updating the data and loading variables.

12.2.2	 Adding the remaining class methods

At this point in the app, if you load this page, the data should be loaded into the state
and ready to use. Next up, you need to create the rest of the functionality to display this
data, as well as a render method to display the data. To create the rest of the methods
used in this component, add the following code after componentDidMount in People.js.

Listing 12.8   Remaining methods for component functionality

renderItem = ({ item }) => {
 return (
 <View style={styles.itemContainer}>
 <Text style={styles.name}>{item.name}</Text>
 <Text style={styles.info}>Height: {item.height}</Text>
 <Text style={styles.info}>Birth Year: {item.birth_year}</Text>
 <Text style={styles.info}>Gender: {item.gender}</Text>
 <TouchableHighlight
 style={styles.button}
 onPress={() => this.openHomeWorld(item.homeworld)}
 >
 <Text style={styles.info}>View Homeworld</Text>
 </TouchableHighlight>
 </View>
)
}

openHomeWorld = (url) => {
 this.setState({
 url,
 modalVisible: true
 })
}

closeModal = () => {
 this.setState({ modalVisible: false })
}

togglePicker = () => {
 this.setState({ pickerVisible: !this.state.pickerVisible })
}

filter = (gender) => {
 this.setState({ gender })
}

The renderItem method is what you’ll pass to FlatList to render the data in the state.
Every time an item is passed through this method, you get an object with two keys: item
and key. You destructure the item when the method is called and use the item prop-
erties to display the data for the user (item.name, item.height, and so on). Note the

renderItem method that will be passed
to the FlatList

Updates the URL and the modalVisible
Boolean in the state, opening the
HomeWorld modal

Closes the modal by setting
modalVisible in the state to false

Toggles the pickerVisible Boolean

Updates the filter value in the state to the passed-in
value used to filter the data in the render method

274 Chapter 12  Building a Star Wars app using cross-platform components

onPress method passed to the TouchableHighlight component: this method passes
the item.homeworld property to the openHomeWorld method. item.homeworld is a
URL you’ll use to fetch the movie character’s home planet information.

The togglePicker method toggles the pickerVisible Boolean. This Boolean shows
and hides a picker from which you can choose a filter to view characters by gender: all,
female, male, or other (robots and so on).

12.2.3	 Implementing the render method

With all the methods set up, the last thing to do is implement the UI in the render
method. In People.js, you’ll introduce a new component called the ActivityIndicator:
a cross-platform circular loading indicator that will indicate the loading state (you can
see a list of properties in table 12.1). After the filter method, add the render method
as shown next.

Listing 12.9   render method

render() {
 let { data } = this.state
 if (this.state.gender !== 'all') {
 data = data.filter(f => f.gender === this.state.gender)
 }

 return (
 <Container>
 <TouchableHighlight style={styles.pickerToggleContainer}
 onPress={this.togglePicker}>
 <Text style={styles.pickerToggle}>
 {this.state.pickerVisible ? 'Close Filter' : 'Open Filter'}
 </Text>
 </TouchableHighlight>
 {
 this.state.loading ? <ActivityIndicator color='#ffe81f' /> : (
 <FlatList
 data={data}
 keyExtractor={(item) => item.name}
 renderItem={this.renderItem}
 />
)
 }

Destructures the data array from the
state for easier access

Checks whether the filter is set to all: if
so, skips this function; if not, performs a

filter based on the gender of the
character vs. the gender set in the state

Creates a button: Close Filter or Open Filter,
based on the value of this.state.pickerVisible

Checks whether the data is loading by evaluating this.
state.loading: if so, shows an ActivityIndicator to indicate
loading is taking place; if not, renders the FlatList,
passing in the data, this.renderItem, and keyExtractor

	 275Creating the People component using FlatList, Modal, and Picker

 <Modal
 onRequestClose={() => console.log('onrequest close called')}
 animationType="slide"
 visible={this.state.modalVisible}>
 <HomeWorld closeModal={this.closeModal}
 url={this.state.url} />
 </Modal>
 {
 this.state.pickerVisible && (
 <View style={styles.pickerContainer}>
 <Picker
 style={{ backgroundColor: '#ffe81f' }}
 selectedValue={this.state.gender}
 onValueChange={(item) => this.filter(item)}>

 <Picker.Item itemStyle={{ color: 'yellow' }}
 label="All"
 value="all" />
 <Picker.Item label="Males" value="male" />
 <Picker.Item label="Females" value="female" />
 <Picker.Item label="Other" value="n/a" />
 </Picker>
 </View>
)
 }
 </Container>
);
}

When the Close Filter / Open Filter button is clicked, the togglePicker method is
called and the picker is shown or hidden. The onValueChange method fires every time
the picker value is updated, which then updates the state, triggering a rerender of the
component, and updating the filtered list of items in the view.

Table 12.1   ActivityIndicator properties

Property Type Description (some from docs)

animating Boolean Animates the ActivityIndicator icon

color Color Color of the ActivityIndicator

size String (small or large) Size of the ActivityIndicator

The last thing you need is the styling for this component. This code goes below the
class definition in People.js.

Listing 12.10   People component styling

const styles = StyleSheet.create({
 pickerToggleContainer: {
 padding: 25,
 justifyContent: 'center',

The Modal
component stays

hidden until
modalVisible is
set to true and
then slides up

into view. onRequestClose is a required property.
You don’t need to do anything, so just

logs to the console when called.

Animation type of the Modal;
could also be none or fade

If this.state
.pickerVisible is set
to true, renders the

Picker component

Renders the Picker, passing in a value, a
style, and an onValueChange method

276 Chapter 12  Building a Star Wars app using cross-platform components

 alignItems: 'center'
 },
 pickerToggle: {
 color: '#ffe81f'
 },
 pickerContainer: {
 position: 'absolute',
 bottom: 0,
 right: 0,
 left: 0
 },
 itemContainer: {
 padding: 15,
 borderBottomWidth: 1, borderBottomColor: '#ffe81f'
 },
 name: {
 color: '#ffe81f',
 fontSize: 18
 },
 info: {
 color: '#ffe81f',
 fontSize: 14,
 marginTop: 5
 }
});

You can find the final code for this component at www.manning.com/books/react-native-
in-action and also on GitHub at https://github.com/dabit3/react-native-in-action/blob/
chapter12/StarWars/People.js.

