PROFESSIONAL
JAVASCRIPT® FOR WEB DEVELOPERS

FOREWORDD. . . .\ttt ittt ettt ittt taneeeneenannnns xlvii
INTRODUCTIONt ittt ittt ettt taaeeeneenannnns xlix
CHAPTER1 WhatlsJavaScript? i 1
CHAPTER 2 JavaScriptin HTML it 13
CHAPTER 3 LanguageBasics......... ..., 25
CHAPTER 4 Variables, Scope,and Memory 101
CHAPTERS5 BasicReference Types........... 125
CHAPTER 6 Collection Reference Types., 167
CHAPTER 7 Iteratorsand Generators.c.covuiiniinininvnn.n. 225
CHAPTER 8 Objects, Classes, and Object-Oriented Programming 251
CHAPTER9 ProxiesandReflect i . 323
CHAPTER 10 Functionsot 349
CHAPTER 11 Promises and Async Functions 391
CHAPTER 12 The Browser Object Model 437
CHAPTER 13 Client Detection.ottt 465
CHAPTER 14 The Document ObjectModel 491
CHAPTER 15 DOMEXtensions ..., 543
CHAPTER16 DOMlLlevels2and3..... 563
CHAPTER 17 Events. et 601
CHAPTER 18 Animation and GraphicswithCanvas....................... 671
CHAPTER 19 ScriptingForms i, 707
CHAPTER 20 JavaScript APIs. i 743
CHAPTER 21 Error Handling and Debugging. oiia... 823
CHAPTER 22 XMLinJavaScript........ ... 849
CHAPTER 23 JSON ... e e e e 861
CHAPTER 24 Network Requests and Remote Resources 871

Continues

vww . allitebooks.cond

http://www.allitebooks.org

CHAPTER 25 Client-Side Storagettt 919

CHAPTER26 Modules i 945
CHAPTER27 Workers i i i 969
CHAPTER 28 BestPractices......... i, 1035
APPENDIX A ES2018and ES2019t 1067
APPENDIXB StrictMode. 1087
APPENDIX C JavaScript Libraries and Frameworks 1095
APPENDIX D JavaScriptTools............ i 1101
INDEX .« ittt ittt et et 1113

vww . allitebooks.cond

http://www.allitebooks.org

PROFESSIONAL
JavaScript® for Web Developers

vww . allitebooks.cond

http://www.allitebooks.org

PROFESSIONAL
JavaScript® for Web Developers

Matt Frisbie

WFrox

A Wiley Brand

vww . allitebooks.cond

http://www.allitebooks.org

Professional Javascript® for Web Developers

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2020 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-36644-7
ISBN: 978-1-119-36635-5 (ebk)
ISBN: 978-1-119-36657-7 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
athttp://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at http://booksupport
.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2018956541

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. JavaScript is a registered trademark of Oracle America, Inc. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or
vendor mentioned in this book.

vww.allitebooks.cond

http://www.allitebooks.org

To Jordan, for her unwavering support no matter

how many times she heard “it’s almost done.”

ABOUT THE AUTHOR

MATT FRISBIE has worked in web development for over a decade. During that time, he’s been a
startup co-founder, an engineer at a Big Four tech company, and the first engineer at a Y Combinator
startup that would eventually become a billion-dollar business. As a Google software engineer, Matt
worked on both the AdSense and Accelerated Mobile Pages (AMP) platforms; his code contribu-
tions run on most of the planet’s web browsing devices. Prior to this, Matt was the first engineer at
DoorDash, where he laid the foundation for their driver scheduling, menu management, and order
dispatch infrastructure. Matt has written two books and recorded two video series for O’Reilly and
Packt, speaks at frontend meetups and webcasts, and is a Level 1 sommelier. He majored in computer
engineering at the University of Illinois at Urbana—Champaign. Matt’s Twitter handle is emattfriz.

ABOUT THE TECHNICAL EDITORS

CHAIM KRAUSE is a lover of computers, electronics, animals, and electronic music. He’s tickled pink
when he can combine two or more of these interests in one project. The vast majority of his knowl-
edge is through self-learning. He jokes with everyone that the only difference between what he does
at home and what he does at work is the logon he uses. As a lifelong learner, he is often frustrated
with technical errors in documentation that waste valuable time and cause unnecessary frustration.
One of the reasons he works as a technical editor on technology books is to help others avoid those
same pitfalls.

MARCIA WILBUR is a technical communicator, consulting in the semiconductor field, focusing on
Industrial IoT (IToT) and Al. Marcia holds degrees in computer science, technical communication,
and information technology. As Copper Linux User Group president, she is heavily involved with the
maker community, leading West Side Linux + Pi, and the East Valley, leading regular Raspberry Pi,
Beaglebone, Banana Pi/Pro, and ESP8266 projects. These projects include home automation, gaming
consoles, surveillance, network, multimedia, and other “pi fun.”

In addition to tinkering, she volunteers for different organizations using Pi units and Linux to provide
access to educational content for K-12 schools in rural, underserved, and disaster-stricken areas. For
fun, she serves the community as the lead Debian developer for Linux Respin, a backup and distro
customization tool.

ACKNOWLEDGMENTS

THANKS TO WILEY FOR allowing me to take on this project. Writing the fourth edition of Profes-
sional JavaScript for Web Developers has been one of the most profoundly challenging yet rewarding
projects I’ve ever worked on, and the patience and support at Wiley was fundamental to getting the
book out the door. Thanks to the Wiley staff, specifically Jim Minatel, who put this project in my
hands and saw it through.

I’d like to acknowledge Nicholas C. Zakas, the author of the first three editions, for all the work he
put in before I became involved. The book would not have amounted to much without the ironclad
foundation he laid. I wish him a continued and speedy recovery.

Special thanks to Adaobi Obi Tulton for her guidance. She was an invaluable resource throughout the
entire process, and I could not have done it without her patience and expertise.

I’d also like to thank everyone who provided feedback on the book’s drafts: Samuel Kallner, Chaim
Krause, Marcia Wilbur, Nancy Rapoport, Athiyappan Lalith Kumar, and Evelyn Wellborn. A book
like this would fall apart without your contributions.

Finally, I’d like to thank Zach Tratar for writing the foreword. I was fortunate enough to meet Zach
the same day I moved to San Francisco. In the years since, he has proven himself to be a feverishly
erudite and eminently likeable fellow—not to mention an uncommonly good software engineer. I am
honored that he agreed to contribute to this book.

CONTENTS

FOREWORD xlvii
INTRODUCTION xlix
CHAPTER 1: WHAT IS JAVASCRIPT? 1
A Short History 2
JavaScript Implementations 3
ECMAScript 3
ECMAScript Editions 4

What Does ECMAScript Conformance Mean? 5
ECMAScript Support in Web Browsers 5

The Document Object Model 7
Why the DOM Is Necessary 8

DOM Levels 8

Other DOMs 9

DOM Support in Web Browsers 9

The Browser Object Model 10
JavaScript Versions 11
Summary 12
CHAPTER 2: JAVASCRIPT IN HTML 13
The <script> Element 13
Tag Placement 16
Deferred Scripts 17
Asynchronous Scripts 17
Dynamic Script Loading 18
Changes in XHTML 19
Deprecated Syntax 20
Inline Code versus External Files 21
Document Modes 22
The <noscript> Element 23
Summary 24
CHAPTER 3: LANGUAGE BASICS 25
Syntax 25
Case-Sensitivity 26
|dentifiers 26

CONTENTS

Comments
Strict Mode
Statements
Keywords and Reserved Words
Variables
The "var’ Keyword
var Declaration Scope
var Declaration Hoisting
‘let’ Declarations
Temporal Dead Zone
Global Declarations
Conditional Declaration
let Declaration in for Loops
‘const’ Declarations

Declaration Styles and Best Practices

Don’t Use var
Prefer const Over let
Data Types
The typeof Operator
The Undefined Type
The Null Type
The Boolean Type
The Number Type
Floating-Point Values
Range of Values
NaN
Number Conversions
The String Type
Character Literals
The Nature of Strings
Converting to a String
Template Literals
Interpolation
Template Literal Tag Functions
Raw Strings
The Symbol Type
Basic Symbol Use

Using the Global Symbol Registry

Using Symbols as Properties
Well-Known Symbols
The Object Type

XVi

26
27
27
28
29
29
29
30
31
32
32
32
34
34
35
36
36
36
36
37
39
40
41
41
42
43
44
46
47
48
48
49
50
51
53
54
54
55
56
57
67

CONTENTS

Operators
Unary Operators
Increment/Decrement
Unary Plus and Minus
Bitwise Operators
Bitwise NOT
Bitwise AND
Bitwise OR
Bitwise XOR
Left Shift
Signed Right Shift
Unsigned Right Shift
Boolean Operators
Logical NOT
Logical AND
Logical OR
Multiplicative Operators
Multiply
Divide
Modulus
Exponentiation Operator
Additive Operators
Add
Subtract
Relational Operators
Equality Operators
Equal and Not Equal
|dentically Equal and Not Identically Equal
Conditional Operator
Assignment Operators
Comma Operator
Statements
The if Statement
The do-while Statement
The while Statement
The for Statement
The for-in Statement
The for-of Statement
Labeled Statements
The break and continue Statements

68
68
68
70
72
73
74
74
75
76
76
76
77
77
78
79
80
80
81
82
82
82
83
84
85
86
86
87
88
88
89
90
90
90
91
91
92
93
93
94

xvii

CONTENTS

The with Statement 95
The switch Statement 96
Functions 98
Summary 100
CHAPTER 4: VARIABLES, SCOPE, AND MEMORY 101
Primitive and Reference Values 101
Dynamic Properties 102
Copying Values 103
Argument Passing 103
Determining Type 105
Execution Context and Scope 106
Scope Chain Augmentation 108
Variable Declaration 109
Function Scope Declaration Using var 109
Block Scope Declaration Using let 111
Constant Declaration Using const 112
Identifier Lookup 113
Garbage Collection 114
Mark-and-Sweep 115
Reference Counting 115
Performance 116
Managing Memory 117
Performance Boosts with const and let Declarations 118
Hidden Classes and the delete Operation 118
Memory Leaks 119
Static Allocation and Object Pools 120
Summary 122
CHAPTER 5: BASIC REFERENCE TYPES 125
The Date Type 126
Inherited Methods 128
Date-Formatting Methods 129
Date/Time Component Methods 129
The RegExp Type 131
RegExp Instance Properties 134
RegExp Instance Methods 135
RegExp Constructor Properties 137
Pattern Limitations 139
Primitive Wrapper Types 139
The Boolean Type 141
The Number Type 141

xviii

CONTENTS

The isInteger() Method and Safe Integers 143

The String Type 144
The JavaScript Character 144

The normalize() Method 147
String-Manipulation Methods 148
String Location Methods 150
String Inclusion Methods 151

The trim() Method 151

The repeat() Method 152

The padStart() and padEnd() Methods 152
String Iterators and Destructuring 152
String Case Methods 153
String Pattern-Matching Methods 153

The localeCompare() Method 156
HTML Methods 157
Singleton Built-in Objects 157
The Global Object 157
URI-Encoding Methods 158

The eval() Method 159
Global Object Properties 160

The Window Object 161

The Math Object 161
Math Object Properties 162

The min() and max() Methods 162
Rounding Methods 163

The random() Method 163
Other Methods 164
Summary 165
CHAPTER 6: COLLECTION REFERENCE TYPES 167
The Object Type 167
The Array Type 170
Creating Arrays 170
Array Holes 172
Indexing into Arrays 174
Detecting Arrays 175
lterator Methods 176
Copy and Fill Methods 176
Conversion Methods 179
Stack Methods 180
Queue Methods 181
Reordering Methods 182

Xix

CONTENTS

Manipulation Methods
Search and Location Methods
Strict Equivalence
Predicate Search
Iterative Methods
Reduction Methods
Typed Arrays
History
WebGL
Emergence of Typed Arrays
Using ArrayBuffers
DataViews
ElementType
Big-Endian and Little-Endian
Corner Cases
Typed Arrays
Typed Array Behavior
Merging, Copying, and Changing Typed Arrays
Underflow and Overflow
The Map Type
Basic API
Order and lteration
Choosing Between Objects and Maps
Memory Profile
Insertion Performance
Lookup Performance
Delete Performance
The WeakMap Type
Basic API
Weak Keys
Non-Iterable Keys
Utility
Private Variables
DOM Node Metadata
The Set Type
Basic API
Order and lteration
Defining Formal Set Operations
The WeakSet Type
Basic API
Weak Keys
Non-Iterable Values

XX

184
186
186
187
188
189
190
190
190
191
191
192
193
194
195
196
197
198
200
201
201
203
206
206
206
206
206
206
207
208
209
209
209
211
211
211
213
215
217
217
219
219

CONTENTS

Utility 219
lteration and Spread Operators 220
Summary 222

CHAPTER 7: ITERATORS AND GENERATORS 225
Introduction to Iteration 225
The Iterator Pattern 226

The Iterable Protocol 227

The Iterator Protocol 229

Custom lterator Definition 231

Early Termination of Iterators 233
Generators 236

Generator Basics 236

Interrupting Execution with "yield” 238

Using a Generator Object as an lterable 239

Using "yield"” for Input and Output 240

Yielding an Iterable 242

Recursive Algorithms Using yield* 244

Using a Generator as the Default lterator 246

Early Termination of Generators 247

The return() Method 247

The throw() Method 248

Summary 249
CHAPTER 8: OBJECTS, CLASSES, AND OBJECT-ORIENTED

PROGRAMMING 251

Understanding Objects 251

Types of Properties 252

Data Properties 252

Accessor Properties 254

Defining Multiple Properties 255

Reading Property Attributes 256

Merging Objects 257

Obiject Identity and Equality 260

Enhanced Object Syntax 261

Property Value Shorthand 261
Computed Property Keys 262
Concise Method Syntax 263

Object Destructuring 264

Nested Destructuring 266

XXi

CONTENTS

Partial Destructuring Completion
Parameter Context Matching
Object Creation
Overview
The Factory Pattern
The Function Constructor Pattern
Constructors as Functions
Problems with Constructors
The Prototype Pattern
How Prototypes Work
Understanding the Prototype Hierarchy
Prototypes and the “in"” Operator
Property Enumeration Order
Object Iteration
Alternate Prototype Syntax
Dynamic Nature of Prototypes
Native Object Prototypes
Problems with Prototypes
Inheritance
Prototype Chaining
Default Prototypes
Prototype and Instance Relationships
Working with Methods
Problems with Prototype Chaining
Constructor Stealing
Passing Arguments
Problems with Constructor Stealing
Combination Inheritance
Prototypal Inheritance
Parasitic Inheritance
Parasitic Combination Inheritance
Classes
Class Definition Basics
Class Composition
The Class Constructor
Instantiation
Understanding Classes as Special Functions
Instance, Prototype, and Class Members
Instance Members
Prototype Methods and Accessors
Static Class Methods and Accessors

XXii

267
268
268
268
269
269
272
272
273
274
278
281
283
284
285
286
287
288
289
289
291
291
292
294
294
295
296
296
297
298
299
302
302
303
303
304
306
307
307
308
309

CONTENTS

Non-Function Prototype and Class Members 310
Iterator and Generator Methods 311
Inheritance 312
Inheritance Basics 312
Constructors, HomeObjects, and super() 313
Abstract Base Classes 316
Inheriting from Built-in Types 317
Class Mixins 318
Summary 320
CHAPTER 9: PROXIES AND REFLECT 323
Proxy Fundamentals 324
Creating a Passthrough Proxy 324
Defining Traps 325
Trap Parameters and the Reflect API 326
Trap Invariants 328
Revocable Proxies 329
Utility of the Reflect API 329
Reflect APl vs. Object API 330
Status Flags 330
Supplanting Operators with First-Class Functions 331

Safe Function Application 331
Proxying a Proxy 331
Proxy Considerations and Shortcomings 332
‘this’ Inside a Proxy 332
Proxies and Internal Slots 333
Proxy Traps and Reflect Methods 333
get() 333
Return value 334
Intercepted operations 334

Trap handler parameters 334
Trap invariants 334

set() 334
Return value 335
Intercepted operations 335

Trap handler parameters 335
Trap invariants 335
has() 335
Return value 336
Intercepted operations 336

Trap handler parameters 336

xXiii

CONTENTS

XXiv

Trap invariants
defineProperty()
Return value
Intercepted operations
Trap handler parameters
Trap invariants
getOwnPropertyDescriptor()
Return value
Intercepted operations
Trap handler parameters
Trap invariants
deleteProperty()
Return value
Intercepted operations
Trap handler parameters
Trap invariants
ownKeys()
Return value
Intercepted operations
Trap handler parameters
Trap invariants
getPrototypeOf()
Return value
Intercepted operations
Trap handler parameters
Trap invariants
setPrototypeOf()
Return value
Intercepted operations
Trap handler parameters
Trap invariants
isExtensible()
Return value
Intercepted operations
Trap handler parameters
Trap invariants
preventExtensions()
Return value
Intercepted operations
Trap handler parameters
Trap invariants

336
336
336
336
337
337
337
337
337
337
338
338
338
338
338
339
339
339
339
339
339
339
340
340
340
340
340
341
341
341
341
341
341
341
342
342
342
342
342
342
342

CONTENTS

apply() 342
Return value 343
Intercepted operations 343
Trap handler parameters 343
Trap invariants 343

construct() 343
Return value 343
Intercepted operations 344
Trap handler parameters 344
Trap invariants 344

Proxy Patterns 344
Tracking Property Access 344
Hidden Properties 345
Property Validation 345
Function and Constructor Parameter Validation 346
Data Binding and Observables 347
Summary 348
CHAPTER 10: FUNCTIONS 349
Arrow Functions 350
Function Names 351
Understanding Arguments 353
Arguments in Arrow Functions 355
No Overloading 355
Default Parameter Values 356
Default Parameter Scope and Temporal Dead Zone 358
Spread Arguments and Rest Parameters 359
Spread Arguments 359
Rest Parameter 360
Function Declarations versus Function Expressions 361
Functions as Values 362
Function Internals 364
arguments 364
this 365
caller 366
new.target 367
Function Properties and Methods 367
Function Expressions 370
Recursion 372
Tail Call Optimization 373

Tail Call Optimization Requirements 374

Coding for Tail Call Optimization 375

XXV

CONTENTS

Closures 376
The this Object 379
Memory Leaks 381

Immediately Invoked Function Expressions 382

Private Variables 384
Static Private Variables 385
The Module Pattern 387
The Module-Augmentation Pattern 388

Summary 389

CHAPTER 11: PROMISES AND ASYNC FUNCTIONS 391

Introduction to Asynchronous Programming 392
Synchronous vs. Asynchronous JavaScript 392
Legacy Asynchronous Programming Patterns 393

Returning Asynchronous Values 393
Handling Failure 394
Nesting Asynchronous Callbacks 394

Promises 395
The Promises/A+ Specification 395
Promise Basics 395

The Promise State Machine 396
Resolved Values, Rejection Reasons, and Utility of Promises 396
Controlling Promise State with the Executor 397
Promise Casting with Promise.resolve() 398
Promise Rejection with Promise.reject() 399
Synchronous/Asynchronous Execution Duality 399
Promise Instance Methods 400
Implementing the Thenable Interface 400
Promise.prototype.then() 400
Promise.prototype.catch() 403
Promise.prototype.finally() 404
Non-Reentrant Promise Methods 405
Sibling Handler Order of Execution 407
Resolved Value and Rejected Reason Passing 408
Rejecting Promises and Rejection Error Handling 408
Promise Chaining and Composition 410
Promise Chaining 410
Promise Graphs 413
Parallel Promise Composition with Promise.all() and Promise.race() 414
Serial Promise Composition 416

XXVi

CONTENTS

Promise Extensions 418
Promise Canceling 418
Promise Progress Notifications 419

Async Functions 421

Async Function Basics 422
The async keyword 422
The await keyword 424
Restrictions on await 426

Halting and Resuming Execution 427

Strategies for Async Functions 430
Implementing Sleep) 430
Maximizing Parallelization 431
Serial Promise Execution 434
Stack Traces and Memory Management 434

Summary 435
CHAPTER 12: THE BROWSER OBJECT MODEL 437
The window Object 438

The Global Scope 438

Window Relationships 439

Window Position and Pixel Ratio 439
Pixel Ratios 439

Window Size 440

Window Viewport Position 441

Navigating and Opening Windows 442
Popping Up Windows 442
Security Restrictions 445
Pop-up Blockers 445

Intervals and Timeouts 446

System Dialogs 448

The location Object 450

Query String Arguments 451
URLSearchParams 452

Manipulating the Location 452

The navigator Object 454

Detecting Plug-ins 456
Legacy Internet Explorer Plugin Detection 457

Registering Handlers 459

The screen Object 459
The history Object 460

XXVii

CONTENTS

Navigation 460
History State Management 461
Summary 462
CHAPTER 13: CLIENT DETECTION 465
Capability Detection 466
Safer Capability Detection 467
Using Capability Detection for Browser Analysis 468
Detecting Feature Support 468
Detecting Browser Identity 468
Capability Detection Limitations 469
User-Agent Detection 470
History of User-Agent Composition 470
Early Browsers 470
Netscape Navigator 3 and Internet Explorer 3 471
Netscape Communicator 4 and Internet Explorer 4 Through 8 472
Gecko 473
WebKit 475
Konqueror 476
Chrome 476
Opera 476

iOS and Android 478
Using User-Agent for Browser Analysis 478
Spoofing a User-Agent 479
Using User-Agents for Browser Analysis 479
Software and Hardware Detection 480
Browser and Operating System Identification 481
The navigator.oscpu Property 481

The navigator.vendor Property 481

The navigator.platform Property 481

The screen.colorDepth and screen.pixelDepth Properties 482

The screen.orientation Property 482
Browser Metadata 482
The Geolocation API 483
Connection State and the NetworkInformation API 486
Battery Status API 487
Hardware 489
Processor Cores 489
Device Memory 489
Maximum Touch Points 489
Summary 489

XXViii

CONTENTS

CHAPTER 14: THE DOCUMENT OBJECT MODEL 491
Hierarchy of Nodes 492
The Node Type 492
The nodeName and nodeValue Properties 493
Node Relationships 494
Manipulating Nodes 495
Other Methods 497

The Document Type 498
Document Children 498
Document Information 499
Locating Elements 500
Special Collections 502
DOM Conformance Detection 503
Document Writing 504

The Element Type 506
HTML Elements 507
Getting Attributes 510
Setting Attributes 511

The attributes Property 511
Creating Elements 513
Element Children 513

The Text Type 514
Creating Text Nodes 515
Normalizing Text Nodes 516
Splitting Text Nodes 517

The Comment Type 517
The CDATASection Type 518
The DocumentType Type 518
The DocumentFragment Type 519
The Attr Type 520
Working with the DOM 521
Dynamic Scripts 521
Dynamic Styles 523
Manipulating Tables 525
Using Nodelists 528
Mutation Observers 529
Basic usage 529
The observe() method 529
Working with Callbacks and MutationRecords 530

The disconnect() method 532

XXiX

CONTENTS

Multiplexing a MutationObserver 532
Reusing a MutationObserver 533
Controlling the Observer scope with MutationObserverlnit 534
Observing attribute mutations 535
Observing character data mutations 536
Observing child mutations 537
Observing subtree mutations 539
Async Callbacks and the Record Queue 540
Behavior of the Record Queue 540

The takeRecords() method 541
Performance, Memory, and Garbage Collection 541
MutationObserver References 541
MutationRecord References 542
Summary 542
CHAPTER 15: DOM EXTENSIONS 543
Selectors API 544
The querySelector() Method 544
The querySelectorAll() Method 544
The matches() Method 545
Element Traversal 546
HTMLS 547
Class-Related Additions 547
The getElementsByClassName() Method 547

The classList Property 548
Focus Management 549
Changes to HTMLDocument 550
The readyState Property 550
Compeatibility Mode 550

The head Property 551
Character Set Properties 551
Custom Data Attributes 551
Markup Insertion 552
The innerHTML Property 552
Using innerHTML in Legacy Internet Explorer 553

The outerHTML Property 554

The insertAdjacentHTML() and insertAdjacentText() Methods 555
Memory and Performance Issues 555
Cross-Site Scripting Considerations 556

The scrollintoView() Method 556
Proprietary Extensions 557
The children Property 557

XXX

CONTENTS

The contains() Method 557
Markup Insertion 558
The innerText Property 558

The outerText Property 560
Scrolling 560
Summary 560
CHAPTER 16: DOM LEVELS 2 AND 3 563
DOM Changes 564
XML Namespaces 564
Changes to Node 566
Changes to Document 567
Changes to Element 567
Changes to NamedNodeMap 568
Other Changes 568
Changes to DocumentType 568
Changes to Document 569
Changes to Node 570
Changes to iframes 571
Styles 572
Accessing Element Styles 572
DOM Style Properties and Methods 573
Computed Styles 575
Working with Style Sheets 576
CSS Rules 577
Creating Rules 578
Deleting Rules 579
Element Dimensions 579
Offset Dimensions 579
Client Dimensions 581
Scroll Dimensions 582
Determining Element Dimensions 584
Traversals 584
Nodelterator 585
TreeWalker 588
Ranges 590
Ranges in the DOM 590
Simple Selection in DOM Ranges 591
Complex Selection in DOM Ranges 592
Interacting with DOM Range Content 593
Inserting DOM Range Content 596
Collapsing a DOM Range 597

XXXi

CONTENTS

Comparing DOM Ranges 597
Cloning DOM Ranges 598
Cleanup 598
Summary 599
CHAPTER 17: EVENTS 601
Event Flow 602
Event Bubbling 602
Event Capturing 603
DOM Event Flow 603
Event Handlers 604
HTML Event Handlers 604
DOM Level 0 Event Handlers 606
DOM Level 2 Event Handlers 607
Internet Explorer Event Handlers 608
Cross-Browser Event Handlers 610
The Event Object 611
The DOM Event Object 611
The Internet Explorer Event Object 615
The Cross-Browser Event Object 617
Event Types 619
Ul Events 619
The load Event 620

The unload Event 622

The resize Event 623

The scroll Event 624
Focus Events 624
Mouse and Wheel Events 625
Client Coordinates 627
Page Coordinates 628
Screen Coordinates 628
Modifier Keys 629
Related Elements 630
Buttons 631
Additional Event Information 632

The mousewheel Event 633
Touch Device Support 633
Accessibility Issues 634
Keyboard and Text Events 634
Key Codes 635
Character Codes 636
DOM Level 3 Changes 637

XXXii

CONTENTS

The textlnput Event 638
Keyboard Events on Devices 639
Composition Events 640
Mutation Events 641
HTMLS Events 641
The contextmenu Event 641

The beforeunload Event 643

The DOMContentLoaded Event 643

The readystatechange Event 644

The pageshow and pagehide Events 645

The hashchange Event 647
Device Events 647
The orientationchange Event 647

The deviceorientation Event 648

The devicemotion Event 650
Touch and Gesture Events 651
Touch Events 651
Gesture Events 653
Event Reference 654
Memory and Performance 659
Event Delegation 659
Removing Event Handlers 661
Simulating Events 662
DOM Event Simulation 663
Simulating Mouse Events 663
Simulating Keyboard Events 664
Simulating Other Events 667
Custom DOM Events 667
Internet Explorer Event Simulation 668
Summary 669
CHAPTER 18: ANIMATION AND GRAPHICS WITH CANVAS 671
Using requestAnimationFrame 672
Early Animation Loops 672
Problems with Intervals 673
requestAnimationFrame 673
cancelAnimationFrame 674
Performance Throttling with requestAnimationFrame 674
Basic Canvas Usage 676
The 2D Context 677
Fills and Strokes 677
Drawing Rectangles 677

XXXiii

CONTENTS

Drawing Paths 679
Drawing Text 681
Transformations 683
Drawing Images 686
Shadows 687
Gradients 687
Patterns 689
Working with Image Data 689
Compositing 691
WebGL 692
The WebGL Context 693
WebGL Basics 693
Constants 694
Method Naming 695
Getting Ready to Draw 695
Viewports and Coordinates 695
Buffers 696
Errors 697
Shaders 697
Drawing 701
Textures 703
Reading Pixels 703
WebGL1 versus WebGL2 704
Summary 705
CHAPTER 19: SCRIPTING FORMS 707
Form Basics 707
Submitting Forms 708
Resetting Forms 709
Form Fields 710
Common Form-Field Properties 711
Common Form-Field Methods 713
Common Form-Field Events 714
Scripting Text Boxes 715
Text Selection 716
The select Event 716
Retrieving Selected Text 717
Partial Text Selection 717
Input Filtering 718
Blocking Characters 719
Dealing with the Clipboard 720
Automatic Tab Forward 721

XXXV

CONTENTS

HTMLS Constraint Validation API 723
Required Fields 723
Alternate Input Types 723
Numeric Ranges 724
Input Patterns 724
Checking Validity 725
Disabling Validation 726

Scripting Select Boxes 726

Options Selection 728

Adding Options 730

Removing Options 730

Moving and Reordering Options 731

Form Serialization 732
Rich Text Editing 734

Using contenteditable 734

Interacting with Rich Text 735

Rich Text Selections 738

Rich Text in Forms 740

Summary 741
CHAPTER 20: JAVASCRIPT APIS 743
Atomics and SharedArrayBuffer 744

SharedArrayBuffer 744

Atomics Basics 745
Atomic Arithmetic and Bitwise Methods 745
Atomic Reads and Writes 747
Atomic Exchanges 748
Atomics Futex Operations and Locks 749

Cross-Context Messaging 751
Encoding API 753

Encoding Text 753
Bulk Encoding 753
Stream Encoding 754

Decoding Text 755
Bulk Decoding 755
Stream Decoding 756

Blob and File APIs 758

The File Type 758

The FileReader Type 759

The FileReaderSync Type 761

Blobs and Partial Reads 761

Object URLs and Blobs 762

XXXV

CONTENTS

Drag-and-Drop File Reading
Media Elements
Properties
Events
Custom Media Players
Codec Support Detection
The Audio Type
Native Drag and Drop
Drag-and-Drop Events
Custom Drop Targets
The dataTransfer Object
dropEffect and effectAllowed
Draggability
Additional Members
Notifications API
Notification Permissions
Showing and Hiding Notification
Notification Lifecycle Callbacks
Page Visibility API
Streams API
Introduction to Streams
Chunks, Internal Queues, and Backpressure
Readable Streams
Using the ReadableStreamDefaultController
Using the ReadableStreamDefaultReader
Writable Streams
Creating a WriteableStream
Using a WritableStreamDefaultWriter
Transform Streams
Piping Streams
Timing APIs
High Resolution Time API
Performance Timeline API
User Timing API
Navigation Timing API
Resource Timing API
Web Components
HTML Templates
Using a DocumentFragment
Using <template> tags
Template Scripts

XXXVi

763
764
765
767
768
769
770
770
770
771
772
773
774
774
775
775
775
776
776
777
778
778
779
779
780
781
781
781
782
784
785
786
788
788
789
790
791
791
792
793
794

CONTENTS

Shadow DOM 795
Introduction to Shadow DOM 795
Creating a Shadow DOM 796
Using a Shadow DOM 797
Composition and Shadow DOM Slots 799
Event Retargeting 801

Custom Elements 802
Defining a Custom Element 802
Adding Web Component Content 804
Using Custom Element Lifecycle Hooks 805
Reflecting Custom Element Attributes 806
Upgrading Custom Elements 807

The Web Cryptography API 808

Random Number Generation 808

Using the SubtleCrypto Object 810
Generating Cryptographic Digests 810
CryptoKeys and Algorithms 812
Generating CryptoKeys 814
Exporting and Importing Keys 816
Deriving Keys from Master Keys 817
Signing and Verifying Messages with Asymmetric Keys 819
Encrypting and Decrypting with Symmetric Keys 820
Wrapping and Unwrapping a Key 821

Summary 822
CHAPTER 21: ERROR HANDLING AND DEBUGGING 823
Browser Error Reporting 824
Desktop Consoles 824
Mobile Consoles 824
Error Handling 825

The try-catch Statement 825
The finally Clause 826
Error Types 826
Usage of try-catch 828

Throwing Errors 829
When to Throw Errors 830
Throwing Errors versus try-catch 831

The error Event 831

Error-Handling Strategies 832

Identify Where Errors Might Occur 833

Static Code Analyzer 833

XXXVii

CONTENTS

Type Coercion Errors 833

Data Type Errors 835
Communication Errors 837
Distinguishing between Fatal and Nonfatal Errors 838
Log Errors to the Server 839
Debugging Techniques 840
Logging Messages to a Console 840
Understanding the Console Runtime 841
Using the JavaScript Debugger 842
Logging Messages to the Page 842
Shimming Console Methods 843
Throwing Errors 843
Common Legacy Internet Explorer Errors 844
Invalid Character 844
Member Not Found 845
Unknown Runtime Error 845
Syntax Error 845
The System Cannot Locate the Resource Specified 846
Summary 846
CHAPTER 22: XML IN JAVASCRIPT 849
XML DOM Support in Browsers 849
DOM Level 2 Core 850
The DOMParser Type 850
The XMLSerializer Type 851
XPath Support in Browsers 852
DOM Level 3 XPath 852
Single Node Results 854
Simple Type Results 854
Default Type Results 855
Namespace Support 856
XSLT Support in Browsers 857
The XSLTProcessor Type 857
Using Parameters 858
Resetting the Processor 859
Summary 859
CHAPTER 23: JSON 861
Syntax 862
Simple Values 862
Objects 862
Arrays 863

YO0Vl

CONTENTS

Parsing and Serialization 864
The JSON Object 865
Serialization Options 866

Filtering Results 866

String Indentation 867

The toJSON() Method 868
Parsing Options 869
Summary 870
CHAPTER 24: NETWORK REQUESTS AND REMOTE RESOURCES 871

The XMLHttpRequest Object 872
XHR Usage 872
HTTP Headers 875
GET Requests 876
POST Requests 877

XMLHttpRequest Level 2 878
The FormData Type 878
Timeouts 879
The overrideMimeType() Method 879

Progress Events 880
The load Event 880
The progress Event 881

Cross-Origin Resource Sharing 881
Preflighted Requests 883
Credentialed Requests 883

Alternate Cross-Domain Techniques 884
Image Pings 884
JSONP 884

The Fetch API 885
Basic API Utilization 886

Dispatching a Request 886
Reading a Response 886
Handling Status Codes and Request Failures 887
Custom Fetch Options 888
Common Fetch Patterns 893
Sending JSON Data 893
Sending Parameters in a Request Body 893
Sending Files 893
Loading Files as Blobs 894
Sending a Cross-Origin Request 894
Aborting a Request 894
The Headers Object 895

XXXiX

CONTENTS

Exploring Headers-Map Similarity 895
Unique Features of the Headers Object 896
Header Guards 896

The Request Object 897
Creating Request Objects 897
Cloning Request Objects 898
Using Request Objects with fetch() 900

The Response Object 901
Creating Response Objects 901
Reading Response Status Information 903
Cloning Response Objects 905
Requests, Responses, and the Body Mixin 906
Body.text() 906
Body.json() 906
Body.formData() 907
Body.arrayBuffer() 907
Body.blob() 908
Single-Use Streams 908
Using a ReadableStream Body 909

The Beacon API 914
Web Sockets 915
The API 915
Sending/Receiving Data 916
Other Events 916
Security 917
Summary 918
CHAPTER 25: CLIENT-SIDE STORAGE 919
Cookies 919
Restrictions 920
Cookie Parts 921
Cookies in JavaScript 922
Subcookies 925
Cookie Considerations 928
Web Storage 929
The Storage Type 929
The sessionStorage Object 930
The localStorage Object 932
The storage Event 932
Limits and Restrictions 933
IndexedDB 933
Databases 933

x|

CONTENTS

Object Stores 934
Transactions 935
Insertion 936
Querying with Cursors 937
Key Ranges 939
Setting Cursor Direction 940
Indexes 941
Concurrency Issues 943
Limits and Restrictions 943
Summary 944
CHAPTER 26: MODULES 945
Understanding the module pattern 946
Module Identifiers 946
Module Dependencies 946
Module Loading 946
Entry Points 947
Asynchronous Dependencies 948
Programmatic Dependencies 948
Static Analysis 948
Circular Dependencies 949
Improvising Module Systems 950
Working with pre-ES6 module loaders 953
CommonJS 953
Asynchronous Module Definition 956
Universal Module Definition 957
Module Loader Deprecation 957
Working with ES6 modules 958
Module Tagging and Definition 958
Module Loading 959
Module Behavior 959
Module Exports 960
Module Imports 963
Module Passthrough Exports 965
Worker Modules 965
Backwards Compatibility 966
Summary 967
CHAPTER 27: WORKERS 969
Introduction to Workers 970
Comparing Workers and Threads 970
Types of Workers 971

xli

CONTENTS

xlii

Dedicated Web Worker
Shared Web Worker
Service Worker
The WorkerGlobalScope
WorkerGlobalScope Properties and Methods
Subclasses of WorkerGlobalScope

Dedicated Workers

Dedicated Worker Basics
Creating a Dedicated Worker
Worker Security Restrictions
Using the Worker Object
The DedicatedWorkerGlobalScope
Dedicated Workers and Implicit MessagePorts
Understanding the Dedicated Worker Lifecycle
Configuring Worker Options
Creating a Worker from Inline JavaScript
Dynamic Script Execution Inside a Worker
Delegating Tasks to Subworkers
Handling Worker Errors
Communicating with a Dedicated Worker
Communicating with postMessage()
Communicating with MessageChannel
Communicating with BroadcastChannel
Worker Data Transfer
Structured Clone Algorithm
Transferable Objects
SharedArrayBuffer
Worker Pools

Shared Workers

Shared Worker Basics

Creating a Shared Worker

SharedWorker Identity and Single Occupancy

Using the SharedWorker Object

The SharedWorkerGlobalScope
Understanding the Shared Worker Lifecycle
Connecting to a Shared Worker

Service Workers

Service Worker Basics
The ServiceWorkerContainer
Creating a Service Worker
Using the ServiceWorkerContainer Object

971
971
971
971
972
972
973
973
973
974
975
976
976
977
979
979
980
982
983
983
983
984
986
987
987
988
990
993
997
997
997
998
999
999
1000
1001
1003
1003
1004
1004
1005

CONTENTS

Using the ServiceWorkerRegistration Object 1006
Using the ServiceWorker Object 1007
Service Worker Security Restrictions 1008
The ServiceWorkerGlobalScope 1008
Service Worker Scope Limitations 1010
The Service Worker Cache 1012
The CacheStorage Object 1013
The Cache Object 1014
Maximum Cache Storage 1017
Service Worker Clients 1017
Service Workers and Consistency 1018
Understanding the Service Worker Lifecycle 1019
The Parsed State 1020
The Installing State 1020
The Installed State 1021
The Activating State 1022
The Activated State 1023
The Redundant State 1024
Updating a Service Worker 1024
Inversion of Control and Service Worker Persistence 1024
Managing Service Worker File Caching with
updateViaCache 1025
Forced Service Worker Operation 1025
Service Worker Messaging 1026
Intercepting a fetch Event 1028
Return from Network 1028
Return from Cache 1029
Return from Network with Cache Fallback 1029
Return from Cache with Network Fallback 1029
Generic Fallback 1029
Push Notifications 1030
Displaying Notifications 1030
Handling Notification Events 1031
Subscribing to Push Events 1031
Handling Push Events 1032
Summary 1033
CHAPTER 28: BEST PRACTICES 1035
Maintainability 1035
What Is Maintainable Code? 1036

Code Conventions 1036

xliii

CONTENTS

Readability

Variable and Function Naming

Variable Type Transparency
Loose Coupling

Decouple HTML/JavaScript

Decouple CSS/JavaScript

Decouple Application Logic/Event Handlers

Programming Practices
Respect Object Ownership
Avoid Globals
Avoid Null Comparisons
Use Constants

Performance

Be Scope-Aware
Avoid Global Lookups
Avoid the with Statement

Choose the Right Approach
Avoid Unnecessary Property Lookup
Optimize Loops
Unrolling Loops
Avoid Double Interpretation
Other Performance Considerations

Minimize Statement Count
Multiple Variable Declarations
Insert Iterative Values
Use Array and Object Literals

Optimize DOM Interactions
Minimize Live Updates
Use innerHTML
Use Event Delegation
Beware of HTMLCollections

Deployment

Build Process
File Structure
Task Runners
Tree Shaking
Module Bundlers

Validation

Compression

xliv

1037
1037
1038
1039
1039
1041
1041
1043
1043
1044
1045
1046
1047
1047
1047
1048
1049
1049
1050
1051
1053
1054
1054
1054
1055
1055
1056
1056
1057
1058
1058
1059
1059
1060
1060
1060
1061
1061
1062

CONTENTS

Code Minification 1062
JavaScript Compilation 1063
JavaScript Transpilation 1063

HTTP Compression 1064
Summary 1064
APPENDIX A: ES2018 AND ES2019 1067
APPENDIX B: STRICT MODE 1087
APPENDIX C: JAVASCRIPT LIBRARIES AND FRAMEWORKS 1095
APPENDIX D: JAVASCRIPT TOOLS 1101
INDEX 1113

xlv

FOREWORD

The industrial revolution was built with steel, and the Internet revolution has been built with Java-
Script. Forged and strengthened through constant iteration over the past 25 years, JavaScript’s domi-
nance in application development is now hard to question, but that wasn’t always the case.

It took only ten days for Brendan Eich to make the first version of JavaScript. It felt fragile, but as
history would have it, first impressions aren’t everything. Today, every aspect of JavaScript—every
detail you’ll learn in this book—is the product of hours of debate. Not every decision is ideal and
no programming language is perfect, but if you judge one by its ubiquity alone, JavaScript perhaps
comes close. It is the only language you can deploy everywhere: servers, desktop browsers, mobile
web browsers, and even native mobile applications.

JavaScript is now used by software engineers of all experience levels and backgrounds. It’s used by
those who care about well-designed, elegant software as well as those who simply want to hack
things together to achieve business goals.

How you’ll use it is entirely up to you. That power is yours.

Over my last 15 years of developing software, JavaScript tools and best practices have changed
dramatically. My experience with the language began in 2004—back when Geocities, Yahoo Groups,
and Macromedia Flash player dominated the scene. JavaScript felt like a toy, and I played with some
of the popular sandboxes at the time: RSS and MySpace Profile Pages. Helping others modify and
customize their personal sites felt like the Wild West and got me hooked.

When I started my first company, configuring a host for your database took days and JavaScript was
embedded into your HTML. There were no frontend “applications”—it was all mostly just piecemeal
functions. As Ajax became more popular, spearheaded by jQuery, a new world unfolded and applica-
tions grew far more robust. That movement accelerated to a breakneck speed and then, suddenly,
powerful frameworks were released. Front-end models! Data binding! Route management! Reactive
views! It was during this front-end revolution that I moved to Silicon Valley to help start a company
founded by Lady Gaga, and quickly, millions of users began using my code. Having now been in Silicon
Valley for quite some time, I’ve led open-source contributions, mentored more software engineers
than I can count, and hit a bit of luck, too. My last company was acquired by Stripe in 2018, where

I now work to build economic infrastructure for the Internet.

I had the pleasure of meeting Matt the day he first flew out to Palo Alto to lead engineering at a small
startup. It was called Claco, and I had recently joined on as an advisor. His energy and passion for
great software was apparent, and the fledgling company quickly produced a beautiful product. As has
been the Silicon Valley standard since the days of HP, this startup was founded out of a house. But
this was no normal home. It was a “hacker house,” where ten or so brilliant software engineers lived
at any given moment. Although this was not high-class living—discarded bunk beds and chairs found
on the street were commonplace—the quantity and quality of code written there, on a daily basis, was
staggering. After work hours, most would simply shift their focus and instead build their side projects

FOREWORD

for another couple of hours. Those who didn’t know how to code were frequently inspired, would get
the itch to learn, and become capable within just weeks.

Matt was a driving force at the center of this productivity. He was the most experienced software
engineer in the house, and also happened to be the cleanest and most professional, too. Having a
formal degree in computer engineering wasn’t the norm, so when you saw algorithms, performance
calculations, and code written on the windows or whiteboard, you knew Matt was building his next
big project. As I got to know him, we became close friends. His intellect, fondness for mentorship,
and ability to turn most anything into an A- joke were all qualities I admired.

Even though Matt is an incredibly talented software engineer and engineering leader, it is truly his
unique set of experiences and knowledge that make him one of the most qualified people in the world
to write this book.

He hasn’t just spent his time teaching others—he’s done the work.

At Claco, he built out multiple entire products, end-to-end, to help teachers provide a better learning
experience in their classrooms. At DoorDash, where he was the first engineer, he built out a robust
logistics and delivery network that achieved hyper-growth and is now worth upwards of twelve bil-
lion dollars. Finally, at Google, Matt’s software has been used by billions of people across the planet.

Massive ownership, massive growth, and massive scale. Most software engineers can go their entire
career and experience only one of these, if they’re lucky. Matt has not only done all three but has also
become a best-selling author in his “spare time,” having written two other books on JavaScript and
Angular. Honestly, I just hope his next book unveils the time machine schematics he’s clearly hid-

ing from us.

This book is a robust tool filled to the brim with JavaScript knowledge and real-world perspectives.
I’'m excited for you to continue learning and build whatever you can dream up. Pick it apart, take
notes, and don’t forget to open up that code editor—after all, the internet revolution is still in the
early days!

—Zach Tratar
Software engineer at Stripe
Former co-founder and CEQO of Jobstart

xlviii

INTRODUCTION

A tech lead at Google once shared with me a compelling perspective on JavaScript: It’s not really

a cohesive programming language—at least not in the formal sense. The ECMA-262 specification
defines JavaScript, but there is no single true implementation of it. What’s more, the language is far
from hermetic. It swims in a veritable ocean of adjacent specifications that govern APIs for everything
that JavaScript touches: the DOM, network requests, system hardware, storage, events, files, cryptog-
raphy, and hundreds of others. Web browsers and their various JavaScript engines all implement these
specifications as they see fit. Chrome has Blink/V8, Firefox has Gecko/SpiderMoney, and Safari has
WebKit/JavaScriptCore. Browsers will run nearly all JavaScript in a way that conforms to the specifi-
cations, but the web is littered with examples of each browser’s idiosyncrasies. Therefore, JavaScript
is more accurately characterized as a constellation of browser implementations.

Although web purists might insist that JavaScript should not be an integral component of web pages,
they must concede that the modern web is severely diminished without it. It is not hyperbolic to say
that JavaScript is virtually inescapable: Phones, computers, tablets, televisions, game consoles, smart
watches, refrigerators, and even cars now feature web browsers that run JavaScript. Nearly three
billion people now use a smartphone that includes a web browser. The language’s vibrant community
churns out a deluge of high-quality open source projects. Browsers now feature first-class support for
APIs that emulate native mobile apps. In Stack Overflow’s 2019 Developer Survey, JavaScript was
voted the most popular programming language for the seventh consecutive year.

The JavaScript renaissance is upon us.

In this book, JavaScript is covered from its very beginning in the earliest Netscape browsers to the
present-day incarnations flush with support for a dizzying spectrum of browser technologies. The
book covers a large number of advanced topics in meticulous detail, yet it ensures the reader under-
stands how to use these topics and where they are appropriate. In short, you learn how to apply
JavaScript solutions to business problems faced by web developers everywhere.

WHO THIS BOOK IS FOR

This book is aimed at three groups of readers:

> Experienced developers familiar with object-oriented programming who are looking to
learn JavaScript as it relates to traditional OO languages such as Java and C++

> Web application developers attempting to enhance the usability of their web sites and web
applications

> Novice JavaScript developers aiming to better understand the language

INTRODUCTION

In addition, familiarity with the following related technologies is a strong indicator that this book
is for you:

> Java
PHP
Python
Ruby
Golang
HTML
CSS

Y Y Y VY Y'Y

This book is not aimed at beginners lacking a basic computer science background or those looking to
add some simple user interactions to websites. These readers should instead refer to Wrox’s Beginning
JavaScript, Sth Edition (Wiley, 2015).

WHAT THIS BOOK COVERS

Professional JavaScript for Web Developers, 4th Edition, provides a developer-level introduction,
along with the more advanced and useful features of JavaScript.

The book begins with an exploration of how JavaScript originated and evolved into what it is today.
A detailed discussion of the components that make up a JavaScript implementation follows, with
specific focus on standards such as ECMAScript and the Document Object Model (DOM).

Building on that base, the book moves on to cover basic concepts of JavaScript, including classes,
promises, iterators, and proxies. This is followed by an in-depth examination of client detection,
events, animations, forms, errors, and JSON.

The last part of the book is focused on the newest and most important specifications that have
emerged in the past few years. This includes fetch, modules, web workers, service workers, and a col-
lection of emerging APIs.

HOW THIS BOOK IS STRUCTURED

This book comprises the following chapters:

1. What Is JavaScript>—Explains the origins of JavaScript: where it came from, how it evolved,
and what it is today. Concepts introduced include the relationship between JavaScript and
ECMAScript, the Document Object Model (DOM), and the Browser Object Model (BOM).
A discussion of the relevant standards from the European Computer Manufacturer’s Associa-
tion (ECMA) and the World Wide Web Consortium (W3C) is also included.

INTRODUCTION

10.

11.

12.

JavaScript in HTML—Examines how JavaScript is used in conjunction with HTML to cre-
ate dynamic web pages. Introduces the various ways of embedding JavaScript into a page
and includes a discussion surrounding the JavaScript content-type and its relationship to the
<script> element.

Language Basics—Introduces basic language concepts, including syntax and flow control
statements. Explains the syntactic similarities of JavaScript and other C-based languages and
points out the differences. Type coercion is introduced as it relates to built-in operators. Cov-
ers all language primitives, including the symbo1 type.

Variables, Scope, and Memory—Explores how variables are handled in JavaScript given their
loosely typed nature. A discussion of the differences between primitive and reference values is
included, as is information about execution context as it relates to variables. Also, a discus-
sion about garbage collection in JavaScript covers how memory is reclaimed when variables
go out of scope.

Basic Reference Types—Covers all of the details regarding JavaScript’s built-in reference
types, such as Date, Regexp, primitives, and primitive wrappers. Each reference type is dis-
cussed both in theory and in how they relate to browser implementations.

Collection Reference Types—Continues the book’s coverage of built-in reference types with
Object, Array, Map, WeakMap, Set, and WeakSet.

Iterators and Generators—Introduces two new fundamental concepts in recent versions of
ECMAScript: iterators and generators. Each is discussed both in terms of its most fundamen-
tal behavior as well as how it is used in relation to existing language constructs.

Objects, Classes, and Object-Oriented Programming—Explains how to use classes and
object-oriented programming in JavaScript. Begins with an in-depth discussion of the Java-
Script Object type and continues into coverage of prototypal inheritance. Following this is a
complete discussion of ES6 classes and how they are a close sibling of prototypal inheritance.

Proxies and Reflect—Introduces two closely related concepts: Proxy and the Reflect APL
These can be used to intercept and shim additional behavior into fundamental operations
within the language.

Functions—Explores one of the most powerful aspects of JavaScript: function expressions.
Topics include closures, the this object, the module pattern, the creation of private object
members, arrow functions, default parameters, and spread operators.

Promises and Async Programming—Introduces two new closely related asynchronous pro-
gramming constructs: the Promise type and async/await. The chapter begins with a discus-
sion of the asynchronous JavaScript paradigm and continues into coverage of how promises
are used and their relationship to async functions.

The Browser Object Model—Introduces the Browser Object Model (BOM), which is respon-
sible for objects allowing interaction with the browser itself. Each of the BOM objects is
covered, inCluding window, document, location, navigator, and screen.

INTRODUCTION

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Client Detection—Explains various approaches to detecting the client machine and its capa-
bilities. Different techniques include capability detection and user-agent string detection. The
chapter covers the pros and cons of each approach, as well as situational appropriateness.

The Document Object Model—Introduces the Document Object Model (DOM) objects
available in JavaScript as defined in DOM Level 1. A brief introduction to XML and its
relationship to the DOM gives way to an in-depth exploration of the entire DOM and how it
allows developers to manipulate a page.

DOM Extensions—Explains how other APIs, as well as the browsers themselves, extend the
DOM with more functionality. Topics include the Selectors API, the Element Traversal API,
and HTMLS extensions.

DOM Levels 2 and 3—Builds on the previous two chapters, explaining how DOM Levels 2
and 3 augmented the DOM with additional properties, methods, and objects. Includes cover-
age of DOM4 additions, such as mutation observers.

Events—Explains the nature of events in JavaScript, where they originated, and how the
DOM redefined how events should work.

Animation and Graphics with Canvas—Discusses the <canvas> tag and how to use it to
create on-the-fly graphics. Both the 2D context and the WebGL (3D) context are covered,
providing you with a good starting point for creating animations and games. Includes cover-

age of both WebGL1 and WebGL2.

Scripting Forms—Explores using JavaScript to enhance form interactions and work around
browser limitations. Discussion focuses on individual form elements such as text boxes and
select boxes and on data validation and manipulation.

JavaScript APIs—Covers an assortment of JavaScript APIs, including Atomics, Encoding, File,
Blob, Notifications, Streams, Timing, Web Components, and Web Cryptography.

Error Handling and Debugging—Discusses how browsers handle errors in JavaScript code
and presents several ways to handle errors. Debugging tools and techniques are also dis-
cussed for each browser, including recommendations for simplifying the debugging process.

XML in JavaScript—Presents the features of JavaScript used to read and manipulate eXtensi-
ble Markup Language (XML) data. Explains the differences in support and objects in various
web browsers and offers suggestions for easier cross-browser coding. This chapter also covers
the use of eXtensible Stylesheet Language Transformations (XSLT) to transform XML data
on the client.

JSON—Introduces the JSON data format as an alternative to XML. Discusses browser-native
JSON parsing and serialization as well as security considerations when using JSON.

Network Requests and Remote Resources—Explores all of the most common ways that data
and assets are requested by the browser. Includes coverage of the legacy XMLHt tpRequest as
well as the modern Fetch API.

INTRODUCTION

25.

26.

27.

28.

Client-Side Storage—Discusses how to detect when an application is offline and provides
various techniques for storing data on the client machine. Begins with a discussion of the
most commonly supported feature, cookies, and then discusses newer functionality such as
Web Storage and IndexedDB.

Modules—Discusses the module pattern and its implications on codebases. Following this,
the chapter covers pre-ES6 module loaders such as Common]S, AMD, and UMD. Ends with
detailed coverage on the new ES6 module pattern and how to use it properly.

Workers—Covers dedicated workers, shared workers, and service workers in-depth. Includes
a discussion of how workers behave both at the operating system and browser level, as well
as strategies for how best to use the various types of workers.

Best Practices—Explores approaches to working with JavaScript in an enterprise environ-
ment. Techniques for better maintainability are discussed, including coding techniques, for-
matting, and general programming practices. The chapter also covers execution performance
and introduces several techniques for speed optimization. Last, the chapter covers deploy-
ment issues, including how to create a build process.

WHAT YOU NEED TO USE THIS BOOK

To run the samples in the book, you need the following;:

>

>

Any modern operating system, such as Windows, Linux, Mac OS, Android, or iOS

Any modern browser, such as IE11+, Edge 12+, Firefox 26+, Chrome 39+, Safari 10+, Opera
26+, or i0S Safari 10+

The complete source code is available for download from https://www.wiley.com/en-us/
Professional+JavaScript+for+Web+Developers%$2C+4th+Edition-p-9781119366447.

What Is JavaScript?

WHAT'S IN THIS CHAPTER?

> Review of JavaScript history

> What JavaScript is

> How JavaScript and ECMAScript are related
>

The different versions of JavaScript

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s

code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

When JavaScript first appeared in 19935, its main purpose was to handle some of the input
validation that had previously been left to server-side languages such as Perl. Prior to that time,
a round-trip to the server was needed to determine if a required field had been left blank or an
entered value was invalid. Netscape Navigator sought to change that with the introduction of
JavaScript. The capability to handle some basic validation on the client was an exciting new
feature at a time when use of telephone modems was widespread. The associated slow speeds
turned every trip to the server into an exercise in patience.

Since that time, JavaScript has grown into an important feature of every major web browser on
the market. No longer bound to simple data validation, JavaScript now interacts with nearly all
aspects of the browser window and its contents. JavaScript is recognized as a full programming
language, capable of complex calculations and interactions, including closures, anonymous
(lambda) functions, and even metaprogramming. JavaScript has become such an important part
of the web that even alternative browsers, including those on mobile phones and those designed
for users with disabilities, support it. Even Microsoft, with its own client-side scripting language
called VBScript, ended up including its own JavaScript implementation in Internet Explorer
from its earliest version.

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

2 | CHAPTER1 WHAT IS JAVASCRIPT?

The rise of JavaScript from a simple input validator to a powerful programming language could not
have been predicted. JavaScript is at once a very simple and very complicated language that takes
minutes to learn but years to master. To begin down the path to using JavaScript’s full potential, it is
important to understand its nature, history, and limitations.

A SHORT HISTORY

As the web gained popularity, a gradual demand for client-side scripting languages developed. At
the time, most Internet users were connecting over a 28.8 kbps modem even though web pages were
growing in size and complexity. Adding to users’ pain was the large number of round-trips to the
server required for simple form validation. Imagine filling out a form, clicking the Submit button,
waiting 30 seconds for processing, and then being met with a message indicating that you forgot to
complete a required field. Netscape, at that time on the cutting edge of technological innovation,
began seriously considering the development of a client-side scripting language to handle simple
processing.

In 19985, a Netscape developer named Brendan Eich began developing a scripting language called
Mocha (later renamed as LiveScript) for the release of Netscape Navigator 2. The intention was to
use it both in the browser and on the server, where it was to be called LiveWire.

Netscape entered into a development alliance with Sun Microsystems to complete the implementation
of LiveScript in time for release. Just before Netscape Navigator 2 was officially released, Netscape
changed LiveScript’s name to JavaScript to capitalize on the buzz that Java was receiving from

the press.

Because JavaScript 1.0 was such a hit, Netscape released version 1.1 in Netscape Navigator 3. The
popularity of the fledgling web was reaching new heights, and Netscape had positioned itself to be
theleading company in the market. At this time, Microsoft decided to put more resources into a com-
peting browser named Internet Explorer. Shortly after Netscape Navigator 3 was released, Microsoft
introduced Internet Explorer 3 with a JavaScript implementation called JScript (so called to avoid any
possible licensing issues with Netscape). This major step for Microsoft into the realm of web brows-
ers in August 1996 is now a date that lives in infamy for Netscape, but it also represented a major
step forward in the development of JavaScript as a language.

Microsoft’s implementation of JavaScript meant that there were two different JavaScript versions
floating around: JavaScript in Netscape Navigator and JScript in Internet Explorer. Unlike C and
many other programming languages, JavaScript had no standards governing its syntax or features,
and the three different versions only highlighted this problem. With industry fears mounting, it was
decided that the language must be standardized.

In 1997, JavaScript 1.1 was submitted to the European Computer Manufacturers Association
(Ecma) as a proposal. Technical Committee #39 (TC39) was assigned to "standardize the

syntax and semantics of a general purpose, cross-platform, vendor-neutral scripting language”
(www.ecma-international.org/memento/TC39.htm). Made up of programmers from Netscape,
Sun, Microsoft, Borland, NOMBAS, and other companies with interest in the future of scripting,

JavaScript Implementations | 3

TC39 met for months to hammer out ECMA-262, a standard defining a new scripting language
named ECMAScript (often pronounced as “ek-ma-script”).

The following year, the International Organization for Standardization and International Electrotech-
nical Commission (ISO/IEC) also adopted ECMAScript as a standard (ISO/IEC-16262). Since that
time, browsers have tried, with varying degrees of success, to use ECMAScript as a basis for their
JavaScript implementations.

JAVASCRIPT IMPLEMENTATIONS

Though JavaScript and ECMAScript are often used synonymously, JavaScript is much more than just
what is defined in ECMA-262. Indeed, a complete JavaScript implementation is made up of the fol-
lowing three distinct parts (see Figure 1-1):

> The Core (ECMAScript)
> The Document Object Model (DOM)
> The Browser Object Model (BOM)

ECMAScript

ECMAScript, the language defined in ECMA-262, isn’t tied to web browsers. In fact, the language has
no methods for input or output whatsoever. ECMA-262 defines this language as a base upon which
more-robust scripting languages may be built. Web browsers are just one host environment inwhich
an ECMAScript implementation may exist. A host environment provides the base implementation

of ECMAScript and implementation extensions designed to interface with the environment itself.
Extensions, such as the Document Object Model (DOM), use ECMAScript’s core types and syntax

to provide additional functionality that’s more specific to the environment. Other host environments
include Node]S, a server-side JavaScript platform, and the increasingly obsolete Adobe Flash.

What exactly does ECMA-262 specify if it doesn’t reference web browsers? On a very basic level, it
describes the following parts of the language:

> Syntax

Types
Statements
Keywords
Reserved words
Operators

Global objects

Y Y Y VY Y'Y

ECMAScript is simply a description of a language implementing all of the facets described in the
specification. JavaScript implements ECMAScript, but so does Adobe ActionScript.

4 | CHAPTER1 WHAT IS JAVASCRIPT?

ECMAScript Editions

The different versions of ECMAScript are defined
as editions (referring to the edition of ECMA-262 in
which that particular implementation is described). ECMAScript DOM BOM
The most recent edition of ECMA-262 is edition 7,
released in 2016. The first edition of ECMA-262 was
essentially the same as Netscape’s JavaScript 1.1 but FIGURE 1-1

with all references to browser-specific code removed

and a few minor changes: ECMA-262 required support for the Unicode standard (to support multiple
languages) and that objects be platform-independent (Netscape JavaScript 1.1 actually had different
implementations of objects, such as the Date object, depending on the platform). This was a major
reason why JavaScript 1.1 and 1.2 did not conform to the first edition of ECMA-262.

JavaScript

The second edition of ECMA-262 was largely editorial. The standard was updated to get into strict
agreement with ISO/IEC-16262 and didn’t feature any additions, changes, or omissions. ECMAScript
implementations typically don’t use the second edition as a measure of conformance.

The third edition of ECMA-262 was the first real update to the standard. It provided updates to
string handling, the definition of errors, and numeric outputs. It also added support for regular
expressions, new control statements, try-catch exception handling, and small changes to better
prepare the standard for internationalization. To many, this marked the arrival of ECMAScript as a
true programming language.

The fourth edition of ECMA-262 was a complete overhaul of the language. In response to the popu-
larity of JavaScript on the web, developers began revising ECMAScript to meet the growing demands
of web development around the world. In response, Ecma TC39 reconvened to decide the future of
the language. The resulting specification defined an almost completely new language based on the
third edition. The fourth edition includes strongly typed variables, new statements and data struc-
tures, true classes and classical inheritance, and new ways to interact with data.

As an alternate proposal, a specification called “ECMAScript 3.1,” was developed as a smaller evolu-
tion of the language by a subcommittee of TC39, who believed that the fourth edition was too big of
a jump for the language. The result was a smaller proposal with incremental changes to ECMAScript
that could be implemented on top of existing JavaScript engines. Ultimately, the ES3.1 subcommittee
won over support from TC39, and the fourth edition of ECMA-262 was abandoned before officially
being published.

ECMAScript 3.1 became ECMA-262, fifth edition, and was officially published on December 3,
2009. The fifth edition sought to clarify perceived ambiguities of the third edition and introduce
additional functionality. The new functionality includes a native JSON object for parsing and serializ-
ing JSON data, methods for inheritance and advanced property definition, and the inclusion of a new
strict mode that slightly augments how ECMAScript engines interpret and execute code. The fifth
edition saw a maintenance revision in June 2011; this was merely for corrections in the specification
and introduced no new language or library features.

The sixth edition of ECMA-262—colloquially referred to as ES6, ES2015, or ES Harmony—was
published in June 2015, and contains arguably the most important collection of enhancements to the
specification since its inception. ES6 adds formal support for classes, modules, iterators, generators,
arrow functions, promises, reflection, proxies, and a host of new data types.

JavaScript Implementations | 5

The seventh edition of ECMA-262, dubbed ES7 or ES2016, was published in June of 2016. This revi-
sion included only a handful of syntactical additions such as Array.prototype.includes and the
exponentiation operator.

The eighth edition of ECMA-262, called ES8 or ES2017, was finalized in January of 2017. This revi-
sion included asynchronous iteration, rest and spread properties, a collection of new regular expres-
sion features, a Promise finally() catchall handler, and template literal revisions.

The ninth edition of ECMA-262 is still being finalized, but it already has a large number of features
in stage 3. Its most significant addition will likely be dynamic importing of ES6 modules.

What Does ECMAScript Conformance Mean?

ECMA-262 lays out the definition of ECMAScript conformance. To be considered an implementation
of ECMAScript, an implementation must do the following:

> Support all "types, values, objects, properties, functions, and program syntax and seman-
tics” as they are described in ECMA-262.

> Support the Unicode character standard.

Additionally, a conforming implementation may do the following;:

> Add “additional types, values, objects, properties, and functions” that are not specified in
ECMA-262. ECMA-262 describes these additions as primarily new objects or new prop-
erties of objects not given in the specification.

> Support “program and regular expression syntax” that is not defined in ECMA-262
(meaning that the built-in regular-expression support is allowed to be altered and extended).

These criteria give implementation developers a great amount of power and flexibility for developing
new languages based on ECMAScript, which partly accounts for its popularity.

ECMAScript Support in Web Browsers

Netscape Navigator 3 shipped with JavaScript 1.1 in 1996. That same JavaScript 1.1 specification
was then submitted to Ecma as a proposal for the new standard, ECMA-262. With JavaScript’s explo-
sive popularity, Netscape was very happy to start developing version 1.2. There was, however, one
problem: Ecma hadn’t yet accepted Netscape’s proposal.

Shortly after Netscape Navigator 3 was released, Microsoft introduced Internet Explorer 3. This
version of IE shipped with JScript 1.0, which was supposed to be equivalent to JavaScript 1.1.
However, because of undocumented and improperly replicated features, JScript 1.0 fell far short of
JavaScript 1.1.

Netscape Navigator 4 was shipped in 1997 with JavaScript 1.2 before the first edition of ECMA-262
was accepted and standardized later that year. As a result, JavaScript 1.2 is not compliant with the
first edition of ECMAScript even though ECMAScript was supposed to be based on JavaScript 1.1.

The next update to JScript occurred in Internet Explorer 4 with JScript version 3.0 (version 2.0 was
released in Microsoft Internet Information Server version 3.0 but was never included in a browser).
Microsoft put out a press release touting JScript 3.0 as the first truly Ecma-compliant scripting

6 | CHAPTER1 WHAT IS JAVASCRIPT?

language in the world. At that time, ECMA-262 hadn’t yet been finalized, so JScript 3.0 suffered the
same fate as JavaScript 1.2: it did not comply with the final ECMAScript standard.

