

Java
A Beginner's Tutorial
4th Edition (Updated for Java SE 8)

Budi Kurniawan

Java: A Beginner's Tutorial
Fourth Edition: January 2015

All rights reserved. No part of this book may
be reproduced or transmitted in any form or
by any means, electronic or mechanical,
including photocopying, recording, or by any
information storage and retrieval system,
without written permission from the
publisher, except for the inclusion of brief

quotations in a review.
ISBN: 9780002133047

Technical Reviewer: Paul Deck
Indexer: Chris Mayle

Trademarks

Oracle and Java are registered trademarks of
Oracle and/or it's affiliates

UNIX is a registered trademark of the Open
Group

Apache is a trademark of The Apache
Software Foundation.

Firefox is a registered trademark of the
Mozilla Foundation.

Google is a trademark of Google, Inc.

Throughout this book the printing of
trademarked names without the trademark
symbol is for editorial purpose only. We
have no intention of infringement of the
trademark.

Warning and Disclaimer

Every effort has been made to make this
book as accurate as possible. The author and
the publisher shall have neither liability nor
responsibility to any person or entity with
respect to any loss or damages arising from
the information in this book.

About the Author

Budi Kurniawan is a senior developer at Brainy Software and the
author of How Tomcat Works, Servlet and JSP: A Tutorial,
Struts 2 Design and Programming, and others. He has written
software that is licensed by major corporations worldwide.

Table of Contents

Introduction
Java, the Language and the Technology
An Overview of Object-Oriented
Programming
About This Book
Downloading Program Examples and
Answers

Chapter 1: Getting Started
Downloading and Installing Java
Your First Java Program
Java Code Conventions

Integrated Development Environments
(IDEs)

Chapter 2: Language Fundamentals
ASCII and Unicode
Separators
Primitives
Variables
Constants
Literals
Primitive Conversions
Operators
Comments

Chapter 3: Statements
Overview
The if Statement
The while Statement
The do-while Statement
The for Statement
The break Statement
The continue Statement

The switch Statement

Chapter 4: Objects and Classes
What Is An Object?
Java Classes
Creating An Object
The null Keyword
Memory Allocation for Objects
Java Packages
Encapsulation and Access Control
The this Keyword
Using Other Classes
Final Variables
Static Members
Static Final Variables
Static import
Variable Scope
Method Overloading
Static Factory Methods

By Value or By Reference?
Loading, Linking, and Initialization
Object Creation Initialization
The Garbage Collector
Summary
Quiz

Chapter 5: Core Classes
java.lang.Object
java.lang.String
java.lang.StringBuffer and
java.lang.StringBuilder
Primitive Wrappers
java.lang.Class
java.lang.System
java.util.Scanner
Summary
Quiz

Chapter 6: Arrays
Overview
Iterating over an Array

The java.util.Arrays Class
Changing an Array Size
Searching An Array
Passing a String Array to main
Multidimensional Arrays
Summary
Quiz

Chapter 7: Inheritance
Overview
Accessibility
Method Overriding
Calling the Constructors of the Superclass
Calling the Hidden Members of the
Superclass
Type Casting
Final Classes
The instanceof Operator
Summary
Quiz

Chapter 8: Error Handling

Catching Exceptions
try without catch
Catching Multiple Exceptions
The try-with-resources Statement
The java.lang.Exception Class
Throwing an Exception from a Method
User-Defined Exceptions
Note on Exception Handling
Summary
Quiz

Chapter 9: Working with Numbers
Boxing and Unboxing
Number Parsing
Number Formatting
Number Parsing with
java.text. NumberFormat
The java.lang.Math Class
Working with Money
Generating Random Numbers
Summary

Quiz
Chapter 10: Interfaces and Abstract Classes
The Concept of Interface
The Interface, Technically Speaking
Default Methods
Static Methods
Base Classes
Abstract Classes

Chapter 11: Polymorphism
Overview
Polymorphism in Action
Polymorphism and Reflection
Summary
Quiz

Chapter 12: Enums
Overview
Enums in a Class
The java.lang. Enum Class

Iterating Enumerated Values
Switching on Enum
Enum Members

Chapter 13: Working with Dates and Times
Overview
The Instant Class
LocalDate
Period
LocalDateTime
Time Zones
ZonedDateTime
Duration
Formatting A Date-Time
Parsing A Date-Time
Using the Old Date and Time API
Summary
Quiz
Chapter 14: The Collections Framework

An Overview of the Collections Framework
The Collection Interface
List and ArrayList
Iterating Over a Collection with Iterator and
for
Set and HashSet
Queue and LinkedList
Collection Conversion
Map and HashMap
Making Objects Comparable and Sortable
Summary
Quiz
Chapter 15: Generics
Life without Generics
Generic Types
Using Generic Types without Type
Parameters
Using the ? Wildcard
Using Bounded Wildcards in Methods
Generic Methods

Writing Generic Types
Summary
Quiz

Chapter 16: Input/Output
File Systems and Paths
File and Directory Handling and
Manipulation
Input/Output Streams
Reading Binary Data
Writing Binary Data
Writing Text (Characters)
Reading Text (Characters)
Logging with PrintStream
Random Access Files
Object Serialization
Summary
Quiz

Chapter 17: Annotations
Overview
Standard Annotations

Common Annotations
Standard Meta-Annotations
Custom Annotation Types

Chapter 18: Nested and Inner Classes
An Overview of Nested Classes
Static Nested Classes
Member Inner Classes
Local Inner Classes
Anonymous Inner Classes
Behind Nested and Inner Classes

Chapter 19: Lambda Expressions
Why Lambda Expressions?
Functional Interfaces
Lambda Expression Syntax
Predefined Functional Interfaces
Method References

Optional and Similar Classes
Summary
Quiz
Chapter 20: Working with Streams
Overview
Creating and Obtaining a Stream
Concatenating Streams
Filtering
Mapping
Reduction
Mutable Reductions
Parallel Streams

Chapter 21: Java Database Connectivity
Introduction to JDBC
Four Steps to Data Access
Using Java DB
Using the DAO Pattern
Reading Metadata

Chapter 22: Swing Basics
Overview
AWT Components
Useful AWT Classes
Basic Swing Components
Summary
Quiz

Chapter 23: Swinging Higher
Layout Managers
Event Handling
Working with Menus
The Look and Feel
Fast Splash Screens
System Tray Support
Desktop Help Applications
Summary
Quiz

Chapter 24: Applets

A Brief History of Applets
The Applet API
Security Restrictions
Writing and Deploying Applets
How AppletViewer Works
Passing Parameters to an Applet
SoundPlayerApplet
JApplet
Applet Deployment in a JAR File
Faster Loading
Summary
Quiz
Chapter 25: Introduction to JavaFX
Overview
Setting up
Your First JavaFX Application
The JavaFX API is explained in the next
section.Application, Stage, and Scene
UI Components
Controls

Regions
Event Handling
Styling with CSS
Summary
Quiz

Chapter 26: JavaFX with FXML
Overview
A Simple FXML-Based Application
Event Handling with FXML
Summary
Quiz

Chapter 27: Java Threads
Introduction to Java Threads
Creating a Thread
Working with Multiple Threads
Thread Priority
Stopping a Thread
Synchronization
Visibility
Thread Coordination

Using Timers
Swing Timers
Summary
Quiz
Chapter 28: Concurrency Utilities
Atomic Variables
Executor and ExecutorService
Callable and Future
Swing Worker
Locks

Chapter 29: Internationalization
Locales
Internationalizing Applications
An Internationalized Swing Application
Summary
Quiz
Chapter 30: Java Networking
An Overview of Networking

The Hypertext Transfer Protocol (HTTP)
java.net.URL
java.net. URLConnection
java.net.Socket
java.net.ServerSocket
A Web Server Application
Summary
Quiz

Chapter 31: Security
Java Security Overview
Using the Security Manager
Policy Files
Permissions
Using the Policy Tool
Applet Security
Programming with Security
Cryptography Overview
Creating Certificates
The KeyTool Program
The JarSigner Tool

Java Cryptography API
Summary
Quiz
Chapter 32: Java Web Applications
Servlet Application Architecture
Servlet API Overview
Servlet
Writing a Basic Servlet Application
ServletRequest
ServletResponse
ServletConfig
ServletContext
GenericServlet
HTTP Servlets
Using the Deployment Descriptor
Summary
Quiz
Chapter 33: JavaServer Pages
A JSP Overview
jsplnit, jspDestroy, and Other Methods

Implicit Objects
JSP Syntactic Elements
Handling Errors
Summary
Quiz
Chapter 34: Javadoc
Overview
Writing Documentation in Java Classes
Javadoc Syntax
Summary
Quiz
Chapter 35: Application Deployment
JWS Overview
JNLP File Syntax
A Deployment Example
Security Concerns
Summary
Quiz
Appendix A: javac
Options

Command Line Argument Files
Appendix B: java
Options
Appendix C: jar
Syntax
Options
Examples
Setting an Application Entry Point
Appendix D: NetBeans
Download and Installation
Creating a Project
Creating a Class
Running a Java Class
Adding Libraries
Debugging Code
Appendix E: Eclipse
Download and Installation
Adding A JRE
Creating a Java Project
Creating a Class

Running a Java Class
Adding Libraries
Debugging Code
Useful Shortcuts
Answers
Chapter 1: Getting Started
Chapter 2: Language Fundamentals
Chapter 3: Statements
Chapter 4: Objects and Classes
Chapter 5: Core Classes
Chapter 6: Arrays
Chapter 7: Inheritance
Chapter 8: Error Handling
Chapter 9: Working with Numbers
Chapter 10: Interfaces and Abstract Classes
Chapter 11: Polymorphism
Chapter 12: Enums
Chapter 13: Working with Dates and Times
Chapter 14: The Collections Framework
Chapter 15: Generics

Chapter 16: Input Output

Chapter 17: Annotations

Chapter 18: Inner Classes

Chapter 19: Lambda Expressions
Chapter 20: Working with Streams
Chapter 21: Java Database Connectivity
Chapter 22: Swing Basics

Chapter 23: Swinging Higher
Chapter 24: Applets

Chapter 25: Introduction to JavaFX
Chapter 26: JavaFX with FXML
Chapter 27: Java Threads

Chapter 28: Concurrency Utilities
Chapter 29: Internationalization
Chapter 30: Java Networking
Chapter 31: Security

Chapter 32: Java Web Applications
Chapter 33: JavaServer Pages
Chapter 34: Javadoc

Chapter 35: Application Deployment

Introduction

Welcome to Java: A Beginner’s Tutorial, Fourth Edition.

This book covers the most important Java programming topics
that you need to master in order to learn other technologies
yourself. By fully understanding all the chapters and doing the
exercises you'll be able to perform an intermediate Java
programmer’s daily tasks quite well.

This book offers all the three subjects that a professional Java
programmer must be proficient in:

e Java programming language
e Object-oriented programming (OOP) with Java

e Java core libraries

What makes structuring an effective Java course difficult is the
fact that the three subjects are interdependent. On the one hand,
Java is an OOP language, so its syntax is easier to learn if you
already know OOP. On the other hand, OOP features such as
inheritance, polymorphism and data encapsulation are best
taught when accompanied by real-world examples.
Unfortunately, understanding real-world Java programs

requires knowledge of the Java core libraries.

Because of such interdependence, the three main topics are
not grouped into three isolated parts. Instead, chapters
discussing a major topic and chapters teaching another are
interwoven. For example, before explaining polymorphism, this
book makes sure that you are familiar with certain Java classes
so that real-world examples can be given. In addition, because a
language feature such as generics cannot be explained effectively
without the comprehension of a certain set of classes, it is
covered after the discussion of the supporting classes.

There are also cases whereby a topic can be found in two or
more places. For instance, the for statement is a basic language
feature that should be discussed in an early chapter. However,
for can also be used to iterate over an array or an object
collection. Therefore, for is first presented in Chapter 3,
“Statements” and then revisited in Chapter 6, “Arrays” and
Chapter 14, “The Collections Framework.”

The rest of this introduction presents a high-level overview of
Java, an introduction to OOP and a brief description of each
chapter.

Java, the Language and the
Technology

Java is not only an object-oriented programming language, it is
also a set of technologies that make software development more
rapid and resulting applications more robust and secure. For
years Java has been the technology of choice because of the
benefits it offers:

¢ platform independence
e ease of use

e comprehensive libraries that speed up application
development

e security
e scalability

e extensive industry support

Sun Microsystems introduced Java in 1995 and Java—even
though it had been a general-purpose language right from the
start—was soon well known as the language for writing applets,
small programs that run inside web browsers and add
interactivity to static websites. The growth of the Internet had
much to contribute to the early success of Java.

Having said that, applets were not the only factor that made
Java shine. The other most appealing feature of Java was its
platform-independence promise, hence the slogan “Write Once,
Run Anywhere.” What this means is the very same program you
write will run on Windows, Unix, Mac, Linux, and other

operating systems. This was something no other programming
language could do. At that time, C and C++ were the two most
commonly used languages for developing serious applications.
Java seemed to have stolen their thunder since its first birthday.

That was Java version 1.0.

In 1997, Java 1.1 was released, adding significant features such
as a better event model, Java Beans, and internationalization to
the original.

Java 1.2 was launched in December 1998. Three days after it
was released, the version number was changed to 2, marking the
beginning of a huge marketing campaign that started in 1999 to
sell Java as the “next generation” technology. Java 2 was sold in
four flavors: the Standard Edition (J2SE), the Enterprise Edition
(J2EE), the Micro Edition (J2ME), and Java Card (that never
adopted “2” in its brand name).

The next version released in 2000 was 1.3, hence J2SE 1.3. 1.4
came two years later to make J2SE 1.4. J2SE version 1.5 was
released in 2004. However, the name Java 2 version 1.5 was then
changed to Java 5.

On November 13, 2006, a month before the official release
date of Java 6, Sun Microsystems announced that it had open-
sourced Java. Java SE 6 was the first Java release for which Sun
Microsystems had invited outside developers to contribute code
and help fix bugs. True that the company had in the past

accepted contributions from non-employees, like the work of
Doug Lea on multithreading, but this was the first time Sun had
posted an open invitation. The company admitted that they had
limited resources, and outside contributors would help them
cross the finish line sooner.

In May 2007 Sun released its Java source code to the
OpenJDK community as free software. IBM, Oracle and Apple
later joined OpenJDK.

In 2010 Oracle acquired Sun.

Java 7 was released in July 2011 and Java 8 in March 2014,
both results of open-source collaboration through OpenJDK.

What Makes Java Platform
Independent?

You must have heard of the terms “platform-independent” or
“cross-platform,” which means your program can run on
multiple operating systems. It was a major feat that contributed
to Java’s popularity. But, what makes Java platform
independent?

In traditional programming, source code is compiled to
executable code. This executable code can run only on the
platform it is intended to run. In other words, code written and
compiled for Windows will only run on Windows, code written in
Linux will only run on Linux, and so on. This is depicted in

Figure I.1.

| Source Code |

Figure 1.1: Traditional programming

A Java program, on the other hand, is compiled to bytecode. You

Compile

paradigm

| Native Code |

cannot run bytecode by itself because it is not native code.

Bytecode can only run on a Java Virtual Machine (JVM). A JVM
is a native application that interprets bytecode. By making the
JVM available on many platforms, Sun transformed Java into a
cross-platform language. As shown in Figure 1.2, the very same
bytecode can run on any operating system for which a JVM has

been developed.

Java

Source Code ComAls

Figure 1.2: Java programming model

Currently JVMs are available for Windows, Unix, Linux, Free
BSD, and practically all other major operating systems in the

Windows JVM

Bytecode

Linix JYM

Linux JYM

world.

JDK, JRE, JVM, What’s the
Difference?

I mentioned that Java programs must be compiled. In fact, any
programming language needs a compiler to be really useful. A
compiler is a program that converts program source code to an
executable format, either a bytecode, native code or something
else. Before you can start programming Java, you need to
download a Java compiler. The Java compiler is a program
named javac, which is short for Java compiler.

While javac can compile Java sources to bytecode, to run
bytecode you need a Java Virtual Machine. In addition, because
you will invariably use classes in the Java core libraries, you also
need to download these libraries. The Java Runtime
Environment (JRE) contains both a JVM and class libraries. As
you may suspect, the JRE for Windows is different from that for
Linux, which is different from the one for yet another operating
system.

The Java software is available in two distributions:

e The JRE, which includes a JVM and the core libraries. This
is good for running bytecode.

e The JDK, which includes the JRE plus a compiler and other
tools. This is required software to compile Java programs as

well as run the bytecode.

To summarize, a JVM is a native application that runs bytecode.
The JRE is an environment that includes a JVM and Java class
libraries. The JDK includes the JRE plus other tools including a
Java compiler.

The first version of the JDK is 1.0. The versions after that are
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 and 1.8. For minor releases, add
another number to the version number. For instance, 1.8.1 is the
first minor upgrade to version 1.8.

JDK 1.8 is better known as JDK 8. The version of the JRE
included in a JDK is the same as the JDK. Therefore, JDK 1.8
contains JRE 1.8. The JDK is also often called the SDK (Software
Development Kit).

In addition to the JDK, a Java programmer needs to download
Java documentation that explains classes, interfaces and enums
in the core libraries. You can download the documentation from
the same URL that provides the JRE and the JDK.

Java 2, J2SE, J2EE, J2ME, Java 8,
What Are They?

Sun Microsystems has done a great deal promoting Java. Part of
its marketing strategy was to coin the name Java 2, which was
basically JDK 1.2. There were three editions of Java 2:

e Java 2 Platform, Standard Edition (J2SE). J2SE is basically
the JDK. It also serves as the foundation for technologies
defined in J2EE.

e Java 2 Platform, Enterprise Edition (J2EE). It defines the
standard for developing component-based multi-tier
enterprise applications. Features include web services
support and development tools.

e Java 2 Platform, Micro Edition (J2ME). It provides an
environment for applications that run on consumer devices,
such as mobile phones and TV set-top boxes. J2ME includes
a JVM and a limited set of class libraries.

Name changes occurred in version 5. J2SE became Java
Platform, Standard Edition 5 (Java SE 5). Also, the 2 in J2EE
and J2ME was dropped. The current version of the enterprise
edition is Java Platform, Enterprise Edition 7 (Java EE 7).
J2ME is now called Java Platform, Micro Edition (Java ME,
without a version number). In this book, Java 8 is used to refer
to Java SE 8.

Unlike the first versions of Java that were products of Sun,
J2SE 1.4, Java SE 5 and later versions of Java are sets of
specifications that define features that need to be implemented.
The software itself is called a reference implementation. Oracle,
IBM, and others work together through OpenJDK to provide the
Java SE 8 reference implementation and reference
implementations for the next versions of Java.

Java EE 6 and 7 are also sets of specifications that include
technologies such as servlets, JavaServer Pages, JavaServer
Faces, Java Messaging Service, etc. To develop and run Java EE
applications, you need a Java EE application server. Anyone can
implement a Java EE application server, which explains the
availability of various application servers in the market,
including many open source ones. Here are examples of Java EE
6 and 7 application servers:

Oracle WebLogic

IBM WebSphere

GlassFish

JBoss

WildFly

Apache Geronimo

Apache TomEE

The complete list can be found here.

http://www.oracle.com/technetwork/java/ja
vaee/overview/compatibility
-jsp-136984.html

JBoss, GlassFish, WildFly, Geronimo and TomEE are open

source Java EE servers. They have different licenses, though, so
make sure you read them before you decide to use the products.

The Java Community Process
(JCP) Program

Java’s continuous dominance as the technology of choice owes
much to Sun’s strategy to include other industry players in
determining the future of Java. This way, many people feel that
they also own Java. Many large corporations, such as IBM,
Oracle, Nokia, Fujitsu, etc, invest heavily in Java because they
too can propose a specification for a technology and put forward
what they want to see in the next version of a Java technology.
This collaborative effort takes the form of the JCP Program. The
URL of its Web site is http://www.jcp.org.

Specifications produced by the JCP Program are known as
Java Specification Requests (JSRs). For example, JSR 337
specifies Java SE 8.

An Overview of Object-
Oriented Programming

Object-oriented programming (OOP) works by modeling
applications on real-world objects. Three principles of OOP are
encapsulation, inheritance and polymorphism.

The benefits of OOP are real. These are the reason why most
modern programming languages, including Java, are object-
oriented (OO). I can even cite two well-known examples of
language transformation to support OOP: The C language
evolved into C++ and Visual Basic was upgraded into Visual
Basic.NET.

This section explains the benefits of OOP and provides an
assessment of how easy or hard it is to learn OOP.

The Benefits of OOP

The benefits of OOP include easy code maintenance, code reuse,
and extendibility. These benefits are presented in more detail
below.

1. Ease of maintenance. Modern software
applications tend to be very large. Once
upon a time, a “large” system comprised a
few thousand lines of code. Now, even
those consisting of one million lines are
not considered that large. When a system
gets larger, it starts giving its developers
problems. Bjarne Stroustrup, the father of
C++, once said this. A small program can

be written in anything, anyhow. If you
don’t quit easily, you’ll make it work, at the
end. But a large program is a different
story. If you don’t use techniques of “good
programming,” new errors will emerge as
fast as you fix the old ones.

The reason for this is there is
interdependency among different parts of
a large program. When you change
something in some part of the program,
you may not realize how the change might
affect other parts. OOP makes it easy to
make applications modular, and
modularity makes maintenance less of a
headache. Modularity is inherent in OOP
because a class, which is a template for
objects, is a module by itself. A good design
should allow a class to contain similar
functionality and related data. An
important and related term that is used

often in OOP is coupling, which means the
degree of interaction between two
modules. Loosely coupling among parts
make code reuse—another benefit of OOP
—easier to achieve.

2. Reusability. Reusability means that
code that has previously been written can
be reused by the code author and others
who need the same functionality provided
by the original code. It is not surprising,
then, that an OOP language often comes
with a set of ready-to-use libraries. In the
case of Java, the language is accompanied
by hundreds of class libraries or
application programming interfaces (APIs)
that have been carefully designed and
tested. It is also easy to write and
distribute your own library. Support for
reusability in a programming platform is
very attractive because it shortens

development time.

One of the main challenges to class
reusability is creating good documentation
for the class library. How fast can a
programmer find a class that provides the
functionality he or she is looking for? Is it
faster to find such a class or write a new
one from scratch? Fortunately, Java core
and extended APIs come with extensive
documentation.

Reusability does not only apply to the
coding phase through the reuse of classes
and other types; when designing an
application in an OO system, solutions to
OO design problems can also be reused.
These solutions are called design patterns.
To make it easier to refer to each solution,
each pattern is given a name. The early
catalog of reusable design patterns can be
found in the classic book Design Patterns:

Elements of Reusable Object-Oriented
Software, by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides.

3. Extendibility. Every application is
unique. It has its own requirements and
specifications. In terms of reusability,
sometimes you cannot find an existing
class that provides the exact functionality
that your application requires. However,
you will probably find one or two that
provide part of the functionality.
Extendibility means that you can still use
those classes by extending them to suit
your need. You still save time, because you
don’t have to write code from scratch.

In OOP, extendibility is achieved through
inheritance. You can extend an existing
class, add some methods or data to it, or
change the behavior of methods you don’t
like. If you know the basic functionality

that will be used in many cases, but you
don’t want your class to provide very
specific functions, you can provide a
generic class that can be extended later to
provide functionality specific to an
application.

Is OOP Hard?

Java programmers need to master OOP. As it happens, it does
make a difference if you have programmed using a procedural
language, such as C or Pascal. In the light of this, there is bad
news and good news.

First the bad news.

Researchers have been debating the best way to teach OOP in
school; some argue that it is best to teach procedural
programming before OOP is introduced. In many curricula, an
OOP course can be taken when a student is nearing the final year
of his/her university term.

More recent studies, however, argue that someone with
procedural programming skill thinks in a paradigm very
different from how OO programmers view and try to solve
problems. When this person needs to learn OOP, the greatest
struggle he/she faces is having to go through a paradigm shift. It

is said that it takes six to 18 months to switch your mindset from
procedural to object-oriented paradigms. Another study shows
that students who have not learned procedural programming do
not find OOP that difficult.

Now the good news.

Java qualifies as one of the easiest OOP languages to learn. For
example, you do not need to worry about pointers, don’t have to
spend precious time solving memory leaks caused by failing to
destroy unused objects, etc. On top of that, Java comes with very
comprehensive class libraries with relatively very few bugs in
their early versions. Once you know the nuts and bolts of OOP,
programming with Java is really easy.

About This Book

The following presents the overview of each chapter.

Chapter 1, “Getting Started” provides the instructions on how
to download and install a JDK and aims at giving you the feel of
working with Java. This includes writing a simple Java program,
compiling it using the javac tool, and running it using the java
program. In addition, some advice on code conventions and
integrated development environments is given.

Chapter 2, “Language Fundamentals” teaches you the Java
language syntax. You will be introduced to topics such as

character sets, primitives, variables, operators, etc.

Chapter 3, “Statements” explains Java statements for, while,
do-while, if, if-else, switch, break, and continue.

Chapter 4, “Objects and Classes,” is the first OOP lesson in this
book. It starts by explaining what a Java object is an how it is
stored in memory. It then continues with a discussion of classes,
class members, and two OOP concepts (abstraction and
encapsulation).

Chapter 5, “Core Classes” covers important classes in the Java
core libraries: java.lang.Object, java.lang.String,
java.lang.StringBuffer and java.lang.StringBuilder,
wrapper classes and java.util.Scanner. This is an important
chapter because the classes explained in this chapter are some of
the most commonly used classes in Java.

Chapter 6, “Arrays” discusses arrays, a special language
feature of Java that is widely used. This chapter also covers a
utility class for manipulating arrays.

Chapter 7, “Inheritance” discusses an OOP feature that
enables code extendibility. This chapter teaches you how to
extend a class, affect the visibility of a subclass, override a
method and so forth.

Undoubtedly, error handling is an important feature of any
programming language. As a mature language, Java has a very

robust error handling mechanism that can help prevent bugs
from creeping in. Chapter 8, “Error Handling” is a detailed
discussion of this mechanism.

Chapter 9, “Working with Numbers” deals with three issues
when working with numbers: parsing, formatting, and
manipulation. This chapter introduces Java classes that can help
you with these tasks.

Chapter 10, “Interfaces and Abstract Classes” explains that an
interface is more than a class without implementation. An
interface defines a contract between a service provider and a
client. This chapter explains how to work with interfaces and
abstract classes.

Polymorphism is one of the main pillars of OOP. It is
incredibly useful in situations whereby the type of an object in
not known at compile time. Chapter 11, “Polymorphism” explains
this feature and provides useful examples.

Chapter 12, “Enums” covers enum, a type added to Java since
version 5.

Chapter 13, “Working with Dates and Times” explains how you
can work with the new Date and Time API added to Java 8 as
well as the old API used in the older versions of Java.

Chapter 14, “The Collections Framework” shows how you can
use the members of the java.util package to group objects and

manipulate them.

Generics are a very important feature in Java and Chapter 15,
“Generics” adequately explains this feature.

Chapter 16, “Input/Output” introduces the concept of streams
and explains how you can use the four stream types in the Java
I0 API to perform input-output operations. In addition, object
serialization and deserialization are discussed.

Chapter 17, “Annotations” talks about annotations. It explains
the standard annotations that come with the JDK, common
annotations, meta-annotations and custom annotations.

Chapter 18, “Nested and Inner Classes” explains how you can
write a class within another class and why this OOP feature can
be very useful.

Chapter 19, “Lambda Expressions” covers lambda expressions,
a feature added to Java 8. It explains the concept and provides
useful examples.

Chapter 20, “Working with Streams” discusses streams, a new
addition to Java 8. It shows you why streams play an important
role in Java programming.

Accessing databases and manipulating data are some of the
most important tasks in business applications. There are many
flavors of database servers and accessing different databases

requires different skills. Fortunately for Java programmers, Java
Database Connectivity (JDBC) technology provides a uniform
way of accessing databases. JDBC is discussed in Chapter 21,
“Java Database Connectivity.”

Chapter 22, “Swing Basics” is the first installment of the two
chapters on Swing. It briefly discusses the AWT components and
thoroughly explains some basic Swing components.

Chapter 23, “Swinging Higher” is the second chapter on
Swing. It covers more advanced techniques such as layout
management, event handling and the look and feel.

Applets are small programs that run on the Web browser.
Chapter 24, “Applets” explains the lifecycle of an applet, security
restrictions and JApplet.

Chapter 25, “Introduction to JavaFX” covers JavaFX, the
latest Java technology for creating rich clients applications that
can run on the desktop as well as in the browser.

Chapter 26, “JavaFX with FXML” discusses FXML, a markup
language that can be used to separate the presentation layer and
the business logic in JavaFX applications.

A thread is a basic processing unit to which an operating
system allocates processor time, and more than one thread can
be executing code inside a process. Chapter 27, “Java Threads,”
shows that in Java multithreaded programming is not only the

domain of expert programmers.

Chapter 28, “The Concurrency Utilities” is the second chapter
on multi-threaded programming. It discusses interfaces and
classes that make writing multi-threaded programs easier.

Today it is common for software applications to be deployable
to different countries and regions. Such applications need to be
designed with internationalization in mind. Chapter 29,
“Internationalization” explores techniques that Java
programimers can use.

Chapter 30, “Java Networking” deals with classes that can be
used in network programming. A simple Web server application
is presented to illustrate how to use these classes.

Chapter 31, “Security” is a tutorial on how Java application
users can restrict running Java applications and how you can use
cryptography to secure your application and data.

Chapter 32, “Java Web Applications” explores Servlet
technology and the Servlet API and presents several examples.

Chapter 33, “JavaServer Pages” explains another web
development technology and shows how to write JSP pages.

Chapter 34, “JavaDoc” discusses the javadoc tool that Java
programmers can use to generate documentation for their APIs.

Chapter 35, “Application Deployment,” talks about Java Web

Start and how to use it to deploy Java applications over the
Internet, across a local network, and from a CD.

Appendix A, “javac”, Appendix B, “java”, and Appendix C, “jar”
explain the javac, java, and jar tools, respectively.

Appendix D, “NetBeans” and Appendix E, “Eclipse” provide
brief tutorials on NetBeans and Eclipse, respectively.

Downloading Program
Examples and Answers

The program examples accompanying this book and answers to
the questions in each chapter can be downloaded from the
publisher’s website:

http://books.brainysoftware.com

Extract the zip file to a working directory and you are good to go.

Chapter 1
Getting Started

To program in Java, you need the Java SE Development Kit
(JDK). Therefore, the first section of this chapter provides
instructions to download and install it.

Developing a Java program involves writing code, compiling it
into bytecode, and running the bytecode. This is a process you
will repeat again and again during your career as a Java
programmer, and it is crucial that you feel comfortable with it.
The main objective of this chapter therefore is to give you the
opportunity to experience the process of software development
in Java.

As it is important to write code that not only works but that is
also easy to read and maintain, this chapter introduces you to
Java code conventions. And, since the smart developer uses an
integrated development environment (IDE), the last section of
this chapter offers advice on Java IDEs.

Downloading and Installing

Java

Before you can start compiling and running Java programs, you
need to download and install the JDK as well as configure some
system environment variables.

You can download the JRE and the JDK for Windows, Linux,
and Mac OS X from this Oracle website:

http://www.oracle.com/technetwork/java/ja
vase/downloads/index.html

If you click the Download link on the page, you’ll be redirected to
a page that lets you select an installation for your platform:
Windows, Linux, Solaris or Mac OS X. The same link also
provides the JRE. However, for development you need the JDK
not only the JRE, which is only good for running compiled Java
classes. The JDK includes the JRE.

After downloading the JDK, you need to install it. Installation
varies from one operating system to another. These subsections
detail the installation process.

Installing on Windows
Installing on Windows is easy. Simply double-click the

executable file in you downloaded in Windows Explorer and
follow the instructions. Figure 1.1 shows the first dialog of the
installation wizard.

[Java SE Development Kil 8 Updale 25 (64-bil) - Selup [

< Java

Weleome ta the Installation Wizard for Tava SF Dewvelnpment Kit 8 Lpdate 25

This wizard will guice yau through the installation process for the Java SE Development Kit 8
Update 25.

The Java Mission Cunbrol profiling and diagnostics Leuls suile is now availadlz as parl ol e
JDK.

[Mexz = Cancel

Figure 1.1: Installing the JDK 8 on
Windows

Installing on Linux

On Linux platforms, the JDK is available in two installation
formats.

e RPM, for Linux platforms that supports the RPM package
management system, such as Red Hat and SuSE.

o Self-extracting package. A compressed file containing
packages to be installed.

If you are using the RPM, follow these steps:

1. Become root by using the su command

2. Extract the downloaded file.

3. Change directory to where the
downloaded file is located and type:

chmod a+x rpmFile

where rpmFile is the RPM file.
4. Run the RPM file:

./rpmFile

If you are using the self-extracting binary installation, follow
these steps.

1. Extract the downloaded file.
2. Use chmod to give the file the execute
permissions:

chmod a+x binFile

Here, binFile is the downloaded bin file for
your platform.

3. Change directory to the location where
you want the files to be installed.

4. Run the self-extracting binary. Execute
the downloaded file with the path
prepended to it. For example, if the file is
in the current directory, prepend it with
"

./binFile

Installing on Mac OS X

To install the JDK 8 on Mac OS X, you need an Intel-based
computer running OS X 10.8 (Mountain Lion) or later. You also
need administrator privileges. Installation is straight-forward.

1. Double-click on the .dmg file you
downloaded.

2. In the Finder window that appears,
double-click the package icon.

3. On the first window that appears, click
Continue.

4. The Installation Type window appears.
Click Install.

5. A window appears that says “Installer is
trying to install new software. Type your
password to allow this.” Enter your Admin
password.

6. Click Install Software to start the
installation.

Setting System Environment
Variables

After you install the JDK, you can start compiling and running
Java programs. However, you can only invoke the compiler and
the JRE from the location of the javac and java programs or by
including the installation path in your command. To make
compiling and running programs easier, it is important that you
set the PATH environment variable on your computer so that
you can invoke javac and java from any directory.

Setting the Path Environment Variable on Windows
To set the PATH environment variable on Windows, do these

steps:

1. Click Start, Settings, Control Panel.

2. Double-click System.

3. Select the Advanced tab and then click
on Environment Variables.

4. Locate the Path environment variable in
the User Variables or System
Variables panes. The value of Path is a
series of directories separated by
semicolons. Now, add the full path to the
bin directory of your Java installation
directory to the end of the existing value of
Path. The directory looks something like:

C:\Program
Files\Java\jdk1l.8.0_<version>\bin

5. Click Set, OK, or Apply.

Setting the Path Environment Variable on UNIX and
Linux

Setting the path environment variable on these operating

systems depends on the shell you use. For the C shell, add the
following to the end of your ~/.cshre file:

set path=(path/to/jdk/bin $path)

where path/to/jdk/bin is the bin directory under your JDK
installation directory.

For the Bourne Again shell, add this line to the end of your
~/.bashrc or ~/.bash_ profile file:

export PATH=/path/to/jdk/bin:$PATH

Here, path/to/jdk/bin is the bin directory under your JDK
installation directory.

Testing the Installation

To confirm that you have installed the JDK correctly, type javac
on the command line from any directory on your machine. If you
see instructions on how to correctly run javac, then you have
successfully installed it. On the other hand, if you can only run
javac from the bin directory of the JDK installation directory,
your PATH environment variable was not configured properly.

Downloading Java API

Documentation

When programming Java, you will invariably use classes from
the core libraries. Even seasoned programmers look up the
documentation for those libraries when they are coding.
Therefore, you should download the documentation from here.

http://www.oracle.com/technetwork/java/ja
vase/downloads/index.html

(You need to scroll down until you see “Java SE 8
Documentation.”)

The API is also available online here:

http://download.oracle.com/javase/8/docs/
api

Your First Java Program

This section highlights steps in Java development: writing the
program, compiling it into bytecode and running the bytecode.

Writing a Java Program

You can use any text editor to write a Java program. Open a text

editor and write the code in Listing 1.1. Alternatively, if you have

downloaded the program examples accompanying this book, you
can simply copy it to your text editor.

Code Download

If you have not done so, now is a good time to download the examples from the
publisher’s website. The URL can be found in the last section of Introduction.

Listing 1.1: A simple Java program

class MyFirstProgram {
public static void main(String[]
args) {
System.out.println("Java
rocks.");

}

For now, suffice it to say that Java code must reside in a class.
Also, make sure you save the code in Listing 1.1 as a
MyFirstProgram.java file. All Java source files must have
java extension.

Compiling Your Java Program

You use the javac program in the bin directory of your JDK
installation directory to compile Java programs. Assuming you

have edited the PATH environment variable in your computer
(if not, see the section “Downloading and Installing Java”), you
should be able to invoke javac from any directory. To compile

the MyFirstProgram class in Listing 1.1, do the following:

1. Open a terminal or a command prompt
and change directory to the directory
where the MyFirstProgram.java file
was saved in.

2. Type the following command.

javac MyFirstProgram.java

If everything goes well, javac will create a file named
MyFirstProgram.class in your working directory.

Note

The javac tool has more features that you can use by passing options. For
example, you can tell it where you want the generated class file to be
created. Appendix A, “javac” discusses javac in clear detail.

Running Your Java Program

To run your Java program, use the java program that is part of
the JDK. Again, having added the PATH environment variable,
you should be able to invoke java from any directory. From your

working directory, type the following and press Enter.

java MyFirstProgram

Note that you do not include the class extension when running a
Java program.

You will see the following on your console.

Java rocks.

Congratulations. You have successfully written your first Java
program. Since the sole aim of this chapter is to familiarize
yourself with the writing and compiling process, I will not
explain how the program works.

You can also pass arguments to a Java program. For example,
if you have a class named Calculator and you want to pass two
arguments to it, you can do it like this:

java Calculator arg-1 arg-2

Here, arg-1 is the first argument and arg-2 the second. You can
pass as many arguments as you want. The java program will
then make these arguments available to your Java program as an

array of strings. You'll learn to handle arguments in Chapter 6,
“Arrays.”

Note

The java tool is an advanced program that you can configure by passing
options. For instance, you can set the amount of memory allocated to it.
Appendix B, “java” explains these options.

Note

The java tool can also be used to run a Java class that is packaged in a jar
file. Check the section “Setting an Application’s Entry Point” in Appendix
C’ “jar‘”

Java Code Conventions

It is important to write correct Java programs that run.
However, it is also crucial to write programs that are easy to read
and maintain. It is believed that eighty percent of the lifetime
cost of a piece of software is spent on maintenance. Also, the
turnover of programmers is high, thus it is very likely that
someone other than you will maintain your code during its
lifetime. Whoever inherits your code will appreciate clear and
easy-to-read program sources.

Using consistent code conventions is one way to make your
code easier to read. (Other ways include proper code
organization and sufficient commenting.) Code conventions

include file names, file organization, indentation, comments,
declaration, statements, white space and naming conventions.

A class declaration starts with the keyword class followed by a
class name and the opening brace {. You can place the opening
brace on the same line as the class name, as shown in Listing 1.1,
or you can write it on the next line, as demonstrated in Listing
1.2.

Listing 1.2: MyFirstProgram written
using a different code convention

class MyFirstProgram

{

public static void main(String[]
args)

{

System.out.println("Java

rocks.");

b
b

The code in Listing 1.2 is as good as the one in Listing 1.1. It is
just that the class has been written using a different convention.
You should adopt a consistent style for all your program
elements. It is up to you to define your own code conventions,
however Sun Microsystems has published a document that

outlines standards that its employees should follow. The
document can be viewed here. (Of course, the document is now
part of Oracle.com)

http://www.oracle.com/technetwork/java/co
deconvtoc-136057.html

Program samples in this book will follow the recommended
conventions outlined in this document. I'd also like to encourage
you to develop the habit of following these conventions since the
first day of your programming career, so that writing clear code
comes naturally at a later stage.

Your first lesson on styles is about indentation. The unit of
indentation must be four spaces. If tabs are used in place of
spaces, they must be set every eight spaces (not four).

Integrated Development
Environments (IDEs)

It is true that you can write Java programs using a text editor.
However, an IDE will help. Not only will it check the syntax of
your code, an IDE can also auto complete code, debug, and trace
your programs. In addition, compilation can happen
automatically as you type, and running a Java program is simply

a matter of clicking a button. As a result, you will develop in
much shorter time.

There used to be dozens of Java IDEs out there, but today
these three are the only major players left. Fortunately, the first
two are completely free.

¢ NetBeans (free and open source)
e Eclipse (free and open source)

e IntelliJ IDEA (offers free and paid editions)

The two most popular Java IDEs are NetBeans and Eclipse and
the past few years have seen a war between the two to become
the number one. NetBeans and Eclipse are both open source
projects with strong backers. Sun Microsystems launched
NetBeans in 2000 after buying the Czech company Netbeans
Ceska Republika. Eclipse was originated by IBM to compete with
NetBeans.