12.3	 Creating the HomeWorld component
To finish the app, you’ll create the final component: HomeWorld. In People.js, you cre-
ated a Modal, and this HomeWorld component was the Modal’s content:

<Modal
 onRequestClose={() => console.log('onrequest close called')}
 animationType="slide"
 visible={this.state.modalVisible}>
 <HomeWorld closeModal={this.closeModal} url={this.state.url} />
</Modal>

You’ll use the HomeWorld component to fetch data about a character’s home planet
and display this information to the user in the modal, as shown in figure 12.5.

This component will fetch the url prop that’s passed in when the modal opens in a
fetch call placed in componentDidMount. This happens because componentDidMount is
called every time the visible property of the modal is set to true: it’s basically reload-
ing the component when the modal is shown.

12.3.1	 Creating the HomeWorld class and initializing state

Create a new file: HomeWorld.js. Then, import the components you’ll need, create the
class definition, and create the initial state, as shown next.

Figure 12.5   HomeWorld component displaying data
after fetching from the API. The Close Modal button
calls the closeModal function passed in as a prop.

www.manning.com/books/react-native-in-action
www.manning.com/books/react-native-in-action
https://github.com/dabit3/react-native-in-action/blob/chapter12/StarWars/People.js
https://github.com/dabit3/react-native-in-action/blob/chapter12/StarWars/People.js

	 277Creating the HomeWorld component

Listing 12.11   HomeWorld component class, imports, and initial state

import React from 'react'
import {
 View,
 Text,
 ActivityIndicator,
 StyleSheet,
} from 'react-native'

export default class HomeWorld extends React.Component {
 state = {
 data: {},
 loading: true
 }
}

The initial state holds only two things: an empty data object and a loading Boolean set
to true. When the component loads, you’ll show a loading indicator while you wait for
the data to come back from the API. Once the data loads, you’ll update the loading
Boolean to false and render the data that came back from the API.

Initial state

 alignItems: 'center'
 },
 pickerToggle: {
 color: '#ffe81f'
 },
 pickerContainer: {
 position: 'absolute',
 bottom: 0,
 right: 0,
 left: 0
 },
 itemContainer: {
 padding: 15,
 borderBottomWidth: 1, borderBottomColor: '#ffe81f'
 },
 name: {
 color: '#ffe81f',
 fontSize: 18
 },
 info: {
 color: '#ffe81f',
 fontSize: 14,
 marginTop: 5
 }
});

You can find the final code for this component at www.manning.com/books/react-native-
in-action and also on GitHub at https://github.com/dabit3/react-native-in-action/blob/
chapter12/StarWars/People.js.

12.3	 Creating the HomeWorld component
To finish the app, you’ll create the final component: HomeWorld. In People.js, you cre-
ated a Modal, and this HomeWorld component was the Modal’s content:

<Modal
 onRequestClose={() => console.log('onrequest close called')}
 animationType="slide"
 visible={this.state.modalVisible}>
 <HomeWorld closeModal={this.closeModal} url={this.state.url} />
</Modal>

You’ll use the HomeWorld component to fetch data about a character’s home planet
and display this information to the user in the modal, as shown in figure 12.5.

This component will fetch the url prop that’s passed in when the modal opens in a
fetch call placed in componentDidMount. This happens because componentDidMount is
called every time the visible property of the modal is set to true: it’s basically reload-
ing the component when the modal is shown.

12.3.1	 Creating the HomeWorld class and initializing state

Create a new file: HomeWorld.js. Then, import the components you’ll need, create the
class definition, and create the initial state, as shown next.

Figure 12.5   HomeWorld component displaying data
after fetching from the API. The Close Modal button
calls the closeModal function passed in as a prop.

www.manning.com/books/react-native-in-action
www.manning.com/books/react-native-in-action
https://github.com/dabit3/react-native-in-action/blob/chapter12/StarWars/People.js
https://github.com/dabit3/react-native-in-action/blob/chapter12/StarWars/People.js

278 Chapter 12  Building a Star Wars app using cross-platform components

12.3.2	 Fetching data from the API using the url prop

You’ll call the API using the url property in componentDidMount, which will be called
once the component loads. Below the state declaration in HomeWorld.js, create the
following componentDidMount method.

Listing 12.12   Fetching data and uploading state in componentDidMount

componentDidMount() {
 if (!this.props.url) return
 const url = this.props.url.replace(/^http:\/\//i, 'https://')
 fetch(url)
 .then(res => res.json())
 .then(json => {
 this.setState({ data: json, loading: false })
 })
 .catch((err) => console.log('err:', err))
}

You update the API URL to use HTTPS because React Native doesn’t allow unsecure
HTTP requests out of the box (although it can be configured to work if necessary).
You call fetch on the URL and, when the response comes back, transform the data
into JSON, update the state to set loading to false, and add the data to the state by
updating the data value of state with the returned JSON.

Finally, you need to create the render method and the styling. In the render method,
you’ll display some properties relating to the character’s home world, such as its name,
population, climate, and so on. These styles will be repetitive. In React and React Native,
it’s best to create and reuse a component rather than creating and reusing styling, if it’s
something you’ll be doing more than a handful of times.

In this case, it makes sense to create a custom TextContainer component to use in
the render method to display data. Above the class declaration in HomeWorld.js, create
the following TextContainer component.

Listing 12.13   Creating a reusable TextContainer component

const TextContainer = ({ label, info }) => (
 <Text style={styles.text}>{label}: {info}</Text>
)

In this component, you return a basic Text component and receive two props that
you’ll use: label and info. The static label is the description of the field, and info is
the information you get when the API returns the home world data.

Makes sure there’s a URL; if not, returns
out of the function to not cause an error

Updates the API URL to use HTTPS

Calls fetch on the URL
passed in as a prop

mounir
Typewriter
https://avxhm.se/blogs/hill0

	 279Creating the HomeWorld component

12.3.3	 Wrapping up the HomeWorld component

Now that the TextContainer is ready to go, finish the component by creating the ren-
der method and the styling in HomeWorld.js.