Netscape opted to update its JavaScript implementation in Netscape Navigator 4.06 to JavaScript
1.3, which brought Netscape into full compliance with the first edition of ECMA-262. Netscape
added support for the Unicode standard and made all objects platform-independent while keeping the
features that were introduced in JavaScript 1.2.

When Netscape released its source code to the public as the Mozilla project, it was anticipated
that JavaScript 1.4 would be shipped with Netscape Navigator 5. However, a radical decision to
completely redesign the Netscape code from the bottom up derailed that effort. JavaScript 1.4 was
released only as a server-side language for Netscape Enterprise Server and never made it into a
web browser.

By 2008, the five major web browsers (Internet Explorer, Firefox, Safari, Chrome, and Opera) all
complied with the third edition of ECMA-262. Internet Explorer 8 was the first to start imple-
menting the fifth edition of ECMA-262 specification and delivered complete support in Internet
Explorer 9. Firefox 4 soon followed suit. The following table lists ECMAScript support in the most
popular web browsers.

BROWSER ECMASCRIPT COMPLIANCE
Netscape Navigator 2 —

Netscape Navigator 3 =

Netscape Navigator 4-4.05 —

Netscape Navigator 4.06-4.79 Edition 1

Netscape 6+ (Mozilla 0.6.0+) Edition 3

Internet Explorer 3 —

Internet Explorer 4 —

Internet Explorer 5 Edition 1
Internet Explorer 5.5-8 Edition 3
Internet Explorer 9 Edition 5
Internet Explorer 10-11 Edition 5
Edge 12+ Edition 6
Opera 6-7.1 Edition 2
Opera 7.2+ Edition 3
Opera 15-28 Edition 5
Opera 29-35 Edition 6

Opera 36+ Edition 6

JavaScript Implementations | 7

BROWSER ECMASCRIPT COMPLIANCE
Safari 1-2.0.x Edition 3"
Safari 3.1-5.1 Edition 5’
Safari 6-8 Edition 5
Safari 9+ Edition 6
iOS Safari 3.2-5.1 Edition 5
iOS Safari 6-8.4 Edition 5
iOS Safari 9.2+ Edition 6
Chrome 1-3 Edition 3
Chrome 4-22 Edition 5"
Chrome 23+ Edition 5
Chrome 42-48 Edition 6"
Chrome 49+ Edition 6
Firefox 1-2 Edition 3
Firefox 3.0.x-20 Edition 5"
Firefox 21-44 Edition 5
Firefox 45+ Edition 6

*Incomplete implementations

The Document Object Model

The Document Object Model (DOM) is an application programming interface (API) for XML that
was extended for use in HTML. The DOM maps out an entire page as a hierarchy of nodes. Each
part of an HTML or XML page is a type of node containing different kinds of data. Consider the
following HTML page:

<html>
<head>
<title>Sample Page</title>
</head>
<body>
<p> Hello World!</p>
</body>
</html>

This code can be diagrammed into a hierarchy of nodes using the DOM (see Figure 1-2).

8 | CHAPTER1 WHAT IS JAVASCRIPT?

By creating a tree to represent a document, the DOM allows developers an unprecedented level of
control over its content and structure. Nodes can be removed, added, replaced, and modified easily by
using the DOM APIL.

Why the DOM Is Necessary

With Internet Explorer 4 and Netscape Navigator 4 each supporting different forms of Dynamic
HTML (DHTML), developers for the first time could alter the appearance and content of a web page
without reloading it. This represented a tremendous step forward in web technology but also a huge
problem. Netscape and Microsoft went separate ways in developing DHTML, thus ending the period
when developers could write a single HTML page that

could be accessed by any web browser.
html
It was decided that something had to be done to preserve
the cross-platform nature of the web. The fear was that if —@
someone didn’t rein in Netscape and Microsoft, the web
would develop into two distinct factions that were exclusive title
to targeted browsers. It was then that the World Wide Web
Consortium (W3C), the body charged with creating stand- _-
e . S le P
ards for web communication, began working on the DOM.
DOM Levels -

DOM Level 1 became a W3C recommendation in October
1998. It consisted of two modules: the DOM Core, which _|I|

provided a way to map the structure of an XML-based

document to allow for easy access to and manipulation

of any part of a document, and the DOM HTML, which
extended the DOM Core by adding HTML-specific FIGURE 1-2

objects and methods.

NOTE Note that the DOM is not JavaScript-specific and indeed has been imple-
mented in numerous other languages. For web browsers, however, the DOM
has been implemented using ECM AScript and now makes up a large part of the
JavaScript language.

Whereas the goal of DOM Level 1 was to map out the structure of a document, the aims of DOM
Level 2 were much broader. This extension of the original DOM added support for mouse and user-
interface events (long supported by DHTML), ranges, and traversals (methods to iterate over a DOM
document), and support for Cascading Style Sheets (CSS) through object interfaces. The original
DOM Core introduced in Level 1 was also extended to include support for XML namespaces.

DOM Level 2 introduced the following new modules of the DOM to deal with new types of
interfaces:

> DOM views—Describes interfaces to keep track of the various views of a document
(the document before and after CSS styling, for example)

JavaScript Implementations | 9

> DOM events—Describes interfaces for events and event handling
> DOM style—Describes interfaces to deal with CSS-based styling of elements

> DOM traversal and range—Describes interfaces to traverse and manipulate a document tree

DOM Level 3 further extends the DOM with the introduction of methods to load and save docu-
ments in a uniform way (contained in a new module called DOM Load and Save) and methods to
validate adocument (DOM Validation). In Level 3, the DOM Core is extended to support all of XML
1.0, including XML Infoset, XPath, and XML Base.

Presently, the W3C no longer maintains the DOM as a set of levels, but rather as the DOM Living
Standard, snapshots of which are termed DOM4. Amonyg its introductions is the addition of Muta-
tion Observers to replace Mutation Events.

NOTE When reading about the DOM, you may come across references to DOM
Level 0. Note that there is no standard called DOM Level 0; it is simply a ref-
erence point in the history of the DOM. DOM Level 0 is considered to be the
original DHTML supported in Internet Explorer 4.0 and Netscape Navigator 4.0.

Other DOMs

Aside from the DOM Core and DOM HTML interfaces, several other languages have had their own
DOM standards published. The languages in the following list are XML-based, and each DOM adds
methods and interfaces unique to a particular language:

> Scalable Vector Graphics (SVG) 1.0
> Mathematical Markup Language (MathML) 1.0
> Synchronized Multimedia Integration Language (SMIL)

Additionally, other languages have developed their own DOM implementations, such as Mozilla’s
XML User Interface Language (XUL). However, only the languages in the preceding list are standard
recommendations from W3C.

DOM Support in Web Browsers

The DOM had been a standard for some time before web browsers started implementing it. Internet
Explorer made its first attempt with version 5, but it didn’t have any realistic DOM support until ver-
sion 5.5, when it implemented most of DOM Level 1. Internet Explorer didn’t introduce new DOM
functionality in versions 6 and 7, though version 8 introduced some bug fixes.

For Netscape, no DOM support existed until Netscape 6 (Mozilla 0.6.0) was introduced. After
Netscape 7, Mozilla switched its development efforts to the Firefox browser. Firefox 3+ supports all
of Level 1, nearly all of Level 2, and some parts of Level 3. (The goal of the Mozilla development
team was to build a 100 percent standards-compliant browser, and their work paid off.)

10 | CHAPTER1 WHAT IS JAVASCRIPT?

DOM support became a huge priority for most browser vendors, and efforts have been ongoing to
improve support with each release. The following table shows DOM support for popular browsers.

BROWSER DOM COMPLIANCE
Netscape Navigator 1.—4.x —
Netscape 6+ (Mozilla 0.6.0+) Level 1, Level 2 (almost all), Level 3 (partial)

Internet Explorer 2-4.x —

Internet Explorer 5 Level 1 (minimal)

Internet Explorer 5.5-8 Level 1 (almost all)

Internet Explorer 9+ Level 1, Level 2, Level 3

Edge Level 1, Level 2, Level 3

Opera 1-6 —

Opera 7-8.x Level 1 (almost all), Level 2 (partial)

Opera 9-9.9 Level 1, Level 2 (almost all), Level 3 (partial)
Opera 10+ Level 1, Level 2, Level 3 (partial)

Safari 1.0.x Level 1

Safari 2+ Level 1, Level 2 (partial), Level 3 (partial)
iOS Safari 3.2+ Level 1, Level 2 (partial), Level 3 (partial)
Chrome 1+ Level 1, Level 2 (partial), Level 3 (partial)
Firefox 1+ Level 1, Level 2 (almost all), Level 3 (partial)

NOTE The content of this compatibility table is changing all the time and should
only be used as a historical reference.

The Browser Object Model

The Internet Explorer 3 and Netscape Navigator 3 browsers featured a Browser Object Model
(BOM) that allowed access and manipulation of the browser window. Using the BOM, developers
can interact with the browser outside of the context of its displayed page. What made the BOM truly
unique, and often problematic, was that it was the only part of a JavaScript implementation that had
no related standard. This changed with the introduction of HTMLS, which sought to codify much of
the BOM as part of a formal specification. Thanks to HTMLS, a lot of the confusion surrounding the
BOM has dissipated.

JavaScript Versions | 11

Primarily, the BOM deals with the browser window and frames, but generally any browser-
specific extension to JavaScript is considered to be a part of the BOM. The following are some such
extensions:

> The capability to pop up new browser windows

The capability to move, resize, and close browser windows

The navigator object, which provides detailed information about the browser

The location object, which gives detailed information about the page loaded in the browser

The screen object, which gives detailed information about the user’s screen resolution

Y Y YV VY Y

The performance object, which gives detailed information about the browser’s memory
consumption, navigational behavior, and timing statistics

Support for cookies

> Custom objects such as xMLHttpRequest and Internet Explorer’s Activexobject

Because no standards existed for the BOM for a long time, each browser has its own implementation.
There are some de facto standards, such as having a window object and a navigator object, but each
browser defines its own properties and methods for these and other objects. With HTMLS now avail-
able, the implementation details of the BOM are expected to grow in a much more compatible way.
A detailed discussion of the BOM is included in the chapter “Browser Object Model.”

JAVASCRIPT VERSIONS

Mozilla, as a descendant from the original Netscape, is the only browser vendor that has continued
the original JavaScript version-numbering sequence. When the Netscape source code was spun off
into an open-source project (named the Mozilla Project), the last browser version of JavaScript was
1.3. (As mentioned previously, version 1.4 was implemented on the server exclusively.) As the Mozilla
Foundation continued work on JavaScript, adding new features, keywords, and syntaxes, the Java-
Script version number was incremented. The following table shows the JavaScript version progression
in Netscape/Mozilla browsers.

BROWSER JAVASCRIPT VERSION
Netscape Navigator 2 1.0
Netscape Navigator 3 1.1
Netscape Navigator 4 1.2
Netscape Navigator 4.06 1.3
Netscape 6+ (Mozilla 0.6.0+) 1.5
Firefox 1 1.5

Firefox 1.5 1.6

12 | CHAPTER1 WHAT IS JAVASCRIPT?

BROWSER JAVASCRIPT VERSION
Firefox 2 1.7

Firefox 3 1.8

Firefox 3.5 1.8.1

Firefox 3.6 1.8.2

Firefox 4 1.8.5

The numbering scheme was based on the idea that Firefox 4 would feature JavaScript 2.0, and each
increment in the version number prior to that point indicates how close the JavaScript implementa-
tion is to the 2.0 proposal. Though this was the original plan, the evolution of JavaScript happened in
such a way that this was no longer possible. There is currently no target implementation for Java-
Script 2.0, and this style of versioning ceased past the Firefox 4 release.

NOTE I¢’s important to note that only the Netscape/Mozilla browsers followed
this versioning scheme. Internet Explorer, for example, has different version
numbers for JScript. These JScript versions don’t correspond whatsoever to

the JavaScript versions mentioned in the preceding table. Furthermore, most
browsers talk about JavaScript support in relation to their level of ECMAScript
compliance and DOM support.

SUMMARY

JavaScript is a scripting language designed to interact with web pages and is made up of the following
three distinct parts:

> ECMAScript, which is defined in ECMA-262 and provides the core functionality

> The Document Object Model (DOM), which provides methods and interfaces for working
with the content of a web page

> The Browser Object Model (BOM), which provides methods and interfaces for interacting
with the browser

There are varying levels of support for the three parts of JavaScript across the five major web brows-
ers (Internet Explorer, Firefox, Chrome, Safari, and Opera). Support for ECMAScript 5 is generally
good across all browsers, and support for ECMAScript 6 and 7 is growing. Support for the DOM
varies, but Level 3 compliance is increasingly normative. The BOM, codified in HTMLS, can vary
from browser to browser, though there are some commonalities that are assumed to be available.

JavaScript in HTML

WHAT'S IN THIS CHAPTER?

> Using the <script> element

> Comparing inline and external scripts

> Examining how document modes affect JavaScript
>

Preparing for JavaScript-disabled experiences

The introduction of JavaScript into web pages immediately ran into the web’s predominant
language, HTML. As part of its original work on JavaScript, Netscape tried to figure out how
to make JavaScript coexist in HTML pages without breaking those pages’ rendering in other
browsers. Through trial, error, and controversy, several decisions were finally made and agreed
upon to bring universal scripting support to the web. Much of the work done in these early
days of the web has survived and become formalized in the HTML specification.

THE <SCRIPT> ELEMENT

The primary method of inserting JavaScript into an HTML page is via the <script> element.
This element was created by Netscape and first implemented in Netscape Navigator 2. It was later
added to the formal HTML specification. There are six attributes for the <script> element:

> async—Optional. Indicates that the script should begin downloading immediately
but should not prevent other actions on the page such as downloading resources or
waiting for other scripts to load. Valid only for external script files.

> charset—Optional. The character set of the code specified using the src attribute.
This attribute is rarely used because most browsers don’t honor its value.

> crossorigin—Optional. Configures the CORS settings for the associated request; by
default, CORS is not used at all. crossorigin="anonymous" will configure the request
for the file to not have the credentials flag set. crossorigin="use-credentials" will
set the credentials flag, meaning the outgoing request will include credentials.

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

14

CHAPTER 2 JAVASCRIPT IN HTML

» defer—Optional. Indicates that the execution of the script can safely be deferred until after
the document’s content has been completely parsed and displayed. Valid only for external
scripts. Internet Explorer 7 and earlier also allow for inline scripts.

> integrity—Optional. Allows for verification of Subresource Integrity (SRI) by checking
the retrieved resource against a provided cryptographic signature. If the signature of the
retrieved resource does not match that specified by this attribute, the page will error and the
script will not execute. This is useful for ensuring that a Content Delivery Network (CDN)
is not serving malicious payloads.

> language—Deprecated. Originally indicated the scripting language being used by the code
block (such as "Javascript", "JavaScript1.2", or "VBScript"). Most browsers ignore this
attribute; it should not be used.

> src—Optional. Indicates an external file that contains code to be executed.

type—Optional. Replaces 1anguage; indicates the content type (also called MIME type)
of the scripting language being used by the code block. Traditionally, this value has always
been "text/javascript", though both "text/javascript" and "text/ecmascript" are
deprecated. JavaScript files are typically served with the "application/x-javascript"
MIME type even though setting this in the type attribute may cause the script to be
ignored. Other values that work in non-Internet Explorer browsers are "application/
javascript" and "application/ecmascript". If the value is module, the code is treated as
an ES6 module and only then is eligible to use the import and export keywords.

There are two ways to use the <script> element: embed JavaScript code directly into the page or
include JavaScript from an external file.

To include inline JavaScript code, place JavaScript code inside the <script> element directly,
as follows:
<scripts>

function sayHi () {
console.log ("Hi!") ;

}

</scripts>

The JavaScript code contained inside a <script> element is interpreted from top to bottom. In the
case of this example, a function definition is interpreted and stored inside the interpreter environ-
ment. The rest of the page content is not loaded and/or displayed until after all of the code inside the
<script> element has been evaluated.

When using inline JavaScript code, keep in mind that you cannot have the string "</script>" any-
where in your code. For example, the following code causes an error when loaded into a browser:

<scripts>
function sayScript () {
console.log("</script>");

}

</scripts>

Because of the way that inline scripts are parsed, the browser sees the string "</script>" as if it
were the closing </script> tag. This problem can be avoided easily by escaping the "/" character, as

The <script> Element | 15

in this example:

<scripts
function sayScript() {
console.log("<\/script>");
}

</script>

The changes to this code make it acceptable to browsers and won’t cause any errors.

To include JavaScript from an external file, the src attribute is required. The value of src is a URL
linked to a file containing JavaScript code, like this:

<script src="example.js"></script>

In this example, an external file named example.js is loaded into the page. The file itself need only
contain the JavaScript code that would occur between the opening <script> and closing </script>
tags. As with inline JavaScript code, processing of the page is halted while the external file is inter-
preted. (There is also some time taken to download the file.) In XHTML documents, you can omit
the closing tag, as in this example:

<script src="example.js"/>

This syntax should not be used in HTML documents because it is invalid HTML and won’t be han-
dled properly by some browsers, most notably Internet Explorer.

NOTE By convention, external JavaScript files have a s extension. This is
not a requirement because browsers do not check the file extension of included
JavaScript files. This leaves open the possibility of dynamically generating
JavaScript code using a server-side scripting language, or for in-browser
transpilation into JavaScript from a JavaScript extension language such as
TypeScript or React’s [SX. Keep in mind, though, that servers often use the file
extension to determine the correct MIME type to apply to the response. If you
don’t use a .js extension, double-check that your server is returning the correct
MIME type.

It’s important to note that a <script> element using the src attribute should not include additional
JavaScript code between the <script> and </script> tags. If both are provided, the script file is
downloaded and executed while the inline code is ignored.

One of the most powerful and most controversial parts of the <script> element is its ability to
include JavaScript files from outside domains. Much like an element, the <script> element’s
src attribute may be set to a full URL that exists outside the domain on which the HTML page
exists, as in this example:

<script src="http://www.somewhere.com/afile.js"></script>

When the browser goes to resolve this resource, it will send a GET request to the path specified in the
src attribute to retrieve the resource—presumably a JavaScript file. This initial request is not subject
to the browser’s cross-origin restrictions, but any JavaScript returned and executed will be. Of course,
this request is still subject to the HTTP/HTTPS protocol of the parent page.

16

CHAPTER 2 JAVASCRIPT IN HTML

Code from an external domain will be loaded and interpreted as if it were part of the page that is
loading it. This capability allows you to serve up JavaScript from various domains, if necessary. Be
careful, however, if you are referencing JavaScript files located on a server that you don’t control.

A malicious programmer could, at any time, replace the file. When including JavaScript files from a
different domain, make sure you are the domain owner or the domain is owned by a trusted source.
The <script> tag’s integrity attribute gives you a tool to defend against this; however, it has lim-
ited browser support.

Regardless of how the code is included, the <script> elements are interpreted in the order in which
they appear in the page so long as the defer and async attributes are not present. The first <script>
element’s code must be completely interpreted before thesecond <script> element begins interpreta-
tion, the second must be completed before the third, and so on.

Tag Placement

Traditionally, all <script> elements were placed within the <head> element on a page, as in
this example:

<!DOCTYPE html>

<html>
<head>
<title>Example HTML Page</title>
<script src="examplel.js"></script>
<script src="example2.js"></script>
</head>
<body>
<!-- content here -->
</body>

</html>

The main purpose of this format was to keep external file references, both CSS files and JavaScript
files, in the same area. However, including all JavaScript files in the <head> of a document means that
all of the JavaScript code must be downloaded, parsed, and interpreted before the page begins render-
ing (rendering begins when the browser receives the opening <body> tag). For pages that require a lot
of JavaScript code, this can cause a noticeable delay in page rendering, during which time the browser
will be completely blank. For this reason, modern web applications typically include all JavaScript
references in the <body> element, after the page content, as shown in this example:

<!DOCTYPE html>

<html>
<head>
<title>Example HTML Page</title>
</head>
<body>
<!-- content here -->
<script src="examplel.js"></script>
<script src="example2.js"></script>
</body>

</html>

Using this approach, the page is completely rendered in the browser before the JavaScript code is
processed. The resulting user experience is perceived as faster because the amount of time spent on a
blank browser window is reduced.

The <script> Element | 17

Deferred Scripts

HTML 4.01 defines an attribute named defer for the <script> element. The purpose of defer is to

indicate that a script won’t be changing the structure of the page as it executes. As such, the script can
be run safely after the entire page has been parsed. Setting the defer attribute on a <script> element
signals to the browser that download should begin immediately but execution should be deferred:

<!DOCTYPE html>
<html>
<head>
<title>Example HTML Page</title>
<script defer src="examplel.js"></script>
<script defer src="example2.js"></script>
</head>
<body>
<!-- content here -->
</body>
</html>
Even though the <scripts elements in this example are included in the document <head>, they will
not be executed until after the browser has received the closing </html> tag. The HTMLS specifica-
tion indicates that scripts will be executed in the order in which they appear, so the first deferred
script executes before the second deferred script, and both will execute before the boMcontentLoaded
event (see the chapter “Events” for more information). In reality, though, deferred scripts don’t always
execute in order or before the boMCcontentLoaded event, so it’s best to include just one when possible.

As mentioned previously, the defer attribute is supported only for external script files. This was a
clarification made in HTMLS, so browsers that support the HTMLS implementation will ignore
defer when set on an inline script. Internet Explorer 4-7 all exhibit the old behavior, while Internet
Explorer 8 and above support the HTMLS5 behavior.

Support for the defer attribute was added beginning with Internet Explorer 4, Firefox 3.5, Safari 5,
and Chrome 7. All other browsers simply ignore this attribute and treat the script as it normally
would. For this reason, it’s still best to put deferred scripts at the bottom of the page.

NOTE For XHTML documents, specify the defer attribute as defer="defer".

Asynchronous Scripts

HTMLS introduces the async attribute for <scripts elements. The async attribute is similar to
defer in that it changes the way the script is processed. Also similar to defer, async applies only
to external scripts and signals the browser to begin downloading the file immediately. Unlike defer,
scripts marked as async are not guaranteed to execute in the order in which they are specified.
For example:

<!DOCTYPE html>

<html>
<head>

18 | CHAPTER 2 JAVASCRIPT IN HTML

<title>Example HTML Page</title>

<script async src="examplel.js"></script>

<script async src="example2.js"></script>

</head>

<body>

<!-- content here -->

</body>

</html>

In this code, the second script file might execute before the first, so it’s important that there are no
dependencies between the two. The purpose of specifying an async script is to indicate that the page
need not wait for the script to be downloaded and executed before continuing to load, and it also
need not wait for another script to load and execute before it can do the same. Because of this, it’s
recommended that asynchronous scripts not modify the DOM as they are loading.

Asynchronous scripts are guaranteed to execute before the page’s 1oad event and may execute before
or after DOMContentLoaded (see the “Events” chapter for details). Firefox 3.6, Safari 5, and Chrome
7 support asynchronous scripts. Using async scripts also confers to your page the implicit assumption
that you do not intend to use document . write—but good web development practices dictate that
you shouldn't be using it anyway.

NOTE For XHTML documents, specify the async attribute as async="async".

Dynamic Script Loading

You are not limited to using static <script> tags to retrieve resources. Because JavaScript is able to
use the DOM APIL you are more than welcome to add script elements, which will, in turn, load the
resources they specify. This can be done by creating script elements and attaching them to the DOM:

let script = document.createElement ('script');

script.src = 'gibberish.js';

document . head.appendChild (script) ;
Of course, this request will not be generated until the HTMLElement is attached to the DOM, and
therefore not until this script itself runs. By default, scripts that are created in this fashion are async.
This can be problematic, however, as all browsers support createElement but not all support async
script requests. Therefore, to unify the dynamic script loading behavior, you can explicitly mark the
tag as synchronous:

let script = document.createElement ('script');
script.src = 'gibberish.js';

script.async = false;

document . head.appendChild (script) ;

Resources fetched in this fashion will be hidden from browser preloaders. This will severely injure
their priority in the resource fetching queue. Depending on how your application works and how it is
used, this can severely damage performance. To inform preloaders of the existence of these dynami-
cally requested files, you can explicitly declare them in the document head:

<link rel="subresource" href="gibberish.js">

The <script> Element | 19

Changes in XHTML

Extensible HyperText Markup Language, or XHTML, is a reformulation of HTML as an application
of XML. Unlike in HTML, where the type attribute is unneeded when using JavaScript, in XHTML,
the <script> element requires that you specify the type attribute as text/javascript.

The rules for writing code in XHTML are stricter than those for HTML, which affects the <script>
element when using embedded JavaScript code. Although valid in HTML, the following code block is
invalid in XHTML.:

<script type="text/javascript"s
function compare(a, b) {

if (a < b) {
console.log("A is less than B");

} else if (a > b) {
console.log("A is greater than B");

} else {
console.log("A is equal to B");

}
}

</scripts>

In HTML, the <script> element has special rules governing how its contents should be parsed; in
XHTML, these special rules don’t apply. This means that the less-than symbol (<) in the statement

a < b is interpreted as the beginning of a tag, which causes a syntax error because a less-than symbol
must not be followed by a space.

There are two options for fixing the XHTML syntax error. The first is to replace all occurrences of
the less-than symbol (<) with its HTML entity (&1t ;). The resulting code looks like this:

<script type="text/javascript"s
function compare(a, b) {
if (a < b) {
console.log("A is less than B");
} else if (a > b) {
console.log("A is greater than B");
} else {
console.log("A is equal to B");
}
}

</scripts>

This code will now run in an XHTML page; however, the code is slightly less readable. Fortunately,
there is another approach.

The second option for turning this code into a valid XHTML version is to wrap the JavaScript code
in a CDATA section. In XHTML (and XML), CDATA sections are used to indicate areas of the docu-
ment that contain free-form text not intended to be parsed. This enables you to use any character,
including the less-than symbol, without incurring a syntax error. The format is as follows:

<script type="text/javascript"><! [CDATA[
function compare(a, b) {
if (a < b) {
console.log("A is less than B");

20 | CHAPTER2 JAVASCRIPT IN HTML

} else if (a > b) {

console.log("A is greater than B");
} else {

console.log("A is equal to B");

}
}

11></script>

In XHTML-compliant web browsers, this solves the problem. However, many browsers are still not
XHTML-compliant and don’t support the CDATA section. To work around this, the CDATA markup
must be offset by JavaScript comments:

<script type="text/javascript"s>
//<! [CDATAI
function compare(a, b) {
if (a < b) {
console.log("A is less than B");
} else if (a > b) {
console.log("A is greater than B");
} else {
console.log("A is equal to B");

}
}
//11>
</script>
This format works in all modern browsers. Though a little bit of a hack, it validates as XHTML and
degrades gracefully for pre-XHTML browsers.

NOTE XHTML mode is triggered when a page specifies its MIME type as
"application/xhtml+xml". Not all browsers officially support XHTML served
in this manner.

Deprecated Syntax

Since Netscape 2 was released in 19935, all browsers have used JavaScript as their default program-
ming language. The type attribute uses a MIME type string to identify the contents of <scripts,
but MIME types are not standardized across browsers. Even though browsers default to JavaScript,
in some cases an invalid or unrecognized MIME type value for the type attribute will cause some
browsers to skip execution of the associated code. Therefore, unless you are using XHTML or the
<script> tag requests or wraps non-JavaScript, the best practice is to not specify a type attrib-
ute at all.

When the <script> element was originally introduced, it marked a departure from traditional
HTML parsing. Special rules needed to be applied within this element, and that caused problems
for browsers that didn’t support JavaScript (the most notable being Mosaic). Nonsupporting brows-
ers would output the contents of the <script> element onto the page, effectively ruining the page’s
appearance.

Inline Code versus External Files | 21

Netscape worked with Mosaic to come up with a solution that would hide embedded JavaScript code
from browsers that didn’t support it. The final solution was to enclose the script code in an HTML
comment, like this:

<script><!--
function sayHi () {
console.log("Hi!") ;

//--></script>

Using this format, browsers like Mosaic would safely ignore the content inside of the <script>
tag, and browsers that supported JavaScript had to look for this pattern to recognize that there was
indeed JavaScript content to be parsed.

Although this format is still recognized and interpreted correctly by all web browsers, it is no longer
necessary and should not be used. In XHTML mode, this also causes the script to be ignored because
it is inside a valid XML comment.

INLINE CODE VERSUS EXTERNAL FILES

Although it’s possible to embed JavaScript in HTML files directly, it’s generally considered a best
practice to include as much JavaScript as possible using external files. Keeping in mind that there are
no hard and fast rules regarding this practice, the arguments for using external files are as follows:

> Maintainability—JavaScript code that is sprinkled throughout various HTML pages turns
code maintenance into a problem. It is much easier to have a directory for all JavaScript files
so that developers can edit JavaScript code independent of the markup in which it’s used.

> Caching—Browsers cache all externally linked JavaScript files according to specific settings,
meaning that if two pages are using the same file, the file is downloaded only once. This
ultimately means faster page-load times.

> Future-proof—By including JavaScript using external files, there’s no need to use the
XHTML or comment hacks mentioned previously. The syntax to include external files is the

same for both HTML and XHTML.

One notable consideration when configuring how external files are requested is their implication
on request bandwidth. With SPDY/HTTP2, the per-request overhead is substantially reduced inso-
far as it may be advantageous to deliver scripts to the client as lightweight independent JavaScript
components.

For example, your first page might have the following;:

<script src="mainA.js"></script>

<script src="componentl.js"></script>
<script src="component2.js"></script>
<script src="component3.js"></script>

A subsequent page loaded might have the following:

<script src="mainB.js"></script>
<script src="component3.js"></script>

22

CHAPTER 2 JAVASCRIPT IN HTML

<script src="component4.js"></script>
<script src="component5.js"></script>

On the initial request, if the browser supports SPDY/HTTP2, it will be able to efficiently retrieve a
number of files from the same endpoint, and it will enter them into the browser cache on a per-file
basis. From the perspective of the browser, retrieval of these individual resources over SPDY/HTTP2
should have approximately the same latency as delivering a monolithic JavaScript payload.

On the second page request, because you segmented your application into lightweight cacheable files,
some of the components that the second page also depends upon are already in the browser cache.

Of course, this assumes the browser supports SPDY/HTTP2, which is only a valid assumption for
modern browsers. Monolithic payloads may be more appropriate if your aim is to include support for
older browsers.

DOCUMENT MODES

Internet Explorer 5.5 introduced the concept of document modes through the use of doctype switch-
ing. The first two document modes were quirks mode, which made Internet Explorer behave as if

it were version 5 (with several nonstandard features) and standards mode, which made Internet
Explorer behave in a more standards-compliant way. Though the primary difference between these
two modes is related to the rendering of content with regard to CSS, there are also several side effects
related to JavaScript. These side effects are discussed throughout the book.

Since Internet Explorer first introduced the concept of document modes, other browsers have fol-
lowed suit. As this adoption happened, a third mode called almost standards mode arose. That mode
has a lot of the features of standards mode but isn’t as strict. The main difference is in the treatment
of spacing around images (most noticeable when images are used in tables).

Quirks mode is achieved in all browsers by omitting the doctype at the beginning of the document.
This is considered poor practice because quirks mode is very different across all browsers, and no
level of true browser consistency can be achieved without hacks.

Standards mode is turned on when one of the following doctypes is used:

<!-- HTML 4.01 Strict -->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<!-- XHTML 1.0 Strict -->

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<!-- HTML5 -->

<!DOCTYPE html>

Almost standards mode is triggered by transitional and frameset doctypes, as follows:

<!-- HTML 4.01 Transitional -->
<!DOCTYPE HTML PUBLIC

w_//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

The <noscript> Element | 23

<!-- HTML 4.01 Frameset -->

<!DOCTYPE HTML PUBLIC

"-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

<!-- XHTML 1.0 Transitional -->

<!DOCTYPE html PUBLIC

"_//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<!-- XHTML 1.0 Frameset -->

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-frameset.dtd">

Because almost standards mode is so close to standards mode, the distinction is rarely made. People
talking about “standards mode” may be talking about either, and detection for the document mode
(discussed later in this book) also doesn’t make the distinction. Throughout this book, the term stand-
ards mode should be taken to mean any mode other than quirks.

THE <NOSCRIPT> ELEMENT

Of particular concern to early browsers was the graceful degradation of pages when the browser
didn’t support JavaScript. To that end, the <noscript> element was created to provide alternate con-
tent for browsers without JavaScript. Although effectively 100% of browsers now support JavaScript,
this element is still useful for browsers that explicitly disable JavaScript.

The <noscript> element can contain any HTML elements, aside from <script >, that can be
included in the document <body>. Any content contained in a <noscript> element will be displayed
under only the following two circumstances:

> The browser doesn’t support scripting.

> The browser’s scripting support is turned off.

If either of these conditions is met, then the content inside the <noscript> element is rendered. In all
other cases, the browser does not render the content of <noscripts.

Here is a simple example:

<!DOCTYPE html>
<html>
<head>
<title>Example HTML Page</title>
<script ""defer="defer" src="examplel.js"></scripts>
<script ""defer="defer" src="example2.js"></script>
</head>
<body>
<noscript>
<p>This page requires a JavaScript-enabled browser.</p>
</noscript>
</body>
</html>

24 | CHAPTER2 JAVASCRIPT IN HTML

In this example, a message is displayed to the user when the scripting is not available. For scripting-
enabled browsers, this message will never be seen even though it is still a part of the page.

SUMMARY

JavaScript is inserted into HTML pages by using the <script> element. This element can be used
to embed JavaScript into an HTML page, leaving it inline with the rest of the markup, or to include
JavaScript that exists in an external file. The following are key points:

>

To include external JavaScript files, the src attribute must be set to the URL of the file to
include, which may be a file on the same server as the containing page or one that exists on
a completely different domain.

All <script> elements are interpreted in the order in which they occur on the page. The
code contained within a <script> element must be completely interpreted before code in the
next <scripts> element can begin so long as defer and async attributes are not used.

For nondeferred scripts, the browser must complete interpretation of the code inside a
<script> element before it can continue rendering the rest of the page. For this reason,
<script> elements are usually included toward the end of the page, after the main content
and just before the closing </body> tag.

You can defer a script’s execution until after the document has rendered by using the defer
attribute. Deferred scripts always execute in the order in which they are specified.

You can indicate that a script need not wait for other scripts and also not block the docu-
ment rendering by using the async attribute. Asynchronous scripts are not guaranteed to
execute in the order in which they occur in the page.

By using the <noscript> element, you can specify that content is to be shown only if scripting sup-
port isn’t available on the browser. Any content contained in the <noscript> element will not be
rendered if scripting is enabled on the browser.

Language Basics

WHAT'S IN THIS CHAPTER?

> Reviewing syntax

> Working with data types

> Working with flow-control statements
>

Understanding functions

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-

load Code tab.

At the core of any language is a description of how it should work at the most basic level. This
description typically defines syntax, operators, data types, and built-in functionality upon which
complex solutions can be built. As previously mentioned, ECMA-262 defines all of this infor-
mation for JavaScript in the form of a pseudolanguage called ECMAScript.

ECMAScript as defined in ECMA-262, fifth edition, is the most-implemented version among
web browsers. The sixth edition is the next to be implemented in browsers, and as of the end of
2017, most major browsers have mostly or fully implemented the specification. For this reason,
the following information is based primarily on ECMAScript as defined in the sixth edition.

SYNTAX

ECMAScript’s syntax borrows heavily from C and other C-like languages such as Java and Perl.
Developers familiar with such languages should have an easy time picking up the somewhat
looser syntax of ECMAScript.

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

26 | CHAPTER 3 LANGUAGE BASICS

Case-Sensitivity

The first concept to understand is that everything is case-sensitive; variables, function names, and
operators are all case-sensitive, meaning that a variable named test is different from a variable
named Test. Similarly, typeof can’t be the name of a function because it’s a keyword (described in
the next section); however, typeof is a perfectly valid function name.

Identifiers

An identifier is the name of a variable, function, property, or function argument. Identifiers may be
one or more characters in the following format:

> The first character must be a letter, an underscore (_), or a dollar sign ().

> All other characters may be letters, underscores, dollar signs, or numbers.

Letters in an identifier may include extended ASCII or Unicode letter characters such as A and A&,
though this is not recommended.

By convention, ECMAScript identifiers use camel case, meaning that the first letter is lowercase and
each additional word is offset by a capital letter, like this:

firstSecond
myCar
doSomethingImportant

Although this is not strictly enforced, it is considered a best practice to adhere to the built-in
ECMAScript functions and objects that follow this format.

NOTE Keywords, reserved words, true, false, and null cannot be used as
identifiers. See the section “Keywords and Reserved Words” coming up shortly
for more detail.

Comments

ECMAScript uses C-style comments for both single-line and block comments. A single-line comment
begins with two forward-slash characters, such as this:

// single line comment

A block comment begins with a forward slash and asterisk (/*) and ends with the opposite (*/), as in
this example:

/* This is a multi-line
comment */

Syntax | 27

Strict Mode

ECMAScript 5 introduced the concept of strict mode. Strict mode is a different parsing and execu-
tion model for JavaScript, where some of the erratic behavior of ECMAScript 3 is addressed and
errors are thrown for unsafe activities. To enable strict mode for an entire script, include the following
at the top:

"use strict";

Although this may look like a string that isn’t assigned to a variable, this is a pragma that tells sup-
porting JavaScript engines to change into strict mode. The syntax was chosen specifically so as not to
break ECMAScript 3 syntax.

You may also specify just a function to execute in strict mode by including the pragma at the top of
the function body:
function doSomething()
"use strict";
// function body

}

Strict mode changes many parts of how JavaScript is executed, and as such, strict mode distinctions
are pointed out throughout the book. All modern browsers support strict mode.

Statements

Statements in ECMAScript are terminated by a semicolon, though omitting the semicolon makes the
parser determine where the end of a statement occurs, as in the following examples:

let sum = a + b // valid even without a semicolon - not recommended
let diff = a - b; // valid - preferred

Even though a semicolon is not required at the end of statements, you should always include one.
Including semicolons helps prevent errors of omission, such as not finishing what you were typing,
and allows developers to compress ECMAScript code by removing extra white space (such compres-
sion causes syntax errors when lines do not end in a semicolon). Including semicolons also improves
performance in certain situations because parsers try to correct syntax errors by inserting semicolons
where they appear to belong.

Multiple statements can be combined into a code block by using C-style syntax, beginning with a left
curly brace ({) and ending with a right curly brace (}):
if (test) {

test = false;
console.log(test) ;

}

Control statements, such as i£, require code blocks only when executing multiple statements. How-
ever, it is considered a best practice to always use code blocks with control statements, even if there’s
only one statement to be executed, as in the following examples:

// valid, but error-prone and should be avoided
if (test)

28 | CHAPTER 3 LANGUAGE BASICS

console.log(test) ;

// preferred
if (test) { console.log(test);

}

Using code blocks for control statements makes the intent clearer, and there’s less chance for errors
when changes need to be made.

KEYWORDS AND RESERVED WORDS

ECMA-262 describes a set of reserved keywords that have specific uses, such as indicating the begin-
ning or end of control statements or performing specific operations. By rule, keywords are reserved
and cannot be used as identifiers or property names. The complete list of keywords for ECMA-262,
sixth edition is as follows:

break do in typeof
case else instanceof var
catch export new void
class extends return while
const finally super with
continue for switch yield
debugger function this

default if throw

delete import try

The specification also describes a set of future reserved words that cannot be used as identifiers
or property names. Though reserved words don’t have any specific usage in the language, they are
reserved for future use as keywords.

The following is the complete list of future reserved words defined in ECMA-262, sixth edition:

Always reserved:

enum

Reserved in strict mode:

implements package public
interface protected static
let private

Reserved in module code:

await

These words may still not be used as identifiers but now can be used as property names in objects.
Generally speaking, it’s best to avoid using both keywords and reserved words as both identifiers and
property names to ensure compatibility with past and future ECMAScript editions.

Variables | 29

VARIABLES

ECMAScript variables are loosely typed, meaning that a variable can hold any type of data. Every
variable is simply a named placeholder for a value. There are three keywords that can be used to
declare a variable: var, which is available in all ECMAScript versions, and const and let, which
were introduced in ECMAScript 6.

The 'var’ Keyword

To define a variable, use the var operator (note that var is a keyword) followed by the variable name
(an identifier, as described earlier), like this:

var message;

This code defines a variable named message that can be used to hold any value. (Without initializa-
tion, it holds the special value undefined, which is discussed in the next section.) ECMAScript imple-
ments variable initialization, so it’s possible to define the variable and set its value at the same time,
as in this example:

var message = "hi";

Here, message is defined to hold a string value of "hi". Doing this initialization doesn’t mark the
variable as being a string type; it is simply the assignment of a value to the variable. It is still possible
to not only change the value stored in the variable but also change the type of value, such as this:

var message = "hi";
message = 100; // legal, but not recommended

In this example, the variable message is first defined as having the string value "hi" and then over-
written with the numeric value 100. Although it’s not recommended to switch the data type that a
variable contains, it is completely valid in ECMAScript.

var Declaration Scope

It’s important to note that using the var operator to define a variable makes it local to the function
scope in which it was defined. For example, defining a variable inside of a function using var means
that the variable is destroyed as soon as the function exits, as shown here:

function test() {
var message = "hi"; // local variable

}

test();
console.log (message); // error!

Here, the message variable is defined within a function using var. The function is called test (),
which creates the variable and assigns its value. Immediately after that, the variable is destroyed so
the last line in thisexample causes an error. It is, however, possible to define a variable globally by
simply omitting the var operator as follows:

function test() {
message = "hi"; // global variable
}
test () ;
console.log (message); // "hi"

30 | CHAPTER 3 LANGUAGE BASICS

By removing the var operator from the example, the message variable becomes global. As soon as the
function test () is called, the variable is defined and becomes accessible outside of the function once
it has been executed.

NOTE Although it’s possible to define global variables by omitting the var oper-
ator, this approach is not recommended. Global variables defined locally are
hard to maintain and cause confusion because it’s not immediately apparent if
the omission of var was intentional. Strict mode throws a ReferenceError when
an undeclared variable is assigned a value.

If you need to define more than one variable, you can do it using a single statement, separating each
variable (and optional initialization) with a comma like this:

var message = "hi",
found = false,
age = 29;

Here, three variables are defined and initialized. Because ECMAScript is loosely typed, variable ini-
tializations using different data types may be combined into a single statement. Though inserting line
breaks and indenting the variables isn’t necessary, it helps to improve readability.

When you are running in strict mode, you cannot define variables named eval or arguments. Doing
so results in a syntax error.

var Declaration Hoisting

When using var, the following is possible because variables declared using that keyword are hoisted
to the top of the function scope:

function foo() ({
console.log(age) ;
var age = 26;

}

foo(); // undefined

This does not throw an error because the ECMAScript runtime technically treats it like this:

function foo() {
var age;
console.log(age) ;
age = 26;

}

foo(); // undefined

This is “hoisting,” where the interpreter pulls all variable declarations to the top of its scope. It also
allows you to use redundant var declarations without penalty:

function foo() {
var age = 16;
var age 26;
var age 36;

Variables | 31

console.log(age) ;

}

foo(); // 36

‘let’ Declarations

let operates in nearly the same way as var, but with some important differences. Most notable is
that 1et is block scoped, but var is function scoped.

if (true) {

var name = 'Matt';
console.log(name); // Matt
}
console. log (name) ; // Matt

if (true) {
let age = 26;
console.log(age) ; /] 26

}

console.log(age) ; // ReferenceError: age is not defined

Here, the age variable cannot be referenced outside the if block because its scope does not extend
outside the block. Block scope is strictly a subset of function scope, so any scope limitations that
apply to var declarations will also apply to 1et declarations.

A 1let declaration also does not allow for any redundant declarations within a block scope. Doing so
will result in an error:

var name;
var name;

let age;
let age; // SyntaxError; identifier 'age' has already been declared

Of course, the JavaScript engine will keep track of identifiers used for variable declarations and the
block scope they were declared inside, so nesting using identical identifiers behaves as you would
expect with no errors because no redeclaration is occurring:

var name = 'Nicholas';
console.log(name); // 'Nicholas'
if (true) {
var name = 'Matt';
console.log(name); // 'Matt’

}

let age = 30;
console.log(age); // 30
if (true) {
let age = 26;
console.log(age); // 26

}

The declaration redundancy errors are not a function of order, and are not affected if 1et is mixed
with var. The different keywords do not declare different types of variables—they just specify how
the variables exist inside the relevant scope.

32

CHAPTER 3 LANGUAGE BASICS

var name;
let name; // SyntaxError

let age;
var age; // SyntaxError

Temporal Dead Zone

Another important behavior of let distinguishing it from var is that let declarations cannot be used
in a way that assumes hoisting:

// name is hoisted
console.log(name); // undefined
var name = 'Matt';

// age is not hoisted
console.log(age); // ReferenceError: age is not defined
let age = 26;

When parsing the code, JavaScript engines will still be aware of the 1et declarations that appear later
in a block, but these variables will be unable to be referenced in any way before the actual declaration
occurs. The segment of execution that occurs before the declaration is referred to as the “temporal
dead zone,” and any attempted references to these variables will throw a ReferenceError.

Global Declarations

Unlike the var keyword, when declaring variables using 1et in the global context, variables will not
attach to the window object as they do with var.

var name = 'Matt';
console.log(window.name); // 'Matt'

let age = 26;
console. log(window.age) ; // undefined

However, let declarations will still occur inside the global block scope, which will persist for the
lifetime of the page. Therefore, you must ensure your page does not attempt duplicate declarations in
order to avoid throwing a SyntaxError.

Conditional Declaration

When using var to declare variables, because the declaration is hoisted, the JavaScript engine will
happily combine redundant declarations into a single declaration at the top of the scope. Because
let declarations are scoped to blocks, it’s not possible to check if a 1et variable has previously been
declared and conditionally declare it only if it has not.

<scripts>
var name = 'Nicholas';
let age = 26;
</script>

Variables | 33

<scripts>
// Suppose this script is unsure about what has already been declared in the page.
// It will assume variables have not been declared.

var name = 'Matt';
// No problems here, since this will be handled as a single hoisted declaration.
// There is no need to check if it was previously declared.

let age = 36;
// This will throw an error when 'age' has already been declared.
</script>

Using a try/catch statement or the typeof operator are not solutions, as the let declaration inside
the conditional block will be scoped to that block.

<scripts>
let name = 'Nicholas';
let age = 36;
</script>

<scripts>

// Suppose this script is unsure about what has already been declared in
the page.

// It will assume variables have not been declared.

if (typeof name !== 'undefined') ({
let name;
}
// 'name' is restricted to the if {} block scope,
// so this assignment will act as a global assignment
name = 'Matt';

try (age) {
// If age is not declared, this will throw an error

catch(error) {
let age;
}
// 'age' is restricted to the catch {} block scope,
// so this assignment will act as a global assignment
age = 26;
</script>

Because of this, you cannot rely on a conditional declaration pattern with this new ES6 declara-
tion keyword.

NOTE Not being able to use let for conditional declaration is a good thing, as
conditional declaration is a bad pattern to have in your codebase. It makes it
harder to understand program flow. If you find yourself reaching for this pattern,
chances are very good that there is a better way to go about writing it.

34 | CHAPTER 3 LANGUAGE BASICS

let Declaration in for Loops

Prior to the advent of 1et, for loop definition involved using an iterator variable whose definition
would bleed outside the loop body:

for (var 1 = 0; 1 < 5; ++i) {
// do loop things

}

console.log(i); // 5

This is no longer a problem when switching to let declarations, as the iterator variable will be
scoped only to the for loop block:

for (let 1 = 0; 1 < 5; ++i) {
// do loop things
}

console.log(i); // ReferenceError: i is not defined

When using var, a frequent problem encountered was the singular declaration and modification of
the iterator variable:

for (var 1 = 0; 1 < 5; ++1) {
setTimeout (() => console.log(i), 0)
}

// You might expect this to console.log 0, 1, 2, 3, 4
// It will actually console.log 5, 5, 5, 5, 5

This happens because the loop exits with its iterator variable still set to the value that caused the
loop to exit: 5. When the timeouts later execute, they reference this same variable, and consequently
console.log its final value.

When using let to declare the loop iterator, behind the scenes the JavaScript engine will actu-
ally declare a new iterator variable each loop iteration. Each setTimeout references that separate
instance, and therefore it will console.log the expected value: the value of the iterator variable
when that loop iteration was executed.

for (let 1 = 0; 1 < 5; ++i) {
setTimeout (() => console.log(i), 0)
}

// console.logs 0, 1, 2, 3, 4

This per-iteration declarative behavior is applicable for all styles of for loops, including for-in and
for-of loops.

‘const’ Declarations

const behaves identically to that of 1et but with one important difference—it must be initialized
with a value, and that value cannot be redefined after declaration. Attempting to modify a const
variable will result in a runtime error.

const age = 26;
age = 36; // TypeError: assignment to a constant

Variables | 35

// const still disallows redundant declaration
const name = 'Matt';
const name = 'Nicholas'; // SyntaxError

// const is still scoped to blocks

const name = 'Matt';
if (true) {

const name = 'Nicholas';
console.log(name); // Matt

The const declaration is only enforced with respect to the reference to the variable that it points to.
If a const variable references an object, it does not violate the const constraints to modify properties
inside that object.

const person = {};
person.name = 'Matt'; // ok

Even though the JavaScript engine is creating new instances of let iterator variables in for loops, and
even though const variables behave similarly to 1et variables, you cannot use const to declare for
loop iterators:

for (const i = 0; i < 10; ++i) {} // TypeError: assignment to constant variable

However, if you were to declare a for loop variable that is not modified, const is allowed—precisely
because a new variable is declared for each iteration. This is especially relevant in the case of for-of
and for-in loops:
let 1 = 0;
for (const § = 7; i < 5; ++1i) {
console.log(j) ;

for (const key in {a: 1, b: 2}) {
console.log (key) ;

!
// a, b

for (const value of [1,2,3,4,5]) {
console.log(value) ;

Declaration Styles and Best Practices

The introduction of let and const in ECMAScript 6 bring objectively better tooling to the language
in the form of increased precision of declaration scope and semantics. It is no secret that the bizarre
behavior of var declarations caused the JavaScript community to pull its collective hair out for years
as a result of all the problems it caused. In the wake of the introduction of these new keywords, there
are some increasingly common patterns emerging that can improve code quality.

36

CHAPTER 3 LANGUAGE BASICS

Don’t Use var

With let and const, most developers will find that they no longer need to use var in their codebase
anywhere. The patterns that emerge from restricting variable declaration to only 1et and const will
serve to enforce higher codebase quality thanks to careful management of variable scope, declaration
locality, and const correctness.

Prefer const Over let

Using const declarations allows the browser runtime to enforce constant variables, as well as for
static code analysis tools to foresee illegal reassignment operations. Therefore, many developers feel
it is to their advantage to, by default, declare variables as const unless they know they will need to
reassign its value at some point. This allows for developers to more concretely reason about values
that they know will never change, and also for quick detection of unexpected behavior in cases where
the code execution attempts to perform an unanticipated value reassignment.

DATA TYPES

There are six simple data types (also called primitive types) in ECMAScript: Undefined, Null,
Boolean, Number, String, and Symbol. Symbol was newly introduced in ECMAScript 6. There is also
one complex data type called Object, which is an unordered list of name-value pairs. Because there
is no way to define your own data types in ECMAScript, all values can be represented as one of
these seven. Having only seven data types may seem like too few to fully represent data; however,
ECMAScript’s data types have dynamic aspects that make each single data type behave like several.

The typeof Operator

Because ECMAScript is loosely typed, there needs to be a way to determine the data type of a given
variable. The typeof operator provides that information. Using the typeof operator on a value
returns one of the following strings:

» wyundefined" if the value is undefined

"boolean" if the value is a Boolean

nstring" if the value is a string

"number" if the value is a number

"object" if the value is an object (other than a function) or null

nfunction" if the value is a function

Y Y Y VY Y'Y

nsymbol" if the value is a Symbol

The typeof operator is called like this:

let message = "some string";
console.log(typeof message) ; // "string"
console.log (typeof (message)); // "string"

console.log (typeof 95); // "number"

Data Types | 37

In this example, both a variable (message) and a numeric literal are passed into the typeof operator.
Note that because typeof is an operator and not a function, no parentheses are required (although
they can be used).

Be aware there are a few cases where typeof seemingly returns a confusing but technically correct
value. Calling typeof null returns a value of "object", as the special value nul1l is considered to be
an empty object reference.

NOTE Technically, functions are considered objects in ECMAScript and don’t
represent another data type. However, they do have some special properties,
which necessitates differentiating between functions and other objects via the
typeof operator.

The Undefined Type

The Undefined type has only one value, which is the special value undefined. When a variable is
declared using var or let but not initialized, it is assigned the value of undefined as follows:

let message;

console.log(message == undefined); // true
In this example, the variable message is declared without initializing it. When compared with the
literal value of undefined, the two are equal. This example is identical to the following:

let message = undefined;

console.log (message == undefined); // true
Here the variable message is explicitly initialized to be undefined. This is unnecessary because, by
default, any uninitialized variable gets the value of undefined.

NOTE Generally speaking, you should never explicitly set a variable to be
undefined. The literal undefined value is provided mainly for comparison and
wasn’t added until ECMA-262, third edition, to belp formalize the difference
between an empty object pointer (null) and an uninitialized variable.

Note that a variable containing the value of undefined is different from a variable that hasn’t been
defined at all. Consider the following:

let message; // this variable is declared but has a value of undefined

// make sure this variable isn't declared
// let age

console.log(message); // "undefined"
console.log(age) ; // causes an error

38 | CHAPTER3 LANGUAGE BASICS

In this example, the first console.log displays the variable message, which is "undefined". In the
second console.log, an undeclared variable called age is passed into the console.log () function,
which causes an error because the variable hasn’t been declared. Only one useful operation can be
performed on an undeclared variable: you can call typeof on it (calling delete on an undeclared
variable won’t cause an error, but this isn’t very useful and in fact throws an error in strict mode).

The typeof operator returns "undefined" when called on an uninitialized variable, but it also
returns "undefined" when called on an undeclared variable, which can be a bit confusing. Consider
this example:

let message; // this variable is declared but has a value of undefined

// make sure this variable isn't declared
// let age

console.log(typeof message); // "undefined"
console.log(typeof age); // "undefined"

In both cases, calling typeof on the variable returns the string "undefined". Logically, this makes
sense because no real operations can be performed with either variable even though they are techni-
cally very different.

NOTE Even though uninitialized variables are automatically assigned a value of
undefined, it is advisable to always initialize variables. That way, when typeof
returns "undefined", you’ll know that it’s because a given variable hasn’t been
declared rather than was simply not initialized.

The value undefined is falsy; therefore, you are able to more succinctly check for it wherever you
might need to. Bear in mind, however, that many other possible values are also falsy, so be careful in
scenarios where you need to test for an exact value of undefined rather than just a falsy value:

let message; // this variable is declared but has a value of undefined
// 'age' is not declared

if (message)

// This block will not execute
}

if (!message) {
// This block will execute
}

if (age)
// This will throw an error
}

Data Types | 39

The Null Type

The Null type is the second data type that has only one value: the special value nul1. Logically, a
null value is an empty object pointer, which is why typeof returns "object" when it’s passed a
null value in the following example:

let car = null;
console.log(typeof car); // "object"

When defining a variable that is meant to later hold an object, it is advisable to initialize the variable

to null as opposed to anything else. That way, you can explicitly check for the value null to deter-

mine if the variable has been filled with an object reference at a later time, such as in this example:
if (car != null) {

// do something with car

}

The value undefined is a derivative of null, so ECMA-262 defines them to be superficially equal
as follows:

console.log(null == undefined) ; // true

Using the equality operator (==) between null and undefined always returns true, though keep
in mind that this operator converts its operands for comparison purposes (covered in detail later in
this chapter).

Even though null and undefined are related, they have very different uses. As mentioned previously,
you should never explicitly set the value of a variable to undefined, but the same does not hold true
for null. Any time an object is expected but is not available, nu11 should be used in its place. This
helps to keep the paradigm of null as an empty object pointer and further differentiates it from
undefined.

The null type is falsy; therefore, you are able to more succinctly check for it wherever you might
need to. Bear in mind, however, that many other possible values are also falsy, so be careful in sce-
narios where you need to test for an exact value of nul1 rather than just a falsy value:

let message = null;
let age;

if (message) {
// This block will not execute

}

if (!message) {
// This block will execute

}

if (age) {
// This block will not execute

}

if (rage) {
// This block will execute

}

40

CHAPTER 3 LANGUAGE BASICS

The Boolean Type

The Boolean type is one of the most frequently used types in ECMAScript and has only two literal
values: true and false. These values are distinct from numeric values, so true is not equal to 1, and
false is not equal to 0. Assignment of Boolean values to variables is as follows:

let found = true;
let lost = false;

Note that the Boolean literals true and false are case—sensitive, so True and False (and other mix-
ings of uppercase and lowercase) are valid as identifiers but not as Boolean values.

Though there are just two literal Boolean values, all types of values have Boolean equivalents in

ECMAScript. To convert a value into its Boolean equivalent, the special Boolean () casting function
is called, like this:

let message = "Hello world!";
let messageAsBoolean = Boolean (message) ;

In this example, the string message is converted into a Boolean value and stored in message-
AsBoolean. The Boolean () casting function can be called on any type of data and will always return
a Boolean value. The rules for when a value is converted to true or false depend on the data type
as much as the actual value. The following table outlines the various data types and their specific
conversions.

DATA TYPE VALUES CONVERTED TO TRUE VALUES CONVERTED TO FALSE

Boolean true false

String Any nonempty string " (empty string)

Number Any nonzero number 0, NaN (See the “NaN" section later in
(including infinity) this chapter.)

Object Any object null

Undefined n/a undefined

These conversions are important to understand because flow-control statements, such as the if state-
ment, automatically perform this Boolean conversion, as shown here:

let message = "Hello world!";
if (message)
console.log("Value is true");

}

In this example, the console.log will be displayed because the string message is automatically con-
verted into its Boolean equivalent (true). It’s important to understand what variable you’re using in a
flow-control statement because of this automatic conversion. Mistakenly using an object instead of a
Boolean can drastically alter the flow of your application.

Data Types | 41

The Number Type

Perhaps the most interesting data type in ECMAScript is Number, which uses the IEEE-754 format
to represent both integers and floating-point values (also called double—precision values in some lan-
guages). To support the various types of numbers, there are several different number literal formats.

The most basic number literal format is that of a decimal integer, which can be entered directly as
shown here:

let intNum = 55; // integer

Integers can also be represented as either octal (base 8) or hexadecimal (base 16) literals. For an octal
literal, the first digit must be a zero (0) followed by a sequence of octal digits (numbers 0 through 7).
If a number out of this range is detected in the literal, then the leading zero is ignored and the number
is treated as a decimal, as in the following examples:

let octalNuml = 070; // octal for 56

let octalNum2 079; // invalid octal - interpreted as 79
let octalNum3 = 08; // invalid octal - interpreted as 8

Octal literals are invalid when running in strict mode and will cause the JavaScript engine to throw a
syntax error.

To create a hexadecimal literal, you must make the first two characters Ox (case insensitive), followed
by any number of hexadecimal digits (0 through 9, and A through F). Letters may be in uppercase or
lowercase. Here’s an example:

let hexNuml = O0xA; // hexadecimal for 10
let hexNum2 = 0x1f; // hexadecimal for 31

Numbers created using octal or hexadecimal format are treated as decimal numbers in all arithmetic
operations.

NOTE Because of the way that numbers are stored in JavaScript, it is actually
possible to have a value of positive zero (+0) and negative zero (—0). Positive zero
and negative zero are considered equivalent in all cases but are noted in this text
for clarity.

Floating-Point Values

To define a floating-point value, you must include a decimal point and at least one number after the
decimal point. Although an integer is not necessary before a decimal point, it is recommended. Here
are some examples:

let floatNuml

let floatNum2 = 0.1;
let floatNum3 = .1; // valid, but not recommended

]
=
[y

42

CHAPTER 3 LANGUAGE BASICS

Because storing floating-point values uses twice as much memory as storing integer values,
ECMAScript always looks for ways to convert values into integers. When there is no digit after the
decimal point, the number becomes an integer. Likewise, if the number being represented is a whole
number (such as 1.0), it will be converted into an integer, as in this example:

let floatNuml = 1.; // missing digit after decimal - interpreted as integer 1
let floatNum2 10.0; // whole number - interpreted as integer 10

For very large or very small numbers, floating-point values can be represented using e-notation.
E-notation is used to indicate a number that should be multiplied by 10 raised to a given power. The
format of e-notation in ECMAScript is to have a number (integer or floating-point) followed by an
uppercase or lowercase letter E, followed by the power of 10 to multiply by. Consider the following:

let floatNum = 3.125e7; // equal to 31250000

In this example, floatNum is equal to 31,250,000 even though it is represented in a more compact
form using e-notation. The notation essentially says, “Take 3.125 and multiply it by 107.”

E-notation can also be used to represent very small numbers, such as 0.00000000000000003, which
can be written more succinctly as 3e-17. By default, ECMAScript converts any floating-point value
with at least six zeros after the decimal point into e-notation (for example, 0.0000003 becomes 3e-7).

Floating-point values are accurate up to 17 decimal places but are far less accurate in arithmetic
computations than whole numbers. For instance, adding 0.1 and 0.2 yields 0.30000000000000004
instead of 0.3. These small rounding errors make it difficult to test for specific floating-point values.
Consider this example:

if (a + b == 0.3) { // avoid!
console.log("You got 0.3.");

}

Here, the sum of two numbers is tested to see if it’s equal to 0.3. This will work for 0.05 and 0.25
and for 0.15 and 0.15. But if applied to 0.1 and 0.2, as discussed previously, this test would fail.
Therefore you should never test for specific floating-point values.

NOTE [¢’s important to understand that rounding errors are a side effect of the
way floating-point arithmetic is done in IEEE-754—based numbers and is not
unique to ECMAScript. Other languages that use the same format have the same
issues.

Range of Values

Not all numbers in the world can be represented in ECMAScript because of memory constraints.
The smallest number that can be represented in ECMAScript is stored in Number .MIN VALUE

and is 5e-324 on most browsers; the largest number is stored in Number .MAX VALUE and is
1.7976931348623157e+308 on most browsers. If a calculation results in a number that cannot be
represented by JavaScript’s numeric range, the number automatically gets the special value of
Infinity. Any negative number that can’t be represented is —Infinity (negative infinity), and any
positive number that can’t be represented is simply Infinity (positive infinity).

Data Types | 43

If a calculation returns either positive or negative Infinity, that value cannot be used in any
further calculations, because Infinity has no numeric representation with which to calculate. To
determine if a value is finite (that is, it occurs between the minimum and the maximum), there is the
isFinite () function. This function returns true only if the argument is between the minimum and
the maximum values, as in this example:

let result = Number.MAX VALUE + Number.MAX VALUE;
console.log(isFinite (result)); // false

Though it is rare to do calculations that take values outside of the range of finite numbers, it is pos-
sible and should be monitored when doing very large or very small calculations.

NOTE You can also get the values of positive and negative Infinity by access-
ing Number.NEGATIVE _ INFINITY and Number.POSITIVE _ INFINITY. As you
may expect, these properties contain the values -Infinity and Infinity,
respectively.

NaN

There is a special numeric value called Nan, short for Not a Number, which is used to indicate when
an operation intended to return a number has failed (as opposed to throwing an error). For exam-
ple, dividing any number by 0 typically causes an error in other programming languages, halting
code execution. In ECMAScript, dividing a number by 0 returns NaN, which allows other processing
to continue.

The value Nan has a couple of unique properties. First, any operation involving NaN always returns
NaN (for instance, NaN /10), which can be problematic in the case of multistep computations. Second,
NaN is not equal to any value, including Nan. For example, the following returns false:

console.log(NaN == NaN); // false

For this reason, ECMAScript provides the isNaN () function. This function accepts a single argument,
which can be of any data type, to determine if the value is “not a number.” When a value is passed into
isNaN (), an attempt is made to convert it into a number. Some nonnumerical values convert into num-
bers directly, such as the string "10" or a Boolean value. Any value that cannot be converted intoa
number causes the function to return true. Consider the following:

console.log (isNaN (NaN)) ; // true

console.log(isNaN(10)) ; // false - 10 is a number
console.log(isNaN("10")) ; // false - can be converted to number 10
console.log(isNaN ("blue")); // true - cannot be converted to a number
console.log(isNaN(true)) ; // false - can be converted to number 1

This example tests five different values. The first test is on the value NaN itself, which, obviously,
returns true. The next two tests use numeric 10 and the string "10", which both return false
because the numeric value for each is 10. The string "blue", however, cannot be converted into a
number, so the function returns true. The Boolean value of true can be converted into the number 1,
so the function returns false.

44 | CHAPTER 3 LANGUAGE BASICS

NOTE Although typically not done, isNaN() can be applied to objects. In that
case, the object’s valueof () method is first called to determine if the returned
value can be converted into a number. If not, the toString() method is called
and its returned value is tested as well. This is the general way that built-in
functions and operators work in ECMAScript and is discussed more in the
“Operators” section later in this chapter.

Number Conversions

There are three functions to convert nonnumeric values into numbers: the Number () casting func-
tion, the parseInt () function, and the parseFloat () function. The first function, Number (), can be
used on any data type; the other two functions are used specifically for converting strings to numbers.
Each of these functions reacts differently to the same input.

The Number () function performs conversions based on these rules:

>

Y Y Vv Y

>

When applied to Boolean values, true and false get converted into 1 and 0, respectively.
When applied to numbers, the value is simply passed through and returned.

When applied to null, Number() returns 0.

When applied to undefined, Number() returns NaN.

When applied to strings, the following rules are applied:

> If the string contains only numeric characters, optionally preceded by a plus or
minus sign, it is always converted to a decimal number, so Number("1") becomes 1,
Number("123") becomes 123, and Number("011") becomes 11 (note: leading zeros
are ignored).

> 1If the string contains a valid floating-point format, such as "1.1", it is converted into
the appropriate floating-point numeric value (once again, leading zeros are ignored).

> If the string contains a valid hexadecimal format, such as "oxf", it is converted into
an integer that matches the hexadecimal value.

If the string is empty (contains no characters), it is converted to 0.

If the string contains anything other than these previous formats, it is con-
verted into NaN.

When applied to objects, the valueof() method is called and the returned value is converted
based on the previously described rules. If that conversion results in NaN, the toString()
method is called and the rules for converting strings are applied.

