

Java

A Beginner's Tutorial

4th Edition (Updated for Java SE 8)

Budi Kurniawan

Java: A Beginner's Tutorial
Fourth Edition: January 2015

All rights reserved. No part of this book may
be reproduced or transmitted in any form or
by any means, electronic or mechanical,
including photocopying, recording, or by any
information storage and retrieval system,
without written permission from the
publisher, except for the inclusion of brief
quotations in a review.

ISBN: 9780992133047

Technical Reviewer: Paul Deck
Indexer: Chris Mayle

Trademarks

Oracle and Java are registered trademarks of
Oracle and/or it's affiliates
UNIX is a registered trademark of the Open
Group
Apache is a trademark of The Apache
Software Foundation.
Firefox is a registered trademark of the
Mozilla Foundation.
Google is a trademark of Google, Inc.

Throughout this book the printing of
trademarked names without the trademark
symbol is for editorial purpose only. We
have no intention of infringement of the
trademark.

Warning and Disclaimer

Every effort has been made to make this
book as accurate as possible. The author and
the publisher shall have neither liability nor
responsibility to any person or entity with
respect to any loss or damages arising from
the information in this book.

About the Author

Budi Kurniawan is a senior developer at Brainy Software and the
author of How Tomcat Works, Servlet and JSP: A Tutorial,
Struts 2 Design and Programming, and others. He has written
software that is licensed by major corporations worldwide.

Table of Contents

Introduction
Java, the Language and the Technology
An Overview of Object-Oriented
Programming
About This Book
Downloading Program Examples and
Answers

Chapter 1: Getting Started
Downloading and Installing Java
Your First Java Program
Java Code Conventions
Integrated Development Environments
(IDEs)
Summary
Quiz

Chapter 2: Language Fundamentals
ASCII and Unicode
Separators
Primitives
Variables
Constants
Literals
Primitive Conversions
Operators
Comments
Summary
Quiz

Chapter 3: Statements
Overview
The if Statement
The while Statement
The do-while Statement
The for Statement
The break Statement
The continue Statement

The switch Statement
Summary
Quiz

Chapter 4: Objects and Classes
What Is An Object?
Java Classes
Creating An Object
The null Keyword
Memory Allocation for Objects
Java Packages
Encapsulation and Access Control
The this Keyword
Using Other Classes
Final Variables
Static Members
Static Final Variables
Static import
Variable Scope
Method Overloading
Static Factory Methods

By Value or By Reference?
Loading, Linking, and Initialization
Object Creation Initialization
The Garbage Collector
Summary
Quiz

Chapter 5: Core Classes
java.lang.Object
java.lang.String
java.lang.StringBuffer and
java.lang.StringBuilder
Primitive Wrappers
java.lang.Class
java.lang.System
java.util.Scanner
Summary
Quiz

Chapter 6: Arrays
Overview
Iterating over an Array

The java.util.Arrays Class
Changing an Array Size
Searching An Array
Passing a String Array to main
Multidimensional Arrays
Summary
Quiz

Chapter 7: Inheritance
Overview
Accessibility
Method Overriding
Calling the Constructors of the Superclass
Calling the Hidden Members of the
Superclass
Type Casting
Final Classes
The instanceof Operator
Summary
Quiz

Chapter 8: Error Handling

Catching Exceptions
try without catch
Catching Multiple Exceptions
The try-with-resources Statement
The java.lang.Exception Class
Throwing an Exception from a Method
User-Defined Exceptions
Note on Exception Handling
Summary
Quiz

Chapter 9: Working with Numbers
Boxing and Unboxing
Number Parsing
Number Formatting
Number Parsing with
java.text.NumberFormat
The java.lang.Math Class
Working with Money
Generating Random Numbers
Summary

Quiz
Chapter 10: Interfaces and Abstract Classes

The Concept of Interface
The Interface, Technically Speaking
Default Methods
Static Methods
Base Classes
Abstract Classes
Summary
Quiz

Chapter 11: Polymorphism
Overview
Polymorphism in Action
Polymorphism and Reflection
Summary
Quiz

Chapter 12: Enums
Overview
Enums in a Class
The java.lang.Enum Class

Iterating Enumerated Values
Switching on Enum
Enum Members
Summary
Quiz

Chapter 13: Working with Dates and Times
Overview
The Instant Class
LocalDate
Period
LocalDateTime
Time Zones
ZonedDateTime
Duration
Formatting A Date-Time
Parsing A Date-Time
Using the Old Date and Time API
Summary
Quiz

Chapter 14: The Collections Framework

An Overview of the Collections Framework
The Collection Interface
List and ArrayList
Iterating Over a Collection with Iterator and
for
Set and HashSet
Queue and LinkedList
Collection Conversion
Map and HashMap
Making Objects Comparable and Sortable
Summary
Quiz

Chapter 15: Generics
Life without Generics
Generic Types
Using Generic Types without Type
Parameters
Using the ? Wildcard
Using Bounded Wildcards in Methods
Generic Methods

Writing Generic Types
Summary
Quiz

Chapter 16: Input/Output
File Systems and Paths
File and Directory Handling and
Manipulation
Input/Output Streams
Reading Binary Data
Writing Binary Data
Writing Text (Characters)
Reading Text (Characters)
Logging with PrintStream
Random Access Files
Object Serialization
Summary
Quiz

Chapter 17: Annotations
Overview
Standard Annotations

Common Annotations
Standard Meta-Annotations
Custom Annotation Types
Summary
Quiz

Chapter 18: Nested and Inner Classes
An Overview of Nested Classes
Static Nested Classes
Member Inner Classes
Local Inner Classes
Anonymous Inner Classes
Behind Nested and Inner Classes
Summary
Quiz

Chapter 19: Lambda Expressions
Why Lambda Expressions?
Functional Interfaces
Lambda Expression Syntax
Predefined Functional Interfaces
Method References

Optional and Similar Classes
Summary
Quiz

Chapter 20: Working with Streams
Overview
Creating and Obtaining a Stream
Concatenating Streams
Filtering
Mapping
Reduction
Mutable Reductions
Parallel Streams
Summary
Quiz

Chapter 21: Java Database Connectivity
Introduction to JDBC
Four Steps to Data Access
Using Java DB
Using the DAO Pattern
Reading Metadata

Summary
Quiz

Chapter 22: Swing Basics
Overview
AWT Components
Useful AWT Classes
Basic Swing Components
Summary
Quiz

Chapter 23: Swinging Higher
Layout Managers
Event Handling
Working with Menus
The Look and Feel
Fast Splash Screens
System Tray Support
Desktop Help Applications
Summary
Quiz

Chapter 24: Applets

A Brief History of Applets
The Applet API
Security Restrictions
Writing and Deploying Applets
How AppletViewer Works
Passing Parameters to an Applet
SoundPlayerApplet
JApplet
Applet Deployment in a JAR File
Faster Loading
Summary
Quiz

Chapter 25: Introduction to JavaFX
Overview
Setting up
Your First JavaFX Application
The JavaFX API is explained in the next
section.Application, Stage, and Scene
UI Components
Controls

Regions
Event Handling
Styling with CSS
Summary
Quiz

Chapter 26: JavaFX with FXML
Overview
A Simple FXML-Based Application
Event Handling with FXML
Summary
Quiz

Chapter 27: Java Threads
Introduction to Java Threads
Creating a Thread
Working with Multiple Threads
Thread Priority
Stopping a Thread
Synchronization
Visibility
Thread Coordination

Using Timers
Swing Timers
Summary
Quiz

Chapter 28: Concurrency Utilities
Atomic Variables
Executor and ExecutorService
Callable and Future
Swing Worker
Locks
Summary
Quiz

Chapter 29: Internationalization
Locales
Internationalizing Applications
An Internationalized Swing Application
Summary
Quiz

Chapter 30: Java Networking
An Overview of Networking

The Hypertext Transfer Protocol (HTTP)
java.net.URL
java.net.URLConnection
java.net.Socket
java.net.ServerSocket
A Web Server Application
Summary
Quiz

Chapter 31: Security
Java Security Overview
Using the Security Manager
Policy Files
Permissions
Using the Policy Tool
Applet Security
Programming with Security
Cryptography Overview
Creating Certificates
The KeyTool Program
The JarSigner Tool

Java Cryptography API
Summary
Quiz

Chapter 32: Java Web Applications
Servlet Application Architecture
Servlet API Overview
Servlet
Writing a Basic Servlet Application
ServletRequest
ServletResponse
ServletConfig
ServletContext
GenericServlet
HTTP Servlets
Using the Deployment Descriptor
Summary
Quiz

Chapter 33: JavaServer Pages
A JSP Overview
jspInit, jspDestroy, and Other Methods

Implicit Objects
JSP Syntactic Elements
Handling Errors
Summary
Quiz

Chapter 34: Javadoc
Overview
Writing Documentation in Java Classes
Javadoc Syntax
Summary
Quiz

Chapter 35: Application Deployment
JWS Overview
JNLP File Syntax
A Deployment Example
Security Concerns
Summary
Quiz

Appendix A: javac
Options

Command Line Argument Files
Appendix B: java

Options
Appendix C: jar

Syntax
Options
Examples
Setting an Application Entry Point

Appendix D: NetBeans
Download and Installation
Creating a Project
Creating a Class
Running a Java Class
Adding Libraries
Debugging Code

Appendix E: Eclipse
Download and Installation
Adding A JRE
Creating a Java Project
Creating a Class

Running a Java Class
Adding Libraries
Debugging Code
Useful Shortcuts

Answers
Chapter 1: Getting Started
Chapter 2: Language Fundamentals
Chapter 3: Statements
Chapter 4: Objects and Classes
Chapter 5: Core Classes
Chapter 6: Arrays
Chapter 7: Inheritance
Chapter 8: Error Handling
Chapter 9: Working with Numbers
Chapter 10: Interfaces and Abstract Classes
Chapter 11: Polymorphism
Chapter 12: Enums
Chapter 13: Working with Dates and Times
Chapter 14: The Collections Framework
Chapter 15: Generics

Chapter 16: Input Output
Chapter 17: Annotations
Chapter 18: Inner Classes
Chapter 19: Lambda Expressions
Chapter 20: Working with Streams
Chapter 21: Java Database Connectivity
Chapter 22: Swing Basics
Chapter 23: Swinging Higher
Chapter 24: Applets
Chapter 25: Introduction to JavaFX
Chapter 26: JavaFX with FXML
Chapter 27: Java Threads
Chapter 28: Concurrency Utilities
Chapter 29: Internationalization
Chapter 30: Java Networking
Chapter 31: Security
Chapter 32: Java Web Applications
Chapter 33: JavaServer Pages
Chapter 34: Javadoc
Chapter 35: Application Deployment

Introduction

Welcome to Java: A Beginner’s Tutorial, Fourth Edition.

This book covers the most important Java programming topics
that you need to master in order to learn other technologies
yourself. By fully understanding all the chapters and doing the
exercises you’ll be able to perform an intermediate Java
programmer’s daily tasks quite well.

This book offers all the three subjects that a professional Java
programmer must be proficient in:

Java programming language

Object-oriented programming (OOP) with Java

Java core libraries

What makes structuring an effective Java course difficult is the
fact that the three subjects are interdependent. On the one hand,
Java is an OOP language, so its syntax is easier to learn if you
already know OOP. On the other hand, OOP features such as
inheritance, polymorphism and data encapsulation are best
taught when accompanied by real-world examples.
Unfortunately, understanding real-world Java programs

requires knowledge of the Java core libraries.

Because of such interdependence, the three main topics are
not grouped into three isolated parts. Instead, chapters
discussing a major topic and chapters teaching another are
interwoven. For example, before explaining polymorphism, this
book makes sure that you are familiar with certain Java classes
so that real-world examples can be given. In addition, because a
language feature such as generics cannot be explained effectively
without the comprehension of a certain set of classes, it is
covered after the discussion of the supporting classes.

There are also cases whereby a topic can be found in two or
more places. For instance, the for statement is a basic language
feature that should be discussed in an early chapter. However,
for can also be used to iterate over an array or an object
collection. Therefore, for is first presented in Chapter 3,
“Statements” and then revisited in Chapter 6, “Arrays” and
Chapter 14, “The Collections Framework.”

The rest of this introduction presents a high-level overview of
Java, an introduction to OOP and a brief description of each
chapter.

Java, the Language and the
Technology

Java is not only an object-oriented programming language, it is
also a set of technologies that make software development more
rapid and resulting applications more robust and secure. For
years Java has been the technology of choice because of the
benefits it offers:

platform independence

ease of use

comprehensive libraries that speed up application
development

security

scalability

extensive industry support

Sun Microsystems introduced Java in 1995 and Java—even
though it had been a general-purpose language right from the
start—was soon well known as the language for writing applets,
small programs that run inside web browsers and add
interactivity to static websites. The growth of the Internet had
much to contribute to the early success of Java.

Having said that, applets were not the only factor that made
Java shine. The other most appealing feature of Java was its
platform-independence promise, hence the slogan “Write Once,
Run Anywhere.” What this means is the very same program you
write will run on Windows, Unix, Mac, Linux, and other

operating systems. This was something no other programming
language could do. At that time, C and C++ were the two most
commonly used languages for developing serious applications.
Java seemed to have stolen their thunder since its first birthday.

That was Java version 1.0.

In 1997, Java 1.1 was released, adding significant features such
as a better event model, Java Beans, and internationalization to
the original.

Java 1.2 was launched in December 1998. Three days after it
was released, the version number was changed to 2, marking the
beginning of a huge marketing campaign that started in 1999 to
sell Java as the “next generation” technology. Java 2 was sold in
four flavors: the Standard Edition (J2SE), the Enterprise Edition
(J2EE), the Micro Edition (J2ME), and Java Card (that never
adopted “2” in its brand name).

The next version released in 2000 was 1.3, hence J2SE 1.3. 1.4
came two years later to make J2SE 1.4. J2SE version 1.5 was
released in 2004. However, the name Java 2 version 1.5 was then
changed to Java 5.

On November 13, 2006, a month before the official release
date of Java 6, Sun Microsystems announced that it had open-
sourced Java. Java SE 6 was the first Java release for which Sun
Microsystems had invited outside developers to contribute code
and help fix bugs. True that the company had in the past

accepted contributions from non-employees, like the work of
Doug Lea on multithreading, but this was the first time Sun had
posted an open invitation. The company admitted that they had
limited resources, and outside contributors would help them
cross the finish line sooner.

In May 2007 Sun released its Java source code to the
OpenJDK community as free software. IBM, Oracle and Apple
later joined OpenJDK.

In 2010 Oracle acquired Sun.

Java 7 was released in July 2011 and Java 8 in March 2014,
both results of open-source collaboration through OpenJDK.

What Makes Java Platform
Independent?
You must have heard of the terms “platform-independent” or
“cross-platform,” which means your program can run on
multiple operating systems. It was a major feat that contributed
to Java’s popularity. But, what makes Java platform
independent?

In traditional programming, source code is compiled to
executable code. This executable code can run only on the
platform it is intended to run. In other words, code written and
compiled for Windows will only run on Windows, code written in
Linux will only run on Linux, and so on. This is depicted in

Figure I.1.

Figure I.1: Traditional programming
paradigm

A Java program, on the other hand, is compiled to bytecode. You
cannot run bytecode by itself because it is not native code.
Bytecode can only run on a Java Virtual Machine (JVM). A JVM
is a native application that interprets bytecode. By making the
JVM available on many platforms, Sun transformed Java into a
cross-platform language. As shown in Figure I.2, the very same
bytecode can run on any operating system for which a JVM has
been developed.

Figure I.2: Java programming model

Currently JVMs are available for Windows, Unix, Linux, Free
BSD, and practically all other major operating systems in the

world.

JDK, JRE, JVM, What’s the
Difference?
I mentioned that Java programs must be compiled. In fact, any
programming language needs a compiler to be really useful. A
compiler is a program that converts program source code to an
executable format, either a bytecode, native code or something
else. Before you can start programming Java, you need to
download a Java compiler. The Java compiler is a program
named javac, which is short for Java compiler.

While javac can compile Java sources to bytecode, to run
bytecode you need a Java Virtual Machine. In addition, because
you will invariably use classes in the Java core libraries, you also
need to download these libraries. The Java Runtime
Environment (JRE) contains both a JVM and class libraries. As
you may suspect, the JRE for Windows is different from that for
Linux, which is different from the one for yet another operating
system.

The Java software is available in two distributions:

The JRE, which includes a JVM and the core libraries. This
is good for running bytecode.

The JDK, which includes the JRE plus a compiler and other
tools. This is required software to compile Java programs as

well as run the bytecode.

To summarize, a JVM is a native application that runs bytecode.
The JRE is an environment that includes a JVM and Java class
libraries. The JDK includes the JRE plus other tools including a
Java compiler.

The first version of the JDK is 1.0. The versions after that are
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 and 1.8. For minor releases, add
another number to the version number. For instance, 1.8.1 is the
first minor upgrade to version 1.8.

JDK 1.8 is better known as JDK 8. The version of the JRE
included in a JDK is the same as the JDK. Therefore, JDK 1.8
contains JRE 1.8. The JDK is also often called the SDK (Software
Development Kit).

In addition to the JDK, a Java programmer needs to download
Java documentation that explains classes, interfaces and enums
in the core libraries. You can download the documentation from
the same URL that provides the JRE and the JDK.

Java 2, J2SE, J2EE, J2ME, Java 8,
What Are They?
Sun Microsystems has done a great deal promoting Java. Part of
its marketing strategy was to coin the name Java 2, which was
basically JDK 1.2. There were three editions of Java 2:

Java 2 Platform, Standard Edition (J2SE). J2SE is basically
the JDK. It also serves as the foundation for technologies
defined in J2EE.

Java 2 Platform, Enterprise Edition (J2EE). It defines the
standard for developing component-based multi-tier
enterprise applications. Features include web services
support and development tools.

Java 2 Platform, Micro Edition (J2ME). It provides an
environment for applications that run on consumer devices,
such as mobile phones and TV set-top boxes. J2ME includes
a JVM and a limited set of class libraries.

Name changes occurred in version 5. J2SE became Java
Platform, Standard Edition 5 (Java SE 5). Also, the 2 in J2EE
and J2ME was dropped. The current version of the enterprise
edition is Java Platform, Enterprise Edition 7 (Java EE 7).
J2ME is now called Java Platform, Micro Edition (Java ME,
without a version number). In this book, Java 8 is used to refer
to Java SE 8.

Unlike the first versions of Java that were products of Sun,
J2SE 1.4, Java SE 5 and later versions of Java are sets of
specifications that define features that need to be implemented.
The software itself is called a reference implementation. Oracle,
IBM, and others work together through OpenJDK to provide the
Java SE 8 reference implementation and reference
implementations for the next versions of Java.

Java EE 6 and 7 are also sets of specifications that include
technologies such as servlets, JavaServer Pages, JavaServer
Faces, Java Messaging Service, etc. To develop and run Java EE
applications, you need a Java EE application server. Anyone can
implement a Java EE application server, which explains the
availability of various application servers in the market,
including many open source ones. Here are examples of Java EE
6 and 7 application servers:

Oracle WebLogic

IBM WebSphere

GlassFish

JBoss

WildFly

Apache Geronimo

Apache TomEE

The complete list can be found here.

http://www.oracle.com/technetwork/java/ja

vaee/overview/compatibility

-jsp-136984.html

JBoss, GlassFish, WildFly, Geronimo and TomEE are open

source Java EE servers. They have different licenses, though, so
make sure you read them before you decide to use the products.

The Java Community Process
(JCP) Program
Java’s continuous dominance as the technology of choice owes
much to Sun’s strategy to include other industry players in
determining the future of Java. This way, many people feel that
they also own Java. Many large corporations, such as IBM,
Oracle, Nokia, Fujitsu, etc, invest heavily in Java because they
too can propose a specification for a technology and put forward
what they want to see in the next version of a Java technology.
This collaborative effort takes the form of the JCP Program. The
URL of its Web site is http://www.jcp.org.

Specifications produced by the JCP Program are known as
Java Specification Requests (JSRs). For example, JSR 337
specifies Java SE 8.

An Overview of Object-
Oriented Programming

Object-oriented programming (OOP) works by modeling
applications on real-world objects. Three principles of OOP are
encapsulation, inheritance and polymorphism.

The benefits of OOP are real. These are the reason why most
modern programming languages, including Java, are object-
oriented (OO). I can even cite two well-known examples of
language transformation to support OOP: The C language
evolved into C++ and Visual Basic was upgraded into Visual
Basic.NET.

This section explains the benefits of OOP and provides an
assessment of how easy or hard it is to learn OOP.

The Benefits of OOP
The benefits of OOP include easy code maintenance, code reuse,
and extendibility. These benefits are presented in more detail
below.