Listing 12.14   render method and styling

export default class HomeWorld extends React.Component {
 ...
 render() {
 const { data } = this.state
 return (
 <View style={styles.container}>
 {
 this.state.loading ? (
 <ActivityIndicator color='#ffe81f' />
) : (
 <View style={styles.HomeworldInfoContainer}>
 <TextContainer label="Name" info={data.name} />
 <TextContainer label="Population" info={data.population} />
 <TextContainer label="Climate" info={data.climate} />
 <TextContainer label="Gravity" info={data.gravity} />
 <TextContainer label="Terrain" info={data.terrain} />
 <TextContainer label="Diameter" info={data.diameter} />
 <Text
 style={styles.closeButton}
 onPress={this.props.closeModal}>
 Close Modal
 </Text>
 </View>
)
 }
 </View>
)
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#000000',
 paddingTop: 20
 },
 HomeworldInfoContainer: {
 padding: 20
 },
 text: {
 color: '#ffe81f',
 },
 closeButton: {
 paddingTop: 20,
 color: 'white',
 fontSize: 14
 }
})

Destructures the data
object from the state

Check whether loading is true; if so, shows
an ActivityIndicator to indicate loading

If loading isn’t true, returns the main
View component that wraps the

TextContainers and displays the data
returned from the API, now stored as the

data object in the state

Creates a button that calls
this.props.closeModal to let

the user close the modal

280 Chapter 12  Building a Star Wars app using cross-platform components

Summary

¡	React Native ships with cross-platform components: components that work on
both the iOS and Android platforms.

¡	Use the Modal component to show overlays by setting the visible prop to true
or false.

¡	Use the Picker component to easily allow user selections. The selectedValue
prop defines which value is selected.

¡	Use the Fetch API to work with network requests and use the response data.
fetch will return a promise with data you can use in the app.

¡	The FlatList component lets you easily and efficiently render lists of data by
passing in a renderItem method as well as a data array as props.

¡	ActivityIndicator is a great, easy way to indicate a loading state in your app. An
indicator is shown or hidden based on the loading state.

¡	Create reusable containers by wrapping the children prop in two React Native
View components.

281

appendix
Installing and running

React Native

A.1	 Developing for iOS devices
At the time of this this writing, if you want to develop for iOS you must have a Mac,
because Linux and Windows aren’t supported for developing for the iOS platform.

A.1.1	 Getting started

To get started, you must have a Mac, and you need the following installed on it:

¡	Xcode
¡	Node.js
¡	Watchman
¡	React Native command-line interface

Follow these steps:

1	 Install Xcode, which is available through the App Store.

2	 The React Native docs and I recommend installing Node and Watchman via
Homebrew. If you don’t already have Homebrew installed, go to http://brew.sh
and install it on your machine.

3	 Open a command line, and install Node and Watchman using Homebrew:

brew install node
brew install watchman

4	 Once Node.js is installed, install the React Native command-line tools by run-
ning the following from the command line:

npm install –g react-native-cli

http://brew.sh

282 Appendix A  Installing and running React Native

If you get a permission error, try again with sudo:

sudo npm install -g react-native-cli

A.1.2	 Testing the installation on iOS

Check to see if React Native is properly installed by creating a new project. In the ter-
minal or on your command line of choice, run the following commands, replacing
MyProjectName with the project name:

react-native init MyProjectName
cd MyProjectName

Now that you’ve created the project and changed into the new directory, you can run
the project a couple of different ways:

¡	From within the MyProjectName directory, run the command react-native
run-ios.

¡	Open the project in Xcode by opening the MyProjectName.xcodeproj file
located at MyProjectName/ios/MyProjectName.xcodeproj.

A.2	 Developing for Android devices
You can develop React Native for Android with a Mac, Linux, or Windows environment.

A.2.1	 Mac and Android

To get started on a Mac, you need the following installed on your machine:

¡	Node.js
¡	React Native command-line tools
¡	Watchman
¡	Android Studio

Follow these steps:

1	 The React Native docs and I recommend installing Node and Watchman via
Homebrew. If you don’t already have Homebrew installed, go to http://brew.sh
and install it on your machine.

2	 Open a command line, and install Node and Watchman using Homebrew:

brew install node
brew install watchman

3	 Once Node.js is installed, install the React Native command-line tools by running
the following from the command line:

npm install -g react-native-cli

4	 Install Android Studio at https://developer.android.com/studio/install.html.

When everything is installed, go to section A.2.4 to create your first project.

http://brew.sh
https://developer.android.com/studio/install.html

	 283Developing for Android devices

A.2.2	 Windows and Android

The following must be installed on your machine:

¡	Node.js
¡	Python2
¡	React Native command-line tools
¡	Watchman
¡	Android Studio

Follow these steps:

1	 Watchman is in the alpha stage for Windows, but it’s working fine so far in my
experience. To install Watchman, go to https://github.com/facebook/watchman
/issues/19 and download the alpha build via the link in the first comment.

2	 React Native recommends installing Node.js and Python2 via Chocolatey, a pack-
age manager for Windows. To do so, install Chocolatey (https://chocolatey.org),
open a command line as admin, and then run these commands:

choco install nodejs.install
choco install python2
Install the React Native command-line interface:
npm install –g react-native-cli

3	 Download and install Android Studio from https://developer.android.com/studio
/install.html.

4	 When everything is installed, go to section A.2.4 to create your first project.

A.2.3	 Linux and Android

The following must be installed on your machine:

¡	Node.js
¡	React Native command-line tools
¡	Watchman
¡	Android Studio

Follow these steps:

1	 If you don’t already have Node.js installed, go to https://nodejs.org/en/download
/package-manager and follow the instructions for your Linux distribution.

2	 Run the following command to install the React Native command-line tools:

npm install -g react-native-cli

3	 Download and install Android Studio from https://developer.android.com/studio
/install.html.

4	 Download and install Watchman from https://facebook.github.io/watchman
/docs/install.html#installing-from-source.

Once everything is installed, continue to the next section to create your first project.

https://github.com/facebook/watchman/issues/19
https://github.com/facebook/watchman/issues/19
https://chocolatey.org/
https://developer.android.com/studio/install.html
https://developer.android.com/studio/install.html
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://developer.android.com/studio/install.html
https://developer.android.com/studio/install.html
https://facebook.github.io/watchman/docs/install.html#installing-from-source
https://facebook.github.io/watchman/docs/install.html#installing-from-source

284 Appendix A  Installing and running React Native

A.2.4	 Creating a new project (Mac/Windows/Linux)

Once your development environment is set up and react-native-cli is installed, you cre-
ate new React Native projects from the command line. Navigate to the folder in which
you want to create a project, and issue the following command, replacing MyProject-
Name with the project name:

react-native init MyProjectName

A.2.5	 Running a project (Mac/Windows/Linux)