Which one is better depends on who you ask, but their
popularity has become the impetus that propelled other software
makers to give away their IDEs too. Even Microsoft, whose .NET
technology is Java’s most fierce competitor, followed suit by no
longer charging for the Express Editions of its Visual
Studio.NET.

This book provides a brief tutorial of NetBeans and Eclipse in

Appendix D and Appendix E, respectively. Do consider using an
IDE because it helps a lot.

Summary

This chapter provided instructions on how to download and
install the JDK and helped you write your first Java program.
You used a text editor to write the program, used javac to
compile it to a class file, and ran the class file with the java tool.

As programs grow in complexity and projects get larger, an
IDE will help expedite application development.

Quiz

1. What is a compiler?

2. How is Java different from traditional
programming?

3. What is bytecode?

4. What is the difference between the JRE
and the JDK?

5. If you had saved the code in Listing 1.1

using a different name, such as
whatever.java, would it have compiled?

6. If you had used a file extension other than
java when saving the code in Listing 1.1, for
example as MyFirstProgram.txt, would
it have compiled?

7. Are these valid Java class names:
FirstJava, scientificCalculator,
numberFormatter?

8. How do you write to the console?

9. Write a Java class named HelloWorld
that prints “Hello World”.

Chapter 2

Language Fundamentals

Java is an object-oriented programming (OOP) language,
therefore an understanding of OOP is of utmost importance.
Chapter 4, “Objects and Classes” is the first lesson of OOP in this
book. However, before you explore OOP features and techniques,
you should first study Java language fundamentals.

ASCII and Unicode

Traditionally, computers in English speaking countries only used
the ASCII (American Standard Code for Information
Interchange) character set to represent alphanumeric characters.
Each character in the ASCII is represented by 7 bits. There are
therefore 128 characters in this character set. These include the
lower case and upper case Latin letters, numbers, and
punctuation marks.

The ASCII character set was later extended to include another
128 characters, such as the German characters a, 0, i and the

British currency symbol £. This character set is called extended
ASCII and each character is represented by 8 bits.

ASCII and the extended ASCII are only two of the many
character sets available. Another popular one is the character set
standardized by the ISO (International Standards Organization),
ISO-8859-1, which is also known as Latin-1. Each character in
ISO-8859-1 is represented by eight bits as well. This character
set contains all the characters required for writing text in many
of the western European languages, such as German, Danish,
Dutch, French, Italian, Spanish, Portuguese and, of course,
English. An eight-bit-per-character character set is convenient
because a byte is also 8 bits long. As such, storing and
transmitting text written in an 8-bit character set is most
efficient.

However, not every language uses Latin letters. Chinese and
Japanese are examples of languages that use different character
sets. For example, each character in the Chinese language
represents a word, not a letter. There are thousands of these
characters and eight bits are not enough to represent all the
characters in the character set. The Japanese use a different
character set for their language too. In total, there are hundreds
of different character sets for all the world languages. To unify all
these characters sets, a computing standard called Unicode was
created.

Unicode is a character set developed by a non-profit
organization called the Unicode Consortium (www.unicode.org).

This body attempts to include all characters in all languages in
the world into one single character set. A unique number in
Unicode represents exactly one character. Currently at version 7,
Unicode is used in Java, XML, ECMAScript, LDAP, etc.

Initially, a Unicode character was represented by 16 bits,
which were enough to represent more than 65,000 different
characters. 65,000 characters are sufficient for encoding most of
the characters in major languages in the world. However, the
Unicode consortium planned to allow for encoding for as many
as a million more characters. With this amount, you then need
more than 16 bits to represent each character. In fact, a 32 bit
system is considered a convenient way of storing Unicode
characters.

Now, you see a problem already. While Unicode provides
enough space for all the characters used in all languages, storing
and transmitting Unicode text is not as efficient as storing and
transmitting ASCII or Latin-1 characters. In the Internet world,
this is a huge problem. Imagine having to transfer 4 times as
much data as ASCII text!

Fortunately, character encoding can make it more efficient to
store and transmit Unicode text. You can think of character
encoding as analogous to data compression. And, there are many
types of character encodings available today. The Unicode
Consortium endorses three of them:

e UTF-8. This is popular for HTML and for protocols whereby

Unicode characters are transformed into a variable length
encoding of bytes. It has the advantages that the Unicode
characters corresponding to the familiar ASCII set have the
same byte values as ASCII, and that Unicode characters
transformed into UTF-8 can be used with much existing
software. Most browsers support the UTF-8 character
encoding.

UTF-16. In this character encoding, all the more commonly
used characters fit into a single 16-bit code unit, and other
less often used characters are accessible via pairs of 16-bit
code units.

UTF-32. This character encoding uses 32 bits for every
single character. This is clearly not a choice for Internet
applications. At least, not at present.

ASCII characters still play a dominant role in software

programming. Java too uses ASCII for almost all input elements,

except comments, identifiers, and the contents of characters and

strings. For the latter, Java supports Unicode characters. This
means, you can write comments, identifiers, and strings in
languages other than English.

Separators

Java uses certain characters as separators. These special
characters are presented in Table 2.1.

Symbol

Name

Description

0)

Parentheses

Used in:

1. method
signatures to
contain lists of
arguments.

2. expressions to
raise operator
precedence.

3. narrowing
conversions.

4. loops to contain
expressions to be

evaluated

1}

Braces

Used in:

1. declaration of
types.

2. blocks of
statements

3. array
initialization.

[]

Brackets

Used in:

1. array
declaration.

2. array value
dereferencing

<>

Angle brackets

Used to pass
parameter to
parameterized

types.

Semicolon

Used to terminate
statements and in
the for statement
to separate the
initialization code,
the expression,
and the update
code.

Used in the for

Colon

statement that
iterates over an
array or a
collection.

, Comma

Used to separate
arguments in
method
declarations.

Period

Used to separate
package names
from subpackages
and type names,
and to separate a
field or method
from a reference
variable.

Table 2.1: Java separators

It is important that you are familiar with the symbols and names,
but don’t worry if you don’t understand the terms in the
Description column for now.

Primitives

When writing an object-oriented (OO) application, you create an
object model that resembles the real world. For example, a
payroll application would have Employee objects, Tax objects,
Company objects, etc. In Java, however, objects are not the
only data type. There is another data type called primitive. There
are eight primitive types in Java, each with a specific format and
size. Table 2.2 lists Java primitives.

Primitive Description Range

Byte-length integer | -128 (-27) to 127

byte (8 bits) (27-1)

short Short integer (16 -32,768 (-215) to
bits) 32,767 (-215-1)
_2)147’483a648
(-231) to
int Integer (32 bits)
2,147,483,647
(-231-1)
_93223a372a036a85
,775,808 (-26
1 Long integer (64 j 775 (-263)
on 0
8 bits)

9,223,372,036,854
;775,807 (263-1)

Single-precision
floating point (32-

Smallest positive
NONZzero: 14e-45

float

bits)

Largest positive
NONZero:
3.4028234€e38

Double-precision

Smallest positive
Nonzero: 4.9e-324

double floating point (64-
bits) Largest positive
NoNzero:
1.79769313486231
57€308
A Unicode [See Unicode 6
char e e
character specification]

boolean

A boolean value

true or false

Table 2.2: Java primitives

The first six primitives (byte, short, int, long, float, double)
represent numbers. Each has a different size. For example, a
byte can contain any whole number between -128 and 127. To
understand how the smallest and largest numbers for an integer
were obtained, look at its size in bits. A byte is 8 bits long so
there are 28 or 256 possible values. The first 128 values are
reserved for -128 to -1, then 0 takes one place, leaving 127
positive values. Therefore, the range for a byte is -128 to 127.

If you need a placeholder to store number 1000000, you need
an int. A long is even larger, and you might ask, if a long can
contain a larger set of numbers than a byte and an int, why not
always use a long? It is because a long takes 64 bits and
therefore consume more memory space than a byte or an int.
Thus, to save space, you want to use a primitive with the smallest
possible data size.

The primitives byte, short, int, and long can only hold
integers or whole numbers, for numbers with decimal points you
need either a float or a double. A float is a 32-bit value that
conforms to the Institute of Electrical and Electronics Engineer
(IEEE) Standard 754. A double is a 64-bit value that conforms to
the same standard.

€ .Y ¢,

A char can contain a single Unicode character, such as ‘a’, ‘9

or ‘&’. The use of Unicode allows chars to also contain
characters that do not exist in the English alphabet. A boolean
can contain one of two possible states (false or true).

Note

The reason why not everything in Java is an object is speed. Objects are
more expensive to create and operate on than primitives. In
programming an operation is said to be expensive if it is resource
intensive or consumes a lot of CPU cycles to complete.

Now that you know that there are two types of data in Java
(primitives and objects), let’s continue by studying how to use
primitives. Let’s start with variables.

Variables

Variables are data placeholders. Java is a strongly typed
language, therefore every variable must have a declared type.
There are two data types in Java:

e reference types. A variable of reference type provides a
reference to an object.

e primitive types. A variable of primitive type holds a
primitive.

How Java Stores Integer Values

You must have heard that computers work with binary numbers, which are numbers
that consists of only zeros and ones. This section provides an overview that may
come in useful when you learn mathematical operators.

A byte takes eight bits, meaning there are eight bits allocated to store a byte. The
leftmost bit is the sign bit. 0 indicates a positive number, and 1 denotes a negative
number. 0000 0000 is the binary representation of 0, 0000 0001 of 1, 0000 0010 of 2,
0000 0011 of 3, and 0111 1111 of 127, which is the largest positive number that a
byte can contain.

Now, how do you get the binary representation of a negative number? It's easy.
Get the binary representation of its positive equivalent first, and reverse all the bits
and add 1. For example, to get the binary representation of -3 you start with 3, which
is 0000 0011. Reversing the bits results in

1111 1100

Adding 1 gives you

1111 1101

which is -3 in binary.

For ints, the rule is the same, i.e. the leftmost bit is the sign bit. The only
difference is that an int takes 32 bits. To calculate the binary form of -1 in an int, we
start from 1, which is

0000 0000 OOOO OOOO OEOLO OO0 OO0 06001

Reversing all the bits results in:

1111 11171 123271 2123171 1313171 131317 11311 1110

Adding 1 gives us the number we want (-1).

1111 1312171 123271 21323131 1313171 133137 11311 13111

In addition to the data type, a Java variable also has a name or

an identifier. There are a few ground rules in choosing
identifiers.

1. An identifier is an unlimited-length
sequence of Java letters and Java digits.
An identifier must begin with a Java letter.

2. An identifier must not be a Java keyword
(given in Table 2.3), a boolean literal, or
the null literal.

3. It must be unique within its scope. Scopes
are discussed in Chapter 4, “Objects and
Classes.”

Java Letters and Java Digits

Java letters include uppercase and lowercase ASCII Latin letters A to Z
(\uoog41-\uoosa—note that \u denotes a Unicode character) and a to z
(\uoo61-\uooya), and, for historical reasons, the ASCII underscore (_ or
\uoosf) and the dollar sign ($, or \uoo24). The $ character should be
used only in mechanically generated source code or, rarely, to access
preexisting names on legacy systems.

Java digits include the ASCII digits 0-9 (\uoo30-\uoo39).

abstract continue for
new switch

assert
package
boolean
private
break
protected
byte
public
case
return
catch
short
char
static
class
strictfp
const
super

Table 2.3: Java keywords

default
synchronized
do

this
double
throw
else
throws
enum
transient
extends
try

final
void
finally
volatile
float
while

Here are some legal identifiers:

salary
X2
_ X3

if

goto

implements

import

instanceof

int

interface

long

native

row_count

Here are some invalid variables:

2X
java+variable

2x is invalid because it starts with a number. java+variable is
invalid because it contains a plus sign.

Also note that names are case-sensitive. x2 and X2 are two
different identifiers.

You declare a variable by writing the type first, followed by the
name plus a semicolon. Here are some examples of variable
declarations.

byte Xx;
int rowCount;
char c;

In the examples above you declare three variables:

e The variable x of type byte

e The variable rowCount of type int

e The variable ¢ of type char

x, rowCount and c are variable names or identifiers.

It is also possible to declare multiple variables having the same
type on the same line, separating two variables with a comma.
For instance:

int a, b;

which is the same as

int a;
int b;

However, writing multiple declarations on the same line is not
recommended as it reduces readability.

Finally, it is possible to assign a value to a variable at the same
time the variable is declared:

byte x = 12;
int rowCount = 1000;

char ¢ = 'x';

Naming Convention for Variables

Variable names should be short yet meaningful. They should be in mixed
case with a lowercase first letter. Subsequent words start with capital
letters. Variable names should not start with underscore _ or dollar sign
$ characters. For example, here are some examples of variable names
that are in compliance with Sun’s code conventions: userName, count,
firstTimeLogin.

Constants

In Java constants are variables whose values, once assigned,
cannot be changed. You declare a constant by using the keyword
final. By convention, constant names are all in upper case with
words separated by underscores.

Here are examples of constants or final variables.

final int ROW_COUNT = 50;
final boolean ALLOW_USER_ACCESS = true;

Literals

From time to time you need to assign values to variables in your
program, such as number 2 to an int or the character ‘¢’ to a
char. For this, you need to write the value representation in a
format that the Java compiler understands. This source code
representation of a value is called literal. There are three types of
literals: literals of primitive types, string literals, and the null
literal. Only literals of primitive types are discussed in this
chapter. The null literal is discussed in Chapter 4, “Objects and
Classes” and string literals in Chapter 5, “Core Classes.”

Literals of primitive types have four subtypes: integer literals,
floating-point literals, character literals and boolean literals.
Each of these subtypes is explained below.

Integer Literals

Integer literals may be written in decimal (base 10, something we
are used to), hexadecimal (base 16) or octal (base 8). For
example, one hundred can be expressed as 100. The following
are integer literals in decimal:

2
123456

As another example, the following code assigns 10 to variable x
of type int.

int x = 10;

Hexadecimal integers are written by using the prefixes 0x or
0X. For example, the hexadecimal number 9E is written as
0X9E or 0x9E. Octal integers are written by prefixing the
numbers with 0. For instance, the following is an octal number

567:

0567

Integer literals are used to assign values to variables of types
byte, short, int, and long. Note, however, you must not assign
a value that exceeds the capacity of a variable. For instance, the
highest number for a byte is 127. Therefore, the following code
generates a compile error because 200 is too big for a byte.

byte b = 200;

To assign a value to a long, suffix the number with the letter LL
or L. L is preferable because it is easily distinguishable from digit
1. A long can contain values between -9223372036854775808L

and 9223372036854775807L (263).

Beginners of Java often ask why we need to use the suffix 1 or
L, because even without it, such as in the following, the program

still compiles.

long a = 123;

This is only partly true. An integer literal without a suffix L or 1 is
regarded as an int. Therefore, the following will generate a
compile error because 9876543210 is larger than the capacity for
an int:

long a = 9876543210,

To rectify the problem, add an L or 1 at the end of the number
like this:

long a = 9876543210L;

Longs, ints, shorts, and bytes can also be expressed in binaries
by prefixing the numbers with 0B or ob. For instance:

byte twelve = 0B1100; // = 12

If an integer literal is too long, readability suffers. For this
reason, starting from Java 7 you can use underscores to separate

digits in integer literals. For example, these two have the same
meaning but the second one is obviously easier to read.

int million = 1000000;
1 000_000,

int million

It does not matter where you put the underscores. You can use
one every three digits, like the example above, or any number of
digits. Here are some more examples:

short next = 12_345;
int twelve = 0B_1100;
long multiplier = 12_34_56_78_90_00L;

Floating-Point Literals

Numbers such as 0.4, 1.23, 0.5e10 are floating point numbers. A
floating point number has the following parts:

e a whole number part
¢ a decimal point
e a fractional part

¢ an optional exponent

Take 1.23 as an example. For this floating point, the whole
number part is 1, the fractional part is 23, and there is no

optional exponent. In 0.5e10, 0 is the whole number part, 5 the
fractional part, and 10 is the exponent.

In Java, there are two types of floating points:

e float. 32 bits in size. The largest positive float is

3.40282347e+38 and the smallest positive finite nonzero
float is 1.40239846e-45.

¢ double. 64 bits in size. The largest positive double is

1.79769313486231570e+308 and the smallest positive finite
nonzero double is 4.94065645841246544e-324.

In both floats and doubles, a whole number part of 0 is
optional. In other words, 0.5 can be written as .5. Also, the
exponent can be represented by either e or E.

To express float literals, you use one of the following formats.
Digits . [Digits] [ExponentPart] f_or_F
. Digits [ExponentPart] f_or_F

Digits ExponentPart f_or_F
Digits [ExponentPart] f_or_F

Note that the part in brackets is optional.

The f_or_F part makes a floating point literal a float. The
absence of this part makes a float literal a double. To explicitly
express a double literal, you can suffix it with D or d.

To write double literals, use one of these formats.

Digits . [Digits] [ExponentPart] [d_or_D]
. Digits [ExponentPart] [d_or_D]

Digits ExponentPart [d_or_D]

Digits [ExponentPart] [d_or_D]

In both floats and doubles, ExponentPart is defined as follows.

ExponentIndicator SignedInteger

where ExponentIndicator is either e or E and SignedInteger is .

Signopt Digits

and Sign is either + or - and a plus sign is optional.

Examples of float literals include the following:

2elf

8.f

.5f

of

3.14f
9.0001e+12f

Here are examples of double literals:

2el

8.

.5
0.0D
3.14
9e-9d
7e123D

Boolean Literals

The boolean type has two values, represented by literals true
and false. For example, the following code declares a boolean
variable includeSign and assigns it the value of true.

boolean includeSign = true;

Character Literals

A character literal is a Unicode character or an escape sequence
enclosed in single quotes. An escape sequence is the
representation of a Unicode character that cannot be entered
using the keyboard or that has a special function in Java. For
example, the carriage return and linefeed characters are used to
terminate a line and do not have visual representation. To
express a linefeed character, you need to escape it, i.e. write its
character representation. Also, single quote characters need to
be escaped because single quotes are used to enclosed
characters.

Here are some examples of character literals:

lzl
l@l

Here are character literals that are escape sequences:

"\b' the backspace character
'"\t' the tab character

"\\' the backslash

'"\''" single quote

"\ double quote
"\n' linefeed
"\r' carriage return

In addition, Java allows you to escape a Unicode character so
that you can express a Unicode character using a sequence of
ASCII characters. For example, the Unicode code for the
character £ is 00A3. You can write the following character literal

to express this character:
1 £ 1

However, if you do not have the tool to produce that character
using your keyboard, you can escape it this way:

"\UQOA3"

Primitive Conversions

When dealing with different data types, you often need to
perform conversions. For example, assigning the value of a
variable to another variable involves a conversion. If both
variables have the same type, the assignment will always
succeed. Conversion from a type to the same type is called

identity conversion. For example, the following operation is
guaranteed to be successful:

int a 90,
int b = a;

However, conversion to a different type is not guaranteed to be
successful or even possible. There are two other kinds of
primitive conversions, the widening conversion and the
narrowing conversion.

The Widening Conversion

The widening primitive conversion occurs from a type to another
type whose size is the same or larger than that of the first type,
such as from int (32 bits) to long (64 bits). The widening
conversion is permitted in the following cases:

¢ byte to short, int, long, float, or double
e short to int, long, float, or double

e char to int, long, float, or double

e int to long, float, or double

¢ long to float or double

e float to double

A widening conversion from an integer type to another integer
type will not risk information loss. At the same token, a
conversion from float to double preserves all the information.
However, a conversion from an int or a long to a float may
result in loss of precision.

The widening primitive conversion occurs implicitly. You do
not need to do anything in your code. For example:

int a = 10;
long b = a; // widening conversion

The Narrowing Conversion

The narrowing conversion occurs from a type to a different type
that has a smaller size, such as from a long (64 bits) to an int
(32 bits). In general, the narrowing primitive conversion can
occur in these cases:

¢ short to byte or char

e char to byte or short

e int to byte, short, or char

¢ long to byte, short, or char

e float to byte, short, char, int, or long

¢ double to byte, short, char, int, long, or float

Unlike the widening primitive conversion, the narrowing
primitive conversion must be explicit. You need to specify the
target type in parentheses. For example, here is a narrowing
conversion from long to int.

long a = 10;
int b = (int) a; // narrowing conversion

The (int) on the second line tells the compiler that a narrowing
conversion should occur.

The narrowing conversion may incur information loss, if the
converted value is larger than the capacity of the target type. The
preceding example did not cause information loss because 10 is
small enough for an int. However, in the following conversion,
there is some information loss because 9876543210L is too big
for an int.

long a = 9876543210L;
int b = (int) a; // the value of b is now
1286608618

A narrowing conversion that results in information loss
introduces a defect in your program.

Operators

A computer program is a collection of operations that together
achieve a certain function. There are many types of operations,
including addition, subtraction, multiplication, division, and bit
shifting. In this section you will learn various Java operations.

An operator performs an operation on one, two or three
operands. Operands are the targets of an operation and the
operator is a symbol representing the action. For example, here
is an additive operation:

X + 4

In this case, x and 4 are the operands and + is the operator.

An operator may or may not return a result.

Note

Any legal combination of operators and operands are called an
expression. For example, X + 4 is an expression. A boolean expression
results in either true or false. An integer expression produces an
integer. And, the result of a floating-point expression is a floating point
number.

Operators that require only one operand are called unary

operators. There are a few unary operators in Java. Binary
operators, the most common type of Java operator, take two
operands. There is also one ternary operator, the ? : operator,
that requires three operands.

Table 2.4 list Java operators.

= > < ! = ?
instanceof

== <= >= = && | | ++ e

+ - * / & | A %
<< >> >>>

+= -= *= /= &= |= N= %=
<<= >>= >>>=

Table 2.4: Java operators

In Java, there are six categories of operators.

Unary operators

Arithmetic operators

Relational and conditional operators

Shift and logical operators

Assignment operators

e Other operators

Each of these operators is discussed in the following sections.

Unary Operators

Unary operators operate on one operand. There are six unary
operators, all discussed in this section.

Unary Minus Operator —

The unary minus operator returns the negative of its operand.
The operand must be a numeric primitive or a variable of a
numeric primitive type. For example, in the following code, the
value of y is -4.5;

float x = 4.5f;
float y = -Xx;

Unary Plus Operator +

This operator returns the value of its operand. The operand must
be a numeric primitive or a variable of a numeric primitive type.
For example, in the following code, the value of y is 4.5.

float x = 4.5f;
float y = +x;

This operator does not have much significance since its absence
makes no difference.

Increment Operator ++

This operator increments the value of its operand by one. The
operand must be a variable of a numeric primitive type. The
operator can appear before or after the operand. If the operator
appears before the operand, it is called the prefix increment
operator. If it is written after the operand, it becomes the postfix
increment operator.

As an example, here is a prefix increment operator in action:

int x = 4;
++X;

After ++x, the value of x is 5. The preceding code is the same as

int x = 4;
X++

After x++, the value of x is 5.

However, if the result of an increment operator is assigned to
another variable in the same expression, there is a difference
between the prefix operator and its postfix twin. Consider this

example.

int x = 4;
int y = ++X;
//'y =5, x =05

The prefix increment operator is applied before the assignment.
X is incremented to 5, and then its value is copied to y.

However, check the use of the postfix increment operator here.

int x = 4;
int y = X++;
//'y =4, x =5

With the postfix increment operator, the value of the operand (x)
is incremented after the value of the operand is assigned to
another variable (y).

Note that the increment operator is most often applied to ints.
However, it also works with other types of numeric primitives,
such as float and long.

Decrement Operator --
This operator decrements the value of its operand by one. The
operand must be a variable of a numeric primitive type. Like the

increment operator, there are also the prefix decrement operator
and the postfix decrement operator. For instance, the following

code decrements x and assigns the value to y.

int x = 4;
int y = --X;
// X =3; y =3

In the following example, the postfix decrement operator is used:

int x = 4;
int y = X--;
// x =3;y =4

Logical Complement Operator !

This operator can only be applied to a boolean primitive or an
instance of java.lang.Boolean. The value of this operator is
true if the operand is false, and false if the operand is true.
For example:

boolean x = false;

boolean y = !Xx;

// at this point, y is true and x 1is
false

Bitwise Complement Operator ~

The operand of this operator must be an integer primitive or a
variable of an integer primitive type. The result is the bitwise
complement of the operand. For example:

int j
int k

2;
~j: // k= -3; =2

To understand how this operator works, you need to convert the
operand to a binary number and reverse all the bits. The binary
form of 2 in an integer is:

0000 0000 OGO 0000 OOOO 0000 OO0 6060106

Its bitwise complement is

113131 122271 212271 1311311 13111 131311 13137 13101

which is the representation of -3 in an integer.

Arithmetic Operators

There are four types of arithmetic operations: addition,
subtraction, multiplication, division, and modulus. Each
arithmetic operator is discussed here.

Addition Operator +

The addition operator adds two operands. The types of the
operands must be convertible to a numeric primitive. For
example:

byte x = 3;
inty =x+5; //y =28

Make sure the variable that accepts the addition result has a big
enough capacity. For example, in the following code the value of
k is -294967296 and not 4 billion.

int j 2000000000; // 2 billion
int k = j + j; // not enough capacity. A

bug!!!

On the other hand, the following works as expected:

long j = 2000000000; // 2 billion
long k = j + j; // the value of k is 4
billion

Subtraction Operator —

This operator performs subtraction between two operands. The
types of the operands must be convertible to a numeric primitive
type. As an example:

int x = 2;
int y = x - 1; //y =1

Multiplication Operator *

This operator perform multiplication between two operands. The
type of the operands must be convertible to a numeric primitive
type. As an example:

int x = 4;
int y = x * 4; //y = 16

Division Operator /

This operator perform division between two operands. The left
hand operand is the dividend and the right hand operand the
divisor. Both the dividend and the divisor must be of a type
convertible to a numeric primitive type. As an example:

int x = 4;
int y X / 2; //y = 2

Note that at runtime a division operation raises an error if the
divisor is zero.

The result of a division using the / operator is always an
integer. If the divisor does not divide the dividends equally, the
remainder will be ignored. For example

4;
x / 3; //y =1

int x

int y

The java.lang.Math class, explained in Chapter 5, “Core
Classes,” can perform more sophisticated division operations.

Modulus Operator %

The modulus operator perform division between two operands
and returns the remainder. The left hand operand is the dividend
and the right hand operand the divisor. Both the dividend and
the divisor must be of a type that is convertible to a numeric
primitive type. For example the result of the following operation
is 2.

8 % 3

Equality Operators

There are two equality operators, == (equal to) and != (not

equal to), both operating on two operands that can be integers,
floating points, characters, or boolean. The outcome of equality
operators is a boolean.

For example, the value of ¢ is true after the comparison.

int a =5
int b = 5;
boolean c

As another example,

boolean x = true;
boolean y = true;
boolean z = x !=vy;

The value of z is false after comparison because x is equal to y.

Relational Operators

There are five relational operators: <, >, <=, and >= and
instanceof. The first four operators are explained in this
section. instanceof is discussed in Chapter 7, “Inheritance.”

The <, >, <=, and >= operators operate on two operands
whose types must be convertible to a numeric primitive type.

Relational operations return a boolean.

The < operator evaluates if the value of the left-hand operand
is less than the value of the right-hand operand. For example, the
following operation returns false:

The > operator evaluates if the value of the left-hand operand is
greater than the value of the right-hand operand. For example,
this operation returns true:

The <= operator tests if the value of the left-hand operand is less
than or equal to the value of the right-hand operand. For
example, the following operation evaluates to false:

9 <=6

The >= operator tests if the value of the left-hand operand is
greater than or equal to the value of the right-hand operand. For
example, this operation returns true:

9 >=9

Conditional Operators

There are three conditional operators: the AND operator &&, the
OR operator ||, and the ? : operator. Each of these is detailed
below.

The && operator

This operator takes two expressions as operands and both
expressions must return a value that must be convertible to
boolean. It returns true if both operands evaluate to true.
Otherwise, it returns false. If the left-hand operand evaluates to
false, the right-hand operand will not be evaluated. For
example, the following returns false.

(5 < 3) & (6 < 9)

The || Operator

This operator takes two expressions as operands and both
expressions must return a value that must be convertible to
boolean. || returns true if one of the operands evaluates to
true. If the left-hand operand evaluates to true, the right-hand
operand will not be evaluated. For instance, the following
returns true.

(5<3) |] (6 <9)

The ? : Operator

This operator operates on three operands. The syntax is

expressionl ? expression2 : expression3

Here, expressioni must return a value convertible to boolean. If
expressioni evaluates to true, expression2 is returned.
Otherwise, expression3 is returned.

For example, the following expression returns 4.

(8<4) 2?22 : 4

Shift Operators

A shift operator takes two operands whose type must be
convertible to an integer primitive. The left-hand operand is the
value to be shifted, the right-hand operand indicates the shift
distance. There are three types of shift operators:

e the left shift operator <<

e the right shift operator >>

e the unsigned right shift operator >>>

The Left Shift Operator <<

The left shift operator bit-shifts a number to the left, padding the
right bits with 0. The value of n << s is n left-shifted s bit
positions. This is the same as multiplication by two to the power
of s.

For example, left-shifting an int whose value is 1 with a shift
distance of 3 (1 << 3) results in 8. Again, to figure this out, you
convert the operand to a binary number.

0000 0000 00O 0000 OOOO 60O 0000 0001

Shifting to the left 3 shift units results in:

0000 0000 0000 OO0 OGO OGO OO 10060

which is equivalent to 8 (the same as 1 * 23).

Another rule is this. If the left-hand operand is an int, only the
first five bits of the shift distance will be used. In other words,
the shift distance must be within the range o0 and 31. If you pass
an number greater than 31, only the first five bits will be used.
This is to say, if x is an int, X << 32 is the same as x << 0; x <<
33 is the same as x << 1.

If the left-hand operand is a long, only the first six bits of the
shift distance will be used. In other words, the shift distance
actually used is within the range 0 and 63.

The Right Shift Operator >>

The right shift operator >> bit-shifts the left-hand operand to
the right. The value of n >> s is n right-shifted s bit positions.
The resulting value is n/2s.

As an example, 16 >> 1is equal to 8. To prove this, write the
binary representation of 16.

0000 0000 OGO 0000 OO0 0000 0001 06O

Then, shifting it to the right by 1 bit results in.

0000 0000 GO0 OO0 OGO OGO OO 1000

which is equal to 8.

The Unsigned Right Shift Operator >>>
The value of n >>> s depends on whether n is positive or
negative. For a positive n, the value is the same as n >> s.

If n is negative, the value depends on the type of n. If nis an
int, the value is (n>>s)+(2<<~s). If n is a long, the value is

(n>>s)+(2L<<~8).

Assignment Operators

There are twelve assignment operators:

= += = * = /= %= <<= >>S— >>>= &=

Assignment operators take two operands whose type must be of
an integral primitive. The left-hand operand must be a variable.
For instance:

int x = 5;

Except for the assignment operator =, the rest work the same
way and you should see each of them as consisting of two
operators. For example, += is actually + and =. The assignment
operator <<= has two operators, << and =.

The two-part assignment operators work by applying the first
operator to both operands and then assign the result to the left-
hand operand. For example x += 5 is the same as x = x + 5.

X -=5isthesameasx =x-5.

X <<= 5is equivalent to x = x << 5.

x &= 5 produces the same result as x = x &= 5.

Integer Bitwise Operators & |

The bitwise operators & | * perform a bit to bit operation on two
operands whose types must be convertible to int. & indicates an
AND operation, | an OR operation, and * an exclusive OR
operation. For example,

OXFFFF & OX0000 = Ox0000
OXFOFO & OXFFFF = OXFOFO
OXFFFF | OX000F = OXFFFF
OXFFFO N OXOOFF = OXFFOF

Logical Operators & | #

The logical operators & | * perform a logical operation on two
operands that are convertible to boolean. & indicates an AND
operation, | an OR operation, and ~ an exclusive OR operation.
For example,

true & true = true
true & false = false
true | false = true

false | false = false
true N true = false
false N false = false

false N true = true

Operator Precedence

In most programs, multiple operators often appear in an
expression, such as.

int a = 1;
int b = 2;
int ¢ = 3;
int d =a + b * c;

What is the value of d after the code is executed? If you say 9,
you’re wrong. It’s actually 7.

Multiplication operator * takes precedence over addition
operator +. As a result, multiplication will be performed before
addition. However, if you want the addition to be executed first,
you can use parentheses.

int d = (a + b) * c;

The latter will assign 9 to d.

Table 2.5 lists all the operators in the order of precedence.

Operators in the same column have equal precedence.

Operator

postfix operators [1. (params) expr++ expr--
unary operators ++€eXpr --expr +expr -expr ~ !
creation or cast new (type)expr

multiplicative * %

additive + -

shift << >> >>>

relational < > <= >= instanceof
equality ===

bitwise AND &

bitwise exclusive OR

bitwise inclusive OR

logical AND &&
logical OR |
conditional ?:

=+:—=*:/:%: :A:|:

assignment
<<=>>=>>>=

Table 2.5: Operator precedence

Note that parentheses have the highest precedence. Parentheses
can also make expressions clearer. For example, consider the

following code:

int x =5
int y = 5;
z

boolean =X *5 ==y + 20;

The value of z after comparison is true. However, the expression
is far from clear.

You can rewrite the last line using parentheses.

boolean z = (X * 5) == (y + 20);

which does not change the result because * and + have higher
precedence than ==, but this makes the expression much
clearer.

Promotion

Some unary operators (such as +, -, and ~) and binary operators
(such as +, -, *, /) cause automatic promotion, i.e. elevation to a
wider type such as from byte to int. Consider the following
code:

byte x = 5;
byte y -x; // error

The second line surprisingly causes an error even though a byte
can accommodate -5. The reason for this is the unary operator -
causes the result of -x to be promoted to int. To rectify the
problem, either change y to int or perform an explicit narrowing
conversion like this.

byte x = 5;
byte y (byte) -x;

For unary operators, if the type of the operand is byte, short, or
char, the outcome is promoted to int.

For binary operators, the promotion rules are as follows.

¢ If any of the operands is of type byte or short, then both
operands will be converted to int and the outcome will be
an int.

¢ If any of the operands is of type double, then the other
operand is converted to double and the outcome will be a
double.

e If any of the operands is of type float, then the other
operand is converted to float and the outcome will be a
float.

e If any of the operands is of type long, then the other

operand is converted to long and the outcome will be a
long.

For example, the following code causes a compile error:

short x = 200;
short y = 400;
short z = x + vy;

You can fix this by changing z to int or perform an explicit
narrowing conversion of x + y, such as

short z = (short) (x + vy);

Note that the parentheses around x + y is required, otherwise
only x would be converted to int and the result of addition of a
short and an int will be an int.

Comments

It is good practice to write comments throughout your code,
sufficiently explaining what functionality a class provides, what a
method does, what a field contains, and so forth.

There are two types of comments in Java, both with syntax
similar to comments in C and C++.

e Traditional comments. Enclose a traditional comment in /*
and */.

e End-of-line comments. Use double slashes (//) which causes
the rest of the line after // to be ignored by the compiler.

For example, here is a comment that describes a method

/*
toUpperCase capitalizes the characters
of in a String object
*/
public void toUpperCase(String s) {

Here is an end-of-line comment:

public int rowCount; //the number of rows
from the database

Traditional comments do not nest, which means

/*

/* comment 1 */
comment 2 */

is invalid because the first */ after the first /* will terminate the
comment. As such, the comment above will have the extra
comment 2 */, which will generate a compiler error.

On the other hand, end-of-line comments can contain
anything, including the sequences of characters /* and */, such
as this:

// /* this comment is okay */

Summary

This chapter presents Java language fundamentals, the basic
concepts and topics that you should master before proceeding to
more advanced subjects. Topics of discussion include character
sets, variables, primitives, literals, operators, operator
precedence, and comments.

Chapter 3 continues with statements, another important topic
of the Java language.

Quiz

1. What does ASCII stand for?

2. Does Java use ASCII characters or
Unicode characters?

3. What are reference type variables, and
what are primitive type variables?

4. How are constants implemented in Java?

5. What is an expression?

6. You need to assign the British pound
symbol to a char but you do not have the
£ key on your keyboard. How do you do
this if you know the Unicode code for it is
00A3?

7. Name at least ten operators in Java.

8. What is the ternary operator in Java?

9. What is operator precedence?

10. Consider the following code. What are
the values of result1 and result2? Why the
difference?

int resultil 1+ 2 * 3;

(1 +2) *3;

int result2

11. Name two types of Java comments.

Chapter 3

Statements

A computer program is a compilation of instructions called
statements. There are many types of statements in Java and
some—such as if, while, for, and switch—are conditional
statements that determine the program flow. This chapter
discusses Java statements, starting with an overview and then
providing details of each of them. The return statement, which
is the statement to exit a method, is discussed in Chapter 4,
“Objects and Classes.”

Overview

In programming, a statement is an instruction to do something.
Statements control the sequence of program execution.
Assigning a value to a variable is an example of a statement.

X =2z + 5;

Even a variable declaration is a statement.

long secondsElapsed;

By contrast, an expression is a combination of operators and
operands that gets evaluated. For example, z + 5 is an
expression.

In Java a statement is terminated with a semicolon and
multiple statements can be written in a single line.

However, writing multiple statements in a single line is not
recommended as it obscures code readability.

Note

In Java, an empty statement is legal and does nothing;:

Some expressions can be made statements by terminating them
with a semicolon. For example, x++ is an expression. However,
this is a statement:

X++

Statements can be grouped in a block. By definition, a block is a

sequence of the following programming elements within braces:

e statements
e Jocal class declarations

e]ocal variable declaration statements

A statement and a statement block can be labeled. Label names
follow the same rule as Java identifiers and are terminated with

a colon. For example, the following statement is labeled
sectionA.

sectionA: x =y + 1;

And, here is an example of labeling a block:

start: {
// statements

The purpose of labeling a statement or a block is so that it can be

referenced by the break and continue statements.

The if Statement

The if statement is a conditional branch statement. The syntax of
the if statement is either one of these two:

if (booleanExpression) {
statement(s)

if (booleanExpression) {
Sstatement(s)

} else {
statement(s)

If booleanExpression evaluates to true, the statements in the
block following the if statement are executed. If it evaluates to
false, the statements in the if block are not executed. If
booleanExpression evaluates to false and there is an else block,
the statements in the else block are executed.

For example, in the following if statement, the if block will be

executed if x is greater than 4.

if (x > 4) {
// statements

In the following example, the if block will be executed if a is
greater than 3. Otherwise, the else block will be executed.

if (a > 3) {
// statements
} else {

// statements

Note that the good coding style suggests that statements in a
block be indented.

If you are evaluating a boolean in your if statement, it’s not
necessary to use the == operator like this:

boolean fileExist =
if (fileExist == true) {

Instead, you can simply write

if (fileExists) {

By the same token, instead of writing

if (fileExists == false) {

write

if (!fileExists) {

If the expression to be evaluated is too long to be written in a
single line, it is recommended that you use two units of
indentation for subsequent lines. For example.

if (numberOfLoginAttempts <
numberOfMaximumLoginAttempts
| | numberOfMinimumLoginAttempts >

y) {

y++;

If there is only one statement in an if or else block, the braces
are optional.

if (a > 3)
a++;

else
a = 3;

However, this may pose what is called the dangling else problem.
Consider the following example:

if (a>0 || b <5)
if (a > 2)
System.out.println("a > 2");
else
System.out.println("a < 2");

The else statement is dangling because it is not clear which if
statement the else statement is associated with. An else
statement is always associated with the immediately preceding
if. Using braces makes your code clearer.

if (a >0 || b <5) {
if (a > 2) {

System.out.println("a > 2");
} else {
System.out.println("a < 2");

If there are multiple selections, you can also use if with a series
of else statements.

if (booleanExpressionl) {
// statements

} else if (booleanExpression2) {
// statements

}
else {

// statements
}

For example

if (a == 1) {
System.out.println("one");

} else if (a == 2) {
System.out.println("two");

} else if (a == 3) {
System.out.println("three");

} else {
System.out.println("invalid");

In this case, the else statements that are immediately followed
by an if do not use braces. See also the discussion of the switch
statement in the section “The switch Statement” later in this
chapter.

The while Statement

In many occasions, you may want to perform an action several
times in a row. In other words, you have a block of code that you
want executed repeatedly. Intuitively, this can be done by
repeating the lines of code. For instance, a beep can be achieved
using this line of code:

java.awt.Toolkit.getDefaultToolkit().beep
();

And, to wait for half a second you use these lines of code.

try {
Thread.currentThread().sleep(500);

} catch (Exception e) {
b

Therefore, to produce three beeps with a 500 milliseconds
interval between two beeps, you can simply repeat the same
code:

java.awt.Toolkit.getDefaultToolkit().beep

();

try {
Thread.currentThread().sleep(500);

} catch (Exception e) {

}
java.awt.Toolkit.getDefaultToolkit () .beep

();

try {
Thread.currentThread().sleep(500);

} catch (Exception e) {

b
java.awt.Toolkit.getDefaultToolkit().beep

();

However, there are circumstances where repeating code does not

work. Here are some of those:

e The number of repetition is higher than 5, which means the
number of lines of code increases five fold. If there is a line
that you need to fix in the block, copies of the same line
must also be modified.

e If the number of repetitions is not known in advance.