1. Ease of maintenance. Modern software
applications tend to be very large. Once
upon a time, a “large” system comprised a
few thousand lines of code. Now, even
those consisting of one million lines are
not considered that large. When a system
gets larger, it starts giving its developers
problems. Bjarne Stroustrup, the father of
C++, once said this. A small program can

be written in anything, anyhow. If you
don’t quit easily, you’ll make it work, at the
end. But a large program is a different
story. If you don’t use techniques of “good
programming,” new errors will emerge as
fast as you fix the old ones.
The reason for this is there is
interdependency among different parts of
a large program. When you change
something in some part of the program,
you may not realize how the change might
affect other parts. OOP makes it easy to
make applications modular, and
modularity makes maintenance less of a
headache. Modularity is inherent in OOP
because a class, which is a template for
objects, is a module by itself. A good design
should allow a class to contain similar
functionality and related data. An
important and related term that is used

often in OOP is coupling, which means the
degree of interaction between two
modules. Loosely coupling among parts
make code reuse—another benefit of OOP
—easier to achieve.

2. Reusability. Reusability means that
code that has previously been written can
be reused by the code author and others
who need the same functionality provided
by the original code. It is not surprising,
then, that an OOP language often comes
with a set of ready-to-use libraries. In the
case of Java, the language is accompanied
by hundreds of class libraries or
application programming interfaces (APIs)
that have been carefully designed and
tested. It is also easy to write and
distribute your own library. Support for
reusability in a programming platform is
very attractive because it shortens

development time.
One of the main challenges to class
reusability is creating good documentation
for the class library. How fast can a
programmer find a class that provides the
functionality he or she is looking for? Is it
faster to find such a class or write a new
one from scratch? Fortunately, Java core
and extended APIs come with extensive
documentation.
Reusability does not only apply to the
coding phase through the reuse of classes
and other types; when designing an
application in an OO system, solutions to
OO design problems can also be reused.
These solutions are called design patterns.
To make it easier to refer to each solution,
each pattern is given a name. The early
catalog of reusable design patterns can be
found in the classic book Design Patterns:

Elements of Reusable Object-Oriented
Software, by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides.

3. Extendibility. Every application is
unique. It has its own requirements and
specifications. In terms of reusability,
sometimes you cannot find an existing
class that provides the exact functionality
that your application requires. However,
you will probably find one or two that
provide part of the functionality.
Extendibility means that you can still use
those classes by extending them to suit
your need. You still save time, because you
don’t have to write code from scratch.
In OOP, extendibility is achieved through
inheritance. You can extend an existing
class, add some methods or data to it, or
change the behavior of methods you don’t
like. If you know the basic functionality

that will be used in many cases, but you
don’t want your class to provide very
specific functions, you can provide a
generic class that can be extended later to
provide functionality specific to an
application.

Is OOP Hard?
Java programmers need to master OOP. As it happens, it does
make a difference if you have programmed using a procedural
language, such as C or Pascal. In the light of this, there is bad
news and good news.

First the bad news.

Researchers have been debating the best way to teach OOP in
school; some argue that it is best to teach procedural
programming before OOP is introduced. In many curricula, an
OOP course can be taken when a student is nearing the final year
of his/her university term.

More recent studies, however, argue that someone with
procedural programming skill thinks in a paradigm very
different from how OO programmers view and try to solve
problems. When this person needs to learn OOP, the greatest
struggle he/she faces is having to go through a paradigm shift. It

is said that it takes six to 18 months to switch your mindset from
procedural to object-oriented paradigms. Another study shows
that students who have not learned procedural programming do
not find OOP that difficult.

Now the good news.

Java qualifies as one of the easiest OOP languages to learn. For
example, you do not need to worry about pointers, don’t have to
spend precious time solving memory leaks caused by failing to
destroy unused objects, etc. On top of that, Java comes with very
comprehensive class libraries with relatively very few bugs in
their early versions. Once you know the nuts and bolts of OOP,
programming with Java is really easy.

About This Book

The following presents the overview of each chapter.

Chapter 1, “Getting Started” provides the instructions on how
to download and install a JDK and aims at giving you the feel of
working with Java. This includes writing a simple Java program,
compiling it using the javac tool, and running it using the java
program. In addition, some advice on code conventions and
integrated development environments is given.

Chapter 2, “Language Fundamentals” teaches you the Java
language syntax. You will be introduced to topics such as

character sets, primitives, variables, operators, etc.

Chapter 3, “Statements” explains Java statements for, while,
do-while, if, if-else, switch, break, and continue.

Chapter 4, “Objects and Classes,” is the first OOP lesson in this
book. It starts by explaining what a Java object is an how it is
stored in memory. It then continues with a discussion of classes,
class members, and two OOP concepts (abstraction and
encapsulation).

Chapter 5, “Core Classes” covers important classes in the Java
core libraries: java.lang.Object, java.lang.String,
java.lang.StringBuffer and java.lang.StringBuilder,
wrapper classes and java.util.Scanner. This is an important
chapter because the classes explained in this chapter are some of
the most commonly used classes in Java.

Chapter 6, “Arrays” discusses arrays, a special language
feature of Java that is widely used. This chapter also covers a
utility class for manipulating arrays.

Chapter 7, “Inheritance” discusses an OOP feature that
enables code extendibility. This chapter teaches you how to
extend a class, affect the visibility of a subclass, override a
method and so forth.

Undoubtedly, error handling is an important feature of any
programming language. As a mature language, Java has a very

robust error handling mechanism that can help prevent bugs
from creeping in. Chapter 8, “Error Handling” is a detailed
discussion of this mechanism.

Chapter 9, “Working with Numbers” deals with three issues
when working with numbers: parsing, formatting, and
manipulation. This chapter introduces Java classes that can help
you with these tasks.

Chapter 10, “Interfaces and Abstract Classes” explains that an
interface is more than a class without implementation. An
interface defines a contract between a service provider and a
client. This chapter explains how to work with interfaces and
abstract classes.

Polymorphism is one of the main pillars of OOP. It is
incredibly useful in situations whereby the type of an object in
not known at compile time. Chapter 11, “Polymorphism” explains
this feature and provides useful examples.

Chapter 12, “Enums” covers enum, a type added to Java since
version 5.

Chapter 13, “Working with Dates and Times” explains how you
can work with the new Date and Time API added to Java 8 as
well as the old API used in the older versions of Java.

Chapter 14, “The Collections Framework” shows how you can
use the members of the java.util package to group objects and

manipulate them.

Generics are a very important feature in Java and Chapter 15,
“Generics” adequately explains this feature.

Chapter 16, “Input/Output” introduces the concept of streams
and explains how you can use the four stream types in the Java
IO API to perform input-output operations. In addition, object
serialization and deserialization are discussed.

Chapter 17, “Annotations” talks about annotations. It explains
the standard annotations that come with the JDK, common
annotations, meta-annotations and custom annotations.

Chapter 18, “Nested and Inner Classes” explains how you can
write a class within another class and why this OOP feature can
be very useful.

Chapter 19, “Lambda Expressions” covers lambda expressions,
a feature added to Java 8. It explains the concept and provides
useful examples.

Chapter 20, “Working with Streams” discusses streams, a new
addition to Java 8. It shows you why streams play an important
role in Java programming.

Accessing databases and manipulating data are some of the
most important tasks in business applications. There are many
flavors of database servers and accessing different databases

requires different skills. Fortunately for Java programmers, Java
Database Connectivity (JDBC) technology provides a uniform
way of accessing databases. JDBC is discussed in Chapter 21,
“Java Database Connectivity.”

Chapter 22, “Swing Basics” is the first installment of the two
chapters on Swing. It briefly discusses the AWT components and
thoroughly explains some basic Swing components.

Chapter 23, “Swinging Higher” is the second chapter on
Swing. It covers more advanced techniques such as layout
management, event handling and the look and feel.

Applets are small programs that run on the Web browser.
Chapter 24, “Applets” explains the lifecycle of an applet, security
restrictions and JApplet.

Chapter 25, “Introduction to JavaFX” covers JavaFX, the
latest Java technology for creating rich clients applications that
can run on the desktop as well as in the browser.

Chapter 26, “JavaFX with FXML” discusses FXML, a markup
language that can be used to separate the presentation layer and
the business logic in JavaFX applications.

A thread is a basic processing unit to which an operating
system allocates processor time, and more than one thread can
be executing code inside a process. Chapter 27, “Java Threads,”
shows that in Java multithreaded programming is not only the

domain of expert programmers.

Chapter 28, “The Concurrency Utilities” is the second chapter
on multi-threaded programming. It discusses interfaces and
classes that make writing multi-threaded programs easier.

Today it is common for software applications to be deployable
to different countries and regions. Such applications need to be
designed with internationalization in mind. Chapter 29,
“Internationalization” explores techniques that Java
programmers can use.

Chapter 30, “Java Networking” deals with classes that can be
used in network programming. A simple Web server application
is presented to illustrate how to use these classes.

Chapter 31, “Security” is a tutorial on how Java application
users can restrict running Java applications and how you can use
cryptography to secure your application and data.

Chapter 32, “Java Web Applications” explores Servlet
technology and the Servlet API and presents several examples.

Chapter 33, “JavaServer Pages” explains another web
development technology and shows how to write JSP pages.

Chapter 34, “JavaDoc” discusses the javadoc tool that Java
programmers can use to generate documentation for their APIs.

Chapter 35, “Application Deployment,” talks about Java Web

Start and how to use it to deploy Java applications over the
Internet, across a local network, and from a CD.

Appendix A, “javac”, Appendix B, “java”, and Appendix C, “jar”
explain the javac, java, and jar tools, respectively.

Appendix D, “NetBeans” and Appendix E, “Eclipse” provide
brief tutorials on NetBeans and Eclipse, respectively.

Downloading Program
Examples and Answers

The program examples accompanying this book and answers to
the questions in each chapter can be downloaded from the
publisher’s website:

http://books.brainysoftware.com

Extract the zip file to a working directory and you are good to go.

Chapter 1
Getting Started

To program in Java, you need the Java SE Development Kit
(JDK). Therefore, the first section of this chapter provides
instructions to download and install it.

Developing a Java program involves writing code, compiling it
into bytecode, and running the bytecode. This is a process you
will repeat again and again during your career as a Java
programmer, and it is crucial that you feel comfortable with it.
The main objective of this chapter therefore is to give you the
opportunity to experience the process of software development
in Java.

As it is important to write code that not only works but that is
also easy to read and maintain, this chapter introduces you to
Java code conventions. And, since the smart developer uses an
integrated development environment (IDE), the last section of
this chapter offers advice on Java IDEs.

Downloading and Installing

Java

Before you can start compiling and running Java programs, you
need to download and install the JDK as well as configure some
system environment variables.

You can download the JRE and the JDK for Windows, Linux,
and Mac OS X from this Oracle website:

http://www.oracle.com/technetwork/java/ja

vase/downloads/index.html

If you click the Download link on the page, you’ll be redirected to
a page that lets you select an installation for your platform:
Windows, Linux, Solaris or Mac OS X. The same link also
provides the JRE. However, for development you need the JDK
not only the JRE, which is only good for running compiled Java
classes. The JDK includes the JRE.

After downloading the JDK, you need to install it. Installation
varies from one operating system to another. These subsections
detail the installation process.

Installing on Windows
Installing on Windows is easy. Simply double-click the

executable file in you downloaded in Windows Explorer and
follow the instructions. Figure 1.1 shows the first dialog of the
installation wizard.

Figure 1.1: Installing the JDK 8 on
Windows

Installing on Linux
On Linux platforms, the JDK is available in two installation
formats.

RPM, for Linux platforms that supports the RPM package
management system, such as Red Hat and SuSE.

Self-extracting package. A compressed file containing
packages to be installed.

If you are using the RPM, follow these steps:

1. Become root by using the su command
2. Extract the downloaded file.
3. Change directory to where the

downloaded file is located and type:

 chmod a+x rpmFile

where rpmFile is the RPM file.
4. Run the RPM file:

 ./rpmFile

If you are using the self-extracting binary installation, follow
these steps.

1. Extract the downloaded file.
2. Use chmod to give the file the execute

permissions:

 chmod a+x binFile

Here, binFile is the downloaded bin file for
your platform.

3. Change directory to the location where
you want the files to be installed.

4. Run the self-extracting binary. Execute
the downloaded file with the path
prepended to it. For example, if the file is
in the current directory, prepend it with
"./":

 ./binFile

Installing on Mac OS X
To install the JDK 8 on Mac OS X, you need an Intel-based
computer running OS X 10.8 (Mountain Lion) or later. You also
need administrator privileges. Installation is straight-forward.

1. Double-click on the .dmg file you
downloaded.

2. In the Finder window that appears,
double-click the package icon.

3. On the first window that appears, click
Continue.

4. The Installation Type window appears.
Click Install.

5. A window appears that says “Installer is
trying to install new software. Type your
password to allow this.” Enter your Admin
password.

6. Click Install Software to start the
installation.

Setting System Environment
Variables
After you install the JDK, you can start compiling and running
Java programs. However, you can only invoke the compiler and
the JRE from the location of the javac and java programs or by
including the installation path in your command. To make
compiling and running programs easier, it is important that you
set the PATH environment variable on your computer so that
you can invoke javac and java from any directory.

Setting the Path Environment Variable on Windows
To set the PATH environment variable on Windows, do these

steps:

1. Click Start, Settings, Control Panel.
2. Double-click System.
3. Select the Advanced tab and then click

on Environment Variables.
4. Locate the Path environment variable in

the User Variables or System
Variables panes. The value of Path is a
series of directories separated by
semicolons. Now, add the full path to the
bin directory of your Java installation
directory to the end of the existing value of
Path. The directory looks something like:

 C:\Program

Files\Java\jdk1.8.0_<version>\bin

5. Click Set, OK, or Apply.

Setting the Path Environment Variable on UNIX and
Linux
Setting the path environment variable on these operating

systems depends on the shell you use. For the C shell, add the
following to the end of your ~/.cshrc file:

set path=(path/to/jdk/bin $path)

where path/to/jdk/bin is the bin directory under your JDK
installation directory.

For the Bourne Again shell, add this line to the end of your
~/.bashrc or ~/.bash_profile file:

export PATH=/path/to/jdk/bin:$PATH

Here, path/to/jdk/bin is the bin directory under your JDK
installation directory.

Testing the Installation
To confirm that you have installed the JDK correctly, type javac
on the command line from any directory on your machine. If you
see instructions on how to correctly run javac, then you have
successfully installed it. On the other hand, if you can only run
javac from the bin directory of the JDK installation directory,
your PATH environment variable was not configured properly.

Downloading Java API

Documentation
When programming Java, you will invariably use classes from
the core libraries. Even seasoned programmers look up the
documentation for those libraries when they are coding.
Therefore, you should download the documentation from here.

http://www.oracle.com/technetwork/java/ja

vase/downloads/index.html

(You need to scroll down until you see “Java SE 8
Documentation.”)

The API is also available online here:

http://download.oracle.com/javase/8/docs/

api

Your First Java Program

This section highlights steps in Java development: writing the
program, compiling it into bytecode and running the bytecode.

Writing a Java Program

You can use any text editor to write a Java program. Open a text
editor and write the code in Listing 1.1. Alternatively, if you have
downloaded the program examples accompanying this book, you
can simply copy it to your text editor.

Code Download

If you have not done so, now is a good time to download the examples from the
publisher’s website. The URL can be found in the last section of Introduction.

Listing 1.1: A simple Java program
class MyFirstProgram {

 public static void main(String[]

args) {

 System.out.println("Java

rocks.");

 }

}

For now, suffice it to say that Java code must reside in a class.
Also, make sure you save the code in Listing 1.1 as a
MyFirstProgram.java file. All Java source files must have
java extension.

Compiling Your Java Program
You use the javac program in the bin directory of your JDK
installation directory to compile Java programs. Assuming you

have edited the PATH environment variable in your computer
(if not, see the section “Downloading and Installing Java”), you
should be able to invoke javac from any directory. To compile
the MyFirstProgram class in Listing 1.1, do the following:

1. Open a terminal or a command prompt
and change directory to the directory
where the MyFirstProgram.java file
was saved in.

2. Type the following command.

 javac MyFirstProgram.java

If everything goes well, javac will create a file named
MyFirstProgram.class in your working directory.

Note
The javac tool has more features that you can use by passing options. For
example, you can tell it where you want the generated class file to be
created. Appendix A, “javac” discusses javac in clear detail.

Running Your Java Program
To run your Java program, use the java program that is part of
the JDK. Again, having added the PATH environment variable,
you should be able to invoke java from any directory. From your

working directory, type the following and press Enter.

java MyFirstProgram

Note that you do not include the class extension when running a
Java program.

You will see the following on your console.

Java rocks.

Congratulations. You have successfully written your first Java
program. Since the sole aim of this chapter is to familiarize
yourself with the writing and compiling process, I will not
explain how the program works.

You can also pass arguments to a Java program. For example,
if you have a class named Calculator and you want to pass two
arguments to it, you can do it like this:

java Calculator arg-1 arg-2

Here, arg-1 is the first argument and arg-2 the second. You can
pass as many arguments as you want. The java program will
then make these arguments available to your Java program as an

array of strings. You’ll learn to handle arguments in Chapter 6,
“Arrays.”

Note
The java tool is an advanced program that you can configure by passing
options. For instance, you can set the amount of memory allocated to it.
Appendix B, “java” explains these options.

Note
The java tool can also be used to run a Java class that is packaged in a jar
file. Check the section “Setting an Application’s Entry Point” in Appendix
C, “jar.”

Java Code Conventions

It is important to write correct Java programs that run.
However, it is also crucial to write programs that are easy to read
and maintain. It is believed that eighty percent of the lifetime
cost of a piece of software is spent on maintenance. Also, the
turnover of programmers is high, thus it is very likely that
someone other than you will maintain your code during its
lifetime. Whoever inherits your code will appreciate clear and
easy-to-read program sources.

Using consistent code conventions is one way to make your
code easier to read. (Other ways include proper code
organization and sufficient commenting.) Code conventions

include file names, file organization, indentation, comments,
declaration, statements, white space and naming conventions.

A class declaration starts with the keyword class followed by a
class name and the opening brace {. You can place the opening
brace on the same line as the class name, as shown in Listing 1.1,
or you can write it on the next line, as demonstrated in Listing
1.2.

Listing 1.2: MyFirstProgram written
using a different code convention

class MyFirstProgram

{

 public static void main(String[]

args)

 {

 System.out.println("Java

rocks.");

 }

}

The code in Listing 1.2 is as good as the one in Listing 1.1. It is
just that the class has been written using a different convention.
You should adopt a consistent style for all your program
elements. It is up to you to define your own code conventions,
however Sun Microsystems has published a document that

outlines standards that its employees should follow. The
document can be viewed here. (Of course, the document is now
part of Oracle.com)

http://www.oracle.com/technetwork/java/co

deconvtoc-136057.html

Program samples in this book will follow the recommended
conventions outlined in this document. I’d also like to encourage
you to develop the habit of following these conventions since the
first day of your programming career, so that writing clear code
comes naturally at a later stage.

Your first lesson on styles is about indentation. The unit of
indentation must be four spaces. If tabs are used in place of
spaces, they must be set every eight spaces (not four).

Integrated Development
Environments (IDEs)

It is true that you can write Java programs using a text editor.
However, an IDE will help. Not only will it check the syntax of
your code, an IDE can also auto complete code, debug, and trace
your programs. In addition, compilation can happen
automatically as you type, and running a Java program is simply

a matter of clicking a button. As a result, you will develop in
much shorter time.

There used to be dozens of Java IDEs out there, but today
these three are the only major players left. Fortunately, the first
two are completely free.

NetBeans (free and open source)

Eclipse (free and open source)

IntelliJ IDEA (offers free and paid editions)

The two most popular Java IDEs are NetBeans and Eclipse and
the past few years have seen a war between the two to become
the number one. NetBeans and Eclipse are both open source
projects with strong backers. Sun Microsystems launched
NetBeans in 2000 after buying the Czech company Netbeans
Ceska Republika. Eclipse was originated by IBM to compete with
NetBeans.

Which one is better depends on who you ask, but their
popularity has become the impetus that propelled other software
makers to give away their IDEs too. Even Microsoft, whose .NET
technology is Java’s most fierce competitor, followed suit by no
longer charging for the Express Editions of its Visual
Studio.NET.

This book provides a brief tutorial of NetBeans and Eclipse in

Appendix D and Appendix E, respectively. Do consider using an
IDE because it helps a lot.

Summary

This chapter provided instructions on how to download and
install the JDK and helped you write your first Java program.
You used a text editor to write the program, used javac to
compile it to a class file, and ran the class file with the java tool.

As programs grow in complexity and projects get larger, an
IDE will help expedite application development.

Quiz

1. What is a compiler?
2. How is Java different from traditional

programming?
3. What is bytecode?
4. What is the difference between the JRE

and the JDK?
5. If you had saved the code in Listing 1.1

using a different name, such as
whatever.java, would it have compiled?

6. If you had used a file extension other than
java when saving the code in Listing 1.1, for
example as MyFirstProgram.txt, would
it have compiled?