To run a React Native project, change directories into the project from the command
line, and run this command for Android:

react-native run-android

285

Numbers
3D effects  123

A
ActionSheetIOS  238–241

examples of  239–241
use cases for  239

actions, showing with ActionSheetIOS  238–241
ActivityIndicator component  274
addCity method  150, 152
addLocation method  150, 157, 160
aligning

children in containers  139–140
text, horizontally  109

alignItems property  135, 139–140
alignSelf property  135, 140
Android operating system

APIs for  242–259
components for  242–259

DrawerLayoutAndroid  243–247
TimePickerAndroid  253–255
ToastAndroid  256–258
ToolbarAndroid  247–248
ViewPagerAndroid  248–250

creating drop shadows with Elevation  119–120
file extensions  223–224
React Native with  282–284

creating new projects  284
Linux and Android  283–284
Mac and Android  282
running projects  284
Windows and Android  283

Animated API  163–165
Animated library  177–178
animated sequences  172–174
animating form inputs to expand on focus  165
creating custom loading animations with

interpolation  167–170
multiple parallel animations  170–171
overview  163–165
staggering start times with Animated.stagger  175

Animated.loop function  167, 170
animatedMargin  167
Animated.parallel function  171
animatedRotation value  170
Animated.stagger  175
Animated.timing function  167, 170
Animated.View  165
animations

jumpy  177
laggy  177
loading   167–170
parallel  170–171

APIs (application programming interfaces)  278
App.js  24
appKey argument  47
AppRegistry method  47, 267
AppRegistry.registerComponent  24, 26
arrays  38
AsyncStorage API  159

B
Babel tool  13
backfaceVisibility property  127, 132

index

286 index

backgroundColor property  59, 84, 95
background colors  84–86
barTintColor  235
BookDisplay component  35
borderBottomColor property  86
borderBottomLeftRadius property  86
borderBottomRightRadius property  86
borderBottomWidth property  86
borderColor property  86
borderLeftColor property  86
borderLeftWidth property  86
border properties  86–92

adding borders to components  90–92
border radius to create shapes  88–90
creating with color, width, and style

properties  87–88
borderRadius property  83, 86
borderRightColor property  86
borderRightWidth property  86
borderStyle property  86, 88
borderTopColor property  86
borderTopLeftRadius property  86
borderTopRightRadius property  86
borderTopWidth property  86
borderWidth property  83, 86
Button component  16, 39, 60

C
cancelButtonIndex  238, 241
Cartesian plane  124
CenterMessage component  150
center option  137
children in containers  139–140
Chocolatey package manager  283
classes

creating  276–277
in React  5–6
main classes for initial view  267–269

class methods  273–274
Class syntax  18
clipped items  142–144
closeModal function  276
colors

background colors  84–86
coloring text  101–104

combining components  21–22
Component class  20
componentDidMount method  6, 41–42, 44, 167,

272, 278

componentDidUpdate method  43
components  5, 10–15, 9–22

adding borders to  90–92
altering dimensions with flex  135–136
combining  21–22
composition of  17–19

Class syntax  18
createClass syntax  17
createElement  18–19
stateless (reusable) components  18

Container components  266–267
creating  276–280

creating classes  276–277
fetching data from APIs with url property  278
initializing states  276–277
using FlatList  270–276
using Modal  270–276
using Picker  270–276

creation lifecycle
componentDidMount lifecycle method  42
componentWillUnmount lifecycle method  44
static getDerivedStateFromProps method  42

defining space around  137–138
designing apps using  46
exportable  19–21

component declarations  20
exports  21
importing  20
render methods  20–21

flexbox for layout of  135–144
alignItems  139–140
alignSelf  140
flexDirection  136–137
flex property  135–136
flexWrap  142–144
justifyContent  137–138

for navigation  267
managing data using props  32–38

destructuring props  36–37
destructuring state  36–37
dynamic props  34–35
passing arrays as props  38
passing objects as props  38

managing data using state  28–32
manipulating component state  28–32

setting initial state  28–29
updating state  29–32

native  16–17

	 287index

overview of  16
People components  266–267
position style to place  97–99
reusable  18
specifications for  39–41

constructors  40–41
creating UI with render method  39–40
property initializers  40–41

stateless  18, 37–38
update lifecycle

componentDidUpdate lifecycle method  43
shouldComponentUpdate lifecycle

method  43
componentWillUnmount method  41, 44
connect function  73
console.log() function  51
constructor function  29, 40
constructors  40–41
Container components  266–267
containers

children, aligning in  139–140
parents  140

Cordova  14–15
createAnimatedComponent  163–178
createAnimation function  174
createClass syntax  17
createDrawerNavigator API  160
createElement  18–19
create-react-native-app command  23
createStackNavigator  149, 265, 267

D
data

creating states to retrieve  271–273
fetching from APIs with url property  278
managing using props  32–38

destructuring props  36–37
destructuring state  36–37
dynamic props  34–35
passing arrays as props  38
passing objects as props  38
props with stateless components  37–38

managing using state  28–32
retrieving  271–273
unidirectional data flow  8–12

DatePickerAndroid API  251–254
DatePickerAndroid.open() function  251
DatePickerIOS  226
date pickers  251–254
Debug JS Remotely option  53
declarations  20
deleteTodo function  63
dependencies  265–269
designing apps  46
destructiveButtonIndex  238
destructuring

props  36–37
state  36–37

developer menu
opening  52–54

in Android emulators  53
in iOS simulators  52

overview of  53–54
Dev Settings option  54
diffing  8
DIP (device-independent pixel)  117
direction of flex  136–137
don’t repeat yourself (DRY) principle  36
DPI (dots per inch)  117
DPs (device-independent pixels)  116–117
drawer-based navigation  146
DrawerLayoutAndroid  243–247
DrawerNavigator  160–161
drop shadows  121–122

with Elevation  119–120
with ShadowPropTypesIOS  118–119, 118–120

DRY (don’t repeat yourself) principle  36
dynamic props  34–35

E
easing  167
Easing.linear  170
ECMAScript 5  17
ECMAScript 2015  18
elements, moving along axis  123–124
Elevation, creating drop shadows with  119–120
emulators  53
Enable Hot Reloading option  54
Enable Live Reload option  54
entry point of components  5
ES5 (ECMAScript 5)  17

