

Learn Java 12 Programming

A step-by-step guide to learning essential concepts in Java
SE 10, 11, and 12

Nick Samoylov

BIRMINGHAM - MUMBAI

Learn Java 12 Programming
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Denim Pinto
Content Development Editor: Digvijay Bagul
Technical Editor: Neha Pande
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Tom Scaria
Production Coordinator: Tom Scaria

First published: April 2019
Production reference: 2250619

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-705-1

www.packtpub.com

http://www.packtpub.com

To my wife Luda, a software developer too, who was the source of my inspiration
and the sound technical advice for this book

– Nick Samoylov

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Nick Samoylov graduated from Moscow Institute of Physics and Technology, working as a
theoretical physicist and learning to program as a tool for testing his mathematical models.
After the demise of the USSR, Nick created and successfully ran a software company, but
was forced to close it under the pressure of governmental and criminal rackets. In 1999,
with his wife Luda and two daughters, he emigrated to the USA and has been living in
Colorado since then, working as a Java programmer. In his free time, Nick likes to write
and hike in the Rocky Mountains.

Many thanks to Kaushlendra Kumar Singh for support and Venkat Subramaniam for
reading parts of the draft and providing the valuable feedback.

About the reviewer
Aristides Villarreal Bravo is a Java developer, a member of the NetBeans Dream Team,
and a Java User Groups leader. He lives in Panama. He has organized and participated in
various conferences and seminars related to Java, JavaEE, NetBeans, the NetBeans platform,
free software, and mobile devices. He is the author of jmoordb, and writes tutorials and
blogs about Java, NetBeans, and web development. He has participated in several
interviews on sites about topics such as NetBeans, NetBeans DZone, and JavaHispano. He
is a developer of plugins for NetBeans.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Overview of Java Programming
Chapter 1: Getting Started with Java 12 9

How to install and run Java 10
What is JDK and why do we need it? 10
Installing Java SE 12
Commands, tools, and utilities 13

How to install and run an IDE 14
Selecting an IDE 14
Installing and configuring IntelliJ IDEA 15
Creating a project 16
Importing a project 26
Executing examples from the command line 33

Java primitive types and operators 34
Boolean type 35
Numeric types 35

Integral types 35
Floating-point types 37

Default values of primitive types 38
Literals of primitive types 39
New compact number format 41
Operators 42

Arithmetic unary (+ and -) and binary operators (+, -, *, /, and %) 43
Increment and decrement unary operators (++ and --) 43
Equality operators (== and !=) 44
Relational operators (<, >, <=, and >=) 44
Logical operators (!, &, and |) 44
Conditional operators (&&, ||, and ? :) 45
Assignment operators (=, +=, -=, *=, /=, and %=) 46

String types and literals 47
String literals 47
String immutability 50

Identifiers and variables 50
Identifier 51
Variable declaration (definition) and initialization 51

Type holder var 52
Java statements 52

Expression statements 53
Control flow statements 54

Table of Contents

[ii]

Selection statements 55
Iteration statements 59
Exception-handling statements 62
Branching statements 63

Summary 66
Quiz 66

Chapter 2: Java Object-Oriented Programming (OOP) 72
OOP concepts 73

Object/class 73
Inheritance 74
Abstraction/interface 76
Encapsulation 76
Polymorphism 77

Class 77
Method 79

Varargs 80
Constructor 81
The new operator 84
Class java.lang.Object 85
Instance and static properties and methods 90

Interface 92
Default methods 93
Private methods 94
Static fields and methods 95
Interface versus abstract class 95

Overloading, overriding, and hiding 96
Overloading 96
Overriding 98
Hiding 100

Final variable, method, and classes 103
Final variable 103
Final method 105
Final class 105

Polymorphism in action 105
Object factory 106
Operator instanceof 108

Summary 110
Quiz 110

Chapter 3: Java Fundamentals 115
Packages, importing, and access 115

Packages 116
Importing 116
Access modifiers 118

Java reference types 121

Table of Contents

[iii]

Class and interface 121
Array 123
Enum 124
Default values and literals 127
Reference type as a method parameter 127
equals() method 129

Reserved and restricted keywords 132
Reserved keywords 132
Restricted keywords 133

Usage of the this and super keywords 134
Usage of the this keyword 134
Usage of the super keyword 136

Converting between primitive types 136
Widening conversion 137
Narrowing conversion 138
Methods of conversion 139

Converting between primitive and reference types 141
Boxing 141
Unboxing 142

Summary 143
Quiz 144

Section 2: Building Blocks of Java
Chapter 4: Exception Handling 149

Java exceptions framework 150
Checked and unchecked exceptions 151
The try, catch, and finally blocks 154
The throws statement 156
The throw statement 157
The assert statement 159
Best practices of exceptions handling 159
Summary 160
Quiz 160

Chapter 5: Strings, Input/Output, and Files 163
Strings processing 163

Methods of the String class 163
Strings analysis 164
Strings comparison 164
Strings transformation 166
Methods added with Java 11 168

String utilities 169
I/O streams 172

Stream data 173

Table of Contents

[iv]

Class InputStream and its subclasses 174
ByteArrayInputStream 175
FileInputStream 176
ObjectInputStream 178
PipedInputStream 179
SequenceInputStream 181
FilterInputStream 182
javax.sound.sampled.AudioInputStream 183

Class OutputStream and its subclasses 184
PrintStream 185

Reader and Writer classes and their subclasses 188
Reader and its subclasses 188
Writer and its subclasses 189

Other classes of java.io package 190
Console 190
StreamTokenizer 194
ObjectStreamClass and ObjectStreamField 197

Class java.util.Scanner 199
File management 201

Creating and deleting files and directories 202
Listing files and directories 204

Apache Commons utilities FileUtils and IOUtils 205
Class FileUtils 206
Class IOUtils 207

Summary 207
Quiz 208

Chapter 6: Data Structures, Generics, and Popular Utilities 211
List, Set, and Map interfaces 211

Generics 213
How to initialize List and Set 214
java.lang.Iterable interface 217
Collection interface 217
List interface 220
Set interface 223
Map interface 223
Unmodifiable collections 226

Collections utilities 227
java.util.Collections class 228
CollectionUtils class 230

Arrays utilities 231
java.util.Arrays class 231
ArrayUtils class 232

Object utilities 234
java.util.Objects class 234
ObjectUtils class 238

Table of Contents

[v]

java.time package 239
LocalDate class 239
LocalTime class 242
LocalDateTime class 244
Period and Duration classes 244

Summary 246
Quiz 246

Chapter 7: Java Standard and External Libraries 253
Java Class Library 254

java.lang 255
java.util 256
java.time 257
java.io and java.nio 257
java.sql and javax.sql 258
java.net 258
java.lang.math and java.math 259
java.awt, javax.swing, and javafx 259

External libraries 260
org.junit 260
org.mockito 261
org.apache.log4j and org.slf4j 263
org.apache.commons 265

lang and lang3 266
collections4 267
codec.binary 269

Summary 270
Quiz 270

Chapter 8: Multithreading and Concurrent Processing 274
Thread versus process 274
User thread versus daemon 275
Extending class thread 275
Implementing interface Runnable 277
Extending thread vs implementing Runnable 278
Using pool of threads 279
Getting results from thread 287
Parallel vs concurrent processing 293
Concurrent modification of the same resource 293

Atomic variable 296
Synchronized method 298
Synchronized block 299
Concurrent collections 301
Addressing memory consistency error 303

Summary 303

Table of Contents

[vi]

Quiz 304

Chapter 9: JVM Structure and Garbage Collection 307
Java application execution 308

Using an IDE 308
Using the command line with classes 312
Using the command line with JAR files 315
Using the command line with an executable JAR file 316

Java processes 317
Class loading 319
Class linking 320
Class initialization 321
Class instantiation 322
Method execution 322
Garbage collection 322
Application termination 323

JVM structure 325
Runtime data areas 325
Classloaders 326
Execution engine 326

Garbage collection 326
Responsiveness, throughput, and stop-the-world 327
Object age and generations 327
When stop-the-world is unavoidable 328

Summary 329
Quiz 329

Chapter 10: Managing Data in a Database 333
Creating a database 333
Creating a database structure 335
Connecting to a database 338
Releasing the connection 340
CRUD data 341

The INSERT statement 342
The SELECT statement 342
The UPDATE statement 344
The DELETE statement 344
Using statements 345

The execute(String sql) method 345
The executeQuery(String sql) method 347
The executeUpdate(String sql) method 349

Using PreparedStatement 351
Using CallableStatement 352

Summary 354
Quiz 354

Table of Contents

[vii]

Chapter 11: Network Programming 358
Network protocols 358
UDP-based communication 360
TCP-based communication 364

The java.net.ServerSocket class 365
The java.net.Socket class 368
Running the examples 370

UDP versus TCP protocols 371
URL-based communication 372

The URL syntax 372
The java.net.URL class 373

Using the HTTP 2 Client API 380
Blocking HTTP requests 381
Non-blocking (asynchronous) HTTP requests 383
Server push functionality 388
WebSocket support 389

Summary 392
Quiz 392

Chapter 12: Java GUI Programming 394
Java GUI technologies 395
JavaFX fundamentals 395
Hello with JavaFX 399
Control elements 402
Charts 405
Applying CSS 407
Using FXML 409
Embedding HTML 415
Playing media 423
Adding effects 428
Summary 452
Quiz 452

Section 3: Advanced Java
Chapter 13: Functional Programming 454

What is functional programming? 454
What is a functional interface? 457
What is a lambda expression? 459

Local-variable syntax for lambda parameters 460
Standard functional interfaces 462

Consumer<T> 463
Predicate<T> 464
Supplier<T> 466
Function<T, R> 466

Table of Contents

[viii]

Other standard functional interfaces 469
Lambda expression limitations 470
Method references 472
Summary 474
Quiz 474

Chapter 14: Java Standard Streams 476
Streams as a source of data and operations 476
Stream initialization 478

Stream interface 478
empty() 478
of(T... values) 479
ofNullable(T t) 480
iterate(Object, UnaryOperator) 481
concat (Stream a, Stream b) 482
generate (Supplier) 482

Stream.Builder interface 483
Other classes and interfaces 484

Operations (methods) 487
Intermediate operations 488

Filtering 488
Mapping 489
Sorting 491
Peeking 492

Terminal operations 492
Processing each element 493
Counting all elements 496
Match all, any, none 497
Find any or first 498
Optional class 499
Min and max 500
To array 501
Reduce 503
Collect 507
Collectors 510

Numeric stream interfaces 514
Creating a stream 515

range(), rangeClosed() 515
Intermediate operations 515

boxed(), mapToObj() 516
mapToInt(), mapToLong(), mapToDouble() 517
flatMapToInt(), flatMapToLong(), flatMapToDouble() 518

Terminal operations 518
sum(), average() 519

Parallel streams 520
Stateless and stateful operations 520
Sequential or parallel processing? 520

Table of Contents

[ix]

Summary 521
Quiz 521

Chapter 15: Reactive Programming 524
Asynchronous processing 524

Sequential and parallel streams 525
Using the CompletableFuture object 526

Non-blocking API 528
The java.io package versus the java.nio package 528
The event/run loop 529

Reactive 530
Responsive 531
Resilient 532
Elastic 532
Message-driven 533

Reactive streams 533
RxJava 535

Observable types 537
Blocking versus non-blocking 538
Cold versus hot 541

Disposable 544
Creating an observable 546
Operators 548

Transforming 549
Filtering 550
Combining 551
Converting from XXX 552
Exceptions handling 553
Life cycle events handling 553
Utilities 555
Conditional and Boolean 557
Backpressure 558
Connectable 558

Multithreading (scheduler) 559
Summary 565
Quiz 565

Chapter 16: Microservices 567
What is a microservice? 567
The size of a microservice 569
How microservices talk to each other 570
The reactive system of microservices 573

The HTTP server 573
The EventBus message receiver 577
The EventBus message senders 579
The reactive system demonstration 582

Table of Contents

[x]

Summary 584
Quiz 585

Chapter 17: Java Microbenchmark Harness 586
What is JMH? 586
Creating a JMH benchmark 589
Running the benchmark 590

Using an IDE plugin 591
JMH benchmark parameters 594

Mode 594
Output time unit 595
Iterations 595
Forking 596

JMH usage examples 596
Using the @State annotation 598
Using the Blackhole object 599
Using the @CompilerControl annotation 599
Using the @Param annotation 600

A word of caution 601
Summary 602
Quiz 602

Chapter 18: Best Practices for Writing High-Quality Code 604
Java idioms, their implementation, and their usage 605

The equals() and hashCode() methods 605
The compareTo() method 608
The clone() method 610
The StringBuffer and StringBuilder classes 614
Try, catch, and finally clauses 614

Best design practices 615
Identifying loosely coupled functional areas 615
Breaking the functional area into traditional tiers 615
Coding to an interface 616
Using factories 616
Preferring composition over inheritance 616
Using libraries 617

Code is written for people 617
Testing is the shortest path to quality code 619
Summary 619
Quiz 620

Chapter 19: Java - Getting New Features 621
Java continues to evolve 621
Panama project 622
Valhalla project 623

Table of Contents

[xi]

Amber project 624
Data class 624
Pattern match 625
Raw string literals 626
Concise method bodies 627
Lambda leftovers 628

Using an underscore instead of a parameter name 628
Shadowing a local variable 629
Better disambiguation of functional expressions 629

Loom project 630
Skara project 631
Summary 632

Appendix A: Assessments 633
Chapter 1 – Getting Started with Java 12 633
Chapter 2 – Java Object-Oriented Programming (OOP) 634
Chapter 3 – Java Fundamentals 634
Chapter 4 – Exception Handling 635
Chapter 5 – Strings, Input/Output, and Files 635
Chapter 6 – Data Structures, Generics, and Popular Utilities 636
Chapter 7 – Java Standard and External Libraries 636
Chapter 8 – Multithreading and Concurrent Processing 637
Chapter 9 – JVM Structure and Garbage Collection 637
Chapter 10 – Managing Data in a Database 638
Chapter 11 – Network Programming 639
Chapter 12 – Java GUI Programming 639
Chapter 13 – Functional Programming 640
Chapter 14 – Java Standard Streams 640
Chapter 15 – Reactive Programming 641
Chapter 16 – Microservices 642
Chapter 17 – Java Microbenchmark Harness 642
Chapter 18 – Best Practices for Writing High-Quality Code 643

Other Books You May Enjoy 644

Index 647

Preface
The purpose of this book is to equip the readers with a solid understanding of Java
fundamentals and to lead them through a series of practical steps from the basics to the
actual real programming. The discussion and examples aim to stimulate the growth of the
reader's professional intuition by using proven programming principles and practices. The
book starts with the basics and brings the readers up to the latest programming
technologies, considered on a professional level.

After finishing this book, you will be able to do the following:

Install and configure your Java development environment.
Install and configure your Integrated Development Environment
(IDE)–essentially, your editor.
Write, compile, and execute Java programs and tests.
Understand and use Java language fundamentals.
Understand and apply object-oriented design principles.
Master the most frequently used Java constructs.
Learn how to access and manage data in the database from Java application.
Enhance your understanding of network programming.
Learn how to add graphical user interface for better interaction with your
application.
Become familiar with the functional programming.
Understand the most advanced data processing technologies—streams, including
parallel and reactive streams.
Learn and practice creating microservices and building a reactive system.
Learn the best design and programming practices.
Envision Java's future and learn how you can become part of it.

Preface

[2]

Who this book is for
This book is for those who would like to start a new career in the modern Java
programming profession, as well as those who do it professionally already and would like
to refresh their knowledge of the latest Java and related technologies and ideas.

What this book covers
Chapter 1, Getting Started with Java 12, begins with the basics, first explaining what "Java" is
and defining its main terms, then going on to how to install the necessary tools to write and
run (execute) a program. This chapter also describes the basic Java language constructs,
illustrating them with examples that can be executed immediately.

Chapter 2, Object-Oriented Programming (OOP), presents the concepts of object-oriented
programming and how they are implemented in Java. Each concept is demonstrated with
specific code examples. The Java language constructs of class and interface are discussed in
detail, as well as overloading, overriding, hiding, and use of the final keyword. The last
section of the chapter is dedicated to presenting the power of polymorphism.

Chapter 3, Java Fundamentals, presents to the reader a more detailed view of Java as a
language. It starts with the code organization in packages and a description of the
accessibility levels of classes (interfaces) and their methods and properties (fields). The
reference types as the main types of Java's object-oriented nature are presented in much
detail, followed by a list of reserved and restricted keywords and a discussion of their
usage. The chapter ends with the methods of conversion between primitive types, and from
a primitive type to the corresponding reference type and back.

Chapter 4, Exception Handling, tells the reader about the syntax of the Java constructs
related to exception handling and the best practices to address (handle) exceptions. The
chapter ends with the related topic of the assertion statement that can be used to debug the
application code in production.

Chapter 5, Strings, Input/Output, and Files, discusses the String class methods, as well as
popular string utilities from standard libraries and the Apache Commons project. An
overview of Java input/output streams and related classes of the java.io package follow
along with some classes of the org.apache.commons.io package. The file-managing
classes and their methods are described in a dedicated section.

Preface

[3]

Chapter 6, Data Structures, Generics, and Popular Utilities, presents the Java collections
framework and its three main interfaces, List, Set, and Map, including discussion and
demonstration of generics. The equals() and hashCode() methods are also discussed in
the context of Java collections. Utility classes for managing arrays, objects, and time/date
values have corresponding dedicated sections, too.

Chapter 7, Java Standard and External Libraries, provides an overview of the functionality of
the most popular packages of Java Class Library
(JCL): java.lang, java.util, java.time, java.io and java.nio, java.sql and
javax.sql, java.net, java.lang.math, java.math, java.awt, javax.swing,
and javafx. The most popular external libraries are represented by the org.junit,
org.mockito, org.apache.log4j, org.slf4j,
and org.apache.commons packages. This chapter helps the reader to avoid writing
custom code in cases where such functionality already exists and can be just imported and
used out of the box.

Chapter 8, Multithreading and Concurrent Processing, presents the ways to increase Java
application performance by using workers (threads) that process data concurrently. It
explains the concept of Java threads and demonstrates their usage. It also talks about the
difference between parallel and concurrent processing, and how to avoid unpredictable
results caused by the concurrent modification of a shared resource.

Chapter 9, JVM Structure and Garbage Collection, provides the readers with an overview of
JVM's structure and behavior, which are more complex than we usually expect. One of the
service threads, called garbage collection, performs an important mission of releasing the
memory from unused objects. After reading this chapter, the readers will understand better
what constitutes Java application execution, Java processes inside JVM, garbage collection,
and how JVM works in general.

Chapter 10, Managing Data in a Database, explains and demonstrates how to manage—that
is, insert, read, update, and delete–data in a database from a Java application. It also
provides a short introduction to the SQL language and basic database operations: how to
connect to a database, how to create a database structure, how to write a database
expression using SQL, and how to execute them.

Chapter 11, Network Programming, describes and discusses the most popular network
protocols, User Datagram Protocol (UDP), Transmission Control Protocol (TCP),
HyperText Transfer Protocol (HTTP), and WebSocket, and their support for JCL. It
demonstrates how to use these protocols and how to implement client-server
communication in Java code. The APIs reviewed include URL-based communication
and the latest Java HTTP Client API.

Preface

[4]

Chapter 12, Java GUI Programming, provides an overview of Java GUI technologies and
demonstrates how the JavaFX kit can be used to create a GUI application. The latest
versions of JavaFX not only provide many helpful features, but also allow preserving and
embedding legacy implementations and styles.

Chapter 13, Functional Programming, explains what a functional interface is, provides an
overview of functional interfaces that come with JDK, and defines and demonstrates
lambda expressions and how to use them with functional interfaces, including using
method reference.

Chapter 14, Java Standard Streams, talks about the processing of data streams, which are
different from the I/O streams reviewed in Chapter 5, Strings, Input/Output, and Files. It
defines what data streams are, how to process their elements using methods (operations) of
the java.util.stream.Stream object, and how to chain (connect) stream operations in a
pipeline. It also discusses the stream's initialization and how to process the stream in
parallel.

Chapter 15, Reactive Programming, introduces the Reactive Manifesto and the world of
reactive programming. It starts with defining and discussing the main related concepts –
"asynchronous", "non-blocking", "responsive", and so on. Using them, it then defines and
discusses reactive programming, the main reactive frameworks, and talks about RxJava in
more details.

Chapter 16, Microservices, explains how to build microservices – the foundational
component for creating a reactive system. It discusses what a microservice is, how big or
small they can be, and how existing microservices frameworks support message-driven
architecture. The discussion is illustrated with a detailed code demonstration of a small
reactive system built using the Vert.x toolkit.

Chapter 17, Java Microbenchmark Harness, presents the Java Microbenchmark Harness
(JMH) project that allows us to measure various code performance characteristics. It defines
what JMH is, how to create and run a benchmark, what the benchmark parameters are, and
outlines supported IDE plugins. The chapter ends with some practical demo examples and
recommendations.

Chapter 18, Best Practices for Writing High-Quality Code, introduces Java idioms and the
most popular and useful practices for designing and writing application code.

Chapter 19, Java Gets New Features, talks about current the most significant projects that
will add new features to Java and enhance it in other aspects. After reading this chapter, the
reader will understand how to follow Java development and will be able to envision the
roadmap of future Java releases. If so desired, the reader can become the JDK source
contributor too.

Preface

[5]

To get the most out of this book
Read the chapters systematically and answer the quiz questions at the end of each chapter.
Clone or just download the source code repository (see the following sections) and run all
the code samples that demonstrate the discussed topics. For getting up to speed in
programming, there is nothing better than executing the provided examples, modifying
them, and trying your own ideas. Code is truth.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com1.
Select the SUPPORT tab2.
Click on Code Downloads & Errata3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Learn- Java- 12- Programming. In case there's an update to the code, it will
be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781789957051_ ColorImages. pdf.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789957051_ColorImages.pdf

Preface

[6]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "When an exception is thrown inside a try block, it redirects control flow to the
first catch clause."

A block of code is set as follows:

void someMethod(String s){
 try {
 method(s);
 } catch (NullPointerException ex){
 //do something
 } catch (Exception ex){
 //do something else
 }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

class TheParentClass {
 private int prop;
 public TheParentClass(int prop){
 this.prop = prop;
 }
 // methods follow
}

Any command-line input or output is written as follows:

--module-path /path/JavaFX/lib \
 :-add-modules=javafx.controls,javafx.fxml

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select a value for Project SDK (java version 12, if you have installed JDK 12 already) and
click Next."

Warnings or important notes appear like this.

Preface

[7]

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Overview of Java

Programming
The first part of the book brings the reader into the world of Java programming. It starts
with basic Java-related definitions and the main terms, walks the reader through
the installation of the necessary tools and Java itself, and explains how to run (execute) a
Java program and the examples of the code provided with this book.

With the basics in place, we then explain and discuss Object-Oriented Programming
(OOP) principles, how Java implements them, and how a programmer can take advantage
of them to write high-quality code that is easy to maintain.

The book proceeds by presenting a more detailed view of Java as a language. It explains
how the code is organized in packages, defines all the main types, and the list of reserved
and restricted keywords. All the discussions are illustrated with specific code examples.

This section contains the following chapters:

Chapter 1, Getting Started with Java 12

Chapter 2, Java Object-Oriented Programming (OOP)

Chapter 3, Java Fundamentals

1
Getting Started with Java 12

This chapter is about how to start learning Java 12 and Java in general. We will begin with
the basics, first explaining what Java is and its main terms, followed by how to install the
necessary tools to write and run (execute) a program. In this respect, Java 12 is not much
different to the previous Java versions, so this chapter's content is applies to the older
versions too.

We will describe and demonstrate all the necessary steps for building and configuring a
Java programming environment. This is the bare minimum that you have to have on the
computer in order to start programming. We also describe the basic Java language
constructs and illustrate them with examples that can be executed immediately.

The best way to learn a programming language, or any language for that matter, is to use it,
and this chapter guides the reader on how they can do this with Java. The topics covered in
this chapter include the following:

How to install and run Java
How to install and run an Integrated Development Environment (IDE)
Java primitive types and operators
String types and literals
Identifiers and variables
Java statements

Getting Started with Java 12 Chapter 1

[10]

How to install and run Java
When somebody says "Java," they may mean quite different things:

Java programming language: A high-level programming language that allows
an intent (a program) to be expressed in a human-readable format that can be
translated in the binary code executable by a computer
Java compiler: A program that can read a text written in the Java programming
language and translate it into a bytecode that can be interpreted by Java Virtual
Machine (JVM) in the binary code executable by a computer
Java Virtual Machine (JVM): A program that reads a compiled Java program
and interprets it into the binary code that is executable by a computer
Java Development Kit (JDK): The collection of programs (tools and utilities),
including Java compiler, JVM, and supporting libraries, which allow the
compilation and execution of a program written in the Java language

The following section walks the reader through the installation of the JDK of Java 12 and
the basic related terms and commands.

What is JDK and why do we need it?
As we have mentioned already, JDK includes a Java compiler and JVM. The task of the
compiler is to read a .java file that contains the text of the program written in Java (called
source code) and transform (compile) it into a bytecode stored in a .class file. The JVM
can then read the .class file, interpret the bytecode in a binary code, and send it to the
operating system for execution. Both the compiler and JVM have to be invoked explicitly
from the command line.

To support the .java file compilation and its bytecode execution, JDK installation also
includes standard Java libraries called Java Class Library (JCL). If the program uses a third-
party library, it has to be present during compilation and execution. It has to be referred
from the same command line that invokes the compiler and later when the bytecode is
executed by JVM. JCL, on the other hand, does not need to be referred to explicitly. It is
assumed that the standard Java libraries reside in the default location of the JDK
installation, so the compiler and JVM know where to find them.

Getting Started with Java 12 Chapter 1

[11]

If you do not need to compile a Java program and would like to run only
the already compiled .class files, you can download and install Java Runtime
Environment (JRE). For example, it consists of a subset of the JDK and does not include
a compiler.

Sometimes, JDK is referred to as a Software Development Kit (SDK), which is a general
name for a collection of software tools and supporting libraries that allow the creation of an
executable version of a source code written using a certain programming language. So, JDK
is an SDK for Java. This means it is possible to call JDK an SDK.

You may also hear the terms Java platform and Java edition in relation to a JDK. A typical
platform is an operating system that allows a software program to be developed and
executed. Since JDK provides its own operating environment, it is called a platform too. An
edition is a variation of a Java platform (JDK) assembled for a specific purpose. There are
five Java platform editions, as listed here:

Java Platform Standard Edition (Java SE): This includes JVM, JCL, and other
tools and utilities.
Java Platform Enterprise Edition (Java EE): This includes Java SE, servers
(computer programs that provide services to the applications), JCL, other
libraries, code samples, and tutorials, and other documentation for developing
and deploying large-scale, multi-tiered, and secure network applications.
Java Platform Micro Edition (Java ME): This is a subset of Java SE with some
specialized libraries for developing and deploying Java applications for
embedded and mobile devices, such as phones, personal digital assistants, TV
set-top boxes, printers, and sensors. A variation of Java ME (with its own JVM
implementation) is called Android SDK. It was developed by Google for
Android programming.
Java Card: This is the smallest of the Java editions and is intended for developing
and deploying Java applications onto small embedded devices such as smart
cards. It has two editions: Java Card Classic Edition, for smart cards, based on
ISO7816 and ISO14443 communication, and Java Card Connected Edition, which
supports a web application model and TCP/IP as basic protocol and runs on
high-end secure microcontrollers.

So, to install Java means to install JDK, which also means to install Java platform on one of
the listed editions. In this book, we are going to talk about and use only Java SE.

Getting Started with Java 12 Chapter 1

[12]

Installing Java SE
All the recently released JDKs are listed on the official Oracle
page: www.oracle.com/technetwork/java/javase/overview/index.html (we will call it
an Installation Home Page for the further references).

Here are the steps that need to be followed to install Java SE:

Find the link to the Java SE version you are looking for (Java SE 12 in this case)1.
and click on it.
You will be presented with the various links, one of which is Installation2.
Instructions. Alternatively, you could get to this page by clicking the Downloads
tab.
Click the DOWNLOAD link under the title Oracle JDK.3.
A new screen will give you the option to accept or decline a License Agreement4.
using a radio button and a list of links to various JDK installers.
Read the License Agreement and make your decision. If you do not accept it,5.
you cannot download the JDK. If you accept the License Agreement, you can
select the JDK installer from the available list.
You need to choose the installer that fits your operating system and the format6.
(extension) you are familiar with.
If in doubt, go back to the Installation Home Page, select the Downloads tab,7.
and click the Installation Instructions link.
Follow the steps that correspond to your operating system.8.
The JDK is installed successfully when the java -version command on your9.
computer displays the correct Java version, as demonstrated in the following
screenshot, for example:

https://www.oracle.com/technetwork/java/javase/overview/index.html

Getting Started with Java 12 Chapter 1

[13]

Commands, tools, and utilities
If you follow the installation instructions, you may have noticed a link (Installed Directory
Structure of JDK) given under the Table of Contents. It brings you to a page that describes
the location of the installed JDK on your computer and the content of each directory of the
JDK root directory. The bin directory contains all the executables that constitute the Java
commands, tools, and utilities. If the directory bin is not added to the PATH environment
variable automatically, consider doing it manually so that you can launch a Java executable
from any directory.

In the previous section, we have already demonstrated the Java command, java -
version. A list of the other Java executables available (commands, tools, and utilities) can
be found in the Java SE documentation (https:/ /www. oracle. com/ technetwork/ java/
javase/documentation/ index. html) by clicking the Java Platform Standard Edition
Technical Documentation site link, and then the Tools Reference link on the next page.
You can learn more about each executable tool by clicking its link.

You can also run each of the listed executables on your computer using one of the following
options: -?, -h, --help, or -help. It will display a brief description of the executable and
all its options.

The most important Java commands are the following:

javac: This reads a .java file, compiles it, and creates one or
more corresponding .class files, depending on how many Java classes are
defined in the .java file.
java: This executes a .class file.

These are the commands that make programming possible. Each Java programmer must
have a good understanding of their structure and capabilities. But if you are new to Java
programming and use an IDE (see the How to install and run an IDE section), you do not
need to master these commands immediately. A good IDE hides them from you by
compiling a .java file automatically every time you make a change to it. It also provides a
graphical element that runs the program every time you click it.

Another very useful Java tool is jcmd. This facilitates communication with, and diagnosis
of, any of the currently running Java processes (JVM) and has many options. But in its
simplest form, without any option, it lists all the currently running Java processes and their
Process IDs (PIDs). You can use it to see whether you have run-away Java processes. If you
have, you can then kill such a process using the PID provided.

https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/documentation/index.html

Getting Started with Java 12 Chapter 1

[14]

How to install and run an IDE
What used to be just a specialized editor that allowed checking the syntax of the written
program the same way a Word editor checks the syntax of an English sentence gradually
evolved into an Integrated Development Environment (IDE). This bears its main function
in the name. It integrates all the tools necessary for writing, compiling, and then executing a
program under one Graphical User Interface (GUI). Using the power of Java Compiler, the
IDE identifies syntax errors immediately and then helps to improve code quality by
providing context-dependent help and suggestions.

Selecting an IDE
There are several IDEs available for a Java programmer, such as NetBeans, Eclipse, IntelliJ
IDEA, BlueJ, DrJava, JDeveloper, JCreator, jEdit, JSource, jCRASP, and jEdit, to name a
few. The most popular ones are NetBeans, Eclipse, and IntelliJ IDEA.

NetBeans development started in 1996 as a Java IDE student project at Charles University
in Prague. In 1999, the project and the company created around the project were acquired
by Sun Microsystems. After Oracle acquired Sun Microsystems, NetBeans became open
source, and many Java developers have since contributed to the project. It was bundled
with JDK 8 and became an official IDE for Java development. In 2016, Oracle donated it to
the Apache Software Foundation.

There is a NetBeans IDE for Windows, Linux, Mac, and Oracle Solaris. It supports multiple
programming languages and can be extended with plugins. As of the time of writing,
NetBeans is bundled only with JDK 8, but NetBeans 8.2 can work with JDK 9 too and uses
features introduced with JDK 9, such as Jigsaw, for example. On netbeans.apache.org, you
can read more about NetBeans IDE and download the latest version, which is 11.0 as of the
time of this writing.

Eclipse is the most widely used Java IDE. The list of plugins that add new features to the
IDE is constantly growing, so it is not possible to enumerate all the IDE's capabilities. The
Eclipse IDE project has been developed since 2001 as open source software. A non-profit,
member-supported corporation Eclipse foundation was created in 2004 with the goal of
providing the infrastructure (version control systems, code review systems, build servers,
the download sites, and so on) and a structured process. None of the thirty something
employees of the Foundation is working on any of 150 Eclipse-supported projects.

https://netbeans.apache.org/

Getting Started with Java 12 Chapter 1

[15]

The sheer number and variety of the Eclipse IDE plugins create a certain challenge for a
beginner because you have to find your way around different implementations of the same,
or similar features, that can, on occasion, be incompatible and may require deep
investigation, as well as a clear understanding of all the dependencies. Nevertheless,
Eclipse IDE is very popular and has solid community support. You can read about the
Eclipse IDE and download the latest release from www.eclipse.org/ide.

The IntelliJ IDEA has two versions: a paid one and a free community edition. The paid
version is consistently ranked as the best Java IDE, but the community edition is listed
among the three leading Java IDEs too. The JetBrains software company that develops the
IDE has offices in Prague, Saint Petersburg, Moscow, Munich, Boston, and Novosibirsk.
The IDE is known for its deep Intelligence that is "giving relevant suggestions in every context:
instant and clever code completion, on-the-fly code analysis, and reliable refactoring tools," as stated
by the authors while describing the product on their website (www.jetbrains.com/idea). In
the Installing and configuring IntelliJ IDEA section, we will walk you through the installation
and configuration of IntelliJ IDEA community edition.

Installing and configuring IntelliJ IDEA
These are the steps you need to follow in order to download and install IntelliJ IDEA:

Download an installer of IntelliJ community edition1.
from www.jetbrains.com/idea/download.
Launch the installer and accept all the default values.2.
Select .java on the Installation Options screen. We assume you have installed3.
JDK already, so you do not check the Download and install JRE option.
The last installation screen has a checkbox, Run IntelliJ IDEA, that you can4.
check to start the IDE automatically. Alternatively, you can leave the checkbox
unchecked and launch the IDE manually once the installation is complete.
When the IDE starts the first time, it asks whether you would like to Import5.
IntelliJ IDEA settings. Check the Do not import settings checkbox if you have
not used the IntelliJ IDEA before and would like to reuse the settings.
The following screen or two asks whether you accept the JetBrains Privacy6.
Policy and whether you would like to pay for the license or prefer to continue to
use the free community edition or free trial (this depends on the particular
download you get).

http://www.eclipse.org/ide/
https://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/download

Getting Started with Java 12 Chapter 1

[16]

Answer the questions whichever way you prefer, and if you accept the privacy7.
policy, the Customize IntelliJ IDEA screen asks you to choose a theme, white
(IntelliJ) or dark (Darcula).
When offered the buttons Skip All and Set Defaults and Next: Default plugins,8.
select Next: Default plugins, as it will give you the option to configure the IDE
beforehand.
When presented with the Tune IDEA to your tasks screen, select9.
the Customize... link for the following three, one at a time:

Build Tools: Select Maven and click the Save Changes and Go
Back button.
Version Controls: Select the version control system you prefer
(optional) and click Save Changes and Go Back.
Test Tools: Select JUnit or any other test framework you
prefer (optional) and click Save Changes and Go Back.

If you decide to change the set values, you can do this later by selecting from the10.
topmost menu, File, Settings, on Windows, or Preferences on Linux and macOS.

Creating a project
Before you start writing your program, you need to create a project. There are several ways
to create a project in IntelliJ IDEA, which is the same for any IDE, as follows:

Create New Project: This creates a new project from scratch.1.
Import Project: This facilitates reading of the existing source code from the2.
filesystem.
Open: This facilitates reading of the existing project from the filesystem.3.
Check out from Version Control: This facilitates reading of the existing project4.
from the version control system.

In this book, we will walk you through the first option only—using the sequence of guided
steps provided by the IDE. The other two options are much simpler and do not require
additional explanations. Once you have learned how to create a new project from scratch,
the other ways to bring up a project in the IDE will be very easy for you.

Getting Started with Java 12 Chapter 1

[17]

Start by clicking the Create New Project link and proceed further as follows:

Select a value for Project SDK (Java Version 12, if you have installed JDK 121.
already) and click Next.
Do not check Create project from template (if checked, the IDE generates a2.
canned program, Hello world, and similar, which we do not need) and
click Next.
Select the desired project location in the Project location field (this is where your3.
new code will reside).
Enter anything you like in the Project name field (for example, the project for the4.
code in this book is called learnjava) and click the Finish button.
You will see the following project structure: 5.

Getting Started with Java 12 Chapter 1

[18]

Right-click on the project name (learnjava) and select Add Framework6.
Support from the drop-down menu. On the following pop-up window, select
Maven:

Maven is a project configuration tool. Its primary function is to manage project7.
dependencies. We will talk about it shortly. For now, we will use its other
responsibility, to define and hold the project code identity using three properties:

groupId: To identify a group of projects within an organization or
an open source community
artifactId: To identify a particular project within the group
version: To identify the version of the project

The main goal is to make the identity of a project unique among all the projects of the
world. To help avoid a groupId clash, the convention requires that you start building it
from the organization domain name in reverse. For example, if a company has the domain
name company.com, the group IDs of its projects should start with com.company. That is
why, for the code in this book, we use the groupId value com.packt.learnjava.

Getting Started with Java 12 Chapter 1

[19]

Let's set it. Click OK on the Add Framework Support pop-up window and you will see a
newly generated pom.xml file as follows:

At the same time, in the lower-right corner of the screen, another small window will pop
up:

Click the Enable Auto-Import link. This will make writing code easier: all the new classes
you will start using will be imported automatically. We will talk about class importing in
due time.

Getting Started with Java 12 Chapter 1

[20]

Now, let's enter groupId, artifactId, and version values:

Now, if somebody would like to use the code of your project in their application, they
would refer to it by the three values shown and Maven (if they use it) will bring it in (if you
upload your project in the publicly shared Maven repository, of course). Read more about
Maven at https:// maven. apache. org/ guides.

Another function of the groupId value is to define the root directory of the folders tree that
holds your project code. Let's open the src folder; you will see the following directory
structure beneath it:

https://maven.apache.org/guides/
https://maven.apache.org/guides/
https://maven.apache.org/guides/
https://maven.apache.org/guides/
https://maven.apache.org/guides/
https://maven.apache.org/guides/
https://maven.apache.org/guides/
https://maven.apache.org/guides/
https://maven.apache.org/guides/
https://maven.apache.org/guides/
https://maven.apache.org/guides/

Getting Started with Java 12 Chapter 1

[21]

The java folder under main will hold the application code, while the java folder under
test will hold the test code.

Getting Started with Java 12 Chapter 1

[22]

Let's create our first program using the following steps:

Right-click on java, select New, and then click Package:1.

In the New Package window provided, type2.
com.packt.learnjava.ch01_start as follows:

Click OK and you should see in the left panel a set of new folders, the last of3.
them being com.packt.learnjava.ch01_start:

Getting Started with Java 12 Chapter 1

[23]

Right-click on it, select New, and then click Java Class:4.

Getting Started with Java 12 Chapter 1

[24]

In the input window provided, type PrimitiveTypes:5.

Click OK and you will see the first Java class, PrimitiveTypes, created in the6.
com.packt.learnjava.ch01_start package:

The package reflects the Java class location in the filesystem. We will talk about it in
Chapter 2, Java Object-Oriented Programming (OOP). Now, in order to run a program, we
create a main() method. If present, this method can be executed and serve as an entry
point into the application. It has a certain format, as follows:

Getting Started with Java 12 Chapter 1

[25]

This has to have the following attributes:

public: Freely accessible from outside the package
static: Should be able to be called without creating an object of the class it
belongs to

It should also be the following:

Return void (nothing).
Accept a String array as an input or varargs as we have done. We will talk
about varargs in Chapter 2, Java Object-Oriented Programming (OOP). For now,
suffice to say that String[] args and String... args define essentially the
same input format.

We explained how to run the main class using a command line in the Executing examples
from the command line section. You can read more about Java command-line arguments in
the official Oracle documentation: https:/ /docs. oracle. com/ javase/ tutorial/
essential/environment/ cmdLineArgs. html. It is also possible to run the examples from
IntelliJ IDEA.

Notice the two green triangles to the left in the following screenshot. By clicking any of
them, you can execute the main() method. For example, let's display Hello, world!.

https://cdp.packtpub.com/learn_java_12_programming/wp-admin/post.php?post=24&action=edit#post_25
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html
https://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html

Getting Started with Java 12 Chapter 1

[26]

In order to do this, type the following line inside the main() method:

System.out.println("Hello, world!");

Then, click one of the green triangles:

You should get the following output in the terminal area as follows:

From now on, every time we are going to discuss code examples, we will run them the
same way, by using the main() method. While doing this, we will not capture a screenshot
but put the result in comments, because such a style is easier to follow. For example, the
following code displays how the previous code demonstration would look in this style:

System.out.println("Hello, world!"); //prints: Hello, world!

It is possible to add a comment (any text) to the right of the code line separated by the
double slash //. The compiler does not read this text and just keeps it as it is. The presence
of a comment does not affect performance and is used to explain the programmer's intent to
humans.

Importing a project
We are going to demonstrate project importing using the source code for this book. We
assume that you have Maven installed (https:/ /maven. apache. org/ install. html) on
your computer and that you have Git (https:/ /gist. github. com/ derhuerst/
1b15ff4652a867391f03) installed too, and can use it. We also assume that you have
installed JDK 12, as was described in the Installation of Java SE section.

https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://gist.github.com/derhuerst/1b15ff4652a867391f03
https://gist.github.com/derhuerst/1b15ff4652a867391f03
https://gist.github.com/derhuerst/1b15ff4652a867391f03
https://gist.github.com/derhuerst/1b15ff4652a867391f03
https://gist.github.com/derhuerst/1b15ff4652a867391f03
https://gist.github.com/derhuerst/1b15ff4652a867391f03
https://gist.github.com/derhuerst/1b15ff4652a867391f03
https://gist.github.com/derhuerst/1b15ff4652a867391f03
https://gist.github.com/derhuerst/1b15ff4652a867391f03
https://gist.github.com/derhuerst/1b15ff4652a867391f03
https://gist.github.com/derhuerst/1b15ff4652a867391f03
https://gist.github.com/derhuerst/1b15ff4652a867391f03

Getting Started with Java 12 Chapter 1

[27]

To import the project with the code examples for this book, follow these steps:

Go to the source repository (https:/ /github. com/ PacktPublishing/ Learn-1.
Java-12- Programming) and click the Clone or download link, as shown in the
following screenshot:

Click the Clone or download link and then copy the provided URL:2.

Select a directory on your computer where you would like the source code to be3.
placed and then run the following Git command:

https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming
https://github.com/PacktPublishing/Learn-Java-12-Programming

Getting Started with Java 12 Chapter 1

[28]

A new Learn-Java-12-Programming folder is created, as shown in the4.
following screenshot:

Alternatively, instead of cloning, you can download the source as a .zip file
using the link Download ZIP shown on the preceding screenshot. Unarchive the
downloaded source in a directory on your computer where you would like the
source code to be placed, and then rename the newly created folder by removing
the suffix "-master" from its name, making sure that the folder's name is Learn-
Java-12-Programming.

The new Learn-Java-12-Programming folder contains the Maven project with5.
all the source code from this book. Now run the IntelliJ IDEA and click File in the
topmost menu, then New and Project from Existing Sources...:

Getting Started with Java 12 Chapter 1

[29]

Select the Learn-Java-12-Programming folder created in step 4 and click6.
the Open button:

Accept the default settings and click the Next button on each of the following7.
screens until you reach a screen that shows a list of the JDKs installed and
the Finish button:

Getting Started with Java 12 Chapter 1

[30]

Select 12 and click Finish. You will see the project imported into your IntelliJ8.
IDEA:

Wait until the following small window shows up in the bottom-right corner:9.

You may not want to wait and continue with step 12. Just do steps 10 and 11
when the window pops up later. If you miss this window, you may click
the Event Log link any time later, and you will be presented with the same
options.

Click on it; then click the Add as Maven Project link:10.

Getting Started with Java 12 Chapter 1

[31]

Any time the following window shows up, click Enable Auto-Import:11.

You may not want to wait and continue with step 12. Just do step 11 when the
window pops up later. If you miss this window, you may click the Event Log link
any time later, and you will be presented with the same options.

Select the Project structure symbol, which is the third from the right on the12.
following screenshot:

If you have the main and test modules listed, remove them by highlighting them13.
and clicking the minus symbol (-) as shown on the following screen:

Here’s how the final list of modules should look:14.

Getting Started with Java 12 Chapter 1

[32]

Click OK in the bottom-right corner and get back to your project. Click Learn-15.
Java-12-Programming in the left pane and continue going down in the source
tree until you see the following list of classes:

Click on the green arrow in the right pane and execute any class you want. The16.
result you will be able to see in the Run window is similar to the following:

Getting Started with Java 12 Chapter 1

[33]

Executing examples from the command line
To execute the examples from the command line, follow these steps:

Go to the Learn-Java-12-Programming folder created in step 4 in the Importing1.
a project section, where the pom.xml file is located, and run the mvn clean
package command:

Select the example you would like to run. For example, assuming you would like2.
to run ControlFlow.java, run the following command:

java -cp target/learnjava-1.0-SNAPSHOT.jar:target/libs/* \
com.packt.learnjava.ch01_start.ControlFlow

You will see the following results:

If you would like to run example files from3.
the ch05_stringsIoStreams package, run the same command with a different
package and class name:

java -cp target/learnjava-1.0-SNAPSHOT.jar:target/libs/* \
com.packt.learnjava.ch05_stringsIoStreams.Files

Getting Started with Java 12 Chapter 1

[34]

If your computer has a Windows system, use the following command as one line:

java -cp target\learnjava-1.0-SNAPSHOT.jar;target\libs*
com.packt.learnjava.ch05_stringsIoStreams.Files

Note that a Windows command has a different slash and semicolon (;) as the
classpath separator.

The results will be as follows:4.

This way you can run any class that has the main() method in it. The content of5.
the main() method will be executed.

Java primitive types and operators
With all the main programming tools in place, we can start talking about Java as a
language. The language syntax is defined by Java Language Specification, which you can
find on https:// docs. oracle. com/ javase/ specs. Don't hesitate to refer to it every time
you need some clarification. It is not as daunting as many people assume.

All the values in Java are divided into two categories: reference types and primitive
types. We start with primitive types and operators as the natural entry point to any
programming language. In this chapter, we will also discuss one reference type
called String (see the String type and literals section).

All primitive types can be divided into two groups: the boolean type and the numeric
types.

https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs

Getting Started with Java 12 Chapter 1

[35]

Boolean type
There are only two boolean type values in Java: true and false. Such a value can only be
assigned to a variable of a boolean type, for example:

boolean b = true;

A boolean variable is typically used in control flow statements, which we are going to
discuss in the Java statements section. Here is one example:

boolean b = x > 2;
if(b){
 //do something
}

In the code, we assign to the b variable the result of the evaluation of the x > 2 expression.
If the value of x is greater than 2, the b variable gets the assigned value, true. Then, the
code inside the braces, {} , is executed.

Numeric types
Java numeric types form two groups: integral types (byte, char, short, int, and long)
and floating-point types (float and double).

Integral types
Integral types consume the following amount of memory:

byte: 8 bit
char: 16 bit
short: 16 bit
int: 32 bit
long: 64 bit

Getting Started with Java 12 Chapter 1

[36]

The char type is an unsigned integer that can hold a value (called a code point) from 0 to
65,535 inclusive. It represents a Unicode character, which means there are 65,536 Unicode
characters. Here are three records form the basic Latin list of Unicode characters:

Code point Unicode escape Printable symbol Description
33 \u0021 ! Exclamation mark
50 \u0032 2 Digit two
65 \u0041 A Latin capital letter "A"

The following code demonstrates the properties of the char type:

char x1 = '\u0032';
System.out.println(x1); //prints: 2

char x2 = '2';
System.out.println(x2); //prints: 2
x2 = 65;
System.out.println(x2); //prints: A

char y1 = '\u0041';
System.out.println(y1); //prints: A

char y2 = 'A';
System.out.println(y2); //prints: A
y2 = 50;
System.out.println(y2); //prints: 2

System.out.println(x1 + x2); //prints: 115
System.out.println(x1 + y1); //prints: 115

The last two lines from the code example explain why the char type is considered an
integral type because the char values can be used in arithmetic operations. In such a case,
each char value is represented by its code point.

The range of values of other integral types is as follows:

byte: from -128 to 127 inclusive
short: from -32,768 to 32,767 inclusive
int: from -2.147.483.648 to 2.147.483.647 inclusive
long: from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 inclusive

Getting Started with Java 12 Chapter 1

[37]

You can always retrieve the maximum and minimum value of each primitive type from a
corresponding Java constant as follows:

System.out.println(Byte.MIN_VALUE); //prints: -128
System.out.println(Byte.MAX_VALUE); //prints: 127
System.out.println(Short.MIN_VALUE); //prints: -32768
System.out.println(Short.MAX_VALUE); //prints: 32767
System.out.println(Integer.MIN_VALUE); //prints: -2147483648
System.out.println(Integer.MAX_VALUE); //prints: 2147483647
System.out.println(Long.MIN_VALUE); //prints: -9223372036854775808
System.out.println(Long.MAX_VALUE); //prints: 9223372036854775807
System.out.println((int)Character.MIN_VALUE); //prints: 0
System.out.println((int)Character.MAX_VALUE); //prints: 65535

The construct (int) in the last two lines, is an example of cast operator usage. It forces the
conversion of a value from one type to another in cases where such a conversion is not
always guaranteed to be successful. As you can see from our examples, some types allow
bigger values than other types. But the programmer may know that the value of a certain
variable can never exceed the maximum value of the target type, and the cast operator is
the way a programmer can force their opinion on the compiler. Otherwise, without a cast
operator, a compiler would raise an error and would not allow the assignment. However, a
programmer may be mistaken and the value may become bigger. In such a case, a runtime
error will be raised during the execution time.

There are types that, in principle, cannot be cast to other types though, or not to all types at
least. For example, a boolean type value cannot be cast to an integral type value.

Floating-point types
There are two types in this group of primitive types—float and double:

float: 32 bit
doubele: 64 bit

Their positive maximum and minimum possible values are as follows:

System.out.println(Float.MIN_VALUE); //prints: 1.4E-45
System.out.println(Float.MAX_VALUE); //prints: 3.4028235E38
System.out.println(Double.MIN_VALUE); //prints: 4.9E-324
System.out.println(Double.MAX_VALUE); //prints: 1.7976931348623157E308

Getting Started with Java 12 Chapter 1

[38]

The maximum and minimum negative values are the same as those just shown, only with a
minus sign (-) in front of them. So, effectively, the values Float.MIN_VALUE
and Double.MIN_VALUE are not the minimal values, but the precision of the corresponding
type. A zero value can be either 0.0 or -0.0 for each of the floating-point types.

The special feature of the floating-point type is the presence of a dot (.), which separates
integer and fractional parts of the number. By default, in Java, a number with a dot is
assumed to be a double type. For example, the following is assumed to be a double value:

42.3

This means that the following assignment causes a compilation error:

float f = 42.3;

To indicate that you would like it to be treated as a float type, you need to add either f or
F. For example, the following assignments do not cause an error:

float f = 42.3f;
float d = 42.3F;

double a = 42.3f;
double b = 42.3F;

float x = (float)42.3d;
float y = (float)42.3D;

As you may have noticed from the example, d and D indicate a double type. But we were
able to cast them to the float type because we are confident that 42.3 is well inside the
range of possible float type values.

Default values of primitive types
In some cases, a variable has to be assigned a value even when a programmer did not want
to do that. We will talk about such cases in Chapter 2, Java Object-Oriented Programming
(OOP). The default primitive type value in such cases is as follows:

The byte, short, int, and long types have the default value 0.
The char type has the default value \u0000, with the code point 0.
The float and double types have the default value 0.0.
The boolean type has the default value false.

Getting Started with Java 12 Chapter 1

[39]

Literals of primitive types
The representation of a value is called a literal. The boolean type has two literals: true
and false. Literals of the byte, short, int, and long integral types have the int type by
default:

byte b = 42;
short s = 42;
int i = 42;
long l = 42;

In addition, to indicate a literal of a long type, you can append the letter l or L to the end:

long l1 = 42l;
long l2 = 42L;

The letter l can be easily confused with the number 1, so using L (instead of l) for this
purpose is a good practice.

So far, we have expressed integral literals in a decimal number system. Meanwhile, the
literals of the byte, short, int, and long types can also be expressed in the binary (base 2,
digits 0-1), octal (base 8, digits 0-7), and hexadecimal (base 16, digits 0-9 and a-f) number
systems. A binary literal starts with 0b (or 0B), followed by the value expressed in a binary
system. For example, the decimal 42 is expressed as 101010 = 2^0*0 + 2^1*1 + 2^2*0
+ 2^3 *1 + 2^4 *0 + 2^5 *1 (we start from the right 0). An octal literal starts with
0, followed by the value expressed in an octal system, so 42 is expressed as 52 = 8^0*2+
8^1*5. The hexadecimal literal starts with 0x (or with 0X), followed by a value expressed in
a hexadecimal system. So, the 42 is expressed as 2a = 16^0*a + 16^1*2 because, in the
hexadecimal system, the symbols a to f (or A to F) map to the decimal values 10 to 15. Here
is the demonstration code:

int i = 42;
System.out.println(Integer.toString(i, 2)); // 101010
System.out.println(Integer.toBinaryString(i)); // 101010
System.out.println(0b101010); // 42

System.out.println(Integer.toString(i, 8)); // 52
System.out.println(Integer.toOctalString(i)); // 52
System.out.println(052); // 42

System.out.println(Integer.toString(i, 10)); // 42
System.out.println(Integer.toString(i)); // 42
System.out.println(42); // 42

System.out.println(Integer.toString(i, 16)); // 2a

Getting Started with Java 12 Chapter 1

[40]

System.out.println(Integer.toHexString(i)); // 2a
System.out.println(0x2a); // 42

As you can see, Java provides methods that convert decimal system values to the systems
with different bases. All these expressions of numeric values are called literals.

One feature of numeric literals makes them human-friendly. If the number is large, it is
possible to break it into triples separated by an underscore (_) sign. Observe the following,
for example:

int i = 354_263_654;
System.out.println(i); //prints: 354263654

float f = 54_436.98f;
System.out.println(f); //prints: 54436.98

long l = 55_763_948L;
System.out.println(l); //prints: 55763948

The compiler ignores an embedded underscore sign.

The char type has two kinds of literals: a single character or an escape sequence. We have
seen examples of char type literals when discussing the numeric types:

char x1 = '\u0032';
char x2 = '2';
char y1 = '\u0041';
char y2 = 'A';

As you can see, the character has to be enclosed in single quotes.

An escape sequence starts with a backslash (\) followed by a letter or another character.
Here is the full list of escape sequences:

\b: backspace BS, Unicode escape \u0008
\t: horizontal tab HT, Unicode escape \u0009
\n: line feed LF, Unicode escape \u000a
\f: form feed FF, Unicode escape \u000c
\r: carriage return CR, Unicode escape \u000d
\": double quote ", Unicode escape \u0022
\': single quote ', Unicode escape \u0027
\\: backslash \, Unicode escape \u005c

Getting Started with Java 12 Chapter 1

[41]

From the eight escape sequences, only the last three are represented by a symbol. They are
used when this symbol cannot be otherwise displayed. Observe the following, for example:

System.out.println("\""); //prints: "
System.out.println('\''); //prints: '
System.out.println('\\'); //prints: \

The rest are used more as control codes that direct the output device to do something:

System.out.println("The back\bspace"); //prints: The bacspace
System.out.println("The horizontal\ttab"); //prints: The horizontal tab
System.out.println("The line\nfeed"); //prints: The line
 // feed
System.out.println("The form\ffeed"); //prints: The form feed
System.out.println("The carriage\rreturn");//prints: return

As you can see, \b deletes a previous symbol, \t inserts a tab space, \n breaks the line and
begins the new one, \f forces the printer to eject the current page and to continue printing
at the top of another, and /r starts the current line anew.

New compact number format
The java.text.NumberFormat class presents numbers in various formats. It also allows
formats to be adjusted to those provided, including locales. We mention it here only
because of a new feature added to this class in Java 12. It is called a compact or short
number format.

It represents a number in the locale-specific, human-readable form. Observe the following,
for example:

NumberFormat fmt = NumberFormat.getCompactNumberInstance(Locale.US,
 NumberFormat.Style.SHORT);
System.out.println(fmt.format(42_000)); //prints: 42K
System.out.println(fmt.format(42_000_000)); //prints: 42M

NumberFormat fmtP = NumberFormat.getPercentInstance();
System.out.println(fmtP.format(0.42)); //prints: 42%

As you can see, to access this capability, you have to acquire a particular instance of
the NumberFormat class, sometimes based on the locale and style provided.

Getting Started with Java 12 Chapter 1

[42]

Operators
There are 44 operators in Java. These are listed in the following table:

Operators Description
+ - * / % Arithmetic unary and binary operators

++ -- Increment and decrement unary
operators

== != Equality operators
< > <= >= Relational operators
! & | Logical operators
&& || ?: Conditional operators
= += -= *= /= %= Assignment operators
&= |= ^= <<= >>= >>>= Assignment operators
& | ~ ^ << >> >>> Bitwise operators
-> :: Arrow and method reference operators
new Instance creation operator
. Field access/method invocation operator
instanceof Type comparison operator
(target type) Cast operator

We will not describe the not-often-used assignment operators &=, |=, ^=, <<=, >>=, >>>=
and bitwise operators. You can read about them in the Java specification (https:/ /docs.
oracle.com/javase/ specs). Arrow -> and method reference :: operators will be described
in Chapter 14, Functional Programming. The instance creation operator new, the field
access/method invocation operator ., and the type comparison operator instanceof will
be discussed in Chapter 2, Java Object-Oriented Programming (OOP). As for the cast
operator, we have described it already in the Integral types section.

https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs

Getting Started with Java 12 Chapter 1

[43]

Arithmetic unary (+ and -) and binary operators (+, -, *, /,
and %)
Most of the arithmetic operators and positive and negative signs (unary operators) are quite
familiar to us. The modulus operator, %, divides the left-hand operand by the right-hand
operand and returns the remainder, as follows:

int x = 5;
System.out.println(x % 2); //prints: 1

It is also worth mentioning that the division of two integer numbers in Java loses the
fractional part because Java assumes the result should be an integer number two, as
follows:

int x = 5;
System.out.println(x / 2); //prints: 2

If you need the fractional part of the result to be preserved, convert one of the operands
into a floating-point type. Here are a few, among many ways, in which to do this:

int x = 5;
System.out.println(x / 2.); //prints: 2.5
System.out.println((1. * x) / 2); //prints: 2.5
System.out.println(((float)x) / 2); //prints: 2.5
System.out.println(((double) x) / 2); //prints: 2.5

Increment and decrement unary operators (++ and --)
The ++ operator increases the value of an integral type by 1, while the -- operator
decreases it by 1. If placed before (prefix) the variable, it changes its value by 1 before the
variable value is returned. But when placed after (postfix) the variable, it changes its value
by 1 after the variable value is returned. Here are a few examples:

int i = 2;
System.out.println(++i); //prints: 3
System.out.println(i); //prints: 3
System.out.println(--i); //prints: 2
System.out.println(i); //prints: 2
System.out.println(i++); //prints: 2
System.out.println(i); //prints: 3
System.out.println(i--); //prints: 3
System.out.println(i); //prints: 2

Getting Started with Java 12 Chapter 1

[44]

Equality operators (== and !=)
The == operator means equals, while the != operator means not equals. They are used to
compare values of the same type and return the boolean value true if the operand's
values are equal, or false otherwise. Observe the following, for example:

int i1 = 1;
int i2 = 2;
System.out.println(i1 == i2); //prints: false
System.out.println(i1 != i2); //prints: true
System.out.println(i1 == (i2 - 1)); //prints: true
System.out.println(i1 != (i2 - 1)); //prints: false

Exercise caution, though, while comparing values of floating-point types, especially when
you compare the results of calculations. Using relational operators (<, >, <=, and >=) in such
cases is much more reliable, because calculations such as 1/3, for example, results in a
never-ending fractional part 0.33333333... and ultimately depends on the precision
implementation (a complex topic that is beyond the scope of this book).

Relational operators (<, >, <=, and >=)
Relational operators compare values and return a boolean value. Observe the following,
for example:

int i1 = 1;
int i2 = 2;
System.out.println(i1 > i2); //prints: false
System.out.println(i1 >= i2); //prints: false
System.out.println(i1 >= (i2 - 1)); //prints: true
System.out.println(i1 < i2); //prints: true
System.out.println(i1 <= i2); //prints: true
System.out.println(i1 <= (i2 - 1)); //prints: true
float f = 1.2f;
System.out.println(i1 < f); //prints: true

Logical operators (!, &, and |)
The logical operators can be defined as follows:

The ! binary operator returns true if the operand is false, otherwise false.
The & binary operator returns true if both of the operands are true.
The | binary operator returns true if at least one of the operands is true.

Getting Started with Java 12 Chapter 1

[45]

Here is an example:

boolean b = true;
System.out.println(!b); //prints: false
System.out.println(!!b); //prints: true
boolean c = true;
System.out.println(c & b); //prints: true
System.out.println(c | b); //prints: true
boolean d = false;
System.out.println(c & d); //prints: false
System.out.println(c | d); //prints: true

Conditional operators (&&, ||, and ? :)
The && and || operators produce the same results as the & and | logical operators we have
just demonstrated:

boolean b = true;
boolean c = true;
System.out.println(c && b); //prints: true
System.out.println(c || b); //prints: true
boolean d = false;
System.out.println(c && d); //prints: false
System.out.println(c || d); //prints: true

The difference is that the && and || operators do not always evaluate the second
operand. For example, in the case of the && operator, if the first operand is false, the
second operand is not evaluated because the result of the whole expression will
be false anyway. Similarly, in the case of the || operator, if the first operand is true, the
whole expression will be clearly evaluated to true without evaluating the second operand.
We can demonstrate this in the following code:

int h = 1;
System.out.println(h > 3 & h++ < 3); //prints: false
System.out.println(h); //prints: 2
System.out.println(h > 3 && h++ < 3); //prints: false
System.out.println(h); //prints: 2

Getting Started with Java 12 Chapter 1

[46]

The ? : operator is called a ternary operator. It evaluates a condition (before the sign ?)
and, if it results in true, assigns to a variable the value calculated by the first expression
(between the ? and : signs); otherwise, it assigns the value calculated by the second
expression (after the : sign):

int n = 1, m = 2;
float k = n > m ? (n * m + 3) : ((float)n / m);
System.out.println(k); //prints: 0.5

Assignment operators (=, +=, -=, *=, /=, and %=)
The = operator just assigns the specified value to a variable:

x = 3;

Other assignment operators calculate a new value before assigning it:

x += 42 assigns to x the result of the addition operation, x = x + 42.
x -= 42 assigns to x the result of the subtraction operation, x = x - 42.
x *= 42 assigns to x the result of the multiplication operation, x = x * 42.
x /= 42 assigns to x the result of the division operation, x = x / 42.
x %= 42 assigns the remainder of the division operation, x = x + x % 42.

Here is how these operators work:

float a = 1f;
a += 2;
System.out.println(a); //prints: 3.0
a -= 1;
System.out.println(a); //prints: 2.0
a *= 2;
System.out.println(a); //prints: 4.0
a /= 2;
System.out.println(a); //prints: 2.0
a %= 2;
System.out.println(a); //prints: 0.0

Getting Started with Java 12 Chapter 1

[47]

String types and literals
We have just described the primitive value types of the Java language. All the other value
types in Java belong to a category of reference types. Each reference type is a more complex
construct than just a value. It is described by a class, which serves as a template for creating
an object, a memory area that contains the values and methods (the processing code)
defined in the class. An object is created by the new operator. We will talk about classes and
objects in more detail in Chapter 2, Java Object-Oriented Programming (OOP).

In this chapter, we will talk about one of the reference types called String. It is represented
by the java.lang.String class, which belongs, as you can see, to the most foundational
package of JDK, java.lang. The reason we introduce the String class that early is that it
behaves in some respects very similar to primitive types, despite being a reference type.

A reference type is so called because, in the code, we do not deal with the values of this
type directly. The value of a reference type is more complex than the primitive type value.
It is called an object and requires more complex memory allocation, so a reference type
variable contains a memory reference. It points (refers) to the memory area where the object
resides, hence the name.

This nature of the reference type requires particular attention when a reference-type
variable is passed into a method as a parameter. We will discuss this in more detail in
Chapter 3, Java Fundamentals. For now, in relation to String, we will see how String,
being a reference type, helps to optimize the memory usage by storing each String value
only once.

String literals
The String class represents character strings in Java programs. We have seen several such
strings. We have seen Hello, world!, for example. That is a String literal.

Another example of a literal is null. Any reference class can refer to a null literal. It
represents a reference value that does not point to any object. In the case of a String type,
it appears as follows:

String s = null;

Getting Started with Java 12 Chapter 1

[48]

But a literal that consists of characters enclosed in double quotes ("abc", "123",
and "a42%$#", for example) can only be of a String type. In this respect, the String class,
being a reference type, has something in common with primitive types. All String literals
are stored in a dedicated section of memory called the string pool, and two literals equally
spelled to represent the same value from the pool:

String s1 = "abc";
String s2 = "abc";
System.out.println(s1 == s2); //prints: true
System.out.println("abc" == s1); //prints: true

The JVM authors have chosen such an implementation to avoid duplication and improve
memory usage. The previous code examples look very much like operations involving
primitive types, don't they? But when a String object is created using a new operator, the
memory for the new object is allocated outside the string pool, so references of two String
objects, or any other objects for that matter, are always different:

String o1 = new String("abc");
String o2 = new String("abc");
System.out.println(o1 == o2); //prints: false
System.out.println("abc" == o1); //prints: false

If necessary, it is possible to move the string value created with the new operator to the
string pool using the intern() method:

String o1 = new String("abc");
System.out.println("abc" == o1); //prints: false
System.out.println("abc" == o1.intern()); //prints: true

In the previous code, the intern() method attempted to move the newly created "abc"
value into the string pool, but discovered that such a literal exists there already, so it reused
the literal from the string pool. That is why the references in the last line in the preceding
example are equal.

The good news is that you probably will not need to create String objects using
the new operator, and most Java programmers never do it. But when a String object is
passed into your code as an input and you have no control over its origin, comparison by
reference only may cause an incorrect result (if the strings have the same spelling but were
created by the new operator). That is why, when the equality of two strings by spelling
(and case) is necessary, in order to compare two literals or String objects,
the equals() method is a better choice:

String o1 = new String("abc");
String o2 = new String("abc");
System.out.println(o1.equals(o2)); //prints: true

Getting Started with Java 12 Chapter 1

[49]

System.out.println(o2.equals(o1)); //prints: true
System.out.println(o1.equals("abc")); //prints: true
System.out.println("abc".equals(o1)); //prints: true
System.out.println("abc".equals("abc")); //prints: true

We will talk about the equals() and other methods of the String class shortly.

Another feature that makes String literals and objects look like primitive values is
that they can be added using the arithmetic operator, +:

String s1 = "abc";
String s2 = "abc";
String s = s1 + s2;
System.out.println(s); //prints: abcabc
System.out.println(s1 + "abc"); //prints: abcabc
System.out.println("abc" + "abc"); //prints: abcabc

String o1 = new String("abc");
String o2 = new String("abc");
String o = o1 + o2;
System.out.println(o); //prints: abcabc
System.out.println(o1 + "abc"); //prints: abcabc

No other arithmetic operator can be applied to a String literal or an object.

A new String literal, called a raw string literal, was introduced with Java 12. It facilitates
the preservation of indents and multiple lines without adding white spaces in quotes. For
example, here is how a programmer would add the indentation before Java 12 and use \n
to break the line:

String html = "<html>\n" +
 " <body>\n" +
 " <p>Hello World.</p>\n" +
 " </body>\n" +
 "</html>\n";

And here is how the same result is achieved with Java 12:

String html = `<html>
 <body>
 <p>Hello World.</p>
 </body>
 </html>
 `;

As you can see, a raw string literal consists of one or more characters enclosed in a backtick
(`) (\u0060), also called a backquote or an accent grave.

Getting Started with Java 12 Chapter 1

[50]

String immutability
Since all String literals can be shared, JVM authors make sure that, once stored, a String
variable cannot be changed. It helps not only avoid the problem of concurrent modification
of the same value from different places of the code, but also prevents unauthorized
modification of a String value, which often represents a username or password.

The following code looks like a String value modification:

String str = "abc";
str = str + "def";
System.out.println(str); //prints: abcdef
str = str + new String("123");
System.out.println(str); //prints: abcdef123

But, behind the scenes, the original "abc" literal remains intact. Instead, a few new literals
were created: "def", "abcdef", "123", and "abcdef123". To prove it, we have executed
the following code:

String str1 = "abc";
String r1 = str1;
str1 = str1 + "def";
String r2 = str1;
System.out.println(r1 == r2); //prints: false
System.out.println(r1.equals(r2)); //prints: false

As you can see, the r1 and r2 variables refer to different memories, and the objects they
refer to are spelled differently too.

We will talk more about strings in Chapter 5, Strings, Input/Output, and Files.

Identifiers and variables
From our school days, we have an intuitive understanding of what a variable is. We think
of it as a name that represents a value. We solve problems using such variables as x gallons
of water or n miles of a distance, and similar. In Java, the name of a variable is called an
identifier and can be constructed by certain rules. Using an identifier, a variable can be
declared (defined) and initialized.

Getting Started with Java 12 Chapter 1

[51]

Identifier
According to Java Language Specification (https:/ /docs. oracle. com/ javase/ specs), an
identifier (a variable name) can be a sequence of Unicode characters that represent letters,
digits 0-9, a dollar sign ($), or an underscore (_).

Other limitations are as follows:

The first symbol of an identifier cannot be a digit.
An identifier cannot have the same spelling as a keyword (see Java keywords in
Chapter 3, Java Fundamentals).
It cannot be spelled as the boolean literal true or false, and or as the
literal null.
And, since Java 9, an identifier cannot be just an underscore (_).

Here are a few unusual but legal examples of identifiers:

$
_42
αρετη
String

Variable declaration (definition) and initialization
A variable has a name (an identifier) and a type. Typically, it refers to the memory where a
value is stored, but may refer to nothing (null) or not refer to anything at all (then, it is not
initialized). It can represent a class property, an array element, a method parameter, and a
local variable. The last one is the most frequently used kind of variable.

Before a variable can be used, it has to be declared and initialized. In some other
programming languages, a variable can also be defined, so Java programmers sometimes use
the word definition as a synonym of declaration, which is not exactly correct.

Here is the terminology review with examples:

int x; //declartion of variable x
x = 1; //initialization of variable x
x = 2; //assignment of variable x

Initialization and assignment look the same. The difference is in their sequence: the first
assignment is called an initialization. Without an initialization, a variable cannot be used.

https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs

Getting Started with Java 12 Chapter 1

[52]

Declaration and initialization can be combined in a single statement. Observe the following,
for example:

float $ = 42.42f;
String _42 = "abc";
int αρετη = 42;
double String = 42.;

Type holder var
In Java 10, a sort of type holder, var, was introduced. The Java Language Specification
defines it as follows: "var is not a keyword, but an identifier with a special meaning as the type of
a local variable declaration."

In practical terms, it lets a compiler figure out the nature of the declared variable as follows:

var x = 1;

In the preceding example, the compiler can reasonably assume that x has the primitive
type, int.

As you could guess, to accomplish that, a declaration on its own would not suffice:

var x; //compilation error

That is, without initialization, the compiler cannot figure out the type of the variable when
var is used.

Java statements
A Java statement is a minimal construct that can be executed. It describes an action and
ends with a semicolon (;). We have seen many statements already. For example, here are
three statements:

float f = 23.42f;
String sf = String.valueOf(f);
System.out.println(sf);

The first line is a declaration statement combined with an assignment statement. The
second line is also a declaration statement combined with an assignment statement and
method invocation statement. The third line is just a method invocation statement.

Getting Started with Java 12 Chapter 1

[53]

Here is the list of Java statement types:

An empty statement that consists of only one symbol, ; (semicolon)
A class or interface declaration statement (we will talk about this in Chapter 2,
Java Object-Oriented Programming (OOP))
A local variable declaration statement: int x;
A synchronized statement: this is beyond the scope of this book
An expression statement
A control flow statement

An expression statement can be one of the following:

A method invocation statement: someMethod();
An assignment statement: n = 23.42f;
An object creation statement: new String("abc");
A unary increment or decrement statement: ++x ; or --x; or x++; or x--;

We will talk more about expression statements in the Expression statements section.

A control flow statement can be one of the following:

A selection statement: if-else or switch-case
An iteration statement: for, or while, or do-while
An exception-handling statement: throw, or try-catch, or try-catch-
finally
A branching statement: break, or continue, or return

We will talk more about control statements in the Control flow statements section.

Expression statements
An expression statement consists of one or more expressions. An expression typically
includes one or more operators. It can be evaluated, which means it can produce a result of
one of the following types:

A variable: x = 1, for example.
A value: 2*2, for example.

Getting Started with Java 12 Chapter 1

[54]

Nothing, when the expression is an invocation of a method that returns void.
Such a method is said to produce only a side effect: void someMethod(), for
example

Consider the following expression:

x = y++;

The preceding expression assigns a value to an x variable and has a side effect of adding 1
to the value of the y variable.

Another example would be a method that prints a line:

System.out.println(x);

The println() method returns nothing and has a side effect of printing something.
By its form, an expression can be one of the following:

A primary expression: a literal, a new object creation, a field or method access
(invocation)
A unary operator expression: x++, for example
A binary operator expression: x*y, for example
A ternary operator expression: x > y ? true : false, for example
A lambda expression: x -> x + 1 (see Chapter 14, Functional Programming)

If an expression consists of other expressions, the parenthesis is often used to identify each
of the expressions clearly. This way, it is easier to understand and to set the expressions
precedence.

Control flow statements
When a Java program is executed, it is executed statement by statement. Some statements
have to be executed conditionally, based on the result of an expression evaluation. Such
statements are called control flow statements because, in computer science, a control flow
(or flow of control) is the order in which individual statements are executed or evaluated.

Getting Started with Java 12 Chapter 1

[55]

A control flow statement can be one of the following:

 A selection statement: if-else or switch-case
An iteration statement: for, or while, or do-while
An exception-handling statement: throw, or try-catch, or try-catch-
finally
A branching statement: break, or continue, or return

Selection statements
The selection statements are based on an expression evaluation and have four variations:

if (expression) {do something}
if (expression) {do something} else {do something else}
if (expression) {do something} else if {do something else} else {do
something else}
switch case statement

Here are examples of if statements:

if(x > y){
 //do something
}

if(x > y){
 //do something
} else {
 //do something else
}

if(x > y){
 //do something
} else if (x == y){
 //do something else
} else {
 //do something different
}

Getting Started with Java 12 Chapter 1

[56]

A switch...case statement is a variation of the if...else statement:

switch(x){
 case 5: //means: if(x = 5)
 //do something
 break;
 case 7:
 //do something else
 break;
 case 12:
 //do something different
 break;
 default:
 //do something completely different
 //if x is not 5, 7, or 12
}

As you can see, the switch...case statement forks the execution flow based on the value
of the variable. The break statement allows the switch...case statement to be executed.
Otherwise, all the following cases would be executed.

In Java 12, a new feature is introduced in a preview mode; a switch...case statement in a
less verbose form:

void switchDemo1(int x){
 switch (x) {
 case 1, 3 -> System.out.print("1 or 3");
 case 4 -> System.out.print("4");
 case 5, 6 -> System.out.print("5 or 6");
 default -> System.out.print("Not 1,3,4,5,6");
 }
 System.out.println(": " + x);
}

As you can see, it uses an arrow, ->, and does not use a break statement. To take
advantage of this feature, you have to add an --enable-preview option to the javac and
java commands. If you run the examples from IDE, you need to add this option to the
configuration. In IntelliJ IDEA, the option should be added to two configuration screens: for
the compiler and for the runtime:

Open the Preferences screen and put it as the Compilation option of1.
the learnjava module, as shown in the following screenshot:

Getting Started with Java 12 Chapter 1

[57]

Select Run on the topmost horizontal menu:2.

Getting Started with Java 12 Chapter 1

[58]

Click Edit Configurations... and add the VM option to the ControlFlow3.
application that will be used at runtime:

We have added the --enable-preview option, as we have just described, and executed
the switchDemo1() method with different parameters:

switchDemo1(1); //prints: 1 or 3: 1
switchDemo1(2); //prints: Not 1,3,4,5,6: 2
switchDemo1(5); //prints: 5 or 6: 5

You can see the results from the comments.

If several lines of code have to be executed in each case, you can just put braces, {} , around
the block of code, as follows:

switch (x) {
 case 1, 3 -> {
 //do something
 }
 case 4 -> {
 //do something else
 }
 case 5, 6 -> System.out.println("5 or 6");
 default -> System.out.println("Not 1,3,4,5,6");
}

The Java 12 switch...case statement can even return a value. For example, here is the
case when another variable has to be assigned based on the switch...case statement
result:

void switchDemo2(int i){
 boolean b = switch(i) {

Getting Started with Java 12 Chapter 1

[59]

 case 0 -> false;
 case 1 -> true;
 default -> false;
 };
 System.out.println(b);
}

If we execute the switchDemo2() method, the results are going to be as follows:

switchDemo2(0); //prints: false
switchDemo2(1); //prints: true
switchDemo2(2); //prints: false

It looks like a nice improvement. If this feature will prove to be useful, it will be included in
the future Java releases as a permanent feature.

Iteration statements
An iteration statement can be one of the following three forms:

A while statement
A do...while statement
A for statement, also called a loop statement

A while statement appears as follows:

while (boolean expression){
 //do something
}

Here is a specific example:

int n = 0;
while(n < 5){
 System.out.print(n + " "); //prints: 0 1 2 3 4
 n++;
}

In some examples, instead of the println() method, we use the print() method, which
does not feed another line (does not add a line feed control at the end of its output).
The print() method displays the output in one line.

Getting Started with Java 12 Chapter 1

[60]

The do...while statement has a very similar form:

do {
 //do something
} while (boolean expression)

It differs from the while statement by always executing the block of statements at least
once, before evaluating the expression:

int n = 0;
do {
 System.out.print(n + " "); //prints: 0 1 2 3 4
 n++;
} while(n < 5);

As you can see, it behaves the same way in the case when the expression is true at the first
iteration. But if the expression evaluates to false, the results are different:

int n = 6;
while(n < 5){
 System.out.print(n + " "); //prints:
 n++;
}

n = 6;
do {
 System.out.print(n + " "); //prints: 6
 n++;
} while(n < 5);

The for statement syntax is as follows:

for(init statements; boolean expression; update statements) {
 //do what has to be done here
}

Here is how the for statement works:

init statements initialize a variable.
boolean expression is evaluated using the current variable value: if true, the
block of statements is executed, otherwise, the for statement exits.
update statements update, the variable, and the boolean expression is
evaluated again with this new value: if true, the block of statements is executed,
otherwise the for statement exits.
Unless exited, the final step is repeated.

Getting Started with Java 12 Chapter 1

[61]

As you can see, if you aren't careful, you can get into an infinite loop:

for (int x = 0; x > -1; x++){
 System.out.print(x + " "); //prints: 0 1 2 3 4 5 6 ...
}

So, you have to make sure that the boolean expression guarantees eventual exit from the
loop:

for (int x = 0; x < 3; x++){
 System.out.print(x + " "); //prints: 0 1 2
}

The following example demonstrates multiple initialization and update statements:

for (int x = 0, y = 0; x < 3 && y < 3; ++x, ++y){
 System.out.println(x + " " + y);
}

And here is the variation of the preceding for statements for demo purposes:

for (int x = getInitialValue(), i = x == -2 ? x + 2 : 0, j = 0;
 i < 3 || j < 3 ; ++i, j = i) {
 System.out.println(i + " " + j);
}

If the getInitialValue() method is implemented like int getInitialValue(){
return -2; }, then the preceding two for statements produce exactly the same results.

To iterate over an array of values, you can use an array index:

int[] arr = {24, 42, 0};
for (int i = 0; i < arr.length; i++){
 System.out.print(arr[i] + " "); //prints: 24 42 0
}

Alternatively, you can use a more compact form of a for statement that produces the same
result, as follows:

int[] arr = {24, 42, 0};
for (int a: arr){
 System.out.print(a + " "); //prints: 24 42 0
}

Getting Started with Java 12 Chapter 1

[62]

This last form is especially useful with a collection as shown here:

List<String> list = List.of("24", "42", "0");
for (String s: list){
 System.out.print(s + " "); //prints: 24 42 0
}

We will talk about collections in Chapter 6, Data Structures, Generics, and Popular Utilities.

Exception-handling statements
In Java, there are classes called exceptions that represent the events that disrupt the normal
execution flow. They typically have names that end with
Exception: NullPointerException, ClassCastException,
ArrayIndexOutOfBoundsException, to name a few.

All the exception classes extend the java.lang.Exception class, which, in turn, extends
the java.lang.Throwable class (we will explain what this means in Chapter 2, Java
Object-Oriented Programming (OOP)). That's why all exception objects have a common
behavior. They contain information about the cause of the exceptional condition and the
location of its origination (line number of the source code).

Each exception object can be generated (thrown) either automatically by JVM or by the
application code, using the keyword throw. If a block of code throws an exception, you can
use a try-catch or try-catch-finally construct to capture the thrown exception object
and redirect the execution flow to another branch of code. If the surrounding code does not
catch the exception object, it propagates all the way out of the application into the JVM and
forces it to exit (and abort the application execution). So, it is good practice to use try-
catch or try-catch-finally in all the places where an exception can be raised and you
do not want your application to abort execution.

Here is a typical example of exception handling:

try {
 //x = someMethodReturningValue();
 if(x > 10){
 throw new RuntimeException("The x value is out of range: " + x);
 }
 //normal processing flow of x here
} catch (RuntimeException ex) {
 //do what has to be done to address the problem
}

Getting Started with Java 12 Chapter 1

[63]

In the preceding code snippet, normal processing flow will be not executed in the case
of x > 10. Instead, the do what has to be done block will be executed. But, in the case
x <= 10, the normal processing flow block will be run and the do what has to be
done block will be ignored.

Sometimes, it is necessary to execute a block of code anyway, whether an exception was
thrown/caught or not. Instead of repeating the same code block in two places, you can put
it in a finally block, as follows:

try {
 //x = someMethodReturningValue();
 if(x > 10){
 throw new RuntimeException("The x value is out of range: " + x);
 }
 //normal processing flow of x here
} catch (RuntimeException ex) {
 System.out.println(ex.getMessage());
 //prints: The x value is out of range: ...
 //do what has to be done to address the problem
} finally {
 //the code placed here is always executed
}

We will talk about exception handling in more detail in Chapter 4, Exception Handling.

Branching statements
Branching statements allow breaking of the current execution flow and continuation of
execution form the first line after the current block or from a certain (labeled) point of the
control flow.

A branching statement can be one of the following:

break
continue
return

We have seen how break was used in switch-case statements. Here is another example:

String found = null;
List<String> list = List.of("24", "42", "31", "2", "1");
for (String s: list){
 System.out.print(s + " "); //prints: 24 42 31
 if(s.contains("3")){

Getting Started with Java 12 Chapter 1

[64]

 found = s;
 break;
 }
}
System.out.println("Found " + found); //prints: Found 31

If we need to find the first list element that contains "3", we can stop executing as soon
as condition s.contains("3") is evaluated to true. The remainder list elements are
ignored.

In a more complicated scenario, with nested for statements, it is possible to set a label
(with a : column) that indicates which for statement has to be exited:

String found = null;
List<List<String>> listOfLists = List.of(
 List.of("24", "16", "1", "2", "1"),
 List.of("43", "42", "31", "3", "3"),
 List.of("24", "22", "31", "2", "1")
);
exit: for(List<String> l: listOfLists){
 for (String s: l){
 System.out.print(s + " "); //prints: 24 16 1 2 1 43
 if(s.contains("3")){
 found = s;
 break exit;
 }
 }
}
System.out.println("Found " + found); //prints: Found 43

We have chosen the label name exit, but we could call it any other name too.

The continue statement works similarly, as follows:

String found = null;
List<List<String>> listOfLists = List.of(
 List.of("24", "16", "1", "2", "1"),
 List.of("43", "42", "31", "3", "3"),
 List.of("24", "22", "31", "2", "1")
);
String checked = "";
cont: for(List<String> l: listOfLists){
 for (String s: l){
 System.out.print(s + " "); //prints: 24 16 1 2 1 43 24 22 31
 if(s.contains("3")){
 continue cont;

Getting Started with Java 12 Chapter 1

[65]

 }
 checked += s + " ";
 }
}
System.out.println("Found " + found); //prints: Found 43
System.out.println("Checked " + checked);
 //prints: Checked 24 16 1 2 1 24 22

It differs from break by telling which of the for statements to continue, and not to exit.
A return statement is used to return a result from a method:

String returnDemo(int i){
 if(i < 10){
 return "Not enough";
 } else if (i == 10){
 return "Exactly right";
 } else {
 return "More than enough";
 }
}

As you can see, there can be several return statements in a method, each returning a
different value under different circumstances. If the method returns nothing (void), the
return statement is not required, although it is frequently used for better readability, as
follows:

void returnDemo(int i){
 if(i < 10){
 System.out.println("Not enough");
 return;
 } else if (i == 10){
 System.out.println("Exactly right");
 return;
 } else {
 System.out.println("More than enough");
 return;
 }
}

Statements are the building blocks of Java programming. They are like sentences in English,
the complete expressions of intent that can be acted upon. They can be compiled and
executed. Programming is expressing an action plan in statements.

With this, the explanation of the basics of Java is concluded.

Congratulations for getting through it!

Getting Started with Java 12 Chapter 1

[66]

Summary
This chapter introduced you to the exciting world of Java programming. We started with
explaining the main terms, and then explained how to install the necessary tools, JDK and
IDE, and how to configure and use them.

With a development environment in place, we provided the reader with the basics of Java
as a programming language. We have described Java primitive types, the String type, and
their literals. We have also defined what an identifier is, and what a variable is, and
finished with a description of the main types of Java statements. All the points of the
discussion were illustrated by the specific code examples.

In the next chapter, we are going to talk about the object-oriented aspects of Java. We will
introduce the main concepts, explain what a class is, what an interface is, and the
relationship between them. The terms overloading, overriding, and hiding will also be defined
and demonstrated in code examples, as well as the usage of the final keyword.

Quiz
What does JDK stand for?1.

Java Document Kronosa.
June Development Karateb.
Java Development Kitc.
Java Developer Kitd.

What does JCL stand for?2.

Java Classical Librarya.
Java Class Libraryb.
Junior Classical Libertyc.
Java Class Librasd.

What does Java SE stand for?3.

Java Senior Editiona.
Java Star Editionb.
Java Structural Electionsc.
Java Standard Editiond.

Getting Started with Java 12 Chapter 1

[67]

What does IDE stand for?4.

Initial Development Editiona.
Integrated Development Environmentb.
International Development Editionc.
Integrated Development Editiond.

What are Maven's functions?5.

Project buildinga.
Project configurationb.
Project documentationc.
Project cancellationd.

What are Java primitive types?6.

booleana.
numericb.
integerc.
stringd.

What are Java primitive types?7.

longa.
bitb.
shortc.
byted.

What is a literal?8.

A letter-based stringa.
A number-based stringb.
A variable representationc.
A value representationd.

Getting Started with Java 12 Chapter 1

[68]

Which of the following are literals?9.

\\a.
2_0b.
2__0fc.
\fd.

Which of the following are Java operators?10.

%a.
$b.
&c.
->d.

What does the following code snippet print?11.

int i = 0; System.out.println(i++);

0a.
1b.
2c.
3d.

What does the following code snippet print?12.

boolean b1 = true;
 boolean b2 = false;
 System.out.println((b1 & b2) + " " + (b1 && b2));

false truea.
false falseb.
true falsec.
true trued.

Getting Started with Java 12 Chapter 1

[69]

What does the following code snippet print?13.

int x = 10;
 x %= 6;
 System.out.println(x);

1a.
2b.
3c.
4d.

What is the result of the following code snippet?14.

System.out.println("abc" - "bc");

aa.
abc-bcb.
Compilation errorc.
Execution errord.

What does the following code snippet print?15.

System.out.println("A".repeat(3).lastIndexOf("A"));

1a.
2b.
3c.
4d.

What are the correct identifiers?16.

int __ (two underscores)a.
2ab.
a2c.
$d.

What does the following code snippet print?17.

for (int i=20, j=-1; i < 23 && j < 0; ++i, ++j){
 System.out.println(i + " " + j + " ");
 }

Getting Started with Java 12 Chapter 1

[70]

20 -1 21 0a.
Endless loopb.
21 0c.
20 -1d.

What does the following code snippet print?18.

int x = 10;
try {
 if(x++ > 10){
 throw new RuntimeException("The x value is out of the
range: " + x);
 }
 System.out.println("The x value is within the range: " + x);
} catch (RuntimeException ex) {
 System.out.println(ex.getMessage());
}

Compilation errora.
The x value is out of the range: 11b.
The x value is within the range: 11c.
Execution time errord.

What does the following code snippet print?19.

int result = 0;
List<List<Integer>> source = List.of(
 List.of(1, 2, 3, 4, 6),
 List.of(22, 23, 24, 25),
 List.of(32, 33)
);
cont: for(List<Integer> l: source){
 for (int i: l){
 if(i > 7){
 result = i;
 continue cont;
 }
 }
}
System.out.println("result=" + result);

Getting Started with Java 12 Chapter 1

[71]

result = 22a.
result = 23b.
result = 32c.
result = 33d.

Select all the following statements that are correct:20.

A variable can be declareda.
A variable can be assignedb.
A variable can be definedc.
A variable can be determinedd.

Select all the correct Java statement types from the following:21.

An executable statementa.
A selection statementb.
A method end statementc.
An increment statementd.

2
Java Object-Oriented
Programming (OOP)

Object-Oriented Programming (OOP) was born out of the necessity for better control over
concurrent modification of the shared data, which was the curse of pre-OOP programming.
The core of the idea was not to allow direct access to the data but to do it only through the
dedicated layer of code. Since the data needs to be passed around and modified in the
process, the concept of an object was conceived. In the most general sense, an object is a set
of data that can be passed around and accessed only through the set of methods passed
along too. This data is said to compose an object state, while the methods constitute the
object behavior. The object state is hidden (encapsulated) from direct access.

Each object is constructed based on a certain template called a class. In other words, a class
defines a class of objects. Each object has a certain interface, a formal definition of the way
other objects can interact with it. Originally, it was said that one object sends a message to
another object by calling its method. But this terminology did not hold, especially after
actual message-based protocols and systems were introduced.

To avoid code duplication, a parent-child relationship between objects was introduced: it
was said that one class can inherit behavior from another class. In such a relationship, the
first class is called a child class, or a subclass, while the second is called a parent or base
class or superclass.

Another form of relationship was defined between classes and interfaces: it is said that a
class can implement an interface. Since an interface describes how you can interact with an
object, but not how an object responds to the interaction, different objects can behave
differently while implementing the same interface.

Java Object-Oriented Programming (OOP) Chapter 2

[73]

In Java, a class can have only one direct parent but can implement many interfaces. The
ability to behave as any of its ancestors and adhere to multiple interfaces is called
polymorphism.

In this chapter, we will look at these OOP concepts and how they are implemented in Java.
The topics discussed include the following:

OOP concepts
Class
Interface
Overloading, overriding, and hiding
Final variable, method, and class
Polymorphism in action

OOP concepts
As we have already stated in the introduction, the main OOP concepts are as follows:

Object/Class: It defines a state (data) and behavior (methods) and holds them
together
Inheritance: It propagates behavior down the chain of classes connected via
parent-child relationships
Abstraction/Interface: It describes how the object data and behavior can be
accessed. It isolates (abstracts) an object's appearance from its implementations
(behavior)
Encapsulation: It hides the state and details of the implementation
Polymorphism: It allows an object to assume an appearance of implemented
interfaces and behave as any of the ancestor classes

Object/class
In principle, you can create a very powerful application with minimal usage of classes and
objects. It became even easier to do this after functional programming was added to Java 8,
to JDK, which allowed you to pass around behavior as a function. Yet passing data (state)
still requires classes/objects. This means that the position of Java as an OOP language
remains intact.

Java Object-Oriented Programming (OOP) Chapter 2

[74]

A class defines the types of all internal object properties that hold the object state. A class
also defines object behavior expressed by the code of the methods. It is possible to have a
class/object without a state or without a behavior. Java also has a provision for making the
behavior accessible statically—without creating an object. But these possibilities are no
more than just additions to the object/class concept that was introduced for keeping the
state and behavior together.

To illustrate this concept, a class Vehicle, for example, defines the properties and behavior
of a vehicle in principle. Let's make the model simple and assume that a vehicle has only
two properties: weight and engine of a certain power. It also can have a certain behavior: it
can reach a certain speed in a certain period of time, depending on the values of its two
properties. This behavior can be expressed in a method that calculates the speed the vehicle
can reach in a certain period of time. Every object of the Vehicle class will have a specific
state (values of its properties) and the speed calculation will result in a different speed in
the same time period.

All Java code is contained inside methods. A method is a group of statements that have
(optional) input parameters and a return a value (also optional). In addition, each method
can have side effects: it can display a message or write data into the database, for example.
Class/object behavior is implemented in the methods.

To follow our example, speed calculations could reside in
a double calculateSpeed(float seconds) method, for instance. As you can guess,
the name of the method is calculateSpeed. It accepts a number of seconds (with a
fractional part) as a parameter and returns the speed value as double.

Inheritance
As we have mentioned already, objects can establish a parent-child relationship and share
properties and behavior this way. For example, we can create a Car class that inherits
properties (weight, for example) and behavior (speed calculation) of the Vehicle class. In
addition, the child class can have its own properties (number of passengers, for example)
and car-specific behavior (soft shock absorption, for example). But if we create a Truck
class as the vehicle's child, its additional truck-specific property (payload, for example) and
behavior (hard shock absorption) will be different.

Java Object-Oriented Programming (OOP) Chapter 2

[75]

It is said that each object of the Car class or of the Truck class has a parent object of
the Vehicle class. But objects of the Car and Truck class do not share the specific Vehicle
object (every time a child object is created, a new parent object is created first). They share
only the parent's behavior. That is why all the child objects can have the same behavior but
different states. That is one way to achieve code reusability. It may not be flexible enough
when the object behavior has to change dynamically. In such cases, object composition
(bringing behavior from other classes) or functional programming would be more
appropriate (see Chapter 13, Functional Programming).

It is possible to make a child behave differently than the inherited behavior would do. To
achieve it, the method that captures the behavior can be re-implemented in the child class.
It is said that a child can override the inherited behavior. We will explain how to do it
shortly (see the Overloading, overriding, and hiding section). If, for example, the Car class has
its own method for speed calculation, the corresponding method of the parent class
Vehicle is not inherited, but the new speed calculation, implemented in the child class, is
used instead.

Properties of a parent class can be inherited (but not overridden) too. However, class
properties are typically declared private; they cannot be inherited—that's the point of
encapsulation. See the description of various access levels—public, protected, and
private—in the Access modifiers section.

If the parent class inherits some behavior from another class, the child class acquires
(inherits) this behavior too, unless, of course, the parent class overrides it. There is no limit
to how long the chain of inheritance can be.

The parent-child relationship in Java is expressed using the extends keyword:

class A { }
class B extends A { }
class C extends B { }
class D extends C { }

In this code, the classes A, B, C, and D have the following relationships:

Class D inherits from classes C, B, and A
Class C inherits from classes B and A
Class B inherits from class A

All non-private methods of class A are inherited (if not overridden) by classes B, C, and D.

Java Object-Oriented Programming (OOP) Chapter 2

[76]

Abstraction/interface
The name of a method and the list of its parameter types is called a method signature. It
describes how the behavior of an object (of Car or Truck, in our example) can be accessed.
Such a description together with a return type is presented as an interface. It does not say
anything about the code that does calculations—only about the method name, parameters'
types, their position in the parameter list, and the result type. All the implementation
details are hidden (encapsulated) within the class that implements this interface.

As we have mentioned already, a class can implement many different interfaces. But two
different classes (and their objects) can behave differently even when they implement the
same interface.

Similarly to classes, interfaces can have a parent-child relationship using
the extends keyword too:

interface A { }
interface B extends A {}
interface C extends B {}
interface D extends C {}

In this code, the interfaces A, B, C, and D have the following relationships:

An Interface D inherits from interfaces C, B, and A
An Interface C inherits from interfaces B and A
An Interface B inherits from interface A

All non-private methods of interface A are inherited by interfaces B, C, and D.

Abstraction/interface also reduces dependency between different sections of the code,
thus increasing its maintainability. Each class can be changed without the need to
coordinate it with its clients, as long as the interface stays the same.

Encapsulation
Encapsulation is often defined either as a data hiding or a bundling together of publicly
accessible methods and privately accessible data. In a broad sense, encapsulation is a
controlled access to the object properties.

Java Object-Oriented Programming (OOP) Chapter 2

[77]

The snapshot of values of object properties is called an object state. The object state is the
data that is encapsulated. So, encapsulation addresses the main issue that motivated the
creation of object-oriented programming: better management of concurrent access to the
shared data. For example:

class A {
 private String prop = "init value";
 public void setProp(String value){
 prop = value;
 }
 public String getProp(){
 return prop;
 }
}

As you can see, to read or to modify the value of the prop property, we cannot access it
directly because of the access modifier private. Instead, we can do it only via the methods
setProp(String value) and getProp().

Polymorphism
Polymorphism is the ability of an object to behave as an object of a different class or as
an implementation of a different interface. It owes its existence to all the concepts that have
been mentioned previously: inheritance, interface, and encapsulation. Without them,
polymorphism would not be possible.

Inheritance allows an object to acquire or override the behaviors of all its ancestors. An
interface hides from the client code the name of the class that implemented it. The
encapsulation prevents exposing the object state.

In the following sections, we will demonstrate all these concepts in action and look at the
specific usage of polymorphism in the Polymorphism in action section.

Class
Java program is a sequence of statements that express an executable action. The statements
are organized in methods, and methods are organized in classes. One or more classes
are stored in .java files. They can be compiled (transformed from the Java language into a
bytecode) by the Java compiler javac and stored in .class files. Each .class file contains
one compiled class only and can be executed by JVM.

Java Object-Oriented Programming (OOP) Chapter 2

[78]

A java command starts JVM and tells it which class is the main one, the class that has the
method called main(). The main method has a particular declaration: it has to be public
static, must return void, has the name main, and accepts a single parameter of an array
of a String type.

JVM loads the main class into memory, finds the main() method, and starts executing it,
statement by statement. The java command can also pass parameters (arguments) that
the main() method receives as an array of String values. If JVM encounters a statement
that requires the execution of a method from another class, that class (its .class file) is
loaded into the memory too and the corresponding method is executed. So, a Java program
flow is all about loading classes and executing their methods.

Here is an example of the main class:

public class MyApp {
 public static void main(String[] args){
 AnotherClass an = new AnotherClass();
 for(String s: args){
 an.display(s);
 }
 }
}

It represents a very simple application that receives any number of parameters and passes
them, one by one, into the display() method of AnotherClass class. As JVM starts, it
loads the MyApp class from the MyApp.class file first. Then it loads
the AnotherClass class from the AnotherClass.class file, creates an object of this class
using the new operator (we will talk about it shortly), and calls on it
the display() method.

And here is the AnotherClass class:

public class AnotherClass {
 private int result;
 public void display(String s){
 System.out.println(s);
 }
 public int process(int i){
 result = i *2;
 return result;
 }
 public int getResult(){
 return result;
 }
}

Java Object-Oriented Programming (OOP) Chapter 2

[79]

As you can see, the display() method is used for its side effect only—it prints out the
passed-in value and returns nothing (void). The AnotherClass class has other two
methods:

The process() method doubles the input integer, stores it in its result
property, and returns the value to the caller
The getResult() method allows getting the result from the object any time later

These two methods are not used in our demo application. We have shown them just for the
demonstration that a class can have properties (result, in this case) and many other
methods.

The private keyword makes the value accessible only from inside the class, from its
methods. The public keyword makes a property or a method accessible by any other class.

Method
As we have stated already, Java statements are organized as methods:

<return type> <method name>(<list of parameter types>){
 <method body that is a sequence of statements>
}

We have seen a few examples already. A method has a name, a set of input parameters or
no parameters at all, a body inside {} brackets, and a return type or void keyword that
indicates that the method does not return any value.

The method name and the list of parameter types together are called the method signature.
The number of input parameters is called an arity.

Two methods have the same signature if they have the same name, the
same arity, and the same sequence of types in the list of input parameters.

The following two methods have the same signature:

double doSomething(String s, int i){
 //some code goes here
}

double doSomething(String i, int s){
 //some code other code goes here
}

Java Object-Oriented Programming (OOP) Chapter 2

[80]

The code inside the methods may be different even if the signature is the same.

The following two methods have different signatures:

double doSomething(String s, int i){
 //some code goes here
}

double doSomething(int s, String i){
 //some code other code goes here
}

Just a change in the sequence of parameters makes the signature different, even if the
method name remains the same.

Varargs
One particular type of parameter requires mentioning because it is quite different than all
others. It is declared a type followed by three dots. It is called varargs, which stands for
variable arguments. But, first, let's briefly define what an array is in Java.

An array is a data structure that holds elements of the same type. The elements
are referenced by a numerical index. That's enough, for now. We talk about an array more
in Chapter 6, Data Structures, Generics, and Popular Utilities.

Let's start with an example. Let's declare method parameters using varargs:

String someMethod(String s, int i, double... arr){
 //statements that compose method body
}

When the someMethod method is called, the java compiler matches the arguments from left
to right. Once it gets to the last varargs parameter, it creates an array of the remaining
arguments and passes it to the method. Here is a demo code:

public static void main(String... args){
 someMethod("str", 42, 10, 17.23, 4);

}

private static String someMethod(String s, int i, double... arr){
 System.out.println(arr[0] + ", " + arr[1] + ", " + arr[2]);
 //prints: 10.0, 17.23, 4.0
 return s;
}

Java Object-Oriented Programming (OOP) Chapter 2

[81]

As you can see, the varargs parameter acts like an array of the specified type. It can be
listed as the last or the only parameter of a method. That is why, sometimes, you can see
the main method declared as in the preceding example.

Constructor
When an object is created, JVM uses a constructor. The purpose of a constructor is to
initialize the object state to assign values to all the declared properties. If there is no
constructor declared in the class, JVM just assigns to the properties default values. We have
talked about the default values for primitive types: it is 0 for integral types, 0.0 for
floating-point types, and false for boolean types. For other Java reference types (see
Chapter 3, Java Fundamentals), the default value is null, which means that the property of
a reference type is not assigned any value.

When there is no constructor declared in a class, it is said that the class has
a default constructor without parameters provided by the JVM.

If necessary, it is possible to declare any number of constructors explicitly, each taking a
different set of parameters to set the initial state. Here is an example:

class SomeClass {
 private int prop1;
 private String prop2;
 public SomeClass(int prop1){
 this.prop1 = prop1;
 }
 public SomeClass(String prop2){
 this.prop2 = prop2;
 }
 public SomeClass(int prop1, String prop2){
 this.prop1 = prop1;
 this.prop2 = prop2;
 }
 // methods follow
}

If a property is not set by a constructor, the default value of the corresponding type is going
to be assigned to it automatically.

Java Object-Oriented Programming (OOP) Chapter 2

[82]

When several classes are related along the same line of succession, the parent object is
created first. If the parent object requires the setting of non-default initial values to its
properties, its constructor must be called as the first line of the child constructor using
the super keyword as follows:

class TheParentClass {
 private int prop;
 public TheParentClass(int prop){
 this.prop = prop;
 }
 // methods follow
}

class TheChildClass extends TheParentClass{
 private int x;
 private String prop;
 private String anotherProp = "abc";
 public TheChildClass(String prop){
 super(42);
 this.prop = prop;
 }
 public TheChildClass(int arg1, String arg2){
 super(arg1);
 this.prop = arg2;
 }
 // methods follow
}

In the preceding code example, we added two constructors to TheChildClass: one that
always passes 42 to the constructor of TheParentClass and another that accepts two
parameters. Note the x property that is declared but not initialized explicitly. It is going to
be set to value 0, the default value of the int type, when an object of TheChildClass is
created. Also, note the anotherProp property that is initialized explicitly to the value of
"abc". Otherwise, it would be initialized to the value null, the default value of any
reference type, including String.

Logically, there are three cases when an explicit definition of a constructor in the class is not
required:

When neither the object nor any of its parents do not have properties that need to
be initialized
When each property is initialized along with the type declaration (int x = 42,
for example)
When default values for the properties initialization are good enough

Java Object-Oriented Programming (OOP) Chapter 2

[83]

Nevertheless, it is possible that a constructor is still implemented even when all three
conditions (mentioned in the list) are met. For example, you may want to execute some
statements that initialize some external resource—a file or another database—the object will
need as soon as it is created.

As soon as an explicit constructor is added, the default constructor is not provided and the
following code generates an error:

class TheParentClass {
 private int prop;
 public TheParentClass(int prop){
 this.prop = prop;
 }
 // methods follow
}

class TheChildClass extends TheParentClass{
 private String prop;
 public TheChildClass(String prop){
 //super(42); //No call to the parent's contuctor
 this.prop = prop;
 }
 // methods follow
}

To avoid the error, either add a constructor without parameters to TheParentClass or call
an explicit constructor of the parent class as the first statement of the child's constructor.
The following code does not generate an error:

class TheParentClass {
 private int prop;
 public TheParentClass() {}
 public TheParentClass(int prop){
 this.prop = prop;
 }
 // methods follow
}

class TheChildClass extends TheParentClass{
 private String prop;
 public TheChildClass(String prop){
 this.prop = prop;
 }
 // methods follow
}

Java Object-Oriented Programming (OOP) Chapter 2

[84]

One important aspect to note is that constructors, although they look like methods, are not
methods or even members of the class. A constructor doesn’t have a return type and always
has the same name as the class. Its only purpose is to be called when a new instance of the
class is created.

The new operator
The new operator creates an object of a class (it also can be said it instantiates a class or
creates an instance of a class) by allocating memory for the properties of the new object
and returning a reference to that memory. This memory reference is assigned to a variable
of the same type as the class used to create the object or the type of its parent:

TheChildClass ref1 = new TheChildClass("something");
TheParentClass ref2 = new TheChildClass("something");

Here is an interesting observation. In the code, both object references ref1 and ref2,
provide access to the methods of TheChildClass and TheParentClass. For example, we
can add methods to these classes as follows:

class TheParentClass {
 private int prop;
 public TheParentClass(int prop){
 this.prop = prop;
 }
 public void someParentMethod(){}
}

class TheChildClass extends TheParentClass{
 private String prop;
 public TheChildClass(int arg1, String arg2){
 super(arg1);
 this.prop = arg2;
 }
 public void someChildMethod(){}
}

Then we can call them using any of the following references:

TheChildClass ref1 = new TheChildClass("something");
TheParentClass ref2 = new TheChildClass("something");
ref1.someChildMethod();
ref1.someParentMethod();
((TheChildClass) ref2).someChildMethod();
ref2.someParentMethod();

Java Object-Oriented Programming (OOP) Chapter 2

[85]

Note that, to access the child's methods using the parent's type reference, we had to cast it
to the child's type. Otherwise, the compiler generates an error. That is possible because we
have assigned to the parent's type reference the reference to the child's object. That is the
power of polymorphism. We will talk more about it in the Polymorphism in action section.

Naturally, if we had assigned the parent's object to the variable of the parent's type, we
would not be able to access the child's method even with casting, as the following example
shows:

TheParentClass ref2 = new TheParentClass(42);
((TheChildClass) ref2).someChildMethod(); //compiler's error
ref2.someParentMethod();

The area where memory for the new object is allocated is called heap. The JVM has a
process called garbage collection that watches for the usage of this area and releases
memory for usage as soon as an object is not needed anymore. For example, look at the
following method:

void someMethod(){
 SomeClass ref = new SomeClass();
 ref.someClassMethod();
 //other statements follow
}

As soon as the execution of the someMethod() method is completed, the object of
SomeClass is not accessible anymore. That's what the garbage collector notices and
releases the memory occupied by this object. We will talk about the garbage collection
process in Chapter 9, JVM Structure and Garbage Collection.

Class java.lang.Object
In Java, all classes are children of the Object class by default, even if you do not specify it
implicitly. The Object class is declared in the java.lang package of the standard JDK
library. We will define what package is in the Packages, importing, and access section and
describe libraries in Chapter 7, Java Standard and External Libraries.

Let's look back at the example we have provided in the Inheritance section:

class A { }
class B extends A {}
class C extends B {}
class D extends C {}

Java Object-Oriented Programming (OOP) Chapter 2

[86]

All classes, A, B, C, D, are children of the Object class, which has ten methods that every
class inherits:

public String toString()

public int hashCode()

public boolean equals (Object obj)

public Class getClass()

protected Object clone()

public void notify()

public void notifyAll()

public void wait()

public void wait(long timeout)

public void wait(long timeout, int nanos)

The first three, toString(), hashCode(), and equals(), are the most often used methods
and often re-implemented (overridden). The toString() method is typically used to print
the state of the object. Its default implementation in JDK looks like this:

public String toString() {
 return getClass().getName()+"@"+Integer.toHexString(hashCode());
}

If we use it on the object of the TheChildClass class, the result will be as follows:

TheChildClass ref1 = new TheChildClass("something");
System.out.println(ref1.toString());
//prints: com.packt.learnjava.ch02_oop.Constructor$TheChildClass@72ea2f77

By the way, there is no need to call toString() explicitly while passing an object into
the System.out.println() method and similar output methods, because they do it
inside the method anyway and System.out.println(ref1), in our case, produces the
same result.

Java Object-Oriented Programming (OOP) Chapter 2

[87]

So, as you can see, such an output is not human-friendly, so it is a good idea to override
the toString() method. The easiest way to do it is by using IDE. For example, in IntelliJ
IDEA, right-click inside TheChildClass code, as shown in the following screenshot:

Select and click Generate... and then select and click toString(), as shown in the following
screenshot:

Java Object-Oriented Programming (OOP) Chapter 2

[88]

The new pop-up window will enable you to select which properties to include in the
toString() method. Select only properties of TheChildClass as follows:

Java Object-Oriented Programming (OOP) Chapter 2

[89]

After you click the OK button, the following code will be generated:

@Override
public String toString() {
 return "TheChildClass{" +
 "prop='" + prop + '\'' +
 '}';
}

If there were more properties in the class and you had selected them, more properties and
their values would be included in the method output. If we print the object now, the result
will be this:

TheChildClass ref1 = new TheChildClass("something");
System.out.println(ref1.toString());
 //prints: TheChildClass{prop='something'}

That is why the toString() method is often overridden and even included in the services
of an IDE.