A much cleverer way is to put the repeated code in a loop. This
way, you only write the code once but you can instruct Java to
execute the code any number of times. One way to create a loop
is by using the while statement, which is the topic of discussion
of this section. Another way is to use the for statement, which is
explained in the next section.

The while statement has the following syntax.

while (booleanExpression) {
statement(s)

Here, statement(s) will be executed as long as
booleanExpression evaluates to true. If there is only a single
statement inside the braces, you may omit the braces. For clarity,
however, you should always use braces even when there is only
one statement.

As an example of the while statement, the following code
prints integer numbers that are less than three.

int 1 = 0,

while (i1 < 3) {
System.out.println(i);
i++;

4

Note that the execution of the code in the loop is dependent on
the value of 1, which is incremented with each iteration until it
reaches 3.

To produce three beeps with an interval of 500 milliseconds,
use this code:

int j = 0;
while (j < 3) {

java.awt.Toolkit.getDefaultToolkit() .beep

();
try {

Thread.currentThread().sleep(500);
} catch (Exception e) {

}

j++;

Sometimes, you use an expression that always evaluates to true
(such as the boolean literal true) but relies on the break
statement to escape from the loop.

int k = 0;
while (true) {
System.out.println(k);

K++;

if (k > 2) {
break;

b

You will learn about the break statement in the section, “The
break Statement” later in this chapter.

The do-while Statement

The do-while statement is like the while statement, except that
the associated block always gets executed at least once. Its syntax
is as follows:

do {
statement(s)
} while (booleanExpression);

With do-while, you put the statement(s) to be executed after
the do keyword. Just like the while statement, you can omit the
braces if there is only one statement within them. However,
always use braces for the sake of clarity.

For example, here is an example of the do-while statement:

int 1 = 0;

do {
System.out.println(i);
alamar

} while (i < 3);

This prints the following to the console:

The following do-while demonstrates that at least the code in

the do block will be executed once even though the initial value
of j used to test the expression j < g evaluates to false.

int j = 4;

do {
System.out.println(j);
Jt+;

} while (j < 3);

This prints the following on the console.

The for Statement

The for statement is like the while statement, i.e. you use it to
enclose code that needs to be executed multiple times. However,
for is more complex than while.

The for statement starts with an initialization, followed by an
expression evaluation for each iteration and the execution of a
statement block if the expression evaluates to true. An update
statement will also be executed after the execution of the
statement block for each iteration.

The for statement has following syntax:

for (init ; booleanExpression ; update)

{

Statement(s)

Here, init is an initialization that will be performed before the
first iteration, booleanExpression is a boolean expression which
will cause the execution of statement(s) if it evaluates to true,
and update is a statement that will be executed after the
execution of the statement block. init, expression, and update

are optional.

The for statement will stop only if one of the following
conditions is met:

e booleanEpression evaluates to false
e A break or continue statement is executed

e A runtime error occurs.

It is common to declare a variable and assign a value to it in the
initialization part. The variable declared will be visible to the
expression and update parts as well as to the statement block.

For example, the following for statement loops three times

and each time prints the value of i.

for (int i = 0; i < 3; i++) {
System.out.println(i);

The for statement starts by declaring an int named i and
assigning o to it:

int 1 = 0;

It then evaluates the expression i < 3, which evaluates to true
since i equals 0. As a result, the statement block is executed, and
the value of i is printed. It then performs the update statement
i++, which increments i to 1. That concludes the first loop.

The for statement then evaluates the value of i < g again. The
result is again true because i equals 1. This causes the statement
block to be executed and 1 is printed on the console. Afterwards,
the update statement i++ is executed, incrementing i to 2. That
concludes the third loop.

Next, the expression i < 3 is evaluated and the result is true
because i equals 2. This causes the statement block to be run and
2 is printed on the console. Afterwards, the update statement
i++ is executed, causing i to be equal to 3. This concludes the

second loop.

Next, the expression i < 3 is evaluated again, and the result is
false. This stops the for loop.

This is what you see on the console:

Note that the variable i is not visible anywhere else since it is
declared within the for loop.

Note also that if the statement block within for only consists
of one statement, you can remove the braces, so in this case the
above for statement can be rewritten as:

for (int i = 0; 1 < 3; i++)
System.out.println(i);

However, using braces even if there is only one statement makes
your code clearer.

Here is another example of the for statement.

for (int i = 0; i < 3; i++) {
if (1 % 2 == 0) {
System.out.println(i);

This one loops three times. For each iteration the value of i is
tested. If i is even, its value is printed. The result of the for loop
is as follows:

The following for loop is similar to the previous case, but uses i
+= 2 as the update statement. As a result, it only loops twice,
when i equals 0 and when it is 2.

for (int i = 0; 1 < 3; 1 +=2) {
System.out.println(i);

The result is

A statement that decrements a variable is often used too.
Consider the following for loop:

for (int i = 3; i > 0; i--) {
System.out.println(i);

which prints:

The initialization part of the for statement is optional. In the
following for loop, the variable j is declared outside the loop, so
potentially j can be used from other points in the code outside
the for statement block.

int j = 0;
for (; J <3; j++) {

System.out.println(j);
}

// j 1s visible here

As mentioned previously, the update statement is optional. The
following for statement moves the update statement to the end
of the statement block. The result is the same.

int k = 0;
for (; k<3;) {
System.out.println(k);

K++;

In theory, you can even omit the booleanExpression part. For
example, the following for statement does not have one, and the
loop is only terminated with the break statement. See the
section, “The break Statement” for more information.

int m = 0,

for (; ;) {
System.out.println(m);
m++;

if (m > 4) {
break;

If you compare for and while, you’ll see that you can always
replace the while statement with for. This is to say that

while (expression) {

can always be written as

for (; expression;) {

Note

In addition, for can iterate over an array or a collection. See Chapters 6,
“Arrays” and Chapter 14, “The Collections Framework” for discussions of
the enhanced for.

The break Statement

The break statement is used to break from an enclosing do,
while, for, or switch statement. It is a compile error to use
break anywhere else.

For example, consider the following code
int 1 = 0;

while (true) {
System.out.println(i);

i++;

if (i > 3) {
break;

b

The result is

w N PO

Note that break breaks the loop without executing the rest of
the statements in the block.

Here is another example of break, this time in a for loop.

int m = 0;

for (; ;) {
System.out.println(m);

m++;

if (m > 4) {
break;

}

The break statement can be followed by a label. The presence of
a label will transfer control to the start of the code identified by
the label. For example, consider this code.

start:
for (int 1 = 0; i < 3; i++) {
for (int j = 0; j < 4; j++) {
if (J == 2) {
break start;

}

System.out.println(i + ":" + j);

The use of label start identifies the first for loop. The statement
break start; therefore breaks from the first loop. The result of
running the preceding code is as follows.

Java does not have a goto statement like in C or C++, and labels
are meant as a form of goto. However, just as using goto in
C/C++ may obscure your code, the use of labels in Java may
make your code unstructured. The general advice is to avoid
labels if possible and to always use them with caution.

The continue Statement

The continue statement is like break but it only stops the
execution of the current iteration and causes control to begin
with the next iteration.

For example, the following code prints the number o to 9,
except 5.

for (int 1 = 0; 1 < 10; i++) {
if (i == 5) {
continue;

}
System.out.println(i);

When i is equals to 5, the expression of the if statement
evaluates to true and causes the continue statement to be
called. As a result, the statement below it that prints the value of
iis not executed and control continues with the next loop, i.e. for
iequal to 6.

As with break, continue may be followed by a label to
identify which enclosing loop to continue to. As with labels with
break, employ continue label with caution and avoid it if you
can.

Here is an example of continue with a label.

start:
for (int 1 = 0; 1 < 3; i++) {
for (int j = 0; J < 4; j++) {
if (3 == 2) {
continue start;

}

System.out.println(i + ":" + j);

The result of running this code is as follows:

N N PR o
R Ok 0 Rr O

The switch Statement

An alternative to a series of else if, as discussed in the last part
of the section, “The if Statement,” is the switch statement.
switch allows you to choose a block of statements to run from a
selection of code, based on the return value of an expression. The
expression used in the switch statement must return an int, a
String, or an enumerated value.

Note

The String class is discussed in Chapter 5, “Core Classes” and
enumerated values in Chapter 12, “Enums.”

The syntax of the switch statement is as follows.

switch(expression) {

case value_1
Statement(s);
break;

case value_2
statement(s),
break;

case value_n
statement(s);
break;

default:
statement(s);

Failure to add a break statement after a case will not generate a
compile error but may have more serious consequences because
the statements on the next case will be executed.

Here is an example of the switch statement. If the value of i is
1, “One player is playing this game.” is printed. If the value is 2,
“Two players are playing this game is printed.” If the value is 3,
“Three players are playing this game is printed. For any other
value, “You did not enter a valid value.” will be printed.

int 1 = ...;
switch (1) {
case 1

System.out.println("One player 1is
playing this game.");

break;
case 2

System.out.println("Two players are
playing this game.");

break;
case 3

System.out.println("Three players are
playing this game.");

break;
default:

System.out.println("You did not enter
a valid value.");

}

For examples of switching on a String or an enumerated value,
see Chapter 5, “Core Classes” and Chapter 10, “Enums,”
respectively.

Summary

The sequence of execution of a Java program is controlled by

statements. In this chapter, you have learned the following Java
control statements: if, while, do-while, for, break,
continue, and switch. Understanding how to use these
statements is crucial to writing correct programs.

Quiz

1. What is the difference between an
expression and a statement?

2. How do you escape from the following
while loop?

while (true) {
// statements

3. Is there any difference between using the
postfix increment operator and the prefix
increment operator as the update
statement of a for loop?

for (int x = 0; x < length; x++)
for (int x = 0; x < length; ++x)

4. What will be printed on the console if the
code below is executed:

int 1 = 1;
switch (1) {
case 1 :
System.out.println("One player 1is
playing this game.");
case 2 :
System.out.println("Two players are
playing this game.");
break;
default:
System.out.println("You did not
enter a valid value.");

}

Hint: no break after case 1.

5. Write a class that uses for to print all
even numbers from 1 to 9.

6. Write a class that uses for to print all
even numbers between two integers, a and
b, including b if b is an even number.

7. Same as before, but print the numbers in

descending order.

Chapter 4
Objects and Classes

Object-oriented programming (OOP) works by modeling
applications on real-world objects. The benefits of OOP are real,
which explains why OOP is the paradigm of choice today and
why OOP languages like Java are popular. This chapter
introduces you to objects and classes. If you are new to OOP, you
may want to read this chapter carefully. A good understanding of
OOQP is key to writing quality programs.

This chapter starts by explaining what an object is and what
constitutes a class. It then teaches you how to create an object
with the new keyword, how objects are stored in memory, how
classes can be organized into packages, how to use access control
to achieve encapsulation, how the Java Virtual Machine (JVM)
loads and links objects, and how Java manages unused objects.
In addition, method overloading and static class members are

explained.

What Is An Object?

When developing an application in an OOP language, you create
a model that resembles a real-life situation to solve your
problem. Take for example a payroll application, which
calculates an employee’s income tax and take home pay. An
application like this would have a Company object to represent
the company using the application, Employee objects that
represent the employees in the company, Tax objects to
represent the tax details of each employee, and so on. Before you
can start programming such applications, however, you need to
understand what Java objects are and how to create them.

Let’s begin with a look at objects in life. Objects are
everywhere, living (persons, pets, etc) and otherwise (cars,
houses, streets, etc); concrete (books, televisions, etc) and
abstract (love, knowledge, tax rate, regulations, and so forth).
Every object has two features: the attributes and the actions the
object can perform. For example, the following are some of a
car’s attributes:

e color
e number of doors

e plate number

Additionally, a car can perform these actions:

® TUun

e brake

As another example, a dog has the following attributes: color,
age, type, weight, etc. And it can bark, run, urinate, sniff, etc.

A Java object also has attribute(s) and can perform action(s).
In Java, attributes are called fields and actions are called
methods. In other programming languages these may be known
by other names. For example, methods are often called
functions.

Both fields and methods are optional, meaning some Java
objects may not have fields but have methods and some others
may have fields but not methods. Some, of course, have both
attributes and methods and some have neither.

How do you create Java objects? This is the same as asking,
“How do you make cars?” Cars are expensive objects that need
careful design that takes into account many things, such as safety
and cost-effectiveness. You need a good blueprint to make good
cars. To create Java objects, you need similar blueprints: classes.

Java Classes

A class is a blueprint or template to create objects of identical
type. If you have an Employee class, you can create any number
of Employee objects. To create Street objects, you need a

Street class. A class determines what kind of object you get. For
example, if you create an Employee class that has age and
position fields, all Employee objects created out of this
Employee class will have age and position fields as well. No
more no less. The class determines the object.

In summary, classes are an OOP tool that enable programmers
to create the abstraction of a problem. In OOP, abstraction is the
act of using programming objects to represent real-world
objects. As such, programming objects do not need to have the
details of real-world objects. For instance, if an Employee
object in a payroll application needs only be able to work and
receive a salary, then the Employee class needs only two
methods, work and receiveSalary. OOP abstraction ignores
the fact that a real-world employee can do many other things
including eat, run, kiss and kick.

Classes are the fundamental building blocks of a Java
program. All program elements in Java must reside in a class,
even if you are writing a simple program that does not require
Java’s object-oriented features. A Java beginner needs to
consider three things when writing a class:

e the class name

e the fields

e the methods

There are other things that can be present in a class, but they will
be discussed later.

A class declaration must use the keyword class followed by a
class name. Also, a class has a body within braces. Here is a
general syntax for a class:

class className {
[class body]

For example, Listing 4.1 shows a Java class named Employee,
where the lines in bold are the class body.

Listing 4.1: The Employee class

class Employee {

int age;
double salary;
b
Note

By convention, class names capitalize the initial of each word. For
example, here are some names that follow the convention: Employee,
Boss, DateUtility, PostOffice, RegularRateCalculator. This type of
naming convention is known as Pascal naming convention. The other
convention, the camel naming convention, capitalize the initial of each

word, except the first word. Method and field names use the camel

naming convention.

A public class definition must be saved in a file that has the same
name as the class name, even though this restriction does not
apply to non-public classes. The file name must have java
extension.

Note

In UML class diagrams, a class is represented by a rectangle that consists
of three parts: the topmost part is the class name, the middle part is the
list of fields, and the bottom part is the list of methods. (See Figure 4.1)
The fields and methods can be hidden if showing them is not important.

Employee

age
salary

recerveSalary ()
work ()

Figure 4.1: The Employee class in the
UML class diagram

Fields

Fields are variables. They can be primitives or references to
objects. For example, the Employee class in Listing 4.1 has two
fields, age and salary. In Chapter 2, “Language Fundamentals”

you learned how to declare and initialize variables of primitive
types.

However, a field can also refer to another object. For instance,
an Empoyee class may have an address field of type Address,
which is a class that represents a street address:

Address address;

In other words, an object can contain other objects, that is if the
class of the former contains variables that reference to the latter.

Field names should follow the camel naming convention. The
initial of each word in the field, except for the first word, is
written with a capital letter. For example, here are some “good”
field names: age, maxAge, address, validAddress,
numberOfRows.

Methods

A methods defines an action that a class’s objects (or instances)
can perform. A method has a declaration part and a body. The
declaration part consists of a return value, the method name and
a list of arguments. The body contains code that performs the
action.

To declare a method, use the following syntax:

returnType methodName (1listOfArguments)

The return type of a method can be a primitive, an object or void.
The return type void means that the method returns nothing.
The declaration part of a method is also called the signature of
the method.

For example, here is a method named getSalary that returns
a double.

double getSalary()

The getSalary method does not accept arguments.

As another example, here is a method that returns an
Address object.

Address getAddress()

And, here is a method that accepts an argument:

int negate(int number)

If a method takes more than one argument, two arguments are

separated by a comma. For example, the following add method
takes two ints and return an int.

int add(int a, int b)

The Method main

A special method called main provides the entry point to an
application. An application normally has many classes and only
one of the classes needs to have a main method. This method
allows the containing class to be invoked.

The signature of the main method is as follows.

public static void main(String[] args)
If you wonder why there is “public static void” before main, you
will get the answer towards the end of this chapter.

You can pass arguments to main when using java to run a
class. To pass arguments, type them after the class name. Two
arguments are separated by a space.

java className argl arg2 arg3 ...

All arguments must be passed as strings. For instance, to pass

«K_»

two arguments, “1” and “safeMode” when running a Test class,

type this:

java Test 1 safeMode

Strings are discussed in Chapter 5, “Core Classes.”

Constructors

Every class must have at least one constructor. Otherwise, no
objects could be created out of it and the class would be useless.
As such, if your class does not explicitly define a constructor, the
compiler adds one for you.

A constructor is used to construct an object. A constructor
looks like a method and is sometimes called a constructor
method. However, unlike a method, a constructor does not have
a return value, not even void. Additionally, a constructor must
have the same name as the class.

The syntax for a constructor is as follows.

constructorName (listOfArguments) {
[constructor body]

A constructor may have zero argument, in which case it is called
a no-argument (or no-arg, for short) constructor. Constructor
arguments can be used to initialize the fields in the object.

If the Java compiler adds a no-arg constructor to a class
because the class contains no constructor, the addition will be
implicit, i.e. it will not be displayed in the source file. However, if
there is a constructor in a class definition, regardless of the
number of arguments it accepts, no constructor will be added to
the class by the compiler.

As an example, Listing 4.2 adds two constructors to the
Employee class in Listing 4.1.

Listing 4.2: The Employee class with
constructors

public class Employee {
public int age;
public double salary;
public Employee() {
b
public Employee(int ageValue, double
salaryvalue) {
age = ageValue;
salary = salaryValue;

The second constructor is particularly useful. Without it, to
assign values to age and position, you would need to write extra
lines of code to initialize the fields:

employee.age = 20;
employee.salary = 90000.00;

With the second constructor, you can pass the values at the same
time you create an object.

new Employee(20, 90000.00);

The new keyword is new to you, but you will learn how to use it
later in this chapter.

Varargs

Varargs is a Java feature that allows methods to have a variable
length of argument list. Here is an example of a method called
average that accepts any number of ints and calculates their
average.

public double average(int... args)

The ellipsis says that there is zero or more arguments of this

type. For example, the following code calls average with two
and three ints.

double avgl = average(100, 1010);
double avg2 average(10, 100, 1000);

If an argument list contains both fixed arguments (arguments
that must exist) and variable arguments, the variable arguments
must come last.

You should be able to implement methods that accept varargs
after you read about arrays in Chapter 6, “Arrays.” Basically, you
receive a vararg as an array.

Class Members in UML Class
Diagrams

Figure 4.1 depicts a class in a UML class diagram. The diagram
provides a quick summary of all fields and methods. You could
do more in UML. UML allows you to include field types and
method signatures. For example, Figure 4.2 presents a Book
class with five fields and one method.

Book

height : Integer

1sbn : Strng
numberOfPages : Integer
tide : String

width : Integer

getChapter (Integer chapterNumber) : Chapter

Figure 4.2: Including class member
information in a class diagram

Note that in a UML class diagram a field and its type is separated
by a colon. A method’s argument list is presented in parentheses
and its return type is written after a colon.

Creating An Object

Now that you know how to write a class, it is time to learn how to
create an object from a class. An object is also called an instance.
The word construct is often used in lieu of create, thus
constructing an Employee object. Another term commonly
used is instantiate. Instantiating the Employee class is the
same as creating an instance of Employee.

There are a number of ways to create an object, but the most
common one is by using the new keyword. new is always
followed by the constructor of the class to be instantiated. For
example, to create an Employee object, you write:

new Employee();

Most of the time, you will want to assign the created object to an
object variable (or a reference variable), so that you can
manipulate the object later. To achieve this, you need to declare
an object reference with the same type as the object. For
instance:

Employee employee = new Employee();,

Here, employee is an object reference of type Employee.

Once you have an object, you can call its methods and access its
fields, by using the object reference that was assigned the object.
You use a period (.) to call a method or a field. For example:

objectReference.methodName
objectReference.fieldName

The following code, for instance, creates an Employee object
and assigns values to its age and salary fields:

Employee employee = new Employee();
employee.age = 24;

employee.salary = 50000;

The null Keyword

A reference variable refers to an object. There are times,
however, when a reference variable does not have a value (it is
not referencing an object). Such a reference variable is said to
have a null value. For example, the following class level reference
variable is of type Book but has not been assigned a value;

Book book; // book is null

If you declare a local reference variable within a method but do
not assign an object to it, you will need to assign null to it to
satisfy the compiler:

Book book = null;

Class-level reference variables will be initialized when an
instance is created, therefore you do not need to assign null to
them.

Trying to access the field or method of a null variable reference
raises an error, such as in the following code:

Book book = null;
System.out.println(book.title); // error
because book is null

You can test if a reference variable is null by using the ==
operator. For instance.

if (book == null) {
book = new Book();

3
System.out.println(book.title);

Memory Allocation for
Objects

When you declare a variable in your class, either in the class level
or in the method level, you allocate memory space for data that
will be assigned to the variable. For primitives, it is easy to
calculate the amount of memory taken. For example, declaring
an int costs you four bytes and declaring a long sets you back
eight bytes. However, calculation for reference variables is
different.

When a program runs, some memory space is allocated for
data. This data space is logically divided into two, the stack and
the heap. Primitives are allocated in the stack and Java objects
reside in the heap.

When you declare a primitive, several bytes are allocated in
the stack. When you declare a reference variable, some bytes are
also set aside in the stack, but the memory does not contain the
object’s data, it contains the address of the object in the heap. In
other words, when you declare

Book book;

Some bytes are set aside for the reference variable book. The
initial value of book is null because there is not yet an object
assigned to it. When you write

Book book = new Book();

you create an instance of Book, which is stored in the heap, and
assign the address of the instance to the reference variable
book. A Java reference variable is like a C++ pointer except that
you cannot manipulate a reference variable. In Java, a reference
variable is used to access the member of the object it is referring
to. Therefore, if the Book class has a public review method, you
can call the method by using this syntax:

book.review();

An object can be referenced by more than one reference variable.
For example,

Book myBook = new Book();
Book yourBook = myBook;

The second line copies the value of myBook to yourBook. As a
result, yourBook is now referencing the same Book object as
myBook.

Figure 4.3 illustrates memory allocation for a Book object
referenced by myBook and yourBook.

Stack Heap

myBook = — Book
yourBook

Figure 4.3: An object referenced by two
variables

On the other hand, the following code creates two different
Book objects:

Book myBook = new Book();
Book yourBook = new Book();

The memory allocation for this code is illustrated in Figure 4.4.

Stack Heap

myBook Baok

yaimSeos \ |
~ Book

Figure 4.4: Two objects referenced by
two variables

Now, how about an object that contains another object? For
example, consider the code in Listing 4.3 that shows an
Employee class that contains an Address class.

Listing 4.3: An Employee class that
contains another class

public class Employee {
Address address = new Address();

When you create an Employee object using the following code,
an Address object is also created.

Employee employee = new Employee();

Figure 4.5 depicts the position of each object in the heap.
Stack Heap

employce = j— | Employee
address
Q Address

Figure 4.5: An object “within” another
object

It turns out that the Address object is not really inside the
Employee object. However, the address field within the
Employee object has a reference to the Address object, thus
allowing the Employee object to manipulate the Address
object. Because in Java there is no way of accessing an object
except through a reference variable assigned the object’s address,
no one else can access the Address object ‘within’ the

Employee object.

Java Packages

If you are developing an application that consists of different
parts, you may want to organize your classes to retain
maintainability. With Java, you can group related classes or
classes with similar functionality in packages. For example,
standard Java classes come in packages. Java core classes are in
the java.lang package. All classes for performing input and
output operations are members of the java.io package, and so
on. If a package needs to be organized in more detail, you can
create packages that share part of the name of the former. For
example, the Java class library comes with the
java.lang.annotation and java.lang.reflect packages.
However, mind you that sharing part of the name does not make
two packages related. The java.lang package and the
java.lang.reflect package are different packages.

Package names that start with java are reserved for the core
libraries. Consequently, you cannot create a package that starts
with the word java. You can compile classes that belong to such
a package, but you cannot run them.

In addition, packages starting with javax are meant for
extension libraries that accompany the core libraries. You should
not create packages that start with javax either.

In addition to class organization, packaging can avoid naming
conflict. For example, an application may use the MathUtil
class from company A and an identically named class from
another company if both classes belong to different packages.
For this purpose, by convention your package names should be
based on your domain name in reverse. Therefore, Sun’s package
names start with com.sun. My domain name is
brainysoftware.com, so it’s appropriate for me to start my
package name with com.brainysoftware. For example, I
would place all my applets in a com.brainysoftware.applet
package and my servlets in com.brainysoftware.servlet.

A package is not a physical object, and therefore you do not
need to create one. To group a class in a package, use the
keyword package followed by the package name. For example,
the following MathUtil class is part of the
com.brainysoftware.common package:

package com.brainysoftware.common;
public class Mathutil {

Java also introduces the term fully qualified name, which refers
to a class name that carries with it its package name. The fully
qualified name of a class is its package name followed by a
period and the class name. Therefore, the fully qualified name of

a Launcher class that belongs to package com.example is
com.example.Launcher.

A class that has no package declaration is said to belong to the
default package. For example, the Employee class in Listing 4.1
belongs to the default package. You should always use a package
because types in the default package cannot be used by other
types outside the default package (except when using a technique
called reflection). It is a bad idea for a class to not have a
package.

Even though a package is not a physical object, package names
have a bearing on the physical location of their class source files.
A package name represents a directory structure in which a
period in a package name indicates a subfolder. For example, all
Java source files in the com.brainysoftware.common
package must reside in the common directory that is a
subdirectory of the brainysoftware directory. In turn, the
latter must be a subdirectory of the com directory. Figure 4.6
depicts the folder structure for a
com.brainysoftware.common.MathUtil class.

[== com
-l brainysoftware
—-[A= camman
[1] mathirl java

Figure 4.6: The physical location of a
class in a package

Compiling a class in a non-default package presents a challenge
for beginners. To compile such a class, you need to include the
package name, replacing the dot (.) with /. For example, to
compile the com.brainysoftware.common.MathUtil class,
change directory to the working directory (the directory which is
the parent directory of com) and type

javac
com/brainysoftware/common/MathuUtil. java

By default, javac will place the result in the same directory
structure as the source. In this case, a MathUtil.class file will
be created in the com/brainysoftware/common directory.

Running a class that belongs to a package follows a similar
rule: you must include the package name, replacing . with /. For
example, to run the
com.brainysoftware.common.MathUtil class, type the
following from your working directory.

java com/brainysoftware/common/MathUtil

The packaging of your classes also affects the visibility of your
classes, as you will witness in the next section.

Encapsulation and Access
Control

An OOP principle, encapsulation is a mechanism that protects
parts of an object that need to be secure and exposes only parts
that are safe to be exposed. A television is a good example of
encapsulation. Inside it are thousands of electronic components
that together form the parts that can receive signals and decode
them into images and sound. These components are not to be
accessible to the user, however, so Sony and other manufacturers
wrap them in a strong metallic cover that does not break easily.
For a television to be easy to use, it exposes buttons that the user
can touch to turn on and off the set, adjust brightness, turn up
and down the volume, and so on.

Back to encapsulation in OOP, let’s take as an example a class
that can encode and decode messages. The class exposes two
methods called encode and decode, that users of the class can
access. Internally, there are dozens of variables used to store
temporary values and other methods that perform supporting
tasks. The author of the class hides these variables and other
methods because allowing access to them may compromise the
security of the encoding/decoding algorithms. Besides, exposing
too many things makes the class harder to use. As you can see
later, encapsulation is a powerful feature.

Java supports encapsulation through access control. Access
control is governed by access control modifiers. There are four
access control modifiers in Java: public, protected, private
and the default access level. Access control modifiers can be
applied to classes or class members. They are explained in the
following subsections.

Class Access Control Modifiers

In an application with many classes, a class may be instantiated
and used from another class that is a member of the same
package or a different package. You can control from which
packages your class can be “seen” by employing an access control
modifier at the beginning of the class declaration.

A class can have either the public or the default access control
level. You make a class public by using the public access control
modifier. A class whose declaration bears no access control
modifier has default access. A public class is visible from
anywhere. Listing 4.4 shows a public class named Book.

Listing 4.4: The public class Book

package app04;
public class Book {
String isbn;
String title;
int width;
int height;

int numberOfPages;

The Book class is a member of the app04 package and has five
fields. Since Book is public, it can be instantiated from any
other classes. In fact, the majority of the classes in the Java core
libraries are public classes. For example, here is the declaration
of the java.lang.Runtime class:

public class Runtime

A public class must be saved in a file that has the same name as
the class, and the extension must be java. The Book class in
Listing 4.4 must be saved in a Book.java file. Also, because
Book belongs to package appo4, the Book.java file must
reside inside an appo04 directory.

Note

A Java source file can only contain one public class. However, it can
contain multiple classes that are not public.

When there is no access control modifier preceding a class
declaration, the class has the default access level. For example,
Listing 4.5 presents the Chapter class that has the default
access level.

Listing 4.5: The Chapter class, with the
default access level

package app04;

class Chapter {
String title;
int numberOfPages;

public void review() {
Page page = new Page();
int sentenceCount =
page.number0fSentences;
int pageNumber =
page.getPageNumber();
b

Classes with the default access level can only be used by other
classes that belong to the same package. For instance, the
Chapter class can be instantiated from inside the Book class
because Book belongs to the same package as Chapter.
However, Chapter is not visible from other packages.

For example, you can add the following getChapter method
inside the Book class:

Chapter getChapter() {

return new Chapter();

On the other hand, if you try to add the same getChapter
method to a class that does not belong to the appo4 package, a
compile error will be raised.

Class Member Access Control
Modifiers

Class members (methods, fields, constructors, etc) can have one
of four access control levels: public, protected, private and
default access. The access control modifier public is used to
make a class member public, the protected modifier to make a
class member protected, and the private modifier to make a
class member private. Without an access control modifier, a class
member will have the default access level.

Table 4.1 shows the visibility of each access level.

From From
A classes classes From From
ceess in other | in the child the same
Level
package | same classes class

S package

public yes yes yes yes

protected | no yes yes yes
default no yes no yes
private no no no yes

Table 4.1: Class member access levels

Note

The default access is sometimes called package private. To avoid
confusion, this book will only use the term default access.

A public class member can be accessed by any other classes that
can access the class containing the class member. For example,
the toString method of the java.lang.Object class is public.
Here is the method signature:

public String toString()

Once you construct an Object object, you can call its toString
method because toString is public.

Object obj = new Object();
obj.toString();

Recall that you access a class member by using this syntax:

referenceVariable.memberName

In the preceding code, obj is a reference variable to an instance
of java.lang.Object and toString is the method defined in the
java.lang.Object class.

A protected class member has a more restricted access level. It
can be accessed only from

¢ any class in the same package as the class containing the
member

e a child class of the class containing the member

Note

A child class is a class that extends another class. Chapter 7, “Inheritance”
explains this concept.

For instance, consider the public class Page in Listing 4.6.

Listing 4.6: The Page class

package app04;
public class Page {
int numberOfSentences = 10;
private int pageNumber = 5;
protected int getPageNumber() {
return pageNumber;

Page has two fields (numberOfSentences and
pageNumber) and one method (getPageNumber). First of
all, because Page is public, it can be instantiated from any other
class. However, even if you can instantiate it, there is no
guarantee you can access its members. It depends on from which

class you are accessing the Page class’s members.

Its getPageNumber method is protected, so it can be
accessed from any classes that belong to appo4, the package
that houses the Page class. For example, consider the review
method in the Chapter class (given in Listing 4.5).

public void review() {
Page page = new Page();
int sentenceCount =
page.numberOfSentences;
int pageNumber =
page.getPageNumber();
ks

The Chapter class can access the getPageNumber method
because Chapter belongs to the same package as the Page
class. Therefore, Chapter can access all protected members of
the Page class.

The default access allows classes in the same package access a
class member. For instance, the Chapter class can access the
Page class’s numberOfSentences field because the Page and
Chapter classes belong to the same package. However,
numberOfSentences is not accessible from a subclass of Page
if the subclass belongs to a different package. This differentiates
the protected and default access levels and will be explained in

detail in Chapter 7, “Inheritance.”

The private members of a class can only be accessed from
inside the same class. For example, there is no way you can
access the Page class’s private field pageNumber from
anywhere other than the Page class itself. However, look at the
following code from the Page class definition.

private int pageNumber = 5;
protected int getPageNumber() {
return pageNumber;

The pageNumber field is private, so it can be accessed from the
getPageNumber method, which is defined in the same class.
The return value of getPageNumber is pageNumber, which
is private. Beginners are often confused by this kind of code. If
pageNumber is private, why use it as a return value of a
protected method (getPageNumber)? Note that access to
pageNumber is still private, so other classes cannot modify this
field. However, using it as a return value of a non-private
method is allowed.

How about constructors? Access levels to constructors are the
same as those for fields and methods. Therefore, constructors
can have public, protected, default, and private access levels. You
may think that all constructors must be public because the

intention of having a constructor is to make the class
instantiatable. However, to your surprise, this is not the case.
Some constructors are made private so that their classes cannot
be instantiated from other classes. Private constructors are
normally used in singleton classes. If you are interested in this
topic, there are articles on this that you can find easily on the
Internet.

Note

In a UML class diagram, you can include information on the class
member access level. Prefix a public member with a +, a protected
member with a # and a private member with a -. Members with no prefix
are regarded as having the default access level. Figure 4.7 shows the
Manager class with members having various access levels.

Manager

+ employeeld
- salary

+ work
manage

Figure 4.7: Including class member
access level in a UML class diagram

The this Keyword

You use the this keyword from any method or constructor to
refer to the current object. For example, if you have a class-level
field with the same name as a local variable, you can use this
syntax to refer to the former:

this.field

A common use is in the constructor that accepts values used to
initialize fields. Consider the Box class in Listing 4.7.

Listing 4.7: The Box class

package app04;
public class Box {
int length;
int width;
int height;
public Box(int length, int width, int
height) {
this.length = length;
this.width = width;
this.height = height;

The Box class has three fields, length, width, and height. Its
constructor accepts three arguments used to initialize the fields.

It is very convenient to use length, width, and height as the
parameter names because they reflect what they are. Inside the
constructor, length refers to the length argument, not the
length field. this.length refers to the class-level length field.

It is of course possible to change the argument names, such as
this.

public Box (int lengthArg, int widthArg,
int heightArg) {

length = lengthArg;

width = widthArg;

height = heightArg;

This way, the class-level fields are not shadowed by local
variables and you do not need to use the this keyword to refer to
the class-level fields However, using the this keyword spares you
from having to think of different names for your method or

constructor arguments.

Using Other Classes

It is common to use other classes from the class you are writing.
Using classes in the same package as your current class is

allowed by default. However, to use classes in other packages,
you must first import the packages or the classes you want to

use.

Java provides the keyword import to indicate that you want
to use a package or a class from a package. For example, to use
the java.util. ArrayList class from your code, you must have
the following import statement:

package app04;
import java.util.ArraylList;

public class Demo {

Note that import statements must come after the package
statement but before the class declaration. The import keyword
can appear multiple times in a class.

package app04;
import java.time.Clock;
import java.util.ArraylList;

public class Demo {

Sometimes you need many classes in the same package. You can
import all classes in the same package by using the wild
character *. For example, the following code imports all
members of the java.util package.

package app04;
import java.util.*;
public class Demo {

Now, not only can you use the java.util. ArrayList class, but
you can use other members of the java.util package too.
However, to make your code more readable, it is recommended
that you import a package member one at a time. In other words,
if you need to use both the java.io.PrintWriter class and the
java.io.FileReader class, it is better to have two import
statements like the following than to use the * character.

import java.lo.PrintWriter;
import java.lo.FileReader;

Note

Members of the java.lang package are imported automatically. Thus, to
use the java.lang.String class, for example, you do not need to
explicitly import the class.

The only way to use classes that belong to other packages
without importing them is to use the fully qualified names of the
classes in your code. For example, the following code declares
the java.io.File class using its fully qualified name.

java.io.File file = new
java.io.File(filename);

If you import identically-named classes from different packages,
you must use the fully qualified names when declaring the
classes. For example, the Java core libraries contain the classes
java.sql.Date and java.util.Date. Importing both upsets the
compiler. In this case, you must write the fully qualified names
of java.sql.Date and java.util.Date in your class to use them.

Note

Java classes can be deployed in a jar file. Appendix A details how to
compile a class that uses other classes in a jar file. Appendix B shows how
to run a Java class in a jar file. Appendix C provides instructions on the
jar tool, a program that comes with the JDK to package your Java classes
and related resources.

A class that uses another class is said to “depend on” the latter. A UML

diagram that depicts this dependency is shown in Figure 4.8.

Book

1 Chapter
heght : Integer hapte

ishn : Sidng use numberOiPapes Inteper
umberO Pages « Tnleger 5 fitle @ Srnng

title @ String
waclth @ Integer review {1« voud

pelChapler {Toteger chaplerNumber Chapler

Figure 4.8: Dependency in the UML
class diagram

A dependency relationship is represented by a dashed line with an arrow.
In Figure 4.8 the Book class is dependent on Chapter because the
getChapter method returns a Chapter object.

Final Variables

Java does not reserve the keyword constant to create constants.
However, in Java you can prefix a variable declaration with the
keyword final to make its value unchangeable. You can make
both local variables and class fields final.

For example, the number of months in a year never changes,

SO you can write:

final int numberOfMonths = 12;

As another example, in a class that performs mathematical
calculation, you can declare the variable pi whose value is equal
to 22/7 (the circumference of a circle divided by its diameter, in
math represented by the Greek letter ?).

final float pi = (float) 22 / 7;

Once assigned a value, the value cannot change. Attempting to
change it will result in a compile error.

Note that the casting (float) after 22 / 7 is needed to convert
the value of division to float. Otherwise, an int will be returned
and the pi variable will have a value of 3.0, instead of 3.1428.

Also note that since Java uses Unicode characters, you can
simply define the variable pi as ? if you don’t think typing it is
harder than typing pi.

final float ? = (float) 22 / 7;

Note

You can also make a method final, thus prohibiting it from being
overridden in a subclass. This will be discussed in Chapter 7,
“Inheritance.”

Static Members

You have learned that to access a public field or method of an
object, you use a period after the object reference, such as:

// Create an instance of Book
Book book = new Book();

// access the review method
book.review();

This implies that you must create an object first before you can
access its members. However, in previous chapters, there were
examples that used System.out.print to print values to the
console. You may have noticed that you could call the out field
without first having to construct a System object. How come
you did not have to do something like this?

System ref = new System();
ref.out;

Rather, you use a period after the class name:

System.out

Java (and many OOP languages) supports the notion of static
members, which are class members that can be called without
first instantiating the class. The out field in java.lang.System
is static, which explains why you can write System.out.

Static members are not tied to class instances. Rather, they
can be called without having an instance. In fact, the method
main, which acts as the entry point to a class, is static because it
must be called before any object is created.

To create a static member, you use the keyword static in front
of a field or method declaration. If there is an access modifier,
the static keyword may come before or after the access modifier.
These two are correct:

public static int a;
static public int b;

However, the first form is more often used.

For example, Listing 4.8 shows the MathUtil class with a
static method:

Listing 4.8: The MathUtil class

package app04;
public class Mathutil {

public static int add(int a, int b) {
return a + b;

To use the add method, you can simply call it this way:

Mathutil.add(a, b)

The term instance methods/fields are used to refer to non-static
methods and fields.

From inside a static method, you cannot call instance methods
or instance fields because they only exist after you create an
object. From a static method, you can access other static
methods or static fields, however.

A common confusion that a beginner often encounters is when
they cannot compile their class because they are calling instance
members from the main method. Listing 4.9 shows such a class.

Listing 4.9: Calling non-static members
from a static method

package app04;
public class StaticDemo {
public int b = 8;

public static void main(String[]

args) {
System.out.println(b);

The line in bold causes a compile error because it attempts to
access non-static field b from the main static method. There are
two solutions to this.

1. Make b static
2. Create an instance of the class, then
access b by using the object reference.

Which solution is appropriate depends on the situation. It often
takes years of OOP experience to come up with a good decision
that you’re comfortable with.

Note

You can only declare a static variable in a class level. You cannot declare
local static variables even if the method is static.