7. Are these valid Java class names:
FirstJava, scientificCalculator,
numberFormatter?

8. How do you write to the console?
9. Write a Java class named HelloWorld

that prints “Hello World”.

Chapter 2
Language Fundamentals

Java is an object-oriented programming (OOP) language,
therefore an understanding of OOP is of utmost importance.
Chapter 4, “Objects and Classes” is the first lesson of OOP in this
book. However, before you explore OOP features and techniques,
you should first study Java language fundamentals.

ASCII and Unicode

Traditionally, computers in English speaking countries only used
the ASCII (American Standard Code for Information
Interchange) character set to represent alphanumeric characters.
Each character in the ASCII is represented by 7 bits. There are
therefore 128 characters in this character set. These include the
lower case and upper case Latin letters, numbers, and
punctuation marks.

The ASCII character set was later extended to include another
128 characters, such as the German characters ä, ö, ü and the

British currency symbol £. This character set is called extended
ASCII and each character is represented by 8 bits.

ASCII and the extended ASCII are only two of the many
character sets available. Another popular one is the character set
standardized by the ISO (International Standards Organization),
ISO-8859-1, which is also known as Latin-1. Each character in
ISO-8859-1 is represented by eight bits as well. This character
set contains all the characters required for writing text in many
of the western European languages, such as German, Danish,
Dutch, French, Italian, Spanish, Portuguese and, of course,
English. An eight-bit-per-character character set is convenient
because a byte is also 8 bits long. As such, storing and
transmitting text written in an 8-bit character set is most
efficient.

However, not every language uses Latin letters. Chinese and
Japanese are examples of languages that use different character
sets. For example, each character in the Chinese language
represents a word, not a letter. There are thousands of these
characters and eight bits are not enough to represent all the
characters in the character set. The Japanese use a different
character set for their language too. In total, there are hundreds
of different character sets for all the world languages. To unify all
these characters sets, a computing standard called Unicode was
created.

Unicode is a character set developed by a non-profit
organization called the Unicode Consortium (www.unicode.org).

This body attempts to include all characters in all languages in
the world into one single character set. A unique number in
Unicode represents exactly one character. Currently at version 7,
Unicode is used in Java, XML, ECMAScript, LDAP, etc.

Initially, a Unicode character was represented by 16 bits,
which were enough to represent more than 65,000 different
characters. 65,000 characters are sufficient for encoding most of
the characters in major languages in the world. However, the
Unicode consortium planned to allow for encoding for as many
as a million more characters. With this amount, you then need
more than 16 bits to represent each character. In fact, a 32 bit
system is considered a convenient way of storing Unicode
characters.

Now, you see a problem already. While Unicode provides
enough space for all the characters used in all languages, storing
and transmitting Unicode text is not as efficient as storing and
transmitting ASCII or Latin-1 characters. In the Internet world,
this is a huge problem. Imagine having to transfer 4 times as
much data as ASCII text!

Fortunately, character encoding can make it more efficient to
store and transmit Unicode text. You can think of character
encoding as analogous to data compression. And, there are many
types of character encodings available today. The Unicode
Consortium endorses three of them:

UTF-8. This is popular for HTML and for protocols whereby

Unicode characters are transformed into a variable length
encoding of bytes. It has the advantages that the Unicode
characters corresponding to the familiar ASCII set have the
same byte values as ASCII, and that Unicode characters
transformed into UTF-8 can be used with much existing
software. Most browsers support the UTF-8 character
encoding.

UTF-16. In this character encoding, all the more commonly
used characters fit into a single 16-bit code unit, and other
less often used characters are accessible via pairs of 16-bit
code units.

UTF-32. This character encoding uses 32 bits for every
single character. This is clearly not a choice for Internet
applications. At least, not at present.

ASCII characters still play a dominant role in software
programming. Java too uses ASCII for almost all input elements,
except comments, identifiers, and the contents of characters and
strings. For the latter, Java supports Unicode characters. This
means, you can write comments, identifiers, and strings in
languages other than English.

Separators

Java uses certain characters as separators. These special
characters are presented in Table 2.1.

Symbol

Name

Description

()

Parentheses

Used in:

1. method
signatures to
contain lists of
arguments.

2. expressions to
raise operator
precedence.

3. narrowing
conversions.

4. loops to contain
expressions to be

evaluated

{ }

Braces

Used in:

1. declaration of
types.

2. blocks of
statements

3. array
initialization.

[]

Brackets

Used in:

1. array
declaration.

2. array value
dereferencing

< >

Angle brackets

Used to pass
parameter to
parameterized
types.

;

Semicolon

Used to terminate
statements and in
the for statement
to separate the
initialization code,
the expression,
and the update
code.

Used in the for

:

Colon

statement that
iterates over an
array or a
collection.

,

Comma

Used to separate
arguments in
method
declarations.

.

Period

Used to separate
package names
from subpackages
and type names,
and to separate a
field or method
from a reference
variable.

Table 2.1: Java separators

It is important that you are familiar with the symbols and names,
but don’t worry if you don’t understand the terms in the
Description column for now.

Primitives

When writing an object-oriented (OO) application, you create an
object model that resembles the real world. For example, a
payroll application would have Employee objects, Tax objects,
Company objects, etc. In Java, however, objects are not the
only data type. There is another data type called primitive. There
are eight primitive types in Java, each with a specific format and
size. Table 2.2 lists Java primitives.

Primitive

Description

Range

byte

Byte-length integer
(8 bits)

-128 (-27) to 127
(27-1)

short

Short integer (16
bits)

-32,768 (-215) to
32,767 (-215-1)

int

Integer (32 bits)

-2,147,483,648
(-231) to

2,147,483,647
(-231-1)

long

Long integer (64
bits)

-9,223,372,036,85
4,775,808 (-263)
to
9,223,372,036,854
,775,807 (263-1)

Single-precision
floating point (32-

Smallest positive
nonzero: 14e-45

float

bits)

Largest positive
nonzero:
3.4028234e38

double

Double-precision
floating point (64-
bits)

Smallest positive
nonzero: 4.9e-324

Largest positive
nonzero:
1.79769313486231
57e308

char

A Unicode
character

[See Unicode 6
specification]

boolean

A boolean value

true or false

Table 2.2: Java primitives

The first six primitives (byte, short, int, long, float, double)
represent numbers. Each has a different size. For example, a
byte can contain any whole number between -128 and 127. To
understand how the smallest and largest numbers for an integer
were obtained, look at its size in bits. A byte is 8 bits long so
there are 28 or 256 possible values. The first 128 values are
reserved for -128 to -1, then 0 takes one place, leaving 127
positive values. Therefore, the range for a byte is -128 to 127.

If you need a placeholder to store number 1000000, you need
an int. A long is even larger, and you might ask, if a long can
contain a larger set of numbers than a byte and an int, why not
always use a long? It is because a long takes 64 bits and
therefore consume more memory space than a byte or an int.
Thus, to save space, you want to use a primitive with the smallest
possible data size.

The primitives byte, short, int, and long can only hold
integers or whole numbers, for numbers with decimal points you
need either a float or a double. A float is a 32-bit value that
conforms to the Institute of Electrical and Electronics Engineer
(IEEE) Standard 754. A double is a 64-bit value that conforms to
the same standard.

A char can contain a single Unicode character, such as ‘a’, ‘9’

or ‘&’. The use of Unicode allows chars to also contain
characters that do not exist in the English alphabet. A boolean
can contain one of two possible states (false or true).

Note
The reason why not everything in Java is an object is speed. Objects are
more expensive to create and operate on than primitives. In
programming an operation is said to be expensive if it is resource
intensive or consumes a lot of CPU cycles to complete.

Now that you know that there are two types of data in Java
(primitives and objects), let’s continue by studying how to use
primitives. Let’s start with variables.

Variables

Variables are data placeholders. Java is a strongly typed
language, therefore every variable must have a declared type.
There are two data types in Java:

reference types. A variable of reference type provides a
reference to an object.

primitive types. A variable of primitive type holds a
primitive.

How Java Stores Integer Values

You must have heard that computers work with binary numbers, which are numbers
that consists of only zeros and ones. This section provides an overview that may
come in useful when you learn mathematical operators.

A byte takes eight bits, meaning there are eight bits allocated to store a byte. The
leftmost bit is the sign bit. 0 indicates a positive number, and 1 denotes a negative
number. 0000 0000 is the binary representation of 0, 0000 0001 of 1, 0000 0010 of 2,
0000 0011 of 3, and 0111 1111 of 127, which is the largest positive number that a
byte can contain.

Now, how do you get the binary representation of a negative number? It’s easy.
Get the binary representation of its positive equivalent first, and reverse all the bits
and add 1. For example, to get the binary representation of -3 you start with 3, which
is 0000 0011. Reversing the bits results in

1111 1100

Adding 1 gives you

1111 1101

which is -3 in binary.
For ints, the rule is the same, i.e. the leftmost bit is the sign bit. The only

difference is that an int takes 32 bits. To calculate the binary form of -1 in an int, we
start from 1, which is

0000 0000 0000 0000 0000 0000 0000 0001

Reversing all the bits results in:

1111 1111 1111 1111 1111 1111 1111 1110

Adding 1 gives us the number we want (-1).

1111 1111 1111 1111 1111 1111 1111 1111

In addition to the data type, a Java variable also has a name or

an identifier. There are a few ground rules in choosing
identifiers.

1. An identifier is an unlimited-length
sequence of Java letters and Java digits.
An identifier must begin with a Java letter.

2. An identifier must not be a Java keyword
(given in Table 2.3), a boolean literal, or
the null literal.

3. It must be unique within its scope. Scopes
are discussed in Chapter 4, “Objects and
Classes.”

Java Letters and Java Digits
Java letters include uppercase and lowercase ASCII Latin letters A to Z
(\u0041-\u005a—note that \u denotes a Unicode character) and a to z
(\u0061-\u007a), and, for historical reasons, the ASCII underscore (_ or
\u005f) and the dollar sign ($, or \u0024). The $ character should be
used only in mechanically generated source code or, rarely, to access
preexisting names on legacy systems.

Java digits include the ASCII digits 0-9 (\u0030-\u0039).

abstract continue for

new switch

assert default if

package synchronized

boolean do goto

private this

break double implements

protected throw

byte else import

public throws

case enum instanceof

return transient

catch extends int

short try

char final interface

static void

class finally long

strictfp volatile

const float native

super while

Table 2.3: Java keywords

Here are some legal identifiers:

salary

x2

_x3

row_count

Here are some invalid variables:

2x

java+variable

2x is invalid because it starts with a number. java+variable is
invalid because it contains a plus sign.

Also note that names are case-sensitive. x2 and X2 are two
different identifiers.

You declare a variable by writing the type first, followed by the
name plus a semicolon. Here are some examples of variable
declarations.

byte x;

int rowCount;

char c;

In the examples above you declare three variables:

The variable x of type byte

The variable rowCount of type int

The variable c of type char

x, rowCount and c are variable names or identifiers.

It is also possible to declare multiple variables having the same
type on the same line, separating two variables with a comma.
For instance:

int a, b;

which is the same as

int a;

int b;

However, writing multiple declarations on the same line is not
recommended as it reduces readability.

Finally, it is possible to assign a value to a variable at the same
time the variable is declared:

byte x = 12;

int rowCount = 1000;

char c = 'x';

Naming Convention for Variables
Variable names should be short yet meaningful. They should be in mixed
case with a lowercase first letter. Subsequent words start with capital
letters. Variable names should not start with underscore _ or dollar sign
$ characters. For example, here are some examples of variable names
that are in compliance with Sun’s code conventions: userName, count,
firstTimeLogin.

Constants

In Java constants are variables whose values, once assigned,
cannot be changed. You declare a constant by using the keyword
final. By convention, constant names are all in upper case with
words separated by underscores.

Here are examples of constants or final variables.

final int ROW_COUNT = 50;

final boolean ALLOW_USER_ACCESS = true;

Literals

From time to time you need to assign values to variables in your
program, such as number 2 to an int or the character ‘c’ to a
char. For this, you need to write the value representation in a
format that the Java compiler understands. This source code
representation of a value is called literal. There are three types of
literals: literals of primitive types, string literals, and the null
literal. Only literals of primitive types are discussed in this
chapter. The null literal is discussed in Chapter 4, “Objects and
Classes” and string literals in Chapter 5, “Core Classes.”

Literals of primitive types have four subtypes: integer literals,
floating-point literals, character literals and boolean literals.
Each of these subtypes is explained below.

Integer Literals
Integer literals may be written in decimal (base 10, something we
are used to), hexadecimal (base 16) or octal (base 8). For
example, one hundred can be expressed as 100. The following
are integer literals in decimal:

2

123456

As another example, the following code assigns 10 to variable x
of type int.

int x = 10;

Hexadecimal integers are written by using the prefixes 0x or
0X. For example, the hexadecimal number 9E is written as
0X9E or 0x9E. Octal integers are written by prefixing the
numbers with 0. For instance, the following is an octal number
567:

0567

Integer literals are used to assign values to variables of types
byte, short, int, and long. Note, however, you must not assign
a value that exceeds the capacity of a variable. For instance, the
highest number for a byte is 127. Therefore, the following code
generates a compile error because 200 is too big for a byte.

byte b = 200;

To assign a value to a long, suffix the number with the letter L
or l. L is preferable because it is easily distinguishable from digit
1. A long can contain values between -9223372036854775808L
and 9223372036854775807L (263).

Beginners of Java often ask why we need to use the suffix l or
L, because even without it, such as in the following, the program

still compiles.

long a = 123;

This is only partly true. An integer literal without a suffix L or l is
regarded as an int. Therefore, the following will generate a
compile error because 9876543210 is larger than the capacity for
an int:

long a = 9876543210;

To rectify the problem, add an L or l at the end of the number
like this:

long a = 9876543210L;

Longs, ints, shorts, and bytes can also be expressed in binaries
by prefixing the numbers with 0B or 0b. For instance:

byte twelve = 0B1100; // = 12

If an integer literal is too long, readability suffers. For this
reason, starting from Java 7 you can use underscores to separate

digits in integer literals. For example, these two have the same
meaning but the second one is obviously easier to read.

int million = 1000000;

int million = 1_000_000;

It does not matter where you put the underscores. You can use
one every three digits, like the example above, or any number of
digits. Here are some more examples:

short next = 12_345;

int twelve = 0B_1100;

long multiplier = 12_34_56_78_90_00L;

Floating-Point Literals
Numbers such as 0.4, 1.23, 0.5e10 are floating point numbers. A
floating point number has the following parts:

a whole number part

a decimal point

a fractional part

an optional exponent

Take 1.23 as an example. For this floating point, the whole
number part is 1, the fractional part is 23, and there is no
optional exponent. In 0.5e10, 0 is the whole number part, 5 the
fractional part, and 10 is the exponent.

In Java, there are two types of floating points:

float. 32 bits in size. The largest positive float is
3.40282347e+38 and the smallest positive finite nonzero
float is 1.40239846e-45.

double. 64 bits in size. The largest positive double is
1.79769313486231570e+308 and the smallest positive finite
nonzero double is 4.94065645841246544e-324.

In both floats and doubles, a whole number part of 0 is
optional. In other words, 0.5 can be written as .5. Also, the
exponent can be represented by either e or E.

To express float literals, you use one of the following formats.

Digits . [Digits] [ExponentPart] f_or_F

. Digits [ExponentPart] f_or_F

Digits ExponentPart f_or_F

Digits [ExponentPart] f_or_F

Note that the part in brackets is optional.

The f_or_F part makes a floating point literal a float. The
absence of this part makes a float literal a double. To explicitly
express a double literal, you can suffix it with D or d.

To write double literals, use one of these formats.

Digits . [Digits] [ExponentPart] [d_or_D]

. Digits [ExponentPart] [d_or_D]

Digits ExponentPart [d_or_D]

Digits [ExponentPart] [d_or_D]

In both floats and doubles, ExponentPart is defined as follows.

ExponentIndicator SignedInteger

where ExponentIndicator is either e or E and SignedInteger is .

Signopt Digits

and Sign is either + or - and a plus sign is optional.

Examples of float literals include the following:

2e1f

8.f

.5f

0f

3.14f

9.0001e+12f

Here are examples of double literals:

2e1

8.

.5

0.0D

3.14

9e-9d

7e123D

Boolean Literals
The boolean type has two values, represented by literals true
and false. For example, the following code declares a boolean
variable includeSign and assigns it the value of true.

boolean includeSign = true;

Character Literals
A character literal is a Unicode character or an escape sequence
enclosed in single quotes. An escape sequence is the
representation of a Unicode character that cannot be entered
using the keyboard or that has a special function in Java. For
example, the carriage return and linefeed characters are used to
terminate a line and do not have visual representation. To
express a linefeed character, you need to escape it, i.e. write its
character representation. Also, single quote characters need to
be escaped because single quotes are used to enclosed
characters.

Here are some examples of character literals:

'a'

'Z'

'0'

'ü'

Here are character literals that are escape sequences:

'\b' the backspace character

'\t' the tab character

'\\' the backslash

'\'' single quote

'\"' double quote

'\n' linefeed

'\r' carriage return

In addition, Java allows you to escape a Unicode character so
that you can express a Unicode character using a sequence of
ASCII characters. For example, the Unicode code for the
character £ is 00A3. You can write the following character literal
to express this character:

'£'

However, if you do not have the tool to produce that character
using your keyboard, you can escape it this way:

'\u00A3'

Primitive Conversions

When dealing with different data types, you often need to
perform conversions. For example, assigning the value of a
variable to another variable involves a conversion. If both
variables have the same type, the assignment will always
succeed. Conversion from a type to the same type is called

identity conversion. For example, the following operation is
guaranteed to be successful:

int a = 90;

int b = a;

However, conversion to a different type is not guaranteed to be
successful or even possible. There are two other kinds of
primitive conversions, the widening conversion and the
narrowing conversion.

The Widening Conversion
The widening primitive conversion occurs from a type to another
type whose size is the same or larger than that of the first type,
such as from int (32 bits) to long (64 bits). The widening
conversion is permitted in the following cases:

byte to short, int, long, float, or double

short to int, long, float, or double

char to int, long, float, or double

int to long, float, or double

long to float or double

float to double

A widening conversion from an integer type to another integer
type will not risk information loss. At the same token, a
conversion from float to double preserves all the information.
However, a conversion from an int or a long to a float may
result in loss of precision.

The widening primitive conversion occurs implicitly. You do
not need to do anything in your code. For example:

int a = 10;

long b = a; // widening conversion

The Narrowing Conversion
The narrowing conversion occurs from a type to a different type
that has a smaller size, such as from a long (64 bits) to an int
(32 bits). In general, the narrowing primitive conversion can
occur in these cases:

short to byte or char

char to byte or short

int to byte, short, or char

long to byte, short, or char

float to byte, short, char, int, or long

double to byte, short, char, int, long, or float

Unlike the widening primitive conversion, the narrowing
primitive conversion must be explicit. You need to specify the
target type in parentheses. For example, here is a narrowing
conversion from long to int.

long a = 10;

int b = (int) a; // narrowing conversion

The (int) on the second line tells the compiler that a narrowing
conversion should occur.

The narrowing conversion may incur information loss, if the
converted value is larger than the capacity of the target type. The
preceding example did not cause information loss because 10 is
small enough for an int. However, in the following conversion,
there is some information loss because 9876543210L is too big
for an int.

long a = 9876543210L;

int b = (int) a; // the value of b is now

1286608618

A narrowing conversion that results in information loss
introduces a defect in your program.

Operators

A computer program is a collection of operations that together
achieve a certain function. There are many types of operations,
including addition, subtraction, multiplication, division, and bit
shifting. In this section you will learn various Java operations.

An operator performs an operation on one, two or three
operands. Operands are the targets of an operation and the
operator is a symbol representing the action. For example, here
is an additive operation:

x + 4

In this case, x and 4 are the operands and + is the operator.

An operator may or may not return a result.

Note
Any legal combination of operators and operands are called an
expression. For example, x + 4 is an expression. A boolean expression
results in either true or false. An integer expression produces an
integer. And, the result of a floating-point expression is a floating point
number.

Operators that require only one operand are called unary

operators. There are a few unary operators in Java. Binary
operators, the most common type of Java operator, take two
operands. There is also one ternary operator, the ? : operator,
that requires three operands.

Table 2.4 list Java operators.

 = > < ! ~ ? :

instanceof

 == <= >= != && || ++ --

 + - * / & | ^ %

<< >> >>>

 += -= *= /= &= |= ^= %=

<<= >>= >>>=

Table 2.4: Java operators

In Java, there are six categories of operators.

Unary operators

Arithmetic operators

Relational and conditional operators

Shift and logical operators

Assignment operators

Other operators

Each of these operators is discussed in the following sections.

Unary Operators
Unary operators operate on one operand. There are six unary
operators, all discussed in this section.