288 index

ES2015 (ECMAScript 2015)  18
excludedActivityTypes  239
exportable components  19–21

component declarations  20
exports  21
importing  20
render methods  20–21

exports  21

F
false element  39
fetch calls  271–273
filter method  274
FlatList  270–276

adding class methods  273–274
creating states to retrieve data  271–273
implementing render methods  274–276
setting up fetch calls to retrieve data  271–273

flex
altering component dimensions with  135–136
specifying direction with flexDirection  136–137

flexbox  135–144
alignItems  139–140
alignSelf  140
flexDirection  136–137
flex property  135–136
flexWrap  142–144
justifyContent  137–138

flexDirection property  99, 135–137
flex-end option  137
flex-start option  137
flexWrap property  135, 142–144
Flow  23
Flutter  15
font styles  104–107

adjusting text size with fontsize  106
changing  106
specifying font family  104
specifying font weights  106–107

fontWeight property  76
font weights  106–107
forceUpdate method  31
form inputs  165
fullName property  41
functional components  38

G
getDerivedStateFromProps method  41
getSnapshotBeforeUpdate method  41
getStyleSheet function  82
getVisibleTodos function  70
.gitignore   23

H
headerTitle component  269
headerTitleStyle property  156
height of text elements  108
Homebrew  281
Home class  21, 246
horizontal tab bars  233–234
hot reloading  13, 54

I
importing  20
index.js  24
initializing

properties  40–41
states  276–277

initial view  267–269
inputChange function  51, 56
Input component  55
inputRange  167
inputValue property  48, 56
installing dependencies  265–269
interpolation  167–170
iOS operating system

components for  222–241
ActionSheetIOS  238–241
DatePickerIOS  226
PickerIOS  228–230
ProgressViewIOS  231–232
SegmentedControlIOS  233–234
TabBarIOS  235–237
targeting platform-specific code  223–225

controlling letter spacing in  110
file extensions  223–224
React Native with  281–282
ShadowPropTypesIOS  118–119, 118–120
text decoration styles  109

item.homeworld property  274
itemPositioning  235
itemStyle  228

	 289index

J
JavaScript programming language  4, 18–19
json() method  273
JSX extension  8

class syntax  18
createClass syntax  17
stateless (reusable) components  18

jumpy animations  177
justifyContent property  135, 137–138

K
keyboardShouldPersistTaps prop  48
keyExtractor method  269

L
laggy animations  177
laying out apps  46
lifecycle methods  41–44

componentDidMount lifecycle method  42
componentDidUpdate lifecycle method  43
componentWillUnmount lifecycle method  44
shouldComponentUpdate lifecycle method  43
static getDerivedStateFromProps method  42

lineHeight property  108
Linux operating systems  283–284
lists of values  228–230
loading animations  167–170
loading indicators  231–232
Lodash utility library  271

M
main classes for initial view  267–269
marginBottom property  93
marginLeft property  93
marginRight property  93
margins  92–99

margin property  93
position style to place components  97–99

marginTop property  93, 174
menus  243–247
Modal  270–276

adding class methods  273–274
creating states to retrieve data  271–273
implementing render methods  274–276
setting up fetch calls to retrieve data  271–273

modalVisible Boolean  270
moment.js  253
monospace option  104
mounting  6, 41

N
name property  6
native components  16–17
native date pickers  251–254
native threads  177–178
navigate method  269
navigation  145–161

building navigation-based apps  146–160
drawer-based, creating with

DrawerNavigator  160–161
React Native vs. web  146

navigation components  267
navigationOptions property  155, 158, 267, 271
Node.js  283
nowrap value  142
npm (node package manager)  23
null element  39

O
objects, passing as props  38
onBlur  165
onDateChange method  226
onFocus  165
onPress method  29, 67, 129, 237, 274
onValueChange method  228, 275
openDrawer method  247
options object  149
organizing styles  76–83

declaring stylesheets in same file as
components  79

declaring stylesheets in separate files  79–80
outputRange  167

P
package.json file  24
padding  92–99

padding property  95–97
position style to place components  97–99

paddingBottom property  95
paddingLeft property  95
paddingRight property  95

290 index

paddingTop property  95
paging, scrollable  248–250
parallel animations  170–171
parent containers  140
People components  266–267
perspective  123
Picker  270–276

adding class methods  273–274
creating states to retrieve data  271–273
implementing render methods  274–276
setting up fetch calls to retrieve data  271–273

PickerIOS  228–230
Picker. Modal  270
pickerVisible Boolean  274
pixel density  117
pixels  116–117
pixels per inch (PPI)  117
placeholderTextColor  51
Platform API  25, 224–225
Platform component  104
Platform.OS property  224
platforms, detecting  224–225
Platform.select function  116, 122, 225
platform-specific code  223–225

Android file extensions  223–224
detecting platforms with Platform API  224–225
iOS file extensions  223–224

platform-specific sizes and styles  116–122
points  116–117
position style  97–99
PPI (pixels per inch)  117
ProgressBarAndroid  116
progressImage  232
progressTintColor  232
ProgressViewIOS  231–232

examples of  232
overview of  116
use cases for  232

progressViewStyle  232
property initializers  40–41
props

destructuring  36–37
dynamic  34–35
managing component data using  32–38
passing arrays as  38
passing objects as  38

with stateless components  37–38
props.navigation.state.params  156

R
React

classes  5–6
lifecycle of  6
overview of  27–44

React.createElement  18
React Native  281–284

advantages of  10–15
community  14
developer availability  11
developer experience  13
developer productivity  11–12
efficiency  13–14
immediate updates  14
open source  14
productivity  13–14
transpilation  13
unidirectional data flow  12

disadvantages of  15
overview of  6–8, 4–10

components  9–10
diffing  8
JSX  8
React  8
React classes  5–6
React lifecycle  6
threading  8
unidirectional data flow  8

React Native App CLI  22–23
React Native apps

creating  45–72, 265–269
design  46
developer menu, opening  52–54

designing  46
developing for Android devices  282–284

creating new projects  284
Linux and Android  283–284
Mac and Android  282
running projects  284
Windows and Android  283

developing for iOS devices  281–282
navigation-based  146–160

	 291index

React Native CLI  23–26
react-native package  6
react-native run-android  50
react-native run-ios  50
react-navigation  268
react package  6
red, green, and blue (RGB)  116
registering routes  267
Reload option  53
rendering tabs  235–237
renderItem method  269, 273
render methods  20–21

creating UI with  39–40
implementing  274–276
overview of  6, 30

resolution  117
reusable components  18
RGB (red, green, and blue)  116
rotate  124–126
rotating elements  124–128
ROTATION label  125
rotation variable  170
routes  267