Converting to numbers from various data types can get complicated, as indicated by the number of
rules there are for Number (). Here are some concrete examples:

let numl = Number ("Hello world!"); // NaN
let num2 = Number (""); // 0

Data Types | 45

let num3 = Number ("000011"); // 11
let num4 = Number (true) ; // 1

In these examples, the string "Hello world" is converted into NaN because it has no corresponding
numeric value, and the empty string is converted into 0. The string "000011" is converted to the num-
ber 11 because the initial zeros are ignored. Last, the value true is converted to 1.

NOTE The unary plus operator, discussed in the “Operators” section later in
this chapter, works the same as the Number () function.

Because of the complexities and oddities of the Number () function when converting strings, the
parseInt () function is usually a better option when you are dealing with integers. The parseInt ()
function examines the string much more closely to see if it matches a number pattern. Leading white
space in the string is ignored until the first non—white space character is found. If this first character
isn’t a number, the minus sign, or the plus sign, parseInt () always returns NaN, which means the
empty string returns NaN (unlike with Number (), which returns 0). If the first character is a number,
plus, or minus, then the conversion goes on to the second character and continues on until either
the end of the string is reached or a nonnumeric character is found. For instance, "1234blue" is
converted to 1234 because "blue" is completely ignored. Similarly, "22.5" will be converted to 22
because the decimal is not a valid integer character.

Assuming that the first character in the string is a number, the parseInt () function also recognizes
the various integer formats (decimal, octal, and hexadecimal, as discussed previously). This means
when thestring begins with "ox", it is interpreted as a hexadecimal integer; if it begins with "o fol-
lowed by a number, it is interpreted as an octal value.

Here are some conversion examples to better illustrate what happens:

let numl = parseInt("1234blue"); // 1234

let num2 = parseInt(""); // NaN

let num3 = parselnt ("0xA"); // 10 - hexadecimal
let numé4 = parselnt(22.5); /] 22

let num5 = parseInt("70"); // 70 - decimal

let numé = parselnt ("0xf"); // 15 - hexadecimal

All of the different numeric formats can be confusing to keep track of, so parseInt () provides a sec-
ond argument: the radix (number of digits). If you know that the value you’re parsing is in hexadeci-
mal format, you can pass in the radix 16 as a second argument and ensure that the correct parsing
will occur, as shown here:

let num = parselnt ("OxAF", 16); // 175

In fact, by providing the hexadecimal radix, you can leave off the leading "ox" and the conversion
will work as follows:

let numl = parselnt ("AF", 16); // 175
let num2 = parselnt ("AF"); // NaN

46

CHAPTER 3 LANGUAGE BASICS

In this example, the first conversion occurs correctly, but the second conversion fails. The difference
is that the radix is passed in on the first line, telling parseInt () that it will be passed a hexadecimal
string; the second line sees that the first character is not a number and stops automatically.

Passing in a radix can greatly change the outcome of the conversion. Consider the following:

let numl = parselInt("10", 2)
let num2 = parseInt("10", 8)
let num3 = parseInt("10", 10
let num4 = parselnt("10", 16

; // 2 - parsed as binary

; // 8 - parsed as octal

); // 10 - parsed as decimal

); // 16 - parsed as hexadecimal

Because leaving off the radix allows parseInt () to choose how to interpret the input, it’s advisable
to always include a radix to avoid errors.

NOTE Most of the time you'll be parsing decimal numbers, so it’s good to
always include 10 as the second argument.

The parseFloat () function works in a similar way to parseInt (), looking at each character start-
ing in position 0. It also continues to parse the string until it reaches either the end of the string or a

character that is invalid in a floating-point number. This means that a decimal point is valid the first

time it appears, but a second decimal point is invalid and the rest of the string is ignored, resulting in
"22.34.5" being converted to 22.34.

Another difference in parseFloat () is that initial zeros are always ignored. This function will
recognize any of the floating-point formats discussed earlier, as well as the decimal format (leading
zeros are always ignored). Hexadecimal numbers always become 0. Because parseFloat () parses
only decimal values, there is no radix mode. A final note: if the string represents a whole number
(no decimal point or only a zero after the decimal point), parseFloat () returns an integer. Here are
some examples:

let numl = parseFloat("1234blue"); // 1234 - integer
let num2 = parseFloat ("0xA"); // 0

let num3 = parseFloat ("22.5"); // 22.5

let num4 = parseFloat("22.34.5"); // 22.34

let num5 = parseFloat ("0908.5"); // 908.5

let numé = parseFloat ("3.125e7"); // 31250000

The String Type

The String data type represents a sequence of zero or more 16-bit Unicode characters. Strings can
be delineated by either double quotes ("), single quotes ('), or backticks (~), so all of the following
are legal:

let firstName = "John";
let lastName = 'Jacob';
let lastName = “Jingleheimerschmidt™

Data Types | 47

Unlike some languages in which using different quotes changes how the string is interpreted, there is
no difference in the syntaxes in ECMAScript. Note, however, that a string beginning with a certain
character must end with the same character. For example, the following will cause a syntax error:

let firstName = 'Nicholas"; // syntax error - quotes must match

Character Literals

The String data type includes several character literals to represent nonprintable or otherwise useful
characters, as listed in the following table:

LITERAL
\n
\t
\b
\r
\f
\\
\

\u

\xnn

\unnnn

MEANING

New line

Tab

Backspace
Carriage return
Form feed
Backslash (\)

Single quote (')—used when the string is delineated by single quotes. Example: 'He
said, \'hey.\'"'.

Double quote (")—used when the string is delineated by double quotes. Example:
"He said, \"hey.\"".

Backtick (~)—used when the string is delineated by backticks. Example: “He said,
\“hey.\"".

A character represented by hexadecimal code nn (where n is a hexadecimal digit
0-F). Example: \x41 is equivalent to "A".

A Unicode character represented by the hexadecimal code nnnn (where nis a
hexadecimal digit 0-F). Example: \u03a3 is equivalent to the Greek character X.

These character literals can be included anywhere with a string and will be interpreted as if they were
a single character, as shown here:

let text = "This is the letter sigma: \u03a3.";

In this example, the variable text is 28 characters long even though the escape sequence is 6 charac-
ters long. The entire escape sequence represents a single character, so it is counted as such.

The length of any string can be returned by using the 1ength property, as follows:

console.log(text.length); // 28

This property returns the number of 16-bit characters in the string.

48 | CHAPTER 3 LANGUAGE BASICS

NOTE If a string contains double—byte characters, the 1ength property may not
accurately return the number of characters in the string. Mitigation strategies for
this are detailed in the Basic Reference Types chapter.

The Nature of Strings

Strings are immutable in ECMAScript, meaning that once they are created, their values cannot
change. To change the string held by a variable, the original string must be destroyed and the variable
filled with another string containing a new value, like this:

let lang = "Java";
lang = lang + "Script";

Here, the variable 1ang is defined to contain the string "Java". On the next line, 1ang is redefined
to combine "Java" with "Script", making its value "Javascript". This happens by creating a new
string with enough space for 10 characters and then filling that string with "Java" and "Script".
The last step in the process is to destroy the original string "Java" and the string "Script", because
neither is necessary anymore. All of this happens behind the scenes, which is why older browsers
(such as pre-1.0 versions of Firefox and Internet Explorer 6.0) had very slow string concatenation.
These inefficiencies were addressed in later versions of these browsers.

Converting to a String

There are two ways to convert a value into a string. The first is to use the toString () method that
almost every value has. This method’s only job is to return the string equivalent of the value. Consider
this example:

let age = 11;

let ageAsString = age.toString(); // the string "11"
let found = true;
let foundAsString = found.toString(); // the string "true"

The tostring () method is available on values that are numbers, Booleans, objects, and strings. (Yes,
each string has a tostring () method that simply returns a copy of itself.) If a value is null or
undefined, this method is not available.

In most cases, tostring () doesn’t have any arguments. However, when used on a number value,
toString () actually accepts a single argument: the radix in which to output the number. By default,
toString () always returns a string that represents the number as a decimal, but by passing in a
radix, tostring () can output the value in binary, octal, hexadecimal, or any other valid base, as in
this example:

let num = 10;

console.log (num.toString()) ; // "1io0"
console.log (num.toString(2)) ; // "1010"
console.log (num.toString(8)) ; // "i2v
console.log (num.toString(10)) ; // "10"
console.log (num.toString (16)) ; // "a"

Data Types | 49

This example shows how the output of tostring () can change for numbers when providing a radix.
The value 10 can be output into any number of numeric formats. Note that the default (with no argu-
ment) is the same as providing a radix of 10.

If you’re not sure that a value isn’t null or undefined, you can use the String () casting function,
which always returns a string regardless of the value type. The string () function follows these rules:

> 1If the value has a tostring() method, it is called (with no arguments) and the result
is returned.

If the value is null, "null" is returned.

If the value is undefined, "undefined" is returned.

Consider the following:

let valuel = 10;
let value2 = true;
let value3 = null;
let value4;

console.log(String(valuel)) ; // "1i0"

console.log (String(value2)) ; // "true"

console.log (String(value3)) ; // "null"
(())

console.log(String(value4)) ; // "undefined"

Here, four values are converted into strings: a number, a Boolean, nul1, and undefined. The result
for the number and the Boolean are the same as if tostring () were called. Because toString ()
isn’t available on "null" and "undefined", the String () method simply returns literal text for
those values.

NOTE You can also convert a value to a string by adding an empty string ("") to
that value using the plus operator (discussed in the “Operators” section later in

this chapter).

Template Literals

New in ECMAScript 6 is the capability to define strings using template literals. Unlike their single
and double quoted counterparts, template literals respect new line characters, and can be defined
spanning multiple lines:

let myMultiLineString = 'first line\nsecond line';
let myMultiLineTemplateLiteral = “first line
second line”;

console.log(myMultiLineString) ;
// first line
// second line"

50

| CHAPTER 3 LANGUAGE BASICS

console.log (myMultiLineTemplateLiteral) ;
// first line
// second line

console.log (myMultiLineString === myMultiLinetemplateLiteral) ; // true

As the name suggests, template literals are especially useful when defining templates, such as HTML:

let pageHTML =

<div>

Jake

</divs>";

Because template literals will exactly match the whitespace inside the backticks, special care will
need to be applied when defining them. A correctly formatted template string may appear to have
improper indentation:

// This template literal has 25 spaces following the line return character
let myTemplateLiteral = “first line

second line~;
console.log (myTemplateLiteral.length); // 47

// This template literal begins with a line return character
let secondTemplateLiteral = °

first line

second line”;

console.log(secondTemplateLiteral [0] === '\n'); // true

// This template literal has no unexpected whitespace characters
let thirdTemplateLiteral = “first line

second line~;

console.log(thirdTemplateLiteral[0]) ;

// first line

// second line

Interpolation

One of the most useful features of template literals is their support for interpolation, which allows
you to insert values at one or more places inside a single unbroken definition. Technically, template
literals aren’t strings, they are special JavaScript syntactical expressions that evaluate into strings.
Template literals are evaluated immediately when they are defined and converted into a string
instance, and any interpolated variables will be drawn from its immediate scope.

This can be accomplished using a JavaScript expression inside ${}:

let value = 5;
let exponent = 'second';

// Formerly, interpolation was accomplished as follows:
let interpolatedString =
value + ' to the ' + exponent + ' power is ' + (value * value);

Data Types | 51

// The same thing accomplished with template literals:
let interpolatedTemplateLiteral =
~${ value } to the ${ exponent } power is ${ value * value }~;

console.log(interpolatedString) ; // 5 to the second power is 25
console.log (interpolatedTemplateLiteral); // 5 to the second power is 25

The value being interpolated will eventually be coerced into a string using toString (), but any
JavaScript expression can safely be interpolated. Nesting template strings is safe with no escap-
ing required:

console.log(Hello, ${ “World™ }!~); // Hello, World!
toString () is invoked to coerce expression result into string:

let foo = { toString: () => 'World' };
console.log(“Hello, ${ foo }!); // Hello, World!

Invoking functions and methods inside interpolated expressions is allowed:

function capitalize(word) {
return ~${ word[0] .toUpperCase() }${ word.slice(1) }°;
}

console.log(${ capitalize('hello') }, ${ capitalize('world') }!~); // Hello, World!

Additionally, templates can safely interpolate their previous value:

let value = '';

function append()
value = “${value}abc”
console.log(value) ;

}

append(); // abc
append(); // abcabc
append(); // abcabcabc

Template Literal Tag Functions

Template literals also support the ability to define tag functions, which are able to define custom
interpolation behavior. The tag function is passed the individual pieces after the template has been
split by the interpolation token and after the expressions have been evaluated.

A tag function is defined as a regular function and is applied to a template literal by being prepended
to it, as shown in the code that follows. The tag function will be passed the template literal split

into its pieces: the first argument is an array of the raw strings, and the remaining arguments are the
results of the evaluated expressions. The return value of this function will be the string evaluated
from the template literal.

This is best demonstrated by example:

let a = 6;
let b 9;

52

CHAPTER 3 LANGUAGE BASICS

function simpleTag(strings, aValExpression, bValExpression, sumExpression) {
console.log(strings) ;
console.log(aValExpression) ;
console.log(bValExpression) ;
console.log (sumExpression) ;

return 'foobar';

}

let untaggedResult = “${ a } + ${ b } =3s{ a +b };

let taggedResult = simpleTag™${ a } + ${ b } = ${ a + b }~;
// [nn, L n, no— "1 ||||]

/] 6

/] 9

// 15

console.log(untaggedResult); // "6 + 9 = 15"
console.log(taggedResult) ; // "foobar"

Because there are a variable number of expression arguments, using the spread operator to combine
them into a single collection is usually prudent:

let a = 6;
let b = 9;
function simpleTag(strings, ...expressions) {

console.log(strings) ;
for (const expression of expressions) {
console.log (expression) ;

}

return 'foobar';

}

let taggedResult = simpleTag™${ a } + ${ b } = %{ a + b };

// [nu’ e, oo ||||]

/] 6

// 9

// 15

console.log(taggedResult); // "foobar"

For a template literal with 7 interpolated values, the number of expression arguments to the tag func-
tion will always be 7, and the number of string pieces in the first argument will always be exactly 7 + 1.
Therefore, if you wished to “zip” the strings and the evaluated expressions together into the default
returned string, you could do so as follows:

let a = 6;
let b = 9;
function zipTag(strings, ...expressions) {

return strings([0] +
expressions.map((e, i) => ~${e}${strings[i + 11}")
Soin(11);

}

let untaggedResult = s{alt+s8{pb}=%{a+b};

Data Types | 53

let taggedResult = zipTag™${ a } + ${ b } =3{ a + b };

15"
15"

console.log (untaggedResult); // "6 + 9
console.log(taggedResult) ; // "6 + 9

Raw Strings

It is also possible to use template literals to give you access to the raw template literal contents with-
out being converted into actual character representations, such as a new line or Unicode character.
This can be done by using the String. raw tag function, which is available by default.

// Unicode demo

// \u00A9 is the copyright symbol
console.log(~\uO0A9™) ; /] ©
console.log(String.raw \u0o0A9~); // \uOOA9

// Newline demo

console.log(first line\nsecond line”);
// first line

// second line

console.log(String.raw first line\nsecond line~); // "first line\nsecond line"

// This does not work for actual newline characters: they do not
// undergo conversion from their plaintext escaped equivalents
console.log(first line

second line”);

// first line

// second line

console.log(String.raw first line
second line”);
// first line
// second line

The raw values are also available as a property on each element in the string piece collection inside
the tag function:

function printRaw(strings) {
console.log('Actual characters:');
for (const string of strings) {
console.log (string) ;

}

console.log ('Escaped characters;');
for (const rawString of strings.raw) {
console.log(rawString) ;
}
}

printRaw \u00A9s{ 'and' }\n";
// Actual characters:

/] ©

// (newline)

// Escaped characters:

// \uO0A9

// \n

54 | CHAPTER3 LANGUAGE BASICS

The Symbol Type

New in ECMAScript 6 is the Symbol data type. Symbols are primitive values, and symbol instances
are unique and immutable. The purpose of a symbol is to be a guaranteed unique identifier for object
properties that does not risk property collision.

Although they may seem to share some similarities with private properties, symbols are not intended
to offer private property behavior (especially because the Object API offers methods to easily discover
symbol properties). Instead, symbols are intended to be used as unique tokens that can be used to key
special properties with something other than a string.

Basic Symbol Use

Symbols are instantiated using the Symbol function. Because it is its own primitive type, the typeof
operator will identify a symbol as symbol.

let sym = Symbol();
console.log(typeof sym); // symbol

When invoking the function, you can provide an optional string that can be used for identifying the
symbol instance when debugging. The string you provide is totally separate from the symbol’s defini-
tion or identity:

let genericSymbol = Symbol () ;
let otherGenericSymbol = Symbol () ;

let fooSymbol = Symbol('foo');
let otherFooSymbol = Symbol('foo');

console.log(genericSymbol == otherGenericSymbol); // false
console.log (fooSymbol == otherFooSymbol) ; // false

Symbols do not have a literal string syntax, and this is central to their purpose. The specification
governing how symbols operate allows you to create a new Symbol instance and use it to key a
new property on an object with the guarantee that you will not be overwriting an existing object
property—irrespective of whether it is using a string or symbol as a key.

let genericSymbol = Symbol () ;
console.log(genericSymbol); // Symbol ()

let fooSymbol = Symbol ('foo');
console. log (fooSymbol) ; // Symbol (foo) ;

Importantly, the symbol function cannot be used with the new keyword. The purpose of this is to
avoid symbol object wrappers, as is possible with Boolean, String, and Number, which support con-
structor behavior and instantiate a primitive wrapper object:

let myBoolean = new Boolean() ;
console.log(typeof myBoolean); // "object"

let myString = new String();
console.log (typeof myString) ; // "object™"

Data Types | 55

let myNumber = new Number () ;
console.log(typeof myNumber) ; // "object"

let mySymbol = new Symbol(); // TypeError: Symbol is not a constructor

Should you want to utilize an object wrapper, you can make use of the object () function:

let mySymbol = Symbol();
let myWrappedSymbol = Object (mySymbol) ;
console.log(typeof myWrappedSymbol); // "object"

Using the Global Symbol Registry

In scenarios where different parts of the runtime would like to share and reuse a symbol instance, it is
possible to create and reuse symbols in a string-keyed global symbol registry.

This behavior can be achieved using Symbol . for ():

let fooGlobalSymbol = Symbol.for('foo');
console.log (typeof fooGlobalSymbol); // "object"

Symbol.for () is an idempotent operation for each string key. The first time it is called with a given
string, it will check the global runtime registry, find that no symbol exists, generate a new sym-

bol instance, and add it to the registry. Additional invocations with the same string key will check
the global runtime registry, find that a symbol does exist for that string, and return that symbol
instance instead.

let fooGlobalSymbol = Symbol.for('foo'); // creates new symbol
let otherFooGlobalSymbol = Symbol.for('foo'); // reuses existing symbol
console.log(fooGlobalSymbol === otherFooGlobalSymbol); // true

Symbols defined in the global registry are totally distinct from symbols created using symbol (), even
if they share a description:

let localSymbol = Symbol('foo');
let globalSymbol = Symbol.for('foo');

console.log(localSymbol === globalSymbol); // false

The global registry requires string keys, so anything you provide as an argument to Symbol . for ()
will be converted to a string. Additionally, the key used for the registry will also be used as the symbol
description.

let emptyGlobalSymbol = Symbol.for();
console. log (emptyGlobalSymbol) ; // Symbol (undefined)

It is possible to check against the global registry using Symbol .keyFor (), which accepts a sym-
bol and will return the global string key for that global symbol, or undefined if the symbol is not a
global symbol.

// Create global symbol
let s = Symbol.for('foo');
console. log (Symbol.keyFor(s)) ; // foo

// Create regular symbol
let s2 = Symbol('bar');
console.log(Symbol.keyFor(s2)); // undefined

56 | CHAPTER3 LANGUAGE BASICS

Using Symbol .keyFor () with a non-symbol will throw a TypeError:

Symbol.keyFor (123); // TypeError: 123 is not a symbol

Using Symbols as Properties

Anywhere you can normally use a string or number property, you can also use a symbol. This
huﬂudes(ﬂjecthuﬂalproperﬁesaIKiObject.defineProperty()/Object.defineProperties(L
An object literal can only use a symbol as a property inside the computed property syntax.

let s1 = Symbol('foo!'),

s2 = Symbol ('bar'),

s3 = Symbol('baz'),

s4 = Symbol ('qux');
let o = {

[s1]: 'foo val!'

i
// Also valid: olsl] = 'foo val';

console.log (o) ;
// {Symbol{foo}: foo val}

Object.defineProperty (o, s2, {value: 'bar val'});

console.log (o) ;
// {Symbol{foo}: foo val, Symbol (bar): bar val}

Object.defineProperties (o, {
[s3]: {value: 'baz val'},
[s4]: {value: 'qux val'}

1

console.log (o) ;
// {Symbol{foo}: foo val, Symbol (bar): bar val,
// Symbol{baz}: baz val, Symbol (qux): qux val}

Just as Object .getOwnPropertyNames () returns an array of regular properties on an object
instance, Object .getOwnPropertySymbols () returns an array of symbol properties on an
object instance. The return values of these two methods are mutually exclusive. object
.getOwnPropertyDescriptors () will return an object containing both regular and symbol
property descriptors. Reflect . ownKeys () will return both types of keys:

let s1 = Symbol('foo!'),
s2 = Symbol ('bar');

let o = {
[s1]: 'foo val',
[s2]: 'bar val',
baz: 'baz wval',
qux: 'qux val!'

}i

Data Types | 57

console.log(Object.getOwnPropertySymbols (o)) ;
// [Symbol (foo), Symbol (bar)]

console.log(Object.getOwnPropertyNames (o)) ;
// ["baz", nquxn]

console.log(Object.getOwnPropertyDescriptors (o)) ;
// {pbaz: {...}, qux: {...}, Symbol(foo): {...}, Symbol(bar): {...}}

console.log(Reflect.ownKeys (o)) ;
// ["baz", "qux", Symbol (foo), Symbol (bar)]

Because a property counts as a reference to that symbol in memory, Symbols are not lost if directly
created and used as properties. However, declining to keep an explicit reference to a property means
that traversing all the object’s symbol properties will be required to recover the property key:

let o = {
[Symbol('foo')]: 'foo val',
[Symbol('bar')]: 'bar val'

bi

console.log (o) ;
// {Symbol(foo): "foo val", Symbol (bar): "bar val"}

let barSymbol = Object.getOwnPropertySymbols (o)
.find((symbol) => symbol.toString() .match(/bar/));

console.log(barSymbol) ;
// Symbol (bar)

Well-Known Symbols

Along with the addition of symbols, ECMAScript 6 also introduced a collection of well-known
symbols that would be used throughout the language to expose internal language behaviors for direct
access, overriding, or emulating. These well-known symbols exist as string properties on the Symbol
factory function.

One of the primary utilities of these well-known symbols is redefining them as to alter the behavior
of the native language constructs. For example, because it is known how the for-of loop will use the
Symbol.iterator property on whatever object is provided to it, it is possible to provide a custom
definition of Symbol . iterator’s value in a custom object in order to control how for-of behaves
when provided that object.

There is nothing special about these well-known symbols, they are regular string properties on the
Symbol global that key an instance of a symbol. Each well-defined symbol property is non-writeable,
non-enumerable, and non-configurable.

NOTE In discussions about the ECMAScript specification, you will frequently
see these symbols referred to by their specification names, which are prefixed
with @@. For example, @@iterator refers to Symbol .iterator.

58

CHAPTER 3 LANGUAGE BASICS

Symbol.asynclterator

Per the ECMAScript specification, this symbol is used as a property for “A method that returns the
default Asynclterator for an object. Called by the semantics of the for-await-of statement”. It is
used to identify the function that implements the asynchronous iterator APIL.

Language constructs such as the for-await-of loop make use of this function to perform asyn-
chronous iteration. They will invoke the function keyed by symbol .asyncIterator and expect it
to return an object which implements the Iterator APL. In many cases, this will take the form of an
AsyncGenerator, an object which implements this API:

class Foo
async *[Symbol.asyncIterator] () {}

}

let £ = new Foo();

console.log (f [Symbol.asyncIterator] ());
// AsyncGenerator {<suspendeds}

Specifically, the object produced by the symbol .asyncIterator function should sequentially pro-
duce Promise instances via its next () method. This can be through explicit next () method defini-
tion or implicitly through an async generator function:

class Emitter {
constructor (max) {
this.max = max;
this.asyncIdx = 0;

}

async *[Symbol.asyncIterator] () {
while (this.asyncIdx < this.max) {
yield new Promise ((resolve) => resolve(this.asyncIdx++));

}

}
}

async function asyncCount () {
let emitter = new Emitter(5);

for await (const x of emitter) {
console.log(x) ;

}
}

asyncCount () ;
// 0
/] 1
/] 2
/] 3
/] 4

Data Types | 59

NOTE symbol.asyncIterator is part of the ES2018 specification, and so only
very modern browser versions will support it. More details on asynchronous
iteration and the for-await-of loop can be found in Appendix A.

Symbol.haslInstance

Per the ECMAScript specification, this symbol is used as a property for “A method that determines if
a constructor object recognizes an object as one of the constructor’s instances. Called by the seman-
tics of the instanceof operator”. The instanceof operator provides a way of determining if an
object instance has a prototype in its prototype chain. Typical use of the instanceof is as follows:

function Foo() {}
let £ = new Foo();

console.log(f instanceof Foo); // true
class Bar {}

let b = new Bar();

console.log (b instanceof Bar); // true

In ES6, the instanceof operator is using a Symbol .hasInstance function to evaluate this relation-
ship. The symbol . hasInstance keys a function which performs the same behavior but with the

operands reversed:

function Foo() {}
let £ = new Foo();
console.log (Foo [Symbol.hasInstance] (f));

class Bar {}
let b = new Bar();
console.log(Bar [Symbol.hasInstance] (b)) ;

// true

// true

This property is defined on the Function prototype, and therefore it is automatically available by
default to all function and class definitions. Because the instanceof operator will seek the property
definition on the prototype chain like any other property, it is possible to redefine the function on an

inherited class as a static method:

class Bar {}
class Baz extends Bar {
static [Symbol.hasInstance] () {
return false;
}
}

let b = new Baz();

console.log(Bar [Symbol.hasInstance] (b)) ;
console.log (b instanceof Bar);
console.log(Baz [Symbol.hasInstancel] (b)) ;
console.log(b instanceof Baz);

// true
// true
// false
// false

60 | CHAPTER 3 LANGUAGE BASICS

Symbol.isConcatSpreadable

Per the ECMAScript specification, this symbol is used as a property for “A Boolean valued property
that if true indicates that an object should be flattened to its array elements by Array.prototype
.concat () 7. The Array.prototype.concat method in ES6 will select how to join an array-like
object to the array instance based on the type of object it is passed. The value of Symbol
.isConcatSpreadable allows you to override this behavior.

Array objects by default will be flattened into the existing array; a value of false or falsy value will
append the entire object to the array. Array-like objects by default will be appended to the array; a
value of true or truthy value will flatten the array-like object into the array instance. Other objects
which are not array-like will be ignored when Symbol . isConcatSpreadable is set to true.

let initial = ['foo'];

let array = ['bar'];

console.log(array [Symbol.isConcatSpreadable]); // undefined
console.log(initial.concat (array)) ; // ['foo', 'bar']
array [Symbol.isConcatSpreadable] = false;
console.log(initial.concat (array)) ; // ['foo', Array(1)]

let arrayLikeObject = { length: 1, 0: 'baz' };

console.log (arrayLikeObject [Symbol.isConcatSpreadable]); // undefined
console.log(initial.concat (arrayLikeObject)) ; // ['foo', {...}]
arrayLikeObject [Symbol.isConcatSpreadable] = true;
console.log(initial.concat (arrayLikeObject)) ; // ['foo', 'baz']

let otherObject = new Set().add('qux');

console.log(otherObject [Symbol.isConcatSpreadable]); // undefined
console.log(initial.concat (otherObject)) ; // ['foo', Set(1)]
otherObject [Symbol.isConcatSpreadable] = true;
console.log(initial.concat (otherObject)) ; // ['foo'l

Symbol.iterator

Per the ECMAScript specification, this symbol is used as a property for “A method that returns the
default Iterator for an object. Called by the semantics of the for-of statement”. It is used to identify
the function that implements the iterator APL

Language constructs such as the for-of loop make use of this function to perform iteration. They
will invoke the function keyed by symbol.1iterator and expect it to return an object which imple-
ments the Iterator API. In many cases, this will take the form of a Generator, an object which imple-
ments this API:

class Foo {
* [Symbol.iterator] () {}
}

let £ = new Foo();

console.log (f[Symbol.iterator] ()) ;
// Generator {<suspended>}

Data Types | 61

Specifically, the object produced by the symbol . iterator function should sequentially produce
values via its next () method. This can be through explicit next () method definition or implicitly
through a generator function:

class Emitter {
constructor (max) {
this.max = max;
this.idx = 0;

}

* [Symbol.iterator] () {
while (this.idx < this.max) {
yield this.idx++;
}
}
}

function count () {
let emitter = new Emitter(5);

for (const x of emitter) {
console.log(x) ;

}
}

count () ;
// 0
/] 1
/] 2
/] 3
/] 4

NOTE Iterator definition is covered in depth in the Iterators and Generators
chapter.

Symbol.match

Per the ECMAScript specification, this symbol is used as a property for “A regular expression method
that matches the regular expression against a string. Called by the string.prototype.match ()
method”. The string.prototype.match () method will use the function keyed by Symbol .match
to evaluate the expression. The regular expression prototype has this function defined by default, and
therefore all regular expression instances are valid parameters to the String method by default:

console.log(RegExp.prototype [Symbol.match]) ;
// f [Symbol.match] () { [native code] }

console.log ('foobar'.match(/bar/)) ;
// ["bar", index: 3, input: "foobar", groups: undefined]

62

CHAPTER 3 LANGUAGE BASICS

Providing something other than a regular expression to this method will cause it to be converted to
a RegExp object. If you wish to circumvent this behavior and have the method use the parameter
directly, it is possible to pass something other than a regular expression instance to the match ()
method by defining a Symbol .match function to supplant the behavior that would otherwise be
exhibited by the regular expression. This function has a single parameter which is the string instance
upon which match () is invoked. The return value is unrestricted:

class FooMatcher {
static [Symbol.match] (target) {
return target.includes('foo');

}
}
console.log('foobar'.match(FooMatcher)); // true
console.log('barbaz'.match(FooMatcher)); // false

class StringMatcher {
constructor (str) {
this.str = str;

}

[Symbol.match] (target) {
return target.includes (this.str);

}
}
console.log('foobar'.match(new StringMatcher('foo'))); // true
console.log('barbaz'.match(new StringMatcher('qux'))); // false

Symbol.replace

Per the ECMAScript specification, this symbol is used as a property for “A regular expression method
that replaces matched substrings of a string. Called by the string.prototype.replace () method”.
The string.prototype.replace () method will use the function keyed by Symbol .replace to
evaluate the expression. The regular expression prototype has this function defined by default, and
therefore all regular expression instances are valid parameters to the String method by default:

console.log (RegExp.prototype [Symbol.replace]) ;
// f [Symbol.replace] () { [native code] }

console.log('foobarbaz'.replace(/bar/, 'qux'));
// 'fooquxbaz'

Providing something other than a regular expression to this method will cause it to be converted to

a RegExp object. If you wish to circumvent this behavior and have the method use the parameter
directly, it is possible to pass something other than a regular expression instance to the replace ()
method by defining a symbol.replace function to supplant the behavior that would otherwise be
exhibited by the regular expression. This function has two parameters, the string instance upon which
replace () is invoked and the replacement string. The return value is unrestricted:

class FooReplacer {
static [Symbol.replace] (target, replacement) {
return target.split('foo').join(replacement);

}
}

Data Types | 63

console.log('barfoobaz'.replace (FooReplacer, 'qux'));
// "barquxbaz"

class StringReplacer {
constructor (str) {
this.str = str;

}

[Symbol.replace] (target, replacement) {
return target.split(this.str).join(replacement);

}
}

console.log('barfoobaz'.replace (new StringReplacer('foo'), 'qux'));
// "barquxbaz"

Symbol.search

Per the ECMAScript specification, this symbol is used as a property for “A regular expression method
that returns the index within a string that matches the regular expression. Called by the String
.prototype.search() method”. The String.prototype.search() method will use the func-

tion keyed by symbol.search to evaluate the expression. The regular expression prototype has this
function defined by default, and therefore all regular expression instances are valid parameters to the
string method by default:

console.log(RegExp.prototype [Symbol.search]) ;
// f [Symbol.search] () { [native code] }

console.log('foobar'.search(/bar/));

/13

Providing something other than a regular expression to this method will cause it to be converted to
a RegExp object. If you wish to circumvent this behavior and have the method use the parameter
directly, it is possible to pass something other than a regular expression instance to the search ()
method by defining a Symbol.search function to supplant the behavior that would otherwise be
exhibited by the regular expression. This function has a single parameter which is the string instance
upon which search () is invoked. The return value is unrestricted:

class FooSearcher {

static [Symbol.search] (target) {
return target.indexOf('foo');

}
}
console.log('foobar'.search(FooSearcher)); // 0
console.log('barfoo'.search(FooSearcher)); // 3
console.log('barbaz'.search(FooSearcher)); // -1

class StringSearcher {
constructor (str) {
this.str = str;

}

64

CHAPTER 3 LANGUAGE BASICS

[Symbol.search] (target) {
return target.indexOf (this.str);

}
}
console.log('foobar'.search(new StringSearcher('foo'))); // 0
console.log('barfoo'.search(new StringSearcher('foo'))); // 3
console.log('barbaz'.search(new StringSearcher('qux'))); // -1

Symbol.species

Per the ECMAScript specification, this symbol is used as a property for “A function valued property
that is the constructor function that is used to create derived objects”. This is most commonly used
for build-in types which expose methods that instantiate derived objects for the return value of an
instance method. Defining a static getter method with symbol . species allows you to override the
prototype definition for the newly created instance:

class Bar extends Array {}
class Baz extends Array {
static get [Symbol.species] () {
return Array;

}
}
let bar = new Bar();
console.log (bar instanceof Array); // true
console.log(bar instanceof Bar); // true
bar = bar.concat ('bar') ;
console.log (bar instanceof Array); // true
console.log(bar instanceof Bar); // true

let baz = new Baz();

console.log(baz instanceof Array); // true

console.log(baz instanceof Baz); // true

baz = baz.concat('baz');

console.log(baz instanceof Array); // true

console.log(baz instanceof Baz); // false
Symbol.split

Per the ECMAScript specification, this symbol is used as a property for “A regular expression
method that splits a string at the indices that match the regular expression. Called by the string
.prototype.split () method”. The String.prototype.split () method will use the function
keyed by symbol.split to evaluate the expression. The regular expression prototype has this func-
tion defined by default, and therefore all regular expression instances are valid parameters to the
string method by default:

console.log (RegExp.prototype [Symbol.split]) ;
// f [Symbol.split] () { [native code] }

console.log('foobarbaz'.split (/bar/));
// ['foo', 'baz']

Data Types | 65

Providing something other than a regular expression to this method will cause it to be converted to
a RegExp object. If you wish to circumvent this behavior and have the method use the parameter
directly, it is possible to pass something other than a regular expression instance to the split ()
method by defining a Symbol.split function to supplant the behavior that would otherwise be
exhibited by the regular expression. This function has a single parameter which is the string instance
upon which split () is invoked. The return value is unrestricted:

class FooSplitter {
static [Symbol.split] (target) {
return target.split('foo');

}
}

console.log('barfoobaz'.split (FooSplitter)) ;
// [|lbar|ll "baz"]

class StringSplitter {
constructor (str) {
this.str = str;

}

[Symbol.split] (target) {
return target.split(this.str);

}
}

console.log('barfoobaz'.split (new StringSplitter('foo')));
// [ubaru' "baz"]

Symbol.toPrimitive

Per the ECMAScript specification, this symbol is used as a property for “A method that converts an
object to a corresponding primitive value. Called by the ToPrimitive abstract operation”. There

are a number of built-in operations which will attempt to coerce an object into a primitive value: a
string, a number, or an unspecified primitive type. For a custom object instance, it is possible to divert
this behavior by defining a function on the instance’s Symbol . toPrimitive property.

Based on a string parameter provided to the function (either string, number, or default), you are
able to control the returned primitive:

class Foo {}
let foo = new Foo();

console.log (3 + foo); // "3 [object Object]"
console.log(3 - foo); // NaN
console.log(String(foo)) ; // "l[object Object]"

class Bar {
constructor () {
this[Symbol.toPrimitive] = function(hint) {
switch (hint) {
case 'number':
return 3;
case 'string':

66

CHAPTER 3 LANGUAGE BASICS

return 'string bar';
case 'default':
default:
return 'default bar';
}

}
}
}

let bar = new Bar();

console.log(3 + bar); // "3default bar"
console.log (3 - bar); // 0
console.log(String (bar)) ; // "string bar"

Symbol.toStringTag

Per the ECMAScript specification, this symbol is used as a property for “A String valued property that
is used in the creation of the default string description of an object. Accessed by the built-in method

»

Object.prototype.toString()

Object identification via the tostring () method will retrieve the instance identifier specified by
Symbol . toStringTag, defaulting to object. Built-in types have this value already specified, but
custom class instances require explicit definition:

let s = new Set();

console.log(s) ; // set(0) {}
console.log(s.toString()) ; // [object Set]
console.log(s[Symbol.toStringTagl); // Set

class Foo {}
let foo = new Foo();

console.log (foo) ; // Foo {}
console.log(foo.toString()) ; // [object Object]
console.log(foo[Symbol.toStringTagl); // undefined

class Bar
constructor () {
this[Symbol.toStringTag] = 'Bar';
}

}

let bar = new Bar();

console.log(bar) ; // Bar {}
console.log(bar.toString()); // [object Barl]
console.log (bar [Symbol.toStringTagl); // Bar

Symbol.unscopables

Per the ECMAScript specification, this symbol is used as a property for “An object valued prop-
erty whose own and inherited property names are property names that are excluded from the with
environment bindings of the associated object”. Setting this symbol so it keys an object mapping a
corresponding property to true will prevent a with environment binding, as shown here:

let o = { foo: 'bar' };

Data Types | 67

with (o) {
console.log(foo); // bar
}

o[Symbol.unscopables] = {
foo: true

}i

with (o) {
console.log(foo); // ReferenceError
!

NOTE [¢’s not recommended to use with, so using Symbol.unscopables is also
not recommended.

The Object Type

Objects in ECMAScript start out as nonspecific groups of data and functionality. Objects are created
by using the new operator followed by the name of the object type to create. Developers create their

own objects by creating instances of the object type and adding properties and/or methods to it, as

shown here:

let o = new Object();

This syntax is similar to Java, although ECMAScript requires parentheses to be used only when pro-
viding arguments to the constructor. If there are no arguments, as in the following example, then the
parentheses can be omitted safely (though that’s not recommended):

let o = new Object; // legal, but not recommended

Instances of Object aren’t very useful on their own, but the concepts are important to understand
because, similar to java.lang.Object in Java, the object type in ECMAScript is the base from
which all other objects are derived. All of the properties and methods of the object type are also
present on other, more specific objects.

Each object instance has the following properties and methods:

> constructor—The function that was used to create the object. In the previous example, the
constructor is the object() function.

> hasOwnProperty (propertyName)—Indicates if the given property exists on the object
instance (not on the prototype). The property name must be specified as a string (for
exanqﬂe,o.hasOwnProperty("name"”.

> isPrototypeof (object)—Determines if the object is a prototype of another object. (Proto-
types are discussed in Chapter 5.)

> propertylsEnumerable (propertyName)—Indicates if the given property can be enumerated
using the for-in statement (discussed later in this chapter). As with hasownProperty (), the
property name must be a string.

68 | CHAPTER 3 LANGUAGE BASICS

> toLocaleString()—Returns a string representation of the object that is appropriate for the
locale of execution environment.

> tosString()—Returns a string representation of the object.

valueOf ()—Returns a string, number, or Boolean equivalent of the object. It often returns
the same value as toString().

Because Object is the base for all objects in ECMAScript, every object has these base properties and
methods. Chapters 5 and 6 cover the specifics of how this occurs.

NOTE Technically speaking, the behavior of objects in ECMA-262 need not
necessarily apply to other objects in JavaScript. Objects that exist in the browser
environment, such as those in the Browser Object Model (BOM) and Document
Object Model (DOM), are considered host objects because they are provided and
defined by the host implementation. Host objects aren’t governed by ECMA-262
and, as such, may or may not directly inberit from Object.

OPERATORS

ECMA-262 describes a set of operators that can be used to manipulate data values. The operators
range from mathematical operations (such as addition and subtraction) and bitwise operators to
relational operators and equality operators. Operators are unique in ECMAScript in that they can be
used on a wide range of values, including strings, numbers, Booleans, and even objects. When used on
objects, operators typically call the valueof () and/or toString () method to retrieve a value they
can work with.

Unary Operators

Operators that work on only one value are called unary operators. They are the simplest operators in
ECMAScript.

Increment/Decrement

The increment and decrement operators are taken directly from C and come in two versions: prefix
and postfix. The prefix versions of the operators are placed before the variable they work on; the
postfix ones are placed after the variable. To use a prefix increment, which adds 1 to a numeric value,
you place two plus signs (++) in front of a variable like this:

let age = 29;
++age;

In this example, the prefix increment changes the value of age to 30 (adding 1 to its previous value
of29). This is effectively equal to the following:

let age = 29;
age = age + 1;

Operators | 69

The prefix decrement acts in a similar manner, subtracting 1 from a numeric value. To use a prefix
decrement, place two minus signs (- -) before a variable, as shown here:

let age = 29;
--age;

Here the age variable is decremented to 28 (subtracting 1 from 29).

When using either a prefix increment or a prefix decrement, the variable’s value is changed before
the statement is evaluated. (In computer science, this is usually referred to as having a side effect.)
Consider the following:

let age = 29;

let anotherAge = --age + 2;
console.log(age) ; // 28
console.log(anotherAge); // 30

In this example, the variable anotherage is initialized with the decremented value of age plus 2.
Because the decrement happens first, age is set to 28, and then 2 is added, resulting in 30.

The prefix increment and decrement are equal in terms of order of precedence in a statement and are
therefore evaluated left to right. Consider this example:

let numl = 2;

let num2 = 20;

let num3 = --numl + num2;
let num4 = numl + num2;
console.log(num3); // 21
console.log(num4); // 21

Here, num3 is equal to 21 because num1 is decremented to 1 before the addition occurs. The variable
num4 also contains 21, because the addition is also done using the changed values.

The postfix versions of increment and decrement use the same syntax (++ and --, respectively) but
are placed after the variable instead of before it. Postfix increment and decrement differ from the
prefix versions in one important way: the increment or decrement doesn’t occur until after the con-
taining statement has been evaluated. In certain circumstances, this difference doesn’t matter, as in
this example:

let age = 29;
age++;

Moving the increment operator after the variable doesn’t change what these statements do, because
the increment is the only operation occurring. However, when mixed together with other operations,
the difference becomes apparent, as in the following example:

let numl = 2;

let num2 = 20;

let num3 = numl-- + num2;
let num4 = numl + num2;
console.log(num3); // 22
console.log (num4); // 21

70

CHAPTER 3 LANGUAGE BASICS

With just one simple change in this example, using postfix decrement instead of prefix, you can see

the difference. In the prefix example, num3 and num4 both ended up equal to 21, whereas this exam-
ple ends with num3 equal to 22 and num4 equal to 21. The difference is that the calculation for num3
uses the original value of num1 (2) to complete the addition, whereas num4 is using the decremented
value (1).

All four of these operators work on any values, meaning not just integers but strings, Booleans,
floating-point values, and objects. The increment and decrement operators follow these rules regard-
ing values:

> When used on a string that is a valid representation of a number, convert to a number and
apply the change. The variable is changed from a string to a number.

> When used on a string that is not a valid number, the variable’s value is set to NaN. The vari-
able is changed from a string to a number.

> When used on a Boolean value that is false, convert to 0 and apply the change. The vari-
able is changed from a Boolean to a number.

> When used on a Boolean value that is true, convert to 1 and apply the change. The variable
is changed from a Boolean to a number.

When used on a floating-point value, apply the change by adding or subtracting 1.

> When used on an object, call its valueof() method (discussed more in Chapter 5) to get
a value to work with. Apply the other rules. If the result is NaN, then call tostring() and
apply the other rules again. The variable is changed from an object to a number.

The following example demonstrates some of these rules:

let s1 = "2";

let s2 = "z";
let b = false;
let £ = 1.1;
let o = {

valueOf ()
return -1;

sl++; // value becomes numeric 3
s2++; // value becomes NaN

b++; // value becomes numeric 1
f--; // value becomes 0.10000000000000009 (due to floating-point inaccuracies)
o--; // value becomes numeric -2

Unary Plus and Minus

The unary plus and minus operators are familiar symbols to most developers and operate the same

way in ECMAScript as they do in high-school math. The unary plus is represented by a single plus

sign (+) placed before a variable and does nothing to a numeric value, as shown in this example:
let num = 25;

num = +num;
console.log(num); // 25

Operators | 71

When the unary plus is applied to a nonnumeric value, it performs the same conversion as the
Number () casting function: the Boolean values of false and true are converted to 0 and 1, string
values are parsed according to a set of specific rules, and objects have their valueof () and/or

tostring () method called to get a value to convert.

The following example demonstrates the behavior of the unary plus when acting on different

data types:
let s1 = "01";
let s2 = "1.1";
let 3 = "z";
let b = false;
let £ = 1.1;
let o = {

valueOf () {

}
}i

sl
s2
s3
b =
f =
o

return -1;

+sl;

+S2;

+83;
+b;
+f;
+0;

//
//
//
//
//
//

value
value
value
value

no change,

becomes
becomes
becomes
becomes

numeric
numeric
NaN

numeric

still 1.1

value becomes numeric

-1

The unary minus operator’s primary use is to negate a numeric value, such as converting 1 into -1.
The simple case is illustrated here:

let num = 25;

num

= -num;

console.log (num) ;

// -25

When used on a numeric value, the unary minus simply negates the value (as in this example). When
used on nonnumeric values, unary minus applies all of the same rules as unary plus and then negates
the result, as shown here:

let
let
let
let
let
let

sl = "0l";

s2 = "l.1v;
s3 = "z";

b = false;

f=1.1;

o= |

valueOf () {

}
}i

sl
s2
s3
b =
f =

return -1;

-s1;
-s2;

//
//
//
//
//
//

value
value
value
value

becomes
becomes
becomes
becomes

numeric
numeric
NaN

numeric

change to -1.1
value becomes numeric

-1

-1.

72 | CHAPTER 3 LANGUAGE BASICS

The unary plus and minus operators are used primarily for basic arithmetic but can also be useful for
conversion purposes, as illustrated in the previous example.

Bitwise Operators

The next set of operators works with numbers at their very base level, with the bits that represent
them in memory. All numbers in ECMAScript are stored in IEEE-754 64-bit format, but the bitwise
operations do not work directly on the 64-bit representation. Instead, the value is converted into a
32-bit integer, the operation takes place, and the result is converted back into 64 bits. To the devel-
oper, it appears that only the 32-bit integer exists because the 64-bit storage format is transparent.
With that in mind, consider how 32-bit integers work.

Signed integers use the first 31 of the 32 bits to rep-
resent the numeric value of the integer. The 32nd bit 1 O O 1 O

represents the sign of the number: 0 for positive or 1

for negative. Depending on the value of that bit, called

4 3 2 1 0
the sign bit, the format of the rest of the number is (@X1) + @7X0) + (29X0) + (27x1) + (27x0)

determined. Positive numbers are stored in true binary %66 + 0 + 0 + 2 + 0
format, with each of the 31 bits representing a power

of 2, starting with the first bit (called bit 0), represent- 18

ing 2°, the second bit represents 2!, and so on. If any FIGURE 3-1:

bits are unused, they are filled with 0 and essentially

ignored. For example, the number 18 is represented

as 00000000000000000000000000010010, or more succinctly as 10010. These are the five most
significant bits and can be used, by themselves, to determine the actual value (see Figure 3-1).

Negative numbers are also stored in binary code but in a format called two’s complement. The two’s
complement of a number is calculated in three steps:

1. Determine the binary representation of the absolute value (for example, to find —18, first
determine the binary representation of 18).

2. Find the one’s complement of the number, which essentially means that every 0 must be
replaced with a 1, and vice versa.

3. Add 1 to the result.

Using this process to determine the binary representation —18, start with the binary representation of
18, which is the following;:

0000 0000 0000 0000 0000 0000 0001 0010

Next, take the one’s complement, which is the inverse of this number:
1111 1111 1111 1111 1111 1111 1110 1101

Finally, add 1 to the one’s complement as follows:

1111 1111 1111 1111 1111 1111 1110 1101

1111 1111 1111 1111 1111 1111 1110 1110

Operators | 73

So the binary equivalent of =18 is 11111111111111111111111111101110. Keep in mind that you
have no access to bit 31 when dealing with signed integers.

ECMAScript does its best to keep all of this information from you. When outputting a negative num-
ber as a binary string, you get the binary code of the absolute value preceded by a minus sign, as in
this example:

let num = -18;
console.log (num.toString(2)); // "-10010"

When you convert the number —18 to a binary string, the result is —10010. The conversion process
interprets the two’s complement and represents it in an arguably more logical form.

NOTE By default, all integers are represented as signed in ECMAScript. There
is, however, such a thing as an unsigned integer. In an unsigned integer, the 32nd
bit doesn’t represent the sign because there are only positive numbers. Unsigned
integers also can be larger, because the extra bit becomes part of the number
instead of an indicator of the sign.

When you apply bitwise operators to numbers in ECMAScript, a conversion takes place behind the
scenes: the 64-bit number is converted into a 32-bit number, the operation is performed, and then
the 32-bit result is stored back into a 64-bit number. This gives the illusion that you’re dealing with
true 32-bit numbers, which makes the binary operations work in a way similar to the operations of
other languages. A curious side effect of this conversion is that the special values Nan and Infinity
both are treated as equivalent to 0 when used in bitwise operations.

If a bitwise operator is applied to a nonnumeric value, the value is first converted into a number using
the Number () function (this is done automatically) and then the bitwise operation is applied. The
resulting value is a number.

Bitwise NOT

The bitwise NOT is represented by a tilde (~) and simply returns the one’s complement of the number.
Bitwise NOT is one of just a few ECMAScript operators related to binary mathematics. Consider
this example:

let numl = 25; // binary 00000000000000000000000000011001
let num2 = ~numl; // binary 11111111111111111111111111100110
console.log (num2) ; // -26

Here, the bitwise NOT operator is used on 25, producing —26 as the result. This is the end effect of
the bitwise NOT: it negates the number and subtracts 1. The same outcome is produced with the
following code:

let numl = 25;
let num2 = -numl - 1;
console.log (num2) ; // "-26"

74 | CHAPTER3 LANGUAGE BASICS

Realistically, though this returns the same result, the bitwise operation is much faster because it works
at the very lowest level of numeric representation.

Bitwise AND

The bitwise AND operator is indicated by the ampersand character (&) and works on two values.
Essentially, bitwise AND lines up the bits in each number and then, using the rules in the following
truth table, performs an AND operation between the two bits in the same position.

BIT FROM FIRST NUMBER BIT FROM SECOND NUMBER RESULT
1 1 1
1 0 0
0 1 0
0 0 0

A bitwise AND operation returns 1 if both bits are 1. It returns 0 if any bits are 0.

As an example, to AND the numbers 25 and 3 together, use the following code:

let result = 25 & 3;
console.log(result); // 1

The result of a bitwise AND between 25 and 3 is 1. Why is that? Take a look:

25 = 0000 0000 0000 0000 0000 0000 0001 1001
3 = 0000 0000 0000 0000 0000 0000 0000 0011

AND = 0000 0000 0000 0000 0000 0000 0000 0001

As you can see, only one bit (bit 0) contains a 1 in both 25 and 3. Because of this, every other bit of
the resulting number is set to 0, making the result equal to 1.

Bitwise OR

The bitwise OR operator is represented by a single pipe character (|) and also works on two num-
bers. Bitwise OR follows the rules in this truth table:

BIT FROM FIRST NUMBER BIT FROM SECOND NUMBER RESULT
1 1 1
1 0 1
0 1 1

Operators | 75

A bitwise OR operation returns 1 if at least one bit is 1. It returns 0 only if both bits are 0.

Using the same example as for bitwise AND, if you want to OR the numbers 25 and 3 together, the
code looks like this:

let result = 25 | 3;
console.log (result) ; /] 27

The result of a bitwise OR between 25 and 3 is 27:

N
(&)
]

0000 0000 0000 0000 0000 0000 0001 1001
3 = 0000 0000 0000 0000 0000 0000 0000 0011

OR = 0000 0000 0000 0000 0000 0000 0001 1011

In each number, four bits are set to 1, so these are passed through to the result. The binary code
11011 is equal to 27.

Bitwise XOR

The bitwise XOR operator is represented by a caret (*) and also works on two values. Here is the
truth table for bitwise XOR:

BIT FROM FIRST NUMBER BIT FROM SECOND NUMBER RESULT
1 1 0
1 0 1
0 1 1
0 0 0

Bitwise XOR is different from bitwise OR in that it returns 1 only when exactly one bit has a value of
1 (if both bits contain 1, it returns 0).

To XOR the numbers 25 and 3 together, use the following code:

A

let result = 25 3;
console.log(result); // 26

The result of a bitwise XOR between 25 and 3 is 26, as shown here:

25 = 0000 0000 0000 0000 0000 0000 0001 1001
3 = 0000 0000 0000 0000 0000 0000 0000 OO11

XOR = 0000 0000 0000 0000 0000 0000 0001 1010

Four bits in each number are set to 1; however, the first bit in both numbers is 1, so that becomes 0 in
the result. All of the other 1s have no corresponding 1 in the other number, so they are passed directly
through to the result. The binary code 11010 is equal to 26. (Note that this is one less than when
performing bitwise OR on these numbers.)

76 | CHAPTER3 LANGUAGE BASICS

Left Shift

The left shift is represented by two less-than signs (<<) and shifts all bits in a number to the left by the
number of positions given. For example, if the number 2 (which is equal to 10 in binary) is shifted
5 bits to the left, the result is 64 (which is equal to 1000000 in binary), as shown here:

let oldvalue = 2; // equal to binary 10
let newValue = oldvValue << 5; // equal to binary 1000000 which is decimal 64

Note that when the bits are shifted, five empty bits remain to the right of the number. The left shift
fills these bits with Os to make the result a complete 32-bit number (see Figure 3-2).

"Secret" sign bit The number 2

<I) oloJofo]o]ofo][o][o]ofo|o|o]o]o][o][o]o]o|ofo]o]o]o][o[o]oofo]1]0]

The number 2 shifted to the left five bits (the number 64)

o ojolofo]o|o]o][of[o]o|o|o|o]o]o]o][o]o]o|ofo]o|o]o[1][o]0ofo|o]0]

Padded with zeros
FIGURE 3-2:

Note that left shift preserves the sign of the number it’s operating on. For instance, if -2 is shifted to
the left by five spaces, it becomes —64, not positive 64.

Signed Right Shift

The signed right shift is represented by two greater-than signs (>>) and shifts all bits in a 32-bit
number to the right while preserving the sign (positive or negative). A signed right shift is the exact
opposite of a left shift. For example, if 64 is shifted to the right five bits, it becomes 2:

let oldvalue = 64; // equal to binary 1000000
let newValue = oldvValue >> 5; // equal to binary 10 which is decimal 2

Once again, when bits are shifted, the shift creates empty bits. This time, the empty bits occur at the
left of the number but after the sign bit (see Figure 3-3). Once again, ECMAScript fills these empty
bits with the value in the sign bit to create a complete number.

Unsigned Right Shift

The unsigned right shift is represented by three greater-than signs (>>>) and shifts all bits in a 32-bit
number to the right. For numbers that are positive, the effect is the same as a signed right shift.
Using the same example as for the signed-right-shift example, if 64 is shifted to the right five bits, it
becomes 2:

let oldvalue 64 ; // equal to binary 1000000
let newValue = oldvalue >>> 5; // equal to binary 10 which is decimal 2

Operators | 77

"Secret" sign bit The number 64

(I) o[ofof[ofo]o]ofo[ofo|ofo|oo]o][o]o]o]o]o]o[ofofo[1]0o]o][0]0]0]

The number 64 shifted to the right five bits (the number 2)

o ofofof[ofofo]ofofofofofo|o]o][o][o][o]o]o]o]o[ofofo|oo]o]o][o][1]0]

Padded with zeros

FIGURE 3-3:

For numbers that are negative, however, something quite different happens. Unlike signed right shift,
the empty bits get filled with zeros regardless of the sign of the number. For positive numbers, it
has the same effect as a signed right shift; for negative numbers, the result is quite different. The
unsigned-right-shift operator considers the binary representation of the negative number to be rep-
resentative of a positive number instead. Because the negative number is the two’s complement of its
absolute value, the number becomes very large, as you can see in the following example:

let oldValue

let newValue
When an unsigned right shift is used to shift —64 to the right by five bits, the result is 134217726.
This happens because the binary representation of =64 is 11111111111111111111111111000000,
but because the unsigned right shift treats this as a positive number, it considers the value to be
4294967232. When this value is shifted to the right by five bits, it becomes 00000111111111111111
111111111110, which is 134217726.

-64; // equal to binary 11111111111111111111111111000000
oldvalue >>> 5; // equal to decimal 134217726

Boolean Operators

Almost as important as equality operators, Boolean operators are what make a programming lan-
guage function. Without the capability to test relationships between two values, statements such as
if...else and loops wouldn’t be useful. There are three Boolean operators: NOT, AND, and OR.

Logical NOT

The logical NOT operator is represented by an exclamation point (!) and may be applied to any
value in ECMAScript. This operator always returns a Boolean value, regardless of the data type it’s
used on. Thelogical NOT operator first converts the operand to a Boolean value and then negates it,
meaning thatthe logical NOT behaves in the following ways:

> If the operand is an object, false is returned.

> If the operand is an empty string, true is returned.

> If the operand is a nonempty string, false is returned.
>

If the operand is the number 0, true is returned.

78

CHAPTER 3 LANGUAGE BASICS

If the operand is any number other than 0 (including Infinity), false is returned.
If the operand is null, true is returned.

If the operand is NaN, true is returned.

Y Y VY

If the operand is undefined, true is returned.

The following example illustrates this behavior:

console.log(!false) ; // true
console.log(!"blue"); // false
console.log(!0) ; // true
console.log(!NaN) ; // true
console.log(!""); // true
console.log(!12345); // false

The logical NOT operator can also be used to convert a value into its Boolean equivalent. By using
two NOT operators in a row, you can effectively simulate the behavior of the Boolean () casting
function. The first NOT returns a Boolean value no matter what operand it is given. The second NOT
negates that Boolean value and so gives the true Boolean value of a variable. The end result is the
same as using the Boolean () function on a value, as shown here:

console.log(!!"blue"); // true

console.log(!!0); // false

console.log (! !NaN) ; // false

console.log(!!""); // false

console.log(!112345); // true
Logical AND

The logical AND operator is represented by the double ampersand (&&) and is applied to two values,
as in this example:

let result = true && false;

Logical AND behaves as described in the following truth table:

OPERAND 1 OPERAND 2 RESULT
true true true

true false false
false true false
false false false

Logical AND can be used with any type of operand, not just Boolean values. When either operand is
not a primitive Boolean, logical AND does not always return a Boolean value; instead, it does one of
the following;:

> If the first operand is an object, then the second operand is always returned.

> If the second operand is an object, then the object is returned only if the first operand evalu-
ates to true.

Operators | 79

If both operands are objects, then the second operand is returned.
If either operand is null, then null is returned.

If either operand is NaN, then NaN is returned.

Y Y VY Y

If either operand is undefined, then undefined is returned.

The logical AND operator is a short-circuited operation, meaning that if the first operand determines
the result, the second operand is never evaluated. In the case of logical AND, if the first operand is
false, no matter what the value of the second operand, the result can’t be equal to true. Consider
the following example:

let found = true;
let result = (found && someUndeclaredVariable); // error occurs here
console.log(result); // this line never executes

This code causes an error when the logical AND is evaluated, because the variable some-
Undeclaredvariable isn’t declared. The value of the variable found is true, so the logical AND
operator continued to evaluate the variable someUndeclaredvariable. When it did, an error
occurred because someUndeclaredvariable is not declared and therefore cannot be used in a logical
AND operation. If found is instead set to false, as in the following example, the error won’t occur:

let found = false;

let result = (found && someUndeclaredVariable); // no error

console.log(result); // works
In this code, the console.log is displayed successfully. Even though the variable some-
Undeclaredvariable is undefined, it is never evaluated because the first operand is false. This
means that the result of the operation must be false, so there is no reason to evaluate what’s to the
right of the s&. Always keep in mind short-circuiting when using logical AND.

Logical OR
The logical OR operator is represented by the double pipe (| |) in ECMAScript, like this:

let result = true || false;

Logical OR behaves as described in the following truth table:

OPERAND 1 OPERAND 2 RESULT
true true true
true false true
false true true
false false false

Just like logical AND, if either operand is not a Boolean, logical OR will not always return a Boolean
value; instead, it does one of the following:

> 1If the first operand is an object, then the first operand is returned.

> If the first operand evaluates to false, then the second operand is returned.

80

CHAPTER 3 LANGUAGE BASICS

If both operands are objects, then the first operand is returned.
If both operands are null, then null is returned.

If both operands are NaN, then NaN is returned.

Y Y VY

If both operands are undefined, then undefined is returned.

Also like the logical AND operator, the logical OR operator is short-circuited. In this case, if the first
operand evaluates to true, the second operand is not evaluated. Consider this example:

let found = true;
let result = (found || someUndeclaredVariable); // no error
console.log(result); // works

As with the previous example, the variable someUndefinedvariable is undefined. However, because
the variable found is set to true, the variable someUndefinedvariable is never evaluated and thus
the output is "true". If the value of found is changed to false, an error occurs, as in the follow-
ing example:

let found = false;

let result = (found || someUndeclaredVariable); // error occurs here
console.log(result); // this line never executes

You can also use this behavior to avoid assigning a null or undefined value to a variable. Consider the
following:

let myObject = preferredObject || backupObject;

In this example, the variable myobject will be assigned one of two values. The preferredobject
variable contains the value that is preferred if it’s available, whereas the backupobject variable
contains the backup value if the preferred one isn’t available. If preferredobject isn’t null, then it’s
assigned to myoObject; if it is null, then backupObject is assigned to myobject. This pattern is used
very frequently in ECMAScript for variable assignment and is used throughout this book.

Multiplicative Operators

There are three multiplicative operators in ECMAScript: multiply, divide, and modulus. These opera-
tors work in a manner similar to their counterparts in languages such as Java, C, and Perl, but they
also include some automatic type conversions when dealing with nonnumeric values. If either of the
operands for a multiplication operation isn’t a number, it is converted to a number behind the scenes
using the Number () casting function. This means that an empty string is treated as 0, and the Boolean
value of true is treated as 1.

Multiply

The multiply operator is represented by an asterisk (*) and is used, as one might suspect, to multiply
two numbers. The syntax is the same as in C, as shown here:

let result = 34 * 56;

Operators | 81

However, the multiply operator also has the following unique behaviors when dealing with spe-
cial values:

> 1If the operands are numbers, regular arithmetic multiplication is performed, meaning that
two positives or two negatives equal a positive, whereas operands with different signs yield a
negative. If the result cannot be represented by ECMAScript, either Infinity or —Infinity
is returned.

If either operand is NaN, the result is NaN.
If Infinity is multiplied by 0, the result is NaN.

If Infinity is multiplied by any finite number other than 0, the result is either Infinity or
—Infinity, depending on the sign of the second operand.

If Infinity is multiplied by Infinity, the result is Infinity.

If either operand isn’t a number, it is converted to a number behind the scenes using
Number () and then the other rules are applied.

Divide
The divide operator is represented by a slash (/) and divides the first operand by the second operand,
as shown here:

let result = 66 / 11;

The divide operator, like the multiply operator, has special behaviors for special values. They are
as follows:

> If the operands are numbers, regular arithmetic division is performed, meaning that two
positives or two negatives equal a positive, whereas operands with different signs yield a
negative. If the result can’t be represented in ECMAScript, it returns either Infinity or
—Infinity.

If either operand is NaN, the result is NaN.
If infinity is divided by Infinity, the result is NaN.

If zero is divided by zero, the result is NaN.

Y Y VY Y

If a nonzero finite number is divided by zero, the result is either Infinity or —Infinity,
depending on the sign of the first operand.

\

If Infinity is divided by any number, the result is either Infinity or —Infinity, depending
on the sign of the second operand.

> If either operand isn’t a number, it is converted to a number behind the scenes using
Number () and then the other rules are applied.

82 | CHAPTER 3 LANGUAGE BASICS

Modulus

The modulus (remainder) operator is represented by a percent sign (%) and is used in the fol-
lowing way:

let result = 26 % 5; // equal to 1

Just like the other multiplicative operators, the modulus operator behaves differently for special val-
ues, as follows:

>

Y VYV VY

A\

If the operands are numbers, regular arithmetic division is performed, and the remainder of
that division is returned.

If the dividend is an infinite number and the divisor is a finite number, the result is NaN.
If the dividend is a finite number and the divisor is 0, the result is NaN.
If Infinity is divided by Infinity, the result is NaN.

If the dividend is a finite number and the divisor is an infinite number, then the result is

the dividend.
If the dividend is zero and the divisor is nonzero, the result is zero.

If either operand isn’t a number, it is converted to a number behind the scenes using
Number () and then the other rules are applied.

Exponentiation Operator

New in ECMAScript 7, Math.pow () now gets its own ** operator, which behaves identically.

console.log (Math.pow (3, 2); // 9
console.log (3 ** 2); // 9
console.log(Math.pow (16, 0.5); // 4
console.log(16** 0.5); // 4

What’s more, the operator also gets its own exponentiate assignment operator, **=, which performs
the exponentiation and subsequent assignment of the result:

let squared = 3;
squared **= 2;
console.log(squared); // 9

let sqgrt = 16;
sqrt **= 0.5;
console.log (sqrt) ; /] 4

Additive Operators

The additive operators, add and subtract, are typically the simplest mathematical operators in pro-
gramming languages. In ECMAScript, however, a number of special behaviors are associated with

each

operator. As with the multiplicative operators, conversions occur behind the scenes for different

data types. For these operators, however, the rules aren’t as straightforward.