Unary Minus Operator –
The unary minus operator returns the negative of its operand.
The operand must be a numeric primitive or a variable of a
numeric primitive type. For example, in the following code, the
value of y is -4.5;

float x = 4.5f;

float y = -x;

Unary Plus Operator +
This operator returns the value of its operand. The operand must
be a numeric primitive or a variable of a numeric primitive type.
For example, in the following code, the value of y is 4.5.

float x = 4.5f;

float y = +x;

This operator does not have much significance since its absence
makes no difference.

Increment Operator ++
This operator increments the value of its operand by one. The
operand must be a variable of a numeric primitive type. The
operator can appear before or after the operand. If the operator
appears before the operand, it is called the prefix increment
operator. If it is written after the operand, it becomes the postfix
increment operator.

As an example, here is a prefix increment operator in action:

int x = 4;

++x;

After ++x, the value of x is 5. The preceding code is the same as

int x = 4;

x++;

After x++, the value of x is 5.

However, if the result of an increment operator is assigned to
another variable in the same expression, there is a difference
between the prefix operator and its postfix twin. Consider this

example.

int x = 4;

int y = ++x;

// y = 5, x = 5

The prefix increment operator is applied before the assignment.
x is incremented to 5, and then its value is copied to y.

However, check the use of the postfix increment operator here.

int x = 4;

int y = x++;

// y = 4, x = 5

With the postfix increment operator, the value of the operand (x)
is incremented after the value of the operand is assigned to
another variable (y).

Note that the increment operator is most often applied to ints.
However, it also works with other types of numeric primitives,
such as float and long.

Decrement Operator --
This operator decrements the value of its operand by one. The
operand must be a variable of a numeric primitive type. Like the

increment operator, there are also the prefix decrement operator
and the postfix decrement operator. For instance, the following
code decrements x and assigns the value to y.

int x = 4;

int y = --x;

// x = 3; y = 3

In the following example, the postfix decrement operator is used:

int x = 4;

int y = x--;

// x = 3; y = 4

Logical Complement Operator !
This operator can only be applied to a boolean primitive or an
instance of java.lang.Boolean. The value of this operator is
true if the operand is false, and false if the operand is true.
For example:

boolean x = false;

boolean y = !x;

// at this point, y is true and x is

false

Bitwise Complement Operator ~
The operand of this operator must be an integer primitive or a
variable of an integer primitive type. The result is the bitwise
complement of the operand. For example:

int j = 2;

int k = ~j; // k = -3; j = 2

To understand how this operator works, you need to convert the
operand to a binary number and reverse all the bits. The binary
form of 2 in an integer is:

0000 0000 0000 0000 0000 0000 0000 0010

Its bitwise complement is

1111 1111 1111 1111 1111 1111 1111 1101

which is the representation of -3 in an integer.

Arithmetic Operators
There are four types of arithmetic operations: addition,
subtraction, multiplication, division, and modulus. Each
arithmetic operator is discussed here.

Addition Operator +
The addition operator adds two operands. The types of the
operands must be convertible to a numeric primitive. For
example:

byte x = 3;

int y = x + 5; // y = 8

Make sure the variable that accepts the addition result has a big
enough capacity. For example, in the following code the value of
k is -294967296 and not 4 billion.

int j = 2000000000; // 2 billion

int k = j + j; // not enough capacity. A

bug!!!

On the other hand, the following works as expected:

long j = 2000000000; // 2 billion

long k = j + j; // the value of k is 4

billion

Subtraction Operator –

This operator performs subtraction between two operands. The
types of the operands must be convertible to a numeric primitive
type. As an example:

int x = 2;

int y = x – 1; // y = 1

Multiplication Operator *
This operator perform multiplication between two operands. The
type of the operands must be convertible to a numeric primitive
type. As an example:

int x = 4;

int y = x * 4; // y = 16

Division Operator /
This operator perform division between two operands. The left
hand operand is the dividend and the right hand operand the
divisor. Both the dividend and the divisor must be of a type
convertible to a numeric primitive type. As an example:

int x = 4;

int y = x / 2; // y = 2

Note that at runtime a division operation raises an error if the
divisor is zero.

The result of a division using the / operator is always an
integer. If the divisor does not divide the dividends equally, the
remainder will be ignored. For example

int x = 4;

int y = x / 3; // y = 1

The java.lang.Math class, explained in Chapter 5, “Core
Classes,” can perform more sophisticated division operations.

Modulus Operator %
The modulus operator perform division between two operands
and returns the remainder. The left hand operand is the dividend
and the right hand operand the divisor. Both the dividend and
the divisor must be of a type that is convertible to a numeric
primitive type. For example the result of the following operation
is 2.

8 % 3

Equality Operators
There are two equality operators, == (equal to) and != (not

equal to), both operating on two operands that can be integers,
floating points, characters, or boolean. The outcome of equality
operators is a boolean.

For example, the value of c is true after the comparison.

int a = 5;

int b = 5;

boolean c = a == b;

As another example,

boolean x = true;

boolean y = true;

boolean z = x != y;

The value of z is false after comparison because x is equal to y.

Relational Operators
There are five relational operators: <, >, <=, and >= and
instanceof. The first four operators are explained in this
section. instanceof is discussed in Chapter 7, “Inheritance.”

The <, >, <=, and >= operators operate on two operands
whose types must be convertible to a numeric primitive type.

Relational operations return a boolean.

The < operator evaluates if the value of the left-hand operand
is less than the value of the right-hand operand. For example, the
following operation returns false:

9 < 6

The > operator evaluates if the value of the left-hand operand is
greater than the value of the right-hand operand. For example,
this operation returns true:

9 > 6

The <= operator tests if the value of the left-hand operand is less
than or equal to the value of the right-hand operand. For
example, the following operation evaluates to false:

9 <= 6

The >= operator tests if the value of the left-hand operand is
greater than or equal to the value of the right-hand operand. For
example, this operation returns true:

9 >= 9

Conditional Operators
There are three conditional operators: the AND operator &&, the
OR operator ||, and the ? : operator. Each of these is detailed
below.

The && operator
This operator takes two expressions as operands and both
expressions must return a value that must be convertible to
boolean. It returns true if both operands evaluate to true.
Otherwise, it returns false. If the left-hand operand evaluates to
false, the right-hand operand will not be evaluated. For
example, the following returns false.

(5 < 3) && (6 < 9)

The || Operator
This operator takes two expressions as operands and both
expressions must return a value that must be convertible to
boolean. || returns true if one of the operands evaluates to
true. If the left-hand operand evaluates to true, the right-hand
operand will not be evaluated. For instance, the following
returns true.

(5 < 3) || (6 < 9)

The ? : Operator
This operator operates on three operands. The syntax is

expression1 ? expression2 : expression3

Here, expression1 must return a value convertible to boolean. If
expression1 evaluates to true, expression2 is returned.
Otherwise, expression3 is returned.

For example, the following expression returns 4.

(8 < 4) ? 2 : 4

Shift Operators
A shift operator takes two operands whose type must be
convertible to an integer primitive. The left-hand operand is the
value to be shifted, the right-hand operand indicates the shift
distance. There are three types of shift operators:

the left shift operator <<

the right shift operator >>

the unsigned right shift operator >>>

The Left Shift Operator <<
The left shift operator bit-shifts a number to the left, padding the
right bits with 0. The value of n << s is n left-shifted s bit
positions. This is the same as multiplication by two to the power
of s.

For example, left-shifting an int whose value is 1 with a shift
distance of 3 (1 << 3) results in 8. Again, to figure this out, you
convert the operand to a binary number.

0000 0000 0000 0000 0000 0000 0000 0001

Shifting to the left 3 shift units results in:

0000 0000 0000 0000 0000 0000 0000 1000

which is equivalent to 8 (the same as 1 * 23).

Another rule is this. If the left-hand operand is an int, only the
first five bits of the shift distance will be used. In other words,
the shift distance must be within the range 0 and 31. If you pass
an number greater than 31, only the first five bits will be used.
This is to say, if x is an int, x << 32 is the same as x << 0; x <<
33 is the same as x << 1.

If the left-hand operand is a long, only the first six bits of the
shift distance will be used. In other words, the shift distance
actually used is within the range 0 and 63.

The Right Shift Operator >>
The right shift operator >> bit-shifts the left-hand operand to
the right. The value of n >> s is n right-shifted s bit positions.
The resulting value is n/2s.

As an example, 16 >> 1 is equal to 8. To prove this, write the
binary representation of 16.

0000 0000 0000 0000 0000 0000 0001 0000

Then, shifting it to the right by 1 bit results in.

0000 0000 0000 0000 0000 0000 0000 1000

which is equal to 8.

The Unsigned Right Shift Operator >>>
The value of n >>> s depends on whether n is positive or
negative. For a positive n, the value is the same as n >> s.

If n is negative, the value depends on the type of n. If n is an
int, the value is (n>>s)+(2<<~s). If n is a long, the value is

(n>>s)+(2L<<~s).

Assignment Operators
There are twelve assignment operators:

= += -= *= /= %= <<= >>= >>>= &=

^= |=

Assignment operators take two operands whose type must be of
an integral primitive. The left-hand operand must be a variable.
For instance:

int x = 5;

Except for the assignment operator =, the rest work the same
way and you should see each of them as consisting of two
operators. For example, += is actually + and =. The assignment
operator <<= has two operators, << and =.

The two-part assignment operators work by applying the first
operator to both operands and then assign the result to the left-
hand operand. For example x += 5 is the same as x = x + 5.

x -= 5 is the same as x = x - 5.

x <<= 5 is equivalent to x = x << 5.

x &= 5 produces the same result as x = x &= 5.

Integer Bitwise Operators & | ^
The bitwise operators & | ^ perform a bit to bit operation on two
operands whose types must be convertible to int. & indicates an
AND operation, | an OR operation, and ^ an exclusive OR
operation. For example,

0xFFFF & 0x0000 = 0x0000

0xF0F0 & 0xFFFF = 0xF0F0

0xFFFF | 0x000F = 0xFFFF

0xFFF0 ^ 0x00FF = 0xFF0F

Logical Operators & | ^
The logical operators & | ^ perform a logical operation on two
operands that are convertible to boolean. & indicates an AND
operation, | an OR operation, and ^ an exclusive OR operation.
For example,

true & true = true

true & false = false

true | false = true

false | false = false

true ^ true = false

false ^ false = false

false ^ true = true

Operator Precedence
In most programs, multiple operators often appear in an
expression, such as.

int a = 1;

int b = 2;

int c = 3;

int d = a + b * c;

What is the value of d after the code is executed? If you say 9,
you’re wrong. It’s actually 7.

Multiplication operator * takes precedence over addition
operator +. As a result, multiplication will be performed before
addition. However, if you want the addition to be executed first,
you can use parentheses.

int d = (a + b) * c;

The latter will assign 9 to d.

Table 2.5 lists all the operators in the order of precedence.

Operators in the same column have equal precedence.

Operator

postfix operators

[] . (params) expr++ expr--

unary operators

++expr --expr +expr -expr ~ !

creation or cast

new (type)expr

multiplicative

* / %

additive

+ -

shift

<< >> >>>

relational

< > <= >= instanceof

equality

== !=

bitwise AND

&

bitwise exclusive OR

^

bitwise inclusive OR

|

logical AND

&&

logical OR

||

conditional

? :

assignment

= += -= *= /= %= &= ^= |=
<<= >>= >>>=

Table 2.5: Operator precedence

Note that parentheses have the highest precedence. Parentheses
can also make expressions clearer. For example, consider the

following code:

int x = 5;

int y = 5;

boolean z = x * 5 == y + 20;

The value of z after comparison is true. However, the expression
is far from clear.

You can rewrite the last line using parentheses.

boolean z = (x * 5) == (y + 20);

which does not change the result because * and + have higher
precedence than ==, but this makes the expression much
clearer.

Promotion
Some unary operators (such as +, -, and ~) and binary operators
(such as +, -, *, /) cause automatic promotion, i.e. elevation to a
wider type such as from byte to int. Consider the following
code:

byte x = 5;

byte y = -x; // error

The second line surprisingly causes an error even though a byte
can accommodate -5. The reason for this is the unary operator -
causes the result of -x to be promoted to int. To rectify the
problem, either change y to int or perform an explicit narrowing
conversion like this.

byte x = 5;

byte y = (byte) –x;

For unary operators, if the type of the operand is byte, short, or
char, the outcome is promoted to int.

For binary operators, the promotion rules are as follows.

If any of the operands is of type byte or short, then both
operands will be converted to int and the outcome will be
an int.

If any of the operands is of type double, then the other
operand is converted to double and the outcome will be a
double.

If any of the operands is of type float, then the other
operand is converted to float and the outcome will be a
float.

If any of the operands is of type long, then the other

operand is converted to long and the outcome will be a
long.

For example, the following code causes a compile error:

short x = 200;

short y = 400;

short z = x + y;

You can fix this by changing z to int or perform an explicit
narrowing conversion of x + y, such as

short z = (short) (x + y);

Note that the parentheses around x + y is required, otherwise
only x would be converted to int and the result of addition of a
short and an int will be an int.

Comments

It is good practice to write comments throughout your code,
sufficiently explaining what functionality a class provides, what a
method does, what a field contains, and so forth.

There are two types of comments in Java, both with syntax
similar to comments in C and C++.

Traditional comments. Enclose a traditional comment in /*
and */.

End-of-line comments. Use double slashes (//) which causes
the rest of the line after // to be ignored by the compiler.

For example, here is a comment that describes a method

/*

 toUpperCase capitalizes the characters

of in a String object

*/

public void toUpperCase(String s) {

Here is an end-of-line comment:

public int rowCount; //the number of rows

from the database

Traditional comments do not nest, which means

/*

 /* comment 1 */

 comment 2 */

is invalid because the first */ after the first /* will terminate the
comment. As such, the comment above will have the extra
comment 2 */, which will generate a compiler error.

On the other hand, end-of-line comments can contain
anything, including the sequences of characters /* and */, such
as this:

// /* this comment is okay */

Summary

This chapter presents Java language fundamentals, the basic
concepts and topics that you should master before proceeding to
more advanced subjects. Topics of discussion include character
sets, variables, primitives, literals, operators, operator
precedence, and comments.

Chapter 3 continues with statements, another important topic
of the Java language.

Quiz

1. What does ASCII stand for?
2. Does Java use ASCII characters or

Unicode characters?
3. What are reference type variables, and

what are primitive type variables?
4. How are constants implemented in Java?
5. What is an expression?
6. You need to assign the British pound

symbol to a char but you do not have the
£ key on your keyboard. How do you do
this if you know the Unicode code for it is
00A3?

7. Name at least ten operators in Java.
8. What is the ternary operator in Java?
9. What is operator precedence?
10. Consider the following code. What are

the values of result1 and result2? Why the
difference?

 int result1 = 1 + 2 * 3;

 int result2 = (1 + 2) * 3;

11. Name two types of Java comments.

Chapter 3
Statements

A computer program is a compilation of instructions called
statements. There are many types of statements in Java and
some—such as if, while, for, and switch—are conditional
statements that determine the program flow. This chapter
discusses Java statements, starting with an overview and then
providing details of each of them. The return statement, which
is the statement to exit a method, is discussed in Chapter 4,
“Objects and Classes.”

Overview

In programming, a statement is an instruction to do something.
Statements control the sequence of program execution.
Assigning a value to a variable is an example of a statement.

x = z + 5;

Even a variable declaration is a statement.

long secondsElapsed;

By contrast, an expression is a combination of operators and
operands that gets evaluated. For example, z + 5 is an
expression.

In Java a statement is terminated with a semicolon and
multiple statements can be written in a single line.

x = y + 1; z = y + 2;

However, writing multiple statements in a single line is not
recommended as it obscures code readability.

Note
In Java, an empty statement is legal and does nothing:

 ;

Some expressions can be made statements by terminating them
with a semicolon. For example, x++ is an expression. However,
this is a statement:

x++;

Statements can be grouped in a block. By definition, a block is a
sequence of the following programming elements within braces:

statements

local class declarations

local variable declaration statements

A statement and a statement block can be labeled. Label names
follow the same rule as Java identifiers and are terminated with
a colon. For example, the following statement is labeled
sectionA.

sectionA: x = y + 1;

And, here is an example of labeling a block:

start: {

 // statements

}

The purpose of labeling a statement or a block is so that it can be

referenced by the break and continue statements.

The if Statement

The if statement is a conditional branch statement. The syntax of
the if statement is either one of these two:

if (booleanExpression) {

 statement(s)

}

if (booleanExpression) {

 statement(s)

} else {

 statement(s)

}

If booleanExpression evaluates to true, the statements in the
block following the if statement are executed. If it evaluates to
false, the statements in the if block are not executed. If
booleanExpression evaluates to false and there is an else block,
the statements in the else block are executed.

For example, in the following if statement, the if block will be

executed if x is greater than 4.

if (x > 4) {

 // statements

}

In the following example, the if block will be executed if a is
greater than 3. Otherwise, the else block will be executed.

if (a > 3) {

 // statements

} else {

 // statements

}

Note that the good coding style suggests that statements in a
block be indented.

If you are evaluating a boolean in your if statement, it’s not
necessary to use the == operator like this:

boolean fileExist = ...

if (fileExist == true) {

Instead, you can simply write

if (fileExists) {

By the same token, instead of writing

if (fileExists == false) {

write

if (!fileExists) {

If the expression to be evaluated is too long to be written in a
single line, it is recommended that you use two units of
indentation for subsequent lines. For example.

if (numberOfLoginAttempts <

numberOfMaximumLoginAttempts

 || numberOfMinimumLoginAttempts >

y) {

 y++;

}

If there is only one statement in an if or else block, the braces
are optional.

if (a > 3)

 a++;

else

 a = 3;

However, this may pose what is called the dangling else problem.
Consider the following example:

if (a > 0 || b < 5)

 if (a > 2)

 System.out.println("a > 2");

 else

 System.out.println("a < 2");

The else statement is dangling because it is not clear which if
statement the else statement is associated with. An else
statement is always associated with the immediately preceding
if. Using braces makes your code clearer.

if (a > 0 || b < 5) {

 if (a > 2) {

 System.out.println("a > 2");

 } else {

 System.out.println("a < 2");

 }

}

If there are multiple selections, you can also use if with a series
of else statements.

if (booleanExpression1) {

 // statements

} else if (booleanExpression2) {

 // statements

}

...

else {

 // statements

}

For example

if (a == 1) {

 System.out.println("one");

} else if (a == 2) {

 System.out.println("two");

} else if (a == 3) {

 System.out.println("three");

} else {

 System.out.println("invalid");

}

In this case, the else statements that are immediately followed
by an if do not use braces. See also the discussion of the switch
statement in the section “The switch Statement” later in this
chapter.

The while Statement

In many occasions, you may want to perform an action several
times in a row. In other words, you have a block of code that you
want executed repeatedly. Intuitively, this can be done by
repeating the lines of code. For instance, a beep can be achieved
using this line of code:

java.awt.Toolkit.getDefaultToolkit().beep

();

And, to wait for half a second you use these lines of code.

try {

 Thread.currentThread().sleep(500);

} catch (Exception e) {

}

Therefore, to produce three beeps with a 500 milliseconds
interval between two beeps, you can simply repeat the same
code:

java.awt.Toolkit.getDefaultToolkit().beep

();

try {

 Thread.currentThread().sleep(500);

} catch (Exception e) {

}

java.awt.Toolkit.getDefaultToolkit().beep

();

try {

 Thread.currentThread().sleep(500);

} catch (Exception e) {

}

java.awt.Toolkit.getDefaultToolkit().beep

();

However, there are circumstances where repeating code does not

work. Here are some of those:

The number of repetition is higher than 5, which means the
number of lines of code increases five fold. If there is a line
that you need to fix in the block, copies of the same line
must also be modified.

If the number of repetitions is not known in advance.

A much cleverer way is to put the repeated code in a loop. This
way, you only write the code once but you can instruct Java to
execute the code any number of times. One way to create a loop
is by using the while statement, which is the topic of discussion
of this section. Another way is to use the for statement, which is
explained in the next section.

The while statement has the following syntax.

while (booleanExpression) {

 statement(s)

}

Here, statement(s) will be executed as long as
booleanExpression evaluates to true. If there is only a single
statement inside the braces, you may omit the braces. For clarity,
however, you should always use braces even when there is only
one statement.

As an example of the while statement, the following code
prints integer numbers that are less than three.

int i = 0;

while (i < 3) {

 System.out.println(i);

 i++;

}

Note that the execution of the code in the loop is dependent on
the value of i, which is incremented with each iteration until it
reaches 3.

To produce three beeps with an interval of 500 milliseconds,
use this code:

int j = 0;

while (j < 3) {

java.awt.Toolkit.getDefaultToolkit().beep

();

 try {

Thread.currentThread().sleep(500);

 } catch (Exception e) {

 }

 j++;

}

Sometimes, you use an expression that always evaluates to true
(such as the boolean literal true) but relies on the break
statement to escape from the loop.

int k = 0;

while (true) {

 System.out.println(k);

 k++;

 if (k > 2) {

 break;

 }

}

You will learn about the break statement in the section, “The
break Statement” later in this chapter.