We will talk about the hashCode() and equals() methods in more detail in Chapter
6, Data Structures, Generics, and Popular Utilities.

The getClass() and clone() methods are used not as often. The getClass() method
returns an object of the Class class that has many methods which provide various system
information. The most used method is the one that returns the name of the class of the
current object. The clone() method can be used to copy the current object. It works just
fine as long as all the properties of the current object are of primitive types. But, if there is a
reference type property, the clone() method has to be re-implemented so that the copy of
the reference type can be done correctly. Otherwise, only the reference will be copied, not
the object itself. Such a copy is called a shallow copy, which may be good enough in some
cases. The protected keyword indicates that only children of the class can access it. See
the Packages, importing, and access section.

The last five of the class Object methods are used for communication between
threads—the lightweight processes for concurrent processing. They are typically not re-
implemented.

Java Object-Oriented Programming (OOP) Chapter 2

[90]

Instance and static properties and methods
So far, we have seen mostly methods that can be invoked only on an object (instance) of a
class. Such methods are called instance methods. They typically use the values of the object
properties (the object state). Otherwise, if they do not use the object state, they can be made
static and invoked without creating an object. The example of such a method is
the main() method. Here is another example:

class SomeClass{
 public static void someMethod(int i){
 //do something
 }
}

This method can be called as follows:

SomeClass.someMethod(42);

Static methods can be called on an object too, but it is considered bad practice as it hides the
static nature of the method from a human who tries to understand the code. Besides, it
raises a compiler warning and, depending on the compiler implementation, may even
generate a compiler error.

Similarly, a property can be declared static and thus accessible without creating an object.
For example:

class SomeClass{
 public static String SOME_PROPERTY = "abc";
}

This property can be accessed directly via class too, as follows:

System.out.println(SomeClass.SOME_PROPERTY); //prints: abc

Having such a static property works against the idea of the state encapsulation and may
cause all the problems of concurrent data modification because it exists as a single copy in
JVM memory and all the methods that use it, share the same value. That is why a static
property is typically used for two purposes:

To store a constant—a value that can be read but not modified (also called a read-
only value)
To store a stateless object that is expensive to create or that keeps read-only
values

Java Object-Oriented Programming (OOP) Chapter 2

[91]

A typical example of a constant is a name of a resource:

class SomeClass{
 public static final String INPUT_FILE_NAME = "myFile.csv";
}

Note the final keyword in front of the static property. It tells the compiler and JVM that
this value, once assigned, cannot change. An attempt to do it generates an error. It helps to
protect the value and express clearly the intent to have this value as a constant. When a
human tries to understand how the code works, such seemingly small details make the
code easier to understand.

That said, consider using interfaces for such a purpose. Since Java 1.8, all the fields declared
in an interface are implicitly static and final, so there is less chance you'll forget to declare a
value to be final. We will talk about interfaces shortly.

When an object is declared a static final class property, it does not mean all its properties
become final automatically. It only protects the property from assigning another object of
the same type. We will discuss the complicated procedure of concurrent access of an object
property in Chapter 8, Multithreading and Concurrent Processing. Nevertheless,
programmers often use static final objects to store the values that are read-only just by the
way they are used in the application. A typical example would be an application
configuration information. Once created after reading from a disk, it is not changed, even if
it could be. Also, caching of data is obtained from an external resource.

Again, before using such a class property for this purpose, consider using an interface that
provides more default behavior that supports a read-only functionality.

Similar to static properties, static methods can be invoked without creating an instance of
the class. Consider, for example, the following class:

class SomeClass{
 public static String someMethod() {
 return "abc";
 }
}

We can call the preceding method by using just a class name:

System.out.println(SomeClass.someMethod()); //prints: abc

Java Object-Oriented Programming (OOP) Chapter 2

[92]

Interface
In the Abstraction/Interface section, we talked about an interface in general terms. In this
section, we are going to describe a Java language construct that expresses it.

An interface presents what can be expected of an object. It hides the implementation and
exposes only method signatures with return values. For example, here is an interface that
declares two abstract methods:

interface SomeInterface {
 void method1();
 String method2(int i);
}

And here is a class that implements it:

class SomeClass implements SomeInterface{
 public void method1(){
 //method body
 }
 public String method2(int i) {
 //method body
 return "abc";
 }
}

An interface cannot be instantiated. An object of an interface type can be created only by
creating an object of a class that implements this interface:

SomeInterface si = new SomeClass();

If not all of the abstract methods of the interface have been implemented, the class must be
declared abstract and cannot be instantiated. See the Interface versus abstract class section.

An interface does not describe how the object of the class can be created. To discover that,
you must look at the class and see what constructors it has. An interface also does not
describe the static class methods. So, an interface is the public face of a class instance
(object) only.

With Java 8, interface acquired an ability to have not just abstract methods (without a
body), but really implemented ones. According to The Java Language Specification, "The
body of an interface may declare members of the interface, that is, fields, methods, classes, and
interfaces." Such a broad statement brings up the question, what is the difference between
an interface and a class? One principal difference we have pointed out already is this: an
interface cannot be instantiated; only a class can be instantiated.

Java Object-Oriented Programming (OOP) Chapter 2

[93]

Another difference is that a non-static method implemented inside an interface is
declared default or private. By contrast, a default declaration is not available for the
class methods.

Also, fields in an interface are implicitly public, static, and final. By contrast,
class properties and methods are not static or final by default. The implicit (default) access
modifier of a class itself, its fields, methods, and constructors is package-private, which
means it is visible only within its own package.

Default methods
To get an idea about the function of default methods in an interface, let's look at an example
of an interface and a class that implements it, as follows:

interface SomeInterface {
 void method1();
 String method2(int i);
 default int method3(){
 return 42;
 }
}

class SomeClass implements SomeInterface{
 public void method1(){
 //method body
 }
 public String method2(int i) {
 //method body
 return "abc";
 }
}

We can now create an object of SomeClass class and make the following call:

SomeClass sc = new SomeClass();
sc.method1();
sc.method2(22); //returns: "abc"
sc.method3(); //returns: 42

As you can see, method3() is not implemented in the SomeClass class, but it looks as if
the class has it. That is one way to add a new method to an existing class without changing
it—by adding the default method to the interface the class implements.

Java Object-Oriented Programming (OOP) Chapter 2

[94]

Let's now add method3() implementation to the class too, as follows:

class SomeClass implements SomeInterface{
 public void method1(){
 //method body
 }
 public String method2(int i) {
 //method body
 return "abc";
 }
 public int method3(){
 return 15;
 }
}

Now the interface implementation of method3() will be ignored:

SomeClass sc = new SomeClass();
sc.method1();
sc.method2(22); //returns: "abc"
sc.method3(); //returns: 15

The purpose of the default method in an interface is to provide a new
method to the classes (that implement this interface) without changing
them. But the interface implementation is ignored as soon as a class
implements the new method too.

Private methods
If there are several default methods in an interface, it is possible to create private methods
accessible only by the default methods of the interface. They can be used to contain
common functionality, instead of repeating it in every default method:

interface SomeInterface {
 void method1();
 String method2(int i);
 default int method3(){
 return getNumber();
 }
 default int method4(){
 return getNumber() + 22;
 }
 private int getNumber(){
 return 42;
 }
}

Java Object-Oriented Programming (OOP) Chapter 2

[95]

This concept of private methods is not different to private methods in classes (see
the Packages, importing, and access section). The private methods cannot be accessed from
outside the interface.

Static fields and methods
Since Java 8, all the fields declared in an interface are implicitly public, static, and final
constants. That is why an interface is a preferred location for the constants. You do not need
to add public static final to their declarations.

As for the static methods, they function in an interface in the same way as in a class:

interface SomeInterface{
 static String someMethod() {
 return "abc";
 }
}

Note, there is no need to mark the interface method as public. All non-private interface
methods are public by default.

We can call the preceding method by using just an interface name:

System.out.println(SomeInetrface.someMethod()); //prints: abc

Interface versus abstract class
We have mentioned already that a class can be declared abstract. It may be a regular
class that we do not want to be instantiated, or it may be a class that contains (or inherits)
abstract methods. In the latter case, we must declare such a class as abstract to avoid a
compilation error.

In many respects, an abstract class is very similar to an interface. It forces every child class
that extends it to implement the abstract methods. Otherwise, the child cannot be
instantiated and has to be declared abstract itself.

However, a few principal differences between an interface and abstract class make each of
them useful in different situations:

An abstract class can have a constructor, while an interface cannot.
An abstract class can have a state, while an interface cannot.

Java Object-Oriented Programming (OOP) Chapter 2

[96]

The fields of an abstract class can be public, private or protected, static or
not, final or not, while, in an interface, fields are always public, static, and
final.
The methods in an abstract class can be public, private, or protected, while
the interface methods can be public, or private only.
If the class you would like to amend extends another class already, you cannot
use an abstract class, but you can implement an interface because a class can
extend only one other class, but can implement multiple interfaces

See an example of an abstract usage in the Polymorphism in action section.

Overloading, overriding, and hiding
We have already mentioned overriding in the Inheritance and Abstraction/Interface sections.
It is a replacing of a non-static method implemented in a parent class with the method of
the same signatures in the child class. A default method of an interface also can be
overridden in the interface that extends it.

Hiding is similar to overriding but applies only to static methods and static, as well as
properties of the instance .

Overloading is creating several methods with the same name and different parameters
(thus, different signatures) in the same class or interface.

In this section, we will discuss all these concepts and demonstrate how they work for
classes and interfaces.

Overloading
It is not possible to have two methods in the same interface or a class with the same
signature. To have a different signature, the new method has to have either a new name or
a different list of parameter types (and the sequence of the type does matter). Having two
methods with the same name but a different list of parameter types constitutes overloading.
Here are a few examples of a legitimate method of overloading in an interface:

interface A {
 int m(String s);
 int m(String s, double d);
 default int m(String s, int i) { return 1; }
 static int m(String s, int i, double d) { return 1; }
}

Java Object-Oriented Programming (OOP) Chapter 2

[97]

Note that no two of the preceding methods have the same signature, including the default
and static methods. Otherwise, a compiler's error would be generated. Neither designation
as default, nor static, plays any role in the overloading. A return type does not affect the
overloading either. We use int as a return type everywhere just to make the examples less
cluttered.

Method overloading is done similarly in a class:

 class C {
 int m(String s){ return 42; }
 int m(String s, double d){ return 42; }
 static int m(String s, double d, int i) { return 1; }
 }

And, it does not matter where the methods with the same name are declared. The following
method overloading is not different to the previous example, as follows:

interface A {
 int m(String s);
 int m(String s, double d);
}
interface B extends A {
 default int m(String s, int i) { return 1; }
 static int m(String s, int i, double d) { return 1; }
}
class C {
 int m(String s){ return 42; }
}
class D extends C {
 int m(String s, double d){ return 42; }
 static int m(String s, double d, int i) { return 1; }
}

A private non-static method can be overloaded only by a non-static method of the same
class.

Overloading happens when methods have the same name but a different
list of parameter types and belong to the same interface (or class) or to
different interfaces (or classes), one of which is an ancestor to another. A
private method can be overloaded only by a method in the same class.

Java Object-Oriented Programming (OOP) Chapter 2

[98]

Overriding
In contrast to overloading, which happens with the static and non-static methods, method
overriding happens only with non-static methods and only when they have exactly the same
signature and belong to different interfaces (or classes), one of which is an ancestor to another.

The overriding method resides in the child interface (or class), while the
overridden method has the same signature and belongs to one of the
ancestor interfaces (or classes). A private method cannot be overridden.

The following are examples of a method overriding in an interface:

interface A {
 default void method(){
 System.out.println("interface A");
 }
}
interface B extends A{
 @Override
 default void method(){
 System.out.println("interface B");
 }
}
class C implements B { }

If we call the method() using the C class instance, the result will be as follows:

C c = new C();
c.method(); //prints: interface B

Please notice the usage of the annotation @Override. It tells the compiler that the
programmer thinks that the annotated method overrides a method of one of the ancestor
interfaces. This way, the compiler can make sure that the overriding does happen and
generates an error if not. For example, a programmer may misspell the name of the method
as follows:

interface B extends A{
 @Override
 default void metod(){
 System.out.println("interface B");
 }
}

Java Object-Oriented Programming (OOP) Chapter 2

[99]

If that happens, the compiler generates an error because there is no method metod() to
override. Without the annotation @Overrride, this mistake may go unnoticed by the
programmer and the result would be quite different:

C c = new C();
c.method(); //prints: interface A

The same rules of overriding apply to the class instance methods. In the following example,
the C2 class overrides a method of the C1 class:

class C1{
 public void method(){
 System.out.println("class C1");
 }
}
class C2 extends C1{
 @Override
 public void method(){
 System.out.println("class C2");
 }
}

The result is as follows:

C2 c2 = new C2();
c2.method(); //prints: class C2

And, it does not matter how many ancestors are between the class or interface with the
overridden method and the class or interface with the overriding method:

class C1{
 public void method(){
 System.out.println("class C1");
 }
}
class C3 extends C1{
 public void someOtherMethod(){
 System.out.println("class C3");
 }
}
class C2 extends C3{
 @Override
 public void method(){
 System.out.println("class C2");
 }
}

The result of the preceding method's overriding will still be the same.

Java Object-Oriented Programming (OOP) Chapter 2

[100]

Hiding
Hiding is considered by many to be a complicated topic, but it should not be, and we will
try to make it look simple.

The name hiding came from the behavior of static properties and methods of classes and
interfaces. Each static property or method exists as a single copy in the JVM's memory
because they are associated with the interface or class, not with an object. And interface or
class exists as a single copy. That is why we cannot say that the child's static property or
method overrides the parent's static property or method with the same name. All static
properties and methods are loaded into the memory only once when the class or interface is
loaded and stay there, not copied anywhere. Let's look at the example.

Let's create two interfaces that have a parent-child relationship and static fields and
methods with the same name:

interface A {
 String NAME = "interface A";
 static void method() {
 System.out.println("interface A");
 }
}
interface B extends A {
 String NAME = "interface B";
 static void method() {
 System.out.println("interface B");
 }
}

Please note the capital case for an identifier of an interface field. That is the convention
often used to denote a constant, whether it is declared in an interface or in a class. Just to
remind you, a constant in Java is a variable that, once initialized, cannot be re-assigned
another value. An interface field is a constant by default because any field in an interface is
final (see the Final properties, methods, and classes section).

If we print NAME from the B interface and execute its method(), we get the following result:

System.out.println(B.NAME); //prints: interface B
B.method(); //prints: interface B

It looks very much like overriding, but, in fact, it is just that we call a particular property or
a method associated with this particular interface.

Java Object-Oriented Programming (OOP) Chapter 2

[101]

Similarly, consider the following classes:

public class C {
 public static String NAME = "class C";
 public static void method(){
 System.out.println("class C");
 }
 public String name1 = "class C";
}
public class D extends C {
 public static String NAME = "class D";
 public static void method(){
 System.out.println("class D");
 }
 public String name1 = "class D";
}

If we try to access the static members of D class using the class itself, we will get what we
asked for:

System.out.println(D.NAME); //prints: class D
D.method(); //prints: class D

The confusion appears only when a property or a static method is accessed using an object:

C obj = new D();

System.out.println(obj.NAME); //prints: class C
System.out.println(((D) obj).NAME); //prints: class D

obj.method(); //prints: class C
((D)obj).method(); //prints: class D

System.out.println(obj.name1); //prints: class C
System.out.println(((D) obj).name1); //prints: class D

The obj variable refers to the object of the D class, and the casting proves it, as you can see
in the preceding example. But, even if we use an object, trying to access a static property or
method brings us the members of the class that was used as the declared variable type. As
for the instance property in the last two lines of the example, the properties in Java do not
conform to polymorphic behavior and we get the name1 property of the parent C
class, instead of the expected property of the child D class.

Java Object-Oriented Programming (OOP) Chapter 2

[102]

To avoid confusion with static members of a class, always access them
using the class, not an object. To avoid confusion with instance properties,
always declare them private and access via methods.

To illustrate the last tip, consider the following classes:

class X {
 private String name = "class X";
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
}
class Y extends X {
 private String name = "class Y";
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
}

If we run the same test for the instance properties as we did for classes C and D, the result
will be this:

X x = new Y();
System.out.println(x.getName()); //prints: class Y
System.out.println(((Y)x).getName()); //prints: class Y

Now we access instance properties using methods, which are subjects for an overriding
effect and do not have unexpected results anymore.

To close the discussion of hiding in Java, we would like to mention another type of hiding,
namely, when a local variable hides the instance or static property with the same name.
Here is a class that does it:

public class HidingProperty {
 private static String name1 = "static property";
 private String name2 = "instance property";

 public void method() {
 var name1 = "local variable";
 System.out.println(name1); //prints: local variable

Java Object-Oriented Programming (OOP) Chapter 2

[103]

 var name2 = "local variable"; //prints: local variable
 System.out.println(name2);

 System.out.println(HidingProperty.name1); //prints: static property
 System.out.println(this.name2); //prints: instance property
 }
}

As you can see, the local variable name1 hides the static property with the same name,
while the local variable name2 hides the instance property. It is possible still to access the
static property using the class name (see HidingProperty.name1). Please note that,
despite being declared private, it is accessible from inside the class.

The instance property can always be accessed by using the this keyword that means
current object.

Final variable, method, and classes
We have mentioned a final property several times in relation to the notion of a constant in
Java. But that is only one case of using the final keyword. It can be applied to any variable
in general. Also, a similar constraint can be applied to a method and even a class too, thus
preventing the method from being overridden and the class being extended.

Final variable
The final keyword placed in front of a variable declaration makes this variable immutable
after the initialization. For example:

final String s = "abc";

The initialization can even be delayed:

final String s;
s = "abc";

In the case of an object property, this delay can last only until the object is created. This
means that the property can be initialized in the constructor. For example:

private static class A {
 private final String s1 = "abc";
 private final String s2;
 private final String s3; //error
 private final int x; //error

Java Object-Oriented Programming (OOP) Chapter 2

[104]

 public A() {
 this.s1 = "xyz"; //error
 this.s2 = "xyz";
 }
}

Notice that, even during the object construction, it is not possible to initialize the property
twice—during declaration and in the constructor. It is also interesting to note that a final
property has to be initialized explicitly. As you can see from the preceding example, the
compiler does not allow the initialization of the final property to a default value.

It is also possible to initialize a final property in an initialization block:

class B {
 private final String s1 = "abc";
 private final String s2;
 {
 s1 = "xyz"; //error
 s2 = "abc";
 }
}

In the case of a static property, it is not possible to initialize it in a constructor, so it has to be
initialized either during its declaration or in a static initialization block:

class C {
 private final static String s1 = "abc";
 private final static String s2;
 static {
 s1 = "xyz"; //error
 s2 = "abc";
 }
}

In an interface, all fields are always final, even if they are not declared as such. Since neither
constructor nor initialization block is not allowed in an interface, the only way to initialize
an interface field is during declaration. Failing to do it results in a compilation error:

interface I {
 String s1; //error
 String s2 = "abc";
}

Java Object-Oriented Programming (OOP) Chapter 2

[105]

Final method
A method declared final cannot be overridden in a child class or hidden in the case of a
static method. For example, the java.lang.Object class, which is the ancestor of all
classes in Java, has some of its methods declared final:

public final Class getClass()
public final void notify()
public final void notifyAll()
public final void wait() throws InterruptedException
public final void wait(long timeout) throws InterruptedException
public final void wait(long timeout, int nanos)
 throws InterruptedException

All private methods and uninherited methods of a final class are effectively final because
you cannot override them.

Final class
A final class cannot be extended. It cannot have children, which makes all the methods of
the class effectively final too. This feature is used for security or when a programmer
would like to make sure the class functionality cannot be overridden, overloaded, or
hidden because of some other design considerations.

Polymorphism in action
Polymorphism is the most powerful and useful feature of OOP. It uses all other OOP
concepts and features we have presented so far. It is the highest conceptual point on the
way to mastering Java programming. After it, the rest of the book will be mostly about Java
language syntax and JVM functionality.

As we have stated in the OOP concepts section, polymorphism is the ability of an object to
behave as an object of different classes or as an implementation of different interfaces. If
you search the word polymorphism on the Internet, you will find that it is "the condition of
occurring in several different forms." Metamorphosis is "a change of the form or nature of a thing
or person into a completely different one, by natural or supernatural means." So, Java
polymorphism is the ability of an object to behave as if going through a metamorphosis
and to exhibit completely different behaviors under different conditions.

Java Object-Oriented Programming (OOP) Chapter 2

[106]

We will present this concept in a practical hands-on way, using an object factory—a
specific programming implementation of a factory, which is a method that returns objects of a
varying prototype or class. See https:/ /en. wikipedia. org/wiki/ Factory_ (object-
oriented_programming).

Object factory
The idea behind the object factory is to create a method that returns a new object of a
certain type under certain conditions. For example, look at the CalcUsingAlg1
and CalcUsingAlg2 classes:

interface CalcSomething{ double calculate(); }
class CalcUsingAlg1 implements CalcSomething{
 public double calculate(){ return 42.1; }
}
class CalcUsingAlg2 implements CalcSomething{
 private int prop1;
 private double prop2;
 public CalcUsingAlg2(int prop1, double prop2) {
 this.prop1 = prop1;
 this.prop2 = prop2;
 }
 public double calculate(){ return prop1 * prop2; }
}

As you can see, they both implement the same interface, CalcSomething, but use different
algorithms. Now, let's say that we decided that the selection of the algorithm used will be
done in a property file. Then we can create the following object factory:

class CalcFactory{
 public static CalcSomething getCalculator(){
 String alg = getAlgValueFromPropertyFile();
 switch(alg){
 case "1":
 return new CalcUsingAlg1();
 case "2":
 int p1 = getAlg2Prop1FromPropertyFile();
 double p2 = getAlg2Prop2FromPropertyFile();
 return new CalcUsingAlg2(p1, p2);
 default:
 System.out.println("Unknown value " + alg);
 return new CalcUsingAlg1();
 }
 }
}

https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)

Java Object-Oriented Programming (OOP) Chapter 2

[107]

The factory selects which algorithm to use based on the value returned by
the getAlgValueFromPropertyFile() method. In the case of the second algorithm, it
also uses the getAlg2Prop1FromPropertyFile()
methods and getAlg2Prop2FromPropertyFile() to get the input parameters for the
algorithm. But this complexity is hidden from a client:

CalcSomething calc = CalcFactory.getCalculator();
double result = calc.calculate();

We can add new algorithm variations, change the source for the algorithm parameters or
the process of the algorithm selection, but the client will not need to change the code. And
that is the power of polymorphism.

Alternatively, we could use inheritance to implement polymorphic behavior. Consider the
following classes:

class CalcSomething{
 public double calculate(){ return 42.1; }
}
class CalcUsingAlg2 extends CalcSomething{
 private int prop1;
 private double prop2;
 public CalcUsingAlg2(int prop1, double prop2) {
 this.prop1 = prop1;
 this.prop2 = prop2;
 }
 public double calculate(){ return prop1 * prop2; }
}

Then our factory may look as follows:

class CalcFactory{
 public static CalcSomething getCalculator(){
 String alg = getAlgValueFromPropertyFile();
 switch(alg){
 case "1":
 return new CalcSomething();
 case "2":
 int p1 = getAlg2Prop1FromPropertyFile();
 double p2 = getAlg2Prop2FromPropertyFile();
 return new CalcUsingAlg2(p1, p2);
 default:
 System.out.println("Unknown value " + alg);
 return new CalcSomething();
 }
 }
}

Java Object-Oriented Programming (OOP) Chapter 2

[108]

But the client code does not change:

CalcSomething calc = CalcFactory.getCalculator();
double result = calc.calculate();

Given a choice, an experienced programmer uses a common interface for the
implementation. It allows for a more flexible design, as a class in Java can implement
multiple interfaces, but can extend (inherit from) one class.

Operator instanceof
Unfortunately, life is not always that easy and, once in a while, a programmer has to deal
with a code that is assembled from unrelated classes, coming even from different
frameworks. In such a case, using polymorphism may be not an option. Still, you can hide
the complexity of an algorithm selection and even simulate polymorphic behavior using
the instanceof operator, which returns true when the object is an instance of a certain
class.

Let's assume we have two unrelated classes:

class CalcUsingAlg1 {
 public double calculate(CalcInput1 input){
 return 42. * input.getProp1();
 }
}

class CalcUsingAlg2{
 public double calculate(CalcInput2 input){
 return input.getProp2() * input.getProp1();
 }
}

Each of the classes expects as an input an object of a certain type:

class CalcInput1{
 private int prop1;
 public CalcInput1(int prop1) { this.prop1 = prop1; }
 public int getProp1() { return prop1; }
}

class CalcInput2{
 private int prop1;
 private double prop2;
 public CalcInput2(int prop1, double prop2) {
 this.prop1 = prop1;

Java Object-Oriented Programming (OOP) Chapter 2

[109]

 this.prop2 = prop2;
 }
 public int getProp1() { return prop1; }
 public double getProp2() { return prop2; }
}

And let's assume that the method we implement receives such an object:

void calculate(Object input) {
 double result = Calculator.calculate(input);
 //other code follows
}

We still use polymorphism here because we describe our input as the Object type. We can
do it because the Object class is the base class for all Java classes.

Now let's look at how the Calculator class is implemented:

class Calculator{
 public static double calculate(Object input){
 if(input instanceof CalcInput1){
 return new CalcUsingAlg1().calculate((CalcInput1)input);
 } else if (input instanceof CalcInput2){
 return new CalcUsingAlg2().calculate((CalcInput2)input);
 } else {
 throw new RuntimeException("Unknown input type " +
 input.getClass().getCanonicalName());
 }
 }
}

As you can see, it uses the instanceof operator for selecting the appropriate algorithm. By
using the Object class as an input type, the Calculator class takes advantage of
polymorphism too, but most of its implementation has nothing to do with it. Yet, from
outside, it looks polymorphic and it is, but only to a degree.

Java Object-Oriented Programming (OOP) Chapter 2

[110]

Summary
This chapter introduced readers to the concepts of OOP and how they are implemented in
Java. It provided an explanation of each concept and demonstrated how to use it in specific
code examples. The Java language constructs of class and interface were discussed in
detail. The reader also has learned what overloading, overriding, and hiding are and how
to use the final keyword to protect methods from being overridden.

From the Polymorphism in action section, the reader learned about the powerful Java feature
of polymorphism. This section brought all the presented material together and showed how
polymorphism stays in the center of OOP.

In the next chapter, the reader will become familiar with Java language syntax, including
packages, importing, access modifiers, reserved and restricted keywords, and some aspects
of Java reference types. The reader will also learn how to use the this and
super keywords, what widening and narrowing conversions of primitive types are, boxing
and unboxing, primitive and reference types assignment, and how the equals() method
of a reference type works.

Quiz
Select all the correct OOP concepts from the following list:1.

Encapsulationa.
Isolationb.
Polynationc.
Inheritanced.

Select all the correct statements from the following list:2.

A Java object has statusa.
A Java object has behaviorb.
A Java object has statec.
A Java object has methodsd.

Java Object-Oriented Programming (OOP) Chapter 2

[111]

Select all the correct statements from the following list:3.

A Java object behavior can be inheriteda.
A Java object behavior can be overriddenb.
A Java object behavior can be overloadedc.
A Java object behavior can be overwhelmedd.

Select all the correct statements from the following list:4.

Java objects of different classes can have the same behaviora.
Java objects of different classes share a parent object stateb.
Java objects of different classes have as a parent an object of the samec.
class
Java objects of different classes can share behaviord.

Select all the correct statements from the following list:5.

The method signature includes the return typea.
The method signature is different if the return type is differentb.
The method signature changes if two parameters of the same typec.
switch position
The method signature changes if two parameters of different typesd.
switch position

Select all the correct statements from the following list:6.

Encapsulation hides the class namea.
Encapsulation hides behaviorb.
Encapsulation allows access to data only via methodsc.
Encapsulation does not allow direct access to the stated.

Select all the correct statements from the following list:7.

The class is declared in the .java filea.
The class bytecode is stored in the .class fileb.
The parent class is stored in the .base filec.
The child class is stored in the .sub filed.

Java Object-Oriented Programming (OOP) Chapter 2

[112]

Select all the correct statements from the following list:8.

A method defines an object statea.
A method defines an object behaviorb.
A method without parameters is marked as voidc.
A method can have many return statementsd.

Select all the correct statements from the following list:9.

Varargs is declared as a var typea.
Varargs stands for various argumentsb.
Varargs is a String arrayc.
Varargs can act as an array of the specified typed.

Select all the correct statements from the following list:10.

A constructor is a method that creates a statea.
The primary responsibility of a constructor is to initialize a stateb.
JVM always provides a default constructorc.
The parent class constructor can be called using the parent keywordd.

Select all the correct statements from the following list:11.

The new operator allocates memory to an objecta.
The new operator assigns default values to the object propertiesb.
The new operator creates a parent object firstc.
The new operator creates a child object firstd.

Select all the correct statements from the following list:12.

A class Object belongs to the java.base packagea.
A class Object belongs to the java.lang packageb.
A class Object belongs to a package of the Java Class Libraryc.
A class Object is imported automaticallyd.

Java Object-Oriented Programming (OOP) Chapter 2

[113]

Select all the correct statements from the following list:13.

An instance method is invoked using an objecta.
A static method is invoked using a classb.
An instance method is invoked using a classc.
A static method is invoked using an objectd.

Select all the correct statements from the following list:14.

Methods in an interface are implicitly public, static, and finala.
An interface can have methods that can be invoked without beingb.
implemented in a class
An interface can have fields that can be used without any classc.
An interface can be instantiatedd.

Select all the correct statements from the following list:15.

The default method of an interface is always invoked by defaulta.
The private method of an interface can be invoked only by the defaultb.
method
The interface static method can be invoked without beingc.
implemented in a class
The default method can enhance a class that implements the interfaced.

Select all the correct statements from the following list:16.

An Abstract class can have a default methoda.
An Abstract class can be declared without an abstract methodb.
Any class can be declared abstractc.
An interface is an abstract class without a constructord.

Select all the correct statements from the following list:17.

Overloading can be done only in an interfacea.
Overloading can be done only when one class extends anotherb.
Overloading can be done in any classc.
The overloaded method must have the same signatured.

Java Object-Oriented Programming (OOP) Chapter 2

[114]

Select all the correct statements from the following list:18.

Overriding can be done only in a child classa.
Overriding can be done in an interfaceb.
The overridden method must have the same namec.
No method of an Object class can be overriddend.

Select all the correct statements from the following list:19.

Any method can be hiddena.
A variable can hide a propertyb.
A static method can be hiddenc.
A public instance property can be hiddend.

Select all the correct statements from the following list:20.

Any variable can be declared finala.
A public method cannot be declared finalb.
A protected method can be declared finalc.
A class can be declared protectedd.

Select all the correct statements from the following list:21.

Polymorphic behavior can be based on inheritancea.
Polymorphic behavior can be based on overloadingb.
Polymorphic behavior can be based on overridingc.
Polymorphic behavior can be based on an interfaced.

3
Java Fundamentals

This chapter presents to the reader a more detailed view of Java as a language. It starts with
the code organization in packages and the description of accessibility levels of classes
(interfaces) and their methods and properties (fields). The reference types, as the main
types of a Java object—oriented nature, are also presented in detail , followed by a list of
reserved and restricted keywords and a discussion of their usage. The chapter ends with
the methods of conversion between primitive types and from a primitive type to the
corresponding reference type and back.

These are the Java language fundamental terms and features. The importance of their
understanding cannot be overstated. Without them, you cannot write any Java program.
So, try not to rush through this chapter and make sure you understand everything
presented.

The following topics will be covered in this chapter:

Packages, importing, and access
Java reference types
Reserved and restricted keywords
The usage of this and super keywords
Converting between primitive types
Converting between primitive and reference types

Packages, importing, and access
As you already know, the package name reflects the directory structure, starting with the
project directory that contains the .java files. The name of each .java file has to be the
same as the name of the top—level class declared in it (this class can contain other classes).
The first line of the .java file is the package statement that starts with the package
keyword, followed by the actual package name – the directory path to this file in which
slashes are replaced with dots.

Java Fundamentals Chapter 3

[116]

A package name and the class name together compose a fully qualified class name. It
uniquely identifies the class, but tends to be too long and inconvenient to use. That is
when importing comes to the rescue, by allowing specification of the fully qualified name
only once, and then referring to the class only by the class name.

Invoking a method of a class from the method of another class is possible only if the caller
has access to that class and its methods. The access modifiers public, protected,
and private define the level of accessibility and allow (or disallow) some methods,
properties, or even the class itself to be visible to other classes.

All these aspects will be discussed in detail in the current section.

Packages
Let's look at the class we called Packages:

package com.packt.learnjava.ch03_fundamentals;
import com.packt.learnjava.ch02_oop.hiding.C;
import com.packt.learnjava.ch02_oop.hiding.D;
public class Packages {
 public void method(){
 C c = new C();
 D d = new D();
 }
}

The first line in the Packages class is a package declaration that identifies the class location
on the source tree or, in other words, the .java file location in a filesystem. When the class
is compiled and its .class file with bytecode is generated, the package name also reflects
the .class file location in the filesystem.

Importing
After the package declaration, the import statements follow. As you can see from the
previous example, they allow use of of the fully qualified class (or interface) name to be
avoided anywhere else in the current class. When many classes (and interfaces) from the
same package are imported, it is possible to import all classes and interfaces from the same
package as a group, using the symbol *. In our example, it would look as follows:

import com.packt.learnjava.ch02_oop.hiding.*;

Java Fundamentals Chapter 3

[117]

But that is not recommended practice, as it hides away the imported class (and interface)
location when several packages are imported as a group. For example, look at this code
snippet:

package com.packt.learnjava.ch03_fundamentals;
import com.packt.learnjava.ch02_oop.*;
import com.packt.learnjava.ch02_oop.hiding.*;
public class Packages {
 public void method(){
 C c = new C();
 D d = new D();
 }
}

In the preceding code, can you guess to which package a class C or class D belongs? Also, it
is possible that two classes in different packages have the same name. If that is the case,
group importing can create a degree confusion or even a problem difficult to nail down.

It is also possible to import individual static class (or interface) members. For example,
if SomeInterface has a NAME property (to remind you, interface properties are public and
static by default), you can typically refer to it as follows:

package com.packt.learnjava.ch03_fundamentals;
import com.packt.learnjava.ch02_oop.SomeInterface;
public class Packages {
 public void method(){
 System.out.println(SomeInterface.NAME);
 }
}

To avoid using even the interface name, you can use a static import:

package com.packt.learnjava.ch03_fundamentals;
import static com.packt.learnjava.ch02_oop.SomeInterface.NAME;
public class Packages {
 public void method(){
 System.out.println(NAME);
 }
}

Similarly, if SomeClass has a public static property, someProperty, and a public static
method, someMethod(), it is possible to import them statically too:

package com.packt.learnjava.ch03_fundamentals;
import com.packt.learnjava.ch02_oop.StaticMembers.SomeClass;
import com.packt.learnjava.ch02_oop.hiding.C;
import com.packt.learnjava.ch02_oop.hiding.D;

Java Fundamentals Chapter 3

[118]

import static com.packt.learnjava.ch02_oop.StaticMembers
 .SomeClass.someMethod;
import static com.packt.learnjava.ch02_oop.StaticMembers
 .SomeClass.SOME_PROPERTY;
public class Packages {
 public static void main(String... args){
 C c = new C();
 D d = new D();

 SomeClass obj = new SomeClass();
 someMethod(42);
 System.out.println(SOME_PROPERTY); //prints: abc
 }
}

But this technique should be used wisely since it may create an impression that a statically
imported method or property belongs to the current class.

Access modifiers
We have already used in our examples the three access modifiers– public, protected,
and private–which regulate access to the classes, interfaces, and their members from
outside–from other classes or interfaces. There is also a fourth implicit one (also called
default modifier package-private) that is applied when none of the three explicit access
modifiers is specified.

The effect of their usage is pretty straightforward:

public: Accessible to other classes and interfaces of the current and other
packages
protected: Accessible only to other members of the same package and children
of the class
No access modifier means accessible only to other members of the same package
private: Accessible only to members of the same class

From inside the class or an interface, all the class or interface members are always
accessible. Besides, as we have stated several times already, all interface members are
public by default, unless declared as private.

Also, please note that class accessibility supersedes the class members' accessibility because,
if the class itself is not accessible from somewhere, no change in the accessibility of its
methods or properties can make them accessible.

Java Fundamentals Chapter 3

[119]

When people talk about access modifiers for classes and interfaces, they mean the classes
and interfaces that are declared inside other classes or interfaces. The encompassing class or
interface is called a top-level class or interface, while those inside them are called inner
classes or interfaces. The static inner classes are also called static nested classes.

It does not make sense to declare a top-level class or interface private because it will not
be accessible from anywhere. And the Java authors decided against allowing the top-level
class or interface to be declared protected too. It is possible, though, to have a class
without an explicit access modifier, thus making it accessible only to the members of the
same package.

Here is an example:

public class AccessModifiers {
 String prop1;
 private String prop2;
 protected String prop3;
 public String prop4;
 void method1(){ }
 private void method2(){ }
 protected void method3(){ }
 public void method4(){ }

 class A1{ }
 private class A2{ }
 protected class A3{ }
 public class A4{ }

 interface I1 {}
 private interface I2 {}
 protected interface I3 {}
 public interface I4 {}
}

Please note that static nested classes do not have access to other members of the top-level
class.

Another particular feature of an inner class is that it has access to all, even private members,
of the top-level class, and vice versa. To demonstrate this feature, let's create the following
private properties and methods in the top-level class and in a private inner class:

public class AccessModifiers {
 private String topLevelPrivateProperty = "Top-level private value";
 private void topLevelPrivateMethod(){
 var inner = new InnerClass();
 System.out.println(inner.innerPrivateProperty);

Java Fundamentals Chapter 3

[120]

 inner.innerPrivateMethod();
 }

 private class InnerClass {
 //private static String PROP = "Inner static"; //error
 private String innerPrivateProperty = "Inner private value";
 private void innerPrivateMethod(){
 System.out.println(topLevelPrivateProperty);
 }
 }

 private static class InnerStaticClass {
 private static String PROP = "Inner private static";
 private String innerPrivateProperty = "Inner private value";
 private void innerPrivateMethod(){
 var top = new AccessModifiers();
 System.out.println(top.topLevelPrivateProperty);
 }
 }
}

As you can see, all the methods and properties in the previous classes are private, which
means that normally, they are not accessible from outside the class. And that is true for the
AccessModifiers class: its private methods and properties are not accessible for other
classes that are declared outside of it. But the InnerClass class can access the private
members of the top-level class, while the top-level class can access the private members of
its inner classes. The only limitation is that a non-static inner class cannot have static
members. By contrast, a static nested class can have both static and non-static members,
which makes a static nested class much more usable.

To demonstrate all the possibilities described, we add the following main() method to
the AccessModifiers class:

public static void main(String... args){
 var top = new AccessModifiers();
 top.topLevelPrivateMethod();
 //var inner = new InnerClass(); //error
 System.out.println(InnerStaticClass.PROP);
 var inner = new InnerStaticClass();
 System.out.println(inner.innerPrivateProperty);
 inner.innerPrivateMethod();
}

Naturally, a non-static inner class cannot be accessed from a static context of the top-level
class, hence the comment in the preceding code. If we run it, the result will be as follows:

Java Fundamentals Chapter 3

[121]

The first two lines of the output come from the topLevelPrivateMethod(), the rest from
the main() method. As you can see, an inner and a top-level class can access each other's
private state, inaccessible from outside.

Java reference types
A new operator creates an object of a class and returns the reference to the memory where
the object resides. From a practical standpoint, the variable that holds this reference is
treated in the code as if it is the object itself. Such a variable can be a class, an interface, an
array, or a null literal that indicates that no memory reference is assigned to the variable. If
the type of the reference is an interface, it can be assigned either null or a reference to the
object of the class that implements this interface because the interface itself cannot be
instantiated.

JVM watches for all the created objects and checks whether there are references to each of
them in the currently executed code. If there is an object without any reference to it, JVM
removes it from the memory in the process called garbage collection. We will describe this
process in Chapter 9, JVM Structure and Garbage Collection. For example, an object was
created during a method execution and was referred to by the local variable. This reference
will disappear as soon as the method finishes its execution.

You have seen the examples of custom classes and interfaces, and we have talked about the
String class already (see Chapter 1, Getting Started with Java 12). In this section, we will
also describe two other Java reference types–array and enum–and demonstrate how to use
them.

Class and interface
A variable of a class type is declared using the corresponding class name:

<Class name> identifier;

Java Fundamentals Chapter 3

[122]

The value that can be assigned to such a variable can be one of the following:

A reference type null literal (means the variable can be used but does not refer
to any object)
A reference to an object of the same class or any of its descendants
(because a descendant inherits the types of all of its ancestors)

This last type of assignment is called a widening assignment because it forces a specialized
reference to become less specialized. For example, since every Java class is a subclass of
java.lang.Object, the following assignment can be done for any class:

Object obj = new AnyClassName();

Such an assignment is also called an upcasting because it moves the type of the variable up
on the line of inheritance (which, like any family tree, is usually presented with the oldest
ancestor at the top).

After such an upcasting, it is possible to make a narrowing assignment using a cast
operator (type):

AnyClassName anyClassName = (AnyClassName)obj;

Such an assignment is also called a downcasting and allows you to restore the descendant
type. To apply this operation, you have to be sure that the identifier in fact refers to a
descendant type. If in doubt, you can use the instanceof operator (see Chapter 2, Java
Object-Oriented Programming) to check the reference type.

Similarly, if a class implements a certain interface, its object reference can be assigned to
this interface or any ancestor of the interface:

interface C {}
interface B extends C {}
class A implements B { }
B b = new A();
C c = new A();
A a1 = (A)b;
A a2 = (A)c;

As you can see, as in the case with class reference upcasting and downcasting, it is possible
to recover the original type of the object after its reference was assigned to a variable of one
of the implemented interfaces types.

The material of this section can also be viewed as another demonstration of Java
polymorphism in action.

Java Fundamentals Chapter 3

[123]

Array
An array is a reference type and, as such, extends the java.lang.Object class too. The
array elements have the same type as the declared array type. The number of elements may
be zero, in which case the array is said to be an empty array. Each element can be accessed
by an index, which is a positive integer or zero. The first element has an index of zero. The
number of elements is called an array length. Once an array is created, its length never
changes.

The following are examples of an array declaration:

int[] intArray;
float[][] floatArray;
String[] stringArray;
SomeClass[][][] arr;

Each bracket pair indicates another dimension. The number of bracket pairs is the nesting
depth of the array:

int[] intArray = new int[10];
float[][] floatArray = new float[3][4];
String[] stringArray = new String[2];
SomeClass[][][] arr = new SomeClass[3][5][2];

The new operator allocates memory for each element that can be assigned (filled with) a
value later. But the elements of an array are initialized to the default values at creation time
in my case, as the following example demonstrates:

System.out.println(intArray[3]); //prints: 0
System.out.println(floatArray[2][2]); //prints: 0.0
System.out.println(stringArray[1]); //prints: null

Another way to create an array is to use an array initializer–comma-separated list of values
enclosed in braces for each dimension, for example:

int[] intArray = {1,2,3,4,5,6,7,8,9,10};
float[][] floatArray ={{1.1f,2.2f,3,2},{10,20.f,30.f,5},{1,2,3,4}};
String[] stringArray = {"abc", "a23"};

System.out.println(intArray[3]); //prints: 4
System.out.println(floatArray[2][2]); //prints: 3.0
System.out.println(stringArray[1]); //prints: a23

Java Fundamentals Chapter 3

[124]

A multidimensional array can be created without declaring the length of each dimension.
Only the first dimension has to have the length specified:

float[][] floatArray = new float[3][];

System.out.println(floatArray.length); //prints: 3
System.out.println(floatArray[0]); //prints: null
System.out.println(floatArray[1]); //prints: null
System.out.println(floatArray[2]); //prints: null
//System.out.println(floatArray[3]); //error
//System.out.println(floatArray[2][2]); //error

The missing length of other dimensions can be specified later:

float[][] floatArray = new float[3][];
floatArray[0] = new float[4];
floatArray[1] = new float[3];
floatArray[2] = new float[7];
System.out.println(floatArray[2][5]); //prints: 0.0

This way, it is possible to assign a different length to different dimensions. Using the array
initializer, it is also possible to create dimensions of different lengths:

float[][] floatArray ={{1.1f},{10,5},{1,2,3,4}};

The only requirement is that a dimension has to be initialized before it can be used.

Enum
The enum reference type class extends the java.lang.Enum class, which, in turn, extends
java.lang.Object. It allows the specification of a limited set of constants, each of them
an instance of the same type. The declaration of such a set starts with the keyword, enum.
Here is an example:

enum Season { SPRING, SUMMER, AUTUMN, WINTER }

Each of the listed items – SPRING, SUMMER, AUTUMN, and WINTER – is an instance of a
Season type. They are the only four instances the Season class can have. They are created
in advance and can be used everywhere as a value of a Season type. No other instance of
the Season class can be created. And that is the reason for the creation of the enum type: it
can be used for cases when the list of instances of a class has to be limited to the fixed set.

The enum declaration can also be written in a camel case:

enum Season { Spring, Summer, Autumn, Winter }

Java Fundamentals Chapter 3

[125]

However, the all-capitals style is used more often, because, as we have mentioned earlier,
there is a convention to express the static final constant's identifier in a capital case. It helps
to distinguish constants from variables. The enum constants are static and final implicitly.

Because the enum values are constants, they exist uniquely in JVM and can be compared by
reference:

Season season = Season.WINTER;
boolean b = season == Season.WINTER;
System.out.println(b); //prints: true

The following are the most frequently used methods of the java.lang.Enum class:

name(): returns the enum constant's identifier as it is spelled when declared
(WINTER, for example).
toString(): returns the same value as the name() method by default, but can
be overridden to return any other String value.
ordinal(): returns the position of the enum constant when declared (the first in
the list has a 0 ordinal value).
valueOf(Class enumType, String name): returns the enum constant object
by its name expressed as a String literal.
values(): a static method not described in the documentation of the
java.lang.Enum class. In the Java Language Specification, section 8.9.3 (https:/ /
docs.oracle. com/ javase/ specs/ jls/ se12/ html/ jls- 8.html#jls- 8.9. 3), it is
described as implicitly declared. The Java™ Tutorials (https:/ / docs. oracle. com/
javase/tutorial/ java/ javaOO/ enum. html) states that the compiler
automatically adds some special methods when it creates an enum, among them,
a static values() method that returns an array containing all of the values of the
enum in the order they are declared.

To demonstrate the preceding methods, we are going to use the already familiar enum,
Season:

enum Season { SPRING, SUMMER, AUTUMN, WINTER }

And here is the demo code:

System.out.println(Season.SPRING.name()); //prints: SPRING
System.out.println(Season.WINTER.toString()); //prints: WINTER
System.out.println(Season.SUMMER.ordinal()); //prints: 1
Season season = Enum.valueOf(Season.class, "AUTUMN");
System.out.println(season == Season.AUTUMN); //prints: true

https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/specs/jls/se12/html/jls-8.html#jls-8.9.3
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

Java Fundamentals Chapter 3

[126]

for(Season s: Season.values()){
 System.out.print(s.name() + " ");
 //prints: SPRING SUMMER AUTUMN WINTER
}

To override the toString() method, let's create enum Season1:

enum Season1 {
 SPRING, SUMMER, AUTUMN, WINTER;
 public String toString() {
 return this.name().charAt(0) +
 this.name().substring(1).toLowerCase();
 }
}

Here is how it works:

for(Season1 s: Season1.values()){
 System.out.print(s.toString() + " ");
 //prints: Spring Summer Autumn Winter
}

It is possible to add any other property to each enum constant. For example, let's add an
average temperature value to each enum instance:
SPRING(42), SUMMER(67), AUTUMN(32), WINTER(20);
private int temperature;
Season2(int temperature){
this.temperature = temperature;
}
public int getTemperature(){
return this.temperature;
}
public String toString() {
return this.name().charAt(0) +
this.name().substring(1).toLowerCase() +
"(" + this.temperature + ")";
}
}

If we iterate over values of enum Season2, the result will be as follows:

for(Season2 s: Season2.values()){
 System.out.print(s.toString() + " ");
 //prints: Spring(42) Summer(67) Autumn(32) Winter(20)
}

Java Fundamentals Chapter 3

[127]

In the standard Java libraries, there are several enum classes, for
example, java.time.Month, java.time.DayOfWeek, and
java.util.concurrent.TimeUnit.

Default values and literals
As we have already seen, the default value of a reference type is null. Some sources call
it special type null, but Java Language Specification qualifies it as a literal. When an
instance property or an array of a reference type is initialized automatically (when a value
is not assigned explicitly), the assigned value is null.

The only reference type that has a literal other than the null literal is the String class. We
discussed strings in Chapter 1, Getting Started with Java 12.

Reference type as a method parameter
When a primitive type value is passed into a method, we use it. If we do not like the value
passed into the method, we change it as we see fit and do not think twice about it:

void modifyParameter(int x){
 x = 2;
}

We have no concerns that the variable value outside the method may change:

int x = 1;
modifyParameter(x);
System.out.println(x); //prints: 1

It is not possible to change the parameter value of a primitive type outside the
method because a primitive type parameter is passed into the method by value. This means
that the copy of the value is passed into the method, so even if the code inside the method
assigns a different value to it, the original value is not affected.

Another issue with a reference type is that even though the reference itself is passed by
value, it still points to the same original object in the memory, so the code inside the
method can access the object and modify it. To demonstrate it, let's create a DemoClass and
the method that uses it:

class DemoClass{
 private String prop;
 public DemoClass(String prop) { this.prop = prop; }

Java Fundamentals Chapter 3

[128]

 public String getProp() { return prop; }
 public void setProp(String prop) { this.prop = prop; }
}
void modifyParameter(DemoClass obj){
 obj.setProp("Changed inside the method");
}

If we use the preceding method, the result will be as follows:

DemoClass obj = new DemoClass("Is not changed");
modifyParameter(obj);
System.out.println(obj.getProp()); //prints: Changed inside the method

That is a big difference, isn't it? So, you have to be careful not to modify the passed-in object
in order to avoid an undesirable effect. However, this effect is occasionally used to return
the result. But it does not belong to the list of best practices because it makes code less
readable. Changing the passed-in object is like using a secret tunnel that is difficult to
notice. So, use it only when you have to.

Even if the passed-in object is a class that wraps a primitive value, this effect still holds (we
will talk about primitive values wrapping type in the Conversion between primitive and
reference types section). Here is DemoClass1 and an overloaded version of
the modifyParameter() method:

class DemoClass1{
 private Integer prop;
 public DemoClass1(Integer prop) { this.prop = prop; }
 public Integer getProp() { return prop; }
 public void setProp(Integer prop) { this.prop = prop; }
}
void modifyParameter(DemoClass1 obj){
 obj.setProp(Integer.valueOf(2));
}

If we use the preceding method, the result will be as follows:

DemoClass1 obj = new DemoClass1(Integer.valueOf(1));
modifyParameter(obj);
System.out.println(obj.getProp()); //prints: 2

The only exception to this behavior of reference types is an object of the String class. Here
is another overloaded version of the modifyParameter() method:

void modifyParameter(String obj){
 obj = "Changed inside the method";
}

Java Fundamentals Chapter 3

[129]

If we use the preceding method, the result will be as follows:

String obj = "Is not changed";
modifyParameter(obj);
System.out.println(obj); //prints: Is not changed

obj = new String("Is not changed");
modifyParameter(obj);
System.out.println(obj); //prints: Is not changed

As you can see, whether we use a literal or a new String object, the result remains the
same: the original String value is not changed after the method that assigns another value
to it. That is exactly the purpose of the String value immutability feature we discussed in
Chapter 1, Getting Started with Java 12.

equals() method
The equality operator (==), when applied to the variables of reference types, compares the
references themselves, not the content (the state) of the objects. But two objects always have
different memory references even if they have identical content. Even when used for
String objects, the operator (==) returns false if at least one of them is created using
a new operator (see the discussion about String value immutability in Chapter 1, Getting
Started with Java 12).

To compare content, you can use the equals() method. Its implementation in
the String class and numerical type wrapper classes (Integer, Float, and so on) do
exactly that–compare the content of the objects.

However, the equals() method implementation in the java.lang.Object class
compares only references , which is understandable because the variety of possible content
the descendants can have is huge and the implementation of the generic content
comparison is just not feasible. This means that every Java object that needs to have
the equals() method comparing the objects' content–not just references–has to re-
implement the equals() method and, thus, override its implementation in
the java.lang.Object class, which appears as follows:

 public boolean equals(Object obj) {
 return (this == obj);
}

Java Fundamentals Chapter 3

[130]

By contrast, look how the same method is implemented in the Integer class:

private final int value;
public boolean equals(Object obj) {
 if (obj instanceof Integer) {
 return value == ((Integer)obj).intValue();
 }
 return false;
}

As you can see, it extracts the primitive int value from the input object and compares it to
the primitive value of the current object. It does not compare object references at all.

The String class, on the other hand, compares the references first and, if the references are
not the same value, compares the content of the objects:

private final byte[] value;
public boolean equals(Object anObject) {
 if (this == anObject) {
 return true;
 }
 if (anObject instanceof String) {
 String aString = (String)anObject;
 if (coder() == aString.coder()) {
 return isLatin1() ? StringLatin1.equals(value, aString.value)
 : StringUTF16.equals(value, aString.value);
 }
 }
 return false;
}

The StringLatin1.equals() and StringUTF16.equals() methods compare the values
character by character, not just references.

Similarly, if the application code needs to compare two objects by their content,
the equals() method in the corresponding class has to be overridden. For example, let's
look at the familiar DemoClass class:

class DemoClass{
 private String prop;
 public DemoClass(String prop) { this.prop = prop; }
 public String getProp() { return prop; }
 public void setProp(String prop) { this.prop = prop; }
}

Java Fundamentals Chapter 3

[131]

We could add to it the equals() method manually, but IDE can help us to do this as
follows:

Right-click inside the class just before the closing brace (})1.
Select Generate, and then follow the prompts2.

Eventually, two methods will be generated and added to the class:

@Override
public boolean equals(Object o) {
 if (this == o) return true;
 if (!(o instanceof DemoClass)) return false;
 DemoClass demoClass = (DemoClass) o;
 return Objects.equals(getProp(), demoClass.getProp());
}

@Override
public int hashCode() {
 return Objects.hash(getProp());
}

Looking at the generated code, we would like to attract your attention to the following
points:

Usage of the @Override annotation: this ensures that the method does override a
method (with the same signature) in one of the ancestors. With this annotation in
place, if you modify the method and change the signature (by mistake or
intentionally), the compiler (and your IDE) will immediately raise an error telling
you that there is no method with such a signature in any of the ancestor classes.
So, it helps to detect an error early.
Usage of the java.util.Objects class: this has quite a few very helpful
methods, including the equals() static method that compares not only
references, but also uses the equals() method:

 public static boolean equals(Object a, Object b) {
 return (a == b) || (a != null && a.equals(b));
 }

Since, as we have demonstrated earlier, the equals() method, implemented in
the String class, compares strings by their content and serves our this purpose
because the getProp() method of the DemoClass returns a string.

Java Fundamentals Chapter 3

[132]

The hashCode() method: the integer returned by this method uniquely
identifies this particular object (but please do not expect it to be the same
between different runs of the application). It is not necessary to have this method
implemented if the only method needed is equals(). Nevertheless, it is
recommended to have it just in case the object of this class is going to be collected
in Set or another collection based on a hash code (we are going to talk about
Java collections in Chapter 6, Data Structures, Generics, and Popular Utilities).

Both these methods are implemented in Object because many algorithms use
the equals() and hashCode() methods, and your application may not work without
these methods implemented. Meanwhile, your objects may not need them in your
application. However, once you decide to implement the equals() method, it is a good
idea to implement the hasCode() method too. Besides, as you have seen, an IDE can do
this without any overhead.

Reserved and restricted keywords
The keywords are the words that have particular meaning for a compiler and cannot be
used as identificators. There are 51 reserved keywords and 10 restricted keywords. The
reserved keywords cannot be used as identificators anywhere in the Java code, while the
restricted keywords cannot be used as identificators only in the context of a module
declaration.

Reserved keywords
The following is the list of all Java-reserved keywords:

abstract assert boolean break byte

case catch char class const

continue default do double else

enum extends final finally float

for if goto implements import

instanceof int interface long native

new package private protected public

return short static strictfp super

switch synchronized this throw throws

transient try void volatile while

Java Fundamentals Chapter 3

[133]

An underscore (_) is a reserved word too.

By now, you should feel at home with most of the preceding keywords. By way of an
exercise, you can go through the list and check how many of them you remember. We did
not talk only about the following eight keywords:

const and goto are reserved but not used, so far
The assert keyword is used in an assert statement (we will talk about this in
Chapter 4, Exception Handling).
The synchronized keyword is used in concurrent programming (we will talk
about this in Chapter 8, Multithreading and Concurrent Processing).
The volatile keyword makes the value of a variable uncacheable.
The transient keyword makes the value of a variable not serializable
The strictfp keyword restricts floating-point calculation, making it the same
result on every platform while performing operations in the floating-point
variable
The native keyword declares a method implemented in platform-dependent
code, such as C or C++

Restricted keywords
The 10 restricted keywords in Java are as follows:

open

module

requires

transitive

exports

opens

to
uses
provides

with

Java Fundamentals Chapter 3

[134]

They are called restricted because they cannot be identifiers in the context of a module
declaration, which we will not discuss in this book. In all other places, it is possible to use
them as identifiers, for example:

String to = "To";
String with = "abc";

Although you can, this is a good practice not to use them as identifiers even outside
module declaration.

Usage of the this and super keywords
The this keyword provides a reference to the current object. The super keyword refers to
the parent class object. These keywords allow us to refer to a variable or method that has
the same name in the current context and in the parent object.

Usage of the this keyword
Here is the most popular example:

class A {
 private int count;
 public void setCount(int count) {
 count = count; // 1
 }
 public int getCount(){
 return count; // 2
 }
}

The first line looks ambiguous, but, in fact, it is not: the local variable, int count , hides
the private property instance int count. We can demonstrate this by running the
following code:

A a = new A();
a.setCount(2);
System.out.println(a.getCount()); //prints: 0

Java Fundamentals Chapter 3

[135]

Using the this keyword fixes the problem:

class A {
 private int count;
 public void setCount(int count) {
 this.count = count; // 1
 }
 public int getCount(){
 return this.count; // 2
 }
}

Adding this to line 1 allows the value to be assigned the instance property. Adding
this to line 2 does not make a difference, but it is good practice to use the this keyword
every time with the instance property. It makes the code more readable and helps avoid
difficult-to-trace errors, such as the one we have just demonstrated.

We have also seen this keyword usage in the equals() method:

@Override
public boolean equals(Object o) {
 if (this == o) return true;
 if (!(o instanceof DemoClass)) return false;
 DemoClass demoClass = (DemoClass) o;
 return Objects.equals(getProp(), demoClass.getProp());
}

And, just to remind you, here are the examples of a constructor we presented in Chapter 2,
Java Object-Oriented Programming (OOP):

class TheChildClass extends TheParentClass{
 private int x;
 private String prop;
 private String anotherProp = "abc";
 public TheChildClass(String prop){
 super(42);
 this.prop = prop;
 }
 public TheChildClass(int arg1, String arg2){
 super(arg1);
 this.prop = arg2;
 }
 // methods follow
}

Java Fundamentals Chapter 3

[136]

In the preceding code, you can see not only the this keyword, but also the usage of
the super keyword, which we are going to discuss next.

Usage of the super keyword
The super keyword refers to the parent object. We saw its usage in the Usage of the this
keyword section in a constructor already, where it has to be used only in the first line
because the parent class object has to be created before the current object can be created. If
the first line of the constructor is not super(), this means the parent class has a constructor
without parameters.

The super keyword is especially helpful when a method is overridden and the method of
the parent class has to be called:

class B {
 public void someMethod() {
 System.out.println("Method of B class");
 }
}
class C extends B {
 public void someMethod() {
 System.out.println("Method of C class");
 }
 public void anotherMethod() {
 this.someMethod(); //prints: Method of C class
 super.someMethod(); //prints: Method of B class
 }
}

As we progress through this book, we will see more examples of using the this and
super keywords.

Converting between primitive types
The maximum numeric value a numeric type can hold depends on the number of bits
allocated to it. The following are the number of bits for each numeric type of representation:

byte: 8 bit
char: 16 bit
short: 16 bit
int: 32 bit

Java Fundamentals Chapter 3

[137]

long: 64 bit
float: 32 bit
double: 64 bit

When a value of one numeric type is assigned to a variable of another numeric type and the
new type can hold a bigger number, such a conversion is called a widening conversion.
Otherwise, it is a narrowing conversion, which usually requires a typecasting, using a
cast operator.

Widening conversion
According to Java Language Specification, there are 19 widening primitive type
conversions:

byte to short, int, long, float, or double
short to int, long, float, or double
char to int, long, float, or double
int to long, float, or double
long to float or double
float to double

During widening conversion between integral types, and from some integral types to a
floating-point type, the resulting value matches the original one exactly. However,
conversion from int to float, or from long to float, or from long to double, may result
in a loss of precision. The resulting floating-point value may be correctly rounded using
IEEE 754 round-to-nearest mode, according to Java Language Specification. Here are
a few examples that demonstrate the loss of precision:

int i = 123456789;
double d = (double)i;
System.out.println(i - (int)d); //prints: 0

long l1 = 12345678L;
float f1 = (float)l1;
System.out.println(l1 - (long)f1); //prints: 0

long l2 = 123456789L;
float f2 = (float)l2;
System.out.println(l2 - (long)f2); //prints: -3

long l3 = 1234567891111111L;

Java Fundamentals Chapter 3

[138]

double d3 = (double)l3;
System.out.println(l3 - (long)d3); //prints: 0

long l4 = 12345678999999999L;
double d4 = (double)l4;
System.out.println(l4 - (long)d4); //prints: -1

As you can see, conversion from int to double preserves the value, but long to float , or
long to double , may lose precision. It depends on how big the value is. So, be aware and
allow for some loss of precision if it is important for your calculations.

Narrowing conversion
Java Language Specification identifies 22 narrowing primitive conversions:

short to byte or char
char to byte or short
int to byte, short, or char
long to byte, short, char, or int
float to byte, short, char, int, or long
double to byte, short, char, int, long, or float

Similar to the widening conversion, a narrowing conversion may result in a loss of
precision, or even in a loss of the value magnitude. The narrowing conversion is more
complicated than a widening one and we are not going to discuss it in this book. It is
important to remember that before performing a narrowing, you must make sure that the
original value is smaller than the maximum value of the target type. Otherwise, you can get
a completely different value (with lost magnitude). Look at the following example:

System.out.println(Integer.MAX_VALUE); //prints: 2147483647
double d1 = 1234567890.0;
System.out.println((int)d1); //prints: 1234567890

double d2 = 12345678909999999999999.0;
System.out.println((int)d2); //prints: 2147483647

As you can see from the examples, without checking first whether the target type can
accommodate the value, you can get the result to just equal to the maximum value of the
target type. The rest will be just lost, no matter how big the difference is.

Java Fundamentals Chapter 3

[139]

Before performing a narrowing conversion, check whether the maximum
value of the target type can hold the original value.

Please note that the conversion between the char type and the byte or short types is an
even more complicated procedure because the char type is an unsigned numeric type,
while the byte and short types are signed numeric types, so some loss of information is
possible even when a value may look as though it fits in the target type.

Methods of conversion
In addition to the casting, each primitive type has a corresponding reference type (called a
wrapper class) that has methods that convert the value of this type to any other primitive
type, except boolean and char. All the wrapper classes belong to the java.lang package:

java.lang.Boolean

java.lang.Byte

java.lang.Character

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

Each of them–except the Boolean and Character classes–extends the abstract class
java.lang.Number, which has the following abstract methods:

byteValue()

shortValue()

intValue()

longValue()

floatValue()

doubleValue()

Java Fundamentals Chapter 3

[140]

Such design forces the descendants of the Number class to implement all of them. The
results they produce are the same as the cast operator in the previous examples:

int i = 123456789;
double d = Integer.valueOf(i).doubleValue();
System.out.println(i - (int)d); //prints: 0

long l1 = 12345678L;
float f1 = Long.valueOf(l1).floatValue();
System.out.println(l1 - (long)f1); //prints: 0

long l2 = 123456789L;
float f2 = Long.valueOf(l2).floatValue();
System.out.println(l2 - (long)f2); //prints: -3

long l3 = 1234567891111111L;
double d3 = Long.valueOf(l3).doubleValue();
System.out.println(l3 - (long)d3); //prints: 0

long l4 = 12345678999999999L;
double d4 = Long.valueOf(l4).doubleValue();
System.out.println(l4 - (long)d4); //prints: -1

double d1 = 1234567890.0;
System.out.println(Double.valueOf(d1)
 .intValue()); //prints: 1234567890

double d2 = 12345678909999999999999.0;
System.out.println(Double.valueOf(d2)
 .intValue()); //prints: 2147483647

In addition, each of the wrapper classes has methods that allow the conversion of String
representation of a numeric value to the corresponding primitive numeric type or reference
type, for example:

byte b1 = Byte.parseByte("42");
System.out.println(b1); //prints: 42
Byte b2 = Byte.decode("42");
System.out.println(b2); //prints: 42

boolean b3 = Boolean.getBoolean("property");
System.out.println(b3); //prints: false
Boolean b4 = Boolean.valueOf("false");
System.out.println(b4); //prints: false

int i1 = Integer.parseInt("42");
System.out.println(i1); //prints: 42
Integer i2 = Integer.getInteger("property");

Java Fundamentals Chapter 3

[141]

System.out.println(i2); //prints: null

double d1 = Double.parseDouble("3.14");
System.out.println(d1); //prints: 3.14
Double d2 = Double.valueOf("3.14");
System.out.println(d2); //prints: 3.14

In the examples, please note the two methods that accept the property parameter. These
two and similar methods of other wrapper classes convert system property (if such exists)
to the corresponding primitive type.

Each of the wrapper classes has the toString(primitive value) static method to
convert the primitive type value to its String representation, for example:

String s1 = Integer.toString(42);
System.out.println(s1); //prints: 42
String s2 = Double.toString(3.14);
System.out.println(s2); //prints: 3.14

The wrapper classes have many other useful methods of conversion from one primitive
type to another and to different formats. So, if you need to do something such as that, look
into the corresponding wrapper class first.

Converting between primitive and reference
types
The conversion of a primitive type value to an object of the corresponding wrapper class is
called boxing. Also, the conversion from an object of a wrapper class to the corresponding
primitive type value is called unboxing.

Boxing
The boxing of a primitive type can be done either automatically (called autoboxing) or
explicitly using the valueOf() method available in each wrapper type:

int i1 = 42;
Integer i2 = i1; //autoboxing
//Long l2 = i1; //error
System.out.println(i2); //prints: 42

i2 = Integer.valueOf(i1);
System.out.println(i2); //prints: 42

Java Fundamentals Chapter 3

[142]

Byte b = Byte.valueOf((byte)i1);
System.out.println(b); //prints: 42

Short s = Short.valueOf((short)i1);
System.out.println(s); //prints: 42

Long l = Long.valueOf(i1);
System.out.println(l); //prints: 42

Float f = Float.valueOf(i1);
System.out.println(f); //prints: 42.0

Double d = Double.valueOf(i1);
System.out.println(d); //prints: 42.0

Notice that autoboxing is only possible in relation to a corresponding wrapper type.
Otherwise, the
compiler generates an error.

The input value of the valueOf() method of Byte and Short wrappers required casting
because it was a narrowing of a primitive type we have discussed in the previous section.

Unboxing
Unboxing can be accomplished using methods of the Number class implemented in each
wrapper class:

Integer i1 = Integer.valueOf(42);
int i2 = i1.intValue();
System.out.println(i2); //prints: 42

byte b = i1.byteValue();
System.out.println(b); //prints: 42

short s = i1.shortValue();
System.out.println(s); //prints: 42

long l = i1.longValue();
System.out.println(l); //prints: 42

float f = i1.floatValue();
System.out.println(f); //prints: 42.0

double d = i1.doubleValue();
System.out.println(d); //prints: 42.0

Java Fundamentals Chapter 3

[143]

Long l1 = Long.valueOf(42L);
long l2 = l1; //implicit unboxing
System.out.println(l2); //prints: 42

double d2 = l1; //implicit unboxing
System.out.println(d2); //prints: 42

long l3 = i1; //implicit unboxing
System.out.println(l3); //prints: 42

double d3 = i1; //implicit unboxing
System.out.println(d3); //prints: 42

As you can see from the comment in the example, the conversion from a wrapper type to
the corresponding primitive type is not called auto-unboxing; it is called implicit
unboxing instead. In contrast to autoboxing, it is possible to use implicit unboxing even
between wrapping and primitive types that do not match.

Summary
In this chapter, you have learned what Java packages are and the role they play in
organizing code and class accessibility, including the import statement and access
modifiers. You also became familiar with reference types: classes, interfaces, arrays, and
enums. The default value of any reference type is null, including the String type.

You should now understand that the reference type is passed into a method by reference
and how the equals() method is used and can be overridden. You also had an
opportunity to study the full list of reserved and restricted keywords and learned the
meaning and usage of the this and super keywords.

The chapter concluded by describing the process and methods of conversion between
primitive types, wrapping types, and String literals.

In the next chapter, we will talk about the Java exceptions framework, checked and
unchecked (runtime) exceptions, try-catch-finally blocks, throws and throw
statements, and the best practices of exception handling.

Java Fundamentals Chapter 3

[144]

Quiz
Select all the statements that are correct:1.

The Package statement describes the class or interface locationa.
The Package statement describes the class or interface nameb.
Package is a fully qualified namec.
The Package name and class name compose a fully qualified name ofd.
the class

Select all the statements that are correct:2.
The Import statement allows use of the fully qualified namea.
The Import statement has to be the first in the .java fileb.
The Group import statement brings in the classes (and interfaces) ofc.
one package only
The Import statement allows use of of the fully qualified name to bed.
avoided

Select all the statements that are correct:3.
Without an access modifier, the class is accessible only by other classesa.
and interfaces of the same package
The private method of a private class is accessible to other classesb.
declared in the same .java file
The public method of a private class is accessible to other classes notc.
declared in the same .java file but from the same package
The protected method is accessible only to the descendants of the classd.

Select all the statements that are correct:4.
Private methods can be overloaded but not overriddena.
Protected methods can be overridden but not overloadedb.
Methods without an access modifier can be both overridden andc.
overloaded
Private methods can access private properties of the same classd.

Java Fundamentals Chapter 3

[145]

Select all the statements that are correct:5.
Narrowing and downcasting are synonymsa.
Widening and downcasting are synonymsb.
Widening and upcasting are synonymsc.
Widening and narrowing have nothing in common with upcasting andd.
downcasting

Select all the statements that are correct:6.
Array is an objecta.
Array has a length that is a number of the elements it can holdb.
The first element of an array has the index 1c.
The second element of an array has the index 1d.

Select all the statements that are correct:7.
Enum contains constants.a.
Enum always has a constructor, be it default or explicitb.
An enum constant can have propertiesc.
Enum can have constants of any reference typed.

Select all the statements that are correct:8.
Any reference type passed in as a parameter can be modifieda.
A new String() object passed in as a parameter can be modifiedb.
An object reference value passed in as a parameter cannot be modifiedc.
An array passed in as a parameter can have elements assigned tod.
different values

Select all the statements that are correct:9.
Reserved keywords cannot be useda.
Restricted keywords cannot be used as identifiersb.
A reserved keyword identifier cannot be used as an identifierc.
A reserved keyword cannot be used as an identifierd.

Select all the statements that are correct:10.
The this keyword refers to the current classa.
The super keyword refers to the super classb.
The this and super keywords refer to objectsc.
The this and super keywords refer to methodsd.

Java Fundamentals Chapter 3

[146]

Select all the statements that are correct:11.
The widening of a primitive type makes the value biggera.
The narrowing of a primitive type always changes the type of theb.
value
The widening of a primitive type can be done only after narrowing ac.
conversion
Narrowing makes the value smallerd.

Select all the statements that are correct:12.
Boxing puts a limit on the valuea.
Unboxing creates a new valueb.
Boxing creates a reference type objectc.
Unboxing deletes a reference type objectd.

2
Section 2: Building Blocks of

Java
The second part of the book constitutes the bulk of the Java presentation. It discusses the
main Java components and constructs, as well as the algorithms and data structures. Java's
system of exceptions is reviewed in detail, the String class and I/O streams are presented
as well, along with classes that allow manage files.

Java collections and the three main interfaces – List, Set, and Map – are discussed and
demonstrated, along with an explanation of generics, followed by utility classes for
managing arrays, objects, and time/date values. These classes belong to the Java Class
Library (JCL), the most popular packages of which are discussed as well. They are
complemented by the third-party libraries that are popular among programming
professionals.

The provided material instigates discussions on aspects of programming, such as
performance, concurrent processing, and garbage collection, that are at the core of Java
design. Together with the dedicated chapters on the graphical user interface and database
management, it covers all three tiers – front, middle, and backend – of any powerful Java
application. The chapter about the network protocols and the ways applications can talk to
each other completes the picture of all the main interactions an application can have.

This section contains the following chapters:

Chapter 4, Exception Handling

Chapter 5, Strings, Input/Output, and Files

Chapter 6, Data Structures, Generics, and Popular Utilities

Chapter 7, Java Standard and External Libraries

Chapter 8, Multithreading and Concurrent Processing

Section 2: Building Blocks of Java Chapter 2

[148]

Chapter 9, JVM Structure and Garbage Collection

Chapter 10, Managing Data in a Database

Chapter 11, Network Programming

Chapter 12, Java GUI Programming

4
Exception Handling

We have introduced exceptions briefly in Chapter 1, Getting Started with Java 12. In this
chapter, we will treat this topic more systematically. There are two kinds of exceptions in
Java: checked and unchecked exceptions. Both of them will be demonstrated and the
difference between the two will be explained. The reader will also learn about the syntax of
the Java constructs related to exceptions handling and the best practices to address (handle)
the exceptions. The chapter will end with the related topic of an assertion statement that
can be used to debug the code in production.

The following topics will be covered in this chapter:

Java exceptions framework
Checked and unchecked (runtime) exceptions
The try, catch, and finally blocks
The throws statement
The throw statement
The assert statement
Best practices of exceptions handling

Exception Handling Chapter 4

[150]

Java exceptions framework
As we have described in Chapter 1, Getting Started with Java 12, an unexpected condition
can cause the Java Virtual Machine (JVM) to create and throw an exception object, or the
application code can do it. As soon as it happens, the control flow is transferred to the
catch clause, if the exception was thrown inside a try block. Let's see an example.
Consider the following method:

void method(String s){
 if(s.equals("abc")){
 System.out.println("Equals abc");
 } else {
 System.out.println("Not equal");
 }
}

If the input parameter value is null, one could expect to see the output as Not equal.
Unfortunately, that is not the case. The s.equals("abc") expression calls the equals()
method on an object referred by the s variable, but, in case the s variable is null, it does
not refer to any object. Let's see what happens then.

Let's run the following code:

try {
 method(null);
} catch (Exception ex){
 System.out.println(ex.getClass().getCanonicalName());
 //prints: java.lang.NullPointerException
 ex.printStackTrace(); //prints: see the screenshot
 if(ex instanceof NullPointerException){
 //do something
 } else {
 //do something else
 }
}

The output of this code is as follows:

Exception Handling Chapter 4

[151]

What you see in red on the screenshot is called a stack trace. The name comes from the way
the method calls are stored (as a stack) in JVM memory: one method calls another, which in
turns calls another, and so on. After the most inner method returns, the stack is walked
back, and the returned method (stack frame) is removed from the stack. We will talk more
about JVM memory structure in Chapter 9, JVM Structure and Garbage Collection. When an
exception happens, all the stack content (stack frames) are returned as the stack trace. It
allows us to track down the line of code that caused the problem.

In our preceding code sample, different blocks of code were executed depending on the
type of the exception. In our case, it was java.lang.NullPointerException. If the
application code did not catch it, this exception would propagate all the way through the
stack of the called methods into the JVM, which then stops executing the application. To
avoid this happening, the exception can be caught and some code is executed to recover
from the exceptional condition.

The purpose of the exception handling framework in Java is to protect the application code
from an unexpected condition and recover from it, if possible. In the following sections, we
will dissect it in more detail and re-write the given example using the framework
capability.

Checked and unchecked exceptions
If you look up the documentation of the java.lang package API, you will discover that
the package contains almost three dozen exception classes and a couple of dozen error
classes. Both groups extend the java.lang.Throwable class, inherit all the methods from
it, and do not add other methods. The most often used methods of
the java.lang.Throwable class are the following:

void printStackTrace(): Outputs the stack trace (stack frames) of the
method calls
StackTraceElement[] getStackTrace(): Returns the same information as
printStackTrace(), but allows programmatic access of any frame of the stack
trace
String getMessage(): Retrieves the message that often contains a user-
friendly explanation of the reason for the exception or error
Throwable getCause(): Retrieves an optional object of
java.lang.Throwable that was the original reason for the exception (but the
author of the code decided to wrap it in another exception or error)

Exception Handling Chapter 4

[152]

All errors extend the java.lang.Error class that, in turn,
extends the java.lang.Throwable class. An error is typically thrown by JVM and,
according to the official documentation, indicates serious problems that a reasonable application
should not try to catch. Here are a few examples:

OutOfMemoryError: Thrown when JVM runs out memory and cannot clean it
using garbage collection
StackOverflowError: Thrown when the memory allocated for the stack of the
method calls is not enough to store another stack frame
NoClassDefFoundError: Thrown when JVM cannot find the definition of the
class requested by the currently loaded class

The authors of the framework assumed that an application cannot recover from these errors
automatically, which proved to be a largely correct assumption. That is why programmers
typically do not catch errors and we are not going to talk about them anymore.

The exceptions, on the other hand, are typically related to the application-specific problems
and often do not require us to shut down the application and allow the recovery. That is
why programmers typically catch them and implement an alternative (to the main flow)
path of the application logic, or at least report the problem without shutting down the
application. Here are a few examples:

ArrayIndexOutOfBoundsException: Thrown when the code tries to access the
element by the index that is equal to, or bigger than, the array length (remember
that the first element of an array has index 0, so the index equals the array length
points outside of the array)
ClassCastException: Thrown when the code casts a reference to a class or an
interface not associated with the object referred to by the variable
NumberFormatException: Thrown when the code tries to convert a string to a
numeric type, but the string does not contain the necessary number format

All exceptions extend the java.lang.Exception class that, in turn,
extends the java.lang.Throwable class. That is why by catching an object of
the java.lang.Exception class, the code catches an object of any exception type. We
have demonstrated it in the Java exceptions framework section by
catching java.lang.NullPointerException this way.

Exception Handling Chapter 4

[153]

One of the exceptions is java.lang.RuntimeException. The exceptions that extend it are
called runtime exceptions or unchecked exceptions. We have already mentioned some of
them: NullPointerException, ArrayIndexOutOfBoundsException,
ClassCastException, and NumberFormatException. Why they are called runtime
exceptions is clear; while why they are called unchecked exceptions will become clear in the
next paragraph.

Those that do not have java.lang.RuntimeException among their ancestors are called
checked exceptions. The reason for such a name is that a compiler makes sure (checks) that
these exceptions are either caught or listed in the throws clause of the method (see Throws
statement section). This design forces the programmer to make a conscious decision, either
to catch the checked exception, or inform the client of the method that this exception may
be thrown by the method and has to be processed (handled) by the client. Here are a few
examples of checked exceptions:

ClassNotFoundException: Thrown when an attempt to load a class using its
string name with the forName() method of the Class class failed
CloneNotSupportedException: Thrown when the code tried to clone an object
that does not implement the Cloneable interface
NoSuchMethodException: Thrown when there is no method called by the code

Not all exceptions reside in the java.lang package. Many other packages contain
exceptions related to the functionality that is supported by the package. For example, there
is a java.util.MissingResourceException runtime
exception and java.io.IOException checked exception.

Despite not being forced to, programmers often catch runtime (unchecked) exceptions too,
in order to have better control of the program flow, making the behavior of an application
more stable and predictable. By the way, all errors are also runtime (unchecked) exceptions,
but, as we have said already, typically, it is not possible to handle them
programmatically, so there is no point in catching descendants of the java.lang.Error
class.

Exception Handling Chapter 4

[154]

The try, catch, and finally blocks
When an exception is thrown inside a try block, it redirects control flow to the first catch
clause. If there is no catch block that can capture the exception (but then finally block
has to be in place), the exception propagates all the way up and out of the method. If there
is more than one catch clause, the compiler forces you to arrange them so that the child
exception is listed before the parent exception. Let's look at the following example:

void someMethod(String s){
 try {
 method(s);
 } catch (NullPointerException ex){
 //do something
 } catch (Exception ex){
 //do something else
 }
}

In the preceding example, a catch block with NullPointerException is placed before
the block with Exception because NullPointerException extends RuntimeException,
which, in turn, extends Exception. We could even implement this example as follows:

void someMethod(String s){
 try {
 method(s);
 } catch (NullPointerException ex){
 //do something
 } catch (RuntimeException ex){
 //do something else
 } catch (Exception ex){
 //do something different
 }
}

The first catch clause catches NullPointerException only. Other exceptions that extend
RuntimeException will be caught by the second catch clause. The rest of the exception
types (all checked exceptions) will be caught by the last catch block. Note that errors will
not be caught by any of these catch clauses. To catch them, one should add catch clause
for Error (in any position) or Throwable (after the last catch clause in the previous
example), but programmers usually do not do it and allow errors to propagate all the way
into the JVM.

Exception Handling Chapter 4

[155]

Having a catch block for each exception type allows us to provide an exception type-
specific processing. However, if there is no difference in the exception processing, one can
have just one catch block with the Exception base class to catch all types of exceptions:

void someMethod(String s){
 try {
 method(s);
 } catch (Exception ex){
 //do something
 }
}

If none of the clauses catch the exception, it is thrown further up until it is either handled
by a try...catch statement in one of the methods-callers or propagates all the way out of
the application code. In such a case, JVM terminates the application and exits.

Adding a finally block does not change the described behavior. If present, it is always
executed, whether an exception was generated or not. A finally block is usually used to
release the resources, to close a database connection, a file, and similar. However, if the
resource implements the Closeable interface, it is better to use the try-with-resources
statement that allows releasing the resources automatically. Here is how it can be done with
Java 7:

try (Connection conn = DriverManager.getConnection("dburl",
 "username", "password");
 ResultSet rs = conn.createStatement()
 .executeQuery("select * from some_table")) {
 while (rs.next()) {
 //process the retrieved data
 }
} catch (SQLException ex) {
 //Do something
 //The exception was probably caused by incorrect SQL statement
}

This example creates the database connection, retrieves data and processes it, then closes
(calls the close() method) the conn and rs objects.

Java 9 enhanced try-with-resources statement capabilities by allowing the creation of
objects that represent resources outside the try block and then the use of them in a try-
with-resources statement, as follows:

void method(Connection conn, ResultSet rs) {
 try (conn; rs) {
 while (rs.next()) {
 //process the retrieved data

Exception Handling Chapter 4

[156]

 }
 } catch (SQLException ex) {
 //Do something
 //The exception was probably caused by incorrect SQL statement
 }
}

The preceding code looks much cleaner, although, in practice, programmers prefer to create
and release (close) resources in the same context. If that is your preference too, consider
using the throws statement in conjunction with the try-with-resources statement.

The throws statement
The previous example of using a try-with-resources statement can be re-written with
resource objects created in the same context as follows:

Connection conn;
ResultSet rs;
try {
 conn = DriverManager.getConnection("dburl", "username", "password");
 rs = conn.createStatement().executeQuery("select * from some_table");
} catch (SQLException e) {
 e.printStackTrace();
 return;
}

try (conn; rs) {
 while (rs.next()) {
 //process the retrieved data
 }
} catch (SQLException ex) {
 //Do something
 //The exception was probably caused by incorrect SQL statement
}

We have to deal with SQLException because it is a checked exception,
and getConnection(), createStatement(), executeQuery(), and next()
methods declare it in their throws clause. Here is an example:

Statement createStatement() throws SQLException;

Exception Handling Chapter 4

[157]

It means that the method's author warns the method's users that it may throw such an
exception and forces them either to catch the exception or to declare it in the throws clause
of their methods. In our preceding example, we have chosen to catch it and had to use two
try...catch statements. Alternatively, we can list the exception in the throws clause too
and, thus, remove the clutter by effectively pushing the burden of the exception handling
onto the users of our method:

void throwsDemo() throws SQLException {
 Connection conn = DriverManager.getConnection("url","user","pass");
 ResultSet rs = conn.createStatement().executeQuery("select * ...");
 try (conn; rs) {
 while (rs.next()) {
 //process the retrieved data
 }
 } finally { }
}

We got rid of the catch clause but Java syntax requires that either a catch or finally
block has to follow the try block, so we added an empty finally block.

The throws clause allows but does not require us to list unchecked exceptions. Adding
unchecked exceptions does not force the method's users to handle them.

And, finally, if the method throws several different exceptions, it is possible to list the
base Exception exception class instead of listing all of them. That will make the compiler
happy, but is not considered a good practice because it hides details of particular
exceptions a method's user may expect.

Please notice that the compiler does not check what kind of exception the code in the
method's body can throw. So, it is possible to list any exception in the throws clause, which
may lead to unnecessary overhead. If, by mistake, a programmer includes a checked
exception in the throws clause that is never actually thrown by the method, the method's
user may write a catch block for it that is never executed.

The throw statement
The throw statement allows throwing any exception that a programmer deems necessary.
One can even create their own exception. To create a checked exception, extend
the java.lang.Exception class:

class MyCheckedException extends Exception{
 public MyCheckedException(String message){
 super(message);

Exception Handling Chapter 4

[158]

 }
 //add code you need to have here
}

Also, to create an unchecked exception, extend the java.lang.RunitmeException class,
as follows:

class MyUncheckedException extends RuntimeException{
 public MyUncheckedException(String message){
 super(message);
 }
 //add code you need to have here
}

Notice the comment add code you need to have here. You can add methods and properties to
the custom exception as to any other regular class, but programmers rarely do it. The best
practices even explicitly recommend avoiding using exceptions for driving the business
logic. Exceptions should be what the name implies, covering only exceptional, very rare
situations.

But if you need to announce an exceptional condition use the throw keyword and new
operator to create and trigger propagation of an exception object. Here are a few examples:

throw new Exception("Something happend");
throw new RunitmeException("Something happened");
throw new MyCheckedException("Something happened");
throw new MyUncheckedException("Something happened");

It is even possible to throw null as follows:

throw null;

The result of the preceding statement is the same as the result of this one:

throw new NullPointerException;

In both cases, an object of an unchecked NullPointerException begins to propagate
through the system, until it is caught either by the application or the JVM.

Exception Handling Chapter 4

[159]

The assert statement
Once in a while, a programmer needs to know if a particular condition happens in the code,
even after the application has been already deployed to production. At the same time, there
is no need to run the check all the time. That is where the branching assert statement
comes in handy. Here is an example:

public someMethod(String s){
 //any code goes here
 assert(assertSomething(x, y, z));
 //any code goes here
}

boolean assertSomething(int x, String y, double z){
 //do something and return boolean
}

In the preceding code, the assert() method takes input from
the assertSomething() method. If the assertSomething() method returns false, the
program stops executing.

The assert() method is executed only when the JVM is run with the -ea option. The -
ea flag should not be used in production, except maybe temporarily for testing purposes,
because it creates the overhead that affects the application performance.

Best practices of exceptions handling
The checked exceptions were designed to be used for the recoverable conditions when an
application can do something automatically to amend or work around the problem. In
practice, it doesn't happen very often. Typically, when an exception is caught, the
application logs the stack trace and aborts the current action. Based on the logged
information, the application support team modifies the code to address the unaccounted-
for condition or to prevent it from occurring in the future.

Each application is different, so best practices depend on the particular application
requirements, design, and context. In general, it seems that there is an agreement in the
development community to avoid using checked exceptions and to minimize their
propagation in the application code. And here are a few other recommendations that have
proved to be useful:

Always catch all checked exceptions close to the source
If in doubt, catch unchecked exceptions close to the source too

Exception Handling Chapter 4

[160]

Handle the exception as close to the source as possible, because it is where the
context is the most specific and where the root cause resides
Do not throw checked exceptions unless you have to, because you force building
extra code for a case that may never happen
Convert third-party checked exceptions into unchecked ones by re-throwing
them as RuntimeException with the corresponding message if you have to
Do not create custom exceptions unless you have to
Do not drive business logic by using the exception handling mechanism unless
you have to
Customize generic RuntimeException by using the system of messages and,
optionally, enum type, instead of using exception type for communicating the
cause of the error

Summary
In this chapter, readers were introduced to the Java exception handling framework, learned
about two kinds of exceptions – checked and unchecked (runtime) – and how to handle
them using try-catch-finally and throws statements. Readers have also learned how
to generate (throw) exceptions and how to create their own (custom) exceptions. The
chapter concluded with the best practices of exception handling.

In the next chapter, we will talk about strings and their processing in detail, as well as
input/output streams and file reading and writing techniques.

Quiz
What is a stack trace? Select all that apply:1.

A list of classes currently loadeda.
A list of methods currently executingb.
A list of code lines currently executingc.
A list of variables currently usedd.

Exception Handling Chapter 4

[161]

What kinds of exceptions are there? Select all that apply:2.
Compilation exceptionsa.
Runtime exceptionsb.
Read exceptionsc.
Write exceptionsd.

What is the output of the following code?3.

try {
 throw null;
} catch (RuntimeException ex) {
 System.out.print("RuntimeException ");
} catch (Exception ex) {
 System.out.print("Exception ");
} catch (Error ex) {
 System.out.print("Error ");
} catch (Throwable ex) {
 System.out.print("Throwable ");
} finally {
 System.out.println("Finally ");
}

A RuntimeException Errora.
Exception Error Finallyb.
RuntimeException Finallyc.
Throwable Finallyd.

Which of the following methods will compile without an error?4.

void method1() throws Exception { throw null; }
void method2() throws RuntimeException { throw null; }
void method3() throws Throwable { throw null; }
void method4() throws Error { throw null; }

method1()a.
method2()b.
method3()c.
method4()d.

Exception Handling Chapter 4

[162]

Which of the following statements will compile without an error?5.

throw new NullPointerException("Hi there!"); //1
throws new Exception("Hi there!"); //2
throw RuntimeException("Hi there!"); //3
throws RuntimeException("Hi there!"); //4

1a.
2b.
3c.
4d.

Assuming that int x = 4, which of the following statements will compile6.
without an error?

assert (x > 3); //1
assert (x = 3); //2
assert (x < 4); //3
assert (x = 4); //4

1a.
2b.
3c.
4d.

What are the best practices from the following list?7.
Always catch all exceptions and errors1.
Always catch all exceptions2.
Never throw unchecked exceptions3.
Try not to throw checked exceptions unless you have to4.

5
Strings, Input/Output, and Files

In this chapter, a reader will be presented with String class methods in more detail. We
will also discuss popular string utilities from standard libraries and Apache Commons
project. An overview of Java input/output streams and related classes of
the java.io packages will follow along with some classes of
the org.apache.commons.io package. The file managing classes and their methods
are described in the dedicated section.

The following topics will be covered in this chapter:

Strings processing
I/O streams
Files management
Apache Commons utilities FileUtils and IOUtils

Strings processing
In a mainstream programming, String probably is the most popular class. In Chapter 1,
Getting Started with Java 12, we have learned about this class, its literals and its specific
feature called string immutability. In this section, we will explain how a string can be
processed using String class methods and utility classes from the standard library
and the StringUtils class from the org.apache.commons.lang3 package in particular.

Methods of the String class
The String class has more than 70 methods that enable analyzing, modifying, comparing
strings, and converting numeric literals into the corresponding string literals. To see all the
methods of the String class, please refer the Java API online at https:/ /docs. oracle.
com/en/java/javase.

https://docs.oracle.com/en/java/javase
https://docs.oracle.com/en/java/javase
https://docs.oracle.com/en/java/javase
https://docs.oracle.com/en/java/javase
https://docs.oracle.com/en/java/javase
https://docs.oracle.com/en/java/javase
https://docs.oracle.com/en/java/javase
https://docs.oracle.com/en/java/javase
https://docs.oracle.com/en/java/javase
https://docs.oracle.com/en/java/javase
https://docs.oracle.com/en/java/javase
https://docs.oracle.com/en/java/javase
https://docs.oracle.com/en/java/javase
https://docs.oracle.com/en/java/javase

Strings, Input/Output, and Files Chapter 5

[164]

Strings analysis
The length() method returns the count of characters in the string as shown in the
following code:

String s7 = "42";
System.out.println(s7.length()); //prints: 2
System.out.println("0 0".length()); //prints: 3

The following isEmpty() method returns true when the length of the string (count of
characters) is 0:

System.out.println("".isEmpty()); //prints: true
System.out.println(" ".isEmpty()); //prints: false

The indexOf() and lastIndexOf() methods return the position of the specified
substring in the string shown in this code snippet:

String s6 = "abc42t%";
System.out.println(s6.indexOf(s7)); //prints: 3
System.out.println(s6.indexOf("a")); //prints: 0
System.out.println(s6.indexOf("xyz")); //prints: -1
System.out.println("ababa".lastIndexOf("ba")); //prints: 3

As you can see, the first character in the string has a position (index) 0, and the absence of
the specified substring results in the index -1.

The matches() method applies the regular expression (passed as an argument) to the
string as follows:

System.out.println("abc".matches("[a-z]+")); //prints: true
System.out.println("ab1".matches("[a-z]+")); //prints: false

Regular expressions are outside the scope of this book. You can learn about them
at https://www.regular- expressions. info. In the preceding example, the expression [a-
z]+ matches one or more letters only.

Strings comparison
In Chapter 3, Java Fundamentals, we have already talked about the equals() method that
returns true only when two String objects or literals are spelled exactly the same way.
The following code snippet demonstrates how it works:

String s1 = "abc";
String s2 = "abc";

https://www.regular-expressions.info
https://www.regular-expressions.info
https://www.regular-expressions.info
https://www.regular-expressions.info
https://www.regular-expressions.info
https://www.regular-expressions.info
https://www.regular-expressions.info
https://www.regular-expressions.info
https://www.regular-expressions.info
https://www.regular-expressions.info
https://www.regular-expressions.info

Strings, Input/Output, and Files Chapter 5

[165]

String s3 = "acb";
System.out.println(s1.equals(s2)); //prints: true
System.out.println(s1.equals(s3)); //prints: false
System.out.println("abc".equals(s2)); //prints: true
System.out.println("abc".equals(s3)); //prints: false

Another String class equalsIgnoreCase() method does a similar job, but ignores the
difference in the characters' case as follows:

String s4 = "aBc";
String s5 = "Abc";
System.out.println(s4.equals(s5)); //prints: false
System.out.println(s4.equalsIgnoreCase(s5)); //prints: true

The contentEquals() method acts similar to the equals() method shown here:

String s1 = "abc";
String s2 = "abc";
System.out.println(s1.contentEquals(s2)); //prints: true
System.out.println("abc".contentEquals(s2)); //prints: true

The difference is that equals() method checks if both values are represented by the
String class,
while contentEquals() compares only characters (content) of the character sequence. The
character sequence can be represented
by String, StringBuilder, StringBuffer, CharBuffer, or any other class that
implements a CharSequence interface. Nevertheless, the contentEquals() method will
return true if both sequences contain the same characters, while the equals() method
will return false if one of the sequences is not created by the String class.

The contains() method returns true if the string contains a certain substring as
follows:

String s6 = "abc42t%";
String s7 = "42";
String s8 = "xyz";
System.out.println(s6.contains(s7)); //prints: true
System.out.println(s6.contains(s8)); //prints: false

The startsWith() and endsWith() methods perform a similar check but only at the start
of the string or at the end of the string value as shown in the following code:

String s6 = "abc42t%";
String s7 = "42";

System.out.println(s6.startsWith(s7)); //prints: false

Strings, Input/Output, and Files Chapter 5

[166]

System.out.println(s6.startsWith("ab")); //prints: true
System.out.println(s6.startsWith("42", 3)); //prints: true

System.out.println(s6.endsWith(s7)); //prints: false
System.out.println(s6.endsWith("t%")); //prints: true

The compareTo() and compareToIgnoreCase() methods compare
strings lexicographically—based on the Unicode value of each character in the strings. They
return the value 0 if the strings are equal, a negative integer value if the first string is
lexicographically less (has a smaller Unicode value) than the second string, and a positive
integer value if the first string is lexicographically greater than the second string (has a
bigger Unicode value). For example:

String s4 = "aBc";
String s5 = "Abc";
System.out.println(s4.compareTo(s5)); //prints: 32
System.out.println(s4.compareToIgnoreCase(s5)); //prints: 0
System.out.println(s4.codePointAt(0)); //prints: 97
System.out.println(s5.codePointAt(0)); //prints: 65

From this code snippet, you can see that the
compareTo() and compareToIgnoreCase() methods are based on the code points of the
characters that compose the strings. The reason the string s4 is bigger than the
string s5 by 32 because the code point of the character a (97) is bigger than the code point
of the character A (65) by 32.

The given example also shows that the codePointAt() method returns the code point of
the character located in the string at the specified position. The code points were described
in the Integral types section of Chapter 1, Getting Started with Java 12.

Strings transformation
The substring() method returns the substring starting with the specified position (index)
as follows:

System.out.println("42".substring(0)); //prints: 42
System.out.println("42".substring(1)); //prints: 2
System.out.println("42".substring(2)); //prints:
System.out.println("42".substring(3)); //error: index out of range: -1
String s6 = "abc42t%";
System.out.println(s6.substring(3)); //prints: 42t%
System.out.println(s6.substring(3, 5)); //prints: 42

Strings, Input/Output, and Files Chapter 5

[167]

The format() method uses the passed-in first argument as a template and inserts the other
arguments in the corresponding position of the template sequentially. The following code
example prints the sentence, "Hey, Nick! Give me 2 apples, please!" three times:

String t = "Hey, %s! Give me %d apples, please!";
System.out.println(String.format(t, "Nick", 2));

String t1 = String.format(t, "Nick", 2);
System.out.println(t1);

System.out.println(String
 .format("Hey, %s! Give me %d apples, please!", "Nick", 2));

The %s and %d symbols are called format specifiers. There are many specifiers and various
flags, that allow the programmer to fine-control the result. You can read about them in the
API of the java.util.Formatter class.

The concat() method works the same way as the arithmetic operator (+) as shown:

String s7 = "42";
String s8 = "xyz";
String newStr1 = s7.concat(s8);
System.out.println(newStr1); //prints: 42xyz

String newStr2 = s7 + s8;
System.out.println(newStr2); //prints: 42xyz

The following join() method acts similarly but allows the addition of a delimiter:

String newStr1 = String.join(",", "abc", "xyz");
System.out.println(newStr1); //prints: abc,xyz

List<String> list = List.of("abc","xyz");
String newStr2 = String.join(",", list);
System.out.println(newStr2); //prints: abc,xyz

The following group of replace(), replaceFirst(), and replaceAll() methods
replace certain characters in the string with the provided ones:

System.out.println("abcbc".replace("bc", "42")); //prints: a4242
System.out.println("abcbc".replaceFirst("bc", "42")); //prints: a42bc
System.out.println("ab11bcd".replaceAll("[a-z]+", "42"));//prints: 421142

The first line of the preceding code replaces all the instances of "bc" with "42". The second
replaces only the first instance of "bc" with "42". And the last one replaces all the
substrings that match the provided regular expression with "42".

Strings, Input/Output, and Files Chapter 5

[168]

The toLowerCase() and toUpperCase() methods change the case of the whole string as
shown here:

System.out.println("aBc".toLowerCase()); //prints: abc
System.out.println("aBc".toUpperCase()); //prints: ABC

The split() method breaks the string into substrings, using the provided character as the
delimiter, as follows:

String[] arr = "abcbc".split("b");
System.out.println(arr[0]); //prints: a
System.out.println(arr[1]); //prints: c
System.out.println(arr[2]); //prints: c

There are several valueOf() methods that transform values of a primitive type to
a String type. For example:

float f = 23.42f;
String sf = String.valueOf(f);
System.out.println(sf); //prints: 23.42

There are also () and getChars() methods that transform a string to an array of a
corresponding type, while the chars() method creates an IntStream of characters (their
code points). We will talk about streams in Chapter 14, Java Standard Streams.

Methods added with Java 11
Java 11 introduced several new methods in the String class.

The repeat() method allows you to create a new String value based on multiple
concatenations of the same string as shown in the following code:

System.out.println("ab".repeat(3)); //prints: ababab
System.out.println("ab".repeat(1)); //prints: ab
System.out.println("ab".repeat(0)); //prints:

The isBlank() method returns true if the string has length 0 or consists of white spaces
only. For example:

System.out.println("".isBlank()); //prints: true
System.out.println(" ".isBlank()); //prints: true
System.out.println(" a ".isBlank()); //prints: false

Strings, Input/Output, and Files Chapter 5

[169]

The stripLeading() method removes leading white spaces from the string,
the stripTrailing() method removes trailing white spaces, and
strip() method removes both, as shown here:

String sp = " abc ";
System.out.println("'" + sp + "'"); //prints: ' abc '
System.out.println("'" + sp.stripLeading() + "'"); //prints: 'abc '
System.out.println("'" + sp.stripTrailing() + "'"); //prints: ' abc'
System.out.println("'" + sp.strip() + "'"); //prints: 'abc'

And, finally, the lines() method breaks the string by line terminators and returns
a Stream<String> of resulting lines. A line terminator is an escape sequence line
feed \n (\u000a), or a carriage return \r (\u000d), or a carriage return followed
immediately by a line feed \r\n (\u000d\u000a). For example:

String line = "Line 1\nLine 2\rLine 3\r\nLine 4";
line.lines().forEach(System.out::println);

The output of the preceding code is as follows:

We will talk about streams in Chapter 14, Java Standard Streams.

String utilities
In addition to the String class, there are many other classes that have methods that
process String values. Among the most useful is the StringUtils class of
the org.apache.commons.lang3 package from a project called an Apache Commons,
maintained by an open source community of programmers called Apache Software
Foundation. We will talk more about this project and its libraries in Chapter 7, Java
Standard and External Libraries. To use it in your project, add the following dependency in
the pom.xml file:

<dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-lang3</artifactId>
 <version>3.8.1</version>
</dependency>

Strings, Input/Output, and Files Chapter 5

[170]

The StringUtils class is the favorite of many programmers. It complements methods of
the String class by providing the following null-safe operations:

isBlank(CharSequence cs): Returns true if the input value is white space,
empty (""), or null
isNotBlank(CharSequence cs): Returns false when the preceding method
returns true
isEmpty(CharSequence cs): Returns true if the input value is empty ("") or
null

isNotEmpty(CharSequence cs): Returns false when the preceding method
returns true
trim(String str): Removes leading and trailing white space from the input
value and processes null, empty (""), and white space, as follows:

System.out.println("'" + StringUtils.trim(" x ") + "'"); //prints:
'x'
System.out.println(StringUtils.trim(null)); //prints:
null
System.out.println("'" + StringUtils.trim("") + "'"); //prints:
''
System.out.println("'" + StringUtils.trim(" ") + "'"); //prints:
''

trimToNull(String str): Removes leading and trailing white space from the
input value and processes null, empty (""), and white space, as follows:

System.out.println("'" + StringUtils.trimToNull(" x ") + "'"); //
'x'
System.out.println(StringUtils.trimToNull(null)); //prints:
null
System.out.println(StringUtils.trimToNull("")); //prints:
null
System.out.println(StringUtils.trimToNull(" ")); //prints:
null

trimToEmpty(String str): Removes leading and trailing white space from
the input value and processes null, empty (""), and white space, as follows:

System.out.println("'" + StringUtils.trimToEmpty(" x ") + "'");
// 'x'
System.out.println("'" + StringUtils.trimToEmpty(null) + "'");
// ''
System.out.println("'" + StringUtils.trimToEmpty("") + "'");
// ''
System.out.println("'" + StringUtils.trimToEmpty(" ") + "'");

Strings, Input/Output, and Files Chapter 5

[171]

// ''

strip(String str), stripToNull(String str), stripToEmpty(String
str): Produce the same result as the preceding trim*(String str)
methods but use a more extensive definition of white space (based on
Character.isWhitespace(int codepoint)) and thus remove the same
characters as trim*(String str) does, and more

strip(String str, String stripChars), stripAccents(String
input), stripAll(String... strs), stripAll(String[] strs, String
stripChars), stripEnd(String str, String
stripChars), stripStart(String str, String stripChars): Remove
particular characters from particular parts of a String or a String[] array
elements
startsWith(CharSequence str, CharSequence prefix),
startsWithAny(CharSequence string, CharSequence...

searchStrings), startsWithIgnoreCase(CharSequence str,
CharSequence prefix), and similar endsWith*() methods: Check if a
String value starts (or ends) with a certain prefix (or suffix)
indexOf, lastIndexOf, contains: Check index in a null-safe manner
indexOfAny, lastIndexOfAny, indexOfAnyBut, lastIndexOfAnyBut: Return
index
containsOnly, containsNone, containsAny: Check if the value contains or
not certain characters
substring, left, right, mid: Return substring in a null-safe manner
substringBefore, substringAfter, substringBetween: Return substring
from relative position
split, join: Split or join a value (correspondingly)
remove, delete: Eliminate substring
replace, overlay: Replace a value
chomp, chop: Remove the end
appendIfMissing: Adds a value if not present
prependIfMissing: Prepends a prefix to the start of the String value if not
present
leftPad, rightPad, center, repeat: Add padding
upperCase, lowerCase, swapCase, capitalize, uncapitalize: Change the
case

Strings, Input/Output, and Files Chapter 5

[172]

countMatches: Returns the number of the substring occurrences
isWhitespace, isAsciiPrintable, isNumeric, isNumericSpace, isAlpha,
isAlphaNumeric, isAlphaSpace, isAlphaNumericSpace: Check the presence
of certain type of characters
isAllLowerCase, isAllUpperCase: Check the case
defaultString, defaultIfBlank, defaultIfEmpty: Returns default value if
null

rotate: Rotates characters using a circular shift
reverse, reverseDelimited: Reverse characters or delimited groups of
characters
abbreviate, abbreviateMiddle: Abbreviate value using an ellipsis or another
value
difference: Returns the differences in values
getLevenshteinDistance: Returns the number of changes needed to
transform one value to another

As you can see, the StringUtils class has a very rich (we have not listed everything) set
of methods for strings analysis, comparison, and transformation that compliment the
methods of the String class.

I/O streams
Any software system has to receive and produce some kind of data that can be organized as
a set of isolated inputs/outputs or as a stream of data. A stream can be limited or endless. A
program can read from a stream (then it is called an input stream), or write to a stream
(then it is called an output stream). The Java I/O stream is either byte-based or character-
based, meaning that its data is interpreted either as raw bytes or as characters.

The java.io package contains classes that support many, but not all, possible data sources.
It is built for the most part around the input from and to files, network streams, and
internal memory buffers. It does not contain many classes necessary for network
communication. They belong to the java.net, javax.net, and other packages of Java
Networking API. Only after the networking source or destination is established (a network
socket, for example), can a program read and write data using InputStream and
OutputStream classes of the java.io package.

Strings, Input/Output, and Files Chapter 5

[173]

Classes of the java.nio package have pretty much the same functionality as the classes
of java.io packages. But, in addition, they can work in a non-blocking mode, which can
substantially increase the performance in certain situations. We will talk about non-
blocking processing in Chapter 15, Reactive Programming.

Stream data
The data a program understands has to be binary—expressed in 0s and 1s—at the very
basis. The data can be read or written one byte at a time or an array of several bytes at a
time. These bytes can remain binary or can be interpreted as characters.

In the first case, they can be read as bytes or byte arrays by the descendants
of InputStream and OutputStream classes. For example (we omit the package name if the
class belongs to the java.io package): ByteArrayInputStream,
ByteArrayOutputStream, FileInputStream, FileOutputStream,
ObjectInputStream, ObjectOutputStream,
javax.sound.sampled.AudioInputStream, and
org.omg.CORBA.portable.OutputStream; which one to use depends on the source or
destination of the data. The InputStream and OutputStream classes themselves are
abstract and cannot be instantiated.

In the second case, the data that can be interpreted as characters are called text data, and
there are character-oriented reading and writing classes based on the Reader and Writer,
which are abstract classes too. Examples of their sub-classes are: CharArrayReader,
CharArrayWriter, InputStreamReader, OutputStreamWriter, PipedReader,
PipedWriter, StringReader, and StringWriter.

You may have noticed that we listed the classes in pairs. But not every input class has a
matching output specialization. For example, there are PrintStream
and PrintWriter classes that support output to a printing device, but there is no
corresponding input partner, not by name at least. However, there is
a java.util.Scanner class that parses input text in a known format.

There is also a set of buffer-equipped classes that help to improve performance by reading
or writing a bigger chunk of data at a time, especially in the cases when access to the source
or destination takes a long time.

In the rest of this section, we will review classes of the java.io package and some popular
related classes from other packages.

Strings, Input/Output, and Files Chapter 5

[174]

Class InputStream and its subclasses
In Java Class Library, the InputStream abstract class has the following direct
implementations: ByteArrayInputStream, FileInputStream, ObjectInputStream,
PipedInputStream, SequenceInputStream, FilterInputStream,
and javax.sound.sampled.AudioInputStream.

All of them either use as-is or override the following methods of the InputStream class:

int available(): Returns the number of bytes available for reading
void close(): Closes the stream and releases the resources
void mark(int readlimit): Marks a position in the stream and defines how
many bytes can be read
boolean markSupported(): Returns true if the marking is supported
static InputStream nullInputStream(): Creates an empty stream
abstract int read(): Reads the next byte in the stream
int read(byte[] b): Reads data from the stream into the b buffer
int read(byte[] b, int off, int len): Reads len or fewer bytes from
the stream into the b buffer
byte[] readAllBytes(): Reads all the remaining bytes from the stream
int readNBytes(byte[] b, int off, int len): Reads len or fewer bytes
into the b buffer at the off offset
byte[] readNBytes(int len): Reads len or fewer bytes into the b buffer
void reset(): Resets the reading location to the position where the mark()
method was last called
long skip(long n): Skips n or fewer bytes of the stream; returns the actual
number of bytes skipped
long transferTo(OutputStream out): Reads from the input stream and
writes to the provided output stream byte by byte; returns the actual number of
bytes transferred

The abstract int read() is the only method that has to be implemented, but most of
the descendants of this class override many of the other methods too.

Strings, Input/Output, and Files Chapter 5

[175]

ByteArrayInputStream
The ByteArrayInputStream class allows reading a byte array as an input stream. It has
the following two constructors that create an object of the class and defines the buffer used
to read the input stream of bytes:

ByteArrayInputStream(byte[] buffer)

ByteArrayInputStream(byte[] buffer, int offset, int length)

The second of the constructors allows setting, in addition to the buffer, the offset and the
length of the buffer too. Let's look at the example and see how this class can be used. We
assume there is a source of byte[] array with data:

byte[] bytesSource(){
 return new byte[]{42, 43, 44};
}

Then we can write the following:

byte[] buffer = bytesSource();
try(ByteArrayInputStream bais = new ByteArrayInputStream(buffer)){
 int data = bais.read();
 while(data != -1) {
 System.out.print(data + " "); //prints: 42 43 44
 data = bais.read();
 }
} catch (Exception ex){
 ex.printStackTrace();
}

The bytesSource() method produces the array of bytes that fills the buffer that is passed
into the constructor of the ByteArrayInputStream class as a parameter. The resulting
stream is then read byte by byte using the read() method until the end of the stream is
reached (and read() method returns -1). Each new byte is printed out (without line feed
and with white space after it, so all the read bytes are displayed in one line separated by the
white space).