Operators | 83

Add
The add operator (+) is used just as one would expect, as shown in the following example:

let result = 1 + 2;

If the two operands are numbers, they perform an arithmetic add and return the result according to
the following rules:

> If either operand is NaN, the result is NaN.

If Infinity is added to Infinity, the result is Infinity.

If -Infinity is added to —Infinity, the result is —Infinity.
If Infinity is added to —Infinity, the result is NaN.

If +0 is added to +0, the result is +0.

If -0 is added to +0, the result is +0.

If -0 is added to -0, the result is —0.

Y Y Y VY Y Y

If, however, one of the operands is a string, then the following rules apply:
> If both operands are strings, the second string is concatenated to the first.
> If only one operand is a string, the other operand is converted to a string and the result is

the concatenation of the two strings.

If either operand is an object, number, or Boolean, its toString () method is called to get a string
value and then the previous rules regarding strings are applied. For undefined and nul1l, the
String () function is called to retrieve the values "undefined" and "null", respectively.

Consider the following:

let resultl =5 + 5; // two numbers
console.log (resultl) ; // 10

let result2 = 5 + "5"; // a number and a string
console.log(result2) ; // "s55"

This code illustrates the difference between the two modes for the add operator. Normally, 5 + §
equals 10 (a number value), as illustrated by the first two lines of code. However, if one of the oper-
ands is changed to a string, "5, the result becomes "55" (which is a primitive string value) because
the first operand gets converted to "5" as well.

One of the most common mistakes in ECMAScript is being unaware of the data types involved with
an addition operation. Consider the following;:

let numl = 5;
let num2 = 10;
let message = "The sum of 5 and 10 is " + numl + num2;

console.log(message); // "The sum of 5 and 10 is 510"

84 | CHAPTER3 LANGUAGE BASICS

In this example, the message variable is filled with a string that is the result of two addition opera-

tions

. One might expect the final string to be "The sum of 5 and 10 is 15"; however, it actually

ends up as "The sum of 5 and 10 is 510". This happens because each addition is done separately.
The first combines a string with a number (5), which results in a string. The second takes that result
(a string) and adds a number (10), which also results in a string. To perform the arithmetic calculation
and then append that to the string, just add some parentheses like this:

Here

let numl = 5;

let num2 = 10;

let message = "The sum of 5 and 10 is " + (numl + num2);
console.log(message); // "The sum of 5 and 10 is 15"

, the two number variables are surrounded by parentheses, which instruct the interpreter to cal-

culate its result before adding it to the string. The resulting string is "The sum of 5 and 10 is 15".

Subtract

The subtract operator (-) is another that is used quite frequently. Here’s an example:

let result = 2 - 1;

Just like the add operator, the subtract operator has special rules to deal with the variety of type con-
versions present in ECMAScript. They are as follows:

>

>
>
>
>
>
>
>
>
>

If the two operands are numbers, perform arithmetic subtract and return the result.
If either operand is NaN, the result is NaN.

If Infinity is subtracted from Infinity, the result is NaN.

If -Infinity is subtracted from —Infinity, the result is NaN.

If —-Infinity is subtracted from Infinity, the result is Infinity.

If Infinity is subtracted from —Infinity, the result is —Infinity.

If +0 is subtracted from +0, the result is +0.

If -0 is subtracted from +0, the result is 0.

If -0 is subtracted from -0, the result is +0.

If either operand is a string, a Boolean, null, or undefined, it is converted to a number
(using Number () behind the scenes) and the arithmetic is calculated using the previous rules.
If that conversion results in NaN, then the result of the subtraction is NaN.

If either operand is an object, its valueof () method is called to retrieve a numeric value
to represent it. If that value is NaN, then the result of the subtraction is NaN. If the object
doesn’t have valueof() defined, then tostring() is called and the resulting string is con-
verted into a number.

The following are some examples of these behaviors:

let resultl = 5 - true; // 4 because true is converted to 1
let result2 = NaN - 1; // NaN
let result3 = 5 - 3; // 2

Operators | 85

let result4 5 - nn, // 5 because "" is converted to 0
let result5 = 5 - "2"; // 3 because "2" is converted to 2
let result6 = 5 - null; // 5 because null is converted to 0

Relational Operators

The less-than (<), greater-than (), less-than-or-equal-to (<=), and greater-than-or-equal-to (>=) rela-
tional operators perform comparisons between values in the same way that you learned in math class.
Each of these operators returns a Boolean value, as in this example:

let resultl =5 > 3; // true
let result2 5 < 3; // false

As with other operators in ECMAScript, there are some conversions and other oddities that happen
when using different data types. They are as follows:

> 1If the operands are numbers, perform a numeric comparison.

> If the operands are strings, compare the character codes of each corresponding character in
thestring.

> 1If one operand is a number, convert the other operand to a number and perform a numeric
comparison.

> If an operand is an object, call valueof() and use its result to perform the comparison
according to the previous rules. If valueof() is not available, call tostring() and use that
value according to the previous rules.

> If an operand is a Boolean, convert it to a number and perform the comparison.

When a relational operator is used on two strings, an interesting behavior occurs. Many expect that
less-than means “alphabetically before” and greater-than means “alphabetically after,” but this is not
the case. For strings, each of the first string’s character codes is numerically compared against the
character codes in a corresponding location in the second string. After this comparison is complete,

a Boolean value is returned. The problem here is that the character codes of uppercase letters are all
lower than the character codes of lowercase letters, meaning that you can run into situations like this:

let result = "Brick" < "alphabet"; // true

In this example, the string "Brick" is considered to be less than the string "alphabet" because the
letter B has a character code of 66 and the letter a has a character code of 97. To force a true alpha-

betic result, you must convert both operands into a common case (upper or lower) and then compare
like this:

let result = "Brick".toLowerCase() < "alphabet".toLowerCase(); // false

Converting both operands to lowercase ensures that "alphabet" is correctly identified as alphabeti-
cally before "Brick".

Another sticky situation occurs when comparing numbers that are strings, such as in this example:

let result = "23" < "3"; // true

This code returns true when comparing the string "23" to "3". Because both operands are strings,
they are compared by their character codes (the character code for "2 is 50; the character code for

86

CHAPTER 3 LANGUAGE BASICS

w3n is 51). If, however, one of the operands is changed to a number as in the following example, the
result makes more sense:

let result = "23" < 3; // false

Here, the string "23" is converted into the number 23 and then compared to 3, giving the expected
result. Whenever a number is compared to a string, the string is converted into a number and then
numerically compared to the other number. This works well for cases like the previous example, but
what if the string can’t be converted into a number? Consider this example:

let result = "a" < 3; // false because "a" becomes NaN

The letter "a" can’t be meaningfully converted into a number, so it becomes NaN. As a rule, the result
of any relational operation with NaN is false, which is interesting when considering the following:

let resultl = NaN < 3; // false
let result2 = NaN >= 3; // false

In most comparisons, if a value is not less than another, it is always greater than or equal to it. When
using NaN, however, both comparisons return false.

Equality Operators

Determining whether two variables are equivalent is one of the most important operations in pro-
gramming. This is fairly straightforward when dealing with strings, numbers, and Boolean values,
but the task gets a little complicated when you take objects into account. Originally ECMAScript’s
equal and not-equal operators performed conversions into like types before doing a comparison.
The question of whether these conversions should, in fact, take place was then raised. The end result
was for ECMAScript to provide two sets of operators: equal and not equal to perform conversion
before comparison, and identically equal and not identically equal to perform comparison without
conversion.

Equal and Not Equal

The equal operator in ECMAScript is the double equal sign (==), and it returns true if the operands
are equal. The not-equal operator is the exclamation point followed by an equal sign (1=), and it
returns true if two operands are not equal. Both operators do conversions to determine if two oper-
ands are equal (often called type coercion).

When performing conversions, the equal and not-equal operators follow these basic rules:

> If an operand is a Boolean value, convert it into a numeric value before checking for
equality. A value of false converts to 0, whereas a value of true converts to 1.

> If one operand is a string and the other is a number, attempt to convert the string into a
number before checking for equality.

> If one of the operands is an object and the other is not, the valueof() method is called on
the object to retrieve a primitive value to compare according to the previous rules.

Operators | 87

The operators also follow these rules when making comparisons:

>

>

Values of null and undefined are equal.

Values of null and undefined cannot be converted into any other values for
equality checking.

If either operand is NaN, the equal operator returns false and the not-equal operator
returns true. Important note: even if both operands are NaN, the equal operator returns
false because, by rule, NaN is not equal to NaN.

If both operands are objects, then they are compared to see if they are the same object. If
both operands point to the same object, then the equal operator returns true. Otherwise,
the two are not equal.

The following table lists some special cases and their results:

EXPRESSION VALUE
null == undefined true
"NaN" == NaN false
5 NaN false
NaN == NaN false
NaN != NaN true
false == true
true == true
true == false
undefined == 0 false
null == 0 false
"5 == 5 true

Identically Equal and Not Identically Equal

The identically equal and not identically equal operators do the same thing as equal and not equal,
except that they do not convert operands before testing for equality. The identically equal operator
is represented by three equal signs (===) and returns true only if the operands are equal without
conversion, as in this example:

let resultl = ("55" == 55); // true - equal because of conversion
let result2 = ("55" === 55); // false - not equal because different data types

88

CHAPTER 3 LANGUAGE BASICS

In this code, the first comparison uses the equal operator to compare the string "s5" and the number

55, which returns true. As mentioned previously, this happens because the string "s5" is converted to
the number 55 and then compared with the other number 55. The second comparison uses the identi-
cally equal operator to compare the string and the number without conversion, and of course, a string
isn’t equal to a number, so this outputs false.

The not identically equal operator is represented by an exclamation point followed by two equal

signs (!==) and returns true only if the operands are not equal without conversion. For example:
let resultl = ("55" != 55); // false - equal because of conversion
let result2 = ("55" !== 55); // true - not equal because different data types

Here, the first comparison uses the not-equal operator, which converts the string "s5" to the

number 55, making it equal to the second operand, also the number 55. Therefore, this evaluates to
false because the two are considered equal. The second comparison uses the not identically equal
operator. It helps to think of this operation as saying, “Is the string 55 different from the number 55?”
The answer to this is yes (true).

Keep in mind that while null == undefined is true because they are similar values, null ===
undefined is false because they are not the same type.

NOTE Because of the type conversion issues with the equal and not-equal
operators, it is recommended to use identically equal and not identically equal
instead. This helps to maintain data type integrity throughout your code.

Conditional Operator

The conditional operator is one of the most versatile in ECMAScript, and it takes on the same form
as in Java, which is as follows:

variable = boolean expression ? true value : false value;

This basically allows a conditional assignment to a variable depending on the evaluation of the
boolean expression. If it’s true, then true value is assigned to the variable; if it’s false, then
false value is assigned to the variable, as in this instance:

let max = (numl > num2) ? numl : num2;
In this example, max is to be assigned the number with the highest value. The expression states that if

numl is greater than num2, then num1 is assigned to max. If, however, the expression is false (meaning
that num1 is less than or equal to num2), then num2 is assigned to max.

Assignment Operators

Simple assignment is done with the equal sign (=) and simply assigns the value on the right to the
variable on the left, as shown in the following example:

let num = 10;

Operators | 89

Compound assignment is done with one of the multiplicative, additive, or bitwise-shift operators
followed by an equal sign (=). These assignments are designed as shorthand for such common situa-
tions as this:

let num = 10;
num = num + 10;

The second line of code can be replaced with a compound assignment:

let num = 10;
num += 10;

Compound-assignment operators exist for each of the major mathematical operations and a few
others as well. They are as follows:

> Multiply/assign (*=)
Divide/assign (/=)
Modulus/assign (%=)
Add/assign (+=)
Subtract/assign (-=)

Left shift/assign (<<=)

Signed right shift/assign (>>=)

Y Y Y VY VY VY Y

Unsigned right shift/assign (>>>=)

These operators are designed specifically as shorthand ways of achieving operations. They do not
represent any performance improvement.

Comma Operator

The comma operator allows execution of more than one operation in a single statement, as illus-
trated here:

let numl = 1, num2 = 2, num3 = 3;
Most often, the comma operator is used in the declaration of variables; however, it can also be used

to assign values. When used in this way, the comma operator always returns the last item in the
expression, as in the following example:

let num = (5, 1, 4, 8, 0); // num becomes 0
In this example, num is assigned the value of 0 because it is the last item in the expression. There

aren’tmany times when commas are used in this way; however, it is helpful to understand that this
behavior exists.

90 | CHAPTER3 LANGUAGE BASICS

STATEMENTS

ECMA-262 describes several statements (also called flow-control statements). Essentially, statements
define most of the syntax of ECMAScript and typically use one or more keywords to accomplish a
given task. Statements can be simple, such as telling a function to exit, or complicated, such as speci-
fying a number of commands to be executed repeatedly.

The if Statement

One of the most frequently used statements in most programming languages is the if statement. The
if statement has the following syntax:

if (condition) statementl else statement2

The condition can be any expression; it doesn’t even have to evaluate to an actual Boolean value.
ECMAScript automatically converts the result of the expression into a Boolean by calling the
Boolean () casting function on it. If the condition evaluates to true, statement1 is executed; if the
condition evaluates to false, statement2 is executed. Each of the statements can be either a single
line or a code block (a group of code lines enclosed within braces). Consider this example:

if (i > 25)
console.log ("Greater than 25."); // one-line statement
else {
console.log("Less than or equal to 25."); // block statement

}

It’s considered best coding practice to always use block statements, even if only one line of code is to
be executed. Doing so can avoid confusion about what should be executed for each condition.

You can also chain if statements together like so:

if (conditionl) statementl else if (condition2) statement2 else statement3

Here’s an example:

if (1 > 25) {
console.log("Greater than 25.");
} else if (i < 0) {
console.log("Less than 0.");
} else {
console.log("Between 0 and 25, inclusive.");
}

The do-while Statement

The do-while statement is a post-test loop, meaning that the escape condition is evaluated only after
the code inside the loop has been executed. The body of the loop is always executed at least once
before the expression is evaluated. Here’s the syntax:

do {

statement
} while (expression);

Statements | 91

And here’s an example of its usage:

let 1 = 0;
do {
1 += 2;
} while (1 < 10);
In this example, the loop continues as long as i is less than 10. The variable starts at 0 and is incre-
mented by two each time through the loop.

NOTE Post-test loops such as this are most often used when the body of the loop
should be executed at least once before exiting.

The while Statement

The while statement is a pretest loop. This means the escape condition is evaluated before the code
inside the loop has been executed. Because of this, it is possible that the body of the loop is never
executed. Here’s the syntax:

while (expression) statement

And here’s an example of its usage:

let i
while

i+
}

In this example, the variable i starts out equal to 0 and is incremented by two each time through the
loop. As long as the variable is less than 10, the loop will continue.

0;
i< 10) {
2;

The for Statement

The for statement is also a pretest loop with the added capabilities of variable initialization before
entering the loop and defining postloop code to be executed. Here’s the syntax:

for (initialization; expression; post-loop-expression) statement

And here’s an example of its usage:

let count = 10;
for (let 1 = 0; i < count; i++) {
console.log (i) ;

}

This code defines a variable i that begins with the value 0. The for loop is entered only if the condi-
tional expression (i < count) evaluates to true, making it possible that the body of the code might

92 | CHAPTER 3 LANGUAGE BASICS

not be executed. If the body is executed, the postloop expression is also executed, iterating the vari-
able i. This for loop is the same as the following:

let count = 10;
let 1 = 0;
while (i < count) {
console.log (i) ;
i++;
}
Nothing can be done with a for loop that can’t be done using a while loop. The for loop simply
encapsulates the loop-related code into a single location.

It’s important to note that there’s no need to use the variable declaration keyword inside the for loop
initialization. However, the overwhelming majority of the time you will find that the iterator variable
is not useful after the loop completes. In these cases, the cleanest implementation is to use a let dec-
laration inside the loop initialization to declare the iterator variable because its scope will be limited
to only the loop itself.

The initialization, control expression, and postloop expression are all optional. You can create an
infinite loop by omitting all three, like this:

for (;;) { // infinite loop
doSomething () ;

}
Including only the control expression effectively turns a for loop into a while loop, as shown here:

let count = 10;

let i = 0;

for (; i < count;) {
console.log(i) ;
i++;

}

This versatility makes the for statement one of the most used in the language.

The for-in Statement

The for-in statement is a strict iterative statement. It is used to enumerate the non-symbol keyed
properties of an object. Here’s the syntax:

for (property in expression) statement
And here’s an example of its usage:

for (const propName in window) {
document .write (propName) ;

}

Here, the for-in statement is used to display all the properties of the BOM window object. Each
time through the loop, the propName variable is filled with the name of a property that exists on the
window object. This continues until all of the available properties have been enumerated. As with the
for statement, the const operator in the control statement is not necessary but is recommended for
ensuring the use of a local variable that will not be altered.

Statements | 93

Object properties in ECMAScript are unordered, so the order in which property names are returned
in a for-in statement cannot necessarily be predicted. All enumerable properties will be returned
once, but the order may differ across browsers.

Note that the for-in statement simply doesn’t execute the body of the loop if the variable represent-
ing the object to iterate over is null or undefined.

The for-of Statement

The for-of statement is a strict iterative statement. It is used to loop through elements in an iterable
object. Here’s the syntax:

for (property of expression) statement

And here’s an example of its usage:

for (const el in [2,4,6,8) {
document .write(el) ;
}
Here, the for-of statement is used to display all the elements inside the four-element array. This
continues until each element in the array has been looped over. As with the for statement, the const
operator in the control statement is not necessary but is recommended for ensuring the use of a local
variable that will not be altered.

The for-of loop will iterate in the order that the iterable produces values via its next () method.
This is covered in-depth in the Iterators and Generators chapter.

Note that the for-of statement will throw an error if the entity that it is attempting to iterate over
does not support iteration.

NOTE In ES2018, the for-of statement is extended as a for-await-of loop to
support async iterables which produce promises. This is covered in Appendix A.

Labeled Statements

It is possible to label statements for later use with the following syntax:
label: statement
Here’s an example:

start: for (let i = 0; i < count; i++) {
console.log (i) ;
}
In this example, the label start can be referenced later by using the break or continue statement.
Labeled statements are typically used with nested loops.

94 |

CHAPTER 3 LANGUAGE BASICS

The break and continue Statements

The break and continue statements provide stricter control over the execution of code in a loop.
The break statement exits the loop immediately, forcing execution to continue with the next state-
ment after the loop. The continue statement, on the other hand, exits the loop immediately, but
execution continues from the top of the loop. Here’s an example:

let num = 0;

for (let i = 1; 1i 10; i++) {
if (1 $ 5 == 0)
break;

}

num++;

}

console.log(num); // 4

{

In this code, the for loop increments the variable i from 1 to 10. In the body of a loop, an if state-
ment checks to see if the value of i is evenly divisible by § (using the modulus operator). If so, the
break statement is executed and the loop is exited. The num variable starts out at 0 and indicates the
number of times the loop has been executed. After the break statement has been hit, the next line

of code to be executed is the console.log, which displays 4. The number of times the loop has been
executed is four because when i equals 3, the break statement causes the loop to be exited before
num can be incremented. A different effect can be seen if break is replaced with continue like this:

let num = 0;

for (let i = 1; i < 10; i++) {
if (i % 5 == 0) {
continue;

}

num++;

}

console.log(num); // 8

Here, the console.log displays 8, the number of times the loop has been executed. When 1 reaches a
value of 5, the loop is exited before num is incremented, but execution continues with the next itera-
tion, when the value is 6. The loop then continues until its natural completion, when 1 is 10. The final
value of num is 8 instead of 9 because one increment didn’t occur due to the continue statement.

Both the break and continue statements can be used in conjunction with labeled statements to
return to a particular location in the code. This is typically used when there are loops inside of loops,
as in the following example:

let num = 0;

outermost:
for (let 1 = 0; 1 < 10; i++) {
for (let j = 0; j < 10; j++) {
if (1 == 5 && j == 5) {
break outermost;
}

Statements | 95

num++;

}
}

console.log(num); // 55

In this example, the outermost label indicates the first for statement. Each loop normally executes 10
times, meaning that the num++ statement is normally executed 100 times and, consequently, num should
be equal to 100 when the execution is complete. The break statement here is given one argument: the
label to break to. Adding the label allows the break statement to break not just out of the inner for
statement (using the variable) but also out of the outer for statement (using the variable i). Because
of this, num ends up with a value of 55, because execution is halted when both i and j are equal to 5.
The continue statement can be used in the same way, as shown in the following example:

let num = 0;

outermost:
for (let 1 = 0; i < 10; i++) {
for (let j = 0; j < 10; j++) {
if (i == 5 && j == 5) {
continue outermost;
}

num++;

}
}

console.log(num); // 95

In this case, the cont inue statement forces execution to continue—not in the inner loop but in the
outer loop. When 7 is equal to 5, continue is executed, which means that the inner loop misses five
iterations, leaving num equal to 95.

Using labeled statements in conjunction with break and continue can be very powerful but can
cause debugging problems if overused. Always use descriptive labels and try not to nest more than a
few loops.

The with Statement

The with statement sets the scope of the code within a particular object. The syntax is as follows:

with (expression) statement;

The with statement was created as a convenience for times when a single object was being coded to
over and over again, as in this example:

let gs = location.search.substring (1) ;
let hostName = location.hostname;
let url = location.href;

Here, the location object is used on every line. This code can be rewritten using the with statement
as follows:

with(location) {
let gs = search.substring(1);
let hostName = hostname;
let url = href;

96

CHAPTER 3 LANGUAGE BASICS

In this rewritten version of the code, the with statement is used in conjunction with the location
object. This means that each variable inside the statement is first considered to be a local variable. If
it’s not found to be a local variable, the location object is searched to see if it has a property of the
same name. If so, then the variable is evaluated as a property of location.

In strict mode, the with statement is not allowed and is considered a syntax error.

WARNING [t is widely considered a poor practice to use the with statement in
production code because of its negative performance impact and the difficulty in
debugging code contained in the with statement.

The switch Statement

Closely related to the if statement is the switch statement, another flow-control statement adopted
from other languages. The syntax for the switch statement in ECMAScript closely resembles the
syntax in other C-based languages, as you can see here:

switch (expression)
case valuel:
statement
break;
case value2:
statement
break;
case value3:
statement
break;
case value4:
statement
break;
default:
statement

}

Each case in a switch statement says, “If the expression is equal to the value, execute the statement.”
The break keyword causes code execution to jump out of the switch statement. Without the break
keyword, code execution falls through the original case into the following one. The default keyword
indicates what is to be done if the expression does not evaluate to one of the cases. (In effect, it is an
else statement.)

Essentially, the switch statement prevents a developer from having to write something like this:

if (i == 25) {
console.log("25"
} else if (i == 35
console.log("35"
} else if (i == 45
console.log("45"
} else {
console.log("Other") ;

)
) {
)
) {
).

i

Statements | 97

The equivalent switch statement is as follows:

switch (i) {
case 25:
console.log("25") ;
break;
case 35:
console.log("35") ;
break;
case 45:
console.log("45") ;
break;
default:
console.log("Other") ;
}

It’s best to always put a break statement after each case to avoid having cases fall through into the
next one. If you need a case statement to fall through, include a comment indicating that the omission
of the break statement is intentional, such as this:

switch (i) {
case 25:
/* falls through */
case 35:
console.log("25 or 35");
break;
case 45:
console.log("45") ;
break;
default:
console.log("Other") ;
}

Although the switch statement was borrowed from other languages, it has some unique charac-
teristics in ECMAScript. First, the switch statement works with all data types (in many languages
it works only with numbers), so it can be used with strings and even with objects. Second, the case
values need not be constants; they can be variables and even expressions. Consider the following
example:

switch ("hello world") ({
case "hello" + " world":
console.log ("Greeting was found.");
break;
case "goodbye":
console.log("Closing was found.");
break;
default:
console.log("Unexpected message was found.");
}

In this example, a string value is used in a switch statement. The first case is actually an expression
that evaluates a string concatenation. Because the result of this concatenation is equal to the switch

98 | CHAPTER 3 LANGUAGE BASICS

argument, the console.log displays "Greeting was found." The ability to have case expressions
also allows you to do things like this:

let num = 25;
switch (true) {
case num < 0:
console.log("Less than 0.");
break;
case num >= 0 && num <= 10:
console.log ("Between 0 and 10.");
break;
case num > 10 && num <= 20:
console.log ("Between 10 and 20.");
break;
default:
console.log ("More than 20.");

}

Here, a variable num is defined outside the switch statement. The expression passed into the switch
statement is true because each case is a conditional that will return a Boolean value. Each case is
evaluated, in order, until a match is found or until the default statement is encountered (which is the
case here).

NOTE The switch statement compares values using the identically equal oper-
ator, so no type coercion occurs (for example, the string "10" is not equal to the
number 10).

FUNCTIONS

Functions are the core of any language because they allow the encapsulation of statements that can be
run anywhere and at any time. Functions in ECMAScript are declared using the function keyword,
followed by a set of arguments and then the body of the function.

NOTE I[n-depth function coverage can be found in the Functions chapter.

The basic function syntax is as follows:

function functionName (arg0, argl,...,argN) {
statements

Here’s an example:

function sayHi (name, message)
console.log("Hello " + name + ", " + message);

Functions | 99

This function can then be called by using the function name, followed by the function arguments
enclosed in parentheses (and separated by commas, if there are multiple arguments). The code to call
the say#i () function looks like this:

sayHi ("Nicholas", "how are you today?");

The output of this function call is, "Hello Nicholas, how are you today?" The named argu-
ments name and message are used as part of a string concatenation that is ultimately displayed in an
console.log.

Functions in ECMAScript need not specify whether they return a value. Any function can return
a value at any time by using the return statement followed by the value to return. Consider
this example:

function sum(numl, num2) {
return numl + num2;

}

The sum() function adds two values together and returns the result. Note that aside from the return
statement, there is no special declaration indicating that the function returns a value. This function
can be called using the following:

const result = sum(5, 10);

Keep in mind that a function stops executing and exits immediately when it encounters the return
statement. Therefore, any code that comes after a return statement will never be executed.
For example:

function sum(numl, num2)
return numl + num2;
console.log("Hello world"); // never executed

}

In this example, the console.log will never be displayed because it appears after the return statement.

It’s also possible to have more than one return statement in a function, like this:

function diff (numl, num2) {
if (numl < num2)
return num2 - numl;
} else {
return numl - num2;

}
}

Here, the diff () function determines the difference between two numbers. If the first number is less
than the second, it subtracts the first from the second; otherwise it subtracts the second from the first.
Each branch of the code has its own return statement that does the correct calculation.

The return statement can also be used without specifying a return value. When used in this way,
the function stops executing immediately and returns undefined as its value. This is typically used
in functions that don’t return a value to stop function execution early, as in the following example,
where the console.log won’t be displayed:

function sayHi (name, message) {
return;
console.log("Hello " + name + ", " + message); // never called

}

100

| CHAPTER 3 LANGUAGE BASICS

NOTE Best practices dictate that a function either always return a value or
never return a value. Writing a function that sometimes returns a value causes
confusion, especially during debugging.

Strict mode places several restrictions on functions:
> No function can be named eval or arguments.
> No named parameter can be named eval or arguments.

> No two named parameters can have the same name.

If any of these occur, it’s considered a syntax error and the code will not execute.

SUMMARY

The core language features of JavaScript are defined in ECMA-262 as a pseudolanguage named

ECMAScript. ECMAScript contains all of the basic syntax, operators, data types, and objects neces-
sary to complete basic computing tasks, though it provides no way to get input or to produce output.
Understanding ECMAScript and its intricacies is vital to a complete understanding of JavaScript as

implemented in web browsers. The following are some of the basic elements of ECMAScript:

> The basic data types in ECM AScript are Undefined, Null, Boolean, Number, String,
and Symbol.

> Unlike other languages, there’s no separate data type for integers versus floating-point
values; the Number type represents all numbers.

» There is also a complex data type, Object, that is the base type for all objects in
the language.

> A strict mode places restrictions on certain error-prone parts of the language.

ECMAScript provides a lot of the basic operators available in C and other C-like languages,
including arithmetic operators, Boolean operators, relational operators, equality operators,

and assignment operators.

> The language features flow-control statements borrowed heavily from other languages, such

as the if statement, the for statement, and the switch statement.

Functions in ECMAScript behave differently than functions in other languages:

> There is no need to specify the return value of the function because any function can return

any value at any time.

> Functions that don’t specify a return value actually return the special value undefined.

Variables, Scope, and Memory

WHAT'S IN THIS CHAPTER?

> Working with primitive and reference values in variables
> Understanding execution context

> Understanding garbage collection

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s

code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

The nature of variables in JavaScript, as defined in ECMA-262, is quite unique compared to
that of other languages. Being loosely typed, a variable is literally just a name for a particular
value at a particular time. Because there are no rules defining the type of data that a variable
must hold, a variable’s value and data type can change during the lifetime of a script. Though
this is an interesting, powerful, and problematic feature, there are many more complexities
related to variables.

PRIMITIVE AND REFERENCE VALUES

ECMAScript variables may contain two different types of data: primitive values and reference
values. Primitive values are simple atomic pieces of data, while reference values are objects that
may be made up of multiple values.

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

102

| CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

When a value is assigned to a variable, the JavaScript engine must determine if it’s a primitive or

a reference value. The six primitive types were discussed in the previous chapter: Undefined, Null,
Boolean, Number, String, and Symbol. These variables are said to be accessed by value, because you
are manipulating the actual value stored in thevariable.

Reference values are objects stored in memory. Unlike other languages, JavaScript does not per-
mit direct access of memory locations, so direct manipulation of the object’s memory space is not
allowed. When you manipulate an object, you’re really working on a reference to that object rather
than the actual object itself. For this reason, such values are said to be accessed by reference.

NOTE [n many languages, strings are represented by objects and are therefore
considered to be reference types. ECMAScript breaks away from this tradition.

Dynamic Properties

Primitive and reference values are defined similarly: a variable is created and assigned a value. What
you can do with those values once they’re stored in a variable, however, is quite different. When you
work with reference values, you can add, change, or delete properties and methods at any time. Con-
sider this example:

let person = new Object();

person.name = "Nicholas";

console.log(person.name); // "Nicholas"
Here, an object is created and stored in the variable person. Next, a property called name is added
and assigned the string value of "Nicholas". The new property is then accessible from that point on,
until the object is destroyed or the property is explicitly removed.

Primitive values can’t have properties added to them even though attempting to do so won’t cause an
error. Here’s an example:

let name = "Nicholas";
name.age = 27;
console.log(name.age); // undefined

Here, a property called age is defined on the string name and assigned a value of 27. On the very next
line, however, the property is gone. Only reference values can have properties defined dynamically for
later use.

Note that the instantiation of a primitive type can be accomplished using only the primitive literal
form. If you were to use the new keyword, JavaScript will create an Object type, but one that behaves
like a primitive. Here’s an example to distinguish between the two:

let namel = "Nicholas";

let name2 = new String("Matt");
namel.age = 27;

name2.age = 26;
console.log(namel.age); // undefined

Primitive and Reference Values | 103

console.log (name2.age); // 26
console.log(typeof namel); // string
console.log (typeof name2); // object

Copying Values

Aside from differences in how they are stored, primitive and reference values act differently when
copied from one variable to another. When a primitive value is assigned from one variable to another,
the value stored on the variable object is created and copied into the location for the new variable.
Consider the following example:

let numl = 5;
let num2 = numl;

Here, num1 contains the value of 5. When num2 is initialized to numi, it Variable object before copy
also gets the value of 5. This value is completely separate from the one
that is stored in num1 because it’s a copy of that value.

Each ofthese variables can now be used separately with no side effects.
This process is diagrammed in Figure 4-1.

5

numf (Number type)

When a reference value is assigned from one variable to another, the value
stored on the variable object is also copied into the location for the new

variable. The difference is that this value is actually a pointer to an object
stored on the heap. Once the operation is complete, two variables point to

Variable object after copy

exactly the same object, so changes to one are reflected on the other, as in
the following example:
- - num2 5
let objl = new Object(); (Number type)
let obj2 = objl; 5
objl.name = "Nicholas"; num1 (Number type)
console.log(obj2.name); // "Nicholas"

In this example, the variable obj1 is filled with a new instance of an FIGURE 4-1

object. This value is then copied into obj2, meaning that both variables

are now pointing to the same object. When the property name is set on obj1, it can later be accessed
from obj2 because they both point to the same object. Figure 4-2 shows the relationship between the
variables on the variable object and the object on the heap.

Argument Passing

All function arguments in ECMAScript are passed by value. This means that the value outside of the
function is copied into an argument on the inside of the function the same way a value is copied from
one variable to another. If the value is primitive, then it acts just like a primitive variable copy, and if
the value is a reference, it acts just like a reference variable copy. This is often a point of confusion for
developers because variables are accessed both by value and by reference, but arguments are passed
only by value.

104

| CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

Variable object before copy Heap

Variable object after copy

=

ObJ 2 (Object t)@e’)/
obj1 .

(Object type)

FIGURE 4-2

When an argument is passed by value, the value is copied into a local variable (a named argument
and, in ECMAScript, a slot in the arguments object). When an argument is passed by reference, the
location of the value in memory is stored into a local variable, which means that changes to the local
variable are reflected outside of the function. (This is not possible in ECMAScript.) Consider the fol-
lowing example:

function addTen (num) {

num += 10;
return num;

let count = 20;

let result = addTen(count) ;

console. log(count) ; // 20 - no change
console.log(result); // 30

Here, the function addTen () has an argument, num, which is essentially a local variable. When called,
the variable count is passed in as an argument. This variable has a value of 20, which is copied

into the argument num for use inside of addTen (). Within the function, the argument num has its
value changed by adding 10, but this doesn’t change the original variable count that exists outside of
the function. The argument num and the variable count do not recognize each other; they only hap-
pen to have the same value. If num had been passed by reference, then the value of count would have
changed to 30 to reflect the change made inside the function. This fact is obvious when using primi-
tive values such as numbers, but things aren’t as clear when using objects. Take this, for example:

function setName (obj) {
obj.name = "Nicholas";
}

let person = new Object();
setName (person) ;
console.log(person.name); // "Nicholas"

Primitive and Reference Values | 105

In this code, an object is created and stored in the variable person. This object is then passed into the
setName () method, where it is copied into obj. Inside the function, obj and person both point to
the same object. The result is that obj is accessing an object by reference, even though it was passed
into the function by value. When the name property is set on obj inside the function, this change is
reflected outside the function, because the object that it points to exists globally on the heap. Many
developers incorrectly assume that when a local change to an object is reflected globally, that means
an argument was passed by reference. To prove that objects are passed by value, consider the follow-
ing modified code:

function setName (obj) {

obj.name = "Nicholas";
obj = new Object();
obj.name = "Greg";

}

let person = new Object () ;
setName (person) ;
console.log(person.name); // "Nicholas"

The only change between this example and the previous one is that two lines have been added to
setName () that redefine obj as a new object with a different name. When person is passed into
setName (), its name property is set to "Nicholas". Then the variable obj is set to be a new object
and its name property is set to "Greg". If person were passed by reference, then person would
automatically be changed to point to the object whose name is "Greg". However, when person

.name is accessed again, its value is "Nicholas", indicating that the original reference remained intact
even though the argument’s value changed inside the function. When obj is overwritten inside the
function, it becomes a pointer to a local object. That local object is destroyed as soon as the function
finishes executing.

NOTE Think of function arguments in ECMAScript as nothing more than local
variables.

Determining Type

The typeof operator, introduced in the previous chapter, is the best way to determine if a variable
is a primitive type. More specifically, it’s the best way to determine if a variable is a string, num-
ber, Boolean, or undefined. If the value is an object or nul1, then typeof returns "object", as in
this example:

let s = "Nicholas";
let b = true;

let 1 = 22;

let u;

let n = null;
let o = new Object();

106

| CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

’

console.log(typeof s); // string

console.log(typeof 1i); // number

console.log(typeof b); // boolean

console.log (typeof u); // undefined

console.log(typeof n); // object

console.log(typeof o) ; // object
Although typeof works well for primitive values, it’s of little use for reference values. Typically, you
don’t care that a value is an object—what you really want to know is what type of object it is. To aid
in this identification, ECMAScript provides the instanceof operator, which is used with the follow-
ing syntax:

result = variable instanceof constructor

The instanceof operator returns true if the variable is an instance of the given reference type (iden-
tified by its prototype chain, as discussed in the Objects, Classes, and Object-Oriented Programming
chapter). Consider this example:

console.log (person instanceof Object) ; // is the variable person an Object?
console.log(colors instanceof Array); // 1is the variable colors an Array?
console.log(pattern instanceof RegExp); // is the variable pattern a RegExp?

All reference values, by definition, are instances of Object, so the instanceof operator always
returns true when used with a reference value and the object constructor. Similarly, if instanceof
is used with a primitive value, it will always return false, because primitives aren’t objects.

NOTE The typeof operator also returns "function" when used on a function.
When used on a regular expression in Safari (through version 5) and Chrome
(through version 7), typeof returns "function" because of an implementation
detail. ECMA-262 specifies that any object implementing the internal [[Calll]
method should return "function" from typeof. Since regular expressions imple-
ment this method in these browsers, typeof returns "function". In Internet
Explorer and Firefox, typeof returns "object" for regular expressions.

EXECUTION CONTEXT AND SCOPE

The concept of execution context, referred to as context for simplicity, is of the utmost importance in
JavaScript. The execution context of a variable or function defines what other data it has access to, as
well as how it should behave. Each execution context has an associated variable object upon which
all of its defined variables and functions exist. This object is not accessible by code but is used behind
the scenes to handle data.

The global execution context is the outermost one. Depending on the host environment for an
ECMAScript implementation, the object representing this context may differ. In web browsers, the
global context is said to be that of the window object (discussed in the Browser Object Model chap-
ter), so all global variables and functions defined with var are created as properties and methods on
the window object. Declarations using 1et and const at the top level are not defined in the global
context, but they are resolved identically on the scope chain. When an execution context has executed

Execution Context and Scope | 107

all of its code, it is destroyed, taking with it all of the variables and functions defined within it (the
global context isn’t destroyed until the application exits, such as when a web page is closed or a web
browser is shut down).

Each function call has its own execution context. Whenever code execution flows into a function, the
function’s context is pushed onto a context stack. After the function has finished executing, the stack
is popped, returning control to the previously executing context. This facility controls execution flow
throughout an ECMAScript program.

When code is executed in a context, a scope chain of variable objects is created. The purpose of the
scope chain is to provide ordered access to all variables and functions that an execution context has
access to. The front of the scope chain is always the variable object of the context whose code is
executing. If the context is a function, then the activation object is used as the variable object. An acti-
vation object starts with a single defined variable called arguments. (This doesn’t exist for the global
context.) The next variable object in the chain is from the containing context, and the next after that
is from the next containing context. This pattern continues until the global context is reached; the
global context’s variable object is always the last of the scope chain.

Identifiers are resolved by navigating the scope chain in search of the identifier name. The search
always begins at the front of the chain and proceeds to the back until the identifier is found. (If the
identifier isn’t found, typically an error occurs.)

Consider the following code:

var color = "blue";

function changeColor()

if (color === "blue") ({
color = "red";
} else {
color = "blue";
}
}
changeColor () ;

In this simple example, the function changeColor () has a scope chain with two objects in it: its
own variable object (upon which the arguments object is defined) and the global context’s variable
object. The variable color is therefore accessible inside the function, because it can be found in the
scope chain.

Additionally, locally defined variables can be used interchangeably with global variables in a local
context. Here’s an example:

var color = "blue";

function changeColor() {
let anotherColor = "red";

function swapColors() {
let tempColor = anotherColor;
anotherColor = color;
color = tempColor;

108

| CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

// color, anotherColor, and tempColor are all accessible here

}

// color and anotherColor are accessible here, but not tempColor
swapColors () ;

}

// only color is accessible here

changeColor () ;
There are three execution contexts in this code: global context, the local context of changecolor (),
and the local context of swapColors (). The global context has one variable, color, and one func-
tion, changeColor (). The local context of changeColor () has one variable named anothercolor
and one function named swapColors (), but it can also access the variable color from the global
context. The local context of swapColors () has one variable, named tempColor, that is accessible
only within that context. Neither the global context nor the local context of swapColors () has
access to tempColor. Within swapColors (), though, the variables of the other two contexts are fully
accessible because they are parent execution contexts. Figure 4-3 represents the scope chain for the
previous example.

In this figure, the rectangles represent specific execution contexts. An window
inner context can access everything from all outer contexts through

the scope chain, but the outer contexts cannot access anything within

an inner context. The connection between the contexts is linear and

ordered. Each context can search up the scope chain for variables and

functions, but no context can search down the scope chain into another
execution context. There are three objects in the scope chain for the

local context of swapColors (): the swapColors () variable object, the

variable object from changeColor (), and the global variable object.

The local context of swapColors () begins its search for variable and LtempColor
function names in its own variable object before moving along the

chain. The scope chain for the changeColor () context has only two FIGURE 4-3

objects: its own variable object and the global variable object. This

means that it cannot access the context of swapColors ().

color

changeColor()

anotherColor

swapColors()

NOTE Function arguments are considered to be variables and follow the same
access rules as any other variable in the execution context.

Scope Chain Augmentation

Even though there are only two primary types of execution contexts, global and function (the third
exists inside of a call to eval ()), there are other ways to augment the scope chain. Certain statements
cause a temporary addition to the front of the scope chain that is later removed after code execution.
There are two times when this occurs, specifically when execution enters either of the following:

» The catch block in a try-catch statement

> A with statement

Execution Context and Scope | 109

Both of these statements add a variable object to the front of the scope chain. For the with statement,
the specified object is added to the scope chain; for the catch statement, a new variable object is cre-
ated and contains a declaration for the thrown error object. Consider the following:

function buildUrl() ({
let gs = "?debug=true";

with(location) {
let url = href + gs;
}

return url;

}

In this example, the with statement is acting on the location object, so location itself is added

to the front of the scope chain. There is one variable, gs, defined in the buildurl () function. When
the variable href is referenced, it’s actually referring to location.href, which is in its own variable
object. When the variable gs is referenced, it’s referring to the variable defined in buildurl (), which
is in the function context’s variable object. Inside the with statement is a variable declaration for uri,
which becomes part of the function’s context and can, therefore, be returned as the function value.

NOTE There is a deviation in the Internet Explorer implementation of
JavaScript through Internet Explorer 8, where the error caught in a catch state-
ment is added to the execution context’s variable object rather than the catch
statement’s variable object, making it accessible even outside the catchblock.
This was fixed in Internet Explorer 9.

Variable Declaration

With the introduction of ES6, JavaScript underwent a jostling transformation with regard to how
variables are declared in the language. Through ECMAScript 5.1, the one-size-fits-all keyword was
var. With ES6, not only does it introduce the two new keywords let and const, but these new key-
words will overwhelmingly be the preferred declarations over var.

Function Scope Declaration Using var

When a variable is declared using var, it is automatically added to the most immediate context avail-
able. In a function, the most immediate one is the function’s local context; in a with statement, the
most immediate is the function context. If a variable is initialized without first being declared, it gets
added to the global context automatically, as in this example:

function add(numl, num2)

var sum = numl + num2;
return sum;

}

let result = add(10, 20); // 30
console.log (sum) ; // causes an error: sum is not a valid variable

110

| CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

Here, the function add () defines a local variable named sum that contains the result of an addition
operation. This value is returned as the function value, but the variable sum isn’t accessible outside the
function. If the var keyword is omitted from this example, sum becomes accessible after add () has
been called, as shown here:

function add(numl, num2)

sum = numl + num2;
return sum;

}

let result = add(10, 20); // 30
console.log (sum) ; // 30

Here, the variable sum is initialized to a value without ever having been declared using var. When
add () is called, sum is created in the global context and continues to exist even after the function has
completed, allowing you to access it later.

NOTE [nitializing variables without declaring them is a very common mis-

take in JavaScript programming and can lead to errors. It’s advisable to always
declare variables before initializing them to avoid such issues. In strict mode, ini-
tializing variables without declaration causes an error.

A var declaration will be brought to the top of the function or global scope and before any existing
code inside it. This is referred to as “hoisting”. This allows you to safely use a hoisted variable any-
where in the same scope without consideration for whether or not it was declared yet. However, in
practice, this can lead to legal yet bizarre code in which a variable is used before it is declared. Here is
an example of two equivalent code snippets in the global scope:

var name = "Jake";
// This is equivalent to:

name = 'Jake';
var name;

Here is an example of two equivalent functions:

function fnl() {
var name = 'Jake';
}

// This is equivalent to:
function fn2() {

var name;

name = 'Jake';

}

You can prove to yourself that a variable is hoisted by inspecting it before its declaration. The hoist-
ing of the declaration means you will see undefined instead of ReferenceError:

console.log(name); // undefined
var name = 'Jake';

Execution Context and Scope | 111

function()
console.log(name); // undefined
var name = 'Jake';

}

Block Scope Declaration Using let

Brand new to ES6, let operates much in the same way as var, but it is scoped at the block level—a
new concept in JavaScript. Block scope is defined as the nearest set of enclosing curly braces {}. This
means if blocks, while blocks, function blocks, and even standalone blocks will be the extent of
the scope of any variable declared with let.
if (true) {
let a;

}

console.log(a); // ReferenceError: a is not defined

while (true) {
let b;

}

console.log(b); // ReferenceError: b is not defined

function foo()
let c;

}
console.log(c); // ReferenceError: c is not defined
// This should be unsurprising, as
// a var declaration would also throw an Error

// This is not an object literal, this is a standalone block.
// The JavaScript interpreter will identify it as such based on its contents.

{

let d;

}

console.log(d); // ReferenceError: d is not defined

In a similar departure from the behavior of var, 1et cannot be declared twice inside the same
block scope. Duplicate var declarations are simply ignored; duplicate 1et declarations throw a
SyntaxError.

var a;

var a;
// No errors thrown

{
let b;
let b;

}

// SyntaxError: Identifier 'b' has already been declared
The behavior of let is especially useful when using iterators inside loops. Iterator declarations using
var will bleed outside the loop after it completes, which is frequently a very undesirable behavior.
Consider these two examples:

for (var 1 = 0; i < 10; ++i) {}
console.log(i); // 10

112 | CHAPTER4 VARIABLES, SCOPE, AND MEMORY

for (let j = 0; j < 10; ++3j) {}

console.log(j); // ReferenceError: j is not defined
let is technically hoisted in the JavaScript runtime, but because of the “temporal dead zone,” you are
prevented from using the variable above its actual declaration. Therefore, for the purposes of writing
JavaScript, 1et is not hoisted in the same way as var.

Constant Declaration Using const

ES6 also introduces const as companion to let. A variable declared using const must be initialized
to some value. Once declared, it cannot be reassigned to a new value at any point in its lifetime.

const a; // SyntaxError: Missing initializer in const declaration

const b = 3;
console.log(b); // 3
b = 4; // TypeError: Assignment to a constant variable

Apart from its const rule enforcement, const variables behave identically to let variables:

if (true) {
const a = 0;

}

console.log(a); // ReferenceError: a is not defined

while (true) {
const b = 1;

}

console.log(b); // ReferenceError: b is not defined

function foo() {
const ¢ = 2;

}

console.log(c); // ReferenceError: c is not defined

{

const d = 3;

}

console.log(d); // ReferenceError: d is not defined
The const declaration only applies to the top-level primitive or object. In other words, a const vari-
able assigned to an object cannot be reassigned to another reference value, but the keys inside that
object are not protected.

const ol = {};
ol = {}; // TypeError: Assignment to a constant variable;

const 02 = {};
o2.name = 'Jake';
console.log(o2.name); // 'Jake'

If you wish to make the entire object immutable, you can use object . freeze (), although attempted
property assignment will not raise errors; it will just silently fail:
const 03 = Object.freeze({});

o3 .name = 'Jake';
console.log(o3.name); // undefined

Execution Context and Scope | 113

Because const declarations imply that the value is of a single type and immutable, the JavaScript
runtime compiler can replace all instances of it with its actual value instead of performing a variable
lookup through a lookup table. The Google Chrome V8 engine performs such an optimization.

NOTE If your development process isn’t too materially affected by it, best prac-
tices dictate that you use const as often as possible unless you really need a var-
iable that can undergo reassignment. This will allow you to catch an entire vein
of reassignment bugs much earlier than you normally would.

Identifier Lookup

When an identifier is referenced for either reading or writing within a particular context, a search
must take place to determine what identifier it represents. The search starts at the front of the scope
chain, looking for an identifier with the given name. If it finds that identifier name in the local
context, then the search stops and the variable is set; if the search doesn’t find the variable name, it
continues along the scope chain. (Note that objects in the scope chain also have a prototype chain, so
searching may include each object’s prototype chain.) This process continues until the search reaches
the global context’s variable object. If the identifier isn’t found there, it hasn’t been declared.

To better illustrate how identifier lookup occurs, consider the following example:

var color = 'blue';

function getColor() (
return color;
}

console.log(getColor()); // 'blue’

When the function getColor () is called in this example, the variable color is referenced. At that point,
a two-step search begins. First getColor () ’s variable object is searched for an identifier named color.
When it isn’t found, the search goes to the next variable object (from the global context) and then
searches for an identifier named color. Because color is defined in that variable object, the search ends.

Given this search process, referencing local variables automatically stops the search from going into
another variable object. This means that identifiers in a parent context cannot be referenced if an
identifier in the local context has the same name, as in this example:

var color = 'blue';
function getColor() (

let color = 'red';
return color;

}

console.log(getColor()); // 'red'

Using block scoped declarations does not change the search process, but it can add extra levels to the
lexical hierarchy:

var color = 'blue';

function getColor() {

114

| CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

let color = 'red';

{

let color = 'green';
return color;

}
}

console.log(getColor()); // 'green'

In this modified code, a local variable named color is declared inside the getcolor () function.
When the function is called, the variable is declared. When the second line of the function is executed,
it knows that a variable named color must be used. The search begins in the local context, where it
finds a variable named color with a value of 'green'. Because the variable was found, the search
stops and the local variable is used, meaning that the function returns 'green'. Any lines of code
appearing after the declaration of color as a local variable cannot access the global color variable
without qualifying it as window. color. If one of the operands is an object and the other is not, the
valueof () method is called on the object to retrieve a primitive value to compare according to the
previous rules.

NOTE Variable lookup doesn’t come without a price. It’s faster to access local
variables than global variables because there’s no search up the scope chain.
JavaScript engines are getting better at optimizing identifier lookup, however, so
this difference may end up negligible in the future.

GARBAGE COLLECTION

JavaScript is a garbage-collected language, meaning that the execution environment is responsible

for managing the memory required during code execution. In languages such as C and C++, keeping
track of memory usage is a principle concern and the source of many issues for developers. JavaScript
frees developers from worrying about memory management by automatically allocating what is
needed and reclaiming memory that is no longer being used. The basic idea is simple: figure out which
variables aren’t going to be used and free the memory associated with them. This process is periodic,
with the garbage collector running at specified intervals (or at predefined collection moments in code
execution). The process of garbage collection is an approximate and imperfect solution because the
general problem of knowing whether some piece of memory is needed is “undecidable,” meaning it
cannot be solved by an algorithm.

Consider the normal life cycle of a local variable in a function. The variable comes into existence
during the execution of the function. At that time, memory is allocated on the stack (and possibly
on the heap) to provide storage space for the value. The variable is used inside the function and then
the function ends. At that point, this variable is no longer needed, so its memory can be reclaimed
for later use. In this situation, it’s obvious that the variable isn’t needed, but not all situations are as
obvious. The garbage collector must keep track of which variables can and can’t be used so it can
identify likely candidates for memory reclamation. The strategy for identifying the unused variables
may differ on an implementation basis, though two strategies have traditionally been used in brows-
ers: mark-and-sweep, and reference counting.

Garbage Collection | 115

Mark-and-Sweep

The most popular form of garbage collection for JavaScript is called mark-and-sweep. When a vari-
able comes into context, such as when a variable is declared inside a function, it is flagged as being in
context. Variables that are in context, logically, should never have their memory freed, because they
may be used as long as execution continues in that context. When a variable goes out of context, it is
also flagged as being out of context.

Variables can be flagged in any number of ways. There may be a specific bit that is flipped when a
variable is in context, or there may be an “in-context” variable list and an “out-of-context” variable
list between which variables are moved. The implementation of the flagging is unimportant; it’s really
the theory that is key.

When the garbage collector runs, it marks all variables stored in memory (once again, in any number
of ways). It then clears its mark off of variables that are in context and variables that are referenced
by in-context variables. The variables that are marked after that are considered ready for deletion,
because they can’t be reached by any in-context variables. The garbage collector then does a memory
sweep, destroying each of the marked values and reclaiming the memory associated with them.

As of 2008, Internet Explorer, Firefox, Opera, Chrome, and Safari all use mark-and-sweep garbage
collection (or variations thereof) in their JavaScript implementations, though the timing of garbage
collection differs.

Reference Counting

A second, less-popular type of garbage collection is reference counting. The idea is that every value
keeps track of how many references are made to it. When a variable is declared and a reference value
is assigned, the reference count is one. If another variable is then assigned to the same value, the refer-
ence count is incremented. Likewise, if a variable with a reference to that value is overwritten with
another value, then the reference count is decremented. When the reference count of a value reaches
zero, there is no way to reach that value and it is safe to reclaim the associated memory. The garbage
collector frees the memory for values with a reference count of zero the next time it runs.

Reference counting was initially used by Netscape Navigator 3.0 and immediately met with a serious
issue: circular references. A circular reference occurs when object A has a pointer to object B and
object B has a reference to object A, as in the following example:

function problem() {

let objectA = new Object();
let objectB = new Object();

objectA.someOtherObject = objectB;
objectB.anotherObject = objecth;

}

In this example, objecta and objectB reference each other through their properties, meaning that
each has a reference count of two. In a mark-and-sweep system, this wouldn’t be a problem because
both objects go out of scope after the function has completed. In a reference-counting system, how-
ever, objectA and objectB will continue to exist after the function has exited because their refer-
ence counts will never reach zero. If this function were called repeatedly, it would lead to a large
amount of memory never being reclaimed. For this reason, Netscape abandoned a reference-counting

116

| CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

garbage-collection routine in favor of a mark-and-sweep implementation in version 4.0. Unfortu-
nately, that’s not where the reference-counting problem ended.

Not all objects in Internet Explorer 8 and earlier are native JavaScript objects. Objects in the Browser
Object Model (BOM) and Document Object Model (DOM) are implemented as COM (Component
Object Model) objects in C++, and COM objects use reference counting for garbage collection. So
even though the Internet Explorer JavaScript engine uses a mark-and-sweep implementation, any
COM objects that are accessed in JavaScript still use reference counting, meaning circular references
are still a problem when COM objects are involved. The following simple example demonstrates a
circular reference with a COM object:

let element = document.getElementById("some element");

let myObject = new Object();

myObject.element = element;
element.someObject = myObject;

This example sets up a circular reference between a DOM element (element) and a native JavaScript
object (myobject). The myobject variable has a property called element that points to element, and
the element variable has a property called someobject that points back to myobject. Because of
this circular reference, the memory for the DOM element will never be reclaimed even if it is removed
from the page.

To avoid circular reference problems such as this, you should break the connection between native
JavaScript objects and DOM elements when you’re finished using them. For example, the following
code cleans up the circular references in the previous example:

myObject.element = null;
element.someObject = null;

Setting a variable to nul1 effectively severs the connection between the variable and the value it
previously referenced. The next time the garbage collector runs, these values will be deleted and the
memory will be reclaimed.

Internet Explorer 9 remedied some of these problems by making BOM and DOM objects into true
JavaScript objects, thus avoiding the problem of having two different garbage-collection algorithms
and eliminating common memory leak issues.

NOTE There are several other patterns that may cause circular references, and
they will be covered throughout this book.

Performance

The garbage collector runs periodically and can potentially be an expensive process if there are a
large number of variable allocations in memory, so the timing of the garbage-collection process

is important. In particular, on mobile devices with limited system memory, garbage collection can
noticeably degrade the speed and framerate of rendering. You cannot know when garbage collection
is coming, so the best strategy is to organize your code in such a way that it allows garbage collection
to do its job to the best of its ability whenever it is scheduled to run.

Garbage Collection | 117

Modern garbage collectors decide when to run based on a collection of heuristics that are measured
from the JavaScript runtime environment. These heuristics will vary by engine, but they will all be
approximately based upon the size and number of objects that have been allocated. For example,
from a V8 blog post in 2016: “At the end of a full garbage collection, V8’s heap growing strategy
determines when the next garbage collection will happen based on the amount of live objects with
some additional slack.”

Internet Explorer was infamous for its performance issues related to how often the garbage collector
ran—it ran based on the number of allocations, specifically 256 variable allocations, 4,096 object/
array literals and array slots, or 64KB of strings. If any of these thresholds were reached, the garbage
collector would run. The problem with this implementation is that a script with so many variables
will probably continue to have that many variables throughout its lifetime, meaning the garbage col-
lector will run quite frequently. This issue caused serious performance problems that led to changes in
the garbage-collection routine in Internet Explorer 7.

With the release of Internet Explorer 7, the JavaScript engine’s garbage-collection routine was tuned
to dynamically change the allocation threshold of variables, literals, and/or array slots that triggered
garbage collection. The Internet Explorer 7 thresholds start out equal to those in Internet Explorer 6.
If the garbage-collection routine reclaims less than 15 percent of the allocations, the threshold for
variables, literals, and/or array slots doubles. If the routine ever reclaims 85 percent of the allocations,
then the threshold is reset to the default. This simple change greatly improved the performance of the
browser on JavaScript-heavy web pages.

WARNING It’s possible, though not recommended, to trigger the garbage-
collection process insome browsers. In Internet Explorer, the window
.CollectGarbage() method causesgarbage collection to occur immediately. In
Opera 7 and higher, calling window.opera.collect() initiates the garbage-collec-
tion process.

Managing Memory

In a garbage-collected programming environment, developers typically don’t have to worry about
memory management. However, JavaScript runs in an environment where memory management and
garbage collection operate uniquely. The amount of memory available for use in web browsers is
typically much less than is available for desktop applications, and even more so for mobile browsers.
This is more of a security feature than anything else, ensuring that a web page running JavaScript
can’t crash the operating system by using up all the system memory. The memory limits affect not
only variable allocation but also the call stack and the number of statements that can be executed in a
single thread.

Keeping the amount of used memory to a minimum leads to better page performance. The best way
to optimize memory usage is to ensure that you’re keeping around only data that is necessary for the
execution of your code. When data is no longer necessary, it’s best to set the value to null, freeing
up the reference—this is called dereferencing the value. This advice applies mostly to global values

118 | CHAPTER4 VARIABLES, SCOPE, AND MEMORY

and properties of global objects. Local variables are dereferenced automatically when they go out of
context, as in this example:
function createPerson (name) {
let localPerson = new Object () ;
localPerson.name = name;
return localPerson;

}

let globalPerson = createPerson("Nicholas");
// do something with globalPerson

globalPerson = null;

In this code, the variable globalPerson is filled with a value returned from the createperson ()
function. Inside createPerson (), localPerson creates an object and adds a name property to it.
The variable 1ocalPerson is returned as the function value and assigned to globalPerson. Because
localPerson goes out of context after createPerson () has finished executing, it doesn’t need to be
dereferenced explicitly. Because globalPerson is a global variable, it should be dereferenced when
it’s no longer needed, which is what happens in the last line.

Keep in mind that dereferencing a value doesn’t automatically reclaim the memory associated with it.
The point of dereferencing is to make sure the value is out of context and will be reclaimed the next
time garbage collection occurs.

Performance Boosts with const and let Declarations

The introduction of these keywords in ES6 isn’t just a boon for your code style but also for the gar-
bage collection process. Because const and let are scoped to a block instead of a function, depend-
ing on how your code is organized this may signal to the garbage collector that an allocated variable
is eligible for cleanup far sooner than it would have been when using var. This would occur in situa-
tions when the block scope terminates far sooner than the function scope.

Hidden Classes and the delete Operation

Depending on where you expect your JavaScript to run, it is sometimes worth considering various
performance implications based on which JavaScript engine a browser uses. As of 2017, the most
popular web browser is Google Chrome, which uses the V8 JavaScript engine. This engine utilizes
“hidden classes” when compiling the interpreted JavaScript code into actual machine code, and if you
are writing performance-sensitive code, this might matter to you.

During runtime, V8 will associate hidden classes for every object created to keep track of the shape of
its properties. Objects that are able to share the same hidden class will have better performance, and
V8 will optimize for this but may not always be able to. Consider the following code snippet:

function Article() {
this.title = 'Inauguration Ceremony Features Kazoo Band';

}

let al = new Article();
let a2 = new Article();

Garbage Collection | 119

Behind the scenes, V8 will configure the two class instances to share the same hidden class. This
makes sense because they share a constructor and prototype. Suppose you then appended the follow-
ing line to the end of this code:

az2.author = 'Jake';

Now, the two Article instances will have two divergent hidden class implementations. Depending
on the frequency of this operation and the size of the hidden classes, this can have meaningful impacts
on performance.

The solution, of course, is to avoid JavaScript’s ready-fire-aim dynamic property assignment and
instead declare all properties inside the constructor, as shown here:
function Article (opt_author) ({

this.title = 'Inauguration Ceremony Features Kazoo Band';
this.author = opt_author;

}

let al = new Article();
let a2 = new Article('Jake');

Now, the two instances will behave in essentially the same way (not counting the return values of
hasOwnProperty), and they will also share a hidden class, potentially yielding improved performance.
Bear in mind though that using the delete keyword can generate the same hidden class fragmenta-
tion. This is demonstrated here:

function Article() {

this.title = 'Inauguration Ceremony Features Kazoo Band';
this.author = 'Jake';

}

let al = new Article();
let a2 = new Article();

delete al.author;

At the end of this snippet, the two instances will no longer share a hidden class even though they use
a unified constructor. Dynamic deletion of a property will yield the same effect as dynamic addition.
Best practices dictate that unwanted properties should be set to nul1l. It will allow the hidden classes
to remain intact and shared, and it has the same effect on removing references for the benefit of the
garbage collector.

function Article()

this.title = 'Inauguration Ceremony Features Kazoo Band';
this.author = 'Jake';

}

let al = new Article();
let a2 = new Article();

al.author = null;

Memory Leaks

Poorly written JavaScript can yield some sneaky and insidious memory leaks. On devices with limited
memory, or in the context of functions that are called many times, this can cause big problems. Over-
whelmingly, memory leaks in JavaScript are caused by unwanted references.

120

| CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

One of the most common and easily fixed memory leaks is accidentally declaring global variables. In
the following code, the variable is not prefixed with a declaration keyword:

function setName () {
name = 'Jake';

In this example, the interpreter will handle this as window.name = 'Jake', and, of course, properties
set on the window object will never be cleaned up if the window object itself is not cleaned up. This is
easily fixed by prefixing the declaration with var, let, or const, which will all go out of scope at the
end of the function’s execution.

Interval timers can also quietly cause memory leaks. In the following code, the code sets an interval,
which references a variable provided through a closure:

let name = 'Jake’';

setInterval (() => {

console.log (name) ;
}, 100);

As long as this interval timer is running, the handler function containing a reference to name remains
allocated. The garbage collector recognizes this and therefore is unable to clean up the outer variable.

JavaScript closures are an exceedingly common way to leak memory without realizing it. Consider
the following example:
let outer = function() {
let name = 'Jake';

return function() {
return name;

}i
Vi
This leaks the memory allocated for name. This code creates an internal closure, so as long as the
outer function exists, the name variable cannot be cleaned up because there will be a persistent refer-
ence to it through that closure. If the contents of the name variable were extremely large instead of
just a short string, major problems could result.

Static Allocation and Object Pools

At the very end of the JavaScript performance spectrum, you may find yourself wanting to squeeze
the very last bit of performance juice out of the browser. To accomplish this, a good place to focus is
on minimizing the number of garbage collection operations the browser performs. Because you do
not directly control when garbage collection occurs, you can instead optimize around the heuristics
that browsers use when scheduling garbage collection. In theory, if you can responsibly use allocated
memory and at the same time obviate superfluous garbage collection, then you will be able to make
performance gains that would otherwise be lost freeing memory.

One important metric measured by the browser to decide when to schedule garbage collection is the

rate of object churn. If lots of objects are being instantiated and then going out of scope, the browser
will schedule garbage collections more aggressively, which of course will slow down the application.

Consider the following example, a two dimensional vector addition function:

function addvector(a, b) {
let resultant = new Vector();

Garbage Collection | 121

resultant.x = a.x + b.x;
resultant.y = a.y + b.y;
return resultant;

}
When invoked, this function creates a new object on the heap, modifies it, and returns it to the caller.
If the lifetime of this vector object is short, it will soon lose all its references and be eligible for gar-
bage collection. If this vector addition function is called frequently, the garbage collection scheduler
will see this high rate of object churn, and garbage collection will be scheduled more frequently.

Instead of this dynamic vector creation, suppose you changed the method to use an existing vec-
tor object:
function addvector(a, b, resultant) {
resultant.x = a.x + b.x;

resultant.y = a.y + b.y;
return resultant;

}

Of course, this requires the resultant vector argument to be fresh and instantiated somewhere else,
but the behavior of this function is the same. Where then to create a vector while avoiding the gaze of
the garbage collector heuristics?

One strategy is to use an object pool. At some point in initialization, you will create an object pool
that manages a collection of recyclable objects. Your application can request an object from this pool,
set its properties, use it, and return it to the pool when it’s done. Because no object instantiation is
occurring, garbage collection heuristics won’t measure an uptick in object churn, and garbage collec-
tion will occur less frequently. An object pool pseudo-implementation might look something like this:
// vectorPool is the existing object pool
let vl = vectorPool.allocate() ;

let v2 = vectorPool.allocate();
let v3 = vectorPool.allocate() ;

vli.x = 10;
vi.y = 5;

v2.X = -3;
v2.y = -6;

addvector (vl, v2, v3);
console.log([v3.x, v3.yl); // [7, -1]

vectorPool.free (vl) ;
vectorPool.free (v2);
vectorPool.free(v3);

// If the objects had properties referencing other objects,
// those would need to be set to null here as well

vl = null;

v2 null;

v3 = null;

If the object pool only allocates vectors as necessary (which creates new ones when they don’t exist
and reuses ones that already exist), this implementation is essentially a greedy algorithm that will

122

| CHAPTER 4 VARIABLES, SCOPE, AND MEMORY

have monotonically increasing yet static memory. This pool must maintain the collection using

some structure, and a good choice is an Array. However, the implementation using an array must be

designed carefully as to not incur additional garbage collection. Consider the following example:
let vectorList = new Array(100);

let vector = new Vector();
vectorList.push(vector) ;

Because JavaScript uses dynamically sized arrays, the engine will delete the array of size 100 and cre-
ate a new array of size 200. The garbage collector will see this deletion and may be encouraged to run
sooner because of it. This dynamic allocation can be avoided by creating an appropriately sized array
upon initialization, which will enable you to avoid the aforementioned resizing operation. It will
require, however, that you gain a sense of how large this array should be.