How about static reference variables? You can declare static
reference variables. The variable will contain an address, but the
object referenced is stored in the heap. For instance

static Book book = new Book();

Static reference variables provide a good way of exposing the
same object that needs to be shared among other different

objects.

Note

In UML class diagrams, static members are underlined. For example,
Figure 4.9 shows the MathUtil class with the static method add.

MathUril

+ add (Integer a, Integer b) : Integer

Figure 4.9: Static members in UML
class diagrams

Static Final Variables

In the section “Final Variables” earlier in this chapter, you
learned that you could create a final variable by using the
keyword final. However, final variables at a class level or local
variables will always have the same value when the program is
run. If you have multiple objects of the same class with final

variables, the value of the final variables in those objects will
have the same values. It is more common (and also more
prudent) to make a final variable static too. This way, all objects
share the same value.

The naming convention for static final variables is to have
them in upper case and separate two words with an underscore.
For example

static final int NUMBER_OF_MONTHS = 12;
static final float PI = (float) 22 / 7;

The positions of static and final are interchangeable, but it is
more common to use “static final” than “final static.”

If you want to make a static final variable accessible from
outside the class, you can make it public too:

public static final int NUMBER_OF_MONTHS
= 12;

public static final float PI = (float) 22
/ 7;

To better organize your constants, sometimes you want to put all
your static final variables in a class. This class most often does

not have a method or other fields and is never instantiated.

For example, sometimes you want to represent a month as an
int, therefore January is 1, February is 2, and so on. Then, you
use the word January instead of number 1 because it’s more
descriptive. Listing 4.10 shows the Months class that contains

the names of months and its representation.

Listing 4.10: The Months class

package app04;
public class Months {

public
public
public
public
public
public
public
public
public

public

public
11;

public
12;

static
static
static
static
static
static
static
static
static

static
static

static

final
final
final
final
final
final
final
final
final

final
final

final

int
int
int
int
int
int
int
int
int

int
int

int

JANUARY = 1:
FEBRUARY = 2:
MARCH = 3;

APRIL = 4;

MAY = 5;
JUNE = 6;
JULY = 7
AUGUST
SEPTEMBER

14

8;

OCTOBER =
NOVEMBER =

10,

DECEMBER =

In your code, you can get the representation of January by
writing.

int thisMonth = Months.JANUARY;

Classes similar to Months are very common prior to Java 5.
However, Java now offers the new type enum that can eliminate
the need for public static final variables. enum is explain in
Chapter 12, “Enums.”

Static final reference variables are also possible. However,
note that only the variable is final, which means once it is
assigned an address to an instance, it cannot be assigned another
object of the same type. The fields in the referenced object itself
can be changed.

In the following line of code

public static final Book book = new
Book();

book always refer to this particular instance of Book.
Reassigning it to another Book object raises a compile error:

book = new Book(); // compile error

However, you can change the Book object’s field value.

book.title = "No Excuses'"; // assuming
the title field is public

Static import

There are a number of classes in the Java core libraries that
contain static final fields. One of them is the
java.util.Calendar class, that has the static final fields
representing days of the week (MONDAY, TUESDAY, etc). To
use a static final field in the Calendar class, you must first
import the Calendar class.

import java.util.Calendar;

Then, you can use it by using the notation className.staticField.

i1f (today == Calendar.SATURDAY)

However, you can also import static fields using the import
static keywords. For example, you can do

import static
java.util.Calendar.SATURDAY;

Then, to use the imported static field, you do not need the class
name:

if (today == SATURDAY)

Variable Scope

You have seen that you can declare variables in several different
places:

e In a class body as class fields. Variables declared here are
referred to as class-level variables.

e As parameters of a method or constructor.
e In a method’s body or a constructor’s body.

e Within a statement block, such as inside a while or for
block.

Now it’s time to learn variable scope.

Variable scope refers to the accessibility of a variable. The rule

is that variables defined in a block are only accessible from
within the block. The scope of the variable is the block in which it
is defined. For example, consider the following for statement.

for (int x = 0; x < 5; x++) {
System.out.println(x);

The variable x is declared within the for statement. As a result, x
is only available from within this for block. It is not accessible or
visible from anywhere else. When the JVM executes the for
statement, it creates x. When it is finished executing the for
block, it destroys x. After x is destroyed, x is said to be out of
scope.

Rule number 2 is a nested block can access variables declared
in the outer block. Consider this code.

for (int x = 0; x < 5; x++) {
for (int y = 0; y < 3; y++) {

System.out.println(x);

System.out.println(y);

The preceding code is valid because the inner for block can
access X, which is declared in the outer for block.

Following the rules, variables declared as method parameters
can be accessed from within the method body. Also, class-level
variables are accessible from anywhere in the class.

If a method declares a local variable that has the same name as
a class-level variable, the former will ‘shadow’ the latter. To
access the class-level variable from inside the method body, use
the this keyword.

Method Overloading

Method names are very important and should reflect what the
methods do. In many circumstances, you may want to use the
same name for multiple methods because they have similar
functionality. For instance, the method printString may take a
String argument and prints the string. However, the same class
may also provide a method that prints part of a String and
accepts two arguments, the String to be printed and the
character position to start printing from. You want to call the
latter method printString too because it does print a String,
but that would be the same as the first printString method.

Thankfully, it is okay in Java to have multiple methods having
the same name, as long as each method accept different sets of

argument types. In other words, in our example, it is legal to
have these two methods in the same class.

public String printString(String string)
public String printString(String string,
int offset)

This feature is called method overloading.

The return value of the method is not taken into consideration.
As such, these two methods must not exist in the same class:

public int countRows(int number);
public String countRows(int number);

This is because a method can be called without assigning its
return value to a variable. In such situations, having the above
countRows methods would confuse the compiler as it would
not know which method is being called when you write

System.out.println(countRows(3));.

A trickier situation is depicted in the following methods whose
signatures are very similar.

public int printNumber(int 1) {
return 1*2;

public long printNumber(long 1) {
return 1*3;

It is legal to have these two methods in the same class. However,
you might wonder, which method is being called if you write
printNumber(3)?

»

The key is to recall from Chapter 2, “Language Fundamentals
that a numeric literal will be translated into an int unless it is
suffixed L or l.. Therefore, printNumber(3) will invoke this
method:

public int printNumber(int 1)

To call the second, pass a long:

printNumber (3L);

System.out.print() (and System.out.println()) is an
excellent example of method overloading. You can pass any
primitive or object to the method because there are nine
overloads of the method. There is an overload that accepts an
int, one that accepts a long, one that accepts a String, and so
on.

Note

Static methods can also be overloaded.

Static Factory Methods

You've learned to create an object using new. However, there
are classes in Java class libraries that cannot be instantiated this
way. For example, you cannot create an instance of
java.util.LocalDate with new because its constructor is
private. Instead, you would use one of its static methods, such as
Nnow:

LocalDate today = LocalDate.now();

Such methods are called static factory methods.

You can design your class to use static factory methods. Listing
4.11 shows a class named Discount with a private constructor.

It is a simple class that contains an int that represents a discount
rate. The value is either 10 (for small customers) or 12 (for bigger
customers). It has a getValue method, which returns the value,
and two static factory methods,
createSmallCustomerDiscount and
createBigCustomerDiscount. Note that the static factory
methods can invoke the private constructor to create an object
because they are in the same class. Recall that you can access a
class private member from within the class. With this design, you
restrict a Discount object to contain either 10 or 12. Other
values are not possible.

Listing 4.11: The Discount classs

package app04;
import java.time.LocalDate;

public class Discount {
private int value;
private Discount(int value) {
this.value = value;

public int getValue() {
return this.value;

public static Discount
createSmallCustomerDiscount() {

return new Discount(10);

public static Discount
createBigCustomerDiscount() {
return new Discount(12);

You can construct a Discount object by calling one of its static
factory methods, for example

Discount discount =
Discount.createBigCustomerDiscount();
System.out.println(discount.getValue());

There are also classes that allow you to create an instance
through static factory methods and a constructor. In this case,
the constructor must be public. Examples of such classes are
java.lang.Integer and java.lang.Boolean.

With static factory methods, you can control what objects can
be created out of your class, like you have seen in Discount.
Also, you might cache an instance and return the same instance
every time an instance is needed. Also, unlike constructors, you
can name static factory methods to make clear what kind of

object will be created.

By Value or By Reference?

You can pass primitive variables or reference variables to a
method. Primitive variables are passed by value and reference
variables are passed by reference. What this means is when you
pass a primitive variable, the JVM will copy the value of the
passed-in variable to a new local variable. If you change the value
of the local variable, the change will not affect the passed in
primitive variable.

If you pass a reference variable, the local variable will refer to
the same object as the passed in reference variable. If you change
the object referenced within your method, the change will also be
reflected in the calling code. Listing 4.12 shows the
ReferencePassingTest class that demonstrates this.

Listing 4.12: The ReferencePassingTest
class

package app04;
class Point {
public int x;
public int vy;
b

public class ReferencePassingTest {

public static void increment(int x) {
X++

4

}

public static void reset(Point point)

point.x = 0;
point.y 0,

b
public static void main(String[]
args) {
int a = 9;
increment(a);
System.out.println(a); // prints

9
Point p = new Point();
p.Xx = 400;
p.y = 600;
reset(p);
System.out.println(p.x); //
prints 0
b
b

There are two methods in ReferencePassingTest, increment
and reset. The increment method takes an int and increments
it. The reset method accepts a Point object and resets its x and
y fields.

Now pay attention to the main method. We passed a (whose
value is 9) to the increment method. After the method
invocation, we printed the value of a and you get 9, which means
that the value of a did not change.

Afterwards, you create a Point object and assign the reference
to p. You then initialize its fields and pass it to the reset
method. The changes in the reset method affects the Point
object because objects are passed by reference. As a result, when
you print the value of p.x, you get 0.

Loading, Linking, and
Initialization

Now that you've learned how to create classes and objects, let’s
take a look at what happens when the JVM executes a class.

You run a Java program by using the java tool. For example,
you use the following command to run the DemoTest class.

java DemoTest

After the JVM is loaded into memory, it starts its job by invoking
the DemoTest class’s main method. There are three things the
JVM will do next in the specified order: loading, linking, and

initialization.

Loading

The JVM loads the binary representation of the Java class (in
this case, the DemoTest class) to memory and may cache it in
memory, just in case the class is used again in the future. If the
specified class is not found, an error will be thrown and the
process stops here.

Linking

There are three things that need to be done in this phase:
verification, preparation, and resolution (optional). Verification
means the JVM checks that the binary representation complies
with the semantic requirements of the Java programming
language and the JVM. If, for example, you tamper with a class
file created as a result of compilation, the class file may no longer
work.

Preparation prepares the specified class for execution. This
involves allocating memory space for static variables and other
data structured for that class.

Resolution checks if the specified class references other
classes/interfaces and if the other classes/interfaces can also be
found and loaded. Checks will be done recursively to the
referenced classes/interfaces.

For example, if the specified class contains the following code:

Mathutil.add(4, 3)

the JVM will load, link, and initialize the MathUtil class before
calling the static add method.

Or, if the following code is found in the DemoTest class:

Book book = new Book();

the JVM will load, link, and initialize the Book class before an
instance of Book is created.

Note that a JVM implementation may choose to perform
resolution at a later stage, i.e. when the executing code actually
requires the use of the referenced class/interface.

Initialization

In this last step, the JVM initializes static variables with assigned
or default values and executes static initializers (code in static
blocks). Initialization occurs just before the main method is
executed. However, before the specified class can be initialized,
its parent class will have to be initialized. If the parent class has
not been loaded and linked, the JVM will first load and link the
parent class. Again, when the parent class is about to be
initialized, the parent’s parent will be treated the same. This

process occurs recursively until the initialized class is the
topmost class in the hierarchy.

For example, if a class contains the following declaration

public static int z = 5;

the variable z will be assigned the value 5. If no initialization
code is found, a static variable is given a default value. Table 4.2
lists default values for Java primitives and reference variables.

Type Default Value

boolean false

byte 0

short 0

int 0

long oL

char \uoooo
float o.of
double o.od

object reference null

Table 4.2: Default values for primitives
and references

In addition, code in static blocks will be executed. For example,
Listing 4.13 shows the StaticCodeTest class with static code
that gets executed when the class is loaded. Like static members,
you can only access static members from static code.

Listing 4.13: StaticCodeTest

package app04;
public class StaticInitializationTest {
public static int a = 5;
public static int b = a * 2;
static {
System.out.println("static");
System.out.println(b);

}
public static void main(String[]
args) {
System.out.println("main
method") ;

}

If you run this class, you will see the following on your console:

static
10
main method

Object Creation Initialization

Initialization happens when a class is loaded, as described in the
section “Linking, Loading, and Initialization” earlier in this
chapter. However, you can also write code that performs
initialization every time an instance of a class is created.

When the JVM encounters code that instantiates a class, the
JVM does the following.

1. Allocates memory space for a new object,
with room for the instance variables
declared in the class plus room for instance
variables declared in its parent classes.

2. Processes the invoked constructor. If the

constructor has parameters, the JVM
creates variables for these parameter and
assigns them values passed to the
constructor.

3. If the invoked constructor begins with a
call to another constructor (using the this
keyword), the JVM processes the called
constructor.

4. Performs instance initialization and
instance variable initialization for this
class. Instance variables that are not
assigned a value will be assigned default
values (See Table 4.2). Instance
initialization applies to code in braces:

{
// code

}

5. Executes the rest of the body of the
invoked constructor.

6. Returns a reference variable that refers to
the new object.

Note that instance initialization is different from static
initialization. The latter occurs when a class is loaded and has
nothing to do with instantiation. Instance initialization, by
contrast, is performed when an object is created. In addition,
unlike static initializers, instance initialization may access
instance variables.

For example, Listing 4.14 presents a class named InitTest1
that has the initialization section. There is also some static
initialization code to give you the idea of what is being run.

Listing 4.14: The InitTest1 class

package app04;

public class InitTestl {
int x = 3;

int vy;
// i1nstance initialization code
{

y = x* 2

System.out.println(y);

// static initialization code
static {

System.out.println("Static
initialization");
b
public static void main(String]]
args) {
InitTestl test = new InitTestl();
InitTestl moreTest = new
InitTest1();

}

When run, the InitTest class prints the following on the
console:

Static initialization
6
6

The static initialization is performed first, before any
instantiation takes place. This is where the JVM prints the
“Static initialization” message. Afterward, the InitTest1 class is
instantiated twice, explaining why you see “6” twice.

The problem with having instance initialization code is this. As
your class grows bigger it becomes harder to notice that there
exists initialization code.

Another way to write initialization code is in the constructor.
In fact, initialization code in a constructor is more noticeable and
hence preferable. Listing 4.15 shows the InitTest2 class that
puts initialization code in the constructor.

Listing 4.15: The InitTest2 class

package app04;
public class InitTest2 {
int x = 3;
int vy;
// 1instance initialization code
public InitTest2() {
y = x * 2
System.out.println(y);
3
// static initialization code
static {
System.out.println("Static
initialization");
}
public static void main(String[]
args) {
InitTest2 test = new InitTest2();
InitTest2 moreTest = new
InitTest2();

}

The problem with this is when you have more than one
constructor and each of them must call the same code. The
solution is to wrap the initialization code in a method and let the
constructors call them. Listing 4.16 shows this

Listing 4.16: The InitTest3 class

package app04;

public class InitTest3 {
int x = 3;
int vy;
// 1instance 1nitialization code
public InitTest3() {
init();
3
public InitTest3(int x) {
this.x = Xx;
init();
3
private void init() {
y = x * 2;
System.out.println(y);
3
// static initialization code
static {
System.out.println("Static
initialization");

}

public static void main(String[]
args) {
InitTest3 test = new InitTest3();
InitTest3 moreTest = new
InitTest3();

}

Note that the InitTest3 class is preferable because the calls to
the 1nit method from the constructors make the initialization
code more obvious than if it is in an initialization block.

The Garbage Collector

In several examples so far, I have shown you how to create
objects using the new keyword, but you have never seen code
that explicitly destroys unused objects to release memory space.
If you are a C++ programmer you may have wondered if I had
shown flawed code, because in C++ you must destroy objects
after use.

Java comes with a garbage collector, which destroys unused
objects and frees memory. Unused objects are defined as objects
that are no longer referenced or objects whose references are
already out of scope.

With this feature, Java becomes much easier than C++

because Java programmers do not need to worry about
reclaiming memory space. This, however, does not entail that
you may create objects as many as you want because memory is
(still) limited and it takes some time for the garbage collector to
start. That’s right, you can still run out of memory.

Summary

OOP models applications on real-world objects. Since Java is an
OOP language, objects play a central role in Java programming.
Objects are created based on a template called a class. In this
chapter you've learned how to write a class and class members.
There are many types of class members, including three that
were discussed in this chapter: fields, methods, and
constructors. There are other types of Java members such as
enum and inner classes, which will be covered in other chapters.

In this chapter you have also learned two powerful OOP
features, abstraction and encapsulation. Abstraction in OOP is
the act of using programming objects to represent real-world
objects. Encapsulation is a mechanism that protects parts of an
object that need to be secure and exposes only parts that are safe
to be exposed. Another feature discussed in this chapter is
method overloading. Method overloading allows a class to have
methods with the same name as long as their signatures are
sufficiently different.

Java also comes with a garbage collector that eliminates to
manually destroy unused objects. Objects are garbage collected
when they are out of scope or no longer referenced.

Quiz

1. Name at least three element types that a
class can contain.

2. What are the differences between a
method and a constructor?

3. Does a class in a class diagram display its
constructors?

4. What does null mean?

5. What do you use the this keyword for?

6. When you use the == operator to
compare two object references, do you
actually compare the contents of the
objects? Why?

7. What is variable scope?

8. What does “out of scope” mean?

9. How does the garbage collector decide

which objects to destroy?

10. What is method overloading?

11. Create a class whose fully-qualified name
is com.example.Tablet to model an
Android tablet. The class must have three
private fields, weight (int), screenSize
(float) and wifiOnly (boolean). Access to
the fields must be through pairs of public
get and set methods, i.e.
getWeight/setWeight,
getScreenSize/setScreenSize and
getWifiOnly/setWifiOnly. The class
must also have one constructor, a no-
argument constructor.

12. Create a TabletTest class in the package
com.example.test and instantiate the
Tablet class. Print the value of the fields
(by calling its get methods) right after
instantiation. Then, set the field values and
print them again.

Chapter 5

Core Classes

Before discussing other features of object-oriented programming
(OOP), let’s examine several important classes that are
commonly used in Java. These classes are included in the Java
core libraries that come with the JDK. Mastering them will help
you understand the examples that accompany the next OOP
lessons.

The most prominent class of all is definitely
java.lang.Object. However, it is hard to talk about this class
without first covering inheritance, which I will do in Chapter 7,
“Inheritance.” Therefore, java.lang.Object is only discussed
briefly in this chapter. Right now I will concentrate on classes
that you can use in your programs. I will start with
java.lang.String and other types of strings:
java.lang.StringBuffer and java.lang.StringBuilder. Then,
I will discuss the java.lang.System class. The
java.util.Scanner class is also included here because it
provides a convenient way to take user input.

Note

When describing a method in a Java class, presenting the method
signature always helps. A method often takes as parameters objects
whose classes belong to different packages than the method’s class. Or, it
may return a type from a different package than its class. For clarity, fully
qualified names will be used for classes from different packages. For
example, here is the signature of the toString method of
java.lang.Object:

public String toString()

A fully qualified name for the return type is not necessary because the
return type String is part of the same package as java.lang.Object. On
the other hand, the signature of the toString method in
Jjava.util.Scanner uses a fully qualified name because the Scanner
class is part of a different package (java.util).

public java.lang.String toString()

java.lang.Object

The java.lang.Object class represents a Java object. In fact, all
classes are direct or indirect descendants of this class. Since we
have not learned inheritance (which is only given in Chapter 7,
“Inheritance”), the word descendant probably makes no sense to
you. Therefore, we will briefly discuss the method in this class
and revisit this class in Chapter 7.

Table 5.1 shows the methods in the Object class.

Method

Description

clone

Creates and returns a copy of
this object. A class
implements this method to
support object cloning.

equals

Compares this object with the
passed-in object. A class must
implement this method to
provide a means to compare
the contents of its instances.

Called by the garbage
collector on an object that is
about to be garbage-collected.

finalize

In theory a subclass can
override this method to
dispose of system resources
or to perform other cleanup.
However, performing the
aforesaid operations should
be done somewhere else and
you should not touch this
method.

getClass

Returns a java.lang.Class
object of this object. See the
section “java.lang.Class” for
more information on the
Class class.

hashCode

Returns a hash code value for
this object.

Returns the description of

toString

this object.

wait, notify, notifyAll

Used in multithreaded
programming in pre-5 Java.
Should not be used directly in
Java 5 or later. Instead, use
the Java concurrency utilities.

Table 5.1: java.lang.Object methods

java.lang.String

I have not seen a serious Java program that does not use the

java.lang.String class. It is one of the most often used classes

and definitely one of the most important.

A String object represents a string, i.e. a piece of text. You can

also think of a String as a sequence of Unicode characters. A

String object can consists of any number of characters. A

String that has zero character is called an empty String.

String objects are constant. Once they are created, their values

cannot be changed. Because of this, String instances are said to
be immutable. And, because they are immutable, they can be
safely shared.

You could construct a String object using the new keyword,
but this is not a common way to create a String. Most often, you
assign a string literal to a String reference variable. Here is an
example:

String s = "Java is cool";

This produces a String object containing “Java is cool” and
assigns a reference to it to s. It is the same as the following.

String message = new String("Java 1s
cool");

However, assigning a string literal to a reference variable works
differently from using the new keyword. If you use the new
keyword, the JVM will always create a new instance of String.
With a string literal, you get an identical String object, but the
object is not always new. It may come from a pool if the string
“Java is cool” has been created before.

Thus, using a string literal is better because the JVM can save
some CPU cycles spent on constructing a new instance. Because

of this, you seldom use the new keyword when creating a String
object. The String class’s constructors can be used if you have
specific needs, such as converting a character array into a
String.

Comparing Two Strings

String comparison is one of the most useful operations in Java
programming. Consider the following code.

String s1 = "Java";
String s2 = "Java'";
if (s1 == s2) {

Here, (s1 == s2) evaluates to true because s1 and s2 reference
the same instance. On the other hand, in the following code (s1

== s2) evaluates to false because s1 and s2 reference different
instances:

String s1 = new String("Java");
String s2 = new String('"Java");
if (s1 == s2) {

This shows the difference between creating String objects by
writing a string literal and by using the new keyword.

Comparing two String objects using the == operator is of
little use because you are comparing the addresses referenced by
two variables. Most of the time, when comparing two String
objects, you want to know whether the values of the two objects
are the same. In this case, you need to use the String class’s
equals method.

String s1 = "Java";
if (sl.equals('"Java")) // returns true.

And, sometimes you see this style.

if ("Java'".equals(sl))

In (s1.equals("Java')), the equals method on s1 is called. If
s1 is null, the expression will generate a runtime error. To be
safe, you have to make sure that s1 is not null, by first checking if
the reference variable is null.

if (s1 !'= null && sl.equals("Java"))

If s1 is null, the if statement will return false without evaluating
the second expression because the AND operator && will not try
to evaluate the right hand operand if the left hand operand
evaluates to false.

In ("Java'".equals(s1)), the JVM creates or takes from the
pool a String object containing “Java” and calls its equals
method. No nullity checking is required here because “Java” is
obviously not null. If s1 is null, the expression simply returns
false. Therefore, these two lines of code have the same effect.

if (s1 !'= null && sl.equals("Java"))
if ("Java'".equals(sl))

String Literals

Because you always work with String objects, it is important to
understand the rules for working with string literals.

First of all, a string literal starts and ends with a double quote
("). Second, it is a compile error to change line before the closing
double quote. For example, this code snippet will raise a compile
error.

String s2 = "This is an important
point to note";

You can compose long string literals by using the plus sign to
concatenate two string literals.

String s1 = "Java strings " + "are
important";
String s2 = "This 1is an important " +

"point to note";

You can concatenate a String with a primitive or another object.
For instance, this line of code concatenates a String and an

integer.
String s3 = "String number " + 3;

If an object is concatenated with a String, the toString method
of the former will be called and the result used in the
concatenation.

Escaping Certain Characters

You sometimes need to use special characters in your strings
such as carriage return (CR) and linefeed (LF). In other
occasions, you may want to have a double quote character in
your string. In the case of CR and LF, it is not possible to input
these characters because pressing Enter changes lines. A way to
include special characters is to escape them, i.e. use the

character replacement for them.

Here are some escape sequences:

\u /* a Unicode character

\b /* \u0008: backspace
BS */

\t /* \u@009: horizontal
tab HT */

\n /* \uO00a: linefeed LF
*/

\f /* \u@00c: form feed
FF */

\r /* \u000d: carriage
return CR */

\" /* \u0022: double
quote " */

\'! /* \u0027: single
quote ' */

\\ /* \u@05c: backslash \
*/

For example, the following code includes the Unicode character
0122 at the end of the string.

String s = "Please type this character

\u0122";

To obtain a String object whose value is John "The Great"
Monroe, you escape the double quotes:

String s = "John \"The Great\" Monroe";

Switching on A String

Starting from Java 7 you can use the switch statement with a
String. Recall the syntax of the switch statement given in
Chapter 3, “Statements.”

switch(expression) {

case value_1
statement(s);
break;

case value_2
Statement(s);
break;

case value_n
statement(s);
break;

default:
statement(s);

Here is an example of using the switch statement on a String.

String input = ...;

switch (input) {

case '"one"
System.out.println("You entered 1.");
break;

case "two"
System.out.println("You entered 2.");
break;

default:
System.out.println("Invalid value.");

The String Class’s Constructors

The String class provides a number of constructors. These
constructors allow you to create an empty string, a copy of
another string, and a String from an array of chars or bytes. Use
the constructors with caution as they always create a new
instance of String.

Note

Arrays are discussed in Chapter 6, “Arrays.”

public String()

Creates an empty string.

public String(String original)

Creates a copy of the original string.

public String(char[] value)

Creates a String object from an array of
chars.

public String(byte[] bytes)
Creates a String object by decoding the

bytes in the array using the computer’s
default encoding.

public String(byte[] bytes, String
encoding)

Creates a String object by decoding the
bytes in the array using the specified
encoding.

The String Class’s Methods

The String class provides methods for manipulating the value of
a String. However, since String objects are immutable, the
result of the manipulation is always a new String object.

Here are some of the more useful methods.

public char charAt(int index)

Returns the char at the specified index. For
example, the following code returns 'J".

"Java 1s cool".charAt(0)
public String concat(String s)

Concatenates the specified string to the end
of this String and return the result. For
example, "Java ".concat("is cool")
returns “Java is cool”.

public boolean equals(String
anotherString)

Compares the value of this String and
anotherString and returns true if the
values match.

public boolean endsWith(String suffix)

Tests if this String ends with the specified
suffix.

public int indexOf(String substring)

Returns the index of the first occurrence of
the specified substring. If no match is

found, returns -1. For instance, the
following code returns 8.

"Java 1s cool".indexOf("cool")
public int indexOf(String substring, int
fromIndex)

Returns the index of the first occurrence of
the specified substring starting from the
specified index. If no match is found,
returns -1.

public int lastIndexOf(String substring)

Returns the index of the last occurrence of
the specified substring. If no match is
found, returns -1.

public int lastIndexOf(String substring,
int fromIndex)

Returns the index of the last occurrence of

the specified substring starting from the
specified index. If no match is found,
returns -1. For example, the following
expression returns 3.

"Java 1s cool".lastIndexOf("a")
public String substring(int beginIndex)

Returns a substring of the current string
starting from the specified index. For
instance, "Java is cool".substring(8)
returns “cool”.

public String substring(int beginIndex,
int endIndex)

Returns a substring of the current string
starting from beginIndex to endIndex. For
example, the following code returns “is”:

"Java 1s cool".substring(5, 7)
public String replace(char oldChar, char

newChar)

Replaces every occurrence of oldChar with
newChar in the current string and returns
the new String. "dingdong".replace('d’,
'k') returns “kingkong”.

public int length()

Returns the number of characters in this
String. For example, "Java is
cool".length() returns 12. Prior to Java 6,
this method was often used to test if a
String was empty. However, the isEmpty
method is preferred because it's more
descriptive.

public boolean isEmpty()

Returns true is the string is empty (contains
no characters).

public String[] split(String regEx)

Splits this String around matches of the
specified regular expression. For example,
"Java is cool".split(" ") returns an array
of three Strings. The first array element is
“Java”, the second “is”, and the third “cool”.

public boolean startswWith(String prefix)

Tests if the current string starts with the
specified prefix.

public char[] toCharArray()

Converts this string to an array of chars.

public String tolLowerCase()

Converts all the characters in the current

string to lower case. For instance, "Java is
cool".toLowerCase() returns “java is
cool”.

public String toUpperCase()

Converts all the characters in the current
string to upper case. For instance, "Java is
cool".toUpperCase() returns “JAVA IS
COOL”.

public String trim()

Trims the trailing and leading white spaces
and returns a new string. For example, "
Java ".trim() returns “Java”.

In addition, there are static methods such as valueOf and
format. The valueOf method converts a primitive, a char array,
or an instance of Object into a string representation and there
are nine overloads of this method.

public static String valueOf(boolean
value)

public static String valueOf(char value)
public static String valueOf(char[]
value)

public static String valueOf(char[]
value, int offset, int length)

public static String valueOf(double
value)

public static String valueOf(float value)
public static String valueOf(int value)
public static String valueOf(long value)
public static String valueOf(Object
value)

For example, the following code returns the string “23”

String.value0Of(23);

The format method allows you to pass an arbitrary number of
parameters. Here is its signature.

public static String format(String
format, Object... args)

This method returns a String formatted using the specified
format string and arguments. The format pattern must follow the
rules specified in the java.util. Formatter class and you can
read them in the JavaDoc for the Formatter class. A brief
description of these rules are as follows.

To specify an argument, use the notation %s, which denotes
the next argument in the array. For example, the following is a
method call to the printf method.

String firstName = "John";
String lastName = "Adams";
System.out.format("First name: %s. Last
name: %s",

firstName, lastName);

This prints the following string to the console:

First name: John. Last name: Adams

Without varargs, you have to do it in a more cumbersome way.

String firstName = "John";
String lastName = "Adams";
System.out.println("First name: " +

firstName +

Last name: " + lastName);

Note

The printf method in java.io.PrintStream is an alias for format.

The formatting example described here is only the tip of the
iceberg. The formatting feature is much more powerful than that
and you are encouraged to explore it by reading the Javadoc for
the Formatter class.

java.lang.StringBuffer and
java.lang.StringBuilder

String objects are immutable and are not suitable to use if you
need to append or insert characters into them because string
operations on String always create a new String object. For
append and insert, you’d be better off using the
java.lang.StringBuffer or java.lang.StringBuilder class.
Once you'’re finished manipulating the string, you can convert a
StringBuffer or StringBuilder object to a String.

Until JDK 1.4, the StringBuffer class was solely used for
mutable strings. Methods in StringBuffer are synchronized,
making StringBuffer suitable for use in multithreaded

environments. However, the price for synchronization is
performance. JDK 5 added the StringBuilder class, which is
the unsynchronized version of StringBuffer. StringBuilder
should be chosen over StringBuffer if you do not need
synchronization.

Note

Synchronization and thread safety are discussed in Chapter 22, “Java
Threads.”

The rest of this section will use StringBuilder. However, the
discussion is also applicable to StringBuffer as both
StringBuilder and StringBuffer shares similar constructors
and methods.

StringBuilder Class’s
Constructors

The StringBuilder class has four constructors. You can pass a
java.lang.CharSequence, a String, or an int.

public StringBuilder ()

public StringBuilder (CharSequence seq)
public StringBuilder(int capacity)
public StringBuilder(String string)

If you create a StringBuilder object without specifying the
capacity, the object will have a capacity of 16 characters. If its
content exceeds 16 characters, it will grow automatically. If you
know that your string will be longer than 16 characters, it is a
good idea to allocate enough capacity as it takes time to increase
a StringBuilder’s capacity.

StringBuilder Class’s Methods

The StringBuilder class has several methods. The main ones
are capacity, length, append, and insert.

public int capacity()

Returns the capacity of the StringBuilder
object.

public int length()

Returns the length of the string the
StringBuilder object stores. The value is
less than or equal to the capacity of the
StringBuilder.

public StringBuilder append(String
string)

Appends the specified String to the end of
the contained string. In addition, append
has various overloads that allow you to pass
a primitive, a char array, and an
java.lang.Object instance.

For example, examine the following code.

StringBuilder sb = new
StringBuilder(100);

sb.append('"Matrix ");

sb.append(2);

After the last line, the content of sb is
“Matrix 2”.

An important point to note is that the
append methods return the
StringBuilder object itself, the same

object on which append is invoked. As a
result, you can chain calls to append.

sb.append("Matrix ").append(2);
public StringBuilder insert(int offset,
String string)

Inserts the specified string at the position
indicated by offset. In addition, insert has
various overloads that allow you to pass
primitives and a java.lang.Object
instance. For example,

StringBuilder sb2 = new
StringBuilder(100);

sb2.append("night");

sb2.insert(0, 'k'); // value =
"knight"

Like append, insert also returns the
current StringBuilder object, so chaining
insert is also permitted.

public String toString()

Returns a String object representing the
value of the StringBuilder.

Primitive Wrappers

For the sake of performance, not everything in Java is an object.
There are also primitives, such as int, long, float, double, etc.
When working with both primitives and objects, there are often
circumstances that necessitate primitive to object conversions
and vice versa. For example, a java.util.Collection object
(discussed in Chapter 14, “The Collections Framework™) can be
used to store objects, not primitives. If you want to store
primitive values in a Collection, they must be converted to
objects first.

The java.lang package has several classes that function as
primitive wrappers. They are Boolean, Character, Byte,
Double, Float, Integer, Long, and Short. Byte, Double,
Float, Integer, Long, and Short share similar methods,
therefore only Integer will be discussed here. You should
consult the Javadoc for information on the others.

The following sections discuss the wrapper classes in detail.

java.lang.Integer

The java.lang.Integer class wraps an int. The Integer class
has two static final fields of type int: MIN__VALUE and
MAX_VALUE. MIN_VALUE contains the minimum possible
value for an int (-231) and MAX_VALUE the maximum
possible value for an int (231 - 1).

The Integer class has two constructors:

public Integer(int value)
public Integer(String value)

For example, this code constructs two Integer objects.

Integer i1l = new Integer(12);
Integer 12 = new Integer("123");

Integer has the no-arg byteValue, doubleValue,
floatValue, intValue, longValue, and shortValue methods
that convert the wrapped value to a byte, double, float, int,
long, and short, respectively. In addition, the toString method
converts the value to a String.

There are also static methods that you can use to parse a
String to an int (parselnt) and convert an int to a String

(toString). The signatures of the methods are as follows.

public static int parselInt(String string)
public static String toString(int 1)

java.lang.Boolean

The java.lang.Boolean class wraps a boolean. Its static final
fields FALSE and TRUE represents a Boolean object that
wraps the primitive value false and a Boolean object wrapping
the primitive value true, respectively.

You can construct a Boolean object from a boolean or a
String, using one of these constructors.

public Boolean(boolean value)
public Boolean(String value)

For example:

Boolean bl = new Boolean(false);
Boolean b2 new Boolean("true");

To convert a Boolean to a boolean, use its booleanValue

method:

public boolean booleanValue()

In addition, the static method valueOf parses a String to a
Boolean object.

public static Boolean valueOf(String
string)

And, the static method toString returns the string
representation of a boolean.

public static String toString(boolean
boolean)

java.lang.Character

The Character class wraps a char. There is only one
constructor in this class:

public Character(char value)

To convert a Character object to a char, use its charValue

method.

public char charValue()

There are also a number of static methods that can be used to
manipulate characters.

public static boolean isDigit(char ch)

Determines if the specified argument is one
Ofthese: ‘1’, 62’, 43’, 64’, ‘5’, ‘6,’ C7’, 68,, 69’, CO’.

public static char tolLowerCase(char ch)

Converts the specified char argument to its
lower case.

public static char toUpperCase(char ch)

Converts the specified char argument to its
upper case.

java.lang.Class

One of the members of the java.lang package is a class named
Class. Every time the JVM creates an object, it also creates a
java.lang.Class object that describes the type of the object. All
instances of the same class share the same Class object. You can
obtain the Class object by calling the getClass method of the
object. This method is inherited from java.lang.Object.

For example, the following code creates a String object,
invokes the getClass method on the String instance, and then
invokes the getName method on the Class object.

String country = "Fiji";

Class myClass = country.getClass();
System.out.println(myClass.getName()),; //
prints java.lang.String

As it turns out, the getName method returns the fully qualified
name of the class represented by a Class object.

The Class class also brings the possibility of creating an object
without using the new keyword. You achieve this by using the
two methods of the Class class, forName and newInstance.

public static Class forName(String
className)
public Object newInstance()

The static forName method creates a Class object of the given
class name. The newInstance method creates a new instance of
a class.

The ClassDemo in Listing 5.1 uses forName to create a
Class object of the appo5.Test class and create an instance of
the Test class. Since newInstance returns a java.lang.Object
object, you need to downcast it to its original type.

Listing 5.1: The ClassDemo class

package app05;
public class ClassDemo {
public static void main(String[]
args) {
String country = "Fiji",
Class myClass =
country.getClass();

System.out.println(myClass.getName());
Class klass = null;

try {
klass =

Class.forName("app05.Test");
} catch (ClassNotFoundException

e) {

if (klass !'= null) {
try {
Test test = (Test)
klass.newInstance();
test.print();
} catch
(IllegalAccessException e) {
} catch
(InstantiationException e) {

}

Do not worry about the try ... catch blocks as they will be
explained in Chapter 8, “Error Handling.”

You might want to ask this question, though. Why would you
want to create an instance of a class using forName and
newlInstance, when using the new keyword is shorter and
easier? The answer is because there are circumstances whereby
the name of the class is not known when you are writing the

program.

java.lang.System

The System class is a final class that exposes useful static fields
and static methods that can help you with common tasks.

The three fields of the System class are out, in, and err:

public static final java.io.PrintStream
out;

public static final java.io.InputStream
in;

public static final java.io.PrintStream
err;

The out field represents the standard output stream which by
default is the same console used to run the running Java
application. You will learn more about PrintStream in Chapter
16, “Input Output,” but for now know that you can use the out
field to write messages to the console. You will often write the
following line of code:

System.out.print(message);

where message is a String object. However, PrintStream has
many print method overloads that accept different types, so you
can pass any primitive type to the print method:

System.out.print(12);
System.out.print('g');

In addition, there are println methods that are equivalent to
print, except that println adds a line terminator at the end of
the argument.

Note also that because out is static, you can access it by using
this notation: System.out, which returns a
java.io.PrintStream object. You can then access the many
methods on the PrintStream object as you would methods of
other objects: System.out.print, System.out.format, etc.

The err field also represents a PrintStream object, and by
default the output is channeled to the console from where the
current Java program was invoked. However, its purpose is to
display error messages that should get immediate attention of
the user.

For example, here is how you can use err:

System.err.println("You have a runtime
error.");

The in field represents the standard input stream. You can use it
to accept keyboard input. For example, the getUserInput
method in Listing 5.2 accepts the user input and returns it as a
String;:

Listing 5.2: The InputDemo class

package app05;
import java.io.IOException;

public class InputDemo {
public String getUserInput() {
StringBuilder sb = new
StringBuilder();
try {
char ¢ = (char)
System.in.read();
while (c != '\r' && c !=
'"\n') {
sb.append(c);
c = (char)
System.in.read();

b
} catch (IOException e) {

}

return sb.toString();

public static void main(String[]
args) {
InputDemo demo = new InputDemo();
String input =
demo.getUserInput();
System.out.println(input);

However, an easier way to receive keyboard input is to use the
java.util.Scanner class, discussed in the section
“java.util.Scanner” later in this chapter.

The System class has many useful methods, all of which are
static. Some of the more important ones are listed here.

public static void arraycopy(Object
source, 1int sourcePos,

Object destination, int destPos,
int length)

This method copies the content of an array
(source) to another array (destination),
beginning at the specified position, to the

specified position of the destination array.
For example, the following code uses
arraycopy to copy the contents of array1
to array2.

int[] arrayl = {1, 2, 3, 4};

int[] array2 new
int[arrayl.length];

System.arraycopy(arrayl, 0, array2,
O, arrayl.length);
public static void exit(int status)

Terminates the running program and the
current JVM. You normally pass 0 to
indicate that a normal exit and a nonzero to
indicate there has been an error in the
program prior to calling this method.

public static long currentTimeMillis()

Returns the computer time in milliseconds.

The value represents the number of
milliseconds that has elapsed since January
1, 1970 UTC.