The preceding code is usually expressed in a more compact form as follows:

byte[] buffer = bytesSource();
try(ByteArrayInputStream bais = new ByteArrayInputStream(buffer)){
 int data;
 while ((data = bais.read()) != -1) {
 System.out.print(data + " "); //prints: 42 43 44
 }
} catch (Exception ex){

Strings, Input/Output, and Files Chapter 5

[176]

 ex.printStackTrace();
}

Instead of just printing the bytes, they can be processed in any other manner necessary,
including interpreting them as characters. For example:

byte[] buffer = bytesSource();
try(ByteArrayInputStream bais = new ByteArrayInputStream(buffer)){
 int data;
 while ((data = bais.read()) != -1) {
 System.out.print(((char)data) + " "); //prints: * + ,
 }
} catch (Exception ex){
 ex.printStackTrace();
}

But, in such a case, it is better to use one of the Reader classes that are specialized for
characters processing. We will talk about them in the Reader and Writer classes and their
subclasses section.

FileInputStream
The FileInputStream class gets data from a file in a filesystem, the raw bytes of an image,
for example. It has the following three constructors:

FileInputStream(File file)

FileInputStream(String name)

FileInputStream(FileDescriptor fdObj)

Each constructor opens the file specified as the parameter. The first constructor accepts
File object, the second, the path to the file in the filesystem, and the third, the file
descriptor object that represents an existing connection to an actual file in the filesystem.
Let's look at the following example:

String filePath = "src/main/resources/hello.txt";
try(FileInputStream fis=new FileInputStream(filePath)){
 int data;
 while ((data = fis.read()) != -1) {
 System.out.print(((char)data) + " "); //prints: H e l l o !
 }
} catch (Exception ex){
 ex.printStackTrace();
}

Strings, Input/Output, and Files Chapter 5

[177]

In the src/main/resources folder, we have created the hello.txt file that has only one
line in it—Hello!. The output of the preceding example looks as follows:

Since we are running this example inside the IDE, it is executed in the project root
directory. In order to find where your code is executed, you can always print it out like this:

File f = new File("."); //points to the current directory
System.out.println(f.getAbsolutePath()); //prints the directory path

After reading bytes from the hello.txt file, we decided, for demo purposes, to cast each
byte to char, so you can see that our code does read from the specified file, but
the FileReader class is a better choice for text file processing (we will discuss it shortly).
Without the cast, the result would be the following:

System.out.print((data) + " "); //prints: 72 101 108 108 111 33

By the way, because the src/main/resources folder is placed by the IDE (using Maven)
on the classpath, a file placed in it can also be accessed via a classloader that creates a
stream using its own InputStream implementation:

try(InputStream is =
InputOutputStream.class.getResourceAsStream("/hello.txt")){
 int data;
 while ((data = is.read()) != -1) {
 System.out.print((data) + " "); //prints: 72 101 108 108 111 33
 }
} catch (Exception ex){
 ex.printStackTrace();
}

The InputOutputStream class in the preceding example is not a class from some library. It
is just the main class we used to run the example.
The InputOutputStream.class.getResourceAsStream() construct allows using the
same classloader that has loaded the InputOutputStream class for the purpose of finding
a file on the classpath and creating a stream that contains its content. In the Files
Management section, we will present other ways of reading a file too.

Strings, Input/Output, and Files Chapter 5

[178]

ObjectInputStream
The set of methods of the ObjectInputStream class is much bigger than the set of
methods of any other InputStream implementation. The reason for that is that it is built
around reading the values of the object fields that can be of various types. In order for the
ObjectInputStream to be able to construct an object from the input stream of data, the
object has to be deserializable, which means it has to be serializable in the first place—that is to
be convertible into a byte stream. Usually, it is done for the purpose of transporting objects
over a network. At the destination, the serialized objects are deserialized and the values of
the original objects are restored.

Primitive types and most of Java classes, including String class and primitive type
wrappers, are serializable. If a class has fields of custom types, they have to be made
serializable by implementing java.io.Serizalizable. How to do it is outside the scope
of this book. For now, we are going to use only the serializable types. Let's look at this class:

class SomeClass implements Serializable {
 private int field1 = 42;
 private String field2 = "abc";
}

We have to tell the compiler that it is serializable. Otherwise, the compilation will fail. It is
done in order to make sure that, before stating that the class is serializable, the programmer
either reviewed all the fields and made sure they are serializable or has implemented the
methods necessary for the serialization.

Before we can create an input stream and use ObjectInputStream for deserialization, we
need to serialize the object first. That is why we first use ObjectOutputStream and
FileOutputStream to serialize an object and write it into the someClass.bin file. We will
talk more about them in the Class OutputStream and its subclasses section. Then we read from
the file using FileInputStream and deserialize the file content using
ObjectInputStream:

String fileName = "someClass.bin";
try (ObjectOutputStream objectOutputStream =
 new ObjectOutputStream(new FileOutputStream(fileName));
 ObjectInputStream objectInputStream =
 new ObjectInputStream(new FileInputStream(fileName))){
 SomeClass obj = new SomeClass();
 objectOutputStream.writeObject(obj);
 SomeClass objRead = (SomeClass) objectInputStream.readObject();
 System.out.println(objRead.field1); //prints: 42
 System.out.println(objRead.field2); //prints: abc
} catch (Exception ex){

Strings, Input/Output, and Files Chapter 5

[179]

 ex.printStackTrace();
}

Note that, the file has to be created first before the preceding code is run. We will show how
it can be done in the Creating files and directories section. And, to remind you, we have used
the try-with-resources statement because InputStream and OutputStream both
implement the Closeable interface.

PipedInputStream
A piped input stream has very particular specialization; it is used as one of the mechanisms
of communication between threads. One thread reads from a PipedInputStream object
and passes data to another thread that writes data to a PipedOutputStream object. Here is
an example:

PipedInputStream pis = new PipedInputStream();
PipedOutputStream pos = new PipedOutputStream(pis);

Alternatively, data can be moved in the opposite direction when one thread reads from
a PipedOutputStream object and another thread writes to a PipedInputStream object as
follows:

PipedOutputStream pos = new PipedOutputStream();
PipedInputStream pis = new PipedInputStream(pos);

Those who work in this area are familiar with the message, "Broken pipe", which means that
the supplying data pipe stream has stopped working.

The piped streams can also be created without any connection and connected later as
shown here:

PipedInputStream pis = new PipedInputStream();
PipedOutputStream pos = new PipedOutputStream();
pos.connect(pis);

For example, here are two classes that are going to be executed by different threads. First,
the PipedOutputWorker class as follows:

class PipedOutputWorker implements Runnable{
 private PipedOutputStream pos;
 public PipedOutputWorker(PipedOutputStream pos) {
 this.pos = pos;
 }
 @Override
 public void run() {

Strings, Input/Output, and Files Chapter 5

[180]

 try {
 for(int i = 1; i < 4; i++){
 pos.write(i);
 }
 pos.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

The PipedOutputWorker class has run() method (because it implements
a Runnable interface) that writes into the stream the three numbers 1, 2, and 3, and then
closes. Now let's look at PipedInputWorker class as shown here:

class PipedInputWorker implements Runnable{
 private PipedInputStream pis;
 public PipedInputWorker(PipedInputStream pis) {
 this.pis = pis;
 }
 @Override
 public void run() {
 try {
 int i;
 while((i = pis.read()) > -1){
 System.out.print(i + " ");
 }
 pis.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

It also has a run() method (because it implements a Runnable interface) that reads from
the stream and prints out each byte until the stream ends (indicated by -1). Now let's
connect these pipes and execute a run() methods of these classes:

PipedOutputStream pos = new PipedOutputStream();
PipedInputStream pis = new PipedInputStream();
try {
 pos.connect(pis);
 new Thread(new PipedOutputWorker(pos)).start();
 new Thread(new PipedInputWorker(pis)).start(); //prints: 1 2 3
} catch (Exception ex) {
 ex.printStackTrace();
}

Strings, Input/Output, and Files Chapter 5

[181]

As you can see, the objects of the workers were passed into the constructor of
the Thread class. The start() method of the Thread object executes the run() method of
the passed in Runnable. And we see the results we have expected; the PipedInputWorker
prints all the bytes written to the piped stream by the PipedOutputWorker. We will get
into more details about threads in Chapter 8, Multithreading and Concurrent Processing.

SequenceInputStream
The SequenceInputStream class concatenates input streams passed into one of the
following constructors as parameters:

SequenceInputStream(InputStream s1, InputStream s2)

SequenceInputStream(Enumeration<InputStream> e)

Enumeration is a collection of objects of the type indicated in the angle brackets, called
generics, meaning of type T. The SequenceInputStream class reads from the first input
string until it ends, whereupon it reads from the second one, and so on, until the end of the
last of the streams. For example, let's create a howAreYou.txt file (with the text How are
you?) in the resources folder next to
the hello.txt file. The SequenceInputStream class can then be used as follows:

try(FileInputStream fis1 =
 new FileInputStream("src/main/resources/hello.txt");
 FileInputStream fis2 =
 new FileInputStream("src/main/resources/howAreYou.txt");
 SequenceInputStream sis=new SequenceInputStream(fis1, fis2)){
 int i;
 while((i = sis.read()) > -1){
 System.out.print((char)i); //prints: Hello!How are you?
 }
} catch (Exception ex) {
 ex.printStackTrace();
}

Similarly, when an enumeration of input streams is passed in, each of the streams is read
(and printed in our case) until the end.

Strings, Input/Output, and Files Chapter 5

[182]

FilterInputStream
The FilterInputStream class is a wrapper around the InputStream object passed as a
parameter in the constructor. Here is the constructor and two read() methods of the
FilterInputStream class:

protected volatile InputStream in;
protected FilterInputStream(InputStream in) { this.in = in; }
public int read() throws IOException { return in.read(); }
public int read(byte b[]) throws IOException {
 return read(b, 0, b.length);
}

All the other methods of the InputStream class are overridden similarly; the function is
delegated to the object assigned to the in property.

As you can see, the constructor is protected, which means that only the child has access to
it. Such a design hides from the client the actual source of the stream and forces the
programmer to use one of the FilterInputStream class
extensions: BufferedInputStream, CheckedInputStream, DataInputStream,
PushbackInputStream,
javax.crypto.CipherInputStream, java.util.zip.DeflaterInputStream, java.u
til.zip.InflaterInputStream, java.security.DigestInputStream,
or javax.swing.ProgressMonitorInputStream. Alternatively, one can create a custom
extension. But, before creating your own extension, look at the listed classes and see if one
of them fits your needs. Here is an example of using a BufferedInputStream class:

try(FileInputStream fis =
 new FileInputStream("src/main/resources/hello.txt");
 FilterInputStream filter = new BufferedInputStream(fis)){
 int i;
 while((i = filter.read()) > -1){
 System.out.print((char)i); //prints: Hello!
 }
} catch (Exception ex) {
 ex.printStackTrace();
}

The BufferedInputStream class uses the buffer to improve the performance. When the
bytes from the stream are skipped or read, the internal buffer is automatically refilled
with as many bytes as necessary at the time, from the contained input stream.

The CheckedInputStream class adds a checksum of the data being read that allows the
verification of the integrity of the input data using getChecksum() method.

Strings, Input/Output, and Files Chapter 5

[183]

The DataInputStream class reads and interprets input data as primitive Java data types in
a machine-independent way.

The PushbackInputStream class adds the ability to push back the read data using
the unread() method. It is useful in situations when the code has the logic of analyzing the
just read data and deciding to unread it, so it can be re-read at the next step.

The javax.crypto.CipherInputStream class adds a Cipher to the read() methods. If
the Cipher is initialized for decryption, the javax.crypto.CipherInputStream will
attempt to decrypt the data before returning.

The java.util.zip.DeflaterInputStream class compresses data in the deflate
compression format.

The java.util.zip.InflaterInputStream class uncompresses data in the deflate
compression format.

The java.security.DigestInputStream class updates the associated message digest
using the bits going through the stream. The on (boolean on) method turns the digest
function on or off. The calculated digest can be retrieved using
the getMessageDigest() method.

The javax.swing.ProgressMonitorInputStream class provides a monitor of the
progress of reading from the InputStream. The monitor object can be accessed using
the getProgressMonitor() method.

javax.sound.sampled.AudioInputStream
The AudioInputStream class represents an input stream with a specified audio format
and length. It has the following two constructors:

AudioInputStream (InputStream stream, AudioFormat format, long

length): Accepts the stream of audio data, the requested format, and the length
in sample frames
AudioInputStream (TargetDataLine line): Accepts the target data line
indicated

The javax.sound.sampled.AudioFormat class describes audio-format properties such
as channels, encoding, frame rate, and similar.
The javax.sound.sampled.TargetDataLine class has open() method that opens the
line with the specified format and read() method that reads audio data from the data
line's input buffer.

Strings, Input/Output, and Files Chapter 5

[184]

There is also the javax.sound.sampled.AudioSystem class and its methods
handle AudioInputStream objects. They can be used for reading from an audio file, a
stream, or a URL, and write to an audio file. They also can be used to convert an audio
stream to another audio format.

Class OutputStream and its subclasses
The OutputStream class is a peer of the InputStream class that writes data instead of
reading. It is an abstract class that has the following direct implementations in the Java
Class Library (JCL): ByteArrayOutputStream, FilterOutputStream,
ObjectOutputStream, PipedOutputStream, and FileOutputStream.

The FileOutputStream class has the following direct extensions:
BufferedOutputStream, CheckedOutputStream, DataOutputStream, PrintStream,
javax.crypto.CipherOutputStream, java.util.zip.DeflaterOutputStream,
java.security.DigestOutputStream, and java.util.zip.InflaterOutputStream.

All of them either use as-is or override the following methods of the OutputStream class:

void close(): Closes the stream and releases the resources
void flush(): Forces the remaining bytes to be written out
static OutputStream nullOutputStream(): Creates a
new OutputStream that writes nothing
void write(byte[] b): Writes the provided byte array to the output stream
void write(byte[] b, int off, int len): Writes len bytes of the
provided byte array starting at off offset to the output stream
abstract void write(int b): Writes the provided byte to the output stream

The only method that has to be implemented is abstract void write(int b), but most
of the descendants of OutputStream class override many of the other methods too.

After learning about the input streams in the Class InputStream and its subclasses section, all
of the OutputStream implementations, except the PrintStream class, should be
intuitively familiar to you. So, we will discuss here only the PrintStream class.

Strings, Input/Output, and Files Chapter 5

[185]

PrintStream
The PrintStream class adds to another output stream the ability to print data as
characters. We have actually used it already many times. The System class has an object
of PrintStream class set as a System.out public static property. This means that a every
time we print something using System.out, we are using the PrintStream class:

System.out.println("Printing a line");

Let's look at another example of the PrintStream class usage:

String fileName = "output.txt";
try(FileOutputStream fos = new FileOutputStream(fileName);
 PrintStream ps = new PrintStream(fos)){
 ps.println("Hi there!");
} catch (Exception ex) {
 ex.printStackTrace();
}

As you can see, the PrintStream class takes FileOutputStream object and prints the
characters generated by it. In this case, it prints out all the bytes
the FileOutputStream writes to the file. By the way, there is no need to create the
destination file explicitly. If absent, it will be created automatically inside
the FileOutputStream constructor. If we open the file after the preceding code is run, we
will see one line in it: "Hi there!".

Alternatively, the same result can be achieved using another PrintStream constructor that
takes File object as follows:

String fileName = "output.txt";
File file = new File(fileName);
try(PrintStream ps = new PrintStream(file)){
 ps.println("Hi there!");
} catch (Exception ex) {
 ex.printStackTrace();
}

An even simpler solution can be created using the third variation of
the PrintStream constructor that takes the file name as a parameter:

String fileName = "output.txt";
try(PrintStream ps = new PrintStream(fileName)){
 ps.println("Hi there!");
} catch (Exception ex) {
 ex.printStackTrace();
}

Strings, Input/Output, and Files Chapter 5

[186]

The last two preceding examples are possible because the PrintStream constructor
uses the FileOutputStream class behind the scenes, exactly as we did it in the first
example of the PrintStream class usage. So, the PrintStream class has several
constructors just for the convenience, but all of them essentially have the same
functionality:

PrintStream(File file)

PrintStream(File file, String csn)

PrintStream(File file, Charset charset)

PrintStream(String fileName)

PrintStream(String fileName, String csn)

PrintStream(String fileName, Charset charset)

PrintStream(OutputStream out)

PrintStream(OutputStream out, boolean autoFlush)

PrintStream(OutputStream out, boolean autoFlush, String
encoding)

PrintStream(OutputStream out, boolean autoFlush, Charset
charset)

Some of the constructors also take a Charset instance or just its name (String csn),
which allows applying a different mapping between sequences of sixteen-bit Unicode code
units and sequences of bytes. You can see all available charsets by just printing them out as
shown here:

for (String chs : Charset.availableCharsets().keySet()) {
 System.out.println(chs);
}

Other constructors take a boolean autoFlush as a parameter. This parameter indicates
(when true) that the output buffer should be flushed automatically when an array is
written or the symbol end-of-line is encountered.

Once an object of PrintStream is created, it provides a variety of methods as listed here:

void print(T value): Prints the value of any T primitive type passed in
without moving to another line
void print(Object obj): Calls the toString() method on the passed in
object and prints the result without moving to another line; does not generate
a NullPointerException in case the passed-in object is null and prints null
instead

Strings, Input/Output, and Files Chapter 5

[187]

void println(T value): Prints the value of any T primitive type passed in
and moves to another line
void println(Object obj): Calls the toString() method on the passed-in
object, prints the result, and moves to another line; does not generate
a NullPointerException in case the passed-in object is null and
prints null instead
void println(): Just moves to another line
PrintStream printf(String format, Object... values): Substitutes
the placeholders in the provided format string with the provided values and
writes the result into the stream
PrintStream printf(Locale l, String format, Object...

args): Same as the preceding method but applies localization using the
provided Local object; if the provided Local object is null, no localization is
applied and this method behaves exactly like the preceding one
PrintStream format(String format, Object... args) and
PrintStream format(Locale l, String format, Object... args):
Behave the same way as PrintStream printf(String format, Object...
values) and PrintStream printf(Locale l, String format,
Object... args) (already described in the list) for example:

System.out.printf("Hi, %s!%n", "dear reader"); //prints: Hi, dear
reader!
System.out.format("Hi, %s!%n", "dear reader"); //prints: Hi, dear
reader!

In the preceding example, (%) indicates a formatting rule. The following symbol
(s) indicates a String value. Other possible symbols in this position can be (d)
(decimal), (f) (floating-point), and so on. The symbol (n) indicates a new line
(same as (\n) escape character). There are many formatting rules. All of them are
described in the documentation for java.util.Formatter class.

PrintStream append(char c), PrintStream append(CharSequence
c), PrintStream append(CharSequence c, int start, int end):
Append the provided character to the stream. For example:

System.out.printf("Hi %s", "there").append("!\n"); //prints: Hi
there!
System.out.printf("Hi ")
 .append("one there!\n two", 4, 11); //prints: Hi
there!

Strings, Input/Output, and Files Chapter 5

[188]

With this, we conclude the discussion of the OutputStream subclass and now turn our
attention to another class hierarchy—the Reader and Writer classes and their subclasses
from the JCL.

Reader and Writer classes and their subclasses
As we mentioned several times already, Reader and Writer classes are very similar in
their function to InputStream and OutputStream classes but specialize in processing
texts. They interpret stream bytes as characters and have their own independent
InputStream and OutputStream class hierarchy. It is possible to process stream bytes as
characters without Reader and Writer or any of their subclasses. We have seen such
examples in the preceding sections describing InputStream and OutputStream classes.
However, using Reader and Writer classes makes text processing simpler and the code
easier to read.

Reader and its subclasses
The class Reader is an abstract class that reads streams as characters. It is an analog to
InputStream and has the following methods:

abstract void close(): Closes the stream and other used resources
void mark(int readAheadLimit): Marks the current position in the stream
boolean markSupported(): Returns true if the stream supports the mark()
operation
static Reader nullReader(): Creates an empty Reader that reads no
characters
int read(): Reads one character
int read(char[] buf): Reads characters into the provided buf array and
returns the count of the read characters
abstract int read(char[] buf, int off, int len): Reads len
characters into an array starting from the off index
int read(CharBuffer target): Attempts to read characters into the
provided target buffer
boolean ready(): Returns true when the stream is ready to be read
void reset(): Resets the mark; however, not all streams support this
operation, while some support it, but do not support setting a mark

Strings, Input/Output, and Files Chapter 5

[189]

long skip(long n): Attempts to skip n characters; returns the count of
skipped characters
long transferTo(Writer out): Reads all characters from this reader and
writes the characters to the provided Writer object

As you can see, the only methods that need to be implemented are two abstract read()
and close() methods. Nevertheless, many children of this class override other methods
too, sometimes for better performance or different functionality. The Reader subclasses in
the JCL are: CharArrayReader, InputStreamReader, PipedReader,
StringReader, BufferedReader, and FilterReader. The BufferedReader class has
a LineNumberReader subclass, and the FilterReader class has
a PushbackReader subclass.

Writer and its subclasses
The abstract Writer class writes to character streams. It is an analog to OutputStream and
has the following methods:

Writer append(char c): Appends the provided character to the stream
Writer append(CharSequence c): Appends the provided character sequence
to the stream
Writer append(CharSequence c, int start, int end): Appends a
subsequence of the provided character sequence to the stream
abstract void close(): Flushes and closes the stream and related system
resources
abstract void flush(): Flushes the stream
static Writer nullWriter(): Creates a new Writer object that discards all
characters
void write(char[] c): Writes an array of c characters
abstract void write(char[] c, int off, int len): Writes len
elements of an array of c characters starting from the off index
void write(int c): Writes one character
void write(String str): Writes the provided string
void write(String str, int off, int len): Writes a substring of
len length from the provided str string starting from the off index

Strings, Input/Output, and Files Chapter 5

[190]

As you can see, the three abstract methods: write(char[], int, int), flush(), and
close() must be implemented by the children of this class. They also typically override
other methods too.

The Writer subclasses in the JCL are: CharArrayWriter, OutputStreamWriter,
PipedWriter, StringWriter, BufferedWriter, FilterWriter, and PrintWriter.
The OutputStreamWriter class has a FileWriter subclass.

Other classes of java.io package
Other classes of the java.io package include the following:

Console: Allows interacting with the character-based console device, associated
with the current JVM instance
StreamTokenizer: Takes an input stream and parses it into tokens
ObjectStreamClass: The serialization's descriptor for classes
ObjectStreamField: A description of a serializable field from a serializable
class
RandomAccessFile: Allows random access for reading from and writing to a
file, but its discussion is outside the scope of this book
File: Allows creating and managing files and directories; described in the Files
management section

Console
There are several ways to create and run a Java Virtual Machine (JVM) instance that
executes an application. If the JVM is started from a command line, a console window is
automatically opened. It allows typing on the display from the keyboard; however, the JVM
can be started by a background process too. In such a case, a console is not created.

To check programmatically if a console exists, one can invoke
the System.console() static method. If no console device is available then an invocation
of that method will return null. Otherwise, it will return an object of the Console
class that allows interacting with the console device and the application user.

Let's create the following ConsoleDemo class:

package com.packt.learnjava.ch05_stringsIoStreams;
import java.io.Console;
public class ConsoleDemo {

Strings, Input/Output, and Files Chapter 5

[191]

 public static void main(String... args) {
 Console console = System.console();
 System.out.println(console);
 }
}

If we run it from the IDE, as we usually do, the result will be as follows:

That is because the JVM was launched not from the command line. In order to do it, let's
compile our application and create a .jar file by executing the mvn clean
package Maven command in the root directory of the project. It will delete the
target folder, then recreate it, and compile all the .java files to the corresponding
.class files in the target folder, and then will archive them in a .jar file
learnjava-1.0-SNAPSHOT.jar.

Now we can launch the ConsoleDemo application from the same project root directory
using the following command:

java -cp ./target/learnjava-1.0-SNAPSHOT.jar
 com.packt.learnjava.ch05_stringsIoStreams.ConsoleDemo

The preceding command is shown in two lines because the page width cannot
accommodate it. But if you would like to run it, make sure you do it as one line. The result
will be as follows:

It tells us that we have the Console class object now. Let's see what we can do with it. The
class has the following methods:

String readLine(): Waits until the user hits the Enter key and reads the line of
text from the console
String readLine(String format, Object... args): Displays prompt
(the message produced after the provided format got the placeholders
substituted with the provided arguments), waits until the user hits key Enter, and
reads the line of text from the console; if no arguments args are provided,
displays the format as the prompt

Strings, Input/Output, and Files Chapter 5

[192]

char[] readPassword(): Performs the same function as readLine() function
but without echoing the typed characters
char[] readPassword(String format, Object... args): Performs the
same function as readLine(String format, Object... args) but without
echoing the typed characters

Let's demonstrate the preceding methods with the following example:

Console console = System.console();

String line = console.readLine();
System.out.println("Entered 1: " + line);
line = console.readLine("Enter something 2: ");
System.out.println("Entered 2: " + line);
line = console.readLine("Enter some%s", "thing 3: ");
System.out.println("Entered 3: " + line);

char[] password = console.readPassword();
System.out.println("Entered 4: " + new String(password));
password = console.readPassword("Enter password 5: ");
System.out.println("Entered 5: " + new String(password));
password = console.readPassword("Enter pass%s", "word 6: ");
System.out.println("Entered 6: " + new String(password));

The result of the preceding example is as follows:

Strings, Input/Output, and Files Chapter 5

[193]

Another group of Console class methods can be used in conjunction with the just
demonstrated methods:

Console format(String format, Object... args): Substitutes the
placeholders in the provided format string with the provided args values and
displays the result
Console printf(String format, Object... args): Behaves the same
way as the format() method

For example, look at the following line:

String line = console.format("Enter some%s", "thing:").readLine();

It produces the same result as this line:

String line = console.readLine("Enter some%s", "thing:");

And, finally, the last three methods of the Console class are as follows:

PrintWriter writer(): Creates a PrintWriter object associated with this
console that can be used for producing an output stream of characters
Reader reader(): Creates a Reader object associated with this console that can
be used for reading the input as a stream of characters
void flush(): Flushes the console and forces any buffered output to be written
immediately

Here is an example of their usage:

try (Reader reader = console.reader()){
 char[] chars = new char[10];
 System.out.print("Enter something: ");
 reader.read(chars);
 System.out.print("Entered: " + new String(chars));
} catch (IOException e) {
 e.printStackTrace();
}

PrintWriter out = console.writer();
out.println("Hello!");

console.flush();

Strings, Input/Output, and Files Chapter 5

[194]

The result of the preceding code looks as follows:

Reader and PrintWriter can also be used to create other Input and Output streams we
have been talking about in this section.

StreamTokenizer
The StreamTokenizer class parses the input stream and produces tokens. Its
StreamTokenizer(Reader r) constructor accepts a Reader object that is the source of
the tokens. Every time the int nextToken() method is called on the
StreamTokenizer object, the following happens:

The next token is parsed.1.
The StreamTokenizer instance field ttype is populated by the value that2.
indicates the token type:

The ttype value can be one of the following integer constants:
TT_WORD, TT_NUMBER, TT_EOL (end of line), or TT_EOF (end of
stream).
If the ttype value is
TT_WORD, the StreamTokenizer instance sval field is populated by
the String value of the token.
If the ttype value
is TT_NUMBER, the StreamTokenizer instance field nval is populated
by the double value of the token.

The lineno() method of the StreamTokenizer instance returns the current3.
line number.

Let's look at an example before talking about other methods of the
StreamTokenizer class. Let's assume that, in the project resources folder, there is
a tokens.txt file that contains the following four lines of text:

There
happened
42
events.

Strings, Input/Output, and Files Chapter 5

[195]

The following code will read the file and tokenize its content:

String filePath = "src/main/resources/tokens.txt";
try(FileReader fr = new FileReader(filePath);
 BufferedReader br = new BufferedReader(fr)){
 StreamTokenizer st = new StreamTokenizer(br);
 st.eolIsSignificant(true);
 st.commentChar('e');
 System.out.println("Line " + st.lineno() + ":");
 int i;
 while ((i = st.nextToken()) != StreamTokenizer.TT_EOF) {
 switch (i) {
 case StreamTokenizer.TT_EOL:
 System.out.println("\nLine " + st.lineno() + ":");
 break;
 case StreamTokenizer.TT_WORD:
 System.out.println("TT_WORD => " + st.sval);
 break;
 case StreamTokenizer.TT_NUMBER:
 System.out.println("TT_NUMBER => " + st.nval);
 break;
 default:
 System.out.println("Unexpected => " + st.ttype);
 }
 }
} catch (Exception ex){
 ex.printStackTrace();
}

If we run this code, the result will be the following:

We have used the BufferedReader class, which is a good practice for higher efficiency,
but in our case, we could easily avoid it like this:

 FileReader fr = new FileReader(filePath);
 StreamTokenizer st = new StreamTokenizer(fr);

Strings, Input/Output, and Files Chapter 5

[196]

The result would not change. We also used the following three methods we have not
described yet:

void eolIsSignificant(boolean flag): Indicates whether the end-of-line
should be treated as a token
void commentChar(int ch): Indicates which character starts a comment, so
the rest of the line is ignored
int lineno(): Returns the current line number

The following methods can be invoked using the StreamTokenizer object:

void lowerCaseMode(boolean fl): Indicates whether a word token should
be lowercased
void ordinaryChar(int ch), void ordinaryChars(int low, int
hi): Indicate a specific character or the range of characters that have to be treated
as ordinary (not as a comment character, word component, string delimiter, white
space, or number character)
void parseNumbers(): Indicates that a word token that has the format of a
double precision floating-point number has to be interpreted as a number, rather
than a word
void pushBack(): Forces the nextToken() method to return the current value
of the ttype field
void quoteChar(int ch): Indicates that the provided character has to be
interpreted as the beginning and the end of the string value that has to be taken
as-is (as a quote)
void resetSyntax(): Resets this tokenizer's syntax table so that all characters
are ordinary
void slashSlashComments(boolean flag): Indicates that C++ style
comments have to be recognized
void slashStarComments(boolean flag): Indicates that C style comments
have to be recognized
String toString(): Returns the string representation of the token and the line
number
void whitespaceChars(int low, int hi): Indicates the range of characters
that have to be interpreted as white space
void wordChars(int low, int hi): Indicates the range of characters that
have to be interpreted as a word

Strings, Input/Output, and Files Chapter 5

[197]

As you can see, using the wealth of the preceding methods allows fine-tuning of the text
interpretation.

ObjectStreamClass and ObjectStreamField
The ObjectStreamClass and ObjectStreamField class provide access to the serialized
data of a class loaded in the JVM. The ObjectStreamClass object can be found/created
using one of the following lookup methods:

static ObjectStreamClass lookup(Class cl): Finds the descriptor of a
serializable class
static ObjectStreamClass lookupAny(Class cl): Finds the descriptor for
any class, whether serializable or not

After the ObjectStreamClass is found and the class is serializable
(implements Serializable interface), it can be used to
access ObjectStreamField objects, each containing information about one serialized field.
If the class is not serializable, there is no ObjectStreamField object associated with any of
the fields.

Let's look at an example. Here is the method that displays information obtained from the
ObjectStreamClass and ObjectStreamField objects :

void printInfo(ObjectStreamClass osc) {
 System.out.println(osc.forClass());
 System.out.println("Class name: " + osc.getName());
 System.out.println("SerialVersionUID: " + osc.getSerialVersionUID());
 ObjectStreamField[] fields = osc.getFields();
 System.out.println("Serialized fields:");
 for (ObjectStreamField osf : fields) {
 System.out.println(osf.getName() + ": ");
 System.out.println("\t" + osf.getType());
 System.out.println("\t" + osf.getTypeCode());
 System.out.println("\t" + osf.getTypeString());
 }
}

To demonstrate how it works, we created a serializable Person1 class:

package com.packt.learnjava.ch05_stringsIoStreams;
import java.io.Serializable;
public class Person1 implements Serializable {
 private int age;
 private String name;

Strings, Input/Output, and Files Chapter 5

[198]

 public Person1(int age, String name) {
 this.age = age;
 this.name = name;
 }
}

We did not add methods because only the object state is serializable, not the methods. Now
let's run the following code:

ObjectStreamClass osc1 = ObjectStreamClass.lookup(Person1.class);
printInfo(osc1);

The result will be as follows:

As you can see, there is information about the class name and all field names and types.
There are also two other methods that can be called using the ObjectStreamField object:

boolean isPrimitive(): Returns true if this field has a primitive type
boolean isUnshared(): Returns true if this field is unshared (private or
accessible only from the same package)

Now let's create a non-serializable Person2 class:

package com.packt.learnjava.ch05_stringsIoStreams;
public class Person2 {
 private int age;
 private String name;
 public Person2(int age, String name) {
 this.age = age;
 this.name = name;
 }
}

Strings, Input/Output, and Files Chapter 5

[199]

This time, we will run the code that only looks up the class as follows:

ObjectStreamClass osc2 = ObjectStreamClass.lookup(Person2.class);
System.out.println("osc2: " + osc2); //prints: null

As has been expected, the non-serializable object was not found using
the lookup() method. In order to find a non-serializable object, we need to use
the lookupAny() method:

ObjectStreamClass osc3 = ObjectStreamClass.lookupAny(Person2.class);
printInfo(osc3);

If we run the preceding example, the result will be as follows:

From a non-serializable object, we were able to extract information about the class, but not
about the fields.

Class java.util.Scanner
The java.util.Scanner class is typically used to read an input from a keyboard but can
read text from any object that implements the Readable interface (this interface only
has int read(CharBuffer buffer) method). It breaks the input value by a delimiter
(white space is a default delimiter) into tokens that are processed using different methods.

For example, we can read an input from System.in—a standard input stream, which
typically represents the keyboard input:

Scanner sc = new Scanner(System.in);
System.out.print("Enter something: ");
while(sc.hasNext()){
 String line = sc.nextLine();
 if("end".equals(line)){
 System.exit(0);
 }
 System.out.println(line);
}

Strings, Input/Output, and Files Chapter 5

[200]

It accepts many lines (each line ends after the key Enter is pressed) until the line end is
entered as follows:

Alternatively, Scanner can read lines from a file:

String filePath = "src/main/resources/tokens.txt";
try(Scanner sc = new Scanner(new File(filePath))){
 while(sc.hasNextLine()){
 System.out.println(sc.nextLine());
 }
} catch (Exception ex){
 ex.printStackTrace();
}

As you can see, we have used the tokens.txt file again. The results are as follows:

To demonstrate Scanner breaking the input by a delimiter, let's run the following code:

String input = "One two three";
Scanner sc = new Scanner(input);
while(sc.hasNext()){
 System.out.println(sc.next());
}

The result is as follows:

Strings, Input/Output, and Files Chapter 5

[201]

To use another delimiter, it can be set as follows:

String input = "One,two,three";
Scanner sc = new Scanner(input).useDelimiter(",");
while(sc.hasNext()){
 System.out.println(sc.next());
}

The result remains the same:

It is also possible to use a regular expression for extracting the tokens, but this topic is
outside the scope of this book.

The Scanner class has many other methods that make its usage applicable to a variety of
sources and required results. The findInLine(), findWithinHorizon(), skip(), and
findAll() methods do not use the delimiter; they just try to match the provided pattern.
For more information, refer to Scanner documentation (https:/ /docs. oracle. com/ en/
java/javase/12/docs/ api/ java. base/ java/ util/ Scanner. html).

File management
We have already used some methods for finding, creating, reading, and writing files using
JCL classes. We had to do it in order to support a demo code of input/output streams. In
this section, we are going to talk about file management using JCL in more detail.

The File class from the java.io package represents the underlying filesystem. An object
of the File class can be created with one of the following constructors:

File(String pathname): Creates a new File instance based on the provided
pathname
File(String parent, String child): Creates a new File instance based
on the provided parent pathname and a child pathname
File(File parent, String child): Creates a new File instance based on
the provided parent File object and a child pathname
File(URI uri): Creates a new File instance based on the provided URI object
that represents the pathname

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Scanner.html

Strings, Input/Output, and Files Chapter 5

[202]

We will now see the examples of the constructors' usage while talking about creating and
deleting files.

Creating and deleting files and directories
To create a file or directory in the filesystem, one needs first to construct a new File object
using one of the constructors listed in the Files management section. For example, assuming
that the file name is FileName.txt, the File object can be created as new
File("FileName.txt"). If the file has to be created inside a directory, then either a path
has to be added in front of the file name (when it is passed into the constructor) or one of
the other three constructors has to be used. For example:

String path = "demo1" + File.separator + "demo2" + File.separator;
String fileName = "FileName.txt";
File f = new File(path + fileName);

Note the usage of File.separator instead of the slash symbol (/) or (\). That
is because the File.separator returns the platform-specific slash symbol. And here is an
example of another File constructor usage:

String path = "demo1" + File.separator + "demo2" + File.separator;
String fileName = "FileName.txt";
File f = new File(path, fileName);

Yet another constructor can be used as follows:

String path = "demo1" + File.separator + "demo2" + File.separator;
String fileName = "FileName.txt";
File f = new File(new File(path), fileName);

However, if you prefer or have to use a Universal Resource Identifier (URI), you can
construct a File object like this:

String path = "demo1" + File.separator + "demo2" + File.separator;
String fileName = "FileName.txt";
URI uri = new File(path + fileName).toURI();
File f = new File(uri);

Then, one of the following methods has to be invoked on the newly created File object:

boolean createNewFile(): If a file with this name does not yet exist, creates a
new file and returns true; otherwise, returns false

Strings, Input/Output, and Files Chapter 5

[203]

static File createTempFile(String prefix, String suffix): Creates
a file in the temporary-file directory
static File createTempFile(String prefix, String suffix, File

directory): Creates the directory; the provided prefix and suffix are used to
generate the directory name

If the file you would like to create has to be placed inside a directory that does not exist yet,
one of the following methods has to be used first, invoked on the File object that
represents the filesystem path to the file:

boolean mkdir(): creates the directory with the provided name
boolean mkdirs(): Creates the directory with the provided name,
including any necessary but nonexistent parent directories

And, before we look at a code example, we need to explain how the delete() method
works:

boolean delete(): Deletes the file or empty directory, which means you can
delete the file but not all of the directories as follows:

String path = "demo1" + File.separator + "demo2" + File.separator;
String fileName = "FileName.txt";
File f = new File(path + fileName);
f.delete();

Let's look at how to overcome this limitation in the following example:

String path = "demo1" + File.separator + "demo2" + File.separator;
String fileName = "FileName.txt";
File f = new File(path + fileName);
try {
 new File(path).mkdirs();
 f.createNewFile();
 f.delete();
 path = StringUtils.substringBeforeLast(path, File.separator);
 while (new File(path).delete()) {
 path = StringUtils.substringBeforeLast(path,
File.separator);
 }
} catch (Exception e) {
 e.printStackTrace();
}

Strings, Input/Output, and Files Chapter 5

[204]

This example creates and deletes a file and all related directories. Notice our usage of
the org.apache.commons.lang3.StringUtils class, which we have discussed in
the String utilities section. It allowed us to remove from the path the just deleted directory
and to continue doing it until all the nested directories are deleted, and the top level
directory is deleted last.

Listing files and directories
The following methods can be used for listing directories and the files in them:

String[] list(): Returns names of the files and directories in the directory
File[] listFiles(): Returns File objects that represent the files and
directories in the directory
static File[] listRoots(): Lists the available filesystem roots

In order to demonstrate the preceding methods, let's assume we have created the
directories and two files in them, as follows:

String path1 = "demo1" + File.separator;
String path2 = "demo2" + File.separator;
String path = path1 + path2;
File f1 = new File(path + "file1.txt");
File f2 = new File(path + "file2.txt");
File dir1 = new File(path1);
File dir = new File(path);
dir.mkdirs();
f1.createNewFile();
f2.createNewFile();

After that, we should be able to run the following code:

System.out.print("\ndir1.list(): ");
for(String d: dir1.list()){
 System.out.print(d + " ");
}
System.out.print("\ndir1.listFiles(): ");
for(File f: dir1.listFiles()){
 System.out.print(f + " ");
}
System.out.print("\ndir.list(): ");
for(String d: dir.list()){
 System.out.print(d + " ");
}
System.out.print("\ndir.listFiles(): ");

Strings, Input/Output, and Files Chapter 5

[205]

for(File f: dir.listFiles()){
 System.out.print(f + " ");
}
System.out.print("\nFile.listRoots(): ");
for(File f: File.listRoots()){
 System.out.print(f + " ");
}

The result should be as follows:

The demonstrated methods can be enhanced by adding the following filters to them, so
they will list only the files and directories that match the filter:

String[] list(FilenameFilter filter)

File[] listFiles(FileFilter filter)

File[] listFiles(FilenameFilter filter)

However, discussion of the file filters is outside the scope of this book.

Apache Commons utilities FileUtils and
IOUtils
The popular companion of JCL is the Apache Commons project (https:/ /commons. apache.
org) that provides many libraries that compliment the JCL functionality. The classes of
the org.apache.commons.io package are contained in the following root package
and sub-packages:

The org.apache.commons.io root package contains utility classes with static
methods for common tasks, like the popular FileUtils and IOUtils classes
described in the sections Class FileUtils and Class IOUtils, respectively.
The org.apache.commons.io.input package contains classes that support
input based on InputStream and Reader implementations,
like XmlStreamReader or ReversedLinesFileReader.

https://commons.apache.org
https://commons.apache.org
https://commons.apache.org
https://commons.apache.org
https://commons.apache.org
https://commons.apache.org
https://commons.apache.org
https://commons.apache.org

Strings, Input/Output, and Files Chapter 5

[206]

The org.apache.commons.io.output package contains classes that support
output based on OutputStream and Writer implementations,
like XmlStreamWriter or StringBuilderWriter.
The org.apache.commons.io.filefilter package contains classes that serve
as file filters, like DirectoryFileFilter or RegexFileFilter.
The org.apache.commons.io.comparator package contains various
implementations of java.util.Comparator for files,
like NameFileComparator.
The org.apache.commons.io.serialization package provides a framework
for controlling the deserialization of classes.
The org.apache.commons.io.monitor package allows monitoring filesystems
and checking for a directory or file creating, updating, or deleting; one can
launch the FileAlterationMonitor object as a thread and create an object of
FileAlterationObserver that performs a check of the changes in the
filesystem at the specified interval.

Refer to Apache Commons project documentation (https:/ /commons. apache. org) for more
details.

Class FileUtils
A popular org.apache.commons.io.FileUtils class allows doing all possible
operations with files, as follows:

Writing to a file
Reading from a file
Making a directory including parent directories
Copying files and directories
Deleting files and directories
Converting to and from a URL
Listing files and directories by filter and extension
Comparing files content
Getting a file last-changed date
Calculating a checksum

https://commons.apache.org
https://commons.apache.org
https://commons.apache.org
https://commons.apache.org
https://commons.apache.org
https://commons.apache.org
https://commons.apache.org
https://commons.apache.org
https://commons.apache.org

Strings, Input/Output, and Files Chapter 5

[207]

If you plan to manage files and directories programmatically, it is imperative that you
study the documentation of this class on the Apache Commons project website (https:/ /
commons.apache.org/ proper/ commons- io/ javadocs/ api- 2. 5/org/ apache/ commons/ io/
FileUtils.html).

Class IOUtils
The org.apache.commons.io.IOUtils is another very useful utility class that provides
the following general IO streams manipulation methods:

The closeQuietly methods that close a stream ignoring nulls and exceptions
toXxx/read methods that read data from a stream
write methods that write data to a stream
copy methods that copy all the data from one stream to another
contentEquals methods that compare the content of two streams

All the methods in this class that read a stream are buffered internally, so there is no need
to use the BufferedInputStream or BufferedReader class. The copy methods all use
copyLarge methods behind the scene that substantially increase their performance and
efficiency.

This class is indispensable for managing the IO streams. See more details about this class
and its methods on the Apache Commons project website (https:/ /commons. apache. org/
proper/commons-io/ javadocs/ api- 2. 5/org/ apache/ commons/ io/ IOUtils. html).

Summary
In this chapter, we have discussed the String class methods that allow analyzing strings,
comparing, and transforming them. We have also discussed popular string utilities from
JCL and the Apache Commons project. Two big sections of this chapter were dedicated to
the input/output streams and the supporting classes in JCL and the Apache Commons
project. The file managing classes and their methods were also discussed and demonstrated
in specific code examples.

In the next chapter, we will present the Java collections framework and its three main
interfaces, List, Set, and Map, including discussion and demonstration of generics. We
will also discuss utility classes for managing arrays, objects, and time/date values.

https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/FileUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html

Strings, Input/Output, and Files Chapter 5

[208]

Quiz
What does the following code print?1.

String str = "&8a!L";
System.out.println(str.indexOf("a!L"));

3a.
2b.
1c.
0d.

What does the following code print?2.

String s1 = "x12";
String s2 = new String("x12");
System.out.println(s1.equals(s2));

Errora.
Exceptionb.
truec.
falsed.

What does the following code print?3.

System.out.println("%wx6".substring(2));

wxa.
x6b.
%wc.
Exceptiond.

What does the following code print?4.

System.out.println("ab"+"42".repeat(2));

ab4242a.
ab42ab42b.
ab422c.
Errord.

Strings, Input/Output, and Files Chapter 5

[209]

What does the following code print?5.

String s = " ";
System.out.println(s.isBlank()+" "+s.isEmpty());

false falsea.
false trueb.
true truec.
true falsed.

Select all correct statements:6.
A stream can represent a data sourcea.
An input stream can write to a fileb.
A stream can represent a data destinationc.
An output stream can display data on a screend.

Select all correct statements about classes of java.io package:7.
Reader extends InputStreama.
Reader extends OutputStreamb.
Reader extends java.lang.Objectc.
Reader extends java.lang.Inputd.

Select all correct statements about classes of java.io package:8.
Writer extends FilterOutputStreama.
Writer extends OutputStreamb.
Writer extends java.lang.Outputc.
Writer extends java.lang.Objectd.

Select all correct statements about classes of java.io package:9.
PrintStream extends FilterOutputStreama.
PrintStream extends OutputStreamb.
PrintStream extends java.lang.Objectc.
PrintStream extends java.lang.Outputd.

Strings, Input/Output, and Files Chapter 5

[210]

What does the following code do?10.

String path = "demo1" + File.separator + "demo2" + File.separator;
String fileName = "FileName.txt";
File f = new File(path, fileName);
try {
 new File(path).mkdir();
 f.createNewFile();
} catch (Exception e) {
 e.printStackTrace();
}

Creates two directories and a file in demo2 directorya.
Creates one directory and a file in itb.
Does not create any directoryc.
Exceptiond.

6
Data Structures, Generics, and

Popular Utilities
This chapter presents the Java collections framework and its three main
interfaces: List, Set, and Map, including a discussion and demonstration of generics.
The equals() and hashCode() methods are also discussed in the context of Java
collections. Utility classes for managing arrays, objects, and time/date values have
corresponding dedicated sections too.

The following topics will be covered in this chapter:

List, Set, and Map interfaces
Collections utilities
Arrays utilities
Object utilities
The java.time package

List, Set, and Map interfaces
The Java collections framework consists of the classes and interfaces that implement a
collection data structure. Collections are similar to arrays in that respect as they can hold
references to objects and can be managed as a group. The difference is that arrays require
their capacity being defined before they can be used, while collections can increase and
decrease their size automatically as needed. You just add or remove an object reference to a
collection, and the collection changes its size accordingly. Another difference is that the
collections cannot have their elements to be primitive types, such as short, int, or double.
If you need to store such type values, the elements must be of a corresponding wrapper
type, such as Short, Integer, or Double, for example.

Data Structures, Generics, and Popular Utilities Chapter 6

[212]

Java collections support various algorithms of storing and accessing the elements of a
collection: an ordered list, a unique set, a dictionary called a map in Java, a stack, a queue,
and some others. All the classes and interfaces of the Java collections framework belong to
the java.util package of the Java Class Library. The java.util package contains the
following:

The interfaces that extend the Collection interface: List, Set, and Queue, to
name the most popular ones
The classes that implement the previously listed interfaces: ArrayList,
HashSet, Stack, LinkedList, and some others
The Map interface and its sub-interfaces, ConcurrentMap, and SortedMap, to
name a couple
The classes that implement the Map-related interfaces: HashMap, HashTable,
and TreeMap, to name the three most frequently used

To review all the classes and interfaces of the java.util package would require a
dedicated book. So, in this section, we will just have a brief overview of the three main
interfaces: List, Set, and Map—and one implementation class for each of
them—ArrayList, HashSet, and HashMap. We start with methods that are shared by
the List and Set interfaces. The principal difference between List and Set is
that Set does not allow duplication of the elements. Another difference is that List
preserves the order of the elements and also allows them to be sorted.

To identify an element inside a collection, the equals() method is used. To improve
performance, the classes that implement the Set interface often use
the hashCode() method too. This facilitates rapid calculation of an integer (called a hash
value or hash code) that is, most of the time (but not always), unique to each element. The
elements with the same hash value are placed in the same bucket. While establishing
whether there is already a certain value in the set, it is enough to check the internal hash
table and see whether such a value has already been used. If not, the new element is
unique. If yes, then the new element can be compared (using the equals() method) with
each of the elements with the same hash value. Such a procedure is faster than comparing a
new element with each element of the set one by one.

That is why we often see that the name of the classes has a "hash" prefix, indicating that the
class uses the hash value, so the element must implement the hashCode() method. While
doing this, you must make sure that it is implemented so that every time
the equals() method returns true for two objects, the hash values of these two objects
returned by the hashCode() method are equal too. Otherwise, the just described algorithm
of using the hash value will not work.

Data Structures, Generics, and Popular Utilities Chapter 6

[213]

And finally, before talking about the java.util interfaces, a few words about generics.

Generics
You can see these most often in such declarations:

List<String> list = new ArrayList<String>();
Set<Integer> set = new HashSet<Integer>();

In the preceding examples, generics is the element nature declaration surrounded by the
angle brackets. As you can see, they are redundant, as they are repeated in the left- and
right-hand sides of the assignment statement. That is why Java allows replacement of the
generics on the right side with empty brackets (<>) called a diamond:

List<String> list = new ArrayList<>();
Set<Integer> set = new HashSet<>();

Generics inform the compiler about the expected type of the collection elements. This way,
the compiler can check whether the element a programmer tries to add to the declared
collection is of a compatible type. Observe the following, for example:

List<String> list = new ArrayList<>();
list.add("abc");
list.add(42); //compilation error

This helps to avoid runtime errors. It also tips off the programmer (because an IDE
compiles the code when a programmer writes it) about possible manipulations of the
collection elements.

We will also see these other types of generics:

<? extends T> means a type that is either T or a child of T, where T is the type
used as the generics of the collection.
<? super T> means a type T or any of its base (parent) class, where T is the type
used as the generics of the collection.

With that, let's start with the way an object of the class that implements the List or Set
interface can be created, or, in other words, the List or Set type of variable can be
initialized. To demonstrate the methods of these two interfaces, we will use two classes: an
ArrayList (implements List) and HashSet (implements Set).

Data Structures, Generics, and Popular Utilities Chapter 6

[214]

How to initialize List and Set
Since Java 9, the List or Set interfaces have static of() factory methods that can be used
to initialize a collection:

of(): Returns an empty collection.
of(E... e): Returns a collection with as many elements as are passed in during
the call. They can be passed in a comma-separated list or as an array.

Here are a few examples:

//Collection<String> coll = List.of("s1", null); //does not allow null
Collection<String> coll = List.of("s1", "s1", "s2");
//coll.add("s3"); //does not allow add element
//coll.remove("s1"); //does not allow remove element
((List<String>) coll).set(1, "s3"); //does not allow modify element
System.out.println(coll); //prints: [s1, s1, s2]

//coll = Set.of("s3", "s3", "s4"); //does not allow duplicate
//coll = Set.of("s2", "s3", null); //does not allow null
coll = Set.of("s3", "s4");
System.out.println(coll); //prints: [s3, s4]

//coll.add("s5"); //does not allow add element
//coll.remove("s2"); //does not allow remove

As you might expect, the factory method for Set does not allow duplicates, so we have
commented the line out (otherwise, the preceding example would stop running at that
line). What was less expected is that you cannot have a null element, and you cannot
add/remove/modify elements of a collection after it was initialized using one of the of()
methods. That's why we have commented out some lines of the preceding example. If you
need to add elements after the collection was initialized, you have to initialize it using a
constructor or some other utilities that create a modifiable collection (we will see an
example of Arrays.asList() shortly).

The interface Collection provides two methods for adding elements to an object that
implements Collection (the parent interface of List and Set) that looks as follows:

boolean add(E e): This attempts to add the provided element e to the
collection; returns true in case of success, and false in case of not being able to
accomplish it (for example, when such an element already exists in the Set).

Data Structures, Generics, and Popular Utilities Chapter 6

[215]

boolean addAll(Collection<? extends E> c): This attempts to add all of
the elements in the provided collection to the collection; it returns true if at least
one element was added, and false in case of not able to add an element to the
collection (for example, when all the elements of the provided collection c
already exist in the Set).

Here is an example of using the add() method:

List<String> list1 = new ArrayList<>();
list1.add("s1");
list1.add("s1");
System.out.println(list1); //prints: [s1, s1]

Set<String> set1 = new HashSet<>();
set1.add("s1");
set1.add("s1");
System.out.println(set1); //prints: [s1]

And here is an example of using the addAll() method:

List<String> list1 = new ArrayList<>();
list1.add("s1");
list1.add("s1");
System.out.println(list1); //prints: [s1, s1]

List<String> list2 = new ArrayList<>();
list2.addAll(list1);
System.out.println(list2); //prints: [s1, s1]

Set<String> set = new HashSet<>();
set.addAll(list1);
System.out.println(set); //prints: [s1]

The following is an example of the add() and addAll() methods' functionality:

List<String> list1 = new ArrayList<>();
list1.add("s1");
list1.add("s1");
System.out.println(list1); //prints: [s1, s1]

List<String> list2 = new ArrayList<>();
list2.addAll(list1);
System.out.println(list2); //prints: [s1, s1]

Set<String> set = new HashSet<>();
set.addAll(list1);
System.out.println(set); //prints: [s1]

Data Structures, Generics, and Popular Utilities Chapter 6

[216]

Set<String> set1 = new HashSet<>();
set1.add("s1");

Set<String> set2 = new HashSet<>();
set2.add("s1");
set2.add("s2");

System.out.println(set1.addAll(set2)); //prints: true
System.out.println(set1); //prints: [s1, s2]

Notice how, in the last example in the preceding code snippet, the set1.addAll(set2)
method returns true, although not all elements were added. To see the case of
the add() and addAll() methods returning false, look at the following examples:

Set<String> set = new HashSet<>();
System.out.println(set.add("s1")); //prints: true
System.out.println(set.add("s1")); //prints: false
System.out.println(set); //prints: [s1]

Set<String> set1 = new HashSet<>();
set1.add("s1");
set1.add("s2");

Set<String> set2 = new HashSet<>();
set2.add("s1");
set2.add("s2");

System.out.println(set1.addAll(set2)); //prints: false
System.out.println(set1); //prints: [s1, s2]

The ArrayList and HashSet classes also have constructors that accept a collection:

Collection<String> list1 = List.of("s1", "s1", "s2");
System.out.println(list1); //prints: [s1, s1, s2]

List<String> list2 = new ArrayList<>(list1);
System.out.println(list2); //prints: [s1, s1, s2]

Set<String> set = new HashSet<>(list1);
System.out.println(set); //prints: [s1, s2]

List<String> list3 = new ArrayList<>(set);
System.out.println(list3); //prints: [s1, s2]

Now, after we have learned how a collection can be initialized, we can turn to other
methods in the List and Set interfaces.

Data Structures, Generics, and Popular Utilities Chapter 6

[217]

java.lang.Iterable interface
The Collection interface extends the java.lang.Iterable interface, which means
that those classes that implement the Collection interface, directly or not, also implement
the java.lang.Iterable interface. There are only three methods in
the Iterable interface:

Iterator<T> iterator(): This returns an object of a class that implements
the java.util.Iterator interface; it allows the collection to be used in FOR
statements, for example:

Iterable<String> list = List.of("s1", "s2", "s3");
System.out.println(list); //prints: [s1, s2, s3]

for(String e: list){
 System.out.print(e + " "); //prints: s1 s2 s3
}

default void forEach (Consumer<? super T> function): This applies
the provided function of the Consumer type to each element of the collection
until all elements have been processed or the function throws an exception. What
function is, we will discuss this in Chapter 13, Functional Programming; for now,
we will just provide an example:

Iterable<String> list = List.of("s1", "s2", "s3");
System.out.println(list); //prints: [s1, s2,
s3]
list.forEach(e -> System.out.print(e + " ")); //prints: s1 s2 s3

default Spliterator<T> splititerator(): This returns an object of a class
that implements the java.util.Spliterator interface; it is used primarily for
implementing methods that allow parallel processing and is outside the scope of
this book.

Collection interface
As we have mentioned already, the List and Set interfaces extend
the Collection interface, which means that all the methods of the Collection interface
are inherited by List and Set. These methods are as follows:

boolean add(E e): This attempts to add an element to the collection.

Data Structures, Generics, and Popular Utilities Chapter 6

[218]

boolean addAll(Collection<? extends E> c): This attempts to add all of
the elements in the collection provided.
boolean equals(Object o): This compares the collection with
the o object provided; if the object provided is not a collection, this object returns
false; otherwise, it compares the composition of the collection with the
composition of the collection provided (as o object); in the case of List, it also
compares the order of the elements. Let's illustrate this with a few examples:

Collection<String> list1 = List.of("s1", "s2", "s3");
System.out.println(list1); //prints: [s1, s2, s3]

Collection<String> list2 = List.of("s1", "s2", "s3");
System.out.println(list2); //prints: [s1, s2, s3]

System.out.println(list1.equals(list2)); //prints: true

Collection<String> list3 = List.of("s2", "s1", "s3");
System.out.println(list3); //prints: [s2, s1, s3]

System.out.println(list1.equals(list3)); //prints: false

Collection<String> set1 = Set.of("s1", "s2", "s3");
System.out.println(set1); //prints: [s2, s3, s1] or different
order

Collection<String> set2 = Set.of("s2", "s1", "s3");
System.out.println(set2); //prints: [s2, s1, s3] or different
order

System.out.println(set1.equals(set2)); //prints: true

Collection<String> set3 = Set.of("s4", "s1", "s3");
System.out.println(set3); //prints: [s4, s1, s3] or different
order

System.out.println(set1.equals(set3)); //prints: false

int hashCode(): This returns the hash value for the collection; it is used in the
case where the collection is an element of a collection that requires
the hashCode() method implementation.

Data Structures, Generics, and Popular Utilities Chapter 6

[219]

boolean isEmpty(): This returns true if the collection does not have any
elements.
int size(): This returns the count of elements of the collection; when
the isEmpty() method returns true, this method returns 0.
void clear(): This removes all of the elements from the collection; after this
method is called, the isEmpty() method returns true, and the size() method
returns 0.
boolean contains(Object o): This returns true if the collection contains the
provided object o; for this method to work correctly, each element of the
collection and the provided object must implement equals() method and, in the
case of Set, hashCode() method should be implemented.
boolean containsAll(Collection<?> c): This returns true if the collection
contains all of the elements in the collection provided; for this method to work
correctly, each element of the collection and each element of the collection
provided must implement the equals() method and, in the case of Set,
the hashCode() method should be implemented.
boolean remove(Object o): This attempts to remove the specified element
from this collection and returns true if it was present; for this method to work
correctly, each element of the collection and the object provided must implement
the equals() method and, in the case of Set, the hashCode() method should
be implemented
boolean removeAll(Collection<?> c): This attempts to remove from the
collection all the elements of the collection provided; similar to the
addAll() method, this method returns true if at least one of the elements was
removed; otherwise, it returns false; for this method to work correctly, each
element of the collection and each element of the collection provided must
implement the equals() method and, in the case of Set,
the hashCode() method should be implemented
default boolean removeIf(Predicate<? super E> filter):
This attempts to remove from the collection all the elements that satisfy the given
predicate; it is a function we are going to describe in Chapter 13, Functional
Programming; it returns true if at least one element was removed

Data Structures, Generics, and Popular Utilities Chapter 6

[220]

boolean retainAll(Collection<?> c): This attempts to retain in the
collection just the elements contained in the collection provided; similar to
the addAll() method, this method returns true if at least one of the elements is
retained; otherwise, it returns false; for this method to work correctly, each
element of the collection and each element of the collection provided must
implement the equals() method and, in the case of Set, the
hashCode() method should be implemented.
Object[] toArray(), T[] toArray(T[] a): This converts the collection to
an array.
default T[] toArray(IntFunction<T[]> generator): This converts the
collection to an array, using the function provided; we are going to explain
functions in Chapter 13, Functional Programming.
default Stream<E> stream(): This returns a Stream object (we talk about
streams in Chapter 14, Java Standard Streams).
default Stream<E> parallelStream(): This returns a possibly
parallel Stream object (we talk about streams in Chapter 14, Java Standard
Streams).

List interface
The List interface has several other methods that do not belong to any of its parent
interfaces:

Static factory of() methods described in the How to initialize List and
Set subsection
void add(int index, E element): This inserts the element provided at the
provided position in the list.
static List<E> copyOf(Collection<E> coll): This returns an
unmodifiable List containing the elements of the given Collection and
preserves their order; here is the code that demonstrates the functionality of this
method:

Collection<String> list = List.of("s1", "s2", "s3");
System.out.println(list); //prints: [s1, s2, s3]

List<String> list1 = List.copyOf(list);
//list1.add("s4"); //run-time error
//list1.set(1, "s5"); //run-time error
//list1.remove("s1"); //run-time error

Data Structures, Generics, and Popular Utilities Chapter 6

[221]

Set<String> set = new HashSet<>();
System.out.println(set.add("s1"));
System.out.println(set); //prints: [s1]

Set<String> set1 = Set.copyOf(set);
//set1.add("s2"); //run-time error
//set1.remove("s1"); //run-time error

Set<String> set2 = Set.copyOf(list);
System.out.println(set2); //prints: [s1, s2, s3]

E get(int index): This returns the element located at the position specified in
the list
List<E> subList(int fromIndex, int toIndex): Extracts a sublist
between the fromIndex, inclusive, and the toIndex, exclusive
int indexOf(Object o): This returns the first index (position) of the specified
element in the list; the first element in the list has an index (position), 0.
int lastIndexOf(Object o): This returns the last index (position) of the
specified element in the list; the final element in the list has list.size() - 1
index position.
E remove(int index): This removes the element located at the specified
position in the list; it returns the element removed.
E set(int index, E element): This replaces the element located at the
position specified in the list; it returns the element replaced.
default void replaceAll(UnaryOperator<E> operator): This transforms
the list by applying the function provided to each
element; the UnaryOperator function will be described in Chapter
13, Functional Programming.
ListIterator<E> listIterator(): Returns a ListIterator object that
allows the list to be traversed backward.
ListIterator<E> listIterator(int index): Returns
a ListIterator object that allows the sublist (starting from the provided
position) to be traversed backward. Observe the following, for example:

List<String> list = List.of("s1", "s2", "s3");
ListIterator<String> li = list.listIterator();
while(li.hasNext()){
 System.out.print(li.next() + " "); //prints: s1 s2 s3
}
while(li.hasPrevious()){
 System.out.print(li.previous() + " "); //prints: s3 s2 s1
}

Data Structures, Generics, and Popular Utilities Chapter 6

[222]

ListIterator<String> li1 = list.listIterator(1);
while(li1.hasNext()){
 System.out.print(li1.next() + " "); //prints: s2 s3
}
ListIterator<String> li2 = list.listIterator(1);
while(li2.hasPrevious()){
 System.out.print(li2.previous() + " "); //prints: s1
}

default void sort(Comparator<? super E> c): This sorts the list
according to the order generated by the Comparator provided. Observe the
following, for example:

List<String> list = new ArrayList<>();
list.add("S2");
list.add("s3");
list.add("s1");
System.out.println(list); //prints: [S2, s3, s1]

list.sort(String.CASE_INSENSITIVE_ORDER);
System.out.println(list); //prints: [s1, S2, s3]

//list.add(null); //causes NullPointerException
list.sort(Comparator.naturalOrder());
System.out.println(list); //prints: [S2, s1, s3]

list.sort(Comparator.reverseOrder());
System.out.println(list); //prints: [s3, s1, S2]

list.add(null);
list.sort(Comparator.nullsFirst(Comparator.naturalOrder()));
System.out.println(list); //prints: [null, S2, s1, s3]

list.sort(Comparator.nullsLast(Comparator.naturalOrder()));
System.out.println(list); //prints: [S2, s1, s3, null]

Comparator<String> comparator = (s1, s2) ->
 s1 == null ? -1 : s1.compareTo(s2);
list.sort(comparator);
System.out.println(list); //prints: [null, S2, s1, s3]

There are principally two ways to sort a list:

Using Comparable interface implementation (called natural order)
Using Comparator interface implementation

Data Structures, Generics, and Popular Utilities Chapter 6

[223]

The Comparable interface only has a compareTo() method. In the preceding example, we
have implemented the Comparator interface basing it on the Comparable interface
implementation in the String class. As you can see, this implementation provided the
same sort order as Comparator.nullsFirst(Comparator.naturalOrder()). This style
of implementing is called functional programming, which we will discuss in more detail
in Chapter 13, Functional Programming.

Set interface
The Set interface has the following methods that do not belong to any of its parent
interfaces:

Static of() factory methods described in the How to initialize List and
Set subsection.
The static Set<E> copyOf(Collection<E> coll) method: This returns an
unmodifiable Set containing the elements of the given Collection; it works the
same way as the static <E> List<E> copyOf(Collection<E>
coll) method described in the Interface List section.

Map interface
The Map interface has many methods similar to the List and Set methods:

int size()

void clear()

int hashCode()

boolean isEmpty()

boolean equals(Object o)

default void forEach(BiConsumer<K,V> action)

Static factory methods: of(), of(K k, V v), of(K k1, V v1, K k2, V v2),
and many other methods besides

Map interface, however, does not extend Iterable, Collection, or any other interface for
that matter. It is designed to be able to store values by their keys. Each key is unique. While
several equal values can be stored with different keys on the same map. The combination of
key and value constitutes an Entry, which is an internal interface of Map. Both value and
key objects must implement the equals() method. A key object must also implement
the hashCode() method.

Data Structures, Generics, and Popular Utilities Chapter 6

[224]

Many methods of Map interface have exactly the same signature and functionality as in
the List and Set interfaces, so we are not going to repeat them here. We will only walk
through the Map-specific methods:

V get(Object key): This retrieves the value according to the key provided; it
returns null if there is no such key.
Set<K> keySet(): This retrieves all the keys from the map.
Collection<V> values(): This retrieves all the values from the map.
boolean containsKey(Object key): This returns true if the key provided
exists in the map.
boolean containsValue(Object value): This returns true if the value
provided exists in the map.
V put(K key, V value): This adds the value and its key to the map; it returns
the previous value stored with the same key.
void putAll(Map<K,V> m): This copies from the map provided all the key-
value pairs.
default V putIfAbsent(K key, V value): This stores the value provided
and maps to the key provided if such a key is not already used by the map;
returns the value mapped to the key provided—either the existing or the new
one.
V remove(Object key): This removes both the key and value from the map; it
returns a value or null if there is no such key, or if the value is null.
default boolean remove(Object key, Object value): This removes the
key-value pair from the map if such a pair exists in the map.
default V replace(K key, V value): This replaces the value if the key
providedis currently mapped to the value provided; it returns the old value if it
was replaced; otherwise, it returns null.
default boolean replace(K key, V oldValue, V

newValue): This replaces the value oldValue with the newValue provided if
the key provided is currently mapped to the oldValue; it returns true if the
oldValue was replaced; otherwise, it returns false.
default void replaceAll(BiFunction<K,V,V> function): This applies
the function provided to each key-value pair in the map and replaces it with the
result, or throws an exception if this is not possible.

Data Structures, Generics, and Popular Utilities Chapter 6

[225]

Set<Map.Entry<K,V>> entrySet(): This returns a set of all key-value pairs as
the objects of Map.Entry.
default V getOrDefault(Object key, V defaultValue): This returns
the value mapped to the key provided or the defaultValue if the map does not
have the key provided.
static Map.Entry<K,V> entry(K key, V value): This returns an
unmodifiable Map.Entry object with the key and value provided in it.
static Map<K,V> copy(Map<K,V> map): This converts the Map provided to
an unmodifiable one.

The following Map methods are much too complicated for the scope of this book, so we are
just mentioning them for the sake of completeness. They allow multiple values to be
combined or calculated and aggregated in a single existing value in the Map, or a new one
to be created:

default V merge(K key, V value, BiFunction<V,V,V>

remappingFunction): If the provided key-value pair exists and the value is not
null, the provided function is used to calculate a new value; it removes the key-
value pair if the newly calculated value is null; if the key-value pair provided
does not exist or the value is null, the non-null value provided replaces the
current one; this method can be used for aggregating several values; for example,
it can be used for concatenating the following string values: map.merge(key,
value, String::concat); we will explain what String::concat means
in Chapter 13, Functional Programming.
default V compute(K key, BiFunction<K,V,V> remappingFunction): It
computes a new value using the function provided.
default V computeIfAbsent(K key,

Function<K,V> mappingFunction): It computes a new value using the
function provided only if the provided key is not already associated with a value,
or the value is null.
default V computeIfPresent(K key, BiFunction<K,V,V>

remappingFunction): This computes a new value using the function provided
only if the provided key is already associated with a value and the value is
not null.

Data Structures, Generics, and Popular Utilities Chapter 6

[226]

This last group of computing and merging methods is rarely used. The most popular, by far,
are the V put(K key, V value) and V get(Object key) methods, which allow the use
of the main Map function of storing key-value pairs and retrieving the value using the key.
The Set<K> keySet() method is often used for iterating over the map's key-value pairs,
although the entrySet() method seems a more natural way of doing that. Here is an
example:

Map<Integer, String> map = Map.of(1, "s1", 2, "s2", 3, "s3");

for(Integer key: map.keySet()){
 System.out.print(key + ", " + map.get(key) + ", ");
 //prints: 3, s3, 2, s2, 1, s1,
}
for(Map.Entry e: map.entrySet()){
 System.out.print(e.getKey() + ", " + e.getValue() + ", ");
 //prints: 2, s2, 3, s3, 1, s1,
}

The first of the for loops in the preceding code example uses the more widespread way to
access the key-pair values of a map by iterating over the keys. The second for loop iterates
over the set of entries, which, in our opinion, is a more natural way to do it. Notice that the
printed-out values are not in the same order we have put them in the map. That is because,
since Java 9, the unmodifiable collections (that is, what of() factory methods produce)
have added randomization to the order of Set elements. It changes the order of the
elements between different code executions. Such a design was done to make sure a
programmer does not rely on a certain order of Set elements, which is not guaranteed for a
set.

Unmodifiable collections
Please note that collections produced by the of() factory methods used to be called
immutable in Java 9, and unmodifiable since Java 10. That is because an immutable
implies that you cannot change anything in them, while, in fact, the collection elements can
be changed if they are modifiable objects. For example, let's build a collection of objects of
the Person1 class that appears as follows:

class Person1 {
 private int age;
 private String name;
 public Person1(int age, String name) {
 this.age = age;
 this.name = name == null ? "" : name;
 }

Data Structures, Generics, and Popular Utilities Chapter 6

[227]

 public void setName(String name){ this.name = name; }
 @Override
 public String toString() {
 return "Person{age=" + age +
 ", name=" + name + "}";
 }
}

For simplicity, we will create a list with one element only and will then try to modify the
element:

Person1 p1 = new Person1(45, "Bill");
List<Person1> list = List.of(p1);
//list.add(new Person1(22, "Bob")); //UnsupportedOperationException
System.out.println(list); //prints: [Person{age=45, name=Bill}]
p1.setName("Kelly");
System.out.println(list); //prints: [Person{age=45, name=Kelly}]

As you can see, although it is not possible to add an element to the list created by
the of() factory method, its element can still be modified if the reference to the element
exists outside the list.

Collections utilities
There are two classes with static methods handling collections that are very popular and
helpful:

java.util.Collections

org.apache.commons.collections4.CollectionUtils

The fact that the methods are static means they do not depend on the object state, so they
are also called stateless methods, or utilities methods.

Data Structures, Generics, and Popular Utilities Chapter 6

[228]

java.util.Collections class
There are many methods in the Collections class that manage collections, and analyze,
sort, and compare them. There are more than 70 of them, so we do not have a chance to talk
about all of them. Instead, we are going to look at the ones most often used by mainstream
application developers:

static copy(List<T> dest, List<T> src): This copies elements of
the src list to the dest list and preserves the order of the elements and their
position in the list; the destination dest list size has to be equal to, or bigger
than, the src list size, otherwise a runtime exception is raised; here is an example
of this method usage:

List<String> list1 = Arrays.asList("s1","s2");
List<String> list2 = Arrays.asList("s3", "s4", "s5");
Collections.copy(list2, list1);
System.out.println(list2); //prints: [s1, s2, s5]

static void sort(List<T> list): This sorts the list in the order according
to the compareTo(T) method implemented by each element (called natural
ordering); only accepts lists with elements that implement
the Comparable interface (which requires implementation of
the compareTo(T) method); in the example that follows, we use List<String>
because the String class implements Comparable:

//List<String> list = List.of("a", "X", "10", "20", "1", "2");
List<String> list = Arrays.asList("a", "X", "10", "20", "1", "2");
Collections.sort(list);
System.out.println(list); //prints: [1, 10, 2, 20, X, a]

Note that we could not use the List.of() method to create a list because the list
would be unmodifiable and its order could not be changed. Also, look at the
resulting order: numbers come first, then capital letters, followed by lowercase
letters. That is because the compareTo() method in the String class uses code
points of the characters to establish the order. Here is the code that demonstrates
it:

List<String> list = Arrays.asList("a", "X", "10", "20", "1", "2");
Collections.sort(list);
System.out.println(list); //prints: [1, 10, 2, 20, X, a]
list.forEach(s -> {
 for(int i = 0; i < s.length(); i++){
 System.out.print(" " + Character.codePointAt(s, i));
 }

Data Structures, Generics, and Popular Utilities Chapter 6

[229]

 if(!s.equals("a")) {
 System.out.print(","); //prints: 49, 49 48, 50, 50 48,
88, 97
 }
});

As you can see, the order is defined by the value of the code points of the
characters that compose the string.

static void sort(List<T> list, Comparator<T> comparator): This
sorts the order of the list according to the Comparator object provided,
irrespective of whether the list elements implement the Comparable interface or
not; as an example, let's sort a list that consists of objects in the Person class:

class Person {
 private int age;
 private String name;
 public Person(int age, String name) {
 this.age = age;
 this.name = name == null ? "" : name;
 }
 public int getAge() { return this.age; }
 public String getName() { return this.name; }
 @Override
 public String toString() {
 return "Person{name=" + name + ", age=" + age + "}";
 }
}

And here is a Comparator class to sort the list of Person objects:

class ComparePersons implements Comparator<Person> {
 public int compare(Person p1, Person p2){
 int result = p1.getName().compareTo(p2.getName());
 if (result != 0) { return result; }
 return p1.age - p2.getAge();
 }
}

Now, we can use the Person and ComparePersons classes as follows:

List<Person> persons = Arrays.asList(new Person(23, "Jack"),
 new Person(30, "Bob"), new Person(15, "Bob"));
Collections.sort(persons, new ComparePersons());
System.out.println(persons); //prints: [Person{name=Bob,
age=15},
 Person{name=Bob,

Data Structures, Generics, and Popular Utilities Chapter 6

[230]

age=30},
 Person{name=Jack,
age=23}]

As we have mentioned already, there are many more utilities in the Collections class, so
we recommend you look through the related documentation at least once and
understand all its capabilities.

CollectionUtils class
The org.apache.commons.collections4.CollectionUtils class in the Apache
commons project contains static stateless methods that complement the methods of
the java.util.Collections class. They help to search, process, and compare Java
collections.

To use this class, you would need to add the following dependency to the
Maven pom.xml configuration file:

 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-collections4</artifactId>
 <version>4.1</version>
 </dependency>

There are many methods in this class, and more methods will probably be added over time.
These utilities are created in addition to the Collections methods, so they are more
complex and nuanced and do not fit the scope of this book. To give you an idea of the
methods available in the CollectionUtils class, here are some brief descriptions of the
methods grouped according to their functionality:

Methods that retrieve an element from a collection
Methods that add an element or a group of elements to a collection
Methods that merge Iterable elements into a collection
Methods that remove or retain elements with or without criteria
Methods that compare two collections
Methods that transform a collection
Methods that select from, and filter, a collection
Methods that generate the union, intersection, or difference of two collections
Methods that create an immutable empty collection
Methods that check collection size and emptiness
A method that reverses an array

Data Structures, Generics, and Popular Utilities Chapter 6

[231]

This last method should probably belong to the utility class that handles arrays. And that is
what we are going to discuss now.

Arrays utilities
There are two classes with static methods handling collections that are very popular and
helpful:

java.util.Arrays

org.apache.commons.lang3.ArrayUtils

We will briefly review each of them.

java.util.Arrays class
We have already used the java.util.Arrays class several times. It is the primary utility
class for arrays management. This utility class used to be very popular because of
the asList(T...a) method. It was the most compact way of creating and initializing a
collection:

List<String> list = Arrays.asList("s0", "s1");
Set<String> set = new HashSet<>(Arrays.asList("s0", "s1");

It is still a popular way of creating a modifiable list. We used it, too. However, after a
List.of() factory method was introduced and the Arrays class declined substantially.

Nevertheless, if you need to manage arrays, then the Arrays class may be a big help. It
contains more than 160 methods. Most of them are overloaded with different parameters
and array types. If we group them by method name, there will be 21 groups. And if we
further group them by functionality, only the following 10 groups will cover all the Arrays
class functionality:

asList(): This creates an ArrayList object based on the provided array or
comma-separated list of parameters.
binarySearch(): The searches an array or only the specified (according to the
range of indices) part of it
compare(), mismatch(), equals(), and deepEquals(): This compares two
arrays or their elements (according to the range of indices).

Data Structures, Generics, and Popular Utilities Chapter 6

[232]

copyOf() and copyOfRange(): This copies all arrays or only the specified
(according to the range of indices) part of it.
hashcode() and deepHashCode(): This generates the hash code value based on
the array provided.
toString() and deepToString(): This creates a String representation of an
array.
fill(), setAll(), parallelPrefix(), and parallelSetAll(): This sets a
value (fixed or generated by the function provided) for every element of an array
or those specified according to the range of indices.
sort() and parallelSort(): This sorts elements of an array or only part of it
(specified according to the range of indices).
splititerator(): This returns a Splititerator object for parallel processing
of an array or part of it (specified according to the range of indices).
stream(): This generates a stream of array elements or some of them (specified
according to the range of indices); see Chapter 14, Java Standard Streams.

All of these methods are helpful, but we would like to draw your attention to equals(a1,
a2) methods and deepEquals(a1, a2). They are particularly helpful for the array
comparison because an array object cannot implement an equals() custom method and
uses the implementation of the Object class instead (that compares only references).
The equals(a1, a2) and deepEquals(a1, a2) methods allow a comparison of not just
a1 and a2 references, but use the equals() method to compare elements as well. The
following are the code examples that demonstrate how these methods work:

String[] arr1 = {"s1", "s2"};
String[] arr2 = {"s1", "s2"};
System.out.println(arr1.equals(arr2)); //prints: false
System.out.println(Arrays.equals(arr1, arr2)); //prints: true
System.out.println(Arrays.deepEquals(arr1, arr2)); //prints: true

String[][] arr3 = {{"s1", "s2"}};
String[][] arr4 = {{"s1", "s2"}};
System.out.println(arr3.equals(arr4)); //prints: false
System.out.println(Arrays.equals(arr3, arr4)); //prints: false
System.out.println(Arrays.deepEquals(arr3, arr4)); //prints: true

As you can see, Arrays.deepEquals() returns true every time two equal arrays are
compared when every element of one array equals the element of another array in the same
position, while the Arrays.equals() method does the same, but for one-dimensional
arrays only.

Data Structures, Generics, and Popular Utilities Chapter 6

[233]

ArrayUtils class
The org.apache.commons.lang3.ArrayUtils class complements
the java.util.Arrays class by adding new methods to the array managing the toolkit
and the ability to handle null in cases when, otherwise, NullPointerException could be
thrown. To use this class, you would need to add the following dependency to the
Maven pom.xml configuration file:

<dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-lang3</artifactId>
 <version>3.8.1</version>
</dependency>

The ArrayUtils class has around 300 overloaded methods that can be collected in the
following 12 groups:

add(), addAll(), and insert(): This adds elements to an array.
clone(): This clones an array, similar to the copyOf() method of
the Arrays class and the arraycopy() method of java.lang.System.
getLength(): This returns an array length or 0, when the array itself is null.
hashCode(): This calculates the hash value of an array, including nested arrays.
contains(), indexOf(), and lastIndexOf(): The searches an array.
isSorted(), isEmpty, and isNotEmpty(): The checks an array and handles
null.
isSameLength() and isSameType(): this compares arrays.
nullToEmpty(): This converts a null array to an empty one.
remove(), removeAll(), removeElement(), removeElements(), and
removeAllOccurances(): This removes certain or all elements.
reverse(), shift(), shuffle(), swap(): This changes the order of array
elements.
subarray(): This extracts part of an array according to the range of indices.
toMap(), toObject(), toPrimitive(), toString(), toStringArray(): This
converts an array to another type and handles null values.

Data Structures, Generics, and Popular Utilities Chapter 6

[234]

Object utilities
The two utilities described in this section are as follows:

java.util.Objects

org.apache.commons.lang3.ObjectUtils

They are especially useful during class creation, so we will concentrate largely on the
methods related to this task.

java.util.Objects class
The Objects class has only 17 methods that are all static. Let's look at some of them while
applying them to the Person class. Let's assume this class will be an element of a collection,
which means it has to implement the equals() and hashCode() methods:

class Person {
 private int age;
 private String name;
 public Person(int age, String name) {
 this.age = age;
 this.name = name;
 }
 public int getAge(){ return this.age; }
 public String getName(){ return this.name; }
 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null) return false;
 if(!(o instanceof Person)) return false;
 Person person = (Person)o;
 return age == person.getAge() &&
 Objects.equals(name, person.getName());
 }
 @Override
 public int hashCode(){
 return Objects.hash(age, name);
 }
}

Notice that we do not check name property for null because Object.equals() does not
break when any of the parameters is null. It just does the job of comparing the objects. If
only one of them is null, it returns false. If both are null, it returns true.

Data Structures, Generics, and Popular Utilities Chapter 6

[235]

Using Object.equals() is a safe way to implement the equals() method. But if you
need to compare to objects that may be arrays, it is better to use
the Objects.deepEquals() method because it not only handles null, as
the Object.equals() method does, but also compares values of all array elements, even if
the array is multidimensional:

String[][] x1 = {{"a","b"},{"x","y"}};
String[][] x2 = {{"a","b"},{"x","y"}};
String[][] y = {{"a","b"},{"y","y"}};

System.out.println(Objects.equals(x1, x2)); //prints: false
System.out.println(Objects.equals(x1, y)); //prints: false
System.out.println(Objects.deepEquals(x1, x2)); //prints: true
System.out.println(Objects.deepEquals(x1, y)); //prints: false

The Objects.hash() method handles null values too. One important thing to remember
is that the list of the properties compared in the equals() method has to match the list of
the properties passed into Objects.hash() as parameters. Otherwise, two equal Person
objects will have different hash values, which makes hash-based collections work
incorrectly.

Another thing worth noticing is that there is another hash-
related Objects.hashCode() method that accepts only one parameter. But the value it
generates is not equal to the value generated by Objects.hash() with only one
parameter. Observe the following, for example:

System.out.println(Objects.hash(42) == Objects.hashCode(42));
 //prints: false
System.out.println(Objects.hash("abc") == Objects.hashCode("abc"));
 //prints: false

To avoid this caveat, always use Objects.hash().

Another potential source of confusion is demonstrated by the following code:

System.out.println(Objects.hash(null)); //prints: 0
System.out.println(Objects.hashCode(null)); //prints: 0
System.out.println(Objects.hash(0)); //prints: 31
System.out.println(Objects.hashCode(0)); //prints: 0

As you can see, the Objects.hashCode() method generates the same hash value for null
and 0, which can be problematic for some algorithms based on the hash value.

Data Structures, Generics, and Popular Utilities Chapter 6

[236]

static <T> int compare (T a, T b, Comparator<T> c) is another popular
method that returns 0 (if the arguments are equal), otherwise the result of c.compare(a,
b). It is very useful for implementing the Comparable interface (establishing a natural
order for a custom object sorting). Observe the following, for example:

class Person implements Comparable<Person> {
 private int age;
 private String name;
 public Person(int age, String name) {
 this.age = age;
 this.name = name;
 }
 public int getAge(){ return this.age; }
 public String getName(){ return this.name; }
 @Override
 public int compareTo(Person p){
 int result = Objects.compare(name, p.getName(),
 Comparator.naturalOrder());
 if (result != 0) {
 return result;
 }
 return Objects.compare(age, p.getAge(),
 Comparator.naturalOrder());
 }
}

This way, you can easily change the sorting algorithm by setting
the Comparator.reverseOrder() value, or by adding Comparator.nullFirst() or
Comparator.nullLast().

Also, the Comparator implementation we used in the previous section can be made more
flexible by using the Objects.compare() method:

class ComparePersons implements Comparator<Person> {
 public int compare(Person p1, Person p2){
 int result = Objects.compare(p1.getName(), p2.getName(),
 Comparator.naturalOrder());
 if (result != 0) {
 return result;
 }
 return Objects.compare(p1.getAge(), p2.getAge(),
 Comparator.naturalOrder());
 }
}

Data Structures, Generics, and Popular Utilities Chapter 6

[237]

Finally, the last two methods of the Objects class that we are going to discuss are the
methods that generate a string representation of an object. They come in handy when you
need to call a toString() method on an object but are not sure if the object reference
is null. Observe the following, for example:

List<String> list = Arrays.asList("s1", null);
for(String e: list){
 //String s = e.toString(); //NullPointerException
}

In the preceding example, we know the exact value of each element. But imagine a scenario
where the list is passed into the method as a parameter. Then, we are forced to write
something as follows:

void someMethod(List<String> list){
 for(String e: list){
 String s = e == null ? "null" : e.toString();
 }

It seems like this is not a big deal. But after writing such code a dozen times, a programmer
naturally thinks about some kind of utility method that does all of that, and that is when
the following two methods of the Objects class help:

static String toString(Object o): The returns the result of calling
toString() on the parameter when it is not null, and returns null when the
parameter value is null.

static String toString(Object o, String nullDefault): This returns
the result of calling toString() on the first parameter when it is not null, and
returns the second nullDefault parameter value when the first parameter
value is null.

The following code demonstrates these two methods:

List<String> list = Arrays.asList("s1", null);
for(String e: list){
 String s = Objects.toString(e);
 System.out.print(s + " "); //prints: s1 null
}
for(String e: list){
 String s = Objects.toString(e, "element was null");
 System.out.print(s + " "); //prints: s1 element was null
}

Data Structures, Generics, and Popular Utilities Chapter 6

[238]

As of the time of writing, the Objects class has 17 methods. We recommend you become
familiar with them so as to avoid writing your own utilities in the event that the same
utility already exists.

ObjectUtils class
The last statement of the previous section applies to
the org.apache.commons.lang3.ObjectUtils class of the Apache Commons library
that complements the methods of the java.util.Objects class described in the
preceding section. The scope of this book and its allotted size does not allow for a detailed
review of all the methods under the ObjectUtils class, so we will describe them briefly in
groups according to their related functionality. To use this class, you would need to add the
following dependency to the Maven pom.xml configuration file:

<dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-lang3</artifactId>
 <version>3.8.1</version>
</dependency>

All the methods of the ObjectUtils class can be organized into seven groups:

Object cloning methods.
Methods that support a comparison of two objects.
The notEqual() method, which compares two objects for inequality, where
either one or both objects may be null.
Several identityToString() methods that generate a String representation
of the provided object as if produced by the toString(), which is a default
method of the Object base class and, optionally, append it to another object.
The allNotNull() and anyNotNull() methods, which analyze an array of
objects for null
The firstNonNull() and defaultIfNull() methods, which analyze an array
of objects and return the first not-null object or default value.
The max(), min(), median(), and mode() methods, which analyze an array of
objects and return one of them that corresponds to the method name.

Data Structures, Generics, and Popular Utilities Chapter 6

[239]

java.time package
There are many classes in the java.time package and its sub-packages. They were
introduced as a replacement for other (older packages) that handled date and time. The
new classes are thread-safe (hence, better suited for multithreaded processing) and what is
also important is that they are more consistently designed and easier to understand. Also,
the new implementation follows International Standard Organization (ISO) standards as
regards the date and time formats, but allows any other custom format to be used as well.

We will describe the main five classes, and demonstrate how to use them:

java.time.LocalDate

java.time.LocalTime

java.time.LocalDateTime

java.time.Period

java.time.Duration

All these, and other classes of the java.time package, as well as its sub-packages, are rich
in various functionality that cover all practical cases. But we are not going to discuss all of
them; we will just introduce the basics and the most popular use cases.

LocalDate class
LocalDate class does not carry time. It represents a date in ISO 8601 format (YYYY-MM-
DD):

System.out.println(LocalDate.now()); //prints: 2019-03-04

That is the current date in this location at the time of writing. The value was picked up from
the computer clock. Similarly, you can get the current date in any other time zone using
that static now(ZoneId zone) method. The ZoneId object can be constructed using the
static ZoneId.of(String zoneId) method, where String zoneId is any of the string
values returned by the ZonId.getAvailableZoneIds() method:

Set<String> zoneIds = ZoneId.getAvailableZoneIds();
for(String zoneId: zoneIds){
 System.out.println(zoneId);
}

Data Structures, Generics, and Popular Utilities Chapter 6

[240]

The preceding code prints almost 600 time zone IDs. Here are a few of them:

Asia/Aden
Etc/GMT+9
Africa/Nairobi
America/Marigot
Pacific/Honolulu
Australia/Hobart
Europe/London
America/Indiana/Petersburg
Asia/Yerevan
Europe/Brussels
GMT
Chile/Continental
Pacific/Yap
CET
Etc/GMT-1
Canada/Yukon
Atlantic/St_Helena
Libya
US/Pacific-New
Cuba
Israel
GB-Eire
GB
Mexico/General
Universal
Zulu
Iran
Navajo
Egypt
Etc/UTC
SystemV/AST4ADT
Asia/Tokyo

Let's try to use "Asia/Tokyo", for example:

ZoneId zoneId = ZoneId.of("Asia/Tokyo");
System.out.println(LocalDate.now(zoneId)); //prints: 2019-03-05

An object of LocalDate can represent any date in the past, or in the future too, using the
following methods:

LocalDate parse(CharSequence text): This constructs an object from a
string in ISO 8601 format (YYYY-MM-DD).

Data Structures, Generics, and Popular Utilities Chapter 6

[241]

LocalDate parse(CharSequence text, DateTimeFormatter

formatter): This constructs an object from a string in a format specified by
the DateTimeFormatter object that has a rich system of patterns and many
predefined formats as well; the following are a few of them:

BASIC_ISO_DATE, for example, 20111203
ISO_LOCAL_DATE ISO, for example, 2011-12-03
ISO_OFFSET_DATE, for example, 2011-12-03+01:00
ISO_DATE, for example, 2011-12-03+01:00; 2011-12-03
ISO_LOCAL_TIME, for example, 10:15:30
ISO_OFFSET_TIME, for example, 10:15:30+01:00
ISO_TIME, for example, 10:15:30+01:00; 10:15:30
ISO_LOCAL_DATE_TIME, for example, 2011-12-03T10:15:30

LocalDate of(int year, int month, int dayOfMonth): This constructs
an object from a year, month, and day.
LocalDate of(int year, Month month, int dayOfMonth): This
constructs an object from a year, month (enum constant), and day.
LocalDate ofYearDay(int year, int dayOfYear): This constructs an
object form from a year and day-of-year.

The following code demonstrates the preceding methods listed:

LocalDate lc1 = LocalDate.parse("2020-02-23");
System.out.println(lc1); //prints: 2020-02-23

LocalDate lc2 =
 LocalDate.parse("20200223", DateTimeFormatter.BASIC_ISO_DATE);
System.out.println(lc2); //prints: 2020-02-23

DateTimeFormatter formatter = DateTimeFormatter.ofPattern("dd/MM/yyyy");
LocalDate lc3 = LocalDate.parse("23/02/2020", formatter);
System.out.println(lc3); //prints: 2020-02-23

LocalDate lc4 = LocalDate.of(2020, 2, 23);
System.out.println(lc4); //prints: 2020-02-23

LocalDate lc5 = LocalDate.of(2020, Month.FEBRUARY, 23);
System.out.println(lc5); //prints: 2020-02-23

LocalDate lc6 = LocalDate.ofYearDay(2020, 54);
System.out.println(lc6); //prints: 2020-02-23

Data Structures, Generics, and Popular Utilities Chapter 6

[242]

A LocalDate object can provide various values:

LocalDate lc = LocalDate.parse("2020-02-23");
System.out.println(lc); //prints: 2020-02-23
System.out.println(lc.getYear()); //prints: 2020
System.out.println(lc.getMonth()); //prints: FEBRUARY
System.out.println(lc.getMonthValue()); //prints: 2
System.out.println(lc.getDayOfMonth()); //prints: 23
System.out.println(lc.getDayOfWeek()); //prints: SUNDAY
System.out.println(lc.isLeapYear()); //prints: true
System.out.println(lc.lengthOfMonth()); //prints: 29
System.out.println(lc.lengthOfYear()); //prints: 366

The LocalDate object can be modified as follows:

LocalDate lc = LocalDate.parse("2020-02-23");
System.out.println(lc.withYear(2021)); //prints: 2021-02-23
System.out.println(lc.withMonth(5)); //prints: 2020-05-23
System.out.println(lc.withDayOfMonth(5)); //prints: 2020-02-05
System.out.println(lc.withDayOfYear(53)); //prints: 2020-02-22
System.out.println(lc.plusDays(10)); //prints: 2020-03-04
System.out.println(lc.plusMonths(2)); //prints: 2020-04-23
System.out.println(lc.plusYears(2)); //prints: 2022-02-23
System.out.println(lc.minusDays(10)); //prints: 2020-02-13
System.out.println(lc.minusMonths(2)); //prints: 2019-12-23
System.out.println(lc.minusYears(2)); //prints: 2018-02-23

The LocalDate objects can be compared as follows:

LocalDate lc1 = LocalDate.parse("2020-02-23");
LocalDate lc2 = LocalDate.parse("2020-02-22");
System.out.println(lc1.isAfter(lc2)); //prints: true
System.out.println(lc1.isBefore(lc2)); //prints: false

There are many other helpful methods in the LocalDate class. If you have to work with
dates, we recommend that you read the API of this class and other classes of
the java.time package and its sub-packages.

LocalTime class
The LocalTime class contains time without a date. It has similar methods to the methods of
the LocalDate class. Here is how an object of the LocalTime class can be created:

System.out.println(LocalTime.now()); //prints: 21:15:46.360904

ZoneId zoneId = ZoneId.of("Asia/Tokyo");

Data Structures, Generics, and Popular Utilities Chapter 6

[243]

System.out.println(LocalTime.now(zoneId)); //prints: 12:15:46.364378

LocalTime lt1 = LocalTime.parse("20:23:12");
System.out.println(lt1); //prints: 20:23:12

LocalTime lt2 = LocalTime.of(20, 23, 12);
System.out.println(lt2); //prints: 20:23:12

Each component of time value can be extracted from a LocalTime object as follows:

LocalTime lt2 = LocalTime.of(20, 23, 12);
System.out.println(lt2); //prints: 20:23:12

System.out.println(lt2.getHour()); //prints: 20
System.out.println(lt2.getMinute()); //prints: 23
System.out.println(lt2.getSecond()); //prints: 12
System.out.println(lt2.getNano()); //prints: 0

The object of the LocalTime class can be modified as follows:

LocalTime lt2 = LocalTime.of(20, 23, 12);
System.out.println(lt2.withHour(3)); //prints: 03:23:12
System.out.println(lt2.withMinute(10)); //prints: 20:10:12
System.out.println(lt2.withSecond(15)); //prints: 20:23:15
System.out.println(lt2.withNano(300)); //prints: 20:23:12.000000300
System.out.println(lt2.plusHours(10)); //prints: 06:23:12
System.out.println(lt2.plusMinutes(2)); //prints: 20:25:12
System.out.println(lt2.plusSeconds(2)); //prints: 20:23:14
System.out.println(lt2.plusNanos(200)); //prints: 20:23:12.000000200
System.out.println(lt2.minusHours(10)); //prints: 10:23:12
System.out.println(lt2.minusMinutes(2)); //prints: 20:21:12
System.out.println(lt2.minusSeconds(2)); //prints: 20:23:10
System.out.println(lt2.minusNanos(200)); //prints: 20:23:11.999999800

And two objects of the LocalTime class can also be compared, as follows:

LocalTime lt2 = LocalTime.of(20, 23, 12);
LocalTime lt4 = LocalTime.parse("20:25:12");
System.out.println(lt2.isAfter(lt4)); //prints: false
System.out.println(lt2.isBefore(lt4)); //prints: true

There are many other helpful methods in the LocalTime class. If you have to work with
dates, we recommend that you read the API of this class and other classes of
the java.time package and its sub-packages.

Data Structures, Generics, and Popular Utilities Chapter 6

[244]

LocalDateTime class
The LocalDateTime class contains both the date and time and has all the methods
the LocalDate and LocalTime classes have, so we are not going to repeat them here. We
will only show how an object of the LocalDateTime class can be created:

System.out.println(LocalDateTime.now());
 //prints: 2019-03-04T21:59:00.142804
ZoneId zoneId = ZoneId.of("Asia/Tokyo");
System.out.println(LocalDateTime.now(zoneId));
 //prints: 2019-03-05T12:59:00.146038
LocalDateTime ldt1 = LocalDateTime.parse("2020-02-23T20:23:12");
System.out.println(ldt1); //prints: 2020-02-23T20:23:12
DateTimeFormatter formatter =
 DateTimeFormatter.ofPattern("dd/MM/yyyy HH:mm:ss");
LocalDateTime ldt2 =
 LocalDateTime.parse("23/02/2020 20:23:12", formatter);
System.out.println(ldt2); //prints: 2020-02-23T20:23:12
LocalDateTime ldt3 = LocalDateTime.of(2020, 2, 23, 20, 23, 12);
System.out.println(ldt3); //prints: 2020-02-23T20:23:12
LocalDateTime ldt4 =
 LocalDateTime.of(2020, Month.FEBRUARY, 23, 20, 23, 12);
System.out.println(ldt4); //prints: 2020-02-23T20:23:12

LocalDate ld = LocalDate.of(2020, 2, 23);
LocalTime lt = LocalTime.of(20, 23, 12);
LocalDateTime ldt5 = LocalDateTime.of(ld, lt);
System.out.println(ldt5); //prints: 2020-02-23T20:23:12

There are many other helpful methods in the LocalDateTime class. If you have to work
with dates, we recommend that you read the API of this class and other classes of
the java.time package and its sub-packages.

Period and Duration classes
The java.time.Period and java.time.Duration classes are designed to contain an
amount of time:

A Period object contains an amount of time in units of years, months, and days.
A Duration object contains an amount of time in hours, minutes, seconds, and
nanoseconds.

Data Structures, Generics, and Popular Utilities Chapter 6

[245]

The following code demonstrates their creation and usage using the
LocalDateTime class, but the same methods exist in the LocalDate (for Period) and
LocalTime (for Duration) classes:

LocalDateTime ldt1 = LocalDateTime.parse("2020-02-23T20:23:12");
LocalDateTime ldt2 = ldt1.plus(Period.ofYears(2));
System.out.println(ldt2); //prints: 2022-02-23T20:23:12

The following methods work the same way:

LocalDateTime ldt = LocalDateTime.parse("2020-02-23T20:23:12");
ldt.minus(Period.ofYears(2));
ldt.plus(Period.ofMonths(2));
ldt.minus(Period.ofMonths(2));
ldt.plus(Period.ofWeeks(2));
ldt.minus(Period.ofWeeks(2));
ldt.plus(Period.ofDays(2));
ldt.minus(Period.ofDays(2));
ldt.plus(Duration.ofHours(2));
ldt.minus(Duration.ofHours(2));
ldt.plus(Duration.ofMinutes(2));
ldt.minus(Duration.ofMinutes(2));
ldt.plus(Duration.ofMillis(2));
ldt.minus(Duration.ofMillis(2));

Some other methods of creating and using Period objects are demonstrated by the
following code:

LocalDate ld1 = LocalDate.parse("2020-02-23");
LocalDate ld2 = LocalDate.parse("2020-03-25");
Period period = Period.between(ld1, ld2);
System.out.println(period.getDays()); //prints: 2
System.out.println(period.getMonths()); //prints: 1
System.out.println(period.getYears()); //prints: 0
System.out.println(period.toTotalMonths()); //prints: 1
period = Period.between(ld2, ld1);
System.out.println(period.getDays()); //prints: -2

Duration objects can be similarly created and used:

LocalTime lt1 = LocalTime.parse("10:23:12");
LocalTime lt2 = LocalTime.parse("20:23:14");
Duration duration = Duration.between(lt1, lt2);
System.out.println(duration.toDays()); //prints: 0
System.out.println(duration.toHours()); //prints: 10
System.out.println(duration.toMinutes()); //prints: 600
System.out.println(duration.toSeconds()); //prints: 36002
System.out.println(duration.getSeconds()); //prints: 36002

Data Structures, Generics, and Popular Utilities Chapter 6

[246]

System.out.println(duration.toNanos()); //prints: 36002000000000
System.out.println(duration.getNano()); //prints: 0

There are many other helpful methods in Period and Duration classes. If you have to
work with dates, we recommend that you read the API of this class and other classes of
the java.time package and its sub-packages.

Summary
This chapter introduced the reader to the Java collections framework and its three main
interfaces: List, Set, and Map. Each of the interfaces was discussed and its methods
demonstrated with one of the implementing classes. The generics were explained and
demonstrated as well. The equals() and hashCode() methods have to be implemented in
order for the object to be capable of being handled by Java collections correctly.

The Collections and CollectionUtils utility classes have many useful methods for
collection handling and were presented in examples, along with Arrays, ArrayUtils,
Objects, and ObjectUtils.

The class methods of the java.time package allow time/date values to be managed, class
was demonstrated in specific practical code snippets.

In the next chapter, we will overview the Java Class Library and some external libraries,
including those that support testing. Specifically, we will explore the org.junit,
org.mockito, org.apache.log4j, org.slf4j, and org.apache.commons packages and
their sub-packages.

Quiz
What is a Java collections framework? Select all that apply:1.

A collection of frameworksa.
Classes and interfaces of the java.util packageb.
List, Set, and Map Interfacesc.
Classes and interfaces that implement a collection data structured.

Data Structures, Generics, and Popular Utilities Chapter 6

[247]

What is generics in a collection? Select all that apply:2.

A collection structure definitiona.
The element type declarationb.
The type generalizationc.
The mechanism that provides compile-time safetyd.

What are the limitations of the collection of of() factory methods? Select all that3.
apply:

They do not allow a null element.a.
They do not allow elements to be added to the initialized collection.b.
They do not allow elements to be added to the initialized collection.c.
They do not allow modification of elements in relation to thed.
initialized collection.

What does the implementation of the java.lang.Iterable interface allow?4.
Select all that apply:

It allows elements of the collection to be accessed one by one.a.
It allows the collection to be used in FOR statements.b.
It allows the collection to be used in WHILE statements.c.
It allows the collection to be used in DO...WHILE statements.d.

What does the implementation of the java.util.Collection interface allow?5.
Select all that apply:

Addition to the collection of elements from another collectiona.
Removal from the collection of objects that are elements of anotherb.
collection
Modification of just only those elements of the collection that belong toc.
another collection
Removal from the collection of objects that do not belong to anotherd.
collection

Data Structures, Generics, and Popular Utilities Chapter 6

[248]

Select all the correct statements pertaining to the List interface methods:6.

E get(int index): This returns the element at the specified positiona.
in the list.
E remove(int index): This removes the element at the specifiedb.
position in the list; it returns the removed element.
static List<E> copyOf(Collection<E> coll): This returns anc.
unmodifiable List containing the elements of the
given Collection and preserves their order.
int indexOf(Object o): This returns the position of the specifiedd.
element in the list.

Select all the correct statements pertaining to the Set interface methods:7.

E get(int index): This returns the element at the specified positiona.
in the list.
E remove(int index): This removes the element at the specifiedb.
position in the list; it returns the removed element.
static Set<E> copyOf(Collection<E> coll): This returns anc.
unmodifiable Set containing the elements of the given Collection.
int indexOf(Object o): This returns the position of the specifiedd.
element in the list.

Select all the correct statements pertaining to the Map interface methods:8.
int size(): This returns the count of key-value pairs stored in thea.
map; when the isEmpty() method returns true, this method
returns 0.
V remove(Object key): This removes both key and value from theb.
map; returns value, or null if there is no such key or the value
is null.
default boolean remove(Object key, Object value): Thisc.
removes the key-value pair if such a pair exists in the map;
returns true if the value is removed.
default boolean replace(K key, V oldValue, V newValue):d.
This replaces the oldValue value with the newValue provided if the
key provided is currently mapped to the oldValue; it returns true if
the oldValue was replaced; otherwise, it returns false.

Data Structures, Generics, and Popular Utilities Chapter 6

[249]

Select all correct statements pertaining to the static void sort(List<T>9.
list, Comparator<T> comparator) method of the Collections class:

It sorts the list's natural order if the list elements implementa.
the Comparable interface.
It sorts the list's order according to the Comparator object provided.b.
It sorts the list's order according to the Comparator object provided ifc.
list elements implement the Comparable interface.
It sorts the list's order according to the provided Comparator objectd.
irrespective of whether the list elements implement
the Comparable interface.

What is the outcome of executing the following code?10.

List<String> list1 = Arrays.asList("s1","s2", "s3");
List<String> list2 = Arrays.asList("s3", "s4");
Collections.copy(list1, list2);
System.out.println(list1);

[s1, s2, s3, s4]a.
[s3, s4, s3]b.
[s1, s2, s3, s3, s4]c.
[s3, s4]d.

What is the functionality of the CollectionUtils class methods? Select all that11.
apply:

It matches the functionality of the Collections class methods, but bya.
handling null.
It complements the functionality of the Collections class methods.b.
It searches, processes, and compares Java collections in a wayc.
that the Collections class methods do not do.
It duplicates the functionality of the Collections class methods.d.

Data Structures, Generics, and Popular Utilities Chapter 6

[250]

What is the result of executing the following code?12.

Integer[][] ar1 = {{42}};
Integer[][] ar2 = {{42}};
System.out.print(Arrays.equals(ar1, ar2) + " ");
System.out.println(Arrays.deepEquals(arr3, arr4));

false truea.
false falseb.
true falsec.
true trued.

What is the result of executing the following code?13.

String[] arr1 = { "s1", "s2" };
String[] arr2 = { null };
String[] arr3 = null;
System.out.print(ArrayUtils.getLength(arr1) + " ");
System.out.print(ArrayUtils.getLength(arr2) + " ");
System.out.print(ArrayUtils.getLength(arr3) + " ");
System.out.print(ArrayUtils.isEmpty(arr2) + " ");
System.out.print(ArrayUtils.isEmpty(arr3));

1 2 0 false truea.
2 1 1 false trueb.
2 1 0 false truec.
2 1 0 true falsed.

What is the result of executing the following code?14.

 String str1 = "";
 String str2 = null;
 System.out.print((Objects.hash(str1) ==
 Objects.hashCode(str2)) + " ");
 System.out.print(Objects.hash(str1) + " ");
 System.out.println(Objects.hashCode(str2) + " ");

true 0 0a.
Errorb.
false -1 0c.
false 31 0d.

Data Structures, Generics, and Popular Utilities Chapter 6

[251]

What is the result of executing the following code?15.

String[] arr = {"c", "x", "a"};
System.out.print(ObjectUtils.min(arr) + " ");
System.out.print(ObjectUtils.median(arr) + " ");
System.out.println(ObjectUtils.max(arr));

c x aa.
a c xb.
x c ac.
a x cd.

What is the result of executing the following code?16.

LocalDate lc = LocalDate.parse("1900-02-23");
System.out.println(lc.withYear(21));

1921-02-23a.
21-02-23b.
0021-02-23c.
Errord.

What is the result of executing the following code?17.

LocalTime lt2 = LocalTime.of(20, 23, 12);
System.out.println(lt2.withNano(300));

20:23:12.000000300a.
20:23:12.300b.
20:23:12:300c.
Errord.

What is the result of executing the following code?18.

LocalDate ld = LocalDate.of(2020, 2, 23);
LocalTime lt = LocalTime.of(20, 23, 12);
LocalDateTime ldt = LocalDateTime.of(ld, lt);
System.out.println(ldt);

2020-02-23 20:23:12a.
2020-02-23T20:23:12b.
2020-02-23:20:23:12c.
Errord.

Data Structures, Generics, and Popular Utilities Chapter 6

[252]

What is the result of executing the following code?19.

LocalDateTime ldt = LocalDateTime.parse("2020-02-23T20:23:12");
System.out.print(ldt.minus(Period.ofYears(2)) + " ");
System.out.print(ldt.plus(Duration.ofMinutes(12)) + " ");
System.out.println(ldt);

2020-02-23T20:23:12 2020-02-23T20:23:12a.
2020-02-23T20:23:12

2020-02-23T20:23:12 2020-02-23T20:35:12b.
2020-02-23T20:35:12

2018-02-23T20:23:12 2020-02-23T20:35:12c.
2020-02-23T20:23:12

2018-02-23T20:23:12 2020-02-23T20:35:12d.
2018-02-23T20:35:12

7
Java Standard and External

Libraries
It is not possible to write a Java program without using the standard libraries, also
called Java Class Library (JCL). That is why a solid familiarity with such libraries is as vital
for successful programming as the knowledge of the language itself.

There are also non-standard libraries, called external libraries or third-party
libraries because they are not included in Java Development Kit (JDK) distribution. Some
of them have long become a permanent fixture of any programmer toolkit.

To keep track of all the functionality available in these libraries is not easy. That is because
an Integrated Development Environment (IDE) gives you a hint about the language
possibilities, but it cannot advise about the functionality of a package not imported yet. The
only package that is imported automatically is java.lang.

This purpose of this chapter is to provide you with an overview of the functionality of the
most popular packages of JCL and external libraries.