NOTE Static allocation is an extreme form of optimization. It will yield
performance gains when your application’s performance is hindered by garbage
collection overhead, but this will be the case very infrequently. In most cases,
this is a form of premature optimization and is not appropriate.

SUMMARY

Two types of values can be stored in JavaScript variables: primitive values and reference values.
Primitive values have one of the six primitive data types: Undefined, Null, Boolean, Number, String,
and Symbol. Primitive and reference values have the following characteristics:

> Primitive values are of a fixed size and so are stored in memory on the stack.

> Copying primitive values from one variable to another creates a second copy of the value.
> Reference values are objects and are stored in memory on the heap.
>

A variable containing a reference value actually contains just a pointer to the object, not the
object itself.

\

Copying a reference value to another variable copies just the pointer, so both variables end
up referencing the same object.

> The typeof operator determines a value’s primitive type, whereas the instanceof operator
is used to determine the reference type of a value.

All variables, primitive and reference, exist within an execution context (also called a scope) that
determines the lifetime of the variable and which parts of the code can access it. Execution context
can be summarized as follows:

> Execution contexts exist globally (called the global context), within functions, and
within blocks.

> Each time a new execution context is entered, it creates a scope chain to search for variables
and functions.

Summary | 123

>

Contexts that are local to a function or block have access not only to variables in that scope
but also to variables in any containing contexts and the global context.

The global context has access only to variables and functions in the global context and
cannot directly access any data inside local contexts.

The execution context of variables helps to determine when memory will be freed.

JavaScript is a garbage-collected programming environment where the developer need not be con-
cerned with memory allocation or reclamation. JavaScript’s garbage-collection routine can be sum-
marized as follows:

>

Values that go out of scope will automatically be marked for reclamation and will be deleted
during the garbage-collection process.

The predominant garbage-collection algorithm is called mark-and-sweep, which marks
values that aren’t currently being used and then goes back to reclaim that memory.

Another algorithm is reference counting, which keeps track of how many references there
are to a particular value. JavaScript engines no longer use this algorithm, but it still affects
Internet Explorer because of nonnative JavaScript objects (such as DOM elements) being
accessed in JavaScript.

Reference counting causes problems when circular references exist in code.

Dereferencing variables helps not only with circular references but also with garbage collec-
tion in general. To aid in memory reclamation, global objects, properties on global objects,
and circular references should all be dereferenced when no longer needed.

Basic Reference Types

WHAT'S IN THIS CHAPTER?

> Working with objects
> Understanding basic JavaScript data types

> Working with primitives and primitive wrappers

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-

load Code tab.

A reference value (object) is an instance of a specific reference type. In ECMAScript, reference
types are structures used to group data and functionality together and are often incorrectly
called classes. Although technically an object-oriented language, ECMAScript lacks some basic
constructs that have traditionally been associated with object-oriented programming, including
classes and interfaces. Reference types are also sometimes called object definitions because they
describe the properties and methods that objects should have.

NOTE Even though reference types are similar to classes, the two concepts are

not equivalent. To avoid any confusion, the term “class” is not used in the rest of
this chapter.

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

126 | CHAPTERS5 BASIC REFERENCE TYPES

Again, objects are considered to be instances of a particular reference type. New objects are created
by using the new operator followed by a constructor. A constructor is simply a function whose pur-
pose is to create a new object. Consider the following line of code:

let now = new Date() ;
This code creates a new instance of the Date reference type and stores it in the variable now. The
constructor being used is Date (), which creates a simple object with only the default properties and

methods. ECMAScript provides a number of native reference types, such as Date, to help developers
with common computing tasks.

NOTE Functions are a reference type, but they are too broad of a topic for
this chapter and therefore have an entire chapter devoted to them. Refer to the
Functions chapter.

THE DATE TYPE

The ECMAScript Date type is based on an early version of java.util.Date from Java. As such, the
Date type stores dates as the number of milliseconds that have passed since midnight on January 1,
1970 UTC (Universal Time Code). Using this data storage format, the Date type can accurately repre-
sent dates 285,616 years before or after January 1, 1970.
To create a date object, use the new operator along with the Date constructor, like this:

let now = new Date();
When the Date constructor is used without any arguments, the created object is assigned the cur-
rent date and time. To create a date based on another date or time, you must pass in the millisecond

representation of the date (the number of milliseconds after midnight, January 1, 1970 UTC, the Unix
epoch). To aid in this process, ECMAScript provides two methods: Date.parse () and Date.UTC ().

The Date.parse () method accepts a string argument representing a date. It attempts to convert the
string into a millisecond representation of a date. ECMA-262 fifth edition defines which date formats
Date.parse () should support, filling in a void left by the third edition. All implementations must
now support the following date formats:

> month/date/year (such as 5/23/2019)
> month_name date, year (such as May 23, 2019)

> day_of_week month_name date year hours:minutes:seconds time_zone (such as Tue May 23
2019 00:00:00 GMT-0700)

> ISO 8601 extended format YYYY-MM-DDTHH:mm:ss.sssZ (such as 2019-05-
23T00:00:00). This works only in ECMAScript S—compliant implementations.

For instance, to create a date object for May 23, 2019, you can use the following code:

let someDate = new Date(Date.parse("May 23, 2019"));

The Date Type | 127

If the string passed into Date.parse () doesn’t represent a date, then it returns NaN. The Date con-
structor will call Date.parse () behind the scenes if a string is passed in directly, meaning that the
following code is identical to the previous example:

let someDate = new Date("May 23, 2019");

This code produces the same result as the previous example.

NOTE There are a lot of quirks surrounding the Date type and its implementa-
tion in various browsers. There is a tendency to replace out-of-range values with
the current value to produce an output, so when trying to parse "January 32,
2019", some browsers will interpret it as "February 1, 2019", whereas Opera
tends to insert the current day of the current month, returning "January
current day, 2019". This means running the code on September 21 returns
"January 21, 2019".

The pate.uTc () method also returns the millisecond representation of a date but constructs that
value using different information than pate.parse (). The arguments for Date.UTC () are the year,
the zero-based month (January is 0, February is 1, and so on), the day of the month (1 through 31),
and the hours (0 through 23), minutes, seconds, and milliseconds of the time. Of these arguments,
only the first two (year and month) are required. If the day of the month isn’t supplied, it’s assumed
to be 1, while all other omitted arguments are assumed to be 0. Here are two examples of Date.
UTC () in action:

// January 1, 2000 at midnight GMT
let y2k = new Date(Date.UTC(2000, 0));

// May 5, 2005 at 5:55:55 PM GMT
let allFives = new Date(Date.UTC(2005, 4, 5, 17, 55, 55));

Two dates are created in this example. The first date is for midnight (GMT) on January 1, 2000,
which is represented by the year 2000 and the month 0 (which is January). Because the other argu-
ments are filled in (the day of the month as 1 and everything else as 0), the result is the first day of the
month at midnight. The second date represents May 5, 2005, at 5:55:55 PM GMT. Even though the
date and time contain only fives, creating this date requires some different numbers: the month must
be set to 4 because months are zero-based, and the hour must be set to 17 because hours are repre-
sented as 0 through 23. The rest of the arguments are as expected.

As with Date.parse (), Date.UTC() is mimicked by the Date constructor but with one major differ-
ence: the date and time created are in the local time zone, not in GMT. However, the Date construc-
tor takes the same arguments as Date.UTC (), so if the first argument is a number, the constructor
assumes that it is the year of a date, the second argument is the month, and so on. The preceding
example can then be rewritten as this:

// January 1, 2000 at midnight in local time
let y2k = new Date (2000, 0);

// May 5, 2005 at 5:55:55 PM local time
let allFives = new Date(2005, 4, 5, 17, 55, 55);

128

| CHAPTERS5 BASIC REFERENCE TYPES

This code creates the same two dates as the previous example, but this time both dates are in the local
time zone as determined by the system settings.

ECMAScript also offers bate.now (), which returns the millisecond representation of the date and
time at which the method is executed. This method makes it trivial to use Date objects for code pro-
filing, such as:

// get start time
let start = Date.now() ;

// call a function
doSomething () ;

// get stop time
let stop = Date.now(),
result = stop - start;

Inherited Methods

As with the other reference types, the Date type overrides toLocaleString (), toString(), and
valueOf (), though unlike the previous types, each method returns something different. The Date
type’s toLocaleString () method returns the date and time in a format appropriate for the locale
in which the browser is being run. This often means that the format includes AM or PM for the time
and doesn’t include any time-zone information (the exact format varies from browser to browser).
The tostring () method typically returns the date and time with time-zone information, and the
time is typically indicated in 24-hour notation (hours ranging from 0 to 23). The following displays
the format for toLocaleString () and toString () when representing the date/time of February 1,
2019, at midnight PST (Pacific Standard Time) in the "en-US" locale:

toLocaleString() — 2/1/2019 12:00:00 AM
toString() — Thu Feb 1 2019 00:00:00 GMT-0800 (Pacific Standard Time)

Modern browsers have converged to output the same strings for these two methods. When using
legacy browsers, there are differences between the formats that browsers return for each method.
These differences mean toLocaleString () and tostring () are useful only for debugging purposes,
not for display purposes.

The valueof () method for the Date type doesn’t return a string at all because it is overridden to
return the milliseconds representation of the date so that operators (such as less-than and greater-
than) will work appropriately for date values. Consider this example:

let datel = new Date (2019, 0, 1); // "January 1, 2019"
let date2 = new Date (2019, 1, 1); // "February 1, 2019"
console.log(datel < date2); // true
console.log(datel > date2); // false

The date January 1, 2019, comes before February 1, 2019, so it would make sense to say that the
former is less than the latter. Because the milliseconds representation of January 1, 2019, is less than
that of February 1, 2019, the less-than operator returns true when the dates are compared, providing
an easy way to determine the order of dates.

The Date Type | 129

Date-Formatting Methods

There are several Date type methods used specifically to format the date as a string. They are

as follows:

> toDatestring()—Displays the date’s day of the week, month, day of the month, and year in
an implementation-specific format.

> toTimeString()—Displays the date’s hours, minutes, seconds, and time zone in an imple-

mentation-specific format.

> toLocaleDateString()—Displays the date’s day of the week, month, day of the month, and
year in an implementation- and locale-specific format.

> toLocaleTimeString()—Displays the date’s hours, minutes, and seconds in an implementa-

tion-specific format.

> touTcstring()—Displays the complete UTC date in an implementation-specific format.

The output of these methods, as with toLocalestring () and tostring(), varies widely from
browser to browser and therefore can’t be employed in a user interface for consistent display of a date.

NOTE There is also a method called toguTstring(), which is equivalent to
toUTCString() and is provided for backwards compatibility. However, the spec-
ification recommends that new code use touTCString() exclusively.

Date/Time Component Methods

The remaining methods of the Date type (listed in the following table) deal directly with getting and
setting specific parts of the date value. Note that references to a UTC date mean the date value when
interpreted without a time-zone offset (the date when converted to GMT).

METHOD

getTime ()

setTime(milliseconds)

getFullYear ()
getUTCFullYear ()

setFullYear(year)

setUTCFullYear(year)

DESCRIPTION

Returns the milliseconds representation of the date; same as
valueOf ().

Sets the milliseconds representation of the date, thus changing
the entire date.

Returns the four-digit year (2019 instead of just 19).
Returns the four-digit year of the UTC date value.

Sets the year of the date. The year must be given with four
digits (2019 instead of just 19).

Sets the year of the UTC date. The year must be given with four
digits (2019 instead of just 19).

130

CHAPTER 5 BASIC REFERENCE TYPES

METHOD

getMonth ()

getUTCMonth ()

setMonth(month)

setUTCMonth(month)

getDate ()
getUTCDate ()

setDate(date)

setUTCDate(date)

getDay ()

getUTCDay ()

getHours ()
getUTCHours ()

setHours (hours)

setUTCHours(hours)

getMinutes ()
getUTCMinutes ()

setMinutes(minutes)

setUTCMinutes(minutes)

getSeconds ()

DESCRIPTION

Returns the month of the date, where O represents January and
11 represents December.

Returns the month of the UTC date, where O represents January
and 11 represents December.

Sets the month of the date, which is any number 0 or greater.
Numbers greater than 11 add years.

Sets the month of the UTC date, which is any number 0 or
greater. Numbers greater than 11 add years.

Returns the day of the month (1 through 31) for the date.
Returns the day of the month (1 through 31) for the UTC date.

Sets the day of the month for the date. If the date is greater
than the number of days in the month, the month value also
gets increased.

Sets the day of the month for the UTC date. If the date is
greater than the number of days in the month, the month value
also gets increased.

Returns the date’s day of the week as a number (where 0
represents Sunday and 6 represents Saturday).

Returns the UTC date’s day of the week as a number (where 0
represents Sunday and 6 represents Saturday).

Returns the date’s hours as a number between 0 and 23.
Returns the UTC date’s hours as a number between 0 and 23.

Sets the date’s hours. Setting the hours to a number greater
than 23 also increments the day of the month.

Sets the UTC date's hours. Setting the hours to a number
greater than 23 also increments the day of the month.

Returns the date’s minutes as a number between 0 and 59.
Returns the UTC date’s minutes as a number between 0 and 59.

Sets the date’s minutes. Setting the minutes to a number
greater than 59 also increments the hour.

Sets the UTC date’s minutes. Setting the minutes to a number
greater than 59 also increments the hour.

Returns the date’s seconds as a number between 0 and 59.

The RegExp Type | 131

METHOD
getUTCSeconds ()

setSeconds(seconds)

setUTCSeconds(seconds)

getMilliseconds ()
getUTCMilliseconds ()

setMilliseconds
(milliseconds)

setUTCMilliseconds
(milliseconds)

getTimezoneOffset ()

DESCRIPTION
Returns the UTC date’s seconds as a number between 0 and 59.

Sets the date’s seconds. Setting the seconds to a number
greater than 59 also increments the minutes.

Sets the UTC date’s seconds. Setting the seconds to a number
greater than 59 also increments the minutes.

Returns the date’s milliseconds.
Returns the UTC date’s milliseconds.

Sets the date’s milliseconds.

Sets the UTC date’s milliseconds.

Returns the number of minutes that the local time zone is offset
from UTC. For example, Eastern Standard Time returns 300. This
value changes when an area goes into Daylight Saving Time.

THE REGEXP TYPE

ECMAScript supports regular expressions through the RegExp type. Regular expressions are easy to
create using syntax similar to Perl, as shown here:

let expression = /pattern/flags;
The pattern part of the expression can be any simple or complicated regular expression, including
character classes, quantifiers, grouping, lookaheads, and backreferences. Each expression can have

zero or more flags indicating how the expression should behave. Three supported flags represent
matching modes, as follows:

» g—Indicates global mode, meaning the pattern will be applied to all of the string instead of
stopping after the first match is found.

> i—Indicates case-insensitive mode, meaning the case of the pattern and the string are
ignored when determining matches.

> m—Indicates multiline mode, meaning the pattern will continue looking for matches after
reaching the end of one line of text.

> y—Indicates sticky mode, meaning the pattern will only look at the string contents
beginning at lastIndex.

» u—Indicates Unicode mode is enabled.

| CHAPTERS5 BASIC REFERENCE TYPES

A regular expression is created using a combination of a pattern and these flags to produce different
results, as in this example:

// Match all instances of "at" in a string.
let patternl = /at/g;

// Match the first instance of "bat" or "cat", regardless of case.
let pattern2 = /[bclat/i;

// Match all three-character combinations ending with "at", regardless of case.

let pattern3 = /.at/gi;
As with regular expressions in other languages, all metacharacters must be escaped when used as part
of the pattern. The metacharacters are as follows:

(T{NTS 1)1 2+

Each metacharacter has one or more uses in regular-expression syntax and so must be escaped by a
backslash when you want to match the character in a string. Here are some examples:

// Match the first instance of "bat" or "cat", regardless of case.
let patternl = /[bclat/i;

// Match the first instance of "[bclat", regardless of case.
let pattern2 = /\[bc\lat/i;

// Match all three-character combinations ending with "at", regardless of case.
let pattern3 = /.at/gi;

// Match all instances of ".at", regardless of case.

let patternd = /\.at/gi;
In this code, pattern1 matches all instances of "bat" or "cat", regardless of case. To match " [bc]
at" directly, both square brackets need to be escaped with a backslash, as in pattern2. In pattern3,
the dot indicates that any character can precede "at" to be a match. If you want to match ".at",
then the dot needs to be escaped, as in pattern4.

The preceding examples all define regular expressions using the literal form. Regular expressions can
also be created by using the RegExp constructor, which accepts two arguments: a string pattern to
match and an optional string of flags to apply. Any regular expression that can be defined using literal
syntax can also be defined using the constructor, as in this example:

// Match the first instance of "bat" or "cat", regardless of case.
let patternl = /[bclat/i;

// Same as patternl, just using the constructor.

let pattern2 = new RegExp (" [bclat", "i");
Here, patternl and pattern2 define equivalent regular expressions. Note that both arguments of the
RegExp constructor are strings (regular-expression literals should not be passed into the RegExp con-
structor). Because the pattern argument of the RegExp constructor is a string, there are some instances
in which you need to double-escape characters. All metacharacters must be double-escaped, as must
characters that are already escaped, such as \n (the \ character, which is normally escaped in strings as
\\ becomes \\\\ when used in a regular-expression string). The following table shows some patterns
in their literal form and the equivalent string that would be necessary to use the RegExp constructor.

The RegExp Type | 133

LITERAL PATTERN STRING EQUIVALENT

/\ [bc\lat/ "\\ [bc\\lat"

/\.at/ "\\.at"

/name\ /age/ "name\\/age"
/\d.\da{1,2}/ "\\d.\\d{1,2}"
/\w\\hello\\123/ "\\w\\\\hello\\\\123"

Keep in mind that creating a regular expression using a literal is not exactly the same as creating a
regular expression using the RegExp constructor. Regular-expression literals always share the same
RegExp instance, while creating a new RegExp via constructor always results in a new instance. Con-
sider the following;:

let re = null;

for (let 1 = 0; i < 10; i++) {
re = /cat/g;
re.test ("catastrophe") ;

}

for (let 1 = 0; i < 10; i++) {
re = new RegExp("cat", "g");
re.test ("catastrophe") ;

}

In the first loop, there is only one instance of RegExp created for /cat/, even though it is specified
in the body of the loop. Instance properties (mentioned in the next section) are not reset, so calling
test () fails every other time through the loop. This happens because the "cat" is found in the first
call to test (), but the second call begins its search from index 3 (the end of the last match) and
can’t find it. Because the end of the string is found, the subsequent call to test () starts at the begin-
ning again.

The second loop uses the RegExp constructor to create the regular expression each time through the
loop. Each call to test () returns true because a new instance of RegExp is created for each iteration.

ECMAScript regular-expression literals create new instances of RegExp as if the RegExp constructor
were called directly.

It is also possible to copy existing regular expression instances and optionally modify their flags using
the constructor:

const rel = /cat/g;
console.log(rel); // "/cat/g"

const re2 = new RegExp(rel);
console.log(re2); // "/cat/g"

const re3 = new RegExp(rel, "i");
console.log(re3); // "/cat/i"

134 |

CHAPTER 5 BASIC REFERENCE TYPES

RegExp Instance Properties

Each instance of RegExp has the following properties that allow you to get information about
the pattern:

>

Y Y v Y

\

global—A Boolean

value indicating whether the g flag has been set.

ignoreCase—A Boolean value indicating whether the i flag has been set.

unicode—A Boolean value indicating whether the u flag has been set.

sticky—A Boolean value indicating whether the y flag has been set.

lastIndex—An integer indicating the character position where the next match will be
attempted in the source string. This value always begins as 0.

multiline—A Boolean value indicating whether the m flag has been set.

source—The string source of the regular expression. This is always returned as if specified
in literal form (without opening and closing slashes) rather than a string pattern as passed

into the constructor.

flags—The string flags of the regular expression. This is always returned as if specified in
literal form (without opening and closing slashes) rather than a string pattern as passed into

the constructor.

These properties are helpful in identifying aspects of a regular expression; however, they typi-
cally don’t have much use, because the information is available in the pattern declaration. Here’s
an example:

let patternl =

console.
console.
console.
console.
console.
console.

log (patternl

log (patternl
let pattern2 =

console.log (pattern2
console. log (pattern2
console.log (pattern2
console.log (pattern2
console.log (pattern2
console.log (pattern2

log (patternl.
log (patternl.

(

(

(

log(patternl.

log(patternl.
(

/\[bc\lat/i;

global) ; //
ignoreCase); //
.multiline); //
lastIndex); //
source) ; //
.flags) ; //

new RegExp ("\\ [bc\\]at",

.global) ; //
.ignoreCase); //
.multiline); //
.lastIndex); //
.source) ; //
.flags) ; //

false
true

false

0

n\ [bc\] at"

niu
uin);

false
true
false

0

"\ [bc\lat"

niu

Note that the source and flags properties of each pattern are equivalent even though the first pat-
tern is in literal form and the second uses the RegExp constructor. The source and flags properties
normalize the string into the form you’d use in a literal.

The RegExp Type | 135

RegExp Instance Methods

The primary method of a RegExp object is exec (), which is intended for use with capturing groups.
This method accepts a single argument, which is the string on which to apply the pattern, and returns
an array of information about the first match or null if no match was found. The returned array,
though an instance of Array, contains two additional properties: index, which is the location in the
string where the pattern was matched, and input, which is the string that the expression was run
against. In the array, the first item is the string that matches the entire pattern. Any additional items
represent captured groups inside the expression (if there are no capturing groups in the pattern, then
the array has only one item). Consider the following;:

let text = "mom and dad and baby";
let pattern = /mom(and dad(and baby)?)?/gi;

let matches = pattern.exec(text);

console.log(matches.index); // 0
console.log(matches.input); // "mom and dad and baby"
console.log (matches [0]) ; // "mom and dad and baby"
console.log(matches[1]) ; // " and dad and baby"
console.log (matches [2]) ; // " and baby"

In this example, the pattern has two capturing groups. The innermost one matches " and baby",
and its enclosing group matches " and dad" or " and dad and baby". When exec () is called
on the string, a match is found. Because the entire string matches the pattern, the index property
on the matches array is set to 0. The first item in the array is the entire matched string, the second
contains the contents of the first capturing group, and the third contains the contents of the third
capturing group.

The exec () method returns information about one match at a time even if the pattern is global.
When the global flag is not specified, calling exec () on the same string multiple times will always
return information about the first match.

let text = "cat, bat, sat, fat";
let pattern = /.at/;

let matches = pattern.exec(text);

console.log(matches. index) ; // 0
console.log (matches [0]) ; // cat
console.log(pattern.lastIndex) ; // 0

matches = pattern.exec(text);

console.log(matches. index) ; // 0
console.log (matches [0]) ; // cat
console.log(pattern.lastIndex) ; // 0

The pattern in this example is not global, so each call to exec () returns the first match only ("cat").
lastIndex remains unchanged in nonglobal mode.

With the global g flag set on the pattern, each call to exec () moves further into the string looking for
matches, as in this example:

let text = "cat, bat, sat, fat";
let pattern = /.at/g;

136

CHAPTER 5 BASIC REFERENCE TYPES

let matches = pattern.exec(text);

console. log (matches. index) ; // 0
console.log(matches[0]) ; // cat
console.log(pattern.lastIndex) ; // 3

matches = pattern.exec(text);

console.log (matches.index) ; // 5
console.log(matches[0]) ; // bat
console.log(pattern.lastIndex) ; // 8

matches = pattern.exec(text);

console.log (matches.index) ; // 10
console.log (matches[0]) ; // sat
console.log(pattern.lastIndex) ; // 13

This pattern is global, so each call to exec () returns the next match in the string until the end of the
string is reached. Note also how the pattern’s last Index property is affected. In global matching
mode, lastIndex is incremented after each call to exec (). lastIndex tracks the index of the charac-
ter that appears immediately to the right of the last match.

With the sticky y flag set on the pattern, each call to exec () will search for a match in the string only
at lastIndex—nowhere else. The sticky flag overrides the global flag.

let text = "cat, bat, sat, fat";
let pattern = /.at/y;

let matches = pattern.exec(text);

console.log (matches. index) ; // 0
console.log(matches[0]) ; // cat
console.log (pattern.lastIndex) ; // 3

// There is no match starting at character index 3, so exec() will return null
// exec() finding no matches resets lastIndex to 0

matches = pattern.exec(text);

console.log (matches) ; // null

console.log(pattern.lastIndex) ; // 0

// Advancing lastIndex will allow a sticky regex exec() to find the next match:
pattern.lastIndex = 5;
matches = pattern.exec(text);

console.log (matches. index) ; // 5
console.log(matches[0]) ; // bat
console.log(pattern.lastIndex) ; // 8

Another method of regular expressions is test (), which accepts a string argument and returns true
if the pattern matches the argument and false if it does not. This method is useful when you want to
know if a pattern is matched, but you have no need for the actual matched text. The test () method
is often used in if statements, such as the following;:

let text = "000-00-0000";
let pattern = /\d{3}-\d{2}-\d{4}/;

if (pattern.test (text)) {
console.log("The pattern was matched.");

}

The RegExp Type | 137

In this example, the regular expression tests for a specific numeric sequence. If the input text matches
the pattern, then a message is displayed. This functionality is often used for validating user input,
when you care only if the input is valid, not necessarily why it’s invalid.

The inherited methods of toLocalestring () and toString () each return the literal representation
of the regular expression, regardless of how it was created. Consider this example:
let pattern = new RegExp ("\\ [bc\\]at", "gi");

console.log (pattern.toString()) ; // /\[bc\lat/gi
console.log (pattern.toLocaleString()); // /\lbc\lat/gi

Even though the pattern in this example is created using the RegExp constructor, the
toLocaleString () and toString () methods return the pattern as if it were specified in
literal format.

NOTE The valueof() method for a regular expression returns the regular
expression itself.

RegExp Constructor Properties

The RegExp constructor function has several properties. (These would be considered static proper-
ties in other languages.) These properties apply to all regular expressions that are in scope, and they
change based on the last regular-expression operation that was performed. Another unique element of
these properties is that they can be accessed in two different ways. Each property has a verbose prop-
erty name and a shorthand name. The RegExp constructor properties are listed in the following table.

VERBOSE NAME SHORT NAME DESCRIPTION

input s The last string matched against.

lastMatch S& The last matched text.

lastParen S+ The last matched capturing group.

leftContext $> The text that appears in the input string prior to lastMatch.
rightContext S The text that appears in the input string after lastMatch.

These properties can be used to extract specific information about the operation performed by
exec () or test (). Consider this example:

let text = "this has been a short summer";
let pattern = /(.)hort/g;

if (pattern.test(text)) {

console.log (RegExp. input) ; // this has been a short summer
console.log (RegExp.leftContext) ; // this has been a
console.log(RegExp.rightContext); // summer
console.log (RegExp.lastMatch) ; // short

(

console.log (RegExp.lastParen) ; // s

138 | CHAPTERS5 BASIC REFERENCE TYPES

This code creates a pattern that searches for any character followed by "hort" and puts a capturing
group around the first letter. The various properties are used as follows:

> The input property contains the original string.

> The leftContext property contains the characters of the string before the word "short",
and the rightContext property contains the characters after the word "short.

> The lastMatch property contains the last string that matches the entire regular expression,
which is "short".

> The lastParen property contains the last matched capturing group, which is "s" in this case.

These verbose property names can be replaced with the short property names, although you must use
bracket notation to access them, as shown in the following example, because most are illegal identi-
fiers in ECMAScript:

let text = "this has been a short summer";
let pattern = /(.)hort/g;

/*
* Note: Opera doesn't short property names.
* Internet Explorer doesn't support multiline.

*/

if (pattern.test (text)) {
console.log (RegExp.$); // this has been a short summer
console.log(RegExp["$~"1); // this has been a
console.log(RegExp["$'"]); // summer
console.log (RegExp["$&"]) ; // short
console.log (RegExp["$+"]) ; // s
console.log (RegExp["$*"]) ; // false

}

There are also constructor properties that store up to nine capturing-group matches. These proper-
ties are accessed via RegExp. $1, which contains the first capturing-group match through rRegExp. $9,
which contains the ninth capturing-group match. These properties are filled in when calling either
exec () or test (), allowing you to do things like this:

let text = "this has been a short summer";
let pattern = /(..)or(.)/g;

if (pattern.test (text)) {
console.log(RegExp.$1) ; // sh
console.log(RegExp.$2) ; // t

}
In this example, a pattern with two matching groups is created and tested against a string. Even
though test () simply returns a Boolean value, the properties $1 and $2 are filled in on the RegExp
constructor.

NOTE All these RegExp constructor properties are not part of any web stan-
dard; avoid use in any production application.

Primitive Wrapper Types | 139

Pattern Limitations

Although ECMAScript’s regular-expression support is fully developed, it does lack some of the
advanced regular-expression features available in languages such as Perl. The following features are
not supported in ECMAScript regular expressions (for more information, see www.regular-
expressions.info):

> The \a and \z anchors (matching the start or end of a string, respectively)
Lookbehinds

Union and intersection classes

Atomic grouping

Unicode support (except for matching a single character at a time)
Named capturing groups

The s (single-line) and x (free-spacing) matching modes

Conditionals

Y Y Y VY Y VY VY

Regular-expression comments

Despite these limitations, ECMAScript’s regular-expression support is powerful enough to perform
most pattern-matching tasks.

PRIMITIVE WRAPPER TYPES

Three special reference types are designed to ease interaction with primitive values: the Boolean type,
the Number type, and the String type. These types can act like the other reference types described in
this chapter, but they also have a special behavior related to their primitive-type equivalents. Every
time a primitive value is read, an object of the corresponding primitive wrapper type is created behind
the scenes, allowing access to any number of methods for manipulating the data. Consider the follow-
ing example:

let s1 = "some text";

let s2 = sl.substring(2);

In this code, s1 is a variable containing a string, which is a primitive value. On the next line, the sub-
string () method is called on s1 and stored in s2. Primitive values aren’t objects, so logically they
shouldn’t have methods, though this still works as you would expect. In truth, there is a lot going on
behind the scenes to allow this seamless operation. When s1 is accessed in the second line, it is being
accessed in read mode, which is to say that its value is being read from memory. Any time a string
value is accessed in read mode, the following three steps occur:

1. Create an instance of the string type.
2. Call the specified method on the instance.

3. Destroy the instance.

140

| CHAPTERS5 BASIC REFERENCE TYPES

You can think of these three steps as they’re used in the following three lines of ECMAScript code:

let sl = new String("some text");

let s2 = sl.substring(2);

sl = null;
This behavior allows the primitive string value to act like an object. These same three steps are
repeated for Boolean and numeric values using the Boolean and Number types, respectively.

The major difference between reference types and primitive wrapper types is the lifetime of the object.
When you instantiate a reference type using the new operator, it stays in memory until it goes out of
scope, whereas automatically created primitive wrapper objects exist for only one line of code before
they are destroyed. This means that properties and methods cannot be added at runtime. Take this
for example:

let sl = "some text";
sl.color = "red";
console.log(sl.color) ; // undefined

Here, the second line attempts to add a color property to the string s1. However, when s1 is
accessed on the third line, the color property is gone. This happens because the String object that
was created in the second line is destroyed by the time the third line is executed. The third line creates
its own String object, which doesn’t have the color property.

It is possible to create the primitive wrapper objects explicitly using the Boolean, Number, and
String constructors. This should be done only when absolutely necessary because it is often confus-
ing for developers as to whether they are dealing with a primitive or reference value. Calling typeof
on an instance of a primitive wrapper type returns "object", and all primitive wrapper objects con-
vert to the Boolean value true.

The object constructor also acts as a factory method and is capable of returning an instance of a
y p g
primitive wrapper based on the type of value passed into the constructor. For example:

let obj = new Object ("some text");
console.log(obj instanceof String); // true

When a string is passed into the Object constructor, an instance of String is created; a number argu-
ment results in an instance of Number, while a Boolean argument returns an instance of Boolean.

Keep in mind that calling a primitive wrapper constructor using new is not the same as calling the
casting function of the same name. For example:

let value = "25";

let number = Number (value) ; // casting function
console.log(typeof number) ; // "number"

let obj = new Number (value); // constructor
console.log (typeof obj); // "object™"

In this example, the variable number is filled with a primitive number value of 25 while the variable
obj is filled with an instance of Number.

Even though it’s not recommended to create primitive wrapper objects explicitly, their functionality is
important in being able to manipulate primitive values. Each primitive wrapper type has methods that
make data manipulation easier.

Primitive Wrapper Types | 141

The Boolean Type

The Boolean type is the reference type corresponding to the Boolean values. To create a Boolean
object, use the Boolean constructor and pass in either true or false, as in the following example:

let booleanObject = new Boolean(true) ;

Instances of Boolean override the valueof () method to return a primitive value of either true or
false. The tostring () method is also overridden to return a string of "true" or "false" when
called. Unfortunately, not only are Boolean objects of little use in ECMAScript, but they can actu-
ally be rather confusing. The problem typically occurs when trying to use Boolean objects in Boolean
expressions, as in this example:

let falseObject = new Boolean(false);

let result = falseObject && true;
console.log(result); // true

let falseValue = false;

result = falseValue && true;

console.log(result); // false
In this code, a Boolean object is created with a value of false. That same object is then ANDed with
the primitive value true. In Boolean math, false AND true equals false. However, in this line of
code, it is the object named falseobject being evaluated, not its value (false). As discussed earlier,
all objects are automatically converted to true in Boolean expressions, so falseobject actually is
given a value of true in the expression. Then, true ANDed with true is equal to true.

There are a couple of other differences between the primitive and the reference Boolean types.

The typeof operator returns "boolean" for the primitive but "object" for the reference. Also, a
Boolean object is an instance of the Boolean type and will return true when used with the instan-
ceof operator, whereas a primitive value returns false, as shown here:

console.log (typeof falseObject) ; // object
console.log(typeof falsevalue); // boolean
console.log(falseObject instanceof Boolean); // true
console.log(falseValue instanceof Boolean) ; // false

It’s very important to understand the difference between a primitive Boolean value and a Boolean
object—prefer to never use the latter.

The Number Type

The Number type is the reference type for numeric values. To create a Number object, use the Number
constructor and pass in any number. Here’s an example:

let numberObject = new Number (10) ;

As with the Boolean type, the Number type overrides valueOf (), toLocaleString (), and toString ().
The valueof () method returns the primitive numeric value represented by the object, whereas the other
two methods return the number as a string. The tostring () method optionally accepts a single argu-
ment indicating the radix in which to represent the number, as shown in the following examples:

let num = 10;
console.log (num.toString()) ; // "1io0"

142

| CHAPTERS5 BASIC REFERENCE TYPES

console.log (num.toString(2)) ; // "1010"
console.log (num.toString(8)) ; // "1i2"
console.log (num.toString(10)); // "10"
console.log(num.toString(16)); // "a"

Aside from the inherited methods, the Number type has several additional methods used to format
numbers as strings.

The toFixed () method returns a string representation of a number with a specified number of deci-
mal points, as in this example:

let num = 10;
console.log (num.toFixed(2)); // "10.00"

Here, the toFixed () method is given an argument of 2, which indicates how many decimal places
should be displayed. As a result, the method returns the string "10. 00", filling out the empty deci-
mal places with zeros. If the number has more than the given number of decimal places, the result is
rounded to the nearest decimal place, as shown here:

let num = 10.005;
console.log (num.toFixed(2)); // "10.01"

The rounding nature of toFixed () may be useful for applications dealing with currency, though
it’s worth noting that arithmetic operations between multiple floating point values may not produce
exact results—for example, 0.1 + 0.2 = 0.30000000000000004.

NOTE The toFixed() method can represent numbers with 0 through 20 decimal
places. Some browsers may support larger ranges, but this is the typically imple-
mented range.

Another method related to formatting numbers is the toExponential () method, which returns a
string with the number formatted in exponential notation (aka e-notation). Just as with toFixed (),
toExponential () accepts one argument, which is the number of decimal places to output. Consider
this example:

let num = 10;
console.log (num. toExponential(1l)); // "1.0e+l"

This code outputs "1.0e+1" as the result. Typically, this small number wouldn’t be represented
using e-notation. If you want to have the most appropriate form of the number, the toPrecision ()
method should be used instead.

The toPrecision () method returns either the fixed or the exponential representation of a number,
depending on which makes the most sense. This method takes one argument, which is the total num-
ber of digits to use to represent the number (not including exponents). Here’s an example:

let num = 99;

console.log (num.toPrecision(1l)); // "le+2"
console.log (num. toPrecision(2)); // "99"
console.log (num. toPrecision(3)); // "99.0"

Primitive Wrapper Types | 143

In this example, the first task is to represent the number 99 with a single digit, which results in
m1e+2", otherwise known as 100. Because 99 cannot accurately be represented by just one digit, the
method rounded up to 100, which can be represented using just one digit. Representing 99 with two
digits yields "99" and with three digits returns "99.0". The toPrecision () method essentially deter-
mines whether to call toFixed () or toExponential () based on the numeric value you’re working
with; all three methods round up or down to accurately represent a number with the correct number
of decimal places.

NOTE The toprecision() method can represent numbers with 1 through 21
decimal places. Some browsers may support larger ranges, but this is the typi-
cally implemented range.

Similar to the Boolean object, the Number object gives important functionality to numeric values but
really should not be instantiated directly because of the same potential problems. The typeof and
instanceof operators work differently when dealing with primitive numbers versus reference num-
bers, as shown in the following examples:

let numberObject = new Number (10) ;
let numberValue = 10;

console.log(typeof numberObject) ; // "object"
console.log (typeof numberValue) ; // "number"
console.log(numberObject instanceof Number); // true
console.log(numberValue instanceof Number) ; // false

Primitive numbers always return "number" when typeof is called on them, whereas Number objects
return "object". Similarly, a Number object is an instance of Number, but a primitive number is not.

The isInteger() Method and Safe Integers

Newly introduced in ES6, the Number . isInteger () method is capable of discerning whether or
not a number value is stored as an integer or not. This is useful when a trailing decimal 0 may mask
whether or not the number is actually stored in floating point format:

console.log (Number.isInteger (1)) ; // true
console.log (Number.isInteger(1.00)); // true
console.log (Number.isInteger(1.01)); // false

The IEEE 754 number format has a distinct numerical range inside which a binary value can repre-
sent exactly one integer value. This numerical range extends from Number .MIN SAFE INTEGER, Or
-2753 + 1, to Number .MAX_SAFE_INTEGER, or 2753 - 1. Outside this range, you may attempt to store
an integer, but the IEEE 754 encoding format means that this binary value may also alias to a com-
pletely different number. To ascertain if an integer is inside this range, the Number.isSafeInteger ()
method allows you to easily check this:

console.log (Number.isSafeInteger (-1 * (2 ** 53))); // false
console.log (Number.isSafeInteger (-1 * (2 ** 53) + 1)); // true
console.log (Number.isSafeInteger (2 ** 53)); // false

console.log (Number.isSafeInteger ((2 ** 53) - 1)); // true

144

| CHAPTERS5 BASIC REFERENCE TYPES

The String Type

The string type is the object representation for strings and is created using the String constructor
as follows:

let stringObject = new String("hello world");

The methods of a string object are available on all string primitives. All three of the inherited meth-
ods—valueOf (), toLocaleString (), and toString () —return the object’s primitive string value.

Each instance of string contains a single property, length, which indicates the number of characters
in the string. Consider the following example:

let stringValue = "hello world";
console.log(stringValue.length) ; // "iiv

This example outputs "11", the number of characters in "hello world". Note that even if the string
contains a double-byte character (as opposed to an ASCII character, which uses just one byte), each
character is still counted as one.

The string type has a large number of methods to aid in the dissection and manipulation of strings
in ECMAScript.

The JavaScript Character

JavaScript strings consist of 16 bit code units. For most characters, each 16 bit code unit will cor-
respond to a single character. The length property indicates how many 16 bit code units occur inside
the string:

let message = "abcde';

console.log(message.length); // 5

Furthermore, the charat () returns the character at a given index, specified by an integer argument to
the method. Specifically, this method finds the 16 bit code unit at the specified index and returns the
character that corresponds to that code unit:

let message = "abcde";

console.log (message.charAt(2)); // "c"

JavaScript strings use a hybridized strategy of two Unicode encodings: UCS-2 and UTF-16. For char-
acters which can be encoded with 16 bits (U+0000 to U+FFFF), these two encodings are effectively
identical.

NOTE For in-depth coverage of character encoding, check out Joel Spolsky’s
excellent blog post: https://www.joelonsoftware.com/2003/10/08/the-
absolute-minimum-every-software-developer-absolutely-positively-must-
know-about-unicode-and-character-sets-no-excuses/.

Another good resource is Mathias Bynens’ blog post: https://mathiasbynens
.be/notes/javascript-encoding.

Primitive Wrapper Types | 145

You can inspect the character encoding of a given code unit with the charcodeat () method. This
method returns the code unit value at a given index, specified by an integer argument to the method.
This method is demonstrated here:

let message = "abcde";

// Unicode "Latin small letter C" is U+0063

console.log(message.charCodeAt (2)); // 99
// Decimal 99 === Hexadecimal 63
console.log (99 === 0x63); // true

The fromCharcode () method is used for creating characters in a string from their UTF-16 code unit
representation. This method accepts any number of numbers and returns their character equivalents
concatenated into a string:

// Unicode "Latin small letter A" is U+0061
// Unicode "Latin small letter B" is U+0062
// Unicode "Latin small letter C" is U+0063
// Unicode "Latin small letter D" is U+0064
// Unicode "Latin small letter E" is U+0065

console.log(String.fromCharCode (0x61, 0x62, 0x63, 0x64, 0x65)); // "abcde"
// 0x0061 === 97
// 0x0062 === 98
// 0x0063 === 99
// 0x0064 === 100
// 0x0065 === 101
console.log (String.fromCharCode (97, 98, 99, 100, 101)); // "abcde"

For characters in the range of U+0000 to U+FFFF, 1ength, charat (), charCodeat (), and
fromCharcCode () all behave exactly as you would expect them to. This is because every character is
represented by exactly 16 bits, and each of these methods are all operating on 16 bit code units. As
long as there is parity between character encoding size and code unit size, these methods will behave
as expected.

This parity breaks down when expanding into the realm of Unicode supplementary character planes.
The idea for this concept is relatively straightforward: 16 bits can only uniquely represent 65,536
characters. This is enough to cover most language character sets and is referred to as the Basic Mul-
tilingual Plane (BMP). In order to introduce even more characters, Unicode defined a strategy which
used an additional 16 bits per character to select a supplementary or astral plane. Using two 16 bit
code units per character is referred to as a surrogate pair.

With the introduction of this convention, the previously discussed string methods begin to break
down. Consider the following example, which uses a smiley face emoji — a character which is encoded
using a surrogate pair:

// The "smiling face with smiling eyes" emoji is U+1F60A

// 0x1F60A === 128522
let message = "ab@de";

console.log (message.length) ; // 6

146

| CHAPTERS5 BASIC REFERENCE TYPES

console.log(message.charAt (1)) ; // b

console.log (message.charAt (2)) ; /] <?>

console.log(message.charAt (3)) ; /] <?>

console.log (message.charAt (4)) ; // d

console.log (message.charCodeAt (1)); // 98
console.log(message.charCodeAt (2)); // 55357

console.log (message.charCodeaAt (3)); // 56842

console.log (message.charCodeAt (4)); // 100

console.log(String. fromCharCode (0x1F604)); // ©
console.log(String.fromCharCode (97, 98, 55357, 56842, 100, 101)); // abede

These methods are still treating each 16 bit code unit like a separate character, when in fact the code
units at index 2 and 3 need to be considered together as a single surrogate pair to form a single
character. The fromCharcode () method is still working correctly using the two code units sepa-
rated because this method is literally assembling the string from a provided binary representation.
The browser is able to correctly parse the surrogate pair (which was assembled as two separate code
units) and correctly interpret it as a single smiley face Unicode character.

To correctly parse a string containing both single-code unit and surrogate pair characters, the
codePointAt () method can be used instead of the error-prone charat (). As is the case with
charat (), this method accepts a 16 bit code unit index and returns the code point at that index.
A code point refers to the full Unicode identifier for a single character. The code point for "c" is
0x0063. The code point for "©" is 0x1F60A. Code points may either require 16 or 32 bits to fully
represent them, and the codePointat () method will identify the full code point beginning at the
specified code unit.

let message = "ab©de';
console.log (message.codePointAt (1)); // 98
console.log(message.codePointAt (2) // 128522

)

)i

console.log (message.codePointAt(3)); // 56842
console.log (message.codePointAt (4)); // 100

Notice in this example how a code point can be incorrectly identified if targeted at a code unit index

that is not the start of a surrogate pair. This is only problematic for one-off character inspection, and

can be averted by traversing the string from left to right and advancing the proper number of code

units per iterator. The iterator for a string is intelligent enough to identify surrogate pair code points:

COnSOle.lOg([.. nab©den]) ; // [uan , npn , n© ", ngn , neu]
Just as charat () has an analogue in codePointAt (), fromCharCode () has an analogue in from-

CodePoint (). This method accepts any number of code point numbers and returns their character
equivalents concatenated into a string:

console.log(String.fromCharCode (97, 98, 55357, 56842, 100, 101)); // ab®de
console.log(String. fromCodePoint (97, 98, 128522, 100, 101)); // ab©de

Primitive Wrapper Types | 147

The normalize() Method

Some Unicode characters can be encoded in more than one way. Sometimes, a character can be repre-
sented by either a single BMP character or a surrogate pair. For example, consider the following:

// U+00C5: Latin capital letter A with ring above
console.log(String.fromCharCode (0x00C5)) ; // A

// U+212B: Angstrom sign
console.log(String.fromCharCode (0x212B)) ; // A

// U+0041: Latin captal letter A
// U+030A: Combining ring above
console.log(String.fromCharCode (0x0041, 0x030R)); // A

Comparison operators do not care about the visual appearance of characters, and so these three will
be considered distinct:

let al = String.fromCharCode (0x00C5),

a2 = String.fromCharCode (0x212B),
a3 = String.fromCharCode (0x0041, 0x030A);

console.log(al, a2, a3); // A, &, A
console.log(al === a2); // false
console.log(al === a3); // false
console.log(a2 === a3); // false

Unicode accounts for this by offering four normalization forms by which characters such as this one
can be normalized into a consistent format irrespective of their character code derivation. These four
normalization forms, Normalization Form D (NFD), Normalization Form C (NFC), Normalization
FormKD (NFKD), and Normalization Form KC (NFKC), can be applied to a string using the nor-
malize () method. This method should be provided with a string identifier to specify which normali-
zation form to apply: NFD, NFC, NFKD, or NFKC.

NOTE The specifics of each of these normal forms is out of the scope of this
text. Refer to http://unicode.org/reports/tris/ for additional details.

It is possible to determine if a string is already normalized by checking it against the return value of
normalize():

let al = String.fromCharCode (0x00C5),
a2 = String.fromCharCode (0x212B),
a3 = String.fromCharCode (0x0041, 0x030A);

// U+00C5 is the NFC/NFKC normalized form of 0+212B

console.log(al === al.normalize ("NFD")); // false

console.log(al === al.normalize ("NFC")); // true

console.log(al === al.normalize ("NFKD")); // false
())

(
console.log(al === al.normalize ("NFKC")); // true

148

| CHAPTERS5 BASIC REFERENCE TYPES

// U+212B is non-normalized

console.log(a2 === a2.normalize ("NFD")) ; // false
console.log(a2 === a2.normalize ("NFC")); // false
console.log(a2 === a2.normalize ("NFKD")); // false
console.log(a2 === a2.normalize ("NFKC")); // false

// U+0041/U+030A is the NFD/NFKD normalized form of 0+212B

console.log(a3 === a3.normalize ("NFD")) ; // true
console.log(a3 === a3.normalize ("NFC")); // false
console.log(a3 === a3.normalize ("NFKD")); // true
console.log(a3 === a3.normalize ("NFKC")); // false

Selecting a normal form will allow for the comparison operator to behave as expected between identi-
cal characters:
let al = String.fromCharCode (0x00C5),

a2 = String.fromCharCode (0x212B),
a3 = String.fromCharCode (0x0041, 0x0303);

console.log(al.normalize ("NFD") === a2.normalize ("NFD")) ; // true
console.log(a2.normalize ("NFKC") === a3.normalize ("NFKC")); // true
console.log(al.normalize ("NFC") === a3.normalize ("NFC")) ; // true

String-Manipulation Methods

Several methods manipulate the values of strings. The first of these methods is concat (), which is
used to concatenate one or more strings to another, returning the concatenated string as the result.
Consider the following example:

let stringValue = "hello ";
let result = stringValue.concat ("world") ;

console.log(result) ; // "hello world"

console.log(stringValue); // "hello"
The result of calling the concat () method on stringvalue in this example is "hello world"—the
value of stringvalue remains unchanged. The concat () method accepts any number of arguments,
so it can create a string from any number of other strings, as shown here:

let stringValue = "hello ";

let result = stringValue.concat ("world", "!");
console.log(result) ; // "hello world!"
console.log(stringValue); // "hello"

This modified example concatenates "world" and " ! " to the end of "hello". Although the

concat () method is provided for string concatenation, the addition operator (+) is used more often
and, in most cases, actually performs better than the concat () method even when concatenating
multiple strings.

ECMAScript provides three methods for creating string values from a substring: slice (), substr (),
and substring (). All three methods return a substring of the string they act on, and all accept either
one or two arguments. The first argument is the position where capture of the substring begins; the
second argument, if used, indicates where the operation should stop. For slice () and substring(),
this second argument is the position before which capture is stopped (all characters up to this point

Primitive Wrapper Types | 149

are included except the character at that point). For substr (), the second argument is the number
of characters to return. If the second argument is omitted in any case, it is assumed that the ending
position is the length of the string. Just as with the concat () method, slice (), substr (), and
substring () do not alter the value of the string itself—they simply return a primitive string value as
the result, leaving the original unchanged. Consider this example:

let stringValue = "hello world";
console.log(stringValue.slice(3)); // "lo world"
console.log (stringValue.substring(3)); // "lo world"
console.log(stringValue.substr(3)); // "lo world"
console.log(stringValue.slice(3, 7)); // "lo w"
console.log(stringValue.substring(3,7)); // "lo w"
console.log(stringValue.substr(3, 7)); // "lo worl"

In this example, slice (), substr (), and substring () are used in the same manner and, in most
cases, return the same value. When given just one argument, 3, all three methods return "1o worldr
because the second "1" in "hello" is in position 3. When given two arguments, 3 and 7, slice ()
and substring () return "lo w" (the "o" in "world" is in position 7, so it is not included), while
substr () returns "lo worl" because the second argument specifies the number of characters

to return.

There are different behaviors for these methods when an argument is a negative number. For
the slice () method, a negative argument is treated as the length of the string plus the nega-
tive argument.

For the substr () method, a negative first argument is treated as the length of the string plus the
number, whereas a negative second number is converted to 0. For the substring () method, all nega-
tive numbers are converted to 0. Consider this example:

let stringValue = "hello world";
console.log(stringValue.slice(-3)); // "rld"
console.log(stringValue.substring(-3)); // "hello world"
console.log(stringValue.substr(-3)); // "rld"
console.log(stringValue.slice(3, -4)); // "lo w"
console.log(stringValue.substring(3, -4)); // "hel®
console.log(stringValue.substr (3, -4)); // "" (empty string)

This example clearly indicates the differences between three methods. When slice () and substr ()
are called with a single negative argument, they act the same. This occurs because -3 is translated into
7 (the length plus the argument), effectively making the calls slice (7) and substr (7). The sub-
string () method, on the other hand, returns the entire string because -3 is translated to o.

When the second argument is negative, the three methods act differently from one another. The
slice () method translates the second argument to 7, making the call equivalent to slice (3, 7)
and so returning "lo w". For the substring () method, the second argument gets translated to 0,
making the call equivalent to substring (3, 0), which is actually equivalent to substring (0, 3)
because this method expects that the smaller number is the starting position and the larger one is the
ending position. For the substr () method, the second argument is also converted to 0, which means
there should be zero characters in the returned string, leading to the return value of an empty string.

150

| CHAPTERS5 BASIC REFERENCE TYPES

String Location Methods

There are two methods for locating substrings within another string: indexof () and

lastIndexOf (). Both methods search a string for a given substring and return the position (or -1
if the substring isn’t found). The difference between the two is that the index0f () method begins
looking for the substring at the beginning of the string, whereas the 1astIndexof () method begins
looking from the end of the string. Consider this example:

let stringValue = "hello world";
console.log(stringValue.indexOf ("o")) ; // 4
console.log(stringValue.lastIndexOf ("o")); // 7

Here, the first occurrence of the string "o is at position 4, which is the "o" in "hello". The last

occurrence of the string "o is in the word "world", at position 7. If there is only one occurrence of
"on in the string, then index0f () and lastIndexOf () return the same position.

Each method accepts an optional second argument that indicates the position to start searching
from within the string. This means that the index0f () method will start searching from that posi-
tion and go toward the end of the string, ignoring everything before the start position, whereas
lastIndexOf () starts searching from the given position and continues searching toward the begin-
ning of the string, ignoring everything between the given position and the end of the string. Here’s
an example:

let stringValue = "hello world";
console.log(stringValue.indexOf ("o", 6)); // 1
console.log(stringValue.lastIndexOf ("o", 6)); // 4

When the second argument of 6 is passed into each method, the results are the opposite from the pre-
vious example. This time, index0f () returns 7 because it starts searching the string from position 6
(the letter "w") and continues to position 7, where "o" is found. The 1astIndex0f () method returns
4 because the search starts from position 6 and continues back toward the beginning of the string,
where it encounters the "o" in "hello". Using this second argument allows you to locate all instances
of a substring by looping callings to index0f () or lastIndexOf (), as in the following example:

let stringValue = "Lorem ipsum dolor sit amet, consectetur adipisicing elit";
let positions = new Array();
let pos = stringValue.indexOf ("e");

while(pos > -1) {
positions.push (pos) ;
pos = stringValue.indexOf ("e", pos + 1);

}

console.log(positions); // "3,24,32,35,52"

This example works through a string by constantly increasing the position at which indexof ()
should begin. It begins by getting the initial position of "e" in the string and then enters a loop that
continually passes in the last position plus one to indexOf (), ensuring that the search continues
after the last substring instance. Each position is stored in the positions array so the data can be
used later.

Primitive Wrapper Types | 151

String Inclusion Methods

ECMAScript 6 added three additional methods for determining if a string is included inside another
string: startsWith (), endsWith (), and includes (). All methods search a string for a given sub-
string and return a boolean indicating whether it is not included. The difference between them is that
startsWith() checks for a match beginning at index 0, endswith () checks for a match beginning at
index (string.length - substring.length),and.includes()Chcckstheenlﬁestﬂng.

let message = "foobarbaz";

console.log (message.startsWith("foo")); // true
console.log (message.startsWith("bar")); // false
console.log (message.endsWith ("baz")) ; // true
console.log(message.endsWith ("bar")) ; // false
console.log (message.includes ("bar")) ; // true
console.log(message.includes ("qux")) ; // false

The startswith() and includes () methods accept an optional second argument that indicates the
position to start searching from within the string. This means that the methods will start searching
from that position and go toward the end of the string, ignoring everything before the start position.
Here’s an example:

let message = "foobarbaz";

console.log(message.startsWith("foo")) ; // true
console.log (message.startsWith("foo", 1)); // false
console.log(message.includes ("bar")) ; // true
console.log (message.includes ("bar", 4)); // false

The endswith () method accepts an optional second argument that indicates the position that should
be treated as the end of the string. If this value is not provided, the length of the string is used by
default. When a second argument is provided, the method will treat the string as if it only has that
many characters:

let message = "foobarbaz";
console.log(message.endsWith ("bar")) ; // false
console.log(message.endsWith ("bar", 6)); // true

The trim() Method

ECMAScript features a trim() method on all strings. The trim () method creates a copy of the
string, removes all leading and trailing white space, and then returns the result. For example:

let stringValue = " hello world ";

let trimmedStringValue = stringValue.trim();
console.log(stringValue) ; // " hello world "
console.log(trimmedStringValue); // "hello world"

Note that since trim () returns a copy of a string, the original string remains intact with leading and
trailing white space in place.

Also available are the trimLeft () and trimRight () methods that remove white space only from the
beginning or end of the string, respectively.

152 | CHAPTERS5 BASIC REFERENCE TYPES

The repeat() Method

ECMAScript features a repeat () method on all strings. The repeat () method accepts a single inte-
ger argument count, copies the string count times, and concatenates all the copies.
let stringValue = "na ";

console.log (stringValue.repeat(16) + "batman");
// na na na na na na na na na na na na na na na na batman

The padStart() and padEnd() Methods

The padstart () and padend () methods will copy a string and, if the length of the string is less than
the specified length, add padding to either side of a string to extend it to a certain length. The first
argument is the desired length, and the second is the optional string to add as a pad. If not provided,
the U+0020 ’space’ character will be used.

let stringValue = "foo";

console.log (stringValue.padStart (6)) ; /" foo"
console.log(stringValue.padStart (9, ".")); // "...... foo"
console.log (stringValue.padEnd(6)) ; // "“foo "
console.log(stringValue.padEnd (9, ".")); // "foo...... "

The optional argument is not limited to a single character. If provided a multiple-character string,
the method will use the concatenated padding and truncate it to the exact length. Additionally, if the
length is less than or equal to the string length, the operation is effectively a no-op.

let stringValue = "foo";
console.log(stringValue.padStart (8, "bar")); // "barbafoo"
console.log(stringValue.padStart (2)) ; // "foo"
console.log(stringValue.padEnd (8, "bar")); // "foobarba"
console.log(stringValue.padEnd(2)) ; // "foo"

String Iterators and Destructuring

The string prototype exposes an @eiterator method on each string, which allows for iteration
through individual characters. Manual use of the iterator works as follows:

let message = "abc";
let stringIterator = message [Symbol.iterator] () ;

console.log(stringIterator.next()) // {value: "a", done: false}
console.log(stringIterator.next()); // {value: "b", done: false}
console.log(stringIterator.next()); // {value: "e", done: false}
console.log(stringIterator.next()); // {value: undefined, done: true}

When used in a for of loop, the loop will use this iterator to visit each character in order:

for (const c of "abcde")
console.log(c) ;

Primitive Wrapper Types | 153

/] c

// a

/] e
The string iterator becomes especially useful since it allows for interoperability with the destructuring
operator. This allows you to easily split a string by its characters:

let message = "abcde";

console.log([...messagel); // ["a", "b", "c", "d", "e"]

String Case Methods

The next set of methods involves case conversion. Four methods perform case conversion: toLower-
Case (), toLocaleLowerCase (), toUpperCase (), and toLocaleUpperCase (). The toLowerCase ()
and toUppercCase () methods are the original methods, modeled after the same methods in java.
lang.String. The toLocaleLowerCase () and toLocaleUpperCase () methods are intended to be
implemented based on a particular locale. In many locales, the locale-specific methods are identical
to the generic ones; however, a few languages (such as Turkish) apply special rules to Unicode case
conversion, and this necessitates using the locale-specific methods for proper conversion. Here are
some examples:

let stringValue = "hello world";

console.log (stringValue.toLocaleUpperCase()); // "HELLO WORLD"
console.log(stringValue.toUpperCase()); // "HELLO WORLD"
console.log(stringValue.tolLocaleLowerCase()); // "hello world"
console.log(stringValue.toLowerCase()); // "hello world"

This code outputs "HELLO WORLD" for both toLocaleUpperCase () and toUpperCase (), just as
"hello world" is output for both toLocaleLowerCase () and toLowerCase (). Generally speak-
ing, if you do not know the language in which the code will be running, it is safer to use the locale-
specific methods.

String Pattern-Matching Methods

The string type has several methods designed to pattern-match within the string. The first of these
methods is match () and is essentially the same as calling a RegExp object’s exec () method. The
match () method accepts a single argument, which is either a regular-expression string or a RegExp
object. Consider this example:

let text = "cat, bat, sat, fat";
let pattern = /.at/;

// same as pattern.exec (text)
let matches = text.match(pattern);

console.log(matches. index) ; // 0
console.log (matches [0]) ; // "cat"
console.log (pattern.lastIndex); // 0

The array returned from match () is the same array that is returned when the RegExp object’s exec ()
method is called with the string as an argument: the first item is the string that matches the entire pat-
tern, and each other item (if applicable) represents capturing groups in the expression.

154

| CHAPTERS5 BASIC REFERENCE TYPES

Another method for finding patterns is search (). The only argument for this method is the same as

the argument for match () : a regular expression specified by either a string or a RegExp object. The

search () method returns the index of the first pattern occurrence in the string or -1 if it’s not found.

search () always begins looking for the pattern at the beginning of the string. Consider this example:
let text = "cat, bat, sat, fat";

let pos = text.search(/at/);
console.log(pos); // 1

Here, search (/at/) returns 1, which is the first position of "at" in the string.

To simplify replacing substrings, ECMAScript provides the replace () method. This method accepts
two arguments. The first argument can be a RegExp object or a string (the string is not converted to
a regular expression), and the second argument can be a string or a function. If the first argument

is a string, then only the first occurrence of the substring will be replaced. The only way to replace
all instances of a substring is to provide a regular expression with the global flag specified, as in

this example:

let text = "cat, bat, sat, fat";
let result = text.replace("at", "ond");
console.log(result); // "cond, bat, sat, fat"

result = text.replace(/at/g, "ond");
console.log(result); // "cond, bond, sond, fond"

In this example, the string "at" is first passed into replace () with a replacement text of "ond". The
result of the operation is that "cat" is changed to "cond", but the rest of the string remains intact. By
changing the first argument to a regular expression with the global flag set, each instance of "at" is
replaced with "ond".

When the second argument is a string, there are several special character sequences that can be used
to insert values from the regular-expression operations. ECMA-262 specifies the following table
of values.

SEQUENCE REPLACEMENT TEXT

$s $

$& The substring matching the entire pattern. Same as RegExp . lastMatch.

$! The part of the string occurring before the matched substring. Same as RegExp
.rightContext.

$° The part of the string occurring after the matched substring. Same as RegExp
.leftContext.

$n The nth capture, where n is a value 0-9. For instance, $1 is the first capture, $2 is

the second, and so on. If there is no capture then the empty string is used.

$nn The nnth capture, where nn is a value 01-99. For instance, $01 is the first capture,
$02 is the second, and so on. If there is no capture then the empty string is used.

Primitive Wrapper Types | 155

Using these special sequences allows replacement using information about the last match, such as in
this example:

let text = "cat, bat, sat, fat";

result = text.replace(/(.at)/g, "word ($1)");

console.log(result); // word (cat), word (bat), word (sat), word (fat)
Here, each word ending with "at" is replaced with "word" followed in parentheses by what it
replaces by using the $1 sequence.

The second argument of replace () may also be a function. When there is a single match, the func-
tion gets passed three arguments: the string match, the position of the match within the string, and
the whole string. When there are multiple capturing groups, each matched string is passed in as an
argument, with the last two arguments being the position of the pattern match in the string and the
original string. The function should return a string indicating what the match should be replaced
with. Using a function as the second argument allows more granular control over replacement text, as
in this example:

function htmlEscape (text) {

return text.replace(/[<>"&]/g, function(match, pos, originalText) {
switch(match) {

case "<":

return "<";
case ">":

return ">";
case "&":

return "&";
case "\"":

return """;

1
}

console.log (htmlEscape ("<p class=\"greeting\">Hello world!</p>"));

// "<p class="greeting">Hello world!</p>"
Here, the function htmlEscape () is defined to escape four characters for insertion into HTML: the
less-than, greater-than, ampersand, and double-quote characters all must be escaped. The easiest way
to accomplish this is to have a regular expression to look for those characters and then define a func-
tion that returns the specific HTML entities for each matched character.

The last string method for dealing with patterns is split (), which separates the string into an array
of substrings based on a separator. The separator may be a string or a RegExp object. (The string is
not considered a regular expression for this method.) An optional second argument, the array limit,
ensures that the returned array will be no larger than a certain size. Consider this example:

let colorText = "red,blue,green,yellow";

let colorsl = colorText.split(","); // ["red", "blue", "green", "yellow"]
let colors2 = colorText.split(",", 2); // ["red", "blue"]

let colors3 = colorText.split (/[*\,1+/); // ["", ™, v, m,v, nmn wn]

In this example, the string colorText is a comma-separated string of colors. The call to sp1it (", ")
retrieves an array of those colors, splitting the string on the comma character. To truncate the results
to only two items, a second argument of 2 is specified. Last, using a regular expression, it’s possible

156

| CHAPTERS5 BASIC REFERENCE TYPES

to get an array of the comma characters. Note that in this last call to split (), the returned array has
an empty string before and after the commas. This happens because the separator specified by the
regular expression appears at the beginning of the string (the substring "red") and at the end (the
substring "yellow").

The localeCompare() Method

The last method is 1ocaleCompare (), which compares one string to another and returns one of three
values as follows:

> If the string should come alphabetically before the string argument, a negative number is
returned. (Most often this is -1, but it is up to each implementation as to the actual value.)

> If the string is equal to the string argument, 0 is returned.
> If the string should come alphabetically after the string argument, a positive number is

returned. (Most often this is 1, but once again, this is implementation-specific.)

Here’s an example:

let stringValue = "yellow";

console.log(stringValue.localeCompare ("brick")); // 1
console.log(stringValue.localeCompare ("yellow")); // 0
console.log(stringValue.localeCompare ("zoo")); // -1

In this code, the string "yellow" is compared to three different values: "brick", "yellow", and
"zoo". Because "brick" comes alphabetically before "yellow", localeCompare () returns 1; "yel-
low" is equal to "yellow", so localeCompare () returns 0 for that line; and "zoo" comes after
"yellow", so localeCompare () returns -1 for that line. Once again, because the values are imple-
mentation-specific, it is best to use localeCompare () as shown in this example:

function determineOrder (value) {
let result = stringValue.localeCompare (value) ;
if (result < 0) {
console.log(The string 'yellow' comes before the string '${value}'.);
} else if (result > 0) {
console.log(The string 'yvellow' comes after the string '${value}'.”);
} else {
console.log(The string 'yellow' is equal to the string '${value}'.);
}
}

determineOrder ("brick") ;
determineOrder ("yellow") ;
determineOrder ("zoo") ;

By using this sort of construct, you can be sure that the code works correctly in all implementations.