Prior to Java 8, currentTimeMillis was
used to time an operation. In Java 8 and
later, you can use the java.time.Instant
class, instead. This class is discussed in
Chapter 13, “Working with Dates and
Times.”

public static long nanoTime()

This method is similar to
currentTimeMillis, but with nanosecond
precision.

public static String getProperty(String
key)

This method returns the value of the

specified property. It returns null if the
specified property does not exist. There are
system properties and there are user-
defined properties. When a Java program
runs, the JVM provides values that may be
used by the program as properties.

Each property comes as a key/value pair.
For example, the os.name system property
provides the name of the operating system
running the JVM. Also, the directory name
from which the application was invoked is
provided by the JVM as a property named
user.dir. To get the value of the user.dir
property, you use:

System.getProperty("user.dir");

Table 5.2 lists the system properties.

System property

Description

java.version

Java Runtime Environment
version

java.vendor

Java Runtime Environment
vendor

java.vendor.url

Java vendor URL

java.home

Java installation directory

java.vm.specification.version

Java Virtual Machine
specification version

java.vm.specification.vendor

Java Virtual Machine
specification vendor

java.vm.specification.name

Java Virtual Machine
specification name

java.vm.version

Java Virtual Machine
implementation version

java.vm.vendor

Java Virtual Machine
implementation vendor

java.vm.name

Java Virtual Machine

implementation name

java.specification.version

Java Runtime Environment
specification version

java.specification.vendor

Java Runtime Environment
specification vendor

java.specification.name

Java Runtime Environment
specification name

java.class.version

Java class format version
number

java.class.path

Java class path

java.library.path

List of paths to search when
loading libraries

java.io.tmpdir

Default temp file path

java.compiler

Name of JIT compiler to use

java.ext.dirs

Path of extension directory or
directories

os.name

Operating system name

os.arch

Operating system
architecture

0s.version

Operating system version

file.separator

File separator ("/" on UNIX)

path.separator

Path separator (":" on UNIX)

line.separator

Line separator ("\n" on
UNIX)

user.name User's account name

user.home User's home directory

: User's current working
user.dir

directory

Table 5.2: Java system properties

public static void setProperty(String
property, String newValue)

You use setProperty to create a user-
defined property or change the value of the
current property. For instance, you can use
this code to create a property named

password:

System.setProperty("password",
"tarzan");

And, you can retrieve it by using
getProperty:

System.getProperty("password")

For instance, here is how you change the
user.name property.

System.setProperty("user.name",
"tarzan");
public static String getProperty(String
key, String default)

This method is similar to the single
argument getProperty method, but
returns a default value if the specified
property does not exist.

public static java.util.Properties
getProperties()

This method returns all system properties.
The return value is a java.util. Properties
object. The Properties class is a subclass
of java.util. Hashtable (discussed in
Chapter 11, “The Collections Framework™).

For example, the following code uses the
list method of the Properties class to
iterate and display all system properties on
the console.

java.util.Properties properties =
System.getProperties();
properties.list(System.out);

java.util.Scanner

You use a Scanner object to scan a piece of text. In this chapter,

we will only concentrate on its use to receive keyboard input.

Receiving keyboard input with Scanner is easy. All you need
to do is instantiate the Scanner class by passing System.in.
Then, to receive user input, call the next method on the
instance. The next method buffers the characters the user input
from the keyboard or other devices until the user presses Enter.
It then returns a String containing the characters the user
entered excluding the carriage-return character sequence.
Listing 5.3 demonstrates the use of Scanner to receive user
input.

Listing 5.3: Using Scanner to receive
user input

package app05;
import java.util.Scanner;

public class ScannerDemo {
public static void main(String[]
args) {
Scanner scanner = new
Scanner (System.in);
while (true) {
System.out.print("wWhat's your
name? ");
String input =
scanner.nextLine();

if (input.isEmpty()) {

break;
b
System.out.println("Your name
is " + input + ". ");

}

scanner.close();
System.out.println("Good bye");

Compared to the code in Listing 5.2, using Scanner is much

simpler.

Summary

In this chapter you examined several important classes such as
java.lang.String, arrays, java.lang.System and
java.util.Scanner. You also learned about variable arguments.
The last section covered the implementation of varargs in
java.lang.String and java.io.PrintStream.

Quiz

1. What does it mean when people say that
Strings are immutable objects?

2. How do you receive user input without
Scanner? And, how do you do it with
Scanner?

3. What is varargs?

4. Create a com.example.Car class that
has these private fields: year (int), make
(String) and model (String). Make Car
immutable by providing only get methods.
Fields are set by passing values to the
constructor.

5. Create a com.example.test.CarTest
class to instantiate Car and print its field
values by calling the get methods.

6. Create a utility/helper class named
StringUtil in com.example.util. This
class should have two static methods,
getFileName and getFileExtension.
Both methods receive a file path and

returns a file name or file extension,
respectively. Create a
com.example.test.StringUtilTest class
to test the methods.

7. Show how you can use the
java.util.StringTokenizer class to print
the number of tokens in a String and each
individual token.

Chapter 6
Arrays

In Java you can use an array to group primitives or objects of the
same type. The entities belonging to an array is called the
elements or components of the array. In this chapter you will
learn how to create, initialize and iterate over an array as well as
manipulate its elements. This chapter also features the
java.util.Arrays class, a utility class for manipulating arrays.

Overview

In the background, every time you create an array, the compiler
creates an object which allows you to:

¢ get the number of elements in the array through the length
field. The length or size of an array is the number of
elements in it.

e access each element by specifying an index. This indexing is
zero-based. Index o refers to the first element, 1 to the
second element, etc.

All the elements of an array have the same type, called the
element type of the array. An array is not resizable and an array
with zero element is called an empty array.

An array is a Java object. Therefore, an array variable behaves
like other reference variables. For example, you can compare an
array variable with null.

String[] names;
if (names == null) // evaluates to true

If an array is a Java object, shouldn’t there be a class that gets
instantiated when you create an array? May be something like
java.lang.Array? The truth is, no. Arrays are indeed special
Java objects whose class is not documented and is not meant to
be extended.

To use an array, first you need to declare one. You can use this
syntax to declare an array:

type[] arrayName;

or

type arrayName]|]

For example, the following declares an array of longs named
numbers:

long[] numbers;

Declaring an array does not create an array or allocate space for
its elements, the compiler simply creates an object reference.
One way to create an array is by using the new keyword. You
must specify the size of the array you are creating.

new typel[size]

As an example, the following code creates an array of four ints:

new int[4]

Alternatively, you can declare and create an array in the same
line.

int[] ints = new int[4];

After an array is created, its elements are either null (if the
element type is a reference type) or the default value of the

element type (if the array contains primitives). For example, an
array of ints contain zeros by default.

To reference an array element, use an index. If the size of an
array is n, then the valid indexes are all integers between 0 and
n-1. For example, if an array has four elements, the valid indexes
are 0, 1, 2 and 3. The following snippet creates an array of four
String objects and assigns a value to its first element.

String[] names = new String[4],
names[0] = "Hello World";

Using a negative index or a positive integer equal to or greater
than the array size will throw a
java.lang.ArrayIndexOutOfBoundsException. See
Chapter 8, “Error Handling” for information about exceptions.

Since an array is an object, you can call the getClass method
on an array. The string representation of the Class object of an
array has the following format:

[type

where type is the object type. Calling getClass().getName() on
a String array returns [Ljava.lang.String. The class name of a
primitive array, however, is harder to decipher. Calling

getClass().getName() on an int array returns [I and on a long
array returns [J.

You can create and initialize an array without using the new
keyword. Java allows you to create an array by grouping values
within a pair of braces. For example, the following code creates
an array of three String objects.

String[] names = { "John", "Mary", "Paul"

Iip

The following code creates an array of four ints and assign the
array to the variable matrix.

int[] matrix = { 1, 2, 3, 10 };

Be careful when passing an array to a method because the
following is illegal even though the method average takes an
array of ints.

int avg = average({ 1, 2, 3, 10 }),; //
illegal

Instead, you have to instantiate the array separately.

int[] numbers = { 1, 2, 3, 10 };
int avg = average(numbers);

or you can do this

int avg = average(new int[] { 1, 2, 3, 10

1)

Iterating over an Array

Prior to Java 5, the only way to iterate the members of an array
was to use a for loop and the array’s indexes. For example, the
following code iterates over a String array referenced by the
variable names:

for (int 1 = 0; i < 3; 1i++) {
System.out.println("\t- " +
names[i]);

}

Java 5 enhanced the for statement. You can now use it to iterate
over an array or a collection without the index. Use this syntax to

iterate over an array:

for (elementType variable : arrayName)

Where arrayName is the reference to the array, elementType is
the element type of the array, and variable is a variable that
references each element of the array.

For example, the following code iterates over an array of
Strings.

String[] names = { "John", "Mary", "Paul"

i

for (String name : names) {
System.out.println(name);

The code prints this on the console.

John
Mary
Paul

The java.util.Arrays Class

The Arrays class provides static methods to manipulate arrays.

Table 6.1 shows some of its methods.

Method

Description

asList

Returns a fixed-size List
backed by the array. No other
elements can be added to the
List. List is discussed in
Chapter 14, “The Collection
Framework.”

binarySearch

Searches an array for the
specified key. If the key is
found, returns the index of
the element. If there is no
match, returns the negative
value of the insertion point
minus one. See the section
“Searching An Array” for
details.

copyOf

Creates a new array having
the specified length. The new
array will have the same
elements as the original
array. If the new length is not
the same as the length of the
original array, it pads the new
array with null or default
values or truncates the
original array.

copyOfRange

Creates a new array based on
the specified range of the
original array.

equals

Compares the contents of two
arrays.

fill

Assigns the specified value to
each element of the specified
array.

sort

Sorts the elements of the
specified array.

parallelSort

Parallel sorts the elements of
the specified array.

toString

Returns the string
representation of the
specified array.

Table 6.1: More important methods of

java.util.Arrays

Some of these methods are explained further in the next
sections.

Changing an Array Size

Once an array is created, its size cannot be changed. If you want

to change the size, you must create a new array and populates it

using the values of the old array. For instance, the following code

increases the size of numbers, an array of three ints, to 4.

int[] numbers = { 1, 2, 3 };

int[] temp new int[4];

int length numbers.length;

for (int j = 0; j < length; j++) {
temp[j] = numbers[j];

}

numbers = temp;

A shorter way of doing this is by using the copyOf method of

java.util.Arrays. For instance, this code creates a four-element

array and copies the content of numbers to its first three
elements.

int[] numbers = { 1, 2, 3 };

int[] newArray = Arrays.copyOf(numbers,
4);

Of course you can reassign the new array to the original variable:

numbers = Arrays.copyOf(numbers, 4);

The copyOf method comes with ten overloads, eight for each
type of Java primitives and two for objects. Here are their
signatures:

public static
original, int
public static
original, int
public static
original, int
public static
original, int
public static
original, int
public static
original, int
public static
original, int
public static

boolean[] copyOf(boolean|]
newlLength)

byte[] copyOf(byte[]
newlLength)

char[] copyOf(char[]
newlLength)

double[] copyOf(double[]
newlLength)

float[] copyOf(float[]
newlLength)

int[] copyOf(int[]
newlLength)

long[] copyOf(long[]
newlLength)

short[] copyOf(short]]

original, int newlLength)

public static <T> T[] copyOf (T[]

original, int newlLength)

public static <T,U> T[] copyOf(U[]

original, int newlLength,
java.lang.Class<? extends T[]>

newType)

Each of these overloads may throw a
java.lang.NullPointerException if original is null and a

java.lang.NegativeArraySizeException if newLength is
negative.

The newLength argument can be smaller, equal to, or larger
than the length of the original array. If it is smaller, then only the
first newLength elements will be included in the copy. If it is
larger, the last few elements will have default values, i.e. o if it is
an array of integers or null if it is an array of objects.

Another method similar to copyOf is copyOfRange.
copyOfRange copies a range of elements to a new array. Like
copyOf, copyOfRange also provides overrides for each Java
data type. Here are their signatures:

public static boolean]]
copyOfRange(boolean[] original,
int from, int to)

public static byte[] copyOfRange(byte[]
original,

int from, int to)
public static char[] copyOfRange(char]|]
original,

int from, int to)
public static double[]
copyOfRange(double[] original,

int from, int to)
public static float[] copyOfRange(float][]
original,

int from, int to)
public static int[] copyOfRange(int][]
original, int from, int to)
public static long[] copyOfRange(long[]
original, int from, int to)
public static short[] copyOfRange(short][]
original, int from,

int to)
public static <T> T[] copyOfRange(T[]
original, int from, int to)
public static <T,U> T[] copyOfRange(U[]
original, int from,

int to, java.lang.Class<? extends
T[]> newType)

You can also use System.arraycopy() to copy an array.
However, Arrays.copyOf() is easier to use and internally it

calls System.arraycopy().

Searching An Array

You can use the binarySearch method of the Arrays class to
search an array. This method comes with twenty overloads. Here
are two of its overloads:

public static int binarySearch(int[]

array, int key)

public static int

binarySearch(java.lang.Object[] array,
java.lang.Object key)

There are also overloads that restrict the search area.

public static int binarySearch(int[]
array, int fromIndex,
int toIndex, int key)
public static int
binarySearch(java.lang.Object[] array,
int fromIndex, int toIndex,
java.lang.Object key)

The binarySearch method employs a binary search algorithm
to do the search. Using this algorithm, the array is first sorted in
ascending or descending order. It then compares the search key
with the middle element of the array. If there is a match, the
element index is returned. If there is no match, depending
whether the search key is lower or higher than the index, the
search continues in the first or second half of the array, repeating
the same procedure until there is no or only one element left. If
at the end of the search no match is found, the binarySearch
method returns the negative value of the insertion point minus
one. The example in Listing 6.1 will make this point clearer.

Listing 6.1: A binary search example

package app06;
import java.util.Arrays;

public class BinarySearchDemo {
public static void main(String[]

args) {

int[] primes = { 2, 3, 5, 7, 11,
13, 17, 19 };

int index =
Arrays.binarySearch(primes, 13);

System.out.println(index); //
prints 5

index =
Arrays.binarySearch(primes, 4);

System.out.println(index); //

prints -3

}

The BinarySearchDemo class in Listing 6.1 uses an int array
containing the first eight prime numbers. Passing 13 as the
search key returns 5 because 13 is the sixth element in the array,
i.e. with index 5. Passing 4 does not find a match and the method
returns -3, which is -2 minus one. If the key were to be inserted
to the array, it would have the index 2.

Passing a String Array to
main

The public static void method main that you use to invoke a
Java class takes an array of Strings. Here is the signature of
main:

public static void main(String[] args)

You can pass arguments to main by typing them as arguments
to the java program. The arguments should appear after the
class name and two arguments are separated by a space. You use
the following syntax:

java className argl arg2 arg3 ... arg-n

Listing 6.2 shows a class that iterates over the main method’s
String array argument.

Listing 6.2.: Accessing the main
method’s arguments

package app06;
public class MainMethodTest {
public static void main(String[]
args) {
for (String arg : args) {
System.out.println(arg);

The following command invokes the class and passes two
arguments to the main method.

java app06/MainMethodTest john mary

The main method will then print the arguments to the console.

john
mary

If no argument is passed to main, the String array args will be
empty and not null.

Multidimensional Arrays

In Java a multidimensional array is an array whose elements are
also arrays. As such, the rows can have different lengths, unlike
multidimensional arrays in C language.

To declare a two dimensional array, use two pairs of brackets
after the type:

int[][] numbers;

To create an array, pass the sizes for both dimensions:

int[]J[] numbers = new int[3][2];

Listing 6.3 shows a multidimensional array of ints.

Listing 6.3: A multidimensional array.

package app06;
import java.util.Arrays;

public class MultidimensionalDemol {
public static void main(String]]

args) {
int[][] matrix = new int[2][3];
for (int 1 = 0; 1 < 2; i++) {
for (int j = 0; J < 3; j++) {
matrix[i][j] =] + 1;

for (int 1 = 0; 1 < 2; 1i++) {

System.out.println(Arrays.toString(matrix

[11));

The following will be printed on the console if you run the class.

[0, 1, 2]

[1, 2, 3]

Summary

In this chapter you learned how to declare and initialize an array
and work with this data structure. You also examined the

java.util.Arrays class for manipulating arrays.

Quiz

1. What is an array?

2. How do you resize an array?

3. How do you create an array and pass it to
a method without first assigning it to a
variable?

4. Write a
com.example.app0o6.ArrayUtil class
that contains two static methods, min and
max. Both methods receive an array of
ints and returns the smallest

largest element, respectively.

Chapter 7

Inheritance

Inheritance is a very important object-oriented programming
(OOP) feature. It is what makes code extensible in an OOP
language. Extending a class is also called inheriting or
subclassing. In Java, by default all classes are extendible, but you
can use the final keyword to prevent classes from being
subclassed. This chapter explains inheritance in Java.

Overview

You extend a class by creating a new class. The former and the
latter will then have a parent-child relationship. The original
class is the parent class or the base class or the superclass. The
new class is the child class or the subclass or the derived class of
the parent. The process of extending a class in OOP is called
inheritance. In a subclass you can add new methods and new
fields as well as override existing methods to change their
behaviors.

Figure 7.1 presents a UML class diagram that depicts a parent-
child relationship between a class and a child class.

Parent

Child

Figure 77.1: The UML class diagram for a
parent class and a child class

Note that a line with an arrow is used to depict generalization,
e.g. the parent-child relationship.

A child class in turn can be extended, unless you specifically
make it inextensible by declaring it final. Final classes are
discussed in the section “Final Classes” later in this chapter.

The benefits of inheritance are obvious. Inheritance gives you
the opportunity to add some functionality that does not exist in
the original class. It also gives you the chance to change the
behaviors of the existing class to better suit your needs.

The extends Keyword

You extend a class by using the extends keyword in a class
declaration, after the class name and before the parent class.

Listing 7.1 presents a class named Parent and Listing 7.2 a class
named Child that extends Parent.

Listing 7.1: The Parent class

public class Parent {

}

Listing 7.2: The Child class

public class Child extends Parent {
b

Extending a class is as simple as that.

Note

All Java classes that do not explicitly extend a parent class automatically
extend the java.lang.Object class. Object is the ultimate superclass in
Java. Parent in Listing 7.1 by default is a subclass of Object.

Note

In Java a class can only extend one class. This is unlike C++ where
multiple inheritance is allowed. However, the notion of multiple
inheritance can be achieved by using interfaces in Java, as discussed in
Chapter 10, “Interfaces and Abstract Classes.”

The Is-A Relationship

There is a special relationship that is formed when you create a
new class by inheritance. The subclass and the superclass has an
“is-a” relationship.

For example, Animal is a class that represents animals. There
are many types of animals, including birds, fish and dogs, so you
can create subclasses of Animal that model specific types of
animals. Figure 7.2 features the Animal class with three
subclasses, Bird, Fish and Dog.

Aninal
weight
cat ()
—
Bili.'d) Fish D!:ug
numbe rOfWings numbecrOtFins numberOfLegs
tly () swim () walk ()

Figure 7.2: An example of inheritance

The is-a relationship between the subclasses and the superclass
Animal is very apparent. A bird “is an” animal, a dog is an
animal and a fish is an animal. A subclass is a special type of its
superclass. For example, a bird is a special type of animal. The
is-a relationship does not go the other way, however. An animal
is not necessarily a bird or a dog.

Listing 7.3 presents the Animal class and its subclasses.

Listing 7.3: Animal and its subclasses

package app07;

class Animal {
public float weight;
public void eat() {

}

class Bird extends Animal {
public int numberOfWings = 2;
public void fly() {

}

class Fish extends Animal {
public int numberOfFins = 2;
public void swim() {

}

class Dog extends Animal {
public int numberOfLegs = 4;
public void walk() {

In this example, the Animal class defines a weight field that
applies to all animals. It also declares an eat method because
animals eat.

The Bird class is a special type of Animal, it inherits the eat
method and the weight field. Bird also adds a
numberOfWings field and a fly method. This shows that the
more specific Bird class extends the functionality and behavior
of the more generic Animal class.

A subclass inherits all public methods and fields of its
superclass. For example, you can create a Dog object and call its
eat method:

Dog dog = new Dog();
dog.eat();

The eat method is declared in the Animal class; the Dog class
simply inherits it.

A consequence of the is-a relationship is that it is legal to
assign an instance of a subclass to a reference variable of the
parent type. For example, the following code is valid because
Bird is a subclass of Animal and a Bird is always an Animal.

Animal animal = new Bird();

However, the following is illegal because there is no guarantee
that an Animal is a Dog.:

Dog dog = new Animal();

Accessibility

From within a subclass you can access its superclass’s public and
protected methods and fields, but not the superclass’s private
methods. If the subclass and the superclass are in the same

package, you can also access the superclass’s default methods
and fields.

Consider the P and C classes in Listing 7.4.

Listing 7.4: Showing accessibility

package app07;
public class P {
public void publicMethod() {

¥
protected void protectedMethod() {

}

void defaultMethod() {

}
}

class C extends P {
public void testMethods() {
publicMethod();
protectedMethod();
defaultMethod();

P has three methods, one public, one protected and one with the
default access level. C is a subclass of P. As you can see in the C
class’s testMethods method, C can access its parent’s public
and protected methods. In addition, because C and P belong to
the same package, C can also access P’s default method.

However, it does not mean you can expose P’s non-public
methods through its subclass. For example, the following code

will not compile:

package test;
import app07.C;
public class AccessibilityTest {
public static void main(String]]
args) {
Cc =new C();

c.protectedMethod();

protectedMethod is a protected method of P. It is not
accessible from outside P, except from a subclass. Since
AccessibilityTest is not a subclass of P, you cannot access P’s
protected method through its subclass C.

Method Overriding

When you extends a class, you can change the behavior of a
method in the parent class. This is called method overriding, and
this happens when you write in a subclass a method that has the
same signature as a method in the parent class. If only the name
is the same but the list of arguments is not, then it is method
overloading. (See Chapter 4, “Objects and Classes”)

You override a method to change its behavior. To override a
method, you simply have to write the new method in the
subclass, without having to change anything in the parent class.
You can override the superclass’s public and protected methods.
If the subclass and superclass are in the same package, you can
also override methods with the default access level.

An example of method overriding is demonstrated by the Box
class in Listing 7.5.

Listing 7.5: The Box class

package app07;

public class Box {
public int length;
public int width;
public int height;

public Box(int length, int width, int
height) {
this.length = length;
this.width = width;
this.height = height;

@Override
public String toString() {
return "I am a Box.";

@Override
public Object clone() {
return new Box(1, 1, 1);

The Box class extends the java.lang.Object class. It is an
implicit extension since the extends keyword is not used. Box

overrides the public toString method and the protected clone
method. Note that the clone method in Box is public whereas in
Object it is protected. Increasing the visibility of a method
defined in a superclass from protected to public is allowed.
However, reducing visibility is illegal.

An overridden method is normally annotated with
@Override. It is not required but it is good practice to do so.
You will learn about annotations in Chapter 17, “Annotations.”

What if you create a method that has the same signature as a
private method in the superclass? It is not method overriding,
since private methods are not visible from outside the class. It is
just a method that happens to have the same signature as the
private method.

Note

You cannot override a final method. To make a method final, use the
final keyword in the method declaration. For example:

public final java.lang.String
toUpperCase(java.lang.String s)

Calling the Constructors of
the Superclass

A subclass is just like an ordinary class, you use the new
keyword to create an instance of it. If you do not explicitly write
a constructor in your subclass, the compiler will implicitly add a
no-argument (no-arg) constructor.

When you instantiate a child class by invoking one of its
constructors, the first thing the constructor does is call the no-
argument constructor of the direct parent class. In the parent
class, the constructor also calls the constructor of its direct
parent class. This process repeats itself until it reaches the
constructor of the java.lang.Object class. In other words, when
you create a child object, all its parent classes are also
instantiated.

This process is illustrated in the Base and Sub classes in
Listing 7.6.

Listing 7.6: Calling a superclass’s no-
arg constructor

package app07;
class Base {
public Base() {
System.out.println("Base");
}
public Base(String s) {
System.out.println("Base." + s);

public class Sub extends Base {
public Sub(String s) {
System.out.println(s);
}
public static void main(String[]
args) {
Sub sub = new Sub("Start");

If you run the Sub class, you’ll see this on the console:

Base
Start

This proves that the first thing that the Sub class’s constructor
does is invoke the Base class’s no-arg constructor. The Java
compiler has quietly changed Sub’s constructor to the following
without saving the modification to the source file.

public Sub(String s) {
super();
System.out.println(s);

The keyword super represents an instance of the direct
superclass of the current object. Since super is called from an
instance of Sub, super represents an instance of Base, its
direct superclass.

You can explicitly call a parent’s constructor from a subclass’s
constructor by using the super keyword, but super must be the
first statement in the constructor. Using the super keyword is
handy if you want another constructor in the superclass to be
invoked. For example, you can modify the constructor in Sub to
the following.

public Sub(String s) {
super(s);
System.out.println(s);

This constructor calls the single argument constructor of the
parent class, by using super(s). As a result, if you run the class
you will see the following on the console.

Base.Start
Start

Now, what if the superclass does not have a no-arg constructor

and you do not make an explicit call to another constructor from
a subclass? This is illustrated in the Parent and Child classes in
Listing 7.7.

Listing 7.7: Implicit calling to the
parent’s constructor that does not exist

package app07;
class Parent {
public Parent(String s) {

System.out.println("Parent(String)");
}

public class Child extends Parent {
public Child() {

}

This will generate a compile error because the compiler adds an
implicit call to the no-argument constructor in Parent, while
the Parent class has only one constructor, the one that accepts a
String. You can remedy this situation by explicitly calling the
parent’s constructor from the Child class’s constructor:

public child() {

super(null);

Note

It actually makes sense for a child class to call its parent’s constructor
from its own constructor because an instance of a subclass must always
be accompanied by an instance of each of its parents. This way, calls to a
method that is not overridden in a child class can be passed to its parent
until the first in the hierarchy is found.

Calling the Hidden Members
of the Superclass

The super keyword has another purpose in life. It can be used to
call a hidden member or an overridden method in a superclass.
Since super represents an instance of the direct parent,
super.memberName returns the specified member in the parent
class. You can access any member in the superclass that is visible
from the subclass. For example, Listing 7.8 shows two classes
that have a parent-child relationship: Tool and Pencil.

Listing 7.8: Using super to access a
hidden member

package app07;

class Tool {

@Override
public String toString() {
return "Generic tool";

public class Pencil extends Tool {
@Override

public String toString() {
return "I am a Pencil";

public void write() {

System.out.println(super.toString());
System.out.println(toString());

public static void main(String]]
args) {
Pencil pencil = new Pencil();
pencil.write();

The Pencil class overrides the toString method in Tool. If you
run the Pencil class, you will see the following on the console.

Generic tool
I am a Pencil

Unlike calling a parent’s constructor, invoking a parent’s method
does not have to be the first statement in the caller method.

Type Casting

You can cast an object to another type. The rule is, you can only
cast an instance of a subclass to its parent class. Casting an
object to a parent class is called upcasting. Here is an example,
assuming that Child is a subclass of Parent.

Child child = new Child();
Parent parent = child,;

To upcast a Child object, all you need to do is assign the object
to a reference variable of type Parent. Note that the parent

reference variable cannot access members that are only available
in Child.

Because parent in the snippet above references an object of
type Child, you can cast it back to Child. This time, it is called
downcasting because you are casting an object to a class down

the inheritance hierarchy. Downcasting requires that you write
the child type in brackets. For example:

Child child = new Child();

Parent parent = child;// parent pointing
to an instance of Child

Child child2 = (Child) parent; //
downcasting

Downcasting to a subclass is only allowed if the parent class
reference is already pointing to an instance of the subclass. The
following will generate a compile error.

Object parent = new Object();
Child child = (Child) parent; // illegal
downcasting, compile error

Final Classes

You can prevent others from extending your class by making it
final using the keyword final in the class declaration. final may
appear after or before the access modifier. For example:

public final class Pencil
final public class Pen

The first form is more common.

Even though making a class final makes your code slightly
faster, the difference is too insignificant to notice. Design
consideration, and not speed, should be the reason you make a
class final. For example, the java.lang.String class is final
because the designer of the class did not want you to change the
behavior of String.

The instanceof Operator

The instanceof operator can be used to test if an object is of a
specified type. It is normally used in an if statement and its
syntax is this.

1f (objectReference instanceof type)

where objectReference references an object being investigated.
For example, the following if statement returns true.

String s = "Hello";

if (s instanceof java.lang.String)

However, applying instanceof on a null reference variable
returns false. For example, the following if statement returns

false.

String s = null;
if (s instanceof java.lang.String)

Also, since a subclass “is a” type of its superclass, the following if
statement, where Child is a subclass of Parent, returns true.

Child child = new Child();
if (child instanceof Parent) //
evaluates to true

Summary

Inheritance is one of the fundamental principles in object-
oriented programming. Inheritance makes code extensible. In
Java all classes by default extend the java.lang.Object class. To
extend a class, use the extends keyword. Method overriding is
another OOP feature directly related to inheritance. It enables

you to change the behavior of a method in the parent class. You
can prevent your class from being subclassed by making it final.

Quiz

1. Does a subclass inherit its superclass’s
constructors?

2. Why is it legal to assign an instance of a
subclass to a superclass variable?

3. What is the difference between method
overriding and method overloading?

4. Why is it necessary for an instance of a
subclass to be accompanied by an instance
of each parent?

5. Write a public
com.example.transport.Car class that
adds a public void method called run and
overrides toString(). run prints the
return value of toString(). Write another
public class called SUV in the same

package. SUV extends Car and overrides
its run and toString methods. The run
class of SUV should print the return value
of the parent’s toString method and its
own toString method. Next, add a main
method in SUV that creates an SUV
object and calls its run method.

Chapter 8
Error Handling

Error handling is an important feature in any programming
language. A good error handling mechanism makes it easier for
programmers to write robust applications and to prevent bugs
from creeping in. In some languages, programmers are forced to
use multiple if statements to detect all possible conditions that
might lead to an error. This could make code excessively
complex. In a larger program, this could easily lead to spaghetti
like code.

Java offers the try statement as a nice approach to error
handling. With this strategy, part of the code that could
potentially lead to an error is isolated in a block. Should an error
occur, this error is caught and resolved locally. This chapter
teaches you this.

Catching Exceptions

There are two types of errors, compile error and runtime error.

Compile errors or compilation errors are due to errors in the
source code. For example, if you forgot to terminate a statement
with a semicolon, the compiler will tell you that and refuse to
compile your code. Compile errors are caught by the compiler at
compile time. Runtime errors, on the other hand, can only be
caught when the program is running, i.e. at runtime, because the
compiler could not have caught them. For example, running out
of memory is a runtime error and a compiler could not have
predicted this. Or, if a program tries to parse a user input to an
integer, the input is only available when the program is running.
If the user enters non-digits, then the parsing process will fail
and a runtime error thrown. A runtime error, if not handled, will
cause the program to quit abruptly.

In your program you can isolate code that may cause a
runtime error using a try statement, which normally is
accompanied by the catch and finally statements. Such
isolation typically occurs in a method body. If an error is
encountered, Java stops the processing of the try block and
jump to the catch block. Here you can gracefully handle the
error or notify the user by ‘throwing’ a java.lang.Exception
object. Another scenario is to re-throw the exception or a new
Exception object back to the code that called the method. It is
then up to the client how he or she would handle the error. If a
thrown exception is not caught, the application will crash.

This is the syntax of the try statement.

try {
[code that may throw an exception]

} [catch (ExceptionType-1 e) {
[code that is executed when

ExceptionType-1 1is thrown]

}] [catch (ExceptionType-2 e) {
[code that is executed when

ExceptionType-2 1s thrown]

1]

} [catch (ExceptionType-n e) {
[code that is executed when
ExceptionType-n 1s thrown]

1]
[finally {

[code that runs regardless of whether
an exception was thrown]]

1]

The steps for error handling can be summarized as follows:

1. Isolate code that could lead to an error in
the try block.

2. For each individual catch block, write
code that is to be executed if an exception

of that particular type occurs in the try
block.

3. In the finally block, write code that will
be run whether or not an error has
occurred.

Note that the catch and finally blocks are optional, but one or
both of them must exist. Therefore, you can have try with one or
more catch blocks, try with finally or try with catch and
finally.

The previous syntax shows that you can have more than one
catch block. This is because some code may throw different
types of exceptions. When an exception is thrown from a try
block, control is passed to the first ecatch block. If the type of
exception thrown matches the exception or is a subclass of the
exception in the first catch block, the code in the catch block is
executed and then control goes to the finally block, if one exists.

If the type of the exception thrown does not match the
exception type in the first catch block, the JVM goes to the next
catch block and does the same thing until it finds a match. If no
match is found, the exception object will be thrown to the
method caller. If the caller does not put the offending code that
calls the method in a try block, the program will crash.

To illustrate the use of this error handling, consider the

NumberDoubler class in Listing 8.1. When the class is run, it
will prompt you for input. You can type anything, including non-
digits. If your input is successfully converted to a number, it will
double it and print the result. If your input is invalid, the
program will print an “Invalid input” message.

Listing 8.1: The NumberDoubler class

package app08;
import java.util.Scanner;

public class NumberDoubler {
public static void main(String[]
args) {
Scanner scanner = new
Scanner (System.in);
String input = scanner.next();
try {
double number =
Double.parseDouble(input);
System.out.printf("Result:
%s", number);
} catch (NumberFormatException e)

System.out.println("Invalid
input.");

}

scanner.close();

The NumberDoubler class uses the java.util.Scanner class

to take user input (Scanner was discussed in Chapter 5, “Core
Classes”).

Scanner scanner = new Scanner(System.in);

String input = scanner.next();

It then uses the static parseDouble method of the
java.lang.Double class to convert the string input to a double.
Note that the code that calls parseDouble resides in a try

block. This is necessary because parseDouble may throw a
java.lang.NumberFormatException, as indicated by the
signature of the parseDouble method:

public static double parseDouble(String
S)

throws NumberFormatExcpetion

The throws statement in the method signature tells you that it
may throw a NumberFormatException and it is the
responsibility of the method caller to catch it.

Without the try block, invalid input will give you this

embarrassing error message before the system crashes:

Exception in thread "main"
java.lang.NumberFormatException:

try without catch

A try statement can be used with finally without a catch block.
You normally use this syntax to ensure that some code always
gets executed whether or not an unexpected exception has been
thrown in the try block. For example, after opening a database
connection, you want to make sure the connection’s close
method is called after you're done with it. To illustrate this
scenario, consider the following pseudocode that opens a
database connection.

Connection connection = null;
try {

// open connection
// do something with the connection
and perform other tasks

} finally {
if (connection != null) {

// close connection

If something unexpected occurs in the try block, the close
method will always be called to release the resource.

Catching Multiple Exceptions

Java 7 and later allow you to catch multiple exceptions in a single
catch block if the caught exceptions are to be handled by the
same code. The syntax of the catch block is as follows, two
exceptions being separated by the pipe character |.

catch(exception-1 | exception-2 ... e) {

// handle exceptions

For example, the java.net.ServerSocket class’s accept
method can throw four exceptions:
java.nio.channels.IllegalBlockingModeException,
java.net.SocketTimeoutException,
java.lang.SecurityException, and java.io.Exception. If,

say, the first three exceptions are to be handled by the same
code, you can write your try block like this:

try {
serverSocket.accept();

} catch (SocketTimeoutException |
SecurityException |
IllegalBlockingModeException e) {
// handle exceptions

} catch (IOException e) {

// handle IOException

The try-with-resources
Statement

Many Java operations involve some kind of resource that has to
be closed after use. Before JDK 7, you used finally to make sure
a close method is guaranteed to be called:

try {

// open resource
} catch (Exception e) {

} finally {
// close resource

This syntax can be tedious especially if the close method can
throw an exception and can be null. For example, here’s a typical
code fragment to open a database connection.

Connection connection = null;
try {

// create connection and do something
with it

} catch (SQLException e) {

} finally {
if (connection !'= null) {

try {
connection.close();

} catch (SQLException e) {
}

You see, you need quite a bit of code in the finally block just for
one resource, and it’s not uncommon to have to open multiple

resources in a single try block. JDK 7 added a new feature, the
try-with-resource statement, to make resource closing
automatic. Its syntax is as follows.

try (resources) {

// do something with the resources

} catch (Exception e) {
// do something with e

For example, here is opening a database connection would look
like in Java 7 and later.

Connection connection = null;
try (Connection connection =
openConnection();

// open other resources, if any)

// do something with connection

} catch (SQLException e) {

Not all resources can be automatically closed. Only resource
classes that implement java.lang.AutoCloseable can be
automatically closed. Fortunately, in JDK 7 many input/output
and database resources have been modified to support this
feature. You’ll see more examples of try-with-resources in
Chapter 16, “Input/Output” and Chapter 21, “Java Database
Connectivity.”

The java.lang.Exception Class

Erroneous code can throw any type of exception. For example,
an invalid argument may throw a
java.lang.NumberFormatException, and calling a method
on a null reference variable throws a
java.lang.NullPointerException. All Java exception classes
derive from the java.lang.Exception class. It is therefore
worthwhile to spend some time examining this class.

Among others, the Exception class overrides the toString
method and adds a printStackTrace method. The toString
method returns the description of the exception. The
printStackTrace method has the following signature.

public void printStackTrace()

This method prints the description of the exception followed by a
stack trace for the Exception object. By analyzing the stack

trace, you can find out which line is causing the problem. Here is
an example of what printStackTrace may print on the console.

java.lang.NullPointerException

at
MathUtil.doubleNumber (MathUtil. java:45)

at MyClass.performMath(MyClass. java:
18)

at MyClass.main(MyClass.java: 90)

This tells you that a NullPointerException has been thrown.
The line that throws the exception is Line 45 of the
MathUtil.java class, inside the doubleNumber method. The
doubleNumber method was called by
MyClass.performMath, which in turns was called by
MyClass.main.

Most of the time a try block is accompanied by a catch block
that catches the java.lang.Exception in addition to other
catch blocks. The catch block that catches Exception must
appear last. If other catch blocks fail to catch the exception, the
last catch will do that. Here is an example.

try {
// code

} catch (NumberFormatException e) {
// handle NumberFormatException
} catch (Exception e) {
// handle other exceptions

You may want to use multiple catch blocks in the code above
because the statements in the try block may throw a
java.lang.NumberFormatException or other type of
exception. If the latter is thrown, it will be caught by the last
catch block.

Be warned, though: The order of the catch blocks is
important. You cannot, for example, put a catch block for
handling java.lang.Exception before any other catch block.
This is because the JVM tries to match the thrown exception
with the argument of the catch blocks in the order of
appearance. java.lang.Exception catches everything;
therefore, the catch blocks after it would never be executed.

If you have several catch blocks and the exception type of one
of the catch blocks is derived from the type of another catch
block, make sure the more specific exception type appears first.
For example, when trying to open a file, you need to catch the
java.io.FileNotFoundException just in case the file cannot
be found. However, you may want to make sure that you also
catch java.io.IOException so that other I/O-related
exceptions are caught. Since FileNotFoundException is a
child class of IOException, the catch block that handles
FileNotFoundException must appear before the catch block
that handles IOException.

Throwing an Exception from
a Method

When catching an exception in a method, you have two options
to handle the error that occurs inside the method. You can either
handle the error in the method, thus quietly catching the
exception without notifying the caller (this has been
demonstrated in the previous examples), or you can throw the
exception back to the caller and let the caller handle it. If you
choose the second option, the calling code must catch the
exception that is thrown back by the method.

Listing 8.2 presents a capitalize method that changes the
first letter of a String to upper case.

Listing 8.2: The capitalize method

public String capitalize(String s) throws
NullPointerException {

if (s == null) {

throw new NullPointerException(
"You passed a null

argument");

b

Character firstChar = s.charAt(0);

String theRest = s.substring(1);

return
firstChar.toString().toUpperCase() +
theRest;

}

If you pass a null to capitalize, it will throw a new
NullPointerException. Pay attention to the code that
instantiates the NullPointerException class and throws the

instance:

throw new NullPointerException(
"Your passed a null
argument");

The throw keyword is used to throw an exception. Don’t

confuse it with the throws statement which is used at the end of
a method signature to indicate that the method may throw an
exception of the given type.

The following example shows code that calls capitalize.

String input = null;
try {
String capitalized =
util.capitalize(input);
System.out.println(capitalized);
} catch (NullPointerException e) {
System.out.println(e.toString());

Note

A constructor can also throw an exception.

User-Defined Exceptions

You can create a user-defined exception by subclassing
java.lang.Exception. There are several reasons for having a
user-defined exception. One of them is to create a customized
error message.

For example, Listing 8.3 shows the
AlreadyCapitalized Exception class that derives from
java.lang.Exception.

Listing 8.3: The
AlreadyCapitalized Exception class

package app08;
public class AlreadyCapitalizedException
extends Exception {
@Override
public String toString() {
return "Input has already been
capitalized";

}

You can throw an AlreadyCapitalized Exception from the
capitalize method in Listing 8.2. The modified capitalize
method is given in Listing 8.4.