S
scale  128
scale transform  129–132
scaling objects onscreen  128
scrollable paging  248–250
ScrollView component  48
SegmentedControlIOS  233–234

examples of  234
use cases for  234

selectedIndex  234
selectedValue method  228
selectionColor  51
sequences, animated  172–174
setInterval method  232
setState function  28–29
setTimeout function  42, 167
setType function  68, 70
shadowColor property  76, 121
shadowOffset property  121
shadowOpacity property  118, 121
ShadowPropTypesIOS  76, 118–119, 118–120
shadowRadius  118
shadows  109–110

sheets, sharing  238–241
shouldComponentUpdate lifecycle method  43
shouldComponentUpdate method  41
showActionSheet method  241
showActionSheetWithOptions method  238
Show Perf Monitor option  54
showShareActionSheetWithOptions method  238,

241
simulators  52
size of text, adjusting  106
skewing elements along axis  132
space-around option  137
space-between option  138
spacing

around components  137–138
of letters  110

span tag  6
src directory  147
stack-based navigation  146–160
StackNavigation  269
staggering start times  175
Start Systrace option  54
state

creating to retrieve data  271–273
destructuring  36–37
initializing  276–277
initial, setting  28–29
managing component data using  28–32
manipulating component state  28–32
updating  29–32

stateful components  5
stateless components  5, 18, 37–38
state object  6
static getDerivedStateFromProps method  42
static prop  33
strikethrough  109
style prop  167
styles.border  69
stylesheets

declaring in same file as components  79
declaring in separate files  79–80

styles property  77
styles.selected  69
styling  75–114, 115–144

applying styles  76–78
DPs (device-independent pixels)  116–117

292 index

drop shadows  121–122
with Elevation  119–120
with ShadowPropTypesIOS  118–119, 118–120

flexbox to lay out components  135–144
aligning children in containers with

alignItems  139–140
altering component dimensions with

flex  135–136
defining space around components with

justifyContent  137–138
overriding parent container alignment with

alignSelf  140
preventing clipped items with flexWrap  142–

144
specifying direction of flex with

flexDirection  136–137
organizing styles  78–80

declaring stylesheets in same file as
components  79

declaring stylesheets in separate files  79–80
styles as code  80–83

pixels  116–117
platform-specific  116–122
points  116–117
Text components  100–114

decorative text styles  107–114
font styles  104–107
View components vs.  100–104

transformations  122–134
3D effects with perspective  123
creating thumbnails with scale transform  129–

132
moving elements along axis  123–124
rotating elements  124–126
scaling objects onscreen  128
setting visibility when rotating elements  127–

128
skewing elements along axis  132

View components  83–100
setting background colors  84–86
setting border properties  86–92
specifying margins  92–99
specifying padding  92–99

submit method  153
submitTodo function  58, 60, 63
switch statement  250
Systrace  54

T
TabBar component  68–69
TabBarIOS  235–237

examples of  237
use cases for  236

TabBarItem component  68
tab bars  233–234
tab-based navigation  146–160
tabs  235–237
testing React Native installation  282
textAlign property  109
Text components

styling  100–114
decorative text styles  107–114
font styles  104–107

View components vs.  100–104
TextContainer component  278
textDecorationColor property  109
textDecorationLine property  109
textDecorationStyle property  109
TextInput component  48, 51, 56, 165
textShadowColor property  76, 109
textShadowOffset property  109
textShadowRadius property  109
text styles  107–114

adding lines through  109
adding shadows to text  109–110
aligning text horizontally  109
coloring  101–104
controlling letter spacing (iOS only)  110
examples of  110–114
in iOS  109
specifying height of text elements  108
underlining text  109

theming  146–160
this keyword  40
this.props component  33
this.props.navigation.navigate  153
this.props.navigation.state.params  158
this.props.screenProps  150
this.props.screenProps.addCity  153
this.props.screenProps.addLocation  158
this.state component  28
this.submitTodo  60
threading  8, 177–178
thumbnails  129–132

styling (continued)

	 293index

TimePickerAndroid  253–255
time pickers  253–255
timeZoneOffsetInMinutes  226
timing function  165
tintColor  235
title key  267
ToastAndroid  256–258
ToastAndroid.show() function  257
ToastAndroid.showWithGravity() method  257
toasts  256–258
todo app, creating  45–72

design  46
developer menu, opening  52–54

TodoButton component  66
Todo component  61, 63, 66
todoIndex function  58
TodoList component  61, 63, 70
TodoMVC site  46
todos variable  71
toggleComplete function  63, 68
Toggle Inspector option  54
togglePicker method  274
ToolbarAndroid  116, 247–248
Toolbar component  246
toolbars  247–248
TouchableHighlight component  16, 59, 69, 274
TouchableWithoutFeedback  156
trackImage  232
trackTintColor  232
transformations  122–134

3D effects with perspective  123
creating thumbnails with scale transform  129–

132
moving elements along axis  123–124
rotating elements  124–126
scaling objects onscreen  128
setting visibility when rotating elements  127–128
skewing elements along axis  132

translate  123–124
transpilation  13
type argument  19

U
UIAlertController  238
UIProgressView  231
UISegmentedControl component  233

UI (user interface)  39–40
underlayColor property  59
underlining text  109
unidirectional data flow  8–12
unmounting (deletion) stage  41
unselectedItemTintColor  235
unselectedTintColor  235
updateYear function  29
updating

immediate updates  14
state  29–32

url property  278
useNativeDriver  177
uuid library  147
uuidV4 method  153

V
values, lists of with PickerIOS  228–230
View components

overview of  17, 39, 76
styling  83–100

setting background colors  84–86
setting border properties  86–92
specifying margins  92–99
specifying padding  92–99

Text components vs.  100–104
ViewPagerAndroid  248–250
virtual DOM  8
visibility, setting  127–128
visible property  276

W
Watchman  24, 283
web navigation  146–160
weights of fonts  106–107
Windows operating systems  283
wrap value  142

X
Xamarin  15
XMLHttpRequest  271

Y
Yoga library  99

For ordering information go to www.manning.com

React Quickly
Painless web apps with React, JSX, Redux, and GraphQL
by Azat Mardan