The unique part of localeCompare () is that an implementation’s locale (country and language) indi-
cates exactly how this method operates. In the United States, where English is the standard language
for ECMAScript implementations, localeCompare () is case-sensitive, determining that uppercase
letters come alphabetically after lowercase letters. However, this may not be the case in other locales.

Singleton Built-in Objects | 157

HTML Methods

The web browser vendors recognized a need early on to format HTML dynamically using JavaScript.
As a result, they extended the specification to include several methods specifically designed to aid in
common HTML formatting tasks. The following table enumerates the HTML methods. However, be
aware that typically these methods aren’t used, because they tend to create non-semantic markup.

METHOD OUTPUT

anchor(name) string

big() <big>string</big>

bold () string

fixed() <tt>string</tt>

fontcolor(color) <font color="color"sstring
fontsize(size) string</fonts>
italics() <isstring</i>

link (url) string

small () <smalls>string</smalls>

strike () <strikes>string</strike>

sub () _{string}

sup () ^{string}

SINGLETON BUILT-IN OBJECTS

ECMA-262 defines a built-in object as "any object supplied by an ECMAScript implementa-
tion, independent of the host environment, which is present at the start of the execution of an
ECMAScript program.” This means the developer does not need to explicitly instantiate a built-in
object; it is already instantiated. You have already learned about most of the built-in objects, such
as Object, Array, and String. There are two singleton built-in objects defined by ECMA-262:
Global and Math.

The Global Object

The Global object is the most unique in ECMAScript because it isn’t explicitly accessible. ECMA-
262 specifies the Global object as a sort of catchall for properties and methods that don’t otherwise
have an owning object. In truth, there is no such thing as a global variable or global function; all
variables and functions defined globally become properties of the Global object. Functions covered
earlier in this book, such as isNaN (), isFinite (), parselInt (), and parseFloat (), are actually
methods of the Global object. In addition to these, there are several other methods available on the
Global object.

158

| CHAPTERS5 BASIC REFERENCE TYPES

URI-Encoding Methods

The encodeURI () and encodeURIComponent () methods are used to encode URIs (Uniform Resource
Identifiers) to be passed to the browser. To be valid, a URI cannot contain certain characters, such as
spaces. The URI-encoding methods encode the URIs so that a browser can still accept and understand
them, replacing all invalid characters with a special UTF-8 encoding.

The encodeURI () method is designed to work on an entire URI (for instance, www.wrox.com/ille-
gal value.js), whereas encodeURIComponent () is designed to work solely on a segment of a URI
(such as i1legal value.js from the previous URI). The main difference between the two methods
is that encodeURI () does not encode special characters that are part of a URI, such as the colon,
forward slash, question mark, and pound sign, whereas encodeURIComponent () encodes every non-
standard character it finds. Consider this example:

let uri = "http:// www.wrox.com/illegal value.js#start";

// "http:// www.wrox.com/illegal%20value.js#start"
console.log (encodeURI (uri)) ;

// "http%3A%2F%2Fwww.wrox.com%2Fillegal%20value.js%23start"
console.log (encodeURIComponent (uri)) ;

Here, using encodeURI () left the value completely intact except for the space, which was replaced
with $20. The encodeURIComponent () method replaced all nonalphanumeric characters with their
encoded equivalents. This is why encodeURI () can be used on full URIs, whereas encodeURI -
Component () can be used only on strings that are appended to the end of an existing URIL

NOTE Generally speaking, you'll use encodeURIComponent () much more fre-
quently than encodeURI() because it’s more common to encode query string
arguments separately from the base URI.

The two counterparts to encodeURI () and encodeURIComponent () are decodeURI () and decode-

URIComponent (). The decodeURT () method decodes only characters that would have been replaced
by using encodeURT (). For instance, $20 is replaced with a space, but $23 is not replaced because it

represents a pound sign (#), which encodeURI () does not replace. Likewise, decodeURIComponent ()
decodes all characters encoded by encodeURIComponent (), essentially meaning it decodes all special
values. Consider this example:

let uri = "http%3A%2F%2Fwww.wrox.com$2Fillegal%20value.js%23start";

// http%3A%2F%2Fwww.wrox.com%$2Fillegal value.js%23start
console.log (decodeURI (uri)) ;

// http:// www.wrox.com/illegal value.js#start
console.log (decodeURIComponent (uri)) ;

Here, the uri variable contains a string that is encoded using encodeURIComponent (). The first
value output is the result of decodeURT (), which replaced only the $20 with a space. The second
value is the output of decodeURIComponent (), which replaces all the special characters and outputs
a string that has no escaping in it. (This string is not a valid URL)

Singleton Built-in Objects | 159

NOTE The URI methods encodeURI(), encodeURIComponent (), decodeURI(),
and decodeURIComponent () replace the escape() and unescape() methods,
which are deprecated in the ECMA-262 third edition. The URI methods are
always preferable, because they encode all Unicode characters, whereas the
original methods encode only ASCII characters correctly. Avoid using escape ()
and unescape() in production code.

The eval() Method

The final method is perhaps the most powerful in the entire ECMAScript language: the eval ()
method. This method works like an entire ECMAScript interpreter and accepts one argument, a string
of ECMAScript (or JavaScript) to execute. Here’s an example:

eval ("console.log('hi')");

This line is functionally equivalent to the following:

console.log("hi") ;

When the interpreter finds an eval () call, it interprets the argument into actual ECMAScript
statements and then inserts it into place. Code executed by eval () is considered to be part of the
execution context in which the call is made, and the executed code has the same scope chain as that
context. This means variables that are defined in the containing context can be referenced inside an
eval () call, such as in this example:

let msg = "hello world";

eval ("console.log(msg)"); // "hello world"
Here, the variable msg is defined outside the context of the eval () call, yet the call to console.
log () still displays the text "hello world" because the second line is replaced with a real line of
code. Likewise, you can define a function or variables inside an eval () call that can be referenced by
the code outside, as follows:

eval ("function sayHi() { comsole.log('hi'); }");

sayHi () ;
Here, the sayHi () function is defined inside an eval () call. Because that call is replaced with the
actual function, it is possible to call sayHi () on the following line. This works the same for variables:

eval("let msg = 'hello world';");
console.log(msg); // "hello world"

Any variables or functions created inside of eval () will not be hoisted, as they are contained within
a string when the code is being parsed. They are created only at the time of eval () execution.

In strict mode, variables and functions created inside of eval () are not accessible outside, so these
last two examples would cause errors. Also, in strict mode, assigning a value to eval causes an error:

"use strict";
eval = "hi"; // causes error

160 | CHAPTERS5 BASIC REFERENCE TYPES

NOTE The capability to interpret strings of code is very powerful but also

very dangerous. Use extreme caution with eval(), especially when passing
user-entered data into it, as this method exposes a large attack surface for XSS
exploits. A mischievous user could insert values that might compromise your site

or application security.

Global Object Properties

The Global object has a number of properties, some of which have already been mentioned in this
book. The special values of undefined, NaN, and Infinity are all properties of the Global object.
Additionally, all native reference type constructors, such as 0bject and Function, are properties of
the Global object. The following table lists all of the properties.

PROPERTY
undefined
NaN
Infinity
Object
Array
Function
Boolean
String
Number

Date

RegExp
Symbol
Error
EvalError
RangeError
ReferenceError
SyntaxError
TypeError

URIError

DESCRIPTION

The special value undefined
The special value NaN

The special value Infinity
Constructor for Object
Constructor for Array
Constructor for Function
Constructor for Boolean
Constructor for string
Constructor for Number
Constructor for Date
Constructor for RegExp
Pseudo-constructor for Symbol
Constructor for Error
Constructor for EvalError
Constructor for RangeError
Constructor for ReferenceError
Constructor for SyntaxError
Constructor for TypeError

Constructor for URIError

Singleton Built-in Objects | 161

The Window Object

Though ECMA-262 doesn’t indicate a way to access the Global object directly, web browsers imple-
ment it such that the window is the Global object’s delegate. Therefore, all variables and functions
declared in the global scope become properties on window. Consider this example:

let color = "red";

function sayColor()
console.log(window.color) ;

}

window.sayColor(); // "red"

Here, a global variable named color and a global function named saycolor () are defined. Inside
sayColor (), the color variable is accessed via window.color to show that the global variable
became a property of window. The function is then called directly off of the window object as window.
sayColor (), which pops up the console.log.

NOTE The window object does much more in JavaScript than just implement
the ECMAScript Global object. Details of the window object can be found in the
Browser Object Model chapter.

Another way to retrieve the Global object is to use the following code:

let global = function() {
return this;

}O;

This code creates an immediately-invoked function expression that returns the value of this. As
mentioned previously, the this value is equivalent to the Global object when a function is executed
with no explicit this value specified (either by being an object method or via call ()/apply ()).
Thus, calling a function that simply returns this is a consistent way to retrieve the Global object in
any execution environment.

The Math Object

ECMAScript provides the Math object as a common location for mathematical formulas, information,
and computation. The Math object offers a number of properties and methods to help these com-
putations.

NOTE The computations available on the Math object execute faster than if

you were to write the computations in JavaScript directly because computations
available on the Math object use more efficient implementations in the JavaScript
engine and processor instructions. A side-effect of this is that precision of these
operations may vary between browsers, operating systems, instruction sets, and
hardware.

162 | CHAPTERS5 BASIC REFERENCE TYPES

Math Object Properties

The Math object has several properties, consisting mostly of special values in the world of mathemat-
ics. The following table describes these properties.

PROPERTY DESCRIPTION

Math.E The value of e, the base of the natural logarithms
Math.LN10 The natural logarithm of 10

Math.LN2 The natural logarithm of 2

Math.LOG2E The base 2 logarithm of e

Math.LOG10E The base 10 logarithm of e

Math.PI The value of ©

Math.SQRT1 2 The square root of %2

Math.SQRT2 The square root of 2

Although the meanings and uses of these values are outside the scope of this book, they are defined in
the ECMAScript specification and available when you need them.

The min() and max() Methods

The Math object also contains many methods aimed at performing both simple and complex math-
ematical calculations.

The min () and max () methods determine which number is the smallest or largest in a group of num-
bers. These methods accept any number of parameters, as shown in the following example:

let max = Math.max (3, 54, 32, 16);

console.log(max); // 54

let min = Math.min(3, 54, 32, 16);

console.log(min); // 3

Out of the numbers 3, 54, 32, and 16, Math.max () returns the number 54, whereas Math.min ()
returns the number 3. These methods are useful for avoiding extra loops and if statements to deter-
mine the maximum value out of a group of numbers.

To find the maximum or the minimum value in an array, you can use the spread operator as follows:

let values = [1, 2, 3, 4, 5, 6, 7, 8];
let max = Math.max(...values);

Singleton Built-in Objects | 163

Rounding Methods

The next group of methods has to do with rounding decimal values into integers. Four methods—
Math.ceil(),Math.floor(),Math.round(),and]Wath.fround()——handkﬂroundhugﬁldﬁﬁient
ways as described here:

>

The Math.ceil() method represents the ceiling function, which always rounds numbers up
to the nearest integer value.

The Math.floor() method represents the floor function, which always rounds numbers

down to the nearest integer value.

The Math.round() method represents a standard round function, which rounds up if the
number is at least halfway to the next integer value (0.5 or higher) and rounds down if not.
This is the way you were taught to round in elementary school.

The Math.fround() method returns the nearest single precision (32 bits) floating point rep-
resentation of the number.

The following example illustrates how these methods work:

console.
console.
console.

console
console
console

console.
console.
console.

console.
console.

console

log(Math.
log (Math.
log(Math.

.log (Math.
.log (Math.
.log (Math.

log(Math.
log (Math.
log (Math.

log (Math.
log (Math.
.log (Math.

ceil(25.9));
ceil(25.5));
ceil(25.1));

round (25.9)) ;
round (25.5)) ;
round (25.1)) ;

fround(0.4)) ;
fround(0.5)) ;
fround (25.9)) ;

floor(25.9));
floor (25.5)) ;
floor(25.1));

// 26
// 26
// 26

// 26
// 26
// 25

// 0.4000000059604645

// 0.5
// 25.899999618530273

// 25
// 25
// 25

For all values between 25 and 26 (exclusive), Math.ceil () always returns 26 because it will always
round up. The Math.round () method returns 26 only if the number is 25.5 or greater; otherwise it
returns 25. Last, Math. floor () returns 25 for all numbers between 25 and 26 (exclusive).

The random() Method

The Math.random () method returns a random number between the 0 and the 1, not including either
0 or 1. This is a favorite tool of web sites that are trying to display random quotes or random facts
upon entry of a web site. You can use Math.random () to select numbers within a certain integer
range by using the following formula:

number = Math.floor (Math.random() * total number of choices + first possible value)

164

| CHAPTERS5 BASIC REFERENCE TYPES

The Math. floor () method is used here because Math.random() always returns a decimal value,
meaning that multiplying it by a number and adding another still yields a decimal value. So, if you
wanted to select a number between 1 and 10, the code would look like this:

let num = Math.floor (Math.random() * 10 + 1);

You see 10 possible values (1 through 10), with the first possible value being 1. If you want to select a
number between 2 and 10, then the code would look like this:

let num = Math.floor (Math.random() * 9 + 2);

There are only nine numbers when counting from 2 to 10, so the total number of choices is nine, with
the first possible value being 2. Many times, it’s just easier to use a function that handles the calcula-
tion of the total number of choices and the first possible value, as in this example:

function selectFrom(lowerValue, upperValue) {
let choices = upperValue - lowerValue + 1;
return Math.floor (Math.random() * choices + lowerValue) ;

}

let num = selectFrom(2,10);

console.log(num); // number between 2 and 10, inclusive
Here, the function selectFrom() accepts two arguments: the lowest value that should be returned
and the highest value that should be returned. The number of choices is calculated by subtracting the
two values and adding one and then applying the previous formula to those numbers. So it’s possible
to select a number between 2 and 10 (inclusive) by calling selectFrom(2,10). Using the function,
it’s easy to select a random item from an array, as shown here:

let colors = ["red", "green", "blue", "yellow", "black", "purple", "brown"];
let color = colors[selectFrom(0, colors.length-1)];

In this example, the second argument to selectFrom() is the length of the array minus 1, which is
the last position in an array.

NOTE The Math.random() method is fine for the purposes demonstrated here.
If you need to use random number generation for cryptographic purposes (which
requires higher entropy in the inputs to the generator) prefer instead to use
window.crypto.getRandomvalues().

Other Methods

The Math object has a lot of methods related to various simple and higher-level mathematical opera-
tions. It’s beyond the scope of this book to discuss the ins and outs of each or in what situations they
may be used, but the following table enumerates the remaining methods of the Math object.

METHOD DESCRIPTION
Math.abs (x) Returns the absolute value of x

Math.exp (x) Returns Math.E raised to the power of x

Summary

165

METHOD
Math.expml (x)
Math.log (x)
Math.loglp (x)

Math.

pow (x, power)

Math.pow (.. .nums)

Math.clz32 (x)
Math.sign (x)
Math. trunc (x)
Math.sqgrt (x)
Math.cbrt (x)
Math.acos (x)
Math.acosh (x)
Math.asin (x)
Math.asin (x)
Math.atan (x)
Math.atanh (x)
Math.atan2 (y, x)
Math.cos (x)
Math.sin (x)

Math.tan (x)

DESCRIPTION

Equivalent to Math.exp (x) - 1

Returns the natural logarithm of x
Equivalentto 1 + Math.log(x)

Returns x raised to the power of power

Returns the square root of the sum of the squares of each
number in nums

Returns the number of leading zeroes of a 32-bit integer x
Returns 1, 0, -0, or -1 indicating the sign of x

Returns the integer component of x, removing any decimals
Returns the square root of x

Returns the cubic root of x

Returns the arc cosine of x

Returns the hyperbolic arc cosine of x

Returns the arc sine of x

Returns the hyperbolic arc sine of x

Returns the arc tangent of x

Returns the hyperbolic arc tangent of x

Returns the arc tangent of y/x

Returns the cosine of x

Returns the sine of x

Returns the tangent of x

Even though these methods are defined by ECMA-262, the results are implementation-dependent for
those dealing with sines, cosines, and tangents, because you can calculate each value in many different
ways. Consequently, the precision of the results may vary from one implementation to another.

SUMMARY

Objects in JavaScript are called reference values, and several built-in reference types can be used to

create specific types of objects, as follows:

> Reference types are similar to classes in traditional object-oriented programming but are

implemented differently.

166 | CHAPTERS5 BASIC REFERENCE TYPES

> The Date type provides information about dates and times, including the current date and
time and calculations.

> The RegExp type is an interface for regular-expression support in ECMAScript, providing
most basic and some advanced regular-expression functionality.

One of the unique aspects of JavaScript is that functions are actually instances of the Function type,
meaning functions are objects. Because functions are objects, functions have methods that can be used
to augment how they behave.

Because of the existence of primitive wrapper types, primitive values in JavaScript can be accessed as
if they were objects. There are three primitive wrapper types: Boolean, Number, and String. They all
have the following characteristics:

> Each of the wrapper types maps to the primitive type of the same name.

> When a primitive value is accessed in read mode, a primitive wrapper object is instantiated
so that it can be used to manipulate the data.

> As soon as a statement involving a primitive value is executed, the wrapper object is
destroyed.

There are also two built-in objects that exist at the beginning of code execution: Global and Math.
The Global object isn’t accessible in most ECMAScript implementations; however, web browsers
implement it as the window object. The Global object contains all global variables and functions
as properties. The Math object contains properties and methods to aid in complex mathematical
calculations.

Collection Reference Types

WHAT'S IN THIS CHAPTER?

> Working with objects
> Working with arrays and typed arrays
> Working with Map, WeakMap, Set, and WeakSet types

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s

code download on the book’s website at www.wrox.com/go/projavascript4e on the Down-
load Code tab.

THE OBJECT TYPE

Up to this point, most of the reference-value examples have used the object type, which is
one of the most commonly used types in ECMAScript. Although instances of object don’t
have much functionality, they are ideally suited to storing and transmitting data around an
application.

There are two ways to explicitly create an instance of object. The first is to use the new opera-
tor with the object constructor like this:

let person = new Object();
person.name = "Nicholas";
person.age = 29;

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

168

| CHAPTER 6 COLLECTION REFERENCE TYPES

The other way is to use object literal notation. Object literal notation is a shorthand form of object
definition designed to simplify creating an object with numerous properties. For example, the follow-
ing defines the same person object from the previous example using object literal notation:
let person =
name: "Nicholas",
age: 29

}i

In this example, the left curly brace ({) signifies the beginning of an object literal because it occurs in
an expression context. An expression context in ECMAScript is a context in which a value (expres-
sion) is expected. Assignment operators indicate that a value is expected next, so the left curly brace
indicates the beginning of an expression. The same curly brace, when appearing in a statement con-
text, such as follows an if statement condition, indicates the beginning of a block statement.

Next, the name property is specified, followed by a colon, followed by the property’s value. A comma
is used to separate properties in an object literal, so there’s a comma after the string "Nicholas" but
not after the value 29 because age is the last property in the object. Including a comma after the last
property causes an error in very old browsers, but all modern ones support it.

Property names can also be specified as strings or numbers when using object literal notation, such as
in this example:

let person =

"name": "Nicholas",
"age": 29,
5: true

}i

This example produces an object with a name property, an age property, and a property 5. Note that
numeric property names are automatically converted to strings.

It’s also possible to create an object with only the default properties and methods using object literal
notation by leaving the space between the curly braces empty, such as this:

let person = {}; // same as new Object()
person.name = "Nicholas";
person.age = 29;

This example is equivalent to the first one in this section, though it looks a little strange. Prefer to use
object literal notation only when you’re going to specify properties for readability.

NOTE When defining an object via object literal notation, the object con-
structor is never actually called.

Though it’s acceptable to use either method of creating object instances, developers tend to favor
object literal notation because it requires less code and visually encapsulates all related data. In fact,

The Object Type | 169

object literals have become a preferred way of passing a large number of optional arguments to a
function, such as in this example:

function displayInfo(args)

let output = "";

if (typeof args.name == "string")
output += "Name: " + args.name + "\n";

}

if (typeof args.age == "number") ({
output += "Age: " + args.age + "\n";

}

alert (output) ;

}

displayInfo ({
name: "Nicholas",
age: 29

b

displayInfo ({
name: "Greg"

)

Here, the function displayInfo () accepts a single argument named args. The argument may come
in with a property called name or age or both or neither of those. The function is set up to test for
the existence of each property using the typeof operator and then to construct a message to display
based on availability. This function is then called twice, each time with different data specified in an
object literal. The function works correctly in both cases.

NOTE This pattern for argument passing is best used when there are a large
number of optional arguments that can be passed into the function. Generally
speaking, named arguments are easier to work with but can get unwieldy when
there are numerous optional arguments. The best approach is to use named
arguments for those that are required and an object literal to encompass multiple
optional arguments.

Although object properties are typically accessed using dot notation, which is common to many
object-oriented languages, it’s also possible to access properties via bracket notation. When you

use bracket notation, a string containing the property name is placed between the brackets, as in
this example:

alert (person(["name"]); // "Nicholas"
alert (person.name) ; // "Nicholas"

170

| CHAPTER 6 COLLECTION REFERENCE TYPES

Functionally, there is no difference between the two approaches. The main advantage of bracket nota-
tion is that it allows you to use variables for property access, as in this example:

let propertyName = "name";
alert (person [propertyName]); // "Nicholas"

You can also use bracket notation when the property name contains characters that would be either a
syntax error or a keyword/reserved word. For example:

person["first name"] = "Nicholas";
Because the name "first name" contains a space, you can’t use dot notation to access it. However,

property names can contain nonalphanumeric characters—you just need to use bracket notation to
access them.

Generally speaking, dot notation is preferred unless variables are necessary to access proper-
ties by name.

NOTE The “Objects, Classes, and Object-Oriented Programming” chapter has
extensive coverage on the Object type.

THE ARRAY TYPE

After the object type, the Array type is probably the most used in ECMAScript. An ECMAScript
array is very different from arrays in most other programming languages. As in other languages,
ECMAScript arrays are ordered lists of data, but unlike in other languages, they can hold any type of
data in each slot. This means that it’s possible to create an array that has a string in the first position,
a number in the second, an object in the third, and so on. ECMAScript arrays are also dynamically
sized, automatically growing to accommodate any data that is added to them.

Creating Arrays

Arrays can be created in several basic ways. One is to use the Array constructor, as in this line:

let colors = new Array();

If you know the number of items that will be in the array, you can pass the count into the constructor,
and the length property will automatically be created with that value. For example, the following
creates an array with an initial length value of 20:

let colors = new Array(20);

The Array constructor can also be passed items that should be included in the array. The following
creates an array with three string values:

let colors = new Array("red", "blue", "green");

An array can be created with a single value by passing it into the constructor. This gets a little bit
tricky because providing a single argument that is a number always creates an array with the given

The Array Type | 171

number of items, whereas an argument of any other type creates a one-item array that contains the
specified value. Here’s an example:

let colors = new Array(3); // create an array with three items
let names = new Array("Greg"); // create an array with one item, the string "Greg"

It’s possible to omit the new operator when using the Array constructor. It has the same result, as you
can see here:

let colors = Array(3); // create an array with three items
let names = Array("Greg"); // create an array with one item, the string "Greg"

A second way to create an array is by using array literal notation. An array literal is specified by using
square brackets and placing a comma-separated list of items between them, as in this example:

let colors = ["red", "blue", "green"]; // Creates an array with three strings
let names = []; // Creates an empty array
let values = [1,2,]; // Creates an array with 2 items

In this code, the first line creates an array with three string values. The second line creates an empty
array by using empty square brackets. The third line shows the effects of leaving a comma after the
last value in an array literal: values is a two-item array containing the values 1 and 2.

NOTE As with objects, the Array constructor isn’t called when an array is
created using array literal notation.

The Array constructor also has two additional static methods introduced in ES6 to create arrays:
from() and of (). from() is used for converting array-like constructs into an array instance, whereas
of () is used to convert a collection of arguments into an array instance.

The first argument to Array. from() is an “arrayLike” object, which is anything that is iterable
or has a property length and indexed elements. This type can be used in an abundance of dif-
ferent ways:

// Strings will be broken up into an array of single characters
alert (Array.from("Matt")); // ["M", "a", "t", "t"]

// Sets and Maps can be converted into an new array instance using from()
const m = new Map () .set (1, 2)

(

set (3, 4);
const s = new Set().add(1)

.add (2)

.add (3)

add(4) ;
alert (Array.from(m)); // [[1, 21, [3, 4]]
alert (Array.from(s)); // [1, 2, 3, 4]

// Array.from() performs a shallow copy of an existing array
const al = [1, 2, 3, 4];
const a2 = Array.from(al);

172

CHAPTER 6 COLLECTION REFERENCE TYPES

i // [, 2, 3, 4]
alert(al === a2); // false

// Any iterable object can be used
const iter = {
* [Symbol.iterator] () {
yield 1;
yield 2;
yield 3;
yield 4;

}
}i

alert (Array.from(iter)); // [1, 2, 3, 4]

// The arguments object can now easily be casted into an array:
function getArgsArray() {
return Array.from(arguments) ;

}

alert (getArgsArray (1, 2, 3, 4)); // [1, 2, 3, 4]

// from() will happily use a custom object with required properties
const arrayLikeObject = {

0: 1,
1: 2,
2: 3,
3: 4,
length: 4
}i
alert (Array.from(arrayLikeObject)); // [1, 2, 3, 4]

Array.from() also accepts a second optional map function argument. This allows you to augment
the new array’s values without creating an intermediate array first, which is the case if the same were
performed with Array. from() .map (). A third optional argument specifies the value of this inside
the map function. The overridden this value is not applied inside an arrow function:

const al = [1, 2, 3, 4
const a2 = Array.from(
const a3 = Array.from(
alert(a2); // I[1, 4,
alert(a3); // [1, 4,

1;

al, x => x**2);

al, function(x) {return x**this.exponent}, {exponent: 2});
9, 16]

9, 16]

Array.of () will convert the list of arguments into an array. This serves to replace the common
pre-ES6 method of converting the arguments object into an array using the exceptionally unwieldy

Array.prototype.slice.call (arguments):

alert (Array.of (1, 2, 3, 4)); // [1, 2, 3, 4]
alert (Array.of (undefined)) ; // [undefined]

Array Holes

Initializing an array with an array literal allows you to create “holes” using sequential commas.
ECMAScript will treat the value at the index between the commas as a hole, and the ES6 specification
refines how these holes are treated.

The Array Type | 173

An array of holes might be created as follows:

const options = [,,,,,]; // Creates an array with 5 items
alert (options.length) ; // 5
alert (options) ; /] Lorai]

Methods and iterators introduced in ES6 behave differently than methods present in earlier
ECMAScript editions. ES6 additions will universally treat the holes as an existing entry with a value
of undefined:

const options = [1,,,,5];

for (const option of options) {
alert (option === undefined) ;

}

// false

// true

// true

// true

// false

const a = Array.from([,,,]); // Array of 3 holes created with ES6's Array.from()
for (const val of a) {
alert (val === undefined) ;
!
// true
// true
// true

alert (Array.of(...[,,,1)); // [undefined, undefined, undefined]

for (const [index, value] of options.entries()) {
alert (value) ;

)

// 1

// undefined
// undefined
// undefined
/] 5

Conversely, methods available before ES6 will tend to ignore the holes, although exact behavior can
vary slightly between methods:

const options = [1,,,,5];

// map() will skip the holes entirely
alert (options.map(() => 6)); // [6, undefined, undefined, undefined, 6]

// join() treats holes as empty strings
alert (options.join('-')); // "l----5"

174 | CHAPTER 6 COLLECTION REFERENCE TYPES

NOTE Due to their bizarre behavior and performance issues, avoid using array
holes in your code. Prefer to use an explicit undefined in place of a hole.

Indexing into Arrays

To get and set array values, you use square brackets and provide the zero-based numeric index of the
value, as shown here:

let colors = ["red", "blue", "green"]l; // define an array of strings
alert (colors[0]); // display the first item
colors[2] = "black"; // change the third item
colors[3] = "brown"; // add a fourth item

The index provided within the square brackets indicates the value being accessed. If the index is less
than the number of items in the array, then it will return the value stored in the corresponding item,
as colors [0] displays "red" in this example. Setting a value works in the same way, replacing the
value in the designated position. If a value is set to an index that is past the end of the array, as with
colors [3] in this example, the array length is automatically expanded to be that index plus 1 (so the
length becomes 4 in this example because the index being used is 3).

The number of items in an array is stored in the length property, which always returns 0 or more, as
shown in the following example:

let colors = ["red", "blue", "green"]; // creates an array with three strings
let names = []; // creates an empty array

alert(colors.length); // 3
alert (names.length) ; // 0

A unique characteristic of length is that it’s not read-only. By setting the length property, you can
easily remove items from or add items to the end of the array. Consider this example:

let colors = ["red", "blue", "green"l; // creates an array with three strings
colors.length = 2;
alert (colors[2]); // undefined

Here, the array colors starts out with three values. Setting the length to 2 removes the last item
(in position 2), making it no longer accessible using colors[2]. If the length were set to a number
greater than the number of items in the array, the new items would each get filled with the value of
undefined, as in this example:

let colors = ["red", "blue", "green"l; // creates an array with three strings
colors.length = 4;
alert (colors[3]); // undefined

This code sets the 1length of the colors array to 4 even though it contains only three items. Posi-
tion 3 does not exist in the array, so trying to access its value results in the special value undefined
being returned.

The Array Type | 175

The length property can also be helpful in adding items to the end of an array, as in this example:

let colors = ["red", "blue", "green"]; // creates an array with three strings
colors[colors.length] = "black"; // add a color (position 3)
colors[colors.lengthl] "brown"; // add another color (position 4)

The last item in an array is always at position length - 1, so the next available open slot is at
position length. Each time an item is added after the last one in the array, the length property is
automatically updated to reflect the change. That means colors [colors.length] assigns a value

to position 3 in the second line of this example and to position 4 in the last line. The new length is
automatically calculated when an item is placed into a position that’s outside of the current array size,
which is done by adding 1 to the position, as in this example:

let colors = ["red", "blue", "green"]; // creates an array with three strings
colors[99] = "black"; // add a color (position 99)
alert(colors.length) ; // 100

In this code, the colors array has a value inserted into position 99, resulting in a new length of 100
(99 + 1). Each of the other items, positions 3 through 98, doesn’t actually exist and so returns unde -
fined when accessed.

NOTE Arrays can contain a maximum of 4,294,967,295 items, which should
be plenty for almost all programming needs. If you try to add more than that
number, an exception occurs. Trying to create an array with an initial size
approaching this maximum may cause a long-running script error.

Detecting Arrays

A classic ECMAScript problem is determining whether a given object is an array. When dealing with
a single web page, and therefore a single global scope, the instanceof operator works well:

if (value instanceof Array) {
// do something on the array

}

The one problem with instanceof is that it assumes a single global execution context. If you are
dealing with multiple frames in a web page, you’re really dealing with two distinct global execu-
tion contexts and therefore two versions of the Array constructor. If you were to pass an array from
one frame into a second frame, that array has a different constructor function than an array created
natively in the second frame.

To work around this problem, ECMAScript offers the Array.isarray () method. The purpose of
this method is to definitively determine if a given value is an array regardless of the global execution
context in which it was created. Consider the following example:

if (Array.isArray(value)) {
// do something on the array

}

176 | CHAPTER 6 COLLECTION REFERENCE TYPES

Iterator Methods

In ES6, three new methods are exposed on the Array prototype that allow you to inspect the contents
of an array: keys (), values (), and entries (). keys () will return an iterator of the array’s indices,
values () will return an iterator of the array’s elements, and entries () will return an iterator of
index/value pairs:

const a = ["foo", "bar", "baz", "qux"];

// Because these methods return iterators, you can funnel their contents
// into array instances using Array.from()

const aKeys = Array.from(a.keys());

const aValues = Array.from(a.values());

const aEntries = Array.from(a.entries());

alert (aKeys) ; // [0, 1, 2, 3]
alert (avalues) ; // ["foo", "bar", "baz", "qux"]
alert (aEntries); // [[0, "foo"]l, [1, "bar"l, [2, "baz"], [3, "qux"]]

ES6 destructuring means it is now very easy to split out the key/value pairs inside a loop:

const a = ["foo", "bar", "baz", "qux"];

for (const [idx, element] of a.entries()) [
alert (idx) ;
alert (element) ;

}

// 0
// foo
/] 1
// bar
/] 2
// baz
// 3
// qux

NOTE Although they are included as part of the ES6 specification, as of late
2017 some modern browsers have yet to implement some of these methods.

Copy and Fill Methods

New in ES6 are two methods, £111 () and copyWithin (), that respectively allow for batch fill and
copy inside an array. Both methods have a similar function signature in that they allow you to specify
a range within an existing array instance using an inclusive start and exclusive end index. Arrays that
use this method will never be resized.

The £111 () method allows you to insert the same value into all or part of an existing array. Specify-
ing the optional start index instructs the fill to begin at that index, and the fill will continue to the
end of the array unless an end index is provided. Negative indices are interpreted from the end of the

The Array Type | 177

array; another way to think of this is that negative indices have the array length added to them to
calculate a positive index:

const zeroes = [0, 0, 0, 0, 0];

// Fill the entire array with 5
zeroes.fill(5);

alert (zeroes) ; // [5, 5, 5, 5, 5]
zeroes.fi11(0); // reset

// Fill all indices >=3 with 6
zeroes.fill (6, 3);

alert (zeroes) ; // [0, 0, 0, 6, 6]
zeroes.f111(0); // reset

// Fill all indices >= 1 and < 3 with 7
zeroes.fi111(7, 1, 3);

alert (zeroes) ; // [0, 7, 7, 0, 0];
zeroes.fill(0); // reset

// Fill all indices >=1 and < 4 with 8
// (-4 + zeroes.length = 1)

// (-1 + zeroes.length = 4)
zeroes.fill (8, -4, -1);

alert (zeroes) ; // [0, 8, 8, 8, 0];

fill () silently ignores ranges that exceed the boundaries of the array, are zero
length, or go backwards:

const zeroes = [0, 0, 0, 0, 0];

// Fill with too low indices is noop
zeroes.fill (1, -10, -6);
alert (zeroes) ; // [0, 0, 0, 0, 0]

// Fill with too high indices is noop
zeroes.fill (1, 10, 15);
alert (zeroes) ; // [0, 0, 0, 0, 0]

// Fill with reversed indices is noop
zeroes.fill (2, 4, 2);
alert (zeroes) ; // o, o, 0, 0, 0]

// Fill with partial index overlap is best effort
zeroes.fill (4, 3, 10)
alert (zeroes) ; // [0, 0, 0, 4, 4]

Unlike £111 (), copyWithin () instead performs an iterative shallow copy of some of the array and
overwrites existing values beginning at the provided index. However, it uses the same conventions
with respect to start and end indices:

let ints,
reset = () => ints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
reset () ;

178 | CHAPTER 6 COLLECTION REFERENCE TYPES

// Copy the contents of ints beginning at index 0 to the values beginning at index 5.
// Stops when it reaches the end of the array either in the source

// indices or the destination indices.

ints.copyWithin(5) ;

alert (ints); // [0, 1, 2, 3, 4, 0, 1, 2, 3, 4]

reset () ;

// Copy the contents of ints beginning at index 5 to the values beginning at index 0.
ints.copyWithin (0, 5);

alert(ints); // [5, 6, 7, 8, 9, 5, 6, 7, 8, 9]

reset () ;

// Copy the contents of ints beginning at index 0 and ending at index 3 to values
// beginning at index 4.

ints.copyWithin(4, 0, 3);

alert (ints); // [0, 1, 2, 3, 0, 1, 2, 7, 8, 9]

reset () ;

// The JS engine will perform a full copy of the range of values before inserting,
// so there is no danger of overwrite during the copy.

ints.copyWithin(2, 0, 6);

alert (ints); // [0, 1, 0, 1, 2, 3, 4, 5, 8, 9]

reset () ;

// Support for negative indexing behaves identically to f£ill() in that negative
// indices are calculated relative to the end of the array

ints.copyWithin(-4, -7, -3);

alert (ints); // [0, 1, 2, 3, 4, 5, 3, 4, 5, 6]

£i11 () silently ignores ranges that exceed the boundaries of the array, are zero length, or go
backwards:

let ints,
reset = () => ints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
reset () ;

// Copy with too low indices is noop
ints.copyWithin(1, -15, -12);

alert (ints) ; // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
reset ()

// Copy with too high indices is noop
ints.copyWithin(1, 12, 15);

alert (ints) ; // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
reset () ;

// Copy with reversed indices is noop
ints.copyWithin(2, 4, 2);

alert (ints) ; // [0, 1, 2, 3, 4, 5, 6, 7, 8, 91;
reset () ;

// Copy with partial index overlap is best effort
ints.copyWithin(4, 7, 10)
alert (ints); // o, 1, 2, 3,7, 8 9, 7, 8, 9];

The Array Type | 179

Conversion Methods

As mentioned previously, all objects have toLocalestring(), toString (), and valueof () methods.
The tostring () and valueOf () methods return the same value when called on an array. The result
is a comma-separated string that contains the string equivalents of each value in the array, which

is to say that each item has its tostring () method called to create the final string. Take a look at
this example:

"blue", "green"]; // creates an array with three strings
// red,blue,green
// red,blue,green
// red,blue,green

let colors = ["red",
alert (colors.toString());
alert(colors.valueOf());
alert(colors);

In this code, the tostring () and valueof () methods are first called explicitly to return the string
representation of the array, which combines the strings, separating them by commas. The last line
passes the array directly into alert (). Because alert () expects a string, it calls tostring () behind
the scenes to get the same result as when toString () is called directly.

The toLocalestring () method may end up returning the same value as toString () and

valueOf (), but not always. When toLocaleString () is called on an array, it creates a comma-
delimited string of the array values. The only difference between this and the two other methods is
that toLocalestring () calls each item’s toLocaleString () instead of toString () to get its string
value. Consider the following example:

let personl = {
toLocaleString() {
return "Nikolaos";

b

toString()
return "Nicholas";

1
}i

let person2 = {
toLocaleString () {
return "Grigorios";

b

toString()
return "Greg";

}
}i

let people = [personl, person2];

alert (people) ;
alert (people.toString()) ;
alert (people.toLocaleString()) ;

// Nicholas,Greg
// Nicholas,Greg
// Nikolaos,Grigorios

Here, two objects are defined, personi1 and person2. Each object defines both a tostring () method
and a toLocaleString () method that return different values. An array, people, is created to contain
both objects. When passed into alert (), the output is "Nicholas, Greg" because the tostring()
method is called on each item in the array (the same as when tostring () is called explicitly on the

180

| CHAPTER 6 COLLECTION REFERENCE TYPES

next line). When toLocaleString () is called on the array, the result is "Nikolaos,Grigorios"
because this calls toLocaleString () on each array item.

The inherited methods toLocalestring (), toString (), and valueof () each return the array items
as a comma-separated string. It’s possible to construct a string with a different separator using the
join () method. The join () method accepts one argument, which is the string separator to use, and
returns a string containing all items. Consider this example:

let colors = ["red", "green", "blue"];
alert (colors.join(",")); // red,green,blue
alert (colors.join("||")); // red||green||blue

Here, the join () method is used on the colors array to duplicate the output of tostring (). By
passing in a comma, the result is a comma-separated list of values. On the last line, double pipes are
passed in, resulting in the string "red| |green| |blue". If no value or undefined is passed into the
join () method, then a comma is used as the separator.

NOTE If an item in the array is null or undefined, it is represented by an
empty string in the result of join(), toLocaleString(), toString(), and
valueOf ().

Stack Methods

One of the interesting things about ECMAScript arrays is that they provide a method to make an
array behave like other data structures. An array object can act just like a stack, which is one of a
group of data structures that restrict the insertion and removal of items. A stack is referred to as a
last-in-first-out (LIFO) structure, meaning that the most recently added item is the first one removed.
The insertion (called a push) and removal (called a pop) of items in a stack occur at only one point:
the top of the stack. ECMAScript arrays provide push () and pop () specifically to allow stack-

like behavior.

The push () method accepts any number of arguments and adds them to the end of the array, return-
ing the array’s new length. The pop () method, on the other hand, removes the last item in the array,
decrements the array’s length, and returns that item. Consider this example:

let colors = new Array(); // create an array
let count = colors.push("red", "green"); // push two items
alert (count) ; /] 2

count = colors.push("black"); // push another item on

alert (count) ; // 3

let item = colors.pop(); // get the last item

alert (item) ; // "black"

alert (colors.length) ; // 2

In this code, an array is created for use as a stack (note that there’s no special code required to make
this work; push () and pop () are default methods on arrays). First, two strings are pushed onto the end
of the array using push (), and the result is stored in the variable count (which gets the value of 2).

The Array Type | 181

Then, another value is pushed on, and the result is once again stored in count. Because there are now
three items in the array, push () returns 3. When pop () is called, it returns the last item in the array,
which is the string "black". The array then has only two items left.

The stack methods may be used in combination with all of the other array methods as well, as in
this example:

let colors = ["red", "blue"];

colors.push ("brown") ; // add another item
colors([3] = "black"; // add an item

alert (colors.length) ; // 4

let item = colors.pop(); // get the last item
alert (item) ; // "black"

Here, an array is initialized with two values. A third value is added via push (), and a fourth is added
by direct assignment into position 3. When pop () is called, it returns the string "black", which was
the last value added to the array.

Queue Methods

Just as stacks restrict access in a LIFO data structure, queues restrict access in a first-in-first-out
(FIFO) data structure. A queue adds items to the end of a list and retrieves items from the front of
the list. Because the push () method adds items to the end of an array, all that is needed to emulate a
queue is a method to retrieve the first item in the array. The array method for this is called shift (),
which removes the first item in the array and returns it, decrementing the length of the array by one.
Using shift () in combination with push () allows arrays to be used as queues:

let colors = new Array(); // create an array
let count = colors.push("red", "green"); // push two items
alert (count) ; /] 2

count = colors.push("black"); // push another item on

alert (count) ; // 3

let item = colors.shift(); // get the first item
alert (item) ; // "red"
alert (colors.length) ; /] 2

This example creates an array of three colors using the push () method. The highlighted line shows
the shift () method being used to retrieve the first item in the array, which is "red". With that item
removed, "green" is moved into the first position and "black" is moved into the second, leaving the
array with two items.

ECMAScript also provides an unshift () method for arrays. As the name indicates, unshift () does
the opposite of shift (): it adds any number of items to the front of an array and returns the new
array length. By using unshift () in combination with pop (), it’s possible to emulate a queue in the
opposite direction, where new values are added to the front of the array and values are retrieved off
the back, as in this example:

let colors = new Array(); // create an array
let count = colors.unshift("red", "green"); // push two items

182

| CHAPTER 6 COLLECTION REFERENCE TYPES

alert (count) ; /] 2

count = colors.unshift("black"); // push another item on
alert (count) ; // 3

let item = colors.pop(); // get the first item
alert (item) ; // "green"
alert (colors.length) ; /] 2

In this code, an array is created and then populated by using unshift (). First "red" and "green"
are added to the array, and then "black" is added, resulting in an order of "black", "red", "green".
When pop () is called, it removes the last item, "green", and returns it.

Reordering Methods

Two methods deal directly with the reordering of items already in the array: reverse () and sort ().
As one might expect, the reverse () method simply reverses the order of items in an array. Consider
the following example:

let values = [1, 2, 3, 4, 5];
values.reverse () ;
alert (values); // 5,4,3,2,1

Here, the array’s values are initially set to 1, 2, 3,4, and 3, in that order. Calling reverse () on the
array reverses the order to 5, 4, 3, 2, 1. This method is fairly straightforward but doesn’t provide
much flexibility, which is where the sort () method comes in.

By default, the sort () method puts the items in ascending order—with the smallest value first and
the largest value last. To do this, the sort () method calls the string () casting function on every
item and then compares the strings to determine the correct order. This occurs even if all items in an
array are numbers, as in this example:

let values = [0, 1, 5, 10, 15];
values.sort () ;
alert (values); // 0,1,10,15,5

Even though the values in this example begin in correct numeric order, the sort () method changes
that order based on their string equivalents. So even though 3 is less than 10, the string "10" comes
before "s when doing a string comparison, so the array is updated accordingly. Clearly, this is not an
optimal solution in many cases, so the sort () method allows you to pass in a comparison function
that indicates which value should come before which.

A comparison function accepts two arguments and returns a negative number if the first argument
should come before the second, a zero if the arguments are equal, or a positive number if the first
argument should come after the second. Here’s an example of a simple comparison function:

function compare (valuel, value2) ({
if (valuel < value2) {
return -1;
} else if (valuel > value2) ({
return 1;

The Array Type | 183

} else {
return 0;

}
}

This comparison function works for most data types and can be used by passing it as an argument to
the sort () method, as in the following example:

let values = [0, 1, 5, 10, 15];
values.sort (compare) ;
alert (values); // 0,1,5,10,15

When the comparison function is passed to the sort () method, the numbers remain in the correct
order. Of course, the comparison function could produce results in descending order if you simply
switch the return values like this:

function compare(valuel, value2) {
if (valuel < value2) {
return 1;
} else if (valuel > value2) {
return -1;
} else {
return 0;
}
}

(o, 1, 5, 10, 15];
compare) ;
); // 15,10,5,1,0

let values =
values.sort (
alert (values

Alternately, the compare function can be shortened and defined as an inline arrow function:

let values = [0, 1, 5, 10, 15];
values.sort((a, b) =>a <b ? a >b ? -1 :0);
alert (values); // 15,10,5,1,0

In this modified example, the comparison function returns 1 if the first value should come after the
second and -1 if the first value should come before the second. Swapping these means the larger value
will come first and the array will be sorted in descending order. Of course, if you just want to reverse
the order of the items in the array, reverse () is a much faster alternative than sorting.

NOTE Both reverse() and sort() return a reference to the array on which they
were applied.

A much simpler version of the comparison function can be used with numeric types and objects
whose valueof () method returns numeric values (such as the Date object). In either case, you can
simply subtract the second value from the first as shown here:

function compare (valuel, value2) {
return value2 - valuel;

}

184 | CHAPTER 6 COLLECTION REFERENCE TYPES

Because comparison functions work by returning a number less than zero, zero, or a number greater
than zero, the subtraction operation handles all of the cases appropriately.

Manipulation Methods

There are various ways to work with the items already contained in an array. The concat () method,
for instance, allows you to create a new array based on all of the items in the current array. This
method begins by creating a copy of the array and then appending the method arguments to the

end and returning the newly constructed array. When no arguments are passed in, concat () simply
clones the array and returns it. If one or more arrays are passed in, concat () appends each item in
these arrays to the end of the result. If the values are not arrays, they are simply appended to the end
of the resulting array. Consider this example:

let colors = ["red", "green", "blue"l;

let colors2 = colors.concat ("yellow", ["black", "brown"]);

alert (colors) ; // ["red", "green","blue"]

alert (colors2); // ["red", "green", "blue", "yellow", "black", "brown"]

This code begins with the colors array containing three values. The concat () method is called on
colors, passing in the string "yellow" and an array containing "black" and "brown". The result,
stored in colors2, contains "red", "green", "blue", "yellow", "black", and "brown". The original
array, colors, remains unchanged.

You can override this force-flattening default behavior by specifying a special symbol on the argu-
ment array instance, Symbol . isConcatSpreadable. This will prevent the concat () method from
flattening the result. Conversely, setting the value to true will force array-like objects to be flattened:

let colors = ["red", "green", "blue"];
let newColors = ["black", "brown"];
let moreNewColors = {
[Symbol.isConcatSpreadable] : true,
length: 2,
0: "pink",
1: "cyan"

}i
newColors [Symbol.isConcatSpreadable] = false;

// Force the array to not be flattened
let colors2 = colors.concat ("yellow", newColors) ;

// Force the array-like object to be flattened
let colors3 = colors.concat (moreNewColors) ;

alert (colors) ; // ["red", "green","blue"]
alert (colors2); // ["red", "green", "blue", "yellow", ["black", "brown"]]
alert (colors3); // ["red", "green", "blue", "pink, "cyan"]

The next method, slice (), creates an array that contains one or more items already contained in an
array. The slice () method may accept one or two arguments: the starting and stopping positions of

The Array Type | 185

the items to return. If only one argument is present, the method returns all items between that posi-
tion and the end of the array. If there are two arguments, the method returns all items between the
start position and the end position, not including the item in the end position. Keep in mind that this
operation does not affect the original array in any way. Consider the following:

let colors = ["red", "green", "blue", "yellow", "purple"];

let colors2 = colors.slice(1l);
let colors3 = colors.slice(l, 4);

alert (colors2); // green,blue,yellow,purple
alert (colors3); // green,blue,yellow

In this example, the colors array starts out with five items. Calling s1ice () and passing in 1 yields
an array with four items, omitting "red" because the operation began copying from position 1, which
contains "green". The resulting colors2 array contains "green", "blue", "yellow", and "pur-
plen. The colors3 array is constructed by calling s1ice () and passing in 1 and 4, meaning that the
method will begin copying from the item in position 1 and stop copying at the item in position 3. As
a result, colors3 contains "green", "blue", and "yellow".

NOTE If either the start or end position of slice() is a negative number, then
the number is subtracted from the length of the array to determine the appro-
priate locations. For example, calling slice(-2, -1) on an array with five items
is the same as calling slice(3, 4). If the end position is smaller than the start,
then an empty array is returned.

Perhaps the most powerful array method is splice (), which can be used in a variety of ways. The
main purpose of splice () is to insert items into the middle of an array, but there are three distinct
ways of using this method. They are as follows:

> Deletion—Any number of items can be deleted from the array by specifying just two argu-
ments: the position of the first item to delete and the number of items to delete. For example,
splice(0, 2) deletes the first two items.

> Insertion—Items can be inserted into a specific position by providing three or more argu-
ments: the starting position, 0 (the number of items to delete), and the item to insert.
Optionally, you can specify a fourth parameter, fifth parameter, or any number of other
parameters to insert. For example, splice(2, 0, "red", "green") inserts the strings "red"
and "green" into the array at position 2.

> Replacement—Items can be inserted into a specific position while simultaneously deleting
items, if you specify three arguments: the starting position, the number of items to delete,
and any number of items to insert. The number of items to insert doesn’t have to match the
number of items to delete. For example, splice(2, 1, "red", "green") deletes one item at
position 2 and then inserts the strings "red" and "green" into the array at position 2.

186

| CHAPTER 6 COLLECTION REFERENCE TYPES

The splice () method always returns an array that contains any items that were removed from
the array (or an empty array if no items were removed). These three uses are illustrated in the fol-
lowing code:

let colors = ["red", "green", "blue"];

let removed = colors.splice(0,1); // remove the first item

alert (colors) ; // green,blue

alert (removed) ; // red - one item array

removed = colors.splice(l, 0, "yellow", "orange"); // insert two items at position 1
alert (colors) ; // green,yellow,orange,blue
alert (removed) ; // empty array

removed = colors.splice(l, 1, "red", "purple"); // insert two values, remove one
alert (colors) ; // green,red,purple,orange,blue
alert (removed) ; // yellow - one item array

This example begins with the colors array containing three items. When splice is called the first time,
it simply removes the first item, leaving colors with the items "green" and "blue". The second

time splice () is called, it inserts two items at position 1, resulting in colors containing "green",
"yellow", "orange", and "blue". No items are removed at this point, so an empty array is returned.
The last time splice () is called, it removes one item, beginning in position 1, and inserts "red" and
npurple". After all of this code has been executed, the colors array contains "green", "red", "pur-
ple", "orange", and "blue".

Search and Location Methods

ECMAScript offers two strategies for searching inside an array instance: searching by strict equiva-
lence, and searching with a predicate function.

Strict Equivalence

ECMAScript’s three strict equivalence lookup methods are index0f () and lastIndexOf (), available
in all ECMAScript versions, and includes (), which was introduced in the ECMAScript 7 specifica-
tion. Each of these methods accepts two arguments: the item to look for and an optional index from
which to start looking. The index0f () and includes () methods start searching from the front of
the array (item 0) and continue to the back, whereas 1ast Index0f () starts from the last item in the
array and continues to the front.

indexOf () and lastIndexOf () each return the position of the item in the array or -1 if the item
isn’t in the array. includes () returns a Boolean indicating if at least one element in the searched
array matched the provided element. An identity comparison is used when comparing the first argu-
ment to each item in the array, meaning that the items must be strictly equal as if compared using
===. Here are some examples of this usage:

let numbers = [1, 2, 3, 4, 5, 4, 3, 2, 11;
alert (numbers.indexOf (4)) ; // 3
alert (numbers.lastIndexOf(4)); // 5

alert (numbers.includes(4)) ; // true

The Array Type | 187

alert (numbers.indexOf (4, 4)); // 5
alert (numbers.lastIndexOf (4, 4)); // 3
alert (numbers.includes (4, 7)) ; // false

let person = { name: "Nicholas" };

let people = [{ name: "Nicholas" }];

let morePeople = [person];

alert (people.indexOf (person)) ; // -1
alert (morePeople.indexOf (person)); // 0
alert (people.includes (person)) ; // false
alert (morePeople.includes (person)); // true

Predicate Search

ECMAScript also allows you to define a predicate function that will be invoked at each index. The
return value of the function determines if the element at that index is considered a match.

Alnfdkatefuncﬁontakesthefornlpredicate(element, index, array),w&wreelementisthe
current element in the array being examined, index is the index of element inside the array, and
array is the array instance. A truthy return value indicates a match.

The two methods that make use of this are find () and findIndex (). Both begin searching at the
lowest index in the array; find () returns the first matching element, and findIndex () returns the
index of the first matching element. Both methods also accept a second optional argument that allows
you to specify the value of this inside the predicate.

const people = [

name: "Matt",
age: 27

}

{

name: "Nicholas",
age: 29
1i

alert (people.find((element, index, array) => element.age < 28));
// {name: "Matt", age: 27}

alert (people.findIndex((element, index, array) => element.age < 28));

// 0
Neither method will continue searching once a match has been found.

const evens = [2, 4, 6];

// Last element of array will never be inspected after match is found
evens.find((element, index, array) => {

alert (element) ;

alert (index) ;

alert (array) ;

return element === 4;

1)

188 | CHAPTER 6 COLLECTION REFERENCE TYPES

/] 2
// 0
// (2, 4, 6]
/] 4
// 1
// 2, 4, 6]

Iterative Methods

ECMAScript defines five iterative methods for arrays. Each of the methods accepts two arguments: a

function to run on each item and an optional scope object in which to run the function (affecting the

value of this). The function passed into one of these methods will receive three arguments: the array

item value, the position of the item in the array, and the array object itself. Depending on the method,
the results of this function’s execution may or may not affect the method’s return value. The iterative

methods are as follows:

> every()—Runs the given function on every item in the array and returns true if the
function returns true for every item.

> filter()—Runs the given function on every item in the array and returns an array of all
items for which the function returns true.

> forEach()—Runs the given function on every item in the array. This method has no
return value.

> map()—Runs the given function on every item in the array and returns the result of each
function call in an array.

> some()—Runs the given function on every item in the array and returns true if the function
returns true for any one item.

These methods do not change the values contained in the array.

Of these methods, the two most similar are every () and some (), which both query the array for
items matching some criteria. For every (), the passed-in function must return true for every item in
order for the method to return true; otherwise, it returns false. The some () method, on the other
hand, returns true if even one of the items causes the passed-in function to return true. Here is

an example:

let numbers = [1, 2, 3, 4, 5, 4, 3, 2, 1];

let everyResult = numbers.every((item, index, array) => item > 2);
alert (everyResult); // false

let someResult = numbers.some((item, index, array) => item > 2);
alert (someResult) ; // true

This code calls both every () and some () with a function that returns true if the given item is
greater than 2. For every (), the result is false because only some of the items fit the criteria. For
some (), the result is true because at least one of the items is greater than 2.

The Array Type | 189

The next method is filter (), which uses the given function to determine if an item should be
included in the array that it returns. For example, to return an array of all numbers greater than 2,
the following code can be used:

let numbers = [1, 2, 3, 4, 5, 4, 3, 2, 1];

let filterResult = numbers.filter((item, index, array) => item > 2);
alert (filterResult) ; // [3,4,5,4,3]

Here, an array containing the values 3, 4, 5, 4, and 3 is created and returned by the call to filter ()
because the passed-in function returns true for each of those items. This method is very helpful when
querying an array for all items matching some criteria.

The map () method also returns an array. Each item in the array is the result of running the passed-in
function on the original array item in the same location. For example, you can multiply every number
in an array by two and are returned an array of those numbers, as shown here:

let numbers = [1, 2, 3, 4, 5, 4, 3, 2, 1];
let mapResult = numbers.map((item, index, array) => item * 2);

alert (mapResult) ; // [2,4,6,8,10,8,6,4,2]

The code in this example returns an array containing the result of multiplying each number by two.
This method is helpful when creating arrays whose items correspond to one another.

The last method is forEach (), which simply runs the given function on every item in an array. There
is no return value and it is essentially the same as iterating over an array using a for loop. Here’s
an example:

let numbers = [1, 2, 3, 4, 5, 4, 3, 2, 1];

numbers.forEach((item, index, array) => {
// do something here

1

All of these array methods ease the processing of arrays by performing a number of different
operations.

Reduction Methods

ECMAScript offers two reduction methods for arrays: reduce () and reduceRight (). Both meth-
ods iterate over all items in the array and build up a value that is ultimately returned. The reduce ()
method does this starting at the first item and traveling toward the last, whereas reduceright ()
starts at the last and travels toward the first.

Both methods accept two arguments: a function to call on each item and an optional initial value
upon which the reduction is based. The function passed into reduce () or reduceRight () accepts
four arguments: the previous value, the current value, the item’s index, and the array object. Any
value returned from the function is automatically passed in as the first argument for the next item.
The first iteration occurs on the second item in the array, so the first argument is the first item in the
array and the second argument is the second item in the array.

190 | CHAPTER 6 COLLECTION REFERENCE TYPES

You can use the reduce () method to perform operations such as adding all numbers in an array.
Here’s an example:

let values = [1, 2, 3, 4, 5];
let sum = values.reduce((prev, cur, index, array) => prev + cur);

alert (sum); // 15

The first time the callback function is executed, prev is 1 and cur is 2. The second time, prev is 3
(the result of adding 1 and 2), and cur is 3 (the third item in the array). This sequence continues until
all items have been visited and the result is returned.

The reduceright () method works in the same way, just in the opposite direction. Consider the fol-
lowing example:
let values = [1, 2, 3, 4, 5];

let sum = values.reduceRight (function(prev, cur, index, array) {
return prev + cur;

b

alert (sum); // 15

In this version of the code, prev is 5 and cur is 4 the first time the callback function is executed. The
result is the same, of course, because the operation is simple addition.

The decision to use reduce () or reduceRight () depends solely on the direction in which the items
in the array should be visited. They are exactly equal in every other way.

TYPED ARRAYS

New in ECMAScript 6, the typed array is a construct designed for efficiently passing binary data to

native libraries. There is no actual “TypedArray” type in JavaScript—rather, the term refers to a col-
lection of specialized arrays that contain numeric types. To understand how to use the typed array, it
is helpful to first understand its intended purpose.

History

As web browsers gained adoption, it was not difficult to foresee that the ability to run complex 3D
applications inside of them would be in demand. As early as 2006, browser vendors including Moz-
illa and Opera began to experiment with a programming platform for rendering graphics-intensive
applications inside the browser without requiring any plugins. The goal was to develop a JavaScript
API that could make use of a 3D graphics API and GPU acceleration to enable rendering of complex
graphics on a <canvas> element.

WebGL

The eventual JavaScript API was based on the OpenGL for Embedded Systems (OpenGL ES) 2.0
specification, a subset of OpenGL that specializes in 2D and 3D computer graphics. The new API,
named the Web Graphics Library (WebGL), saw its 1.0 release in March 2011. With it, develop-
ers were able to write graphics-intensive application code that could natively be interpreted by any
WebGL-compliant web browser.

Typed Arrays | 191

In initial versions of WebGL, a fundamental mismatch between JavaScript arrays and native arrays
caused performance issues. The graphics driver APIs often did not want numbers passed to them in
JavaScript’s default double floating point format. Furthermore, the graphics driver APIs expected
arrays of numbers to be passed to them in a binary format, which of course is nothing like the Java-
Script array’s format in memory. Therefore, each time an array was passed between WebGL and the
JavaScript runtime, the WebGL binding would perform the expensive operation of allocating a new
array in the destination environment, iterating over the array in its current format, and casting the
number into an appropriate format in the new array.

Emergence of Typed Arrays

This, of course, was untenable, and Mozilla solved this problem by implementing canvasFloat -
Array, a C-style array of floating point numbers that offered a JavaScript interface. Using this type
allowed the JavaScript runtime to allocate, read, and write an array that could be passed directly to
and from the graphics driver APL. The canvasFloatArray would eventually be reshaped into the
Float32Array, which was the first “type” available for typed arrays as they currently exist.

Using ArrayBuffers

Float32Array is actually one type of “view” that allows the JavaScript runtime to access a block of
allocated memory called an ArrayBuffer. The ArrayBuffer is the fundamental unit referred to by
all typed arrays and views.

NOTE The TypedarrayBuffer is a variant of the ArrayBuffer that can be
passed between execution contexts without performing a copy. Refer to the
“Workers” chapter for coverage of this type.

ArrayBuffer is a normal JavaScript constructor that can be used to allocate a specific number of
bytes in memory.

const buf = new ArrayBuffer(16); // Allocates 16 bytes of memory
alert (buf.bytelLength) ; // 16

An ArrayBuffer can never be resized once it is created. However, you are able to copy all or part of
an existing ArrayBuf fer into a new instance using slice():
const bufl = new ArrayBuffer(16);

const buf2 = bufl.slice(4, 12);
alert (buf2.byteLength); // 8

ArrayBuffer is in some ways similar to the C++ malloc (), with several notable exceptions:

> When malloc() fails to allocate, it returns a null pointer. If ArrayBuffer allocation fails, it
throws an error.

> Amalloc() call can take advantage of virtual memory, so the maximum size of the allo-
cation is only bounded by the addressable system memory. ArrayBuffer allocation cannot
exceed Number.MAX _SAFE _ INTEGER (2 * 53) bytes.

192 | CHAPTER 6 COLLECTION REFERENCE TYPES

> A successful malloc() invocation performs no initialization of the actual addresses.
Declaring an ArrayBuffer initializes all the bits to Os.

> Heap memory allocated by malloc() cannot be used by the system until free() is invoked
or the program exits. Heap memory allocated by declaring an ArrayBuffer is still garbage
collected—no manual memory management is required.

The contents of an ArrayBuffer cannot be read or written with only a reference to the buffer
instance. To read or write data inside, you must do so with a view. There are different types of views,
but they all refer to binary data stored in an ArrayBuffer.

DataViews

The first type of view that allows you to read and write an ArrayBuffer is the Dataview. This view
is designed for file I/O and network I/O; the API allows for a high degree of control when manipu-
lating buffer data, but it offers reduced performance compared to different view types as a result. A
DataView does not assume anything about the buffer contents and is not iterable.

A pataview must be created to read from and write to an ArrayBuffer that already exists. It can use
the whole buffer or only part of it, and it maintains a reference to the buffer instance and where in
the buffer the view begins.

const buf = new ArrayBuffer(16);

// DataView default to use the entire ArrayBuffer
const fullDataView = new DataView (buf) ;

alert (fullDataView.byteOffset) ; // 0
alert (fullDataView.byteLength) ; // 16
alert (fullDataView.buffer === buf); // true

// Constructor takes an optional byte offset and byte length
// byteOffset=0 begins the view at the start of the buffer
// byteLength=8 restricts the view to the first 8 bytes
const firstHalfDataView = new DataView(buf, 0, 8);

alert (firstHalfDataView.byteOffset) ; // 0
alert (firstHalfDataView.byteLength) ; // 8
alert (firstHalfDataView.buffer === buf); // true

// DataView will use the remainder of the buffer unless specified
// byteOffset=8 begins the view at the 9th byte of the buffer
// byteLength default is the remainder of the buffer

const secondHalfDataView = new DataView (buf, 8);

alert (secondHalfDataView.byteOffset) ; // 8
alert (secondHalfDataView.byteLength) ; // 8
alert (secondHalfDataView.buffer === buf); // true

To read from and write to the buffer through a Dataview, you will require the use of several
components:

> The byte offset at which you wish to read or write. This can be thought of as a sort of
“address” within the Dataview.

Typed Arrays | 193

> The ElementType the Dataview should use for conversion between the Number type in the
JavaScript runtime and the binary format in the buffer.

> The endianness of the value in memory. Defaults to big-endian.

ElementType

The Dataview makes no assumptions about what data type is stored inside the buffer. The API it
exposes forces you to specify an ElementType when reading or writing, and the Dataview will duti-
fully perform the conversion to execute that read or write.

ECMAScript 6 supports eight different Element Types:

ELEMENTTYPE
Int8

Uint8

Int16

Uint16

Int32

Uint32

Float32

Floaté4

BYTES
1
1

DESCRIPTION
8-bit signed integer
8-bit

unsigned integer
16-bit signed integer
16-bit

unsigned integer

32-bit signed integer

32-bit
unsigned integer

32-bit IEEE-754
floating point

64-bit IEEE-754
floating point

C EQUIVALENT
signed char

unsigned char

short

unsigned short

int

unsigned int

float

double

RANGE OF VALUES
-128 to 127
0 to 255

-32768 to 32767
0 to 65535

-2,147,483,648 to
2,147,483,647
0 to 4,294,967,295

-3.4E+38 to +3.4E+38

-1.7E+308
to +1.7E+308

The Dataview exposes get and set methods for each of these types, which use a byteoffset to
address into the buffer for reading and writing values. Types can be used interchangeably, as demon-

strated here:

// Allocate two bytes of memory and declare a DataView

const buf

new ArrayBuffer(2);

const view = new DataView (buf) ;

// Demonstrate that the entire buffer is indeed all zeroes
// Check the first and second byte

alert (view.getInt8(0)) ; // 0
alert (view.getInt8(1)); // 0
// Check the entire buffer

alert (view.getIntl16(0)); // O

// Set the entire buffer to ones
// 255 in binary is 11111111 (2%8 - 1)

view.setUint8 (0,

255) ;

194 | CHAPTER 6 COLLECTION REFERENCE TYPES

// DataView will automatically cast values to the designated ElementType
// 255 in hex is OxFF
view.setUint8 (1, OxFF);

// The buffer is now all ones, which when read as a
// two's complement signed integer should be -1
alert (view.getIntl6(0)); // -1

Big-Endian and Little-Endian

The buffer’s bytes in the previous example were intentionally identical to avoid the issue of endian-
ness. “Endianness” refers to the convention of byte ordering maintained by a computing system. For
the purposes of Dataviews, there are only two conventions supported: big-endian and little-endian.
Big-endian, also referred to as “network byte order,” means that the most significant byte is held in
the first byte, and the least significant byte is held in the last byte. Little-endian means the least sig-
nificant byte is held in the first byte, and the most significant byte is held in the last byte.