The topics we are discussing in this chapter are as follows:

Java Class Library (JCL)
java.lang

java.util

java.time

java.io and java.nio
java.sql and javax.sql
java.net

java.lang.math and java.math
java.awt, javax.swing, and javafx

Java Standard and External Libraries Chapter 7

[254]

External libraries
org.junit

org.mockito

org.apache.log4j and org.slf4j
org.apache.commons

Java Class Library
JCL is a collection of packages that implement the language. In simpler terms, it is a
collection of the .class files included in the JDK and ready to be used. Once you have
installed Java, you get them as part of the installation and can start building your
application code up using the classes of JCL as building blocks that take care of a lot of low-
level plumbing. The JCL richness and ease of usage has substantially contributed to Java
popularity.

In order to use a JCL package, one can import it without adding a new dependency to
the pom.xml file. Maven adds JCL to the classpath automatically. And that is what
separates standard library and external libraries; if you need to add a library (typically,
a .jar file) as a dependency in the Maven pom.xml configuration file, this library is an
external one. Otherwise, it is a standard library or JCL.

Some JCL package names start with java. Traditionally, they are called core Java packages,
while those that start with javax used to be called "extensions." It was done so probably
because the extensions were thought to be optional and maybe even released
independently of JDK. There was also an attempt to promote the former extension library
to become a core package. But that would require changing the package name from "java"
to "javax," which would break the already existing applications that used the javax
package. Therefore, the idea was abandoned, so the distinction between core and
extensions gradually disappeared.

That is why, if you look at the official Java API on the Oracle website, you will see listed as
standard not only java and javax packages, but also jdk, com.sun, org.xml, and some
other packages too. These extra packages are primarily used by the tools or other
specialized applications. In our book, we will concentrate mostly on the mainstream Java
programming and talk only about the java and javax packages.

Java Standard and External Libraries Chapter 7

[255]

java.lang
This package is so fundamental that is not required to be imported in order to use it. The
JVM authors decided to import it automatically. It contains the most often used classes of
JCL:

Object class: The base class of any other Java class
Class class: Carries metadata of every loaded class at runtime
String, StringBuffer, and StringBuilder classes: Support operations with
type String
The wrapper classes of all primitive types: Byte, Boolean, Short, Character,
Integer, Long, Float, and Double
Number class: The base class for the wrapper classes of the numeric primitive
types—all the previously listed, except Boolean
System class: Provides access to important system operations and the standard
input and output (we have used the System.out object in every code example in
this book)
Runtime class: Provides access to the execution environment
The Thread and Runnable interfaces: Fundamental for creating Java threads
The Iterable interface: Used by the iteration statements
Math class: Provides methods for basic numeric operations
Throwable class: The base class for all exceptions
Error class: An exception class; all its children are used to communicate system
errors that can't be caught by an application
Exception class: This class and its direct children represent checked exceptions
RuntimeException class: This class and its children that represent unchecked
exceptions, also called runtime exceptions
ClassLoader class: Reads the .class files and puts (loads) them into memory;
it also can be used to build a customized class-loader
Process and ProcessBuilder classes: Allow creating other JVM processes
Many other useful classes and interfaces

Java Standard and External Libraries Chapter 7

[256]

java.util
Most of the content of the java.util package is dedicated to supporting Java collections:

The Collection interface: The base interface of many other interfaces of
collections, it declares all the basic methods necessary to manage collection
elements: size(), add(), remove(), contains(), stream(), and others; it also
extends the java.lang.Iterable interface and inherits its methods, including
iterator() and forEach(), which means that any implementation of
the Collection interface or any of its children—List, Set, Queue,
Deque, and others—can be used in iteration statements too: ArrayList,
LinkedList, HashSet, AbstractQueue, ArrayDeque, and others.
The Map interface and classes that implement it: HashMap, TreeMap, and others.
The Collections class: Provides many static methods to analyze, manipulate,
and convert collections.
Many other collection interfaces, classes, and related utilities.

We have talked about Java collections and saw examples of their usage in Chapter 6, Data
Structures, Generics, and Popular Utilities.

The java.util package also includes several other useful classes:

Objects: Provides various object-related utility methods, some of which we
have over-viewed in Chapter 6, Data Structures, Generics, and Popular Utilities.
Arrays: Contains some 160 static methods to manipulate arrays, some of which
we have over-viewed in Chapter 6, Data Structures, Generics, and Popular Utilities.
Formatter: Allows formatting of any primitive type, String, Date, and other
types; we have demonstrated the examples of its usage in Chapter 6, Data
Structures, Generics, and Popular Utilities.
Optional, OptionalInt, OptionalLong, and OptionalDouble: These classes
help to avoid NullPointerException by wrapping the actual value that can be
null or not.
Properties: Helps to read, and create key-value pairs used for application
configuration, and similar purposes.
Random: Complements java.lang.Math.random() method by generating
streams of pseudo-random numbers.
StringTokeneizer: Breaks the String object into the tokens separated by the
specified delimiter.

Java Standard and External Libraries Chapter 7

[257]

StringJoiner: Constructs a sequence of characters separated by the specified
delimiter, and optionally surrounded by the specified prefix and suffix.
Many other useful utility classes including the classes that
support internationalization and base64-encoding and -decoding.

java.time
The java.time package contains classes for managing dates, time, periods, and durations.
The package includes the following:

The Month enum
The DayOfWeek enum
The Clock class that returns current instant, date, and time using a time zone
The Duration and Period classes represent and compare amounts of time in
different time units
The LocalDate, LocalTime, and LocalDateTime classes represent dates and
times without a time zone
The ZonedDateTime class represents date and time with a time zone
The ZoneId class identifies a time zone such as America/Chicago
The java.time.format.DateTimeFormatter class allows presenting date and
time in accordance with the International Standards Organization (ISO)
formats, like the pattern YYYY-MM-DD and similar
 some other classes that support date and time manipulation

We discussed most of these classes in Chapter 6, Data Structures, Generics, and Popular
Utilities.

java.io and java.nio
The java.io and java.nio packages contain classes and interfaces that support reading
and writing data using streams, serialization, and file systems. The difference between
these two packages is as follows:

The java.io package classes allow reading/writing data as they come without
caching (we discussed it in Chapter 5, Strings, Input/Output, and Files), while
classes of the java.nio package create a buffer that allows moving back and
forth along the populated buffer.

Java Standard and External Libraries Chapter 7

[258]

The java.io package classes block the stream until all the data is read or
written, while classes of the java.nio package are implemented in a non-
blocking style (we will talk about non-blocking style in Chapter 15, Reactive
Programming).

java.sql and javax.sql
These two packages compose the Java Database Connectivity (JDBC) API that allows
accessing and processing data stored in a data source, typically a relational database.
The javax.sql package complements the java.sql package by providing support for the
following:

The DataSource interface as an alternative to the DriverManager class
Connections and statements pooling
Distributed transactions
Rowsets

We will talk about these packages and see code examples in Chapter 10, Manage Data in a
Database.

java.net
The java.net package contains classes that support applications networking on the
following two levels:

Low-level networking, based on:
IP addresses
Sockets, which are basic bidirectional data communication
mechanisms
Various network interfaces

High-level networking, based on:
Universal Resource Identifier (URI)
Universal Resource Locator (URL)
Connections to the resource pointed to by URLs

We will talk about this package and see code examples in Chapter 11, Network
Programming.

Java Standard and External Libraries Chapter 7

[259]

java.lang.math and java.math
The java.lang.math package contains methods for performing basic numeric operations,
such as calculating the minimum and maximum of two numeric values, the absolute value,
the elementary exponential, logarithms, square roots, trigonometric functions, and many
other mathematical operations.

The java.math package complements Java primitive types and wrapper classes of the
java.lang package by allowing working with much bigger numbers using
the BigDecimal and BigInteger classes.

java.awt, javax.swing, and javafx
The first Java library that supported building a Graphical User Interface (GUI) for desktop
applications was the Abstract Window Toolkit (AWT) in the java.awt package. It
provided an interface to the native system of the executing platform that allowed creating
and managing windows, layouts, and events. It also had the basic GUI widgets (like text
fields, buttons, and menus), provided access to the system tray, and allowed to launch a
web browser and email a client from the Java code. Its heavy dependence on the native
code made AWT-based GUI look different on different platforms.

In 1997, Sun Microsystems and Netscape Communication Corporation introduced Java
Foundation Classes, later called Swing and placed them in the javax.swing package. The
GUI components built with Swing were able to emulate the look and feel of some native
platforms but also allowed you to plug in a look and feel that did not depend on the
platform it was running on. It expanded the list of widgets the GUI could have by adding
tabbed panels, scroll panes, tables, and lists. Swing components are called lightweight
because they do not depend on the native code and are fully implemented in Java.

In 2007, Sun Microsystems announced the creation of JavaFX, which has eventually become
a software platform for creating and delivering desktop applications across many different
devices. It was intended to replace Swing as the standard GUI library for Java SE. The
JavaFX framework is located in the packages that start with javafx and supports all major
desktop Operating Systems (OS) and multiple mobile OSes, including Symbian OS,
Windows Mobile, and some proprietary real-time OSes.

Java Standard and External Libraries Chapter 7

[260]

JavaFX adds the support of smooth animation, web views, audio and video playback, and
styles to the arsenal of a GUI developer, based on Cascading Style Sheets (CSS). However,
Swing has more components and the third-party libraries, so using JavaFX may require
creating custom components and plumbing that was implemented in Swing a long time
ago. That's why, although JavaFX is recommended as the first choice for desktop GUI
implementation, Swing will remain part of Java for the foreseeable future, according to the
official response on the Oracle website (http:/ /www. oracle. com/ technetwork/ java/
javafx/overview/ faq- 1446554. html#6). So, it is possible to continue using Swing, but, if
possible, better to switch to JavaFX.

We will talk about JavaFX and see code examples in Chapter 12, Java GUI Programming.

External libraries
Different lists of the most used third-party non-JCL libraries include between 20 and 100
libraries. In this section, we are going to discuss those that are included in the majority of
such lists. All of them are open source projects.

org.junit
The org.junit package is the root package of an open source testing framework JUnit. It
can be added to the project as the following pom.xml dependency:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
</dependency>

The scope value in the preceding dependency tag tells Maven to include the library .jar
file only when the test code is going to be run, not into the production .jar file of the
application. With the dependency in place, you can now create a test. You can write code
yourself or let the IDE do it for you using the following steps:

Right-click on the class name you would like to test.1.
Select Go To.2.
Select Test.3.
Click Create New Test.4.

http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6

Java Standard and External Libraries Chapter 7

[261]

Click the checkbox for the methods of the class you would like to test.5.
Write code for the generated test methods with the @Test annotation.6.
Add methods with the @Before and @After annotations if necessary.7.

Let's assume we have the following class:

public class SomeClass {
 public int multiplyByTwo(int i){
 return i * 2;
 }
}

If you follow the preceding steps listed, the following test class will be created under the
test source tree:

import org.junit.Test;
public class SomeClassTest {
 @Test
 public void multiplyByTwo() {
 }
}

Now you can implement the void multiplyByTwo() method as follows:

@Test
public void multiplyByTwo() {
 SomeClass someClass = new SomeClass();
 int result = someClass.multiplyByTwo(2);
 Assert.assertEquals(4, result);
}

A unit is a minimal piece of code that can be tested, thus the name. The best testing
practices consider a method as a minimal testable unit. That's why a unit test usually tests a
method.

org.mockito
One of the problems a unit test often faces is the need to test a method that uses a third-
party library, a data source, or a method of another class. While testing, you want to control
all the inputs, so you can predict the expected result of the tested code. That is where the
technique of simulating or mocking the behavior of the objects the tested code interacts
with comes in handy.

Java Standard and External Libraries Chapter 7

[262]

An open source framework Mockito (org.mockito root package name) allows the
accomplishment of exactly that—the creation of mock objects. To use it is quite easy and
straightforward. Here is one simple case. Let's assume we need to test
another SomeClass method:

public class SomeClass {
 public int multiplyByTwoTheValueFromSomeOtherClass(SomeOtherClass
 someOtherClass){
 return someOtherClass.getValue() * 2;
 }
}

To test this method, we need to make sure the getValue() method returns a certain value,
so we are going to mock this method. In order to do it, follow these steps:

Add a dependency to the Maven pom.xml configuration file:1.

 <dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-core</artifactId>
 <version>2.23.4</version>
 <scope>test</scope>
 </dependency>

Call the Mockito.mock() method for the class you need to simulate:2.

SomeOtherClass mo = Mockito.mock(SomeOtherClass.class);

Set the value you need to be returned from a method:3.

Mockito.when(mo.getValue()).thenReturn(5);

Now you can pass the mocked object as a parameter into the method you are4.
testing that calls the mocked method:

SomeClass someClass = new SomeClass();
int result = someClass.multiplyByTwoTheValueFromSomeOtherClass(mo);

The mocked method returns the result you have predefined:5.

Assert.assertEquals(10, result);

Java Standard and External Libraries Chapter 7

[263]

After the preceding steps have been performed, here's how the test method6.
looks:

@Test
public void multiplyByTwoTheValueFromSomeOtherClass() {
 SomeOtherClass mo = Mockito.mock(SomeOtherClass.class);
 Mockito.when(mo.getValue()).thenReturn(5);

 SomeClass someClass = new SomeClass();
 int result =
 someClass.multiplyByTwoTheValueFromSomeOtherClass(mo);
 Assert.assertEquals(10, result);
}

Mockito has certain limitations. For example, you cannot mock static methods and private
methods. Otherwise, it is a great way to isolate the code you are testing by reliably
predicting the results of the used third-party classes.

org.apache.log4j and org.slf4j
Throughout this book, we used System.out to display the results. In the real-life
application, one can do it too and redirect the output to a file, for example, for later
analysis. After doing it for some time, you will notice that you need more details about each
output: the date and time of each statement, and the class name where the logging
statement was generated, for example. As the code base grows, you will find that it would
be nice to send output from different subsystems or packages to different files or turn off
some messages, when everything works as expected, and turn them back on when an issue
has been detected and more detailed information about code behavior is needed. And you
don't want the size of the log file to grow uncontrollably.

It is possible to write your own code that accomplishes all that. But there are several
frameworks that do it based on the settings in a configuration file, which you can change
every time you need to change the logging behavior. The two most popular frameworks
used for that are called log4j (pronounced as LOG-FOUR-JAY) and slf4j (pronounced as
S-L- F-FOUR-JAY).

In fact, these two frameworks are not rivals. The slf4j framework is a facade that provides
unified access to an underlying actual logging framework, one of them can be log4j too.
Such a facade is especially helpful during a library development when programmers do not
know in advance what kind of a logging framework will be used by the application that
uses the library. By writing code using slf4j, the programmers allow later to configure it
to use any logging system.

Java Standard and External Libraries Chapter 7

[264]

So, if your code is going to be used only by the application your team develops, using just
log4j is quite enough. Otherwise, consider using slf4j.

And, as in the case of any third-party library, before you can use the log4j framework, you
have to add a corresponding dependency to the Maven pom.xml configuration file:

<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-api</artifactId>
 <version>2.11.1</version>
</dependency>
<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>
 <version>2.11.1</version>
</dependency>

For example, here's how the framework can be used:

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
public class SomeClass {
 static final Logger logger =
 LogManager.getLogger(SomeClass.class.getName());
 public int multiplyByTwoTheValueFromSomeOtherClass(SomeOtherClass
 someOtherClass){
 if(someOtherClass == null){
 logger.error("The parameter should not be null");
 System.exit(1);
 }
 return someOtherClass.getValue() * 2;
 }
 public static void main(String... args){
 new SomeClass().multiplyByTwoTheValueFromSomeOtherClass(null);
 }
}

If we run the preceding main() method, the result will be the following:

18:34:07.672 [main] ERROR SomeClass - The parameter should not be null
Process finished with exit code 1

Java Standard and External Libraries Chapter 7

[265]

As you can see, if no log4j-specific configuration file is added to the project, log4j will
provide a default configuration in the DefaultConfiguration class. The default
configuration is as follows:

The log message will go to a console.1.
The pattern of the message is going to be "%d{HH:mm:ss.SSS} [%t] %-5level2.
%logger{36} - %msg%n".
The level of logging will be Level.ERROR (other levels are OFF, FATAL, WARN,3.
INFO, DEBUG, TRACE, and ALL).

The same result is achieved by adding the log4j2.xml file to the resources folder (which
Maven places on the classpath) with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="WARN">
 <Appenders>
 <Console name="Console" target="SYSTEM_OUT">
 <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level
 %logger{36} - %msg%n"/>
 </Console>
 </Appenders>
 <Loggers>
 <Root level="error">
 <AppenderRef ref="Console"/>
 </Root>
 </Loggers>
</Configuration>

If that is not good enough for you, it is possible to change the configuration to log messages
of different levels, to different files, and so on. Read the log4J documentation (https:/ /
logging.apache.org).

org.apache.commons
The org.apache.commons package is another popular library developed as a project
called Apache Commons. It is maintained by an open source community of programmers
called Apache Software Foundation. This organization was formed from the Apache
Group in 1999. The Apache Group has grown around the development of the Apache
HTTP Server since 1993. The Apache HTTP Server is an open source cross-platform web
server that has remained the most popular web server since April 1996.

https://logging.apache.org
https://logging.apache.org
https://logging.apache.org
https://logging.apache.org
https://logging.apache.org
https://logging.apache.org
https://logging.apache.org
https://logging.apache.org

Java Standard and External Libraries Chapter 7

[266]

The Apache Commons project has the following three parts:

Commons Sandbox: A workspace for Java component development; you can
contribute to the open source working there.
Commons Dormant: A repository of components that are currently inactive; you
can use the code there, but have to build the components yourself since these
components will probably not be released in the near future.
Commons Proper: The reusable Java components, which compose the
actual org.apache.commons library.

We discussed the org.apache.commons.io package in Chapter 5, String, Input/Output,
and Files.
In the following subsections, we will discuss only three of Commons Proper most popular
packages:

org.apache.commons.lang3

org.apache.commons.collections4

org.apache.commons.codec.binary

But there are many more packages under org.apache.commons that contain thousands of
classes that can easily be used and can help make your code more elegant and efficient.

lang and lang3
The org.apache.commons.lang3 package is actually the version 3 of
the org.apache.commons.lang package. The decision to create a new package was forced
by the fact that changes introduced in version 3 were backward incompatible, which means
that the existing applications that use the previous version
of org.apache.commons.lang package may stop working after the upgrade to version 3.
But in the majority of mainstream programming, adding 3 to an import statement (as the
way to migrate to the new version) typically does not break anything.

According to the documentation, the org.apache.commons.lang3 package provides
highly reusable static utility methods, chiefly concerned with adding value to the
java.lang classes. Here are a few notable examples:

The ArrayUtils class: Allows to search and manipulate arrays; we discussed
and demonstrated it in Chapter 6, Data Structures, Generics, and Popular Utilities
The ClassUtils class: Provides some metadata about a class

Java Standard and External Libraries Chapter 7

[267]

The ObjectUtils class: Checks an array of objects for null, compares objects,
and calculates the median and minimum/maximum of an array of objects in a
null-safe manner; we discussed and demonstrated it in Chapter 6, Data
Structures, Generics, and Popular Utilities
The SystemUtils class: Provides information about the execution environment
The ThreadUtils class: Finds information about currently running threads
The Validate class: Validates individual values and collections, compares them,
checks for null, matches, and performs many other validations
The RandomStringUtils class: Generates String objects from the characters
of various character sets
The StringUtils class: We discussed in Chapter 5, String, Input/Output, and
Files

collections4
Although on the surface the content of the org.apache.commons.collections4 package
looks quite similar to the content of the org.apache.commons.collections package
(which is the version 3 of the package), the migration to the version 4 may not be as smooth
as just adding "4" to the import statement. Version 4 removed deprecated classes, added
generics and other features incompatible with the previous versions.

One has to be hard-pressed to come up with a collection type or a collection utility that is
not present in this package or one of its sub-packages. The following is just a high-level list
of features and utilities included:

The Bag interface for collections that have several copies of each object.
A dozen classes that implement the Bag interface, for example, here is
how the HashBag class can be used:

 Bag<String> bag = new HashBag<>();
 bag.add("one", 4);
 System.out.println(bag); //prints: [4:one]
 bag.remove("one", 1);
 System.out.println(bag); //prints: [3:one]
 System.out.println(bag.getCount("one")); //prints: 3

The BagUtils class that transforms Bag-based collections.

Java Standard and External Libraries Chapter 7

[268]

The BidiMap interface for bidirectional maps that allow you to retrieve not
only value by its key but also a key by its value; it has several implementations,
for example:

 BidiMap<Integer, String> bidi = new TreeBidiMap<>();
 bidi.put(2, "two");
 bidi.put(3, "three");
 System.out.println(bidi); //prints: {2=two, 3=three}
 System.out.println(bidi.inverseBidiMap());
 //prints: {three=3, two=2}
 System.out.println(bidi.get(3)); //prints: three
 System.out.println(bidi.getKey("three")); //prints: 3
 bidi.removeValue("three");
 System.out.println(bidi); //prints: {2=two}

MapIterator interface to provide simple and quick iteration over maps, for
example:

 IterableMap<Integer, String> map =
 new HashedMap<>(Map.of(1, "one", 2, "two"));
 MapIterator it = map.mapIterator();
 while (it.hasNext()) {
 Object key = it.next();
 Object value = it.getValue();
 System.out.print(key + ", " + value + ", ");
 //prints: 2, two, 1, one,
 if(((Integer)key) == 2){
 it.setValue("three");
 }
 }
 System.out.println("\n" + map); //prints: {2=three, 1=one}

Ordered maps and sets that keep the elements in a certain order, like List does,
for example:

 OrderedMap<Integer, String> map = new LinkedMap<>();
 map.put(4, "four");
 map.put(7, "seven");
 map.put(12, "twelve");
 System.out.println(map.firstKey()); //prints: 4
 System.out.println(map.nextKey(2)); //prints: null
 System.out.println(map.nextKey(7)); //prints: 12
 System.out.println(map.nextKey(4)); //prints: 7

Java Standard and External Libraries Chapter 7

[269]

Reference maps, their keys, and/or values can be removed by the garbage
collector.
Various implementations of the Comparator interface.
Various implementations of the Iterator interface.
Classes that convert array and enumerations to collections.
Utilities that allow testing or creating a union, intersection, and closure of
collections.
The CollectionUtils, ListUtils, MapUtils, MultiMapUtils,
MultiSetUtils, QueueUtils, SetUtils classes and many other interface-
specific utility classes.

Read the package documentation (https:/ /commons. apache. org/ proper/ commons-
collections) for more details.

codec.binary
The org.apache.commons.codec.binary package provides support for Base64, Base32,
Binary, and Hexadecimal String encoding and decoding. The encoding is necessary to make
sure that the data you sent across different systems will not be changed on the way because
of the restrictions on the range of characters in different protocols. Besides, some systems
interpret the sent data as control characters (a modem, for example).

Here is the code snippet that demonstrates the basic encoding and decoding capabilities of
the Base64 class of this package:

String encodedStr =
 new String(Base64.encodeBase64("Hello, World!".getBytes()));
System.out.println(encodedStr); //prints: SGVsbG8sIFdvcmxkIQ==

System.out.println(Base64.isBase64(encodedStr)); //prints: true

String decodedStr =
 new String(Base64.decodeBase64(encodedStr.getBytes()));
System.out.println(decodedStr); //prints: Hello, World!

You can read more about this package on the Apache Commons project site (https:/ /
commons.apache.org/ proper/ commons- codec).

https://commons.apache.org/proper/commons-collections
https://commons.apache.org/proper/commons-collections
https://commons.apache.org/proper/commons-collections
https://commons.apache.org/proper/commons-collections
https://commons.apache.org/proper/commons-collections
https://commons.apache.org/proper/commons-collections
https://commons.apache.org/proper/commons-collections
https://commons.apache.org/proper/commons-collections
https://commons.apache.org/proper/commons-collections
https://commons.apache.org/proper/commons-collections
https://commons.apache.org/proper/commons-collections
https://commons.apache.org/proper/commons-collections
https://commons.apache.org/proper/commons-collections
https://commons.apache.org/proper/commons-collections
https://commons.apache.org/proper/commons-codec
https://commons.apache.org/proper/commons-codec
https://commons.apache.org/proper/commons-codec
https://commons.apache.org/proper/commons-codec
https://commons.apache.org/proper/commons-codec
https://commons.apache.org/proper/commons-codec
https://commons.apache.org/proper/commons-codec
https://commons.apache.org/proper/commons-codec
https://commons.apache.org/proper/commons-codec
https://commons.apache.org/proper/commons-codec
https://commons.apache.org/proper/commons-codec
https://commons.apache.org/proper/commons-codec
https://commons.apache.org/proper/commons-codec
https://commons.apache.org/proper/commons-codec

Java Standard and External Libraries Chapter 7

[270]

Summary
In this chapter, we provided an overview of the functionality of the most popular packages
of JCL: java.lang, java.util, java.time, java.io, java.nio, java.sql,
javax.sql, java.net, java.lang.math, java.math, java.awt, javax.swing,
and javafx.

The most popular external libraries were represented by the org.junit, org.mockito,
org.apache.log4j, org.slf4j, and org.apache.commons packages. It helps you to
avoid writing custom code in the cases when such functionality already exists and can just
be imported and used out of the box.

In the next chapter, we will talk about Java threads and demonstrate their usage. We will
also explain the difference between parallel and concurrent processing. We will
demonstrate how to create a thread and how to execute, monitor, and stop it. It will be very
useful material not only for those who are going to write code for multi-threaded
processing but also for those who would like to improve their understanding of how the
JVM works, which will be the topic of the following chapter.

Quiz
What is the Java Class Library? Select all that apply:1.

Collection of compiled classes.a.
Packages that come with Java installation.b.
A .jar file that Maven adds to the classpath automatically.c.
Any library written in Java.d.

What is the Java external library? Select all that apply:2.

A .jar file that is not included with Java installation.a.
A .jar file that has to be added as a dependency in pom.xml before itb.
can be used.
Classes not written by the authors of JVM.c.
Classes that do not belong to JCL.d.

Java Standard and External Libraries Chapter 7

[271]

What is the functionality included in the java.lang package? Select all that3.
apply:

It is the only package that contains Java language implementation.a.
It contains the most often used classes of JCL.b.
It contains the Object class that is the base class for any Java class.c.
It contains all types listed in the Java Language Specification.d.

What is the functionality included in the java.util package? Select all that4.
apply:

All implementations of Java collection interfacesa.
All interfaces of the Java collections frameworkb.
All utilities of JCLc.
Classes Arrays, Objects, Propertiesd.

What is the functionality included in the java.time package? Select all that5.
apply:

Classes that manage date.a.
It is the only package that manages time.b.
Classes that represent date and time.c.
It is the only package that manages date.d.

What is the functionality included in the java.io package? Select all that apply: 6.

Processing of streams of binary dataa.
Processing of streams of charactersb.
Processing of streams of bytesc.
Processing of streams of numbersd.

What is the functionality included in the java.sql package? Select all that7.
apply:

Supports database connection poolinga.
Supports database statement executionb.
Provides the capability to read/write data from/to a databasec.
Supports database transactionsd.

Java Standard and External Libraries Chapter 7

[272]

What is the functionality included in the java.net package? Select all that8.
apply:

Supports .NET programminga.
Supports sockets communicationb.
Supports URL-based communicationc.
Supports RMI-based communicationd.

What is the functionality included in the java.math package? Select all that9.
apply:

Supports minimum and maximum calculationsa.
Supports big numbersb.
Supports logarithmsc.
Supports square root calculationsd.

What is the functionality included in the javafx package? Select all that apply:10.

Supports fax-message sendinga.
Supports fax-message receivingb.
Supports graphic user interface programmingc.
Supports animationd.

What is the functionality included in the org.junit package? Select all that11.
apply:

Supports testing of Java classesa.
Supports Java units of measureb.
Supports unit testingc.
Supports organizational unityd.

What is the functionality included in the org.mockito package? Select all that12.
apply:

Supports Mockito protocola.
Allows simulating a method behaviorb.
Supports a static method simulationc.
Generates objects that behave like third-party classesd.

Java Standard and External Libraries Chapter 7

[273]

What is the functionality included in the org.apache.log4j package? Select all13.
that apply:

Supports writing messages to a filea.
Supports reading messages from a fileb.
Supports the LOG4 protocol for Javac.
Supports control of the number and size of log filesd.

What is the functionality included in14.
the org.apache.commons.lang3 package? Select all that apply:

Supports Java language version 3a.
Complements the java.lang classesb.
Contains the ArrayUtils, ObjectUtils, StringUtils classesc.
Contains the SystemUtils classd.

What is the functionality included in the15.
org.apache.commons.collections4 package? Select all that apply:

Various implementations of Java collections framework interfacesa.
Various utilities for Java collections framework implementationsb.
The Vault interface and its implementationsc.
Contains the CollectionUtils classd.

What is the functionality included in the16.
org.apache.commons.codec.binary package? Select all that apply:

Supports sending binary data across the networka.
Allows encoding and decoding of datab.
Supports data encryptionc.
Contains the StringUtils classd.

8
Multithreading and Concurrent

Processing
In this chapter, we will discuss the ways to increase Java application performance by using
the workers (threads) that process data concurrently. We will explain the concept of Java
threads and demonstrate their usage. We will also talk about the difference between
parallel and concurrent processing and how to avoid unpredictable results caused by the
concurrent modification of the shared resource.

The following topics will be covered in this chapter:

Thread vs process
User thread vs daemon
Extending class Thread
Implementing interface Runnable
Extending Thread vs implementing Runnable
Using pool of threads
Getting results from a thread
Parallel vs concurrent processing
Concurrent modification of the same resource

Thread versus process
Java has two units of execution—process and thread. A process usually represents the
whole JVM, although an application can create another process using
java.lang.ProcessBuilder. But, since the multi-process case is outside the scope of this
book, we will focus on the second unit of execution, that is, a thread, which is similar to a
process but less isolated from other threads and requires fewer resources for execution.

Multithreading and Concurrent Processing Chapter 8

[275]

A process can have many threads running and at least one thread called the main
thread—the one that starts the application—which we use it in every example. Threads can
share resources, including memory and open files, which allows for better efficiency. But it
comes with a price of higher risk of unintended mutual interference and even blocking of
the execution. That is where programming skills and an understanding of the concurrency
techniques are required.

User thread versus daemon
There is a particular kind of thread called a daemon.

The word daemon has an ancient Greek origin meaning a divinity or
supernatural being of a nature between gods and humans and an inner or
attendant spirit or inspiring force.

In computer science, the term daemon has more mundane usage and is applied to a
computer program that runs as a background process, rather than being under the direct control of
an interactive user. That is why there are the following two types of threads in Java:

User thread (default), initiated by an application (main thread is one such an
example)
Daemon thread that works in the background in support of user thread activity

That is why all daemon threads exit immediately after the last user thread exits or are
terminated by JVM after an unhandled exception.

Extending class thread
One way to create a thread is to extend the java.lang.Thread class and override
its run() method. For example:

class MyThread extends Thread {
 private String parameter;
 public MyThread(String parameter) {
 this.parameter = parameter;
 }
 public void run() {
 while(!"exit".equals(parameter)){
 System.out.println((isDaemon() ? "daemon" : " user") +
 " thread " + this.getName() + "(id=" + this.getId() +

Multithreading and Concurrent Processing Chapter 8

[276]

 ") parameter: " + parameter);
 pauseOneSecond();
 }
 System.out.println((isDaemon() ? "daemon" : " user") +
 " thread " + this.getName() + "(id=" + this.getId() +
 ") parameter: " + parameter);
 }
 public void setParameter(String parameter) {
 this.parameter = parameter;
 }
}

If the run() method is not overridden, the thread does nothing. In our example, the thread
prints its name and other properties every second as long as the parameter is not equal to
string "exit"; otherwise it exits. The pauseOneSecond() method looks as follows:

private static void pauseOneSecond(){
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
}

We can now use the MyThread class to run two threads—one user thread and one daemon
thread:

public static void main(String... args) {
 MyThread thr1 = new MyThread("One");
 thr1.start();
 MyThread thr2 = new MyThread("Two");
 thr2.setDaemon(true);
 thr2.start();
 pauseOneSecond();
 thr1.setParameter("exit");
 pauseOneSecond();
 System.out.println("Main thread exists");
}

As you can see, the main thread creates two other threads, pauses for one second, sets
parameter exit on the user thread, pauses another second, and, finally, exits. (The main()
method completes its execution.)

Multithreading and Concurrent Processing Chapter 8

[277]

If we run the preceding code, we see something like the following screenshot (The thread
id may be different in different operating systems.):

The preceding screenshot shows that the daemon thread exits automatically as soon as the
last user thread (main thread in our example) exits.

Implementing interface Runnable
The second way to create a thread is to use a class that implements java.lang.Runnable.
Here is an example of such a class that has almost exactly the same functionality
as MyThread class:

class MyRunnable implements Runnable {
 private String parameter, name;
 public MyRunnable(String name) {
 this.name = name;
 }
 public void run() {
 while(!"exit".equals(parameter)){
 System.out.println("thread " + this.name +
 ", parameter: " + parameter);
 pauseOneSecond();
 }
 System.out.println("thread " + this.name +
 ", parameter: " + parameter);
 }
 public void setParameter(String parameter) {
 this.parameter = parameter;
 }
}

The difference is that there is no isDaemon() method, getId(), or any other out-of-
box method. The MyRunnable class can be any class that implements the Runnable
interface, so we cannot print whether the thread is daemon or not. That is why we have
added the name property, so we can identify the thread.

Multithreading and Concurrent Processing Chapter 8

[278]

We can use the MyRunnable class to create threads similar to how we have used
the MyThread class:

public static void main(String... args) {
 MyRunnable myRunnable1 = new MyRunnable("One");
 MyRunnable myRunnable2 = new MyRunnable("Two");

 Thread thr1 = new Thread(myRunnable1);
 thr1.start();
 Thread thr2 = new Thread(myRunnable2);
 thr2.setDaemon(true);
 thr2.start();
 pauseOneSecond();
 myRunnable1.setParameter("exit");
 pauseOneSecond();
 System.out.println("Main thread exists");
}

The following screenshot proves that the behavior of the MyRunnable class is similar to the
behavior of the MyThread class:

The daemon thread (named Two) exits after the last user thread exists—exactly how it
happened with the MyThread class.

Extending thread vs implementing Runnable
Implementation of Runnable has the advantage (and in some cases the only possible
option) of allowing the implementation to extend another class. It is particularly helpful
when you would like to add thread-like behavior to an existing class. Implementing
Runnable allows more flexibility in usage. But otherwise, there is no difference in
functionality comparing to the extending of the Thread class.

Thread class has several constructors that allow setting the thread name and the group it
belongs to. Grouping of threads helps to manage them in the case of many threads running
in parallel. Thread class has also several methods that provide information about the
thread's status, its properties, and allows to control its behavior.

Multithreading and Concurrent Processing Chapter 8

[279]

As you have seen, the thread's ID is generated automatically. It cannot be changed but can
be reused after the thread is terminated. Several threads, on the other hand, can be set with
the same name.

The execution priority can also be set programmatically with a value between
Thread.MIN_PRIORITY and Thread.MAX_PRIORITY. The smaller the value, the more time
the thread is allowed to run, which means it has higher priority. If not set, the priority value
defaults to Thread.NORM_PRIORITY.

The state of a thread can have one of the following values:

NEW: When a thread has not yet started
RUNNABLE: When a thread is being executed
BLOCKED: When a thread is blocked and is waiting for a monitor lock
WAITING: When a thread is waiting indefinitely for another thread to perform a
particular action
TIMED_WAITING: When a thread is waiting for another thread to perform an
action for up to a specified waiting time
TERMINATED: When a thread has exited

Threads and any objects for that matter also can talk to each other using the methods wait(),
notify(), and notifyAll() of the java.lang.Object base class. But this aspect of
threads' behavior is outside the scope of this book.

Using pool of threads
Each thread requires resources—CPU and memory. It means the number of threads must
be controlled, and one way to do it is to create a fixed number of them—a pool. Besides,
creating an object incurs an overhead that may be significant for some applications.

In this section, we will look into the Executor interfaces and their implementations
provided in the java.util.concurrent package. They encapsulate thread management
and minimize the time an application developer spends on writing the code related to
threads' life cycles.

Multithreading and Concurrent Processing Chapter 8

[280]

There are three Executor interfaces defined in the java.util.concurrent package:

The base Executor interface: It has only one void execute(Runnable r)
method in it.
The ExecutorService interface: It extends Executor and adds four groups of
methods that manage the life cycle of the worker threads and of the executor
itself:

submit() methods that place a Runnable or Callable object in
the queue for the execution (Callable allows the worker thread to
return a value), return an object of Future interface, which can be
used to access the value returned by the Callable, and to manage
the status of the worker thread
invokeAll() methods that place a collection of objects
of Callable interface in the queue for the execution which
then returns List of Future objects when all the worker threads
are complete (there is also an overloaded invokeAll() method
with a timeout)
invokeAny() methods that place a collection of
interface Callable objects in the queue for the execution; return
one Future object of any of the worker threads, which has
completed (there is also an overloaded invokeAny() method with
a timeout)
Methods that manage the worker threads' status and the service
itself as follows:

shutdown(): Prevents new worker threads from
being submitted to the service.
shutdownNow(): Interrupts each worker thread that
is not completed. A worker thread should be written
so that it checks its own status periodically (using
Thread.currentThread().isInterrupted(),
for example) and gracefully shuts down on its own;
otherwise, it will continue running even after
shutdownNow() was called.
isShutdown(): Checks whether the shutdown of
the executor was initiated.

Multithreading and Concurrent Processing Chapter 8

[281]

awaitTermination(long timeout, TimeUnit

timeUnit): Waits until all worker threads have
completed execution after a shutdown request, or
the timeout occurs, or the current thread is
interrupted, whichever happens first.
isTerminated(): Checks whether all the worker
threads have completed after the shutdown was
initiated. It never returns true unless either
shutdown() or shutdownNow() was called first.

The ScheduledExecutorService interface: It extends ExecutorService and
adds methods that allow scheduling of the execution (one-time and periodic one)
of the worker threads.

A pool-based implementation of ExecutorService can be created using the
java.util.concurrent.ThreadPoolExecutor or
java.util.concurrent.ScheduledThreadPoolExecutor class. There is also a
java.util.concurrent.Executors factory class that covers most of the practical cases.
So, before writing custom code for worker threads' pool creation, we highly recommend
looking into using the following factory methods of the
java.util.concurrent.Executors class:

newCachedThreadPool() that creates a thread pool that adds a new thread as
needed, unless there is an idle thread created before; threads that have been idle
for 60 seconds are removed from the pool
newSingleThreadExecutor() that creates an ExecutorService (pool)
instance that executes worker threads sequentially
newSingleThreadScheduledExecutor() that creates a single-threaded
executor that can be scheduled to run after a given delay, or to execute
periodically
newFixedThreadPool(int nThreads) that creates a thread pool that reuses a
fixed number of worker threads; if a new task is submitted when all the worker
threads are still executing, it will be placed into the queue until a worker thread
is available
newScheduledThreadPool(int nThreads) that creates a thread pool of a
fixed size that can be scheduled to run after a given delay, or to execute
periodically

Multithreading and Concurrent Processing Chapter 8

[282]

newWorkStealingThreadPool(int nThreads) that creates a thread pool that
uses the work-stealing algorithm used by ForkJoinPool, which is particularly
useful in case the worker threads generate other threads, such as in a recursive
algorithm; it also adapts to the specified number of CPUs, which you may set
higher or lower than the actual CPUs count on your computer

Work-stealing algorithm

A work-stealing algorithm allows threads that have finished their
assigned tasks to help other tasks that are still busy with their
assignments. As an example, see the description of Fork/Join
implementation in the official Oracle Java documentation (https:/ /docs.
oracle. com/ javase/ tutorial/ essential/ concurrency/ forkjoin. html).

Each of these methods has an overloaded version that allows passing in a ThreadFactory
that is used to create a new thread when needed. Let's see how it all works in a code
sample. First, we run another version of MyRunnable class:

class MyRunnable implements Runnable {
 private String name;
 public MyRunnable(String name) {
 this.name = name;
 }
 public void run() {
 try {
 while (true) {
 System.out.println(this.name + " is working...");
 TimeUnit.SECONDS.sleep(1);
 }
 } catch (InterruptedException e) {
 System.out.println(this.name + " was interrupted\n" +
 this.name + " Thread.currentThread().isInterrupted()="
 + Thread.currentThread().isInterrupted());
 }
 }
}

We cannot use parameter property anymore to tell the thread to stop executing because
the thread life cycle is now going to be controlled by the ExecutorService, and the way it
does it is by calling the interrupt() thread method. Also, notice that the thread we
created has an infinite loop, so it will never stop executing until forced to (by calling
the interrupt() method).

https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

Multithreading and Concurrent Processing Chapter 8

[283]

Let's write the code that does the following:

Creates a pool of three threads1.
Makes sure the pool does not accept more threads2.
Waits for a fixed period of time to let all the threads finish what they do3.
Stops (interrupts) the threads that did not finish what they do4.
Exits5.

The following code performs all the actions described in the preceding list:

ExecutorService pool = Executors.newCachedThreadPool();
String[] names = {"One", "Two", "Three"};
for (int i = 0; i < names.length; i++) {
 pool.execute(new MyRunnable(names[i]));
}
System.out.println("Before shutdown: isShutdown()=" + pool.isShutdown()
 + ", isTerminated()=" + pool.isTerminated());
pool.shutdown(); // New threads cannot be added to the pool
//pool.execute(new MyRunnable("Four")); //RejectedExecutionException
System.out.println("After shutdown: isShutdown()=" + pool.isShutdown()
 + ", isTerminated()=" + pool.isTerminated());
try {
 long timeout = 100;
 TimeUnit timeUnit = TimeUnit.MILLISECONDS;
 System.out.println("Waiting all threads completion for "
 + timeout + " " + timeUnit + "...");
 // Blocks until timeout, or all threads complete execution,
 // or the current thread is interrupted, whichever happens first.
 boolean isTerminated = pool.awaitTermination(timeout, timeUnit);
 System.out.println("isTerminated()=" + isTerminated);
 if (!isTerminated) {
 System.out.println("Calling shutdownNow()...");
 List<Runnable> list = pool.shutdownNow();
 System.out.println(list.size() + " threads running");
 isTerminated = pool.awaitTermination(timeout, timeUnit);
 if (!isTerminated) {
 System.out.println("Some threads are still running");
 }
 System.out.println("Exiting");
 }
} catch (InterruptedException ex) {
 ex.printStackTrace();
}

The attempt to add another thread to the pool after pool.shutdown() is called, generates
java.util.concurrent.RejectedExecutionException.

Multithreading and Concurrent Processing Chapter 8

[284]

The execution of the preceding code produces the following results:

Notice the Thread.currentThread().isInterrupted()=false message in the
preceding screenshot. The thread was interrupted. We know it because the thread got the
InterruptedException. Why then does the isInterrupted() method return false?
That is because the thread state was cleared immediately after receiving the interrupt
message. We mention it now because it is a source of some programmer mistakes. For
example, if the main thread watches the MyRunnable thread and calls isInterrupted()
on it, the return value is going to be false, which may be misleading after the thread was
interrupted.

So, in the case where another thread may be monitoring the MyRunnable thread, the
implementation of MyRunnable has to be changed to the following. Note how
the interrupt() method is called in the catch block:

class MyRunnable implements Runnable {
 private String name;
 public MyRunnable(String name) {
 this.name = name;
 }
 public void run() {
 try {
 while (true) {
 System.out.println(this.name + " is working...");
 TimeUnit.SECONDS.sleep(1);
 }
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 System.out.println(this.name + " was interrupted\n" +

Multithreading and Concurrent Processing Chapter 8

[285]

 this.name + " Thread.currentThread().isInterrupted()="
 + Thread.currentThread().isInterrupted());
 }
 }
}

Now, if we run this thread using the same ExecutorService pool again, the result will be:

As you can see, now the value returned by the isInterrupted() method is true and
corresponds to what has happened. To be fair, in many applications, once the thread is
interrupted, its status is not checked again. But setting the correct state is a good practice,
especially in those cases where you are not the author of the higher level code that creates
the thread.

In our example, we have used a cached thread pool that creates a new thread as needed or,
if available, reuses the thread already used, but which completed its job and returned to the
pool for a new assignment. We did not worry about too many threads created because our
demo application had three worker threads at the most and they were quite short lived.

But, in the case where an application does not have a fixed limit of the worker threads it
might need or there is no good way to predict how much memory a thread may take or
how long it can execute, setting a ceiling on the worker thread count prevents an
unexpected degradation of the application performance, running out of memory, or
depletion of any other resources the worker threads use. If the thread behavior is extremely
unpredictable, a single thread pool might be the only solution, with an option of using a
custom thread pool executor. But, in the majority of the cases, a fixed-size thread pool
executor is a good practical compromise between the application needs and the code
complexity (earlier in this section, we listed all possible pool types created by Executors
factory class).

Multithreading and Concurrent Processing Chapter 8

[286]

Setting the size of the pool too low may deprive the application of the chance to utilize the
available resources effectively. So, before selecting the pool size, it is advisable to spend
some time monitoring the application with the goal of identifying the idiosyncrasy of the
application behavior. In fact, the cycle deploy-monitor-adjust has to be repeated throughout
the application's lifecycle in order to accommodate and take advantage of the changes that
happened in the code or the executing environment.

The first characteristic you take into account is the number of CPUs in your system, so the
thread pool size can be at least as big as the CPU's count. Then, you can monitor the
application and see how much time each thread engages the CPU and how much of the
time it uses other resources (such as I/O operations). If the time spent not using the CPU is
comparable with the total executing time of the thread, then you can increase the pool size
by the following ratio: the time CPU was not used divided by the total executing time. But,
that is in the case where another resource (disk or database) is not a subject of contention
between the threads. If the latter is the case, then you can use that resource instead of the
CPU as the delineating factor.

Assuming the worker threads of your application are not too big or too long executing, and
belong to the mainstream population of the typical working threads that complete their job
in a reasonably short period of time, you can increase the pool size by adding the (rounded
up) ratio of the desired response time and the time a thread uses the CPU or another most
contentious resource. This means that, with the same desired response time, the less a
thread uses the CPU or another concurrently accessed resource, the bigger the pool size
should be. If the contentious resource has its own ability to improve concurrent access (like
a connection pool in the database), consider utilizing that feature first.

If the required number of threads running at the same time changes at runtime under the
different circumstances, you can make the pool size dynamic and create a new pool with a
new size (shutting down the old pool after all its threads have completed). The
recalculation of the size of a new pool might also be necessary after you add or remove the
available resources. You can use Runtime.getRuntime().availableProcessors() to
programmatically adjust the pool size based on the current count of the available CPUs, for
example.

If none of the ready-to-use thread pool executor implementations that come with the JDK
suit the needs of a particular application, before writing the thread managing code from
scratch, try to use the java.util.concurrent.ThreadPoolExecutor class first. It has
several overloaded constructors.

Multithreading and Concurrent Processing Chapter 8

[287]

To give you an idea of its capabilities, here is the constructor with the biggest number of
options:

ThreadPoolExecutor (int corePoolSize,
 int maximumPoolSize,
 long keepAliveTime,
 TimeUnit unit,
 BlockingQueue<Runnable> workQueue,
 ThreadFactory threadFactory,
 RejectedExecutionHandler handler)

The parameters of the preceding constructor are as follows:

corePoolSize is the number of threads to keep in the pool, even if they are idle,
unless the allowCoreThreadTimeOut(boolean value) method is called
with true value.
maximumPoolSize is the maximum number of threads to allow in the pool.
keepAliveTime: When the number of threads is greater than the core, this is the
maximum time that excess idle threads will wait for new tasks before
terminating.
unit is the time unit for the keepAliveTime argument.
workQueue is the queue to use for holding tasks before they are executed; this
queue will hold only the Runnable objects submitted by the execute() method.
threadFactory is the factory to use when the executor creates a new thread.
handler is the handler to use when the execution is blocked because the thread
bounds and queue capacities are reached.

Each of the previous constructor parameters except the workQueue can also be set via the
corresponding setter after the object of the ThreadPoolExecutor class has been created,
thus allowing more flexibility and dynamic adjustment of the existing pool characteristics.

Getting results from thread
In our examples, so far, we used the execute() method of
the ExecutorService interface to start a thread. In fact, this method comes from
the Executor base interface. Meanwhile, the ExecutorService interface has other
methods (listed in the previous Using pool of threads section) that can start threads and get
back the results of thread execution.

Multithreading and Concurrent Processing Chapter 8

[288]

The object that brings back the result of the thread execution is of type Future—an
interface that has the following methods:

V get(): Blocks until the thread finishes; returns the result (if available)
V get(long timeout, TimeUnit unit): Blocks until the thread finishes or
the provided timeout is up; returns the result (if available)
boolean isDone(): Returns true if the thread has finished
boolean cancel(boolean mayInterruptIfRunning): Tries to cancel
execution of the thread; returns true if successful; returns false also in the case
the thread had finished normally by the time the method was called
boolean isCancelled(): Returns true if the thread execution
was canceled before it has finished normally

The remark if available in the description of the get() method means that the result is not
always available in principle, even when the get() method without parameters is called. It
all depends on the method used to produce the Future object. Here is a list of all the
methods of ExecutorService that return Future object(s):

Future<?> submit(Runnable task): Submits the thread (task) for execution;
returns a Future representing the task; the get() method of the returned
Future object returns null; for example, let's use MyRunnable class that works
only 100 milliseconds:

class MyRunnable implements Runnable {
 private String name;
 public MyRunnable(String name) {
 this.name = name;
 }
 public void run() {
 try {
 System.out.println(this.name + " is working...");
 TimeUnit.MILLISECONDS.sleep(100);
 System.out.println(this.name + " is done");
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 System.out.println(this.name + " was interrupted\n" +
 this.name + " Thread.currentThread().isInterrupted()="
 + Thread.currentThread().isInterrupted());
 }
 }
}

Multithreading and Concurrent Processing Chapter 8

[289]

And, based on the code examples of the previous section, let's create a method
that shuts down the pool and terminates all the threads, if necessary:

void shutdownAndTerminate(ExecutorService pool){
 try {
 long timeout = 100;
 TimeUnit timeUnit = TimeUnit.MILLISECONDS;
 System.out.println("Waiting all threads completion for "
 + timeout + " " + timeUnit + "...");
 //Blocks until timeout or all threads complete execution,
 // or the current thread is interrupted,
 // whichever happens first.
 boolean isTerminated =
 pool.awaitTermination(timeout, timeUnit);
 System.out.println("isTerminated()=" + isTerminated);
 if (!isTerminated) {
 System.out.println("Calling shutdownNow()...");
 List<Runnable> list = pool.shutdownNow();
 System.out.println(list.size() + " threads running");
 isTerminated = pool.awaitTermination(timeout, timeUnit);
 if (!isTerminated) {
 System.out.println("Some threads are still running");
 }
 System.out.println("Exiting");
 }
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 }
}

We will use the preceding shutdownAndTerminate() method in a finally
block to make sure no running threads were left behind. And here is the code we
are going to execute:

ExecutorService pool = Executors.newSingleThreadExecutor();

Future future = pool.submit(new MyRunnable("One"));
System.out.println(future.isDone()); //prints: false
System.out.println(future.isCancelled()); //prints: false
try{
 System.out.println(future.get()); //prints: null
 System.out.println(future.isDone()); //prints: true
 System.out.println(future.isCancelled());//prints: false
} catch (Exception ex){
 ex.printStackTrace();
} finally {
 shutdownAndTerminate(pool);
}

Multithreading and Concurrent Processing Chapter 8

[290]

The output of this code you can see on this screenshot:

As expected, the get() method of the Future object returns null,
because run() method of Runnable does not return anything. All we can get
back from the returned Future is the information that the task was completed, or
not.

Future<T> submit(Runnable task, T result): Submits the thread (task)
for execution; returns a Future representing the task with the provided
result in it; for example, we will use the following class as the result:

class Result {
 private String name;
 private double result;
 public Result(String name, double result) {
 this.name = name;
 this.result = result;
 }
 @Override
 public String toString() {
 return "Result{name=" + name +
 ", result=" + result + "}";
 }
}

The following code demonstrates how the default result is returned by the
Future returned by the submit() method:

ExecutorService pool = Executors.newSingleThreadExecutor();
Future<Result> future = pool.submit(new MyRunnable("Two"),
 new Result("Two", 42.));
System.out.println(future.isDone()); //prints: false
System.out.println(future.isCancelled()); //prints: false

Multithreading and Concurrent Processing Chapter 8

[291]

try{
 System.out.println(future.get()); //prints: null
 System.out.println(future.isDone()); //prints: true
 System.out.println(future.isCancelled()); //prints: false
} catch (Exception ex){
 ex.printStackTrace();
} finally {
 shutdownAndTerminate(pool);
}

If we execute the preceding code, the output is going to be as follows:

As was expected, the get() method of Future returns the object passed in as a
parameter.

Future<T> submit(Callable<T> task): Submits the thread (task) for
execution; returns a Future representing the task with the result produced and
returned by the V call() method of the Callable interface; that is the
only Callable method the interface has. For example:

class MyCallable implements Callable {
 private String name;
 public MyCallable(String name) {
 this.name = name;
 }
 public Result call() {
 try {
 System.out.println(this.name + " is working...");
 TimeUnit.MILLISECONDS.sleep(100);
 System.out.println(this.name + " is done");
 return new Result(name, 42.42);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 System.out.println(this.name + " was interrupted\n" +

Multithreading and Concurrent Processing Chapter 8

[292]

 this.name + " Thread.currentThread().isInterrupted()="
 + Thread.currentThread().isInterrupted());
 }
 return null;
 }

The result of the preceding code is as follows:

As you can see, the get() method of the Future returns the value produced by
the call() method of the MyCallable class

List<Future<T>> invokeAll(Collection<Callable<T>> tasks):
Executes all the Callable tasks of the provided collection; returns a list of
Futures with the results produced by the executed Callable objects
List<Future<T>> invokeAll(Collection<Callable<T>>: Executes all
the Callable tasks of the provided collection; returns a list of Futures with the
results produced by the executed Callable objects or the timeout expires,
whichever happens first
T invokeAny(Collection<Callable<T>> tasks): Executes all
the Callable tasks of the provided collection; returns the result of one that has
completed successfully (meaning, without throwing an exception), if any do
T invokeAny(Collection<Callable<T>> tasks, long timeout,

TimeUnit unit): Executes all the Callable tasks of the provided collection;
returns the result of one that has completed successfully (meaning, without
throwing an exception), if such is available before the provided timeout expires

As you can see, there are many ways to get the results from a thread. The method you
choose depends on the particular needs of your application.

Multithreading and Concurrent Processing Chapter 8

[293]

Parallel vs concurrent processing
When we hear about working threads executing at the same time, we automatically assume
that they literally do what they are programmed to do in parallel. Only after we look under
the hood of such a system we, do realize that such parallel processing is possible only when
the threads are executed each by a different CPU. Otherwise, they time-share the same
processing power. We perceive them working at the same time only because the time slots
they use are very short—a fraction of the time units we have used in our everyday life.
When the threads share the same resource, in computer science, we say they do it
concurrently.

Concurrent modification of the same
resource
Two or more threads modifying the same value while other threads read it is the most
general description of one of the problems of concurrent access. Subtler problems include
thread interference and memory consistency errors, which both produce unexpected
results in seemingly benign fragments of code. In this section, we are going to demonstrate
such cases and ways to avoid them.

At first glance, the solution seems quite straightforward: just allow only one thread at a
time to modify/access the resource and that's it. But if the access takes a long time, it creates
a bottleneck that might eliminate the advantage of having many threads working in
parallel. Or, if one thread blocks access to one resource while waiting for access to another
resource and the second thread blocks access to the second resource while waiting for
access to the first one, it creates a problem called a deadlock. These are two very simple
examples of the possible challenges a programmer encounters while using multiple
threads.

First, we'll reproduce a problem caused by the concurrent modification of the same value.
Let's create a Calculator interface:

interface Calculator {
 String getDescription();
 double calculate(int i);
}

Multithreading and Concurrent Processing Chapter 8

[294]

We will use getDescription() method to capture the description of the implementation.
Here is the first implementation:

class CalculatorNoSync implements Calculator{
 private double prop;
 private String description = "Without synchronization";
 public String getDescription(){ return description; }
 public double calculate(int i){
 try {
 this.prop = 2.0 * i;
 TimeUnit.MILLISECONDS.sleep(i);
 return Math.sqrt(this.prop);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 System.out.println("Calculator was interrupted");
 }
 return 0.0;
 }
}

As you can see, the calculate() method assigns a new value to the prop property, then
does something else (we simulate it by calling the sleep() method), and then calculates
the square root of the value assigned to the prop property. The "Without
synchronization" description depicts the fact that the value of the prop property is
changing every time the calculate() method is called—without any coordination or
synchronization, as it is called in the case of the coordination between threads when they
concurrently modify the same resource.

We are now going to share this object between two threads, which means that the prop
property is going to be updated and used concurrently. So some kind of thread
synchronization around the prop property is necessary, but we have decided that our first
implementation does not do it.

The following is the method we are going to use while executing every Calculator
implementation we are going to create:

void invokeAllCallables(Calculator c){
 System.out.println("\n" + c.getDescription() + ":");
 ExecutorService pool = Executors.newFixedThreadPool(2);
 List<Callable<Result>> tasks = List.of(new MyCallable("One", c),
 new MyCallable("Two", c));
 try{
 List<Future<Result>> futures = pool.invokeAll(tasks);
 List<Result> results = new ArrayList<>();
 while (results.size() < futures.size()){
 TimeUnit.MILLISECONDS.sleep(5);

Multithreading and Concurrent Processing Chapter 8

[295]

 for(Future future: futures){
 if(future.isDone()){
 results.add((Result)future.get());
 }
 }
 }
 for(Result result: results){
 System.out.println(result);
 }
 } catch (Exception ex){
 ex.printStackTrace();
 } finally {
 shutdownAndTerminate(pool);
 }
}

As you can see, the preceding method does the following:

Prints description of the passed-in Calculator implementation.
Creates a fixed-size pool for two threads.
Creates a list of two Callable tasks—the objects of the following MyCallable
class:

class MyCallable implements Callable<Result> {
 private String name;
 private Calculator calculator;
 public MyCallable(String name, Calculator calculator) {
 this.name = name;
 this.calculator = calculator;
 }
 public Result call() {
 double sum = 0.0;
 for(int i = 1; i < 20; i++){
 sum += calculator.calculate(i);
 }
 return new Result(name, sum);
 }
}

The list of tasks is passed into the invokeAll() method of the pool, where each
of the tasks is executed by invoking the call() method; each call()
method applies the calculate() method of the passed-in Calculator object to
every one of the 19 numbers from 1 to 20 and sums up the results; the resulting
sum is returned inside the Result object along with the name of the
MyCallable object.

Multithreading and Concurrent Processing Chapter 8

[296]

Each Result object is eventually returned inside a Future object.
The invokeAllCallables() method then iterates over the list of Future
objects and checks each of them if the task is completed; when a task is
completed, the result is added to the List<Result> results.
After all the tasks are completed, the invokeAllCallables() method then
prints all the elements of the List<Result> results and terminates the pool.

Here is the result we got from one of our runs of invokeAllCallables(new
CalculatorNoSync()):

The actual numbers are slightly different every time we run the preceding code, but the
result of task One never equals the result of task Two. That is because, in the period between
setting the value of the prop field and returning its square root in the calculate()
method, the other thread managed to assign a different value to prop. This is a case of
thread interference.

There are several ways to address this problem. We start with an atomic variable as the
way to achieve thread-safe concurrent access to a property. Then we will also demonstrate
two methods of thread synchronization.

Atomic variable
An atomic variable is a that can be updated only when its current value matches the
expected one. In our case, it means that a prop value should not be used if it has been
changed by another thread.

Multithreading and Concurrent Processing Chapter 8

[297]

The java.util.concurrent.atomic package has a dozen classes that support this logic:
AtomicBoolean, AtomicInteger, AtomicReference, and AtomicIntegerArray, to
name a few. Each of these classes has many methods that can be used for different
synchronization needs. Check the online API documentation for each of these classes
(https://docs.oracle. com/ en/ java/ javase/ 12/ docs/ api/java. base/ java/ util/
concurrent/atomic/ package- summary. html). For the demonstration, we will use only
two methods present in all of them:

V get(): Returns the current value
boolean compareAndSet(V expectedValue, V newValue): Sets the value
to newValue if the current value equals via operator (==) the expectedValue;
returns true if successful or false if the actual value was not equal to the
expected value

Here is how the AtomicReference class can be used to solve the problem of threads'
interference while accessing the prop property of the Calculator object concurrently
using these two methods:

class CalculatorAtomicRef implements Calculator {
 private AtomicReference<Double> prop = new AtomicReference<>(0.0);
 private String description = "Using AtomicReference";
 public String getDescription(){ return description; }
 public double calculate(int i){
 try {
 Double currentValue = prop.get();
 TimeUnit.MILLISECONDS.sleep(i);
 boolean b = this.prop.compareAndSet(currentValue, 2.0 * i);
 //System.out.println(b); //prints: true for one thread
 //and false for another thread
 return Math.sqrt(this.prop.get());
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 System.out.println("Calculator was interrupted");
 }
 return 0.0;
 }
}

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/atomic/package-summary.html

Multithreading and Concurrent Processing Chapter 8

[298]

As you can see, the preceding code makes sure that the currentValue of
the prop property does not change while the thread was sleeping. The following is the
screenshot of the messages produced when we run invokeAllCallables(new
CalculatorAtomicRef()):

Now the results produced by the threads are the same.

The following classes of the java.util.concurrent package provide synchronization
support too:

Semaphore: Restricts the number of threads that can access a resource
CountDownLatch: Allows one or more threads to wait until a set of operations
being performed in other threads are completed
CyclicBarrier: Allows a set of threads to wait for each other to reach a
common barrier point
Phaser: Provides a more flexible form of barrier that may be used to control
phased computation among multiple threads
Exchanger: Allows two threads to exchange objects at a rendezvous point and is
useful in several pipeline designs

Synchronized method
Another way to solve the problem is to use a synchronized method. Here is another
implementation of the Calculator interface that uses this method of solving threads
interference:

class CalculatorSyncMethod implements Calculator {
 private double prop;
 private String description = "Using synchronized method";
 public String getDescription(){ return description; }
 synchronized public double calculate(int i){
 try {

Multithreading and Concurrent Processing Chapter 8

[299]

 this.prop = 2.0 * i;
 TimeUnit.MILLISECONDS.sleep(i);
 return Math.sqrt(this.prop);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 System.out.println("Calculator was interrupted");
 }
 return 0.0;
 }
}

We have just added the synchronized keyword in front of the calculate() method.
Now, if we run invokeAllCallables(new CalculatorSyncMethod()), the results of
both threads are always going to be the same:

This is because another thread cannot enter the synchronized method until the current
thread (the one that has entered the method already) has exited it. This is probably the
simplest solution, but this approach may cause performance degradation if the method
takes a long time to execute. In such cases, a synchronized block can be used, which wraps
only several lines of code in an atomic operation.

Synchronized block
Here is an example of a synchronized block used to solve the problem of the threads'
interference:

class CalculatorSyncBlock implements Calculator {
 private double prop;
 private String description = "Using synchronized block";
 public String getDescription(){
 return description;
 }
 public double calculate(int i){
 try {

Multithreading and Concurrent Processing Chapter 8

[300]

 //there may be some other code here
 synchronized (this) {
 this.prop = 2.0 * i;
 TimeUnit.MILLISECONDS.sleep(i);
 return Math.sqrt(this.prop);
 }
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 System.out.println("Calculator was interrupted");
 }
 return 0.0;
 }
}

As you can see, the synchronized block acquires a lock on this object, which is shared by
both threads, and releases it only after the threads exit the block. In our demo code, the
block covers all the code of the method, so there is no difference in performance. But
imagine there is more code in the method (we commented the location as there may be
some other code here). If that is the case, the synchronized section of the code is
smaller, thus having fewer chances to become a bottleneck.

If we run invokeAllCallables(new CalculatorSyncBlock()), the results are as
follows:

As you can see, the results are exactly the same as in the previous two examples. Different
types of locks for different needs and with different behavior are assembled in the
java.util.concurrent.locks package.

Each object in Java inherits the wait(), notify(), and notifyAll() methods from the
base object. These methods can also be used to control the threads' behavior and their
access to the locks.

Multithreading and Concurrent Processing Chapter 8

[301]

Concurrent collections
Another way to address concurrency is to use a thread-safe collection from the
java.util.concurrent package. Before you select which collection to use, read the
Javadoc (https:// docs. oracle. com/ en/ java/ javase/ 12/docs/ api/ index. html) to see
whether the limitations of the collection are acceptable for your application. Here is the list
of these collections and some recommendations:

ConcurrentHashMap<K,V>: Supports full concurrency of retrievals and high-
expected concurrency for updates; use it when the concurrency requirements are
very demanding and you need to allow locking on the write operation but do not
need to lock the element.
ConcurrentLinkedQueue<E>: A thread-safe queue based on linked
nodes; employs an efficient non-blocking algorithm.
ConcurrentLinkedDeque<E>: A concurrent queue based on linked nodes;
both ConcurrentLinkedQueque and ConcurrentLinkedDeque are an
appropriate choice when many threads share access to a common collection.
ConcurrentSkipListMap<K,V>: A concurrent ConcurrentNavigableMap
interface implementation.
ConcurrentSkipListSet<E>: A concurrent NavigableSet implementation
based on a ConcurrentSkipListMap.
The ConcurrentSkipListSet and ConcurrentSkipListMap classes, as per
the Javadoc, provide expected average log(n) time cost for the contains, add, and remove
operations and their variants. Ascending ordered views and their iterators are faster than
descending ones; use them when you need to iterate quickly through the elements
in a certain order.
CopyOnWriteArrayList<E>: A thread-safe variant of ArrayList in which all
mutative operations (add, set, and so on) are implemented by making a fresh
copy of the underlying array; as per the Javadoc, the CopyOnWriteArrayList
class is ordinarily too costly, but may be more efficient than alternatives when traversal
operations vastly outnumber mutations, and is useful when you cannot or don't want to
synchronize traversals, yet need to preclude interference among concurrent threads; use
it when you do not need to add new elements at different positions and do not
require sorting; otherwise, use ConcurrentSkipListSet.
CopyOnWriteArraySet<E>: A set that uses an internal
CopyOnWriteArrayList for all of its operations.

https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html
https://docs.oracle.com/en/java/javase/12/docs/api/index.html

Multithreading and Concurrent Processing Chapter 8

[302]

PriorityBlockingQueue: It is a better choice when a natural order is
acceptable and you need fast adding of elements to the tail and fast removing of
elements from the head of the queue; blocking means that the queue waits to
become non-empty when retrieving an element and waits for space to become
available in the queue when storing an element.
ArrayBlockingQueue, LinkedBlockingQueue, and LinkedBlockingDeque
have a fixed size (bounded); the other queues are unbounded.

Use these and similar characteristics and recommendations as with the guidelines, but
execute comprehensive testing and performance-measuring before and after implementing
your functionality. To demonstrate some of these collections capabilities, let's
use CopyOnWriteArrayList<E>. First, let's look at how an ArrayList behaves when we
try to modify it concurrently:

List<String> list = Arrays.asList("One", "Two");
System.out.println(list);
try {
 for (String e : list) {
 System.out.println(e); //prints: One
 list.add("Three"); //UnsupportedOperationException
 }
} catch (Exception ex) {
 ex.printStackTrace();
}
System.out.println(list); //prints: [One, Two]

As expected, the attempt to modify a list while iterating on it generates an exception and
the list remains unmodified.

Now, let's use CopyOnWriteArrayList<E> in the same circumstances:

List<String> list =
 new CopyOnWriteArrayList<>(Arrays.asList("One", "Two"));
System.out.println(list);
try {
 for (String e : list) {
 System.out.print(e + " "); //prints: One Two
 list.add("Three"); //adds element Three
 }
} catch (Exception ex) {
 ex.printStackTrace();
}
System.out.println("\n" + list); //prints: [One, Two, Three, Three]

Multithreading and Concurrent Processing Chapter 8

[303]

The output this code produces looks as follows:

As you can see, the list was modified without an exception, but not the currently iterated
copy. That is the behavior you can use if needed.

Addressing memory consistency error
Memory consistency errors can have many forms and causes in a multithreaded
environment. They are well discussed in the Javadoc of the java.util.concurrent
package. Here, we will mention only the most common case, which is caused by a lack of
visibility.

When one thread changes a property value, the other might not see the change
immediately, and you cannot use the synchronized keyword for a primitive type. In such a
situation, consider using the volatile keyword for the property; it guarantees its
read/write visibility between different threads.

Concurrency problems are not easy to solve. That is why it is not surprising that more and
more developers now take a more radical approach. Instead of managing an object state,
they prefer processing data in a set of stateless operations. We will see examples of such
code in Chapter 13, Functional Programming and Chapter 14, Java Standard Streams. It seems
that Java and many modern languages and computer systems are evolving in this direction.

Summary
In this chapter, we talked about multithreaded processing, the ways to organize it
and avoid unpredictable results caused by the concurrent modification of the shared
resource. We have shown readers how to create threads and execute them using pools of
threads. We have also demonstrated how the results can be extracted from the threads that
have completed successfully and discussed the difference between parallel and concurrent
processing.

Multithreading and Concurrent Processing Chapter 8

[304]

In the next chapter, we will provide readers with a deeper understanding of JVM, its
structure and processes, and we'll discuss in detail the garbage collection process that keeps
memory from being overflown. By the end of the chapter, the readers will know what
constitutes Java application execution, Java processes inside JVM, garbage collection, and
how JVM works in general.

Quiz
Select all correct statements:1.

JVM process can have main threads.a.
Main thread is the main process.b.
A process can launch another process.c.
A thread may launch another thread.d.

Select all correct statements:2.
A daemon is a user thread.a.
A daemon thread exits after the first user thread completes.b.
A daemon thread exits after the last user thread completes.c.
Main thread is a user thread.d.

Select all correct statements:3.
All threads have java.lang.Thread as a base class.a.
All threads extend java.lang.Thread.b.
All threads implement java.lang.Thread.c.
Daemon thread does not extend java.lang.Thread.d.

Select all correct statements:4.
Any class can implement the Runnable interface.a.
The Runnable interface implementation is a thread.b.
The Runnable interface implementation is used by a thread.c.
The Runnable interface has only one method.d.

Multithreading and Concurrent Processing Chapter 8

[305]

Select all correct statements:5.
A thread name has to be unique.a.
A thread ID is generated automatically.b.
A thread name can be set.c.
A thread priority can be set.d.

Select all correct statements:6.
A thread pool executes threads.a.
A thread pool reuses threads.b.
Some thread pools can have a fixed count of threads.c.
Some thread pools can have an unlimited count of threads.d.

Select all correct statements:7.
A Future object is the only way to get the result from a thread.a.
A Callable object is the only way to get the result from a thread.b.
A Callable object allows getting the result from a thread.c.
A Future object represents a thread.d.

Select all correct statements:8.
Concurrent processing can be done in parallel.a.
Parallel processing is possible only with several CPUs or coresb.
available on the computer.
Parallel processing is concurrent processing.c.
Without multiple CPU, concurrent processing is impossible.d.

Select all correct statements:9.
Concurrent modification always leads to incorrect results.a.
An atomic variable protects the property from concurrentb.
modification.
An atomic variable protects the property from the thread interference.c.
An atomic variable is the only way to protect the property fromd.
concurrent modification.

Select all correct statements:10.
A synchronized method is the best way to avoid thread interference.a.
A synchronized keyword can be applied to any method.b.
A synchronized method can create a processing bottleneck.c.
A synchronized method is easy to implement.d.

Multithreading and Concurrent Processing Chapter 8

[306]

Select all correct statements:11.
A synchronized block makes sense only when it is smaller than thea.
method.
A synchronized block requires shared lock.b.
Every Java object can provide a lock.c.
A synchronized block is the best way to avoid thread interference.d.

Select all correct statements:12.
Using a concurrent collection is preferred rather than using a non-a.
concurrent one.
Using a concurrent collection incurs some overhead.b.
Not every concurrent collection fits every concurrent processingc.
scenario.
One can create a concurrent collection by callingd.
Collections.makeConcurrent() method.

Select all correct statements:13.
The only way to avoid memory consistency error is to declarea.
the volatile variable.
Using the volatile keyword guarantees visibility of the value changeb.
across all threads.
One of the ways to avoid concurrency is to avoid any statec.
management.
Stateless utility methods cannot have concurrency issues.d.

9
JVM Structure and Garbage

Collection
This chapter provides readers with an overview of Java Virtual Machine (JVM) structure
and behavior, which are more complex than you might expect.

A JVM is just an executor of instructions according to the coded logic. It also finds and
loads into the memory the .class files requested by the application, verifies them,
interprets the bytecodes (that is, it translates them into platform-specific binary code), and
passes the resulting binary code to the central processor (or processors) for execution. It
uses several service threads in addition to the application threads. One of the service
threads, called garbage collection (GC), performs an important mission of releasing the
memory from unused objects.

After reading this chapter, readers will better understand what constitutes Java application
execution, Java processes inside JVM, GC, and how JVM works in general.

The following topics will be covered in this chapter:

Java application execution
Java processes
JVM structure
Garbage collection

JVM Structure and Garbage Collection Chapter 9

[308]

Java application execution
Before getting deeper into how the JVM works, let's review how to run an application,
bearing in mind that the following statements are used as synonyms:

Run/execute/start the main class
Run/execute/start the main method
Run/execute/start/launch an application
Run/execute/start/launch JVM or a Java process

There are also several ways to do it. In Chapter 1, Getting Started with Java 12, we showed
you how to run the main(String[]) method using IntelliJ IDEA. In this chapter, we will
just repeat some of what has been said already and add other variations that might be
helpful for you.

Using an IDE
Any IDE allows for running the main() method. In IntelliJ IDEA, it can be done in three
ways:

Click the green triangle next to the main() method name:1.

After you have executed the main() method using the green triangle at least2.
once, the name of the class will be added to the drop-down menu (on the top
line, to the left of the green triangle):

JVM Structure and Garbage Collection Chapter 9

[309]

Select it and click the green triangle to the right of the menu:

Open the Run menu and select the name of the class. There are several different
options to select:

JVM Structure and Garbage Collection Chapter 9

[310]

In the previous screenshot, you can also see the option to Edit Configurations....
It can be used for setting the Program arguments that are passed to the main()
method at the start, and some other options:

The VM options field allows for setting java command options. For example, if you input
the -Xlog:gc, the IDE will form the following java command:

java -Xlog:gc -cp . com.packt.learnjava.ch09_jvm.MyApplication

The -Xlog:gc option requires the GC log to be displayed. We will use this option in the
next section to demonstrate how GC works. The -cp . option (cp stands for classpath)
indicates that the class is located in a folder on the file tree that starts from the current
directory (the one where the command is entered). In our case, the .class file is located in
the com/packt/learnjava/ch09_jvm folder, where com is the subfolder of the current
directory. The classpath can include many locations where JVM has to look for the .class
files necessary for the application's execution.

For this demonstration, let's set VM options as follows:

JVM Structure and Garbage Collection Chapter 9

[311]

The Program arguments field allows for setting a parameter in the java command. For
example, let's set one two three in this field:

This setting will result in the following java command:

java -DsomeParameter=42 -cp . \
 com.packt.learnjava.ch09_jvm.MyApplication one two three

We can read these parameters in the main() method:

public static void main(String... args){
 System.out.println("Hello, world!"); //prints: Hello, world!
 for(String arg: args){
 System.out.print(arg + " "); //prints: one two three
 }
 String p = System.getProperty("someParameter");
 System.out.println("\n" + p); //prints: 42
}

Another possible setting on the Edit Configurations screen is in the Environment
variables field:

JVM Structure and Garbage Collection Chapter 9

[312]

That is the way to set environment variables that can be accessed from the application
using System.getenv(). For example, let's set the environment variables x and y , as
follows:

If done as shown in the preceding screenshot, the values of x and y can be read not only in
the main() method, but anywhere in the application using
the System.getenv("varName") method. In our case, the values of x and y can be
retrieved as follows:

String p = System.getenv("x");
System.out.println(p); //prints: 42
p = System.getenv("y");
System.out.println(p); //prints: 43

There are other parameters of the java command that can be set on the Edit
Configurations screen, too. We encourage you to spend some time on that screen and view
the possible options.

Using the command line with classes
Now, let's run MyApplication from a command line. To remind you, the main class looks
as follows:

package com.packt.learnjava.ch09_jvm;
public class MyApplication {
 public static void main(String... args){
 System.out.println("Hello, world!"); //prints: Hello, world!
 for(String arg: args){
 System.out.print(arg + " "); //prints all arguments
 }
 String p = System.getProperty("someParameter");
 System.out.println("\n" + p); //prints someParameter set
 // as VM option -D
 }
}

JVM Structure and Garbage Collection Chapter 9

[313]

First, it has to be compiled using the javac command. The command line looks as follows
(provided you open the Terminal window in the root of the project, in the folder where
pom.xml resides):

javac src/main/java/com/packt/learnjava/ch09_jvm/MyApplication.java

That is for Linux-type platforms. On Windows, the command looks similar:

javac src\main\java\com\packt\learnjava\ch09_jvm\MyApplication.java

The compiled MyApplication.class file is placed in the same folder with
MyApplication.java. Now we can execute the compiled class with the java command:

java -DsomeParameter=42 -cp src/main/java \
 com.packt.learnjava.ch09_jvm.MyApplication one two three

Notice that -cp points to the folder src/main/java (the path is relative to the current
folder), where the package of the main class starts. The result is as follows:

If the application uses other .class files located in different folders, all the paths to these
folders (relative to the current folder) can be listed after the -cp option, separated by a
colon (:). For example, consider the following:

java -cp src/main/java:someOtherFolder/folder \
 com.packt.learnjava.ch09_jvm.MyApplication

Notice that the folders listed with the -cp option can contain any number of .class files.
This way, JVM can find what it needs. For example, let's create a sub-package, example , in
the com.packt.learnjava.ch09_jvm package with the ExampleClass class in it:

package com.packt.learnjava.ch09_jvm.example;
public class ExampleClass {
 public static int multiplyByTwo(int i){
 return 2 * i;
 }
}

JVM Structure and Garbage Collection Chapter 9

[314]

Now let's use it in the MyApplication class:

package com.packt.learnjava.ch09_jvm;
import com.packt.learnjava.ch09_jvm.example.ExampleClass;
public class MyApplication {
 public static void main(String... args){
 System.out.println("Hello, world!"); //prints: Hello, world!
 for(String arg: args){
 System.out.print(arg + " ");
 }
 String p = System.getProperty("someParameter");
 System.out.println("\n" + p); //prints someParameter value
 int i = ExampleClass.multiplyByTwo(2);
 System.out.println(i);
 }
}

We are going to compile the MyApplication class using the same javac command as
before:

javac src/main/java/com/packt/learnjava/ch09_jvm/MyApplication.java

The result is the following error:

It means that the compiler cannot find the ExampleClass.class file. We need to compile
it and put on the classpath:

javac src/main/java/com/packt/learnjava/ch09_jvm/example/ExampleClass.java
javac -cp src/main/java \
 src/main/java/com/packt/learnjava/ch09_jvm/MyApplication.java

As you can see, we have added the location of ExampleClass.class, which
is src/main/java, to the classpath. Now, we can execute MyApplication.class:

java -cp src/main/java com.packt.learnjava.ch09_jvm.MyApplication

JVM Structure and Garbage Collection Chapter 9

[315]

The result is as follows:

There is no need to list folders that contain classes from the Java Class Library (JCL). The
JVM knows where to find them.

Using the command line with JAR files
Keeping the compiled files in a folder as .class files is not always convenient, especially
when many compiled files of the same framework belong to different packages and are
distributed as a single library. In such cases, the compiled .class files are usually archived
together in a .jar file. The format of such an archive is the same as the format of a .zip
file. The only difference is that a .jar file also includes a manifest file that contains
metadata describing the archive (we will talk more about the manifest in the next section).

To demonstrate how to use it, let's create a .jar file with the ExampleClass.class file
and another .jar file with MyApplication.class in it, using the following commands:

cd src/main/java
jar -cf myapp.jar com/packt/learnjava/ch09_jvm/MyApplication.class
jar -cf example.jar \
 com/packt/learnjava/ch09_jvm/example/ExampleClass.class

Notice that we need to run the jar command in the folder where the package of .class
file begins.

Now we can run the application as follows:

java -cp myapp.jar:example.jar \
 com.packt.learnjava.ch09_jvm.MyApplication

The .jar files are in the current folder. If we would like to execute the application from
another folder (let's go back to the root directory, cd ../../..), the command should look
like this:

java -cp src/main/java/myapp.jar:src/main/java/example.jar \
 com.packt.learnjava.ch09_jvm.MyApplication

JVM Structure and Garbage Collection Chapter 9

[316]

Notice that every .jar file has to be listed on the classpath individually. To specify just a
folder where all the .jar files reside (as is the case with .class files) is not good enough.
If the folder contains only .jar files, all these files can be included in the classpath as
follows:

java -cp src/main/java/* com.packt.learnjava.ch09_jvm.MyApplication

 As you can see, the wildcard symbol has to be added after the folder name.

Using the command line with an executable JAR
file
It is possible to avoid specifying the main class in the command line. Instead, we can create
an executable .jar file. It can be accomplished by placing the name of the main class – the
one you need to run and that contains the main() method – into the manifest file. Here are
the steps:

Create a text file, manifest.txt (the name actually does not matter, but this1.
name makes the intent clear), which contains the following line:

 Main-Class: com.packt.learnjava.ch09_jvm.MyApplication

There has to be a space after the colon (:), and there has to be an invisible newline
symbol at the end, so make sure you have pressed the Enter key and the cursor
has jumped to the beginning of the next line.

Execute the command:2.

cd src/main/java
jar -cfm myapp.jar manifest.txt
com/packt/learnjava/ch09_jvm/*.class \
com/packt/learnjava/ch09_jvm/example/*.class

Notice the sequence of jar command options (fm) and the sequence of the
following files: myapp.jar manifest.txt. They have to be the same because
f stands for the file the jar command is going to create, and m stands for the
manifest source. If you include options as mf, then the files have to be listed as
manifest.txt myapp.jar.

Now we can run the application using the following command:3.

java -jar myapp.jar

JVM Structure and Garbage Collection Chapter 9

[317]

Another way to create an executable .jar file is much easier:

jar cfe myjar.jar com.packt.learnjava.ch09_jvm.MyApplication \
 com/packt/learnjava/ch09_jvm/*.class \
 com/packt/learnjava/ch09_jvm/example/*.class

This command generates a manifest with the specified main class name automatically:
option c stands for create a new archive, option f means archive file name, and option
e indicates an application entry point.

Java processes
As you may have guessed already, JVM does not know anything about the Java language
and source code. It only knows how to read bytecode. It reads the bytecodes and other
information from .class files, transforms (interprets) the bytecodes into a sequence of
binary code instructions specific to the current platform (where JVM is running), and
passes the resulting binary code to the microprocessor that executes it. When talking about
this transformation, programmers often refer to it as a Java process, or just process.

The JVM is often referred to as a JVM instance. That is because every time a java
command is executed, a new instance of JVM is launched, dedicated to running the
particular application as a separate process with its own allocated memory (the size of the
memory is set as a default value or passed in as a command option). Inside this Java
process, multiple threads are running, each with its own allocated memory. Some are
service threads created by the JVM; others are application threads created and controlled by
the application.

That is the big picture of JVM executing the compiled code. But if you look closer and read
the JVM specification, you will discover that the word process, in relation to JVM, is used
to describe the JVM internal processes too. The JVM specification identifies several other
processes running inside the JVM that usually are not mentioned by programmers, except
maybe the class loading process.

That is so because most of the time, we can successfully write and execute Java programs
without knowing anything about the internal JVM processes. But once in a while, some
general understanding of JVM's internal workings helps to identify the root cause of certain
issues. That is why in this section, we will provide a short overview of all the processes that
happen inside the JVM. Then, in the following sections, we will discuss in more detail
JVM's memory structure and other aspects of its functionality that may be useful to a
programmer.

JVM Structure and Garbage Collection Chapter 9

[318]

There are two subsystems that run all the JVM internal processes:

The classloader: This reads .class file and populates a method area in JVM
memory with the class-related data:

Static fields
Method bytecodes
Class metadata that describes the class

The execution engine: This executes the bytecodes using the following:
A heap area for object instantiation
Java and native method stacks for keeping track of the methods
called
A garbage collection process that reclaims the memory

Processes that run inside the main JVM process include the following:

Processes performed by the classloader include the following:
Class loading
Class linking
Class initialization

Processes performed by the execution engine include the following:
Class instantiation
Method execution
Garbage collection
Application termination

The JVM architecture

JVM architecture can be described as having two subsystems:
the classloader and the execution engine, which run the service processes
and application threads using runtime data memory areas such as method
area, heap, and application thread stacks. Threads are lightweight
processes that require less resource allocation than the JVM execution
process.

The list may give you the impression that these processes are executed sequentially. To
some degree, this is true,if we're talking about one class only. It is not possible to do
anything with a class before loading. The execution of a method can begin only after all the
previous processes are completed. However, the GC, for example, does not happen
immediately after the use of an object is stopped (see the Garbage collection section). Also, an
application can exit any time when an unhandled exception or some other error happens.

JVM Structure and Garbage Collection Chapter 9

[319]

Only the classloader processes are regulated by the JVM specification. The
execution engine implementation is largely at the discretion of each
vendor. It is based on the language semantics and the performance goals
set by the implementation authors.

Processes of the execution engine are in a realm not regulated by the JVM specification.
There is common sense, tradition, known and proven solutions, and a Java language
specification that can guide a JVM vendor's implementation decision. But there is no single
regulatory document. The good news is that the most popular JVMs use similar solutions
or, at least, that's how it looks at a high level.

With this in mind, let's discuss each of the seven processes listed previously in more detail.

Class loading
According to the JVM specification, the loading phase includes finding the .class file by
its name (in the locations listed on a classpath) and creating its representation in the
memory.

The first class to be loaded is the one passed in the command line, with the
main(String[]) method in it. The classloader reads the .class file, parses it, and
populates the method area with static fields and method bytecodes. It also creates an
instance of java.lang.Class that describes the class. Then the classloader links the class
(see the Class linking section), initializes it (see the Class initialization section), and then
passes it to the execution engine for running its bytecodes.

The main(String[]) method is an entrance door into the application. If it calls a method
of another class, that class has to be found on the classpath, loaded, initialized, and only
then can its method be executed too. If this - just loaded - method calls a method of another
class, that class has to be found, loaded, and initialized too, and so on. That is how a Java
application starts and gets going.

The main(String[]) method

Every class can have a main(String[]) method, and often does. Such a
method is used to run the class independently as a standalone application
for testing or demo purposes. The presence of such a method does not
make the class main. The class becomes main only if identified as such in
a java command line or in a .jar file manifest.

That being said, let's continue with the discussion of the loading process.

JVM Structure and Garbage Collection Chapter 9

[320]

If you look in the API of java.lang.Class, you will not see a public constructor there.
The classloader creates its instance automatically and, by the way, it is the same instance
that is returned by getClass() method you can invoke on any Java object.

It does not carry the class static data (that is maintained in the method area), nor state
values (they are in an object, created during the execution). It does not contain method
bytecodes either (they are stored in the method area, too). Instead, the Class instance
provides metadata that describes the class – its name, package, fields, constructors, method
signatures, and so on. The metadata is useful not only for JVM but also for the application.

All the data created by the classloader in the memory and maintained by
the execution engine is called a binary representation of the type.

If the .class file has errors or does not adhere to a certain format, the process is
terminated. This means that some validation of the loaded class format and its bytecodes is
performed by the loading process already. More verification follows at the beginning of the
next process, called class linking.

Here is the high-level description of the loading process. It performs three tasks:

Finding and reading the .class file
Parsing it according to the internal data structure into the method area
Creating an instance of java.lang.Class with the class metadata

Class linking
According to the JVM specification, the linking resolves the references of the loaded class,
so the methods of the class can be executed.

Here is a high-level description of the linking process. It performs three tasks:

Verification of the binary representation of a class or an interface:1.

Although JVM can reasonably expect that the .class file was produced by the
Java compiler and all the instructions satisfy the constraints and requirements of
the language, there is no guarantee that the loaded file was produced by the
known compiler implementation, or a compiler at all.

JVM Structure and Garbage Collection Chapter 9

[321]

That's why the first step of the linking process is verification. This makes sure that
the binary representation of the class is structurally correct, which means the
following:

The arguments of each method invocation are compatible with the
method descriptor.
The return instruction matches the return type of its method.
Some other checks and verification that vary depending on the
JVM vendor.

Preparation of static fields in the method area:2.

After verification is successfully completed, the interface or class (static) variables
are created in the method area and initialized to the default values of their types.
The other kinds of initialization, such as the explicit assignments specified by a
programmer and static initialization blocks, are deferred to the process called
class initialization (see the Class initialization section).

Resolution of symbolic references into concrete references that point to the3.
method area:

If the loaded bytecodes refer to other methods, interfaces, or classes, the symbolic
references are resolved into concrete references that point to the method area,
which is done by the resolution process. If the referred interfaces and classes are
not loaded yet, the classloader finds them and loads as needed.

Class initialization
According to the JVM specification, the initialization is accomplished by executing the class
initialization methods. That is when the programmer-defined initialization (in static blocks
and static assignments) is performed, unless the class was already initialized at the request
of another class.

The last part of this statement is an important one because the class may be requested
several times by different (already loaded) methods, and also because JVM processes are
executed by different threads and may access the same class concurrently. So, coordination
(called also synchronization) between different threads is required, which substantially
complicates the JVM implementation.

JVM Structure and Garbage Collection Chapter 9

[322]

Class instantiation
This step may never happen. Technically, an instantiation process, triggered by the
new operator, is the first step of the execution. If the main(String[]) method (which is
static) uses only static methods of other classes, the instantiation never happens. That's why
it is reasonable to identify this process as separate from the execution.

Besides, this activity has very specific tasks:

Allocating memory for the object (its state) in the heap area
Initialization of the instance fields to the default values
Creating thread stacks for Java and native methods

Execution starts when the first method (not a constructor) is ready to be executed. For every
application thread, a dedicated runtime stack is created, where every method call is
captured in a stack frame. For example, if an exception happens, we get data from the
current stack frames when we call the printStackTrace() method.

Method execution
The first application thread (called main thread) is created when the main(String[])
method starts executing. It can create other application threads.

The execution engine reads the bytecodes, interprets them, and sends the binary code to the
microprocessor for execution. It also maintains a count of how many times and how often
each method was called. If the count exceeds a certain threshold, the execution engine uses
a compiler, called the Just-In-Time (JIT) compiler, which compiles the method bytecodes
into native code. This way, the next time the method is called, it will be ready without
needing an interpretation. It substantially improves code performance.

The instruction currently being executed and the address of the next instruction are
maintained in the program counter (PC) registers. Each thread has its own dedicated PC
registers. It also improves performance and keeps track of the execution.

Garbage collection
The garbage collector (GC) runs the process that identifies the objects that are not
referenced anymore and can be removed from the memory.

JVM Structure and Garbage Collection Chapter 9

[323]

There is a Java static method, System.gc(), which can be used programmatically to
trigger the GC, but the immediate execution is not guaranteed. Every GC cycle affects the
application performance, so the JVM has to maintain a balance between memory
availability and the ability to execute the bytecodes quickly enough.

Application termination
There are several ways an application can be terminated (and the JVM stopped or exited)
programmatically:

Normal termination, without an error status code
Abnormal termination, because of an unhandled exception
Forced programmatic exit, with or without an error status code

If there are no exceptions and infinite loops, the main(String[]) method completes with
a return statement or after its last statement is executed. As soon as it happens, the main
application thread passes the control flow to the JVM and the JVM stops executing too. That
is the happy end, and many applications enjoy it in real life. Most of our examples, except
those when we have demonstrated exceptions or infinite loops, have exited successfully
too.

However, there are other ways a Java application can exit, some of them quite graceful too
– others not so much. If the main application thread created child threads or, in other
words, a programmer has written code that generates other threads, even the graceful exit
may not be easy. It all depends on the kind of child threads created.

If any of them is a user thread (the default), then the JVM instance continues to run even
after the main thread exits. Only after all user threads are completed does the JVM instance
stop. It is possible for the main thread to request the child user thread to complete. But until
it exits, the JVM continues running. And this means that the application is still running too.

But if all child threads are daemon threads, or there are no child threads running, the JVM
instance stops running as soon as the main application thread exits.

How the application exits in the case of an exception depends on the code design. We have
touched on this in Chapter 4, Exception Handling, while discussing the best practices of
exception handling. If the thread captures all the exceptions in a try-catch block in
main(String[]) or a similarly high-level method, then it is up to the application (and the
programmer who wrote the code) to decide how best to proceed – to try to change the
input data and repeat the block of code that generated the exception, to log the error and
continue, or to exit.

JVM Structure and Garbage Collection Chapter 9

[324]

If, on the other hand, the exception remains unhandled and propagates into the JVM code,
the thread (where the exception happened) stops executing and exits. What happens next
depends on the type of the thread and some other conditions. The following are four
possible options:

If there are no other threads, the JVM stops executing and returns an error code
and the stack trace.
If the thread with an unhandled exception was not the main one, other threads (if
present) continue running.
If the main thread has thrown an unhandled exception and the child threads (if
present) are daemons, they exit too.
If there is at least one user child thread, the JVM continues running until all user
threads exit.

There are also ways to programmatically force the application to stop:

System.exit(0);

Runtime.getRuntime().exit(0);

Runtime.getRuntime().halt(0);

All of these methods force the JVM to stop executing any thread and exit with a status code
passed in as the parameter (0 in our examples):

Zero indicates normal termination.
The nonzero value indicates abnormal termination.

If the Java command was launched by some script or another system, the value of the status
code can be used for the automation of the decision-making regarding the next step. But
that is already outside the application and Java code.

The first two methods have identical functionality because this is how System.exit() is
implemented:

public static void exit(int status) {
 Runtime.getRuntime().exit(status);
}

To see the source code in the IDE, just click on the method.

JVM Structure and Garbage Collection Chapter 9

[325]

The JVM exits when some thread invokes the exit() method of the
Runtime or System classes, or the halt() method of the Runtime class, and the exit or
halt operation is permitted by the security manager. The difference between exit() and
halt() is that halt() forces the JVM exit immediately, while exit() performs additional
actions that can be set using the Runtime.addShutdownHook() method. But all these
options are rarely used by mainstream programmers.

JVM structure
JVM structure can be described in terms of the runtime data structure in the memory and in
terms of the two subsystems that use the runtime data – the classloader and the execution
engine.

Runtime data areas
Each of the runtime data areas of JVM memory belongs to one of two categories:

Shared areas that include the following:
Method area: Class metadata, static fields, and method bytecodes
Heap area: Objects (states)

Unshared areas dedicated to a particular application thread, which includes the
following:

Java stack: Current and caller frames, each frame keeping the state
of Java (non native) method invocation:

Values of local variables
Method parameter values
Values of operands for intermediate calculations
(operand stack)
Method return value (if any)

PC register: The next instruction to execute
Native method stack: The state of the native method invocations

JVM Structure and Garbage Collection Chapter 9

[326]

We have already discussed that a programmer has to be careful when using reference types
and not modify the object itself unless it needs to be done. In a multi-threaded application,
if a reference to an object can be passed between threads, we have to be extra careful
because of the possibility of the concurrent modification of the same data. On the bright
side, though, such a shared a area can be and often is used as the method of communication
between threads.

Classloaders
The classloader performs the following three functions:

Reads a .class file
Populates the method area
Initializes static fields not initialized by a programmer

Execution engine
The execution engine does the following:

Instantiates objects in the heap area
Initializes static and instance fields, using initializers written by the programmer
Adds/removes frames to and from the Java stack
Updates the PC register with the next instruction to execute
Maintains the native method stack
Keeps count of method calls and compiles popular ones
Finalizes objects
Runs garbage collection
Terminates the application

Garbage collection
Automatic memory management is an important aspect of JVM that relieves the
programmer from the need to do it programmatically. In Java, the process that cleans up
memory and allows it to be reused is called a garbage collection.

JVM Structure and Garbage Collection Chapter 9

[327]

Responsiveness, throughput, and stop-the-world
The effectiveness of GC affects two major application characteristics – responsiveness and
throughput:

Responsiveness: This is measured by how quickly an application responds
(brings the necessary data) to the request; for example, how quickly a website
returns a page, or how quickly a desktop application responds to an event. The
smaller the response time, the better the user experience.
Throughput: This indicates the amount of work an application can do in a unit of
time; for example, how many requests a web application can serve, or how many
transactions the database can support. The bigger the number, the more value the
application can potentially generate and the more user requests it can support.

Meanwhile, GC needs to move data around, which is impossible to accomplish while
allowing data processing because the references are going to change. That's why GC needs
to stop application thread execution once in a while for a period of time, called stop-the-
world. The longer these periods are, the quicker GC does its job and the longer an
application freeze lasts, which can eventually grow big enough to affect both the
application's responsiveness and throughput.

Fortunately, it is possible to tune the GC behavior using Java command options, but that is
outside the scope of this book. We will concentrate instead on a high-level view of the main
activity of a GC inspecting objects in the heap and removing those that don't have
references in any thread stack.

Object age and generations
The basic GC algorithm determines how old each object is. The term age refers to the
number of collection cycles the object has survived.

When JVM starts, the heap is empty and is divided into three sections:

The young generation
The old or tenured generation
Humongous regions for holding the objects that are 50% of the size of a standard
region or larger

JVM Structure and Garbage Collection Chapter 9

[328]

The young generation has three areas:

An Eden space
Survivor 0 (S0)
Survivor 1 (S1)

The newly created objects are placed in Eden. When it is filling up, a minor GC process
starts. It removes the unreferred and circular referred objects and moves the others to the S1
area. During the next minor collection, S0 and S1 switch roles. The referenced objects are
moved from Eden and S1 to S0.

During each of the minor collections, the objects that have reached a certain age are moved
to the old generation. As a result of this algorithm, the old generation contains objects that
are older than a certain age. This area is bigger than the young generation and, because of
that, the garbage collection here is more expensive and happens not as often as in the
young generation. But it is checked eventually (after several minor collections). The
unreferenced objects are removed and the memory is defragmented. This cleaning of the
old generation is considered a major collection.

When stop-the-world is unavoidable
Some collections of the objects in the old generation are done concurrently and some are
done using stop-the-world pauses. The steps include the following:

Initial marking: This marks the survivor regions (root regions) that may have1.
references to objects in the old generation and is done using a stop-the-world
pause.
Scanning: This searches survivor regions for references to the old generation,2.
and is done concurrently while the application continues to run.
Concurrent marking: This marks live objects over the entire heap and is done3.
concurrently while the application continues to run.
Remark: The completes the marking of live objects and is done using a stop-the-4.
world pause.
Cleanup: The calculates the age of live objects and frees regions (using stop-the-5.
world) and returns them to the free list. This is done concurrently.

JVM Structure and Garbage Collection Chapter 9

[329]

The preceding sequence might be interspersed with the young generation evacuations
because most of the objects are short-lived and it is easier to free up a lot of memory by
scanning the young generation more often. There is also a mixed phase (when G1 collects
the regions already marked as mostly garbage in both the young and the old generations),
and humongous allocation (when large objects are moved to or evacuated from
humongous regions).

To help with GC tuning, the JVM provides platform-dependent default selections for the
garbage collector, heap size, and runtime compiler. But fortunately, the JVM vendors
improve and tune the GC process all the time, so most of the applications work just fine
with default GC behavior.

Summary
In this chapter, the reader has learned how a Java application can be executed using an IDE
or the command line. Now you can write your own applications and launch them in a
manner most appropriate for the given environment. Knowledge about the JVM structure
and its processes – class loading, linking, initialization, execution, garbage collection, and
application termination – provides you with better control over the application's execution
and transparency about the performance and current state of the JVM.

In the next chapter, we will discuss and demonstrate how to manage – insert, read, update,
and delete – data in a database from a Java application. We will also provide a short
introduction to SQL language and basic database operations: how to connect to a database,
how to create the database structure, how to write database expressions using SQL, and
how to execute them.

Quiz
Select all of the correct statements:1.

 An IDE executes Java code without compiling it.a.
An IDE uses the installed Java to execute the code.b.
An IDE checks the code without using the Java installation.c.
An IDE uses the compiler of the Java installation. d.

JVM Structure and Garbage Collection Chapter 9

[330]

Select all of the correct statements:2.
All the classes used by the application have to be listed on thea.
classpath.
The locations of all the classes used by the application have to be listedb.
on the classpath.
The compiler can find a class if it is in the folder listed on the classpath.c.
Classes of the main package do not need to be listed on the classpath.d.

Select all of the correct statements:3.
All the .jar files used by the application have to be listed on thea.
classpath.
The locations of all the .jar files used by the application have to beb.
listed on the classpath.
The JVM can find a class only if it is in the .jar file listed on thec.
classpath.
Every class can have the main() method.d.

Select all of the correct statements:4.
Every .jar file that has a manifest is an executable. a.
If the -jar option is used by the java command, the classpath optionb.
is ignored.
Every .jar file has a manifest.c.
An executable .jar is a ZIP file with a manifest.d.

Select all of the correct statements:5.
Class loading and linking can work in parallel on different classes.a.
Class loading moves the class to the execution area.b.
Class linking connects two classes.c.
Class linking uses memory references.d.

Select all of the correct statements:6.
Class initialization assigns values to the instance properties.a.
Class initialization happens every time the class is referred to byb.
another class.
Class initialization assigns values to static properties.c.
Class initialization provides data to the instance of java.lang.Class.d.

JVM Structure and Garbage Collection Chapter 9

[331]

Select all of the correct statements:7.
Class instantiation may never happen.a.
Class instantiation includes object properties initialization.b.
Class instantiation includes memory allocation on a heap.c.
Class instantiation includes executing a constructor code.d.

Select all of the correct statements:8.
Method execution includes binary code generation.a.
Method execution includes source code compilation.b.
Method execution includes reusing the binary code produced by the c.
JIT compiler.
Method execution counts how many times every method was called.d.

Select all of the correct statements:9.
Garbage collection starts immediately after the System.gc() methoda.
is called.
The application can be terminated with or without an error code.b.
The application exits as soon as an exception is thrown.c.
The main thread is a user thread.d.

Select all of the correct statements:10.
The JVM has memory areas shared across all threads.a.
The JVM has memory areas not shared across threads.b.
Class metadata is shared across all threads.c.
Method parameter values are not shared across threads.d.

Select all of the correct statements:11.
The classloader populates the method area.a.
The classloader allocates memory on a heap.b.
The classloader writes to the .class file.c.
The classloader resolves method references.d.

Select all of the correct statements:12.
The execution engine allocates memory on a heap.a.
The execution engine terminates the application.b.
The execution engine runs garbage collection.c.
The execution engine initializes static fields not initialized by ad.
programmer.

JVM Structure and Garbage Collection Chapter 9

[332]

Select all of the correct statements: 13.
The number of transactions per second that a database can support is aa.
throughput measure.
When the garbage collector pauses the application, it is called stop-all-b.
things.
How slowly the website returns data is a responsiveness measure.c.
The garbage collector clears the CPU queue of jobs. d.

Select all of the correct statements: 14.
Object age is measured by the number of seconds since the object wasa.
created.
The older the object, the more probable it is going to be removed fromb.
the memory.
Cleaning the old generation is a major collection.c.
Moving an object from one area of the young generation to anotherd.
area of the young generation is a minor collection.

Select all of the correct statements:15.
The garbage collector can be tuned by setting the parameters ofa.
the javac command.
The garbage collector can be tuned by setting the parameters ofb.
the java command.
The garbage collector works with its own logic and cannot change itsc.
behavior based on the set parameters.
Cleaning the old generation area requires a stop-the-world pause.d.

10
Managing Data in a Database

his chapter explains and demonstrates how to manage – that is, insert, read, update, and
delete – data in a database using a Java application. It also provides a short introduction to
Structured Query Language (SQL) and basic database operations, including how to
connect to a database, how to create a database structure, how to write a database
expression using SQL, and how to execute these expressions.

The following topics will be covered in this chapter:

Creating a database
Creating a database structure
Connecting to a database
Releasing the connection
Create, read, update, and delete (CRUD) operations on data

Creating a database
Java Database Connectivity (JDBC) is a Java functionality that allows you to access and
modify data in a database. It is supported by the JDBC API (which includes the java.sql,
javax.sql, and java.transaction.xa packages), and the database-specific class that
implements an interface for database access (called a database driver), which is provided
by each database vendor.

Using JDBC means writing Java code that manages data in a database using the interfaces
and classes of the JDBC API and a database-specific driver, which knows how to establish a
connection with the particular database. Using this connection, an application can then
issue requests written in SQL.

Managing Data in a Database Chapter 10

[334]

Naturally, we are only referring to the databases that understand SQL here. They are called
relational or tabular Database Management Systems (DBMSes) and make up the vast
majority of the currently-used DBMSes – although some alternatives (for example, a
navigational database and NoSQL) are used too.

The java.sql and javax.sql packages are included in the Java Platform Standard
Edition (Java SE). The javax.sql package contains the DataSource interface that
supports the statement's pooling, distributed transactions, and rowsets.

Creating a database involves the following eight steps:

Install the database by following the vendor instructions.1.
Create a database user, a database, a schema, tables, views, stored procedures,2.
and anything else that is necessary to support the data model of the application.
Add to this application the dependency on a .jar file with the database-specific3.
driver.
Connect to the database from the application.4.
Construct the SQL statement.5.
Execute the SQL statement.6.
Use the result of the execution as your application requires.7.
Release (that is, close) the database connection and any other resources that were8.
opened in the process.

Steps 1 to 3 are performed only once during the database setup and before the application
is run. Steps 4 to 8 are performed by the application repeatedly as needed. In fact, steps 5 to
7 can be repeated multiple times with the same database connection.

For our example, we are going to use the PostgreSQL database. You will first need to
perform steps 1 to 3 by yourself using the database-specific instructions. To create the
database for our demonstration, we use the following commands:

create user student SUPERUSER;
create database learnjava owner student;

These commands create a student user that can manage all aspects of the SUPERUSER
database, and make the student user an owner of the learnjava database. We will use
the student user to access and manage data from the Java code. In practice, for security
considerations, an application is not allowed to create or change database tables and other
aspects of the database structure.

Managing Data in a Database Chapter 10

[335]

Additionally, it is a good practice to create another logical layer called schema that can have
its own set of users and permissions. This way, several schemas in the same database can
be isolated, and each user (one of them is your application) can only access certain schemas.
On an enterprise level, the common practice is to create synonyms for the database schema
so that no application can access the original structure directly. However, we do not do this
in this book for the sake of simplicity.

Creating a database structure
After the database is created, the following three SQL statements will allow you to create
and change the database structure. This is done through database entities, such as a table,
function, or constraint:

The CREATE statement creates the database entity
The ALTER statement changes the database entity
The DROP statement deletes the database entity

There are also various SQL statements that allow you to inquire about each database entity.
Such statements are database-specific and, typically, they are only used in a database
console. For example, in the PostgreSQL console, \d <table> can be used to describe a
table, while \dt lists all the tables. Refer to your database documentation for more details.

To create a table, you can execute the following SQL statement:

CREATE TABLE tablename (column1 type1, column2 type2, ...);

The limitations for a table name, column names, and types of values that can be used
depends on the particular database. Here is an example of a command that creates
the person table in PostgreSQL:

CREATE table person (
 id SERIAL PRIMARY KEY,
 first_name VARCHAR NOT NULL,
 last_name VARCHAR NOT NULL,
 dob DATE NOT NULL);

Managing Data in a Database Chapter 10

[336]

The SERIAL keyword indicates that this field is a sequential integer number that is
generated by the database every time a new record is created. Additional options for
generating sequential integers are SMALLSERIAL and BIGSERIAL; they differ by size and
the range of possible values:

SMALLSERIAL: 2 bytes, range from 1 to 32,767
SERIAL: 4 bytes, range from 1 to 2,147,483,647
BIGSERIAL: 8 bytes, range from 1 to 922,337,2036,854,775,807

The PRIMARY_KEY keyword indicates that this is going to be the unique identifier of the
record, and will most probably be used in a search. The database creates an index for each
primary key to make the search process faster. An index is a data structure that helps to
accelerate data search in the table without having to check every table record. An index can
include one or more columns of a table. If you request the description of the table, you will
see all the existing indices.

Alternatively, we can make a composite PRIMARY KEY keyword using a combination of
first_name, last_name, and dob:

CREATE table person (
 first_name VARCHAR NOT NULL,
 last_name VARCHAR NOT NULL,
 dob DATE NOT NULL,
 PRIMARY KEY (first_name, last_name, dob));

However, there is a chance that there are two persons who will have the same name and
were born on the same day.

The NOT NULL keyword imposes a constraint on the field: it cannot be empty. The database
will raise an error for every attempt to create a new record with an empty field or delete the
value from the existing record. We did not set the size of the columns of type VARCHAR,
thus allowing these columns to store string values of any length.

The Java object that matches such a record may be represented by the
following Person class:

public class Person {
 private int id;
 private LocalDate dob;
 private String firstName, lastName;
 public Person(String firstName, String lastName, LocalDate dob) {
 if (dob == null) {
 throw new RuntimeException("Date of birth cannot be null");
 }
 this.dob = dob;
 this.firstName = firstName == null ? "" : firstName;

Managing Data in a Database Chapter 10

[337]

 this.lastName = lastName == null ? "" : lastName;
 }
 public Person(int id, String firstName,
 String lastName, LocalDate dob) {
 this(firstName, lastName, dob);
 this.id = id;
 }
 public int getId() { return id; }
 public LocalDate getDob() { return dob; }
 public String getFirstName() { return firstName;}
 public String getLastName() { return lastName; }
}

As you may have noticed, there are two constructors in the Person class: with and without
id. We will use the constructor that accepts id to construct an object based on the existing
record, while the other constructor will be used to create an object before inserting a new
record.

Once created, the table can be deleted using the DROP command:

DROP table person;

The existing table can also be changed using the ALTER SQL command; for example, we can
add a column address:

ALTER table person add column address VARCHAR;

If you are not sure whether such a column exists already, you can add IF EXISTS or IF
NOT EXISTS:

ALTER table person add column IF NOT EXISTS address VARCHAR;

However, this possibility exists only with PostgreSQL 9.6 and later versions.

Another important consideration to take note of during database table creation is whether
another index (in addition to PRIMARY KEY) has to be added. For example, we can allow a
case-insensitive search of first and last names by adding the following index:

CREATE index idx_names on person ((lower(first_name), lower(last_name));

If the search speed improves, we leave the index in place; if not, it can be removed as
follows:

 DROP index idx_names;

Managing Data in a Database Chapter 10

[338]

We remove it because an index has an overhead of additional writes and storage space.

We also can remove a column from a table if we need to, as follows:

ALTER table person DROP column address;

In our examples, we follow the naming convention of PostgreSQL. If you use a different
database, we suggest that you look up its naming convention and follow it, so that the
names you create align with those that are created automatically.

Connecting to a database
So far, we have used a console to execute SQL statements. The same statements can be
executed from the Java code using the JDBC API too. But tables are created only once, so
there is not much sense in writing a program for a one-time execution.