ISBN: 9781617293344
528 pages, $49.99
August 2017

React in Action
by Mark Tielens Thomas

ISBN: 9781617293856
360 pages, $44.99
May 2018

Secrets of the JavaScript Ninja,
Second Edition
by John Resig, Bear Bibeault, and Josip Maras

ISBN: 9781617292859
464 pages, $44.99
August 2016

Get Programming with JavaScript Next
New features of ECMAScript 2015, 2016, and beyond
by JD Isaacks

ISBN: 9781617294204
376 pages, $39.99
April 2018

RELATED MANNING TITLES

https://www.manning.com/books/react-quickly
https://www.manning.com/books/react-in-action
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/get-programming-with-javascript-next

For ordering information go to www.manning.com

Angular 2 Development with TypeScript
by Yakov Fain and Anton Moiseev

ISBN: 9781617293122
456 pages, $44.99
December 2016

Angular in Action
by Jeremy Wilken

ISBN: 9781617293313
320 pages, $44.99
March 2018

Testing Angular Applications
by Jesse Palmer, Corinna Cohn, Michael

Giambalvo, Craig Nishina

ISBN: 9781617293641
240 pages, $44.99
November 2018

Usability Matters
Mobile-first UX for developers and other accidental designers
by Matt Lacey

ISBN: 9781617293931
392 pages, $44.99
July 2018

RELATED MANNING TITLES

https://www.manning.com/books/angular-2-development-with-typescript
https://www.manning.com/books/angular-in-action
https://www.manning.com/books/testing-angular-applications
https://www.manning.com/books/usability-matters

For ordering information go to www.manning.com

Vue.js in Action
by Erik Hanchett with Benjamin Listwon

ISBN: 9781617294624
304 pages, $44.99
September 2018

Testing Vue.js Applications
by Edd Yerburgh

ISBN: 9781617295249
272 pages, $44.99
December 2018

RxJava for Android Developers
by Timo Tuominen

ISBN: 9781617293368
450 pages, $44.99
April 2019

iOS Development with Swift
by Craig Grummitt

ISBN: 9781617294075
568 pages, $49.99
November 2017

YOU MAY ALSO BE INTERESTED IN

https://www.manning.com/books/vue-js-in-action
https://www.manning.com/books/testing-vue-js-applications
https://www.manning.com/books/rxjava-for-android-developers
https://www.manning.com/books/ios-development-with-swift

Nader Dabit

R
eact Native gives mobile and web developers the power
of “and.” Write your app once and easily deploy it to
iOS and Android and the web. React Native apps com-

pile into platform-specifi c code, reducing development time,
effort, and cost! And because you’re using JavaScript and the
React framework, you benefi t from a huge ecosystem of tools,
expertise, and support.

React Native in Action teaches you to build high-quality cross-
platform mobile and web apps. In this hands-on guide, you’ll
jump right into building a complete app with the help of
clear, easy-to-follow instructions. As you build your skills,
you’ll drill down to more-advanced topics like styling, APIs,
animations, data architecture, and more! You’ll also learn how
to maximize code reuse without sacrifi cing native platform
look-and-feel.

What’s Inside
● Building cross-platform mobile and web apps
● Routing, Redux, and animations
● Cross-network data requests
● Storing and retrieving data locally
● Managing data and state

Written for beginner-to-intermediate web, Android, and iOS
developers.

Nader Dabit has been developing with React Native since
its release and is an active member of the React Native
community.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/react-native-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

React Native IN ACTION

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“Learn how to utilize your
existing JavaScript skills to
create rich cross-platform

mobile apps.”
—Ian Lovell

Parmenion Capital Partners

“Dabit not only teaches,
he guides you into details

and introspection that only
an expert React Native
 veteran can know.”

—Joseph Tingsanchali, Netspend

“A quick and practical way
to become productive with

React Native.”—Francesco Strazzullo, extrategy

“Your defi nitive companion
to learning React Native.”
—Ubaldo Pescatore, Datalogic

See first page

	React Native in Action: Developing iOS and Android apps with JavaScript
	contents
	preface
	acknowledgments
	about this book
	about the author
	about the cover illustration
	Part 1: Getting started with React Native
	1 Getting started with React Native
	1.1	Introducing React and React Native
	1.1.1	A basic React class
	1.1.2	React lifecycle

	1.2	What you?ll learn
	1.3	What you should know
	1.4	Understanding how React Native works
	1.4.1	JSX
	1.4.2	Threading
	1.4.3	React
	1.4.4	Unidirectional data flow
	1.4.5	Diffing
	1.4.6	Thinking in components

	1.5	Acknowledging React Native?s strengths
	1.5.1	Developer availability
	1.5.2	Developer productivity
	1.5.3	Performance
	1.5.4	One-way data flow
	1.5.5	Developer experience
	1.5.6	Transpilation
	1.5.7	Productivity and efficiency
	1.5.8	Community
	1.5.9	Open source
	1.5.10	Immediate updates
	1.5.11	Other solutions for building cross-platform mobile applications

	1.6	React Native?s drawbacks
	1.7	Creating and using basic components
	1.7.1	An overview of components
	1.7.2	Native components
	1.7.3	Component composition
	1.7.4	Exportable components
	1.7.5	Combining components

	1.8	Creating a starter project
	1.8.1	Create React Native App CLI
	1.8.2	React Native CLI

	2 Understanding React
	2.1	Managing component data using state
	2.1.1	Correctly manipulating component state

	2.2	Managing component data using props
	2.3	React component specifications
	2.3.1	Using the render method to create a UI
	2.3.2	Using property initializers and constructors

	2.4	React lifecycle methods
	2.4.1	The static getDerivedStateFromProps method
	2.4.2	The componentDidMount lifecycle method
	2.4.3	The shouldComponentUpdate lifecycle method
	2.4.4	The componentDidUpdate lifecycle method
	2.4.5	The componentWillUnmount lifecycle method

	3 Building your first React Native app
	3.1	Laying out the Todo app
	3.2	Coding the todo app
	3.3	Opening the developer menu
	3.3.1	Opening the developer menu in the iOS simulator
	3.3.2	Opening the developer menu in the Android emulator
	3.3.3	Using the developer menu

	3.4	Continuing building the todo app

	Part 2: Developing applications in React Native
	4 Introduction to styling
	4.1	Applying and organizing styles in React Native
	4.1.1	Applying styles in applications
	4.1.2	Organizing styles
	4.1.3	Styles are code