The do-while Statement

The do-while statement is like the while statement, except that
the associated block always gets executed at least once. Its syntax
is as follows:

do {

 statement(s)

} while (booleanExpression);

With do-while, you put the statement(s) to be executed after
the do keyword. Just like the while statement, you can omit the
braces if there is only one statement within them. However,
always use braces for the sake of clarity.

For example, here is an example of the do-while statement:

int i = 0;

do {

 System.out.println(i);

 i++;

} while (i < 3);

This prints the following to the console:

0

1

2

The following do-while demonstrates that at least the code in

the do block will be executed once even though the initial value
of j used to test the expression j < 3 evaluates to false.

int j = 4;

do {

 System.out.println(j);

 j++;

} while (j < 3);

This prints the following on the console.

4

The for Statement

The for statement is like the while statement, i.e. you use it to
enclose code that needs to be executed multiple times. However,
for is more complex than while.

The for statement starts with an initialization, followed by an
expression evaluation for each iteration and the execution of a
statement block if the expression evaluates to true. An update
statement will also be executed after the execution of the
statement block for each iteration.

The for statement has following syntax:

for (init ; booleanExpression ; update)

{

 statement(s)

}

Here, init is an initialization that will be performed before the
first iteration, booleanExpression is a boolean expression which
will cause the execution of statement(s) if it evaluates to true,
and update is a statement that will be executed after the
execution of the statement block. init, expression, and update
are optional.

The for statement will stop only if one of the following
conditions is met:

booleanEpression evaluates to false

A break or continue statement is executed

A runtime error occurs.

It is common to declare a variable and assign a value to it in the
initialization part. The variable declared will be visible to the
expression and update parts as well as to the statement block.

For example, the following for statement loops three times

and each time prints the value of i.

for (int i = 0; i < 3; i++) {

 System.out.println(i);

}

The for statement starts by declaring an int named i and
assigning 0 to it:

int i = 0;

It then evaluates the expression i < 3, which evaluates to true
since i equals 0. As a result, the statement block is executed, and
the value of i is printed. It then performs the update statement
i++, which increments i to 1. That concludes the first loop.

The for statement then evaluates the value of i < 3 again. The
result is again true because i equals 1. This causes the statement
block to be executed and 1 is printed on the console. Afterwards,
the update statement i++ is executed, incrementing i to 2. That
concludes the third loop.

Next, the expression i < 3 is evaluated and the result is true
because i equals 2. This causes the statement block to be run and
2 is printed on the console. Afterwards, the update statement
i++ is executed, causing i to be equal to 3. This concludes the

second loop.

Next, the expression i < 3 is evaluated again, and the result is
false. This stops the for loop.

This is what you see on the console:

0

1

2

Note that the variable i is not visible anywhere else since it is
declared within the for loop.

Note also that if the statement block within for only consists
of one statement, you can remove the braces, so in this case the
above for statement can be rewritten as:

for (int i = 0; i < 3; i++)

 System.out.println(i);

However, using braces even if there is only one statement makes
your code clearer.

Here is another example of the for statement.

for (int i = 0; i < 3; i++) {

 if (i % 2 == 0) {

 System.out.println(i);

 }

}

This one loops three times. For each iteration the value of i is
tested. If i is even, its value is printed. The result of the for loop
is as follows:

0

2

The following for loop is similar to the previous case, but uses i
+= 2 as the update statement. As a result, it only loops twice,
when i equals 0 and when it is 2.

for (int i = 0; i < 3; i += 2) {

 System.out.println(i);

}

The result is

0

2

A statement that decrements a variable is often used too.
Consider the following for loop:

for (int i = 3; i > 0; i--) {

 System.out.println(i);

}

which prints:

3

2

1

The initialization part of the for statement is optional. In the
following for loop, the variable j is declared outside the loop, so
potentially j can be used from other points in the code outside
the for statement block.

int j = 0;

for (; j < 3; j++) {

 System.out.println(j);

}

// j is visible here

As mentioned previously, the update statement is optional. The
following for statement moves the update statement to the end
of the statement block. The result is the same.

int k = 0;

for (; k < 3;) {

 System.out.println(k);

 k++;

}

In theory, you can even omit the booleanExpression part. For
example, the following for statement does not have one, and the
loop is only terminated with the break statement. See the
section, “The break Statement” for more information.

int m = 0;

for (; ;) {

 System.out.println(m);

 m++;

 if (m > 4) {

 break;

 }

}

If you compare for and while, you’ll see that you can always
replace the while statement with for. This is to say that

while (expression) {

 ...

}

can always be written as

for (; expression;) {

 ...

}

Note
In addition, for can iterate over an array or a collection. See Chapters 6,
“Arrays” and Chapter 14, “The Collections Framework” for discussions of
the enhanced for.

The break Statement

The break statement is used to break from an enclosing do,
while, for, or switch statement. It is a compile error to use
break anywhere else.

For example, consider the following code

int i = 0;

while (true) {

 System.out.println(i);

 i++;

 if (i > 3) {

 break;

 }

}

The result is

0

1

2

3

Note that break breaks the loop without executing the rest of
the statements in the block.

Here is another example of break, this time in a for loop.

int m = 0;

for (; ;) {

 System.out.println(m);

 m++;

 if (m > 4) {

 break;

 }

}

The break statement can be followed by a label. The presence of
a label will transfer control to the start of the code identified by
the label. For example, consider this code.

start:

for (int i = 0; i < 3; i++) {

 for (int j = 0; j < 4; j++) {

 if (j == 2) {

 break start;

 }

 System.out.println(i + ":" + j);

 }

}

The use of label start identifies the first for loop. The statement
break start; therefore breaks from the first loop. The result of
running the preceding code is as follows.

0:0

0:1

Java does not have a goto statement like in C or C++, and labels
are meant as a form of goto. However, just as using goto in
C/C++ may obscure your code, the use of labels in Java may
make your code unstructured. The general advice is to avoid
labels if possible and to always use them with caution.

The continue Statement

The continue statement is like break but it only stops the
execution of the current iteration and causes control to begin
with the next iteration.

For example, the following code prints the number 0 to 9,
except 5.

for (int i = 0; i < 10; i++) {

 if (i == 5) {

 continue;

 }

 System.out.println(i);

}

When i is equals to 5, the expression of the if statement
evaluates to true and causes the continue statement to be
called. As a result, the statement below it that prints the value of
i is not executed and control continues with the next loop, i.e. for
i equal to 6.

As with break, continue may be followed by a label to
identify which enclosing loop to continue to. As with labels with
break, employ continue label with caution and avoid it if you
can.

Here is an example of continue with a label.

start:

for (int i = 0; i < 3; i++) {

 for (int j = 0; j < 4; j++) {

 if (j == 2) {

 continue start;

 }

 System.out.println(i + ":" + j);

 }

}

The result of running this code is as follows:

0:0

0:1

1:0

1:1

2:0

2:1

The switch Statement

An alternative to a series of else if, as discussed in the last part
of the section, “The if Statement,” is the switch statement.
switch allows you to choose a block of statements to run from a
selection of code, based on the return value of an expression. The
expression used in the switch statement must return an int, a
String, or an enumerated value.

Note
The String class is discussed in Chapter 5, “Core Classes” and
enumerated values in Chapter 12, “Enums.”

The syntax of the switch statement is as follows.

switch(expression) {

case value_1 :

 statement(s);

 break;

case value_2 :

 statement(s);

 break;

 .

 .

 .

case value_n :

 statement(s);

 break;

default:

 statement(s);

}

Failure to add a break statement after a case will not generate a
compile error but may have more serious consequences because
the statements on the next case will be executed.

Here is an example of the switch statement. If the value of i is
1, “One player is playing this game.” is printed. If the value is 2,
“Two players are playing this game is printed.” If the value is 3,
“Three players are playing this game is printed. For any other
value, “You did not enter a valid value.” will be printed.

int i = ...;

switch (i) {

case 1 :

 System.out.println("One player is

playing this game.");

 break;

case 2 :

 System.out.println("Two players are

playing this game.");

 break;

case 3 :

 System.out.println("Three players are

playing this game.");

 break;

default:

 System.out.println("You did not enter

a valid value.");

}

For examples of switching on a String or an enumerated value,
see Chapter 5, “Core Classes” and Chapter 10, “Enums,”
respectively.

Summary

The sequence of execution of a Java program is controlled by

statements. In this chapter, you have learned the following Java
control statements: if, while, do-while, for, break,
continue, and switch. Understanding how to use these
statements is crucial to writing correct programs.

Quiz

1. What is the difference between an
expression and a statement?

2. How do you escape from the following
while loop?

 while (true) {

 // statements

 }

3. Is there any difference between using the
postfix increment operator and the prefix
increment operator as the update
statement of a for loop?

 for (int x = 0; x < length; x++)

 for (int x = 0; x < length; ++x)

4. What will be printed on the console if the
code below is executed:

 int i = 1;

 switch (i) {

 case 1 :

 System.out.println("One player is

playing this game.");

 case 2 :

 System.out.println("Two players are

playing this game.");

 break;

 default:

 System.out.println("You did not

enter a valid value.");

 }

Hint: no break after case 1.
5. Write a class that uses for to print all

even numbers from 1 to 9.
6. Write a class that uses for to print all

even numbers between two integers, a and
b, including b if b is an even number.

7. Same as before, but print the numbers in

descending order.

Chapter 4
Objects and Classes

Object-oriented programming (OOP) works by modeling
applications on real-world objects. The benefits of OOP are real,
which explains why OOP is the paradigm of choice today and
why OOP languages like Java are popular. This chapter
introduces you to objects and classes. If you are new to OOP, you
may want to read this chapter carefully. A good understanding of
OOP is key to writing quality programs.

This chapter starts by explaining what an object is and what
constitutes a class. It then teaches you how to create an object
with the new keyword, how objects are stored in memory, how
classes can be organized into packages, how to use access control
to achieve encapsulation, how the Java Virtual Machine (JVM)
loads and links objects, and how Java manages unused objects.
In addition, method overloading and static class members are
explained.

What Is An Object?

When developing an application in an OOP language, you create
a model that resembles a real-life situation to solve your
problem. Take for example a payroll application, which
calculates an employee’s income tax and take home pay. An
application like this would have a Company object to represent
the company using the application, Employee objects that
represent the employees in the company, Tax objects to
represent the tax details of each employee, and so on. Before you
can start programming such applications, however, you need to
understand what Java objects are and how to create them.

Let’s begin with a look at objects in life. Objects are
everywhere, living (persons, pets, etc) and otherwise (cars,
houses, streets, etc); concrete (books, televisions, etc) and
abstract (love, knowledge, tax rate, regulations, and so forth).
Every object has two features: the attributes and the actions the
object can perform. For example, the following are some of a
car’s attributes:

color

number of doors

plate number

Additionally, a car can perform these actions:

run

brake

As another example, a dog has the following attributes: color,
age, type, weight, etc. And it can bark, run, urinate, sniff, etc.

A Java object also has attribute(s) and can perform action(s).
In Java, attributes are called fields and actions are called
methods. In other programming languages these may be known
by other names. For example, methods are often called
functions.

Both fields and methods are optional, meaning some Java
objects may not have fields but have methods and some others
may have fields but not methods. Some, of course, have both
attributes and methods and some have neither.

How do you create Java objects? This is the same as asking,
“How do you make cars?” Cars are expensive objects that need
careful design that takes into account many things, such as safety
and cost-effectiveness. You need a good blueprint to make good
cars. To create Java objects, you need similar blueprints: classes.

Java Classes

A class is a blueprint or template to create objects of identical
type. If you have an Employee class, you can create any number
of Employee objects. To create Street objects, you need a

Street class. A class determines what kind of object you get. For
example, if you create an Employee class that has age and
position fields, all Employee objects created out of this
Employee class will have age and position fields as well. No
more no less. The class determines the object.

In summary, classes are an OOP tool that enable programmers
to create the abstraction of a problem. In OOP, abstraction is the
act of using programming objects to represent real-world
objects. As such, programming objects do not need to have the
details of real-world objects. For instance, if an Employee
object in a payroll application needs only be able to work and
receive a salary, then the Employee class needs only two
methods, work and receiveSalary. OOP abstraction ignores
the fact that a real-world employee can do many other things
including eat, run, kiss and kick.

Classes are the fundamental building blocks of a Java
program. All program elements in Java must reside in a class,
even if you are writing a simple program that does not require
Java’s object-oriented features. A Java beginner needs to
consider three things when writing a class:

the class name

the fields

the methods

There are other things that can be present in a class, but they will
be discussed later.

A class declaration must use the keyword class followed by a
class name. Also, a class has a body within braces. Here is a
general syntax for a class:

class className {

 [class body]

}

For example, Listing 4.1 shows a Java class named Employee,
where the lines in bold are the class body.

Listing 4.1: The Employee class
class Employee {

 int age;

 double salary;

}

Note
By convention, class names capitalize the initial of each word. For
example, here are some names that follow the convention: Employee,
Boss, DateUtility, PostOffice, RegularRateCalculator. This type of
naming convention is known as Pascal naming convention. The other
convention, the camel naming convention, capitalize the initial of each

word, except the first word. Method and field names use the camel
naming convention.

A public class definition must be saved in a file that has the same
name as the class name, even though this restriction does not
apply to non-public classes. The file name must have java
extension.

Note
In UML class diagrams, a class is represented by a rectangle that consists
of three parts: the topmost part is the class name, the middle part is the
list of fields, and the bottom part is the list of methods. (See Figure 4.1)
The fields and methods can be hidden if showing them is not important.

Figure 4.1: The Employee class in the
UML class diagram

Fields
Fields are variables. They can be primitives or references to
objects. For example, the Employee class in Listing 4.1 has two
fields, age and salary. In Chapter 2, “Language Fundamentals”

you learned how to declare and initialize variables of primitive
types.

However, a field can also refer to another object. For instance,
an Empoyee class may have an address field of type Address,
which is a class that represents a street address:

Address address;

In other words, an object can contain other objects, that is if the
class of the former contains variables that reference to the latter.

Field names should follow the camel naming convention. The
initial of each word in the field, except for the first word, is
written with a capital letter. For example, here are some “good”
field names: age, maxAge, address, validAddress,
numberOfRows.

Methods
A methods defines an action that a class’s objects (or instances)
can perform. A method has a declaration part and a body. The
declaration part consists of a return value, the method name and
a list of arguments. The body contains code that performs the
action.

To declare a method, use the following syntax:

returnType methodName (listOfArguments)

The return type of a method can be a primitive, an object or void.
The return type void means that the method returns nothing.
The declaration part of a method is also called the signature of
the method.

For example, here is a method named getSalary that returns
a double.

double getSalary()

The getSalary method does not accept arguments.

As another example, here is a method that returns an
Address object.

Address getAddress()

And, here is a method that accepts an argument:

int negate(int number)

If a method takes more than one argument, two arguments are

separated by a comma. For example, the following add method
takes two ints and return an int.

int add(int a, int b)

The Method main
A special method called main provides the entry point to an
application. An application normally has many classes and only
one of the classes needs to have a main method. This method
allows the containing class to be invoked.

The signature of the main method is as follows.

public static void main(String[] args)

If you wonder why there is “public static void” before main, you
will get the answer towards the end of this chapter.

You can pass arguments to main when using java to run a
class. To pass arguments, type them after the class name. Two
arguments are separated by a space.

java className arg1 arg2 arg3 ...

All arguments must be passed as strings. For instance, to pass
two arguments, “1” and “safeMode” when running a Test class,
type this:

java Test 1 safeMode

Strings are discussed in Chapter 5, “Core Classes.”

Constructors
Every class must have at least one constructor. Otherwise, no
objects could be created out of it and the class would be useless.
As such, if your class does not explicitly define a constructor, the
compiler adds one for you.

A constructor is used to construct an object. A constructor
looks like a method and is sometimes called a constructor
method. However, unlike a method, a constructor does not have
a return value, not even void. Additionally, a constructor must
have the same name as the class.

The syntax for a constructor is as follows.

constructorName (listOfArguments) {

 [constructor body]

}

A constructor may have zero argument, in which case it is called
a no-argument (or no-arg, for short) constructor. Constructor
arguments can be used to initialize the fields in the object.

If the Java compiler adds a no-arg constructor to a class
because the class contains no constructor, the addition will be
implicit, i.e. it will not be displayed in the source file. However, if
there is a constructor in a class definition, regardless of the
number of arguments it accepts, no constructor will be added to
the class by the compiler.

As an example, Listing 4.2 adds two constructors to the
Employee class in Listing 4.1.

Listing 4.2: The Employee class with
constructors

public class Employee {

 public int age;

 public double salary;

 public Employee() {

 }

 public Employee(int ageValue, double

salaryValue) {

 age = ageValue;

 salary = salaryValue;

 }

}

The second constructor is particularly useful. Without it, to
assign values to age and position, you would need to write extra
lines of code to initialize the fields:

employee.age = 20;

employee.salary = 90000.00;

With the second constructor, you can pass the values at the same
time you create an object.

new Employee(20, 90000.00);

The new keyword is new to you, but you will learn how to use it
later in this chapter.

Varargs
Varargs is a Java feature that allows methods to have a variable
length of argument list. Here is an example of a method called
average that accepts any number of ints and calculates their
average.

public double average(int... args)

The ellipsis says that there is zero or more arguments of this

type. For example, the following code calls average with two
and three ints.

double avg1 = average(100, 1010);

double avg2 = average(10, 100, 1000);

If an argument list contains both fixed arguments (arguments
that must exist) and variable arguments, the variable arguments
must come last.

You should be able to implement methods that accept varargs
after you read about arrays in Chapter 6, “Arrays.” Basically, you
receive a vararg as an array.

Class Members in UML Class
Diagrams
Figure 4.1 depicts a class in a UML class diagram. The diagram
provides a quick summary of all fields and methods. You could
do more in UML. UML allows you to include field types and
method signatures. For example, Figure 4.2 presents a Book
class with five fields and one method.

Figure 4.2: Including class member
information in a class diagram

Note that in a UML class diagram a field and its type is separated
by a colon. A method’s argument list is presented in parentheses
and its return type is written after a colon.

Creating An Object

Now that you know how to write a class, it is time to learn how to
create an object from a class. An object is also called an instance.
The word construct is often used in lieu of create, thus
constructing an Employee object. Another term commonly
used is instantiate. Instantiating the Employee class is the
same as creating an instance of Employee.

There are a number of ways to create an object, but the most
common one is by using the new keyword. new is always
followed by the constructor of the class to be instantiated. For
example, to create an Employee object, you write:

new Employee();

Most of the time, you will want to assign the created object to an
object variable (or a reference variable), so that you can
manipulate the object later. To achieve this, you need to declare
an object reference with the same type as the object. For
instance:

Employee employee = new Employee();

Here, employee is an object reference of type Employee.

Once you have an object, you can call its methods and access its
fields, by using the object reference that was assigned the object.
You use a period (.) to call a method or a field. For example:

objectReference.methodName

objectReference.fieldName

The following code, for instance, creates an Employee object
and assigns values to its age and salary fields:

Employee employee = new Employee();

employee.age = 24;

employee.salary = 50000;

The null Keyword

A reference variable refers to an object. There are times,
however, when a reference variable does not have a value (it is
not referencing an object). Such a reference variable is said to
have a null value. For example, the following class level reference
variable is of type Book but has not been assigned a value;

Book book; // book is null

If you declare a local reference variable within a method but do
not assign an object to it, you will need to assign null to it to
satisfy the compiler:

Book book = null;

Class-level reference variables will be initialized when an
instance is created, therefore you do not need to assign null to
them.

Trying to access the field or method of a null variable reference
raises an error, such as in the following code:

Book book = null;

System.out.println(book.title); // error

because book is null

You can test if a reference variable is null by using the ==
operator. For instance.

if (book == null) {

 book = new Book();

}

System.out.println(book.title);

Memory Allocation for
Objects

When you declare a variable in your class, either in the class level
or in the method level, you allocate memory space for data that
will be assigned to the variable. For primitives, it is easy to
calculate the amount of memory taken. For example, declaring
an int costs you four bytes and declaring a long sets you back
eight bytes. However, calculation for reference variables is
different.

When a program runs, some memory space is allocated for
data. This data space is logically divided into two, the stack and
the heap. Primitives are allocated in the stack and Java objects
reside in the heap.