Data management, however, is another matter. So, from now on, we will use Java code to
manipulate the data in a database. In order to do this, we first need to add the following
dependency to the pom.xml file:

<dependency>
 <groupId>org.postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <version>42.2.2</version>
</dependency>

This matches the PostgreSQL version 9.6 that we have installed. Now we can create a
database connection from the Java code, as follows:

String URL = "jdbc:postgresql://localhost/learnjava";
Properties prop = new Properties();
prop.put("user", "student");
// prop.put("password", "secretPass123");
try {
 Connection conn = DriverManager.getConnection(URL, prop);
} catch (SQLException ex) {
 ex.printStackTrace();
}

Managing Data in a Database Chapter 10

[339]

The preceding code is just an example of how to create a connection using
the java.sql.DriverManger class. The prop.put("password", "secretPass123"
) statement demonstrates how to provide a password for the connection using
the java.util.Properties class. However, we did not set a password when we created
the student user, so we do not need it.

Many other values can be passed to DriverManager that configure the connection
behavior. The name of the keys for the passed-in properties are the same for all major
databases, but some of them are database-specific. So, read your database vendor
documentation for more details.

Alternatively, for passing user and password only, we could use an
overloaded DriverManager.getConnection(String url, String user, String
password) version. It is a good practice to keep the password encrypted. We are not going
to demonstrate how to do it, but there are plenty of guides available on the internet that
you can refer to.

Another way of connecting to a database is to use the javax.sql.DataSource interface.
Its implementation is included in the same .jar file as the database driver. In the case of
PostgreSQL, there are two classes that implement the DataSource interface:

org.postgresql.ds.PGSimpleDataSource

org.postgresq l.ds.PGConnectionPoolDataSource

We can use these classes instead of DriverManager. The following code is an example of
creating a database connection using the PGSimpleDataSource class:

PGSimpleDataSource source = new PGSimpleDataSource();
source.setServerName("localhost");
source.setDatabaseName("learnjava");
source.setUser("student");
//source.setPassword("password");
source.setLoginTimeout(10);
try {
 Connection conn = source.getConnection();
} catch (SQLException ex) {
 ex.printStackTrace();
}

Managing Data in a Database Chapter 10

[340]

Using the PGConnectionPoolDataSource class allows you to create a pool of
Connection objects in memory, as follows:

PGConnectionPoolDataSource source = new PGConnectionPoolDataSource();
source.setServerName("localhost");
source.setDatabaseName("learnjava");
source.setUser("student");
//source.setPassword("password");
source.setLoginTimeout(10);
try {
 PooledConnection conn = source.getPooledConnection();
 Set<Connection> pool = new HashSet<>();
 for(int i = 0; i < 10; i++){
 pool.add(conn.getConnection())
 }
} catch (SQLException ex) {
 ex.printStackTrace();
}

This is a preferred method because creating a Connection object takes time. Pooling
allows you to do it up front and then reuse the created objects when they are needed. After
the connection is no longer required, it can be returned to the pool and reused. The pool
size and other parameters can be set in a configuration file (such as postgresql.conf for
PostgreSQL).

However, you do not need to manage the connection pool yourself. There are several
mature frameworks that can do it for you, such as HikariCP (https:/ /brettwooldridge.
github.io/HikariCP), Vibur (http:/ / www. vibur. org), and Commons DBCP (https:/ /
commons.apache.org/ proper/ commons- dbcp) – they are reliable and easy to use.

Whatever method of creating a database connection we choose, we are going to hide it
inside the getConnection() method and use it in all our code examples in the same way.
With the object of the Connection class acquired, we can now access the database to add,
read, delete, or modify the stored data.

Releasing the connection
Keeping the database connection alive requires a significant number of resources – such as
memory and CPU – so, it is a good idea to close the connection and release the allocated
resources as soon as you no longer need them. In the case of pooling, the Connection
object, when closed, is returned to the pool and consumes fewer resources.

https://brettwooldridge.github.io/HikariCP
https://brettwooldridge.github.io/HikariCP
https://brettwooldridge.github.io/HikariCP
https://brettwooldridge.github.io/HikariCP
https://brettwooldridge.github.io/HikariCP
https://brettwooldridge.github.io/HikariCP
https://brettwooldridge.github.io/HikariCP
https://brettwooldridge.github.io/HikariCP
https://brettwooldridge.github.io/HikariCP
https://brettwooldridge.github.io/HikariCP
http://www.vibur.org
http://www.vibur.org
http://www.vibur.org
http://www.vibur.org
http://www.vibur.org
http://www.vibur.org
http://www.vibur.org
http://www.vibur.org
http://www.vibur.org
https://commons.apache.org/proper/commons-dbcp
https://commons.apache.org/proper/commons-dbcp
https://commons.apache.org/proper/commons-dbcp
https://commons.apache.org/proper/commons-dbcp
https://commons.apache.org/proper/commons-dbcp
https://commons.apache.org/proper/commons-dbcp
https://commons.apache.org/proper/commons-dbcp
https://commons.apache.org/proper/commons-dbcp
https://commons.apache.org/proper/commons-dbcp
https://commons.apache.org/proper/commons-dbcp
https://commons.apache.org/proper/commons-dbcp
https://commons.apache.org/proper/commons-dbcp
https://commons.apache.org/proper/commons-dbcp
https://commons.apache.org/proper/commons-dbcp

Managing Data in a Database Chapter 10

[341]

Before Java 7, a connection was closed by invoking the close() method in a finally
block:

try {
 Connection conn = getConnection();
 //use object conn here
} finally {
 if(conn != null){
 try {
 conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

The code inside the finally block is always executed, whether the exception inside the
try block is thrown or not. However, since Java 7, the try-with-resources construct also
does the job on any object that implements the java.lang.AutoCloseable or
java.io.Closeable interface. Since the java.sql.Connection object does implement
the AutoCloseable interface, we can rewrite the previous code snippet as follows:

try (Connection conn = getConnection()) {
 //use object conn here
} catch(SQLException ex) {
 ex.printStackTrace();
}

The catch clause is necessary because the AutoCloseable resource throws
java.sql.SQLException.

CRUD data
There are four kinds of SQL statements that read or manipulate data in the database:

The INSERT statement adds data to the database
The SELECT statement reads data from the database
The UPDATE statement changes data in the database
The DELETE statement deletes data from the database

Managing Data in a Database Chapter 10

[342]

Either one or several different clauses can be added to the preceding statements to identify
the data that is requested (such as the WHERE clause) and the order in which the results have
to be returned (such as the ORDER clause).

The JDBC connection is represented by java.sql.Connection. This, among others, has
the methods required to create three types of objects that allow you to execute SQL
statements that provide different functionality to the database side:

java.sql.Statement: This simply sends the statement to the database server
for execution
java.sql.PreparedStatement: This caches the statement with a certain
execution path on the database server by allowing it to be executed multiple
times with different parameters in an efficient manner
java.sql.CallableStatement: This executes the stored procedure in the
database

In this section, we are going to review how to do it in Java code. The best practice is to
test the SQL statement in the database console before using it programmatically.

The INSERT statement
The INSERT statement creates (populates) data in the database, and has the following
format:

INSERT into table_name (column1, column2, column3,...)
 values (value1, value2, value3,...);

Alternatively, when several records need to be added, you can use the following format:

INSERT into table_name (column1, column2, column3,...)
 values (value1, value2, value3,...),
 (value21, value22, value23,...),
 ...;

The SELECT statement
The SELECT statement has the following format:

SELECT column_name, column_name FROM table_name
 WHERE some_column = some_value;

Managing Data in a Database Chapter 10

[343]

Alternatively, when all the columns need to be selected, you can use the following format:

SELECT * from table_name WHERE some_column=some_value;

A more general definition of the WHERE clause is as follows:

WHERE column_name operator value
Operator:
= Equal
<> Not equal. In some versions of SQL, !=
> Greater than
< Less than
>= Greater than or equal
<= Less than or equal IN Specifies multiple possible values for a column
LIKE Specifies the search pattern
BETWEEN Specifies the inclusive range of values in a column

The construct's column_name operator value can be combined using the AND and OR logical
operators, and grouped by brackets, ().

For example, the following method brings all the first name values (separated by a
whitespace character) from the person table:

String selectAllFirstNames() {
 String result = "";
 Connection conn = getConnection();
 try (conn; Statement st = conn.createStatement()) {
 ResultSet rs = st.executeQuery("select first_name from person");
 while (rs.next()) {
 result += rs.getString(1) + " ";
 }
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 return result;
}

The getString(int position) method of the ResultSet interface extracts the String
value from position 1 (the first in the list of columns in the SELECT statement). There are
similar getters for all primitive types: getInt(int position), getByte(int
position), and more.

It is also possible to extract the value from the ResultSet object using the column name. In
our case, it will be getString("first_name"). This method of getting values is
especially useful when the SELECT statement is as follows:

select * from person;

Managing Data in a Database Chapter 10

[344]

However, bear in mind that extracting values from the ResultSet object using the column
name is less efficient. But the difference in performance, though, is very small and only
becomes important when the operation takes place many times. Only the actual measuring
and testing processes can tell if the difference is significant to your application or not.
Extracting values by the column name is especially attractive because it
provides better code readability, which pays off in the long run during application
maintenance.

There are many other useful methods in the ResultSet interface. If your application reads
data from a database, we highly recommend that you read the official documentation of
the SELECT statement and the ResultSet interface.

The UPDATE statement
The data can be changed by the UPDATE statement, as follows:

UPDATE table_name SET column1=value1,column2=value2,... WHERE clause;

We can use this statement to change the first name in one of the records from the original
value, John, to a new value, Jim:

update person set first_name = 'Jim' where last_name = 'Adams';

Without the WHERE clause, all the records of the table will be affected.

The DELETE statement
To remove records from a table, use the DELETE statement, as follows:

DELETE FROM table_name WHERE clause;

Without the WHERE clause, all the records of the table are deleted. In the case of the
person table, we can delete all the records using the following SQL statement:

delete from person;

Additionally, this statement only deletes the records that have the first name of Jim:

delete from person where first_name = 'Jim';

Managing Data in a Database Chapter 10

[345]

Using statements
The java.sql.Statement interface offers the following methods for executing SQL
statements:

boolean execute(String sql): This returns true if the executed statement
returns data (inside the java.sql.ResultSet object) that can be retrieved using
the ResultSet getResultSet() method of
the java.sql.Statement interface. Alternatively, it returns false if the
executed statement does not return data (for the INSERT statement or the UPDATE
statement) and the subsequent call to the int getUpdateCount() method of
the java.sql.Statement interface returns the number of the affected rows.

ResultSet executeQuery(String sql): This returns data as
a java.sql.ResultSet object (the SQL statement used with this method is
usually a SELECT statement). The ResultSet getResultSet() method of
the java.sql.Statement interface does not return data, while the int
getUpdateCount() method of the java.sql.Statement interface returns -1.

int executeUpdate(String sql): This returns the number of the affected
rows (the executed SQL statement is expected to be the UPDATE statement or
the DELETE statement). The same number is returned by the int
getUpdateCount() method of the java.sql.Statement interface; the
subsequent call to the ResultSet getResultSet() method of
the java.sql.Statement interface returns null.

We will demonstrate how these three methods work on each of the statements: INSERT,
SELECT, UPDATE, and DELETE.

The execute(String sql) method
Let's try executing each of the statements; we'll start with the INSERT statement:

String sql = "insert into person (first_name, last_name, dob) " +
 "values ('Bill', 'Grey', '1980-01-27')";
Connection conn = getConnection();
try (conn; Statement st = conn.createStatement()) {
 System.out.println(st.execute(sql)); //prints: false
 System.out.println(st.getResultSet() == null); //prints: true
 System.out.println(st.getUpdateCount()); //prints: 1
} catch (SQLException ex) {
 ex.printStackTrace();

Managing Data in a Database Chapter 10

[346]

}
System.out.println(selectAllFirstNames()); //prints: Bill

The preceding code adds a new record to the person table.
The returned false value indicates that there is no data returned by the executed
statement; this is why the getResultSet() method returns null. But
the getUpdateCount() method returns 1 because one record was affected (added).
The selectAllFirstNames() method proves that the expected record was inserted.

Now let's execute the SELECT statement, as follows:

String sql = "select first_name from person";
Connection conn = getConnection();
try (conn; Statement st = conn.createStatement()) {
 System.out.println(st.execute(sql)); //prints: true
 ResultSet rs = st.getResultSet();
 System.out.println(rs == null); //prints: false
 System.out.println(st.getUpdateCount()); //prints: -1
 while (rs.next()) {
 System.out.println(rs.getString(1) + " "); //prints: Bill
 }
} catch (SQLException ex) {
 ex.printStackTrace();
}

The preceding code selects all the first names from the person table. The returned
true value indicates that there is data returned by the executed statement. That is why
the getResultSet() method does not return null, but a ResultSet object instead.
The getUpdateCount() method returns -1 because no record was affected (changed).
Since there was only one record in the person table, the ResultSet object contains only
one result, and rs.getString(1) returns Bill.

The following code uses the UPDATE statement to change the first name in all the records of
the person table to Adam:

String sql = "update person set first_name = 'Adam'";
Connection conn = getConnection();
try (conn; Statement st = conn.createStatement()) {
 System.out.println(st.execute(sql)); //prints: false
 System.out.println(st.getResultSet() == null); //prints: true
 System.out.println(st.getUpdateCount()); //prints: 1
} catch (SQLException ex) {
 ex.printStackTrace();
}
System.out.println(selectAllFirstNames()); //prints: Adam

Managing Data in a Database Chapter 10

[347]

In the preceding code, the returned false value indicates that there is no data returned by
the executed statement. This is why the getResultSet() method returns null. But
the getUpdateCount() method returns 1 because one record was affected (changed) since
there was only one record in the person table. The selectAllFirstNames() method
proves that the expected change was made to the record.

The following DELETE statement execution deletes all records from the person table:

String sql = "delete from person";
Connection conn = getConnection();
try (conn; Statement st = conn.createStatement()) {
 System.out.println(st.execute(sql)); //prints: false
 System.out.println(st.getResultSet() == null); //prints: true
 System.out.println(st.getUpdateCount()); //prints: 1
} catch (SQLException ex) {
 ex.printStackTrace();
}
System.out.println(selectAllFirstNames()); //prints:

In the preceding code, the returned false value indicates that there is no data returned by
the executed statement. That is why the getResultSet() method returns null. But
the getUpdateCount() method returns 1 because one record was affected (deleted) since
there was only one record in the person table. The selectAllFirstNames() method
proves that there are no records in the person table.

The executeQuery(String sql) method
In this section, we will try to execute the same statements (as a query) that we used when
demonstrating the execute() method in The execute(String sql) method section. We'll start
with the INSERT statement, as follows:

String sql = "insert into person (first_name, last_name, dob) " +
 "values ('Bill', 'Grey', '1980-01-27')";
Connection conn = getConnection();
try (conn; Statement st = conn.createStatement()) {
 st.executeQuery(sql); //PSQLException
} catch (SQLException ex) {
 ex.printStackTrace(); //prints: stack trace
}
System.out.println(selectAllFirstNames()); //prints: Bill

Managing Data in a Database Chapter 10

[348]

The preceding code generates an exception with the No results were returned by
the query message because the executeQuery() method expects to execute the SELECT
statement. Nevertheless, the selectAllFirstNames() method proves that the expected
record was inserted.

Now let's execute the SELECT statement, as follows:

String sql = "select first_name from person";
Connection conn = getConnection();
try (conn; Statement st = conn.createStatement()) {
 ResultSet rs1 = st.executeQuery(sql);
 System.out.println(rs1 == null); //prints: false
 ResultSet rs2 = st.getResultSet();
 System.out.println(rs2 == null); //prints: false
 System.out.println(st.getUpdateCount()); //prints: -1
 while (rs1.next()) {
 System.out.println(rs1.getString(1)); //prints: Bill
 }
 while (rs2.next()) {
 System.out.println(rs2.getString(1)); //prints:
 }
} catch (SQLException ex) {
 ex.printStackTrace();
}

The preceding code selects all the first names from the person table. The returned
false value indicates that executeQuery() always returns the ResultSet object, even
when no record exists in the person table. As you can see, there appear to be two ways of
getting a result from the executed statement. However, the rs2 object has no data, so, while
using the executeQuery() method, make sure that you get the data from the ResultSet
object.

Now let's try to execute an UPDATE statement as follows:

String sql = "update person set first_name = 'Adam'";
Connection conn = getConnection();
try (conn; Statement st = conn.createStatement()) {
 st.executeQuery(sql); //PSQLException
} catch (SQLException ex) {
 ex.printStackTrace(); //prints: stack trace
}
System.out.println(selectAllFirstNames()); //prints: Adam

Managing Data in a Database Chapter 10

[349]

The preceding code generates an exception with the No results were returned by
the query message because the executeQuery() method expects to execute the SELECT
statement. Nevertheless, the selectAllFirstNames() method proves that the expected
change was made to the record.

We are going to get the same exception while executing the DELETE statement:

String sql = "delete from person";
Connection conn = getConnection();
try (conn; Statement st = conn.createStatement()) {
 st.executeQuery(sql); //PSQLException
} catch (SQLException ex) {
 ex.printStackTrace(); //prints: stack trace
}
System.out.println(selectAllFirstNames()); //prints:

Nevertheless, the selectAllFirstNames() method proves that all the records of
the person table were deleted.

Our demonstration shows that executeQuery() should be used for SELECT statements
only. The advantage of the executeQuery() method is that, when used for SELECT
statements, it returns a not-null ResultSet object even when there is no data selected,
which simplifies the code since there is no need to check the returned value for null.

The executeUpdate(String sql) method
We'll start demonstrating the executeUpdate() method with the INSERT statement:

String sql = "insert into person (first_name, last_name, dob) " +
 "values ('Bill', 'Grey', '1980-01-27')";
Connection conn = getConnection();
try (conn; Statement st = conn.createStatement()) {
 System.out.println(st.executeUpdate(sql)); //prints: 1
 System.out.println(st.getResultSet()); //prints: null
 System.out.println(st.getUpdateCount()); //prints: 1
} catch (SQLException ex) {
 ex.printStackTrace();
}
System.out.println(selectAllFirstNames()); //prints: Bill

Managing Data in a Database Chapter 10

[350]

 As you can see, the executeUpdate() method returns the number of the affected
(inserted, in this case) rows. The same number returns the int
getUpdateCount() method, while the ResultSet
getResultSet() method returns null. The selectAllFirstNames() method proves
that the expected record was inserted.

The executeUpdate() method can't be used for executing the SELECT statement:

String sql = "select first_name from person";
Connection conn = getConnection();
try (conn; Statement st = conn.createStatement()) {
 st.executeUpdate(sql); //PSQLException
} catch (SQLException ex) {
 ex.printStackTrace(); //prints: stack trace
}

The message of the exception is A result was returned when none was expected.

The UPDATE statement, on the other hand, is executed by the executeUpdate() method
just fine:

String sql = "update person set first_name = 'Adam'";
Connection conn = getConnection();
try (conn; Statement st = conn.createStatement()) {
 System.out.println(st.executeUpdate(sql)); //prints: 1
 System.out.println(st.getResultSet()); //prints: null
 System.out.println(st.getUpdateCount()); //prints: 1
} catch (SQLException ex) {
 ex.printStackTrace();
}
System.out.println(selectAllFirstNames()); //prints: Adam

The executeUpdate() method returns the number of the affected (updated, in this case)
rows. The same number returns the int getUpdateCount() method, while the
ResultSet getResultSet() method returns null. The selectAllFirstNames()
method proves that the expected record was updated.

The DELETE statement produces similar results:

String sql = "delete from person";
Connection conn = getConnection();
try (conn; Statement st = conn.createStatement()) {
 System.out.println(st.executeUpdate(sql)); //prints: 1
 System.out.println(st.getResultSet()); //prints: null
 System.out.println(st.getUpdateCount()); //prints: 1
} catch (SQLException ex) {

Managing Data in a Database Chapter 10

[351]

 ex.printStackTrace();
}
System.out.println(selectAllFirstNames()); //prints:

By now, you have probably realized that the executeUpdate() method is better suited for
INSERT, UPDATE, and DELETE statements.

Using PreparedStatement
PreparedStatement is a sub-interface of the Statement interface. This means that it can
be used anywhere that the Statement interface is used. The difference is that
PreparedStatement is cached in the database instead of being compiled every time it is
invoked. This way, it is efficiently executed multiple times for different input values.
Similar to Statement, it can be created by the prepareStatement() method using the
same Connection object.

Since the same SQL statement can be used for creating Statement and
PreparedStatement, it is a good idea to use PreparedStatement for any SQL statement
that is called multiple times because it performs better than the Statement interface on the
database side. To do this, all we need to change are these two lines from the preceding code
example:

try (conn; Statement st = conn.createStatement()) {
 ResultSet rs = st.executeQuery(sql);

Instead, we can use the PreparedStatement class as follows:

try (conn; PreparedStatement st = conn.prepareStatement(sql)) {
 ResultSet rs = st.executeQuery();

To create the PreparedStatement class with parameters, you can substitute the input
values with the question mark symbol (?); for example, we can create the following
method:

List<Person> selectPersonsByFirstName(String searchName) {
 List<Person> list = new ArrayList<>();
 Connection conn = getConnection();
 String sql = "select * from person where first_name = ?";
 try (conn; PreparedStatement st = conn.prepareStatement(sql)) {
 st.setString(1, searchName);
 ResultSet rs = st.executeQuery();
 while (rs.next()) {
 list.add(new Person(rs.getInt("id"),
 rs.getString("first_name"),

Managing Data in a Database Chapter 10

[352]

 rs.getString("last_name"),
 rs.getDate("dob").toLocalDate()));
 }
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 return list;
}

The database compiles the PreparedStatement class as a template and stores it without
executing. Then, when it is later used by the application, the parameter value is passed to
the template, which can be executed immediately without the overhead of compilation,
since it has been done already.

Another advantage of a prepared statement is that it is better protected from a SQL
injection attack because values are passed in using a different protocol and the template is
not based on the external input.

If a prepared statement is used only once, it may be slower than a regular statement, but the
difference may be negligible. If in doubt, test the performance and see if it is acceptable for
your application – the increased security could be worth it.

Using CallableStatement
The CallableStatement interface (which extends the PreparedStatement interface) can
be used to execute a stored procedure, although some databases allow you to call a stored
procedure using either a Statement or
PreparedStatement interface. A CallableStatement object is created by
the prepareCall() method and can have parameters of three types:

IN for an input value
OUT for the result
IN OUT for either an input or an output value

The IN parameter can be set the same way as the parameters of PreparedStatement,
while the OUT parameter must be registered by the registerOutParameter() method of
CallableStatement.

Managing Data in a Database Chapter 10

[353]

It is worth noting that executing a stored procedure from Java programmatically is one of
the least standardized areas. PostgreSQL, for example, does not support stored procedures
directly, but they can be invoked as functions, which have been modified for this purpose
by interpreting the OUT parameters as return values. Oracle, on the other hand, allows
the OUT parameters as functions too.

This is why the following differences between database functions and stored procedures
can serve only as general guidelines and not as formal definitions:

A function has a return value, but it does not allow OUT parameters (except for
some databases) and can be used in a SQL statement.
A stored procedure does not have a return value (except for some databases); it
allows OUT parameters (for most databases) and can be executed using the
JDBC CallableStatement interface.

You can refer to the database documentation to learn how to execute a stored procedure.

Since stored procedures are compiled and stored on the database server, the execute()
method of CallableStatement performs better for the same SQL statement than the
corresponding method of the Statement or PreparedStatement interface. This is one of
the reasons why a lot of Java code is sometimes replaced by one or several stored
procedures that even include business logic. However, there is no right answer for every
case and problem, so we will refrain from making specific recommendations, except to
repeat the familiar mantra about the value of testing and the clarity of the code you are
writing.

Let's, for example, call the replace(string origText, from substr1, to
substr2) function that comes with the PostgreSQL installation. It searches the first
parameter (string origText) and replaces all the substrings in it that match the second
parameter (from substr1) using the string provided by the third parameter (string
substr2). The following Java method executes this function using CallableStatement:

String replace(String origText, String substr1, String substr2) {
 String result = "";
 String sql = "{ ? = call replace(?, ?, ?) }";
 Connection conn = getConnection();
 try (conn; CallableStatement st = conn.prepareCall(sql)) {
 st.registerOutParameter(1, Types.VARCHAR);
 st.setString(2, origText);
 st.setString(3, substr1);
 st.setString(4, substr2);
 st.execute();
 result = st.getString(1);
 } catch (Exception ex){

Managing Data in a Database Chapter 10

[354]

 ex.printStackTrace();
 }
 return result;
}

Now we can call this method as follows:

String result = replace("That is original text",
 "original text", "the result");
System.out.println(result); //prints: That is the result

A stored procedure can be without any parameters at all, with IN parameters only, with
OUT parameters only, or with both. The result may be one or multiple values, or a
ResultSet object. You can find the syntax of the SQL for function creation in your
database documentation.

Summary
In this chapter, we discussed and demonstrated how the data in a database can be
populated, read, updated, and deleted from a Java application. A short introduction to the
SQL language described how to create a database and its structure, how to modify it, and
how to execute SQL statements, using Statement, PreparedStatement, and
CallableStatement.

In the next chapter, we will describe and discuss the most popular network protocols,
demonstrate how to use them, and how to implement client-server communication using
the latest Java HTTP Client API. The protocols reviewed include the Java implementation
of a communication protocol based on TCP, UDP, and URLs.

Quiz
Select all the correct statements:1.

JDBC stands for Java Database Communication.a.
The JDBC API includes the java.db package.b.
The JDBC API comes with Java installation.c.
The JDBC API includes the drivers for all major DBMSes.d.

Managing Data in a Database Chapter 10

[355]

Select all the correct statements:2.
A database table can be created using the CREATE statement.a.
A database table can be changed using the UPDATE statement.b.
A database table can be removed using the DELETE statement.c.
Each database column can have an index.d.

Select all the correct statements:3.
To connect to a database, you can use the Connect class.a.
Every database connection must be closed.b.
The same database connection may be used for many operations.c.
Database connections can be pooled.d.

Select all the correct statements:4.
A database connection can be closed automatically using the try-with-a.
resources construct.
A database connection can be closed using the finally blockb.
construct.
A database connection can be closed using the catch block.c.
A database connection can be closed without a try block.d.

Select all the correct statements:5.
The INSERT statement includes a table name.a.
The INSERT statement includes column names.b.
The INSERT statement includes values.c.
The INSERT statement includes constraints.d.

Select all the correct statements:6.
The SELECT statement must include a table name.a.
The SELECT statement must include a column name.b.
The SELECT statement must include the WHERE clause.c.
The SELECT statement may include the ORDER clause.d.

Select all the correct statements:7.
The UPDATE statement must include a table name.a.
The UPDATE statement must include a column name.b.
The UPDATE statement may include the WHERE clause.c.
The UPDATE statement may include the ORDER clause.d.

Managing Data in a Database Chapter 10

[356]

Select all the correct statements:8.
The DELETE statement must include a table name.a.
The DELETE statement must include a column name.b.
The DELETE statement may include the WHERE clause.c.
The DELETE statement may include the ORDER clause.d.

Select all the correct statements about the execute() method of9.
the Statement interface:

It receives a SQL statement.a.
It returns a ResultSet object.b.
The Statement object may return data after execute() was called.c.
The Statement object may return the number of affected recordsd.
after execute() was called.

Select all the correct statements about the executeQuery() method of10.
the Statement interface:

It receives a SQL statement.a.
It returns a ResultSet object.b.
The Statement object may return datac.
after executeQuery() was called.
The Statement object may return the number of affected recordsd.
after executeQuery() was called.

Select all correct statements about the executeUpdate() method of the11.
interface Statement interface:

It receives a SQL statement.a.
It returns a ResultSet object.b.
The Statement object may return datac.
after executeUpdate() was called.
The Statement object returns the number of affected recordsd.
after executeUpdate() was called.

Managing Data in a Database Chapter 10

[357]

Select all the correct statements about the PreparedStatement interface:12.
It extends Statement.a.
An object of type PreparedStatement is created byb.
the prepareStatement() method.
It is always more efficient than Statement.c.
It results in a template in the database being created only once.d.

Select all the correct statements about the CallableStatement interface:13.
It extends PreparedStatement.a.
An object of type CallableStatement is created byb.
the prepareCall() method.
It is always more efficient than PreparedStatement.c.
It results in a template in the database being created only once.d.

11
Network Programming

In this chapter, we will describe and discuss the most popular network protocols – User
Datagram Protocol (UDP), Transmission Control Protocol (TCP), HyperText Transfer
Protocol (HTTP), and WebSocket – and their support from the Java Class Library (JCL).
We will demonstrate how to use these protocols and how to implement client-server
communication in Java code. We will also review Uniform Resource Locator (URL)-based
communication and the latest Java HTTP Client API.

The following topics will be covered in this chapter:

Network protocols
UDP-based communication
TCP-based communication
UDP versus TCP protocols
URL-based communication
Using the HTTP 2 Client API

Network protocols
Network programming is a vast area. The internet protocol (IP) suite consists of four
layers, each of which has a dozen or more protocols:

The link layer: The group of protocols used when a client is physically
connected to the host; three core protocols include the Address Resolution
Protocol (ARP), the Reverse Address Resolution Protocol (RARP), and the
Neighbor Discovery Protocol (NDP).

Network Programming Chapter 11

[359]

The internet layer: The group of inter-networking methods, protocols, and
specifications used to transport network packets from the originating host to the
destination host, specified by an IP address. The core protocols of this layer are
Internet Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6); IPv6
specifies a new packet format and allocates 128 bits for the dotted IP address,
compared to 32 bits in IPv4. An example of an IPv4 address
is 10011010.00010111.11111110.00010001, which results in an IP address
of 154.23.254.17.
The transport layer: The group of host-to-host communication services. It
includes TCP, also known as TCP/IP protocol, and UDP (which we are going to
discuss shortly); other protocols in this group are the Datagram Congestion
Control Protocol (DCCP) and the Stream Control Transmission Protocol
(SCTP).
The application layer: The group of protocols and interface methods used by
hosts in a communication network. It includes Telnet, File Transfer Protocol
(FTP), Domain Name System (DNS), Simple Mail Transfer Protocol (SMTP),
Lightweight Directory Access Protocol (LDAP), Hypertext Transfer Protocol
(HTTP), Hypertext Transfer Protocol Secure (HTTPS), and Secure Shell (SSH).

The link layer is the lowest layer; it is used by the internet layer that is, in turn, used by
the transport layer. This transport layer is then used by the application layer in support of
the protocol implementations.

For security reasons, Java does not provide access to the protocols of the link layer and the
internet layer. This means that Java does not allow you to create custom transport protocols
that, for example, serve as an alternative to TCP/IP. That is why, in this chapter, we will
review only the protocols of the transport layer (TCP and UDP) and the application layer
(HTTP). We will explain and demonstrate how Java supports them and how a Java
application can take advantage of this support.

Java supports the TCP and UDP protocols with classes of the java.net package, while the
HTTP protocol can be implemented in the Java application using the classes of
the java.net.http package (which was introduced with Java 11).

Both the TCP and UDP protocols can be implemented in Java using sockets. Sockets are
identified by a combination of an IP address and a port number, and they represent a
connection between two applications. Since the UDP protocol is somewhat simpler than the
TCP protocol, we'll start with UDP.

Network Programming Chapter 11

[360]

UDP-based communication
The UDP protocol was designed by David P. Reed in 1980. It allows applications to send
messages called datagrams using a simple connectionless communication model with a
minimal protocol mechanism, such as a checksum, for data integrity. It has no handshaking
dialogs and, thus, does not guarantee message delivery or preserving the order of
messages. It is suitable for those cases when dropping messages or mixing up
orders are preferred to waiting for retransmission.

A datagram is represented by the java.net.DatagramPacket class. An object of this class
can be created using one of six constructors; the following two constructors are the most
commonly used:

DatagramPacket(byte[] buffer, int length): This constructor creates a
datagram packet and is used to receive the packets; buffer holds the incoming
datagram, while length is the number of bytes to be read.
DatagramPacket(byte[] buffer, int length, InetAddress address,

int port): This creates a datagram packet and is used to send the packets;
buffer holds the packet data, length is the packet data length, address holds
the destination IP address, and port is the destination port number.

Once constructed, the DatagramPacket object exposes the following methods that can be
used to extract data from the object or set/get its properties:

void setAddress(InetAddress iaddr): This sets the destination IP address.
InetAddress getAddress(): This returns the destination or source IP address.
void setData(byte[] buf): This sets the data buffer.
void setData(byte[] buf, int offset, int length): This sets the data
buffer, data offset, and length.
void setLength(int length): This sets the length for the packet.
byte[] getData(): This returns the data buffer
int getLength(): This returns the length of the packet that is to be sent or
received.
int getOffset(): This returns the offset of the data that is to be sent or
received.
void setPort(int port): This sets the destination port number.
int getPort(): This returns the port number where data is to be sent or
received from.

Network Programming Chapter 11

[361]

Once a DatagramPacket object is created, it can be sent or received using
the DatagramSocket class, which represents a connectionless socket for sending and
receiving datagram packets. An object of this class can be created using one of six
constructors; the following three constructors are the most commonly used:

DatagramSocket(): This creates a datagram socket and binds it to any available
port on the local host machine. It is typically used to create a sending socket
because the destination address (and port) can be set inside the packet (see the
preceding DatagramPacket constructors and methods).
DatagramSocket(int port): This creates a datagram socket and binds it to the
specified port on the local host machine. It is used to create a receiving socket
when any local machine address (called a wildcard address) is good enough.
DatagramSocket(int port, InetAddress address): This creates a
datagram socket and binds it to the specified port and the specified local address;
the local port must be between 0 and 65535. It is used to create a receiving socket
when a particular local machine address needs to be bound.

The following two methods of the DatagramSocket object are the most commonly used
for sending and receiving messages (or packets):

void send(DatagramPacket p): This sends the specified packet.
void receive(DatagramPacket p): This receives a packet by filling the
specified DatagramPacket object's buffer with the data received. The
specified DatagramPacket object also contains the sender's IP address and the
port number on the sender's machine.

Let's take a look at a code example; here is the UDP message receiver that exits after the
message has been received:

public class UdpReceiver {
 public static void main(String[] args){
 try(DatagramSocket ds = new DatagramSocket(3333)){
 DatagramPacket dp = new DatagramPacket(new byte[16], 16);
 ds.receive(dp);
 for(byte b: dp.getData()){
 System.out.print(Character.toString(b));
 }
 } catch (Exception ex){
 ex.printStackTrace();
 }
 }
}

Network Programming Chapter 11

[362]

As you can see, the receiver is listening for a text message (it interprets each byte as a
character) on any address of the local machine on port 3333. It uses a buffer of 16 bytes
only; as soon as the buffer is filled with the received data, the receiver prints its content and
exits.

Here is an example of the UDP message sender:

public class UdpSender {
 public static void main(String[] args) {
 try(DatagramSocket ds = new DatagramSocket()){
 String msg = "Hi, there! How are you?";
 InetAddress address = InetAddress.getByName("127.0.0.1");
 DatagramPacket dp = new DatagramPacket(msg.getBytes(),
 msg.length(), address, 3333);
 ds.send(dp);
 } catch (Exception ex){
 ex.printStackTrace();
 }
 }
}

As you can see, the sender constructs a packet with the message, the local machine address,
and the same port as the one that the receiver uses. After the constructed packet is sent, the
sender exits.

We can run the sender now, but without the receiver running there is nobody to get the
message. So, we'll start the receiver first. It listens on port 3333, but there is no message
coming – so it waits. Then, we run the sender and the receiver displays the following
message:

Since the buffer is smaller than the message, it was only partially received – the rest of the
message is lost. We can create an infinite loop and let the receiver run indefinitely:

while(true){
 ds.receive(dp);
 for(byte b: dp.getData()){
 System.out.print(Character.toString(b));
 }
 System.out.println();
}

Network Programming Chapter 11

[363]

By doing so, we can run the sender several times; here is what the receiver prints if we run
the sender three times:

As you can see, all three messages are received; however, only the first 16 bytes of each
message are captured by the receiver.

Now let's make the receiving buffer bigger than the message:

DatagramPacket dp = new DatagramPacket(new byte[30], 30);

If we send the same message now, the result will be as follows:

To avoid processing empty buffer elements, you can use the getLength() method of
the DatagramPacket class, which returns the actual number of buffer elements filled with
the message:

int i = 1;
for(byte b: dp.getData()){
 System.out.print(Character.toString(b));
 if(i++ == dp.getLength()){
 break;
 }
}

The result of the preceding code will be as follows:

Network Programming Chapter 11

[364]

So, this is the basic idea of the UDP protocol. The sender sends a message to a certain
address and port even if there is no socket that listens on this address and port. It does not
require establishing any kind of connection before sending the message, which makes the
UDP protocol faster and more lightweight than the TCP protocol (which requires you to
establish the connection first). This way, the TCP protocol takes message sending to another
level of reliability – by making sure that the destination exists and that the message can be
delivered.

TCP-based communication
TCP was designed by the Defense Advanced Research Projects Agency (DARPA) in the
1970s for use in the Advanced Research Projects Agency Network (ARPANET). It
complements IP and, thus, is also referred to as TCP/IP. The TCP protocol, even by its
name, indicates that it provides reliable (that is, error-checked or controlled) data
transmission. It allows the ordered delivery of bytes in an IP network and is widely used by
the web, email, secure shell, and file transfer.

An application that uses TCP/IP is not even aware of all the handshaking that takes place
between the socket and the transmission details – such as network congestion, traffic load
balancing, duplication, and even loss of some IP packets. The underlying protocol
implementation of the transport layer detects these problems, resends the data, reconstructs
the order of the sent packets, and minimizes network congestion.

In contrast to the UDP protocol, TCP/IP-based communication is focused on accurate
delivery at the expense of the delivery period. That's why it is not used for real-time
applications, such as voice over IP, where reliable delivery and correct sequential ordering
are required. However, if every bit needs to arrive exactly as it was sent and in the same
sequence, then TCP/IP is irreplaceable.

To support such behavior, TCP/IP communication maintains a session throughout the
communication. The session is identified by the client address and port. Each session is
represented by an entry in a table on the server. This contains all the metadata about the
session: the client IP address and port, the connection status, and the buffer parameters. But
these details are usually hidden from the application developer, so we won't go into any
more detail here. Instead, we will turn to the Java code.

Similar to the UDP protocol, the TCP/IP protocol implementation in Java uses sockets. But
instead of the java.net.DatagramSocket class that implements the UDP protocol, the
TCP/IP-based sockets are represented by the java.net.ServerSocket and
java.net.Socket classes. They allow sending and receiving messages between two
applications, one of them being a server and the other a client.

Network Programming Chapter 11

[365]

The ServerSocket and SocketClass classes perform very similar jobs. The only
difference is that the ServerSocket class has the accept() method that accepts the request
from the client. This means that the server has to be up and ready to receive the request
first. Then, the connection is initiated by the client that creates its own socket that sends the
connection request (from the constructor of the Socket class). The server then accepts the
request and creates a local socket connected to the remote socket (on the client side).

After establishing the connection, data transmission can occur using I/O streams as
described in Chapter 5, Strings, Input/Output, and Files. The Socket object has
the getOutputStream() and getInputStream() methods that provide access to the
socket's data streams. Data from the java.io.OutputStream object on the local computer
appear as coming from the java.io.InputStream object on the remote machine.

Let's now take a closer look at
the java.net.ServerSocket and java.net.Socket classes, and then run some
examples of their usage.

The java.net.ServerSocket class
The java.net.ServerSocket class has four constructors:

ServerSocket(): This creates a server socket object that is not bound to a
particular address and port. It requires the use of the bind() method to bind the
socket.
ServerSocket(int port): This creates a server socket object bound to the
provided port. The port value must be between 0 and 65535. If the port number
is specified as a value of 0, this means that the port number needs to be bound
automatically. By default, the maximum queue length for incoming connections
is 50.
ServerSocket(int port, int backlog): This provides the same
functionality as the ServerSocket(int port) constructor, and allows you to
set the maximum queue length for incoming connections by the backlog
parameter.
ServerSocket(int port, int backlog, InetAddress bindAddr): This
creates a server socket object that is similar to the preceding constructor, but also
bound to the provided IP address. When the bindAddr value is null, it will
default to accepting connections on any or all local addresses.

Network Programming Chapter 11

[366]

The following four methods of the ServerSocket class are the most commonly used, and
they are essential for establishing a socket's connection:

void bind(SocketAddress endpoint): This binds the ServerSocket object
to a specific IP address and port. If the provided address is null, then the system
will pick up a port and a valid local address automatically (which can be later
retrieved using the getLocalPort(), getLocalSocketAddress(), and
getInetAddress() methods). Additionally, if the ServerSocket object was
created by the constructor without any parameters, then this method, or the
following bind() method, needs to be invoked before a connection can be
established.
void bind(SocketAddress endpoint, int backlog): This acts in a similar
way to the preceding method; the backlog argument is the maximum number of
pending connections on the socket (that is, the size of the queue). If the backlog
value is less than or equal to 0, then an implementation-specific default will be
used.
void setSoTimeout(int timeout): This sets the value (in milliseconds) of
how long the socket waits for a client after the accept() method is called. If the
client has not called and the timeout expires, an
java.net.SocketTimeoutException exception is thrown, but the
ServerSocket object remains valid and can be reused. The timeout value of 0
is interpreted as an infinite timeout (the accept() method blocks until a client
calls).
Socket accept(): This blocks until a client calls or the timeout period (if set)
expires.

Other methods of the class allow you to set or get other properties of the Socket object and
they can be used for better dynamic management of the socket connection. You can refer to
the online documentation of the class to understand the available options in more detail.

The following code is an example of a server implementation using the ServerSocket
class:

public class TcpServer {
 public static void main(String[] args){
 try(Socket s = new ServerSocket(3333).accept();
 DataInputStream dis = new DataInputStream(s.getInputStream());
 DataOutputStream dout = new DataOutputStream(s.getOutputStream());
 BufferedReader console =
 new BufferedReader(new InputStreamReader(System.in))){
 while(true){
 String msg = dis.readUTF();

Network Programming Chapter 11

[367]

 System.out.println("Client said: " + msg);
 if("end".equalsIgnoreCase(msg)){
 break;
 }
 System.out.print("Say something: ");
 msg = console.readLine();
 dout.writeUTF(msg);
 dout.flush();
 if("end".equalsIgnoreCase(msg)){
 break;
 }
 }
 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Let's walk through the preceding code. In the try-with-resources statement, we create
Socket, DataInputStream, and DataOutputStream objects based on our newly-created
socket, and the BufferedReader object to read the user input from the console (we will
use it to enter the data). While creating the socket, the accept() method blocks until a
client tries to connect to port 3333 of the local server.

Then, the code enters an infinite loop. First, it reads the bytes sent by the client as a Unicode
character string encoded in a modified UTF-8 format by using the readUTF() method of
DataInputStream. The result is printed with the "Client said: " prefix. If the received
message is an "end" string, then the code exits the loop and the server's program exits. If
the message is not "end", then the "Say something: " prompt is displayed on the
console and the readLine() method blocks until a user types something and clicks
on Enter.

The server takes the input from the screen and writes it as a Unicode character string to the
output stream using the writeUtf() method. As we mentioned already, the output stream
of the server is connected to the input stream of the client. If the client reads from the input
stream, it receives the message sent by the server. If the sent message is "end", then the
sever exits the loop and the program. If not, then the loop body is executed again.

The described algorithm assumes that the client exits only when it sends or receives the
"end" message. Otherwise, the client generates an exception if it tries to send a message to
the server afterward. This demonstrates the difference between the UDP and TCP protocols
that we mentioned already – TCP is based on the session that is established between
the server and client sockets. If one side drops it, the other side immediately encounters
an error.

Network Programming Chapter 11

[368]

Now let's review an example of a TCP-client implementation.

The java.net.Socket class
The java.net.Socket class should now be familiar to you since it was used in the
preceding example. We used it to access the input and output streams of the connected
sockets. Now we are going to review the Socket class systematically and explore how it
can be used to create a TCP client. The Socket class has four constructors:

Socket(): This creates an unconnected socket. It uses the connect() method to
establish a connection of this socket with a socket on a server.
Socket(String host, int port): This creates a socket and connects it to the
provided port on the host server. If it throws an exception, the connection to the
server is not established; otherwise; you can start sending data to the server.
Socket(InetAddress address, int port): This acts in a similar way to the
preceding constructor, except that the host is provided as an InetAddress
object.
Socket(String host, int port, InetAddress localAddr, int

localPort): This works in a similar way to the preceding constructor, except
that it also allows you to bind the socket to the provided local address and port
(if the program is run on a machine with multiple IP addresses). If the provided
localAddr value is null, any local address is selected. Alternatively, if the
provided localPort value is null, then the system picks up a free port in the
bind operation.
Socket(InetAddress address, int port, InetAddress localAddr,

int localPort): This acts in a similar way to the preceding constructor, except
that the local address is provided as an InetAddress object.

Here are the following two methods of the Socket class that we have used already:

InputStream getInputStream(): This returns an object that represents the
source (the remote socket) and brings the data (inputs them) into the program
(the local socket).

OutputStream getOutputStream(): This returns an object that represents the
source (the local socket) and sends the data (outputs them) to a remote socket.

Network Programming Chapter 11

[369]

Let's now examine the TCP-client code, as follows:

public class TcpClient {
 public static void main(String[] args) {
 try(Socket s = new Socket("localhost",3333);
 DataInputStream dis = new DataInputStream(s.getInputStream());
 DataOutputStream dout = new DataOutputStream(s.getOutputStream());
 BufferedReader console =
 new BufferedReader(new InputStreamReader(System.in))){
 String prompt = "Say something: ";
 System.out.print(prompt);
 String msg;
 while ((msg = console.readLine()) != null) {
 dout.writeUTF(msg);
 dout.flush();
 if (msg.equalsIgnoreCase("end")) {
 break;
 }
 msg = dis.readUTF();
 System.out.println("Server said: " +msg);
 if (msg.equalsIgnoreCase("end")) {
 break;
 }
 System.out.print(prompt);
 }
 } catch(Exception ex){
 ex.printStackTrace();
 }
 }
}

The preceding TcpClient code looks almost exactly the same as the TcpServer code we
reviewed. The only principal difference is that the new Socket("localhost", 3333)
constructor attempts to establish a connection with the "localhost:3333" server
immediately, so it expects that the localhost server is up and listening on port 3333; the
rest is the same as the server code.

Therefore, the only reason we need to use the ServerSocket class is to allow the server to
run while waiting for the client to connect to it; everything else can be done using only
the Socket class.

Other methods of the Socket class allow you to set or get other properties of the socket
object, and they can be used for better dynamic management of the socket connection. You
can read the online documentation of the class to understand the available options in more
detail.

Network Programming Chapter 11

[370]

Running the examples
Let's now run the TcpServer and TcpClient programs. If we start TcpClient first, we
get java.net.ConnectException with the Connection refused message. So, we launch
the TcpServer program first. When it starts, no messages are displayed, instead, it just
waits until the client connects. So, we then start TcpClient and see the following message
on the screen:

We type Hello! and click on Enter:

Now let's look at the server-side screen:

We type Hi! on the server-side screen and click on Enter:

On the client-side screen, we see the following messages:

We can continue this dialog indefinitely until the server or the client sends the
message, end. Let's make the client do it; the client says end and then exits:

Network Programming Chapter 11

[371]

Then, the server follows suit:

That's all we wanted to demonstrate while discussing the TCP protocol. Now let's review
the differences between the UDP and TCP protocols.

UDP versus TCP protocols
The differences between the UDP and TCP/IP protocol can be listed as follows:

UDP simply sends data, whether the data receiver is up and running or
not. That's why UDP is better suited to sending data compared to many other
clients using multicast distribution. TCP, on the other hand, requires establishing
the connection between the client and the server first. The TCP client sends a
special control message; the server receives it and responds with a confirmation.
The client then sends a message to the server that acknowledges the server
confirmation. Only after this, data transmission between the client and server is
possible.
TCP guarantees message delivery or raises an error, while UDP does not, and a
datagram packet may be lost.
TCP guarantees the preservation of the order of messages on delivery,
while UDP does not.
As a result of these provided guarantees, TCP is slower than UDP.
Additionally, protocols require headers to be sent along with the packet.
The header size of a TCP packet is 20 bytes, while a datagram packet is 8 bytes.
The UDP header contains Length, Source Port, Destination Port,
and Checksum, while the TCP header contains Sequence Number, Ack Number,
Data Offset, Reserved, Control Bit, Window, Urgent Pointer, Options,
and Padding, in addition to the UDP headers.
There are different application protocols that are based on the TCP or UDP
protocols. The TCP-based protocols are HTTP, HTTPS, Telnet, FTP, and SMTP.
The UDP-based protocols are Dynamic Host Configuration Protocol (DHCP),
DNS, Simple Network Management Protocol (SNMP), Trivial File Transfer
Protocol (TFTP), Bootstrap Protocol (BOOTP), and early versions of
the Network File System (NFS).

Network Programming Chapter 11

[372]

We can capture the difference between UDP and TCP in one sentence: the UDP protocol is
faster and more lightweight than TCP, but less reliable. As with many things in life, you
have to pay a higher price for additional services. However, not all these services will be
needed in all cases, so think about the task in hand and decide which protocol to use based
on your application requirements.

URL-based communication
Nowadays, it seems that everybody has some notion of a URL; those who use a browser on
their computers or smartphones will see URLs every day. In this section, we will briefly
explain the different parts that make up a URL and demonstrate how it can be used
programmatically to request data from a website (or a file) or to send (post) data to a
website.

The URL syntax
Generally speaking, the URL syntax complies with the syntax of a Uniform Resource
Identifier (URI) that has the following format:

scheme:[//authority]path[?query][#fragment]

The square brackets indicate that the component is optional. This means that a URI will
consist of scheme:path at the very least. The scheme component can
be http, https, ftp, mailto, file, data, or another value. The path component consists
of a sequence of path segments separated by a slash (/). Here is an example of a URL
consisting only of scheme and path:

file:src/main/resources/hello.txt

The preceding URL points to a file on a local filesystem that is relative to the directory
where this URL is used. We will demonstrate how it works shortly.

The path component can be empty, but then the URL would seem useless. Nevertheless,
an empty path is often used in conjunction with authority, which has the following
format:

[userinfo@]host[:port]

The only required component of authority is host, which can be either an IP address
(137.254.120.50, for example) or a domain name (oracle.com, for example).

Network Programming Chapter 11

[373]

The userinfo component is typically used with the mailto value of
the scheme component, so userinfo@host represents an email address.

The port component, if omitted, assumes a default value. For example, if the scheme value
is http, then the default port value is 80, and if the scheme value is https, then the
default port value is 443.

An optional query component of a URL is a sequence of key-value pairs separated by a
delimiter (&):

key1=value1&key2=value2

Finally, the optional fragment component is an identifier of a section of an HTML
document, so that a browser can scroll this section into view.

It is necessary to mention that Oracle's online documentation uses slightly different
terminology:

protocol instead of scheme
reference instead of fragment
file instead of path[?query][#fragment]
resource instead of host[:port]path[?query][#fragment]

So, from the Oracle documentation perspective, the URL is composed of protocol and
resource values.

Let's now take a look at the programmatic usage of URLs in Java.

The java.net.URL class
In Java, a URL is represented by an object of the java.net.URL class that has six
constructors:

URL(String spec): This creates a URL object from the URL as a string.
URL(String protocol, String host, String file): This creates
a URL object from the provided values of protocol, host, and file (path and
query), and the default port number based on the provided protocol value.
URL(String protocol, String host, int port, String path): This
creates a URL object from the provided values of protocol, host, port, and
file (path and query). A port value of -1 indicates that the default port
number needs to be used based on the provided protocol value.

Network Programming Chapter 11

[374]

URL(String protocol, String host, int port, String file,

URLStreamHandler handler): This acts in the same way as the preceding
constructor and additionally allows you to pass in an object of the particular
protocol handler; all the preceding constructors load default handlers
automatically.
URL(URL context, String spec): This creates a URL object that extends the
provided URL object or overrides its components using the provided spec value,
which is a string representation of a URL or some of its components. For
example, if the scheme is present in both parameters, the scheme value from
spec overrides the scheme value in context and many others.
URL(URL context, String spec, URLStreamHandler handler): This acts
in the same way as the preceding constructor and additionally allows you to pass
in an object of the particular protocol handler.

Once created, a URL object allows you to get the values of various components of the
underlying URL. The InputStream openStream() method provides access to the stream
of data received from the URL. In fact, it is implemented as
openConnection.getInputStream(). The URLConnection openConnection()
method of the URL class returns a URLConnection object with many methods that provide
details about the connection to the URL, including the getOutputStream() method that
allows you to send data to the URL.

Let's take a look at the code example; we start with reading data from a hello.txt file,
which is a local file that we created in Chapter 5, Strings, Input/Output, and Files. The file
contains only one line: "Hello!"; here is the code that reads it:

try {
 URL url = new URL("file:src/main/resources/hello.txt");
 System.out.println(url.getPath()); // src/main/resources/hello.txt
 System.out.println(url.getFile()); // src/main/resources/hello.txt
 try(InputStream is = url.openStream()){
 int data = is.read();
 while(data != -1){
 System.out.print((char) data); //prints: Hello!
 data = is.read();
 }
 }
} catch (Exception e) {
 e.printStackTrace();
}

Network Programming Chapter 11

[375]

In the preceding code, we used the file:src/main/resources/hello.txt URL. It is
based on the path to the file that is relative to the program's executing location. The
program is executed in the root directory of our project. To begin, we demonstrate
the getPath() and getFile() methods. The returned values are not different because the
URL does not have a query component value. Otherwise, the getFile() method would
include it too. We will see this in the following code example.

The rest of the preceding code is opening an input stream of data from a file and prints the
incoming bytes as characters. The result is shown in the inline comment.

Now, let's demonstrate how Java code can read data from the URL that points to a source
on the internet. Let's call the Google search engine with a Java keyword:

try {
 URL url = new URL("https://www.google.com/search?q=Java&num=10");
 System.out.println(url.getPath()); //prints: /search
 System.out.println(url.getFile()); //prints: /search?q=Java&num=10
 URLConnection conn = url.openConnection();
 conn.setRequestProperty("Accept", "text/html");
 conn.setRequestProperty("Connection", "close");
 conn.setRequestProperty("Accept-Language", "en-US");
 conn.setRequestProperty("User-Agent", "Mozilla/5.0");
 try(InputStream is = conn.getInputStream();
 BufferedReader br = new BufferedReader(new InputStreamReader(is))){
 String line;
 while ((line = br.readLine()) != null){
 System.out.println(line);
 }
 }
} catch (Exception e) {
 e.printStackTrace();
}

Here, we came up with the https://www.google.com/search?q=Java&num=10 URL
and requested the properties after some research and experimentation. There is no
guarantee that it will always work, so do not be surprised if it does not return the same
data we describe. Besides, it is a live search, so the result may change at any time.

The preceding code also demonstrates the difference in the values returned
by the getPath() and getFile() methods. You can view the inline comments in the
preceding code example.

Network Programming Chapter 11

[376]

In comparison to the example of using a file URL, the Google search example used
the URLConnection object because we need to set the request header fields:

Accept tells the server what type of content the caller requests (understands).
Connection tells the server that the connection will be closed after the response
is received.
Accept-Language tells the server which language the caller requests
(understands).
User-Agent tells the server information about the caller; otherwise, the Google
search engine (www.google.com) responds with a 403 (forbidden) HTTP code.

The remaining code in the preceding example just reads from the input stream of data
(HTML code) coming from the URL, and prints it, line by line. We captured the result
(copied it from the screen), pasted it into the online HTML Formatter (https:/ /
jsonformatter.org/ html- pretty- print), and ran it. The result is presented in the
following screenshot:

https://www.google.com/
https://jsonformatter.org/html-pretty-print
https://jsonformatter.org/html-pretty-print
https://jsonformatter.org/html-pretty-print
https://jsonformatter.org/html-pretty-print
https://jsonformatter.org/html-pretty-print
https://jsonformatter.org/html-pretty-print
https://jsonformatter.org/html-pretty-print
https://jsonformatter.org/html-pretty-print
https://jsonformatter.org/html-pretty-print
https://jsonformatter.org/html-pretty-print
https://jsonformatter.org/html-pretty-print
https://jsonformatter.org/html-pretty-print

Network Programming Chapter 11

[377]

As you can see, it looks like a typical page with the search results, except there is no Google
image in the upper-left corner with the returned HTML.

Similarly, it is possible to send (post) data to a URL; here is an example code:

try {
 URL url = new URL("http://localhost:3333/something");
 URLConnection conn = url.openConnection();
 //conn.setRequestProperty("Method", "POST");
 //conn.setRequestProperty("User-Agent", "Java client");
 conn.setDoOutput(true);
 OutputStreamWriter osw =
 new OutputStreamWriter(conn.getOutputStream());
 osw.write("parameter1=value1¶meter2=value2");
 osw.flush();
 osw.close();

 BufferedReader br =
 new BufferedReader(new InputStreamReader(conn.getInputStream()));
 String line;
 while ((line = br.readLine()) != null) {
 System.out.println(line);
 }
 br.close();
} catch (Exception e) {
 e.printStackTrace();
}

The preceding code expects a server running on the localhost server on port 3333 that
can process the POST request with the "/something" path. If the server does not check the
method (is it POST or any other HTTP method) and it does not check User-Agent value,
there is no need to specify any of it. So, we comment the settings out and keep them there
just to demonstrate how these, and similar, values can be set if required.

Notice we used the setDoOutput() method to indicate that output has to be sent; by
default, it is set to false. Then, we let the output stream send the query parameters to the
server.

Another important aspect of the preceding code is that the output stream has to be closed
before the input stream is opened. Otherwise, the content of the output stream will not be
sent to the server. While we did it explicitly, a better way to do it is by using the try-with-
resources block that guarantees the close() method is called, even if an exception was
raised anywhere in the block.

Network Programming Chapter 11

[378]

Here is a better version of the preceding example:

try {
 URL url = new URL("http://localhost:3333/something");
 URLConnection conn = url.openConnection();
 //conn.setRequestProperty("Method", "POST");
 //conn.setRequestProperty("User-Agent", "Java client");
 conn.setDoOutput(true);
 try(OutputStreamWriter osw =
 new OutputStreamWriter(conn.getOutputStream())){
 osw.write("parameter1=value1¶meter2=value2");
 osw.flush();
 }
 try(BufferedReader br =
 new BufferedReader(new InputStreamReader(conn.getInputStream()))){
 String line;
 while ((line = br.readLine()) != null) {
 System.out.println(line);
 }
 }
} catch (Exception ex) {
 ex.printStackTrace();
}

To demonstrate how this example works, we also created a simple server that listens on
port 3333 of localhost and has a handler assigned to process all the requests that come
with the "/something" path:

public static void main(String[] args) throws Exception {
 HttpServer server = HttpServer.create(new InetSocketAddress(3333),0);
 server.createContext("/something", new PostHandler());
 server.setExecutor(null);
 server.start();
}
static class PostHandler implements HttpHandler {
 public void handle(HttpExchange exch) {
 System.out.println(exch.getRequestURI()); //prints: /something
 System.out.println(exch.getHttpContext().getPath());///something
 try(BufferedReader in = new BufferedReader(
 new InputStreamReader(exch.getRequestBody()));
 OutputStream os = exch.getResponseBody()){
 System.out.println("Received as body:");
 in.lines().forEach(l -> System.out.println(" " + l));

 String confirm = "Got it! Thanks.";
 exch.sendResponseHeaders(200, confirm.length());
 os.write(confirm.getBytes());
 } catch (Exception ex){

Network Programming Chapter 11

[379]

 ex.printStackTrace();
 }
 }
}

To implement the server, we used the classes of the com.sun.net.httpserver
package that comes with the JCL. To demonstrate that the URL comes without parameters,
we print the URI and the path. They both have the same "/something" value; the
parameters come from the body of the request.

After the request is processed, the server sends back the message "Got it! Thanks." Let's see
how it works; we first run the server. It starts listening on port 3333 and blocks until the
request comes with the "/something" path. Then, we execute the client and observe the
following output on the server-side screen:

As you can see, the server received the parameters (or any other message for that matter)
successfully. Now it can parse them and use as needed.

If we look at the client-side screen, we will see the following output:

This means that the client received the message from the server and exited as expected.
Notice that the server in our example does not exit automatically and has to be closed
manually.

Other methods of the URL and URLConnection classes allow you to set/get other properties
and can be used for more dynamic management of the client-server communication. There
is also the HttpUrlConnection class (and other classes) in the java.net package that
simplifies and enhances URL-based communication. You can read the online
documentation of the java.net package to understand the available options better.

Network Programming Chapter 11

[380]

Using the HTTP 2 Client API
The HTTP Client API was introduced with Java 9 as an incubating API in
the jdk.incubator.http package. In Java 11, it was standardized and moved to
the java.net.http package. It is a far richer and easier-to-use alternative to
the URLConnection API. In addition to all the basic connection-related functionality, it
provides non-blocking (asynchronous) request and response using CompletableFuture
and supports both HTTP 1.1 and HTTP 2.

HTTP 2 added the following new capabilities to the HTTP protocol:

The ability to send data in a binary format rather than textual format; the binary
format is more efficient for parsing, more compact, and less susceptible to
various errors.
It is fully multiplexed, thus allowing multiple requests and responses to be sent
concurrently using just one connection.
It uses header compression, thus reducing the overhead.
It allows a server to push a response into the client's cache if the client indicates
that it supports HTTP 2.

The package contains the following classes:

HttpClient: This is used to send requests and receive responses both
synchronously and asynchronously. An instance can be created using the
static newHttpClient() method with default settings or using
the HttpClient.Builder class (returned by the static newBuilder() method)
that allows you to customize the client configuration. Once created, the instance
is immutable and can be used multiple times.
HttpRequest: This creates and represents an HTTP request with the destination
URI, headers, and other related information. An instance can be created using the
HttpRequest.Builder class (returned by the static newBuilder() method).
Once created, the instance is immutable and can be sent multiple times.
HttpRequest.BodyPublisher: This publishes a body (for the POST, PUT, and
DELETE methods) from a certain source, such as a string, a file, input stream, or
byte array.
HttpResponse: This represents an HTTP response received by the client after an
HTTP request has been sent. It contains the origin URI, headers, message body,
and other related information. Once created, the instance can be queried multiple
times.

Network Programming Chapter 11

[381]

HttpResponse.BodyHandler: This is a functional interface that accepts the
response and returns an instance
of HttpResponse.BodySubscriber that can process the response body.
HttpResponse.BodySubscriber: This receives the response body (its bytes)
and transforms it into a string, a file, or a type.

The HttpRequest.BodyPublishers, HttpResponse.BodyHandlers, and
HttpResponse.BodySubscribers classes are factory classes that create instances of the
corresponding classes. For example, the BodyHandlers.ofString() method creates
a BodyHandler instance that processes the response body bytes as a string, while
the BodyHandlers.ofFile() method creates a BodyHandler instance that saves the
response body in a file.

You can read the online documentation of the java.net.http package to learn more
about these and other related classes and interfaces. Next, we will take a look at and discuss
some examples of HTTP API usage.

Blocking HTTP requests
The following code is an example of a simple HTTP client that sends a GET request to an
HTTP server:

HttpClient httpClient = HttpClient.newBuilder()
 .version(HttpClient.Version.HTTP_2) // default
 .build();
HttpRequest req = HttpRequest.newBuilder()
 .uri(URI.create("http://localhost:3333/something"))
 .GET() // default
 .build();
try {
 HttpResponse<String> resp =
 httpClient.send(req, BodyHandlers.ofString());
 System.out.println("Response: " +
 resp.statusCode() + " : " + resp.body());
} catch (Exception ex) {
 ex.printStackTrace();
}

We created a builder to configure an HttpClient instance. However, since we used
default settings only, we can do it with the same result as follows:

HttpClient httpClient = HttpClient.newHttpClient();

Network Programming Chapter 11

[382]

To demonstrate the client's functionality, we will use the same UrlServer class that we
used already. As a reminder, this is how it processes the client's request and responds with
"Got it! Thanks.":

try(BufferedReader in = new BufferedReader(
 new InputStreamReader(exch.getRequestBody()));
 OutputStream os = exch.getResponseBody()){
 System.out.println("Received as body:");
 in.lines().forEach(l -> System.out.println(" " + l));

 String confirm = "Got it! Thanks.";
 exch.sendResponseHeaders(200, confirm.length());
 os.write(confirm.getBytes());
 System.out.println();
} catch (Exception ex){
 ex.printStackTrace();
}

If we launch this server and run the preceding client's code, the server prints the following
message on its screen:

The client did not send a message because it used the HTTP GET method. Nevertheless, the
server responds, and the client's screen shows the following message:

The send() method of the HttpClient class is blocked until the response has come back
from the server.

Using the HTTP POST, PUT, or DELETE methods produces similar results; let's run the
following code now:

HttpClient httpClient = HttpClient.newBuilder()
 .version(Version.HTTP_2) // default
 .build();
HttpRequest req = HttpRequest.newBuilder()
 .uri(URI.create("http://localhost:3333/something"))
 .POST(BodyPublishers.ofString("Hi there!"))
 .build();
try {
 HttpResponse<String> resp =
 httpClient.send(req, BodyHandlers.ofString());

Network Programming Chapter 11

[383]

 System.out.println("Response: " +
 resp.statusCode() + " : " + resp.body());
} catch (Exception ex) {
 ex.printStackTrace();
}

As you can see, this time the client posts the message Hi there!, and the server's screen
shows the following:

The send() method of the HttpClient class is blocked until the same response has come
back from the server:

So far, the demonstrated functionality was not much different from the URL-based
communication that we saw in the previous section. Now we are going to use the
HttpClient methods that are not available in the URL streams.

Non-blocking (asynchronous) HTTP requests
The sendAsync() method of the HttpClient class allows you to send a message to a
server without blocking. To demonstrate how it works, we will execute the following code:

HttpClient httpClient = HttpClient.newHttpClient();
HttpRequest req = HttpRequest.newBuilder()
 .uri(URI.create("http://localhost:3333/something"))
 .GET() // default
 .build();
CompletableFuture<Void> cf = httpClient
 .sendAsync(req, BodyHandlers.ofString())
 .thenAccept(resp -> System.out.println("Response: " +
 resp.statusCode() + " : " + resp.body()));
System.out.println("The request was sent asynchronously...");
try {
 System.out.println("CompletableFuture get: " +
 cf.get(5, TimeUnit.SECONDS));
} catch (Exception ex) {
 ex.printStackTrace();
}
System.out.println("Exit the client...");

Network Programming Chapter 11

[384]

In comparison to the example with the send() method (which returns
the HttpResponse object), the sendAsync() method returns an instance of
the CompletableFuture<HttpResponse> class. If you read the documentation of
the CompletableFuture<T> class, you will see that it implements
the java.util.concurrent.CompletionStage interface that provides many methods
that can be chained and allow you to set various functions to process the response.

To give you an idea, here is the list of the methods declared in
the CompletionStage interface: acceptEither, acceptEitherAsync,
acceptEitherAsync, applyToEither, applyToEitherAsync, applyToEitherAsync,
handle, handleAsync, handleAsync, runAfterBoth, runAfterBothAsync,
runAfterBothAsync, runAfterEither, runAfterEitherAsync,
runAfterEitherAsync, thenAccept, thenAcceptAsync,
thenAcceptAsync, thenAcceptBoth, thenAcceptBothAsync,
thenAcceptBothAsync, thenApply, thenApplyAsync, thenApplyAsync, thenCombine,
thenCombineAsync, thenCombineAsync, thenCompose, thenComposeAsync,
thenComposeAsync, thenRun, thenRunAsync, thenRunAsync, whenComplete,
whenCompleteAsync, and whenCompleteAsync.

We will talk about functions and how they can be passed as parameters in
Chapter 13, Functional Programming. For now, we will just mention that the resp ->
System.out.println("Response: " + resp.statusCode() + " : " +

resp.body()) construction represents the same functionality as the following method:

void method(HttpResponse resp){
 System.out.println("Response: " +
 resp.statusCode() + " : " + resp.body());
}

The thenAccept() method applies the passed-in functionality to the result returned by the
previous method of the chain.

After the CompletableFuture<Void> instance is returned, the preceding code prints The
request was sent asynchronously... message and blocks it on the
get() method of the CompletableFuture<Void> object. This method has an overloaded
version get(long timeout, TimeUnit unit), with two parameters – the TimeUnit
unit and the long timeout that specifies the number of the units, indicating how long the
method should wait for the task that is represented
by the CompletableFuture<Void> object to complete. In our case, the task is to send a
message to the server and to get back the response (and process it using the provided
function). If the task is not completed in the allotted time, the get() method is interrupted
(and the stack trace is printed in the catch block).

Network Programming Chapter 11

[385]

The Exit the client... message should appear on the screen either in five seconds (in
our case) or after the get() method returns.

If we run the client, the server's screen shows the following message again with the
blocking HTTP GET request:

The client's screen displays the following message:

As you can see, The request was sent asynchronously... message appears before the
response came back from the server. This is the point of an asynchronous call; the request to
the server was sent and the client is free to continue to do anything else. The passed-in
function will be applied to the server response. At the same time, you can pass
the CompletableFuture<Void> object around and call it at any time to get the result. In
our case, the result is void, so the get() method simply indicates that the task was
completed.

We know that the server returns the message, and so we can take advantage of it by using
another method of the CompletionStage interface. We have chosen
the thenApply() method, which accepts a function that returns a value:

CompletableFuture<String> cf = httpClient
 .sendAsync(req, BodyHandlers.ofString())
 .thenApply(resp -> "Server responded: " + resp.body());

Now the get() method returns the value produced by the resp -> "Server
responded: " + resp.body() function, so it should return the server message body;
let's run this code and see the result:

Now the get() method returns the server's message as expected, and it is presented by the
function and passed as a parameter into the thenApply() method.

Network Programming Chapter 11

[386]

Similarly, we can use the HTTP POST, PUT, or DELETE methods for sending a message:

HttpClient httpClient = HttpClient.newHttpClient();
HttpRequest req = HttpRequest.newBuilder()
 .uri(URI.create("http://localhost:3333/something"))
 .POST(BodyPublishers.ofString("Hi there!"))
 .build();
CompletableFuture<String> cf = httpClient
 .sendAsync(req, BodyHandlers.ofString())
 .thenApply(resp -> "Server responded: " + resp.body());
System.out.println("The request was sent asynchronously...");
try {
 System.out.println("CompletableFuture get: " +
 cf.get(5, TimeUnit.SECONDS));
} catch (Exception ex) {
 ex.printStackTrace();
}
System.out.println("Exit the client...");

The only difference from the previous example is that the server now displays the received
client's message:

The client's screen displays the same message as in the case of the GET method:

The advantage of asynchronous requests is that they can be sent quickly and without
needing to wait for each of them to complete. The HTTP 2 protocol supports it by
multiplexing; for example, let's send three requests as follows:

HttpClient httpClient = HttpClient.newHttpClient();
List<CompletableFuture<String>> cfs = new ArrayList<>();
List<String> nums = List.of("1", "2", "3");
for(String num: nums){
 HttpRequest req = HttpRequest.newBuilder()
 .uri(URI.create("http://localhost:3333/something"))
 .POST(BodyPublishers.ofString("Hi! My name is " + num + "."))
 .build();
 CompletableFuture<String> cf = httpClient
 .sendAsync(req, BodyHandlers.ofString())
 .thenApply(rsp -> "Server responded to msg " + num + ": "

Network Programming Chapter 11

[387]

 + rsp.statusCode() + " : " + rsp.body());
 cfs.add(cf);
}
System.out.println("The requests were sent asynchronously...");
try {
 for(CompletableFuture<String> cf: cfs){
 System.out.println("CompletableFuture get: " +
 cf.get(5, TimeUnit.SECONDS));
 }
} catch (Exception ex) {
 ex.printStackTrace();
}
System.out.println("Exit the client...");

The server's screen shows the following messages:

Notice the arbitrary sequence of the incoming requests; this is because the client uses a pool
of Executors.newCachedThreadPool() threads to send the messages. Each message is
sent by a different thread, and the pool has its own logic of using the pool members
(threads). If the number of messages is large, or if each of them consumes a significant
amount of memory, it may be beneficial to limit the number of threads run concurrently.

The HttpClient.Builder class allows you to specify the pool that is used for acquiring
the threads that send the messages:

ExecutorService pool = Executors.newFixedThreadPool(2);
HttpClient httpClient = HttpClient.newBuilder().executor(pool).build();
List<CompletableFuture<String>> cfs = new ArrayList<>();
List<String> nums = List.of("1", "2", "3");
for(String num: nums){
 HttpRequest req = HttpRequest.newBuilder()
 .uri(URI.create("http://localhost:3333/something"))
 .POST(BodyPublishers.ofString("Hi! My name is " + num + "."))
 .build();
 CompletableFuture<String> cf = httpClient
 .sendAsync(req, BodyHandlers.ofString())
 .thenApply(rsp -> "Server responded to msg " + num + ": "
 + rsp.statusCode() + " : " + rsp.body());

Network Programming Chapter 11

[388]

 cfs.add(cf);
}
System.out.println("The requests were sent asynchronously...");
try {
 for(CompletableFuture<String> cf: cfs){
 System.out.println("CompletableFuture get: " +
 cf.get(5, TimeUnit.SECONDS));
 }
} catch (Exception ex) {
 ex.printStackTrace();
}
System.out.println("Exit the client...");

If we run the preceding code, the results will be the same, but the client will use only two
threads to send messages. The performance may be a bit slower (in comparison to the
previous example) as the number of messages grows. So, as is often the case in a software
system design, you need to balance between the amount of memory used and the
performance.

Similarly to the executor, several other objects can be set on the HttpClient object to
configure the connection to handle authentication, request redirection, cookies
management, and more.

Server push functionality
The second (after multiplexing) significant advantage of the HTTP 2 protocol over HTTP
1.1 is allowing the server to push the response into the client's cache if the client indicates
that it supports HTTP 2. Here is the client code that takes advantage of this feature:

HttpClient httpClient = HttpClient.newHttpClient();
HttpRequest req = HttpRequest.newBuilder()
 .uri(URI.create("http://localhost:3333/something"))
 .GET()
 .build();
CompletableFuture cf = httpClient
 .sendAsync(req, BodyHandlers.ofString(),
 (PushPromiseHandler) HttpClientDemo::applyPushPromise);

System.out.println("The request was sent asynchronously...");
try {
 System.out.println("CompletableFuture get: " +
 cf.get(5, TimeUnit.SECONDS));
} catch (Exception ex) {
 ex.printStackTrace();

Network Programming Chapter 11

[389]

}
System.out.println("Exit the client...");

Notice the third parameter of the sendAsync() method. It is a function that handles the
push response if one comes from the server. It is up to the client developer to decide how to
implement this function; here is one possible example:

void applyPushPromise(HttpRequest initReq, HttpRequest pushReq,
 Function<BodyHandler, CompletableFuture<HttpResponse>> acceptor) {
 CompletableFuture<Void> cf = acceptor.apply(BodyHandlers.ofString())
 .thenAccept(resp -> System.out.println("Got pushed response "
 + resp.uri()));
 try {
 System.out.println("Pushed completableFuture get: " +
 cf.get(1, TimeUnit.SECONDS));
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 System.out.println("Exit the applyPushPromise function...");
}

This implementation of the function does not do much. It just prints out the URI of the push
origin. But, if necessary, it can be used for receiving the resources from the server (for
example, images that support the provided HTML) without requesting them. This solution
saves the round-trip request-response model and shortens the time of the page loading. It
also can be used for updating the information on the page.

You can find many code examples of a server that sends push requests; all major browsers
support this feature too.

WebSocket support
HTTP is based on the request-response model. A client requests a resource, and the server
provides a response to this request. As we demonstrated several times, the client initiates
the communication. Without it, the server cannot send anything to the client. To get over
this limitation, the idea was first introduced as TCP connection in the HTML5 specification
and, in 2008, the first version of the WebSocket protocol was designed.

It provides a full-duplex communication channel between the client and the server. After
the connection is established, the server can send a message to the client at any time.
Together with JavaScript and HTML5, the WebSocket protocol support allows web
applications to present a far more dynamic user interface.

Network Programming Chapter 11

[390]

The WebSocket protocol specification defines WebSocket (ws) and WebSocket Secure (wss)
as two schemes, which are used for unencrypted and encrypted connections, respectively.
The protocol does not support fragmentation but allows all the other URI components
described in the URL syntax section.

All the classes that support the WebSocket protocol for a client are located in
the java.net package. To create a client, we need to implement the WebSocket.Listener
interface, which has the following methods:

onText(): Invoked when textual data has been received
onBinary(): Invoked when binary data has been received
onPing(): Invoked when a ping message has been received
onPong(): Invoked when a pong message has been received
onError(): Invoked when an error has happened
onClose(): Invoked when a close message has been received

All the methods of this interface are default. This means that you do not need to
implement all of them, but only those that the client requires for a particular task:

class WsClient implements WebSocket.Listener {
 @Override
 public void onOpen(WebSocket webSocket) {
 System.out.println("Connection established.");
 webSocket.sendText("Some message", true);
 Listener.super.onOpen(webSocket);
 }
 @Override
 public CompletionStage onText(WebSocket webSocket,
 CharSequence data, boolean last) {
 System.out.println("Method onText() got data: " + data);
 if(!webSocket.isOutputClosed()) {
 webSocket.sendText("Another message", true);
 }
 return Listener.super.onText(webSocket, data, last);
 }
 @Override
 public CompletionStage onClose(WebSocket webSocket,
 int statusCode, String reason) {
 System.out.println("Closed with status " +
 statusCode + ", reason: " + reason);
 return Listener.super.onClose(webSocket, statusCode, reason);
 }
}

Network Programming Chapter 11

[391]

A server can be implemented in a similar way, but server implementation is beyond the
scope of this book. To demonstrate the preceding client code, we are going to use a
WebSocket server provided by the echo.websocket.org website. It allows a WebSocket
connection and sends the received message back; such a server is typically called an echo
server.

We expect that our client will send the message after the connection is established. Then, it
will receive (the same) message from the server, display it, and send back another message,
and so on, until it is closed. The following code invokes the client that we created:

HttpClient httpClient = HttpClient.newHttpClient();
WebSocket webSocket = httpClient.newWebSocketBuilder()
 .buildAsync(URI.create("ws://echo.websocket.org"), new WsClient())
 .join();
System.out.println("The WebSocket was created and ran asynchronously.");
try {
 TimeUnit.MILLISECONDS.sleep(200);
} catch (InterruptedException ex) {
 ex.printStackTrace();
}
webSocket.sendClose(WebSocket.NORMAL_CLOSURE, "Normal closure")
 .thenRun(() -> System.out.println("Close is sent."));

The preceding code creates a WebSocket object using the WebSocket.Builder class.
The buildAsync() method returns the CompletableFuture object. The join()
method of the CompletableFuture class returns the result value when complete, or
throws an exception. If an exception is not generated, then, as we mentioned already, the
WebSocket communication continues until either side sends a Close message. That is why
our client waits for 200 milliseconds, and then sends the Close message and exits. If we run
this code, we will see the following messages:

As you can see, the client behaves as expected. To finish our discussion, we would like to
mention that all modern web browsers support the WebSocket protocol.

Network Programming Chapter 11

[392]

Summary
In this chapter, the reader was presented with a description of the most popular network
protocols: UDP, TCP/IP, and WebSocket. The discussion was illustrated with code
examples using JCL. We also reviewed URL-based communication and the latest Java
HTTP 2 Client API.

The next chapter provides an overview of Java GUI technologies and demonstrates a GUI
application using JavaFX, including code examples with control elements, charts,
CSS, FXML, HTML, media, and various other effects. The reader will learn how to use
JavaFX to create a GUI application.

Quiz
Name five network protocols of the application layer. 1.
Name two network protocols of the transport layer.2.
Which Java package includes classes that support HTTP protocol?3.
Which protocol is based on exchanging datagrams?4.
Can a datagram be sent to the IP address where there is no server running?5.
Which Java package contains classes that support UDP and TCP protocols?6.
What does TCP stands for?7.
What is common between the TCP and TCP/IP protocols?8.
How is the TCP session identified?9.
Name one principal difference between the functionality10.
of ServerSocket and Socket.
Which is faster, TCP or UDP?11.
Which is more reliable, TCP or UDP?12.
Name three TCP-based protocols.13.
Which of the following are the components of a URI? Select all that apply:14.

Fragmenta.
Titleb.
Authorityc.
Queryd.

Network Programming Chapter 11

[393]

What is the difference between scheme and protocol?15.
What is the difference between a URI and a URL?16.
What does the following code print?17.

 URL url = new URL("http://www.java.com/something?par=42");
 System.out.print(url.getPath());
 System.out.println(url.getFile());

Name two new features that HTTP 2 has that HTTP 1.1 does not.18.
What is the fully qualified name of the HttpClient class?19.
What is the fully qualified name of the WebSocket class?20.
What is the difference between HttpClient.newBuilder().build() and21.
HttpClient.newHttpClient()?
What is the fully qualified name of the CompletableFuture class?22.

12
Java GUI Programming

This chapter provides an overview of Java Graphical User Interface (GUI) technologies
and demonstrates how JavaFX kit can be used to create a GUI application. The latest
versions of JavaFX not only provide many helpful features but also allow preserving and
embedding the legacy implementation and styles.

In a certain respect, GUI is the most important part of an application. It directly interacts in
with the user. If GUI is inconvenient, unappealing to the eyes, or confusing, even the best of
the backend solutions may not justify user to use this application. By contrast, well thought
through intuitive and nicely designed GUI helps to retain user even if the application does
not do the job as well as its competitions.

The following topics will be covered in this chapter:

Java GUI technologies
JavaFX fundamentals
Hello with JavaFX
Control elements
Charts
Applying CSS
Using FXML
Embedding HTML
Playing media
Adding effects

Java GUI Programming Chapter 12

[395]

Java GUI technologies
The name Java Foundation Classes (JFC) may be a source of much confusion. It implies the
classes that are at the foundation of Java, while, in fact, JFC includes only classes and interfaces
related to GUI. To be precise, JFC is a collection of three frameworks: Abstract Window
Toolkit (AWT), Swing, and Java 2D.

JFC is part of Java Class Library (JCL), although the name JFC came into being only in
1997, while AWT was part of JCL from the very beginning. At that time, Netscape
developed a GUI library called Internet Foundation Classes (IFC) and Microsoft created
Application Foundation Classes (AFC) for GUI development too. So, when Sun
Microsystems and Netscape decided to form a new GUI library, they inherited the word
Foundation and created JFC. The framework Swing took over the Java GUI programming
from AWT and was successfully used for almost two decades.

A new GUI programming toolkit JavaFX was added to JCL in Java 8. It was removed from
JCL in Java 11, and, since then, has resided as an open source project supported by the
company Gluon as a downloadable module in addition to the JDK. JavaFX uses a
somewhat different approach to GUI programming than AWT and Swing. It presents a
more consistent and simpler design and has a good chance to be a winning Java GUI-
programming toolkit.

JavaFX fundamentals
Cities such as New York, London, Paris, and Moscow have many theaters, and people who
live there cannot avoid hearing about new plays and productions almost weekly. It makes
them inevitably familiar with theater terminology, among which the terms stage, scene, and
event are probably used the most often. These three terms are also at the foundation of
a JavaFX application structure too.

The top-level container in JavaFX that holds all other components is represented by the
javafx.stage.Stage class. So, you can say that, in the JavaFX application, everything
happens on a stage. From a user perspective, it is a display area or window where all the
controls and components perform their actions (like actors in a theater). And, similar to the
actors in a theater, they do it in the context of a scene, represented by
the javafx.scene.Scene class. So, a JavaFX application, like a play in a theater, is
composed of Scene objects presented inside the Stage object one at a time. Each Scene
object contains a graph that defines the positions of the scene actors, called nodes, in
JavaFX: controls, layouts, groups, shapes, and so on. Each of them extends the abstract
class, javafx.scene.Node.

Java GUI Programming Chapter 12

[396]

Some of the nodes controls are associated with events: a button clicked or a checkbox
checked, for example. These events can be processed by the event handler associated with
the corresponding control element.

The main class of JavaFX application has to extend the abstract
class, java.application.Application that has several life cycle methods. We list them
in the sequence of the invocation: launch(), init(), notifyPreloader(), start(),
stop(). It looks like quite a few to remember. But, most probably, you need to implement
only one method, start(), where the actual GUI is constructed and executed. So, we will
review all the methods just for completeness:

static void launch(Class<? extends Application> appClass,

String... args): Launches the application, often called by the main method;
does not return until the Platform.exit() is called or all the application
windows close; the appClass parameter must be a public subclass of
Application with a public no-argument constructor
static void launch(String... args): Same as the preceding method,
assuming that the public subclass of Application is the immediately enclosing
class; this is the method most often used to launch the JavaFX application; we are
going to use it in our examples too
void init(): This method is called after the Application class is loaded; it is
typically used for some kind of resource initialization; the default
implementation does nothing; we are not going to use it
void notifyPreloader(Preloader.PreloaderNotification info): Can
be used to show progress when the initialization takes a long time; we are not
going to use it
abstract void start(Stage primaryStage): The method we are going to
implement; it is called after the init() method returns, and after the system is
ready to do the main job; the primaryStage parameter is the stage where the
application is going to present its scenes
void stop(): It is called when the application should stop; may be used to
release the resources; the default implementation does nothing; we are not going
to use it

Java GUI Programming Chapter 12

[397]

The API of the JavaFX toolkit can be found online (https:/ /openjfx. io/ javadoc/ 11/). As
of this writing, the latest version is 11. Oracle provides extensive documentation and code
examples too (https:/ /docs. oracle. com/ javafx/ 2/). The documentation includes the
description and user manual of Scene Builder (a development tool) that provides a visual
layout environment and lets you quickly design a user interface for the JavaFX application
without writing any code. This tool may be useful for creating a complex and intricate GUI,
and many people do it all the time. In this book, though, we will concentrate on the JavaFX
code-writing without using this tool.

To be able to do it, the following are the necessary steps:

Add the following dependency to the pom.xml file:1.

<dependency>
 <groupId>org.openjfx</groupId>
 <artifactId>javafx-controls</artifactId>
 <version>11</version>
</dependency>
<dependency>
 <groupId>org.openjfx</groupId>
 <artifactId>javafx-fxml</artifactId>
 <version>11</version>
</dependency>

Download JavaFX SDK for your OS from https:/ /gluonhq. com/ products/2.
javafx/ and unzip it in any directory.
Assuming you have unzipped JavaFX SDK into the /path/JavaFX/ folder, add3.
the following options to the Java command that is going to launch your JavaFX
application on Linux platform:

--module-path /path/JavaFX/lib -add-
modules=javafx.controls,javafx.fxml

On Windows, the same options look as follows:

--module-path C:\path\JavaFX\lib -add-
modules=javafx.controls,javafx.fxml

The "/path/JavaFX/" and "C:\path\JavaFX\" are the placeholders which you need
to substitute by the actual path to the folder that contains JavaFX SDK.

https://openjfx.io/javadoc/11/
https://openjfx.io/javadoc/11/
https://openjfx.io/javadoc/11/
https://openjfx.io/javadoc/11/
https://openjfx.io/javadoc/11/
https://openjfx.io/javadoc/11/
https://openjfx.io/javadoc/11/
https://openjfx.io/javadoc/11/
https://openjfx.io/javadoc/11/
https://openjfx.io/javadoc/11/
https://openjfx.io/javadoc/11/
https://openjfx.io/javadoc/11/
https://docs.oracle.com/javafx/2/
https://docs.oracle.com/javafx/2/
https://docs.oracle.com/javafx/2/
https://docs.oracle.com/javafx/2/
https://docs.oracle.com/javafx/2/
https://docs.oracle.com/javafx/2/
https://docs.oracle.com/javafx/2/
https://docs.oracle.com/javafx/2/
https://docs.oracle.com/javafx/2/
https://docs.oracle.com/javafx/2/
https://docs.oracle.com/javafx/2/
https://docs.oracle.com/javafx/2/
https://docs.oracle.com/javafx/2/
https://docs.oracle.com/javafx/2/
https://gluonhq.com/products/javafx
https://gluonhq.com/products/javafx
https://gluonhq.com/products/javafx
https://gluonhq.com/products/javafx
https://gluonhq.com/products/javafx
https://gluonhq.com/products/javafx
https://gluonhq.com/products/javafx
https://gluonhq.com/products/javafx
https://gluonhq.com/products/javafx
https://gluonhq.com/products/javafx
https://gluonhq.com/products/javafx

Java GUI Programming Chapter 12

[398]

Assuming that the application's main class is HelloWorld, in the case of IntelliJ,
enter the preceding options into the VM options field as follows:

These options have to be added to the Run/Debug Configurations of
the HelloWorld, BlendEffect, and OtherEffects classes of the package
ch12_gui of the source code. If you prefer a different IDE or have a different OS,
you can find recommendations on how to set it in
the openjfx.io documentation (https:/ / openjfx. io/ openjfx- docs/
#introduction).

To run the HelloWorld, BlendEffect, and OtherEffects classes from the command
line, use the following commands on Linux platform in the project root directory (where
the pom.xml file is located):

mvn clean package

java --module-path /path/javaFX/lib --add-
modules=javafx.controls,javafx.fxml -cp target/learnjava-1.0-
SNAPSHOT.jar:target/libs/* com.packt.learnjava.ch12_gui.HelloWorld

java --module-path /path/javaFX/lib --add-
modules=javafx.controls,javafx.fxml -cp target/learnjava-1.0-
SNAPSHOT.jar:target/libs/* com.packt.learnjava.ch12_gui.BlendEffect

java --module-path /path/javaFX/lib --add-
modules=javafx.controls,javafx.fxml -cp target/learnjava-1.0-
SNAPSHOT.jar:target/libs/* com.packt.learnjava.ch12_gui.OtherEffects

https://openjfx.io/openjfx-docs/#introduction
https://openjfx.io/openjfx-docs/#introduction
https://openjfx.io/openjfx-docs/#introduction
https://openjfx.io/openjfx-docs/#introduction
https://openjfx.io/openjfx-docs/#introduction
https://openjfx.io/openjfx-docs/#introduction
https://openjfx.io/openjfx-docs/#introduction
https://openjfx.io/openjfx-docs/#introduction
https://openjfx.io/openjfx-docs/#introduction
https://openjfx.io/openjfx-docs/#introduction
https://openjfx.io/openjfx-docs/#introduction
https://openjfx.io/openjfx-docs/#introduction

Java GUI Programming Chapter 12

[399]

On Windows, the same commands look as follows:

mvn clean package

java --module-path C:\path\JavaFX\lib --add-
modules=javafx.controls,javafx.fxml -cp target\learnjava-1.0-
SNAPSHOT.jar;target\libs* com.packt.learnjava.ch12_gui.HelloWorld

java --module-path C:\path\JavaFX\lib --add-
modules=javafx.controls,javafx.fxml -cp target\learnjava-1.0-
SNAPSHOT.jar;target\libs* com.packt.learnjava.ch12_gui.BlendEffect

java --module-path C:\path\JavaFX\lib --add-
modules=javafx.controls,javafx.fxml -cp target\learnjava-1.0-
SNAPSHOT.jar;target\libs* com.packt.learnjava.ch12_gui.OtherEffects

Each of the HelloWorld, BlendEffect, and OtherEffects classes has several start()
methods: start1(), and start2(). After you run the class one time, rename start() to
start1() and start1() to start() and run the above commands again.
Then rename start() to start2() and start2() to start() and run the above
commands yet again. And so on, until all the start() methods are executed. This way you
will see the results of all the examples of this chapter.

This concludes the high-level presentation of JavaFX. With that, we move to the most
exciting (for any programmer) part: writing code.

Hello with JavaFX
Here is the HelloWorld JavaFX application that shows the text, Hello, World! and Exit:

import javafx.application.Application;
import javafx.application.Platform;
import javafx.scene.control.Button;
import javafx.scene.layout.Pane;
import javafx.scene.text.Text;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class HelloWorld extends Application {
 public static void main(String... args) {
 launch(args);
 }
 @Override
 public void start(Stage primaryStage) {
 Text txt = new Text("Hello, world!");

Java GUI Programming Chapter 12

[400]

 txt.relocate(135, 40);

 Button btn = new Button("Exit");
 btn.relocate(155, 80);
 btn.setOnAction(e:> {
 System.out.println("Bye! See you later!");
 Platform.exit();
 });

 Pane pane = new Pane();
 pane.getChildren().addAll(txt, btn);

 primaryStage.setTitle("The primary stage (top-level container)");
 primaryStage.onCloseRequestProperty()
 .setValue(e:> System.out.println("Bye! See you later!"));
 primaryStage.setScene(new Scene(pane, 350, 150));
 primaryStage.show();
 }
}

As you can see, the application is launched by calling the static method
Application.launch(String... args). The start(Stage primaryStage)
method creates a Text node with the message Hello, World! located at absolute position
135 (horizontally) and 40 (vertically). Then, it creates another node Button with the
text, Exit, located at absolute position 155 (horizontally) and 80 (vertically). The action,
assigned to the button (when it is clicked), prints Bye! See you later! on a screen and forces
the application to exit using the Platform.exit() method. These two nodes are added as
children to the layout pane that allows absolute positioning.

The Stage object assigned the The primary stage (top-level container) title. It also
assigned an action on clicking the close-the-window symbol (x button) in the window's
upper corner. This symbol appears on the left on the Linux system and on the right on the
Windows system.

While creating actions, we have used a lambda expression, which we are going to discuss in
Chapter 13, Functional Programming.

The created layout pane is set on a Scene object. The scene size set to be 350 horizontally
and 150 vertically. The scene object is placed on the stage. Then the stage is displayed by
calling the show() method.

Java GUI Programming Chapter 12

[401]

If we run the preceding application, the following window will pop-up:

Clicking on the button or on the x button in the upper corner results in the expected
message being displayed:

But, if you need to do something else after the x button is clicked and the window got
closed, you can add an implementation of the stop() method to the HelloWorld class. For
example, it can look as follows:

@Override
public void stop(){
 System.out.println("Doing what has to be done before closing");
}

If you did, then, after clicking the x button, the display will show this:

This example gives you a sense of how JavaFX works. From now on, while reviewing the
JavaFX capabilities, we will present only the code in the start() method.

The toolkit has a huge number of packages, each with many classes, and each class having
many methods. We have no chance to discuss all of them. Instead, we are going to present
an overview of all the major areas of the JavaFX functionality and present it in the most
simple and straightforward way we can.

Java GUI Programming Chapter 12

[402]

Control elements
The control elements are included in the javafx.scene.control package (https:/ /
openjfx.io/javadoc/ 11/ javafx. controls/ javafx/ scene/ control/ package- summary.
html). There are more than 80 of them, including a button, text field, checkbox, label, menu,
progress bar, and scroll bar to name a few. As we have mentioned already, each control
element is a subclass of Node that has more than 200 methods. So, you can imagine how
rich and fine-tuned a GUI can be, built using JavaFX. However, the scope of this book
allows us to cover only a few elements and their methods.

We have already seen a button. Let's now use a label and a text field to create a simple form
with input fields (first name, last name, and age) and a submit button. We will build it in
steps. All the following code snippets are sequential sections of the start()method.

First, let's create controls:

Text txt = new Text("Fill the form and click Submit");
TextField tfFirstName = new TextField();
TextField tfLastName = new TextField();
TextField tfAge = new TextField();
Button btn = new Button("Submit");
btn.setOnAction(e:> action(tfFirstName, tfLastName, tfAge));

As you can guess, the text will be used as the form instructions. The rest is quite
straightforward and looks very similar to what we have seen in the HelloWolrd example.
The action() is a function implemented as the following method:

void action(TextField tfFirstName,
 TextField tfLastName, TextField tfAge) {
 String fn = tfFirstName.getText();
 String ln = tfLastName.getText();
 String age = tfAge.getText();
 int a = 42;
 try {
 a = Integer.parseInt(age);
 } catch (Exception ex){}
 fn = fn.isBlank() ? "Nick" : fn;
 ln = ln.isBlank() ? "Samoylov" : ln;
 System.out.println("Hello, " + fn + " " + ln + ", age " + a + "!");
 Platform.exit();
}

https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html
https://openjfx.io/javadoc/11/javafx.controls/javafx/scene/control/package-summary.html

Java GUI Programming Chapter 12

[403]

This function accepts three parameters (the javafx.scene.control.TextField objects),
then gets the submitted input values and just prints them. The code makes sure that there
are always some default values available for printing and that entering a non-numeric
value of age does not break the application.

With the controls and action in place, we then put them into a grid layout using the
class javafx.scene.layout.GridPane:

GridPane grid = new GridPane();
grid.setAlignment(Pos.CENTER);
grid.setHgap(15);
grid.setVgap(5);
grid.setPadding(new Insets(20, 20, 20, 20));

The GridPane layout pane has rows and columns that form cells in which the nodes can be
set. Nodes can span columns and rows. The setAlignment() method sets the position of
the grid to the center of a scene (default position is the top left of a scene). The setHgap()
and setVgap() methods set the spacing (in pixels) between the columns (horizontally) and
rows (vertically). The setPadding() method adds some space along the borders of the
grid pane. The Insets() object sets the values (in pixels) in the order of top, right, bottom,
and left.

Now we are going to place the created nodes in the corresponding cells (arranged in two
columns):

int i = 0;
grid.add(txt, 1, i++, 2, 1);
GridPane.setHalignment(txt, HPos.CENTER);
grid.addRow(i++, new Label("First Name"), tfFirstName);
grid.addRow(i++, new Label("Last Name"), tfLastName);
grid.addRow(i++, new Label("Age"), tfAge);
grid.add(btn, 1, i);
GridPane.setHalignment(btn, HPos.CENTER);

The add() method accepts either three or five parameters:

The node, the column index, the row index
The node, the column index, the row index, how many columns to span, how
many rows to span

The columns and rows indices start from 0.

Java GUI Programming Chapter 12

[404]

The setHalignment() method sets the position of the node in the cell. The enum HPos has
values: LEFT, RIGHT, CENTER. The method addRow(int i, Node... nodes) accepts the
row index and the varargs of nodes. We use it to place the Label and the TextField
objects.

The rest of the start() method is very similar to the HellowWorld example (only the title
and size have changed):

primaryStage.setTitle("Simple form example");
primaryStage.onCloseRequestProperty()
 .setValue(e -> System.out.println("Bye! See you later!"));
primaryStage.setScene(new Scene(grid, 300, 200));
primaryStage.show();

If we run the just-implemented start() method, the result will be as follows:

We can fill the data as follows, for example:

After the Submit button is clicked, the following message is displayed and the application
exists:

Java GUI Programming Chapter 12

[405]

To help visualize the layout, especially in the case of a more complex design, you can use
the grid method setGridLinesVisible(boolean v) to make the grid lines visible. It
helps to see how the cells are aligned. We can add the following line to our example:

grid.setGridLinesVisible(true);

We run it again, and the result will be as follows:

As you can see, the layout is now outlined explicitly, which helps us to visualize the design.

The javafx.scene.layout package includes 24 layout classes such as Pane (we saw it in
the HelloWorld example), StackPane (allows us to overlay nodes), FlowPane (allows the
positions of nodes to flow as the size of the window changes), AnchorPane (preserves the
nodes' position relative to their anchor point), to name a few. The VBox layout will be
demonstrated in the next section, Charts.

Charts
JavaFX provides the following chart components for data visualization in
the javafx.scene.chart package:

LineChart: Adds a line between the data points in a series; typically used to
present the trends over time
AreaChart: Similar to the LineChart, but fills the area between the line that
connects the data points and the axis; typically used for comparing cumulated
totals over time

Java GUI Programming Chapter 12

[406]

BarChart: Presents data as rectangular bars; used for visualization of discrete
data
PieChart: Presents a circle divided into segments (filled with different colors),
each segment representing a value as a proportion of the total; we will
demonstrate it in this section
BubbleChart: Presents data as 2-dimensional oval shapes called bubbles that
allow presenting three parameters
ScatterChart: Presents the data points in a series as-is; useful to identify the
presence of a clustering (data correlation)

The following example demonstrates how the result of testing can be presented as a pie
chart. Each segment represents the number of tests succeeded, failed, or ignored:

Text txt = new Text("Test results:");

PieChart pc = new PieChart();
pc.getData().add(new PieChart.Data("Succeed", 143));
pc.getData().add(new PieChart.Data("Failed" , 12));
pc.getData().add(new PieChart.Data("Ignored", 18));

VBox vb = new VBox(txt, pc);
vb.setAlignment(Pos.CENTER);
vb.setPadding(new Insets(10, 10, 10, 10));

primaryStage.setTitle("A chart example");
primaryStage.onCloseRequestProperty()
 .setValue(e:> System.out.println("Bye! See you later!"));
primaryStage.setScene(new Scene(vb, 300, 300));
primaryStage.show();

We have created two nodes—Text and PieChart—and placed them in the cells of
the VBox layout that sets them in a column, one above another. We have added the padding
of 10 pixels around the edges of the VBox pane. Notice that VBox extends the Node and
Pane classes, as other panes do too. We have also positioned the pane in the center of the
scene using the setAlignment() method. The rest is the same as all other previous
examples, except the scene title and size.

Java GUI Programming Chapter 12

[407]

If we run the preceding example, the result will be as follows:

The PieChart class, as well as any other chart, has a number of other methods that can be
useful for presenting more complex and dynamic data in a user-friendly manner.

Applying CSS
By default, JavaFX uses the style sheet that comes with the distribution jar file. To override
the default style, you can add a style sheet to the scene using
the getStylesheets() method:

scene.getStylesheets().add("/mystyle.css");

The mystyle.css file has to be placed into the src/main/resources folder. Let's do it
and add the mystyle.css file with the following content to the HelloWorld example:

#text-hello {
 :fx-font-size: 20px;
 -fx-font-family: "Arial";
 -fx-fill: red;
}
.button {
 -fx-text-fill: white;
 -fx-background-color: slateblue;
}

Java GUI Programming Chapter 12

[408]

As you can see, we would like to style the button node and the Text node that has an ID
text-hello in a certain way. We also have to modify the HelloWorld example by adding
the ID to the Text element and the style sheet file to the scene:

Text txt = new Text("Hello, world!");
txt.setId("text-hello");
txt.relocate(115, 40);

Button btn = new Button("Exit");
btn.relocate(155, 80);
btn.setOnAction(e -> {
 System.out.println("Bye! See you later!");
 Platform.exit();
});

Pane pane = new Pane();
pane.getChildren().addAll(txt, btn);

Scene scene = new Scene(pane, 350, 150);
scene.getStylesheets().add("/mystyle.css");

primaryStage.setTitle("The primary stage (top-level container)");
primaryStage.onCloseRequestProperty()
 .setValue(e -> System.out.println("\nBye! See you later!"));
primaryStage.setScene(scene);
primaryStage.show();

If we run this code now, the result will be as follows:

Alternatively, an inline style can be set on any node that will be used to overwrite the file
style sheet, default or not. Let's add the following line to the latest version of
the HelloWorld example:

btn.setStyle("-fx-text-fill: white; -fx-background-color: red;");

Java GUI Programming Chapter 12

[409]

If we run the example again, the result will be as follows:

Look through the JavaFX CSS reference guide (https:/ /docs. oracle. com/javafx/ 2/api/
javafx/scene/doc- files/ cssref. html) to get an idea of the variety and possible options
for custom styling.

Using FXML
FXML is an XML-based language that allows building a user interface and maintaining it
independently (as far as look-and-feel is concerned or other presentation-related changes)
of the application (business) logic. Using FXML, you can design a user interface without
even writing a line of Java code.

FXML does not have a schema, but its capabilities reflect the API of the JavaFX objects used
to build a scene. This means you can use the API documentation to understand what tags
and attributes are allowed in the FXML structure. Most of the times, JavaFX classes can be
used as tags and their properties as attributes.

In addition to the FXML file (the view), the controller (Java class) can be used for processing
the model and organizing the page flow. The model consists of domain objects managed by
the view and the controller. It also allows using all the power of CSS styling and JavaScript.
But, in this book, we will be able to demonstrate only the basic FXML capabilities. The rest
you can find in the FXML introduction (https:/ / docs. oracle. com/ javafx/ 2/ api/javafx/
fxml/doc-files/introduction_ to_ fxml. html) and many good tutorials available online.

To demonstrate FXML usage, we are going to reproduce the simple form we have created
in the Control elements section and then enhance it by adding the page flow. Here's how our
form with first name, last name, and age can be expressed in FXML:

<?xml version="1.0" encoding="UTF-8"?>
<?import javafx.scene.Scene?>
<?import javafx.geometry.Insets?>
<?import javafx.scene.text.Text?>
<?import javafx.scene.control.Label?>

https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/scene/doc-files/cssref.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html

Java GUI Programming Chapter 12

[410]

<?import javafx.scene.control.Button?>
<?import javafx.scene.layout.GridPane?>
<?import javafx.scene.control.TextField?>
<Scene fx:controller="com.packt.learnjava.ch12_gui.HelloWorldController"
 xmlns:fx="http://javafx.com/fxml"
 width="350" height="200">
 <GridPane alignment="center" hgap="15" vgap="5">
 <padding>
 <Insets top="20" right="20" bottom="20" left="20"/>
 </padding>
 <Text id="textFill" text="Fill the form and click Submit"
 GridPane.rowIndex="0" GridPane.columnSpan="2">
 <GridPane.halignment>center</GridPane.halignment>
 </Text>
 <Label text="First name"
 GridPane.columnIndex="0" GridPane.rowIndex="1"/>
 <TextField fx:id="tfFirstName"
 GridPane.columnIndex="1" GridPane.rowIndex="1"/>
 <Label text="Last name"
 GridPane.columnIndex="0" GridPane.rowIndex="2"/>
 <TextField fx:id="tfLastName"
 GridPane.columnIndex="1" GridPane.rowIndex="2"/>
 <Label text="Age"
 GridPane.columnIndex="0" GridPane.rowIndex="3"/>
 <TextField fx:id="tfAge"
 GridPane.columnIndex="1" GridPane.rowIndex="3"/>
 <Button text="Submit"
 GridPane.columnIndex="1" GridPane.rowIndex="4"
 onAction="#submitClicked">
 <GridPane.halignment>center</GridPane.halignment>
 </Button>
 </GridPane>
</Scene>

As you can see, it expresses the desired scene structure, familiar to you already, and
specifies the controller class, HelloWorldController, which we are going to see shortly.
As we have mentioned already, the tags match the class names we have been using to
construct the same GUI with Java only. We will put the helloWorld.fxml file into the
resources folder.

Now let's look at the start() method implementation of the HelloWorld class that uses
the preceding FXML file:

try {
 FXMLLoader lder = new FXMLLoader();
 lder.setLocation(new URL("file:src/main/resources/helloWorld.fxml"));
 Scene scene = lder.load();

Java GUI Programming Chapter 12

[411]

 primaryStage.setTitle("Simple form example");
 primaryStage.setScene(scene);
 primaryStage.onCloseRequestProperty()
 .setValue(e -> System.out.println("\nBye! See you later!"));
 primaryStage.show();
} catch (Exception ex){
 ex.printStackTrace();
}

The start() method just loads the helloWorld.fxml file and sets the stage, the latter
being done exactly as in our previous examples. Now let's look at
the HelloWorldController class. If need be, we could launch the application having only
the following:

public class HelloWorldController {
 @FXML
 protected void submitClicked(ActionEvent e) {
 }
}

The form would be presented, but the button-click would do nothing. That is what we
meant while talking about the user interface development independently of the application
logic. Notice the @FXML annotation. It binds the method and properties to the FXML tags
using their IDs. Here is how the full controller implementation looks:

@FXML
private TextField tfFirstName;
@FXML
private TextField tfLastName;
@FXML
private TextField tfAge;
@FXML
protected void submitClicked(ActionEvent e) {
 String fn = tfFirstName.getText();
 String ln = tfLastName.getText();
 String age = tfAge.getText();
 int a = 42;
 try {
 a = Integer.parseInt(age);
 } catch (Exception ex) {
 }
 fn = fn.isBlank() ? "Nick" : fn;
 ln = ln.isBlank() ? "Samoylov" : ln;
 System.out.println("Hello, " + fn + " " + ln + ", age " + a + "!");
 Platform.exit();
}

Java GUI Programming Chapter 12

[412]

It should look very familiar to you for the most part. The only difference is that we refer to
the fields and their values not directly (as previously), but using binding marked with the
annotation @FXML. If we run the HelloWorld class now, the page appearance and behavior
will be exactly the same as we have described it in the Control elements section.

Let's now add another page and modify the code so that the controller, after the Submit
button is clicked, will send the submitted values to another page and close the form. To
make it simple, the new page will just present the received data. Here is how its FXML will
look:

<?xml version="1.0" encoding="UTF-8"?>
<?import javafx.scene.Scene?>
<?import javafx.geometry.Insets?>
<?import javafx.scene.text.Text?>
<?import javafx.scene.layout.GridPane?>

<Scene fx:controller="com.packt.lernjava.ch12_gui.HelloWorldController2"
 xmlns:fx="http://javafx.com/fxml"
 width="350" height="150">
 <GridPane alignment="center" hgap="15" vgap="5">
 <padding>
 <Insets top="20" right="20" bottom="20" left="20"/>
 </padding>
 <Text fx:id="textUser"
 GridPane.rowIndex="0" GridPane.columnSpan="2">
 <GridPane.halignment>center</GridPane.halignment>
 </Text>
 <Text id="textDo" text="Do what has to be done here"
 GridPane.rowIndex="1" GridPane.columnSpan="2">
 <GridPane.halignment>center</GridPane.halignment>
 </Text>
 </GridPane>
</Scene>

As you can see, the page has only two read-only Text fields. The first one (with
id="textUser") will show the data passed from the previous page. The second will just
show the message Do what has to be done here. This is not very sophisticated, but it
demonstrates how the flow of data and pages can be organized.

The new page uses a different controller that looks as follows:

package com.packt.learnjava.ch12_gui;
import javafx.fxml.FXML;
import javafx.scene.text.Text;
public class HelloWorldController2 {
 @FXML

Java GUI Programming Chapter 12

[413]

 public Text textUser;
}

As you might guess, the public field textUser has to be filled with the value by the first
controller, HelloWolrdController. Let's do it. We modify the submitClicked()
method as follows:

@FXML
protected void submitClicked(ActionEvent e) {
 String fn = tfFirstName.getText();
 String ln = tfLastName.getText();
 String age = tfAge.getText();
 int a = 42;
 try {
 a = Integer.parseInt(age);
 } catch (Exception ex) {}
 fn = fn.isBlank() ? "Nick" : fn;
 ln = ln.isBlank() ? "Samoylov" : ln;
 String user = "Hello, " + fn + " " + ln + ", age " + a + "!";
 //System.out.println("\nHello, " + fn + " " + ln + ", age " + a + "!");
 //Platform.exit();

 goToPage2(user);
 Node source = (Node) e.getSource();
 Stage stage = (Stage) source.getScene().getWindow();
 stage.close();
}

Instead of just printing the submitted (or default) data and exiting from the application (see
the two lines commented out), we call the goToPage2() method and pass the submitted
data as a parameter. Then, we extract from the event the reference to the stage of the
current window and close it.