The native endianness of the system executing the JavaScript runtime will determine how it reads and
writes bytes, but a Dataview does not obey this convention. A Dataview is an unbiased interface to
a segment of memory and will follow whatever endianness you specify. All Dataview API methods
default to the big-endian convention but accept an optional final Boolean argument that allows you
to enable the little-endian convention by setting it to true.

// Allocate two bytes of memory and declare a DataView
const buf = new ArrayBuffer(2);
const view = new DataView (buf) ;

// Fill the buffer so that the first bit and last bit are 1
view.setUint8 (0, 0x80); // Sets leftmost bit to 1
view.setUint8 (1, 0x01); // Sets rightmost bit to 1

// Buffer contents (spaced for readability):
// 0x8 0x0 0x0 0x1
// 1000 0000 0000 0001

// Read a big-endian Uintlé

// 0x80 is the high byte, 0x01 is the low byte
// 0x8001 = 2°15 + 270 = 32768 + 1 = 32769
alert (view.getUint16(0)); // 32769

// Read a little-endian Uintlé6

// 0x01 is the high byte, 0x80 is the low byte
// 0x0180 = 2"8 + 277 = 256 + 128 = 384

alert (view.getUint16 (0, true)); // 384

// Write a big-endian Uint1é6
view.setUintl6 (0, 0x0004) ;

// Buffer contents (spaced for readability):
// 0x0 0x0 0x0 O0x4
// 0000 0000 0000 0100

Typed Arrays | 195

alert (view.getUint8(0)); // O
alert (view.getUint8(1)); // 4

// Write a little-endian Uintlé
view.setUintl6 (0, 0x0002, true);

// Buffer contents (spaced for readability):
// 0x0 0x2 0x0 0x0
// 0000 0010 0000 0000

alert (view.getUint8(0)); // 2
alert (view.getUint8(1)); // O

Corner Cases

A pataview will only complete a read or write if there is sufficient buffer space to do so; otherwise it
throws a RangeError:

const buf = new ArrayBuffer(6);
const view = new DataView (buf) ;

// Attempt to get a value that partially extends past end of buffer
view.getInt32(4);
// RangeError

// Attempt to get a value past the end of the buffer
view.getInt32(8);
// RangeError

// Attempt to get a value past the end of the buffer
view.getInt32(-1);
// RangeError

// Attempt to set a value that extends past end of buffer
view.setInt32 (4, 123);
// RangeError

A pataview will make a best effort to cast a value into the appropriate type when writing to a buffer,
falling back to 0. If it cannot, it will throw an error:

const buf = new ArrayBuffer(l);
const view = new DataView (buf) ;

view.setInt8(0, 1.5);
alert (view.getInt8(0)); // 1

view.setInt8(0, [4]);
alert (view.getInt8(0)); // 4

view.setInt8(0, 'f');
alert (view.getInt8(0)); // 0

view.setInt8 (0, Symbol());
// TypeError

196

CHAPTER 6 COLLECTION REFERENCE TYPES

Typed Arrays

Typed arrays are another form of an ArrayBuffer view. Though it is similar in concept to a Data-
View, a typed array is distinguished in that it enforces a single ElementType and obeys the system’s
native endianness. In exchange, it offers a much broader API and better performance. Typed arrays
are designed for efficiently exchanging binary data with native libraries like WebGL. Because the
binary representation of typed arrays is in an easily digestible format for the native operating system,
JavaScript engines are able to heavily optimize arithmetic, bitwise, and other common operations on
typed arrays, and as a result they are extremely fast to use.

Typed arrays can be created to read from an existing buffer, initialized with their own buffer, filled
with an iterable, or filled from an existing typed array of any type. They can also be created using
<ElementTypes>.from() and <ElementTypes>.of ():

// Creates a buffer of 12 bytes

const buf = new ArrayBuffer(12);

// Creates an Int32Array that references this buffer

const ints = new Int32Array (buf);

// The typed array recognizes it needs 4 bytes per element,
// and therefore will have a length of 3

alert (ints.length); // 3

// Creates an Int32Array of length 6

const ints2 = new Int32Array(6);

// Each number uses 4 bytes, so the ArrayBuffer is 24 bytes

alert (ints2.length) ; // 6

// Like DataView, typed arrays have a reference to their associated buffer
alert (ints2.buffer.byteLength); // 24

// Creates an Int32Array containing [2, 4, 6, 8]
const ints3 = new Int32Array([2, 4, 6, 8]);
alert (ints3.length) ; // 4

alert (ints3.buffer.byteLength); // 16

alert (ints3[2]); /] 6

// Creates an IntléArray with values copies from ints3

const ints4 = new Intl6Array(ints3);

// The new typed array allocates its own buffer, and each value
// is converted to its new representation at the same index

alert (ints4.length) ; /] 4
alert (ints4.buffer.bytelLength); // 8
alert (ints4[2]); /] 6

// Creates an IntléArray from a normal array
const ints5 = Intlé6Array.from([3, 5, 7, 91);

alert (ints5.length) ; // 4
alert (ints5.buffer.byteLength); // 8
alert (ints5[2]); /7

// Creates a Float32Array from arguments

const floats = Float32Array.of(3.14, 2.718, 1.618);
alert (floats.length) ; // 3

alert (floats.buffer.byteLength); // 12

alert (floats[2]); // 1.6180000305175781

Typed Arrays | 197

Both the constructor and instances expose a BYTES PER ELEMENT property that returns the size of

each element in that type of array:

alert (Intl6Array.BYTES PER_ELEMENT) ;
alert (Int32Array.BYTES PER ELEMENT) ;

const ints = new Int32Array(1l),
floats = new Floaté4Array (1) ;

alert (ints.BYTES PER_ELEMENT) ;
alert (floats.BYTES PER_ELEMENT) ;

/] 2
/1 4

/] 4
// 8

Unless a typed array is initialized with values, its associated buffer is filled with zeroes:

Typed Array Behavior

const ints
alert ([
alert ([
alert (ints|[
alert ([

ints[0]) ;
ints[1]) ;
21);
31);

i

ints

new Int32Array(4);

// 0
//0
// 0
// 0

In most ways, typed arrays behave like their regular array counterparts would. Typed arrays support

the following operators, methods, and properties:

>

Y Y Y VY VY VY Y Y Y Y Y Y Y VY Y VY

[]
copyWithin()
entries()
every()
£i11()
filter()
find()
findIndex()
forEach()
indexO£f()
join()
keys()
lastIndexOf()
length
map ()
reduce()
reduceRight()

reverse()

198 | CHAPTER 6 COLLECTION REFERENCE TYPES

slice()

some()

sort()
toLocaleString()

toString()

Y Y Y Y Y Y

values()

Methods that return a new array will return a new typed array with the same element type:

const ints = new Intl6Array([1l, 2, 3]);
const doubleints = ints.map(x => 2*x);
alert (doubleints instanceof Intl6Array); // true

Typed arrays have a Symbol . iterator defined, meaning that for. .of loops and spread operators
can also be used:

const ints = new Intl6Array([1l, 2, 3]);
for (const int of ints) {
alert (int) ;

}

/11
/2
//3

alert (Math.max(...ints)); // 3

Merging, Copying, and Changing Typed Arrays

Typed arrays still use array buffers as their storage, and array buffers cannot be resized. Therefore,
the following methods are not supported by typed arrays:

> concat()
pop ()
push()
shift()

splice()

Y Y ¥V VY Y

unshift()

However, typed arrays do offer two new methods that allow you to copy values in and out of arrays
quickly: set () and subarray ().

set () copies the values from a provided array or typed array into the current typed array at the
specified index:

// Create an intlé array of length 8
const container = new Intlé6Array(8);

Typed Arrays | 199

// Copy in typed array into first four values

// Offset default to an index of 0

container.set (Int8Array.of (1, 2, 3, 4));

alert (container); // [1,2,3,4,0,0,0,0]

// Copy in normal array into last four values

// Offset of 4 means begin inserting at the index 4
container.set([5,6,7,8], 4);

alert (container); // [1,2,3,4,5,6,7,8]

// An overflow will throw an error
container.set([5,6,7,81, 7);
// RangeError

subarray () performs the opposite operation of set (), returning a new typed array with values cop-
ied out of the original. Providing the start and end indices is optional:

const source = IntléArray.of(2, 4, 6, 8);

// Copies the entire array into a new array of the same type
const fullCopy = source.subarray() ;
alert (fullCopy); // [2, 4, 6, 8]

// Copy the array from index 2 on
const halfCopy = source.subarray(2);
alert (halfCopy); // [6, 8]

// Copy the array from index 1 up until 3
const partialCopy = source.subarray(l, 3);
alert (partialCopy); // [4, 6]

Typed arrays don’t have a native ability to concatenate, but ample tools are available in the typed
array API that one can be constructed manually:

// First argument is the type of array that should be returned
// Remaining arguments are all the typed arrays that should be concatenated

function typedArrayConcat (typedArrayConstructor, ...typedArrays) {
// Count the total elements in all arrays
const numElements = typedArrays.reduce((x,y) => (x.length || x) + y.length);

// Create an array of the provided type with space for all elements
const resultArray = new typedArrayConstructor (numElements) ;

// Perform the successive array transfer

let currentOffset = 0;

typedArrays.map (x => {
resultArray.set (x, currentOffset);
currentOffset += x.length;

b ;

return resultArray;

const concatArray = typedArrayConcat (Int32Array,
Int8Array.of (1, 2, 3),
Intlé6Array.of (4, 5, 6),
Float32Array.of (7, 8, 9));

200 | CHAPTER 6 COLLECTION REFERENCE TYPES

alert (concatArray); // [1, 2, 3, 4, 5, 6, 7, 8, 9]
alert (concatArray instanceof Int32Array); // true

Underflow and Overflow

Overflow and underflow of values in typed arrays will not spill over into other indices, but you still
must take into account what element type the array considers its entries. Typed arrays will accept
only the relevant bits that each index in the array can hold, irrespective of the effect it will have on
the actual numerical value. The following demonstrates how underflow and overflow are handled:

// Signed ints array of length 2

// Each index holds a 2's complement signed integer which can
// range from -128 (-1 * 2%7) to 127 (2*7 - 1)

const ints = new Int8Array(2);

// Unsigned ints array of length 2

// Each index holds an unsigned integer which can range from
// 0 to 255 (2%7 - 1)

const unsignedInts = new Uint8Array(2);

// Overflow bits will not spill into adjacent indices.
// The index only takes the least significant 8 bits

unsignedInts([1] = 256; // 0x100
alert (unsignedInts) ; // [0, 0]
unsignedInts[1] = 511; // Ox1FF
alert (unsignedInts) ; // [0, 255]

// Underflow bits will be converted to their unsigned equivalent.
// OxFF is -1 as a 2's complement int (truncated to 8 bits),

// but is 255 as an unsigned int

unsignedInts([1] = -1 // OXFF (truncated to 8 bits)

alert (unsignedInts); // [0, 255]

// Overflow in 2's complement occurs transparently.

// 0x80 is 128 in unsigned int but -128 in 2's complement int
ints[1] = 128; // 0x80

alert (ints) ; // 10, -128]

// Underflow in 2's complement occurs transparently.

// OxFF is 255 in unsigned int but -1 in 2's complement int
ints[1] = 255; // OXFF

alert (ints) ; // [0, -1]

In addition to the eight element types, there is also an additional “clamped” array type, Uint8Clam-
pedArray, which prevents overflow in either direction. Values above its maximum value of 255 will
be rounded down to 2535, and values below 0 will be rounded up to 0.

const clampedInts = new Uint8ClampedArray([-1, 0, 255, 256]);
alert (clampedInts); // [0, 0, 255, 255]

According to Brendan Eich, “Uint8Clampedarray is totally a historical artifact of the HTMLS can-
vas element. Avoid unless you really are doing canvas-y things.”

The Map Type | 201

THE MAP TYPE

Prior to the ECMAScript 6 specification, implementing a key/value store in JavaScript could be
accomplished effectively and easily by using an object, using the object properties as keys and the
property references the values. This style of implementation was not without its flaws, however, and
therefore the TC39 committee saw fit to define a specification for a true key/value store.

Newly added in the ECMAScript 6, Map is a new collection type that introduces true key/value behav-
ior into the language. Much of what it offers is an overlap with what is provided by the object type,
but there are subtle differences between the object and Map types that should be taken into account
when selecting one for use.

Basic API

An empty Map is instantiated with the new keyword:

const m = new Map() ;

If you wish to populate the Map when it is initialized, the constructor optionally accepts an iter-
able object, expecting it to contain key/value pair arrays. Each pair in the iterable argument will be
inserted into the newly created Map in the order in which they are iterated:

// Initialize map with nested arrays
const ml = new Map ([
["keyl", "vall"],
[ukeyz L "val2"] ,
["key3", "val3"]
1)
alert (ml.size); // 3

// Initialize map with custom-defined iterator
const m2 = new Map ({
[Symbol.iterator]: function* () {
yield ["keyl", "vall"];
yield ["key2", "val2"];
yield ["key3", "val3"];
}
1

alert (m2.size); // 3

// Map expects values to be key/value whether they are provided or not
const m3 = new Map([[]]);

alert (m3.has (undefined)); // true

alert (m3.get (undefined)); // undefined

Key/value pairs can be added after initialization with set (), queried with get () and has (), counted
with the size property, and removed with delete ()and clear ():

const m = new Map() ;
alert (m.has ("firstName")) ; // false

alert (m.get ("firstName ")); // undefined
alert (m.size); // 0

202 | CHAPTER 6 COLLECTION REFERENCE TYPES

m.set ("firstName", "Matt")
.set ("lastName", "Frisbie");
alert (m.has("firstName")); // true
alert (m.get ("firstName")); // Matt
alert (m.size) ; // 2
m.delete ("firstName"); // deletes only this key/value pair
alert (m.has ("firstName")); // false
alert (m.has ("lastName")) ; // true
alert (m.size); // 1
m.clear(); // destroys all key/value pairs in this Map instance
alert (m.has ("firstName")); // false
alert (m.has ("lastName")) ; // false
alert (m.size); /] 0

The set () method returns the Map instance, so it is possible to chain multiple set operations together,
including on the initial declaration:

const m = new Map().set("keyl", "vall");

m.set ("key2", "val2")
.set ("key3", "val3");

alert (m.size); // 3

Unlike an object, which can only use numbers or strings as keys, a Map can use any JavaScript data
type as a key. It uses the “SameValueZero” comparison operation (defined inside the ECMAScript
specification and not available in the actual language) and is mostly comparable to using strict object
equivalence to check for a key match. As with objects, there is no restriction on what is contained in
the value.

const m = new Map() ;

const functionKey = function() {};
const symbolKey = Symbol () ;
const objectKey = new Object () ;

m.set (functionKey, "functionvValue");
m.set (symbolKey, "symbolValue");
m.set (objectKey, "objectValue");

alert (m.get (functionKey)); // functionValue
alert (m.get (symbolKey)) ; // symbolValue
alert (m.get (objectKey)) ; // objectValue

// SameValueZero checks mean separate instances will not collide
alert (m.get (function() {})); // undefined

The Map Type | 203

As with strict equivalence, objects and other “collection” types used for keys and values remain
unchanged inside a Map when their contents or properties are altered:

const m = new Map() ;

const objKey
objval
arrKey
arrVal

’

}
b
]
]

’

[}
—_—

7

m.set (objKey, objval);
m.set (arrKey, arrvVal);

objKey.foo = "foo";

objVal.bar = "bar";
arrKey.push("foo") ;
arrVal.push("bar") ;

alert (m.get (objKey)); // {bar: "bar"}
alert (m.get (arrKey)); // ["bar"]

The use of the SameValueZero operation may introduce unexpected collisions:

const m = new Map() ;

const a = 0/"", // NaN

b =o0/"", // NaN

pz = +0,

nz = -0;
alert(a === b); // false
alert (pz === nz); // true

alert (m.get (b)) ;
alert (m.get (nz)); // bar

NOTE The SameValueZero operation is new to the ECMAScript specification.
There is an excellent writeup on it and other ECMAScript equality conventions
on the Mozilla documentation site: https://developer.mozilla.orgl/en-US/docs/
Web/JavaScript/Equality_comparisons_and_sameness.

Order and lteration

One major departure from the object type’s conventions is that Map instances maintain the order of
key/value insertion and allow you to perform iterative operations following insertion order.

204

| CHAPTER 6 COLLECTION REFERENCE TYPES

A Map instance can provide an Iterator that contains array pairs in the form of [key, value] in
insertion order. This iterator can be retrieved using entries (), or the Symbol.iterator property,
which references entries ():

const m = new Map ([
["keyl", "vall”] ,
["key2", "val2"],
["key3", "val3d"]
1)

alert (m.entries === m[Symbol.iterator]); // true

for (let pair of m.entries()) {
alert (pair) ;

}

// lkeyl,valll

// lkey2,val2l

// [key3,val3]

for (let pair of m[Symbol.iterator] ()) ({
alert (pair) ;

}

// lkeyl,valll

// [key2,val2]

// lkey3,val3]

Because entries () is the default iterator, the spread operator can be used to concisely convert a Map
into an array:

const m = new Map ([
["keyl", "vall"],
[nkeyz n, "va12"] ,
[llkey3 n, "va13"]
1)

alert([...m]); // [lkeyl,valll, [key2,val2], [key3,val3]]

To use a callback convention instead of an iterator, forEach (callback, opt_ thisArg) invokes
the callback for each key/value pair. It optionally accepts a second argument, which will override the
value of this inside each callback invocation.

const m = new Map ([
["keyl", "vall"],
["key2", "val2"],
[nkey3 " , "val3l n]
1)

m.forEach((val, key) => alert(“${key} -> ${val}>));
// keyl -> vall
// key2 -> val2
// key3 -> val3

The Map Type | 205

keys () and values () return an iterator that contains all keys or all values in the Map in inser-
tion order:

const m = new Map ([
[“keyl", "yall"],
[ukeyzul “val2"] ,
[||key3 n , "Val?)"]
1)

for (let key of m.keys()) ({
alert (key) ;

}

/] keyl

// key2

// key3

for (let key of m.values()) {
alert (key) ;

}

// valuel

// value2

// value3l

Keys and values exposed inside an iterator are mutable, but the references inside the Map cannot be
altered. However, this does not restrict changing properties inside a key or value object. Doing so will
not alter their identity with respect to the Map instance:

const ml = new Map ([
[“keyl", “vall"]
1)

// String primitive as key is unaltered
for (let key of m.keys()) {
key = "newKey";
alert (key) ; // newKey
alert (m.get ("keyl")); // vall

}
const keyObj = {id: 1};

const m = new Map ([
[keyObj, "vall"]
1)

// Key object property is altered, but the object still refers
// to the same value inside the map
for (let key of m.keys()) {

key.id = "newKey";

alert (key) ; // {id: "newKey"}

alert (m.get (keyObj)); // vall

}

alert (keyObj) ; // {id: "newKey"}

206 | CHAPTER 6 COLLECTION REFERENCE TYPES

Choosing Between Objects and Maps

For most web development purposes, selecting between a Map or a regular object will be only a
matter of preference and have little consequence elsewhere. However, for developers that care about
memory and performance, there are notable differences between objects and maps that may be

of interest.

Memory Profile

The engine-level implementation of object and Map will obviously differ between browsers, but the
amount of memory required to store a single key/value pair scales linearly with the number of keys.
Bulk addition or removal of key/value pairs is also governed by how the engine implements memory
allocation for that type. Results may vary by browser, but given a fixed amount of memory, a Map will
be able to store roughly 50 percent more key/value pairs than an object.

Insertion Performance

Inserting a new key/value pair into an Object versus a Map is a roughly comparable operation, but
insertion into a Map will generally be slightly faster across all browser engines. For both types, the
speed of an insertion does not scale linearly with the number of key/value pairs in the object or Map.
If your code is heavy on insert operations, Map instances offer superior performance.

Lookup Performance

Unlike insertion, looking up a key/value pair in an object versus a Map is a roughly comparable
operation at scale, but a smaller number of key/value pairs favor object instances in some situa-
tions. In situations where an Object instance is being used like an array (for example, consecutive
integer properties), the browser engine can perform optimizations such as more efficient layout in
memory—this is never possible with a Map. For both types, lookup speed does not scale linearly with
the number of key/value pairs in an object or Map. If your code is heavy on lookup operations, in
some scenarios it may be more advantageous to use an Object.

Delete Performance

The performance of the delete operation on Object properties is notorious for being horrendous,
and this is still very much the case in many browser engines. Workarounds for pseudo-deleting object
properties include assigning undefined or null as the property value, but in many cases this is an
obnoxious or unsuitable compromise. Across most browser engines, the Map delete () operation is
faster than insert and lookup. If your code is heavy on delete operations, the Map type is the over-
whelming favorite.

THE WEAKMAP TYPE

Newly added in the ECMAScript 6, WeakMap is a new collection type that introduces augmented key/
value behavior into the language. The weakMap type is a cousin to the Map type, and its API is a strict
subset of Map. The “weak” designation describes how JavaScript’s garbage collector treats keys in

a WeakMap.

The WeakMap Type | 207

Basic API

An empty WeakMap is instantiated with the new keyword:

const wm = new WeakMap () ;

Keys in a weakMap can only be of type or inherit from object—all other attempts to set a key with a
non-object will throw a TypeError. There are no restrictions on the type of the value.

If you wish to populate the weakMap when it is initialized, the constructor optionally accepts an iter-
able object, expecting it to contain valid key/value pair arrays. Each pair in the iterable argument will
be inserted into the newly created weakMap in the order in which they are iterated:

const keyl = {id: 1},
key2 = {id: 2},
key3 = {id: 3};
// Initialize WeakMap with nested arrays
const wml = new WeakMap ([
[keyl, "vall"],

[key2, "val2"],

[key3, "val3"]
1)
alert (wm.get (keyl)); // val2
alert (wm.get (key2)); // val2
alert (wm.get (key3)); // val3

// Initialization is all-or-nothing, a single bad key will
// throw an error and abort the initialization
const wm2 = new WeakMap ([
[keyl, "vall"],
["BADKEY", "val2"],
[key3, "val3"]
1)
// TypeError: Invalid value used as WeakMap key
typeof wm2;
// ReferenceError: wm2 is not defined

// Primitives can still be used with an object wrapper
const stringKey = new String("keyl");
const wm3 = new WeakMap ([

stringKey, "vall"

1)
alert (wm3.get (stringKey)); // "vall"

Key/value pairs can be added after initialization with set (), queried with get () and has (), and
removed with delete():

const wm = new WeakMap () ;

const keyl = {id: 1},
key2 = {id: 2};
alert (wm.has (keyl)); // false

alert (wm.get (keyl)); // undefined

208

| CHAPTER 6 COLLECTION REFERENCE TYPES

wm.set (keyl, "Matt")
.set (key2, "Frisbie");

alert (wm.has (keyl)); // true
alert (wm.get (keyl)); // Matt

wm.delete (keyl); // deletes only this key/value pair

alert (wm.has (keyl)); // false
alert (wm.has (key2)); // true

The set () method returns the weakMap instance, so it is possible to chain multiple set operations
together, including on the initial declaration:
const keyl = {id: 1},
key2 = {id: 2},
key3 = {id: 3};

const wm = new WeakMap () .set (keyl, "vall");

wm.set (key2, "val2")
.set (key3, "val3");

alert (wm.get (keyl)); // vall
alert (wm.get (key2)); // val2
alert (wm.get (key3)); // val3

Weak Keys

The “weak” designation stems from the fact that keys in a weakMap are “weakly held,” meaning they
are not counted as formal references that would otherwise prevent garbage collection. An important
distinction for the WeakMap is that the value reference is #ot weakly held. As long as the key exists,
the key/value pair will remain in the map and count as a reference to the value—thereby preventing it
from being garbage collected.

Consider the following example:

const wm = new WeakMap () ;

wm.set ({}, "val");

Inside set (), a fresh object is initialized and used as a key to a dummy string. Because there are no
other references to this object, as soon as this line is finished executing, the object key will be free for
garbage collection. When this occurs, the key/value pair will disappear from the weakMap, and it will
be empty. In this example, because there are no other references to the value, this key/value destruc-
tion will also mean that the value is eligible for garbage collection.

Consider a slightly different example:

const wm = new WeakMap() ;

const container = {
key: {}
}i

The WeakMap Type | 209

wm.set (container.key, "val");

function removeReference ()
container.key = null;

}

Here, the container object maintains a reference to the key in the weakMap, so the object is ineligible
for garbage collection. However, as soon as removeReference () is invoked, the last strong reference
to the key object will be destroyed, and garbage collection will eventually wipe out the key/value pair.

Non-Iterable Keys

Because key/value pairs in a WeakMap can be destroyed at any time, it does not make sense to offer
the ability to iterate through the key/value pairs. This also excludes the ability to destroy all key/value
pairs at once using clear (), which is not part of the weakMap API. Because iteration is not possible,
it is also not possible to retrieve a value from a WeakMap instance unless you have a reference to the
key object. Even if code has access to the weakMap instance, there is no way to inspect its contents.

The reason that WweakMap instances restrict keys to only objects is to preserve the convention that
values can only be retrieved from a weakMap with a reference to the key object. If primitives were
allowed, the weakMap instance would have no way of differentiating between the string primitive that
was initially used to set the key/value pair and an identical string primitive that was initialized later—
an undesirable behavior.

Utility
WeakMap instances are a striking departure from existing JavaScript tools, and it may not be immedi-

ately obvious how they ought to be used. There is no single answer to this, but a number of strategies
have already emerged.

Private Variables

WeakMap instances engender an entirely new way of implementing truly private variables in
JavaScript. The premise is relatively straightforward: private variables will be stored in a weakMap
with the object instance as the key and a dictionary of private members as the value.

One implementation is as follows:

const wm = new WeakMap () ;

class User {
constructor (id) {
this.idProperty = Symbol ('id');
this.setId(id);

}

setPrivate (property, value) {
const privateMembers = wm.get (this) || {};
privateMembers [property] = value;
wm.set (this, privateMembers) ;

}

210 | CHAPTER 6 COLLECTION REFERENCE TYPES

getPrivate (property) {
return wm.get (this) [propertyl];

}

setId(id) {
this.setPrivate (this.idProperty, id);

}

getId() {
return this.getPrivate (this.idProperty) ;

}
}

const user = new User(123);

alert (user.getId()); // 123
user.setId(456) ;
alert (user.getId()); // 456

// Demonstrating it's not really private
alert (wm.get (user) [user.idPropertyl); // 456

The observant developer will note that, with this implementation, foreign code needs only a reference
to the object instance and the WweakMap to retrieve the “private” variables. To prevent this, the
WeakMap can be wrapped in a closure to totally hide the weakMap instance from outside code.

const User (0 =>{
const wm = new WeakMap () ;

class User {
constructor (id) {
this.idProperty = Symbol('id');
this.setId(id);

}

setPrivate (property, value) {
const privateMembers = wm.get (this) || {};
privateMembers [property] = value;
wm.set (this, privateMembers) ;

}

getPrivate (property) {
return wm.get (this) [propertyl] ;
}

setId(id) {
this.setPrivate (this.idProperty, id);
}

getId(id) {
return this.getPrivate (this.idProperty) ;
}

}

return User;

D O;

The Set Type | 211

const user = new User (123);

alert (user.getId()); // 123
user.setId(456) ;
alert (user.getId()); // 456

Therefore, a value in a weakMap cannot be retrieved without the key that was used to insert it.
Although, this prevents the aforementioned pattern of access, in some ways it has pushed the code
full-circle to the pre-ES6 closure private variable pattern.

DOM Node Metadata

Because weakMap instances do not interfere with garbage collection, they are a terrific tool for
cleanup-free metadata association. Consider the following example, which uses a regular Map:

const m = new Map() ;
const loginButton = document.querySelector ('#login');

// Associates some metadata with the node
m.set (loginButton, {disabled: true});

Suppose after this code executes, the page is changed by JavaScript and the login button is removed
from the DOM tree. Because a reference exists inside the Map, the DOM node will linger in memory
in perpetuity until explicitly removed from the Map, or until the Map is destroyed.

If, instead, a WeakMap was used, as shown in the following code, the node’s removal from the DOM
would allow the garbage collector to free the allocated memory immediately (assuming no other
lingering references to the object).

const wm = new WeakMap () ;
const loginButton = document.querySelector ('#login');

// Associates some metadata with the node
wm.set (loginButton, {disabled: true});

THE SET TYPE

Newly added in the ECMAScript 6, set is a new collection type that introduces set behavior into the
language. A set in many ways behaves more like an augmented Map, as much of the API and behav-
ior is shared.

Basic API

An empty Set is instantiated with the new keyword:

const m = new Set();

If you wish to populate the map when it is initialized, the constructor optionally accepts an iterable
object containing elements to be added into the newly created set instance.

// Initialize set with array
const sl = new Set(["vall", "val2", "val3]);

212

| CHAPTER 6 COLLECTION REFERENCE TYPES

alert(sl.size); // 3

// Initialize set with custom-defined iterator
const s2 = new Set ({
[Symbol.iterator] : function*() {

yield "vall";
yield "val2";
yield "val3";
}
1
alert(s2.size); // 3

Values can be added after initialization with add (), queried with has (), counted with the size prop-
erty, and removed with delete ()and clear():

const s = new Set();

alert (s.has ("Matt")) ; // false
alert (s.size); // 0

s.add ("Matt")
.add ("Frisbie") ;

alert (s.has ("Matt")); // true
alert(s.size); /] 2

s.delete ("Matt") ;

alert (s.has ("Matt")) ; // false

alert (s.has ("Frisbie")); // true

alert (s.size); // 1

s.clear(); // destroys all values in this Set instance
alert (s.has ("Matt")) ; // false

alert (s.has ("Frisbie")); // false

alert (s.size); // 0

The add () method returns the Set instance, so it is possible to chain multiple operations together,
including on the initial declaration:

const s = new Set().add("vall");

s.set ("val2")
.set ("val3d");

alert(s.size); // 3

Like Map, a Set can contain any JavaScript data type as a value. It uses the “SameValueZero” com-
parison operation (defined inside the ECMAScript specification and not available in the actual
language) and is mostly comparable to using strict object equivalence to check for a key match. There
is no restriction on what is contained in the value.

const s = new Set();

const functionval = function() {};

The Set Type | 213

Symbol () ;
new Object () ;

const symbolvVal
const objectval

s.add (functionval) ;
s.add (symbolval) ;
s.add (objectval) ;

alert (s.has (functionval)) ; // true
alert (s.has (symbolval)) ; // true
alert (s.has (objectval)) ; // true

// SameValueZero checks mean separate instances will not collide
alert (s.has (function() {})); // false

As with strict equivalence, objects and other “collection” types used for values remain unchanged
inside a set when their contents or properties are altered:

const s = new Set();

{},
[1;

const objval
arrVal

s.add (objval) ;
.add (arrval) ;

objVval.bar = "bar";
arrVal.push("bar") ;

alert (s.has(objval)); // true
alert (s.has(arrval)); // true

The add () and delete () operations are idempotent. delete () returns a Boolean indicating if that
value was present in the set.

const s = new Set();

s.add('foo") ;
alert(s.size); // 1
s.add('foo');
alert(s.size); // 1

// Value was present in the set
alert (s.delete('foo')); // true

// Value was not present in the set
alert (s.delete('foo')); // false

Order and lteration

Sets maintain the order of value insertion and allow you to perform iterative operations following
insertion order.

214

| CHAPTER 6 COLLECTION REFERENCE TYPES

A set instance can provide an Iterator that contains the set contents in insertion order. This itera-
tor can be retrieved using values (), its alias keys (), or the Symbol.iterator property, which refer-
ences values ():

const s = new Set(["vall", "val2", "val3"]);
alert (s.values === g[Symbol.iterator]); // true
alert (s.keys === s[Symbol.iterator]); // true
for (let value of s.values()) f{

alert (value) ;

}

// vall
// val2
// val3

for (let value of s[Symbol.iterator] ()) {
alert (value) ;
}

// vall
// val2
// val3

Because values () is the default iterator, the spread operator can be used to concisely convert a set
into an array:

const s = new Set(["vall", "val2", "val3"]);

alert([...s]); // I[vall,val2,val3]

entries () returns an iterator that contains a two-element array containing a duplicate of all values in
the set in insertion order:

const s = new Set(["vall", "val2", "val3"]);

for (let pair of s.entries()) {
alert (pair) ;

}

// [vall,valll]
// [val2,val2]
// [val3,val3]

To use a callback convention instead of an iterator, forEach (callback, opt thisArg) invokes
the callback for each value. It optionally accepts a second argument, which will override the value of
this inside each callback invocation.

const s = new Set(["vall", "val2", "val3"]);

s.forEach((val, dupvVal) => alert(“${val} -> ${dupvall}));
// vall -> vall
// val2 -> val2
// val3 -> val3

The Set Type | 215

Changing properties of values in a Set does not alter the value’s identity with respect to the
Set instance:

const sl = new Set(["vall"]);

// String primitive as value is unaltered

for (let value of m.values()) {
value = "newVal'";
alert (value) ; // newVal
alert (s.has("vall")); // true

}
const valObj = {id: 1};
const s2 = new Set([valObj]l);

// Value object property is altered, but the object still exists
// inside the set

for (let value of s.values()) {
value.id = "newVal";
alert (value) ; // {id: "newval"}
alert (s.has(valObj)); // true

}

alert (valObj) ; // {id: "newKey"}

Defining Formal Set Operations

In many ways, set feels like Map with its API slightly rearranged. This is only underscored by the fact
that its API only supports self-referential operations. Many developers will have an appetite for using
Set operations. This requires manual implementation, and it can either take the form of a subclassing
Set or defining a utility library. To offer flavors of both at once, you can implement static methods
on a subclass and then use those static methods in the instance methods. When implementing these
operations, there are some points to keep in mind:

> Some Set operations are associative, so it is advantageous to be able to implement the
method so it can handle an arbitrary number of set instances.

> A set preserves insertion order, and the sets that are returned from these methods should
reflect that fact.

> Use memory efficiently wherever possible. Spread operators offer nice syntax, but avoid
switching back and forth between sets and arrays wherever possible to save on object initial-
ization costs.

> Don’t mutate existing Set instances. union(a, b) or a.union(b) should return a new set
instance with the result.

class XSet extends Set {
union(...sets) ({
return XSet.union(this, ...sets)

}

216 | CHAPTER 6 COLLECTION REFERENCE TYPES

intersection(...sets) {
return XSet.intersection(this, ...sets);

difference (set)
return XSet.difference(this, set);
}

symmetricDifference (set) {
return XSet.symmetricDifference(this, set);
}

cartesianProduct (set) {
return XSet.cartesianProduct (this, set);

powerSet () {
return XSet.powerSet (this);
}

// Returns union of two or more sets.
static union(a, ...bSets) {
const unionSet = new XSet(a);
for (const b of bSets) {
for (const bValue of b) {
unionSet.add (bvalue) ;
}

}

return unionSet;

}

// Returns intersection of two or more sets.
static intersection(a, ...bSets) {
const intersectionSet = new XSet (a);
for (const aValue of intersectionSet) {
for (const b of bSets)
if (!b.has(aValue)) {
intersectionSet.delete (avalue) ;
}
}
}

return intersectionSet;

}

// Returns difference of exactly two sets.
static difference(a, b) {
const differenceSet = new XSet(a);
for (const bValue of b) {
if (a.has(bvalue)) ({
differenceSet.delete (bValue) ;
}

}

return differenceSet;

The WeakSet Type | 217

// Returns symmetric difference of exactly two sets.

static symmetricDifference(a, b) {
// By definition, the symmetric difference can be expressed as
// (a union b) - (a intersection b)
return a.union(b) .difference(a.intersection (b)) ;

}

// Returns cartesian product (as array pairs) of exactly two sets.
// Must return set of arrays since cartesian product may contain
// pairs of identical values.
static cartesianProduct(a, b) {

const cartesianProductSet = new XSet () ;

for (const aValue of a) {

for (const bValue of b) {
cartesianProductSet.add([aValue, bValuel) ;

return cartesianProductSet;

}

// Returns power set of exactly one set.
static powerSet(a)
const powerSet = new XSet () .add(new XSet());
for (const aValue of a) {
for (const set of new XSet (powerSet)) {
powerSet.add (new XSet (set) .add(avalue)) ;

}
}
return powerSet;

}
}

THE WEAKSET TYPE

Newly added in the ECMAScript 6, Wweakset is a new collection type that introduces set behavior
into the language. The weakSet type is a cousin to the set type, and its API is a strict subset of set.
The “weak” designation describes how JavaScript’s garbage collector treats values in a weak map.

Basic API

An empty WeakSet instance is instantiated with the new keyword:

const ws = new WeakSet () ;

Values in a weakset can only be of type or inherit from object—all other attempts to set a value
with a non-object will throw a TypeError.

If you wish to populate the weakset when it is initialized, the constructor optionally accepts an iter-
able object, expecting it to contain valid values. Each value in the iterable argument will be inserted
into the newly created weakset in the order in which they are iterated:

const vall = {id: 1},
val2 = {id: 2},

218

| CHAPTER 6 COLLECTION REFERENCE TYPES

val3 = {id: 3};
// Initialize WeakSet with nested arrays
const wsl = new WeakSet ([vall, val2, val3]);

alert (wsl.has(vall)); // true
alert (wsl.has(val2)); // true
alert (wsl.has(val3)); // true

// Initialization is all-or-nothing, a single bad value will
// throw an error and abort the initialization

const ws2 = new WeakSet ([vall, "BADVAL", val3]);

// TypeError: Invalid value used in WeakSet

typeof ws2;

// ReferenceError: ws2 is not defined

// Primitives can still be used with an object wrapper
const stringVal = new String("vall");

const ws3 = new WeakSet ([stringVval]) ;

alert (ws3.has(stringval)); // true

Values can be added after initialization with add (), queried with has (), and removed
with delete():

const ws = new WeakSet () ;

const vall = {id: 1},
val2 = {id: 2};

alert (ws.has(vall)); // false

ws.add (vall)

.add(val2) ;
alert (ws.has(vall)); // true
alert (ws.has(val2)); // true
ws.delete(vall); // deletes only this value
alert (ws.has(vall)); // false
alert (ws.has(val2)); // true

The add () method returns the weakSet instance, so it is possible to chain multiple add operations

together, including on the initial declaration:
const vall = {id: 1},
val2 = {id: 2},
val3 {id: 3};

const ws = new WeakSet () .add(vall) ;

ws.add (val2)

.add (val3) ;
alert (ws.has(vall)); // true
alert (ws.has(val2)); // true

alert (ws.has(val3)); // true

The WeakSet Type | 219

Weak Keys

The “weak” designation stems from the fact that values in a weakset are “weakly held,” meaning
they are not counted as formal references, which would otherwise prevent garbage collection.

Consider the following example:

const ws = new WeakSet () ;

ws.add ({});

Inside add (), a fresh object is initialized and used as a value. Because there are no other references to
this object, as soon as this line is finished executing, the object value will be free for garbage collec-
tion. When this occurs, the value will disappear from the weakset, and it will be empty.

Consider a slightly different example:

const ws = new WeakSet () ;

const container = {
val: {}

}i
ws.add (container.val) ;

function removeReference ()
container.val = null;

}

Here, the container object maintains a reference to the value in the weakSet instance, so the object
is ineligible for garbage collection. However, as soon as removeReference () is invoked, the last
strong reference to the value object will be destroyed, and garbage collection will eventually wipe out
the value.

Non-lterable Values

Because values in a WeakSet can be destroyed at any time, it does not make sense to offer the abil-
ity to iterate through the values. This also excludes the ability to destroy all values at once using
clear (), which is not part of the weakset APIL Because iteration is not possible, it is also not pos-
sible to retrieve a value from a weakSet instance unless you have a reference to the value object. Even
if code has access to the WeakSet instance, there is no way to inspect its contents.

WeakMap instances restrict keys to only objects in order to preserve the convention that values can
only be retrieved from a weakset with a reference to the value object. If primitives were allowed, the
WeakSet would have no way of differentiating between the string primitive that was initially used to
set the value and an identical string primitive that was initialized later—an undesirable behavior.

Utility
WeakSet instances are more limited in their usefulness when compared to weakMap instances, but they
still are valuable to use for tagging objects.

220 | CHAPTER 6 COLLECTION REFERENCE TYPES

Consider the following example, which uses a regular set:

const disabledElements = new Set();
const loginButton = document.querySelector('#login') ;

// Tags the node as "disabled" by adding it to the corresponding set
disabledElements.add(loginButton) ;

Here, it is possible to check if an element is disabled by seeing if it exists inside disabledElements,
which can be done in constant time. However, if the element is removed from the DOM, its presence
inside this set will prevent garbage collection from reallocating its memory.

To allow the garbage collection to reallocate the element’s memory a WweaksSet can instead be used:

const disabledElements = new WeakSet() ;
const loginButton = document.querySelector('#login') ;

// Tags the node as "disabled" by adding it to the corresponding set
disabledElements.add(loginButton) ;

Now, when any element in the WeakSet is removed from the DOM, the garbage collector will ignore
its presence inside the weakset when considering it for garbage collection.

ITERATION AND SPREAD OPERATORS

ECMAScript 6 introduced iterators and the spread operator, which are especially useful in the context
of collection reference types. These new tools allow for easy interoperability, cloning, and modifica-
tion of collection types.

NOTE The Iterators and Generators chapter offers more coverage on exactly
how iterators work.

As shown earlier in the chapter, four native collection reference types define a default iterator:
Array
All typed arrays
Map
Set

Trivially, this means that all support ordered iteration and can be passed to a for. .of loop:

let iterableThings = [
Array.of (1, 2),

typedArr = Intl6Array.of (3, 4),
new Map([[5, 6], [7, 811),
new Set ([9, 10])

Iteration and Spread Operators | 221

for (const iterableThing of iterableThings) {
for (const x of iterableThing)
console.log(x) ;
}

}

/!
/!
/!
/!
/!
/!
/!
/!

This also means that all these types are compatible with the spread operator. The spread operator is
especially useful as it performs a shallow copy on the iterable object. This allows you to easily clone
entire objects with a succinct syntax:

[e)}

2O —— W N R
~ Ul
[ee]

0

let arrl = [1, 2, 31;
[.

let arr2 = ..arrl];

console.log(arrl) ; // (1, 2, 3]
console.log(arr2) ; // 1, 2, 3]
console.log(arrl === arr2); // false

Constructors which expect an iterable object can just be passed the iterable instance to be cloned:

let mapl new Map ([[1, 2], [3, 411);
let map2 = new Map (mapl);

console.log(mapl); // Map {1 => 2, 3 => 4}
console.log(map2); // Map {1 => 2, 3 => 4}

It also allows for partial array construction:

let arrl = [1, 2, 3];
let arr2 = [0, ...arrl, 4, 5];

console.log(arr2); // [0, 1, 2, 3, 4, 5]

The shallow copy mechanism means that only object references are copied:

let arrl = [{}];

let arr2 = [...arrl];

arrl[0] .foo = ‘bar’;
console.log(arr2[0]); // { foo: ‘bar’ }

Each of these collection types support multiple methods of construction, such as the Array.of () and
Array.from() static methods. When combined with the spread operator, this makes for extremely
easy interoperability:

let arrl = [1, 2, 3];

// Copy array into typed array

222 | CHAPTER 6 COLLECTION REFERENCE TYPES

let typedArrl = Intl6Array.of(...arrl);
let typedArr2 = Intl6Array.from(arrl);
console.log(typedArrl); // Intl6Array [1, 2, 3]
console.log(typedArr2); // Intl6Array [1, 2, 3]

// Copy array into map
let map = new Map(arrl.map((x) => [x, ‘val’ + x]));
console.log(map); // Map {1 => ‘val 1’, 2 => ‘val 2', 3 => ‘val 3’}

// Copy array in to set
let set = new Set (typedArr2);
console.log(set); // Set {1, 2, 3}

// Copy set back into array
let arr2 = [...set];
console.log(arr2); // [1, 2, 3]

SUMMARY

Objects in JavaScript are called reference values, and several built-in reference types can be used to
create specific types of objects, as follows:

> Reference types are similar to classes in traditional object-oriented programming but are
implemented differently.

The object type is the base from which all other reference types inherit basic behavior.

The Array type represents an ordered list of values and provides functionality for manipu-
lating and converting the values.

> Typed arrays encompass a range of different reference types that involve type management
of numbers in memory.

> The pate type provides information about dates and times, including the current date and
time and calculations.

> The RegExp type is an interface for regular-expression support in ECMAScript, providing
most basic and some advanced regular-expression functionality.

One of the unique aspects of JavaScript is that functions are actually instances of the Function type,
meaning functions are objects. Because functions are objects, functions have methods that can be used
to augment how they behave.

Because of the existence of primitive wrapper types, primitive values in JavaScript can be accessed as
if they were objects. There are three primitive wrapper types: Boolean, Number, and String. They all
have the following characteristics:

> Each of the wrapper types maps to the primitive type of the same name.

» When a primitive value is accessed in read mode, a primitive wrapper object is instantiated
so that it can be used to manipulate the data.

> As soon as a statement involving a primitive value is executed, the wrapper object is
destroyed.

Summary | 223

There are also two built-in objects that exist at the beginning of code execution: Global and Math.
The Global object isn’t accessible in most ECMAScript implementations; however, web browsers
implement it as the window object. The Global object contains all global variables and functions
as properties. The Math object contains properties and methods to aid in complex mathematical
calculations.

ECMAScript 6 introduced a handful of collection types: Map, WeakMap, Set, and WeakSet. These offer
new possibilities for organizing application data as well as easier memory management.

lterators and Generators

WHAT'S IN THIS CHAPTER?

> Introduction to iteration
> The iterator pattern

» Generators

WROX.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book's website at www.wrox.com/go/projavascript4e on the Down-

load Code tab.

The term “iteration” is derived from the Latin ifero, meaning “repeat” or “do again.” In the
context of software, “iteration” means repetitively performing a procedure multiple times, in
sequence, and usually with an expectation of termination. The ECMAScript 6 specification
introduces two high-level features—iterators and generators—to allow for cleaner, faster, and
easier iteration.

INTRODUCTION TO ITERATION

In JavaScript, one of the simplest examples of iteration is a counting loop:

for (let 1 = 1; i <= 10; ++1i) {
console.log (i) ;

}

Loops are a fundamental iterative tool because they allow you to specify how many iterations
should occur and what should occur during each iteration. Each loop iteration will finish execu-
tion before another begins, and the order in which each iteration occurs is well-defined.

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

226

| CHAPTER7 ITERATORS AND GENERATORS

Iteration can occur over ordered collections of items. (Consider “ordered” in this context to imply
there is an accepted sequence in which all the items should be traversed, with a definitive beginning
and end item.) In JavaScript, the most common example of this ordered collection is an array.

let collection = ['foo', 'bar', 'baz'l;

for (let index = 0; index < collection.length; ++index) {
console.log(collection[index]) ;
}

Because an array has a known length, and because each item in that array can be retrieved via its
index, the entire array can be traversed in order by incrementing the range of possible indices.

The fundamental procedure occurring in such a loop is not ideal for several reasons:

> Iterating through the data structure requires a specific knowledge of how to use the data
structure. Each item in the array can only be retrieved by first referencing the array object
and then retrieving an item at a specific index using the [] operator. This does not gener-
alize to other data structures.

> The order of traversal is not inherent to the data structure. Incrementing an integer to
access sequential indices is specific to the array type and does not generalize to other data
structures that have an implicit ordering.

ESS5 introduced the Array.prototype. forEach method, which is closer to what is needed (but still
not an ideal solution):

let collection = ['foo', 'bar', 'baz'l;

collection.forEach((item) => console.log(item)) ;
// foo
// bar
// baz

This solves the problem of separately tracking an index and retrieving items via the array object.
However, there is no way to terminate this iteration; the method is limited to arrays, and the callback
structure is unwieldy.

With earlier versions of ECMAScript, performing iteration required the use of loops or other auxil-
iary constructs, which is an increasingly messy affair as code complexity scales. Many languages have
addressed this problem with a native language construct that allows iteration to be performed with-
out specific knowledge of how the iteration was actually occurring, and the solution is the iterator
pattern. Python, Java, C++, and many other languages offer first-class support for this pattern, and
JavaScript, too, with the ES6 specification.

THE ITERATOR PATTERN

The iterator pattern (specifically in the context of ECMAScript) describes a solution in which some-
thing can be described as “iterable” and can implement a formal Tterable interface and consumed
by an Iterator.

The Iterator Pattern | 227

The concept of an “iterable” is intentionally abstract. Frequently, the iterable will take the form of a
collection object like an array or set, both of which have a finite number of countable elements and
feature an unambiguous order of traversal:

// Arrays have finite countable elements
// In-order traversal visits each index in increasing index order
let arr = [3, 1, 4];

// Sets have finite countable elements
// In-order traversal visits each value in insertion order
let set = new Set().add(3).add(1l).add(4) ;

However, an iterable does not have to be linked to a collection object. It can also be linked to some-
thing that only behaves like an array—such as the counting loop from earlier in the chapter. The
values generated in this loop are transient, and yet such a loop is performing iteration. Both this
counting loop and an array can behave as an iterable.

NOTE Transient iterables can be implemented as generators, which are covered
later in the chapter.

Anything that implements the Tterable interface can be “consumed” by an object that implements
the Tterator interface. An iterator is a separate object created on demand and intended for a single
use. Each iterator is associated with an iterable, and the iterator exposes an API to iterate through the
associated iterable a single time. The iterator doesn’t need to understand the structure of the iterable
it is associated with; it only must know how to retrieve sequential values. This separation of concerns
is what makes the Iterable/Iterator convention so useful.

The Iterable Protocol

Implementing the Tterable interface requires both the capability to self-identify as supporting
iteration and the capability to create an object that implements the Iterator interface. In ECMAS-
cript, this means it must expose a property, the “default iterator,” keyed with the special symbo1
.iterator key. This default iterator property must refer to an iterator factory function, which will
produce a new iterator when invoked.

Many built-in types implement the Iterable interface:

> Strings

> Arrays

> Maps

> Sets

> The arguments object
>

Some DOM collection types like NodeList

228 |

CHAPTER 7

ITERATORS AND GENERATORS

Checking for the existence of this default iterator property will expose the factory function:

let num
let obj

= 1;

{};

// These types do not have iterator factories
log (num[Symbol.iterator]) ;
log(obj [Symbol.iterator]) ;

console.
console.

let
let
let
let
let

str
arr
map
set
els

console.
console.
console.
console.
console.

// undefined
// undefined

= 'abc';

= ['a', 'b', 'c'];

= new Map() .set('a 1) .set('b', 2).set('c', 3);
= new Set().add('a').add('b').add('c"');

= document.querySelectorAll ('div') ;

// These types all have iterator factories
log(str[Symbol.iterator]); // f values() { [native code] }
log(arr [Symbol.iterator]); // f values() { [native code] }
log (map [Symbol.iterator]); // f values() { [native code] }
log(set [Symbol.iterator]); // f values() { [native code] }
log(els[Symbol.iterator]); // f values() { [native code] }

// Invoking the factory function produces an Iterator

console.
console.
console.
console.
console.

log (str [Symbol.

[
log(arr [Symbol.
log (map [Symbol.
log (set [Symbol
log(els [Symbol

iterator
iterator
iterator

.iterator
.iterator

]

]
]
]
]

(
(
(
(
(

))

V)i
));
)) i
)) i

7

7

I

7

//
//
//
//
/7

StringIterator {}
ArrayIterator {}
MapIterator {}
SetIterator {}
ArrayIterator {}

You do not necessarily need to explicitly invoke this factory function to produce an iterator. Anything
that implements this protocol is automatically compatible with any language features that accept an
iterable. These native language constructs include:

>

Y YV Y VY Y Y Y Y

for

..of loop

Array destructuring

The spread operator

Array.from()

Set construction

Map construction

Promise.all(),

Promise.race(),

The yield* operator, used in generators

which expects an iterable of promises

which expects an iterable of promises

Behind the scenes, these native language constructs are invoking the factory function of the provided

iterable to create an iterator:

let arr =

// for..

['foo!',

.of loops

for (let el of arr) {
console.log(el) ;

'bar',

'baz'];

The lterator Pattern | 229

}

// foo
// bar
// baz

// Array destructuring
let [a, b, c] = arr;
console.log(a, b, ¢); // foo, bar, baz

// Spread operator
let arr2 = [...arr];
console.log(arr2); // ['foo', 'bar', 'baz']

// Array.from()
let arr3 = Array.from(arr);
console.log(arr3); // ['foo', 'bar', 'baz']

// Set constructor
let set = new Set (arr);
console.log(set); // Set(3) {'foo', 'bar', 'baz'}

// Map constructor

let pairs = arr.map((x, i) => [x, 1]);

console.log(pairs); // [['foo', 0], ['bar', 1], ['baz',6 2]]
let map = new Map (pairs);

console.log(map); // Map(3) { 'foo'=>0, 'bar'=>1l, 'baz'=>2 }

An object still implements the Tterable interface if a parent class up the prototype chain implements
the interface:

class FooArray extends Array {}
let fooArr = new FooArray('foo', 'bar', 'baz');

for (let el of fooArr) {
console.log(el) ;
}

// foo
// bar
// baz

The Iterator Protocol

An iterator is a single-use object that will iterate through whatever iterable it is associated with. The
Iterator API uses a next () method to advance through the iterable. Each successive time next () is
invoked, it will return an IteratorResult object containing the next value in the iterator. The cur-
rent position the iterator is at cannot be known without invoking the next () method.

The next () method returns an object with two properties: done, which is a Boolean indicating if
next () can be invoked again to retrieve more values, and value, which will contain the next value in
the iterable or undefined if done is true. The done: true state is termed “exhaustion.” This can be
demonstrated with a simple array:

// Iterable object
let arr = ['foo', 'bar'l]l;

230 | CHAPTER7 ITERATORS AND GENERATORS

// Iterator factory
console.log (arr [Symbol.iterator]); // £ values() { [native code] }

// Iterator
let iter = arr[Symbol.iterator] ();
console.log(iter); // Arraylterator {}

// Performing iteration

console.log(iter.next()); // { done: false, value: 'foo' }
console.log(iter.next()); // { done: false, value: 'bar' }
console.log(iter.next()); // { done: true, value: undefined }

Arrays are iterated in order by creating an iterator and invoking next () until it ceases to produce
new values. Note how the iterator does not know how to retrieve the next values inside the iterable,
nor does it know how large the iterable is. Once the iterator reaches the done: true state, invoking
next () is idempotent:

let arr = ['foo'];

let iter = arr[Symbol.iterator] ();

console.log(iter.next()); // { done: false, value: 'foo' }
console.log(iter.next ()); // { done: true, value: undefined }
console.log(iter.next()); // { done: true, value: undefined }
console.log(iter.next()); // { done: true, value: undefined }

i

(
(
(
(

Each iterator represents a one-time ordered traversal of the iterable. Different instances are not aware
of each other and will independently traverse the iterable:

let arr = ['foo', 'bar'l;
let iterl = arr([Symbol.iterator] () ;
let iter2 = arr[Symbol.iterator] () ;

console.log(iterl.next ()) // { done: false, value: 'foo'
console.log(iter2.next ()) // { done: false, value: 'foo'
console.log(iter2.next()); // { done: false, value: 'bar'
console.log(iterl.next ()) // { done: false, value: 'bar'

e

An iterator is not bound to a snapshot of the iterable; it merely uses a cursor to track its pro-
gress through the iterable. If the iterable is mutated during iteration, the iterator will incorporate
the changes:

let arr = ['foo', 'baz'];
let iter = arr[Symbol.iterator] ();

console.log(iter.next()); // { done: false, value: 'foo' }

// Insert value in the middle of array
arr.splice(l, 0, 'bar');

console.log(iter.next()); // { done: false, value: 'bar' }
console.log(iter.next()); // { done: false, value: 'baz' }
console.log(iter.next()); // { done: true, value: undefined }

NOTE Aun iterator maintains a reference to the iterable object, so be aware that
the iterator’s existence will prevent garbage collection of the iterable object.

The Iterator Pattern |

231

The term “iterator” can be somewhat nebulous because it refers to a generalized iteration concept,
an interface, and formal iterator-type classes. The following example compares an explicit iterator
implementation and a native iterator implementation:

// This class implements the Iterable interface.
// Invoking the default iterator factory will return
// an iterator object that implements the Iterator interface.
class Foo {
[Symbol.iterator] ()
return {
next () {
return { done: false, value: 'foo' };

}
}
}
}
let £ = new Foo();

// Logs an object which implements the Iterator interface
console.log (f [Symbol.iterator] ()); // { next: £() {} }

// The Array type implements the Iterable interface.
// Invoking the default iterator of an Array type
// will create an instance of Arraylterator.

let a = new Array();

// Logs an instance of Arraylterator
console.log(a[Symbol.iterator] ()); // Array Iterator {}

Custom lterator Definition

Like the Iterable interface, any object that implements the Iterator interface can be used as an
iterator. Consider the following example where a counter class is defined to iterate a specific num-
ber of times:

class Counter {
// Counter instance should iterate <limit> times
constructor (limit) {
this.count = 1;
this.limit = limit;

}

next () {
if (this.count <= this.limit) {
return { done: false, value: this.count++ };
} else {
return { done: true, value: undefined };
}

}

232 | CHAPTER7 ITERATORS AND GENERATORS

[Symbol.iterator] () {
return this;
}
}

let counter = new Counter(3);

for (let i of counter) {
console.log(i);

}

// 1

/] 2

//°3

This satisfies the Tterator interface, but this implementation isn’t optimal because each class
instance can be iterated only once:

for (let i of counter) { console.log(i); }
// 1
/]2
//°3

for (let i of counter) { console.log(i); }
// (nothing logged)

In order to allow for creating multiple iterators from a single iterable, the counter must be created on
a per-iterator basis. To address this, you can return an iterator object with the counter variables avail-
able through a closure:

class Counter {
constructor (limit) {
this.limit = limit;

}

[Symbol.iterator] () {
let count = 1,
limit = this.limit;
return {
next () {
if (count <= limit) {
return { done: false, value: count++ };
} else {
return { done: true, value: undefined };

let counter = new Counter(3);

for (let i of counter) { console.log(i); }
// 1
/2
//°3

The Iterator Pattern | 233

for (let i of counter) { console.log(i); }
// 1
/] 2
// 3

Every iterator created in this way also implements the Tterable interface. The Symbol.iterator
property refers to a factory that will return the same iterator:

let arr = ['foo', 'bar', 'baz'];
let iterl = arr[Symbol.iterator] ();

console.log(iterl [Symbol.iterator]); // £ values() { [native code] }
let iter2 = iterl[Symbol.iterator] ();

console.log(iterl === iter2); // true

Because every iterator also implements the Iterable interface, they can be used everywhere an iter-
able is expected, such as a for. . .of loop:

let arr = [3, 1, 4];
let iter = arr[Symbol.iterator] () ;

for (let item of arr) { console.log(item); }
// 3
/1
/] 4

for (let item of iter) { comsole.log(item); }
// 3
// 1
/] 4

Early Termination of Iterators

The optional return () method allows for specifying behavior that will execute only if the iterator is
closed prematurely. “Closing” an iterator occurs when the construct performing the iteration wishes
to indicate to the iterator that it does not intend to finish traversing until exhaustion. Scenarios where
this might happen include the following:

> A for...of loop exits early via break, continue, return, or throw.

> A destructuring operation does not consume all values.

The return () method must return a valid TteratorResult object. A simple iterator implementa-
tion should just return { done: true }, as the return value is only used in the context of generators,
which I discuss later in the chapter.

As shown in the code that follows, a built-in language construct will automatically invoke the
return () method once it identifies that there are further values that need to be iterated over that will
not be consumed.

class Counter {
constructor (limit) {

234 | CHAPTER7 ITERATORS AND GENERATORS

this.limit = limit;

}

[Symbol.iterator] () {
let count = 1,
limit = this.limit;
return {
next () {
if (count <= limit) {
return { done: false, value: count++ };
} else {
return { done: true };
}
1
return() {
console.log('Exiting early');
return { done: true };

let counterl = new Counter(5);

for (let i of counterl) ({
if (4> 2) {
break;

}

console.log (i) ;

}

//1

/] 2

// Exiting early

let counter2 = new Counter(5);

try {
for (let i of counter2
if (1> 2) {
throw 'err';
}

console.log (i) ;

}

} catch(e) {}

/] 1

/] 2

// Exiting early

let counter3 = new Counter(5);

let [a, b] = counter3;
// Exiting early

The Iterator Pattern | 235

If an iterator is not closed, then you are able to pick up iteration where you left off. For example,
Array Iterators are not closable:

let a = [1, 2, 3, 4, 5];
let iter = a[Symbol.iterator] () ;

for (let i of iter) {
console.log (i) ;
if (i > 2) {
break
}
}
/] 1
/] 2
/] 3

for (let i of iter) f{
console.log (i) ;
}

/] 4
//5

Because the return () method is optional, not all iterators are closable. Whether or not an iterator

is closable can be ascertained by testing if the return property on the iterator instance is a function
object. However, merely adding the method to a non-closable iterator will #ot make it become clos-
able, as invoking return () does not force the iterator into a closed state. The return () method will,
however, still be invoked:

let a = [1, 2, 3, 4, 5];
let iter = a[Symbol.iterator] () ;

iter.return = function() (
console.log('Exiting early');
return { done: true };

}:

for (let i of iter) {
console.log (i) ;
if (1 > 2) {
break
}
}
/] 1
/] 2
// 3
// Exiting early

for (let i of iter) {
console.log (i) ;

}

/] 4

// 5

236 | CHAPTER7 ITERATORS AND GENERATORS

GENERATORS

Generators are a delightfully flexible construct introduced in the ECMAScript 6 specification that
offers the ability to pause and resume code execution inside a single function block. The implications
of this new ability are profound; it allows for, among many other things, the ability to define custom
iterators and implement coroutines.

Generator Basics

Generators take the form of a function, and the generator designation is performed with an asterisk.
Anywhere a function definition is valid, a generator function definition is also valid:

// Generator function declaration
function* generatorFn() {}

// Generator function expression
let generatorFn = function* () {}

// Object literal method generator function
let foo = {
* generatorFn() {}

}

// Class instance method generator function
class Foo
* generatorFn() {}

}

// Class static method generator function
class Bar {
static * generatorFn() {}

}

NOTE Arrow functions cannot be used as generator functions.

The function will be considered a generator irrespective of the whitespace surrounding the asterisk:

// Equivalent generator functions:
function* generatorFnA() {}
function *generatorFnB() {}
function * generatorFnC() {}

// Equivalent generator methods:
class Foo

*generatorFnD () {}

* generatorFnE () {}

}

Generators | 237

When invoked, generator functions produce a generator object. Generator objects begin in a state of
suspended execution. Like iterators, these generator objects implement the Tterator interface and
therefore feature a next () method, which, when invoked, instructs the generator to begin or resume
execution.

function* generatorFn() {}
const g = generatorFn() ;

console.log(g) ; // generatorFn {<suspended>}
console.log(g.next); // f next() { [native code] }

The return value of this next () method matches that of an iterator, with a done and value property.
A generator function with an empty function body will act as a passthrough; invoking next () a sin-
gle time will result in the generator reaching the done: true state.

function* generatorFn() {}
let generatorObject = generatorFn();

console. log (generatorObject) ; // generatorFn {<suspendeds>}
console.log(generatorObject.next()); // { done: true, value: undefined }

The value property is the return value of the generator function, which defaults to undefined and
can be specified via the generator function’s return value.

function* generatorFn() {
return 'foo';

}

let generatorObject = generatorFn();

console. log (generatorObject) ; // generatorFn {<suspendeds}
console.log (generatorObject.next()); // { done: true, value: 'foo’ }

Generator function execution will only begin upon the initial next () invocation, as shown here:

function* generatorFn() ({
console.log('foobar') ;

}

// Nothing is logged yet when the generator function is initially invoked
let generatorObject = generatorFn();

generatorObject.next(); // foobar
Generator objects implement the Tterable interface, and their default iterator is self-referential:

function* generatorFn() {}

console.log(generatorFn) ;

// £* generatorFn() {}
console.log(generatorFn () [Symbol.iterator]) ;
// £ [Symbol.iterator] () {native code}

238 | CHAPTER7 ITERATORS AND GENERATORS

console.log (generatorFn()) ;
// generatorFn {<suspendeds>}

console.log(generatorFn () [Symbol.iterator] ()) ;

// generatorFn {<suspended}

const g = generatorFn();

console.log(g === g[Symbol.iterator] ());

// true

Interrupting Execution with “yield”

The yield keyword allows generators to stop and start execution, and it is what makes generators
truly useful. Generator functions will proceed with normal execution until they encounter a yield
keyword. Upon encountering the keyword, execution will be halted and the scope state of the func-
tion will be preserved. Execution will only resume when the next () method is invoked on the genera-

tor object:

function* generatorFn() {
yield;

}

let generatorObject = generatorFn() ;

console.log (generatorObject.next ()) ;
console.log (generatorObject.next ()) ;

// { done: false, value: undefined }
// { done: true, value: undefined }

The yield keyword behaves as an intermediate function return, and the yielded value is available
inside the object returned by the next () method. A generator function exiting via the yield keyword
will have a done value of false; a generator function exiting via the return keyword will have a

done value of true:

function* generatorFn() {
yield 'foo’';
yield 'bar’';
return 'baz';

}

let generatorObject = generatorFn() ;

console.log(generatorObject.next()) ;
console.log(generatorObject.next ());

console.log (generatorObject.next ()) ;

// { done: false, value: 'foo' }
// { done: false, value: 'bar' }
// { done: true, value: 'baz' }

Execution progress within a generator function is scoped to each generator object instance. Invoking
next () on one generator object does not affect any other:

function* generatorFn() {
yield 'foo';
yield 'bar';
return 'baz';

}

Generators

239

let generatorObjectl
let generatorObject2

generatorFn() ;
generatorFn() ;

console.log(generatorObjectl.next

console.log

(
(
console.log(
(

generatorObject2.next
generatorObject2.next

console.log(generatorObjectl.next

The yield keyword can only be used inside a generator function; anywhere else will throw an error.
Like the function return keyword, the yield keyword must appear immediately inside a generator

done:
done:
done:
done:

false,
false,
false,
false,

value:
value:
value:
value:

'foo!
'foo!
'bar!'
'bar!'

e

function definition. Nesting further inside a non-generator function will throw a syntax error:

// valid

function* validGeneratorFn()

yield;

}

// invalid

function* invalidGeneratorFnA() {

function a() {
yield;
}
}

// invalid

function* invalidGeneratorFnB() {

const b = () => {
yield;
}
}

// invalid

function* invalidGeneratorFnC() {

(0 => {
yield;
No;
}

Using a Generator Obiject as an Iterable

You will infrequently find the need to explicitly invoke next () on a generator object. Instead, genera-
tors are much more useful when consumed as an iterable, as shown here:

function* generatorFn() ({

yield 1;
yield 2;
yield 3;

}

for (const x of generatorFn()) {

console.log (x) ;

}

240 | CHAPTER7 ITERATORS AND GENERATORS

/1

/]2

// 3
This can be especially useful when the need to define custom iterables arises. For example, it is often
useful to define an iterable, which will produce an iterator that executes a specific number of times.
With a generator, this can be accomplished simply with a loop:

function* nTimes (n) {
while (n--) {
yield;
}
}

for (let _ of nTimes(3)) {
console.log('foo') ;
}

// foo
// foo
// foo

The single generator function parameter controls the number of loop iterations. When n reaches 0,
the while condition will become falsy, the loop will exit, and the generator function will return.