When you declare a primitive, several bytes are allocated in
the stack. When you declare a reference variable, some bytes are
also set aside in the stack, but the memory does not contain the
object’s data, it contains the address of the object in the heap. In
other words, when you declare

Book book;

Some bytes are set aside for the reference variable book. The
initial value of book is null because there is not yet an object
assigned to it. When you write

Book book = new Book();

you create an instance of Book, which is stored in the heap, and
assign the address of the instance to the reference variable
book. A Java reference variable is like a C++ pointer except that
you cannot manipulate a reference variable. In Java, a reference
variable is used to access the member of the object it is referring
to. Therefore, if the Book class has a public review method, you
can call the method by using this syntax:

book.review();

An object can be referenced by more than one reference variable.
For example,

Book myBook = new Book();

Book yourBook = myBook;

The second line copies the value of myBook to yourBook. As a
result, yourBook is now referencing the same Book object as
myBook.

Figure 4.3 illustrates memory allocation for a Book object
referenced by myBook and yourBook.

Figure 4.3: An object referenced by two
variables

On the other hand, the following code creates two different
Book objects:

Book myBook = new Book();

Book yourBook = new Book();

The memory allocation for this code is illustrated in Figure 4.4.

Figure 4.4: Two objects referenced by
two variables

Now, how about an object that contains another object? For
example, consider the code in Listing 4.3 that shows an
Employee class that contains an Address class.

Listing 4.3: An Employee class that
contains another class

public class Employee {

 Address address = new Address();

}

When you create an Employee object using the following code,
an Address object is also created.

Employee employee = new Employee();

Figure 4.5 depicts the position of each object in the heap.

Figure 4.5: An object “within” another
object

It turns out that the Address object is not really inside the
Employee object. However, the address field within the
Employee object has a reference to the Address object, thus
allowing the Employee object to manipulate the Address
object. Because in Java there is no way of accessing an object
except through a reference variable assigned the object’s address,
no one else can access the Address object ‘within’ the

Employee object.

Java Packages

If you are developing an application that consists of different
parts, you may want to organize your classes to retain
maintainability. With Java, you can group related classes or
classes with similar functionality in packages. For example,
standard Java classes come in packages. Java core classes are in
the java.lang package. All classes for performing input and
output operations are members of the java.io package, and so
on. If a package needs to be organized in more detail, you can
create packages that share part of the name of the former. For
example, the Java class library comes with the
java.lang.annotation and java.lang.reflect packages.
However, mind you that sharing part of the name does not make
two packages related. The java.lang package and the
java.lang.reflect package are different packages.

Package names that start with java are reserved for the core
libraries. Consequently, you cannot create a package that starts
with the word java. You can compile classes that belong to such
a package, but you cannot run them.

In addition, packages starting with javax are meant for
extension libraries that accompany the core libraries. You should
not create packages that start with javax either.

In addition to class organization, packaging can avoid naming
conflict. For example, an application may use the MathUtil
class from company A and an identically named class from
another company if both classes belong to different packages.
For this purpose, by convention your package names should be
based on your domain name in reverse. Therefore, Sun’s package
names start with com.sun. My domain name is
brainysoftware.com, so it’s appropriate for me to start my
package name with com.brainysoftware. For example, I
would place all my applets in a com.brainysoftware.applet
package and my servlets in com.brainysoftware.servlet.

A package is not a physical object, and therefore you do not
need to create one. To group a class in a package, use the
keyword package followed by the package name. For example,
the following MathUtil class is part of the
com.brainysoftware.common package:

package com.brainysoftware.common;

public class MathUtil {

 ...

}

Java also introduces the term fully qualified name, which refers
to a class name that carries with it its package name. The fully
qualified name of a class is its package name followed by a
period and the class name. Therefore, the fully qualified name of

a Launcher class that belongs to package com.example is
com.example.Launcher.

A class that has no package declaration is said to belong to the
default package. For example, the Employee class in Listing 4.1
belongs to the default package. You should always use a package
because types in the default package cannot be used by other
types outside the default package (except when using a technique
called reflection). It is a bad idea for a class to not have a
package.

Even though a package is not a physical object, package names
have a bearing on the physical location of their class source files.
A package name represents a directory structure in which a
period in a package name indicates a subfolder. For example, all
Java source files in the com.brainysoftware.common
package must reside in the common directory that is a
subdirectory of the brainysoftware directory. In turn, the
latter must be a subdirectory of the com directory. Figure 4.6
depicts the folder structure for a
com.brainysoftware.common.MathUtil class.

Figure 4.6: The physical location of a
class in a package

Compiling a class in a non-default package presents a challenge
for beginners. To compile such a class, you need to include the
package name, replacing the dot (.) with /. For example, to
compile the com.brainysoftware.common.MathUtil class,
change directory to the working directory (the directory which is
the parent directory of com) and type

javac

com/brainysoftware/common/MathUtil.java

By default, javac will place the result in the same directory
structure as the source. In this case, a MathUtil.class file will
be created in the com/brainysoftware/common directory.

Running a class that belongs to a package follows a similar
rule: you must include the package name, replacing . with /. For
example, to run the
com.brainysoftware.common.MathUtil class, type the
following from your working directory.

java com/brainysoftware/common/MathUtil

The packaging of your classes also affects the visibility of your
classes, as you will witness in the next section.

Encapsulation and Access
Control

An OOP principle, encapsulation is a mechanism that protects
parts of an object that need to be secure and exposes only parts
that are safe to be exposed. A television is a good example of
encapsulation. Inside it are thousands of electronic components
that together form the parts that can receive signals and decode
them into images and sound. These components are not to be
accessible to the user, however, so Sony and other manufacturers
wrap them in a strong metallic cover that does not break easily.
For a television to be easy to use, it exposes buttons that the user
can touch to turn on and off the set, adjust brightness, turn up
and down the volume, and so on.

Back to encapsulation in OOP, let’s take as an example a class
that can encode and decode messages. The class exposes two
methods called encode and decode, that users of the class can
access. Internally, there are dozens of variables used to store
temporary values and other methods that perform supporting
tasks. The author of the class hides these variables and other
methods because allowing access to them may compromise the
security of the encoding/decoding algorithms. Besides, exposing
too many things makes the class harder to use. As you can see
later, encapsulation is a powerful feature.

Java supports encapsulation through access control. Access
control is governed by access control modifiers. There are four
access control modifiers in Java: public, protected, private
and the default access level. Access control modifiers can be
applied to classes or class members. They are explained in the
following subsections.

Class Access Control Modifiers
In an application with many classes, a class may be instantiated
and used from another class that is a member of the same
package or a different package. You can control from which
packages your class can be “seen” by employing an access control
modifier at the beginning of the class declaration.

A class can have either the public or the default access control
level. You make a class public by using the public access control
modifier. A class whose declaration bears no access control
modifier has default access. A public class is visible from
anywhere. Listing 4.4 shows a public class named Book.

Listing 4.4: The public class Book
package app04;

public class Book {

 String isbn;

 String title;

 int width;

 int height;

 int numberOfPages;

}

The Book class is a member of the app04 package and has five
fields. Since Book is public, it can be instantiated from any
other classes. In fact, the majority of the classes in the Java core
libraries are public classes. For example, here is the declaration
of the java.lang.Runtime class:

public class Runtime

A public class must be saved in a file that has the same name as
the class, and the extension must be java. The Book class in
Listing 4.4 must be saved in a Book.java file. Also, because
Book belongs to package app04, the Book.java file must
reside inside an app04 directory.

Note
A Java source file can only contain one public class. However, it can
contain multiple classes that are not public.

When there is no access control modifier preceding a class
declaration, the class has the default access level. For example,
Listing 4.5 presents the Chapter class that has the default
access level.

Listing 4.5: The Chapter class, with the
default access level

package app04;

class Chapter {

 String title;

 int numberOfPages;

 public void review() {

 Page page = new Page();

 int sentenceCount =

page.numberOfSentences;

 int pageNumber =

page.getPageNumber();

 }

}

Classes with the default access level can only be used by other
classes that belong to the same package. For instance, the
Chapter class can be instantiated from inside the Book class
because Book belongs to the same package as Chapter.
However, Chapter is not visible from other packages.

For example, you can add the following getChapter method
inside the Book class:

Chapter getChapter() {

 return new Chapter();

}

On the other hand, if you try to add the same getChapter
method to a class that does not belong to the app04 package, a
compile error will be raised.

Class Member Access Control
Modifiers
Class members (methods, fields, constructors, etc) can have one
of four access control levels: public, protected, private and
default access. The access control modifier public is used to
make a class member public, the protected modifier to make a
class member protected, and the private modifier to make a
class member private. Without an access control modifier, a class
member will have the default access level.

Table 4.1 shows the visibility of each access level.

Access
Level

From
classes
in other
package
s

From
classes
in the
same
package

From
child
classes

From
the same
class

public

yes

yes

yes

yes

protected

no

yes

yes

yes

default

no

yes

no

yes

private

no

no

no

yes

Table 4.1: Class member access levels

Note
The default access is sometimes called package private. To avoid
confusion, this book will only use the term default access.

A public class member can be accessed by any other classes that
can access the class containing the class member. For example,
the toString method of the java.lang.Object class is public.
Here is the method signature:

public String toString()

Once you construct an Object object, you can call its toString
method because toString is public.

Object obj = new Object();

obj.toString();

Recall that you access a class member by using this syntax:

referenceVariable.memberName

In the preceding code, obj is a reference variable to an instance
of java.lang.Object and toString is the method defined in the
java.lang.Object class.

A protected class member has a more restricted access level. It
can be accessed only from

any class in the same package as the class containing the
member

a child class of the class containing the member

Note
A child class is a class that extends another class. Chapter 7, “Inheritance”
explains this concept.

For instance, consider the public class Page in Listing 4.6.

Listing 4.6: The Page class
package app04;

public class Page {

 int numberOfSentences = 10;

 private int pageNumber = 5;

 protected int getPageNumber() {

 return pageNumber;

 }

}

Page has two fields (numberOfSentences and
pageNumber) and one method (getPageNumber). First of
all, because Page is public, it can be instantiated from any other
class. However, even if you can instantiate it, there is no
guarantee you can access its members. It depends on from which

class you are accessing the Page class’s members.

Its getPageNumber method is protected, so it can be
accessed from any classes that belong to app04, the package
that houses the Page class. For example, consider the review
method in the Chapter class (given in Listing 4.5).

public void review() {

 Page page = new Page();

 int sentenceCount =

page.numberOfSentences;

 int pageNumber =

page.getPageNumber();

}

The Chapter class can access the getPageNumber method
because Chapter belongs to the same package as the Page
class. Therefore, Chapter can access all protected members of
the Page class.

The default access allows classes in the same package access a
class member. For instance, the Chapter class can access the
Page class’s numberOfSentences field because the Page and
Chapter classes belong to the same package. However,
numberOfSentences is not accessible from a subclass of Page
if the subclass belongs to a different package. This differentiates
the protected and default access levels and will be explained in

detail in Chapter 7, “Inheritance.”

The private members of a class can only be accessed from
inside the same class. For example, there is no way you can
access the Page class’s private field pageNumber from
anywhere other than the Page class itself. However, look at the
following code from the Page class definition.

private int pageNumber = 5;

protected int getPageNumber() {

 return pageNumber;

}

The pageNumber field is private, so it can be accessed from the
getPageNumber method, which is defined in the same class.
The return value of getPageNumber is pageNumber, which
is private. Beginners are often confused by this kind of code. If
pageNumber is private, why use it as a return value of a
protected method (getPageNumber)? Note that access to
pageNumber is still private, so other classes cannot modify this
field. However, using it as a return value of a non-private
method is allowed.

How about constructors? Access levels to constructors are the
same as those for fields and methods. Therefore, constructors
can have public, protected, default, and private access levels. You
may think that all constructors must be public because the

intention of having a constructor is to make the class
instantiatable. However, to your surprise, this is not the case.
Some constructors are made private so that their classes cannot
be instantiated from other classes. Private constructors are
normally used in singleton classes. If you are interested in this
topic, there are articles on this that you can find easily on the
Internet.

Note
In a UML class diagram, you can include information on the class
member access level. Prefix a public member with a +, a protected
member with a # and a private member with a -. Members with no prefix
are regarded as having the default access level. Figure 4.7 shows the
Manager class with members having various access levels.

Figure 4.7: Including class member
access level in a UML class diagram

The this Keyword

You use the this keyword from any method or constructor to
refer to the current object. For example, if you have a class-level
field with the same name as a local variable, you can use this
syntax to refer to the former:

this.field

A common use is in the constructor that accepts values used to
initialize fields. Consider the Box class in Listing 4.7.

Listing 4.7: The Box class
package app04;

public class Box {

 int length;

 int width;

 int height;

 public Box(int length, int width, int

height) {

 this.length = length;

 this.width = width;

 this.height = height;

 }

}

The Box class has three fields, length, width, and height. Its
constructor accepts three arguments used to initialize the fields.

It is very convenient to use length, width, and height as the
parameter names because they reflect what they are. Inside the
constructor, length refers to the length argument, not the
length field. this.length refers to the class-level length field.

It is of course possible to change the argument names, such as
this.

public Box (int lengthArg, int widthArg,

int heightArg) {

 length = lengthArg;

 width = widthArg;

 height = heightArg;

}

This way, the class-level fields are not shadowed by local
variables and you do not need to use the this keyword to refer to
the class-level fields However, using the this keyword spares you
from having to think of different names for your method or
constructor arguments.

Using Other Classes

It is common to use other classes from the class you are writing.
Using classes in the same package as your current class is

allowed by default. However, to use classes in other packages,
you must first import the packages or the classes you want to
use.

Java provides the keyword import to indicate that you want
to use a package or a class from a package. For example, to use
the java.util.ArrayList class from your code, you must have
the following import statement:

package app04;

import java.util.ArrayList;

public class Demo {

 ...

}

Note that import statements must come after the package
statement but before the class declaration. The import keyword
can appear multiple times in a class.

package app04;

import java.time.Clock;

import java.util.ArrayList;

public class Demo {

 ...

}

Sometimes you need many classes in the same package. You can
import all classes in the same package by using the wild
character *. For example, the following code imports all
members of the java.util package.

package app04;

import java.util.*;

public class Demo {

 ...

}

Now, not only can you use the java.util.ArrayList class, but
you can use other members of the java.util package too.
However, to make your code more readable, it is recommended
that you import a package member one at a time. In other words,
if you need to use both the java.io.PrintWriter class and the
java.io.FileReader class, it is better to have two import
statements like the following than to use the * character.

import java.io.PrintWriter;

import java.io.FileReader;

Note
Members of the java.lang package are imported automatically. Thus, to
use the java.lang.String class, for example, you do not need to
explicitly import the class.

The only way to use classes that belong to other packages
without importing them is to use the fully qualified names of the
classes in your code. For example, the following code declares
the java.io.File class using its fully qualified name.

java.io.File file = new

java.io.File(filename);

If you import identically-named classes from different packages,
you must use the fully qualified names when declaring the
classes. For example, the Java core libraries contain the classes
java.sql.Date and java.util.Date. Importing both upsets the
compiler. In this case, you must write the fully qualified names
of java.sql.Date and java.util.Date in your class to use them.

Note
Java classes can be deployed in a jar file. Appendix A details how to
compile a class that uses other classes in a jar file. Appendix B shows how
to run a Java class in a jar file. Appendix C provides instructions on the
jar tool, a program that comes with the JDK to package your Java classes
and related resources.

A class that uses another class is said to “depend on” the latter. A UML

diagram that depicts this dependency is shown in Figure 4.8.

Figure 4.8: Dependency in the UML
class diagram

A dependency relationship is represented by a dashed line with an arrow.
In Figure 4.8 the Book class is dependent on Chapter because the
getChapter method returns a Chapter object.

Final Variables

Java does not reserve the keyword constant to create constants.
However, in Java you can prefix a variable declaration with the
keyword final to make its value unchangeable. You can make
both local variables and class fields final.

For example, the number of months in a year never changes,
so you can write:

final int numberOfMonths = 12;

As another example, in a class that performs mathematical
calculation, you can declare the variable pi whose value is equal
to 22/7 (the circumference of a circle divided by its diameter, in
math represented by the Greek letter ?).

final float pi = (float) 22 / 7;

Once assigned a value, the value cannot change. Attempting to
change it will result in a compile error.

Note that the casting (float) after 22 / 7 is needed to convert
the value of division to float. Otherwise, an int will be returned
and the pi variable will have a value of 3.0, instead of 3.1428.

Also note that since Java uses Unicode characters, you can
simply define the variable pi as ? if you don’t think typing it is
harder than typing pi.

final float ? = (float) 22 / 7;

Note
You can also make a method final, thus prohibiting it from being
overridden in a subclass. This will be discussed in Chapter 7,
“Inheritance.”

Static Members

You have learned that to access a public field or method of an
object, you use a period after the object reference, such as:

// Create an instance of Book

Book book = new Book();

// access the review method

book.review();

This implies that you must create an object first before you can
access its members. However, in previous chapters, there were
examples that used System.out.print to print values to the
console. You may have noticed that you could call the out field
without first having to construct a System object. How come
you did not have to do something like this?

System ref = new System();

ref.out;

Rather, you use a period after the class name:

System.out

Java (and many OOP languages) supports the notion of static
members, which are class members that can be called without
first instantiating the class. The out field in java.lang.System
is static, which explains why you can write System.out.

Static members are not tied to class instances. Rather, they
can be called without having an instance. In fact, the method
main, which acts as the entry point to a class, is static because it
must be called before any object is created.

To create a static member, you use the keyword static in front
of a field or method declaration. If there is an access modifier,
the static keyword may come before or after the access modifier.
These two are correct:

public static int a;

static public int b;

However, the first form is more often used.

For example, Listing 4.8 shows the MathUtil class with a
static method:

Listing 4.8: The MathUtil class
package app04;

public class MathUtil {

 public static int add(int a, int b) {

 return a + b;

 }

}

To use the add method, you can simply call it this way:

MathUtil.add(a, b)

The term instance methods/fields are used to refer to non-static
methods and fields.

From inside a static method, you cannot call instance methods
or instance fields because they only exist after you create an
object. From a static method, you can access other static
methods or static fields, however.

A common confusion that a beginner often encounters is when
they cannot compile their class because they are calling instance
members from the main method. Listing 4.9 shows such a class.

Listing 4.9: Calling non-static members
from a static method

package app04;

public class StaticDemo {

 public int b = 8;

 public static void main(String[]

args) {

 System.out.println(b);

 }

}

The line in bold causes a compile error because it attempts to
access non-static field b from the main static method. There are
two solutions to this.

1. Make b static
2. Create an instance of the class, then

access b by using the object reference.

Which solution is appropriate depends on the situation. It often
takes years of OOP experience to come up with a good decision
that you’re comfortable with.

Note
You can only declare a static variable in a class level. You cannot declare
local static variables even if the method is static.

How about static reference variables? You can declare static
reference variables. The variable will contain an address, but the
object referenced is stored in the heap. For instance

static Book book = new Book();

Static reference variables provide a good way of exposing the
same object that needs to be shared among other different
objects.

Note
In UML class diagrams, static members are underlined. For example,
Figure 4.9 shows the MathUtil class with the static method add.

Figure 4.9: Static members in UML
class diagrams

Static Final Variables

In the section “Final Variables” earlier in this chapter, you
learned that you could create a final variable by using the
keyword final. However, final variables at a class level or local
variables will always have the same value when the program is
run. If you have multiple objects of the same class with final

variables, the value of the final variables in those objects will
have the same values. It is more common (and also more
prudent) to make a final variable static too. This way, all objects
share the same value.

The naming convention for static final variables is to have
them in upper case and separate two words with an underscore.
For example

static final int NUMBER_OF_MONTHS = 12;

static final float PI = (float) 22 / 7;

The positions of static and final are interchangeable, but it is
more common to use “static final” than “final static.”

If you want to make a static final variable accessible from
outside the class, you can make it public too:

public static final int NUMBER_OF_MONTHS

= 12;

public static final float PI = (float) 22

/ 7;

To better organize your constants, sometimes you want to put all
your static final variables in a class. This class most often does

not have a method or other fields and is never instantiated.

For example, sometimes you want to represent a month as an
int, therefore January is 1, February is 2, and so on. Then, you
use the word January instead of number 1 because it’s more
descriptive. Listing 4.10 shows the Months class that contains
the names of months and its representation.

Listing 4.10: The Months class
package app04;

public class Months {

 public static final int JANUARY = 1;

 public static final int FEBRUARY = 2;

 public static final int MARCH = 3;

 public static final int APRIL = 4;

 public static final int MAY = 5;

 public static final int JUNE = 6;

 public static final int JULY = 7;

 public static final int AUGUST = 8;

 public static final int SEPTEMBER =

9;

 public static final int OCTOBER = 10;

 public static final int NOVEMBER =

11;

 public static final int DECEMBER =

12;

}

In your code, you can get the representation of January by
writing.

int thisMonth = Months.JANUARY;

Classes similar to Months are very common prior to Java 5.
However, Java now offers the new type enum that can eliminate
the need for public static final variables. enum is explain in
Chapter 12, “Enums.”

Static final reference variables are also possible. However,
note that only the variable is final, which means once it is
assigned an address to an instance, it cannot be assigned another
object of the same type. The fields in the referenced object itself
can be changed.