	4.2	Styling view components
	4.2.1	Setting the background color
	4.2.2	Setting border properties
	4.2.3	Specifying margins and padding
	4.2.4	Using position to place components
	4.2.5	Profile Card positioning

	4.3	Styling Text components
	4.3.1	Text components vs. View components
	4.3.2	Font styles
	4.3.3	Using decorative text styles

	5 Styling in depth
	5.1	Platform-specific sizes and styles
	5.1.1	Pixels, points, and DPs
	5.1.2	Creating drop shadows with ShadowPropTypesIOS and Elevation
	5.1.3	Putting it into practice: drop shadows in the ProfileCard

	5.2	Using transformations to move, rotate, scale, and skew?components
	5.2.1	3D effects with perspective
	5.2.2	Moving elements along the x- and y-axes with translateX and?translateY
	5.2.3	Rotating elements with rotateX, rotateY, and rotateZ (rotate)
	5.2.4	Setting visibility when rotating an element more than 90?
	5.2.5	Scaling objects on the screen with scale, scaleX, and scaleY
	5.2.6	Using the scale transform to create a thumbnail of the ProfileCard
	5.2.7	Skewing elements along the x- and y-axes with skewX and skewY
	5.2.8	Transformation key points

	5.3	Using flexbox to lay out components
	5.3.1	Altering a component?s dimensions with flex
	5.3.2	Specifying the direction of the flex with flexDirection
	5.3.3	Defining how space is used around a component with?justifyContent
	5.3.4	Aligning children in a container with alignItems
	5.3.5	Overriding the parent container?s alignment with alignSelf
	5.3.6	Preventing clipped items with flexWrap

	6 Navigation
	6.1	React Native navigation vs. web navigation
	6.2	Building a navigation-based app
	6.3	Persisting data
	6.4	Using DrawerNavigator to create drawer-based navigation

	7 Animations
	7.1	Introducing the Animated API
	7.2	Animating a form input to expand on focus
	7.3	Creating a custom loading animation using interpolation
	7.4	Creating multiple parallel animations
	7.5	Creating an animated sequence
	7.6	Using Animated.stagger to stagger animation start times
	7.7	Other useful tips for using the Animated library
	7.7.1	Resetting an animated value
	7.7.2	Invoking a callback
	7.7.3	Offloading animations to the native thread
	7.7.4	Creating a custom animatable component using createAnimatedComponent

	8 Using the Redux data architecture library
	8.1	What is Redux?
	8.2	Using context to create and manage global state in?a?React application
	8.3	Implementing Redux with a React Native app
	8.4	Creating Redux reducers to hold Redux state
	8.5	Adding the provider and creating the store
	8.6	Accessing data using the connect function
	8.7	Adding actions
	8.8	Deleting items from a Redux store in a reducer

	Part 3: API reference
	9 Implementing
	9.1	Using the Alert API to create cross-platform notifications
	9.1.1	Use cases for alerts
	9.1.2	Example of using alerts

	9.2	Using the AppState API to detect the current application state
	9.2.1	Use cases for AppState
	9.2.2	Example of using AppState

	9.3	Using the AsyncStorage API to persist data
	9.3.1	Use cases for AsyncStorage
	9.3.2	Example of using AsyncStorage

	9.4	Using the Clipboard API to copy text into the user?s?clipboard
	9.4.1	Use cases for Clipboard
	9.4.2	Example of using Clipboard

	9.5	Using the Dimensions API to get the user?s screen?information
	9.5.1	Use cases for the Dimensions API
	9.5.2	Example of using the Dimensions API

	9.6	Using the Geolocation API to get the user?s current location information
	9.6.1	Use cases for the Geolocation API
	9.6.2	Example of using Geolocation

	9.7	Using the Keyboard API to control the location and functionality of the native keyboard
	9.7.1	Use cases for the Keyboard API
	9.7.2	Example of using the Keyboard API

	9.8	Using NetInfo to get the user?s current online/offline?status
	9.8.1	Use cases for NetInfo
	9.8.2	Example of using NetInfo

	9.9	Getting information about touch and gesture events with PanResponder
	9.9.1	Use cases for the PanResponder API
	9.9.2	Example of using PanResponder

	10 Implementing iOS-specific components and APIs
	10.1	Targeting platform-specific code
	10.1.1	iOS and Android file extensions
	10.1.2	Detecting the platform using the Platform API

	10.2	DatePickerIOS
	10.2.1	Example of using DatePickerIOS

	10.3	Using PickerIOS to work with lists of values
	10.3.1	Example of using PickerIOS

	10.4	Using ProgressViewIOS to show loading indicators
	10.4.1	Use cases for ProgressViewIOS
	10.4.2	Example of using ProgressViewIOS

	10.5	Using SegmentedControlIOS to create horizontal tab?bars
	10.5.1	Use cases for SegmentedControlIOS
	10.5.2	Example of using SegmentedControlIOS

	10.6	Using TabBarIOS to render tabs at the bottom of the UI
	10.6.1	Use cases for TabBarIOS
	10.6.2	Example of using TabBarIOS

	10.7	Using ActionSheetIOS to show action or share sheets
	10.7.1	Use cases for ActionSheetIOS
	10.7.2	Example of using ActionSheetIOS

	11 Implementing Android-specific components and APIs
	11.1	Creating a menu using DrawerLayoutAndroid
	11.2	Creating a toolbar with ToolbarAndroid
	11.3	Implementing scrollable paging with ViewPagerAndroid
	11.4	Using the DatePickerAndroid API to show a native date picker
	11.5	Creating a time picker with TimePickerAndroid
	11.6	Implementing Android Toasts using ToastAndroid

	Part 4: Bringing it all together
	12 Building a Star Wars app using cross-platform components
	12.1	Creating the app and installing dependencies
	12.1.1	Importing the People component and creating the Container component
	12.1.2	Creating the navigation component and registering routes
	12.1.3	Creating the main class for the initial view

	12.2	Creating the People component using FlatList, Modal, and Picker
	12.2.1	Creating the state and setting up a fetch call to retrieve data
	12.2.2	Adding the remaining class methods
	12.2.3	Implementing the render method

	12.3	Creating the HomeWorld component
	12.3.1	Creating the HomeWorld class and initializing state
	12.3.2	Fetching data from the API using the url prop
	12.3.3	Wrapping up the HomeWorld component

	index