The goToPage2() method looks as follows:

try {
 FXMLLoader lder = new FXMLLoader();
 lder.setLocation(new URL("file:src/main/resources/helloWorld2.fxml"));
 Scene scene = lder.load();

 HelloWorldController2 c = loader.getController();
 c.textUser.setText(user);

 Stage primaryStage = new Stage();
 primaryStage.setTitle("Simple form example. Page 2.");
 primaryStage.setScene(scene);
 primaryStage.onCloseRequestProperty()

Java GUI Programming Chapter 12

[414]

 .setValue(e -> {
 System.out.println("Bye! See you later!");
 Platform.exit();
 });
 primaryStage.show();
} catch (Exception ex) {
 ex.printStackTrace();
}

It loads the helloWorld2.fxml file, extracts from it the controller object, and sets on it the
passed-in value. The rest is the same stage configuration that you have seen several times
by now. The only difference is that Page 2 is added to the title.

If we execute the HelloWorld class now, we will see the familiar form and fill it with data:

After we click the Submit button, this window will be closed and the new one will appear:

We click the x button in the upper-left corner (or in the upper-right corner on Windows)
and see the same message we have seen before:

The same stage action function and stop() method worked as expected.

Java GUI Programming Chapter 12

[415]

With that, we conclude our presentation of FXML and move to the next topic of adding
HTML to the JavaFX application.

Embedding HTML
To add HTML to JavaFX is easy. All you have to do is to use
the javafx.scene.web.WebView class that provides a window where the added HTML is
rendered similarly as it happens in a browser. The WebView class uses the open source
browser engine WebKit and, thus, supports full browsing functionality.

Like all other JavaFX components, the WebView class extends the Node class and can be
treated in the Java code as such. In addition, it has its own properties and methods that
allow adjusting the browser window to the encompassing application, by setting the
window size (max, min, and preferred height and width), font scale, zoom rate, adding
CSS, enabling context (right-click) menu, and similar. The getEngine() method returns a
javafx.scene.web.WebEngine object associated with it. It provides the ability to load
HTML pages, to navigate them, to apply different styles to the loaded pages, to access their
browsing history and the document model, and to execute JavaScript.

To start using the javafx.scene.web package, two steps have to be taken first:

Add the following dependency to the pom.xml file:1.

<dependency>
 <groupId>org.openjfx</groupId>
 <artifactId>javafx-web</artifactId>
 <version>11.0.2</version>
</dependency>

The version of javafx-web typically stays abreast with the Java version, but at
the time of this writing version 12 of javafx-web has not been released, so we
are using the latest available version, 11.0.2.

Since javafx-web uses the packages com.sun.* that have been removed from2.
Java 9 (https:/ /docs. oracle. com/javase/ 9/migrate/ toc. htm#JSMIG- GUID-
F7696E02- A1FB- 4D5A- B1F2- 89E7007D4096), to access the com.sun.* packages
from Java 9+, set the following VM options in addition to --module-path and -
-add-modules, described in the JavaFX fundamentals section in Run/Debug
Configuration of the class HtmlWebView of the ch12_gui package:

--add-exports javafx.graphics/com.sun.javafx.sg.prism=ALL-UNNAMED
--add-exports javafx.graphics/com.sun.javafx.scene=ALL-UNNAMED

https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096
https://docs.oracle.com/javase/9/migrate/toc.htm#JSMIG-GUID-F7696E02-A1FB-4D5A-B1F2-89E7007D4096

Java GUI Programming Chapter 12

[416]

--add-exports javafx.graphics/com.sun.javafx.util=ALL-UNNAMED
--add-exports javafx.base/com.sun.javafx.logging=ALL-UNNAMED
--add-exports javafx.graphics/com.sun.prism=ALL-UNNAMED
--add-exports javafx.graphics/com.sun.glass.ui=ALL-UNNAMED
--add-exports javafx.graphics/com.sun.javafx.geom.transform=ALL-
UNNAMED
--add-exports javafx.graphics/com.sun.javafx.tk=ALL-UNNAMED
--add-exports javafx.graphics/com.sun.glass.utils=ALL-UNNAMED
--add-exports javafx.graphics/com.sun.javafx.font=ALL-UNNAMED
--add-exports javafx.graphics/com.sun.javafx.application=ALL-
UNNAMED
--add-exports javafx.controls/com.sun.javafx.scene.control=ALL-
UNNAMED
--add-exports javafx.graphics/com.sun.javafx.scene.input=ALL-
UNNAMED
--add-exports javafx.graphics/com.sun.javafx.geom=ALL-UNNAMED
--add-exports javafx.graphics/com.sun.prism.paint=ALL-UNNAMED
--add-exports javafx.graphics/com.sun.scenario.effect=ALL-UNNAMED
--add-exports javafx.graphics/com.sun.javafx.text=ALL-UNNAMED
--add-exports javafx.graphics/com.sun.javafx.iio=ALL-UNNAMED
--add-exports
javafx.graphics/com.sun.scenario.effect.impl.prism=ALL-UNNAMED
--add-exports javafx.graphics/com.sun.javafx.scene.text=ALL-UNNAMED

To execute the class HtmlWebView from the command line, use the following commands:

mvn clean package

java --module-path /path/javaFX/lib --add-
modules=javafx.controls,javafx.fxml --add-exports
javafx.graphics/com.sun.javafx.sg.prism=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.scene=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.util=ALL-UNNAMED --add-exports
javafx.base/com.sun.javafx.logging=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.prism=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.glass.ui=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.geom.transform=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.tk=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.glass.utils=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.font=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.application=ALL-UNNAMED --add-exports
javafx.controls/com.sun.javafx.scene.control=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.scene.input=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.geom=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.prism.paint=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.scenario.effect=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.text=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.iio=ALL-UNNAMED --add-exports

Java GUI Programming Chapter 12

[417]

javafx.graphics/com.sun.scenario.effect.impl.prism=ALL-UNNAMED --add-
exports javafx.graphics/com.sun.javafx.scene.text=ALL-UNNAMED -cp
target/learnjava-1.0-SNAPSHOT.jar:target/libs/*
com.packt.learnjava.ch12_gui.HtmlWebView

On Windows, the same command looks as follows:

mvn clean package

java --module-path C:\path\JavaFX\lib --add-
modules=javafx.controls,javafx.fxml --add-exports
javafx.graphics/com.sun.javafx.sg.prism=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.scene=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.util=ALL-UNNAMED --add-exports
javafx.base/com.sun.javafx.logging=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.prism=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.glass.ui=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.geom.transform=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.tk=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.glass.utils=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.font=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.application=ALL-UNNAMED --add-exports
javafx.controls/com.sun.javafx.scene.control=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.scene.input=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.geom=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.prism.paint=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.scenario.effect=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.text=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.javafx.iio=ALL-UNNAMED --add-exports
javafx.graphics/com.sun.scenario.effect.impl.prism=ALL-UNNAMED --add-
exports javafx.graphics/com.sun.javafx.scene.text=ALL-UNNAMED -cp
target\learnjava-1.0-SNAPSHOT.jar;target\libs*
com.packt.learnjava.ch12_gui.HtmlWebView

The class HtmlWebView contains several start() methods too. Rename and execute them
one by one as described in the JavaFX fundamentals section.

Let's look at a few examples now. We create a new application, HtmlWebView, and set VM
options for it with the VM options --module-path, --add-modules, and --add-
exports we have described. Now we can write and execute a code that uses
the WebView class.

First, here is how simple HTML can be added to the JavaFX application:

WebView wv = new WebView();
WebEngine we = wv.getEngine();
String html = "<html><center><h2>Hello, world!</h2></center></html>";

Java GUI Programming Chapter 12

[418]

we.loadContent(html, "text/html");
Scene scene = new Scene(wv, 200, 60);
primaryStage.setTitle("My HTML page");
primaryStage.setScene(scene);
primaryStage.onCloseRequestProperty()
 .setValue(e -> System.out.println("Bye! See you later!"));
primaryStage.show();

The preceding code creates a WebView object, gets the WebEngine object from it, uses the
acquired WebEngine object to load the HTML, sets the WebView object on the scene, and
configures the stage. The loadContent() method accepts two strings: the content and its
mime type. The content string can be constructed in the code or created from reading the
.html file.

If we run the preceding example, the result will be as follows:

If necessary, you can show other JavaFX nodes along with the WebView object in the same
window. For example, let's add a Text node above the embedded HTML:

Text txt = new Text("Below is the embedded HTML:");

WebView wv = new WebView();
WebEngine we = wv.getEngine();
String html = "<html><center><h2>Hello, world!</h2></center></html>";
we.loadContent(html, "text/html");

VBox vb = new VBox(txt, wv);
vb.setSpacing(10);
vb.setAlignment(Pos.CENTER);
vb.setPadding(new Insets(10, 10, 10, 10));

Scene scene = new Scene(vb, 300, 120);
primaryStage.setScene(scene);
primaryStage.setTitle("JavaFX with embedded HTML");
primaryStage.onCloseRequestProperty()
 .setValue(e -> System.out.println("Bye! See you later!"));
primaryStage.show();

Java GUI Programming Chapter 12

[419]

As you can see, the WebView object is not set on the scene directly, but on the layout object
instead, along with txt object. Then, the layout object is set on the scene. The result of the
preceding code is as follows:

With a more complex HTML page, it is possible to load it from the file directly, using the
load() method. To demonstrate this approach, let's create form.htm file in the resources
folder with the following content:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>The Form</title>
</head>
<body>
<form action="http://server:port/formHandler" metrod="post">
 <table>
 <tr>
 <td><label for="firstName">Firts name:</label></td>
 <td><input type="text" id="firstName" name="firstName"></td>
 </tr>
 <tr>
 <td><label for="lastName">Last name:</label></td>
 <td><input type="text" id="lastName" name="lastName"></td>
 </tr>
 <tr>
 <td><label for="age">Age:</label></td>
 <td><input type="text" id="age" name="age"></td>
 </tr>
 <tr>
 <td></td>
 <td align="center">
 <button id="submit" name="submit">Submit</button>
 </td>
 </tr>
 </table>
</form>
</body>
</html>

Java GUI Programming Chapter 12

[420]

This HTML presents a form similar to the one we have created in the Using FXML section.
After the Submit button is clicked, the form data is posted to a server to the \formHandler
URI. To present this form inside a JavaFX application, the following code can be used:

Text txt = new Text("Fill the form and click Submit");

WebView wv = new WebView();
WebEngine we = wv.getEngine();
File f = new File("src/main/resources/form.html");
we.load(f.toURI().toString());

VBox vb = new VBox(txt, wv);
vb.setSpacing(10);
vb.setAlignment(Pos.CENTER);
vb.setPadding(new Insets(10, 10, 10, 10));

Scene scene = new Scene(vb, 300, 200);

primaryStage.setScene(scene);
primaryStage.setTitle("JavaFX with embedded HTML");
primaryStage.onCloseRequestProperty()
 .setValue(e -> System.out.println("Bye! See you later!"));
primaryStage.show();

As you can see, the difference with our other examples is that we now use the File class
and its toURI() method to access the HTML in the src/main/resources/form.html file
directly, without converting the content to a string first. The result looks as follows:

Java GUI Programming Chapter 12

[421]

This solution is useful when you need to send a request or post data from your JavaFX
application. But, when the form you would like a user to fill is already available on the
server, you can just load it from the URL. For example, let's incorporate a Google search in
the JavaFX application. We can do it by changing the parameter value of
the load() method to the URL of the page we would like to load:

Text txt = new Text("Enjoy searching the Web!");

WebView wv = new WebView();
WebEngine we = wv.getEngine();
we.load("http://www.google.com");

VBox vb = new VBox(txt, wv);
vb.setSpacing(20);
vb.setAlignment(Pos.CENTER);
vb.setStyle("-fx-font-size: 20px;-fx-background-color: lightblue;");
vb.setPadding(new Insets(10, 10, 10, 10));

Scene scene = new Scene(vb,750,500);
primaryStage.setScene(scene);
primaryStage.setTitle("JavaFX with the window to another server");
primaryStage.onCloseRequestProperty()
 .setValue(e -> System.out.println("Bye! See you later!"));
primaryStage.show();

We have also added a style to the layout in order to increase the font and add color to the
background, so we can see the outline of the area where the rendered HTML is embedded.
When we run this example, the following window appears:

Java GUI Programming Chapter 12

[422]

In this window, you can perform all the aspects of a search that you usually access via the
browser.

And, as we have mentioned already, you can zoom into the rendered page. For example, if
we add the wv.setZoom(1.5) line to the preceding example, the result will be as follows:

Similarly, we can set the scale for the font and even the style from a file:

wv.setFontScale(1.5);
we.setUserStyleSheetLocation("mystyle.css");

Notice, though, that we set the font scale on the WebView object, while we set the style in
the WebEngine object.

We can also access (and manipulate) the DOM object of the loaded page
using the WebEngine class method getDocument():

Document document = we.getDocument();

We can also access the browsing history, get the current index, and move the history
backward and forward:

WebHistory history = we.getHistory();
int currInd = history.getCurrentIndex();
history.go(-1);
history.go(1);

Java GUI Programming Chapter 12

[423]

And, for each entry of the history, we can extract its URL, title, or last-visited date:

WebHistory history = we.getHistory();
ObservableList<WebHistory.Entry> entries = history.getEntries();
for(WebHistory.Entry entry: entries){
 String url = entry.getUrl();
 String title = entry.getTitle();
 Date date = entry.getLastVisitedDate();
}

Read the documentation of the WebView and WebEngine classes, to get more ideas about
how you can take advantage of their functionality.

Playing media
Adding an image to a scene of the JavaFX application does not require
the com.sun.* packages, so the --add-export VM options listed in the Adding
HTML section are not needed. But, it does not hurt to have them anyway, so leave the --
add-export options in place, if you have added them already.

An image can be included in a scene using the classes javafx.scene.image.Image and
javafx.scene.image.ImageView. To demonstrate how to do it, we are going to use the
Packt logo packt.png located in the resources folder. Here is the code that does it:

Text txt = new Text("What a beautiful image!");

FileInputStream input =
 new FileInputStream("src/main/resources/packt.png");
Image image = new Image(input);
ImageView iv = new ImageView(image);

VBox vb = new VBox(txt, iv);
vb.setSpacing(20);
vb.setAlignment(Pos.CENTER);
vb.setPadding(new Insets(10, 10, 10, 10));

Scene scene = new Scene(vb, 300, 200);
primaryStage.setScene(scene);
primaryStage.setTitle("JavaFX with embedded HTML");
primaryStage.onCloseRequestProperty()
 .setValue(e -> System.out.println("Bye! See you later!"));
primaryStage.show();

Java GUI Programming Chapter 12

[424]

If we run the preceding code, the result will be as follows:

The currently supported image formats are BMP, GIF, JPEG, and PNG. Look through the
API of the Image and ImageView classes (https:/ /openjfx. io/javadoc/ 11/ javafx.
graphics/javafx/ scene/ image/ package- summary. html) to learn the many ways an image
can be formatted and adjusted as needed.

Now let's see how to use other media files in a JavaFX application. Playing an audio or
movie file requires the --add-export VM options listed in the Adding HTML section.

The currently supported encodings are as follows:

AAC: Advanced Audio Coding audio compression
H.264/AVC: H.264/MPEG-4 Part 10 / AVC (Advanced Video Coding) video
compression
MP3: Raw MPEG-1, 2, and 2.5 audio; layers I, II, and III
PCM: Uncompressed, raw audio samples

You can see a more detailed description of the supported protocols, media containers, and
metadata tags in the API documentation (https:/ /openjfx. io/ javadoc/ 11/ javafx. media/
javafx/scene/media/ package- summary. html).

The following three classes allow constructing a media player that can be added to a scene:

javafx.scene.media.Media;
javafx.scene.media.MediaPlayer;
javafx.scene.media.MediaView;

The Media class represents the source of the media. The MediaPlayer class provides all
the methods that control the media playback: play(), stop(), pause(), setVolume(),
and similar. You can also specify the number of times that the media should be played.
The MediaView class extends the Node class and can be added to a scene. It provides a
view of the media being played by the media player. It is responsible for a media
appearance.

https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/image/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html

Java GUI Programming Chapter 12

[425]

For the demonstration, let's add to the HtmlWebView application another version of
the start() method that plays the jb.mp3 file located in the resources folder:

Text txt1 = new Text("What a beautiful music!");
Text txt2 = new Text("If you don't hear music, turn up the volume.");

File f = new File("src/main/resources/jb.mp3");
Media m = new Media(f.toURI().toString());
MediaPlayer mp = new MediaPlayer(m);
MediaView mv = new MediaView(mp);

VBox vb = new VBox(txt1, txt2, mv);
vb.setSpacing(20);
vb.setAlignment(Pos.CENTER);
vb.setPadding(new Insets(10, 10, 10, 10));

Scene scene = new Scene(vb, 350, 100);
primaryStage.setScene(scene);
primaryStage.setTitle("JavaFX with embedded media player");
primaryStage.onCloseRequestProperty()
 .setValue(e -> System.out.println("Bye! See you later!"));
primaryStage.show();

mp.play();

Notice how a Media object is constructed based on the source file; then the MediaPlayer
object is constructed based on the Media object and then set as a property of the MediaView
class constructor. The MediaView object is set on the scene along with two Text objects. We
use the VBox object to provide the layout. Finally, after the scene is set on the stage and the
stage becomes visible (after the show() method completes), the play() method is invoked
on the MediaPlayer object. By default, the media is played once.

If we execute the preceding code, the following window will appear and the jb.m3 file will
be played:

We could add controls to stop, pause, and adjust the volume, but it would require much
more of the code, and that would not fit the expected size of this book. You can find a guide
on how to do it in the Oracle online documentation (https:/ / docs. oracle. com/ javafx/ 2/
media/jfxpub-media. htm).

https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm

Java GUI Programming Chapter 12

[426]

A sea.mp4 movie file can be played similarly:

Text txt = new Text("What a beautiful movie!");

File f = new File("src/main/resources/sea.mp4");
Media m = new Media(f.toURI().toString());
MediaPlayer mp = new MediaPlayer(m);
MediaView mv = new MediaView(mp);

VBox vb = new VBox(txt, mv);
vb.setSpacing(20);
vb.setAlignment(Pos.CENTER);
vb.setPadding(new Insets(10, 10, 10, 10));

Scene scene = new Scene(vb, 650, 400);
primaryStage.setScene(scene);
primaryStage.setTitle("JavaFX with embedded media player");
primaryStage.onCloseRequestProperty()
 .setValue(e -> System.out.println("Bye! See you later!"));
primaryStage.show();

mp.play();

The only difference is the different size of the scene needed to show the full frame of this
particular clip. We figured out the necessary size after several trial-and-error adjustments.
Alternatively, we could use the MediaView methods autosize(),
preserveRatioProperty(), setFitHeight(), setFitWidth(), fitWidthProperty(),
fitHeightProperty(), and similar, to adjust the size of the embedded window and to
match the size of the scene automatically. If we execute the preceding example, the
following window will pop-up and play the clip:

Java GUI Programming Chapter 12

[427]

We can even combine playing both - audio and video - files in parallel, and thus provide a
movie with a soundtrack:

Text txt1 = new Text("What a beautiful movie and sound!");
Text txt2 = new Text("If you don't hear music, turn up the volume.");

File fs = new File("src/main/resources/jb.mp3");
Media ms = new Media(fs.toURI().toString());
MediaPlayer mps = new MediaPlayer(ms);
MediaView mvs = new MediaView(mps);

File fv = new File("src/main/resources/sea.mp4");
Media mv = new Media(fv.toURI().toString());
MediaPlayer mpv = new MediaPlayer(mv);
MediaView mvv = new MediaView(mpv);

VBox vb = new VBox(txt1, txt2, mvs, mvv);
vb.setSpacing(20);
vb.setAlignment(Pos.CENTER);
vb.setPadding(new Insets(10, 10, 10, 10));

Scene scene = new Scene(vb, 650, 500);
primaryStage.setScene(scene);
primaryStage.setTitle("JavaFX with embedded media player");
primaryStage.onCloseRequestProperty()
 .setValue(e -> System.out.println("Bye! See you later!"));
primaryStage.show();

mpv.play();
mps.play();

It is possible to do this, because each of the players is executed by its own thread.

For more information about the javafx.scene.media package, read the API and the
developer guide online:

https:// openjfx. io/ javadoc/ 11/javafx. media/ javafx/ scene/ media/ package-
summary. html

https:// docs. oracle. com/ javafx/ 2/ media/ jfxpub- media. htm

https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://openjfx.io/javadoc/11/javafx.media/javafx/scene/media/package-summary.html
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm
https://docs.oracle.com/javafx/2/media/jfxpub-media.htm

Java GUI Programming Chapter 12

[428]

Adding effects
The javafx.scene.effects package contains many classes that allow the adding of
various effects to the nodes:

Blend: Combines pixels from two sources (typically images) using one of the
pre-defined BlendModes
Bloom: Makes the input image brighter, so that it appears to glow
BoxBlur: Adds blur to an image
ColorAdjust: Allows adjustments of hue, saturation, brightness, and contrast to
an image
ColorInput: Renders a rectangular region that is filled with the given Paint
DisplacementMap: Shifts each pixel by a specified distance
DropShadow: Renders a shadow of the given content behind the content
GaussianBlur: Adds blur using a particular (Gaussian) method
Glow: Makes the input image appear to glow
InnerShadow: Creates a shadow inside the frame
Lighting: Simulates a light source shining on the content; makes flat objects
look more realistic
MotionBlur: Simulates the given content seen in motion
PerspectiveTransform: Transforms the content as seen in a perspective
Reflection: Renders a reflected version of the input below the actual input
content
SepiaTone: Produces a sepia tone effect, similar to the appearance of antique
photographs
Shadow: Creates a monochrome duplicate of the content with blurry edges

All effects share the parent— the abstract class Effect. The Node class has the
setEffect(Effect e) method, which means that any of the effects can be added to any
node. And that is the main way of applying effects to the nodes—the actors that produce a
scene on a stage (if we recall our analogy introduced at the beginning of this chapter).

Java GUI Programming Chapter 12

[429]

The only exception is the Blend effect, which makes its usage more complicated than the
use of other effects. In addition to using the setEffect(Effect e) method, some of the
Node class children have also the setBlendMode(BlendMode bm) method, which allows
regulating how the images are blending into one another when they overlap. So, it is
possible to set different blend effects in different ways that override one another and
produce an unexpected result that may be difficult to debug. That is what makes the Blend
effect usage more complicated, and that is why we are going to start the overview with
how the Blend effect can be used.

There are four aspects that regulate the appearance of the area where two images overlap
(we use two images in our examples to make it simpler, but, in practice, many images can
overlap):

The value of the opacity property: This defines how much can be seen through
the image; the opacity value 0.0 means the image is fully transparent, while
the opacity value 1.0 means nothing behind it can be seen.
The alpha value and strength of each color: This defines the transparency of the
color as a double value in the range 0.0-1.0 or 0-255.
The blending mode, defined by the enum BlendMode value: Depending on the
mode, opacity, and alpha value of each color, the result may also depend on the
sequence in which the images were added to the scene; the first added image is
called a bottom input, while the second of the overlapping images is called a top
input; if the top input is completely opaque, the bottom input is hidden by the
top input.

The resulting appearance of the overlapping area is calculated based on the opacity, the
alpha values of the colors, the numeric values (strength) of the colors, and the blending
mode, which can be one of the following:

ADD: The color and alpha components from the top input are added to those from
the bottom input
BLUE: The blue component of the bottom input is replaced with the blue
component of the top input; the other color components are unaffected
COLOR_BURN: The inverse of the bottom input color components are divided by
the top input color components, all of which are then inverted to produce the
resulting color
COLOR_DODGE: The bottom input color components are divided by the inverse of
the top input color components to produce the resulting color
DARKEN: The darker of the color components from the two inputs is selected to
produce the resulting color

Java GUI Programming Chapter 12

[430]

DIFFERENCE: The darker of the color components from the two inputs is
subtracted from the lighter ones to produce the resulting color
EXCLUSION: The color components from the two inputs are multiplied and
doubled, and then subtracted from the sum of the bottom input color
components, to produce the resulting color
GREEN: The green component of the bottom input is replaced with the green
component of the top input; the other color components are unaffected
HARD_LIGHT: The input color components are either multiplied or screened,
depending on the top input color
LIGHTEN: The lighter of the color components from the two inputs is selected to
produce the resulting color
MULTIPLY: The color components from the first input are multiplied with those
from the second input
OVERLAY: The input color components are either multiplied or screened,
depending on the bottom input color
RED: The red component of the bottom input is replaced with the red component
of the top input; the other color components are unaffected
SCREEN: The color components from both of the inputs are inverted, multiplied
with each other, and that result is again inverted to produce the resulting color
SOFT_LIGHT: The input color components are either darkened or lightened,
depending on the top input color
SRC_ATOP: The part of the top input lying inside of the bottom input is blended
with the bottom input
SRC_OVER: The top input is blended over the bottom input

To demonstrate the Blend effect, let's create another application called BlendEffect. It
does not require the com.sun.* packages, so the --add-export VM options are not
needed. Only --module-path and --add-modules options, described in the section
JavaFX fundamentals, have to be set for compilation and execution.

The scope of this book does not allow us to demonstrate all possible combinations, so we
will create a red circle and a blue square:

Circle createCircle(){
 Circle c = new Circle();
 c.setFill(Color.rgb(255, 0, 0, 0.5));
 c.setRadius(25);
 return c;
}

Java GUI Programming Chapter 12

[431]

Rectangle createSquare(){
 Rectangle r = new Rectangle();
 r.setFill(Color.rgb(0, 0, 255, 1.0));
 r.setWidth(50);
 r.setHeight(50);
 return r;
}

We used the Color.rgb(int red, int green, int blue, double alpha) method
to define colors of each of the figures. But there are many more ways to do it. Read
the Color class API documentation for more details (https:/ /openjfx. io/javadoc/ 11/
javafx.graphics/ javafx/ scene/ paint/ Color. html).

To overlap the created circle and square, we will use the Group node:

Node c = createCircle();
Node s = createSquare();
Node g = new Group(s, c);

In the preceding code, the square is a bottom input. We will also create a group where the
square is a top input:

Node c = createCircle();
Node s = createSquare();
Node g = new Group(c, s);

The distinction is important because we defined the circle as half-opaque, while the square
was completely opaque. We will use the same settings throughout all our examples.

Let's compare the two modes, MULTIPLY and SRC_OVER. We will set them on the groups,
using the setEffect() method as follows:

Blend blnd = new Blend();
blnd.setMode(BlendMode.MULTIPLY);
Node c = createCircle();
Node s = createSquare();
Node g = new Group(s, c);
g.setEffect(blnd);

https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html
https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/paint/Color.html

Java GUI Programming Chapter 12

[432]

For each mode, we create two groups, one with the input where circle is on top of square,
another with the input where the square is on the top of the circle, and we put the four
created groups in a GridPane layout (see the source code for details). If we run the
BlendEffect application, the result will be this:

As was expected, when the square is on the top (the two images to the right), the
overlapping area is completely taken by the opaque square. But, when the circle is a top
input (the two images on the left), the overlapped area is somewhat visible and calculated
based on the blend effect.

However, if we set the same mode directly on the group, the result will be slightly
different. Let's run the same code but with the mode set on the group:

Node c = createCircle();
Node s = createSquare();
Node g = new Group(c, s);
g.setBlendMode(BlendMode.MULTIPLY);

Java GUI Programming Chapter 12

[433]

If we run the application again, the result will look as follows:

As you can see, the red color of the circle has slightly changed and there is no difference
between the modes MULTIPLY and SRC_OVER. That is the issue with the sequence of adding
the nodes to the scene we mentioned at the beginning of the section.

The result also changes depending on which node the effect is set. For example, instead of
setting the effect on the group, let's set the blend effect on the circle only:

Blend blnd = new Blend();
blnd.setMode(BlendMode.MULTIPLY);
Node c = createCircle();
Node s = createSquare();
c.setEffect(blnd);
Node g = new Group(s, c);

We run the application and see the following:

Java GUI Programming Chapter 12

[434]

The two images on the right remain the same as in all the previous examples, but the two
images on the left show the new colors of the overlapping area. Now let's set the same
blend effect on the square instead of the circle as follows:

Blend blnd = new Blend();
blnd.setMode(BlendMode.MULTIPLY);
Node c = createCircle();
Node s = createSquare();
s.setEffect(blnd);
Node g = new Group(s, c);

The result will slightly change again and will look as presented on the following
screenshot:

Java GUI Programming Chapter 12

[435]

There is no difference between MULTIPLY and SRC_OVER modes, but the red color is
different than it was when we set the effect on the circle.

We can change the approach again and set the blend effect mode directly on the circle only,
using the following code:

Node c = createCircle();
Node s = createSquare();
c.setBlendMode(BlendMode.MULTIPLY);

The result changes again:

Setting the blend mode on the square only removes the difference between MULTIPLY and
SRC_OVER modes again:

Java GUI Programming Chapter 12

[436]

To avoid confusion and make the results of the blending more predictable, you have to
watch the sequence in which the nodes are added to the scene and the consistency of the
way the blend effect is applied.

In the source code provided with the book, you will find the examples for all effects
included in the javafx.scene.effects package. They are all demonstrated by running
side-by-side comparison. Here is one example:

For your convenience, there are Pause and Continue buttons provided that allow you to
pause the demonstration and review the result for different values of opacity set on the
blend effect.

To demonstrate all other effects, we have created yet another application
called OtherEffects that also does not require the com.sun.* packages, so the --add-
export VM options are not needed. The effects demonstrated include Bloom, BoxBlur,
ColorAdjust, DisplacementMap, DropShadow, Glow, InnerShadow, Lighting,
MotionBlur, PerspectiveTransform, Reflection, ShadowTone, and SepiaTone. We
have used two images to present the result of applying each of the effects, the Packt logo
and a mountain lake view:

FileInputStream inputP =
 new FileInputStream("src/main/resources/packt.png");
Image imageP = new Image(inputP);
ImageView ivP = new ImageView(imageP);

FileInputStream inputM =
 new FileInputStream("src/main/resources/mount.jpeg");
Image imageM = new Image(inputM);
ImageView ivM = new ImageView(imageM);

Java GUI Programming Chapter 12

[437]

ivM.setPreserveRatio(true);
ivM.setFitWidth(300);

We also have added two buttons that allow you to pause and continue the demonstration
(it iterates over the effect and the values of their parameters):

Button btnP = new Button("Pause");
btnP.setOnAction(e1 -> et.pause());
btnP.setStyle("-fx-background-color: lightpink;");

Button btnC = new Button("Continue");
btnC.setOnAction(e2 -> et.cont());
btnC.setStyle("-fx-background-color: lightgreen;");

The et object is the object of the EffectsThread thread:

EffectsThread et = new EffectsThread(txt, ivM, ivP);

The thread goes through the list of the effects, creates a corresponding effect 10 times (with
10 different effects' parameter values) and, every time, sets the created Effect object on
each of the images, then sleeps for one second to give you an opportunity to review the
result:

public void run(){
 try {
 for(String effect: effects){
 for(int i = 0; i < 11; i++){
 double d = Math.round(i * 0.1 * 10.0) / 10.0;
 Effect e = createEffect(effect, d, txt);
 ivM.setEffect(e);
 ivP.setEffect(e);
 TimeUnit.SECONDS.sleep(1);
 if(pause){
 while(true){
 TimeUnit.SECONDS.sleep(1);
 if(!pause){
 break;
 }
 }
 }
 }
 }
 Platform.exit();
 } catch (Exception ex){
 ex.printStackTrace();
 }
}

Java GUI Programming Chapter 12

[438]

We will show how each effect is created next, under the screenshot with the effect's result.
To present the result, we have used the GridPane layout:

GridPane grid = new GridPane();
grid.setAlignment(Pos.CENTER);
grid.setVgap(25);
grid.setPadding(new Insets(10, 10, 10, 10));

int i = 0;
grid.add(txt, 0, i++, 2, 1);
GridPane.setHalignment(txt, HPos.CENTER);
grid.add(ivP, 0, i++, 2, 1);
GridPane.setHalignment(ivP, HPos.CENTER);
grid.add(ivM, 0, i++, 2, 1);
GridPane.setHalignment(ivM, HPos.CENTER);
grid.addRow(i++, new Text());
HBox hb = new HBox(btnP, btnC);
hb.setAlignment(Pos.CENTER);
hb.setSpacing(25);
grid.add(hb, 0, i++, 2, 1);
GridPane.setHalignment(hb, HPos.CENTER);

And, finally, the created GridPane object was passed to the scene, which in turn was
placed on a stage familiar to you from our earlier examples:

Scene scene = new Scene(grid, 450, 500);
primaryStage.setScene(scene);
primaryStage.setTitle("JavaFX effect demo");
primaryStage.onCloseRequestProperty()
 .setValue(e3 -> System.out.println("Bye! See you later!"));
primaryStage.show();

Java GUI Programming Chapter 12

[439]

The following screenshots depict examples of the effects of 1 of the 10 parameter values.
Under each screenshot, we present the code snippet from the createEffect(String
effect, double d, Text txt) method that created this effect:

Java GUI Programming Chapter 12

[440]

//double d = 0.9;
txt.setText(effect + ".threshold: " + d);
Bloom b = new Bloom();
b.setThreshold(d);

Java GUI Programming Chapter 12

[441]

// double d = 0.3;
int i = (int) d * 10;
int it = i / 3;
txt.setText(effect + ".iterations: " + it);
BoxBlur bb = new BoxBlur();
bb.setIterations(i);

Java GUI Programming Chapter 12

[442]

double c = Math.round((-1.0 + d * 2) * 10.0) / 10.0; // 0.6
txt.setText(effect + ": " + c);
ColorAdjust ca = new ColorAdjust();
ca.setContrast(c);

Java GUI Programming Chapter 12

[443]

double h = Math.round((-1.0 + d * 2) * 10.0) / 10.0; // 0.6
txt.setText(effect + ": " + h);
ColorAdjust ca1 = new ColorAdjust();
ca1.setHue(h);

Java GUI Programming Chapter 12

[444]

double st = Math.round((-1.0 + d * 2) * 10.0) / 10.0; // 0.6
txt.setText(effect + ": " + st);
ColorAdjust ca3 = new ColorAdjust();
ca3.setSaturation(st);

Java GUI Programming Chapter 12

[445]

int w = (int)Math.round(4096 * d); //819
int h1 = (int)Math.round(4096 * d); //819
txt.setText(effect + ": " + ": width: " + w + ", height: " + h1);
DisplacementMap dm = new DisplacementMap();
FloatMap floatMap = new FloatMap();
floatMap.setWidth(w);
floatMap.setHeight(h1);
for (int k = 0; k < w; k++) {
 double v = (Math.sin(k / 20.0 * Math.PI) - 0.5) / 40.0;
 for (int j = 0; j < h1; j++) {
 floatMap.setSamples(k, j, 0.0f, (float) v);
 }
}
dm.setMapData(floatMap);

Java GUI Programming Chapter 12

[446]

double rd = Math.round((127.0 * d) * 10.0) / 10.0; // 127.0
System.out.println(effect + ": " + rd);
txt.setText(effect + ": " + rd);
DropShadow sh = new DropShadow();
sh.setRadius(rd);

Java GUI Programming Chapter 12

[447]

double rad = Math.round(12.1 * d *10.0)/10.0; // 9.7
double off = Math.round(15.0 * d *10.0)/10.0; // 12.0
txt.setText("InnerShadow: radius: " + rad + ", offset:" + off);
InnerShadow is = new InnerShadow();
is.setColor(Color.web("0x3b596d"));
is.setOffsetX(off);
is.setOffsetY(off);
is.setRadius(rad);

Java GUI Programming Chapter 12

[448]

double sS = Math.round((d * 4)*10.0)/10.0; // 0.4
txt.setText(effect + ": " + sS);
Light.Spot lightSs = new Light.Spot();
lightSs.setX(150);
lightSs.setY(100);
lightSs.setZ(80);
lightSs.setPointsAtX(0);
lightSs.setPointsAtY(0);
lightSs.setPointsAtZ(-50);
lightSs.setSpecularExponent(sS);
Lighting lSs = new Lighting();
lSs.setLight(lightSs);
lSs.setSurfaceScale(5.0);

Java GUI Programming Chapter 12

[449]

double r = Math.round((63.0 * d)*10.0) / 10.0; // 31.5
txt.setText(effect + ": " + r);
MotionBlur mb1 = new MotionBlur();
mb1.setRadius(r);
mb1.setAngle(-15);

Java GUI Programming Chapter 12

[450]

// double d = 0.9;
txt.setText(effect + ": " + d);
PerspectiveTransform pt =
 new PerspectiveTransform(0., 1. + 50.*d, 310., 50. - 50.*d,
 310., 50. + 50.*d + 1., 0., 100. - 50. * d + 2.);

Java GUI Programming Chapter 12

[451]

// double d = 0.6;
txt.setText(effect + ": " + d);
Reflection ref = new Reflection();
ref.setFraction(d);

// double d = 1.0;
txt.setText(effect + ": " + d);
SepiaTone sep = new SepiaTone();
sep.setLevel(d);

The full source code of this demonstration is provided with the book and is available in the
GitHub.

Java GUI Programming Chapter 12

[452]

Summary
In this chapter, the reader was introduced to the JavaFX kit, its main features, and how it
can be used to create a GUI application. The topics covered included an overview of Java
GUI technologies, the JavaFX control elements, charts, using CSS, FXML,
embedding HTML, playing media, and adding effects.

The next chapter is dedicated to functional programming. It provides an overview of
functional interfaces that come with JDK, explains what a lambda expression is, and how to
use a functional interface in a lambda expression. It also explains and demonstrates how to
use method references.

Quiz
What is the top-level content container in JavaFX?1.
What is the base class of all the scene participants in JavaFX?2.
Name the base class of a JavaFX application.3.
What is one method of the JavaFX application that has to be implemented?4.
Which Application method has to be called by the main method to execute a5.
JavaFX application?
Which two VM options are required to execute a JavaFX application?6.
Which Application method is called when the JavaFX application window is7.
closed using the x button in the upper corner?
Which class has to be used to embed an HTML?8.
Name three classes that have to be used to play media. 9.
What is the VM option required to be added in order to play media?10.
Name five JavaFX effects.11.

3
Section 3: Advanced Java

The last part of the book covers the most advanced topic of modern Java programming. It
allows novices to get a solid footing in their understanding of the profession, and for those
who already work in this area, to expand their skill set and expertise. The recent addition to
Java of streams and functional programming makes asynchronous processing in Java
almost as easy as the traditional synchronous way. It boosts the performance of Java
applications, and the readers will learn how to take advantage of it and appreciate the
beauty and the power of the provided solution.

The readers will also learn the new terms and the related concepts of reactive programming
– asynchronous, non-blocking, and responsive – that are at the forefront of big data
processing and machine learning. The building block of a reactive system is a microservice,
which is demonstrated using the Vert.x toolkit.

The book concludes with an explanation of the benchmark tool, best programming
practices, and the open Java projects that are currently underway. These projects, when
concluded, will bring even more power to Java as a language and as a tool for creating
modern, massive data processing systems. The reader will have the chance to gauge Java's
future and even become a part of it.

This section contains the following chapters:

Chapter 13, Functional Programming

Chapter 14, Java Standard Streams

Chapter 15, Reactive Programming

Chapter 16, Microservices

Chapter 17, Java Microbenchmark Harness

Chapter 18, Best Practices for Writing High-Quality Code

Chapter 19, Java Getting New Features

13
Functional Programming

This chapter brings the reader into the world of functional programming. It explains what a
functional interface is, provides an overview of functional interfaces that come with JDK,
and defines and demonstrates lambda expressions and how to use them with functional
interfaces, including using method reference.

The following topics will be covered in this chapter:

What is functional programming?
Standard functional interfaces
Functional pipelines
Lambda expression limitations
Method reference

What is functional programming?
We have actually used functional programming in the preceding chapters. In Chapter 6,
Data Structures, Generics and Popular Utilities, we talked about the Iterable interface and
its default void forEach (Consumer<T> function) method and provided the
following example:

Iterable<String> list = List.of("s1", "s2", "s3");
System.out.println(list); //prints: [s1, s2, s3]
list.forEach(e -> System.out.print(e + " ")); //prints: s1 s2 s3

You can see how a Consumer e -> System.out.print(e + " ") function is passed into
the forEach() method and applied to each element flowing into this method from the list.
We will discuss the Consumer function shortly.

Functional Programming Chapter 13

[455]

We also mentioned two methods of the Collection interface that accept a function as a
parameter too:

The default boolean remove(Predicate<E> filter) method, which
attempts to remove all the elements that satisfy the given predicate from the
collection; a Predicate function accepts an element of the collection and returns
a boolean value
The default T[] toArray(IntFunction<T[]> generator) method, which
returns an array of all the elements of the collection, using the
provided IntFunction generator function to allocate the returned array

In the same chapter, we also mentioned the following method of the List interface:

default void replaceAll(UnaryOperator<E> operator): Replaces each
element of the list with the result of applying the provided UnaryOperator to
that element; a UnaryOperator is one of the functions we are going to review in
this chapter.

We described the Map interface, its method default V merge(K key, V value,
BiFunction<V,V,V> remappingFunction) and how it can be used for concatenating the
String values: map.merge(key, value, String::concat).
The BiFunction<V,V,V> takes two parameters of the same type and returns the value of
the same type as well. The String::concat construct is called a method reference and
will be explained in the Method reference section.

We provided the following example of passing a Comparator function:

list.sort(Comparator.naturalOrder());
Comparator<String> cmp = (s1, s2) -> s1 == null ? -1 : s1.compareTo(s2);
list.sort(cmp);

It takes two String parameters, then compares the first one to null. If the first parameter
is null, the function returns -1; otherwise, it compares the first parameter and the second
one using the compareTo() method.

In Chapter 11, Network Programming, we looked at the following code:

HttpClient httpClient = HttpClient.newBuilder().build();
HttpRequest req = HttpRequest.newBuilder()
 .uri(URI.create("http://localhost:3333/something")).build();
try {
 HttpResponse<String> resp =
 httpClient.send(req, BodyHandlers.ofString());
 System.out.println("Response: " +

Functional Programming Chapter 13

[456]

 resp.statusCode() + " : " + resp.body());
} catch (Exception ex) {
 ex.printStackTrace();
}

The BodyHandler object (a function) is generated by
the BodyHandlers.ofString() factory method and passed into the send() method as a
parameter. Inside the method, the code calls its apply() method :

BodySubscriber<T> apply (ResponseInfo responseInfo)

Finally, in Chapter 12, Java GUI Programming, we used an EventHandler function as a
parameter in the following code snippet:

btn.setOnAction(e -> {
 System.out.println("Bye! See you later!");
 Platform.exit();
 }
);
primaryStage.onCloseRequestProperty()
 .setValue(e -> System.out.println("Bye! See you later!"));

The first function is EventHanlder<ActionEvent>. It prints a message and forces the
application to exit. The second is the EventHandler<WindowEvent> function. It just prints
the message.

All these examples give you a pretty good idea of how a function can be constructed and
passed around as a parameter. This ability constitutes functional programming. It is present
in many programming languages. It does not require the managing of object states. The
function is stateless. Its result depends only on the input data, no matter how many times it
was called. Such coding makes the outcome more predictable, which is the most attractive
aspect of functional programming.

The area that benefits the most from such a design is parallel data processing. Functional
programming allows for shifting the responsibility for parallelism from the client code to
the library. Before that, in order to process elements of Java collections, the client code had
to iterate over the collection and organize the processing. In Java 8, new (default) methods
were added that accept a function as a parameter and then apply it to each element of the
collection, in parallel or not, depending on the internal processing algorithm. So, it is the
library's responsibility to organize parallel processing.

Functional Programming Chapter 13

[457]

What is a functional interface?
When we define a function, we, in fact, provide an implementation of an interface that has
only one abstract method. That is how the Java compiler knows where to put the provided
functionality. The compiler looks at the interface (Consumer, Predicate, Comparator,
IntFunction, UnaryOperator, BiFunction, BodyHandler, and EvenHandler in the
preceding examples), sees only one abstract method there, and uses the passed-in
functionality as the method implementation. The only requirement is that the passed-in
parameters must match the method signature. Otherwise, the compile-time error is
generated.

That is why any interface that has only one abstract method is called a functional interface.
Please note that the requirement of having only one abstract method includes the method
inherited from the parent interface. For example, consider the following interfaces:

@FunctionalInterface
interface A {
 void method1();
 default void method2(){}
 static void method3(){}
}

@FunctionalInterface
interface B extends A {
 default void method4(){}
}

@FunctionalInterface
interface C extends B {
 void method1();
}

//@FunctionalInterface
interface D extends C {
 void method5();
}

The A is a functional interface because it has only one abstract method method1(). The B is
a functional interface too because it has only one abstract method—the same method1()
inherited from the A interface. The C is a functional interface because it has only one
abstract method, method1(), which overrides the abstract method1() of the parent
interface A. Interface D cannot be a functional interface because it has two abstract
methods—method1() from the parent interface A and method5().

Functional Programming Chapter 13

[458]

To help avoid runtime errors, the @FunctionalInterface annotation was introduced in
Java 8. It tells the compiler about the intent so the compiler can check and see if there is
truly only one abstract method in the annotated interface. This annotation also warns a
programmer, who reads the code, that this interface has only one abstract method
intentionally. Otherwise, a programmer may waste time adding another abstract method to
the interface only to discover at runtime that it cannot be done.

For the same reason, the Runnable and Callable interfaces, which have existed in Java
since its early versions, were annotated in Java 8 as @FunctionalInterface. This
distinction is made explicit and serves as a reminder to users that these interfaces can be
used for creating a function:

@FunctionalInterface
interface Runnable {
 void run();
}

@FunctionalInterface
interface Callable<V> {
 V call() throws Exception;
}

As with any other interface, the functional interface can be implemented using the
anonymous class:

Runnable runnable = new Runnable() {
 @Override
 public void run() {
 System.out.println("Hello!");
 }
};

An object created this way can later be used as follows:

runnable.run(); //prints: Hello!

If we look closely at the preceding code, we notice that there is unnecessary overhead. First,
there is no need to repeat the interface name, because we declared it already as the type for
the object reference. And, second, in the case of a functional interface that has only one
abstract method, there is no need to specify the method name that has to be implemented.
The compiler and Java runtime can figure it out. All we need is to provide the new
functionality. The lambda expressions were introduced especially for this purpose.

Functional Programming Chapter 13

[459]

What is a lambda expression?
The term lambda comes from lambda calculus—a universal model of computation that can
be used to simulate any Turing machine. It was introduced by mathematician Alonzo
Church in the 1930s. A lambda expression is a function, implemented in Java as an
anonymous method. It also allows for the omitting of modifiers, return types, and
parameter types. That makes for a very compact notation.

The syntax of lambda expression includes the list of parameters, an arrow token (->), and a
body. The list of parameters can be empty, such as (), without parentheses (if there is only
one parameter), or a comma-separated list of parameters surrounded by parentheses. The
body can be a single expression or a statement block inside the braces ({}). Let's look at a
few examples:

() -> 42; always returns 42.
x -> x*42 + 42; multiplies the x value by 42, then adds 42 to the result and
returns it.
(x, y) -> x * y; multiplies the passed-in parameters and returns the result.
s -> "abc".equals(s); compares the value of variable s and literal "abc"; it
returns a boolean result value.
s -> System.out.println("x=" + s); prints the s value with the prefix
"x=".
(i, s) -> { i++; System.out.println(s + "=" + i); }; increments
the input integer and prints the new value with the prefix s + "=", s being the
value of the second parameter.

Without functional programming, the only way to pass some functionality as a parameter
in Java would be by writing a class that implements an interface, creating its object, and
then passing it as a parameter. But even the least-involved style using an anonymous class
requires writing too much of the boilerplate code. Using functional interfaces and lambda
expressions makes the code shorter, clearer, and more expressive.

For example, lambda expressions allow us to reimplement our preceding example with the
Runnable interface as follows:

Runnable runnable = () -> System.out.println("Hello!");

Functional Programming Chapter 13

[460]

As you can see, creating a functional interface is easy, especially with lambda expressions.
But before doing that, consider using one of the 43 functional interfaces provided in the
package java.util.function. This will not only allow you to writing less code, but will
also help other programmers who are familiar with the standard interfaces to understand
your code better.

Local-variable syntax for lambda parameters
Until the release of Java 11, there were two ways to declare parameter types—explicitly and
implicitly. Here is an explicit version:

BiFunction<Double, Integer, Double> f = (Double x, Integer y) -> x / y;
System.out.println(f.apply(3., 2)); //prints: 1.5

The following is an implicit parameter type definition:

BiFunction<Double, Integer, Double> f = (x, y) -> x / y;
System.out.println(f.apply(3., 2)); //prints: 1.5

In the preceding code, the compiler infers the type of the parameters from the interface
definition.

In Java 11, another method of parameter type declaration was introduced using
the var type holder, which is similar to the local variable type holder var introduced in
Java 10 (see Chapter 1, Getting Started with Java 12).

The following parameter declaration is syntactically exactly the same as the implicit one
before Java 11:

BiFunction<Double, Integer, Double> f = (var x, var y) -> x / y;
System.out.println(f.apply(3., 2)); //prints: 1.5

The new local variable style syntax allows us to add annotations without defining the
parameter type explicitly. Let's add the following dependency to the pom.xml file:

<dependency>
 <groupId>org.jetbrains</groupId>
 <artifactId>annotations</artifactId>
 <version>16.0.2</version>
</dependency>

Functional Programming Chapter 13

[461]

It allows us to define passed-in variables as non-null:

import javax.validation.constraints.NotNull;
import java.util.function.BiFunction;
import java.util.function.Consumer;

BiFunction<Double, Integer, Double> f =
(@NotNull var x, @NotNull var y) -> x / y;
System.out.println(f.apply(3., 2)); //prints: 1.5

An annotation communicates to the compiler the programmer's intent, so it can warn the
programmer during compilation or execution if the declared intent is violated. For
example, we have tried to run the following code:

BiFunction<Double, Integer, Double> f = (x, y) -> x / y;
System.out.println(f.apply(null, 2));

It failed with NullPointerException at runtime. Then we have added the annotation as
follows:

BiFunction<Double, Integer, Double> f =
 (@NotNull var x, @NotNull var y) -> x / y;
System.out.println(f.apply(null, 2));

The result of running the preceding code looks like this:

Exception in thread "main" java.lang.IllegalArgumentException:
Argument for @NotNull parameter 'x' of
com/packt/learnjava/ch13_functional/LambdaExpressions
.lambda$localVariableSyntax$1 must not be null
at com.packt.learnjava.ch13_functional.LambdaExpressions
.$$$reportNull$$$0(LambdaExpressions.java)
at com.packt.learnjava.ch13_functional.LambdaExpressions
.lambda$localVariableSyntax$1(LambdaExpressions.java)
at com.packt.learnjava.ch13_functional.LambdaExpressions
.localVariableSyntax(LambdaExpressions.java:59)
at com.packt.learnjava.ch13_functional.LambdaExpressions
.main(LambdaExpressions.java:12)

The lambda expression was not even executed.

Functional Programming Chapter 13

[462]

The advantage of local-variable syntax in the case of lambda parameters becomes clear if
we need to use annotations when the parameters are the objects of a class with a really long
name. Before Java 11, the code might have looked like the following:

BiFunction<SomeReallyLongClassName,
AnotherReallyLongClassName, Double> f =
 (@NotNull SomeReallyLongClassName x,
 @NotNull AnotherReallyLongClassName y) -> x.doSomething(y);

We had to declare the type of the variable explicitly because we wanted to add annotations,
and the following implicit version would not even compile:

BiFunction<SomeReallyLongClassName,
AnotherReallyLongClassName, Double> f =
 (@NotNull x, @NotNull y) -> x.doSomething(y);

With Java 11, the new syntax allows us to use the implicit parameter type inference using
the type holder var:

BiFunction<SomeReallyLongClassName,
AnotherReallyLongClassName, Double> f =
 (@NotNull var x, @NotNull var y) -> x.doSomething(y);

That is the advantage of and the motivation behind introducing a local-variable syntax for
the lambda parameter's declaration. Otherwise, consider staying away from using var. If
the type of variable is short, using its actual type makes the code easier to understand.

Standard functional interfaces
Most of the interfaces provided in the java.util.function package are specializations of
the following four interfaces: Consumer<T>, Predicate<T>, Supplier<T>, and
Function<T,R>. Let's review them and then look at a short overview of the other 39
standard functional interfaces.

Functional Programming Chapter 13

[463]

Consumer<T>
By looking at the Consumer<T> interface definition, you can <indexentry content="standard
functional interfaces:Consumer">guess already that this interface has an abstract method
that accepts a parameter of type T and does not return anything. Well, when only one type
is listed, it may define the type of the return value, as in the case of the Supplier<T>
interface. But the interface name serves as a clue: the consumer name indicates that the
method of this interface just takes the value and returns nothing, while the supplier returns
the value. This clue is not precise but helps to jog the memory.

The best source of information about any functional interface is
the java.util.function package API documentation (https:/ / docs. oracle. com/ en/
java/javase/12/docs/ api/ java. base/ java/ util/ function/ package- summary. html). If we
read it, we learn that the Consumer<T> interface has one abstract and one default method:

void accept(T t): Applies the operation to the given argument
default Consumer<T> andThen(Consumer<T> after): Returns a composed
Consumer function that performs, in sequence, the current operation followed by
the after operation

It means that, for example, we can implement and then execute it as follows:

Consumer<String> printResult = s -> System.out.println("Result: " + s);
printResult.accept("10.0"); //prints: Result: 10.0

We can also have a factory method that creates the function, for example:

Consumer<String> printWithPrefixAndPostfix(String pref, String postf){
 return s -> System.out.println(pref + s + postf);

Now we can use it as follows:

printWithPrefixAndPostfix("Result: ", " Great!").accept("10.0");
 //prints: Result: 10.0 Great!

To demonstrate the andThen() method, let's create the class Person:

public class Person {
 private int age;
 private String firstName, lastName, record;
 public Person(int age, String firstName, String lastName) {
 this.age = age;
 this.lastName = lastName;
 this.firstName = firstName;
 }

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html

Functional Programming Chapter 13

[464]

 public int getAge() { return age; }
 public String getFirstName() { return firstName; }
 public String getLastName() { return lastName; }
 public String getRecord() { return record; }
 public void setRecord(String fullId) { this.record = record; }
}

You may have noticed that record is the only property that has a setting. We will use it to
set a personal record in a consumer function:

String externalData = "external data";
Consumer<Person> setRecord =
 p -> p.setFullId(p.getFirstName() + " " +
 p.getLastName() + ", " + p.getAge() + ", " + externalData);

The setRecord function takes the values of the Person object properties and some data
from an external source and sets the resulting value as the record property value.
Obviously, it could be done in several other ways, but we do it for demo purposes. Let's
also create a function that prints the record property:

Consumer<Person> printRecord = p -> System.out.println(p.getRecord());

The composition of these two functions can be created and executed as follows:

Consumer<Person> setRecordThenPrint = setRecord.andThen(printPersonId);
setRecordThenPrint.accept(new Person(42, "Nick", "Samoylov"));
 //prints: Nick Samoylov, age 42, external data

This way, it is possible to create a whole processing pipe of the operations that transform
the properties of an object that is passed through the pipe.

Predicate<T>
This functional interface, Predicate<T>, has one abstract method, five defaults, and a
static method that allows predicates chaining:

boolean test(T t): Evaluates the provided parameter to see if it meets the
criteria or not
default Predicate<T> negate(): Returns the negation of the current
predicate
static <T> Predicate<T> not(Predicate<T> target): Returns the
negation of the provided predicate

Functional Programming Chapter 13

[465]

default Predicate<T> or(Predicate<T> other): Constructs a
logical OR from this predicate and the provided one
default Predicate<T> and(Predicate<T> other): Constructs a logical
AND from this predicate and the provided one
static <T> Predicate<T> isEqual(Object targetRef): Constructs a
predicate that evaluates whether or not two arguments are equal according to
Objects.equals(Object, Object)

The basic use of this interface is pretty straightforward:

Predicate<Integer> isLessThan10 = i -> i < 10;
System.out.println(isLessThan10.test(7)); //prints: true
System.out.println(isLessThan10.test(12)); //prints: false

We can also combine it with the previously
created printWithPrefixAndPostfix(String pref, String postf) function:

int val = 7;
Consumer<String> printIsSmallerThan10 = printWithPrefixAndPostfix("Is "
 + val + " smaller than 10? ", " Great!");
printIsSmallerThan10.accept(String.valueOf(isLessThan10.test(val)));
 //prints: Is 7 smaller than 10? true Great!

The other methods (also called operations) can be used for creating operational chains (also
called pipelines) and can be seen in the following examples:

Predicate<Integer> isEqualOrGreaterThan10 = isLessThan10.negate();
System.out.println(isEqualOrGreaterThan10.test(7)); //prints: false
System.out.println(isEqualOrGreaterThan10.test(12)); //prints: true

isEqualOrGreaterThan10 = Predicate.not(isLessThan10);
System.out.println(isEqualOrGreaterThan10.test(7)); //prints: false
System.out.println(isEqualOrGreaterThan10.test(12)); //prints: true

Predicate<Integer> isGreaterThan10 = i -> i > 10;
Predicate<Integer> is_lessThan10_OR_greaterThan10 =
 isLessThan10.or(isGreaterThan10);
System.out.println(is_lessThan10_OR_greaterThan10.test(20)); // true
System.out.println(is_lessThan10_OR_greaterThan10.test(10)); // false

Predicate<Integer> isGreaterThan5 = i -> i > 5;
Predicate<Integer> is_lessThan10_AND_greaterThan5 =
 isLessThan10.and(isGreaterThan5);
System.out.println(is_lessThan10_AND_greaterThan5.test(3)); // false
System.out.println(is_lessThan10_AND_greaterThan5.test(7)); // true

Functional Programming Chapter 13

[466]

Person nick = new Person(42, "Nick", "Samoylov");
Predicate<Person> isItNick = Predicate.isEqual(nick);
Person john = new Person(42, "John", "Smith");
Person person = new Person(42, "Nick", "Samoylov");
System.out.println(isItNick.test(john)); //prints: false
System.out.println(isItNick.test(person)); //prints: true

The predicate objects can be chained into more complex logical statements and include all
necessary external data, as was demonstrated before.

Supplier<T>
This functional interface, Supplier<T>, has only one abstract method T get(), which
returns a value. The basic usage can be seen as follows:

Supplier<Integer> supply42 = () -> 42;
System.out.println(supply42.get()); //prints: 42

It can be chained with the functions discussed in the preceding sections:

int input = 7;
int limit = 10;
Supplier<Integer> supply7 = () -> input;
Predicate<Integer> isLessThan10 = i -> i < limit;
Consumer<String> printResult = printWithPrefixAndPostfix("Is " + input +
 " smaller than " + limit + "? ", " Great!");
printResult.accept(String.valueOf(isLessThan10.test(supply7.get())));
 //prints: Is 7 smaller than 10? true Great!

 The Supplier<T> function is typically used as an entry point of data going into a
processing pipeline.

Function<T, R>
The notation of this and other functional interfaces that return values, includes the listing of
the return type as the last in the list of generics (R in this case) and the type of the input data
in front of it (an input parameter of type T in this case). So, the notation Function<T, R>
means that the only abstract method of this interface accepts an argument of type T and
produces a result of type R. Let's look at the online documentation (https:/ /docs. oracle.
com/en/java/javase/ 12/ docs/ api/ java. base/java/ util/ function/ Function. html).

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/Function.html

Functional Programming Chapter 13

[467]

The Function<T, R> interface has one abstract method, R apply(T), and two methods
for operations chaining:

default <V> Function<T,V> andThen(Function<R, V> after): Returns
a composed function that first applies the current function to its input, and then
applies the after function to the result.
default <V> Function<V,R> compose(Function<V, T> before): Returns
a composed function that first applies the before function to its input, and then
applies the current function to the result.

There is also an identity() method:

static <T> Function<T,T> identity(): Returns a function that always
returns its input argument

Let's review all these methods and how they can be used. Here is an example of the basic
usage of the Function<T,R> interface:

Function<Integer, Double> multiplyByTen = i -> i * 10.0;
System.out.println(multiplyByTen.apply(1)); //prints: 10.0

We can also chain it with all the functions we have discussed in the preceding sections:

Supplier<Integer> supply7 = () -> 7;
Function<Integer, Double> multiplyByFive = i -> i * 5.0;
Consumer<String> printResult =
 printWithPrefixAndPostfix("Result: ", " Great!");
printResult.accept(multiplyByFive.
 apply(supply7.get()).toString()); //prints: Result: 35.0 Great!

The andThen() method allows for constructing a complex function from the simpler ones.
Notice the divideByTwo.amdThen() line in the following code:

Function<Double, Long> divideByTwo =
 d -> Double.valueOf(d / 2.).longValue();
Function<Long, String> incrementAndCreateString =
 l -> String.valueOf(l + 1);
Function<Double, String> divideByTwoIncrementAndCreateString =
 divideByTwo.andThen(incrementAndCreateString);
printResult.accept(divideByTwoIncrementAndCreateString.apply(4.));
 //prints: Result: 3 Great!

It describes the sequence of the operations applied to the input value. Notice how the
return type of the divideByTwo() function (Long) matches the input type of the
incrementAndCreateString() function.

Functional Programming Chapter 13

[468]

The compose() method accomplishes the same result, but in reverse order:

Function<Double, String> divideByTwoIncrementAndCreateString =
 incrementAndCreateString.compose(divideByTwo);
printResult.accept(divideByTwoIncrementAndCreateString.apply(4.));
 //prints: Result: 3 Great!

Now the sequence of composition of the complex function does not match the sequence of
the execution. It may be very convenient in the case where the function divideByTwo() is
not created yet and you would like to create it in-line. Then the following construct will not
compile:

Function<Double, String> divideByTwoIncrementAndCreateString =
 (d -> Double.valueOf(d / 2.).longValue())
 .andThen(incrementAndCreateString);

The following line will compile just fine:

Function<Double, String> divideByTwoIncrementAndCreateString =
 incrementAndCreateString
 .compose(d -> Double.valueOf(d / 2.).longValue());

It allows for more flexibility while constructing a functional pipeline, so one can build it in
a fluent style without breaking the continuous line when creating the next operations.

The identity() method is useful when you need to pass in a function that matches the
required function signature but does nothing. But it can substitute only the function that
returns the same type as the input type. For example:

Function<Double, Double> multiplyByTwo = d -> d * 2.0;
System.out.println(multiplyByTwo.apply(2.)); //prints: 4.0

multiplyByTwo = Function.identity();
System.out.println(multiplyByTwo.apply(2.)); //prints: 2.0

To demonstrate its usability, let's assume we have the following processing pipeline:

Function<Double, Double> multiplyByTwo = d -> d * 2.0;
System.out.println(multiplyByTwo.apply(2.)); //prints: 4.0

Function<Double, Long> subtract7 = d -> Math.round(d - 7);
System.out.println(subtract7.apply(11.0)); //prints: 4

long r = multiplyByTwo.andThen(subtract7).apply(2.);
System.out.println(r); //prints: -3

Functional Programming Chapter 13

[469]

 Then, we decide that, under certain circumstances, the multiplyByTwo() function should
do nothing. We could add to it a conditional close that turns it on/off. But if we want to
keep the function intact or if this function is passed to us from third-party code, we can just
do the following:

Function<Double, Double> multiplyByTwo = d -> d * 2.0;
System.out.println(multiplyByTwo.apply(2.)); //prints: 4.0

Function<Double, Long> subtract7 = d -> Math.round(d - 7);
System.out.println(subtract7.apply(11.0)); //prints: 4

multiplyByTwo = Function.identity();

r = multiplyByTwo.andThen(subtract7).apply(2.);
System.out.println(r); //prints: -5

As you can see, now the multiplyByTwo() function does nothing, and the final result is
different.

Other standard functional interfaces
The other 39 functional interfaces in the java.util.function package are variations of
the four interfaces we have just reviewed. These variations are created in order to achieve
one or any combination of the following:

Better performance by avoiding autoboxing and unboxing via the explicit usage
of int, double, or long primitives
Allowing two input parameters and/or a shorter notation

Here are just a few examples:

IntFunction<R> with the method R apply(int) provides a shorter notation
(without generics for the input parameter type) and avoids autoboxing by
requiring the primitive int as a parameter.
BiFunction<T,U,R> with the method R apply(T,U) allows two input
parameters; BinaryOperator<T> with the method T apply(T,T) allows two
input parameters of type T and returns a value of the same type, T.
IntBinaryOperator with the method int applAsInt(int,int) accepts two
parameters of type int and returns value of type int, too.

Functional Programming Chapter 13

[470]

If you are going to use functional interfaces, we encourage you to study the API of the
interfaces of the java.util.functional package (https:/ /docs. oracle. com/ en/ java/
javase/12/docs/api/ java. base/ java/ util/ function/ package- summary. html).

Lambda expression limitations
There are two aspects of a lambda expression that we would like to point out and clarify:

If a lambda expression uses a local variable created outside it, this local variable
has to be final or effectively final (not reassigned in the same context).
The this keyword in a lambda expression refers to the enclosing context, not the
lambda expression itself.

As in an anonymous class, the variable created outside and used inside a lambda
expression becomes effectively final and cannot be modified. The following is an example
of an error caused by the attempt to change the value of an initialized variable:

int x = 7;
//x = 3; //compilation error
Function<Integer, Integer> multiply = i -> i * x;

The reason for this restriction is that a function can be passed around and executed in
different contexts (different threads, for example), and an attempt to synchronize these
contexts would defeat the original idea of the stateless function and the evaluation of the
expression, depending only on the input parameters, not on the context variables. That is
why all the local variables used in the lambda expression have to be effectively final,
meaning that they can either be declared final explicitly or become final by the virtue of not
changing the value.

There is one possible workaround for this limitation though. If the local variable is of
reference type (but not String or primitive wrapping type), it is possible to change its
state, even if this local variable is used in the lambda expression:

List<Integer> list = new ArrayList();
list.add(7);
int x = list.get(0);
System.out.println(x); // prints: 7
list.set(0, 3);
x = list.get(0);
System.out.println(x); // prints: 3
Function<Integer, Integer> multiply = i -> i * list.get(0);

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/function/package-summary.html

Functional Programming Chapter 13

[471]

This workaround should be used with care because of the danger of unexpected side effects
should this lambda be executed in a different context.

The this keyword inside an anonymous class refers to the instance of the anonymous
class. By contrast, inside the lambda expression, the this keyword refers to the instance of
the class that surrounds the expression, also called an enclosing instance, enclosing
context, or enclosing scope.

Let's create a ThisDemo class that illustrates the difference:

class ThisDemo {
 private String field = "ThisDemo.field";

 public void useAnonymousClass() {
 Consumer<String> consumer = new Consumer<>() {
 private String field = "Consumer.field";
 public void accept(String s) {
 System.out.println(this.field);
 }
 };
 consumer.accept(this.field);
 }

 public void useLambdaExpression() {
 Consumer<String> consumer = consumer = s -> {
 System.out.println(this.field);
 };
 consumer.accept(this.field);
 }
}

If we execute the preceding methods, the output will be as shown in the following code
comments:

ThisDemo d = new ThisDemo();
d.useAnonymousClass(); //prints: Consumer.field
d.useLambdaExpression(); //prints: ThisDemo.field

As you can see, the keyword this inside the anonymous class refers to the anonymous
class instance, while this in a lambda expression refers to the enclosing class instance. A
lambda expression just does not have, and cannot have, a field. A lambda expression is not
a class instance and cannot be referred by this. According to Java's specifications, such an
approach allows more flexibility for implementations by treating this the same as the
surrounding context.

Functional Programming Chapter 13

[472]

Method references
So far, all our functions were short one-liners. Here is another example:

Supplier<Integer> input = () -> 3;
Predicate<Integer> checkValue = d -> d < 5;
Function<Integer, Double> calculate = i -> i * 5.0;
Consumer<Double> printResult = d -> System.out.println("Result: " + d);

if(checkValue.test(input.get())){
 printResult.accept(calculate.apply(input.get()));
} else {
 System.out.println("Input " + input.get() + " is too small.");
}

If the function consists of two or more lines, we could implement them as follows:

Supplier<Integer> input = () -> {
 // as many line of code here as necessary
 return 3;
};
Predicate<Integer> checkValue = d -> {
 // as many line of code here as necessary
 return d < 5;
};
Function<Integer, Double> calculate = i -> {
 // as many lines of code here as necessary
 return i * 5.0;
};
Consumer<Double> printResult = d -> {
 // as many lines of code here as necessary
 System.out.println("Result: " + d);
};
if(checkValue.test(input.get())){
 printResult.accept(calculate.apply(input.get()));
} else {
 System.out.println("Input " + input.get() + " is too small.");
}

When the size of a function implementation grows beyond several lines of code, such a
code layout may not be easy to read. It may obscure the overall code structure. To avoid the
issue, it is possible to move the function implementation into a method and then refer to
this method in the lambda expression. For example, let's add one static and one instance
method to the class where the lambda expression is used:

private int generateInput(){
 // Maybe many lines of code here

Functional Programming Chapter 13

[473]

 return 3;
}
private static boolean checkValue(double d){
 // Maybe many lines of code here
 return d < 5;
}

Also, to demonstrate the variety of possibilities, let's create another class with one static
method and one instance method:

class Helper {
 public double calculate(int i){
 // Maybe many lines of code here
 return i* 5;
 }
 public static void printResult(double d){
 // Maybe many lines of code here
 System.out.println("Result: " + d);
 }
}

Now we can rewrite our last example as follows:

Supplier<Integer> input = () -> generateInput();
Predicate<Integer> checkValue = d -> checkValue(d);
Function<Integer, Double> calculate = i -> new Helper().calculate(i);
Consumer<Double> printResult = d -> Helper.printResult(d);

if(checkValue.test(input.get())){
 printResult.accept(calculate.apply(input.get()));
} else {
 System.out.println("Input " + input.get() + " is too small.");
}

As you can see, even if each function consists of many lines of code, such a structure keeps
the code easy to read. Yet, when a one-line lambda expression consists of a reference to an
existing method, it is possible to further simplify the notation by using method reference
without listing the parameters.

The syntax of the method reference is Location::methodName, where Location indicates
in which object or class the methodName method belongs, and the two colons (::) serve as a
separator between the location and the method name. Using method reference notation, the
preceding example can be rewritten as follows:

Supplier<Integer> input = this::generateInput;
Predicate<Integer> checkValue = MethodReferenceDemo::checkValue;
Function<Integer, Double> calculate = new Helper()::calculate;

Functional Programming Chapter 13

[474]

Consumer<Double> printResult = Helper::printResult;

if(checkValue.test(input.get())){
 printResult.accept(calculate.apply(input.get()));
} else {
 System.out.println("Input " + input.get() + " is too small.");
}

You have probably noticed that we have intentionally used different locations, two instance
methods, and two static methods in order to demonstrate the variety of possibilities. If it
feels like too much to remember, the good news is that a modern IDE (IntelliJ IDEA is one
example) can do it for you and convert the code you are writing to the most compact form.
You have just to accept with the IDE's suggestion.

Summary
This chapter introduced the reader to functional programming by explaining and
demonstrating the concept of functional interface and lambda expressions. The overview of
standard functional interfaces that comes with JDK helps the reader to avoid writing
custom code, while the method reference notation allows the reader to write well-
structured code that is easy to understand and maintain.

In the next chapter, we will talk about data streams processing. We will define what data
streams are, and look at how to process their data and how to chain stream operations in a
pipeline. Specifically, we will discuss the stream's initialization and operations (methods),
how to connect them in a fluent style, and how to create parallel streams.

Quiz
What is a functional interface? Select all that apply:1.

A collection of functionsa.
An interface that has only one methodb.
Any interface that has only one abstract methodc.
Any library written in Javad.

Functional Programming Chapter 13

[475]

What is a lambda expression? Select all that apply:2.

A function, implemented as an anonymous method without modifiers,a.
return types, and parameter types
A functional interface implementationb.
Any implementation in a lambda calculus stylec.
The notation that includes the list of parameters, an arrow token ->,d.
and a body that consists of a single statement or a block of statements

How many input parameters does the implementation of the Consumer<T>3.
interface have?
What is the type of the return value in the implementation of4.
the Consumer<T> interface?
How many input parameters does the implementation of5.
the Predicate<T> interface have?
What is the type of the return value in the implementation of6.
the Predicate<T> interface?
How many input parameters does the implementation of7.
the Supplier<T> interface have?
What is the type of the return value in the implementation of8.
the Supplier<T> interface?
How many input parameters does the implementation of9.
the Function<T,R> interface have?
What is the type of the return value in the implementation of10.
the Function<T,R> interface?
In a lambda expression, what does the keyword this refer to?11.
What is method reference syntax?12.

14
Java Standard Streams

In this chapter, we will talk about processing data streams, which are different from the I/O
streams we reviewed in Chapter 5, Strings, Input/Output, and Files. We will define what
data streams are, how to process their elements using methods (operations) of
the java.util.stream.Stream object, and how to chain (connect) stream operations in a
pipeline. We will also discuss stream initialization and how to process streams in parallel.

The following topics will be covered in this chapter, as follows:

Streams as a source of data and operations
Stream initialization
Operations (methods)
Numeric stream interfaces
Parallel streams

Streams as a source of data and operations
Lambda expressions, described and demonstrated in the previous chapter, together with
functional interfaces added a powerful functional programming capability to Java. They
allow passing behavior (functions) as parameters to libraries optimized for the performance
of the data processing. This way, an application programmer can concentrate on the
business aspects of the developed system, leaving the performance aspects to the specialists
– the authors of the library. One example of such a library is java.util.stream, which is
going to be the focus of this chapter.

Java Standard Streams Chapter 14

[477]

In Chapter 5, Strings, Input/Output, and Files, we talked about I/O streams as the source of
data, but beyond that, they are not of much help for the further processing of the data. And
they are byte- or character-based, not object-based. You can create a stream of objects only
after the objects have been programmatically created and serialized first. The I/O streams
are just connections to external resources, mostly files and not much else. However,
sometimes it is possible to make a transition from an I/O stream to
java.util.stream.Stream. For example, the BufferedReader class has the lines()
method that converts the underlying character-based stream into a Stream<String>
object.

The streams of the java.util.stream package, on the other hand, are oriented on
processing collections of objects. In Chapter 6, Data Structures, Generics, and Popular
Utilities, we described two methods of the Collection interface that allow reading
collection elements as elements of a stream: default Stream<E> stream() and default
Stream<E> parallelStream(). We also have mentioned the stream() method
of java.util.Arrays. It has the following eight overloaded versions that convert an array
or a part of it into a stream of the corresponding data types:

static DoubleStream stream(double[] array)

static DoubleStream stream(double[] array, int startInclusive,
int endExclusive)

static IntStream stream(int[] array)

static IntStream stream(int[] array, int startInclusive, int

endExclusive)
static LongStream stream(long[] array)
static LongStream stream(long[] array, int startInclusive, int

endExclusive)
static <T> Stream<T> stream(T[] array)
static <T> Stream<T> stream(T[] array, int startInclusive, int

endExclusive)

Let's now look at the streams of the package java.util.stream closer. The best way to
understand what a stream is to compare it with a collection. The latter is a data structure
stored in memory. Every collection element is computed before being added to the
collection. By contrast, an element emitted by a stream exists somewhere else, in the source,
and is computed on demand. So, a collection can be a source for a stream.

Java Standard Streams Chapter 14

[478]

A Stream object is an implementation of Stream interface, IntStream, LongStream, or
DoubleStream; the last three are called numeric streams. The methods of the Stream
interface are also available in numeric streams. Some of the numeric streams have a few
extra methods, such as average() and sum(), specific numeric values. In this chapter, we
are going to speak mostly about the Stream interface and its methods, but everything we
will cover is equally applicable to numeric streams too.

A stream produces (or emits) stream elements as soon as the previously emitted element has
been processed. It allows declarative presentation of methods (operations) that can be
applied to the emitted elements, also in parallel. Today, when the machine learning
requirements of large dataset processing are becoming ubiquitous, this feature reinforces
the position of Java among the few modern programming languages of choice.

Stream initialization
There are many ways to create and initialize a stream – an object of type Stream or any of
the numeric interfaces. We grouped them by classes and interfaces that have Stream-
creating methods. We did it for the reader's convenience, so it would be easier for the
reader to remember and find them if need be.

Stream interface
This group of Stream factories is composed of static methods that belong to
the Stream interface.

empty()
The Stream<T> empty() method creates an empty stream that does not emit any element:

Stream.empty().forEach(System.out::println); //prints nothing

The Stream method forEach() acts similarly to the Collection method forEach() and
applies the passed-in function to each of the stream elements:

new ArrayList().forEach(System.out::println); //prints nothing

The result is the same as creating a stream from an empty collection:

new ArrayList().stream().forEach(System.out::println); //prints nothing

Java Standard Streams Chapter 14

[479]

Without any element emitted, nothing happens. We will discuss
the Stream method forEach() in the Terminal operations section.

of(T... values)
The of(T... values) method accepts varargs and can also create an empty stream:

Stream.of().forEach(System.out::print); //prints nothing

But it is most often used for initializing a non-empty stream:

Stream.of(1).forEach(System.out::print); //prints: 1
Stream.of(1,2).forEach(System.out::print); //prints: 12
Stream.of("1 ","2").forEach(System.out::print); //prints: 1 2

Notice the method reference used for the invocation of the println() and
print() methods.

Another way to use the of(T... values) method is as follows:

String[] strings = {"1 ", "2"};
Stream.of(strings).forEach(System.out::print); //prints: 1 2

If there is no type specified for the Stream object, the compiler does not complain if the
array contains a mix of types:

Stream.of("1 ", 2).forEach(System.out::print); //prints: 1 2

Adding generics that declare the expected element type causes an exception when at least
one of the listed elements has a different type:

//Stream<String> stringStream = Stream.of("1 ", 2); //compile error

Generics help a programmer to avoid many mistakes, so they should be added wherever
possible.

The of(T... values) method can also be used for the concatenation of multiple streams.
Let's assume, for example, that we have the following four streams that we would like to
concatenate into one:

Stream<Integer> stream1 = Stream.of(1, 2);
Stream<Integer> stream2 = Stream.of(2, 3);
Stream<Integer> stream3 = Stream.of(3, 4);
Stream<Integer> stream4 = Stream.of(4, 5);

Java Standard Streams Chapter 14

[480]

We would like to concatenate them into a new stream that emits values 1,2,2,3,3,4,4,5.
First, we try the following code:

Stream.of(stream1, stream2, stream3, stream4)
 .forEach(System.out::print);
 //prints: java.util.stream.ReferencePipeline$Head@58ceff1j

It does not do what we hoped for. It treats each stream as an object of the internal class
java.util.stream.ReferencePipeline that is used in the Stream interface
implementation. So, we need to add the flatMap() operation to convert each stream
element into a stream (we describe it in the Intermediate operations section):

Stream.of(stream1, stream2, stream3, stream4)
 .flatMap(e -> e).forEach(System.out::print); //prints: 12233445

The function we passed into flatMap() as a parameter (e -> e) looks like it's doing
nothing, but that is because each element of the stream is a stream already, so there is no
need to transform it. By returning an element as the result of the flatMap() operation, we
tell the pipeline to treat the return value as a Stream object.

ofNullable(T t)
The ofNullable(T t) method returns a Stream<T> emitting a single element if the
passed-in parameter t is not null; otherwise, it returns an empty Stream. To demonstrate
the usage of the ofNullable(T t) method, we have created the following method:

void printList1(List<String> list){
 list.stream().forEach(System.out::print);
}

We have executed this method twice - with the parameter list equal to null and to a List
object. Here are the results:

//printList1(null); //NullPointerException
List<String> list = List.of("1 ", "2");
printList1(list); //prints: 1 2

Notice how the first call to the printList1() method generates NullPointerException.
To avoid the exception, we could implement the method as follows:

void printList1(List<String> list){
 (list == null ? Stream.empty() : list.stream())
 .forEach(System.out::print);
}

Java Standard Streams Chapter 14

[481]

The same result can be achieved with the ofNullable(T t) method:

void printList2(List<String> list){
 Stream.ofNullable(list).flatMap(l -> l.stream())
 .forEach(System.out::print);
}

Notice how we have added flatMap() because, otherwise, the Stream element that flows
into forEach() would be a List object. We will talk more about the flatMap()
method in the Intermediate operations section. The function passed into the flatMap()
operation in the preceding code can be expressed as a method reference too:

void printList4(List<String> list){
 Stream.ofNullable(list).flatMap(Collection::stream)
 .forEach(System.out::print);
}

iterate(Object, UnaryOperator)
Two static methods of the Stream interface allow generating a stream of values using an
iterative process similar to the traditional for loop, as follows:

Stream<T> iterate(T seed, UnaryOperator<T> func): Creates an infinite
sequential stream based on the iterative application of the second parameter, the
function func, to the first parameter seed, producing a stream of values seed,
f(seed), f(f(seed)), an so on
Stream<T> iterate(T seed, Predicate<T> hasNext,

UnaryOperator<T> next): Creates a finite sequential stream based on the
iterative application of the third parameter, the next function, to the first
parameter seed, producing a stream of values seed, f(seed), f(f(seed)), and
so on, as long as the third parameter, the function hasNext, returns true

The following code demonstrates the usage of these methods, as follows:

Stream.iterate(1, i -> ++i).limit(9)
 .forEach(System.out::print); //prints: 123456789

Stream.iterate(1, i -> i < 10, i -> ++i)
 .forEach(System.out::print); //prints: 123456789

Java Standard Streams Chapter 14

[482]

Notice that we were forced to add an intermediate operator limit(int n) to the first
pipeline to avoid generating an infinite number of generated values. We will talk
more about this method in the Intermediate operations section.

concat (Stream a, Stream b)
The Stream<T> concat(Stream<> a, Stream<T> b) static method of the
Stream interface creates a stream of values based on two streams, a and b, passed in as
parameters. The newly created stream consists of all the elements of the first parameter, a,
followed by all the elements of the second parameter, b. The following code demonstrates
this method:

Stream<Integer> stream1 = List.of(1, 2).stream();
Stream<Integer> stream2 = List.of(2, 3).stream();
Stream.concat(stream1, stream2)
 .forEach(System.out::print); //prints: 1223

Notice that element 2 is present in both original streams and consequently is emitted twice
by the resulting stream.

generate (Supplier)
The static method Stream<T> generate(Supplier<T> supplier) of the Stream
interface creates an infinite stream where each element is generated by the provided
Supplier<T> function. The following are two examples:

Stream.generate(() -> 1).limit(5)
 .forEach(System.out::print); //prints: 11111

Stream.generate(() -> new Random().nextDouble()).limit(5)
 .forEach(System.out::println); //prints: 0.38575117472619247
 // 0.5055765386778835
 // 0.6528038976983277
 // 0.4422354489467244
 // 0.06770955839148762

If you run this code, you will probably get different results because of the random (pseudo-
random) nature of the generated values.

Since the created stream is infinite, we have added a limit(int n) operation that allows
only the specified number of stream elements to flow through. We will talk more about this
method in the Intermediate operations section.

Java Standard Streams Chapter 14

[483]

Stream.Builder interface
The Stream.Builder<T> builder() static method returns an internal (located inside the
Stream interface) interface Builder that can be used to construct a Stream object. The
interface Builder extends the Consumer interface and has the following methods:

default Stream.Builder<T> add(T t): Calls the accept(T) method and
returns the (Builder object), thus allowing chaining add(T t) methods in a
fluent dot- connected style
void accept(T t): Adds an element to the stream (this method comes from
the Consumer interface)
Stream<T> build(): Transitions this builder from the constructing state to the
built state; after this method is called, no new elements can be added to this
stream

The usage of the add(T t) method is straightforward:

Stream.<String>builder().add("cat").add(" dog").add(" bear")
 .build().forEach(System.out::print); //prints: cat dog bear

Please notice how we have added the generics <String> in front of the builder()
method. This way, we tell the builder that the stream we are creating will have String
type elements. Otherwise, it will add the elements as Object types and will not make sure
that the added elements are of the String type.

The accept(T t) method is used when the builder is passed as a parameter of
the Consumer<T> type or when you do not need to chain the methods that add the
elements. For example, the following is a code example:

Stream.Builder<String> builder = Stream.builder();
List.of("1", "2", "3").stream().forEach(builder);
builder.build().forEach(System.out::print); //prints: 123

The forEach(Consumer<T> consumer) method accepts a Consumer function that has the
accept(T t) method. Every time an element is emitted by the stream,
the forEach() method receives it and passes it to the accept(T t) method of the
Builder object. Then, when the build() method is called in the next line, the Stream
object is created and starts emitting the elements added earlier by the accept(T
t) method. The emitted elements are passed to the forEach() method, which then prints
them one by one.

Java Standard Streams Chapter 14

[484]

And here is an example of an explicit usage of the accept(T t) method:

List<String> values = List.of("cat", " dog", " bear");
Stream.Builder<String> builder = Stream.builder();
for(String s: values){
 if(s.contains("a")){
 builder.accept(s);
 }
}
builder.build().forEach(System.out::print); //prints: cat bear

This time, we decided not to add all the list elements to the stream, but only those that
contain the character a. As was expected, the created stream contains only the cat and
bear elements. Also, notice how we use <String> generics to make sure that all the stream
elements are of the String type.

Other classes and interfaces
In Java 8, two default methods were added to the java.util.Collection interface, as
follows:

Stream<E> stream(): Returns a stream of the elements of this collection
Stream<E> parallelStream(): Returns (possibly) a parallel stream of the
elements of this collection; possibly, because the JVM attempts to split the stream
into several chunks and process them in parallel (if there are several CPUs) or
virtually parallel (using CPU time-sharing); but it is not always possible and
depends in part on the nature of the requested processing

It means that all the collection interfaces that extend this interface, including Set and List,
have these methods. For example:

List.of("1", "2", "3").stream().forEach(builder);
List.of("1", "2", "3").parallelStream().forEach(builder);

We will talk about parallel streams in the Parallel processing section.

We have described eight static overloaded stream() methods of
the java.util.Arrays class at the beginning of the Streams as a source of data and
operations section. Here is an example of another way of creating a stream, using the subset
of an array:

int[] arr = {1, 2, 3, 4, 5};
Arrays.stream(arr, 2, 4).forEach(System.out::print); //prints: 34

Java Standard Streams Chapter 14

[485]

The java.util.Random class allows creating numeric streams of pseudo-random values,
as follows:

DoubleStream doubles(): Creates an unlimited stream of double values
between 0 (inclusive) and 1 (exclusive)
IntStream ints() and LongStream longs(): Create an unlimited stream of
corresponding type values
DoubleStream doubles(long streamSize): Creates a stream (of the
specified size) of double values between 0 (inclusive) and 1 (exclusive)
IntStream ints(long streamSize) and LongStream longs(long
streamSize): Creates a stream of the specified size of the corresponding type
values
IntStream ints(int randomNumberOrigin, int

randomNumberBound): Creates an unlimited stream of int values between
randomNumberOrigin (inclusive) and randomNumberBound (exclusive)
LongStream longs(long randomNumberOrigin, long

randomNumberBound): Creates an unlimited stream of long values
between randomNumberOrigin (inclusive)
and randomNumberBound (exclusive)
DoubleStream doubles(long streamSize, double

randomNumberOrigin, double randomNumberBound): Creates a stream of
the specified size of double values between randomNumberOrigin (inclusive)
and randomNumberBound (exclusive)

Here is an example of one of the preceding methods:

new Random().ints(5, 8).limit(5)
 .forEach(System.out::print); //prints: 56757

The java.nio.file.Files class has six static methods creating streams of lines and
paths, as follows:

Stream<String> lines(Path path): Creates a stream of lines from the file
specified by the provided path
Stream<String> lines(Path path, Charset cs): Creates a stream of lines
from the file specified by the provided path; bytes from the file are decoded into
characters using the provided charset
Stream<Path> list(Path dir): Creates a stream of files and directories in
the specified directory

Java Standard Streams Chapter 14

[486]

Stream<Path> walk(Path start, FileVisitOption... options):
Creates a stream of files and directories of the file tree that starts with Path
start

Stream<Path> walk(Path start, int maxDepth, FileVisitOption...

options): Creates a stream of files and directories of the file tree that starts
with Path start down to the specified depth maxDepth
Stream<Path> find(Path start, int maxDepth, BiPredicate<Path,
BasicFileAttributes> matcher, FileVisitOption...

options): Creates a stream of files and directories (that match the provided
predicate) of the file tree that starts with Path start down to the specified
depth, specified by maxDepth value

Other classes and methods that create streams include the following:

The java.util.BitSet class has the IntStream stream() method,
which creates a stream of indices for which this BitSet contains a bit in the set
state.
The java.io.BufferedReader class has the Stream<String>
lines() method, which creates a stream of lines from this BufferedReader
object, typically from a file.
The java.util.jar.JarFile class has the Stream<JarEntry>
stream() method that creates a stream of the ZIP-file entries.
The java.util.regex.Pattern class has the Stream<String>
splitAsStream(CharSequence input) method, which creates a stream from
the provided sequence around matches of this pattern.
A java.lang.CharSequence interface has two methods, as follows:

 default IntStream chars(): creates a stream of int zero-
extending the char values
default IntStream codePoints(): creates a stream of code
point values from this sequence

There is also a java.util.stream.StreamSupport class that contains static low-level
utility methods for library developers. But we won't be reviewing it, as this is outside the
scope of this book.

Java Standard Streams Chapter 14

[487]

Operations (methods)
Many methods of the Stream interface, those that have a functional interface type as a
parameter, are called operations because they are not implemented as traditional methods.
Their functionality is passed into the method as a function. The operations are just shells
that call a method of the functional interface assigned as the type of the parameter method.

For example, let's look at the Stream<T> filter (Predicate<T> predicate) method.
Its implementation is based on the call to the method boolean test(T t) of the
Predicate<T> function. So, instead of saying, We use the filter() method of the Stream
object to select some of the stream elements and skip others, programmers prefer to say, We apply
an operation filter that allows some of the stream elements to get through and skip others. It
describes the nature of the action (operation), not the particular algorithm, which is
unknown until the method receives a particular function. There are two groups of
operations in the Stream interface, as follows:

Intermediate operations: Instance methods that return a Stream object
Terminal operations: Instance methods that return some type other than Stream

Stream processing is organized typically as a pipeline using a fluent (dot-connected) style.
A Stream creating method or another stream source starts such a pipeline. A terminal
operation produces the final result or a side-effect and eponymously ends the pipeline. An
intermediate operation can be placed between the originating Stream object and the
terminal operation.

An intermediate operation processes stream elements (or not, in some cases) and returns
the modified (or not) Stream object, so the next intermediate or terminal operation can be
applied. Examples of intermediate operations are the following:

Stream<T> filter(Predicate<T> predicate): Selects only elements
matching a criterion
Stream<R> map(Function<T,R> mapper): Transforms elements according to
the passed-in function; please notice that the type of the returned Stream object
may be quite different from the input type
Stream<T> distinct(): Removes duplicates
Stream<T> limit(long maxSize): Limits a stream to the specified number of
elements
Stream<T> sorted(): Arranges the stream elements in a certain order

We will discuss some other intermediate operations in the Intermediate operations section.

Java Standard Streams Chapter 14

[488]

The processing of the stream elements actually begins only when a terminal operation
starts executing. Then all the intermediate operations (if present) start processing in
sequence. As soon as the terminal operation has finished execution, the stream closes and
cannot be reopened.

Examples of terminal operations are forEach(), findFirst(), reduce(), collect(),
sum(), max(), and other methods of the Stream interface that do not return
the Stream object. We will discuss them in the Terminal operations section.

All the Stream operations support parallel processing, which is especially helpful in the
case of a large amount of data processed on a multi-core computer. We will discuss it in
the Parallel streams section.

Intermediate operations
As we have mentioned already, an intermediate operation returns a Stream object that
emits the same or modified values and may even be of a different type than the stream
source.

The intermediate operations can be grouped by their functionality in four categories of
operations that perform filtering, mapping, sorting, or peeking.

Filtering
This group includes operations that remove duplicates, skip some of the elements, limit the
number of processed elements, and select for the further processing only those that pass
certain criteria, as follows:

Stream<T> distinct(): Compares stream elements using method
Object.equals(Object) and skips duplicates
Stream<T> skip(long n): Ignores the provided number of stream elements
that are emitted first
Stream<T> limit(long maxSize): Allows only the provided number of
stream elements to be processed
Stream<T> filter(Predicate<T> predicate): Allows only those elements
to be processed that result in true when processed by the provided Predicate
function

Java Standard Streams Chapter 14

[489]

default Stream<T> dropWhile(Predicate<T> predicate): Skips those
first elements of the stream that result in true when processed by the provided
Predicate function
default Stream<T> takeWhile(Predicate<T> predicate): Allows only
those first elements of the stream to be processed that result in true when
processed by the provided Predicate function

The following is the code that demonstrates how the operations just described work:

Stream.of("3", "2", "3", "4", "2").distinct()
 .forEach(System.out::print); //prints: 324

List<String> list = List.of("1", "2", "3", "4", "5");
list.stream().skip(3).forEach(System.out::print); //prints: 45

list.stream().limit(3).forEach(System.out::print); //prints: 123

list.stream().filter(s -> Objects.equals(s, "2"))
 .forEach(System.out::print); //prints: 2

list.stream().dropWhile(s -> Integer.valueOf(s) < 3)
 .forEach(System.out::print); //prints: 345

list.stream().takeWhile(s -> Integer.valueOf(s) < 3)
 .forEach(System.out::print); //prints: 12

Notice that we were able to reuse the source List<String> object, but could not reuse
the Stream object. Once a Stream object is closed, it cannot be reopened.

Mapping
This group includes arguably the most important intermediate operations. They are the
only intermediate operations that modify the elements of the stream. They map (transform)
the original stream element value to a new one, as follows:

Stream<R> map(Function<T, R> mapper): Applies the provided function to
each element of type T of the stream and produces a new element value of type R
IntStream mapToInt(ToIntFunction<T> mapper): Applies the provided
function to each element of type T of the stream and produces a new element
value of type int
LongStream mapToLong(ToLongFunction<T> mapper): Applies the
provided function to each element of type T of the stream and produces a new
element value of type long

Java Standard Streams Chapter 14

[490]

DoubleStream mapToDouble(ToDoubleFunction<T> mapper): Applies the
provided function to each element of type T of the stream and produces a new
element value of type double
Stream<R> flatMap(Function<T, Stream<R>> mapper): Applies the
provided function to each element of type T of the stream and produces a
Stream<R> object that emits elements of type R
IntStream flatMapToInt(Function<T, IntStream> mapper): Applies the
provided function to each element of type T of the stream and produces
a IntStream object that emits elements of type int
LongStream flatMapToLong(Function<T, LongStream> mapper): Applies
the provided function to each element of type T of the stream and produces
a LongStream object that emits elements of type long
DoubleStream flatMapToDouble(Function<T, DoubleStream>

mapper): Applies the provided function to each element of type T of the stream
and produces a DoubleStream object that emits elements of type double

The following are examples of the usage of these operations, as follows:

List<String> list = List.of("1", "2", "3", "4", "5");
list.stream().map(s -> s + s)
 .forEach(System.out::print); //prints: 1122334455

list.stream().mapToInt(Integer::valueOf)
 .forEach(System.out::print); //prints: 12345

list.stream().mapToLong(Long::valueOf)
 .forEach(System.out::print); //prints: 12345

list.stream().mapToDouble(Double::valueOf)
 .mapToObj(Double::toString)
 .map(s -> s + " ")
 .forEach(System.out::print); //prints: 1.0 2.0 3.0 4.0 5.0

list.stream().mapToInt(Integer::valueOf)
 .flatMap(n -> IntStream.iterate(1, i -> i < n, i -> ++i))
 .forEach(System.out::print); //prints: 1121231234

list.stream().map(Integer::valueOf)
 .flatMapToInt(n ->
 IntStream.iterate(1, i -> i < n, i -> ++i))
 .forEach(System.out::print); //prints: 1121231234

list.stream().map(Integer::valueOf)
 .flatMapToLong(n ->

Java Standard Streams Chapter 14

[491]

 LongStream.iterate(1, i -> i < n, i -> ++i))
 .forEach(System.out::print); //prints: 1121231234

list.stream().map(Integer::valueOf)
 .flatMapToDouble(n ->
 DoubleStream.iterate(1, i -> i < n, i -> ++i))
 .mapToObj(Double::toString)
 .map(s -> s + " ")
 .forEach(System.out::print);
 //prints: 1.0 1.0 2.0 1.0 2.0 3.0 1.0 2.0 3.0 4.0

In the last example, converting the stream to DoubleStream, we transformed each numeric
value to a String object and added whitespace, so the result can be printed with
whitespace between the numbers. These examples are very simple: just conversion with
minimal processing. But in real life, each map() or flatMap() operation typically accepts a
more complex function that does something more useful.

Sorting
The following two intermediate operations sort the stream elements, as follows:

Stream<T> sorted(): Sorts stream elements in natural order (according to
their Comparable interface implementation)
Stream<T> sorted(Comparator<T> comparator): Sorts stream elements in
order according to the provided Comparator<T> object

Naturally, these operations cannot be finished until all the elements are emitted, so such
processing creates a lot of overhead, slows down performance, and has to be used for small
streams.

Here is demo code:

List<String> list = List.of("2", "1", "5", "4", "3");
list.stream().sorted().forEach(System.out::print); //prints: 12345
list.stream().sorted(Comparator.reverseOrder())
 .forEach(System.out::print); //prints: 54321

Java Standard Streams Chapter 14

[492]

Peeking
An intermediate Stream<T> peek(Consumer<T> action) operation applies the
provided Consumer<T> function to each stream element but does not change the stream
values (Consumer<T> returns void). This operation is used for debugging. The following
code shows how it works:

List<String> list = List.of("1", "2", "3", "4", "5");
list.stream()
 .peek(s -> System.out.print("3".equals(s) ? 3 : 0))
 .forEach(System.out::print); //prints: 0102330405

Terminal operations
Terminal operations are the most important operations in a stream pipeline. It is possible
to accomplish everything in them without using any other operations.

We have used already the forEach(Consumer<T>) terminal operation to print each
element. It does not return a value, thus it is used for its side-effects. But the Stream
interface has many more powerful terminal operations that do return values.

Chief among them is the collect() operation, which has two forms as follows:

R collect(Collector<T, A, R> collector)

R collect(Supplier<R> supplier, BiConsumer<R, T>
accumulator, BiConsumer<R, R> combiner)

It allows composing practically any process that can be applied to a stream. The classic
example is as follows:

List<String> list = Stream.of("1", "2", "3", "4", "5")
 .collect(ArrayList::new,
 ArrayList::add,
 ArrayList::addAll);
System.out.println(list); //prints: [1, 2, 3, 4, 5]

This example is used in such a way as to be suitable for parallel processing. The first
parameter of the collect() operation is a function that produces a value based on the
stream element. The second parameter is the function that accumulates the result. And the
third parameter is the function that combines the accumulated results from all the threads
that processed the stream.

Java Standard Streams Chapter 14

[493]

But having only one such generic terminal operation would force programmers to write the
same functions repeatedly. That is why the API authors added the Collectors class,
which generates many specialized Collector objects without the need to create three
functions for every collect() operation.

In addition to that, the API authors added to the Stream interface various even more
specialized terminal operations that are much simpler and easier to use. In this section, we
will review all the terminal operations of the Stream interface and, in the
Collect subsection, look at the plethora of Collector objects produced by
the Collectors class. We start with the most simple terminal operation that allows
processing each element of this stream one at a time.

In our examples, we are going to use the following class: Person:

public class Person {
 private int age;
 private String name;
 public Person(int age, String name) {
 this.age = age;
 this.name = name;
 }
 public int getAge() {return this.age; }
 public String getName() { return this.name; }
 @Override
 public String toString() {
 return "Person{" + "name='" + this.name + "'" +
 ", age=" + age + "}";
 }
}

Processing each element
There are two terminal operations in this group, as follows:

void forEach(Consumer<T> action): Applies the provided action for each
element of this stream
void forEachOrdered(Consumer<T> action): Applies the provided action
for each element of this stream in the order defined by the source, regardless of
whether the stream is sequential or parallel

Java Standard Streams Chapter 14

[494]

If the order in which you need the elements to be processed is important and it has to be the
order in which values are arranged at the source, use the second method, especially if you
can foresee that it is possible your code is going to be executed on a computer with several
CPUs. Otherwise, use the first one, as we did in all our examples.

Let's see an example of using the forEach() operation for reading comma-separated
values (age and name) from a file and creating Person objects. We have placed the
following persons.csv file (csv stands for comma-separated values) file in the
resources folder:

23 , Ji m
 2 5 , Bob
 15 , Jill
17 , Bi ll

We have added spaces inside and outside the values in order to take this opportunity to
show you some simple but very useful tips for working with real-life data.

First, we will just read the file and display its content line by line, but only those lines that
contain the letter J:

Path path = Paths.get("src/main/resources/persons.csv");
try (Stream<String> lines = Files.newBufferedReader(path).lines()) {
 lines.filter(s -> s.contains("J"))
 .forEach(System.out::println); //prints: 23 , Ji m
 // 15 , Jill
} catch (IOException ex) {
 ex.printStackTrace();
}

That is a typical way of using the forEach() operation: to process each element
independently. This code also provides an example of a try-with-resources construct that
closes the BufferedReader object automatically.

And the following is how an inexperienced programmer might write the code that reads
the stream elements from the Stream<String> lines object and creates a list of Person
objects:

List<Person> persons = new ArrayList<>();
lines.filter(s -> s.contains("J")).forEach(s -> {
 String[] arr = s.split(",");
 int age = Integer.valueOf(StringUtils.remove(arr[0], ' '));
 persons.add(new Person(age, StringUtils.remove(arr[1], ' ')));
});

Java Standard Streams Chapter 14

[495]

 You can see how the split() method is used to break each line by a comma that separates
the values and how the org.apache.commons.lang3.StringUtils.remove() method
removes spaces from each value. Although this code works well in small examples on a
single-core computer, it might create unexpected results with a long stream and parallel
processing.

That is the reason that lambda expressions require all the variables to be final or effectively
final because the same function can be executed in a different context.

The following is a correct implementation of the preceding code:

List<Person> persons = lines.filter(s -> s.contains("J"))
 .map(s -> s.split(","))
 .map(arr -> {
 int age = Integer.valueOf(StringUtils.remove(arr[0], ' '));
 return new Person(age, StringUtils.remove(arr[1], ' '));
 }).collect(Collectors.toList());

To improve readability, we can create a method that does the job of mapping:

private Person createPerson(String[] arr){
 int age = Integer.valueOf(StringUtils.remove(arr[0], ' '));
 return new Person(age, StringUtils.remove(arr[1], ' '));
}

Now we can use it as follows:

List<Person> persons = lines.filter(s -> s.contains("J"))
 .map(s -> s.split(","))
 .map(this::createPerson)
 .collect(Collectors.toList());

As you can see, we have used the collect() operator and the Collector function created
by the Collectors.toList() method. We will see more functions created by the
Collectors class in the Collect subsection.

Java Standard Streams Chapter 14

[496]

Counting all elements
The long count() terminal operation of the Stream interface looks straightforward and
benign. It returns the number of elements in this stream. Those who are used to working
with collections and arrays may use the count() operation without thinking twice. The
following code snippet demonstrates a caveat:

long count = Stream.of("1", "2", "3", "4", "5")
 .peek(System.out::print)
 .count();
System.out.print(count); //prints: 5

If we run the preceding code, the result will look as follows:

As you see, the code that implements the count() method was able to determine the
stream size without executing all the pipeline. The peek() operation did not print
anything, which proves that elements were not emitted. So, if you expected to see the
values of the stream printed, you might be puzzled and expect that the code has some kind
of defect.

Another caveat is that it is not always possible to determine the stream size at the source.
Besides, the stream may be infinite. So, you have to use count() with care.

Another possible way to determine the stream size is by using the collect() operation:

long count = Stream.of("1", "2", "3", "4", "5")
 .peek(System.out::print) //prints: 12345
 .collect(Collectors.counting());
System.out.println(count); //prints: 5

The following screenshot that shows what happens after the preceding code example has
been run:

Java Standard Streams Chapter 14

[497]

As you can see, the collect() operation does not calculate the stream size at the source.
That is because the collect() operation is not as specialized as the count() operation. It
just applies the passed-in collector to the stream. And the collector just counts the elements
provided to it by the collect() operation.

Match all, any, none
There are three seemingly very similar terminal operations that allow us to assess whether
all, any, or none of the stream elements have a certain value, as follows:

boolean allMatch(Predicate<T> predicate): Returns true when each of
the stream elements returns true when used as a parameter of the
provided Predicate<T> function
boolean anyMatch(Predicate<T> predicate): Returns true when one of
the stream elements returns true when used as a parameter of the
provided Predicate<T> function
boolean noneMatch(Predicate<T> predicate): Returns true when none
of this stream elements returns true when used as a parameter of the provided
Predicate<T> function

The following are examples of their usage:

List<String> list = List.of("1", "2", "3", "4", "5");
boolean found = list.stream()
 .peek(System.out::print) //prints: 123
 .anyMatch(e -> "3".equals(e));
System.out.println(found); //prints: true

boolean noneMatches = list.stream()
 .peek(System.out::print) //prints: 123
 .noneMatch(e -> "3".equals(e));
System.out.println(noneMatches); //prints: false

boolean allMatch = list.stream()
 .peek(System.out::print) //prints: 1
 .allMatch(e -> "3".equals(e));
System.out.println(allMatch); //prints: false

Please notice that all these operations are optimized so as not to process all the stream
elements if the result can be determined early.

Java Standard Streams Chapter 14

[498]

Find any or first
The following terminal operations allow finding any element or the first element of the
stream correspondingly, as follows:

Optional<T> findAny(): Returns an Optional with the value of any element
of the stream, or an empty Optional if the stream is empty
Optional<T> findFirst(): Returns an Optional with the value of the first
element of the stream, or an empty Optional if the stream is empty

The following examples illustrate these operations:

List<String> list = List.of("1", "2", "3", "4", "5");
Optional<String> result = list.stream().findAny();
System.out.println(result.isPresent()); //prints: true
System.out.println(result.get()); //prints: 1

result = list.stream()
 .filter(e -> "42".equals(e))
 .findAny();
System.out.println(result.isPresent()); //prints: false
//System.out.println(result.get()); //NoSuchElementException

result = list.stream().findFirst();
System.out.println(result.isPresent()); //prints: true
System.out.println(result.get()); //prints: 1

In the first and third of the preceding examples, the findAny() and
findFirst() operations produce the same result: they both find the first element of the
stream. But in parallel processing, the result may be different.

When the stream is broken into several parts for parallel processing, the findFirst()
operation always returns the first element of the stream, while the findAny() operation
returns the first element only in one of the processing threads.

Now let's talk about class java.util.Optional in more detail.

Java Standard Streams Chapter 14

[499]

Optional class
The object of java.util.Optional is used to avoid returning null (as it may cause
NullPointerException). Instead, an Optional object provides methods that allow
checking the presence of a value and substituting it with a predefined value if the return
value is null. For example:

List<String> list = List.of("1", "2", "3", "4", "5");
String result = list.stream()
 .filter(e -> "42".equals(e))
 .findAny()
 .or(() -> Optional.of("Not found"))
 .get();
System.out.println(result); //prints: Not found

result = list.stream()
 .filter(e -> "42".equals(e))
 .findAny()
 .orElse("Not found");
System.out.println(result); //prints: Not found

Supplier<String> trySomethingElse = () -> {
 //Code that tries something else
 return "43";
};
result = list.stream()
 .filter(e -> "42".equals(e))
 .findAny()
 .orElseGet(trySomethingElse);
System.out.println(result); //prints: 43

list.stream()
 .filter(e -> "42".equals(e))
 .findAny()
 .ifPresentOrElse(System.out::println,
 () -> System.out.println("Not found")); //prints: Not found

As you can see, if the Optional object is empty, then the following applies, as follows:

The or() method of the Optional class allows returning an alternative
Optional object.
The orElse() method allows returning an alternative value.

Java Standard Streams Chapter 14

[500]

The orElseGet() method allows providing the Supplier function, which
returns an alternative value.
The ifPresentOrElse() method allows providing two functions: one that
consumes the value from the Optional object, and another one that does
something else in the case the Optional object is empty.

Min and max
The following terminal operations return the minimum or maximum value of stream
elements, if present, as follows:

Optional<T> min(Comparator<T> comparator): Returns the minimum
element of this stream using the provided Comparator object
Optional<T> max(Comparator<T> comparator): Returns the maximum
element of this stream using the provided Comparator object

The following code demonstrates this:

List<String> list = List.of("a", "b", "c", "c", "a");
String min = list.stream()
 .min(Comparator.naturalOrder())
 .orElse("0");
System.out.println(min); //prints: a

String max = list.stream()
 .max(Comparator.naturalOrder())
 .orElse("0");
System.out.println(max); //prints: c

As you can see, in the case of non-numerical values, the minimum element is the one that is
the first when ordered from the left to the right according to the provided comparator. And
the maximum, accordingly, is the last element. In the case of numeric values, the minimum
and maximum are just that: the smallest and the biggest numbers among the stream
elements:

int mn = Stream.of(42, 77, 33)
 .min(Comparator.naturalOrder())
 .orElse(0);
System.out.println(mn); //prints: 33

int mx = Stream.of(42, 77, 33)
 .max(Comparator.naturalOrder())
 .orElse(0);
System.out.println(mx); //prints: 77

Java Standard Streams Chapter 14

[501]

Let's look at another example, using the Person class. The task is to find the oldest person
in the following list:

List<Person> persons = List.of(new Person(23, "Bob"),
 new Person(33, "Jim"),
 new Person(28, "Jill"),
 new Person(27, "Bill"));

In order to do that, we can create the following Compartor<Person> that compares
Person objects only by age:

Comparator<Person> perComp = (p1, p2) -> p1.getAge() - p2.getAge();

Then, using this comparator, we can find the oldest person:

Person theOldest = persons.stream()
 .max(perComp)
 .orElse(null);
System.out.println(theOldest); //prints: Person{name='Jim', age=33}

To array
The following two terminal operations generate an array that contains stream elements, as
follows:

Object[] toArray(): Creates an array of objects; each object is an element of
the stream
A[] toArray(IntFunction<A[]> generator): Creates an array of stream
elements using the provided function

Let's look at some examples:

List<String> list = List.of("a", "b", "c");
Object[] obj = list.stream().toArray();
Arrays.stream(obj).forEach(System.out::print); //prints: abc

String[] str = list.stream().toArray(String[]::new);
Arrays.stream(str).forEach(System.out::print); //prints: abc

Java Standard Streams Chapter 14

[502]

 The first example is straightforward. It converts elements to an array of the same type. As
for the second example, the representation of IntFunction as String[]::new is probably
not obvious, so let's walk through it. The String[]::new is a method reference that
represents the lambda expression i -> new String[i] because the toArray() operation
receives from the stream not the elements, but their count:

String[] str = list.stream().toArray(i -> new String[i]);

We can prove it by printing an i value:

String[] str = list.stream()
 .toArray(i -> {
 System.out.println(i); //prints: 3
 return new String[i];
 });

The i -> new String[i] expression is an IntFunction<String[]> that, according to
its documentation, accepts an int parameter and returns the result of the specified type. It
can be defined using an anonymous class as follows:

IntFunction<String[]> intFunction = new IntFunction<String[]>() {
 @Override
 public String[] apply(int i) {
 return new String[i];
 }
};

The java.util.Collection interface has a very similar method that converts the
collection to an array:

List<String> list = List.of("a", "b", "c");
String[] str = list.toArray(new String[lits.size()]);
Arrays.stream(str).forEach(System.out::print); //prints: abc

The only difference is that the toArray() of the Stream interface accepts a function, while
the toArray() of the Collection interface takes an array.