In the following line of code

public static final Book book = new

Book();

book always refer to this particular instance of Book.
Reassigning it to another Book object raises a compile error:

book = new Book(); // compile error

However, you can change the Book object’s field value.

book.title = "No Excuses"; // assuming

the title field is public

Static import

There are a number of classes in the Java core libraries that
contain static final fields. One of them is the
java.util.Calendar class, that has the static final fields
representing days of the week (MONDAY, TUESDAY, etc). To
use a static final field in the Calendar class, you must first
import the Calendar class.

import java.util.Calendar;

Then, you can use it by using the notation className.staticField.

if (today == Calendar.SATURDAY)

However, you can also import static fields using the import
static keywords. For example, you can do

import static

java.util.Calendar.SATURDAY;

Then, to use the imported static field, you do not need the class
name:

if (today == SATURDAY)

Variable Scope

You have seen that you can declare variables in several different
places:

In a class body as class fields. Variables declared here are
referred to as class-level variables.

As parameters of a method or constructor.

In a method’s body or a constructor’s body.

Within a statement block, such as inside a while or for
block.

Now it’s time to learn variable scope.

Variable scope refers to the accessibility of a variable. The rule

is that variables defined in a block are only accessible from
within the block. The scope of the variable is the block in which it
is defined. For example, consider the following for statement.

for (int x = 0; x < 5; x++) {

 System.out.println(x);

}

The variable x is declared within the for statement. As a result, x
is only available from within this for block. It is not accessible or
visible from anywhere else. When the JVM executes the for
statement, it creates x. When it is finished executing the for
block, it destroys x. After x is destroyed, x is said to be out of
scope.

Rule number 2 is a nested block can access variables declared
in the outer block. Consider this code.

for (int x = 0; x < 5; x++) {

 for (int y = 0; y < 3; y++) {

 System.out.println(x);

 System.out.println(y);

 }

}

The preceding code is valid because the inner for block can
access x, which is declared in the outer for block.

Following the rules, variables declared as method parameters
can be accessed from within the method body. Also, class-level
variables are accessible from anywhere in the class.

If a method declares a local variable that has the same name as
a class-level variable, the former will ‘shadow’ the latter. To
access the class-level variable from inside the method body, use
the this keyword.

Method Overloading

Method names are very important and should reflect what the
methods do. In many circumstances, you may want to use the
same name for multiple methods because they have similar
functionality. For instance, the method printString may take a
String argument and prints the string. However, the same class
may also provide a method that prints part of a String and
accepts two arguments, the String to be printed and the
character position to start printing from. You want to call the
latter method printString too because it does print a String,
but that would be the same as the first printString method.

Thankfully, it is okay in Java to have multiple methods having
the same name, as long as each method accept different sets of

argument types. In other words, in our example, it is legal to
have these two methods in the same class.

public String printString(String string)

public String printString(String string,

int offset)

This feature is called method overloading.

The return value of the method is not taken into consideration.
As such, these two methods must not exist in the same class:

public int countRows(int number);

public String countRows(int number);

This is because a method can be called without assigning its
return value to a variable. In such situations, having the above
countRows methods would confuse the compiler as it would
not know which method is being called when you write

System.out.println(countRows(3));.

A trickier situation is depicted in the following methods whose
signatures are very similar.

public int printNumber(int i) {

 return i*2;

}

public long printNumber(long l) {

 return l*3;

}

It is legal to have these two methods in the same class. However,
you might wonder, which method is being called if you write
printNumber(3)?

The key is to recall from Chapter 2, “Language Fundamentals”
that a numeric literal will be translated into an int unless it is
suffixed L or l.. Therefore, printNumber(3) will invoke this
method:

public int printNumber(int i)

To call the second, pass a long:

printNumber(3L);

System.out.print() (and System.out.println()) is an
excellent example of method overloading. You can pass any
primitive or object to the method because there are nine
overloads of the method. There is an overload that accepts an
int, one that accepts a long, one that accepts a String, and so
on.

Note
Static methods can also be overloaded.

Static Factory Methods

You’ve learned to create an object using new. However, there
are classes in Java class libraries that cannot be instantiated this
way. For example, you cannot create an instance of
java.util.LocalDate with new because its constructor is
private. Instead, you would use one of its static methods, such as
now:

LocalDate today = LocalDate.now();

Such methods are called static factory methods.

You can design your class to use static factory methods. Listing
4.11 shows a class named Discount with a private constructor.

It is a simple class that contains an int that represents a discount
rate. The value is either 10 (for small customers) or 12 (for bigger
customers). It has a getValue method, which returns the value,
and two static factory methods,
createSmallCustomerDiscount and
createBigCustomerDiscount. Note that the static factory
methods can invoke the private constructor to create an object
because they are in the same class. Recall that you can access a
class private member from within the class. With this design, you
restrict a Discount object to contain either 10 or 12. Other
values are not possible.

Listing 4.11: The Discount classs
package app04;

import java.time.LocalDate;

public class Discount {

 private int value;

 private Discount(int value) {

 this.value = value;

 }

 public int getValue() {

 return this.value;

 }

 public static Discount

createSmallCustomerDiscount() {

 return new Discount(10);

 }

 public static Discount

createBigCustomerDiscount() {

 return new Discount(12);

 }

}

You can construct a Discount object by calling one of its static
factory methods, for example

Discount discount =

Discount.createBigCustomerDiscount();

System.out.println(discount.getValue());

There are also classes that allow you to create an instance
through static factory methods and a constructor. In this case,
the constructor must be public. Examples of such classes are
java.lang.Integer and java.lang.Boolean.

With static factory methods, you can control what objects can
be created out of your class, like you have seen in Discount.
Also, you might cache an instance and return the same instance
every time an instance is needed. Also, unlike constructors, you
can name static factory methods to make clear what kind of

object will be created.

By Value or By Reference?

You can pass primitive variables or reference variables to a
method. Primitive variables are passed by value and reference
variables are passed by reference. What this means is when you
pass a primitive variable, the JVM will copy the value of the
passed-in variable to a new local variable. If you change the value
of the local variable, the change will not affect the passed in
primitive variable.

If you pass a reference variable, the local variable will refer to
the same object as the passed in reference variable. If you change
the object referenced within your method, the change will also be
reflected in the calling code. Listing 4.12 shows the
ReferencePassingTest class that demonstrates this.

Listing 4.12: The ReferencePassingTest
class

package app04;

class Point {

 public int x;

 public int y;

}

public class ReferencePassingTest {

 public static void increment(int x) {

 x++;

 }

 public static void reset(Point point)

{

 point.x = 0;

 point.y = 0;

 }

 public static void main(String[]

args) {

 int a = 9;

 increment(a);

 System.out.println(a); // prints

9

 Point p = new Point();

 p.x = 400;

 p.y = 600;

 reset(p);

 System.out.println(p.x); //

prints 0

 }

}

There are two methods in ReferencePassingTest, increment
and reset. The increment method takes an int and increments
it. The reset method accepts a Point object and resets its x and
y fields.

Now pay attention to the main method. We passed a (whose
value is 9) to the increment method. After the method
invocation, we printed the value of a and you get 9, which means
that the value of a did not change.

Afterwards, you create a Point object and assign the reference
to p. You then initialize its fields and pass it to the reset
method. The changes in the reset method affects the Point
object because objects are passed by reference. As a result, when
you print the value of p.x, you get 0.

Loading, Linking, and
Initialization

Now that you’ve learned how to create classes and objects, let’s
take a look at what happens when the JVM executes a class.

You run a Java program by using the java tool. For example,
you use the following command to run the DemoTest class.

java DemoTest

After the JVM is loaded into memory, it starts its job by invoking
the DemoTest class’s main method. There are three things the
JVM will do next in the specified order: loading, linking, and

initialization.

Loading
The JVM loads the binary representation of the Java class (in
this case, the DemoTest class) to memory and may cache it in
memory, just in case the class is used again in the future. If the
specified class is not found, an error will be thrown and the
process stops here.

Linking
There are three things that need to be done in this phase:
verification, preparation, and resolution (optional). Verification
means the JVM checks that the binary representation complies
with the semantic requirements of the Java programming
language and the JVM. If, for example, you tamper with a class
file created as a result of compilation, the class file may no longer
work.

Preparation prepares the specified class for execution. This
involves allocating memory space for static variables and other
data structured for that class.

Resolution checks if the specified class references other
classes/interfaces and if the other classes/interfaces can also be
found and loaded. Checks will be done recursively to the
referenced classes/interfaces.

For example, if the specified class contains the following code:

MathUtil.add(4, 3)

the JVM will load, link, and initialize the MathUtil class before
calling the static add method.

Or, if the following code is found in the DemoTest class:

Book book = new Book();

the JVM will load, link, and initialize the Book class before an
instance of Book is created.

Note that a JVM implementation may choose to perform
resolution at a later stage, i.e. when the executing code actually
requires the use of the referenced class/interface.

Initialization
In this last step, the JVM initializes static variables with assigned
or default values and executes static initializers (code in static
blocks). Initialization occurs just before the main method is
executed. However, before the specified class can be initialized,
its parent class will have to be initialized. If the parent class has
not been loaded and linked, the JVM will first load and link the
parent class. Again, when the parent class is about to be
initialized, the parent’s parent will be treated the same. This

process occurs recursively until the initialized class is the
topmost class in the hierarchy.

For example, if a class contains the following declaration

public static int z = 5;

the variable z will be assigned the value 5. If no initialization
code is found, a static variable is given a default value. Table 4.2
lists default values for Java primitives and reference variables.

Type

Default Value

boolean

false

byte

0

short

0

int

0

long

0L

char

\u0000

float

0.0f

double

0.0d

object reference

null

Table 4.2: Default values for primitives
and references

In addition, code in static blocks will be executed. For example,
Listing 4.13 shows the StaticCodeTest class with static code
that gets executed when the class is loaded. Like static members,
you can only access static members from static code.

Listing 4.13: StaticCodeTest
package app04;

public class StaticInitializationTest {

 public static int a = 5;

 public static int b = a * 2;

 static {

 System.out.println("static");

 System.out.println(b);

 }

 public static void main(String[]

args) {

 System.out.println("main

method");

 }

}

If you run this class, you will see the following on your console:

static

10

main method

Object Creation Initialization

Initialization happens when a class is loaded, as described in the
section “Linking, Loading, and Initialization” earlier in this
chapter. However, you can also write code that performs
initialization every time an instance of a class is created.

When the JVM encounters code that instantiates a class, the
JVM does the following.

1. Allocates memory space for a new object,
with room for the instance variables
declared in the class plus room for instance
variables declared in its parent classes.

2. Processes the invoked constructor. If the

constructor has parameters, the JVM
creates variables for these parameter and
assigns them values passed to the
constructor.

3. If the invoked constructor begins with a
call to another constructor (using the this
keyword), the JVM processes the called
constructor.

4. Performs instance initialization and
instance variable initialization for this
class. Instance variables that are not
assigned a value will be assigned default
values (See Table 4.2). Instance
initialization applies to code in braces:

 {

 // code

 }

5. Executes the rest of the body of the
invoked constructor.

6. Returns a reference variable that refers to
the new object.

Note that instance initialization is different from static
initialization. The latter occurs when a class is loaded and has
nothing to do with instantiation. Instance initialization, by
contrast, is performed when an object is created. In addition,
unlike static initializers, instance initialization may access
instance variables.

For example, Listing 4.14 presents a class named InitTest1
that has the initialization section. There is also some static
initialization code to give you the idea of what is being run.

Listing 4.14: The InitTest1 class
package app04;

public class InitTest1 {

 int x = 3;

 int y;

 // instance initialization code

 {

 y = x * 2;

 System.out.println(y);

 }

 // static initialization code

 static {

 System.out.println("Static

initialization");

 }

 public static void main(String[]

args) {

 InitTest1 test = new InitTest1();

 InitTest1 moreTest = new

InitTest1();

 }

}

When run, the InitTest class prints the following on the
console:

Static initialization

6

6

The static initialization is performed first, before any
instantiation takes place. This is where the JVM prints the
“Static initialization” message. Afterward, the InitTest1 class is
instantiated twice, explaining why you see “6” twice.

The problem with having instance initialization code is this. As
your class grows bigger it becomes harder to notice that there
exists initialization code.

Another way to write initialization code is in the constructor.
In fact, initialization code in a constructor is more noticeable and
hence preferable. Listing 4.15 shows the InitTest2 class that
puts initialization code in the constructor.

Listing 4.15: The InitTest2 class
package app04;

public class InitTest2 {

 int x = 3;

 int y;

 // instance initialization code

 public InitTest2() {

 y = x * 2;

 System.out.println(y);

 }

 // static initialization code

 static {

 System.out.println("Static

initialization");

 }

 public static void main(String[]

args) {

 InitTest2 test = new InitTest2();

 InitTest2 moreTest = new

InitTest2();

 }

}

The problem with this is when you have more than one
constructor and each of them must call the same code. The
solution is to wrap the initialization code in a method and let the
constructors call them. Listing 4.16 shows this

Listing 4.16: The InitTest3 class
package app04;

public class InitTest3 {

 int x = 3;

 int y;

 // instance initialization code

 public InitTest3() {

 init();

 }

 public InitTest3(int x) {

 this.x = x;

 init();

 }

 private void init() {

 y = x * 2;

 System.out.println(y);

 }

 // static initialization code

 static {

 System.out.println("Static

initialization");

 }

 public static void main(String[]

args) {

 InitTest3 test = new InitTest3();

 InitTest3 moreTest = new

InitTest3();

 }

}

Note that the InitTest3 class is preferable because the calls to
the init method from the constructors make the initialization
code more obvious than if it is in an initialization block.

The Garbage Collector

In several examples so far, I have shown you how to create
objects using the new keyword, but you have never seen code
that explicitly destroys unused objects to release memory space.
If you are a C++ programmer you may have wondered if I had
shown flawed code, because in C++ you must destroy objects
after use.

Java comes with a garbage collector, which destroys unused
objects and frees memory. Unused objects are defined as objects
that are no longer referenced or objects whose references are
already out of scope.

With this feature, Java becomes much easier than C++

because Java programmers do not need to worry about
reclaiming memory space. This, however, does not entail that
you may create objects as many as you want because memory is
(still) limited and it takes some time for the garbage collector to
start. That’s right, you can still run out of memory.

Summary

OOP models applications on real-world objects. Since Java is an
OOP language, objects play a central role in Java programming.
Objects are created based on a template called a class. In this
chapter you’ve learned how to write a class and class members.
There are many types of class members, including three that
were discussed in this chapter: fields, methods, and
constructors. There are other types of Java members such as
enum and inner classes, which will be covered in other chapters.

In this chapter you have also learned two powerful OOP
features, abstraction and encapsulation. Abstraction in OOP is
the act of using programming objects to represent real-world
objects. Encapsulation is a mechanism that protects parts of an
object that need to be secure and exposes only parts that are safe
to be exposed. Another feature discussed in this chapter is
method overloading. Method overloading allows a class to have
methods with the same name as long as their signatures are
sufficiently different.

Java also comes with a garbage collector that eliminates to
manually destroy unused objects. Objects are garbage collected
when they are out of scope or no longer referenced.

Quiz

1. Name at least three element types that a
class can contain.

2. What are the differences between a
method and a constructor?

3. Does a class in a class diagram display its
constructors?

4. What does null mean?
5. What do you use the this keyword for?
6. When you use the == operator to

compare two object references, do you
actually compare the contents of the
objects? Why?

7. What is variable scope?
8. What does “out of scope” mean?
9. How does the garbage collector decide

which objects to destroy?
10. What is method overloading?
11. Create a class whose fully-qualified name

is com.example.Tablet to model an
Android tablet. The class must have three
private fields, weight (int), screenSize
(float) and wifiOnly (boolean). Access to
the fields must be through pairs of public
get and set methods, i.e.
getWeight/setWeight,
getScreenSize/setScreenSize and
getWifiOnly/setWifiOnly. The class
must also have one constructor, a no-
argument constructor.

12. Create a TabletTest class in the package
com.example.test and instantiate the
Tablet class. Print the value of the fields
(by calling its get methods) right after
instantiation. Then, set the field values and
print them again.

Chapter 5
Core Classes

Before discussing other features of object-oriented programming
(OOP), let’s examine several important classes that are
commonly used in Java. These classes are included in the Java
core libraries that come with the JDK. Mastering them will help
you understand the examples that accompany the next OOP
lessons.

The most prominent class of all is definitely
java.lang.Object. However, it is hard to talk about this class
without first covering inheritance, which I will do in Chapter 7,
“Inheritance.” Therefore, java.lang.Object is only discussed
briefly in this chapter. Right now I will concentrate on classes
that you can use in your programs. I will start with
java.lang.String and other types of strings:
java.lang.StringBuffer and java.lang.StringBuilder. Then,
I will discuss the java.lang.System class. The
java.util.Scanner class is also included here because it
provides a convenient way to take user input.

Note

When describing a method in a Java class, presenting the method
signature always helps. A method often takes as parameters objects
whose classes belong to different packages than the method’s class. Or, it
may return a type from a different package than its class. For clarity, fully
qualified names will be used for classes from different packages. For
example, here is the signature of the toString method of
java.lang.Object:

 public String toString()

A fully qualified name for the return type is not necessary because the
return type String is part of the same package as java.lang.Object. On
the other hand, the signature of the toString method in
java.util.Scanner uses a fully qualified name because the Scanner
class is part of a different package (java.util).

 public java.lang.String toString()

java.lang.Object

The java.lang.Object class represents a Java object. In fact, all
classes are direct or indirect descendants of this class. Since we
have not learned inheritance (which is only given in Chapter 7,
“Inheritance”), the word descendant probably makes no sense to
you. Therefore, we will briefly discuss the method in this class
and revisit this class in Chapter 7.

Table 5.1 shows the methods in the Object class.

Method

Description

clone

Creates and returns a copy of
this object. A class
implements this method to
support object cloning.

equals

Compares this object with the
passed-in object. A class must
implement this method to
provide a means to compare
the contents of its instances.

Called by the garbage
collector on an object that is
about to be garbage-collected.

finalize

In theory a subclass can
override this method to
dispose of system resources
or to perform other cleanup.
However, performing the
aforesaid operations should
be done somewhere else and
you should not touch this
method.

getClass

Returns a java.lang.Class
object of this object. See the
section “java.lang.Class” for
more information on the
Class class.

hashCode

Returns a hash code value for
this object.

Returns the description of

toString

this object.

wait, notify, notifyAll

Used in multithreaded
programming in pre-5 Java.
Should not be used directly in
Java 5 or later. Instead, use
the Java concurrency utilities.

Table 5.1: java.lang.Object methods

java.lang.String

I have not seen a serious Java program that does not use the
java.lang.String class. It is one of the most often used classes
and definitely one of the most important.

A String object represents a string, i.e. a piece of text. You can
also think of a String as a sequence of Unicode characters. A
String object can consists of any number of characters. A
String that has zero character is called an empty String.
String objects are constant. Once they are created, their values

cannot be changed. Because of this, String instances are said to
be immutable. And, because they are immutable, they can be
safely shared.

You could construct a String object using the new keyword,
but this is not a common way to create a String. Most often, you
assign a string literal to a String reference variable. Here is an
example:

String s = "Java is cool";

This produces a String object containing “Java is cool” and
assigns a reference to it to s. It is the same as the following.

String message = new String("Java is

cool");

However, assigning a string literal to a reference variable works
differently from using the new keyword. If you use the new
keyword, the JVM will always create a new instance of String.
With a string literal, you get an identical String object, but the
object is not always new. It may come from a pool if the string
“Java is cool” has been created before.

Thus, using a string literal is better because the JVM can save
some CPU cycles spent on constructing a new instance. Because

of this, you seldom use the new keyword when creating a String
object. The String class’s constructors can be used if you have
specific needs, such as converting a character array into a
String.

Comparing Two Strings
String comparison is one of the most useful operations in Java
programming. Consider the following code.

String s1 = "Java";

String s2 = "Java";

if (s1 == s2) {

 ...

}

Here, (s1 == s2) evaluates to true because s1 and s2 reference
the same instance. On the other hand, in the following code (s1
== s2) evaluates to false because s1 and s2 reference different
instances:

String s1 = new String("Java");

String s2 = new String("Java");

if (s1 == s2) {

 ...

}

This shows the difference between creating String objects by
writing a string literal and by using the new keyword.

Comparing two String objects using the == operator is of
little use because you are comparing the addresses referenced by
two variables. Most of the time, when comparing two String
objects, you want to know whether the values of the two objects
are the same. In this case, you need to use the String class’s
equals method.

String s1 = "Java";

if (s1.equals("Java")) // returns true.

And, sometimes you see this style.

if ("Java".equals(s1))

In (s1.equals("Java")), the equals method on s1 is called. If
s1 is null, the expression will generate a runtime error. To be
safe, you have to make sure that s1 is not null, by first checking if
the reference variable is null.

if (s1 != null && s1.equals("Java"))

If s1 is null, the if statement will return false without evaluating
the second expression because the AND operator && will not try
to evaluate the right hand operand if the left hand operand
evaluates to false.