Listing 8.4: The modified capitalize
method

public String capitalize(String s)
throws NullPointerException,
AlreadyCapitalizedException {
if (s == null) {

throw new NullPointerException(
"Your passed a null
argument");

}
Character firstChar = s.charAt(0);

if (Character.isUpperCase(firstChar))

{
throw new

AlreadyCapitalizedException();

}

String theRest = s.substring(1);

return
firstChar.toString().toUpperCase() +
theRest;
b

Now, capitalize may throw one of two exceptions. You comma-
delimit multiple exceptions in a method signature.

Clients that call capitalize must now catch both exceptions.
This code shows a call to capitalize.

StringUtil util = new StringUtil();
String input = "Capitalize";
try {

String capitalized =
util.capitalize(input);

System.out.println(capitalized);

} catch (NullPointerException e) {
System.out.println(e.toString());

} catch (AlreadyCapitalizedException e) {
e.printStackTrace();

Since NullPointerException and
AlreadyCapitalizedException do not have a parent-child
relationship, the order of the catch blocks above is not
important.

When a method throws multiple exceptions, rather than catch
all the exceptions, you can simply write a catch block that
handles java.lang.Exception. Rewriting the code above:

StringUtil util = new StringuUtil();
String input = "Capitalize";
try {
String capitalized =
util.capitalize(input);
System.out.println(capitalized);
} catch (Exception e) {
System.out.println(e.toString());

While it’s more concise, the latter lacks specifics and does not
allow you to handle each exception separately.

Note on Exception Handling

The try statement imposes some performance penalty.
Therefore, do not use it over-generously. If it is not hard to test
for a condition, then you should do the testing rather than
depending on the try statement. For example, calling a method
on a null object throws a NullPointerException. Therefore,
you could always surround a method call with a try block:

try {
ref.method();

However, it is not hard at all to check if ref is null prior to calling
methodA. Therefore, the following code is better because it
eliminates the try block.

if (ref !'= null) {
ref.methodA();

The NullPointerException is one of the most common
exceptions a developer has to handle. Java 8 adds the
java.util.Optional class that can reduce the amount of code for
handling the NullPointerException. Optional is discussed in
Chapter 19, “Lambda Expressions.”

Summary

This chapter discussed the use of structured error handling and
presented examples for each case. You have also been introduced
to the java.lang.Exception class and its properties and
methods. The chapter concluded with a discussion of user-
defined exceptions.

Quiz

1. What is the advantage of the try
statement?

2. Can a try statement be used with finally
and without catch?

3. What is try-with-resources?

4. Write a utility class called Util (part of
com.example.appo08) that has a static

method named addArray for adding two
arrays of the same length. The signature of
addArray is as follows.

public static long[] addArray(int[]
arrayl, int[] array2)
throws
MismatchedArrayException,
java.lang.NullPointerException

The method throws a
MismatchedArrayException if the
lengths of both arguments are not the
same. The toString method of the
exception class must return this value:

Mismatched array length. The first
array's length 1is lengthl. The
second array's length is length2

where length1i is the length of the first
array and length2 the length of the
second array.

The method throws a
NullPointerException if one of the
arrays is null.

Chapter 9
Working with Numbers

In Java numbers are represented by the primitives byte, short,
int, long, float, double and their wrapper classes, which were
explained in Chapter 5, “Core Classes.” Conversion from a
primitive type to a wrapper object is called boxing and from a
wrapper object to a primitive is called unboxing. Boxing and
unboxing are the first topic in this chapter. Afterward, this
chapter explain three issues you have to deal with when working
with numbers, parsing, formatting and manipulation. Number
parsing is the conversion of a string into a number and number
formatting deals with presenting a number in a specific format.
For instance, 1000000 may be displayed as 1,000,000.

To conclude, this chapter show how to perform monetary
calculations and generate random numbers.

Boxing and Unboxing

Conversion from primitive types to corresponding wrapper

objects and vice versa can happen automatically. Boxing refers to
the conversion of a primitive to a wrapper instance, such as an
int to a java.lang.Integer. Unboxing is the conversion of a
wrapper instance to a primitive type, such as Byte to byte.

Here is an example of boxing.

Integer number = 3; // assign an int to
Integer

Here is an example of unboxing.

Integer number = new Integer(100);
int simpleNumber = number;

When you can choose between a primitive type and its wrapper
class, always favor the primitive over the wrapper, because
primitives are faster than objects. There are cases where you
need a wrapper class, however, such as when working with a
collection. A collection, as discussed in Chapter 14, “The
Collection Framework, accepts objects and does not accept
primitives.

Number Parsing

A Java program may require that the user input a number that
will be processed or become an argument to a method. For
example, a currency converter program would need the user to
type in a value to be converted. You can use the
java.util.Scanner class to receive user input. However, the
input will be a String, even though it represents a number.
Before you can work with the number, you need to parse the
string. The outcome of a successful parsing is a number.

Therefore, the purpose of number parsing is to convert a string
into a numeric primitive type. If parsing fails, for example
because the string is not a number or a number outside the
specified range, your program can throw an exception.

The wrappers of primitives—the Byte, Short, Integer,
Long, Float, and Double classes—provide static methods for
parsing strings. For example, Integer has a parselnteger
method with the following signature.

public static int parselInt(String s)
throws NumberFormatException

This method parses a String and returns an int. If the String
does not contain a valid integer representation, a
NumberFormatException is thrown.

For example, the following snippet uses parselnt to parse the
string “123” to 123.

int x = Integer.parseInt("123");

Similarly, Byte provides a parseByte method, Long a
parseLong method, Short a parseShort method, Float a
parseFloat method, and Double a parseDouble method.

For example, the NumberTest class in Listing 9.1 takes user
input and parses it. If the user types in an invalid number, an
error message will be displayed.

Listing 9.1: Parsing numbers
(NumberTest.java)

package app09;
import java.util.Scanner;

public class NumberTest {
public static void main(String[]
args) {
Scanner scanner = new
Scanner (System.in);
String userInput =
scanner.next();
try {
int 1 =
Integer.parselInt(userInput);
System.out.println("The

number entered: " + 1);
} catch (NumberFormatException e)

System.out.println("Invalid

user input");

}

Number Formatting

Number formatting helps make numbers more readable. For
example, 1000000 is more readable if printed as 1,000,000 (or
1.000.000 if your locale uses . to separate the thousands). For
number formatting Java offers the java.text. NumberFormat
class, which is an abstract class. Since it is abstract, you cannot
create an instance using the new keyword. Instead, you
instantiate its subclass java.text.DecimalFormat, which is a
concrete implementation of NumberFormat.

NumberFormat nf = new DecimalFormat();

However, you should not call the DecimalFormat class’s
constructor directly. Instead, use the the NumberFormat
class’s getInstance static method. This method may return an

instance of DecimalFormat but might also return an instance
of a subclass other than DecimalFormat.

Now, how do you use NumberFormat to format numbers,
such as 1234.56? Easy, simply pass the numbers to its format
method and you’ll get a String. However, should number
1234.56 be formatted as 1,234.56 or 1234,56? Well, it really
depends in which side of the Atlantic you live. If you are in the
US, you may want 1,234.56. If you live in Germany, however,
1234,56 makes more sense. Therefore, before you start using the
format method, you want to make sure you get the correct
instance of NumberFormat by telling it where you live, or,
actually, in what locale you want it formatted. In Java, a locale is
represented by the java.util.Locale class, which I'll explain in
Chapter 19, “Internationalization.” For now, remember that the
getInstance method of the NumberFormat class also has an
overload that accepts a java.util.Locale.

public NumberFormat
getInstance(java.util.Locale locale)

If you pass Locale.Germany to the method, you'll get a
NumberFormat object that formats numbers according to the
German locale. If you pass Locale.US, you’ll obtain one for the
US number format. The no-argument getInstance method
returns a NumberFormat object with the user’s computer
locale.

Listing 9.2 shows the NumberFormatTest class that
demonstrates how to use the NumberFormat class to format a

number.

Listing 9.2: The NumberFormatTest
class

package app09;
import java.text.NumberFormat;
import java.util.Locale;

public class NumberFormatTest {
public static void main(String[]

args) {
NumberFormat nf =
NumberFormat.getInstance(Locale.US);

System.out.println(nf.getClass().getName(
));

System.out.println(nf.format(123445)),
¥

When run, the output of the execution is

java.text.DecimalFormat

123, 445

The first output line shows that a java.text.DecimalFormat
object was produced upon calling
NumberFormat.getInstance. The second shows how the
NumberFormat formats the number 123445 into a more
readable form.

Number Parsing with
java.text. NumberFormat

You can use the parse method of NumberFormat to parse
numbers. One of this method’s overloads has the following
signature:

public java.lang.Number
parse(java.lang.String source)
throws ParseException

parse returns an instance of java.lang.Number, the parent of
such classes as Integer, Long, etc.

The java.lang.Math Class

The Math class is a utility class that provides static methods for
mathematical operations. There are also two static final double
fields: E and PI. E represents the base of natural logarithms (e).
Its value is close to 2.718. PI is the ratio of the circumference of a
circle to its diameter (pi). Its value is 22/7 or approximately
3.1428.

Some of the methods in Math are in Table 9.1.

Method Description

Returns the absolute value of

b
abs the specified double.

Returns the arc cosine of an
acos angle, in the range of 0.0
through pi.

Returns the arc sine of an

asin angle, in the range of —pi/2
through pi/2.
Returns the arc tangent of an
atan angle, in the range of —pi/2
through pi/2.
Returns the cosine of an
COS
angle.
Returns Euler’s number e
exp raised to the power of the
specified double.
| Returns the natural logarithm
0g

(base e) of a double.

Returns the base 10 logarithm

log1o of a double.

Returns the greater of two
max
double values.

) Returns the smaller of two
min
double values.

Returns a pseudorandom
random double greater than or equal
to 0.0 and less than 1.0.

round Rounds a float to the nearest
int.

Table 9.1: More important methods of
java.lang.Math

Working with Money

Consider the following code that uses a double to represent a
bank account balance. Suppose you have $10.00 in your account
and you are charged a 10 cent account fee twice.

double balance = 10.00F;
balance -= 0.10F;
balance -= 0.10F;

What is the balance now? It should be $9.80, but no. The
balance is 9.799999997019768, which is wrong.

Due to the way floats and doubles are represented as bits,
these two primitives are not exact. If you are interested in

knowing how a float or double is presented in bits, consult this
Wikipedia page:

http://en.wikipedia.org/wiki/Single-
precision_floating-point_format

The consequence is, floats and doubles are not suitable for
monetary calculations. There are two ways to deal with money in
Java. First, you can use an int or a long and calculate the cents
(and not dollars) and convert the final result to the dollar.
Second, you can use the java.math.BigDecimal class. The first
approach is tedious so the second one is better even though
operations involving a BigDecimal are slower than those
involving an int or a long.

Listing 9.3 shows an example of using a double and
BigDecimal.

Listing 9.3: Using BigDecimal

package app09;
import java.math.BigDecimal;

public class BigDecimalDemo {
public static void main(String[]
args) {
double balance = 9.99;
balance -= 0.10F;
System.out.println(balance); //
prints 9.889999769628048

BigDecimal balance2 =
BigDecimal.valueOf(9.99);

BigDecimal accountFee =
BigDecimal.valueOf(.1);

BigDecimal r =
balance2.subtract(accountFee);

System.out.println(r.doublevalue()); //
prints 9.89

}

As you can see, BigDecimal gives you the exact result. You
should use this for monetary calculations and any other
calculations that require preciseness.

Generating Random Numbers

The java.util. Random class, which has been available since
JDK 1.0, models a random number generator. However, the
random method of the java.lang.Math class is much easier to
use. This method returns a double between 0.0 to 1.0.

Listing 9.4 shows a RandomNumberGenerator class that
generates an int between 0 and 9 (inclusive).

Lisitng 9.4: Random number generator

package app09;
public class RandomNumberGenerator {

/*
* Returns a random number between 0
and 9 (inclusive)
*/
public int generate() {
double random = Math.random();
return (int) (random * 10);

public static void main(String[]
args) {
RandomNumberGenerator generator
new
RandomNumberGenerator();
for (int 1 = 0; 1 < 10; i++) {

System.out.println(generator.generate());

}

Summary

In Java you use primitives and wrapper classes to model
numbers. Conversion between a primitive and a wrapper class
and the other way around happen automatically. There are three
types of operations that you frequently perform when dealing
with number and dates: parsing, formatting and manipulation.
This chapter showed how to perform them.

In addition, this chapter explained the best way to perform
monetary calculations and generate random numbers.

Quiz

1. What can you do with the
java.lang.Math class’s static methods?

2. Are wrapper classes still useful since
boxing and unboxing happen
automatically in Java?

3. Explain why you should not use doubles
or floats to perform monetary calculations.
What should you use instead?

4. Write a class called
RangeRandomGenerator that can
generate random numbers between two
integers that you specify when
instantiating the class.

Chapter 10

Interfaces and Abstract
Classes

Java beginners often get the impression that an interface is
simply a class without implementation. While this is not
technically incorrect, it obscures the real purpose of having the
interface in the first place. The interface is more than that. The
interface should be regarded as a contract between a service
provider and its clients. This chapter therefore focuses on the
concepts before explaining how to write an interface.

The second topic in this chapter is the abstract class.
Technically speaking, an abstract class is a class that cannot be
instantiated and must be implemented by a subclass. However,
the abstract class is important because in some situations it can
take the role of the interface. You will learn how to use the
abstract class too in this chapter.

The Concept of Interface

When learning about the interface for the first time, novices
often focus on how to write one, rather than understanding the
concept behind it. They would think an interface is something
like a Java class declared with the interface keyword and whose
methods have no body.

While the description is not inaccurate, treating an interface as
an implementation-less class misses the big picture. A better
definition of an interface is a contract. It is a contract between a
service provider (server) and the user of such a service (client).
Sometimes the server defines the contract, sometimes the client
does.

Consider this real-world example. Microsoft Windows is the
most popular operating system today, but Microsoft does not
make printers. For printing, you still rely on those people at HP,
Canon, Samsung, and the like. Each of these printer makers uses
a proprietary technology. However, their products can all be
used to print documents from any Windows application. How
come?

This is because Microsoft said something to this effect to the
printer manufacturers, “If you want your products useable on
Windows (and we know you do), you must implement this
Printable interface.”

The interface is as simple as this:

interface Printable {
void print(Document document),

where document is the document to be printed.

Implementing this interface, the printer makers then write
printer drivers. Every printer has a different driver, but they all
implement Printable. A printer driver is an implementation of
Printable. In this case, these printer drivers are the service
provider.

The client of the printing service is all Windows applications.
It is easy to print on Windows because an application just needs
to call the print method and pass a Document object. Because
the interface is freely available, client applications can be
compiled without waiting for an implementation to be available.

The point is, printing to different printers from different
applications is possible thanks to the Printable interface. This
interface is a contract between printing service providers and
printing clients.

An interface can define both fields and methods. Prior to JDK
1.8 all methods in an interface were abstract, but starting from
JDK 1.8 you can also write default and static methods in an
interface. Unless specified otherwise, an interface method refers
to an abstract method.

To be useful, an interface has to have an implementing class
that actually performs the action.

Figure 10.1 illustrates the Printable interface and its
implementation in an UML class diagram.

«interfacen
Printable

l + print (Document document) : voidl

FAY A
| |
| |
| |

TTPDniver CanonDriver

Figure 10.1: An interface and two
implementation classes in a class
diagram

In the class diagram, an interface has the same shape as a class,
however the name is printed in italic and prefixed with
<<interface>>. The HPDriver and CanonDriver classes are
classes that implement the Printable interface. The
implementations are of course different. In the HPDriver class,
the print method contains code that enables printing to a HP
printer. In CanonDriver, the code enables printing to a Canon
driver. In a UML class diagram, a class and an interface are
joined by a dash-line with an arrow. This type of relationship is
often called realization because the class provides real

implementation (code that actually works) of the abstraction
provided by the interface.

Note

This case study is contrived but the problem and the solution are real. I
hope this provides you with more understanding of what the interface
really is. It is a contract.

The Interface, Technically
Speaking

Now that you understand what the interface is, let’s examine
how you can create one. In Java, like the class, the interface is a
type. Follow this format to write an interface:

accessModifier interface interfaceName {

Like a class, an interface has either the public or default access
level. An interface can have fields and methods. All members of
an interface are implicitly public. Listing 10.1 shows an interface
named Printable.

Listing 10.1: The Printable interface

package applo;
public interface Printable {
void print(Object o0);

The Printable interface has a method, print. Note that print is
public even though there is no public keyword in front of the
method declaration. You are free to use the keyword public
before the method signature, but it would be redundant.

Just like a class, an interface is a template for creating objects.
Unlike an ordinary class, however, an interface cannot be
instantiated. It simply defines a set of methods that Java classes
can implement.

You compile an interface just you would a class. The compiler
creates a .class file for each interface compiled successfully.

To implement an interface, you use the implements keyword
after the class declaration. A class can implement multiple
interfaces. For example, Listing 10.2 shows the CanonDriver
class that implements Printable.

Listing 10.2: An implementation of the
Printable interface

package applo;
public class CanonDriver implements
Printable {
@Override
public void print(Object obj) {
// code that does the printing

Note that a method implementation should also be annotated
with @Override.

Unless specified otherwise, all interface methods are abstract.
An implementing class has to override all abstract methods in an
interface. The relationship between an interface and its
implementing class can be likened to a parent class and a
subclass. An instance of the class is also an instance of the
interface. For example, the following if statement evaluates to
true.

CanonDriver driver = new CanonDriver();
if (driver instanceof Printable) //
evaluates to true

Some interfaces have neither fields nor methods, and are known

as marker interfaces. Classes implement them as a marker. For
example, the java.io.Serializable interface, has no fields nor
methods. Classes implement it so that their instances can be
serialized, i.e. saved to a file or to memory. You will learn more
about Serializable in Chapter 16, “Input Output.”

Fields in an Interface

Fields in an interface must be initialized and are implicitly
public, static and final. However, you may redundantly use the
modifiers public, static, and final. These lines of code have the
same effect.

public int STATUS = 1,
int STATUS = 1;
public static final STATUS = 1;

Note that by convention field names in an interface are written
in upper case.

It is a compile error to have two fields with the same name in
an interface. However, an interface might inherit more than one
field with the same name from its superinterfaces.

Abstract Methods

You declare abstract methods in an interface just as you would
declare a method in a class. However, abstract methods in an

interface do not have a body, they are immediately terminated by
a semicolon. All abstract methods are implicitly public and
abstract, even though it is legal to have the public and abstract
modifiers in front of a method declaration.

The syntax of an abstract method in an interface is

[methodModifiers] ReturnType
MethodName (1istOfArgument)
[ThrowClause];

where methodModifiers is abstract and public.

Extending An Interface

The interface supports inheritance. An interface can extend
another interface. If interface A extends interface B, A is said to
be a subinterface of B. B is the superinterface of A. Because A
directly extends B, B is the direct superinterface of A. Any
interfaces that extend B are indirect subinterfaces of A. Figure
10.2 shows an interface that extends another interface. Note that
the type of the line connecting both interfaces is the same as the
one used for extending a class.

«interface»

A

T

«nterface»

B

Figure 10.2: Extending an interface

What is the purpose of extending an interface? To safely add
functionality to an interface without breaking existing code. This
is so because you cannot add a new method to an interface once
the interface has been published. Suppose an imaginary interface
XYZ in JDK 1.7 was a popular interface with millions of
implementation classes. Now, the designers of Java wanted to
add a new method in XYZ in JDK 1.8. What would happen if a
class that implemented the old XYZ and was compiled with a
pre-JDK 1.8 compiler was deployed on JDK 1.8 (which would
have shipped with the new version of XYZ)? It would break
because the class had not provided the implementation for the
new method.

The safe way would be to provide a new interface that extends
XYZ so old software would still work and new applications can
choose to implement the extension interface instead of XYZ.

Default Methods

Extending an interface is a safe way of adding functionality to
the interface. However, you end up with two interfaces with
similar functionality. This is acceptable if you only need to
extend one or two interfaces. If you need to add features to
hundred of interfaces, this has certainly become a serious issue.

This is exactly what the Java language designers faced when
they were trying to add lambda expressions to Java 8 and add
support for lambda in dozens of interfaces in the Collection
Framework. Extending all the interfaces would double the
number of interfaces and some would probably end up with ugly
names such as List2 or ExtendedSet.

Instead, they chose to add default methods. In other words,
from JDK 1.8 onward, an interface can have default methods.

A default method in an interface is a method with
implementation. A class implementing the interface does not
have to implement the default method, which means you can add
new methods to an interface without breaking backward
compatibility.

To make a method in an interface a default method, add the
keyword default in front of the method signature. Additionally,
instead of terminating the signature with a semicolon, add a pair
of brackets and write code in the brackets. Here is an example.

default java.lang.String getDescription()

return "This is a default method";

As you will learn later, a lot of Java interfaces in JDK 1.8 now
have default methods.

When extending an interface with default methods, you have
these options.

e Ignore the default methods, in effect inheriting them,
e Re-declare the default methods, which makes them abstract,

e Override the default methods.

Remember that the main reason Java now support default
methods is for backward compatibility. By no means should you
start writing programs without classes.

Static Methods

A static method in a class is shared by all instances of the class.
In Java 8 and later you can have static methods in an interface so
that all static methods associated with an interface can be
written in the interface, rather than in a helper class.

The signature of a static method is similar to that of a default
method. Instead of the keyword default, however, you use the
keyword static. Static methods in an interface are public by
default.

Static methods in an interface are rare. Of the close to 30
interfaces in the java.util package, only two contain static
methods.

Base Classes

Some interfaces have many abstract methods, and implementing
classes must override all the methods. This can be a tedious task
if you only need some of the methods. For this reason, you can
create a generic implementation class that overrides the abstract
methods in an interface with default code. An implementing
class can then extend the generic class and overrides only
abstract methods it wants to change. This kind of generic class,
often called a base class, is handy because it helps you code
faster.

For example, the javax.servlet.Servlet interface is the
interface that must be implemented by all servlet classes. This
interface has five abstract methods: init, service, destroy,
getServletConfig, getServletInfo. Of the five, only the
service method is always implemented by servlet classes. The
init method is implemented occasionally, but the rest are rarely

used. Despite the fact, all implementing classes must provide
implementation for all five methods. What a chore this would be
for servlet programmers.

To make servlet programming easier and more fun, the Servlet
API defines the javax.servlet.GenericServlet class, which
provides default implementation for all methods in the Servlet
interface. When you write a servlet, instead of writing a class that
implements the javax.servlet.Servlet interface (and ending up
implementing five methods), you extend the
javax.servlet.GenericServlet and provide only
implementation for methods you need to use (most probably,
only the service method).

Compare the TediousServlet class in Listing 10.3, which
implements javax.servlet.Servlet, and the one in Listing 10.4,
which extends javax.servlet.GenericServlet. Which one is
simpler?

Listing 10.3: The TediousServlet class

package test;

import java.io.IOException;

import javax.servlet.Servlet;

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;

public class TediousServlet implements
Servlet {
@Override
public void init(ServletConfig
config)
throws ServletException {

@Override
public void service(ServletRequest
request,
ServletResponse response)
throws ServletException,
TIOException {

response.getWriter().print("wWelcome");

}

@Override
public void destroy() {

}

@Override
public String getServletInfo() {
return null;

@Override

public ServletConfig
getServletConfig() {
return null;

Listing 10.4: The FunServlet class

package test;

import java.io.IOException;

import javax.servlet.GenericServlet;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;

public class FunServlet extends
GenericServlet {
@Override
public void service(ServletRequest
request,
ServletResponse response)
throws ServletException,
TOException {

response.getWriter().print("welcome");

}

Abstract Classes

With the interface, you have to write an implementation class
that perform the actual action. If there are many abstract
methods in the interface, you risk wasting time overriding
methods that you don’t use. An abstract class has a similar role
to an interface, i.e. provide a contract between a service provider
and its clients, but at the same time an abstract class can provide
partial implementation. Methods that must be explicitly
overridden can be declared abstract. You still need to create an
implementation class because you cannot instantiate an abstract
class, but you don’t need to override methods you don’t want to
use or change.

You create an abstract class by using the abstract modifier in
the class declaration. To make an abstract method, use the
abstract modifier in front of the method declaration. Listing
10.5 shows an abstract DefaultPrinter class as an example.

Listing 10.5: The DefaultPrinter class

package applo;
public abstract class DefaultPrinter {
@Override
public String toString() {
return "Use this to print
documents.";

b
public abstract void print(Object

document);

}

There are two methods in DefaultPrinter, toString and
print. The toString method has an implementation, so you do
not need to override this method in an implementation class,
unless you want to change its return value. The print method is
declared abstract and does not have a body. Listing 10.6 presents
a MyPrinterClass class that is the implementation class of
DefaultPrinter.

Listing 10.6: An implementation of
DefaultPrinter

package applo;
public class MyPrinter extends
DefaultPrinter {
@Override
public void print(Object document) {
System.out.println("Printing
document");
// some code here

A concrete implementation class such as MyPrinter must
override all abstract methods. Otherwise, it itself must be
declared abstract.

Declaring a class abstract is a way to tell the class user that you
want them to extend the class. You can still declare a class
abstract even if it does not have an abstract method.

In UML class diagrams, an abstract class looks similar to a
concrete class, except that the name is italicized. Figure 10.3
shows an abstract class.

LipntStrean:

Figure 10.3: An abstract class

Summary

The interface plays an important role in Java because it defines a
contract between a service provider and its clients. This chapter
showed you how to use the interface. A base class provides a
generic implementation of an interface and expedites program
development by providing default implementation of code.

An abstract class is like an interface, but it may provide

implementation of some of its methods.

Quiz

1. Why is it more appropriate to regard an
interface as a contract than as a
implementation-less class?

2. What is a base class?

3. What is an abstract class?

4. Is a base class the same as an abstract
class?

5. Create an interface named Calculator in
com.example with three methods, add,
subtract and multiply. All methods take
two int arguments and return a long.

6. Write an implementation of Calculator
called ScientificCalculator and
implement all the methods.

Chapter 11
Polymorphism

Polymorphism is the hardest concept to explain to those new to
object-oriented programming (OOP). In fact, most of the time its
definition does not make sense without an example or two. Well,
try this. Here is a definition in many programming books:
Polymorphism is an OOP feature that enables an object to
determine which method implementation to invoke upon
receiving a method call. If you find this hard to digest, you’re not
alone. Polymorphism is hard to explain in simple language, but it
does not mean the concept is hard to understand.

This chapter starts with a simple example that should make
polymorphism crystal clear. It then proceeds with another
example that demonstrates the use of polymorphism with
reflection.

Overview

In Java and other OOP languages, it is legal to assign to a

reference variable an object whose type is different from the
variable type, if certain conditions are met. In essence, if you
have a reference variable a whose type is A, it is legal to assign
an object of type B, like this

A a = new B();

provided one of the following conditions is met.

e A isaclass and B is a subclass of A.

e A s an interface and B or one of its parents implements A.

As you have learned in Chapter 7, “Inheritance,” this is called
upcasting.

When you assign a an instance of B like in the code above, a is
of type A. This means, you cannot call a method in B that is not
defined in A. However, if you print the value of
a.getClass().getName(), you'll get “B” and not “A.” So, what
does this mean? At compile time, the type of a is A, so the
compiler will not allow you to call a method in B that is not
defined in A. On the other hand, at runtime the type of a is B, as
proven by the return value of a.getClass().getName().

Now, here comes the essence of polymorphism. If B overrides
a method (say, one named play) in A, calling a.play() will cause

the implementation of play in B (and not in A) to be invoked.
Polymorphism enables an object (in this example, the one
referenced by a) to determine which method implementation to
choose (either the one in A or the one in B) when a method is
called. Polymorphism dictates that the implementation in the
runtime object be invoked. But, polymorphism does not stop
here.

What if you call another method in a (say, a method called
stop) and the method is not implemented in B? The JVM will be
smart enough to know this and look into the inheritance
hierarchy of B. B, as it happens, must be a subclass of A or, if A
is an interface, a subclass of another class that implements A.
Otherwise, the code would not have compiled. Having figured
this out, the JVM will climb up the class hierarchy and find the
implementation of stop and run it.

Now, there is more sense in the definition of polymorphism:
Polymorphism is an OOP feature that enables an object to
determine which method implementation to invoke upon
receiving a method call.

Technically, though, how does Java achieve this? The Java
compiler, as it turns out, upon encountering a method call such
as a.play(), checks if the class/interface represented by a
defines such a method (a play method) and if the correct set of
parameters are passed to the method. But, that is the farthest the
compiler goes. With the exception of static and final methods, it
does not connect (or bind) a method call with a method body.

The JVM determines how to bind a method call with the method
body at runtime. In other words, except for static and final
methods, method binding in Java happens at runtime and not at
compile time. Runtime binding is also called late binding or
dynamic binding. The opposite is early binding, in which binding
occurs at compile time or link time. Early binding occurs in other
languages, such as C.

Therefore, polymorphism is made possible by the late binding
mechanism in Java. Because of this, polymorphism is rather
inaccurately also called late binding, dynamic binding or runtime
binding in other languages.

Consider the Java code in Listing 11.1.

Listing 11.1: An example of
polymorphism

package applil;
class Employee {
public void work() {
System.out.println("I am an
employee.");

}

class Manager extends Employee {
public void work() {
System.out.println("I am a

manager.");

}

public void manage() {
System.out.println("Managing

...n);
¥

public class PolymorphismbDemol {
public static void main(String[]
args) {
Employee employee;
employee = new Manager();

System.out.println(employee.getClass().ge
tName());

employee.work();

Manager manager = (Manager)
employee;

manager .manage();

Listing 11.1 defines two non-public classes: Employee and
Manager. Employee has a method called work, and
Manager extends Employee and adds a new method called
manage.

The main method in the PolymorphismDemo1 class
defines an object variable called employee of type Employee:

Employee employee;

However, employee is assigned an instance of Manager, as in:

employee = new Manager();

This is legal because Manager is a subclass of Employee, so a
Manager “is an” Employee. Because employee is assigned an
instance of Manager, what is the outcome of
employee.getClass().getName()? You're right. It’s
“Manager,” not “Employee.”

Then, the work method is called.

employee.work();

Guess what is written on the console?

I am a manager.

This means that it is the work method in the Manager class

that got called, which was polymorphism in action.

Note

Polymorphism does not work with static methods because they are early-
bound. For example, if the work method in both the Employee and
Manager classes were static, a call to employee.work() would print “I
am an employee.”

Also, since you cannot extend final methods, polymorphism will not work
with final methods either.

Now, because the runtime type of a is Manager, you can
downcast a to Manager, as the code shows:

Manager manager = (Manager) employee;
manager .manage();

After seeing the code, you might ask, why would you declare
employee as Employee in the first place? Why didn’t you
declare employee as type Manager, such as this?

Manager employee;
employee = new Manager();

You do this to ensure flexibility in cases where you don’t know
whether the object reference (employee) will be assigned an

instance of Manager or something else.

The power of polymorphism will be more apparent in the
example in the next section.

Polymorphism in Action

Suppose you have a Greeting interface that defines an abstract
method named greet. This simple interface is given in Listing
11.2.

Listing 11.2: The Greeting interface

package appli;
public interface Greeting {
public void greet();

The Greeting interface can be implemented to print a greeting
in different languages. For example, the EnglishGreeting class
in Listing 11.3 and the FrenchGreeting class in Listing 11.4
implement Greeting to greet the user in English and French,
respectively.

Listing 11.3: The EnglishGreeting class

package appli;

public class EnglishGreeting implements
Greeting {

@Override
public void greet() {
System.out.println("Good Day!");

Listing 11.4: The FrenchGreeting class

package appli;

public class FrenchGreeting implements
Greeting {

@Override
public void greet() {
System.out.println("Bonjour!");

The PolymorphismDemo2 class in Listing 11.5 shows
polymorphism in action. It asks the user in what language they
want to be greeted. If the user chooses English, then the

EnglishGreeting class will be instantiated. If French is
selected, FrenchGreeting will be instantiated. This is
polymorphism because the class to be instantiated is only known
at runtime, after the user types in a selection.

Listing 11.5: The PolymorphismDemo2
class

package applil,;
import java.util.Scanner;

public class PolymorphismbDemo2 {

public static void main(String[]
args) {
String instruction = "What 1is
your chosen language?" +
"\nType 'English' or
'"French'.";
Greeting greeting = null;
Scanner scanner = new
Scanner (System.in);
System.out.println(instruction);
while (true) {
String input =
scanner.next();
if
(input.equalsIgnoreCase("english")) {

greeting = new
EnglishGreeting();
break;
} else if
(input.equalsIgnoreCase("french")) {
greeting = new
FrenchGreeting();
break;
} else {

System.out.println(instruction);

}

scanner.close();
greeting.greet();

Polymorphism and Reflection

Polymorphism is often used along with reflection. Consider this

scenario.

The Order Processing application is a business application for
handling purchase orders. It can store orders in various

databases (Oracle, MySQL, etc) and retrieve orders for display.
The Order class represents purchase orders. Orders are stored
in a database and an OrderAccessObject object handles the
storing and retrieval of Order objects.

The OrderAccessObject class acts as an interface between
the application and the database. All purchase order
manipulations are done through an instance of this class. The
OrderAccessObject interface is given in Listing 11.6.

Listing 11.6: The OrderAccessObject
Interface

package applil;

public interface OrderAccessObject {
public void addOrder(Order order);
public void getOrder(int orderId);

The OrderAccessObject interface needs an implementation
class that provides code for the two methods in it. The
application may have many implementation classes for
OrderAccessObject, each of which caters to a specific type of
database. For example, the implementation class that connects
to an Oracle database is called OracleOrderAccessObject
class and the one for MySQL is MySQLOrderAccessObject.
Figure 11.1 shows the UML diagram for OrderAccessObject
and its implementing classes.

Figure 11.1: The OrderAccessObject
interface and implementing classes

The need for multiple implementing classes arises from the fact
that each database could have a specific command for
performing certain function. For example, autonumbers are
common in MySQL, but do not exist in Oracle.

The Order Processing application needs to be flexible enough
that it can work with a different database without recompilation.
It should also be possible to add support for a new database in
the future without recompilation. In fact, you just need to specify
the implementing class of OrderAccessObject when invoking
the application. For example, to use an Oracle database you
specify this

java OrderProcessing
com.example.OracleOrderAccessObject

And to work with MySQL, you call it using this command:

java OrderProcessing
com.example.MySqlOrderAccessObject

Now, here is the part of the code that instantiates an
OrderAccessObject in the database:

public static void main (String[] args) {
OrderAccessObject accessObject =
null;
Class klass = null;

try {
klass = Class.forName(args[0]);
accessObject =

(OrderAccessObject) klass.newInstance();
} catch (ClassNotFoundException e) {
} catch (Exception e) {

}

// continue here

This is polymorphism because the accessObject reference
variable can be assigned a different object type each time.

Note

The forName and newInstance methods are explained in the section
“java.lang.Class” in Chapter 5, “Core Classes.”

Summary

Polymorphism is one of the main pillars in object-oriented
programming. It is useful in circumstances where the type of an
object is not known at compile time. This chapter has
demonstrated polymorphism through several examples.

Quiz

1. In your own words, describe
polymorphism.
2. In what situations is polymorphism most

useful?

Chapter 12

Enums

In Chapter 2, “Language Fundamentals” you learned that you
sometimes use static final fields as enumerated values. Java 5
added a new type, enum, for enumerating values. You will learn
how to create and use enums in this chapter.

Overview

You use an enum to create a set of valid values for a field or a
method. For example, in a typical application, the only possible
values for the customer type are Individual or Organization.
For a State field, valid values may be all the states in the US plus
Canadian provinces, and probably some others. With an enum,
you can easily restrict your program to take only one of the valid
values.

The enum type can stand alone or can be part of a class. You
make it stand alone if it needs to be referenced from multiple
places in your application. If it is only used from inside a class,

an enum is better made part of the class.

As an example, consider the CustomerType enum definition
in Listing 12.1.

Listing 12.1: The CustomerType enum

package appl2;

public enum CustomerType {
INDIVIDUAL,
ORGANIZATION

The CustomerType enum has two enumerated values:
INDIVIDUAL and ORGANIZATION. Enum values are case
sensitive and by convention are capitalized. Two enum values are
separated by a comma and values can be written on a single line
or multiple lines. The enum in Listing 12.1 is written in multiple
lines to improve readability.

Internally, enum constants are given ordinal values that are
integers starting with zero for the first constant. In case of the
CustomerType enum, INDIVIDUAL is given the ordinal
value 0 and ORGANIZATION the ordinal value 1. Enum
ordinal values are rarely used.

Using an enum is like using a class or an interface. For
example, the Customer class in Listing 12.2 uses the

CustomerType enum as a field type.

Listing 12.2: The Customer class that
uses CustomerType

package appl2;

public class Customer {
public String customerName;
public CustomerType customerType;
public String address;

You can use an enum constant just as you would a class’s static
member. For example, this code illustrates the use of
CustomerType.

Customer customer = new Customer();
customer.customerType =
CustomerType.INDIVIDUAL;

Notice how the customerType field of the Customer object is
assigned the enumerated value INDIVIDUAL of the
CustomerType enum? Because the customerType field is of
type CustomerType, it can only be assigned a value of the
CustomerType enum.

The use of an enum at first glance is no different than the use
of static finals. However, there are some basic differences
between an enum and a class incorporating static finals.

Static finals are not a perfect solution for something that
should accept only predefined values. For example, consider the
CustomerTypeStaticFinals class in Listing 12.3.

Listing 12.3: Using static finals

package appl2;
public class CustomerTypeStaticFinals {
public static final int INDIVIDUAL =
1;
public static final int ORGANIZATION
= 2;

Suppose you have a class named OldFashionedCustomer
that resembles the Customer class in Listing 12.2, but uses an
int for its customerType field.

The following code creates an instance of
OldFashionedCustomer and assigns a value to its
customerType field:

OldFashionedCustomer ofCustomer = new

OldFashionedCustomer();
ofCustomer.customerType = 5;

Notice that there is nothing preventing you from assigning an
invalid integer to customerType? In guaranteeing that a
variable is assigned only a valid value, enums are better than
static finals.

Another difference is that an enumerated value is an object.
Therefore, it is compiled to a .class file and behaves like an
object. For example, you can use it as a Map key. The section,
“The Enum Class” discusses enums as objects in detail.

Enums in a Class

You can use enums as members of a class. You use this approach
if the enum is only used internally inside the class. For example,
the Shape class in Listing 12.4 defines a ShapeType enum.

Listing 12.4: Using an enum as a class
member

package appl2;
public class Shape {
private enum ShapeType {
RECTANGLE, TRIANGLE, OVAL

Iy
private ShapeType type =
ShapeType.RECTANGLE;
public String toString() {
if (this.type ==
ShapeType.RECTANGLE) {
return "Shape 1is rectangle";
b
if (this.type ==
ShapeType.TRIANGLE) {
return "Shape is triangle";

}

return "Shape is oval";

The java.lang.Enum Class

When you define an enum, the compiler creates a class definition
that extends the java.lang.Enum class. This class is a direct
descendant of java.lang.Object. Unlike ordinary classes,
however, an enum has the following properties:

e There is no public constructor, making it impossible to
instantiate.

o It is implicitly static
e There is only one instance for each enum constant.

¢ You can call the method values on an enum in order to
iterate its enumerated values. This method returns an array
of objects. If you call getClass().getName() on these
objects, they will return the Java qualified name of the
enum. See the next section “Iterating Enumerated Values”
for more details on this.

¢ You can call the name and ordinal method on an object
returned by values to get the name and ordinal value of the
instance, respectively.

Iterating Enumerated Values

You can iterate the values in an enum using the for loop
(discussed in Chapter 3, “Statements”). You first need to call the
values method that returns an array-like object that contains all
values in the specified enum. Using the CustomerType enum
in Listing 12.1, you can use the following code to iterate over it.

for (CustomerType customerType
CustomerType.values()) {
System.out.println(customerType);

This prints all values in CustomerType, starting from the first
value. Here is the result:

INDIVIDUAL
ORGANIZATION

Switching on Enum

The switch statement can also work on enumerated values of an
enum. Here is an example using the CustomerType enum in
Listing 12.1 and the Customer class in Listing 12.2:

Customer customer = new Customer();
customer.customerType =
CustomerType.INDIVIDUAL;

switch (customer.customerType) {
case INDIVIDUAL:
System.out.println("Customer Type:
Individual");
break;
case ORGANIZATION:
System.out.println("Customer Type:
Organization");

break;

Note that you must not prefix each case with the enum type. The
following would raise a compile error:

case CustomerType.INDIVIDUAL:
//

case CustomerType.ORGANIZATION:
//

Enum Members

Since an enum is technically a class, an enum can have
constructors and methods. If it has constructors, their access
levels must be either private or default. If an enum definition
contains something other than constants, the constants must be
defined before anything else and the last constant be terminated
with a semicolon.