Java Standard Streams Chapter 14

[503]

Reduce
This terminal operation is called reduce because it processes all the stream elements and
produces one value, thus reducing all the stream elements to one value. But this is not the
only operation that does it. The collect operation reduces all the values of the stream
element to one result as well. And, in a way, all terminal operations are reductive. They
produce one value after processing many elements.

So, you may look at reduce and collect as synonyms that help to add structure and
classification to many operations available in the Stream interface. Also, operations in the
reduce group can be viewed as specialized versions of the collect operation because
collect() can be tailored to provide the same functionality as the reduce() operation.

That said, let's look at a group of reduce operations, as follows:

Optional<T> reduce(BinaryOperator<T> accumulator): Reduces the
elements of the stream using the provided associative function that aggregates
the elements; returns an Optional with the reduced value if available
T reduce(T identity, BinaryOperator<T> accumulator): Provides the
same functionality as the previous reduce() version but with the identity
parameter used as the initial value for an accumulator or a default value if a
stream is empty
U reduce(U identity, BiFunction<U,T,U> accumulator,

BinaryOperator<U> combiner): Provides the same functionality as the
previous reduce() versions but, in addition, uses the combiner function to
aggregate the results when this operation is applied to a parallel stream; if the
stream is not parallel, the combiner function is not used

Java Standard Streams Chapter 14

[504]

To demonstrate the reduce() operation, we are going to use the same Person class we
have used before and the same list of Person objects as the source for our stream examples:

List<Person> persons = List.of(new Person(23, "Bob"),
 new Person(33, "Jim"),
 new Person(28, "Jill"),
 new Person(27, "Bill"));

Let's find the oldest person in this list using the reduce() operation:

Person theOldest = list.stream()
 .reduce((p1, p2) -> p1.getAge() > p2.getAge() ? p1 : p2)
 .orElse(null);
System.out.println(theOldest); //prints: Person{name='Jim', age=33}

The implementation is somewhat surprising, isn't it? The reduce() operation takes an
accumulator, but it seems it did not accumulate anything. Instead, it compares all stream
elements. Well, the accumulator saves the result of the comparison and provides it as the
first parameter for the next comparison (with the next element). You can say that the
accumulator, in this case, accumulates the results of all previous comparisons.

Let's now accumulate something explicitly. Let's assemble all the names from a list of
persons in one comma-separated list:

String allNames = list.stream()
 .map(p -> p.getName())
 .reduce((n1, n2) -> n1 + ", " + n2)
 .orElse(null);
System.out.println(allNames); //prints: Bob, Jim, Jill, Bill

The notion of accumulation, in this case, makes a bit more sense, doesn't it?

Now let's use the identity value to provide some initial value:

String all = list.stream()
 .map(p -> p.getName())
 .reduce("All names: ", (n1, n2) -> n1 + ", " + n2);
System.out.println(all); //prints: All names: , Bob, Jim, Jill, Bill

Java Standard Streams Chapter 14

[505]

Notice that this version of the reduce() operation returns value, not the Optional object.
That is because, by providing the initial value, we guarantee that at least this value will be
present in the result if the stream turns out to be empty. But the resulting string does not
look as pretty as we hoped. Apparently, the provided initial value is treated as any other
stream element, and a comma is added after it by the accumulator we have created. To
make the result look pretty again, we could use the first version of the reduce() operation
again and add the initial value this way:

String all = "All names: " + list.stream()
 .map(p -> p.getName())
 .reduce((n1, n2) -> n1 + ", " + n2)
 .orElse(null);
System.out.println(all); //prints: All names: Bob, Jim, Jill, Bill

Or we can use a space as a separator instead of a comma:

String all = list.stream()
 .map(p -> p.getName())
 .reduce("All names:", (n1, n2) -> n1 + " " + n2);
System.out.println(all); //prints: All names: Bob Jim Jill Bill

Now the result looks better. While demonstrating the collect() operation in the next
subsection, we will show a better way to create a comma-separated list of values with a
prefix.

Meanwhile, let's continue to review the reduce() operation and look at its third form: the
one with three parameters: identity, accumulator, and combiner. Adding the combiner
to the reduce() operation does not change the result:

String all = list.stream()
 .map(p -> p.getName())
 .reduce("All names:", (n1, n2) -> n1 + " " + n2,
 (n1, n2) -> n1 + " " + n2);
System.out.println(all); //prints: All names: Bob Jim Jill Bill

That is because the stream is not parallel and the combiner is used only with a parallel
stream. If we make the stream parallel, the result changes:

String all = list.parallelStream()
 .map(p -> p.getName())
 .reduce("All names:", (n1, n2) -> n1 + " " + n2,
 (n1, n2) -> n1 + " " + n2);
System.out.println(all);
 //prints: All names: Bob All names: Jim All names: Jill All names: Bill

Java Standard Streams Chapter 14

[506]

Apparently, for a parallel stream, the sequence of elements is broken into subsequences,
each processed independently, and their results aggregated by the combiner. While doing
that, the combiner adds the initial value (identity) to each of the results. Even if we remove
the combiner, the result of the parallel stream processing remains the same, because a
default combiner behavior is provided:

String all = list.parallelStream()
 .map(p -> p.getName())
 .reduce("All names:", (n1, n2) -> n1 + " " + n2);
System.out.println(all);
 //prints: All names: Bob All names: Jim All names: Jill All names: Bill

In the previous two forms of the reduce() operations, the identity value was used by the
accumulator. In the third form, the identity value is used by the combiner (notice,
the U type is the combiner type). To get rid of the repetitive identity value in the result, we
have decided to remove it (and the trailing space) from the second parameter in the
combiner:

String all = list.parallelStream().map(p->p.getName())
 .reduce("All names:", (n1, n2) -> n1 + " " + n2,
 (n1, n2) -> n1 + " " + StringUtils.remove(n2, "All names: "));
System.out.println(all); //prints: All names: Bob Jim Jill Bill

The result is as expected.

In our string-based examples so far, the identity has not just been an initial value. It also
served as an identifier (a label) in the resulting string. But when the elements of the stream
are numeric, the identity looks more like just an initial value. Let's look at the following
example:

List<Integer> ints = List.of(1, 2, 3);
int sum = ints.stream()
 .reduce((i1, i2) -> i1 + i2)
 .orElse(0);
System.out.println(sum); //prints: 6
sum = ints.stream()
 .reduce(Integer::sum)
 .orElse(0);
System.out.println(sum); //prints: 6
sum = ints.stream()
 .reduce(10, Integer::sum);
System.out.println(sum); //prints: 16
sum = ints.stream()
 .reduce(10, Integer::sum, Integer::sum);
System.out.println(sum); //prints: 16

Java Standard Streams Chapter 14

[507]

The first two of the pipelines are exactly the same, except that the second pipeline uses a
method reference. The third and the fourth pipelines have the same functionality too. They
both use an initial value of 10. Now the first parameter makes more sense as the initial
value than the identity, doesn't it? In the fourth pipeline, we added a combiner, but it is not
used because the stream is not parallel. Let's make it parallel and see what happens:

List<Integer> ints = List.of(1, 2, 3);
int sum = ints.parallelStream()
 .reduce(10, Integer::sum, Integer::sum);
System.out.println(sum); //prints: 36

The result is 36 because the initial value of 10 was added three times, with each partial
result. Apparently, the stream was broken into three subsequences. But it is not always the
case, as the number of the subsequences changes as the stream grows and the number of
CPUs on the computer increases. That is why you cannot rely on a certain fixed number of
subsequences and it is better not to use a non-zero initial value with parallel streams:

List<Integer> ints = List.of(1, 2, 3);
int sum = ints.parallelStream()
 .reduce(0, Integer::sum, Integer::sum);
System.out.println(sum); //prints: 6
sum = 10 + ints.parallelStream()
 .reduce(0, Integer::sum, Integer::sum);
System.out.println(sum); //prints: 16

As you can see, we have set the identity to 0, so every subsequence will get it, but the total
is not affected when the result from all the processing threads is assembled by the
combinator.

Collect
Some of the usages of the collect() operation are very simple and can be easily mastered
by any beginner, while other cases can be complex and not easy to understand even for a
seasoned programmer. Together with the operations discussed already, the most popular
cases of collect() usage we present in this section are more than enough for all the needs
a beginner may have and will cover most needs of a more experienced professional.
Together with the operations of numeric streams (see the Numeric stream interfaces section),
they cover all the needs a mainstream programmer will ever have.

Java Standard Streams Chapter 14

[508]

As we have mentioned already, the collect() operation is very flexible and allows us to
customize stream processing. It has two forms, as follows:

R collect(Collector<T, A, R> collector): Processes the stream
elements of type T using the provided Collector and producing the result of
type R via an intermediate accumulation of type A
R collect(Supplier<R> supplier, BiConsumer<R, T> accumulator,

BiConsumer<R, R> combiner): Processes the stream elements of type T using
the provided functions:

Supplier<R> supplier: Creates a new result container
BiConsumer<R, T> accumulator: A stateless function that adds
an element to the result container
BiConsumer<R, R> combiner: A stateless function that merges
two partial result containers: adds the elements from the second
result container into the first result container

Let's look at the second form of the collect() operation first. It is very similar to
the reduce() operation with three parameters we have just demonstrated: supplier,
accumulator, and combiner. The biggest difference is that the first parameter in the
collect() operation is not an identity or the initial value, but the container, an object, that
is going to be passed between functions and which maintains the state of the processing.

Let's demonstrate how it works by selecting the oldest person from the list of Person
objects. For the following example, we are going to use the familiar Person class as the
container but add to it a constructor without parameters with two setters:

public Person(){}
public void setAge(int age) { this.age = age;}
public void setName(String name) { this.name = name; }

Adding a constructor without parameters and setters is necessary because the Person
object as a container should be creatable at any moment without any parameters and
should be able to receive and keep the partial results: the name and age of the person who
is the oldest, so far. The collect() operation will use this container while processing each
element and, after the last element is processed, will contain the name and the age of the
oldest person.

Java Standard Streams Chapter 14

[509]

We will use again the same list of persons:

List<Person> list = List.of(new Person(23, "Bob"),
 new Person(33, "Jim"),
 new Person(28, "Jill"),
 new Person(27, "Bill"));

And here is the collect() operation that finds the oldest person in the list:

BiConsumer<Person, Person> accumulator = (p1, p2) -> {
 if(p1.getAge() < p2.getAge()){
 p1.setAge(p2.getAge());
 p1.setName(p2.getName());
 }
};
BiConsumer<Person, Person> combiner = (p1, p2) -> {
 System.out.println("Combiner is called!");
 if(p1.getAge() < p2.getAge()){
 p1.setAge(p2.getAge());
 p1.setName(p2.getName());
 }
};
Person theOldest = list.stream()
 .collect(Person::new, accumulator, combiner);
System.out.println(theOldest); //prints: Person{name='Jim', age=33}

We tried to inline the functions in the operation call, but it looked a bit difficult to read, so
we decided to create functions first and then use them in the collect() operation. The
container, a Person object, is created only once before the first element is processed. In this
sense, it is similar to the initial value of the reduce() operation. Then it is passed to the
accumulator, which compares it to the first element. The age field in the container was
initialized to the default value of zero and thus the age and name of the first element were
set in the container as the parameters of the oldest person, so far. When the second stream
element (Person object) is emitted, its age value is compared to the age value currently
stored in the container, and so on, until all elements of the stream are processed. The result
is shown in the previous comments.

When the stream is sequential, the combiner is never called. But when we make it parallel
(list.parallelStream()), the message Combiner is called! is printed three times. Well,
as in the case of the reduce() operation, the number of partial results may vary,
depending on the number of CPUs and the internal logic of the collect() operation
implementation. So, the Combiner is called! message can be printed any number of times.

Java Standard Streams Chapter 14

[510]

Now let's look at the first form of the collect() operation. It requires an object of the class
that implements the java.util.stream.Collector<T,A,R> interface, where T is the
stream type, A is the container type, and R is the result type. You can use one of the
following methods of() (from the Collector interface) to create the necessary
Collector object:

static Collector<T,R,R> of(Supplier<R> supplier,
 BiConsumer<R,T> accumulator,
 BinaryOperator<R> combiner,
 Collector.Characteristics... characteristics)

Or

static Collector<T,A,R> of(Supplier<A> supplier,
 BiConsumer<A,T> accumulator,
 BinaryOperator<A> combiner,
 Function<A,R> finisher,
 Collector.Characteristics... characteristics).

The functions you have to pass to the preceding methods are similar to those we have
demonstrated already. But we are not going to do this, for two reasons. First, it is more
involved and pushes us beyond the scope of this book, and, second, before doing that, you
have to look in the java.util.stream.Collectors class, which provides many ready-
to-use collectors.

As we have mentioned already, together with the operations discussed so far and the
numeric streams operations we are going to present in the next section, ready-to-use
collectors cover the vast majority of processing needs in mainstream programming, and
there is a good chance you will never need to create a custom collector.

Collectors
The java.util.stream.Collectors class provides more than 40 methods that create
Collector objects. We are going to demonstrate only the simplest and most popular ones,
as follows:

Collector<T,?,List<T>> toList(): Creates a collector that generates a List
object from stream elements
Collector<T,?,Set<T>> toSet(): Creates a collector that generates
a Set object from stream elements
Collector<T,?,Map<K,U>> toMap (Function<T,K> keyMapper,

Function<T,U> valueMapper): Creates a collector that generates a Map object
from stream elements

Java Standard Streams Chapter 14

[511]

Collector<T,?,C> toCollection (Supplier<C> collectionFactory):
Creates a collector that generates a Collection object of the type provided by
Supplier<C> collectionFactory

Collector<CharSequence,?,String> joining(): Creates a collector that
generates a String object by concatenating stream elements
Collector<CharSequence,?,String> joining (CharSequence

delimiter): Creates a collector that generates a delimiter-
separated String object from stream elements
Collector<CharSequence,?,String> joining (CharSequence

delimiter, CharSequence prefix, CharSequence suffix): Creates a
collector that generates a delimiter-separated String object from the stream
elements and adds the specified prefix and suffix
Collector<T,?,Integer> summingInt(ToIntFunction<T>): Creates a
collector that calculates the sum of the results generated by the provided function
applied to each element; the same method exists for long and double types
Collector<T,?,IntSummaryStatistics>

summarizingInt(ToIntFunction<T>): Creates a collector that calculates the
sum, min, max, count, and average of the results generated by the provided
function applied to each element; the same method exists for long and double
types
Collector<T,?,Map<Boolean,List<T>>> partitioningBy (Predicate<?

super T> predicate): Creates a collector that separates the elements using the
provided Predicate function
Collector<T,?,Map<K,List<T>>> groupingBy(Function<T,U>): Creates a
collector that groups elements into a Map with keys generated by the provided
function

The following demo code shows how to use the collectors created by the methods listed
earlier. First, we demonstrate usage of the toList(), toSet(), toMap(), and
toCollection() methods:

List<String> ls = Stream.of("a", "b", "c")
 .collect(Collectors.toList());
System.out.println(ls); //prints: [a, b, c]

Set<String> set = Stream.of("a", "a", "c")
 .collect(Collectors.toSet());
System.out.println(set); //prints: [a, c]

List<Person> list = List.of(new Person(23, "Bob"),
 new Person(33, "Jim"),

Java Standard Streams Chapter 14

[512]

 new Person(28, "Jill"),
 new Person(27, "Bill"));
Map<String, Person> map = list.stream()
 .collect(Collectors
 .toMap(p -> p.getName() + "-" +
 p.getAge(), p -> p));
System.out.println(map); //prints: {Bob-23=Person{name='Bob', age:23},
 // Bill-27=Person{name='Bill', age:27},
 // Jill-28=Person{name='Jill', age:28},
 // Jim-33=Person{name='Jim', age:33}}

Set<Person> personSet = list.stream()
 .collect(Collectors
 .toCollection(HashSet::new));
System.out.println(personSet); //prints: [Person{name='Bill', age=27},
 // Person{name='Jim', age=33},
 // Person{name='Bob', age=23},
 // Person{name='Jill', age=28}]

The joining() method allows concatenating Character and String values in a
delimited list with prefix and suffix:

List<String> list1 = List.of("a", "b", "c", "d");
String result = list1.stream()
 .collect(Collectors.joining());
System.out.println(result); //prints: abcd

result = list1.stream()
 .collect(Collectors.joining(", "));
System.out.println(result); //prints: a, b, c, d

result = list1.stream()
 .collect(Collectors.joining(", ", "The result: ", ""));
System.out.println(result); //prints: The result: a, b, c, d

result = list1.stream()
 .collect(Collectors.joining(", ", "The result: ", ". The End."));
System.out.println(result); //prints: The result: a, b, c, d. The End.

Now let's turn to the summingInt() and summarizingInt() methods. They create
collectors that calculate the sum and other statistics of the int values produced by the
provided function applied to each element:

List<Person> list2 = List.of(new Person(23, "Bob"),
 new Person(33, "Jim"),
 new Person(28, "Jill"),
 new Person(27, "Bill"));
int sum = list2.stream()

Java Standard Streams Chapter 14

[513]

 .collect(Collectors.summingInt(Person::getAge));
System.out.println(sum); //prints: 111

IntSummaryStatistics stats = list2.stream()
 .collect(Collectors.summarizingInt(Person::getAge));
System.out.println(stats); //prints: IntSummaryStatistics{count=4,
 //sum=111, min=23, average=27.750000, max=33}
System.out.println(stats.getCount()); //prints: 4
System.out.println(stats.getSum()); //prints: 111
System.out.println(stats.getMin()); //prints: 23
System.out.println(stats.getAverage()); //prints: 27.750000
System.out.println(stats.getMax()); //prints: 33

There are also the summingLong(), summarizingLong(), summingDouble(), and
summarizingDouble() methods.

The partitioningBy() method creates a collector that groups the elements by the
provided criteria and put the groups (lists) in a Map object with a boolean value as the key:

Map<Boolean, List<Person>> map2 = list2.stream()
 .collect(Collectors.partitioningBy(p -> p.getAge() > 27));
System.out.println(map2);
 //{false=[Person{name='Bob', age=23}, Person{name='Bill', age=27},
 // true=[Person{name='Jim', age=33}, Person{name='Jill', age=28}]}

As you can see, using the p.getAge() > 27 criteria, we were able to put all the persons in
two groups: one is below or equals to 27 years of age (the key is false), and another is
above 27 (the key is true).

And, finally, the groupingBy() method allows grouping elements by a value and puts the
groups (lists) in a Map object with this value as a key:

List<Person> list3 = List.of(new Person(23, "Bob"),
 new Person(33, "Jim"),
 new Person(23, "Jill"),
 new Person(33, "Bill"));
Map<Integer, List<Person>> map3 = list3.stream()
 .collect(Collectors.groupingBy(Person::getAge));
System.out.println(map3);
 // {33=[Person{name='Jim', age=33}, Person{name='Bill', age=33}],
 // 23=[Person{name='Bob', age=23}, Person{name='Jill', age=23}]}

Java Standard Streams Chapter 14

[514]

To be able to demonstrate this method, we changed our list of Person objects by setting
the age on each of them either to 23 or to 33. The result is two groups ordered by their age.

There are also overloaded toMap(), groupingBy(), and partitioningBy() methods as
well as the following, often overloaded, methods that create corresponding Collector
objects, as follows:

counting()

reducing()

filtering()

toConcurrentMap()

collectingAndThen()

maxBy(), minBy()
mapping(), flatMapping()
averagingInt(), averagingLong(), averagingDouble()
toUnmodifiableList(), toUnmodifiableMap(), toUnmodifiableSet()

If you cannot find the operation you need among those discussed in this book, search the
Collectors API first, before building your own Collector object.

Numeric stream interfaces
As we have mentioned already, all three numeric interfaces, IntStream, LongStream, and
DoubleStream, have methods similar to the methods in the Stream interface, including
the methods of the Stream.Builder interface. This means that everything we have
discussed so far in this chapter equally applies to any numeric stream interfaces. That is
why in this section we will only talk about those methods that are not present in
the Stream interface, as follows:

The range(lower,upper) and rangeClosed(lower,upper) methods in
the IntStream and LongStream interfaces allow creating a stream from the
values in the specified range
The boxed() and mapToObj() intermediate operations convert a
numeric stream to Stream

Java Standard Streams Chapter 14

[515]

The mapToInt(), mapToLong(), and mapToDouble() intermediate
operations convert a numeric stream of one type to a numeric stream of another
type
The intermediate operations flatMapToInt(), flatMapToLong(), and
flatMapToDouble() convert a stream to a numeric stream
The sum() and average() terminal operations calculate the sum and average of
numeric stream elements

Creating a stream
In addition to the methods of the Stream interface that create streams, the IntStream and
LongStream interfaces allow creating a stream from the values in the specified range.

range(), rangeClosed()
The range(lower, upper) method generates all values sequentially, starting from
the lower value and ending with the value just before upper:

IntStream.range(1, 3).forEach(System.out::print); //prints: 12
LongStream.range(1, 3).forEach(System.out::print); //prints: 12

The rangeClosed(lower, upper) method generates all the values sequentially, starting
from the lower value and ending with the upper value:

IntStream.rangeClosed(1, 3).forEach(System.out::print); //prints: 123
LongStream.rangeClosed(1, 3).forEach(System.out::print); //prints: 123

Intermediate operations
In addition to the intermediate operations of the Stream interface, the IntStream,
LongStream, and DoubleStream interfaces also have number-specific intermediate
operations: boxed(), mapToObj(), mapToInt(), mapToLong(), mapToDouble(),
flatMapToInt(), flatMapToLong(), and flatMapToDouble().

Java Standard Streams Chapter 14

[516]

boxed(), mapToObj()
The boxed() intermediate operation converts (boxes) elements of the primitive numeric
type to the corresponding wrapper type:

 //IntStream.range(1, 3).map(Integer::shortValue) //compile error
 // .forEach(System.out::print);

 IntStream.range(1, 3)
 .boxed()
 .map(Integer::shortValue)
 .forEach(System.out::print); //prints: 12

 //LongStream.range(1, 3).map(Long::shortValue) //compile error
 // .forEach(System.out::print);

 LongStream.range(1, 3)
 .boxed()
 .map(Long::shortValue)
 .forEach(System.out::print); //prints: 12
 //DoubleStream.of(1).map(Double::shortValue) //compile error
 // .forEach(System.out::print);

 DoubleStream.of(1)
 .boxed()
 .map(Double::shortValue)
 .forEach(System.out::print); //prints: 1

In the preceding code, we have commented out the lines that generate compilation error
because the elements generated by the range() method are of primitive types.
The boxed() operation converts a primitive value to the corresponding wrapping type, so
it can be processed as a reference type. The mapToObj() intermediate operation does a
similar transformation, but it is not as specialized as the boxed() operation and allows
using an element of primitive type to produce an object of any type:

IntStream.range(1, 3)
 .mapToObj(Integer::valueOf)
 .map(Integer::shortValue)
 .forEach(System.out::print); //prints: 12

IntStream.range(42, 43)
 .mapToObj(i -> new Person(i, "John"))
 .forEach(System.out::print); //prints: Person{name='John', age=42}

LongStream.range(1, 3)
 .mapToObj(Long::valueOf)
 .map(Long::shortValue)

Java Standard Streams Chapter 14

[517]

 .forEach(System.out::print); //prints: 12

DoubleStream.of(1)
 .mapToObj(Double::valueOf)
 .map(Double::shortValue)
 .forEach(System.out::print); //prints: 1

In the preceding code, we have added the map() operation just to prove that
the mapToObj() operation does the job and creates an object of the wrapping type as
expected. Also, by adding the pipeline that produces Person objects, we have
demonstrated how the mapToObj() operation can be used to create an object of any type.

mapToInt(), mapToLong(), mapToDouble()
The mapToInt(), mapToLong(), mapToDouble() intermediate operations allow
converting a numeric stream of one type to a numeric stream of another type. For the sake
of example, we convert a list of String values to a numeric stream of different types by
mapping each String value to its length:

List<String> list = List.of("one", "two", "three");
list.stream()
 .mapToInt(String::length)
 .forEach(System.out::print); //prints: 335

list.stream()
 .mapToLong(String::length)
 .forEach(System.out::print); //prints: 335

list.stream()
 .mapToDouble(String::length)
 .forEach(d -> System.out.print(d + " ")); //prints: 3.0 3.0 5.0

list.stream()
 .map(String::length)
 .map(Integer::shortValue)
 .forEach(System.out::print); //prints: 335

The elements of the created numeric streams are of the primitive type:

//list.stream().mapToInt(String::length)
// .map(Integer::shortValue) //compile error
// .forEach(System.out::print);

Java Standard Streams Chapter 14

[518]

And, as we are on this topic, if you would like to convert elements to a numeric wrapping
type, the intermediate map() operation is the way to do it (instead of mapToInt()):

list.stream().map(String::length)
 .map(Integer::shortValue)
 .forEach(System.out::print); //prints: 335

flatMapToInt(), flatMapToLong(), flatMapToDouble()
The flatMapToInt(), flatMapToLong(), flatMapToDouble() intermediate operations
produce a numeric stream of the corresponding type:

List<Integer> list = List.of(1, 2, 3);
list.stream()
 .flatMapToInt(i -> IntStream.rangeClosed(1, i))
 .forEach(System.out::print); //prints: 112123

list.stream()
 .flatMapToLong(i -> LongStream.rangeClosed(1, i))
 .forEach(System.out::print); //prints: 112123

list.stream()
 .flatMapToDouble(DoubleStream::of)
 .forEach(d -> System.out.print(d + " ")); //prints: 1.0 2.0 3.0

As you can see in the preceding code, we have used int values in the original stream. But it
can be a stream of any type:

List.of("one", "two", "three")
 .stream()
 .flatMapToInt(s -> IntStream.rangeClosed(1, s.length()))
 .forEach(System.out::print); //prints: 12312312345

Terminal operations
Numeric-specific terminal operations are pretty straightforward. There are two of them, as
follows:

sum(): Calculates the sum of numeric stream elements
average(): Calculates the average of numeric stream elements

Java Standard Streams Chapter 14

[519]

sum(), average()
If you need to calculate a sum or an average of the values of numeric stream elements, the
only requirement for the stream is that it should not be infinite. Otherwise, the calculation
never finishes. The following are examples of these operations usages:

int sum = IntStream.empty()
 .sum();
System.out.println(sum); //prints: 0

sum = IntStream.range(1, 3)
 .sum();
System.out.println(sum); //prints: 3

double av = IntStream.empty()
 .average()
 .orElse(0);
System.out.println(av); //prints: 0.0

av = IntStream.range(1, 3)
 .average()
 .orElse(0);
System.out.println(av); //prints: 1.5

long suml = LongStream.range(1, 3)
 .sum();
System.out.println(suml); //prints: 3

double avl = LongStream.range(1, 3)
 .average()
 .orElse(0);
System.out.println(avl); //prints: 1.5

double sumd = DoubleStream.of(1, 2)
 .sum();
System.out.println(sumd); //prints: 3.0

double avd = DoubleStream.of(1, 2)
 .average()
 .orElse(0);
System.out.println(avd); //prints: 1.5

As you can see, using these operations on an empty stream is not a problem.

Java Standard Streams Chapter 14

[520]

Parallel streams
We have seen that changing from a sequential stream to a parallel stream can lead to
incorrect results if the code was not written and tested for processing a parallel stream. The
following are a few more considerations related to parallel streams.

Stateless and stateful operations
There are stateless operations, such as filter(), map(), and flatMap(), which do not
keep data around (do not maintain state) while moving from processing from one stream
element to the next. And there are stateful operations, such as distinct(), limit(),
sorted(), reduce(), and collect(), that can pass the state from previously processed
elements to the processing of the next element.

Stateless operations usually do not pose a problem while switching from a sequential
stream to a parallel one. Each element is processed independently and the stream can be
broken into any number of sub-streams for independent processing. With stateful
operations, the situation is different. To start with, using them for an infinite stream may
never finish processing. Also, while discussing the reduce() and collect() stateful
operations, we have demonstrated how switching to a parallel stream can produce a
different result if the initial value (or identity) is set without parallel processing in mind.

And there are performance considerations too. Stateful operations often require processing
all the stream elements in several passes using buffering. For large streams, it may tax JVM
resources and slow down, if not completely shut down, the application.

That is why a programmer should not take switching from a sequential to a parallel
streams lightly. If stateful operations are involved, the code has to be designed and tested
to be able to perform parallel stream processing without negative effects.

Sequential or parallel processing?
As we indicated in the previous section, parallel processing may or may not produce better
performance. You have to test every use case before deciding on using parallel streams.
Parallelism can yield better performance, but the code has to be designed and possibly
optimized to do it. And each assumption has to be tested in an environment that is as close
to the production as possible.

Java Standard Streams Chapter 14

[521]

However, there are a few considerations you can take into account while deciding between
sequential and parallel processing, as follows:

Small streams are typically processed faster sequentially (well, what is small for
your environment should be determined through testing and by measuring the
performance)
If stateful operations cannot be replaced with stateless ones, carefully design
your code for the parallel processing or just avoid it
Consider parallel processing for procedures that require extensive calculations,
but think about bringing the partial results together for the final result

Summary
In this chapter, we have talked about data-streams processing, which is different from
processing the I/O streams we reviewed in Chapter 5, Strings, Input/Output, and Files. We
defined what the data streams are, how to process their elements using stream operations,
and how to chain (connect) stream operations in a pipeline. We also discussed stream
initialization and how to process streams in parallel.

In the next chapter, the reader will be introduced to The Reactive Manifesto, its thrust, and
examples of its implementations. We will discuss the difference between reactive and
responsive systems and what asynchronous and non-blocking processings are. We will
also talk about Reactive Streams and RxJava.

Quiz
What is the difference between I/O streams and java.util.stream.Stream?1.
Select all that apply:

I/O streams are oriented toward data delivery, while Stream isa.
oriented toward data processing
Some I/O streams can be transformed into Streamb.
I/O streams can read from a file, while Stream cannotc.
I/O streams can write to a file, while Stream cannotd.

Java Standard Streams Chapter 14

[522]

What do the empty() and of(T... values) Stream methods have in2.
common?
What type are the elements emitted by3.
the Stream.ofNullable(Set.of(1,2,3) stream?
What does the following code print?4.

Stream.iterate(1, i -> i + 2)
 .limit(3)
 .forEach(System.out::print);

What does the following code print?5.

Stream.concat(Set.of(42).stream(),
 List.of(42).stream()).limit(1)
 .forEach(System.out::print);

What does the following code print?6.

Stream.generate(() -> 42 / 2)
 .limit(2)
 .forEach(System.out::print);

Is Stream.Builder a functional interface?7.
How many elements does the following stream emit?8.

new Random().doubles(42).filter(d -> d >= 1)

What does the following code print? 9.

Stream.of(1,2,3,4)
 .skip(2)
 .takeWhile(i -> i < 4)
 .forEach(System.out::print);

What is the value of d in the following code? 10.

double d = Stream.of(1, 2)
 .mapToDouble(Double::valueOf)
 .map(e -> e / 2)
 .sum();

Java Standard Streams Chapter 14

[523]

What is the value of the s string in the following code?11.

String s = Stream.of("a","X","42").sorted()
 .collect(Collectors.joining(","));

What is the result of the following code?12.

List.of(1,2,3).stream()
 .peek(i -> i > 2)
 .forEach(System.out::print);

How many stream elements the peek() operation prints in the following code?13.

List.of(1,2,3).stream()
 .peek(System.out::println)
 .noneMatch(e -> e == 2);

What does the or() method return when the Optional object is empty?14.
What is the value of the s string in the following code?15.

String s = Stream.of("a","X","42")
 .max(Comparator.naturalOrder())
 .orElse("12");

How many elements does the IntStream.rangeClosed(42, 42) stream emit?16.
Name two stateless operations.17.
Name two stateful operations.18.

15
Reactive Programming

In this chapter, the reader will be introduced to the Reactive Manifesto and the world of
reactive programming. We start with defining and discussing the main related concepts –
asynchronous, non-blocking, and responsive. Using them, we then define and discuss
reactive programming, the main reactive frameworks, and talk about RxJava in more detail.

The following topics will be covered in this chapter:

Asynchronous processing
Non-blocking API
Reactive – responsive, resilient, elastic, message-driven
Reactive streams
RxJava

Asynchronous processing
Asynchronous means that the requestor gets the response immediately, but the result is not
there. Instead, the requestor waits until the result is sent to them, or saved in the database,
or, for example, presented as an object that allows checking if the result is ready. If the
latter is the case, the requestor calls a certain method to this object periodically and, when
the result is ready, retrieves it using another method on the same object. The advantage of
asynchronous processing is that the requestor can do other things while waiting.

In Chapter 8, Multithreading and Concurrent Processing, we have demonstrated how a child
thread can be created. Such a child thread then sends a non-asynchronous (blocking)
request and waits for its return doing nothing. The main thread, meanwhile, continues
executing and periodically calls the child thread object to see whether the result is ready.
That is the most basic of asynchronous processing implementations. In fact, we have used it
already when we used parallel streams.

Reactive Programming Chapter 15

[525]

The parallel-stream operations behind the scenes that create child threads break the stream
into segments, and assign each segment to a dedicated thread for processing, and then
aggregate the partial results from all the segments into the final result. In the previous
chapter, we have even written functions that did the aggregating job. As a reminder, the
function was called a combiner.

Let's compare the performance of sequential and parallel streams using an example.

Sequential and parallel streams
To demonstrate the difference between sequential and parallel processing, let's imagine a
system that collects data from 10 physical devices (sensors) and calculates an average. The
following is the get() method that collects a measurement from a sensor identified by ID:

double get(String id){
 try{
 TimeUnit.MILLISECONDS.sleep(100);
 } catch(InterruptedException ex){
 ex.printStackTrace();
 }
 return id * Math.random();
}

We have put a delay for 100 milliseconds to imitate the time it takes to collect the
measurement from the sensor. As for the resulting measurement value, we use the
Math.random() method. We are going to call this get() method using an object of
the MeasuringSystem class, where the method belongs.

Then, we are going to calculate an average – to offset the errors and other idiosyncrasies of
an individual device:

void getAverage(Stream<Integer> ids) {
 LocalTime start = LocalTime.now();
 double a = ids.mapToDouble(id -> new MeasuringSystem().get(id))
 .average()
 .orElse(0);
 System.out.println((Math.round(a * 100.) / 100.) + " in " +
 Duration.between(start, LocalTime.now()).toMillis() + " ms");
}

Reactive Programming Chapter 15

[526]

Notice how we convert the stream of IDs into DoubleStream using the mapToDouble()
operation so we can apply the average() operation. The average() operation returns an
Optional<Double> object, and we call its orElse(0) method that returns either the
calculated value or zero (if, for example, the measuring system could not connect to any of
its sensors and returned an empty stream).

The last line of the getAverage() method prints the result and the time it took to calculate
it. In real code, we would return the result and use it for other calculations. But, for
demonstration, we just print it.

Now, we can compare the performance of a sequential stream processing with the
performance of the parallel processing:

List<Integer> ids = IntStream.range(1, 11)
 .mapToObj(i -> i)
 .collect(Collectors.toList());
getAverage(ids.stream()); //prints: 2.99 in 1030 ms
getAverage(ids.parallelStream()); //prints: 2.34 in 214 ms

The results may be different if you run this example because, as you may recall, we
simulate the collected measurements as random values.

As you can see, the processing of a parallel stream is five times faster than the processing of
a sequential stream. The results are different because the measurement produces a slightly
different result every time.

Although behind the scenes, the parallel stream uses asynchronous processing, this is not
what programmers have in mind when talking about the asynchronous processing of
requests. From the application's perspective, it is just parallel (also called concurrent)
processing. It is faster than sequential processing, but the main thread has to wait until all
the calls are made and the data is retrieved. If each call takes at least 100 ms (as it is in our
case), then the processing of all the calls cannot be completed in less time.

Of course, we can create a child thread and let it make all the calls and wait until they are
complete, while the main thread does something else. We even can create a service that
does it, so the application would just tell such a service what has to be done and then
continue doing something else. Later, the main thread can call the service again and get the
result or pick it up in some agreed location.

That would be the truly asynchronous processing the programmers are talking about. But,
before writing such a code, let's look at the CompletableFuture class located in
the java.util.concurrent package. It does everything described, and even more.

Reactive Programming Chapter 15

[527]

Using the CompletableFuture object
Using the CompletableFuture object, we can separate sending the request to the
measuring system by getting the result from the CompletableFuture object. That is
exactly the scenario we described while explaining what asynchronous processing is. Let's
demonstrate it in the code:

List<CompletableFuture<Double>> list =
 ids.stream()
 .map(id -> CompletableFuture.supplyAsync(() ->
 new MeasuringSystem().get(id)))
 .collect(Collectors.toList());

The supplyAsync() method does not wait for the call to the measuring system to return.
Instead, it immediately creates a CompletableFuture object and returns it, so that a client
can use this object any time later to retrieve the values returned by the measuring system:

LocalTime start = LocalTime.now();
double a = list.stream()
 .mapToDouble(cf -> cf.join().doubleValue())
 .average()
 .orElse(0);
System.out.println((Math.round(a * 100.) / 100.) + " in " +
 Duration.between(start, LocalTime.now()).toMillis() + " ms");
 //prints: 2.92 in 6 ms

There are also methods that allow checking whether the value was returned at all, but that
is not the point of this demonstration, which is to show how the CompletableFuture class
can be used to organize asynchronous processing.

The created list of CompletableFuture objects can be stored anywhere and processed
very quickly (in 6 ms, in our case), provided that the measurements have been received
already. Between creating the list of CompletableFuture objects and processing them, the
system is not blocked and can do something else.

The CompletableFuture class has many methods and support from several other classes
and interfaces. For example, a fixed-size thread pool can be added to limit the number of
threads:

ExecutorService pool = Executors.newFixedThreadPool(3);
List<CompletableFuture<Double>> list = ids.stream()
 .map(id -> CompletableFuture.supplyAsync(() ->
 new MeasuringSystem().get(id), pool))
 .collect(Collectors.toList());

Reactive Programming Chapter 15

[528]

There is a variety of such pools for different purposes and different performance. But all
that does not change the overall system design, so we omit such details.

As you can see, the power of asynchronous processing is great. There is also a variation of
asynchronous API called a non-blocking API, which we are going to discuss in the next
section.

Non-blocking API
The client of a non-blocking API expects to get the results back quickly, that is, without
being blocked for a significant amount of time. So, the notion of a non-blocking API implies
a highly responsive application. It can process the request synchronously or
asynchronously—it does not matter for the client. In practice, though, this typically means
that the application uses asynchronous processing that facilitates an increased throughput
and improved performance.

The term non-blocking came into use with the java.nio package. The non-blocking
input/output (NIO) provides support for intensive input/output operations. It describes
how the application is implemented: it does not dedicate an execution thread to each of the
requests but provides several lightweight worker threads that do the processing
asynchronously and concurrently.

The java.io package versus the java.nio package
Writing and reading data to and from an external memory (a hard drive, for example) is a
much slower operation than the processes in the memory only. The already-existing classes
and interfaces of the java.io package worked well, but once in a while became the
performance bottleneck. The new java.nio package was created to provide a more
effective I/O support.

The java.io implementation is based on I/O stream processing. As we have seen in the
previous section, it is basically a blocking operation even if some kind of concurrency is
happening behind the scenes. To increase the speed, the java.nio implementation was
introduced based on the reading/writing to/from a buffer in the memory. Such a design
allowed it to separate the slow process of filling/emptying the buffer and quickly
reading/writing from/to it.

Reactive Programming Chapter 15

[529]

In a way, it is similar to what we have done in our example of CompletableFuture usage.
The additional advantage of having data in a buffer is that it is possible to inspect the data,
going there and back along the buffer, which is impossible while reading sequentially from
the stream. It has provided more flexibility during data processing. In addition, the
java.nio implementation introduced another middleman process called a channel for the
bulk data transfer to and from a buffer.

The reading thread is getting data from a channel and only receives what is currently
available, or nothing at all (if no data is in the channel). If data is not available, the thread,
instead of remaining blocked, can do something else – reading/writing to/from other
channels, for example, the same way the main thread in our CompletableFuture example
was free to do whatever had to be done while the measuring system was reading data from
its sensors.

This way, instead of dedicating a thread to one I/O process, a few worker threads can serve
many I/O processes. Such a solution was called a non-blocking I/O and later was applied
to other processes, the most prominent being the event processing in an event loop, also called
a run loop.

The event/run loop
Many non-blocking systems are based on the event (or run) loop – a thread that is
continually executed. It receives events (requests, messages) and then dispatches them to
the corresponding event handlers (workers). There is nothing special about the event
handlers. They are just methods (functions) dedicated by the programmer for the
processing of the particular event type.

Such a design is called a reactor design pattern. It is constructed around processing
concurrent events and service requests. It also gave the name to the reactive programming
and reactive systems that react to events and process them concurrently.

Event loop-based design is widely used in operating systems and in graphical user
interfaces. It is available in Spring WebFlux in Spring 5 and implemented in JavaScript, and
its popular executing environment Node.JS. The last uses an event loop as its processing
backbone. The toolkit, Vert.x, is built around the event loop too.

Reactive Programming Chapter 15

[530]

Before the adoption of an event loop, a dedicated thread was assigned to each incoming
request – much like in our demonstration of stream processing. Each of the threads
required the allocation of a certain amount of resources that were not request-specific, so
some of the resources – mostly memory allocation – were wasted. Then, as the number of
requests grew, the CPU needed to switch its context from one thread to another more often
to allow more-or-less concurrent processing of all the requests. Under the load, the
overhead of switching the context is substantial enough to affect the performance of an
application.

Implementing an event loop has addressed these two issues. It eliminated the waste of the
resources by avoiding the creation of a thread dedicated to each request and keeping it
around until the request is processed. With an event loop in place, only much smaller
memory allocation is needed for each request to capture its specifics, which makes it
possible to keep far more requests in memory so that they can be processed concurrently.
The overhead of the CPU context-switching has become much smaller too, because of the
diminishing context size.

The non-blocking API is the way the processing of the requests is implemented. It makes
the systems able to handle a much bigger load while remaining highly responsive and
resilient.

Reactive
The term reactive is usually used in the context of reactive programming and reactive
systems. The reactive programming (also called Rx programming) is based on
asynchronous data streams (also called reactive streams). It was introduced as Reactive
Extension (RX) of Java, also called RxJava (http://reactivex.io). Later, the RX support
was added to Java 9 in the java.util.concurrent package. It allows a Publisher to
generate a stream of data, to which a Subscriber can asynchronously subscribe.

One principal difference between reactive streams and standard streams (also called Java 8
streams located in the java.util.stream package) is that a source (publisher) of the
reactive stream pushes elements to subscribers at its own rate, while in standard streams, a
new element is pulled and emitted only after the previous one was processed.

http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io

Reactive Programming Chapter 15

[531]

As you have seen, we were able to process data asynchronously even without this new API,
by using CompletableFuture. But after writing such a code a few times, you notice that
most of the code is just plumbing, so you get a feeling there has to be an even simpler and
more convenient solution. That's how the Reactive Streams initiative (http:/ / www.
reactive-streams. org) was born. The scope of the effort was defined as follows:

"The scope of Reactive Streams is to find a minimal set of interfaces, methods, and
protocols that will describe the necessary operations and entities to achieve the goal –
asynchronous streams of data with non-blocking back pressure."

The term non-blocking back pressure refers to one of the problems of asynchronous
processing: coordinating of the speed rate of the incoming data with the ability of the
system to process them without the need for stopping (blocking) the data input. The
solution is to inform the source that the consumer has difficulty in keeping up with the
input. Also, the processing should react to the change of the rate of the incoming data in a
more flexible manner than just blocking the flow, thus the name reactive.

There are several libraries already that implement the Reactive Streams API: RxJava
(http://reactivex. io), Reactor (https:/ /projectreactor. io), Akka Streams (https:/ /
akka.io/docs), and Vert.x (https:/ / vertx. io/) are among the most known. Writing code
using RxJava or another library of asynchronous streams constitutes reactive programming. It
realizes the goal declared in the Reactive Manifesto (https:/ / www.reactivemanifesto. org)
as building reactive systems that are responsive, resilient, elastic, and message-driven.

Responsive
It seems that this term is self-explanatory. The ability to respond in a timely manner is one
of the primary qualities of any system. There are many ways to achieve it. Even a
traditional blocking API supported by enough servers and other infrastructure can achieve
decent responsiveness under a growing load.

Reactive programming helps to do it using less hardware. It comes with a price, as reactive
code requires changing the way we think about control flow. But after some time, this new
way of thinking becomes as natural as any other familiar skill.

We will see quite a few examples of reactive programming in the following sections.

https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
https://www.reactive-streams.org/
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io
https://projectreactor.io
https://projectreactor.io
https://projectreactor.io
https://projectreactor.io
https://projectreactor.io
https://projectreactor.io
https://projectreactor.io
https://akka.io/docs
https://akka.io/docs
https://akka.io/docs
https://akka.io/docs
https://akka.io/docs
https://akka.io/docs
https://akka.io/docs
https://akka.io/docs
https://vertx.io/
https://vertx.io/
https://vertx.io/
https://vertx.io/
https://vertx.io/
https://vertx.io/
https://vertx.io/
https://vertx.io/
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org

Reactive Programming Chapter 15

[532]

Resilient
Failures are inevitable. The hardware crashes, the software has defects, unexpected data is
received, or an untested execution path was taken – any of these events or a combination of
them can happen at any time. Resilience is the ability of a system to continue delivering the
expected results under unexpected circumstances.

It can be achieved using redundancy of the deployable components and hardware, using
isolation of parts of the system so the domino effect becomes less probable, designing the
system with automatically replaceable parts, raising an alarm so that qualified personnel
can interfere, for example. We have also talked about distributed systems as a good
example of resilient systems by design.

A distributed architecture eliminates a single point of failure. Also, breaking the system
into many specialized components that talk to one another using messages allows better
tuning of the duplication of the most critical parts and creates more opportunities for their
isolation and the potential failure containment.

Elastic
The ability to sustain the biggest possible load is usually associated with scalability. But,
the ability to preserve the same performance characteristics under a varying load, not
under the growing one only, is called elasticity.

A client of an elastic system should not notice any difference between the idle periods and
the periods of the peak load. Non-blocking reactive style of implementation facilitates this
quality. Also, breaking the program into smaller parts and converting them into services
that can be deployed and managed independently allows for the fine-tuning of the
resources allocation.

Such small services are called microservices, and many of them together can comprise a
reactive system that can be both scalable and elastic. We will talk about such architecture in
more details in the following sections and the next chapter.

Reactive Programming Chapter 15

[533]

Message-driven
We have established already that components isolation and system distribution are two
aspects that help to keep the system responsive, resilient, and elastic. Loose and flexible
connections are important conditions that support these qualities too. And, the
asynchronous nature of the reactive system simply does not leave the designer other
choices but to build communication between components on messages.

It creates a breathing space around each component without which the system would be a
tightly coupled monolith susceptible to all kinds of problems, not to mention a maintenance
nightmare.

In the next chapter, we are going to look at the architectural style that can be used to build
an application as a collection of loosely-coupled microservices that communicate using
messages.

Reactive streams
The Reactive Streams API introduced in Java 9 consists of the following four interfaces:

@FunctionalInterface
public static interface Flow.Publisher<T> {
 public void subscribe(Flow.Subscriber<T> subscriber);
}
public static interface Flow.Subscriber<T> {
 public void onSubscribe(Flow.Subscription subscription);
 public void onNext(T item);
 public void onError(Throwable throwable);
 public void onComplete();
}
public static interface Flow.Subscription {
 public void request(long numberOfItems);
 public void cancel();
}
public static interface Flow.Processor<T,R>
 extends Flow.Subscriber<T>, Flow.Publisher<R> {
}

Reactive Programming Chapter 15

[534]

A Flow.Subscriber object can be passed as a parameter into the subscribe() method of
Flow.Publisher<T>. The publisher then calls the subscriber's onSubscribe() method
and passes to it as a parameter a Flow.Subsctiption object. Now, the subscriber can call
request(long numberOfItems) on the subscription object to request data from the
publisher. That is the way the pull model can be implemented, which leaves it to
a subscriber to decide when to request another item for processing. The subscriber can
unsubscribe from the publisher services by calling the cancel() method on subscription.

In return, the publisher can pass to the subscriber a new item by calling the subscriber's
onNext() method. When no more data will be coming (all the data from the source were
emitted) the publisher calls the subscriber's onComplete() method. Also, by calling the
subscriber's onError() method, the publisher can tell the subscriber that it has
encountered a problem.

The Flow.Processor interface describes an entity that can act as both a subscriber and a
publisher. It allows creating chains (pipelines) of such processors, so a subscriber can
receive an item from a publisher, transform it, then pass the result to the next subscriber or
processor.

In a push model, the publisher can call onNext() without any request from the subscriber.
If the rate of processing is lower than the rate of the item publishing, the subscriber can use
various strategies to relieve the pressure. For example, it can skip the items or create a
buffer for temporary storage with the hope that the item production will slow down and
the subscriber will be able to catch up.

This is the minimal set of interfaces the Reactive Streams initiative has defined in support of
the asynchronous data streams with non-blocking back pressure. As you can see, it allows
the subscriber and publisher to talk to each other and coordinate the rate of incoming data,
thus making possible a variety of solutions for the back pressure problem we discussed in
the Reactive section.

There are many ways to implement these interfaces. Currently, in JDK 9, there is only one
implementation of one of the interfaces: the SubmissionPublisher class implements
Flow.Publisher. The reason for that is that these interfaces are not supposed to be used
by an application developer. It is a Service Provider Interface (SPI) that is used by the
developers of the reactive streams libraries. If need be, use one of the already-existing
toolkits that have implemented the Reactive Streams API we have mentioned already:
RxJava, Reactor, Akka Streams, Vert.x, or any other library of your preference.

Reactive Programming Chapter 15

[535]

RxJava
We will use RxJava 2.2.7 (http://reactivex.io) in our examples. It can be added to the
project by the following dependency:

<dependency>
 <groupId>io.reactivex.rxjava2</groupId>
 <artifactId>rxjava</artifactId>
 <version>2.2.7</version>
</dependency>

Let's first compare two implementations of the same functionality using
the java.util.stream package and the io.reactivex package. The sample program is
going to be very simple:

Create a stream of integers 1,2,3,4,5.
Filter only even numbers (2 and 4).
Calculate a square root of each of the filtered numbers.
Calculate the sum of all the square roots.

Here is how it can be implemented using the java.util.stream package:

double a = IntStream.rangeClosed(1, 5)
 .filter(i -> i % 2 == 0)
 .mapToDouble(Double::valueOf)
 .map(Math::sqrt)
 .sum();
System.out.println(a); //prints: 3.414213562373095

And, the same functionality implemented with RxJava looks as follows:

Observable.range(1, 5)
 .filter(i -> i % 2 == 0)
 .map(Math::sqrt)
 .reduce((r, d) -> r + d)
 .subscribe(System.out::println); //prints: 3.414213562373095

RxJava is based on the Observable object (which plays the role of Publisher)
and Observer that subscribes to the Observable and waits for the data to be emitted.

http://reactivex.io
http://reactivex.io
http://reactivex.io
http://reactivex.io

Reactive Programming Chapter 15

[536]

By contrast, with the Stream functionality, Observable has significantly different
capabilities. For example, a stream, once closed, cannot be reopened, while
an Observable object can be used again. Here is an example:

Observable<Double> observable = Observable.range(1, 5)
 .filter(i -> i % 2 == 0)
 .doOnNext(System.out::println) //prints 2 and 4 twice
 .map(Math::sqrt);
observable
 .reduce((r, d) -> r + d)
 .subscribe(System.out::println); //prints: 3.414213562373095
observable
 .reduce((r, d) -> r + d)
 .map(r -> r / 2)
 .subscribe(System.out::println); //prints: 1.7071067811865475

In the preceding example, as you can see from the comments, the doOnNext() operation
was called twice, which means the observable object emitted values twice, once for each
processing pipeline:

If we do not want Observable running twice, we can cache its data, by adding
the cache() operation:

Observable<Double> observable = Observable.range(1,5)
 .filter(i -> i % 2 == 0)
 .doOnNext(System.out::println) //prints 2 and 4 only once
 .map(Math::sqrt)
 .cache();
observable
 .reduce((r, d) -> r + d)
 .subscribe(System.out::println); //prints: 3.414213562373095
observable
 .reduce((r, d) -> r + d)
 .map(r -> r / 2)
 .subscribe(System.out::println); //prints: 1.7071067811865475

Reactive Programming Chapter 15

[537]

As you can see, the second usage of the same Observable took advantage of the cached
data, thus allowing for better performance:

RxJava provides such a rich functionality that there is no way we can review it all in detail
in this book. Instead, we will try to cover the most popular API. The API describes the
methods available for invocation using an Observable object. Such methods are often also
called operations (as in the case with the standard Java 8 streams too) or operators (mostly
used in connection to reactive streams). We will use these three terms, methods, operations,
and operators, interchangeably as synonyms.

Observable types
Talking about RxJava 2 API (notice that is it quite different than RxJava 1), we will use the
online documentation that can be found at http:/ /reactivex. io/ RxJava/ 2. x/javadoc/
index.html.

An observer subscribes to receive values from an observable object, which can behave as
one of the following types:

Blocking: Waiting until the result is returned
Non-blocking: Processing the emitted elements asynchronously
Cold: Emitting an element at the observer's request
Hot: Emitting elements whether an observer has subscribed or not

An observable object can be an object of one of the following classes of the
io.reactivex package:

Observable<T>: Can emit none, one, or many elements; does not support
backpressure.
Flowable<T>: Can emit none, one, or many elements; supports backpressure.
Single<T>: Can emit either one element or error; the notion of backpressure
does not apply.

http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html

Reactive Programming Chapter 15

[538]

Maybe<T>: Represents a deferred computation; can emit either no value, one
value, or error; the notion of backpressure does not apply.
Completable: Represents a deferred computation without any value; indicates
completion of the task or error; the notion of backpressure does not apply.

An object of each of these classes can behave as blocking, non-blocking, cold, or a hot
observable. They are different because of the number of values that can be emitted,
an ability to defer the returning of the result, or returning the flag of the task completion
only, and because of their ability to handle backpressure.

Blocking versus non-blocking
To demonstrate this behavior, we create an observable that emits five sequential integers,
starting with 1:

Observable<Integer> obs = Observable.range(1,5);

All the blocking methods (operators) of Observable starts with the "blocking", so the
blockingLast() is one of the blocking operators, which blocks the pipeline until the last
of the elements is emitted:

Double d2 = obs.filter(i -> i % 2 == 0)
 .doOnNext(System.out::println) //prints 2 and 4
 .map(Math::sqrt)
 .delay(100, TimeUnit.MILLISECONDS)
 .blockingLast();
System.out.println(d2); //prints: 2.0

In this example, we select only even numbers, print the selected element, then calculate the
square root and wait for 100 ms (imitating a long-running calculation). The result of this
example looks as follows:

The non-blocking version of the same functionality looks as follows:

List<Double> list = new ArrayList<>();
obs.filter(i -> i % 2 == 0)
 .doOnNext(System.out::println) //prints 2 and 4
 .map(Math::sqrt)
 .delay(100, TimeUnit.MILLISECONDS)

Reactive Programming Chapter 15

[539]

 .subscribe(d -> {
 if(list.size() == 1){
 list.remove(0);
 }
 list.add(d);
 });
System.out.println(list); //prints: []

We use the List object to capture the result because, as you may remember, the lambda
expression does not allow using the non-final variables.

As you can see, the resulting list is empty. That is because the pipeline calculations are
performed without blocking (asynchronously). So, because of the delay of 100 ms, the
control meanwhile went down to the last line that prints the list content, which is still
empty. We can set a delay in front of the last line:

try {
 TimeUnit.MILLISECONDS.sleep(200);
} catch (InterruptedException e) {
 e.printStackTrace();
}
System.out.println(list); //prints: [2.0]

The delay has to be 200 ms at least because the pipeline processes two elements, each with
100 ms delay. Now, you can see, the list contains an expected value of 2.0.

That is basically the difference between blocking and non-blocking operators. Other classes,
that represent an observable, have similar blocking operators. Here are examples of
blocking Flowable, Single, and Maybe:

Flowable<Integer> obs = Flowable.range(1,5);
Double d2 = obs.filter(i -> i % 2 == 0)
 .doOnNext(System.out::println) //prints 2 and 4
 .map(Math::sqrt)
 .delay(100, TimeUnit.MILLISECONDS)
 .blockingLast();
System.out.println(d2); //prints: 2.0

Single<Integer> obs2 = Single.just(42);
int i2 = obs2.delay(100, TimeUnit.MILLISECONDS).blockingGet();
System.out.println(i2); //prints: 42

Maybe<Integer> obs3 = Maybe.just(42);
int i3 = obs3.delay(100, TimeUnit.MILLISECONDS).blockingGet();
System.out.println(i3); //prints: 42

Reactive Programming Chapter 15

[540]

The Completable class has blocking operators that allow setting a timeout:

(1) Completable obs = Completable.fromRunnable(() -> {
 System.out.println("Running..."); //prints: Running...
 try {
 TimeUnit.MILLISECONDS.sleep(200);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 });
(2) Throwable ex = obs.blockingGet();
(3) System.out.println(ex); //prints: null

//(4) ex = obs.blockingGet(15, TimeUnit.MILLISECONDS);
// java.util.concurrent.TimeoutException:
// The source did not signal an event for 15 milliseconds.

(5) ex = obs.blockingGet(150, TimeUnit.MILLISECONDS);
(6) System.out.println(ex); //prints: null

(7) obs.blockingAwait();
(8) obs.blockingAwait(15, TimeUnit.MILLISECONDS);

The result of the preceding code is presented in the following screenshot:

The first Run message comes from line 2 in response to the call of the blocking
blockingGet() method. The first null message comes from line 3. Line 4 throws an
exception because the timeout was set to 15 ms, while the actual processing is set to a 100
ms delay. The second Run message comes from line 5 in response to the
blockingGet() method call. This time, the timeout is set to 150 ms, which is more than
100 ms, and the method was able to return before the timeout was up.

The last two lines, 7 and 8, demonstrate the usage of the blockingAwait() method with
and without a timeout. This method does not return a value but allows the observable
pipeline to run its course. It is interesting to notice that it does not break with an exception
even when the timeout is set to a smaller value than the time the pipelines takes to finish.
Apparently, it starts its waiting after the pipeline has finished processing unless it is a
defect that will be fixed later (the documentation is not clear on this point).

Reactive Programming Chapter 15

[541]

Although the blocking operations exist (and we will review more of such while talking
about each observable type in the following sections), they are and should be used only in
the cases when it is not possible to implement the required functionality using non-
blocking operations only. The main thrust of reactive programming is to strive to process
all requests asynchronously in a non-blocking style.

Cold versus hot
All the examples we have seen so far demonstrated only a cold observable, those that
provide the next value only at the request of the processing pipeline after the previous
value has been processed already. Here is another example:

Observable<Long> cold = Observable.interval(10, TimeUnit.MILLISECONDS);
cold.subscribe(i -> System.out.println("First: " + i));
pauseMs(25);
cold.subscribe(i -> System.out.println("Second: " + i));
pauseMs(55);

We have used the method interval() to create an Observable object that represents a
stream of sequential numbers emitted every specified interval (in our case, every 10 ms).
Then, we subscribed to the created object, wait 25 ms, subscribe again, and wait another 55
ms. The pauseMs() method looks as follows:

void pauseMs(long ms){
 try {
 TimeUnit.MILLISECONDS.sleep(ms);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
}

If we run the preceding example, the output will be as follows:

Reactive Programming Chapter 15

[542]

As you can see, each of the pipelines processed every value emitted by the cold observable.

To convert the cold observable into a hot one, we use the publish() method that converts
the observable into a ConnectableObservable object that extends the Observable:

ConnectableObservable<Long> hot =
 Observable.interval(10, TimeUnit.MILLISECONDS).publish();
hot.connect();
hot.subscribe(i -> System.out.println("First: " + i));
pauseMs(25);
hot.subscribe(i -> System.out.println("Second: " + i));
pauseMs(55);

As you can see, we have to call the connect() method in order that
the ConnectableObservable object starts emitting values. The output looks like the
following:

The output shows that the second pipeline did not receive the first three values because it
has subscribed to the observable later. So, the observable emits values independent of the
ability of the observers to process them. If the processing falls behind, and new values keep
coming while previous ones are not fully processed yet, the Observable class puts them
into a buffer. If this buffer grows big enough, the JVM can run out of memory because, as
we have mentioned already, the Observable class does not have an ability of backpressure
management.

For such cases, the Flowable class is a better candidate for the observable because it does
have an ability to handle the backpressure. Here is an example:

PublishProcessor<Integer> hot = PublishProcessor.create();
hot.observeOn(Schedulers.io(), true)
 .subscribe(System.out::println, Throwable::printStackTrace);

Reactive Programming Chapter 15

[543]

for (int i = 0; i < 1_000_000; i++) {
 hot.onNext(i);
}

The PublishProcessor class extends Flowable and has the onNext(Object o) method
that forces it to emit the passed-in object. Before calling it, we have subscribed to the
observable using the Schedulers.io() thread. We will talk about the schedulers in
the Multithreading (Scheduler) section.

The subscribe() method has several overloaded versions. We decided to use the one that
accepts two Consumer functions: the first one processes the passed-in value, the second
processes an exception if it was thrown by any of the pipeline operations (similar to a
Catch block).

If we run the preceding example, it will print successfully the first 127 values and then will
throw MissingBackpressureException, as shown on the following screenshot:

The message in the exception provides a clue: Could not emit value due to lack of
requests. Apparently, the rate of emitting the values is higher than the rate of consuming
them and an internal buffer can keep only 128 elements. If we add a delay (simulating a
longer processing time), the result will be even worse:

PublishProcessor<Integer> hot = PublishProcessor.create();
hot.observeOn(Schedulers.io(), true)
 .delay(10, TimeUnit.MILLISECONDS)
 .subscribe(System.out::println, Throwable::printStackTrace);
for (int i = 0; i < 1_000_000; i++) {
 hot.onNext(i);
}

Even the first 128 elements will not get through and the output will have only
MissingBackpressureException.

To address the issue, a backpressure strategy has to be set. For example, let's drop every
value that the pipeline did not manage to process:

PublishProcessor<Integer> hot = PublishProcessor.create();
hot.onBackpressureDrop(v -> System.out.println("Dropped: "+ v))

Reactive Programming Chapter 15

[544]

 .observeOn(Schedulers.io(), true)
 .subscribe(System.out::println, Throwable::printStackTrace);
for (int i = 0; i < 1_000_000; i++) {
 hot.onNext(i);
}

Notice that the strategy has to be set before the observeOn() operation, so it will be picked
up by the created Schedulers.io() thread.

The output shows that many of the emitted values were dropped. Here is an output
fragment:

We will talk about other backpressure strategies in the Operators section, in the overview of
the corresponding operators.

Disposable
Please notice that a subscribe() method actually returns a Disposable object that can be
queried to check whether the pipeline processing has been completed (and disposed of):

Observable<Integer> obs = Observable.range(1,5);
List<Double> list = new ArrayList<>();
Disposable disposable =
 obs.filter(i -> i % 2 == 0)
 .doOnNext(System.out::println) //prints 2 and 4
 .map(Math::sqrt)
 .delay(100, TimeUnit.MILLISECONDS)
 .subscribe(d -> {
 if(list.size() == 1){
 list.remove(0);
 }
 list.add(d);
 });
System.out.println(list); //prints: []

Reactive Programming Chapter 15

[545]

System.out.println(disposable.isDisposed()); //prints: false
try {
 TimeUnit.MILLISECONDS.sleep(200);
} catch (InterruptedException e) {
 e.printStackTrace();
}
System.out.println(disposable.isDisposed()); //prints: true
System.out.println(list); //prints: [2.0]

It is also possible to enforce the disposing of a pipeline, thus effectively canceling the
processing:

Observable<Integer> obs = Observable.range(1,5);
List<Double> list = new ArrayList<>();
Disposable disposable =
 obs.filter(i -> i % 2 == 0)
 .doOnNext(System.out::println) //prints 2 and 4
 .map(Math::sqrt)
 .delay(100, TimeUnit.MILLISECONDS)
 .subscribe(d -> {
 if(list.size() == 1){
 list.remove(0);
 }
 list.add(d);
 });
System.out.println(list); //prints: []
System.out.println(disposable.isDisposed()); //prints: false
disposable.dispose();
try {
 TimeUnit.MILLISECONDS.sleep(200);
} catch (InterruptedException e) {
 e.printStackTrace();
}
System.out.println(disposable.isDisposed()); //prints: true
System.out.println(list); //prints: []

As you can see, by adding the call to disposable.dispose(), we have stopped
processing: the list content, even after a 200 ms delay, remains empty (the last line of the
preceding example).

This method of forced disposal can be used to make sure that there are no run-away
threads. Each created Disposable object can be disposed of in the same way the resources
are released in a finally block. The CompositeDisposable class helps to handle
multiple Disposable objects in a coordinated manner.

When an onComplete or onError event happens, the pipeline is disposed of
automatically.

Reactive Programming Chapter 15

[546]

For example, you can use the add() method and add a newly created Disposable object
to the CompositeDisposable object. Then, when necessary, the clear() method can be
invoked on the CompositeDisposable object. It will remove the
collected Disposable objects and call the dispose() method on each of them.

Creating an observable
You have seen already a few methods of creating an observable in our examples. There are
many other factory methods in Observable, Flowable, Single, Maybe,
and Completable. Not all of the following methods are available in each of these interfaces
though (see the comments; all means that all of the listed interfaces have it):

create(): Creates an Observable object by providing the full implementation
(all)
defer(): Creates a new Observable object every time a new Observer
subscribes (all)
empty(): Creates an empty Observable object that completes immediately
upon subscription (all, except Single)
never(): Creates an Observable object that does not emit anything and does
nothing at all; does not even complete (all)
error(): Creates an Observable object that emits an exception immediately
upon subscription (all)
fromXXX(): Creates an Observable object, where XXX can be Callable,
Future (all), Iterable, Array, Publisher (Observable and Flowable), Action,
Runnable (Maybe and Completable); which means it creates an
Observable object based on the provided function or object
generate(): Creates a cold Observable object that generates values based on
the provided function or object (Observable and Flowable only)
range(), rangeLong(), interval(), intervalRange(): Creates an
Observable object that emits sequential int or long values limited or not by
the specified range and spaced by the specified time
interval (Observable and Flowable only)
just(): Creates an Observable object based on the provided object or a set of
objects (all, except Completable)
timer(): Creates an Observable object that, after the specified time, emits
an 0L signal (all) and then completes for Observable and Flowable

Reactive Programming Chapter 15

[547]

There are also many other helpful methods, such as repeat(), startWith(), and similar.
We just do not have enough space to list all of them. Refer to the online documentation
(http://reactivex. io/ RxJava/ 2. x/ javadoc/ index. html).

Let's look at an example of the create() method usage. The create() method of
Observable looks as follows:

public static Observable<T> create(ObservableOnSubscribe<T> source)

The passed-in object has to be an implementation of the functional interface
ObservableOnSubscribe<T> that has only one abstract method, subscribe():

void subscribe(ObservableEmitter<T> emitter)

The ObservableEmitter<T> interface contains the following methods:

boolean isDisposed(): Returns true if the processing pipeline
was disposed or the emitter was terminated
ObservableEmitter<T> serialize(): Provides the serialization algorithm
used by the calls to onNext(), onError(), and onComplete(), located in the
base class Emitter
void setCancellable(Cancellable c): Sets on this emitter a
Cancellable implementation (a functional interface that has only one
method,cancel())
void setDisposable(Disposable d): Sets on this
emitter a Disposable implementation (an interface that has two
methods: isDispose() and dispose())
boolean tryOnError(Throwable t): Handles the error condition, attempts to
emit the provided exception, and returns false if the emission is not allowed

To create an observable, all the preceding interfaces can be implemented as follows:

ObservableOnSubscribe<String> source = emitter -> {
 emitter.onNext("One");
 emitter.onNext("Two");
 emitter.onComplete();
};
Observable.create(source)
 .filter(s -> s.contains("w"))
 .subscribe(v -> System.out.println(v),
 e -> e.printStackTrace(),
 () -> System.out.println("Completed"));
pauseMs(100);

http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html

Reactive Programming Chapter 15

[548]

Let's look at the preceding example closer. We have created an ObservableOnSubscribe
function source and implemented the emitter: we told the emitter to emit One at the first
call to onNext(), to emit Two at the second call to onNext(), and then to call
onComplete(). We have passed the source function into the create() method and built
the pipeline to process all the emitted values.

To make it more interesting, we have added the filter() operator that allows
propagating further only the values with the w character. We have also chosen the
subscribe() method version with three parameters: the functions Consumer
onNext, Consumer onError, and Action onComplete. The first is called every time a
next value reached the method, the second is called when an exception was emitted, and
the third is called when the source emits an onComplete() signal. After creating the
pipeline, we have paused for 100 ms to give the asynchronous process a chance to finish.
The result looks as follows:

If we remove the line emitter.onComplete() from the emitter implementation, only
message Two will be displayed.

Those are the basics of how the create() method can be used. As you can see, it allows for
a full customization. In practice, it is rarely used because there are many simpler ways to
create an observable. We review them in the following sections.

You will see examples of other factory methods used in our examples throughout other
sections of this chapter.

Operators
There are literally hundreds (if we count all the overloaded versions) of operators available
in each of the observable interfaces, Observable, Flowable, Single, Maybe,
or Completable.

In Observable and Flowable, the number of methods goes beyond 500. That is why in
this section we are going to provide just an overview and a few examples that will help the
reader to navigate the maze of possible options.

To help see the big picture, we have grouped all the operators into ten categories:
transforming, filtering, combining, converting from XXX, exceptions handling, life cycle
events handling, utilities, conditional and boolean, backpressure, and connectable.

Reactive Programming Chapter 15

[549]

Please notice, these are not all the operators available. You can see more in
the online documentation (http:/ /reactivex. io/ RxJava/ 2. x/javadoc/
index. html).

Transforming
These operators transform the values emitted by an observable:

buffer(): Collects the emitted values into bundles according to the provided
parameters or using the provided functions, and emits these bundles periodically
one at a time
flatMap(): Produces observables based on the current observable and inserts
them into the current flow, one of the most popular operators
groupBy(): Divides the current Observable into groups of observables
(GroupedObservables objects)
map(): Transforms the emitted value using the provided function
scan(): Applies the provided function to each value in combination with the
value produced as the result of the previous application of the same function to
the previous value
window(): Emits groups of values similar to buffer() but as observables, each
of which emits a subset of values from the original observable and then
terminates with an onCompleted()

The following code demonstrates the use of map(), flatMap(), and groupBy():

Observable<String> obs = Observable.fromArray("one", "two");

obs.map(s -> s.contains("w") ? 1 : 0)
 .forEach(System.out::print); //prints: 01

List<String> os = new ArrayList<>();
List<String> noto = new ArrayList<>();
obs.flatMap(s -> Observable.fromArray(s.split("")))
 .groupBy(s -> "o".equals(s) ? "o" : "noto")
 .subscribe(g -> g.subscribe(s -> {
 if (g.getKey().equals("o")) {
 os.add(s);
 } else {
 noto.add(s);
 }
 }));

http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html
http://reactivex.io/RxJava/2.x/javadoc/index.html

Reactive Programming Chapter 15

[550]

System.out.println(os); //prints: [o, o]
System.out.println(noto); //prints: [n, e, t, w]

Filtering
The following operators (and their multiple overloaded versions) select which of the values
will continue to flow through the pipeline:

debounce(): Emits a value only when a specified time-span has passed without
the observable emitting another value
distinct(): Selects only unique values
elementAt(long n): Emits only one value with the specified n position in the
stream
filter(): Emits only the values that match the specified criteria
firstElement(): Emits only the first value
ignoreElements(): Does not emit values; only the onComplete() signal goes
through
lastElement(): Emits only the last value
sample(): Emits the most recent value emitted within the specified time interval
skip(long n): Skips the first n values
take(long n): Emits only the first n values

The following are examples of some of the just-listed operators' uses:

Observable<String> obs = Observable.just("onetwo")
 .flatMap(s -> Observable.fromArray(s.split("")));
// obs emits "onetwo" as characters
obs.map(s -> {
 if("t".equals(s)){
 NonBlockingOperators.pauseMs(15);
 }
 return s;
 })
 .debounce(10, TimeUnit.MILLISECONDS)
 .forEach(System.out::print); //prints: eo
obs.distinct().forEach(System.out::print); //prints: onetw
obs.elementAt(3).subscribe(System.out::println); //prints: t
obs.filter(s -> s.equals("o"))
 .forEach(System.out::print); //prints: oo
obs.firstElement().subscribe(System.out::println); //prints: o
obs.ignoreElements().subscribe(() ->
 System.out.println("Completed!")); //prints: Completed!

Reactive Programming Chapter 15

[551]

Observable.interval(5, TimeUnit.MILLISECONDS)
 .sample(10, TimeUnit.MILLISECONDS)
 .subscribe(v -> System.out.print(v + " ")); //prints: 1 3 4 6 8
pauseMs(50);

Combining
The following operators (and their multiple overloaded versions) create a new observable
using multiple source observables:

concat(src1, src2): Creates an Observable that emits all values of src1,
then all values of src2
combineLatest(src1, src2, combiner): Creates an Observable that
emits a value emitted by either of two sources combined with the latest value
emitted by each source using the provided function combiner
join(src2, leftWin, rightWin, combiner): Combines values emitted by
two observables during the leftWin and rightWin time windows according to
the combiner function
merge(): Combines multiple observables into one; in contrast to concat(), it
may interleave them, whereas concat() never interleaves the emitted values
from different observables
startWith(T item): Adds the specified value before emitting values from the
source observable
startWith(Observable<T> other): Adds the values from the specified
observable before emitting values from the source observable
switchOnNext(Observable<Observable> observables): Creates a new
Observable that emits the most-recently emitted values of the specified
observables
zip(): Combines the values of the specified observables using the provided
function

The following code demonstrates the use of some of these operators:

Observable<String> obs1 = Observable.just("one")
 .flatMap(s -> Observable.fromArray(s.split("")));
Observable<String> obs2 = Observable.just("two")
 .flatMap(s -> Observable.fromArray(s.split("")));
Observable.concat(obs2, obs1, obs2)
 .subscribe(System.out::print); //prints: twoonetwo
Observable.combineLatest(obs2, obs1, (x,y) -> "("+x+y+")")
 .subscribe(System.out::print); //prints: (oo)(on)(oe)

Reactive Programming Chapter 15

[552]

System.out.println();
obs1.join(obs2, i -> Observable.timer(5, TimeUnit.MILLISECONDS),
 i -> Observable.timer(5, TimeUnit.MILLISECONDS),
 (x,y) -> "("+x+y+")").subscribe(System.out::print);
 //prints: (ot)(nt)(et)(ow)(nw)(ew)(oo)(no)(eo)
Observable.merge(obs2, obs1, obs2)
 .subscribe(System.out::print); //prints: twoonetwo
obs1.startWith("42")
 .subscribe(System.out::print); //prints: 42one
Observable.zip(obs1, obs2, obs1, (x,y,z) -> "("+x+y+z+")")
 .subscribe(System.out::print); //prints: (oto)(nwn)(eoe)

Converting from XXX
These operators are pretty straightforward. Here is the list of from-XXX operators of the
Observable class:

fromArray(T... items): Creates an Observable from a varargs
fromCallable(Callable<T> supplier): Creates an Observable from a
Callable function
fromFuture(Future<T> future): Creates an Observable from a Future
object
fromFuture(Future<T> future, long timeout, TimeUnit

unit): Creates an Observable from a Future object with the timeout
parameters applied to the future
fromFuture(Future<T> future, long timeout, TimeUnit unit,

Scheduler scheduler): Creates an Observable from a Future object with
the timeout parameters applied to the future and the scheduler
(Schedulers.io() is recommended, see the Multithreading (Scheduler) section)
fromFuture(Future<T> future, Scheduler scheduler): Creates an
Observable from a Future object on the specified
scheduler (Schedulers.io() is recommended, see the Multithreading
(Scheduler) section)
fromIterable(Iterable<T> source): Creates an Observable from an
iterable object (List, for example)
fromPublisher(Publisher<T> publisher): Creates an Observable from a
Publisher object

Reactive Programming Chapter 15

[553]

Exceptions handling
The subscribe() operator has an overloaded version that accepts the
Consumer<Throwable> function that handles any exception raised anywhere in the
pipeline. It works similar to the all-embracing try-catch block. If you have this function
passed into the subscribe() operator, you can be sure that is the only place where all
exceptions will end up.

But, if you need to handle the exceptions in the middle of the pipeline, so the values flow
can be recovered and processed by the rest of the operators, after the operator that has
thrown the exception, the following operators (and their multiple overloaded versions)
can help with that:

onErrorXXX(): Resumes the provided sequence when an exception was caught;
XXX indicates what the operator
does: onErrorResumeNext(), onErrorReturn(), or onErrorReturnItem()
retry(): Creates an Observable that repeats the emissions emitted from the
source; re-subscribes to the source Observable if it calls onError()

The demo code looks as follows:

Observable<String> obs = Observable.just("one")
 .flatMap(s -> Observable.fromArray(s.split("")));
Observable.error(new RuntimeException("MyException"))
 .flatMap(x -> Observable.fromArray("two".split("")))
 .subscribe(System.out::print,
 e -> System.out.println(e.getMessage())//prints: MyException
);
Observable.error(new RuntimeException("MyException"))
 .flatMap(y -> Observable.fromArray("two".split("")))
 .onErrorResumeNext(obs)
 .subscribe(System.out::print); //prints: one
Observable.error(new RuntimeException("MyException"))
 .flatMap(z -> Observable.fromArray("two".split("")))
 .onErrorReturnItem("42")
 .subscribe(System.out::print); //prints: 42

Life cycle events handling
These operators are invoked each on a certain event that happened anywhere in the
pipeline. They work similarly to the operators described in the Exceptions handling section.

Reactive Programming Chapter 15

[554]

The format of these operators is doXXX(), where XXX is the name of the event:
onComplete, onNext, onError, and similar. Not all of them are available in all the classes,
and some of them are slightly different in Observable, Flowable, Single, Maybe, or
Completable. But, we do not have space to list all the variations of all these classes and
will limit our overview to a few examples of the life cycle events-handling operators of
the Observable class:

doOnSubscribe(Consumer<Disposable> onSubscribe): Executes when an
observer subscribes
doOnNext(Consumer<T> onNext): Applies the
provided Consumer function when the source observable calls onNext
doAfterNext(Consumer<T> onAfterNext): Applies the provided Consumer
function to the current value after it is pushed downstream
doOnEach(Consumer<Notification<T>> onNotification): Executes
the Consumer function for each emitted value
doOnEach(Observer<T> observer): Notifies an Observer for each emitted
value and the terminal event it emits
doOnComplete(Action onComplete): Executes the provided Action function
after the source observable generates the onComplete event
doOnDispose(Action onDispose): Executes the provided Action function
after the pipeline was disposed of by the downstream
doOnError(Consumer<Throwable> onError): Executes when the onError
event is sent
doOnLifecycle(Consumer<Disposable> onSubscribe, Action

onDispose): Calls the corresponding onSubscribe or onDispose function for
the corresponding event
doOnTerminate(Action onTerminate): Executes
the provided Action function when the source observable generates
the onComplete event or an exception (onError event) is raised
doAfterTerminate(Action onFinally): Executes the provided
Action function after the source observable generates the onComplete event or
an exception (onError event) is raised
doFinally(Action onFinally): Executes the provided Action function after
the source observable generates the onComplete event or an exception
(onError event) is raised, or the pipeline was disposed of by the downstream

Reactive Programming Chapter 15

[555]

Here is a demo code:

Observable<String> obs = Observable.just("one")
 .flatMap(s -> Observable.fromArray(s.split("")));

obs.doOnComplete(() -> System.out.println("Completed!"))
 .subscribe(v -> {
 System.out.println("Subscribe onComplete: " + v);
 });
pauseMs(25);

If we run this code, the output will be as follows:

You will also see other examples of these operators' usage in the Multithreading (scheduler)
section.

Utilities
Various useful operators (and their multiple overloaded versions) can be used for
controlling the pipeline behavior:

delay(): Delays the emission by the specified period of time
materialize(): Creates an Observable that represents both the emitted values
and the notifications sent
dematerialize(): Reverses the result of the materialize() operator
observeOn(): Specifies the Scheduler (thread) on which the Observer should
observe the Observable (see the Multithreading (scheduler) section)
serialize(): Forces serialization of the emitted values and notifications

subscribe(): Subscribes to the emissions and notifications from
an observable; various overloaded versions accept callbacks used
for a variety of events, including onComplete and onError; only
after subscribe() is invoked the values start flowing through the
pipeline

Reactive Programming Chapter 15

[556]

subscribeOn(): Subscribes the Observer to the Observable asynchronously
using the specified Scheduler (see the Multithreading (scheduler) section)
timeInterval(), timestamp(): Converts an Observable<T> that emits
values into Observable<Timed<T>>, which, in turn, emits the amount of time
elapsed between the emissions or the timestamp correspondingly
timeout(): Repeats the emissions of the source Observable; generates an error
if no emissions happen after the specified period of time
using(): Creates a resource that is disposed of automatically along with the
Observable; works similarly to the try-with-resources construct

The following code contains a few examples of some of these operators used in a pipeline:

Observable<String> obs = Observable.just("one")
 .flatMap(s -> Observable.fromArray(s.split("")));
obs.delay(5, TimeUnit.MILLISECONDS)
 .subscribe(System.out::print); //prints: one
pauseMs(10);
System.out.println(); //used here just to break the line
Observable source = Observable.range(1,5);
Disposable disposable = source.subscribe();
Observable.using(
 () -> disposable,
 x -> source,
 y -> System.out.println("Disposed: " + y) //prints: Disposed: DISPOSED
)
.delay(10, TimeUnit.MILLISECONDS)
.subscribe(System.out::print); //prints: 12345
pauseMs(25);

If we run all these examples, the output will look as follows:

As you can see, the pipeline, when completed, sends the DISPOSED signal to
the using operator (the third parameter), so the Consumer function we pass as the third
parameter can dispose of the resource used by the pipeline.

Reactive Programming Chapter 15

[557]

Conditional and Boolean
The following operators (and their multiple overloaded versions) allow the evaluating of
one or more observables or emitted values and change the logic of the processing
accordingly:

all(Predicate criteria): Returns Single<Boolean> with a true value, if
all the emitted values match the provided criteria
amb(): Accepts two or more source observables and emits values from only the
first of them that starts emitting
contains(Object value): Returns Single<Boolean> with true, if
the observable emits the provided value
defaultIfEmpty(T value): Emits the provided value if the source
Observable does not emit anything
sequenceEqual(): Returns Single<Boolean> with true, if the provided
sources emit the same sequence; an overloaded version allows to provide the
equality function used for comparison
skipUntil(Observable other): Discards emitted values until the provided
Observable other emits a value
skipWhile(Predicate condition): Discards emitted values as long as the
provided condition remains true
takeUntil(Observable other): Discards emitted values after the
provided Observable other emits a value
takeWhile(Predicate condition): Discards emitted values after the
provided condition became false

This code contains a few demo examples:

Observable<String> obs = Observable.just("one")
 .flatMap(s -> Observable.fromArray(s.split("")));
Single<Boolean> cont = obs.contains("n");
System.out.println(cont.blockingGet()); //prints: true
obs.defaultIfEmpty("two")
 .subscribe(System.out::print); //prints: one
Observable.empty().defaultIfEmpty("two")
 .subscribe(System.out::print); //prints: two

Single<Boolean> equal = Observable.sequenceEqual(obs,
 Observable.just("one"));
System.out.println(equal.blockingGet()); //prints: false

equal = Observable.sequenceEqual(Observable.just("one"),

Reactive Programming Chapter 15

[558]

 Observable.just("one"));
System.out.println(equal.blockingGet()); //prints: true

equal = Observable.sequenceEqual(Observable.just("one"),
 Observable.just("two"));
System.out.println(equal.blockingGet()); //prints: false

Backpressure
We have discussed and demonstrated the backpressure effect and the possible drop
strategy in Cold versus hot section. The other strategy may be as follows:

Flowable<Double> obs = Flowable.fromArray(1.,2.,3.);
obs.onBackpressureBuffer().subscribe();
//or
obs.onBackpressureLatest().subscribe();

The buffering strategy allows defining the buffer size and providing a function that can be
executed if the buffer overflows. The latest strategy tells the values producer to
pause (when the consumer cannot process the emitted values on time) and emit the next
value on request.

The backpressure operators are available only in the Flowable class.

Connectable
The operators of this category allow connecting observables and thus achieve more
precisely-controlled subscription dynamics:

publish(): Converts an Observable object into a ConnectableObservable
object
replay(): Returns a ConnectableObservable object that repeats all the
emitted values and notifications every time a new Observer subscribes
connect(): Instructs a ConnectableObservable to begin emitting values to
the subscribers
refCount(): Converts a ConnectableObservable to an Observable

We have demonstrated how ConnectableObservable works in the Cold versus hot section.
One principal difference between ConnectiableObservable and Observable is that
ConnectableObservable does not start emitting value until its connect operator is
called.

Reactive Programming Chapter 15

[559]

Multithreading (scheduler)
RxJava is single-threaded by default. This means that the source observable and all its
operators notify the observers on the same thread on which the subscribe() operator is
called.

Тhere are two operators, observeOn() and subscribeOn(), that allow moving the
executing of individual actions to a different thread. These methods take as an argument a
Scheduler object that, well, schedules the individual actions to be executed on a different
thread.

The subscribeOn() operator declares which scheduler should emit the
values.
The observeOn() operator declares which scheduler should observe and
process values.

The Schedulers class contains factory methods that create Scheduler objects with
different life cycles and performance configuration:

computation(): Creates a scheduler based on a bounded thread pool with a
size up to the number of available processors; it should be used for CPU-
intensive computations;
use Runtime.getRuntime().availableProcessors() to avoid using more
this type of schedulers than available processors; otherwise, the performance
may degrade because of the overhead of the thread-context switching
io(): Creates a scheduler based on an unbounded thread pool used for I/O-
related work, such as working with files and databases in general when the
interaction with the source is blocking by nature; avoid using it otherwise,
because it may spin too many threads and negatively affect performance and
memory usage
newThread(): Creates a new thread every time and does not use any pool; it is
an expensive way to create a thread, so you are expected to know exactly what is
the reason for using it
single(): Creates a scheduler based on a single thread that executes all the
tasks sequentially; useful when the sequence of the execution matters

Reactive Programming Chapter 15

[560]

trampoline(): Creates a scheduler that executes tasks in a first-in-first-out
manner; useful for executing recursive algorithms
from(Executor executor): Creates a scheduler based on the provided
executor (thread pool), which allows for better controlling the max number of
threads and their life cycles. We talked about thread pools in Chapter 8,
Multithreading and Concurrent Processing. To remind you, here are the pools we
have discussed:

 Executors.newCachedThreadPool();
 Executors.newSingleThreadExecutor();
 Executors.newFixedThreadPool(int nThreads);
 Executors.newScheduledThreadPool(int poolSize);
 Executors.newWorkStealingPool(int parallelism);

As you can see, some of the other factory methods of the Schedulers class are
backed by one of these thread pools and serves just as a simpler and shorter
expression of a thread pool declaration. To make the examples simpler and
comparable, we are going to use only a computation() scheduler. Let's look at
the basics of parallel/concurrent processing in RxJava.

The following code is an example of delegating CPU-intensive calculations to
dedicated threads:

Observable.fromArray("one","two","three")
 .doAfterNext(s -> System.out.println("1: " +
 Thread.currentThread().getName() + " => " + s))
 .flatMap(w -> Observable.fromArray(w.split(""))
 .observeOn(Schedulers.computation())
 //.flatMap(s -> {
 // CPU-intensive calculations go here
 // }
 .doAfterNext(s -> System.out.println("2: " +
 Thread.currentThread().getName() + " => "
+ s))
)
 .subscribe(s -> System.out.println("3: " + s));
pauseMs(100);

Reactive Programming Chapter 15

[561]

In this example, we decided to create a sub-flow of characters from each emitted word and
let a dedicated thread process characters of each word. The output of this example looks as
follows:

As you can see, the main thread was used to emit the words, and the characters of each
word were processed by a dedicated thread. Please notice that although in this example the
sequence of the results coming to the subscribe() operation corresponds to the sequence
the words and characters were emitted, in real-life cases, the calculation time of each value
will not be the same, so there is no guarantee that the results will come in the same
sequence.

If need be, we can put each word emission on a dedicated non-main thread too, so the main
thread can be free to do what else can be done. For example, note the following:

Observable.fromArray("one","two","three")
 .observeOn(Schedulers.computation())
 .doAfterNext(s -> System.out.println("1: " +
 Thread.currentThread().getName() + " => " + s))
 .flatMap(w -> Observable.fromArray(w.split(""))
 .observeOn(Schedulers.computation())
 .doAfterNext(s -> System.out.println("2: " +
 Thread.currentThread().getName() + " => " + s))
)
 .subscribe(s -> System.out.println("3: " + s));
pauseMs(100);

Reactive Programming Chapter 15

[562]

The output of this example is as follows:

As you can see, the main thread does not emit the words anymore.

In RxJava 2.0.5, a new simpler way of parallel processing was introduced, similar to the
parallel processing in the standard Java 8 streams. Using ParallelFlowable, the same
functionality can be achieved as follows:

ParallelFlowable src =
 Flowable.fromArray("one","two","three").parallel();
src.runOn(Schedulers.computation())
 .doAfterNext(s -> System.out.println("1: " +
 Thread.currentThread().getName() + " => " + s))
 .flatMap(w -> Flowable.fromArray(((String)w).split("")))
 .runOn(Schedulers.computation())
 .doAfterNext(s -> System.out.println("2: " +
 Thread.currentThread().getName() + " => " + s))
 .sequential()
 .subscribe(s -> System.out.println("3: " + s));
pauseMs(100);

Reactive Programming Chapter 15

[563]

As you can see, the ParallelFlowable object is created by applying
the parallel() operator to the regular Flowable. Then, the runOn() operator tells the
created observable to use the computation() scheduler for emitting the values. Please
notice that there is no need anymore to set another scheduler (for processing the characters)
inside the flatMap() operator. It can be set outside it – just in the main pipeline, which
makes the code simpler. The result looks like this:

As for the subscribeOn() operator, its location in the pipeline does not play any role.
Wherever it is placed, it still tells the observable which scheduler should emit the values.
Here is an example:

Observable.just("a", "b", "c")
 .doAfterNext(s -> System.out.println("1: " +
 Thread.currentThread().getName() + " => " + s))
 .subscribeOn(Schedulers.computation())
 .subscribe(s -> System.out.println("2: " +
 Thread.currentThread().getName() + " => " + s));
pauseMs(100);

Reactive Programming Chapter 15

[564]

The result looks like this:

Even if we change the location of the subscribeOn() operator as in the following
example, the result does not change:

Observable.just("a", "b", "c")
 .subscribeOn(Schedulers.computation())
 .doAfterNext(s -> System.out.println("1: " +
 Thread.currentThread().getName() + " => " + s))
 .subscribe(s -> System.out.println("2: " +
 Thread.currentThread().getName() + " => " + s));
pauseMs(100);

And, finally, here is the example with both operators:

Observable.just("a", "b", "c")
 .subscribeOn(Schedulers.computation())
 .doAfterNext(s -> System.out.println("1: " +
 Thread.currentThread().getName() + " => " + s))
 .observeOn(Schedulers.computation())
 .subscribe(s -> System.out.println("2: " +
 Thread.currentThread().getName() + " => " + s));
pauseMs(100);

The result now shows that two threads are used: one for subscribing and another for
observing:

This concludes our short overview of RxJava, which is a big and still-growing library with a
lot of possibilities, many of which we just did not have space in this book to review. We
encourage you to try and learn it because it seems that reactive programming is the way
modern data processing is heading.

Reactive Programming Chapter 15

[565]

Summary
In this chapter, the reader has learned what reactive programming is and what its main
concepts are: asynchronous, non-blocking, responsive, and so on. The reactive streams were
introduced and explained in simple terms, as well as the RxJava library, the first solid
implementation that supports reactive programming principles.

In the next chapter, we will talk about microservices as the foundation for creating reactive
systems and will review another library that successfully supports reactive programming:
Vert.x. We will use it to demonstrate how various microservices can be built.

Quiz
Select all the correct statements:1.

Asynchronous processing always provides results later.a.
Asynchronous processing always provides responses quickly.b.
Asynchronous processing can use parallel processing.c.
Asynchronous processing always provides results faster than ad.
blocking call.

Can CompletableFuture be used without using a thread pool?2.
What does nio in java.nio stand for?3.
Is an event loop the only design that supports a non-blocking API?4.
What does the Rx in RxJava stand for?5.
Which Java package of Java Class Library (JCL) supports reactive streams?6.
Select all classes from the following list that can represent an observable in a7.
reactive stream:

Flowablea.
Probablyb.
CompletableFuturec.
Singled.

Reactive Programming Chapter 15

[566]

How do you know that the particular method (operator) of the Observable class8.
is blocking?
What is the difference between a cold and a hot observable?9.
The subscribe() method of Observable returns the Disposable object. What10.
happens when the dispose() method is called on this object?
Select all the names of the methods that create an Observable object:11.

interval()a.
new()b.
generate()c.
defer()d.

Name two transforming Observable operators.12.
Name two filtering Observable operators.13.
Name two backpressure-processing strategies.14.
Name two Observable operators that allow adding threads to the pipeline15.
processing.

16
Microservices

In this chapter, you will learn what microservices are, how they are different from other
architectural styles, and how existing microservice frameworks support message-driven
architecture. We will also help you to decide on the size of a microservice and discuss
whether the service size plays any role in identifying it as a microservice or not. By the end
of the chapter, you will understand how to build microservices and use them as the
foundational component for creating a reactive system. We will support the discussion with
a detailed code demonstration of a small reactive system built using the Vert.x toolkit.

The following topics will be covered in this chapter:

What is a microservice?
The size of a microservice
How microservices talk to each other
An example of a reactive system of microservices

What is a microservice?
With processing loads constantly increasing, the conventional way of addressing the issue
is to add more servers with the same .ear or .war file deployed and then join them all
together in a cluster. This way, a failed server can be automatically replaced with another
one, and the system will experience no decrease in its performance. The database that backs
all the clustered servers is typically clustered too.

Increasing the number of clustered servers, however, is far too coarse-grained a solution for
scalability, especially if the processing bottleneck is localized in only one of many
procedures that are running in the application. Imagine that one particular CPU- or I/O-
intensive process slows down the whole application; adding another server just to mitigate
the problem of only one part of the application may carry too much of an overhead.

Microservices Chapter 16

[568]

One way to decrease the overhead is to split the application into tiers: frontend (or a web
tier), middle tier (or an app tier), and backend (or a backend tier). Each tier can be deployed
independently with its own cluster of servers so that each tier can grow horizontally and
remain independent of the other tiers. Such a solution makes scalability more flexible;
however, at the same, this complicates the deployment process as more deployable units
need to be taken care of.

Another way to guarantee the smooth deployment of each tier could be to deploy new code
in one server at a time – especially if the new code is designed and implemented with
backward compatibility in mind. This approach works fine for the front and middle tiers,
but may not be as smooth for the backend. Added to this are unexpected outages during
the deployment process that are caused by human error, defects in the code, pure accident,
or a combination of all of these – thus, it is easy to understand why very few people look
forward to the deployment process of a major release during production.

Yet, breaking the application into tiers may still be too coarse. In this case, some of the
critical parts of the application, especially those that require more scaling than others, can
be deployed in their own cluster of servers, and simply provide services to other parts of the
system.

In fact, this is how Service-Oriented Architecture (SOA) was born. The complication that
arose from increasing the number of deployable units was partially offset when
independently deployed services were identified not only by their need for scalability but
also by how often the code in them was changed. Early identification of this during the
design process simplifies the deployment because only a few parts need to be changed and
redeployed more often than the other parts of the system. Unfortunately, it is not easy to
predict how the future system is going to evolve. That is why an independent deployment
unit is often identified as a precaution because it is easier to do this during design time as
opposed to later on. And this, in turn, leads to a continual decrease in the size of the
deployable units.

Unfortunately, maintaining and coordinating a loose system of services comes at a price.
Each participant has to be responsible for maintaining its API not only in formal terms
(such as names and types) but also in spirit: the results produced by a new version of the
same service have to be the same in terms of scale. Keeping the same value by type but then
making it bigger or smaller in terms of scale would probably be unacceptable to the clients
of the service. So, despite the declared independence, the service authors have to be more
aware of who their clients are and what their needs are.

Microservices Chapter 16

[569]

Fortunately, splitting an application into independently deployable units has brought
several unexpected benefits that have increased the motivation for breaking a system into
smaller services. The physical isolation allows more flexibility in choosing a programming
language and the implementation platform. It also helps you to select technology that is the
best for the job and to hire specialists who are able to implement it. By doing so, you are not
bound by the technology choices made for the other parts of the system. This has also
helped recruiters be more flexible when it comes to finding necessary talent, which is a big
advantage as the demand for work continues to outpace the inflow of specialists into the
job market.

Each independent part (service) is able to evolve at its own pace and become more
sophisticated as long as the contract with the other parts of the system does not change or is
introduced in a well-coordinated manner. This is how microservices came into being, and
they have since been put to work by the giants of data processing, such as Netflix, Google,
Twitter, eBay, Amazon, and Uber. Now let's talk about the results of this effort and the
lessons learned.

The size of a microservice
There is no universal answer to the question How small does a microservice have to be? The
general consensus aligns itself with the following characteristics of a microservice (in
no particular order):

The size of the source code should be smaller than that of the service in SOA
architecture.
One development team should be able to support several microservices, and the
size of the team should be such that two pizzas are enough to provide lunch for
the whole team.
It has to be deployable and independent of other microservices, assuming there is
no change in the contract (that is, the API).
Each microservice has to have its own database (or schema, or set of tables, at
least) – although, this is a subject of debate, especially in cases where several
microservices are able to modify the same dataset; if the same team maintains all
of them, it is easier to avoid a conflict while modifying the same data
concurrently.
It has to be stateless and idempotent; if one instance of the microservice has
failed, another one should be able to accomplish what was expected from the
failed microservice.

Microservices Chapter 16

[570]

It should provide a way to check its health, which proves that the service is up
and running, has all the necessary resources, and is ready to do the job.

The sharing of resources needs to be considered during the design process, development,
and after deployment and monitored for the validation of the assumptions about the degree
of interference (blocking, for example) while accessing the same resource from
different processes. Special care also needs to be taken during the modification process of
the same persistent data whether shared across databases, schemas, or just tables within the
same schema. If eventual consistency is acceptable (which is often the case for larger sets of
data used for statistical purposes), then special measures are necessary. But the need for
transactional integrity poses an often difficult problem.

One way to support a transaction across several microservices is to create a service that will
play the role of a Distributed Transaction Manager (DTM). In this way, other services can
pass requests for data modification to it. The DTM service can keep the concurrently
modified data in its own database table and move the results into the target table(s) in one
transaction only after the data becomes consistent. For example, money can be added to an
account by one microservice only when the corresponding amount is added to a ledger by
another microservice.

If the time taken to access the data is an issue, or if you need to protect the database from an
excessive number of concurrent connections, dedicating a database to a microservice may
be the solution. Alternatively, a memory cache may be the way to go. Adding a service that
provides access to the cache increases the isolation of the services, but requires
synchronization between the peers that are managing the same cache (which is sometimes
difficult).

After reviewing all the listed points and possible solutions, the size of each microservice
should depend on the result of these considerations, and not as a blank statement of size
imposed on all the services. This helps to avoid unproductive discussions and produce a
result that is tailored to address a particular project and its needs.

How microservices talk to each other
There are more than a dozen frameworks that are currently used for building
microservices. Two of the most popular are Spring Boot (https:/ / spring. io/ projects/
spring-boot) and MicroProfile (https:/ / microprofile. io) with the declared goal of
optimizing Enterprise Java for a microservices-based architecture. The lightweight open
source microservice framework, KumuluzEE (https:/ /ee. kumuluz. com) is compliant with
MicroProfile.

https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://microprofile.io
https://microprofile.io
https://microprofile.io
https://microprofile.io
https://microprofile.io
https://microprofile.io
https://microprofile.io
https://ee.kumuluz.com
https://ee.kumuluz.com
https://ee.kumuluz.com
https://ee.kumuluz.com
https://ee.kumuluz.com
https://ee.kumuluz.com
https://ee.kumuluz.com
https://ee.kumuluz.com
https://ee.kumuluz.com

Microservices Chapter 16

[571]

Here is a list of other frameworks (in alphabetical order):

Akka: This is a toolkit for building highly concurrent, distributed, and resilient,
message-driven applications for Java and Scala (akka.io).
Bootique: This is a minimally opinionated framework for runnable Java apps
(bootique.io).
Dropwizard: This is a Java framework for developing operations-friendly, high-
performance, and RESTful web services (www.dropwizard.io).
Jodd: This is a set of Java microframeworks, tools, and utilities under 1.7 MB
(jodd.org).
Lightbend Lagom: This is an opinionated microservice framework built on Akka
and Play (www.lightbend.com).
Ninja: This is a full-stack framework for Java (https:/ / www.ninjaframework.
org/).
Spotify Apollo: This is a set of Java libraries used by Spotify for writing
microservices (Spotify/Apollo).
Vert.x: This is a toolkit for building reactive applications on a JVM (vertx.io).

All of these frameworks support REST-based communication between microservices; some
of them also have an additional way of sending messages.

To demonstrate the alternative versus traditional methods of communication, we will use
Vert.x, which is an event-driven non-blocking lightweight polyglot toolkit. It allows you to
write components in Java, JavaScript, Groovy, Ruby, Scala, Kotlin, and Ceylon. It supports
an asynchronous programming model and a distributed event bus that reaches into in-
browser JavaScript, thus allowing the creation of real-time web applications. However,
because of the focus of this book, we are going to use Java only.

Vert.x API has two source trees: the first starts with io.vertx.core, and the second starts
with io.vertx.rxjava.core. The second source tree is a reactive version of
the io.vertx.core class. In fact, the reactive source tree is based on non-reactive sources,
so these two source trees are not incompatible. On the contrary, the reactive version is
provided in addition to the non-reactive implementation. Since our discussion is focused
around reactive programming, we will mainly use the classes and interfaces of
the io.vertx.rxjava source tree, also called the rxfied Vert.x API.

https://www.dropwizard.io/1.3.9/docs/
https://jodd.org/
https://www.lightbend.com/
https://www.ninjaframework.org/
https://www.ninjaframework.org/
https://www.ninjaframework.org/
https://www.ninjaframework.org/
https://www.ninjaframework.org/
https://www.ninjaframework.org/
https://www.ninjaframework.org/
https://www.ninjaframework.org/
https://www.ninjaframework.org/

Microservices Chapter 16

[572]

To begin, we will add the following dependency to the pom.xml file, as follows:

<dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-web</artifactId>
 <version>3.6.3</version>
</dependency>
<dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-rx-java</artifactId>
 <version>3.6.3</version>
</dependency>

A class that implements the io.vertx.core.Verticle interface serves as a building
block of a Vert.x-based application. The io.vertx.core.Verticle interface has four
abstract methods:

Vertx getVertx();
void init(Vertx var1, Context var2);
void start(Future<Void> var1) throws Exception;
void stop(Future<Void> var1) throws Exception;

To make the coding easier in practice, there is an abstract
io.vertx.rxjava.core.AbstractVerticle class that implements all of the methods,
but they are empty and do not do anything. It allows creating a verticle by extending the
AbstractVerticle class and implementing only those methods of the Verticle interface
that are needed for the application. In most cases, implementing the start() method only
is enough.

Vert.x has its own system of exchanging messages (or events) through an event bus. By
using the rxSend(String address, Object msg) method of the
io.vertx.rxjava.core.eventBus.EventBus class, any verticle can send a message to
any address (which is just a string):

Single<Message<String>> reply = vertx.eventBus().rxSend(address, msg);

The vertx object (which is the protected property of AbstractVerticle and is available
for every verticle) allows access to the event bus and the rxSend() call method.
The Single<Message<String>> return value represents a reply that can be returned in
response to the message; you can subscribe to it, or process it in any other way.

A verticle can also register as a message receiver (consumer) for a certain address:

vertx.eventBus().consumer(address);

Microservices Chapter 16

[573]

If several verticles are registered as consumers for the same address, then the
rxSend() method delivers the message only to one of these consumers using a round-
robin algorithm.

Alternatively, the publish() method can be used to deliver a message to all consumers
that are registered with the same address:

EventBus eb = vertx.eventBus().publish(address, msg);

The returned object is the EventBus object, which allows you to add other EventBus
methods invocations, if necessary.

As you may recall, message-driven asynchronous processing is a foundation for the
elasticity, responsiveness, and resilience of a reactive system composed of microservices.
That is why, in the next section, we will demonstrate how you can build a reactive system
that uses both REST-based communication and Vert.x EventBus-based messages.

The reactive system of microservices
To demonstrate how a reactive system of microservices may look if implemented using
Vert.x, we are going to create an HTTP server that can accept a REST-based request to the
system, send an EventBus-based message to another verticle, receive a reply, and send the
response back to the original request.

To demonstrate how it all works, we will also write a program that generates HTTP
requests to the system and allows you to test the system from outside.

The HTTP server
Let's assume that the entry point into the reactive system demonstration is going to be an
HTTP call. This means that we need to create a verticle that acts as an HTTP server. Vert.x
makes this really easy; the following three lines in a verticle will do the trick:

HttpServer server = vertx.createHttpServer();
server.requestStream().toObservable()
 .subscribe(request -> request.response()
 .setStatusCode(200)
 .end("Hello from " + name + "!\n")
);
server.rxListen(port).subscribe();

Microservices Chapter 16

[574]

As you can see, the created server listens to the specified port and responds with Hello... to
each incoming request. By default, the hostname is localhost. If necessary, another
address for the host can be specified using an overloaded version of the same method:

server.rxListen(port, hostname).subscribe();

Here is the entire code of the verticle that we have created:

package com.packt.learnjava.ch16_microservices;
import io.vertx.core.Future;
import io.vertx.rxjava.core.AbstractVerticle;
import io.vertx.rxjava.core.http.HttpServer;
public class HttpServerVert extends AbstractVerticle {
 private int port;
 public HttpServerVert(int port) { this.port = port; }
 public void start(Future<Void> startFuture) {
 String name = this.getClass().getSimpleName() +
 "(" + Thread.currentThread().getName() +
 ", localhost:" + port + ")";
 HttpServer server = vertx.createHttpServer();
 server.requestStream().toObservable()
 .subscribe(request -> request.response()
 .setStatusCode(200)
 .end("Hello from " + name + "!\n")
);
 server.rxListen(port).subscribe();
 System.out.println(name + " is waiting...");
 }
}

We can deploy this server using the following code:

Vertx vertx = Vertx.vertx();
RxHelper.deployVerticle(vertx, new HttpServerVert(8082));

The result will look as follows:

Notice that the ...is waiting... message appears immediately, even before any request has
come in – that is the asynchronous nature of this server. The name prefix is constructed to
contain the class name, thread name, hostname, and port. Notice that the thread name tells
us that the server listens on the event loop thread, 0.

Microservices Chapter 16

[575]

Now we can issue a request to the deployed server using the curl command; the response
will be as follows:

As you can see, we have issued the HTTP GET (default) request and got back the expected
Hello... message with the expected name.

The following code is a more realistic version of the start() method:

Router router = Router.router(vertx);
router.get("/some/path/:name/:address/:anotherParam")
 .handler(this::processGetSomePath);
router.post("/some/path/send")
 .handler(this::processPostSomePathSend);
router.post("/some/path/publish")
 .handler(this::processPostSomePathPublish);
vertx.createHttpServer()
 .requestHandler(router::handle)
 .rxListen(port)
 .subscribe();
System.out.println(name + " is waiting...");

Now we use the Router class and send requests to different handlers depending on the
HTTP method (GET or POST) and the path. It requires you to add the following dependency
to the pom.xml file:

<dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-web</artifactId>
 <version>3.6.3</version>
</dependency>

The first route has the /some/path/:name/:address/:anotherParam path, which
includes three parameters (name, address, and anotherParam). The HTTP request is
passed inside the RoutingContext object to the following handler:

private void processGetSomePath(RoutingContext ctx){
 ctx.response()
 .setStatusCode(200)
 .end("Got into processGetSomePath using " +
 ctx.normalisedPath() + "\n");
}

Microservices Chapter 16

[576]

The handler simply returns an HTTP code of 200 and a hardcoded message that is set on
the HTTP response object and is returned by the response() method. Behind the scenes,
the HTTP response object comes from the HTTP request. We have made the first
implementation of the handlers simple for clarity. Later, we will reimplement them in a
more realistic way.

The second route has the /some/path/send path with the following handler:

private void processPostSomePathSend(RoutingContext ctx){
 ctx.response()
 .setStatusCode(200)
 .end("Got into processPostSomePathSend using " +
 ctx.normalisedPath() + "\n");

The third route has the /some/path/publish path with the following handler:

private void processPostSomePathPublish(RoutingContext ctx){
 ctx.response()
 .setStatusCode(200)
 .end("Got into processPostSomePathPublish using " +
 ctx.normalisedPath() + "\n");
}

If we deploy our server again and issue HTTP requests to hit each of the routes, we will see
the following screenshot:

The preceding screenshot illustrates that we sent the expected message to the first HTTP
GET request, but received Resource not found in response to the second HTTP GET request.
This is because there is no /some/path/send route for the HTTP GET request in our server.
We then switched to the HTTP POST request and received the expected messages for both
POST requests.

Microservices Chapter 16

[577]

From the name of the paths, you could guess that we are going to use
the /some/path/send route to send the EventBus message, and
the /some/path/publish route to publish the EventBus message. But before
implementing the corresponding route handlers, let's create a verticle that is going to
receive the EventBus messages.

The EventBus message receiver
The implementation of the message receiver is pretty straightforward:

vertx.eventBus()
 .consumer(address)
 .toObservable()
 .subscribe(msgObj -> {
 String body = msgObj.body().toString();
 String msg = name + " got message '" + body + "'.";
 System.out.println(msg);
 String reply = msg + " Thank you.";
 msgObj.reply(reply);
 }, Throwable::printStackTrace);

The EventBus object can be accessed via the vertx object. The
consumer(address) method of the EventBus class allows you to set the address that is
associated with this message receiver and returns MessageConsumer<Object>. We then
convert this object to Observable and subscribe to it, waiting for the message to be
received asynchronously. The subscribe() method has several overloaded versions. We
have selected one that accepts two functions: the first is called for each of the emitted values
(for each received message, in our case); the second is called when an exception is thrown
anywhere in the pipeline (that is, it acts like the all-embracing try...catch block). The
MessageConsumer<Object> class indicates that, in principle, the message can be
represented by an object of any class. As you can see, we have decided that we are going to
send a string, so we just cast the message body to String.
The MessageConsumer<Object> class also has a reply(Object) method that allows you
to send a message back to the sender.