Using “yield” for Input and Output
The yield keyword also behaves as an intermediate function parameter. The yield keyword where
the generator last paused execution will assume the first value passed to next (). Somewhat confus-
ingly, the value provided to the first next () invocation is not used, as this next () is used to begin the
generator function execution:
function* generatorFn(initial)
console.log(initial) ;

console.log(yield) ;
console.log(yield) ;

}

let generatorObject = generatorFn('foo');

generatorObject.next('bar'); // foo

generatorObject.next ('baz'); // baz

generatorObject.next ('qux'); // qux
The yield keyword can be simultaneously used as both an input and an output, as is shown in the
following example:

function* generatorFn() {

return yield 'foo';

}

let generatorObject = generatorFn() ;

console.log (generatorObject.next ()) ; // { done: false, value: 'foo’ }
console.log (generatorObject.next ('bar')); // { done: true, value: 'bar' }

Generators | 241

Because the function must evaluate the entire expression to determine the value to return, it will
pause execution when encountering the yield keyword and evaluate the value to yield, foo. The sub-
sequent next () invocation provides the bar value as the value for that same yield, and this in turn
is evaluated as the generator function return value.

The yield keyword is not limited to a one-time use. An infinite counting generator function can be
defined as follows:

function* generatorFn() ({
for (let i = 0;;++1) {
yield 1i;
}
}

let generatorObject = generatorFn();

console.log(generatorObject.next () .value); // 0
console.log(generatorObject.next () .value); // 1
console.log (generatorObject.next () .value); // 2
console.log(generatorObject.next () .value); // 3
console.log(generatorObject.next () .value); // 4
console.log (generatorObject.next () .value); // 5

Suppose you wanted to define a generator function that would iterate a configurable number of times
and produce the index of iteration. This can be accomplished by instantiating a new array, but the
same behavior can be accomplished without the array:

function* nTimes(n) {
for (let 1 = 0; 1 < n; ++i) {
yield 1i;
}
}

for (let x of nTimes(3)) {
console.log(x) ;

}

// 0

/] 1

/] 2

Alternately, the following has a slightly less verbose while loop implementation:

function* nTimes(n) {
let 1 = 0;
while (n--) {
yield i++;
}
}

for (let x of nTimes(3)) {
console.log (x) ;

242 | CHAPTER7 ITERATORS AND GENERATORS

Using generators in this way provides a useful way of implementing ranges or populating arrays:

function* range (start, end) {
let 1 = start;
while (end > start) {
yield start++;
}

}

for (const x of range(4, 7)) {
console.log(x) ;

}

/] 4
//5
/] 6
function* zeroes (n) {

while (n--) {

yield 0;

}
}
console.log (Array.from(zeroes(8))); // [0, 0, 0, 0, 0, O, 0, 0]

Yielding an Iterable

It is possible to augment the behavior of yield to cause it to iterate through an iterable and yield its
contents one at a time. This can be done using an asterisk, as shown here:

// generatorFn is equivalent to:
// function* generatorFn() ({
// for (const x of [1, 2, 31) {
// yield x;
/7)
/1 }
function* generatorFn() {
yield* [1, 2, 3];

}

let generatorObject = generatorFn() ;

for (const x of generatorFn()) {
console.log(x) ;

}

// 1

i

/13

Like the generator function asterisk, whitespace around the yield asterisk will not alter its behavior:

function* generatorFn() {
yield* [1, 2];
yield *[3, 4]1;
yield * [5, 6];

}

Generators | 243

for (const x of generatorFn()) {
console.log(x) ;
}

//
//
//
//
//
//

o Ul W N R

Because yield* is effectively just serializing an iterable into sequential yielded values, using it
isn’t any different than placing yield inside a loop. These two generator functions are equivalent
in behavior:

function* generatorFnA()

for (const x of [1, 2, 3]) {
yield x;
}
}
for (const x of generatorFnA()) ({

console.log(x) ;
}

/] 1

/] 2

// 3

function* generatorFnB() ({
yield* [1, 2, 3];

}

for (const x of generatorFnB()) ({
console.log(x) ;

}

//1
/12
/73

The value of yield* is the value property accompanying done: true of the associated iterator. For
vanilla iterators, this value will be undefined:

function* generatorFn() {

console.log('iter value:', yield* [1, 2, 3]);
!
for (const x of generatorFn())
console.log('value:', x);

}

// value: 1
// value: 2
// value: 3
// iter value: undefined

For iterators produced from a generator function, this value will take the form of whatever value is
returned from the generator function:

function* innerGeneratorFn() ({
yield 'foo';

244 | CHAPTER7 ITERATORS AND GENERATORS

return 'bar';

}

function* outerGeneratorFn(genObj) {

console.log('iter value:', yield* innerGeneratorFn());
}
for (const x of outerGeneratorFn()) f{
console.log('value:', x);

}

// value: foo
// iter value: bar

Recursive Algorithms Using yield*

yield* is most useful when used in a recursive operation, where the generator can yield itself.
Consider the following example:

function* nTimes (n) {
if (n > 0) {
yield* nTimes(n - 1);
yield n - 1;
}
}

for (const x of nTimes(3)) {
console.log(x) ;

// 0
// 1
/2

In this example, each generator is first yielding each value from a newly created generator object, and
then yielding a single integer. The result of this is that the generator function will recursively decre-
ment the counter value and instantiate another generator object, which at the top level will have the
effect of creating a single iterable that returns incremental integers.

Using recursive generator structure and yield* allows for elegantly expressing recursive algorithms.
Consider the following graph implementation, which generates a random bidirectional graph:

class Node {
constructor (id) {
this.id = id;
this.neighbors = new Set();

}

connect (node) {
if (node !== this) {
this.neighbors.add (node) ;
node.neighbors.add (this) ;
}
}
}

class RandomGraph {
constructor (size) {

Generators | 245

this.nodes = new Set();

// Create nodes

for (let i = 0; i < size; ++i) {
this.nodes.add (new Node (1)) ;

}

// Randomly connect nodes
const threshold = 1 / size;
for (const x of this.nodes) {
for (const y of this.nodes) {
if (Math.random() < threshold) {
x.connect (y) ;
}
}
}
}

// This is just for debug purposes

print () {
for (const node of this.nodes)
const ids = [...node.neighbors]
.map ((n) => n.id)
.join(', ") ;

console.log('${node.id}: ${ids}');
}
}
}

const g = new RandomGraph (6) ;

g.print () ;

// Example output:
// 0: 2,3,5

// 1: 2,3,4,5

// 2: 1,3

// 3: 0,1,2,4

// 4: 2,3

// 5: 0,4

The graph data structure is well-suited for recursive traversal, and using a recursive generator allows
you to do exactly that. To do so, the generator function must accept an iterable, yield each value

in that iterable, and recurse on each value. A simple utilization of this would be to test if a graph is
connected, meaning that there are no nodes that cannot be reached. This test can be accomplished by
beginning at one node and exhaustively attempting to visit every node. The result is a very succinct
implementation of a depth first traversal:

class Node
constructor (id) {

}

connect (node) {

246 | CHAPTER7 ITERATORS AND GENERATORS

}
}

class RandomGraph {
constructor (size) {

}

print () {

}

isConnected() {
const visitedNodes = new Set();

function* traverse(nodes) {
for (const node of nodes) {
if (!visitedNodes.has (node)) {
yield node;
yield* traverse(node.neighbors) ;
}
}
}

// Grab first node in the Set
const firstNode = this.nodes[Symbol.iterator] () .next().value;

// Use the recursive generator to iterate every node
for (const node of traverse([firstNodel)) ({
visitedNodes.add (node) ;

}

return visitedNodes.size === this.nodes.size;

Using a Generator as the Default Iterator

Because generator objects implement the Tterable interface, and because both generator functions
and the default iterator are invoked to produce an iterator, generators are exceptionally well suited to
be used as default iterators. The following is a simple example where the default iterator can yield the
class’s contents in a single line:

class Foo {
constructor () {
this.values = [1, 2, 3];
}
* [Symbol.iterator] () {
yield* this.values;
}
}

const f = new Foo() ;

Generators | 247

for (const x of f) {
console.log(x) ;

}

// 1

/] 2

/13
Here, the for. . .of loop invokes the default iterator—which happens to be a generator function—
and produces a generator object. The generator object is an iterable and therefore compatible for use
In iteration.

Early Termination of Generators

Like iterators, generators also support the concept of being “closable.” For an object to implement
the Tterator interface, it must have a next () and, optionally, a return () method for when the
iterator is terminated early. A generator object has both of these methods and an additional third
method, throw ().

function* generatorFn() {}
const g = generatorFn() ;

console.log(g) ; // generatorFn {<suspendeds}
console.log(g.next) ; // £ next() { [native code] }
console.log(g.return); // £ return() { [native code] }
console.log (g.throw) ; // £ throw() { [native code] }

The return () and throw () methods are two methods that can be used to coerce the generator into a
closed state.

The return() Method

The return () method will force the generator into a closed state, and the value provided to
return () will be the value provided in the terminal iterator object:

function* generatorFn() ({
for (const x of [1, 2, 31) {
yield x;
}
!

const g = generatorFn() ;

console.log(g) ; // generatorFn {<suspendeds}
console.log(g.return(4)); // { done: true, value: 4 }
console.log(g); // generatorFn {<closed>}

Unlike iterators, all generator objects have a return () method that forces it into a closed state that it
cannot exit once reached. Subsequent invoking of next () will disclose the done : true state, but any
provided return value is not stored or propagated:

function* generatorFn() {

for (const x of [1, 2, 31) {
yield x;

248 | CHAPTER7 ITERATORS AND GENERATORS

}
}

const g = generatorFn() ;

console.log(g.next ()) ; // { done: false, value: 1 }
console.log(g.return(4)); // { done: true, value: 4 }
console.log(g.next()); // { done: true, value: undefined }
console.log(g.next()); // { done: true, value: undefined }
console.log(g.next ()) ; // { done: true, value: undefined }

Built-in language constructs such as the for. . .of loop will sensibly ignore any values returned inside
the done:true IteratorObject.

function* generatorFn() {
for (const x of [1, 2, 31) {
yield x;
}
}

const g = generatorFn() ;

for (const x of g) {
if (x> 1) {
g.return(4) ;

}

console.log(x) ;

}
/11
/2

The throw() Method

The throw () method will inject a provided error into the generator object at the point it is
suspended. If the error is unhandled, the generator will close:

function* generatorFn() {
for (const x of [1, 2, 3]) {
yield x;
}
}

const g = generatorFn() ;

console.log(g) ; // generatorFn {<suspendeds}
try {
g.throw('foo') ;
} catch (e) {
console.log(e); // foo
}

console.log(g) ; // generatorFn {<closeds}

Summary | 249

If, however, the error is handled inside the generator function, then it will not close and can resume
execution. The error handling will skip over that yield, so in this example you will see it skip a value.
Consider the following example:
function* generatorFn() {
for (const x of [1, 2, 3]) {

try {
yield x;
} catch(e) {}

}
const g = generatorFn() ;

console.log(g.next()); // { done: false, value: 1}
g.throw('foo') ;
console.log(g.next()); // { done: false, value: 3}

In this example, the generator suspends execution at a yield keyword inside a try/catch block.
While it is suspended, throw () injects the foo error, which is thrown by the yield keyword. Because
this error is thrown inside the generator’s try/catch block, it is subsequently caught while still inside
the generator. However, because yield threw that error, that value of 2 will not be produced by the
generator. Instead, the generator function continues execution, proceeding on to the next loop itera-
tion where it encounters the yield keyword yet again—this time, yielding the value 3.

NOTE If the generator object has not yet begun execution, calling throw()
cannot be caught inside the function because the error is thrown from outside
the function block.

SUMMARY

Iteration is a pattern that is encountered in essentially every programming language. The ECMAScript
6 specification formally embraces the concept of iteration by introducing two formal concepts in the
language, iterators and generators.

An iterator is an interface that can be implemented by any object and allows for successive visita-
tion of values that it produces. Anything that implements the Tterable interface features a Symbol.
iterator property, which references the default iterator. The default iterator behaves as an iterator
factory: a function which, when invoked, produces an object that implements the Tterator interface.

Successive values are coerced from an iterator via its next () method, which returns an Iterator-
object. This object contains a done property, a Boolean indicating if there are more values available,
and a value property, which contains the present value provided from the iterator. This interface can
be manually consumed by invoking next () repeatedly, or automatically consumed by native iterable
consumers such as the for. . .of loop.

250 | CHAPTER7 ITERATORS AND GENERATORS

Generators are a special type of function that, when invoked, produces a generator object. This
generator object implements the Iterable interface, and therefore can be used anywhere an iterable
is expected. Generators are unique in that they support the yield keyword, which is used to pause
execution of the generator function. The yield keyword can also be used to accept input and output
through the next () method. When accompanied by an asterisk, the yield keyword will serve to
serialize an iterable it is paired with.

Objects, Classes, and Object-
Oriented Programming

WHAT'S IN THIS CHAPTER?

> Understanding objects

> Understanding object creation

> Understanding inheritance

> Understanding classes
ECMA-262 defines an object as an unordered collection of properties. Strictly speaking, this
means that an object is an array of values in no particular order. Each property or method is
identified by a name that is mapped to a value. For this reason (and others yet to be discussed),

it helps to think of ECMAScript objects as hash tables: nothing more than a grouping of name-
value pairs where the value may be data or a function.

UNDERSTANDING OBJECTS

The canonical way of creating a custom object is to create a new instance of Object and add
properties and methods to it, as in this example:

let person = new Object();

person.name = "Nicholas";
person.age = 29;
person.job = "Software Engineer";

Professional JavaScript® for Web Developers, Fourth Edition. Matt Frisbie.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

252 | CHAPTER8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

person.sayName = function() {

console.log(this.name) ;

This example creates an object called person that has three properties (name, age, and job) and one
method (sayName ()). The sayName () method displays the value of this.name, which resolves to
person.name. Early JavaScript developers used this pattern frequently to create new objects. A few
years later, object literals became the preferred pattern for creating such objects. The previous exam-
ple can be rewritten using object literal notation as follows:

}

let person =

name: "Nicholas",

age: 29,

job: "Software Engineer",

sayName () {
console.log(this.name) ;

The person object in this example is equivalent to the person object in the prior example, with all
the same properties and methods. These properties are all created with certain characteristics that
define their behavior in JavaScript.

Types of Properties

ECMA-262 describes characteristics of properties through the use of internal-only attributes. These
attributes are defined by the specification for implementation in JavaScript engines, and as such, these
attributes are not directly accessible in JavaScript. To indicate that an attribute is internal, surround
the attribute name with two pairs of square brackets, such as [[Enumerable]].

There are two types of properties: data properties and accessor properties.

Data Properties

Data properties contain a single location for a data value. Values are read from and written to this
location. Data properties have four attributes describing their behavior:

>

[[configurablel]l—Indicates if the property may be redefined by removing the property
via delete, changing the property’s attributes, or changing the property into an accessor
property. By default, this is true for all properties defined directly on an object, as in the
previous example.

[[Enumerable]]—Indicates if the property will be returned in a for-in loop. By default,
this is true for all properties defined directly on an object, as in the previous example.

[(Writablell—Indicates if the property’s value can be changed. By default, this is true for
all properties defined directly on an object, as in the previous example.

[[Value]]—Contains the actual data value for the property. This is the location from which
the property’s value is read and the location to which new values are saved. The default
value for this attribute is undefined.

Understanding Objects | 253

When a property is explicitly added to an object as in the previous examples, [[Configurablel],
[[Enumerable]], and [[Writable]] are all set to true while the [[Value]] attribute is set to the
assigned value. For example:

let person = {
name: "Nicholas"
i

Here, the property called name is created and a value of "Nicholas" is assigned. That means
[[Value]] is set to "Nicholas", and any changes to that value are stored in this location.

To change any of the default property attributes, you must use the Object .defineProperty ()
method. This method accepts three arguments: the object on which the property should be added or
modified, the name of the property, and a descriptor object. The properties on the descriptor object
match the attribute names: configurable, enumerable, writable, and value. You can set one or all
of these values to change the corresponding attribute values. For example:

let person = {};

Object.defineProperty (person, "name", {
writable: false,
value: "Nicholas™"

b

console.log(person.name); // "Nicholas"
person.name = "Greg";
console.log (person.name); // "Nicholas"

This example creates a property called name with a value of "Nicholas" that is read-only. The value of
this property can’t be changed, and any attempts to assign a new value are ignored in nonstrict mode. In
strict mode, an error is thrown when an attempt is made to change the value of a read-only property.

Similar rules apply to creating a nonconfigurable property. For example:

let person = {};

Object.defineProperty (person, "name", {
configurable: false,
value: "Nicholas"

13N

console.log (person.name); // "Nicholas"
delete person.name;
console.log(person.name); // "Nicholas"

Here, setting configurable to false means that the property cannot be removed from the object.
Calling delete on the property has no effect in nonstrict mode and throws an error in strict mode.
Additionally, once a property has been defined as nonconfigurable, it cannot become configurable
again. Any attempt to call object .defineProperty () and change any attribute other than writ-
able causes an error:

let person = {};

Object.defineProperty (person, "name", {
configurable: false,
value: "Nicholas"

1)

254 | CHAPTER 8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

// Throws an error
Object.defineProperty (person, "name", {
configurable: true,
value: "Nicholas"

b

So although you can call object .defineProperty () multiple times for the same property, there are
limits once configurable has been set to false.

VthlyouareLwhu;Object.defineProperty(),theVahwsforconfigurable,enumerable,and
writable default to false unless otherwise specified. In most cases, you likely won’t need the power-
ful options provided by object .defineProperty (), but it’s important to understand the concepts to
have a good understanding of JavaScript objects.

Accessor Properties

Accessor properties do not contain a data value. Instead, they contain a combination of a getter func-
tion and a setter function (though both are not necessary). When an accessor property is read from,
the getter function is called, and it’s the function’s responsibility to return a valid value; when an
accessor property is written to, a function is called with the new value, and that function must decide
how to react to the data. Accessor properties have four attributes:

> [[Configurable]]l—Indicates if the property may be redefined by removing the property via
delete, changing the property’s attributes, or changing the property into a data property.
By default, this is true for all properties defined directly on an object.

> [[Enumerable]]—Indicates if the property will be returned in a for-in loop. By default,
this is true for all properties defined directly on an object.

> [[Get]]—The function to call when the property is read from. The default value is undefined.

> [[set]]—The function to call when the property is written to. The default value is undefined.

It is not possible to define an accessor property explicitly; you must use Object .defineProperty ().
Here’s a simple example:

// Define object with pseudo-private member 'year '
// and public member 'edition'
let book = {

year : 2017,

edition: 1

}i

Object .defineProperty (book, "year", {
get () {
return this.year ;
b
set (newValue) {
if (newValue > 2017)
this.year = newValue;
this.edition += newValue - 2017;
}
}
1
book.year = 2018;
console.log(book.edition); // 2

Understanding Objects | 255

In this code, an object book is created with two default properties: year and edition. The underscore
on year_is a common notation to indicate that a property is not intended to be accessed from outside of
the object’s methods. The year property is defined to be an accessor property where the getter function
simply returns the value of year and the setter does some calculation to determine the correct edition.
So changing the year property to 2018 results in both year and edition changing to 2. This is a typi-
cal use case for accessor properties, when setting a property value results in some other changes to occur.

It’s not necessary to assign both a getter and a setter. Assigning just a getter means that the property
cannot be written to and attempts to do so will be ignored. In strict mode, trying to write to a prop-
erty with only a getter throws an error. Likewise, a property with only a setter cannot be read and
will return the value undefined in nonstrict mode, while doing so throws an error in strict mode.

There is no way to modify [[Configurablel] or [[Enumerable]] in browsers that don’t support
Object.defineProperty ().

NOTE Prior to ECMAScript 5, two nonstandard methods were used to create
accessor properties: __defineGetter () and __ definesetter (). These were
first developed by Firefox and later copied by Safari, Chrome, and Opera.

Defining Multiple Properties

Because there’s a high likelihood that you’ll need to define more than one property on an object,
ECMAScript provides the object .defineProperties () method. This method allows you to define
multiple properties using descriptors at once. There are two arguments: the object on which to add
or modify the properties and an object whose property names correspond to the properties’ names to
add or modify. For example:

let book = {};
Object.defineProperties (book, {
year : {
value: 2017

b

edition:
value: 1

b

year: {
get () {
return this.year ;

b

set (newValue) {
if (newValue > 2017)
this.year = newValue;
this.edition += newValue - 2017;

256

| CHAPTER 8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

This code defines two data properties, year and edition, and an accessor property called year on
the book object. The resulting object is identical to the example in the previous section. The only dif-
ference is that all of these properties are created at the same time.

Reading Property Attributes

It’s also possible to retrieve the property descriptor for a given property by using the object.
getOwnPropertyDescriptor () method. This method accepts two arguments: the object on which
the property resides and the name of the property whose descriptor should be retrieved. The return
value is an object with properties for configurable, enumerable, get, and set for accessor proper-
ties or configurable, enumerable, writable, and value for data properties. For example:

let book = {};
Object.defineProperties (book, {
year : {
value: 2017

b

edition:
value: 1

b

year: {
get: function() {
return this.year_ ;
¥

set: function(newValue) {
if (newValue > 2017) {
this.year = newValue;
this.edition += newValue - 2017;

b

let descriptor = Object.getOwnPropertyDescriptor (book, "year ");

console.log(descriptor.value) ; // 2017
console.log(descriptor.configurable); // false
console.log(typeof descriptor.get); // "undefined"

let descriptor = Object.getOwnPropertyDescriptor (book, "year");
console.log(descriptor.value) ; // undefined
console.log(descriptor.enumerable) ; // false
console.log(typeof descriptor.get); // "function"

For the data property year , value is equal to the original value, configurable is false, and get is
undefined. For the accessor property year, value is undefined, enumerable is false, and get is a
pointer to the specified getter function.

New in ECMAScript 2017 is the Object .getOwnPropertyDescriptors () static method. This
method effectively performs on Object .getOwnPropertyDescriptor () on all own properties and
returns them in a new object. For the previous example, using this static method would return the
following object:

Understanding Objects | 257

let book = {};

Object.defineProperties (book, {

IOk

console.log(Object.getOwnPropertyDescriptors (book)) ;

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

year : {
value: 2017
1

edition:
value: 1
1

year: {
get: function() {
return this.year ;

b

set: function(newValue) {
if (newValue > 2017) {

this.year = newValue;
this.edition += newValue - 2017;

7

{

edition: {
configurable: false,
enumerable: false,
value: 1,
writable: false

b

year: {
configurable: false,
enumerable: false,
get: £(),
set: f(newValue),

b

year : {
configurable: false,
enumerable: false,
value: 2019,
writable: false

}

}

Merging Obijects

JavaScript developers will often find that it is useful to be able to perform a “merge” of two objects.
More specifically, this merge will take the form of folding all the local properties of one source object
into a destination object. Often, this behavior is also referred to as using a “mixin,” in which the des-
tination object is augmented by mixing in the properties of a source object.

258

| CHAPTER 8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

ECMAScript 6 introduces this exact behavior with the object .assign () method. This method
accepts one destination object, and one or many source objects, and for each source object copies the
enumerable (Object .propertyIsEnumerable returns true) and own (Object .hasOwnProperty
returns true) properties onto the destination object. Properties keyed with strings and symbols will
be copied. For each suitable property, the method will use [[Get]] to retrieve a value from the source
object and [[set]] on the destination object to assign the value.

let dest, src, result;

/**

* Simple copy
*/

dest = {};

src = { id: 'src' };
result = Object.assign(dest, src);

// Object.assign mutates the destination object
// and also returns that object after exiting.

console.log(dest === result); // true
console.log(dest !== src); // true
console.log(result) ; // { id: src }
console.log (dest) ; // { id: src }
/**

* Multiple source objects

*/
dest = {};

result = Object.assign(dest, { a: 'foo' }, { b: 'bar' });

console.log(result); // { a: foo, b: bar }
/**

* Getters and setters

*/
dest = {

set a(val) {
console.log('Invoked dest setter with param ${val}');

}
}i
src = {
get a() {
console.log('Invoked src getter');
return 'foo';
}
}i

Object.assign(dest, src);
// Invoked src getter
// Invoked dest setter with param foo

Understanding Objects | 259

// Since the setter does not perform an assignment,
// no value is actually transferred
console.log(dest); // { set a(val) {...} }

Object.assign() is effectively performing a shallow copy from each source object. If multiple source
objects have the same property defined, the last one to be copied will be the ultimate value. Furthermore,
any value retrieved from accessor properties, such as a getter, on a source object will be assigned as a
static value on the destination object—there is no ability to transfer getters and setters between objects.

let dest, src, result;

/**
* Overwritten properties
*/

dest = { id: 'dest' };

result = Object.assign(dest, { id: 'srcl', a: 'foo' }, { id: 'src2', b: 'bar' });

// Object.assign will overwrite duplicate properties.
console.log(result); // { id: src2, a: foo, b: bar }

// This can be observed by using a setter on the destination object:
dest = {
set id(x) {
console.log(x) ;
}
}i

Object.assign(dest, { id: 'first' }, { id: 'second' }, { id: 'third' });
// first

// second

// third

/**
* Object references

*/
dest = {};
sre = { a: {} };

Object.assign(dest, src);

// Shallow property copies means only object references copied.
console.log (dest) ; /[l {a o} }
console.log(dest.a === src.a); // true

If an error is thrown during the assignment, it will discontinue and exit with the thrown error.
Object.assign () has no concept of “rolling back” earlier assignments so it is a best-effort method
that may only partially complete.

let dest, src, result;

/**

260

CHAPTER 8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

* Error handling

*/
dest = {};
src = {
a: 'foo!',
get b() {

// Error will be thrown when Object.assign()
// invokes this getter.
throw new Error();

b

c: 'bar'

}i

try {

Object.assign(dest, src);

} catch(e) {}

// Object.assign() has no way of rolling back already performed changes,
// so set operations already performed on the destination object before
// the error is thrown remain:

console.log(dest); // { a: foo }

Object Identity and Equality

In versions prior to ECMAScript 6, there were several tricky corner cases where the === operator was
insufficient:

// These are cases where === behaves as expected:

console. log(true === 1); // false

console.log({} === {}) // false

console.log("2" === 2); // false

To remedy this, the ECMAScript 6 specification introduced Object.is (),
= does but also accounts for the corner cases listed previously. The method accepts exactly two
arguments:

// These have different representations in the JS engine and yet are treated as equal

console.log(+0 === -0); // true
console.log(+0 === 0); // true
console.log (-0 === 0); // true

// To determine NaN equivalence, the profoundly annoying isNaN() is required
console.log(NaN === NaN); // false

console.log(isNaN (NaN)) ; // true

which behaves mostly as

console.log(Object.is (true, l)) // false
console.log(Object.is ({}, {})); // false
console.log(Object.is("2", 2)); // false

// Correct 0, -0, +0 equivalence/nonequivalence:

console.log(Object.is(+0, -0)); // false
console.log(Object.is(+0, 0)); // true
console.log (Object.is (-0, 0)); // false
// Correct NaN equivalence:

console.log(Object.is(NaN, NaN)); // true

Understanding Objects | 261

To check more than two objects, it is trivial to recursively use transitive equality:

function recursivelyCheckEqual (x, ...rest) ({
return Object.is(x, rest[0]) &&
(rest.length < 2 || recursivelyCheckEqual(...rest));

}

Enhanced Object Syntax

ECMAScript 6 introduced a handful of extremely useful syntactical tools for defining and interact-
ing with objects. None of them meaningfully change existing engine behavior, but they enormously
enhance the convenience of dealing with objects.

All object syntax conventions introduced in this section are also applicable to ECMAScript 6 classes,
defined later in this chapter.

NOTE The enhanced object syntax described in this section is almost universally
superior to what it replaces; therefore, you will find that it is used by default here
in this chapter as well as elsewbere in the book.

Property Value Shorthand

Developers frequently find that, when adding a variable to an object, the property name used to key
that variable often will match the variable name itself. For example:

let name = 'Matt';

let person = {
name: name

i
console.log(person); // { name: 'Matt' }

Thus, the property value shorthand convention was introduced. This allows you to simply use the
variable itself without the colon notation, and the interpreter will automatically use the variable name
as the property key. If the variable name is not found, a ReferenceError will be thrown.

The following code is equivalent:

let name = 'Matt';

let person = {
name

}i
console.log(person); // { name: 'Matt' }

Minifiers will preserve property names between scopes to prevent breaking references. Take the fol-
lowing code snippet for example:

function makePerson (name) {
return {

262 | CHAPTER8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

name
}i
}

let person = makePerson('Matt');

console.log(person.name); // Matt

Compilers are careful to preserve the initial name string identifier inside the function definition even
though the parameter identifier is restricted to the function scope. When this is compiled using the
Google Closure compiler, the function parameter name will be shortened, but the property name
will remain:

function makePerson(a) {

return {
name: a

}:
}

var person = makePerson("Matt");

console.log(person.name); // Matt

Computed Property Keys

Prior to the introduction of computed property keys, there was no way to dynamically assign prop-
erty keys in an object literal without declaring the object and then individually using the square
bracket notation for property assignment. For example:

const nameKey = 'name';
const ageKey = 'age';
const jobKey = 'job';

let person = {};

person [nameKey] = 'Matt';

person [ageKey] 27;

person [jobKey] 'Software engineer';

console.log(person); // { name: 'Matt',6 age: 27, job: 'Software engineer' }

With computed properties, the property assignment can occur inside the object literal’s initial defini-
tion. Square brackets around the object property key instruct the runtime to evaluate its contents as a
JavaScript expression instead of a string:

const nameKey = 'name';
const ageKey = 'age';
const jobKey = 'job';

let person =
[nameKey] : 'Matt',
[ageKey]l : 27,
[jobKey] : 'Software engineer'

}i

console.log(person); // { name: 'Matt',6 age: 27, job: 'Software engineer' }

Understanding Objects | 263

Because the contents are evaluated as a JavaScript expression, it is possible to make the contents of
the computed property complex expressions to be evaluated upon instantiation:

const nameKey = 'name';
const ageKey = 'age';
const jobKey = 'job';
let uniqueToken = 0;

function getUniqueKey (key) {
return '${key} ${uniqueToken++}';

}

let person = {
[getUniqueKey (nameKey)]: 'Matt',
[getUniqueKey (ageKey)]: 27,
[getUniqueKey (jobKey)]: 'Software engineer'

7

console.log(person); // { name 0: 'Matt', age 1: 27, job 2: 'Software engineer' }

NOTE Any errors thrown in a computed property key expression will abort the
creation of the object. Be careful when the expressions computing a property key
have side effects, as an error thrown in an expression will not roll back earlier
computation.

Concise Method Syntax

When defining function properties of an object, the format almost always takes the form of a prop-
erty key referencing an anonymous function expression, as follows:

let person = {
sayName: function(name) {
console.log('My name is ${name}');

}
}i

person.sayName ('Matt'); // My name is Matt

The new shorthand method syntax follows this pattern and allows the developer to give up the
capability to name the function expression—which, most of the time, is not useful anyway—and in
exchange dramatically shorten how a function property can be expressed.

The following is behaviorally identical to the previous code snippet:

let person = {
sayName (name) {
console.log('My name is ${name}');
}
}i

person.sayName ('Matt'); // My name is Matt

264 | CHAPTER8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

This is also applicable to the getter and setter object conventions:

let person =
name : '',
get name() {
return this.name ;
¥

set name (name) {
this.name_ = name;
1

sayName () {
console.log('My name is ${this.name }');
}

}i

person.name = 'Matt';
person.sayName (); // My name is Matt

Shorthand method syntax and computed property keys are mutually compatible:

const methodKey = 'sayName';

let person = {
[methodKey] (name) {
console.log('My name is ${name}');
}

}

person.sayName ('Matt'); // My name is Matt

NOTE You will find that the shorthand method syntax is more useful in the
context of ECMAScript 6 classes, which are covered later in the chapter.

Object Destructuring

ECMAScript 6 introduced object destructuring, which allows you to perform one or many opera-
tions using nested data within a single statement. With respect to objects, this gives you the ability to
perform assignments from object properties using syntax that matches the structure of an object.

The following is an example of two equivalent code snippets, first without object destructuring:

// Without object destructuring
let person = {

name: 'Matt',

age: 27

}i

let personName = person.name,
personAge = person.age;

console.log(personName); // Matt
console. log (personiAge) ; /] 27

Understanding Objects | 265

Second, using object destructuring:

// With object destructuring
let person = {

name: 'Matt',

age: 27

let { name: personName, age: personAge } = person;

console.log(personName); // Matt
console.log(personAge); // 27
Destructuring allows you to declare multiple variables and simultaneously perform multiple assign-
ments all inside a single object literal-like syntax. If you want to reuse the property name as a local
variable name, you can use a shorthand syntax, as follows:
let person = {
name: 'Matt',
age: 27

}i
let { name, age } = person;

console.log (name); // Matt
console.log(age) ; /] 27
Destructuring assignments do not have to match what is inside the object. You are able to ignore
properties when performing an assignment; conversely, if you reference a property that does not exist,
undefined will be assigned:
let person = {
name: 'Matt',
age: 27

i

let { name, job } = person;

console.log (name); // Matt

console.log(job) ; // undefined
It is also possible to define default values, which will be applied in the event that a property does not
exist in the source object:

let person = {
name: 'Matt',
age: 27

}i

let { name, job='Software engineer' } = person;

console.log (name); // Matt
console.log(job) ; // Software engineer

Destructuring uses the internal function Toobject () (which is not directly accessible in the runtime)
to coerce a source into an object. This means that primitive values will be treated as objects when

266 | CHAPTER8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

used in a destructuring operation; this also means that, by definition in the Toobject () specification,
null and undefined cannot be destructured and will throw an error.

let { length } = 'foobar';
console.log(length) ; /] 6

let { constructor: c } = 4;

console.log(c === Number); // true
let { _} = null; // TypeError
let { _ } = undefined; // TypeError

Destructuring does not demand that variable declarations occur inside the destructuring expression.
However, doing so requires the assignment expression to be contained inside parentheses:

let personName, personaAge;

let person = {
name: 'Matt',
age: 27

}i
({name: personName, age: personAge} = person);

console.log(personName, personAge); // Matt, 27

Nested Destructuring

There are no restrictions on referencing nested properties or assignment targets. This allows you to do
things like perform copies of object properties:

let person =
name: 'Matt',
age: 27,
job: {
title: 'Software engineer'
}

}i

let personCopy = {};

({
name: personCopy.name,
age: personCopy.age,
job: personCopy.job

} = person) ;

// Because an object reference was assigned into personCopy, changing a property
// inside the person.job object will be propagated to personCopy:
person.job.title = 'Hacker'

console.log (person) ;
// { name: 'Matt', age: 27, job: { title: 'Hacker' } }

console.log (personCopy) ;

Understanding Objects | 267

// { name: 'Matt', age: 27, job: { title: 'Hacker' } }
Destructuring assignments can be nested to match nested property references:

let person = {
name: 'Matt’',
age: 27,
job: {
title: 'Software engineer'

}
}i

// Declares 'title' variable and assigns person.job.title as its value
let { job: { title }} = person;

console.log(title); // Software engineer

You cannot use nested property references when an outer property is undefined. This is true for both
source objects and destination objects:

let person = {
job: {
title: 'Software engineer'

}
}i

let personCopy = {};

// 'foo' is undefined on the source object

({
foo: {
bar: personCopy.bar

} = person) ;
// TypeError: Cannot destructure property 'bar' of 'undefined' or 'null'.

// 'job' is undefined on the destination object

(f
job: {
title: personCopy.job.title

} = person) ;
// TypeError: Cannot set property 'title' of undefined

Partial Destructuring Completion

It’s important to note that a destructured assignment involving multiple properties is a sequential
operation with independent outcomes. If, within a single destructured expression with multiple
assignments, the initial assignments succeed but a later one throws an error, the destructured assign-
ment will exit having only partially completed:

let person = {
name: 'Matt',
age: 27

}i

let personName, personBar, personAge;

268 | CHAPTER8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

try {
// person.foo is undefined, so this will throw an error

({name: personName, foo: { bar: personBar }, age: personAge} = person);
} catch(e) {}

console.log(personName, personBar, personlAge);
// Matt, undefined, undefined

Parameter Context Matching

It is also possible to perform a destructured assignment inside a function parameter list. It does not
affect the arguments object, but it allows you to declare variables inside the function signature that
are immediately available inside the function body:

let person =
name: 'Matt',
age: 27

}i

function printPerson(foo, {name, age}, bar) {
console.log(arguments) ;
console.log(name, age);

}

function printPerson2 (foo, {name: personName, age: personAge}, bar) ({
console.log(arguments) ;
console.log(personName, personAge) ;

}

printPerson('lst', person, '2nd');
// ['1lst', { name: 'Matt', age: 27 }, '2nd']
// 'Matt', 27

printPerson2 ('lst', person, '2nd');
// ['1st', { name: 'Matt', age: 27 }, '2nd']
// 'Matt', 27

OBJECT CREATION

Although using the object constructor or an object literal are convenient ways to create single
objects, there is an obvious downside: Creating multiple objects with the same interface requires a lot
of code duplication.

Overview

Through successive specifications, the available features of ECMAScript followed a highly unusual
pattern. Through the ECMAScript 5.1 specification, there was no formal support for object-oriented
constructs such as classes or inheritance. However, as you will see in the following sections, clever
application of prototypal inheritance allowed JavaScript developers to emulate this behavior—quite
successfully.

Object Creation | 269

With the ECMAScript 6 specification, formal support for classes and inheritance was introduced.
These ES6 classes are intended to completely subsume the prototype-based class solutions designed in
previous specifications. However, their implementation is, in many ways, merely a syntactical abstrac-
tion for ES5.1-style constructor functions and prototypal inheritance.

NOTE Make no mistake: A JavaScript codebase built upon object-oriented pat-
terns should almost always use ECMAScript 6 classes. That said, it is instructive
to learn about the conventions that existed prior to ES6 classes, especially since
the ES6 class definition can be imagined as a thin wrapper around existing con-
structs. Therefore, before the ES6 classes section, the following sections will pro-
gressively introduce the underlying concepts that are replaced by classes.

The Factory Pattern

The factory pattern is a well-known design pattern used in software engineering to abstract away
the process of creating specific objects. (Other design patterns and their implementation in Java-
Script are discussed later in the book.) One way to create objects with specific interfaces is shown in
this example:

function createPerson(name, age, job) {
let o = new Object();
o.name = name;

.age = age;

.job = job;

.sayName = function() {
console.log(this.name) ;

}i

return o;

}

let personl = createPerson("Nicholas", 29, "Software Engineer");
let person2 = createPerson("Greg", 27, "Doctor");

O O O

Here, the function createperson () accepts arguments with which to build an object with all of the
necessary information to represent a Person object. The function can be called any number of times
with different arguments and will still return an object that has three properties and one method.
Though this solved the problem of creating multiple similar objects, the factory pattern didn’t address
the issue of object identification (what type of object an object is).

The Function Constructor Pattern

As mentioned in previous chapters, constructors in ECMAScript are used to create specific types of
objects. There are native constructors, such as Object and Array, which are available automatically
in the execution environment at runtime. It is also possible to define custom constructors, in the form
of a function, that define properties and methods for your own type of object.

| CHAPTER 8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

For instance, the previous example can be rewritten using the function constructor pattern:

function Person(name, age, job) {
this.name = name;
this.age = age;
this.job = job;
this.sayName = function() {
console.log(this.name) ;

}i
}

let personl = new Person("Nicholas", 29, "Software Engineer");
let person2 = new Person("Greg", 27, "Doctor");

personl.sayName(); // Nicholas
person2.sayName () ; // Greg

In this example, the Person () function takes the place of the factory creatererson () function.
Note that the code inside Person () is the same as the code inside createPerson (), with the follow-
ing exceptions:

> There is no object being created explicitly.

> The properties and method are assigned directly onto the this object.

» There is no return statement.

Also note the name of the function is Person with an uppercase P. By convention, constructor func-
tions always begin with an uppercase letter, whereas nonconstructor functions begin with a lowercase
letter. This convention is borrowed from other OO languages and helps to distinguish function use in
ECMAScript because constructors are simply functions that create objects.

To create a new instance of Person, use the new operator. Calling a constructor in this manner will do
the following;:

1. A new object is created in memory.

2. The new object’s internal [[Prototypel] pointer is assigned to the constructor’s proto-
type property.

3. The this value of the constructor is assigned to the new object (so this points to the
new object).

4. The code inside the constructor is executed (adds properties to the new object).

5. If the constructor function returns a non-null value, that object is returned. Otherwise, the
new object that was just created is returned.

At the end of the preceding example, person1 and person2 are each filled with a different instance
of Person. Each of these objects has a constructor property that points back to Person, as follows:

console.log(personl.constructor == Person); // true
console.log(person2.constructor == Person); // true

Object Creation | 271

The constructor property was originally intended for use in identifying the object type. However,
the instanceof operator is considered to be a safer way of determining type. Each of the objects in
this example is considered to be both an instance of object and an instance of Person, as indicated

by using the instanceof operator like this:

console.log(personl instanceof Object); // true
console.log (personl instanceof Person); // true
console.log (person2 instanceof Object); // true
console.log(person2 instanceof Person); // true

Defining your own constructors ensures that instances can be identified as a particular type later
on, which is a great advantage over the factory pattern. In this example, personl and person2 are

considered to be instances of object because all custom objects inherit from object (the specifics of

this are discussed later).

Constructor functions do not have to be expressed as a function declaration. A function expression

assigned to a variable behaves identically:

let Person = function(name, age, job) {
this.name = name;
this.age = age;
this.job = job;
this.sayName = function()
console.log(this.name) ;
}i
}

let personl =
let person2 =

29, "Software Engineer");
"Doctor") ;

new Person ("Nicholas",
new Person ("Greg", 27,

personl.sayName () ; // Nicholas

person2.sayName(); // Greg

console.log (personl instanceof Object); // true
console.log(personl instanceof Person); // true
console.log(person2 instanceof Object); // true
console.log (person2 instanceof Person); // true

When instantiating, the parentheses after the constructor function are optional if you do not wish to

pass any arguments—the new operator will invoke the constructor function no matter what:

function Person() {
this.name = "Jake";
this.sayName = function()
console.log(this.name) ;
i
}

let personl
let person2

new Person();
new Person;

// Jake
// Jake

personl.sayName () ;
person2.sayName () ;
Object) ;

console.log(personl instanceof // true

272 | CHAPTER8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

console.log(personl instanceof Person); // true
console.log(person2 instanceof Object); // true
console.log(person2 instanceof Person); // true

Constructors as Functions

The only difference between constructor functions and other functions is the way in which they are
called. Constructors are, after all, just functions; there’s no special syntax to define a constructor that
automatically makes it behave as such. Any function that is called with the new operator acts as a
constructor, whereas any function called without it acts just as you would expect a normal function
call to act. For instance, the Person () function from the previous example may be called in any of
the following ways:

// use as a constructor
let person = new Person("Nicholas", 29, "Software Engineer");
person.sayName () ; // "Nicholas"

// call as a function
Person("Greg", 27, "Doctor"); // adds to window
window.sayName () ; // "Greg"

// call in the scope of another object
let o = new Object();

Person.call (o, "Kristen", 25, "Nurse");
o.sayName () ; // "Kristen"

The first part of this example shows the typical use of a constructor—to create a new object via the
new operator. The second part shows what happens when the Person () function is called without
the new operator: The properties and methods get added to the window object. Remember that the
this object always points to the Global object (window in web browsers) when a function is called
without an explicitly set this value (by being an object method or through call ()/apply()). So
after the function is called, the sayName () method can be called on the window object, and it will
return "Greg". The Person () function can also be called within the scope of a particular object
using call () (or apply ()). In this case, it’s called with a this value of the object o, which then gets
assigned all of the properties and the sayName () method.

Problems with Constructors

Though the constructor paradigm is useful, it is not without its faults. The major downside to con-
structors is that methods are created once for each instance. So, in the previous example, both per-
sonl and person2 have a method called sayName (), but those methods are not the same instance of
Function. Remember that functions are objects in ECMAScript, so every time a function is defined,
it’s actually an object being instantiated. Logically, the constructor actually looks like this:

function Person(name, age, job) {
this.name = name;
this.age = age;
this.job = job;
this.sayName = new Function("console.log(this.name)"); // logical equivalent

}

Thinking about the constructor in this manner makes it clear that each instance of Person gets its
own instance of Function that happens to display the name property. To be clear, creating a function

Object Creation | 273

in this manner is different with regard to scope chains and identifier resolution, but the mechanics of
creating a new instance of Function remain the same. So, functions of the same name on different
instances are not equivalent, as the following code proves:

console.log(personl.sayName == person2.sayName); // false

It doesn’t make sense to have two instances of Function that do the same thing, especially when the
this object makes it possible to avoid binding functions to particular objects until runtime.

It’s possible to work around this limitation by moving the function definition outside of the construc-
tor, as follows:

function Person(name, age, job) {
this.name = name;
this.age = age;
this.job = job;
this.sayName = sayName;

}

function sayName() {
console.log(this.name) ;
}

let personl = new Person("Nicholas", 29, "Software Engineer");
let person2 = new Person("Greg", 27, "Doctor");

personl.sayName(); // Nicholas
person2.sayName(); // Greg

In this example, the sayName () function is defined outside the constructor. Inside the constructor,

the sayName property is set equal to the global sayName () function. Because the sayName property
now contains just a pointer to a function, both person1 and person2 end up sharing the sayName ()
function that is defined in the global scope. This solves the problem of having duplicate functions that
do the same thing but also creates some clutter in the global scope by introducing a function that can
realistically be used only in relation to an object. If the object needed multiple methods, that would
mean multiple global functions, and all of a sudden the custom reference type definition is no longer
nicely grouped in the code. These problems are addressed by using the prototype pattern.

The Prototype Pattern

Each function is created with a prototype property, which is an object containing properties and
methods that should be available to instances of a particular reference type. This object is liter-

ally a prototype for the object to be created once the constructor is called. The benefit of using the
prototype is that all of its properties and methods are shared among object instances. Instead of
assigning object information in the constructor, they can be assigned directly to the prototype, as in
this example:

function Person() {}
Person.prototype.name = "Nicholas";

Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";

274 | CHAPTER8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

Person.prototype.sayName = function() {
console.log(this.name) ;
}i

let personl = new Person();
personl.sayName () ; // "Nicholas"

let person2 = new Person();
person2.sayName () ; // "Nicholas"

console.log(personl.sayName == person2.sayName); // true

Using a function expression is also suitable:

let Person = function() {};

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";

Person.prototype.sayName = function() {
console.log(this.name) ;

}i

let personl = new Person();
personl.sayName () ; // "Nicholas"

let person2 = new Person();
person2.sayName () ; // "Nicholas"

console.log (personl.sayName == person2.sayName); // true

Here, the properties and the sayName () method are added directly to the prototype property of
Person, leaving the constructor empty. However, it’s still possible to call the constructor to create a
new object and have the properties and methods present. Unlike the constructor pattern, the proper-
ties and methods are all shared among instances, so person1 and person2 are both accessing the
same set of properties and the same sayName () function. To understand how this works, you must
understand the nature of prototypes in ECMAScript.

How Prototypes Work

Whenever a function is created, its prototype property is also created according to a specific set of
rules. By default, all prototypes automatically get a property called constructor that points back
to the function on which it is a property. In the previous example, for instance, Person.prototype.
constructor points to Person. Then, depending on the constructor, other properties and methods
may be added to the prototype.

When defining a custom constructor, the prototype gets the constructor property only by default; all
other methods are inherited from object. Each time the constructor is called to create a new instance,
that instance has an internal pointer to the constructor’s prototype. In ECMA-262, this is called

[[Prototype]]. There is no standard way to access [[Prototype]] from script, but Firefox, Safari,
and Chrome all support a property on every object called _proto__; in other implementations, this
property is completely hidden from script. The important thing to understand is that a direct link exists
between the instance and the constructor’s prototype but not between the instance and the constructor.

Object Creation | 275

This relationship can be difficult to visualize, so refer to the following snippet as a sort of lookup
table for overall prototype behavior:

/**

* Constructor function can exist as function expression
* or function declaration, so both of these are suitable:
* function Person {}

* let Person = function() {}

*

/

function Person() {}

/**
* Upon declaration, the constructor function already
* has a prototype object associated with it:
*
/

console.log(typeof Person.prototype) ;

console.log(Person.prototype) ;

/1A

// constructor: f Person(),

// __proto_ : Object

//}

/**

* As mentioned previously, the constructor function has

* a 'prototype' reference to the prototype object, and

* the prototype object has a 'constructor' reference to

* the constructor function. These references are cyclical:
*/

console.log(Person.prototype.constructor === Person); // true

/**
* Any normal prototype chain will terminate at the Object prototype.
* The prototype of the Object prototype is null.

*/
console.log(Person.prototype. proto === Object.prototype) ; // true
console.log(Person.prototype. proto .constructor === Object); // true
console.log(Person.prototype. proto . proto === null); // true

console.log(Person.prototype. proto_);
/1A

// constructor: f Object(),

// toString: .

// hasOwnProperty:

// isPrototypeOf:

//

/] }

let personl = new Person(),
person2 = new Person() ;

/**
* The constructor, the prototype object, and an instance
* are three completely distinct objects:

*/

276 | CHAPTER8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

console.log(personl !== Person) ; // true
console.log(personl !== Person.prototype); // true
console.log(Person.prototype !== person) ; // true
/**

An instance is linked to the prototype through _ proto , which
is the literal manifestation of the [[Prototype]] hidden property.

*

*

*

* A constructor is linked to the prototype through the constructor property.

*

* An instance has no direct link to the constructor, only through the prototype.
*

/
console.log(personl. proto === Person.prototype) ; // true
conosle.log(personl. proto_ .constructor === Person); // true
/**

* Two instances created from the same constructor function will share
* a prototype object:
*/

console.log(personl. proto === person2. proto); // true

/**
* instanceof will check the instance's prototype chain against the
* prototype property of a constructor function:

*/

console.log (personl instanceof Person); // true
console.log(personl instanceof Object) ; // true
console.log(Person.prototype instanceof Object); // true

Consider the original example using the Person constructor and Person.prototype. The relation-
ship between the objects in the example is shown in Figure 8-1.

v

Person —> Person Prototype
prototype | [constructor [
name “Nicholas”
age 29
job “Software Engineer”
sayName (function)
personi person2
[[Prototypell | [4 [[Prototypell | [
FIGURE 8-1:

Figure 8-1 shows the relationship between the Person constructor, the Person’s prototype, and the
two instances of Person that exist. Note that Person.prototype points to the prototype object but
Person.prototype.constructor points back to person. The prototype contains the constructor

Object Creation | 277

property and the other properties that were added. Each instance of Person, personi, and person2
has internal properties that point back to Person.prototype only; each has no direct relationship
with the constructor. Also note that even though neither of these instances have properties or meth-
ods, personl.sayName () works. This is due to the lookup procedure for object properties.

Even though [[Prototype]] is not accessible in all implementations, the isPrototypeof () method
can be used to determine if this relationship exists between objects. Essentially, isPrototypeof ()
returns true if [[Prototype]] points to the prototype on which the method is being called, as
shown here:

console.log(Person.prototype.isPrototypeOf (personl)); // true
console.log (Person.prototype.isPrototypeOf (person2)); // true

In this code, the prototype’s isPrototypeof () method is called on both person1 and person2.
Because both instances have a link to Person.prototype, it returns true.

The ECMAScript object type has a method called object . getPrototypeof (), which returns the
value of [[Prototype]]. For example:

console.log (Object.getPrototypeOf (personl) == Person.prototype); // true
console.log(Object.getPrototypeOf (personl) .name) ; // "Nicholas"

The first line of this code simply confirms that the object returned from object .getPrototypeof ()
is actually the prototype of the object. The second line retrieves the value of the name property on

the prototype, which is "Nicholas". Using Object .getPrototypeOf (), you are able to retrieve an
object’s prototype easily, which becomes important once you want to implement inheritance using the
prototype (discussed later in this chapter).

The object type also features a set Prototypeof () method, which writes a new value into the
[[Prototype]] of the instance. This allows you to overwrite the prototype hierarchy of an already-
instantiated object:

let biped = {
numLegs: 2
}i

let person = {
name: 'Matt'

Object.setPrototypeOf (person, biped) ;

console.log (person.name) ; // Matt
console.log(person.numlLegs) ; /] 2
console.log(Object.getPrototypeOf (person) === biped); // true

WARNING: The Object.setPrototype0f() operation will likely cause severe
performance slowdowns when used. The Mozilla documentation puts it best:
"In every browser and JavaScript engine, the effects on performance of altering
inheritance are subtle and far-flung, and are not limited to simply the time spent
in Object.setPrototypeOf() statement, but may extend to any code that has
access to any object whose [[Prototypell has been altered."

278

| CHAPTER 8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

To avoid these slowdowns, prefer to just create a new object and specify its prototype with
Object.create():

let biped = {
numbLegs: 2
}i

let person = Object.create(biped) ;

person.name = 'Matt';

console. log (person.name) ; // Matt
console.log (person.numlLegs) ; /] 2
console.log(Object.getPrototypeOf (person) === biped); // true

Understanding the Prototype Hierarchy

Whenever a property is accessed for reading on an object, a search is started to find a property with
that name. The search begins on the object instance itself. If a property with the given name is found on
the instance, then that value is returned; if the property is not found, then the search continues up the
pointer to the prototype, and the prototype is searched for a property with the same name. If the prop-
erty is found on the prototype, then that value is returned. So, when personi.sayName () is called, a
two-step process happens. First, the JavaScript engine asks, "Does the instance person1 have a property
called sayName?" The answer is no, so it continues the search and asks, "Does the person1 prototype
have a property called sayName?" The answer is yes, so the function stored on the prototype is accessed.
When person2 . sayName () is called, the same search executes, ending with the same result. This is how
prototypes are used to share properties and methods among multiple object instances.

NOTE The constructor property mentioned earlier exists only on the proto-
type and so is accessible from object instances.

Although it’s possible to read values on the prototype from object instances, it is not possible to
overwrite them. If you add a property to an instance that has the same name as a property on the
prototype, you create the property on the instance, which then masks the property on the prototype.
Here’s an example:

function Person() {}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";

Person.prototype.sayName = function()
console.log (this.name) ;

}i

let personl = new Person();
let person2 = new Person();

personl.name = "Greg";
console.log(personl.name) ; // "Greg" - from instance
console.log(person2.name) ; // "Nicholas" - from prototype

Object Creation | 279

In this example, the name property of personi is shadowed by a new value. Both personi .name and
person2.name still function appropriately, returning "Greg" (from the object instance) and "Nicho-
las" (from the prototype), respectively. When personi.name was accessed in the console.log (), its
value was read, so the search began for a property called name on the instance. Because the property
exists, it is used without searching the prototype. When person2.name is accessed the same way, the
search doesn’t find the property on the instance, so it continues to search on the prototype where the
name property is found.

Once a property is added to the object instance, it shadows any properties of the same name on the
prototype, which means that it blocks access to the property on the prototype without altering it.
Even setting the property to null only sets the property on the instance and doesn’t restore the link
to the prototype. The delete operator, however, completely removes the instance property and
allows the prototype property to be accessed again as follows:

function Person() {}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";

Person.prototype.sayName = function() {
console.log(this.name) ;

}i

let personl = new Person();
let person2 = new Person();

personl.name = "Greg";
console. log (personl.name) ; // "Greg" - from instance
console.log(person2.name) ; // "Nicholas" - from prototype

delete personl.name;
console.log(personl.name) ; // "Nicholas" - from the prototype

In this modified example, delete is called on personi.name, which previously had been shadowed
with the value "Greg". This restores the link to the prototype’s name property, so the next time per-
sonl.name is accessed, it’s the prototype property’s value that is returned.

The hasownProperty () method determines if a property exists on the instance or on the prototype.
This method, which is inherited from object, returns true only if a property of the given name exists
on the object instance, as in this example:

function Person() {}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";

Person.prototype.sayName = function() {
console.log(this.name) ;

}i

let personl = new Person();
let person2 = new Person();

280 | CHAPTER 8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING
console.log(personl.hasOwnProperty ("name")); // false
personl.name = "Greg";
console.log (personl.name) ; // "Greg" - from instance
console.log(personl.hasOwnProperty ("name")); // true
console.log (person2.name) ; // "Nicholas" - from prototype
console.log(person2.hasOwnProperty ("name")); // false

delete personl.name;

console.
console.

// "Nicholas" - from the prototype
// false

log (personl.name) ;
log (personl.hasOwnProperty ("name")) ;

By injecting calls to hasownProperty () in this example, it becomes clear when the instance’s
property is being accessed and when the prototype’s property is being accessed. Calling personi.
hasOwnProperty ("name") returns true Only after name has been overwritten on personl, indicat-
ing that it now has an instance property instead of a prototype property. Figure 8-2 illustrates the
various steps being taken in this example. (For simplicity, the relationship to the Person constructor

has been omitted.)

Initially
person Person Prototype
[[Prototypell | [4 constructor o
name “Nicholas”
person2 age 29
[[Prototypel] | ° job “Software Engineer”
sayName (function)

personl.name = “Greg"

"

personi Person Prototype
[Prototypel]] [4 constructor []
name “Greg” name “Nicholas”
age 29
person2 job "Software Engineer”
[[Prototypel] [sayName (function)

delete person1.name

personi Person Prototype
[Prototypel]] [4 constructor o
name “Nicholas”
age 29
person2 job "Software Engineer”
[[Prototypell [sayName (function)

FIGURE 8-2:

Object Creation | 281

NOTE The ECMAScript Object.getOwnPropertyDescriptor() method works
only on instance properties; to retrieve the descriptor of a prototype property,
you7nustaﬂlObject.getOwnPropertyDescriptorO ontheprouﬁypeobﬁxt
directly.

Prototypes and the “in” Operator

There are two ways to use the in operator: on its own or as a for-in loop. When used on its own, the
in operator returns true when a property of the given name is accessible by the object, which is to say
that the property may exist on the instance or on the prototype. Consider the following example:

function Person () {}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";

Person.prototype.sayName = function() ({
console.log(this.name) ;
}i

let personl = new Person();
let person2 = new Person();

console.log (personl.hasOwnProperty ("name")); // false
console.log("name" in personl); // true

personl.name = "Greg";

console.log(personl.name) ; // "Greg" - from instance
console.log (personl.hasOwnProperty ("name")); // true

console.log("name" in personl); // true

console.log(person2.name) ; // "Nicholas" - from prototype
console.log(person2.hasOwnProperty ("name")); // false
console.log("name" in person2); // true

delete personl.name;

console.log(personl.name) ; // "Nicholas" - from the prototype
console.log(personl.hasOwnProperty ("name")); // false
console.log("name" in personl); // true

Throughout the execution of this code, the property name is available on each object either directly
or from the prototype. Therefore, calling "name" in personl always returns true, regardless of
whether the property exists on the instance. It’s possible to determine if the property of an object
exists on the prototype by combining a call to hasownProperty () with the in operator like this:

function hasPrototypeProperty (object, name) {
return !object.hasOwnProperty(name) && (name in object);
}

282

| CHAPTER 8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

Because the in operator always returns true as long as the property is accessible by the object, and
hasOwnProperty () returns true only if the property exists on the instance, a prototype property
can be determined if the in operator returns true but hasownProperty () returns false. Consider
the following example:

function Person() {}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";

Person.prototype.sayName = function() {
console.log(this.name) ;
}i

let person = new Person() ;
console.log (hasPrototypeProperty (person, "name")); // true

person.name = "Greg";
console.log (hasPrototypeProperty (person, "name")); // false

In this code, the name property first exists on the prototype, so hasPrototypeProperty () returns
true. Once the name property is overwritten, it exists on the instance, so hasPrototypeProperty ()
returns false. Even though the name property still exists on the prototype, it is no longer used
because the instance property now exists.

When using a for-in loop, all properties that are accessible by the object and can be enumerated will
be returned, which includes properties both on the instance and on the prototype. Instance proper-
ties that shadow a non-enumerable prototype property (a property that has [[Enumerablel] set to
false) will be returned in the for-in loop because all developer-defined properties are enumerable
by default.

To retrieve a list of all enumerable instance properties on an object, you can use the Object .keys ()
method, which accepts an object as its argument and returns an array of strings containing the names
of all enumerable properties. For example:

function Person() {}

Person.prototype.name = "Nicholas";
Person.prototype.age = 29;
Person.prototype.job = "Software Engineer";

Person.prototype.sayName = function() {
console.log(this.name) ;
}i

let keys = Object.keys(Person.prototype);

console.log (keys) ; // "name, age, job, sayName"
let pl = new Person();
pl.name = "Rob";

pl.age = 31;

let plkeys = Object.keys(pl);

console.log(plkeys); // "name,age"
Here, the keys variable is filled with an array containing "name", "age", "job", and "sayName". This
is the order in which they would normally appear using for-in. When called on an instance of per-
son, Object .keys () returns an array of name and age, the only two instance properties.

Object Creation | 283

If you’d like a list of all instance properties, whether enumerable or not, you can use Object.
getOwnPropertyNames () in the same way:

let keys = Object.getOwnPropertyNames (Person.prototype) ;
console.log (keys) ; // "constructor,name, age, job, sayName"

Note the inclusion of the non-enumerable constructor property in the list of results. Both object.
keys () and Object .getOwnPropertyNames () may be suitable replacements for using for-in.

With the introduction of symbols in ECMAScript 6, the need for a sibling method to object.
getOwnPropertyNames () became apparent because symbol-keyed properties do not have a concept
of a name. Therefore, Object .getOwnPropertySymbols () was introduced, which offers the same
behavior as Object .getOwnPropertyNames () but with respect to symbols:

let k1 = Symbol('kl'),
k2 = Symbol ('k2");

let o = {
[k1]: 'k1°',
[k2]: 'k2!

i

console.log(Object.getOwnPropertySymbols (o)) ;
// [Symbol (k1), Symbol (k2)]

Property Enumeration Order

for—inloops,Object.keys(),Object.getOwnPropertyNames/Symbols(),arKiObject.assign()
have an important distinction when it comes to property enumeration order. for-in loops and
Object.keys () do not have a deterministic order of enumeration—these are determined by the
JavaScript engine and may vary by browser.

Object .getOwnPropertyNames (), Object .getOwnPropertySymbols (), and Object .assign(),
however, do have a deterministic enumeration order. Number keys will first be enumerated in ascend-
ing order, then string and symbol keys enumerated in insertion order. Keys defined inline in an object
literal will be inserted in their comma delimited order.

let k1 = Symbol('kl'),

k2 = Symbol('k2');
let o = {
1: 1,
first: 'first',
[k1]: 'sym2',
second: 'second',
0: 0
}i
ol[k2] = 'sym2';
o[3] = 3;
o.third = 'third';
0[2] = 2;

console.log(Object.getOwnPropertyNames (o)) ;

284 | CHAPTER8 OBJECTS, CLASSES, AND OBJECT-ORIENTED PROGRAMMING

// ["O", n1u, ||3n, "first", "Second", "third"]

console.log (Object.getOwnPropertySymbols (o)) ;
// [Symbol (k1), Symbol (k2)]

Object Iteration

For most of JavaScript history, iterating the properties of an object was a messy affair. The ECMAS-
cript 2017 introduced two static methods for converting an object’s contents into a serialized—

and more importantly, iterable—format. These static methods, object .values () and object.
entries (), accept and object and return its contents in an array. Object .values () returns an array
of the object’s values, and object .entries () returns an array of array pairs, each representing a
[key, value] pair in the object.

These methods are demonstrated here:

const o = {
foo: 'bar',
baz: 1,
qux: {}

}i

console.log(Object.values (o)) ;
// ["par", 1, {}]

console.log(Object.entries((0)));
// [["foo", "bar"l, ["baz", 11, [”qux”, {}]]

Note that non-string properties are converted to strings in the output array. Furthermore, the method
performs a shallow copy of the object:

const o = {

qux: {
}i
console.log (Object.values (o) [0] === o.qux);
// true
console.log (Object.entries (o) [0] [1] === o.qux);
// true

Symbol-keyed properties are ignored:

const sym = Symbol () ;
const o = {
[sym] : 'foo'

}i

console.log (Object.values (o)) ;

/71

console.log (Object.entries((0)));

// 1]

Object Creation | 285

Alternate Prototype Syntax

You may have noticed in the previous example that Person.prototype had to be typed out for each
property and method. To limit this redundancy and to better visually encapsulate functionality on the
prototype, it has become more common to simply overwrite the prototype with an object literal that
contains all of the properties and methods, as in this example:

function Person() {}

Person.prototype = {
name: "Nicholas",
age: 29,
job: "Software Engineer",
sayName () {
console.log(this.name) ;

}
}i

In this rewritten example, the Person.prototype property is set equal to a new object created with
an object literal. The end result is the same, with one exception: the constructor property no longer
points to Person. When a function is created, its prototype object is created and the constructor
is automatically assigned. Essentially, this syntax overwrites the default prototype object completely,
meaning that the constructor property is equal to that of a completely new object (the object
constructor) instead of the function itself. Although the