As an example, the Weekend enum in Listing 12.3 contains a
private constructor, a toString method and a static main
method for testing.

Listing 12.3: The Weekend enum

package appl2;

public enum Weekend {
SATURDAY,
SUNDAY ;

private Weekend() {
b

@Override
public String toString() {
return "Fun day " +

(this.ordinal() + 1);
b

public static void main(String[]
args) {
// print class name
System.out.println(

Weekend.SATURDAY.getClass().getName());
for (Weekend w :

Weekend.values()) {
System.out.println(w.name() +

L1 mn + W)-
" 14

}

If you run this enum, it will print the following on the console.

appl2.weekend
SATURDAY: Fun day 1
SUNDAY: Fun day 2

You can pass values to a constructor, in which case the constants
must be accompanied by arguments for the constructor. As
another example, Listing 12.4 shows a FuelEfficiency enum
with a constructor that takes two ints, the minimum MPG (miles
per gallon) and the maximum MPG. These values are assigned to
private fields min and max. Each of the three constants,
EFFICIENT, ACCEPTABLE and GAS_GUZZLER, are
accompanied by two ints to be passed to the constructor. The
getMin and getMax methods return the minimum and
maximum MPGs.

Listing 12.4: The FuelEfficiency enum

package com.example;

public enum FuelEfficiency {
EFFICIENT(33, 55),
ACCEPTABLE (20, 32),

GAS_GUZZLER(1, 19);

private int min;
private int max;

FuelEfficiency(int min, int max) {
this.min = min;
this.max = max;

public int getMin() {
return this.min;

public int getMax() {
return this.max;

See the Quiz for an example of how to use the enum.

Summary

Java supports enum, a special class that is a subclass of
java.lang.Enum. Enum is preferred over static finals because it
is more secure. You can switch on an enum and iterate its values

by using the values method in an enhanced for loop.

Quiz

1. How do you write an enum?

2. Why are enums safer than static final
fields?

3. Write an abstract Car class that has two
fields, name (of type String) and
fuelEfficiency (of type FuelEfficiency
given in Listing 12.4) and methods for
calculating the minimum and maximum
gas usage for a given distance (in miles).
Next, write three child classes,
EfficientCar, AcceptableCar and
GasGuzzler. The constructor of each of
this suclasses takes a name and sets the
fuelEfficiency field. Finally, write a class
to test it.

Chapter 13

Working with Dates and
Times

Support for dates and times has been available since Java
version 1.0, mainly through the java.util.Date class. However,
Date was poorly designed. For examples, months in Date start
at 1 but days start at 0. A lot of its methods were deprecated in
JDK 1.1 at the same time the java.util.Calendar was brought
in to take over some of the functionality in Date. The duo were
the main classes for dealing with dates and times, right up to
JDK 1.7, even though they had been considered inadequate and
not easy to work with, causing many to resort to third party
alternatives such as Joda Time (http://joda.org). The new Date
and Time API in JDK 1.8 resolves many of the issues in the old
API and is similar to the Joda Time API.

This chapter primarily covers the JDK 1.8 Date-Time API.
However, since Date and Calendar have been used for decades
in countless Java projects, they too will be discussed so that you
will be ready to tackle dates and times in pre-JDK 1.8 projects.

Overview

The new Date and Time API makes it extremely easy to work
with dates and times. The java.time package contains the core
classes in the API. In addition, there are four other packages
whose members are used less often: java.time.chrono,
java.time.format, java.time.temporal and
java.time.zone.

Within the java.time package, the Instant class represents a
point on the time-line and is often used to time an operation.
The LocalDate class models a date without the time component
and time zone, suitable, for example, to represent a birthday.

If you need a date as well as a time, then LocalDateTime is
for you. For instance, an order shipping date probably requires a
time in addition to a date to make the order easier to track. If you
need a time but do not care about the date, then you can use
LocalTime.

On top of that, if a time zone is important, the Date and Time
API provides the ZonedDateTime class. As the name implies,
this class models a date-time with a time zone. For instance, you
can use this class to calculate the flight time between two
airports located in different time zones.

Then there are two classes for measuring an amount of time,

Duration and Period. These two are similar except that
Duration is time-based and Period is date-based. Duration
provides a quantity of time to nanosecond precision. This class is
good, for example, to model a flight time as it is often given in
the number of hours and minutes. On the other hand, Period is
suitable when you are only concerned with the number of days,
months or years, such as when calculating your father’s age.

The java.time package also comes with two enums,
DayOfWeek and Month. DayOfWeek represents the day of
the week, from MONDAY to SUNDAY. The Month enum
represents the twelve months of the year, from JANUARY to
DECEMBER.

Working with dates and times frequently involves parsing and
formatting. The Date and Time API addresses these two issues
by providing parse and format methods in all its major classes.
In addition, the java.time.format contains a
DateTimeFormatter class for formatting dates and times.

The Instant Class

An Instant object represents a point on the time-line. The
reference point is the standard Java epoch, which is 1970-01-
01T00:00:00Z (January 1, 1970 00:00 GMT). The EPOCH field
of the Instant class returns an Instant representing the Java
epoch. Instants after the epoch have positive values and instants

prior to that have negative values.

The static method now of Instant returns an Instant object
that represents the current time:

Instant now = Instant.now();

The getEpochSecond method returns the number of seconds
that have elapsed since the epoch. The getNano method returns
the number of nanoseconds since the beginning of the last
second.

A popular use of the Instant class is to time an operation, as
demonstrated in Listing 13.1.

Listing 13.1: Using Instant to time an
operation

package appl3;
import java.time.Duration;
import java.time.Instant;

public class InstantDemol {
public static void main(String[]
args) {
Instant start = Instant.now();
// do something here

Instant end = Instant.now();

System.out.println(Duration.between(start
, end).toMillis());

}

As shown in Listing 13.1, the Duration class is used to return
the difference between two Instants. You will learn more about
Duration later in this chapter.

LocalDate

The LocalDate class models a date without a time component.
It also has no time zone. Table 13.1 shows some of the more
important methods in LocalDate.

Method Description

now A static method that returns
today’s date.

A static method that creates a
LocalDate from the

of
specified year, month and
date.
tDavOfMonth Returns the day, month or
getbay onth,

getMonthValue, getYear

year part of this LocalDate
as an int.

getMonth

Returns the month of this
LocalDate as a Month
enum constant.

plusDays, minusDays

Adds or subtracts the given
number of days to or from
this LocalDate.

Adds or subtracts the given
plusWeeks, minusWeeks number of weeks to or from
this LocalDate.

Adds or subtracts the given
plusMonths, minusMonths number of months to or from
this LocalDate.

Adds or subtracts the given
plusYears, minusYears number of years to or from
this LocalDate.

_ Checks if the year specified by
1sLeapYear))
this LocalDate is a leap year.

isAfter, isBefore

Checks if this LocalDate is
after or before the given date.

lengthOfMonth

Returns the number of days
in the month in this
LocalDate.

withDayOfMonth

Returns a copy of this
LocalDate with the day of
month set to the given value.

withMonth

Returns a copy of this
LocalDate with the month
set to the given value.

Returns a copy of this

withYear LocalDate with the year set
to the given value.

Table 13.1: More important methods of
LocalDate

LocalDate offers various methods to create a date. For
example, to create a LocalDate that represents today’s date, use
the static method now.

LocalDate today = LocalDate.now();

To create a LocalDate that represents a specific year, month
and day, use its of method, which is also static. For instance, the
following snippet creates a LocalDate that represents
December 31, 2015.

LocalDate endOfYear = LocalDate.of (2015,
12, 31);

The method of has another override that accepts a constant of
the java.time.Month enum as the second argument. For
example, here is the code to construct the same date using the

second method override.

LocalDate endOfYear = LocalDate.of (2015,
Month.DECEMBER, 31);

There are also methods for obtaining the day, month or year of a
LocalDate, such as getDayOfMonth, getMonth,
getMonthValue and getYear. They all do not take any
argument and either return an int or a Month enum constant.
In addition, there is a get method that takes a TemporalField
and returns a part of this LocalDate. For example, passing
ChronoField.YEAR to get returns the year component of a
LocalDate.

int year =
localDate.get(ChronoField.YEAR));

ChronoField is an enum that implements the TemporalField
interface, therefore you can pass a ChronoField constant to
get. Both TemporalField and ChronoField are part of the
java.time.temporal package. However, not all constants in
ChronoField can be passed to get as not all of them are
supported. For example, passing
ChronoField.SECOND_OF_DAY to get throws an
exception. As such, instead of get, it is better to use getMonth,
getYear or a similar method to obtain a component of a

LocalDate.

In addition, there are methods for copying a LocalDate, such
as plusDays, plusYears, minusMonths, and so on. For
example, to get a LocalDate that represents tomorrow, you can
create a LocalDate that represents today and then calls its
plusDays method.

LocalDate tomorrow =
LocalDate.now().plusDays(1);

To get a LocalDate that represents yesterday, you can use the
minusDays method.

LocalDate yesterday =
LocalDate.now().minusDays(1);

In addition, there are plus and minus methods to get a copy of
a LocalDate in a more generic way. Both accept an int and a
TemporalUnit. The signatures of these methods are as follows.

public LocalDate plus(long amountToAdd,
java.time.temporal.TemporalUnit

unit)

public LocalDate minus(long

amountToSubtract,
java.time.temporal.TemporalUnit
unit)

As an example, to get a LocalDate that represents a past date
exactly two decades ago from today, you can use this code.

LocalDate pastDate =
LocalDate.now().minus(2,
ChronoUnit.DECADES);

ChronoUnit is an enum that implements TemporalUnit, so
you can pass a ChronoUnit constant to the plus or minus
method.

A LocalDate is immutable and therefore cannot be changed.
Any method that returns a LocalDate returns a new instance of
LocalDate.

Listing 13.2 shows an example of LocalDate.

Listing 13.2: LocalDate example

package appl3;

import java.time.LocalDate;

import java.time.temporal.ChronoField;
import java.time.temporal.ChronoUnit;

public class LocalDateDemol {
public static void main(String[]
args) {
LocalDate today =
LocalDate.now();
LocalDate tomorrow =
today.plusDays(1);
LocalDate oneDecadeAgo =
today.minus(1,
ChronouUnit.DECADES);
System.out.println("Day of month:

+ today.getDayOfMonth());
System.out.println("Today is " +
today);
System.out.println("Tomorrow is "
+ tomorrow);
System.out.println("A decade ago
was " + oneDecadeAgo);
System.out.println("Year : "
+
today.get(ChronoField.YEAR));
System.out.println("Day of year:"
+ today.getDayOfYear());

}

Period

The Period class models a date-based amount of time, such as
five days, a week or three years. Some of its more important
methods are presented in Table 13.2.

Method Description

Creates a Period between
between
two LocalDates.

Creates a Period

ofDays, ofWeeks, ofMonths, representing the given
ofYears number of
days/weeks/months/years.

of

Creates a Period from the
given numbers of years,
months and days.

getDays, getMonths, getYears

Returns the number of
days/months/years of this
period as an int.

Returns true if any of the
three components of this

isNegative . 4. :
Period is negative. Returns
false otherwise.
Returns true if all of the
, three components of this
1SZ.ero

Period are zero. Otherwise,
returns false.

Adds or subtracts the given

plusDays, minusDays number of days to or from

this Period.

Adds or subtracts the given
plusMonths, minusMonths number of months to or from
this Period.

Adds or subtracts the given
plusYears, minusYears number of years to or from
this Period.

Returns a copy of this Period
withDays with the specified number of
days.

Returns a copy of this Period
withMonths with the specified number of
months.

Returns a copy of this Period
withYears with the specified number of
years.

Table 13.2 More important methods of
Period

Creating a Period is easy, thanks to the static factory methods
between, of, and ofDays/ofWeeks/ofMonths/ofYears. For
example, here is how you create a Period representing two
weeks.

Period twoWeeks = Period.ofWeeks(2);

To create a Period representing one year, two months and three
days, use the of method.

Period p = Period.of(1, 2, 3);

To obtain the year/month/day component of a Period, call its
getYears/getMonths/getDays method. For instance, the
howManyDays variable in the following code snippet will have
a value of 14.

Period twoWeeks Period.ofWeeks(2);
int howManyDays = twoWeeks.getDays();

Finally, you can create a copy of a Period using the plus XXX
or minusXXX methods as well as one of the with XXX
methods. A Period is immutable so these methods return new
Period instances.

As an example, the code in Listing 13.3 shows an age
calculator that calculates a person’s age. It creates a Period
from two LocalDates and calls its getDays, getMonths, and
getYears methods.

Listing 13.3: Using Period

package appl3;
import java.time.LocalDate;
import java.time.Period;

public class PeriodDemol {
public static void main(String[]
args) {
LocalDate dateA =
LocalDate.of (1978, 8, 26);
LocalDate dateB =
LocalDate.of (1988, 9, 28);
Period period =
Period.between(dateA, dateB);
System.out.printf("Between %s and
%S "
+ " there are %d years,
%d months"
+ " and %d days%n",
dateA, dateB,
period.getYears(),
period.getMonths(),
period.getDays());

When run, the PeriodDemo1 class in Listing 13.3 will print this
string.

Between 1978-08-26 and 1988-09-28 there
are 10 years, 1 months and 2
days

LocalDateTime

The LocalDateTime class models a date-time without a time
zone. Table 13.3 shows some of the more important methods in
LocalDateTime. The methods are similar to those of
LocalDate plus some other methods for modifying the time
component, such as plusHours, plusMinutes and
plusSeconds, that are not available in LocalDate.

Method Description

A static method that returns

now)
the current date and time.
A static method that creates a
LocalDateTime from the
of specified year, month, date,

hour, minute, second and

millisecond.

getYear, getMonthValue,
getDayOfMonth, getHour,
getMinute, getSecond

Returns the year, month, day,
hour, minute or second part
of this LocalDateTime as
an int.

plusDays, minusDays

Adds or subtracts the given
number of days to or from the
current LocalDateTime.

plusWeeks, minusWeeks

Adds or subtracts the given
number of weeks to or from
the current LocalDateTime.

plusMonths, minusMonths

Adds or subtracts the given
number of months to or from

the current LocalDateTime.

plusYears, minusYears

Adds or subtracts the given
number of years to or from
the current LocalDateTime.

plusHours, minusHours

Adds or subtracts the given
number of hours to or from
the current LocalDateTime.

plusMinutes, minusMinutes

Adds or subtracts the given
number of minutes to or from
the current LocalDateTime.

plusSeconds, minusSeconds

Add or subtracts the given
number of seconds to or from
the current LocalDateTime.

IsAfter, isBefore

Checks if this
LocalDateTime is after or
before the given date-time.

withDayOfMonth

Returns a copy of this
LocalDateTime with the
day of month set to the given
value.

withMonth, withYear

Returns a copy of this
LocalDateTime with the
month or year set to the given
value.

withHour, withMinute,

Returns a copy of this
LocalDateTime with the

withSecond hour/minute/second set to
the given value.

Table 13.3: More important methods of
LocalDateTime

LocalDateTime offers various static methods to create a date-
time. The method now comes with three overrides and return
the current date-time. The no-argument override is the easiest to
use:

LocalDateTime now = LocalDateTime.now();

To create a LocalDateTime with a specific date and time, use
the of method. This method has a number of overrides and
allows you to pass the individual component of a date-time or a
LocalDate and a LocalTime. Here are the signatures of some
of the of methods.

public static LocalDateTime of(int year,
int month, int dayOfMonth,

int hour, int minute)
public static LocalDateTime of(int year,
int month, int dayOfMonth,

int hour, int minute)
public static LocalDateTime of(int year,
Month month,

int dayOfMonth, int hour, int
minute)
public static LocalDateTime of(int year,
Month month,

int dayOfMonth, int hour, int
minute)
public static LocalDateTime of(LocalDate
date, LocalTime time)

For instance, the following snippet creates a LocalDateTime
that represents December 31, 2015 at eight o’clock in the

morning.

LocalDateTime endOfYear =
LocalDateTime.of (2015, 12, 31, 8, 0),

You can create a copy of a LocalDateTime using the plus XXX
or minusXXX method. For example, this code creates a
LocalDateTime that represents the same time tomorrow.

LocalDateTime now = LocalDateTime.now();
LocalDateTime sameTimeTomorrow =
now.plusHours(24);

Time Zones

The Internet Assigned Numbers Authority (IANA) maintains a
database of time zones that you can download from this web

page:

http://www.lana.org/time-zones

For easy viewing, however, you can just visit this Wikipedia
page:

http://en.wikipedia.org/wiki/List_of_tz_d
atabase_time_zones

The Java Date and Time API caters for time zones too. The
abstract class Zoneld (in the java.time package) represents a
zone identifier. It has a static method called
getAvailableZonelds that returns all zone identifiers. Listing
13.4 shows how you can print a sorted list of all time zones using
this method.

Listing 13.4: Listing all zone identifiers

package appl3;

import java.time.Zoneld,;
import java.util.ArraylList;
import java.util.Collections;
import java.util.List;

import java.util.Set;

public class TimeZoneDemol {
public static void main(String[]
args) {
Set<String> allZonelds =
Zoneld.getAvailablezZonelds();
List<String> zonelList = new
ArrayList<>(allZonelds);

Collections.sort(zonelList);
for (String zoneld : zonelList) {
System.out.println(zoneld);

}

// alternatively, you can use
this line of code to

// print a sorted list of zone
ids

//
Zoneld.getAvailablezZonelIds().stream().sor
ted().

//
forEach(System.out: :println);

getAvailableZonelds returns a Set of Strings. You can sort
the Set using Collections.sort() or more elegantly by calling
its stream method. You could have written this code to sort the
zone identifiers.

Zoneld.getAvailablezZonelIds().stream().sor
ted()
.forEach(System.out: :println);

Chapter 20, “Working with Streams” explains what streams are.

getAvailableZonelds returns a Set of 586 zone identifiers.
Here are some of the zone identifiers from the code above.

Africa/Cairo
Africa/Johannesburg
America/Chicago
America/Los_Angeles
America/Mexico_City
America/New_York
America/Toronto
Antarctica/South_Pole
Asia/Hong_Kong

Asia/Shanghai
Asia/Tokyo
Australia/Melbourne
Australia/Sydney
Canada/Atlantic
Europe/Amsterdam
Europe/London
Europe/Paris
US/Central
US/Eastern
US/Pacific

ZonedDateTime

The ZonedDateTime class models a date-time with a time
zone. For example, the following is a zoned date-time:

2015-12-31T10:59:59+01:00 Europe/Paris

A ZonedDateTime is always immutable and the time
component is stored to nanosecond precision.

Table 13.4 shows the more important methods in
ZonedDateTIme.

Method

Description

A static method that returns

Nnow the current date and time of
the system’s default zone.
A static method that creates a
” ZonedDateTime from the
0

specified date-time and zone
identifier.

getYear, getMonthValue,
getDayOfMonth, getHour,
getMinute, getSecond,
getNano

Returns the year, month, day,
hour, minute, second or
nanosecond part of this
ZoneDateTime as an int.

Adds or subtracts the given

, number of days to or from the
plusDays, minusDays]
current ZonedDateTime.

Adds or subtracts the given
, number of weeks to or from
plusWeeks, minusWeeks
the current

ZonedDateTime.

Adds or subtracts the given

, number of months to or from
plusMonths, minusMonths
the current

ZonedDateTime.

Adds or subtracts the given
: number of years to or from
plusYears, minusYears
the current

ZonedDateTime.

Adds or subtracts the given
, number of hours to or from
plusHours, minusHours
the current

ZonedDateTime.

Adds or subtracts the given

))) number of minutes to or from
plusMinutes, minusMinutes
the current

ZonedDateTime.

Add or subtracts the given

, number of seconds to or from
plusSeconds, minusSeconds
the current

ZonedDateTime.

Checks if this

ZonedDateTime is after or

IsAfter, isBefore before the given zoned date-

time.

getZone

Returns the zone ID of this
ZonedDateTime.

withYear, withMonth,
withDayOfMonth

Returns a copy of this
ZonedDateTime with the
year/month/day of month set
to the given value.

withHour, withMinute,
withSecond

Returns a copy of this
ZonedDateTime with the
hour/minute/second set to
the given value.

withNano

Returns a copy of this
ZonedDateTime with the

nanosecond set to the given
value.

Table 13.4: More important methods of
ZonedDateTime

Like LocalDateTime, the ZonedDateTime class offers the
static methods now and of to construct a ZonedDateTime.
now creates a ZonedDateTime representing the date and time
of execution. The no-argument override of now creates a
ZonedDateTime with the computer’s default time zone.

ZonedDateTime now = ZonedDateTime.now();

Another override of now lets you pass a zone identifier:

ZonedDateTime parisTime

ZonedDateTime.now(Zoneld.of ("Europe/Paris

"))

The method of also comes with several overrides. In all cases,
you need to pass a zone identifier. The first override allows you

to pass each component of a zoned date-time, from the year to
the nanosecond.

public static ZonedDateTime of(int year,
int month, int dayOfMonth,

int hour, int minute, int second,
int nanosecond,

Zoneld zone)

The second override of of takes a LocalDate, a LocalTime and
a Zoneld:

public static ZonedDateTime of(LocalDate
date, LocalTime time,
Zoneld zone)

The last override of of takes a LocalDateTime and a Zoneld.

public static ZonedDateTime
of (LocalDateTime datetime, Zoneld zone)

Like LocalDate and LocalDateTime, ZonedDateTime
offers methods to create a copy of an instance using the
plus XXX, minusXXX and withXXX methods.

For instance, these lines of code creates a ZonedDateTime
with the default time zone and calls its minusDays method to
create the same ZonedDateTime three days earlier.

ZonedDateTime now = ZonedDateTime.now();
ZonedDateTime threeDaysEarlier =
now.minusDays(3);

Duration

The Duration class models a time-based duration. It is similar
to Period except that a Duration has a time component to
nanosecond precision and takes into account the time zones
between ZonedDateTimes. Table 13.5 shows the more
important methods in Duration.

Method Description

Creates a Duration between
two temporal objects, such as

between

between two
LocalDateTimes or two
LocalZonedDateTimes.

ofYears, ofMonths, ofWeeks,
ofDays, ofHours, ofMinutes,
ofSeconds, ofNano

Creates a Duration
representing the given
number of
years/months/weeks/days/h
ours/minutes/seconds/nanos
econds.

of

Creates a Duration from the
given number of temporal
units.

toDays, toHours, toMinutes

Returns the number of
days/hours/minutes of this
Duration as an int.

Returns true if this

isNegative Duration is negative.
Returns false otherwise.
Returns true if this

isZero Duration is zero length.

Otherwise, returns false.

plusDays, minusDays

Adds or subtracts the given
number of days to or from
this Duration.

plusMonths, minusMonths

Adds or subtracts the given
number of months to or from
this Duration.

Adds or subtracts the given

number of years to or from

lusYears, minusYears .]
P ’ this Duration.

Returns a copy of this
withSeconds Duration with the specified
number of seconds.

Table 13.5: More important methods in
Duration

You can create a Duration by calling its between or of static
method. The code in Listing 13.5 creates a Duration between
two LocalDateTimes, between January 26, 2015 11:10 and
January 26, 2015 12:40.

Listing 13.5: Creating a Duration
between two LocalDateTimes

package appl3;
import java.time.Duration;
import java.time.LocalDateTime;

public class DurationDemol {

public static void main(String[]

args) {
LocalDateTime dateTimeA =

LocalDateTime
.0f (2015, 1, 26, 8, 10,
0, 0),;
LocalDateTime dateTimeB =
LocalDateTime
.0f (2015, 1, 26, 11, 40,
0, 0),;

Duration duration =
Duration.between(
dateTimeA, dateTimeB);
System.out.printf("There are %d
hours and %d minutes.%n",
duration.toHours(),
duration.toMinutes() %
60);
}

The result of running the DurationDemo1 class is this.

There are 3 hours and 30 minutes.

The code in Listing 13.6 creates a Duration between two
ZoneDateTimes, with the same date-time but different
timezones.

Listing 13.6: Creating a Duration
between two ZonedDateTimes

package appl3;

import java.time.Duration;
import java.time.LocalDateTime;
import java.time.Month;

import java.time.Zoneld,;

import java.time.ZonedDateTime;

public class DurationDemo2 {

public static void main(String]]
args) {
ZonedDateTime zdtl =
ZonedDateTime.of (
LocalDateTime.of (2015,
Month.JANUARY, 1,
8, 0),

Zoneld.of("America/Denver'"));
ZonedDateTime zdt2 =
ZonedDateTime. of (

LocalDateTime.of (2015,
Month.JANUARY, 1,
8, 0),

Zoneld.of("America/Toronto"));
Duration duration =
Duration.between(zdtl, zdt2);
System.out.printf("There are %d
hours and %d minutes.%n",
duration.toHours(),
duration.toMinutes() %
60);
b

Running the DurationDemo2 class prints this on the console.

There are -2 hours and 0 minutes.

This is expected, because there are two hours difference between
the time zones America/Denver and America/Toronto.

As a more complex example, the code in Listing 13.7 shows a
bus travel time calculator. It has one method,
calculateTravelTime, which takes a departure
ZonedDateTime and an arrival ZonedDateTime. The code
calls the calculateTravelTime method twice. Both times the

bus departs from Denver, Colorado at 8 in the morning Denver
time and arrives in Toronto at 8 in the next morning Toronto
time. The first time the bus leaves on March 8, 2014 and the
second time it leaves on March 18, 2014.

What are the travel time in both occasions?

Listing 13.7: Travel time calculator

package appl3;

import java.time.Duration;
import java.time.LocalDateTime;
import java.time.Month;

import java.time.Zoneld;

import java.time.ZonedDateTime;

public class TravelTimeCalculator {

public Duration calculateTravelTime(
ZonedDateTime departure,
ZonedDateTime arrival) {
return
Duration.between(departure, arrival);

}

public static void main(String[]
args) {
TravelTimeCalculator calculator =
new

TravelTimeCalculator();
ZonedDateTime departurel =
ZonedDateTime.of (
LocalDateTime.of (2014,
Month.MARCH, 8,
8, 0),

Zoneld.of("America/Denver'"));
ZonedDateTime arrivall =
ZonedDateTime. of (
LocalDateTime.of (2014,
Month.MARCH, 9,
8, 0),

Zoneld.of("America/Toronto"));
Duration travelTimel = calculator

.calculateTravelTime(departurel,
arrivall);
System.out.println("Travel time

+ travelTimel.toHours() +
" hours");

ZonedDateTime departure2 =
ZonedDateTime. of (
LocalDateTime.of (2014,
Month.MARCH, 18,

8, 0),

Zoneld.of("America/Denver"));
ZonedDateTime arrival2 =
ZonedDateTime.of(
LocalDateTime.of (2014,
Month.MARCH, 19,
8, 0),

Zoneld.of("America/Toronto"));
Duration travelTime2 = calculator

.calculateTravelTime(departure2,
arrival2);
System.out.println("Travel time

+ travelTime2.toHours() +
" hours");

}

The result is this.

Travel time 1: 21 hours
Travel time 2: 22 hours

Why the difference? Because in 2014 daylight saving time began
on Sunday, March 9 at 2AM. As such, you ‘lost’ one hour
between March 8, 2014 and March 9, 2014.

Formatting A Date-Time

You use a java.time.format.DateTimeFormatter to format
a local or zoned date-time. The LocalDate, LocalDateTime,
LocalTime and ZoneDateTime classes offer a format
method that has the following signature.

public java.lang.String
format(java.time.format.DateTimeFormatter

formatter)

It is clear that to format a date or time, you must first create an
instance of DateTimeFormatter.

The code in Listing 13.8 formats the current date using two
formatters.

Listing 13.8: Formatting dates

package appl3;
import java.time.LocalDateTime;

import
java.time.format.DateTimeFormatter;
import java.time.format.FormatStyle;

public class DateTimeFormatterDemol {
public static void main(String[]
args) {
DateTimeFormatter formatterl =
DateTimeFormatter

.0fLocalizedDateTime(FormatStyle.MEDIUM);
LocalDateTime example =
LocalDateTime.of(
2000, 3, 19, 10, 56, 59);
System.out.println("Format 1: " +
example
.format(formatterl));
DateTimeFormatter formatter2 =
DateTimeFormatter
.ofPattern("MMMM dd, yyyy
HH:mm:ss");
System.out.println("Format 2: " +

example.format(formatter2));

}

The results are as follows (the first result depends on your

locale).

Format 1: 19-Mar-2000 10:56:59 AM
Format 2: March 19, 2000 10:56:59

Parsing A Date-Time

There are two parse methods in many of the classes in the Java
Date and Time API. The first requires a formatter, the second
does not. The one that does not will parse the date-time based on
the default pattern. To use your own pattern, use a
DateTimeFormatter. The parse methods will throw a
DateTimeParseException if the string passed cannot be
parsed.

Listing 13.9 contains an age calculator to demonstrate date
parsing.

Listing 13.9: An age calculator

package appl3;

import java.time.lLocalDate;

import java.time.Period;

import
java.time.format.DateTimeFormatter;
import

java.time.format.DateTimeParseException;
import java.util.Scanner;

public class AgeCalculator {
DateTimeFormatter formatter =
DateTimeFormatter.ofPattern("yyyy-M-d");
public Period calculateAge(LocalDate
birthday) {
LocalDate today =
LocalDate.now();
return Period.between(birthday,
today);

}

public LocalDate getBirthday() {
Scanner scanner = new
Scanner (System.1in);
LocalDate birthday;
while (true) {
System.out.println("Please
enter your birthday "
+ "in yyyy-MM-dd
format (e.g. 1980-9-28): ");
String input =
scanner.nextLine();
try {
birthday =
LocalDate.parse(input, formatter);

return birthday;

}

catch(DateTimeParseException e) {

System.out.println("Error! Please try
again");

public static void main(String[]
args) {
AgeCalculator ageCalculator = new
AgeCalculator();
LocalDate birthday =
ageCalculator.getBirthday();
Period age =
ageCalculator.calculateAge(birthday);
System.out.printf("Today you are
%d years, %d months"
+ " and %d days old%n",
age.getYears(),
age.getMonths(), age.getDays());

}

The AgeCalculator class has two methods, getBirthday and
calculateAge. The getBirthday method employs a Scanner

to read user input and parses the input into a LocalDate using
the class level DateTimeFormatter. The getBirthday
method keeps begging for a date until the user types in a date in
the correct format, in which case the method returns. The
calculateAge method takes a birthday and creates a Period
between the birthday and today.

If you run this example, you will see this on your console.

Please enter your birthday in yyyy-MM-dd
format (e.g. 1980-9-28):

If you enter a date in the correct format, the program will print
the calculated age, such as the following.

Today you are 79 years, 0 months and 15
days old

Using the Old Date and Time
API

The old API centered around the Date and Calendar classes
and is discussed here only because they were used extensively in
pre-8 Java. Chances are you will still encounter them in many

existing projects.

The java.util.Date Class

The java.util.Date class is normally used to represent dates
and times. It has two constructors that you can safely use (the
other constructors are deprecated):

public Date()
public Date(long time)

The no-arg constructor creates a Date representing the current
date and time. The second constructor creates a Date that
represents the specified number of milliseconds since January 1,
1970, 00:00:00 GMT.

The Date class features several useful methods, two of them
are after and before.

public boolean after(Date when)
public boolean before(Date when)

The after method returns true if this date is a later time than
the when argument. Otherwise, it returns false. The before
method returns true if this date is before the specified date and
returns false otherwise.

Many of the methods in Date, such as getDate, getMonth,
getYear, are deprecated. You should not use these methods.
Instead, use similar methods in the java.util.Calendar class.

The java.util.Calendar Class

The java.util.Date class has methods that allow you to
construct a Date object from date components, such as the day,
month, and year. However, these methods are deprecated. You
should use java.util.Calendar instead.

To obtain a Calendar object, use one of the two static
getInstance methods. Here are their signatures:

public static Calendar getInstance()
public static Calendar getInstance(Locale
locale)

The first overload returns an instance that employs the
computer’s locale.

There’s a lot you can do with a Calendar. For example, you
can call its getTime method to obtain a Date object. Here is its
signature:

public final Date getTime();

The resulting Date object, needless to say, contains components
you initially passed to construct the Calendar object. In other
words, if you construct a Calendar object that represents May
7, 2000 00:00:00, the Date object obtained from its getTime
method will also represent May 7, 2000 00:00:00.

To obtain a date part, such as the hour, the month, or the year,
use the get method. A first glance at its signature does not reveal
much on how to use this method.

public int get(int field)

To use it, pass a valid field to the get method. A valid field is one
of the following values: Calendar.YEAR, Calendar.MONTH,
Calendar.DATE, Calendar.HOUR, Calendar. MINUTE,
Calendar.SECOND, and Calendar . MILLISECOND.

get(Calendar.YEAR) returns an int representing the year.
If it is year 2010, you get 2010. get(Calendar.MONTH)
returns a zero-based index of the month, with o0 representing
January and 11 representing December. The others
(get(Calendar.DATE), get(Calendar.HOUR), and so on)
return a number representing the date/time unit.

The last thing worth mentioning: if you already have a Date
object and want to make use of the methods in Calendar, you
can construct a Calendar object by using the setTime method:

public void setTime(Date date)

Here is an example:

// myDate is a Date
Calendar calendar =
Calendar.getInstance();
calendar.setTime(myDate);

To change a date/time component, call its set method:

public void set(int field, int value)

For example, to change the month component of a Calendar
object to December, write this.

calendar.set(Calendar .MONTH,
Calendar .DECEMBER)

There are also set method overloads for changing multiple
components at the same time:

public void set(int year, int month, int

date)
public void set(int year, int month, int
date,

int hour, int minute, int second)

Parsing and Formatting with
DateFormat

In the old API, Java’s answer to date parsing and formatting is
the java.text.DateFormat and
java.text.SimpleDateFormat classes. DateFormat is an
abstract class with static getInstance methods that allows you
to obtain an instance of a subclass. SimpleDateFormat is a
concrete implementation of DateFormat that is easier to use
than its parent.

DateFormat

DateFormat supports styles and patterns. There are four styles
for formatting a Date. Each style is represented by an int value.
The four int fields that represent the styles are:

e DateFormat.SHORT. For example, 12/2/15
e DateFormat.MEDIUM. For example, Dec 2, 2015
e DateFormat.LONG. For example, December 2, 2015

e DateFormat.FULL. For example, Friday, December 2,
2015

When you create a DateFormat, you need to decide which style
you will be using for parsing or formatting. You cannot change a
DateFormat’s style once you create it, but you can definitely
have multiple instances of DateFormat that support different
styles.

To obtain a DateFormat instance, call this static method.

public static DateFormat
getDateInstance(int style)

where style is one of DateFormat.SHORT,
DateFormat.MEDIUM, DateFormat.Long, or
DateFormat.FULL. For example, the following code creates a
DateFormat instance having the MEDIUM style.

DateFormat df =

DateFormat. getDateInstance(DateFormat .MED
IUM)

To format a Date object, call its format method:

public final java.lang.String
format(java.util.Date date)

To parse a string representation of a date, use the parse
method. Here is the signature of parse.

public java.util.Date
parse(java.lang.String date)
throws ParseException

Note that you must compose your string according to the style of
the DateFormat.

Listing 13.10 shows a class that parses and formats a date.

Listing 13.10: The DateFormatDemo1
class

package appl3.oldapi;
import java.text.DateFormat;
import java.text.ParseException;
import java.util.Date;
public class DateFormatDemol {
public static void main(String]]

args) {

DateFormat shortDf =

DateFormat.getDateInstance(DateFormat.SHO
RT);
DateFormat mediumDf =

DateFormat.getDateInstance(DateFormat.MED
IUM);
DateFormat longDf =

DateFormat.getDateInstance(DateFormat.LON
G),
DateFormat fullDf =

DateFormat. getDateInstance(DateFormat .FUL
L),

System.out.println(shortDf.format(new
Date()));

System.out.println(mediumDf.format(new
Date()));

System.out.println(longDf.format(new
Date()));

System.out.println(fullDf.format(new
Date()));

// parsing
try {
Date date =

shortDf.parse("12/12/2016");

} catch (ParseException e) {

}

Another point to note when working with DateFormat (and
SimpleDateFormat) is leniency. Leniency refers to whether or
not a strict rule will be applied at parsing. For example, if a
DateFormat is lenient, it will accept this String: Jan 32, 2016,
despite the fact that such a date does not exist. In fact, it will take
the liberty of converting it to Feb 1, 2016. If a DateFormat is
not lenient, it will not accept dates that do not exist. By default, a
DateFormat object is lenient. The isLenient method and
setLenient method allow you to check a DateFormat’s
leniency and change it.

public boolean islLenient()
public void setlLenient(boolean value)

SimpleDateFormat

SimpleDateFormat is more powerful than DateFormat
because you can use your own date patterns. For example, you
can format and parse dates in dd/mm/yyyy, mm/dd/yyyy, yyyy-
mm-dd, and so on. All you need to do is pass a pattern to a
SimpleDateFormat constructor.

SimpleDateFormat is a better choice than DateFormat
especially for parsing. Here is one of the constructors in
SimpleDateFormat.

public SimpleDateFormat(java.lang.String
pattern)

throws
java.lang.NullPointerException,

java.lang.IllegalArgumentException

The complete rules for a valid pattern can be read in the Javadoc
for the SimpleDateFormat class. The more commonly used
patterns can be used by a combination of y (representing a year
digit), M (representing a month digit) and d (representing a date
digit). Examples of patterns are dd/MM /yyyy, dd-MM-yyyy,
MM/dd/yyyy, yyyy-MM-dd.

Listing 13.11 shows a class that uses SimpleDateFormat for
parsing and formatting.

Listing 13.11: The
SimpleDateFormatDemo1 class

package appl3.oldapi;
import java.text.ParseException;
import java.text.SimpleDateFormat;

import java.util.Date;
public class SimpleDateFormatDemol {

public static void main(String[]
args) {
String pattern = "MM/dd/yyyy";
SimpleDateFormat format = new
SimpleDateFormat(pattern);
try {
Date date =
format.parse("12/31/2016");
} catch (ParseException e) {
e.printStackTrace();

b
// formatting

System.out.println(format.format(new
Date()));

}

Summary

Java 8 brings with it a new Date-Time API to replace the old API
that centered around the java.util.Date class. In this chapter
you have learned to use the core classes in the new API, such as

Instant, LocalDate, LocalDateTime, ZonedDateTime,
Period and Duration, as well as learned to format and parse a
date-time.

Quiz

1. What were the two core classes in the old
Date-Time API?

2. Why is the old Date-Time API being
phased out?

3. What are the new packages for the new
Date-Time API?

4. What are the main classes in the core
package?

5. What are the two static methods for
creating a LocalDate, LocalDateTime
and ZonedDateTime?

6. What is the difference between Period
and Duration?

7. What is the easiest way to time an
operation?

8. How do you get a Set of all timezone
identifiers?

9. What is the date-time formatter class in
the new Date and Time API?

Chapter 14

The Collections Framework

When writing an object-oriented program, you often work with
groups of objects. In Chapter 6, “Arrays” you learned that arrays
can be used to group objects of the same type. Unfortunately,
arrays lack the flexibility you need to rapidly develop
applications. For example, arrays cannot be resized. Luckily,
Java comes with a set of interfaces and classes that make
working with groups of objects easier: the Collections
Framework. This chapter deals with the most important types in
the Collections Framework. Most of them are very easy to use
and there’s no need to provide extensive examples. More
attention is paid to the last section of the chapter, “Making Your
Objects Comparable and Sortable” where carefully designed
examples are given because it is important for every Java
programmer to know how to make objects comparable and
sortable.

Note on Generics

Discussing the Collections Framework will be incomplete without
generics. On the other hand, it is hard to explain generics without
previous knowledge of the Collections Framework. Therefore, there needs

to be a compromise: The Collections Framework will be explained first in
this chapter and revisited in Chapter 15, “Generics.” Since up to this point
no knowledge of generics is assumed, the discussion of the Collections
Framework in this chapter will have to use class and method signatures
as they appear in pre-5 JDK’s, instead of signatures used in Java 5 or
later that imply the presence of generics. As long as you read both this
chapter and Chapter 15, you will have up-to date knowledge of both the
Collections Framework and generics.

An Overview of the
Collections Framework

A collection is an object that groups other objects. Also referred
to as a container, a collection provides methods to store, retrieve,
and manipulate its elements. Collections help Java programmers
manage objects easily.