The full implementation of the message-receiving verticle is as follows:

package com.packt.learnjava.ch16_microservices;
import io.vertx.core.Future;
import io.vertx.rxjava.core.AbstractVerticle;
public class MessageRcvVert extends AbstractVerticle {
 private String id, address;
 public MessageRcvVert(String id, String address) {

Microservices Chapter 16

[578]

 this.id = id;
 this.address = address;
 }
 public void start(Future<Void> startFuture) {
 String name = this.getClass().getSimpleName() +
 "(" + Thread.currentThread().getName() +
 ", " + id + ", " + address + ")";
 vertx.eventBus()
 .consumer(address)
 .toObservable()
 .subscribe(msgObj -> {
 String body = msgObj.body().toString();
 String msg = name + " got message '" + body + "'.";
 System.out.println(msg);
 String reply = msg + " Thank you.";
 msgObj.reply(reply);
 }, Throwable::printStackTrace);
 System.out.println(name + " is waiting...");
 }
}

We can deploy this verticle in the same way that we deployed the HttpServerVert
verticle:

String address = "One";
Vertx vertx = Vertx.vertx();
RxHelper.deployVerticle(vertx, new MessageRcvVert("1", address));

If we run this code, the following message will be displayed:

As you can see, the last line of MessageRcvVert is reached and executed, while the created
pipeline and the functions we have passed to its operators are waiting for the message to be
sent. So, let's go ahead and do that now.

Microservices Chapter 16

[579]

The EventBus message senders
As we have promised, we will now reimplement the handlers of the HttpServerVert
verticle in a more realistic manner. The GET method handler now looks like the following
code block:

private void processGetSomePath(RoutingContext ctx){
 String caller = ctx.pathParam("name");
 String address = ctx.pathParam("address");
 String value = ctx.pathParam("anotherParam");
 System.out.println("\n" + name + ": " + caller + " called.");
 vertx.eventBus()
 .rxSend(address, caller + " called with value " + value)
 .toObservable()
 .subscribe(reply -> {
 System.out.println(name +
 ": got message\n " + reply.body());
 ctx.response()
 .setStatusCode(200)
 .end(reply.body().toString() + "\n");
 }, Throwable::printStackTrace);
}

As you can see, the RoutingContext class provides the pathParam() method, which
extracts parameters from the path (if they are marked with :, as in our example). Then,
again, we use the EventBus object to send a message asynchronously to the address
provided as a parameter. The subscribe() method uses the provided function to process
the reply from the message receiver and to send the response back to the original request to
the HTTP server.

Let's now deploy both verticles – the HttpServerVert and the MessageRcvVert verticles:

String address = "One";
Vertx vertx = Vertx.vertx();
RxHelper.deployVerticle(vertx, new MessageRcvVert("1", address));
RxHelper.deployVerticle(vertx, new HttpServerVert(8082));

When we run the preceding code, the screen displays the following messages:

Microservices Chapter 16

[580]

Notice that each of the verticles is run on its own thread. Now we can submit the HTTP GET
request using the curl command; the result is as follows:

This is how the interaction is viewed from outside our demonstration system. Inside, we
can also see the following messages, which allow us to trace how our verticles interact and
send messages to each other:

The result looks exactly as expected.

Now, the handler for the /some/path/send path is as follows:

private void processPostSomePathSend(RoutingContext ctx){
 ctx.request().bodyHandler(buffer -> {
 System.out.println("\n" + name + ": got payload\n " + buffer);
 JsonObject payload = new JsonObject(buffer.toString());
 String caller = payload.getString("name");
 String address = payload.getString("address");
 String value = payload.getString("anotherParam");
 vertx.eventBus()
 .rxSend(address, caller + " called with value " + value)
 .toObservable()
 .subscribe(reply -> {
 System.out.println(name +
 ": got message\n " + reply.body());
 ctx.response()
 .setStatusCode(200)
 .end(reply.body().toString() + "\n");
 }, Throwable::printStackTrace);
 });
}

Microservices Chapter 16

[581]

For an HTTP POST request, we expect a payload in the JSON format to be sent with the
same values that we sent as the parameters for the HTTP GET request. The rest of the
method is very similar to the processGetSomePath() implementation. Let's deploy
the HttpServerVert and MessageRcvVert verticles again, and then issue the HTTP POST
request with a payload; the result will be as follows:

This looks exactly like the result of the HTTP GET request, as was designed. At the backend,
the following messages are displayed:

There is nothing new in these messages either, except that the JSON format is displayed.

Finally, let's take a look at the handler of the HTTP POST request for the
/some/path/publish path:

private void processPostSomePathPublish(RoutingContext ctx){
 ctx.request().bodyHandler(buffer -> {
 System.out.println("\n" + name + ": got payload\n " + buffer);
 JsonObject payload = new JsonObject(buffer.toString());
 String caller = payload.getString("name");
 String address = payload.getString("address");
 String value = payload.getString("anotherParam");
 vertx.eventBus()
 .publish(address, caller + " called with value " + value);
 ctx.response()
 .setStatusCode(202)
 .end("The message was published to address " +
 address + ".\n");
 });
}

Microservices Chapter 16

[582]

This time, we have used the publish() method to send the message. Notice that this
method does not have the ability to receive a reply. That is because, as we have mentioned
already, the publish() method sends the message to all receivers that are registered with
this address. If we issue an HTTP POST request with the /some/path/publish path, the
result looks slightly different:

Additionally, the messages on the backend look different too:

All of these differences are related to the fact that the server cannot get back a reply, even
though the receiver sends it in exactly the same way that it does in response to the message
sent by the rxSend() method.

In the next section, we will deploy several instances of the sender and receiver and examine
the difference between the message distribution by the rxSend() and
publish() methods.

The reactive system demonstration
Let's now assemble and deploy a small reactive system using the verticles created in the
previous section:

package com.packt.learnjava.ch16_microservices;
import io.vertx.rxjava.core.RxHelper;
import io.vertx.rxjava.core.Vertx;
public class ReactiveSystemDemo {
 public static void main(String... args) {
 String address = "One";
 Vertx vertx = Vertx.vertx();
 RxHelper.deployVerticle(vertx, new MessageRcvVert("1", address));
 RxHelper.deployVerticle(vertx, new MessageRcvVert("2", address));
 RxHelper.deployVerticle(vertx, new MessageRcvVert("3", "Two"));
 RxHelper.deployVerticle(vertx, new HttpServerVert(8082));
 }
}

Microservices Chapter 16

[583]

As you can see, we are going to deploy two verticles that use the same One address to
receive messages and one verticle that uses the Two address. If we run the preceding
program, the screen will display the following messages:

Let's now start sending HTTP requests to our system. First, let's send the same HTTP GET
request three times:

As we have mentioned already, if there are several verticles registered with the same
address, the rxSend() method uses a round-robin algorithm to select the verticle that
should receive the next message. The first request went to the receiver with ID="1", the
second request went to the receiver with ID="2", and the third request went to the receiver
with ID="1" again.

We get the same results using the HTTP POST request for the /some/path/send path:

Again, the receiver of the message is rotated using the round-robin algorithm.

Microservices Chapter 16

[584]

Now, let's publish a message to our system twice:

Since the receiver's reply cannot propagate back to the system user, we need to take a look
at the messages that are logged on the backend:

As you can see, the publish() method sends the message to all verticles that are registered
to the specified address. And note that the verticle with ID="3" (registered with the
Two address) never received a message.

Before we wrap up this reactive system demonstration, it is worth mentioning that Vert.x
allows you to easily cluster verticles. You can read about this feature in the Vert.x
documentation (https:/ /vertx. io/ docs/ vertx- core/ java).

Summary
In this chapter, the reader was introduced to the concept of microservices and how they can
be used to create a reactive system. We discussed the significance of the size of an
application and how this can affect your decision to convert it into a microservice. You also
learned how existing microservice frameworks support message-driven architecture and
had a chance to use one of them – the Vert.x toolkit – in practice.

In the next chapter, we are going to explore the Java Microbenchmark Harness (JMH)
project, which allows you to measure code performance and other parameters. We will
define what JMH is, how to create and run a benchmark, what the benchmark parameters
are, and the supporting IDE plugins.

https://vertx.io/docs/vertx-core/java
https://vertx.io/docs/vertx-core/java
https://vertx.io/docs/vertx-core/java
https://vertx.io/docs/vertx-core/java
https://vertx.io/docs/vertx-core/java
https://vertx.io/docs/vertx-core/java
https://vertx.io/docs/vertx-core/java
https://vertx.io/docs/vertx-core/java
https://vertx.io/docs/vertx-core/java
https://vertx.io/docs/vertx-core/java
https://vertx.io/docs/vertx-core/java
https://vertx.io/docs/vertx-core/java
https://vertx.io/docs/vertx-core/java
https://vertx.io/docs/vertx-core/java
https://vertx.io/docs/vertx-core/java

Microservices Chapter 16

[585]

Quiz

Select all the correct statements:1.

Microservices allow more refined scaling.a.
Microservice deployment is easier than a monolith.b.
Microservices facilitate choosing technologies that are best suited forc.
the job.
Microservice programming is much easier than any other applicationd.
programming.

Can a microservice be bigger than some of the monolith applications? 2.
How can microservices talk to each other?3.
Name two frameworks that are created in support of microservices.4.
What is the main building block of microservices in Vert.x?5.
What is the difference between the send and publish event bus message in6.
Vert.x?
How does the send method of an event bus decide which receiver to send a7.
message in Vert.x?
Can Vert.x verticles be clustered?8.
Where can you find out more information about Vert.x?9.

17
Java Microbenchmark Harness

In this chapter, the reader will be introduced to a Java Microbenchmark Harness (JMH)
project that allows for measuring various code performance characteristics. If performance
is an important issue for your application, this tool can help you to identify bottlenecks
with precision—up to the method level. Using it, the reader will be able to not only
measure the average execution time of the code and other performance values (such as
throughput, for example) but to do it in a controlled manner—with or without the
JVM optimizations, warmup runs, and so on.

In addition to theoretical knowledge, the reader will have a chance to run JMH
using practical demo examples and recommendations.

The following topics will be covered in this chapter:

What is JMH?
Creating a JMH benchmark
Running the benchmark
Using the IDE plugin
JMH benchmark parameters
JMH usage examples

What is JMH?
According to the dictionary, a benchmark is a standard or point of reference against which
things may be compared or assessed. In programming, it is the way to compare the
performance of applications, or just methods. The micro preface is focused on the
latter—the smaller code fragments rather than an application as a whole. The JMH is a
framework for measuring the performance of a single method.

Java Microbenchmark Harness Chapter 17

[587]

That may appear to be very useful. Can we not just run a method a thousand or a hundred
thousand times in a loop, measure how long it took, and then calculate the average of the
method performance? We can. The problem is that JVM is a much more complicated
program than just a code-executing machine. It has optimization algorithms focused on
making the application code run as fast as possible.

For example, let's look at the following class:

class SomeClass {
 public int someMethod(int m, int s) {
 int res = 0;
 for(int i = 0; i < m; i++){
 int n = i * i;
 if (n != 0 && n % s == 0) {
 res =+ n;
 }
 }
 return res;
 }
}

We filled the someMethod() method with code that does not make much sense but keeps
the method busy. To test the performance of this method, it is tempting to copy the code
into some test method and run it in a loop:

public void testCode() {
 StopWatch stopWatch = new StopWatch();
 stopWatch.start();
 int xN = 100_000;
 int m = 1000;
 for(int x = 0; i < xN; x++) {
 int res = 0;
 for(int i = 0; i < m; i++){
 int n = i * i;
 if (n != 0 && n % 250_000 == 0) {
 res += n;
 }
 }
 }
 System.out.println("Average time = " +
 (stopWatch.getTime() / xN /m) + "ms");
}

However, JVM will see that the res result is never used and qualify the calculations as
dead code (the code section that is never executed). So, why bother executing this code at
all?

Java Microbenchmark Harness Chapter 17

[588]

You may be surprised to see that the significant complication or simplification of the
algorithm does not affect the performance. That is because, in every case, the code is not
actually executed.

You may change the test method and pretend that the result is used by returning it:

public int testCode() {
 StopWatch stopWatch = new StopWatch();
 stopWatch.start();
 int xN = 100_000;
 int m = 1000;
 int res = 0;
 for(int x = 0; i < xN; x++) {
 for(int i = 0; i < m; i++){
 int n = i * i;
 if (n != 0 && n % 250_000 == 0) {
 res += n;
 }
 }
 }
 System.out.println("Average time = " +
 (stopWatch.getTime() / xN / m) + "ms");
 return res;
}

This may convince JVM to execute the code every time, but it is not guaranteed. The JVM
may notice that the input into the calculations does not change and this algorithm produces
the same result every run. Since the code is based on constant input, this optimization is
called constant folding. The result of this optimization is that this code may be executed
only once and the same result is assumed for every run, without actually executing the
code.

In practice though, the benchmark is often built around a method, not a block of code. For
example, the test code may look as follows:

public void testCode() {
 StopWatch stopWatch = new StopWatch();
 stopWatch.start();
 int xN = 100_000;
 int m = 1000;
 SomeClass someClass = new SomeClass();
 for(int x = 0; i < xN; x++) {
 someClass.someMethod(m, 250_000);
 }
 System.out.println("Average time = " +
 (stopWatch.getTime() / xN / m) + "ms");
}

Java Microbenchmark Harness Chapter 17

[589]

But even this code is susceptible to the same JVM optimization we have just described.

The JMH was created to help to avoid this, and similar pitfalls. In the JMH Usage
examples section, we will show you how to use JMH to work around the dead code and
constants folding optimization, using the @State annotation and the Blackhole object.

Besides, JMH allows for measuring not only average execution time but also throughput
and other performance characteristics.

Creating a JMH benchmark
To start using JMH, the following dependencies have to be added to the pom.xml file:

<dependency>
 <groupId>org.openjdk.jmh</groupId>
 <artifactId>jmh-core</artifactId>
 <version>1.21</version>
</dependency>
<dependency>
 <groupId>org.openjdk.jmh</groupId>
 <artifactId>jmh-generator-annprocess</artifactId>
 <version>1.21</version>
</dependency>

The name of the second .jar file, annprocess, provides a hint that JMH uses annotations.
If you guessed so, you were correct. Here is an example of a benchmark created for testing
the performance of an algorithm:

public class BenchmarkDemo {
 public static void main(String... args) throws Exception{
 org.openjdk.jmh.Main.main(args);
 }
 @Benchmark
 public void testTheMethod() {
 int res = 0;
 for(int i = 0; i < 1000; i++){
 int n = i * i;
 if (n != 0 && n % 250_000 == 0) {
 res += n;
 }
 }
 }
}

Java Microbenchmark Harness Chapter 17

[590]

Please notice the @Benchmark annotation. It tells the framework that this method
performance has to be measured. If you run the preceding main() method, you will see an
output similar to the following:

This is only one segment of an extensive output that includes multiple iterations under
different conditions with the goal being to avoid or offset the JVM optimization. It also
takes into account the difference between running the code once and running it multiple
times. In the latter case, the JVM starts using the just-in-time compiler, which compiles the
often-used bytecodes code into native binary code and does not even read the bytecodes.
The warmup cycles serve this purpose—the code is executed without measuring its
performance as a dry run that warms up the JVM.

There are also ways to tell the JVM which method to compile and use as binary directly,
which method to compile every time, and to provide similar instructions to disable certain
optimization. We will talk about this shortly.

Let's now see how to run the benchmark.

Running the benchmark
As you have probably guessed, one way to run a benchmark is just to execute the main()
method. It can be done using java command directly or using the IDE. We talked about it
in Chapter 1, Getting Started with Java 12. Yet there is an easier and more convenient way to
run a benchmark: by using an IDE plugin.

Java Microbenchmark Harness Chapter 17

[591]

Using an IDE plugin
All major Java supporting IDEs have such a plugin. We will demonstrate how to use the
plugin for IntelliJ installed on a macOS computer, but it is equally applicable to Windows
systems.

Here are the steps to follow:

To start installing the plugin, press the command key and comma (,) together, or1.
just click the wrench symbol (with the hover text Preferences) in the top
horizontal menu:

It will open a window with the following menu in the left pane:2.

Select Plugins, as shown in the preceding screenshot, and observe the window3.
with the following top horizontal menu:

Java Microbenchmark Harness Chapter 17

[592]

Select Marketplace, type JMH in the Search plugins in marketplace input field4.
,and press Enter. If you have an internet connection, it will show you a JMH
plugin symbol, similar to the one shown in this screenshot:

Click the Install button and then, after it turns into Restart IDE, click it again:5.

Java Microbenchmark Harness Chapter 17

[593]

After the IDE restarts, the plugin is ready to be used. Now you can not only run6.
the main() method but you can also pick and choose which of the benchmark
methods to execute if you have several methods with the @Benchmark
annotation. To do this, select Run... from the Run drop-down menu:

It will bring up a window with a selection of methods you can run:7.

Java Microbenchmark Harness Chapter 17

[594]

Select the one you would like to run and it will be executed. After you have run a8.
method at least once, you can just right-click on it and execute it from the pop-up
menu:

You can also use the shortcuts shown to the right of each menu item.9.

Now let's review the parameters that can be passed to the benchmark.

JMH benchmark parameters
There are many benchmark parameters that allow for fine-tuning the measurements for the
particular needs of the task at hand. We are going to present only the major ones.

Mode
The first set of parameters defines the performance aspect (mode) the particular benchmark
has to measure:

Mode.AverageTime: Measures the average execution time
Mode.Throughput: Measures the throughput by calling the benchmark method
in an iteration

Java Microbenchmark Harness Chapter 17

[595]

Mode.SampleTime: Samples the execution time, instead of averaging it; allows
us to infer the distributions, percentiles, and so on
Mode.SingleShotTime: Measures the single method invocation time; allows for
the testing of a cold startup without calling the benchmark method continuously

These parameters can be specified in the annotation @BenchmarkMode. For example:

@BenchmarkMode(Mode.AverageTime)

It is possible to combine several modes:

@BenchmarkMode({Mode.Throughput, Mode.AverageTime, Mode.SampleTime,
Mode.SingleShotTime}

It is also possible to request all of them:

@BenchmarkMode(Mode.All)

The described parameters and all the parameters we are going to discuss later in this
chapter can be set at the method and/or class level. The method-level set value overrides
the class-level value.

Output time unit
The unit of time used for presenting the results can be specified using the
@OutputTimeUnit annotation:

@OutputTimeUnit(TimeUnit.NANOSECONDS)

The possible time units come from the java.util.concurrent.TimeUnit enum.

Iterations
Another group of parameters defines the iterations used for the warmups and
measurements. For example:

@Warmup(iterations = 5, time = 100, timeUnit = TimeUnit.MILLISECONDS)
@Measurement(iterations = 5, time = 100, timeUnit = TimeUnit.MILLISECONDS)

Java Microbenchmark Harness Chapter 17

[596]

Forking
While running several tests, the @Fork annotation allows you to set each test to be run in a
separate process. For example:

@Fork(10)

The passed-in parameter value indicates how many times the JVM can to be forked into
independent processes. The default value is -1. Without it, the test's performance can be
mixed, if you use several classes implementing the same interface in tests and they affect
each other.

The warmups parameter is another one which can be set to indicate how many times the
benchmark has to execute without collecting measurements:

@Fork(value = 10, warmups = 5)

It also allows you to add Java options to the java command line. For example:

@Fork(value = 10, jvmArgs = {"-Xms2G", "-Xmx2G"})

The full list of JMH parameters and examples of how to use them can be found in
the openjdk project (http:/ / hg. openjdk. java. net/ code- tools/ jmh/ file/ tip/ jmh-
samples/src/main/ java/ org/ openjdk/ jmh/ samples). For example, we did not mention
@Group, @GroupThreads, @Measurement, @Setup, @Threads, @Timeout, @TearDown, or
@Warmup.

JMH usage examples
Let's now run a few tests and compare them. First, we run the following test method:

@Benchmark
@BenchmarkMode(Mode.All)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public void testTheMethod0() {
 int res = 0;
 for(int i = 0; i < 1000; i++){
 int n = i * i;
 if (n != 0 && n % 250_000 == 0) {
 res += n;
 }
 }
}

http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples

Java Microbenchmark Harness Chapter 17

[597]

As you can see, we have requested to measure all the performance characteristics and to
use nanoseconds while presenting the results. On our system, the test execution took
around 20 minutes and the final results summary looked like this:

Let's now change the test as follows:

@Benchmark
@BenchmarkMode(Mode.All)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public void testTheMethod1() {
 SomeClass someClass = new SomeClass();
 int i = 1000;
 int s = 250_000;
 someClass.someMethod(i, s);
}

If we run the testTheMethod1() now, the results will be slightly different:

The results are mostly different around sampling and single-shot running. You can play
with these methods and change the forking and number of warmups.

Java Microbenchmark Harness Chapter 17

[598]

Using the @State annotation
This JMH feature allows you to hide the source of the data from the JVM, thus preventing
dead code optimization. You can add a class as the source of the input data as follows:

@State(Scope.Thread)
public static class TestState {
 public int m = 1000;
 public int s = 250_000;
}

@Benchmark
@BenchmarkMode(Mode.All)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public int testTheMethod3(TestState state) {
 SomeClass someClass = new SomeClass();
 return someClass.someMethod(state.m, state.s);
}

The Scope value is used for sharing data between tests. In our case, with only one test
using the TestCase class object, we do not have a need for sharing. Otherwise, the value
can be set to Scope.Group or Scope.Benchmark, which means we could add setters to the
TestState class and read/modify it in other tests.

When we ran this version of the test, we got the following results:

The data has changed again. Notice that the average time for execution has increased three-
fold which indicates that more JVM optimization was not applied.

Java Microbenchmark Harness Chapter 17

[599]

Using the Blackhole object
This JMH feature allows for simulating the results usage, thus preventing the JVM from
folding constants optimization:

@Benchmark
@BenchmarkMode(Mode.All)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public void testTheMethod4(TestState state, Blackhole blackhole) {
 SomeClass someClass = new SomeClass();
 blackhole.consume(someClass.someMethod(state.m, state.s));
}

As you can see, we have just added a parameter Blackhole object and called
the consume() method on it, thus pretending that the result of the tested method is used.

When we ran this version of the test, we got the following results:

This time, the results look not that different. Apparently, the constant folding optimization
was neutralized even before the Blackhole usage was added.

Using the @CompilerControl annotation
Another way to tune up the benchmark is to tell the compiler to compile, inline (or not),
and exclude (or not) a particular method from the code. For example, consider the
following class:

class SomeClass{
 public int oneMethod(int m, int s) {
 int res = 0;
 for(int i = 0; i < m; i++){
 int n = i * i;

Java Microbenchmark Harness Chapter 17

[600]

 if (n != 0 && n % s == 0) {
 res = anotherMethod(res, n);
 }
 }
 return res;
 }

 @CompilerControl(CompilerControl.Mode.EXCLUDE)
 private int anotherMethod(int res, int n){
 return res +=n;
 }

}

Assuming we are interested in how the method anotherMethod() compilation/inlining
affects the performance, we can set the CompilerControl mode on it to the following:

Mode.INLINE: To force this method inlining
Mode.DONT_INLINE: To avoid this method inlining
Mode.EXCLUDE: To avoid this method compiling

Using the @Param annotation
Sometimes, it is necessary to run the same benchmark for a different set of input data. In
such a case, the @Param annotation is very useful.

@Param is a standard Java annotation used by various frameworks, for
example, JUnit. It identifies an array of parameter values. The test with
the @Param annotation will be run as many times as there are values in the
array. Each test execution picks up a different value from the array.

Here is an example:

@State(Scope.Benchmark)
public static class TestState1 {
 @Param({"100", "1000", "10000"})
 public int m;
 public int s = 250_000;
}

@Benchmark
@BenchmarkMode(Mode.All)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public void testTheMethod6(TestState1 state, Blackhole blackhole) {

Java Microbenchmark Harness Chapter 17

[601]

 SomeClass someClass = new SomeClass();
 blackhole.consume(someClass.someMethod(state.m, state.s));
}

The testTheMethod6() benchmark is going to be used with each of the listed values of
the parameter m.

A word of caution
The described harness takes away most of the worries of the programmer who measures
the performance. And yet, it is virtually impossible to cover all the cases of JVM
optimization, profile sharing, and similar aspects of the JVM implementation, especially if
we take into account that JVM code evolves and differs from one implementation to
another. The authors of JMH acknowledge this fact by printing the following warning
along with the test results:

The description of the profilers and their usage can be found in the openjdk project
(http://hg.openjdk. java. net/ code- tools/ jmh/ file/ tip/jmh- samples/ src/ main/ java/
org/openjdk/jmh/ samples). Among the same samples, you will encounter the description
of the code generated by JMH, based on the annotations.

If you would like to get really deep into the details of your code execution and testing, there
is no better way to do it than to study the generated code. It describes all the steps and
decisions JMH makes in order to run the requested benchmark. You can find the generated
code in the target/generated-sources/annotations.

The scope of this book does not allow for going into too many details on how to read it, but
it is not very difficult, especially if you start with a simple case of testing one method only.
We wish you all the best in this endeavor.

http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples

Java Microbenchmark Harness Chapter 17

[602]

Summary
In this chapter, the reader has learned about the JMH tool and was able to use it for specific
practical cases similar to those they encountered while programming their applications.
The reader has learned how to create and run a benchmark, how to set the benchmark
parameters, and how to install IDE plugins if needed. We also have provided practical
recommendations and references for further reading.

In the next chapter, readers will be introduced to the useful practices of designing and
writing application code. We will talk about Java idioms, their implementation and usage,
and provide recommendations for implementing equals(), hashCode(), compareTo(),
and clone() methods. We will also discuss the difference between the usage of
the StringBuffer and StringBuilder classes, how to catch exceptions, best design
practices, and other proven programming practices.

Quiz
Select all the correct statements:1.

JMH is useless since it runs methods outside the production context.a.
JMH is able to work around some of the JVM optimizations.b.
JMH allows for measuring not only average performance time butc.
other performance characteristics too.
JMH can be used to measure the performance of small applicationsd.
too.

Name two steps necessary to start using JMH.2.
Name four ways JMH can be run.3.
Name two modes (performance characteristics) that can be used (measured) with4.
JMH.
Name two of time units that can be used to present JMH test results.5.
How can the data (results, state) be shared between JMH benchmarks?6.
How do you tell JMH to run the benchmark for the parameter with the7.
enumerated list of values?

Java Microbenchmark Harness Chapter 17

[603]

How can the compilation of a method be forced or turned off?8.
How can the JVM's constant folding optimization be turned off?9.
How can Java command options be provided programmatically for running the10.
particular benchmark?

18
Best Practices for Writing High-

Quality Code
When programmers talk to each other, they often use jargon that cannot be understood by
non-programmers, or vaguely understood by the programmers of different programming
languages. But those who use the same programming language understand each other just
fine. Sometimes it may also depend on how knowledgeable a programmer is. A novice may
not understand what an experienced programmer is talking about, while a seasoned
colleague nods and responds in kind.

In this chapter, readers will be introduced to some Java programming jargon—the Java
idioms that describe certain features, functionality, design solutions, and so on. The reader
will also learn the most popular and useful practices of designing and writing application
code. By the end of this chapter, the reader will have a solid understanding of what other
Java programmers are talking about while discussing their design decisions and the
functionalities they use.

The following topics will be covered in this chapter:

Java idioms, their implementation, and their usage
The equals(), hashCode(), compareTo(), and clone() methods
The StringBuffer and StringBuilder classes
try, catch, and finally clauses

Best Practices for Writing High-Quality Code Chapter 18

[605]

Best design practices
Code is written for people
Testing—the shortest path to quality code

Java idioms, their implementation, and
their usage
In addition to serving the means of communication among professionals, programming
idioms are also proven programming solutions and common practices that are not directly
derived from the language specification, but born out of the programming experience. In
this section, we are going to discuss the ones that are used most often. You can find and
study the full list of idioms in the official Java documentation (https:/ /docs. oracle. com/
javase/tutorial).

The equals() and hashCode() methods
The default implementation of the equals() and hashCode() methods in the
java.lang.Object class looks as follows:

public boolean equals(Object obj) {
 return (this == obj);
}
/**
* Whenever it is invoked on the same object more than once during
* an execution of a Java application, the hashCode method
* must consistently return the same integer...
* As far as is reasonably practical, the hashCode method defined
* by class Object returns distinct integers for distinct objects.
*/
@HotSpotIntrinsicCandidate
public native int hashCode();

https://docs.oracle.com/javase/tutorial
https://docs.oracle.com/javase/tutorial
https://docs.oracle.com/javase/tutorial
https://docs.oracle.com/javase/tutorial
https://docs.oracle.com/javase/tutorial
https://docs.oracle.com/javase/tutorial
https://docs.oracle.com/javase/tutorial
https://docs.oracle.com/javase/tutorial
https://docs.oracle.com/javase/tutorial
https://docs.oracle.com/javase/tutorial
https://docs.oracle.com/javase/tutorial
https://docs.oracle.com/javase/tutorial

Best Practices for Writing High-Quality Code Chapter 18

[606]

As you can see, the default implementation of the equals() method compares only
memory references that point to the addresses where the objects are stored. Similarly, as
you can see from the comments (quoted from the source code), the hashCode()
method returns the same integer for the same object and a different integer for different
objects. Let's demonstrate it using the Person class:

public class Person {
 private int age;
 private String firstName, lastName;
 public Person(int age, String firstName, String lastName) {
 this.age = age;
 this.lastName = lastName;
 this.firstName = firstName;
 }
 public int getAge() { return age; }
 public String getFirstName() { return firstName; }
 public String getLastName() { return lastName; }
}

Here is an example of how the default equals() and hashCode() methods behave:

Person person1 = new Person(42, "Nick", "Samoylov");
Person person2 = person1;
Person person3 = new Person(42, "Nick", "Samoylov");
System.out.println(person1.equals(person2)); //prints: true
System.out.println(person1.equals(person3)); //prints: false
System.out.println(person1.hashCode()); //prints: 777874839
System.out.println(person2.hashCode()); //prints: 777874839
System.out.println(person3.hashCode()); //prints: 596512129

The person1 and person2 references and their hash codes are equal because they point to
the same object (the same area of the memory, and the same address), while the person3
reference points to another object.

In practice, though, as we have described in Chapter 6, Data Structures, Generics, and
Popular Utilities, we would like the equality of the object to be based on the value of all or
some of the object properties, so here is a typical implementation of the equals() and
hashCode() methods:

@Override
public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null) return false;
 if(!(o instanceof Person)) return false;
 Person person = (Person)o;
 return getAge() == person.getAge() &&

Best Practices for Writing High-Quality Code Chapter 18

[607]

 Objects.equals(getFirstName(), person.getFirstName()) &&
 Objects.equals(getLastName(), person.getLastName());
}
@Override
public int hashCode() {
 return Objects.hash(getAge(), getFirstName(), getLastName());
}

It used to be more involved, but using java.util.Objects utilities makes it much easier,
especially if you notice that the method Objects.equals() method handles null too.

We have added the described implementation of equals() and hashCode() methods to
the Person1 class and have executed the same comparisons:

Person1 person1 = new Person1(42, "Nick", "Samoylov");
Person1 person2 = person1;
Person1 person3 = new Person1(42, "Nick", "Samoylov");
System.out.println(person1.equals(person2)); //prints: true
System.out.println(person1.equals(person3)); //prints: true
System.out.println(person1.hashCode()); //prints: 2115012528
System.out.println(person2.hashCode()); //prints: 2115012528
System.out.println(person3.hashCode()); //prints: 2115012528

As you can see, the change we have made not only makes the same objects equal but makes
equal two different objects with the same values of the properties too. Furthermore, the
hash code value is now based on the values of the same properties as well.

In Chapter 6, Data Structures, Generics, and Popular Utilities, we explained why it is
important to implement the hasCode() method while implementing
the equals() method.

It is very important that exactly the same set of properties is used for
establishing equality in the equals() method and for the hash calculation
in the hashCode() method.

Having the @Override annotation in front of these methods assures that they really
override the default implementation in the Object class. Otherwise, a typo in the method
name may create the illusion that the new implementation is used when in fact it is not.
Debugging such cases has proved much more difficult and costly than just adding
the @Override annotation, which generates an error if the method does not override
anything.

Best Practices for Writing High-Quality Code Chapter 18

[608]

The compareTo() method
In Chapter 6, Data Structures, Generics, and Popular Utilities, we used
the compareTo() method (the only method of the Comparable interface) extensively and
pointed out that the order that is established based on this method (its implementation by
the elements of a collection) is called a natural order.

To demonstrate it, we created the Person2 class:

public class Person2 implements Comparable<Person2> {
 private int age;
 private String firstName, lastName;
 public Person2(int age, String firstName, String lastName) {
 this.age = age;
 this.lastName = lastName;
 this.firstName = firstName;
 }
 public int getAge() { return age; }
 public String getFirstName() { return firstName; }
 public String getLastName() { return lastName; }
 @Override
 public int compareTo(Person2 p) {
 int result = Objects.compare(getFirstName(),
 p.getFirstName(), Comparator.naturalOrder());
 if (result != 0) {
 return result;
 }
 result = Objects.compare(getLastName(),
 p.getLastName(), Comparator.naturalOrder());
 if (result != 0) {
 return result;
 }
 return Objects.compare(age, p.getAge(),
 Comparator.naturalOrder());
 }
 @Override
 public String toString() {
 return firstName + " " + lastName + ", " + age;
 }
}

Best Practices for Writing High-Quality Code Chapter 18

[609]

Then we composed a list of Person2 objects and sorted it:

Person2 p1 = new Person2(15, "Zoe", "Adams");
Person2 p2 = new Person2(25, "Nick", "Brook");
Person2 p3 = new Person2(42, "Nick", "Samoylov");
Person2 p4 = new Person2(50, "Ada", "Valentino");
Person2 p6 = new Person2(50, "Bob", "Avalon");
Person2 p5 = new Person2(10, "Zoe", "Adams");
List<Person2> list = new ArrayList<>(List.of(p5, p2, p6, p1, p4, p3));
Collections.sort(list);
list.stream().forEach(System.out::println);

The result looks as follows:

There are three things worth noting:

According to the Comparable interface, the compareTo() method must return a
negative integer, zero, or a positive integer as the object is less than, equal to, or
greater than another object. In our implementation, we returned the result
immediately if the values of the same property of two objects were different. We
know already that this object is bigger or smaller no matter what the other
properties are. But the sequence, in which you compare the properties of two
objects, has an effect on the final result. It defines the precedence in which the
property value affects the order.
We have put the result of List.of() into a new ArrayList() object. We did so
because, as we have mentioned already in Chapter 6, Data Structures,
Generics, and Popular Utilities, the collection created by a factory method of() is
unmodifiable. No elements can be added or removed from it and the order of the
elements cannot be changed either, while we need to sort the created collection.
We used the of() method, only because it is more convenient and provides a
shorter notation.
Finally, using java.util.Objects for properties comparison makes the
implementation much easier and more reliable than custom coding.

Best Practices for Writing High-Quality Code Chapter 18

[610]

While implementing the compareTo() method, it is important to make sure that the
following rules are not violated:

obj1.compareTo(obj2) returns the same value
as obj2.compareTo(obj1) only when the returned value is 0.
If the returned value is not 0, obj1.compareTo(obj2) has the opposite sign of
obj2.compareTo(obj1).
If obj1.compareTo(obj2) > 0 and obj2.compareTo(obj3) >
0 then obj1.compareTo(obj3) > 0.
If obj1.compareTo(obj2) < 0 and obj2.compareTo(obj3) <
0 then obj1.compareTo(obj3) < 0.
If obj1.compareTo(obj2) ==
0 then obj2.compareTo(obj3) and obj1.compareTo(obj3) > 0 have the
same sign.
Both obj1.compareTo(obj2) and obj2.compareTo(obj1) throw the same
exceptions, if any.

It is also recommended, but not always required, that
if obj1.equals(obj2) then obj1.compareTo(obj2) == 0 and, at the same time, if
obj1.compareTo(obj2) == 0 then obj1.equals(obj2).

The clone() method
The clone() method implementation in the java.lang.Object class looks like this:

@HotSpotIntrinsicCandidate
protected native Object clone() throws CloneNotSupportedException;

The comment states the following:

/**
 * Creates and returns a copy of this object. The precise meaning
 * of "copy" may depend on the class of the object.

Best Practices for Writing High-Quality Code Chapter 18

[611]

The default result of this method returns a copy of the object fields as is, which is fine if the
values are of primitive types. However, if an object property holds a reference to another
object, only the reference itself will be copied, not the referred object itself. That is why such
a copy is called a shallow copy. To get a deep copy, one has to override the clone()
method and clone each of the object properties that refers an object.

In any case, to be able to clone an object, it has to implement the Cloneable interface and
make sure that all the objects along the inheritance tree (and the properties that are objects)
implement the Cloneable interface too (except the java.lang.Object class). The
Cloneable interface is just a marker interface that tells the compiler that the programmer
made a conscious decision to allow this object to be cloned (whether because the shallow
copy was good enough or because the clone() method was overridden). An attempt to
call clone() on an object that does not implement the Cloneable interface will result in
a CloneNotSupportedException.

It looks complex already, but in practice, there are even more pitfalls. For example, let's say
that the Person class has an address property of type Address class. The shallow copy p2
of the Person object p1 will refer the same object of Address so that p1.address ==
p2.address. Here is an example. The Address class looks as follows:

class Address {
 private String street, city;
 public Address(String street, String city) {
 this.street = street;
 this.city = city;
 }
 public void setStreet(String street) { this.street = street; }
 public String getStreet() { return street; }
 public String getCity() { return city; }
}

The Person3 class uses it like this:

class Person3 implements Cloneable{
 private int age;
 private Address address;
 private String firstName, lastName;

 public Person3(int age, String firstName,
 String lastName, Address address) {
 this.age = age;
 this.address = address;
 this.lastName = lastName;
 this.firstName = firstName;
 }

Best Practices for Writing High-Quality Code Chapter 18

[612]

 public int getAge() { return age; }
 public Address getAddress() { return address; }
 public String getLastName() { return lastName; }
 public String getFirstName() { return firstName; }
 @Override
 public Person3 clone() throws CloneNotSupportedException{
 return (Person3) super.clone();
 }
}

Notice that the method clone does a shallow copy because it does not clone the address
property. Here is the result of using such a clone() method implementation:

Person3 p1 = new Person3(42, "Nick", "Samoylov",
 new Address("25 Main Street", "Denver"));
Person3 p2 = p1.clone();
System.out.println(p1.getAge() == p2.getAge()); // true
System.out.println(p1.getLastName() == p2.getLastName()); // true
System.out.println(p1.getLastName().equals(p2.getLastName())); // true
System.out.println(p1.getAddress() == p2.getAddress()); // true
System.out.println(p2.getAddress().getStreet()); //prints: 25 Main Street
p1.getAddress().setStreet("42 Dead End");
System.out.println(p2.getAddress().getStreet()); //prints: 42 Dead End

As you can see, after the cloning is complete, the change made to the address property of
the source object is reflected in the same property of the clone. That isn't very intuitive, is it?
While cloning we expected independent copy, didn't we?

To avoid sharing the Address object, one needs to clone it explicitly too. In order to do it,
one has to make the Address object cloneable, as follows:

public class Address implements Cloneable{
 private String street, city;
 public Address(String street, String city) {
 this.street = street;
 this.city = city;
 }
 public void setStreet(String street) { this.street = street; }
 public String getStreet() { return street; }
 public String getCity() { return city; }
 @Override
 public Address clone() throws CloneNotSupportedException {
 return (Address)super.clone();
 }
}

Best Practices for Writing High-Quality Code Chapter 18

[613]

With that implementation in place, we can now add the address property cloning:

class Person4 implements Cloneable{
 private int age;
 private Address address;
 private String firstName, lastName;
 public Person4(int age, String firstName,
 String lastName, Address address) {
 this.age = age;
 this.address = address;
 this.lastName = lastName;
 this.firstName = firstName;
 }
 public int getAge() { return age; }
 public Address getAddress() { return address; }
 public String getLastName() { return lastName; }
 public String getFirstName() { return firstName; }
 @Override
 public Person4 clone() throws CloneNotSupportedException{
 Person4 cl = (Person4) super.clone();
 cl.address = this.address.clone();
 return cl;
 }
}

Now, if we run the same test, the results are going to be as we expected them originally:

Person4 p1 = new Person4(42, "Nick", "Samoylov",
 new Address("25 Main Street", "Denver"));
Person4 p2 = p1.clone();
System.out.println(p1.getAge() == p2.getAge()); // true
System.out.println(p1.getLastName() == p2.getLastName()); // true
System.out.println(p1.getLastName().equals(p2.getLastName())); // true
System.out.println(p1.getAddress() == p2.getAddress()); // false
System.out.println(p2.getAddress().getStreet()); //prints: 25 Main Street
p1.getAddress().setStreet("42 Dead End");
System.out.println(p2.getAddress().getStreet()); //prints: 25 Main Street

So, if the application expects all the properties to be deeply copied, all the objects involved
have to be cloneable. That is fine as long as none of the related objects, whether a property
in the current object or in the parent class (and their properties and parents), do not acquire
a new object property without making them cloneable and are cloned explicitly in the
clone() method of the container object. This last statement is complex. And the reason for
its complexity is the underlying complexity of the cloning process. That is why
programmers often stay away from making objects cloneable.

Best Practices for Writing High-Quality Code Chapter 18

[614]

Instead, they prefer to clone the object manually, if need be. For example:

Person4 p1 = new Person4(42, "Nick", "Samoylov",
 new Address("25 Main Street", "Denver"));
Address address = new Address(p1.getAddress().getStreet(),
 p1.getAddress().getCity());
Person4 p2 = new Person4(p1.getAge(), p1.getFirstName(),
 p1.getLastName(), address);
System.out.println(p1.getAge() == p2.getAge()); // true
System.out.println(p1.getLastName() == p2.getLastName()); // true
System.out.println(p1.getLastName().equals(p2.getLastName())); // true
System.out.println(p1.getAddress() == p2.getAddress()); // false
System.out.println(p2.getAddress().getStreet()); //prints: 25 Main Street
p1.getAddress().setStreet("42 Dead End");
System.out.println(p2.getAddress().getStreet()); //prints: 25 Main Street

This approach still requires code changes if another property is added to any related object.
However, it provides more control over the result and has less chance of unexpected
consequences.

Fortunately, the clone() method is not used very often. In fact, you may never encounter a
need to use it.

The StringBuffer and StringBuilder classes
We have talked about the difference between the StringBuffer and
StringBuilder classes in Chapter 6, Data Structures, Generics, and Popular Utilities. We are
not going to repeat it here. Instead, we will just mention that, in a single-threaded process
(which is the vast majority of cases), the StringBuilder class is a preferred choice because
it is faster.

Try, catch, and finally clauses
This book contains Chapter 4, Exception Handling, dedicated to the usage of try, catch,
and finally clauses, so we are not going to repeat it here. We would like just to repeat
again that using a try-with-resources statement is a much-preferred way to release
resources (traditionally done in a finally block). Deferring to the library makes the code
simpler and more reliable.

Best Practices for Writing High-Quality Code Chapter 18

[615]

Best design practices
The term best is often subjective and context dependent. That is why we would like to
disclose that the following recommendations are based on the vast majority of cases in
mainstream programming. However, they should not be followed blindly and
unconditionally because there are cases when some of these practices in some contexts are
useless or even wrong. Before following them, try to understand the motivation behind
them and use it as your guide for your decisions. For example, size matters. If the
application is not going to grow beyond a few thousand lines of code, a simple monolith
with laundry-list style code is good enough. But if there are complicated pockets of code
and several people working on it, breaking the code into specialized pieces would be
beneficial for code understanding, maintenance, and even scaling, if one particular code
area requires more resources than others.

We will start with higher-level design decisions in no particular order.

Identifying loosely coupled functional areas
These design decisions can be made very early on, based just on the general understanding
of the main parts of the future system, their functionality, and the data they produce and
exchange. There are several benefits of doing this:

An identification of the structure of the future system that has bearings on the
further design steps and implementation
Specialization and deeper analysis of parts
Parallel development of parts
A better understanding of data flow

Breaking the functional area into traditional tiers
With each functional area in place, there can be specializations based on the technical
aspects and technologies used. The traditional separation of technical specialization is:

The frontend (user graphic or web interface)
The middle tier with extensive business logic
The backend (data storage or data source)

Best Practices for Writing High-Quality Code Chapter 18

[616]

The benefits of doing this include the following:

Deployment and scaling by tiers
Programmer specialization based on their expertise
Parallel development of parts

Coding to an interface
The specialized parts, based on the decisions described in the previous two subsections,
have to be described in an interface that hides the implementation details. The benefits of
such a design lie in the foundations of object-oriented programming and are described in
detail in Chapter 2, Java Object-Oriented Programming (OOP), so we are not going to repeat
it here.

Using factories
We talked about this in Chapter 2, Java Object-Oriented Programming (OOP), too. An
interface, by definition, does not and cannot describe the constructor of a class that
implements the interface. Using factories allows you to close this gap and expose just an
interface to a client.

Preferring composition over inheritance
Originally, object-oriented programming was focused on inheritance as the way to share
the common functionality between objects. Inheritance is even one of the four object-
oriented programming principles as we have described them in Chapter 2, Java Object-
Oriented Programming (OOP). In practice, however, this method of functionality sharing
creates too much of the dependency between classes included in the same inheritance line.
The evolution of application functionality is often unpredictable, and some of the classes in
the inheritance chain start to acquire functionality unrelated to the original purpose of the
class chain. We can argue that there are design solutions that allow us not to do it, and keep
the original classes intact. But, in practice, such things happen all the time, and the
subclasses may suddenly change behavior just because they acquired new functionality
through inheritance. We cannot choose our parents, can we? Besides, it breaks the
encapsulation this way, while encapsulation is another foundation principle of OOP.

Best Practices for Writing High-Quality Code Chapter 18

[617]

Composition, on the other hand, allows us to choose and control which functionality of the
class to use and which to ignore. It also allows the object to stay light and not be burdened
by the inheritance. Such a design is more flexible, more extensible, and more predictable.

Using libraries
Throughout the book, we mentioned many times that using the Java Class Library (JCL)
and external (to the Java Development Kit (JDK) Java libraries makes programming much
easier and produces a code of higher quality. There is even a dedicated chapter, Chapter
7, Java Standard and External Libraries, which contains an overview of the most popular Java
libraries. People who create libraries invest a lot of time and effort, so you should take
advantage of them any time you can.

In Chapter 13, Functional Programming, we described standard functional interfaces that
reside in the java.util.function package of JCL. That is another way to take advantage
of a library—by using the set of well-known and shared interfaces, instead of defining your
own ones.

This last statement is a good segue to the next topic of this chapter about writing code that
is easily understood by other people.

Code is written for people
The first decades of programming required writing machine commands so that electronic
devices could execute them. Not only was it a tedious and error-prone endeavor, but it also
required you to write the instructions in a manner that yielded the best performance
possible because the computers were slow and did not do much code optimization, if at all.

Since then, we have made a lot of progress in both hardware and programming. The
modern compiler went a long way towards making the submitted code work as fast as
possible, even when a programmer did not think about it. We talked about it with specific
examples in the previous chapter, Chapter 17, Java Microbenchmark Harness.

It allowed programmers to write more lines of code without thinking much about the
optimization. But tradition and many books about programming continued to call for it,
and some programmers still worry about their code performance, more so than the results
it produces. It is easier to follow the tradition than to break away from it. That is why
programmers tend to pay more attention to the way they write code than to the business
they automate, although a good code that implements an incorrect business logic is useless.

Best Practices for Writing High-Quality Code Chapter 18

[618]

However, back to the topic. With modern JVM, the need for code optimization by a
programmer is not as pressing as it used to be. Nowadays, a programmer has to pay
attention mostly to a big picture, to avoid structural mistakes that lead to poor code
performance and to code that is used multiple times. The latter becomes less pressing as the
JVM becomes more sophisticated, observing the code in real time and just returning the
results (without execution) when the same code block is called several times with the same
input.

That leaves us with the only conclusion possible: while writing code, one has to make sure
it is easy to read and understand for a human, not for a computer. Those who have worked
in the industry for some time have been puzzled over the code they have themselves
written a few years before. One improves the code-writing style via clarity and the
transparency of the intent.

We can discuss the need for comments until the cows are back in the barn. We definitely do
not need comments that literally echo what the code does. For example:

//Initialize variable
int i = 0;

The comments that explain the intent are much more valuable:

// In case of x > 0, we are looking for a matching group
// because we would like to reuse the data from the account.
// If we find the matching group, we either cancel it and clone,
// or add the x value to the group, or bail out.
// If we do not find the matching group,
// we create a new group using data of the matched group.

The commented code can be very complex. Good comments explain the intent and provide
guidance that helps us to understand the code. Yet programmers often do not bother to
write comments. The argument against writing comments typically includes two
statements:

Comments have to be maintained and evolve along with the code, otherwise,
they may become misleading, but there is no tool that can prompt the
programmer to adjust the comments along with changing the code. Thus,
comments are dangerous.
The code itself has to be written so (including name selection for variables and
methods) that no extra explanation is needed.

Both statements are true, but it is also true that comments can be very helpful, especially
those that capture the intent. Besides, such comments tend to require fewer adjustments
because the code intent doesn't change often, if ever.

Best Practices for Writing High-Quality Code Chapter 18

[619]

Testing is the shortest path to quality code
The last best practice we will discuss is this statement: testing is not an overhead or a burden; it
is the programmer's guide to success. The only question is when to write the test.

There is a compelling argument that requires writing a test before any line of code is
written. If you can do it, that is great. We are not going to try and talk you out of it. But if
you do not do it, try to start writing a test after you have written one, or all lines of code,
you had been tasked to write.

In practice, many experienced programmers find it helpful to start writing testing
code after some of the new functionality is implemented, because that is when the
programmer understands better how the new code fits into the existing context. They may
even try and hard-code some values to see how well the new code is integrated with the
code that calls the new method. After making sure the new code is well integrated, the
programmer can continue implementing and tuning it all the time testing the new
implementation against the requirements in the context of the calling code.

One important qualification has to be added: while writing the test, it is better if the input
data and the test criteria are set not by you, but by a person who assigned you the task or
the tester. Setting the test according to the results the code produces is a well-known
programmer's trap. Objective self-assessment is not easy, if possible at all.

Summary
In this chapter, we have discussed the Java idioms that a mainstream programmer
encounters daily. We have also discussed the best design practices and related
recommendations, including code-writing style and testing.

In this chapter, readers have learned about the most popular Java idioms related to certain
features, functionalities, and design solutions. The idioms were demonstrated with
practical examples, and readers have learned how to incorporate them into their code and
the professional language they use to communicate with other programmers.

In the next chapter, we will introduce the reader to four projects that add new features to
Java: Panama, Valhalla, Amber, and Loom. We hope it will help the reader to follow the
Java development and envision the roadmap of future releases.

Best Practices for Writing High-Quality Code Chapter 18

[620]

Quiz
Select all the correct statements:1.

Idioms can be used to communicate the code intent.a.
Idioms can be used to explain what the code does.b.
Idioms can be misused and obscure the topic of conversation.c.
Idioms should be avoided in order to express the idea clearly.d.

Is it necessary to implement hasCode() every time equals() is implemented?2.
If obj1.compareTo(obj2) returns a negative value, what does it mean?3.
Does the deep copy notion apply to a primitive value during cloning?4.
Which is faster, StringBuffer or StringBuilder?5.
What are the benefits of coding to an interface?6.
What are the benefits of using composition versus the inheritance?7.
What is the advantage of using libraries versus writing your own code?8.
Who is the target audience of your code?9.
Is testing required?10.

19
Java - Getting New Features

In this chapter, the reader will learn about the current most significant projects that will add
new features to Java and enhance it in other aspects. After reading this chapter, the reader
will understand how to follow Java development and will envision the road map of future
Java releases. If so desired, the reader can become a JDK source contributor too.

The following topics will be covered in this chapter:

Java continues to evolve
Panama project
Valhalla project
Amber project
Loom project
Skara project

Java continues to evolve
This is the best news for any Java developer: Java is actively supported and continues to be
enhanced to stay abreast with the latest demands of the industry. It means that whatever
you hear about other languages and newest technologies, you will get the best features and
functionality added to Java soon. And with the new release schedule—every half
year—you can be assured that the new additions will be released as soon as they prove to
be useful and practical.

Java - Getting New Features Chapter 19

[622]

While thinking about designing a new application or new functionality to be added to the
existing one, it is important to know how Java may be enhanced in the near future. Such
knowledge can help you to design the new code in such a manner that it will be easier to
accommodate new Java functions and make your application simpler and more powerful.
To follow all the JDK Enhancement Proposals (JEP) could be impractical for a mainstream
programmer because one has to follow too many different threads of discussion and
development. By contrast, staying on top of one of the Java enhancement projects in the
area of your interests is much easier. You could even try to contribute to one such project as
an expert in a particular area, or just as an interested party.

In this chapter, we are going to review the five most important, in our opinion, Java
enhancement projects:

Project Panama: Focused on the interoperability with non-Java libraries
Project Valhalla: Conceived around the introduction of a new value type and
related generics enhancements
Project Amber: Aims to bring features that can make writing Java code more
readable and concise and target specific use cases such as data class, pattern
match, raw string literals, concise method bodies, and lambda enhancements, to
name the most significant sub-projects
Project Loom: Addresses the creation of lightweight threads called fibers and
makes asynchronous coding easier

Panama project
Throughout the book, we advised using various Java libraries— the standard Java Class
Library (JCL) and external Java libraries that help to improve code quality and make the
development time shorter. But there are also non-Java external libraries that may be needed
for your application. Such a need has increased recently with the growing demand for
using machine learning algorithms for data processing. The porting of these algorithms to
Java does not always keep up with the latest achievements in the area of recognizing faces,
classifying human actions in videos, and tracking camera movements, for example.

The existing mechanism of utilizing the libraries written in different languages is Java
Native Interface (JNI), Java Native Access (JNA), and Java Native Runtime (JNR). Despite
all these facilities, accessing the native code (the code in other languages compiled for the
particular platform) is not as easy as using a Java library. Besides, it limits the Java Virtual
Machine (JVM) code optimization and often requires writing code in C.

Java - Getting New Features Chapter 19

[623]

The Panama project (https:/ / openjdk. java. net/projects/ panama) is set to address these
issues, including the support of C++ functionality. The authors use the term foreign
libraries. This term includes all the libraries in other languages. The idea behind the new
approach is to translate the native headers into the corresponding Java interfaces using a
tool called jextract. The generated interfaces allow accessing the native methods and data
structures directly, without writing C code.

Not surprisingly, the supporting classes are planned to be stored in the java.foreign
package.

At the time of writing (March 2019), the early-access builds of Panama are based on an
incomplete version of Java 13 and intended for expert users. It is expected to reduce
the amount of work for creating Java bindings for native libraries by 90% and produce code
that performs four to five times faster than JNI at least.

Valhalla project
The motivation for the Valhalla project (https:/ /openjdk. java. net/ projects/ valhalla)
came from the fact that, since Java was first introduced almost 25 years ago, the hardware
has changed and the decisions made at that time would have a different outcome today.
For example, the operation of getting a value from memory and an arithmetic operation
incurred roughly the same cost in terms of the performance time. Nowadays, the situation
has changed. The memory access is from 200 to 1,000 times longer than an arithmetic
operation. This means that an operation that involves primitive types is much cheaper than
the operation based on their wrapping types.

When we do something with two primitive types, we grab values and use them in an
operation. When we do the same operation with wrapper types, we first use the reference
to access the object (which is now much longer—relative to the operation itself—than 20
years ago), and only then can we grab the value. That is why the Valhalla project attempts
to introduce for a reference type a new value type, which provides access to a value
without using the reference—the same way a primitive type is available by value.

It will also save on memory consumption and the efficiency of wrapping arrays. Each
element will be now represented by a value, not by a reference.

Such a solution logically leads to the question of generics. Today, generics can be used only
for a wrapping type. We can write List<Integer>, but we cannot write List<int>. And
that is what the Valhalla project is poised to address too. It is going to extend generic types to
support the specialization of generic classes and interfaces over primitive types. The extension will
allow using a primitive type in generics too.

https://openjdk.java.net/projects/panama
https://openjdk.java.net/projects/panama
https://openjdk.java.net/projects/panama
https://openjdk.java.net/projects/panama
https://openjdk.java.net/projects/panama
https://openjdk.java.net/projects/panama
https://openjdk.java.net/projects/panama
https://openjdk.java.net/projects/panama
https://openjdk.java.net/projects/panama
https://openjdk.java.net/projects/panama
https://openjdk.java.net/projects/panama
https://openjdk.java.net/projects/panama
https://openjdk.java.net/projects/panama
https://openjdk.java.net/projects/valhalla
https://openjdk.java.net/projects/valhalla
https://openjdk.java.net/projects/valhalla
https://openjdk.java.net/projects/valhalla
https://openjdk.java.net/projects/valhalla
https://openjdk.java.net/projects/valhalla
https://openjdk.java.net/projects/valhalla
https://openjdk.java.net/projects/valhalla
https://openjdk.java.net/projects/valhalla
https://openjdk.java.net/projects/valhalla
https://openjdk.java.net/projects/valhalla
https://openjdk.java.net/projects/valhalla
https://openjdk.java.net/projects/valhalla

Java - Getting New Features Chapter 19

[624]

Amber project
The Amber project (https:/ /openjdk. java. net/ projects/ amber) is focused on small Java
syntax enhancements that would make it more expressive, concise, and simpler. These
improvements are going to increase the Java programmers' productivity and make their
code-writing more enjoyable.

Two Java features created by the Amber project have been delivered already and we talked
about them:

The type holder var (see Chapter 1, Getting Started with Java 12) has been
available to use since Java 10.
The local-variable syntax for lambda parameters (see Chapter 13, Functional
Programming) was added to Java 11.
The less-verbose switch statement (see Chapter 1, Getting Started with Java 12)
was introduced as a preview feature with Java 12.

Other new features are going to be released with the future Java version. We will look
closer only at five of them in the following subsections:

Data class
Pattern match
Raw string literals
Concise method bodies
Lambda leftovers

Data class
There are classes that carry data only. Their purpose is to keep several values together and
nothing else. For example:

public class Person {
 public int age;
 public String firstName, lastName;

 public Person(int age, String firstName, String lastName) {
 this.age = age;
 this.lastName = lastName;
 this.firstName = firstName;
 }
}

https://openjdk.java.net/projects/amber
https://openjdk.java.net/projects/amber
https://openjdk.java.net/projects/amber
https://openjdk.java.net/projects/amber
https://openjdk.java.net/projects/amber
https://openjdk.java.net/projects/amber
https://openjdk.java.net/projects/amber
https://openjdk.java.net/projects/amber
https://openjdk.java.net/projects/amber
https://openjdk.java.net/projects/amber
https://openjdk.java.net/projects/amber
https://openjdk.java.net/projects/amber
https://openjdk.java.net/projects/amber

Java - Getting New Features Chapter 19

[625]

They may also include the standard set of the equals(), hashCode(), and
toString() methods. If that is the case, why bother and write the implementation for
these methods? They can be automatically generated - the same way your IDE can do it
today. That is the idea behind the new entity called data class that can be defined as simply
as follows:

record Person(int age, String firstName, String lastName) {}

The rest will be assumed present by default.

But then, as Brian Goetz wrote (https:/ /cr. openjdk. java. net/ ~briangoetz/ amber/
datum.html), the questions start coming:

"Are they extensible? Are the fields mutable? Can I control the behavior of the generated
methods or the accessibility of the fields? Can I have additional fields and constructors?"

- Brian Goetz

That is where the current state of this idea is—in the middle of the attempt to limit the
scope and still provide a value to the language.

Stay tuned.

Pattern match
From time to time, almost every programmer encounters the need to switch to different
processing of the value depending on its type. For example:

SomeClass someObj = new SomeClass();
Object value = someOtherObject.getValue("someKey");
if (value instanceof BigDecimal) {
 BigDecimal v = (BigDecimal) value;
 BigDecimal vAbs = v.abs();
 ...
} else if (value instanceof Boolean) {
 Boolean v = (Boolean)value;
 boolean v1 = v.booleanValue();
 ...
} else if (value instanceof String) {
 String v = (String) value;
 String s = v.substring(3);
 ...
}
...

https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html

Java - Getting New Features Chapter 19

[626]

While writing such a code, you get bored pretty quickly. And that is what pattern matching
is going to fix. After the feature is implemented, the preceding code example can be
changed to look as follows:

SomeClass someObj = new SomeClass();
Object value = someOtherObject.getValue("someKey");
if (value instanceof BigDecimal v) {
 BigDecimal vAbs = v.abs();
 ...
} else if (value instanceof Boolean v) {
 boolean v1 = v.booleanValue();
 ...
} else if (value instanceof String v) {
 String s = v.substring(3);
 ...
}
...

Nice, isn't it? It will also support the inlined version, such as the following one:

if (value instanceof String v && v.length() > 4) {
 String s = v.substring(3);
 ...
}

This new syntax will first be allowed in an if statement and later added to a switch
statement too.

Raw string literals
Once in a while, you may wish to have an output indented, so it will look something like
this, for example:

To achieve it, the code looks as follows:

String s = "The result:\n" +
 " - the symbol A was not found;\n" +
 " - the type of the object was not Integer either.";
System.out.println(s);

Java - Getting New Features Chapter 19

[627]

After adding the new raw string literal, the same code can be changed to look like this:

String s = `The result:
 - the symbol A was not found;
 - the type of the object was not Integer either.
 `;
System.out.println(s);

This way, the code looks much less cluttered and easier to write. It will also be possible to
align the raw string literal against left margin using the align() method, set an indent
value using the indent(int n) method, and the value of the indent after alignment using
the align(int indent) method.

Similarly, putting the string inside the symbols (`) will allow us to avoid using the escape
indicator backslash (\). For example, while executing a command, the current code may
contain this line:

Runtime.getRuntime().exec("\"C:\\Program Files\\foo\" bar");

With a raw string literal in place, the same line can be changed to the following:

Runtime.getRuntime().exec(`"C:\Program Files\foo" bar`);

Again, it is easier to write and to read.

Concise method bodies
The idea of this feature was expired by the lambda expressions syntax, which can be very
compact. For example:

Function<String, Integer> f = s -> s.length();

Or, using method reference, it can be expressed even shorter:

Function<String, Integer> f = String::length;

The logical extension of this approach was this: why not apply the same short-hand style to
the standard getters? Look at this method:

String getFirstName() { return firstName; }

It can easily be shortened to the following form:

String getFirstName() -> firstName;

Java - Getting New Features Chapter 19

[628]

Or, consider the case when the method uses another method:

int getNameLength(String name) { return name.length(); }

It can be shortened by the method reference too, as follows:

int getNameLength(String name) = String::length;

But, as of this writing (March 2019), this proposal is still in the early stages, and many
things can be changed in the final release.

Lambda leftovers
The Amber project plans three additions to the lambda expressions syntax:

Shadowing local variable
Netter disambiguation of functional expressions
Using an underscore to indicate a not-used parameter

Using an underscore instead of a parameter name
In many other programming languages, an underscore (_) in a lambda expression denotes
an unnamed parameter. After Java 9 made it illegal to use an underscore as an identifier,
the Amber project plans to use it for a lambda parameter in the cases when this parameter
is not actually needed for the current implementation. For example, look at this function:

BiFunction<Integer, String, String> f = (i, s) -> s.substring(3);

The parameter (i) is not used in the function body, but we still provide the identifier as a
placeholder.

With the new addition, it will be possible to replace it with the underscore, thus avoiding
using an identifier and indicating that the parameter is never used:

BiFunction<Integer, String, String> f = (_, s) -> s.substring(3);

This way, it is more difficult to miss the fact that one input value is not used.

Java - Getting New Features Chapter 19

[629]

Shadowing a local variable
Currently, it is not possible to give a parameter of a lambda expression the same name as is
used as an identifier in the local context. For example:

int i = 42;
//some other code
BiFunction<Integer, String, String> f = (i, s) -> s.substring(3); //error

In future releases, such name reuse will be possible.

Better disambiguation of functional expressions
As of this writing, it is possible to have a method overloaded as follows:

void method(Function<String, String> fss){
 //do something
}
void method(Predicate<String> predicate){
 //do something
}

But, it is possible to use it only by defining the type of the passed-in function explicitly:

Predicate<String> pred = s -> s.contains("a");
method(pred);

An attempt to use it with the inlined lambda expression will fail:

method(s -> s.contains("a")); // compilation error

The compiler complains because of an ambiguity it cannot resolve because both functions
have one input parameter of the same type and are different only when it comes to the
return type.

The Amber project may address it, but the final decision is not made yet because it depends
on the effect this proposal has on the compiler implementation.

Java - Getting New Features Chapter 19

[630]

Loom project
The Loom project (https:/ /openjdk. java.net/ projects/ loom) may be the most
significant of the projects listed in this chapter that can give Java a power boost. From the
very early days almost 25 years ago, Java provided a relatively simple multi-threading
model with a well-defined synchronization mechanism. We described it in Chapter 8,
Multithreading and Concurrent Processing. This simplicity, as well as the overall simplicity
and security of Java, was one of the main factors of Java's success. Java servlets allowed the
processing of many concurrent requests and were at the foundation of Java-based HTTP
servers.

The thread in Java is based on the OS kernel thread, though, which is a general-purpose
thread. But the kernel OS thread was designed to perform many different system tasks too.
It makes such a thread too heavy (requiring too many resources) for the business needs of a
particular application. The actual business operations necessary to satisfy a request
received by an application, typically do not require all the thread capability. This means
that the current thread-model limits the application power. To estimate how strong the
limitation is, it is enough to observe that an HTTP server today can handle more than a
million concurrent open sockets, while the JVM cannot handle more than a few thousand.

That was the motivation for introducing asynchronous processing, using the threads
minimally and introducing lightweight processing workers instead. We talked about it in
Chapter 15, Reactive Programming and Chapter 16, Microservices. The asynchronous
processing model works very well, but its programming is not as simple as in other Java
programming. It also requires a significant effort to integrate with legacy code based on the
threads and even more effort to migrate the legacy code to adopt the new model.

Adding such a complexity made Java not as easy to learn as it used to be, and the Loom
project is set to bring the simplicity of Java concurrent processing back into use by making
it more lightweight.

The project plans to add to Java a new class, Fiber, in support of a lightweight thread
construct, managed by the JVM. Fibers take much fewer resources. They also have almost
no or very little overhead of context switching, the procedure necessary when a thread is
suspended and another thread has to start or continue its own job that was suspended
because of the CPU time-share or similar. The context switching of the current threads is
one of the main reasons for performance limitation.

https://openjdk.java.net/projects/loom
https://openjdk.java.net/projects/loom
https://openjdk.java.net/projects/loom
https://openjdk.java.net/projects/loom
https://openjdk.java.net/projects/loom
https://openjdk.java.net/projects/loom
https://openjdk.java.net/projects/loom
https://openjdk.java.net/projects/loom
https://openjdk.java.net/projects/loom
https://openjdk.java.net/projects/loom
https://openjdk.java.net/projects/loom
https://openjdk.java.net/projects/loom
https://openjdk.java.net/projects/loom

Java - Getting New Features Chapter 19

[631]

To give you an idea of how light the fibers are, compared to the threads, the Loom
developers Ron Pressler and Alan Bateman provided the following numbers (http:/ / cr.
openjdk.java.net/ ~rpressler/ loom/ JVMLS2018. pdf):

Thread:
Typically 1 MB reserved for stack + 16 KB of kernel data structures
~2,300 bytes per started thread, includes Virtual Machine (VM)
metadata

Fiber:
Continuation stack: hundreds of bytes to KBs
200-240 bytes per fiber in the current prototype

As you can see, we can hope there will a significant improvement in the performance of
concurrent processing.

The term continuation is not new. It was used before fibers. It denotes a sequence of
instructions that execute sequentially, and may suspend itself. Another part of the concurrent
processor is a scheduler that assigns continuations to CPU cores, replacing a paused one with
another that's ready to run, and ensuring that a continuation that is ready to resume will eventually
be assigned to a CPU core. A current thread model also has a continuation and a scheduler,
even if they are not always exposed as APIs. The Loom project intends to separate
the continuation and the scheduler and to implement Java fibers on top of them. The
existing ForkJoinPool will probably serve as the fiber.

You can read more about the motivation and goals of the Loom project in the project
proposal (https:/ /cr. openjdk. java. net/ ~rpressler/ loom/ Loom- Proposal. html), which
is a relatively easy and very instructive read for any Java developer.

Skara project
The Skara project (http:/ / openjdk. java. net/projects/ skara) is not adding new features
to Java. It is focused on improving access to the Java source code of JDK.

To access the source code today, you need to download it from a Mercurial repository and
compile it manually. The Skara project's goal is to move the source code to Git because Git
is now the most popular source repository, and many programmers use it already. The
source code of the examples in this book, as you know, is stored on GitHub too.

http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
http://cr.openjdk.java.net/~rpressler/loom/JVMLS2018.pdf
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
http://openjdk.java.net/projects/skara
http://openjdk.java.net/projects/skara
http://openjdk.java.net/projects/skara
http://openjdk.java.net/projects/skara
http://openjdk.java.net/projects/skara
http://openjdk.java.net/projects/skara
http://openjdk.java.net/projects/skara
http://openjdk.java.net/projects/skara
http://openjdk.java.net/projects/skara
http://openjdk.java.net/projects/skara
http://openjdk.java.net/projects/skara
http://openjdk.java.net/projects/skara
http://openjdk.java.net/projects/skara

Java - Getting New Features Chapter 19

[632]

The current results of the Skara project you can see in GitHub already (https:/ /github.
com/Project-Skara/ jdk). Well, it still uses a mirror of the JDK Mercurial repository. But, in
the future, it will become more independent.

Summary
In this chapter, the reader has learned about the current most significant projects that
enhance the JDK. We hope that you were able to understand how to follow Java
development and have envisioned the road map of future Java releases. There are many
more on-going projects (https:/ / openjdk. java. net/ projects) that you can look at too.
We also hope that you got sufficiently excited by the prospect to become a productive JDK
source contributor and active community member. Welcome!

https://github.com/Project-Skara/jdk
https://github.com/Project-Skara/jdk
https://github.com/Project-Skara/jdk
https://github.com/Project-Skara/jdk
https://github.com/Project-Skara/jdk
https://github.com/Project-Skara/jdk
https://github.com/Project-Skara/jdk
https://github.com/Project-Skara/jdk
https://github.com/Project-Skara/jdk
https://github.com/Project-Skara/jdk
https://github.com/Project-Skara/jdk
https://github.com/Project-Skara/jdk
https://openjdk.java.net/projects
https://openjdk.java.net/projects
https://openjdk.java.net/projects
https://openjdk.java.net/projects
https://openjdk.java.net/projects
https://openjdk.java.net/projects
https://openjdk.java.net/projects
https://openjdk.java.net/projects
https://openjdk.java.net/projects
https://openjdk.java.net/projects
https://openjdk.java.net/projects

Assessments

Chapter 1 – Getting Started with Java 12
c) Java Development Kit1.
b) Java Class Library2.
d) Java Standard Edition3.
b) Integrated Development Environment4.
a) Project building, b) Project configuration, c) Project documentation5.
a) boolean, b) numeric6.
a) long, c) short, d) byte7.
d) Value representation8.
a) \\ , b) 2_0 , c) 2__0f , d) \f9.
a) % , c) & , d) ->10.
a) 011.
b) false, false12.
d) 413.
c) Compilation error14.
b) 215.
a), c), d)16.
d) 20 -117.
c) The x value is within the 11 range 18.
c) result = 3219.
a) A variable can be declared, b) A variable can be assigned20.
b) A selection statement, d) An increment statement21.

Assessments

[634]

Chapter 2 – Java Object-Oriented
Programming (OOP)

a), d)1.
b), c), d)2.
a), b), c)3.
a), c), d)4.
d)5.
c), d)6.
a), b)7.
b), d)8.
d)9.
b)10.
a), c)11.
b), c), d)12.
a), b)13.
b), c)14.
b), c), d)15.
b), c)16.
c)17.
a), b), c)18.
b), c), d)19.
a), c)20.
a), c), d)21.

Chapter 3 – Java Fundamentals
a), d)1.
c), d)2.
a), b), d)3.
a), c), d)4.
a), c)5.
a), b), d)6.

Assessments

[635]

a), b), c), d)7.
c), d)8.
d)9.
c)10.
b)11.
c)12.

Chapter 4 – Exception Handling
a), b), c)1.
b)2.
c)3.
a), b), c), d) 4.
a)5.
a), c)6.
d)7.

Chapter 5 – Strings, Input/Output, and Files
b)1.
c)2.
b)3.
a)4.
d)5.
a), c), d)6.
c)7.
d)8.
a), b), c)9.
c), d) (notice the usage of the mkdir() method, instead of mkdirs())10.

Assessments

[636]

Chapter 6 – Data Structures, Generics, and
Popular Utilities

d)1.
b), d)2.
a), b), c), d)3.
a), b), c), d)4.
a), b), d)5.
a), b), c)6.
c)7.
a), b), c), d)8.
b), d)9.
b)10.
b), c)11.
a)12.
c)13.
d)14.
b)15.
c)16.
a)17.
b)18.
c)19.

Chapter 7 – Java Standard and External
Libraries

a), b), c)1.
a), b), d)2.
b), c)3.
b), d)4.
a), c)5.
a), b), c), d)6.
b), c), d)7.

Assessments

[637]

b), c)8.
b)9.
c), d)10.
a), c)11.
b), d)12.
a), d)13.
b), c), d)14.
a), b), d)15.
b), d)16.

Chapter 8 – Multithreading and Concurrent
Processing

a), c), d)1.
b), c), d)2.
a)3.
a), c), d)4.
b), c), d)5.
a), b), c), d)6.
c), d)7.
a), b), c)8.
b), c)9.
b), c), d)10.
a), b), c)11.
b), c)12.
b), c)13.

Chapter 9 – JVM Structure and Garbage
Collection

b), d)1.
c)2.

Assessments

[638]

d)3.
b), c)4.
a), d)5.
c)6.
a), b), c), d)7.
a), c), d)8.
b), d)9.
a), b), c), d)10.
a)11.
a), b), c)12.
a), c)13.
a), c), d)14.
b), d)15.

Chapter 10 – Managing Data in a Database
c)1.
a), d)2.
b), c), d)3.
a), b), c), d)4.
a), b), c)5.
a), d)6.
a), b), c)7.
a), c)8.
a), c), d)9.
a), b)10.
a), d)11.
a), b), d)12.
a), b), c)13.

Assessments

[639]

Chapter 11 – Network Programming
The correct answer may include FTP, SMTP, HTTP, HTTPS, WebSocket, SSH,1.
Telnet, LDAP, DNS, or some other protocols
The correct answer may include UDP, TCP, SCTP, DCCP, or some other2.
protocols
java.net.http3.
UDP4.
Yes5.
java.net6.
Transmission Control Protocol7.
They are synonyms8.
The TCP session is identified by IP address and port of the source and IP address9.
and port of the destination
ServerSocket can be used without the client running. It just listens on the10.
specified port
UDP11.
TCP12.
The correct answers may include HTTP, HTTPS, Telnet, FTP, or SMTP13.
a), c), d)14.
They are synonyms15.
They are synonyms16.
/something/something?par=4217.
The correct answer may include binary format, header compression,18.
multiplexing, or push capability
java.net.http.HttpClient19.
java.net.http.WebSocket20.
No difference21.
java.util.concurrent.CompletableFuture22.

Chapter 12 – Java GUI Programming
Stage1.
Node2.

Assessments

[640]

Application3.
void start(Stage pm)4.
static void launch(String... args) 5.
--module-path and --add-modules6.
void stop()7.
WebView8.
Media, MediaPlayer, MediaView9.
--add-exports10.
Any five from the following11.
list: Blend, Bloom, BoxBlur, ColorAdjust, DisplacementMap, DropShadow, G
low, InnerShadow, Lighting, MotionBlur, PerspectiveTransform, Reflec
tion, ShadowTone, and SepiaTone

Chapter 13 – Functional Programming
c)1.
a), d)2.
One3.
void4.
One5.
boolean6.
None7.
T8.
One9.
R10.
The enclosing context11.
Location::methodName12.

Chapter 14 – Java Standard Streams
a), b)1.
of(), without parameters, produces an empty stream2.
java.util.Set3.

Assessments

[641]

1354.
425.
21216.
No, but it extends the functional interface Consumer and can be passed around7.
as such
None8.
39.
1.510.
42,X,a11.
Compilation error, because peek() cannot return anything12.
213.
An alternative Optional object14.
a15.
One16.
Any of filter(), map(), and flatMap()17.
Any of distinct(), limit(), sorted(), reduce(), and collect()18.

Chapter 15 – Reactive Programming
a), b), c)1.
Yes2.
Non-Blocking Input/Output3.
No4.
Reactive eXtension5.
java.util.concurrent6.
a), d)7.
The blocking operator name starts with blocking8.
A hot observable emits values at its own pace. A cold observable emits the next9.
value after the previous one has reached the Terminal operator
The observable stops emitting values and the pipeline stops operating10.
a), c), d)11.
For example, any two from the following: buffer(), flatMap(), groupBy(),12.
map(), scan(), and window()

Assessments

[642]

For example, any two from the13.
following: debounce(), distinct(), elementAt(long
n), filter(), firstElement(), ignoreElements(), lastElement(),
sample(), skip(), and take()
Drop excessive values, take the latest, use buffer14.
subscribeOn(), observeOn(), fromFuture()15.

Chapter 16 – Microservices
a), c)1.
Yes2.
The same way the traditional applications do; plus, they often have their own3.
way to communicate (using an event bus, for example)
Any two from the list: Akka, Dropwizard, Jodd, Lightbend Lagom, Ninja, Spotify4.
Apollo, and Vert.x.
A class that implements the interface io.vertx.core.Verticle5.
Send only sends to one receiver registered with the address; publish sends6.
messages to all receivers registered with the same address
It uses a round-robin algorithm7.
Yes8.
https:// vertx. io/ 9.

Chapter 17 – Java Microbenchmark Harness
b), c), d)1.
Add a dependency on JMH to the project (or classpath, if run manually) and add2.
the annotation @Benchmark to the method you would like to test for
performance
As the main method using a Java command with an explicitly named main class,3.
as the main method using a java command with an executable .jar file, and
using an IDE running as the main method or using a plugin and running an
individual method
Any two of the following: Mode.AverageTime, Mode.Throughput,4.
Mode.SampleTime, and Mode.SingleShotTime

https://vertx.io/
https://vertx.io/
https://vertx.io/
https://vertx.io/
https://vertx.io/
https://vertx.io/
https://vertx.io/
https://vertx.io/

Assessments

[643]

Any two of the following: TimeUnit.NANOSECONDS, TimeUnit.MICROSECONDS,5.
TimeUnit.MILLISECONDS, TimeUnit.SECONDS, TimeUnit.MINUTES,
TimeUnit.HOURS, and TimeUnit.DAYS
Using an object of a class with the annotation @State6.
Using the annotation @Param in front of the state property7.
Using the annotation @CompilerConrol8.
Using a parameter of the type Blackhole that consumes the produced result9.
Using the annotation @Fork10.

Chapter 18 – Best Practices for Writing High-
Quality Code

a), b), c)1.
Generally, it is recommended but not required. It is required for certain2.
situations for example, an when object of the class is going to be placed and
searched inside a hash-based data structure
obj1 is less than obj23.
No4.
StringBuilder5.
Allowing the implementation to change without changing the client code6.
More control over the code evolution and code flexibility for accommodating a7.
change
More reliable code, quicker to write, less testing, easier for other people to8.
understand
Other programmers that are going to maintain your code and you some time9.
later
No, but it is very helpful to you10.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Java 11 Cookbook - Second Edition
Nick Samoylov

ISBN: 9781789132359

Set up JDK and understand what's new in the JDK 11 installation
Implement object-oriented designs using classes and interfaces
Manage operating system processes
Create a modular application with clear dependencies
Build graphical user interfaces using JavaFX
Use the new HTTP Client API
Explore the new diagnostic features in Java 11
Discover how to use the new JShell REPL tool

https://www.packtpub.com/application-development/java-11-cookbook-second-edition

Other Books You May Enjoy

[645]

Java 11 and 12 - New Features
Mala Gupta

ISBN: 9781789133271

Study type interference and how to work with the var type
Understand Class-Data Sharing, its benefits, and limitations
Discover platform options to reduce your application’s launch time
Improve application performance by switching garbage collectors
Get up to date with the new Java release cadence
Define and assess decision criteria for migrating to a new version of Java

https://www.packtpub.com/application-development/java-11-and-12-new-features

Other Books You May Enjoy

[646]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
abstract class
 versus interface 95
Abstract Window Toolkit (AWT) 259, 395
abstraction 73, 76
access 116
access modifiers 118, 119, 120
Address Resolution Protocol (ARP) 358
Advanced Research Projects Agency Network

(ARPANET) 364
Akka 571
Akka Streams
 reference 531
Amber project
 about 624
 Java features 624
 reference 624
Apache Commons project site
 reference 269
Apache Commons project
 Commons Dormant 266
 Commons Proper 266
 Commons Sandbox 266
Apache Commons
 about 169, 205, 265
 FileUtils class 206
 IOUtils class 207
Apache project
 CollectionUtils class 230
Apache Software Foundation 265
Application Foundation Classes (AFC) 395
application termination 323, 324
arity 79
array utilities
 about 231
 ArrayUtils class of Apache project 233

 java.util.Arrays class 231
array
 about 80, 123
 examples 123, 124
ArrayUtils class
 of Apache project 233
assert statement 159
asynchronous processing 524
atomic variable 296
auto-unboxing 143
autoboxing 141

B
base class 72
benchmark 586
best design practices
 about 615
 coding to interface 616
 composition, preferring over inheritance 616
 factories, using 616
 functional area, breaking into traditional tiers 615
 libraries, using 617
 loosely coupled functional areas, identifying 615
Blackhole object
 using 599
Bootique 571
Bootstrap Protocol (BOOTP) 371
boxing 141
ByteArrayInputStream 176
ByteArrayInputStream class 175

C
CallableStatement
 using 352, 353, 354
Cascading Style Sheets (CSS) 260
catch block 154
catch clause 614

[648]

channel 529
charts, JavaFX
 about 405
 AreaChart 405
 BarChart 406
 BubbleChart 406
 LineChart 405
 PieChart 406
 ScatterChart 406
checked exceptions 152, 153
child class 72
class 72, 73, 74, 78, 79, 121, 122
class initialization 321
class instantiation 322
Class java.lang.Object 85, 86, 87, 88
class linking 320, 321
class loading 319, 320
class loading proces 317
class thread
 extending 275, 276
clone() method 610, 612, 613, 614
code 618
Collection interface 218, 219, 220
collection utilities
 about 227
 CollectionUtils class, of Apache project 230
 java.util.Collections class 228, 229
collections 211
CollectionUtils class
 of Apache project 230
combiner 525
comments 618
Commons DBCP
 reference 340
compareTo() method 608, 609
CompletableFuture object
 using 527
concurrent modification, of same resource
 about 293, 295
 atomic variable 297, 298
 concurrent collections 301
 memory consistency errors, addressing 303
 synchronized block 299
 synchronized method 298
concurrent processing

 versus parallel processing 293
constructor 81, 82, 83
continuation 631
control elements, JavaFX 402, 403, 404, 405
coordination 321
core Java packages 254
CRUD data 342

D
daemon thread
 versus user thread 275
data class 625
database connection
 releasing 340, 341
database driver 333
Database Management Systems (DBMSes) 334
database structure
 creating 335, 336, 337
database
 connecting to 338, 339, 340
 creating 333, 334
Datagram Congestion Control Protocol (DCCP)

359

datagrams 360
dead code 587
deadlock 293
deep copy 611
default modifier package-private 118
default values 127
Defense Advanced Research Projects Agency

(DARPA) 364
DELETE statement
 about 344
 execute(String sql) method 347
 executeQuery(String sql) method 349
 executeUpdate(String sql) method 350
diamond 213
directories
 creating 202
 deleting 203
 listing 204
Distributed Transaction Manager (DTM) 570
Domain Name System (DNS) 359
downcasting 122
Dropwizard

[649]

 reference 571
Duration class 245
Dynamic Host Configuration Protocol (DHCP) 371

E
echo server 391
elasticity 532
encapsulation 73, 76
enclosing context 471
enclosing instance 471
enclosing scope 471
enum 124, 125, 126
enumeration 181
equality operator 129, 130
equals() method 605
event loop 529, 530
exceptions handling
 best practices 159
external libraries 253
 org.apache.commons 265
 org.apache.log4j 263
 org.junit 260, 261
 org.mockito 261, 263
 org.slf4j 265

F
fibers 622
file management 201
File Transfer Protocol (FTP) 359
FileInputStream class 176, 177
files
 creating 202
 deleting 203
 listing 204
FileUtils class 206
filtering operation, Stream Interface 488, 489
FilterInputStream class 182
final class 105
final method 105
final variable 103, 104
finally block 155
finally clause 614
foreign libraries 623
Fork/Join implementation, in Oracle Java

documentation

 reference 282
format specifiers 167
fully-qualified class name 116
functional interface 457, 458
functional programming 223, 454, 455, 456
FXML
 reference 409
 using 409, 411, 412, 413, 414

G
garbage collection
 about 85, 121, 326
 responsiveness 327
 throughput 327
Garbage Collector (GC) 322
generics 181, 213
Graphical User Interface (GUI) 259

H
hash code 212
hash value 212
hashCode() method 606
heap 85
HelloWorld JavaFX application 399, 400, 401
hiding 96, 100, 102
high-level networking 258
HikariCP
 reference 340
HTTP 2 Client API
 blocking HTTP requests 381, 382, 383
 classes 380
 non-blocking HTTP requests 383, 384, 385,

386, 388
 server push functionality 388, 389
 using 380
 WebSocket support 389, 391
Hypertext Transfer Protocol (HTTP) 359
Hypertext Transfer Protocol Secure (HTTPS) 359

I
I/O streams 172
IDE plugin
 using 591, 593
immutable 226
implicit unboxing 143

[650]

importing 116, 117
inheritance 73, 74, 75
inner classes 119
inner interfaces 119
input stream 172
InputStream class
 ByteArrayInputStream class 175, 176
 FileInputStream class 176, 177
 FilterInputStream class 182
 methods 174
 ObjectInputStream class 178
 PipedInputStream 179, 180
 SequenceInputStream class 181
INSERT statement
 about 342
 execute(String sql) method 345
 executeQuery(String sql) method 347
 executeUpdate(String sql) method 349
instance methods 90
instanceof operator 108, 109
Integrated Development Environment (IDE)
 about 253
interface Runnable
 implementing 277, 278
interface
 about 72, 73, 76, 92, 121, 122
 default methods 93
 private methods 94
 static fields 95
 static methods 95
 versus abstract class 95
intermediate operations, Stream interface
 about 488, 515
 boxed() 516
 filtering 488, 489
 flatMapToDouble() 518
 flatMapToInt() 518
 flatMapToLong() 518
 mapping 489, 490, 491
 mapToDouble() 517
 mapToInt() 517
 mapToLong() 517
 mapToObj() 516
 peeking 492
 sorting 491

International Standard Organization (ISO) 239
Internet Foundation Classes (IFC) 395
internet protocol (IP)
 application layer 359
 Internet layer 359
 link layer 358
 transport layer 359
Internet Protocol version 4 (IPv4) 359
Internet Protocol version 6 (IPv6) 359
IOUtils class 207

J
Java 11
 String class, methods 168
Java application execution
 about 308
 command line, using with classes 312, 313, 314
 command line, using with executable JAR file

316

 command line, using with JAR files 315, 316
 with IDE 308, 309, 310, 312
Java Class Library (JCL) 184, 253, 254, 315,

395, 617, 622
Java collections framework 211
Java Database Connectivity (JDBC) 258, 333
Java Development Kit (JDK) 253, 617
Java enhancement projects
 Amber project 624
 Loom project 622, 630
 Panama project 622
 Skara project 631
 Valhalla project 622, 623
Java exceptions framework 150, 151
Java features, Amber project
 concise method bodies 627, 628
 data class 624
 Lambda leftovers 628
 pattern match 625, 626
 raw string literals 626, 627
Java Foundation Classes (JFC) 395
Java GUI
 technologies 395
Java idioms
 about 605
 catch clause 614

[651]

 clone() method 610, 612, 613, 614
 compareTo() method 608, 609
 equals() method 605
 finally clause 614
 hashCode() method 606
 StringBuilder class 614
 try clause 614
Java Microbenchmark Harness (JMH)
 @CompilerControl annotation 599
 @Param annotation 600
 @State annotation 598
 about 586, 587, 589
 Blackhole object 599
 usage example 597
 usage examples 596
Java Native Access (JNA) 622
Java Native Interface (JNI) 622
Java Native Runtime (JNR) 622
Java Platform Standard Edition (Java SE) 334
Java polymorphism 105
Java processes
 about 317, 318
 application termination 323, 324
 class initialization 321
 class instantiation 322
 class linking 320, 321
 class loading 319, 320
 garbage collection 322
 method execution 322
Java program 77
Java Virtual Machine (JVM) 150, 622
java.io package
 about 257
 classes 190
 Console class 190, 191, 193
 ObjectStreamClass 197
 ObjectStreamField 199
 StreamTokenizer class 194, 196
 versus java.nio package 528
java.lang package 255
java.lang.Iterable interface 217
java.lang.math package 259
java.lang.Throwable class
 methods 151
java.math package 259

java.net package 258
java.net.ServerSocket class
 constructors 365
 methods 366
java.net.Socket class
 constructors 368
 methods 368
java.net.URL class
 constructors 373
java.nio package 257
java.sql package 258
java.time package
 about 239, 257
 Duration class 245
 LocalDate class 239, 240, 242
 LocalDateTime class 244
 LocalTime class 242, 243
 Period class 245
java.util package 256
java.util.Arrays class 231, 232
java.util.Collections class 228, 229
java.util.Objects class 235, 237
java.util.Scanner class 199, 200
JavaFX toolkit
 reference 397
javafx.scene.media package
 reference 427
JavaFX
 charts 405
 control elements 402, 403, 404, 405
 CSS, applying 407, 408
 effects, adding 428, 429, 430, 431, 432, 433,

434, 435, 436, 438
 fundamentals 395, 396, 397
 HTML, embedding 415, 417, 419, 420, 421,

422

 media, playing 423, 424, 425, 426, 427
javax.sound.sampled.AudioInputStream 183
javax.sql package 258
JDK Enhancement Proposals (JEP) 622
jextract 623
JMH benchmark parameters
 about 594
 forking 596
 iterations 595

[652]

 mode 595
 output time unit 595
JMH benchmark
 creating 589, 590
 running 590
Jodd 571
Just-In-Time (JIT) compile 322
JVM architecture 318
JVM instance 317
JVM structure
 about 325
 classloaders 326
 execution engine 326
 runtime data areas 325

K
keywords
 about 132
 reserved keywords 133
 restricted keyword 134
KumuluzEE
 reference 570

L
lambda expression
 about 459
 limitations 470, 471
Lambda leftovers, Amber project
 better disambiguation of functional expressions

629

 local variable, shadowing 629
 underscore, using instead of parameter name

628

Lightbend Lagom
 reference 571
Lightweight Directory Access Protocol (LDAP) 359
List interface
 about 222
 initializing 214, 216
 methods 220
list interfaces 211
literals 127
local-variable syntax
 for lambda parameters 460, 461, 462
LocalDate class 239, 240, 242

LocalDateTime class 244
LocalTime class 242, 243
Loom project
 about 630
 reference 630
low-level networking 258

M
main thread 275, 322
map 212
Map interface 223, 224, 226
map interfaces 211
mapping operation, Stream Interface 489, 491
memory consistency errors 293
method 74
method references 472, 473, 474
method signature 76, 79
micro preface 586
MicroProfile
 reference 570
microservice
 about 567, 568
 communicating 570, 571, 572
 reactive system 573
 size 569, 570
multidimensional array 124

N
narrowing conversion 137
natural order 608
natural ordering 228
Neighbor Discovery Protocol (NDP) 358
Network File System (NFS) 371
network programming 358
network protocols 358
new operator 84, 85
Ninja
 reference 571
nodes 395
non-blocking API
 about 528
 event loop 530
 java.io package 528
 java.nio package 529
 run loop 530

[653]

non-blocking back pressure 531
non-blocking input/output (NIO) 528
numeric stream interfaces 514
numeric streams 478

O
object 73, 74
object behavior 72
object factory 106, 107
object state 72, 77
object utilities
 about 234
 java.util.Objects class 234, 235, 237
 ObjectUtils class, of Apache project 238
Object-Oriented Programming (OOP) 72
ObjectInputStream class 178
ObjectUtils class
 of Apache project 238
observable types, RxJava
 blocking, versus non-blocking 538, 539, 540
 cold, versus hot 541, 542, 543, 544
OOP concepts
 about 73
 abstraction 73
 class 73
 encapsulation 73
 inheritance 73
 interface 73
 object 73
 polymorphism 73
operators, RxJava
 about 548
 backpressure 558
 boolean 557
 combining 551
 conditional 557
 connectable 558
 conversion, from XXX 552
 exceptions handling 553
 filtering 550
 life cycle events handling 553, 554
 reference 548
 transforming 549
 utilities 555
org.apache.commons package 265

org.apache.commons.io package
 classes 205
org.apache.commons
 codec.binary 269
 collections4 267, 268
 lang 266
 lang3 266
org.apache.log4j package 264
org.junit package 260, 261
org.mockito package 261, 263
org.slf4j package 263
output stream 172
OutputStream class
 about 184
 PrintStream class 185, 186
overloading 96, 97
overriding 96, 98, 99

P
packages 115, 116
Panama project
 about 622
 reference 623
parallel processing
 considerations 520
 versus concurrent processing 293
parallel streams
 about 520
 stateful operations 520
 stateless operations 520
 versus sequential streams 525, 526
parent class 72
peeking operation, Stream Interface 492
Period class 245
PipedInputStream class 179, 180
polymorphism 73, 77, 105
pool of threads
 using 279, 280, 282, 284, 285, 286, 287
PreparedStatement
 using 351, 352
primitive types, conversions
 about 136
 methods 139, 141
 narrowing conversion 138
 widening conversion 137, 138

[654]

PrintStream class 185, 186
process
 about 317
 versus thread 274
Program Counter (PC) registers 322
programming 617
pull model 534

Q
queue 212

R
reactive 530
Reactive Extension (RX) 530
Reactive Manifesto
 reference 531
reactive programming
 about 529, 530
 elastic 532
 message-driven 533
 resilient 532
 responsive 531
Reactive Streams
 about 530, 533, 534
 reference 531
reactive system, of microservices
 EventBus message receiver 577, 578
 EventBus message senders 579, 581, 582
 HTTP server 573, 574, 576
reactive system
 demonstration 582, 583
reactive systems 529
reactor design pattern 529
Reactor
 reference 531
Reader class
 subclasses 188
reference type
 about 121
 as method parameter 127, 128
requestor 524
reserved keywords 132
restricted keywords 133
Reverse Address Resolution Protocol (RARP) 358
run loop 529

Runnable implementation
 versus thread extension 278, 279
runtime data areas, JVM memory
 shared areas 325
 unshared areas 325
runtime exceptions 153
Rx programming 530
rxfied Vert.x API 571
RxJava 2 API
 reference 537
RxJava 2.2.7 535
RxJava
 about 530, 535, 536
 Disposable object 544, 545
 multithreading 559, 560, 561, 563, 564
 observable types 537
 observable, creating 546, 548
 operators 548
 reference 531

S
scheduler 631
Secure Shell (SSH) 359
SELECT statement
 about 342, 343
 execute(String sql) method 346
 executeQuery(String sql) method 348
 executeUpdate(String sql) method 350
SequenceInputStream class 181
sequential processing
 considerations 521
sequential streams
 versus parallel streams 525, 526
Service Provider Interface (SPI) 534
Service-Oriented Architecture (SOA) 568
Set interface
 about 223
 initializing 214, 216
set interfaces 211
shallow copy 89, 611
Simple Mail Transfer Protocol (SMTP) 359
Simple Network Management Protocol (SNMP)

371

Skara project
 about 631

[655]

 reference 631
sorting operation, Stream Interface 491
special type null 127
Spotify Apollo 571
Spring Boot
 reference 570
SQL statements
 about 341
 DELETE statement 344
 INSERT statement 342
 SELECT statement 343, 344
 UPDATE statement 344
stack 212
stack frame 151
stack trace 151
standard functional interfaces 462, 463, 464, 465,

466, 467, 468
stateless methods 227
statements
 using 345
static nested classes 119
static properties 91
stop-the-world
 about 327
 unavoidable 328
Stream Control Transmission Protocol (SCTP) 359
stream data 173
stream initialization 478
Stream interface
 concat (Stream a, Stream b) method 482
 empty() method 478
 generate (Supplier) method 482
 intermediate operations 487, 488
 iterate(Object, UnaryOperator) method 481
 of(T... values) method 479, 480
 ofNullable(T t) method 480, 481
 operations 487
 range() method 515
 rangeClosed() 515
 terminal operation 487
 terminal operations 492, 518
Stream.Builder interface 483, 484
stream
 as source of data and operations 476, 477, 478
 classes 484, 485, 486

 interfaces 484, 485, 486
String class, methods
 compareTo() 166
 compareToIgnoreCase() 166
 concat() 167
 contains() 165
 contentEquals() 165
 endsWith() 165
 equals() 164
 equalsIgnoreCase() 165
 format() 167
 indexOf() 164
 isEmpty() 164
 join() 167
 lastIndexOf() 164
 length() 164
 matches() 164
 replace() 167
 replaceAll() 167
 replaceFirst() 167
 split() 168
 startsWith() 165
 substring() 166
 toLowerCase() 168
 toUpperCase() 168
string immutability 163
string utilities 170, 171
StringBuffer class 614
StringBuilder class 614
strings analysis 164
strings comparison 164, 166
strings processing 163
strings transformation 166
subclass 72
super keyword 136
superclass 72
Swing 259
synchronization 321

T
TCP protocol
 versus UDP protocol 371, 372
TCP-based communication
 about 364, 365
 examples 370

 java.net.ServerSocket class 366, 367
 java.net.Socket class 368, 369
terminal operations, Stream interface
 about 492
 average() 519
 collect 507, 508, 510
 collectors 510, 511, 512, 514
 element, processing 493, 495
 elements, counting 496
 find any 498
 find first 498
 match all 497
 match any 497
 match none 497
 max 500, 501
 min 500, 501
 Optional class 499
 reduce 503, 504, 505, 507
 sum() 519
 to array 501, 502
testing 619
text data 173
third-party libraries 253
this keyword 134, 135
thread extension
 versus Runnable implementation 278, 279
thread interferenc 293
thread
 results, obtaining from 288, 289, 291, 292
 versus process 274
threads 318
throw statement 157, 158
throws statement 156, 157
top-level class 119
top-level interface 119
Trivial File Transfer Protocol (TFTP) 371
try block 154
try clause 614

U
UDP protocol
 versus TCP protocol 371, 372

UDP-based communication 360, 361, 362, 364
unboxing 141, 142
unchecked exceptions 152, 153
Uniform Resource Identifier (URI) 372
unit 261
Universal Resource Identifier (URI) 258
Universal Resource Locator (URL) 258
unmodifiable collections 226
upcasting 122
UPDATE statement
 about 344
 execute(String sql) method 346
 executeQuery(String sql) method 348
 executeUpdate(String sql) method 350
URL-based communication
 about 372
 java.net.URL class 373, 375, 376, 377, 379
 syntax 372, 373
user thread
 versus daemon thread 275
utilities methods 227

V
Valhalla project
 about 623
 reference 623
varargs 80
Vert.x API
 source trees 571
Vert.x
 about 571
 reference 531
Vibur
 reference 340

W
widening assignment 122
widening conversion 137
wildcard address 361
wrapper class 139
Writer class
 subclasses 189

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Overview of Java Programming
	Chapter 1: Getting Started with Java 12
	How to install and run Java
	What is JDK and why do we need it?
	Installing Java SE
	Commands, tools, and utilities

	How to install and run an IDE
	Selecting an IDE
	Installing and configuring IntelliJ IDEA
	Creating a project
	Importing a project
	Executing examples from the command line

	Java primitive types and operators
	Boolean type
	Numeric types
	Integral types
	Floating-point types

	Default values of primitive types
	Literals of primitive types
	New compact number format
	Operators
	Arithmetic unary (+ and -) and binary operators (+, -, *, /, and %)
	Increment and decrement unary operators (++ and --)
	Equality operators (== and !=)
	Relational operators (<, >, <=, and >=)
	Logical operators (!, &, and |)
	Conditional operators (&&, ||, and ? :)
	Assignment operators (=, +=, -=, *=, /=, and %=)

	String types and literals
	String literals
	String immutability

	Identifiers and variables
	Identifier
	Variable declaration (definition) and initialization
	Type holder var

	Java statements
	Expression statements
	Control flow statements
	Selection statements
	Iteration statements
	Exception-handling statements
	Branching statements

	Summary
	Quiz

	Chapter 2: Java Object-Oriented Programming (OOP)
	OOP concepts
	Object/class
	Inheritance
	Abstraction/interface
	Encapsulation
	Polymorphism

	Class
	Method
	Varargs

	Constructor
	The new operator
	Class java.lang.Object
	Instance and static properties and methods

	Interface
	Default methods
	Private methods
	Static fields and methods
	Interface versus abstract class

	Overloading, overriding, and hiding
	Overloading
	Overriding
	Hiding

	Final variable, method, and classes
	Final variable
	Final method
	Final class

	Polymorphism in action
	Object factory
	Operator instanceof

	Summary
	Quiz

	Chapter 3: Java Fundamentals
	Packages, importing, and access
	Packages
	Importing
	Access modifiers

	Java reference types
	Class and interface
	Array
	Enum
	Default values and literals
	Reference type as a method parameter
	equals() method

	Reserved and restricted keywords
	Reserved keywords
	Restricted keywords

	Usage of the this and super keywords
	Usage of the this keyword
	Usage of the super keyword

	Converting between primitive types
	Widening conversion
	Narrowing conversion
	Methods of conversion

	Converting between primitive and reference types
	Boxing
	Unboxing

	Summary
	Quiz

	Section 2: Building Blocks of Java
	Chapter 4: Exception Handling
	Java exceptions framework
	Checked and unchecked exceptions
	The try, catch, and finally blocks
	The throws statement
	The throw statement
	The assert statement
	Best practices of exceptions handling
	Summary
	Quiz

	Chapter 5: Strings, Input/Output, and Files
	Strings processing
	Methods of the String class
	Strings analysis
	Strings comparison
	Strings transformation
	Methods added with Java 11

	String utilities

	I/O streams
	Stream data
	Class InputStream and its subclasses
	ByteArrayInputStream
	FileInputStream
	ObjectInputStream
	PipedInputStream
	SequenceInputStream
	FilterInputStream
	javax.sound.sampled.AudioInputStream

	Class OutputStream and its subclasses
	PrintStream

	Reader and Writer classes and their subclasses
	Reader and its subclasses
	Writer and its subclasses

	Other classes of java.io package
	Console
	StreamTokenizer
	ObjectStreamClass and ObjectStreamField

	Class java.util.Scanner

	File management
	Creating and deleting files and directories
	Listing files and directories

	Apache Commons utilities FileUtils and IOUtils
	Class FileUtils
	Class IOUtils

	Summary
	Quiz

	Chapter 6: Data Structures, Generics, and Popular Utilities
	List, Set, and Map interfaces
	Generics
	How to initialize List and Set
	java.lang.Iterable interface
	Collection interface
	List interface
	Set interface
	Map interface
	Unmodifiable collections

	Collections utilities
	java.util.Collections class
	CollectionUtils class

	Arrays utilities
	java.util.Arrays class
	ArrayUtils class

	Object utilities
	java.util.Objects class
	ObjectUtils class

	java.time package
	LocalDate class
	LocalTime class
	LocalDateTime class
	Period and Duration classes

	Summary
	Quiz

	Chapter 7: Java Standard and External Libraries
	Java Class Library
	java.lang
	java.util
	java.time
	java.io and java.nio
	java.sql and javax.sql
	java.net
	java.lang.math and java.math
	java.awt, javax.swing, and javafx

	External libraries
	org.junit
	org.mockito
	org.apache.log4j and org.slf4j
	org.apache.commons
	lang and lang3
	collections4
	codec.binary

	Summary
	Quiz

	Chapter 8: Multithreading and Concurrent Processing
	Thread versus process
	User thread versus daemon
	Extending class thread
	Implementing interface Runnable
	Extending thread vs implementing Runnable
	Using pool of threads
	Getting results from thread
	Parallel vs concurrent processing
	Concurrent modification of the same resource
	Atomic variable
	Synchronized method
	Synchronized block
	Concurrent collections
	Addressing memory consistency error

	Summary
	Quiz

	Chapter 9: JVM Structure and Garbage Collection
	Java application execution
	Using an IDE
	Using the command line with classes
	Using the command line with JAR files
	Using the command line with an executable JAR file

	Java processes
	Class loading
	Class linking
	Class initialization
	Class instantiation
	Method execution
	Garbage collection
	Application termination

	JVM structure
	Runtime data areas
	Classloaders
	Execution engine

	Garbage collection
	Responsiveness, throughput, and stop-the-world
	Object age and generations
	When stop-the-world is unavoidable

	Summary
	Quiz

	Chapter 10: Managing Data in a Database
	Creating a database
	Creating a database structure
	Connecting to a database
	Releasing the connection
	CRUD data
	The INSERT statement
	The SELECT statement
	The UPDATE statement
	The DELETE statement
	Using statements
	The execute(String sql) method
	The executeQuery(String sql) method
	The executeUpdate(String sql) method

	Using PreparedStatement
	Using CallableStatement

	Summary
	Quiz

	Chapter 11: Network Programming
	Network protocols
	UDP-based communication
	TCP-based communication
	The java.net.ServerSocket class
	The java.net.Socket class
	Running the examples

	UDP versus TCP protocols
	URL-based communication
	The URL syntax
	The java.net.URL class

	Using the HTTP 2 Client API
	Blocking HTTP requests
	Non-blocking (asynchronous) HTTP requests
	Server push functionality
	WebSocket support

	Summary
	Quiz

	Chapter 12: Java GUI Programming
	Java GUI technologies
	JavaFX fundamentals
	Hello with JavaFX
	Control elements
	Charts
	Applying CSS
	Using FXML
	Embedding HTML
	Playing media
	Adding effects
	Summary
	Quiz

	Section 3: Advanced Java
	Chapter 13: Functional Programming
	What is functional programming?
	What is a functional interface?
	What is a lambda expression?
	Local-variable syntax for lambda parameters

	Standard functional interfaces
	Consumer<T>
	Predicate<T>
	Supplier<T>
	Function<T, R>
	Other standard functional interfaces

	Lambda expression limitations
	Method references
	Summary
	Quiz

	Chapter 14: Java Standard Streams
	Streams as a source of data and operations
	Stream initialization
	Stream interface
	empty()
	of(T... values)
	ofNullable(T t)
	iterate(Object, UnaryOperator)
	concat (Stream a, Stream b)
	generate (Supplier)

	Stream.Builder interface
	Other classes and interfaces

	Operations (methods)
	Intermediate operations
	Filtering
	Mapping
	Sorting
	Peeking

	Terminal operations
	Processing each element
	Counting all elements
	Match all, any, none
	Find any or first
	Optional class
	Min and max
	To array
	Reduce
	Collect
	Collectors

	Numeric stream interfaces
	Creating a stream
	range(), rangeClosed()

	Intermediate operations
	boxed(), mapToObj()
	mapToInt(), mapToLong(), mapToDouble()
	flatMapToInt(), flatMapToLong(), flatMapToDouble()

	Terminal operations
	sum(), average()

	Parallel streams
	Stateless and stateful operations
	Sequential or parallel processing?

	Summary
	Quiz

	Chapter 15: Reactive Programming
	Asynchronous processing
	Sequential and parallel streams
	Using the CompletableFuture object

	Non-blocking API
	The java.io package versus the java.nio package
	The event/run loop

	Reactive
	Responsive
	Resilient
	Elastic
	Message-driven

	Reactive streams
	RxJava
	Observable types
	Blocking versus non-blocking
	Cold versus hot

	Disposable
	Creating an observable
	Operators
	Transforming
	Filtering
	Combining
	Converting from XXX
	Exceptions handling
	Life cycle events handling
	Utilities
	Conditional and Boolean
	Backpressure
	Connectable

	Multithreading (scheduler)

	Summary
	Quiz

	Chapter 16: Microservices
	What is a microservice?
	The size of a microservice
	How microservices talk to each other
	The reactive system of microservices
	The HTTP server
	The EventBus message receiver
	The EventBus message senders
	The reactive system demonstration

	Summary
	Quiz

	Chapter 17: Java Microbenchmark Harness
	What is JMH?
	Creating a JMH benchmark
	Running the benchmark
	Using an IDE plugin

	JMH benchmark parameters
	Mode
	Output time unit
	Iterations
	Forking

	JMH usage examples
	Using the @State annotation
	Using the Blackhole object
	Using the @CompilerControl annotation
	Using the @Param annotation

	A word of caution
	Summary
	Quiz

	Chapter 18: Best Practices for Writing High-Quality Code
	Java idioms, their implementation, and their usage
	The equals() and hashCode() methods
	The compareTo() method
	The clone() method
	The StringBuffer and StringBuilder classes
	Try, catch, and finally clauses

	Best design practices
	Identifying loosely coupled functional areas
	Breaking the functional area into traditional tiers
	Coding to an interface
	Using factories
	Preferring composition over inheritance
	Using libraries

	Code is written for people
	Testing is the shortest path to quality code
	Summary
	Quiz

	Chapter 19: Java - Getting New Features
	Java continues to evolve
	Panama project
	Valhalla project
	Amber project
	Data class
	Pattern match
	Raw string literals
	Concise method bodies
	Lambda leftovers
	Using an underscore instead of a parameter name
	Shadowing a local variable
	Better disambiguation of functional expressions

	Loom project
	Skara project
	Summary

	Assessments
	Chapter 1 – Getting Started with Java 12
	Chapter 2 – Java Object-Oriented Programming (OOP)
	Chapter 3 – Java Fundamentals
	Chapter 4 – Exception Handling
	Chapter 5 – Strings, Input/Output, and Files
	Chapter 6 – Data Structures, Generics, and Popular Utilities
	Chapter 7 – Java Standard and External Libraries
	Chapter 8 – Multithreading and Concurrent Processing
	Chapter 9 – JVM Structure and Garbage Collection
	Chapter 10 – Managing Data in a Database
	Chapter 11 – Network Programming
	Chapter 12 – Java GUI Programming
	Chapter 13 – Functional Programming
	Chapter 14 – Java Standard Streams
	Chapter 15 – Reactive Programming
	Chapter 16 – Microservices
	Chapter 17 – Java Microbenchmark Harness
	Chapter 18 – Best Practices for Writing High-Quality Code

	Other Books You May Enjoy
	Index