A Java programmer should be familiar with the most
important types in the Collections Framework, all of which are
part of the java.util package. The relationships between these
types are shown in Figure 14.1.

e Froan W OITRCTACET Finberfean

Yorugor Codlrcmoe Canmpqnisier

sitile [oen Il siale (o en wzles Saves

el L Liwene Mag

|

ArzayLosy Akl wclblag sl iavus
s F
Eurielfdad

Figure 14.1: The Collections Framework

The main type in the Collections Framework is, unsurprisingly,
the Collection interface. List, Set, and Queue are three main
subinterfaces of Collection. In addition, there is a Map
interface that can be used for storing key/value pairs. A
subinterface of Map, SortedMap, guarantees that the keys are
in ascending order. Other implementations of Map are
AbstractMap and its concrete implementation HashMap.
Other interfaces include Iterator and Comparator. The latter
is used to make objects sortable and comparable.

Most of the interfaces in the Collections Frameworks come
with implementation classes. Sometimes there are two versions
of an implementation, the synchronized version and the
unsynchronized version. For instance, the java.util.Vector

class and the ArrayList class are implementations of the List
interface. Both Vector and ArrayList provide similar
functionality, however Vector is synchronized and ArrayList
unsynchronized. Synchronized versions of an implementation
were included in the first version of the JDK. Only later did Sun
add the unsynchronized versions so that programmers could
write better performing applications. The unsynchronized
versions should thus be in preference to the synchronized ones.
If you need to use an unsynchronized implementation in a multi-
threaded environment, you can still synchronize it yourself.

Note

Working in a multi-threaded environment is discussed in Chapter 22,
“Java Threads.”

The Collection Interface

The Collection interface groups objects together. Unlike arrays
that cannot be resized and can only group objects of the same
type, collections allow you to add any type of object and do not
force you to specify an initial size.

Collection comes with methods that are easy to use. To add
an element, you use the add method. To add members of
another Collection, use addAll. To remove all elements, use
clear. To inquire about the number of elements in a

Collection, call its size method. To test if a Collection
contains an element, use isEmpty. And, to move its elements to
an array, use toArray.

An important point to note is that Collection extends the
Iterable interface, from which Collection inherits the
iterator method. This method returns an Iterator object that
you can use to iterate over the collection’s elements. Check the
section, “Iterable and Iterator” later in this chapter.

In addition, you’ll learn how to use the for statement to iterate
over a Collection’s elements.

List and ArrayList

List is the most popular subinterface of Collection, and
ArrayList is the most commonly used implementation of List.
Also known as a sequence, a List is an ordered collection. You
can access its elements by using indices and you can insert an
element into an exact location. Index 0 of a List references the
first element, index 1 the second element, and so on.

The add method inherited from Collection appends the
specified element to the end of the list. Here is its signature.

public boolean add(java.lang.Object
element)

This method returns true if the addition is successful.
Otherwise, it returns false. Some implementations of List, such
as ArrayList, allow you to add null, some don’t.

List adds another add method with the following signature:

public void add(int index,
java.lang.Object element)

With this add method you can insert an element at any position.

In addition, you can replace and remove an element by using
the set and remove methods, respectively.

public java.lang.Object set(int index,
java.lang.Object element)
public java.lang.Object remove(int index)

The set method replaces the element at the position specified by
index with element and returns the reference to the element
inserted. The remove method removes the element at the
specified position and returns a reference to the removed
element.

To create a List, you normally assign an ArrayList object to a

List reference variable.

List myList = new ArrayList();

The no-argument constructor of ArrayList creates an
ArrayList object with an initial capacity of ten elements. The
size will grow automatically as you add more elements than its
capacity. If you know that the number of elements in your
ArrayList will be more than its capacity, you can use the second
constructor:

public ArraylList(int initialCapacity)

This will result in a slightly faster ArrayList because the
instance does not have to grow in capacity.

List allows you to store duplicate elements in the sense that
two or more references referencing the same object can be
stored. Listing 14.1 demonstrates the use of List and some of its
methods.

Listing 14.1: Using List

package appl4;
import java.util.ArraylList;
import java.util.List;

public class ListDemol {
public static void main(String[]
args) {
List myList = new ArraylList();
String s1 = "Hello";
String s2 = "Hello",;
myList.add(100);
myList.add(s1);
myList.add(s2);
myList.add(s1);
myList.add(1);
myList.add(2, "world");
myList.set(3, "Yes");
myList.add(null);
System.out.println("Size: " +
myList.size());
for (Object object : myList) {
System.out.println(object);

When run, here is the result on the console.

Size: 7
100

Hello
wWorld
Yes

Hello

null

The java.util.Arrays class provides an asList method that lets
you add an array or any number of elements to a List in one go.
For example, the following snippet adds multiple Strings in a
single call.

List members = Arrays.asList("Chuck",
"Harry", "Larry", Ilwangll);

However, Arrays.asList returns a List with a fixed size,
meaning you cannot add members to it.

List also adds methods to search the collection, indexOf and
lastIndexOf:

public int indexOf(java.lang.Object obj)
public int lastIndexOf(java.lang.Object
obj)

indexOf compares the obj argument with its elements by using
the equals method starting from the first element, and returns
the index of the first match. lastindexOf does the same thing
but comparison is done from the last element to the first. Both
indexOf and lastIndexOf return -1 if no match was found.

Note

List allows duplicate elements. By contrast, Set does not.

the java.util.Collections class is a helper or utility class that
provides static methods for manipulating Lists and other
Collections. For example, you can sort a List easily using its
sort method, as shown in Listing 14.2.

Listing 14.2: Sorting a List

package appl4;

import java.util.Arrays;
import java.util.Collections;
import java.util.List;

public class ListDemo2 {
public static void main(String[]
args) {
List numbers = Arrays.asList(9,
4, -9, 100);
Collections.sort(numbers);
for (Object 1 : numbers) {

System.out.println(i);

If you run the ListDemo2 class, you will see this on your

console.

Iterating Over a Collection
with Iterator and for

Iterating over a Collection is one of the most common tasks
around when working with collections. There are two ways to do

this: by using Iterator and by using for.

Recall that Collection extends Iterable, which has one
method: iterator. This method returns a java.util.Iterator
that you can use to iterate over the Collection. The Iterator
interface has the following methods:

e hasNext. Iterator employs an internal pointer that
initially points to a place before the first element. hasNext
returns true if there are more element(s) after the pointer.
Calling next moves this pointer to the next element. Calling
next for the first time on an Iterator causes its pointer to
point to the first element.

¢ next. Moves the internal pointer to the next element and
returns the element. Invoking next after the last element is
returned throws a java.util.NoSuchElementException.
Therefore, it is safest to call hasNext before invoking next
to test if there is a next element.

e remove. Removes the element pointed to by the internal
pointer.

A common way to iterate over a Collection using an Iterator is
either by employing while or for. Suppose myList is an
ArrayList that you want to iterate over. The following snippet
uses a while statement to iterate over a collection and print each
element in the collection.

Iterator iterator = myList.iterator();
while (iterator.hasNext()) {
String element = (String)
iterator.next();
System.out.println(element);

This is identical to:

for (Iterator iterator =
myList.iterator(); iterator.hasNext();)
{
String element = (String)
iterator.next();
System.out.println(element);

The for statement can iterate over a Collection without the
need to call the iterator method. The syntax is

for (Type identifier : expression) {
statement(s)

Here expression must be an Iterable. Since Collection extends
Iterable, you can use enhanced for to iterate over any
Collection. For example, this code shows how to use for.

for (Object object : myList) {
System.out.println(object);

Using for to iterate over a collection is a shortcut for using
Iterator. In fact, the code that uses for above is translated into
the following by the compiler.

for (Iterator iterator =
myList.iterator(); iterator.hasNext();)
{
String element = (String)
iterator.next();
System.out.println(element);

Set and HashSet

A Set represents a mathematical set. Unlike List, Set does not
allow duplicates. There must not be two elements of a Set, say e1
and e2, such that e1.equals(e2). The add method of Set
returns false if you try to add a duplicate element. For example,
this code prints “addition failed.”

Set set = new HashSet();

set.add("Hello");

if (set.add("Hello")) {
System.out.println("addition

successful");

} else {
System.out.println("addition

failed");

}

The first time you called add, the string “Hello” was added. The
second time around it failed because adding another “Hello”
would result in duplicates in the Set.

Some implementations of Set allow at most one null element.
Some do not allow nulls. For instance, HashSet, the most
popular implementation of Set, allows at most one null element.
When using HashSet, be warned that there is no guarantee the
order of elements will remain unchanged. HashSet should be
your first choice of Set because it is faster than other
implementations of Set, TreeSet and LinkedHashSet.

Queue and LinkedList

Queue extends Collection by adding methods that support the
ordering of elements in a first-in-first-out (FIFO) basis. FIFO
means that the element first added will be the first you get when
retrieving elements. This is in contrast to a List in which you can
choose which element to retrieve by passing an index to its get
method.

Queue adds the following methods.

e offer. This method inserts an element just like the add
method. However, offer should be used if adding an
element may fail. This method returns false upon failing to
add an element and does not throw an exception. On the
other hand, a failed insertion with add throws an exception.

e remove. Removes and returns the element at the head of
the Queue. If the Queue is empty, this method throws a
java.util.NoSuchElementException.

¢ poll. This method is like the remove method. However, if
the Queue is empty it returns null and does not throw an
exception.

¢ element. Returns but does not remove the head of the
Queue. If the Queue is empty, it throws a
java.util.NoSuchElementException.

e peek. Also returns but does not remove the head of the
Queue. However, peek returns null if the Queue is empty,
instead of throwing an exception.

When you call the add or offer method on a Queue, the
element is always added at the tail of the Queue. To retrieve an
element, use the remove or poll method. remove and poll
always remove and return the element at the head of the Queue.

For example, the following code creates a LinkedList (an

implementation of Queue) to show the FIFO nature of Queue.

Queue queue = new LinkedList();
gqueue.add("one");

queue.add("two");
gueue.add("three");
System.out.println(queue.remove());
System.out.println(queue.remove());
System.out.println(queue.remove());

The code produces this result:

one
two
three

This demonstrates that remove always removes the element at
the head of the Queue. In other words, you cannot remove
“three” (the third element added to the Queue) before removing
“one” and “two.”

Note

The java.util.Stack class is a Collection that behaves in a last-in-first-
out (LIFO) manner.

Collection Conversion

Collection implementations normally have a constructor that
accepts a Collection object. This enables you to convert a
Collection to a different type of Collection. Here are the
constructors of some implementations:

public ArrayList(Collection c)
public HashSet(Collection c)
public LinkedList(Collection c)

As an example, the following code converts a Queue to a List.

Queue queue = new LinkedList();
gueue.add("Hello");
gueue.add("World");

List list = new ArrayList(queue);

And this converts a List to a Set.

List myList = new ArrayList();
myList.add("Hello");
myList.add("World");

myList.add("wWorld");
Set set = new HashSet(myList);

myList has three elements, two of which are duplicates. Since
Set does not allow duplicate elements, only one of the duplicates
will be accepted. The resulting Set in the above code only has
two elements.

Map and HashMap

A Map holds key to value mappings. There cannot be duplicate
keys in a Map and each key maps to at most one value.

To add a key/value pair to a Map, you use the put method. Its
signature is as follows:

public void put(java.lang.Object key,
java.lang.Object value)

Note that both the key and the value cannot be a primitive.
However, the following code that passes primitives to both the
key and the value is legal because boxing is performed before the
put method is invoked.

map.put(l, 3000);

Alternatively, you can use putAll and pass a Map.

public void putAll(Map map)

You can remove a mapping by passing the key to the remove
method.

public void remove(java.lang.Object key)

To remove all mappings, use clear. To find out the number of
mappings, use the size method. In addition, isEmpty returns
true if the size is zero.

To obtain a value, you can pass a key to the get method:

public java.lang.Object
get(java.lang.Object key)

In addition to the methods discussed so far, there are three no-
argument methods that provide a view to a Map.

e keySet. Returns a Set containing all keys in the Map.

¢ values. Returns a Collection containing all values in the

Map.

¢ entrySet. Returns a Set containing Map.Entry objects,
each of which represents a key/value pair. The Map.Entry
interface provides the getKey method that returns the key
part and the getValue method that returns the value.

There are several implementations of Map in the java.util
package. The most commonly used are HashMap and
Hashtable. HashMap is unsynchronized and Hashtable is
synchronized. Therefore, HashMap is the faster one between
the two.

The following code demonstrates the use of Map and
HashMap.

Map map = new HashMap();
map.put(llllll "One");
map.put(llzlll "tWO");

System.out.println(map.size()); //prints
2

System.out.println(map.get("1"));
//prints "one"

Set keys = map.keySet();
// print the keys
for (Object object : keys) {

System.out.println(object);

Making Objects Comparable
and Sortable

In real life, when I say “My car is the same as your car” I mean
my car is of the same type as yours, as new as your car, has the
same color, etc.

In Java, you manipulate objects by using the variables that
reference them. Bear in mind that reference variables do not
contain objects but rather contain addresses to the objects in the
memory. Therefore, when you compare two reference variables a
and b, such as in this code

if (a == b)

you are actually asking if a and b are referencing the same
object, and not whether or not the objects referenced by a and b
are identical.

Consider this example.

Object a
Object b

new Object();
new Object();

The type of object that a references is identical to the type of
object that b references. However, a and b reference two
different instances and a and b contains different memory
addresses. Therefore, (a == b) returns false.

Comparing object references this way is hardly useful because
most of the time you are more concerned with the objects, not
the addresses of the objects. If what you want is compare objects,
you need to look for methods specifically provided by the class to
compare objects. For example, to compare two String objects,
you can call its equals method. Whether or not you can compare
two objects depends on whether or not the objects’ class
supports it. A class can support object comparison by
implementing the equals and hashCode methods it inherits
from java.lang.Object.

In addition, you can make objects comparable by
implementing the java.lang.Comparable and
java.util.Comparator interfaces. You'll learn to use these
interfaces in the following sections.

Using java.lang.Comparable

The java.util.Arrays class provides the static method sort that
can sort an array of objects. Here is its signature.

public static void
sort(java.lang.Object[] a)

Because all Java classes derive from java.lang.Object, all Java
objects are a type of java.lang.Object. This means you can pass
an array of any objects to the sort method.

Similar to Arrays, the java.util.Collections class has a sort
method for sorting a List.

How do the sort methods know how to sort arbitrary objects?
It’s easy to sort numbers or strings, but how do you sort an array
of Elephant objects, for example?

First, examine the Elephant class in Listing 14.3.

Listing 14.3: The Elephant class

public class Elephant {

public float weight;

public int age;

public float tuskLength; // in
centimeters

}

Since you are the author of the Elephant class, you get to decide
how you want Elephant objects to be sorted. Let’s say you want

to sort them by their weights and ages. Now, how do you tell
Arrays.sort or Collections.sort of your decision?

Both sort methods define a contract between themselves and
objects that need sorting. The contract takes the form of the
java.lang.Comparable interface. (See Listing 14.4)

Listing 14.4: The java.lang.Comparable
method

package java.lang;
public interface Comparable {
public int compareTo(Object obj);

Any class that needs to support sorting by Arrays.sort or
Collections.sort must implement the Comparable interface.
In Listing 14.4, the argument obj in the compareTo method
refers to the object being compared with this object. The code
implementation for this method in the implementing class must
return a positive number if this object is greater than the
argument object, zero if both are equal, and a negative number if
this object is less than the argument object.

Listing 14.5 presents a modified Elephant class that
implements Comparable.

Listing 14.5: The Elephant class

implementing Comparable

package appl4;
public class Elephant implements
Comparable {
public float weight;
public int age;
public float tuskLength;
public int compareTo(Object obj) {
Elephant anotherElephant =
(Elephant) obj;
if (this.weight >
anotherElephant.weight) {
return 1,
} else if (this.weight <
anotherElephant.weight) {
return -1;
} else {
// both elephants have the
same weight, now
// compare their age
return (this.age -
anotherElephant.age);

}

Now that Elephant implements Comparable, you can use

Arrays.sort or Collections.sort to sort an array or List of
Elephant objects. The sort method will treat each Elephant
object as a Comparable object (because Elephant implements
Comparable, an Elephant object can be considered a type of
Comparable) and call the compareTo method on the object.
The sort method does this repeatedly until the Elephant
objects in the array have been organized correctly by their
weights and ages. Listing 14.6 provides a class that tests the sort
method on Elephant objects.

Listing 14.6: Sorting elephants

package appl4;
import java.util.Arrays;

public class ElephantTest {
public static void main(String[]

args) {

Elephant elephantl = new
Elephant();

elephantl.weight = 100.12F;

elephantl.age = 20;

Elephant elephant2 = new
Elephant();

elephant2.weight

elephant2.age = 20;

Elephant elephant3 = new
Elephant();

elephant3.weight = 100.12F;

120.12F;

elephant3.age = 25;

Elephant[] elephants = new
Elephant[3];

elephants[0] = elephanti;
elephants[1] = elephant2;
elephants[2] = elephant3;

System.out.println("Before
sorting");

for (Elephant elephant
elephants) {

System.out.println(elephant.weight + ":"
+
elephant.age);

b

Arrays.sort(elephants);

System.out.println("After
sorting");

for (Elephant elephant
elephants) {

System.out.println(elephant.weight + ":"
+

elephant.age);

If you run the ElephantTest class, you’ll see this on your
console.

Before sorting
100.12:20
120.12:20
100.12:25
After sorting
100.12:20
100.12:25
120.12:20

Classes such as java.lang.String, java.util.Date, and
primitive wrapper classes all implement
java.lang.Comparable. This explains why they can be sorted.

Using A Comparator

Implementing java.lang.Comparable enables you to define
one way of comparing instances of your class. However, objects
sometimes need to be comparable in more ways. For example,
two Person objects may need to be compared by age or by
last/first name. In cases like this, you need to create a
Comparator that defines how two objects should be compared.

To make objects comparable in two ways, you need two
comparators. With a Comparator, you can compare objects
even if their class does not implement Comparable.

To create a comparator, you write a class that implements the
Comparator interface. You then provide the implementation
for its compare method. This method has the following
signature.

public int compare(java.lang.Object o1,
java.lang.Object 02)

compare returns zero if o1 and o2 are equal, a negative integer
if o1 is less than 02, and a positive integer if o1 is greater than o2.

As an example, the Person class in Listing 14.7 implements
Comparable. Listings 14.8 and 14.9 present two comparators
of Person objects (by last name and by first name), and Listing
14.10 offers the class that instantiates the Person class and the
two comparators.

Listing 14.7: The Person class
implementing Comparable.

package appl4;

public class Person implements Comparable

private String firstName;
private String lastName;
private int age;
public String getFirstName() {
return firstName;
}
public void setFirstName(String
firstName) {
this.firstName = firstName;
}
public String getLastName() {
return lastName;
3
public void setLastName(String
lastName) {
this.lastName = lastName;
3
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
public int compareTo(Object
anotherPerson)
throws ClassCastException {
if (!(anotherPerson instanceof

Person)) {
throw new ClassCastException(
"A Person object

expected.");

}

int anotherPersonAge = ((Person)
anotherPerson).getAge();

return this.age -
anotherPersonAge;

}

Listing 14.8: The LastNameComparator
class

package appl4;
import java.util.Comparator;

public class LastNameComparator
implements Comparator {
public int compare(Object person,
Object anotherPerson) {
String lastNamel = ((Person)

person).getLastName().toUpperCase();
String firstNamel =
((Person)

person).getFirstName().toUpperCase();
String lastName2 = ((Person)

anotherPerson).getLastName().toUpperCase(
)
String firstName2 = ((Person)
anotherPerson).getFirstName()
.toUppercCase();
if (lastNamel.equals(lastName2))

return
firstNamel.compareTo(firstName2);
} else {
return
lastNamel.compareTo(lastName2);

}

Listing 14.9: The
FirstNameComparator class

package appl4;
import java.util.Comparator;

public class FirstNameComparator
implements Comparator {

public int compare(Object person,
Object anotherPerson) {
String lastNamel = ((Person)

person).getLastName().toUpperCase();
String firstNamel = ((Person)

person).getFirstName().toUpperCase();
String lastName2 = ((Person)

anotherPerson).getLastName().toUpperCase(
);
String firstName2 = ((Person)
anotherPerson).getFirstName()
.toUppercCase();
if
(firstNamel.equals(firstName2)) {
return
lastNamel.compareTo(lastName2);
} else {
return
firstNamel.compareTo(firstName2);

}

Listing 14.10: The PersonTest class

package appl4;
import java.util.Arrays;

public class PersonTest {
public static void main(String[]
args) {
Person[] persons = new Person[4];
persons[0@] = new Person();
persons[0].setFirstName("Elvis");

persons[0].setLastName("Goodyear");
persons[0].setAge(56);

persons[1l] = new Person();

persons[l].setFirstName("Stanley");
persons[l].setLastName("Clark");
persons[l].setAge(8);

persons[2] = new Person();
persons[2].setFirstName("Jane");
persons[2].setLastName("Graff");
persons[2].setAge(16);

persons[3] = new Person();
persons[3].setFirstName("Nancy");

persons[3].setLastName("Goodyear"),

persons[3].setAge(69);

System.out.println('"Natural
Order");
for (int 1 = 0; 1 < 4; i++) {
Person person = persons[i];
String lastName =
person.getLastName();
String firstName =
person.getFirstName();
int age = person.getAge();
System.out.println(lastName +
", " + firstName +
". Age:" + age);

Arrays.sort(persons, new
LastNameComparator());
System.out.println();
System.out.println("Sorted by
last name");
for (int 1 = 0; i < 4; i++) {
Person person = persons[i];
String lastName =
person.getLastName();
String firstName =
person.getFirstName();
int age = person.getAge();

System.out.println(lastName +
", " + firstName +
". Age:" + age);

Arrays.sort(persons, new
FirstNameComparator());
System.out.println();
System.out.println("Sorted by
first name");
for (int i = 0; i < 4; i++) {
Person person = persons[i];
String lastName =
person.getLastName();
String firstName =
person.getFirstName();
int age = person.getAge();
System.out.println(lastName +
", " + firstName +
". Age:" + age);

Arrays.sort(persons);
System.out.println();
System.out.println("Sorted by
age");
for (int 1 = 0; 1 < 4; 1i++) {
Person person = persons[i];

String lastName =
person.getLastName();

String firstName =
person.getFirstName();

int age = person.getAge();

System.out.println(lastName +
" " + firstName +

". Age:" + age);

If you run the PersonTest class, you will get the following
result.

Natural Order

Goodyear, Elvis. Age:56
Clark, Stanley. Age:8
Graff, Jane. Age:16
Goodyear, Nancy. Age:69

Sorted by last name
Clark, Stanley. Age:8
Goodyear, Elvis. Age:56
Goodyear, Nancy. Age:69
Graff, Jane. Age:16

Sorted by first name
Goodyear, Elvis. Age:56
Graff, Jane. Age:16
Goodyear, Nancy. Age:69
Clark, Stanley. Age:8

Sorted by age

Clark, Stanley. Age:8
Graff, Jane. Age:16
Goodyear, Elvis. Age:56
Goodyear, Nancy. Age:69

Summary

In this chapter you have learned to use the core types in the
Collections Framework. The main type is the
java.util.Collection interface, which has three direct
subinterfaces: List, Set, and Queue. Each subtype comes with
several implementations. There are synchronized
implementations and there are unsynchronized ones. The latter
are usually preferable because they are faster.

There is also a Map interface for storing key/value pairs. Two
main implementations of Map are HashMap and Hashtable.
HashMap is faster than Hashtable because the former is
unsynchronized and the latter is synchronized.

Finally, you have learned the java.lang.Comparable and
java.util.Comparator interfaces. Both are important because
they can make objects comparable and sortable.

Quiz

1. Name at least seven types in the
Collections Framework.

2. What is the different between ArrayList
and Vector?

3. Why is Comparator more powerful than
Comparable?

4. Write a method to convert an array of
Strings to a resizable List.

Chapter 15

Generics

With generics you can write a parameterized type and create
instances of the type by passing a reference type or reference
types. The objects will then be restricted to the type(s). For
example, the java.util.List interface is generic. If you create a
List by passing java.lang.String, you’ll get a List that will only
accept Strings; In addition to parameterized types, generics
support parameterized methods too.

The first benefit of generics is stricter type checking at compile
time. This is most apparent in the Collections Framework. In
addition, generics eliminate most type castings you had to
perform when working with the Collections Framework.

This chapter teaches you how to use and write generic types. It
starts with the section “Life without Generics” to remind us what
we missed in earlier versions of JDK’s. Then, it presents some
examples of generic types. After a discussion of the syntax, this
chapter concludes with a section that explains how to write
generic types.

Life without Generics

All Java classes derive from java.lang.Object, which means all
Java objects can be cast to Object. Because of this, in pre-5
JDK’s, many methods in the Collections Framework accept an
Object argument. This way, collections become general-purpose
utility types that can hold objects of any type. This imposes
unpleasant consequences.

For example, the add method in List in pre-5 JDK’s takes an
Object argument:

public boolean add(java.lang.Object
element)

As a result, you can pass an object of any type to add. The use of
Object is by design. Otherwise, it could only work with a specific
type of objects and there would then have to be different List
types, e.g. StringList, EmployeeList, AddressList, etc.

The use of Object in add is fine, but consider the get method,
which returns an element in a List instance. Here is its signature
prior to Java 5.

public java.lang.Object get(int index)

throws IndexOutOfBoundsException

get returns an Object. Here is where the unpleasant
consequences start to kick in. Suppose you have stored two
String objects in a List:

List stringlListl = new ArrayList();
stringListl.add("Java 5 and later");
stringListl.add("with generics");

When retrieving a member from stringList1, you get an
instance of java.lang.Object. In order to work with the original
type of the member element, you must first downcast it to
String.

String s1 = (String) stringlListl.get(0);

With generic types, you can forget about type casting when
retrieving objects from a List. And, there is more. Using the
generic List interface, you can create specialized Lists, such as
one that only takes Strings.

Generic Types

A generic type can accept parameters. This is why a generic type
is often called a parameterized type. Declaring a generic type is
like declaring a non-generic one, except that you use angle
brackets to enclose the list of type variables for the generic type.

MyType<typeVarl, typevar2, ...>

For example, to declare a java.util.List, you would write

List<E> mylList;

E is called a type variable, namely a variable that will be replaced
by a type. The value substituting for a type variable will then be
used as the argument type or the return type of a method in the
generic type. For the List interface, when an instance is created,
E will be used as the argument type of add and other methods. E
will also be used as the return type of get and other methods.
Here are the signatures of add and get.

public boolean add<E o>
public E get(int index)

Note

A generic type that uses a type variable E allows you to pass E when

declaring or instantiating the generic type. Additionally, if E is a class,
you may also pass a subclass of E; if E is an interface, you may also pass a
class that implements E.

If you pass String to a declaration of List, as in

List<String> myList;

the add method of the List instance referenced by myList will
expect a String as its argument and its get method will return a
String. Because get returns a specific type of object, no
downcasting is required.

Note

By convention, you use a single uppercase letter for type variable names.

To instantiate a generic type, you pass the same list of
parameters as when declaring it. For instance, to create an
ArrayList that works with String, you pass String in angle
brackets.

List<String> myList = new
ArraylList<String>();

The diamond language change in Java 77 allows explicit type
arguments to constructors of parameterized classes, most

notably collections, to be omitted in many situations. Therefore,
the statement above can be written more concisely in Java 7 or
later.

List<String> myList = new ArraylList<>(),

In this case, the compiler will infer the arguments to the
ArrayList.

As another example, java.util.Map is defined as

public interface Map<K, V>

K is used to denote the type of the map’s keys and V the type of
the map’s values. The put and values methods have the
following signatures:

V put(K key, V value)
Collection<V> values()

Note

A generic type must not be a direct or indirect child class of

java.lang. Throwable because exceptions are thrown at runtime, and
therefore it is not possible to check what type of exception that might be
thrown at compile time.

As an example, Listing 15.1 compares List with and without
generics.

Listing 15.1: Working with generic List

package appil5;
import java.util.List;
import java.util.ArrayList;

public class GenericlListDemol {
public static void main(String[]
args) {
// without generics
List stringlListl = new
ArrayList();
stringListl.add("Java");
stringListl.add("without
generics");
// cast to java.lang.String
String s1 = (String)
stringlListl.get(0);

System.out.println(sl.toUpperCase());

// with generics and diamond

List<String> stringlList2 = new
ArraylList<>();

stringList2.add("Java");

stringList2.add("with generics");
// no type casting is necessary
String s2 = stringlList2.get(0);

System.out.println(s2.toUpperCase());
}

In Listing 15.1, stringList2 is a generic List. The declaration
List<String> tells the compiler that this instance of List can
only store Strings. When retrieving member elements of the
List, no downcasting is necessary because its get method
returns the intended type, namely String.

Note

With generic types, type checking is done at compile time.

What’s interesting here is the fact that a generic type is itself a
type and can be used as a type variable. For example, if you want
your List to store lists of strings, you can declare the List by
passing List<String> as its type variable, as in

List<List<String>>
myListOfListsOfStrings;

To retrieve the first string from the first list in myList, you

would write:

String s =
myListOfListsOfStrings.get(0).get(0);

Listing 15.2 presents a class that uses a List that accepts a List
of Strings.

Listing 15.2: Working with List of Lists

package appl5;
import java.util.ArrayList;
import java.util.List;
public class ListOfListsDemol {
public static void main(String[]
args) {
List<String> listOfStrings = new
ArrayList<>();
listOfStrings.add("Hello again");
List<List<String>> listOfLists =
new ArraylList<>();
listOfLists.add(1listOfStrings);
String s =
listOfLists.get(0).get(0);
System.out.println(s); // prints
"Hello again"

}

Additionally, a generic type can accept more than one type
variables. For example, the java.util.Map interface has two
type variables. The first defines the type of its keys and the
second the type of its values. Listing 15.3 presents an example
that uses a generic Map.

Listing 15.3: Using the generic Map

package appl5;
import java.util.HashMap;
import java.util.Map;
public class MapDemol {
public static void main(String[]
args) {
Map<String, String> map = new
HashMap<>();
map.put("keyl1l", "valuel");
map.put("key2", "value2");
String valuel = map.get("keyl");

In Listing 15.3, to retrieve a value indicated by key1, you do not
need to perform type casting.

Using Generic Types without
Type Parameters

Now that the collection types in Java have been made generic,
what about legacy codes? Fortunately, they will still work in Java
5 or later because you can use generic types without type
parameters. For example, you can still use List the old way, as
demonstrated in Listing 15.1.

List stringlListl = new ArrayList();
stringListl.add("Java");
stringListl.add("without generics");
String s1 (String) stringlListl.get(0);

A generic type used without parameters is called a raw type. This
means that code written for JDK 1.4 and earlier versions will
continue to work in Java 5 or later.

One thing to note, though, starting from Java 5 the Java
compiler expects you to use generic types with parameters.
Otherwise, the compiler will issue warnings, thinking that you
may have forgotten to define type variables with the generic type.
For example, compiling the code in Listing 15.1 gave you the
following warning because the first List was used as a raw type.

Note: appl5/GenericlListDemol.java uses
unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for
details.

You have these options at your disposal to get rid of the warnings
when working with raw types:

e compile with the —source 1.4 flag.

¢ use the @SuppressWarnings("unchecked") annotation
(See Chapter 17, “Annotations”)

e upgrade your code to use List<Object>. Instances of
List<Object> can accept any type of object and behave like
a raw type List. However, the compiler will not complain.

Warning

Raw types are available for backward compatibility. New development
should shun them. It is possible that future versions of Java will not allow
raw types.

Using the ? Wildcard

I mentioned that if you declare a List<aType>, the List works

with instances of aType and you can store objects of one of these
types:

e an instance of aType.
¢ an instance of a subclass of aType, if aType is a class

e an instance of a class implementing aType if aType is an
interface.

However, note that a generic type is a Java type by itself, just like
java.lang.String or java.io.File. Passing different lists of type
variables to a generic type results in different types. For example,
list1 and list2 below reference to different types of objects.

List<Object> listl = new ArraylList<>();
List<String> list2 = new ArraylList<>();

list1 references a List of java.lang.Object instances and list2
references a List of String objects. Even though String is a
subclass of Object, List<String> has nothing to do with
List<Object>. Therefore, passing a List<String> to a method
that expects a List<Object> raises a compile time error. Listing
15.4 shows this.

Listing 15.4: The AllowedTypeDemo1
class

package appl5;
import java.util.ArrayList;
import java.util.List;

public class AllowedTypeDemol {
public static void doIt(List<Object>
1) {
b
public static void main(String]]
args) {
List<String> myList = new
ArrayList<>();
// this will generate a compile
error
doIt(myList);

Listing 15.4 will not compile because you are passing the wrong
type to the doIt method. dolIt expects an instance of
List<Object> and you are passing an instance of
List<String>.

The solution to this problem is the ? wildcard. List<?> means
a list of objects of any type. Therefore, the doIt method should
be changed to:

public static void doIt(List<?> 1) {
b

There are circumstances where you want to use the wildcard. For
example, if you have a printList method that prints the
members of a List, you may want to make it accept a List of any
type. Otherwise, you would end up writing many overloads of
printList. Listing 15.5 shows the printList method that uses
the ? wildcard.

Listing 15.5: Using the ? wildcard

package appil5;
import java.util.ArraylList;
import java.util.List;

public class WildCardDemol {
public static void printList(List<?>
list) {
for (Object element : list) {
System.out.println(element);

}
public static void main(String[]
args) {
List<String> 1listl = new
ArraylList<>();

listl.add("Hello");
listl.add("world");
printList(list1l);

List<Integer> 1list2 = new
ArrayList<>();

list2.add(100);

list2.add(200);

printList(list2);

The code in Listing 15.4 demonstrates that List<?> in the
printList method means a List of any type.

Note, however, it is illegal to use the wildcard when declaring
or creating a generic type, such as this.

List<?> myList = new ArraylList<?>(); //
this is illegal

If you want to create a List that can accept any type of object,
use Object as the type variable, as in the following line of code:

List<Object> myList = new ArraylList<>(),

Using Bounded Wildcards in
Methods

In the section “Using the ? Wildcard” above, you learned that
passing different type variables to a generic type creates different
Java types. In many cases, you might want a method that accepts
a List of different types. For example, if you have a getAverage
method that returns the average of numbers in a list, you may
want the method to be able to work with a list of integers or a list
of floats or a list of another number type. However, if you write
List<Number> as the argument type to getAverage, you
won’t be able to pass a List<Integer> instance or a
List<Double> instance because List<Number> is a different
type from List<Integer> or List<Double>. You can use List
as a raw type or use a wildcard, but this is depriving you of type
safety checking at compile time because you could also pass a list
of anything, such as an instance of List<String>. You could use
List<Number>, but you must always pass a List<Number>
to the method. This would make your method less useful because
you work with List<Integer> or List<Long> probably more
often than with List<Number>.

There is another rule to circumvent this restriction, i.e. by
allowing you to define an upper bound of a type variable. This
way, you can pass a type or its subtype. In the case of the
getAverage method, you may be able to pass a

List<Number> or a List of instances of a Number subclass,
such as List<Integer> or List<Float>.

The syntax for using an upper bound is as follows:

GenericType<? extends upperBoundType>

For example, for the getAverage method, you would write:

List<? extends Number>

Listing 15.6 illustrates the use of such a bound.

Listing 15.6: Using a bounded wildcard

package appl5;
import java.util.ArraylList;
import java.util.List;
public class BoundedwildcardbDemol {
public static double getAverage(
List<? extends Number>
numberList) {
double total = 0.0;
for (Number number : numberList)

total +=

number .doublevalue();

}

return total/numberList.size();

public static void main(String[]
args) {
List<Integer> integerList = new
ArraylList<>();
integerList.add(3);
integerList.add(30);
integerList.add(300);

System.out.println(getAverage(integerList
)); // 111.0

List<Double> doublelList = new
ArraylList<>();

doublelList.add(3.0);

doublelList.add(33.0);

System.out.println(getAverage(doublelList)
), // 18.0

}

Thanks to the upper bound, the getAverage method in Listing
15.6 will allow you to pass a List<Number> or a List of
instances of any subclass of java.lang.Number.

Lower Bounds

The extends keyword is used to define an upper bound of a type
variable. It is also possible to define a lower bound of a type variable by
using the super keyword. For example, using List<? super Integer>
as the type to a method argument indicates that you can pass a
List<Integer> or a List of objects whose class is a superclass of
java.lang.Integer.

Generic Methods

A generic method is a method that declares their own type
parameters. The type parameters of a generic method are
declared in angle brackets and appear before the method’s
return value. The scope of a generic method’s type parameters is
limited to the method. Static and non-static generic methods are
allowed, as well as generic constructors.

Generic methods can be declared within a generic type or a non-
generic type.

For example, the emptyList method of the
java.util.Collections class is a generic method. Look at the
method signature:

public static final <T> List<T>
emptyList()

emptyList has one type parameter, T, that appears after the
keyword final and before the return value (List<T>).

Unlike a generic type where you have to explicitly specify the
parameter types when instantiating the type, the parameter
type(s) for a generic method are inferred from the method
invocation and corresponding declaration. That is why you can
simply write the following without specifying a parameter type
for the generic method.

List<String> emptyListl =
Collections.emptyList();
List<Integer> emptyList2 =
Collection.emptyList();

In both statements, the Java compiler infers the parameter type
for emptyList from the reference variables that receive the

return values.

NoteType inference is a language feature that enables the compiler to
determine the type parameter(s) for a generic method from the
corresponding declaration.

If you so wish, you can explicitly specify the type parameters of a
generic method, in which case you pass the type parameters
within angle brackets before the method name.

List<String> emptyListl = Collections.
<String>emptyList();
List<Integer> emptyList2 = Collection.
<Integer>emptyList();

A type parameter of a generic method can have an upper or
lower bound as well as use a wildcard. For example, the
binarySearch method of Collections specifies both an upper
bound and a lower bound:

public static <T> int binarySearch(List<?
extends T> list, T key,
Comparator<? super T> cC)

Writing Generic Types

Writing a generic type is not much different from writing other
types, except for the fact that you declare a list of type variables
that you intend to use somewhere in your class. These type
variables come in angle brackets after the type name. For
example, the Point class in Listing 15.7 is a generic class. A
Point object represents a point in a coordinate system and has
an X component (abscissa) and a Y component (ordinate). By
making Point generic, you can specify the degree of accuracy of

a Point instance. For example, if a Point object needs to be very
accurate, you can pass Double as the type variable. Otherwise,
Integer would suffice.

Listing 15.7: The generic Point class

package appil5;
public class Point<T> {
T X;
Ty,
public Point(T x, T vy) {
this.x = Xx;
this.y = vy;
}
public T getX() {
return x,;
b
public T getY() {
return vy,
b
public void setX(T x) {
this.x = Xx;

}

public void setY(T y) {
this.y = vy;

}

In Listing 15.7, T is the type variable for the Point class. T is
used as the return value of both getX and getY and as the
argument type for setX and setY. In addition, the constructor
also accepts two T type variables.

Using Point is just like using other generic types. For
example, the following code creates two Point objects, point1
and point2. The former passes Integer as the type variable, the
latter Double.

Point<Integer> pointl = new Point<>(4,
2);

pointl.setX(7);

Point<Double> point2 = new Point<>(1.3,
2.6);

point2.setX(109.91);

Summary

Generics enable stricter type checking at compile time. Used
especially in the Collections Framework, generics make two
contributions. First, they add type checking to collection types at
compile time, so that the type of objects that a collection can
hold is restricted to the type passed to it. For example, you can
now create an instance of java.util.List that hold strings and

will not accept Integer or other types. Second, generics
eliminate the need for type casting when retrieving an element
from a collection.

Generic types can be used without type variables, i.e. as raw
types. This provision makes it possible to run pre-Java 5 codes
with JRE 5 or later. For new applications, you should not use
raw types as future releases of Java may not support them.

In this chapter you have also learned that passing different
type variables to a generic type results in different Java types.
This is to say that List<String> is a different type from
List<Object>. Even though String is a subclass of
java.lang.Object, passing a List<String> to a method that
expects a List<Object> generates a compile error. Methods
that expect a List of anything can use the ? wildcard. List<?>
means a List of objects of any type.

Finally, you have seen that writing generic types is not that
different from writing ordinary Java types. You just need to
declare a list of type variables in angle brackets after the type
name. You then use these type variables as the types of method
return values or as the types of method arguments. By
convention, a type variable name consists of a single uppercase
letter.

Quiz

1. What are the main benefits of generics?
2. What is a parameterized type?
3. What is type inference?

Chapter 16
Input/Output

Input/output (I/0) is one of the most common operations
performed by computer programs. Examples of I/O operations
include

e creating and deleting files
¢ reading from and writing to a file or network socket

e serializing (or saving) objects to persistent storage and
retrieving the saved objects

Java support for I/O has been available since JDK 1.0 in the
form of the I/O API in the java.io package. JDK 1.4 added the
New I/O (NIO) APIs that offer performance improvement in
buffer management, scalable network and file I/O. Java NIO
APIs are part of the java.nio package and its s