In ("Java".equals(s1)), the JVM creates or takes from the
pool a String object containing “Java” and calls its equals
method. No nullity checking is required here because “Java” is
obviously not null. If s1 is null, the expression simply returns
false. Therefore, these two lines of code have the same effect.

if (s1 != null && s1.equals("Java"))

if ("Java".equals(s1))

String Literals
Because you always work with String objects, it is important to
understand the rules for working with string literals.

First of all, a string literal starts and ends with a double quote
("). Second, it is a compile error to change line before the closing
double quote. For example, this code snippet will raise a compile
error.

String s2 = "This is an important

 point to note";

You can compose long string literals by using the plus sign to
concatenate two string literals.

String s1 = "Java strings " + "are

important";

String s2 = "This is an important " +

 "point to note";

You can concatenate a String with a primitive or another object.
For instance, this line of code concatenates a String and an
integer.

String s3 = "String number " + 3;

If an object is concatenated with a String, the toString method
of the former will be called and the result used in the
concatenation.

Escaping Certain Characters
You sometimes need to use special characters in your strings
such as carriage return (CR) and linefeed (LF). In other
occasions, you may want to have a double quote character in
your string. In the case of CR and LF, it is not possible to input
these characters because pressing Enter changes lines. A way to
include special characters is to escape them, i.e. use the

character replacement for them.

Here are some escape sequences:

 \u /* a Unicode character

 \b /* \u0008: backspace

BS */

 \t /* \u0009: horizontal

tab HT */

 \n /* \u000a: linefeed LF

*/

 \f /* \u000c: form feed

FF */

 \r /* \u000d: carriage

return CR */

 \" /* \u0022: double

quote " */

 \' /* \u0027: single

quote ' */

 \\ /* \u005c: backslash \

*/

For example, the following code includes the Unicode character
0122 at the end of the string.

String s = "Please type this character

\u0122";

To obtain a String object whose value is John "The Great"
Monroe, you escape the double quotes:

String s = "John \"The Great\" Monroe";

Switching on A String
Starting from Java 7 you can use the switch statement with a
String. Recall the syntax of the switch statement given in
Chapter 3, “Statements.”

switch(expression) {

case value_1 :

 statement(s);

 break;

case value_2 :

 statement(s);

 break;

 .

 .

 .

case value_n :

 statement(s);

 break;

default:

 statement(s);

}

Here is an example of using the switch statement on a String.

String input = ...;

switch (input) {

case "one" :

 System.out.println("You entered 1.");

 break;

case "two" :

 System.out.println("You entered 2.");

 break;

default:

 System.out.println("Invalid value.");

}

The String Class’s Constructors
The String class provides a number of constructors. These
constructors allow you to create an empty string, a copy of
another string, and a String from an array of chars or bytes. Use
the constructors with caution as they always create a new
instance of String.

Note
Arrays are discussed in Chapter 6, “Arrays.”

public String()

Creates an empty string.

public String(String original)

Creates a copy of the original string.

public String(char[] value)

Creates a String object from an array of
chars.

public String(byte[] bytes)

Creates a String object by decoding the
bytes in the array using the computer’s
default encoding.

public String(byte[] bytes, String

encoding)

Creates a String object by decoding the
bytes in the array using the specified
encoding.

The String Class’s Methods
The String class provides methods for manipulating the value of
a String. However, since String objects are immutable, the
result of the manipulation is always a new String object.

Here are some of the more useful methods.

public char charAt(int index)

Returns the char at the specified index. For
example, the following code returns 'J'.

 "Java is cool".charAt(0)

public String concat(String s)

Concatenates the specified string to the end
of this String and return the result. For
example, "Java ".concat("is cool")
returns “Java is cool”.

public boolean equals(String

anotherString)

Compares the value of this String and
anotherString and returns true if the
values match.

public boolean endsWith(String suffix)

Tests if this String ends with the specified
suffix.

public int indexOf(String substring)

Returns the index of the first occurrence of
the specified substring. If no match is

found, returns -1. For instance, the
following code returns 8.

 "Java is cool".indexOf("cool")

public int indexOf(String substring, int

fromIndex)

Returns the index of the first occurrence of
the specified substring starting from the
specified index. If no match is found,
returns -1.

public int lastIndexOf(String substring)

Returns the index of the last occurrence of
the specified substring. If no match is
found, returns -1.

public int lastIndexOf(String substring,

int fromIndex)

Returns the index of the last occurrence of

the specified substring starting from the
specified index. If no match is found,
returns -1. For example, the following
expression returns 3.

 "Java is cool".lastIndexOf("a")

public String substring(int beginIndex)

Returns a substring of the current string
starting from the specified index. For
instance, "Java is cool".substring(8)
returns “cool”.

public String substring(int beginIndex,

int endIndex)

Returns a substring of the current string
starting from beginIndex to endIndex. For
example, the following code returns “is”:

 "Java is cool".substring(5, 7)

public String replace(char oldChar, char

newChar)

Replaces every occurrence of oldChar with
newChar in the current string and returns
the new String. "dingdong".replace('d',
'k') returns “kingkong”.

public int length()

Returns the number of characters in this
String. For example, "Java is
cool".length() returns 12. Prior to Java 6,
this method was often used to test if a
String was empty. However, the isEmpty
method is preferred because it's more
descriptive.

public boolean isEmpty()

Returns true is the string is empty (contains
no characters).

public String[] split(String regEx)

Splits this String around matches of the
specified regular expression. For example,
"Java is cool".split(" ") returns an array
of three Strings. The first array element is
“Java”, the second “is”, and the third “cool”.

public boolean startsWith(String prefix)

Tests if the current string starts with the
specified prefix.

public char[] toCharArray()

Converts this string to an array of chars.

public String toLowerCase()

Converts all the characters in the current

string to lower case. For instance, "Java is
cool".toLowerCase() returns “java is
cool”.

public String toUpperCase()

Converts all the characters in the current
string to upper case. For instance, "Java is
cool".toUpperCase() returns “JAVA IS
COOL”.

public String trim()

Trims the trailing and leading white spaces
and returns a new string. For example, "
Java ".trim() returns “Java”.

In addition, there are static methods such as valueOf and
format. The valueOf method converts a primitive, a char array,
or an instance of Object into a string representation and there
are nine overloads of this method.

public static String valueOf(boolean

value)

public static String valueOf(char value)

public static String valueOf(char[]

value)

public static String valueOf(char[]

value, int offset, int length)

public static String valueOf(double

value)

public static String valueOf(float value)

public static String valueOf(int value)

public static String valueOf(long value)

public static String valueOf(Object

value)

For example, the following code returns the string “23”

String.valueOf(23);

The format method allows you to pass an arbitrary number of
parameters. Here is its signature.

public static String format(String

format, Object... args)

This method returns a String formatted using the specified
format string and arguments. The format pattern must follow the
rules specified in the java.util.Formatter class and you can
read them in the JavaDoc for the Formatter class. A brief
description of these rules are as follows.

To specify an argument, use the notation %s, which denotes
the next argument in the array. For example, the following is a
method call to the printf method.

String firstName = "John";

String lastName = "Adams";

System.out.format("First name: %s. Last

name: %s",

 firstName, lastName);

This prints the following string to the console:

First name: John. Last name: Adams

Without varargs, you have to do it in a more cumbersome way.

String firstName = "John";

String lastName = "Adams";

System.out.println("First name: " +

firstName +

 ". Last name: " + lastName);

Note
The printf method in java.io.PrintStream is an alias for format.

The formatting example described here is only the tip of the
iceberg. The formatting feature is much more powerful than that
and you are encouraged to explore it by reading the Javadoc for
the Formatter class.

java.lang.StringBuffer and
java.lang.StringBuilder

String objects are immutable and are not suitable to use if you
need to append or insert characters into them because string
operations on String always create a new String object. For
append and insert, you’d be better off using the
java.lang.StringBuffer or java.lang.StringBuilder class.
Once you’re finished manipulating the string, you can convert a
StringBuffer or StringBuilder object to a String.

Until JDK 1.4, the StringBuffer class was solely used for
mutable strings. Methods in StringBuffer are synchronized,
making StringBuffer suitable for use in multithreaded

environments. However, the price for synchronization is
performance. JDK 5 added the StringBuilder class, which is
the unsynchronized version of StringBuffer. StringBuilder
should be chosen over StringBuffer if you do not need
synchronization.

Note
Synchronization and thread safety are discussed in Chapter 22, “Java
Threads.”

The rest of this section will use StringBuilder. However, the
discussion is also applicable to StringBuffer as both
StringBuilder and StringBuffer shares similar constructors
and methods.

StringBuilder Class’s
Constructors
The StringBuilder class has four constructors. You can pass a
java.lang.CharSequence, a String, or an int.

public StringBuilder()

public StringBuilder(CharSequence seq)

public StringBuilder(int capacity)

public StringBuilder(String string)

If you create a StringBuilder object without specifying the
capacity, the object will have a capacity of 16 characters. If its
content exceeds 16 characters, it will grow automatically. If you
know that your string will be longer than 16 characters, it is a
good idea to allocate enough capacity as it takes time to increase
a StringBuilder’s capacity.

StringBuilder Class’s Methods
The StringBuilder class has several methods. The main ones
are capacity, length, append, and insert.

public int capacity()

Returns the capacity of the StringBuilder
object.

public int length()

Returns the length of the string the
StringBuilder object stores. The value is
less than or equal to the capacity of the
StringBuilder.

public StringBuilder append(String

string)

Appends the specified String to the end of
the contained string. In addition, append
has various overloads that allow you to pass
a primitive, a char array, and an
java.lang.Object instance.

For example, examine the following code.

 StringBuilder sb = new

StringBuilder(100);

 sb.append("Matrix ");

 sb.append(2);

After the last line, the content of sb is
“Matrix 2”.

An important point to note is that the
append methods return the
StringBuilder object itself, the same

object on which append is invoked. As a
result, you can chain calls to append.

 sb.append("Matrix ").append(2);

public StringBuilder insert(int offset,

String string)

Inserts the specified string at the position
indicated by offset. In addition, insert has
various overloads that allow you to pass
primitives and a java.lang.Object
instance. For example,

 StringBuilder sb2 = new

StringBuilder(100);

 sb2.append("night");

 sb2.insert(0, 'k'); // value =

"knight"

Like append, insert also returns the
current StringBuilder object, so chaining
insert is also permitted.

public String toString()

Returns a String object representing the
value of the StringBuilder.

Primitive Wrappers

For the sake of performance, not everything in Java is an object.
There are also primitives, such as int, long, float, double, etc.
When working with both primitives and objects, there are often
circumstances that necessitate primitive to object conversions
and vice versa. For example, a java.util.Collection object
(discussed in Chapter 14, “The Collections Framework”) can be
used to store objects, not primitives. If you want to store
primitive values in a Collection, they must be converted to
objects first.

The java.lang package has several classes that function as
primitive wrappers. They are Boolean, Character, Byte,
Double, Float, Integer, Long, and Short. Byte, Double,
Float, Integer, Long, and Short share similar methods,
therefore only Integer will be discussed here. You should
consult the Javadoc for information on the others.

The following sections discuss the wrapper classes in detail.

java.lang.Integer
The java.lang.Integer class wraps an int. The Integer class
has two static final fields of type int: MIN_VALUE and
MAX_VALUE. MIN_VALUE contains the minimum possible
value for an int (-231) and MAX_VALUE the maximum
possible value for an int (231 - 1).

The Integer class has two constructors:

public Integer(int value)

public Integer(String value)

For example, this code constructs two Integer objects.

Integer i1 = new Integer(12);

Integer i2 = new Integer("123");

Integer has the no-arg byteValue, doubleValue,
floatValue, intValue, longValue, and shortValue methods
that convert the wrapped value to a byte, double, float, int,
long, and short, respectively. In addition, the toString method
converts the value to a String.

There are also static methods that you can use to parse a
String to an int (parseInt) and convert an int to a String

(toString). The signatures of the methods are as follows.

public static int parseInt(String string)

public static String toString(int i)

java.lang.Boolean
The java.lang.Boolean class wraps a boolean. Its static final
fields FALSE and TRUE represents a Boolean object that
wraps the primitive value false and a Boolean object wrapping
the primitive value true, respectively.

You can construct a Boolean object from a boolean or a
String, using one of these constructors.

public Boolean(boolean value)

public Boolean(String value)

For example:

Boolean b1 = new Boolean(false);

Boolean b2 = new Boolean("true");

To convert a Boolean to a boolean, use its booleanValue

method:

public boolean booleanValue()

In addition, the static method valueOf parses a String to a
Boolean object.

public static Boolean valueOf(String

string)

And, the static method toString returns the string
representation of a boolean.

public static String toString(boolean

boolean)

java.lang.Character
The Character class wraps a char. There is only one
constructor in this class:

public Character(char value)

To convert a Character object to a char, use its charValue

method.

public char charValue()

There are also a number of static methods that can be used to
manipulate characters.

public static boolean isDigit(char ch)

Determines if the specified argument is one
of these: ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘0’.

public static char toLowerCase(char ch)

Converts the specified char argument to its
lower case.

public static char toUpperCase(char ch)

Converts the specified char argument to its
upper case.

java.lang.Class

One of the members of the java.lang package is a class named
Class. Every time the JVM creates an object, it also creates a
java.lang.Class object that describes the type of the object. All
instances of the same class share the same Class object. You can
obtain the Class object by calling the getClass method of the
object. This method is inherited from java.lang.Object.

For example, the following code creates a String object,
invokes the getClass method on the String instance, and then
invokes the getName method on the Class object.

String country = "Fiji";

Class myClass = country.getClass();

System.out.println(myClass.getName()); //

prints java.lang.String

As it turns out, the getName method returns the fully qualified
name of the class represented by a Class object.

The Class class also brings the possibility of creating an object
without using the new keyword. You achieve this by using the
two methods of the Class class, forName and newInstance.

public static Class forName(String

className)

public Object newInstance()

The static forName method creates a Class object of the given
class name. The newInstance method creates a new instance of
a class.

The ClassDemo in Listing 5.1 uses forName to create a
Class object of the app05.Test class and create an instance of
the Test class. Since newInstance returns a java.lang.Object
object, you need to downcast it to its original type.

Listing 5.1: The ClassDemo class
package app05;

public class ClassDemo {

 public static void main(String[]

args) {

 String country = "Fiji";

 Class myClass =

country.getClass();

System.out.println(myClass.getName());

 Class klass = null;

 try {

 klass =

Class.forName("app05.Test");

 } catch (ClassNotFoundException

e) {

 }

 if (klass != null) {

 try {

 Test test = (Test)

klass.newInstance();

 test.print();

 } catch

(IllegalAccessException e) {

 } catch

(InstantiationException e) {

 }

 }

 }

}

Do not worry about the try … catch blocks as they will be
explained in Chapter 8, “Error Handling.”

You might want to ask this question, though. Why would you
want to create an instance of a class using forName and
newInstance, when using the new keyword is shorter and
easier? The answer is because there are circumstances whereby
the name of the class is not known when you are writing the

program.

java.lang.System

The System class is a final class that exposes useful static fields
and static methods that can help you with common tasks.

The three fields of the System class are out, in, and err:

public static final java.io.PrintStream

out;

public static final java.io.InputStream

in;

public static final java.io.PrintStream

err;

The out field represents the standard output stream which by
default is the same console used to run the running Java
application. You will learn more about PrintStream in Chapter
16, “Input Output,” but for now know that you can use the out
field to write messages to the console. You will often write the
following line of code:

System.out.print(message);

where message is a String object. However, PrintStream has
many print method overloads that accept different types, so you
can pass any primitive type to the print method:

System.out.print(12);

System.out.print('g');

In addition, there are println methods that are equivalent to
print, except that println adds a line terminator at the end of
the argument.

Note also that because out is static, you can access it by using
this notation: System.out, which returns a
java.io.PrintStream object. You can then access the many
methods on the PrintStream object as you would methods of
other objects: System.out.print, System.out.format, etc.

The err field also represents a PrintStream object, and by
default the output is channeled to the console from where the
current Java program was invoked. However, its purpose is to
display error messages that should get immediate attention of
the user.

For example, here is how you can use err:

System.err.println("You have a runtime

error.");

The in field represents the standard input stream. You can use it
to accept keyboard input. For example, the getUserInput
method in Listing 5.2 accepts the user input and returns it as a
String:

Listing 5.2: The InputDemo class
package app05;

import java.io.IOException;

public class InputDemo {

 public String getUserInput() {

 StringBuilder sb = new

StringBuilder();

 try {

 char c = (char)

System.in.read();

 while (c != '\r' && c !=

'\n') {

 sb.append(c);

 c = (char)

System.in.read();

 }

 } catch (IOException e) {

 }

 return sb.toString();

 }

 public static void main(String[]

args) {

 InputDemo demo = new InputDemo();

 String input =

demo.getUserInput();

 System.out.println(input);

 }

}

However, an easier way to receive keyboard input is to use the
java.util.Scanner class, discussed in the section
“java.util.Scanner” later in this chapter.

The System class has many useful methods, all of which are
static. Some of the more important ones are listed here.

public static void arraycopy(Object

source, int sourcePos,

 Object destination, int destPos,

int length)

This method copies the content of an array
(source) to another array (destination),
beginning at the specified position, to the

specified position of the destination array.
For example, the following code uses
arraycopy to copy the contents of array1
to array2.

 int[] array1 = {1, 2, 3, 4};

 int[] array2 = new

int[array1.length];

 System.arraycopy(array1, 0, array2,

0, array1.length);

public static void exit(int status)

Terminates the running program and the
current JVM. You normally pass 0 to
indicate that a normal exit and a nonzero to
indicate there has been an error in the
program prior to calling this method.

public static long currentTimeMillis()

Returns the computer time in milliseconds.

The value represents the number of
milliseconds that has elapsed since January
1, 1970 UTC.

Prior to Java 8, currentTimeMillis was
used to time an operation. In Java 8 and
later, you can use the java.time.Instant
class, instead. This class is discussed in
Chapter 13, “Working with Dates and
Times.”

public static long nanoTime()

This method is similar to
currentTimeMillis, but with nanosecond
precision.

public static String getProperty(String

key)

This method returns the value of the

specified property. It returns null if the
specified property does not exist. There are
system properties and there are user-
defined properties. When a Java program
runs, the JVM provides values that may be
used by the program as properties.

Each property comes as a key/value pair.
For example, the os.name system property
provides the name of the operating system
running the JVM. Also, the directory name
from which the application was invoked is
provided by the JVM as a property named
user.dir. To get the value of the user.dir
property, you use:

 System.getProperty("user.dir");

 Table 5.2 lists the system properties.

System property

Description

java.version

Java Runtime Environment
version

java.vendor

Java Runtime Environment
vendor

java.vendor.url

Java vendor URL

java.home

Java installation directory

java.vm.specification.version

Java Virtual Machine
specification version

java.vm.specification.vendor

Java Virtual Machine
specification vendor

java.vm.specification.name

Java Virtual Machine
specification name

java.vm.version

Java Virtual Machine
implementation version

java.vm.vendor

Java Virtual Machine
implementation vendor

java.vm.name

Java Virtual Machine

implementation name

java.specification.version

Java Runtime Environment
specification version

java.specification.vendor

Java Runtime Environment
specification vendor

java.specification.name

Java Runtime Environment
specification name

java.class.version

Java class format version
number

java.class.path

Java class path

java.library.path

List of paths to search when
loading libraries

java.io.tmpdir

Default temp file path

java.compiler

Name of JIT compiler to use

java.ext.dirs

Path of extension directory or
directories

os.name

Operating system name

os.arch

Operating system
architecture

os.version

Operating system version

file.separator

File separator ("/" on UNIX)

path.separator

Path separator (":" on UNIX)

line.separator

Line separator ("\n" on
UNIX)

user.name

User's account name

user.home

User's home directory

user.dir

User's current working
directory

Table 5.2: Java system properties

public static void setProperty(String

property, String newValue)

You use setProperty to create a user-
defined property or change the value of the
current property. For instance, you can use
this code to create a property named

password:

 System.setProperty("password",

"tarzan");

And, you can retrieve it by using
getProperty:

 System.getProperty("password")

For instance, here is how you change the
user.name property.

 System.setProperty("user.name",

"tarzan");

public static String getProperty(String

key, String default)

This method is similar to the single
argument getProperty method, but
returns a default value if the specified
property does not exist.

public static java.util.Properties

getProperties()

This method returns all system properties.
The return value is a java.util.Properties
object. The Properties class is a subclass
of java.util.Hashtable (discussed in
Chapter 11, “The Collections Framework”).

For example, the following code uses the
list method of the Properties class to
iterate and display all system properties on
the console.

 java.util.Properties properties =

System.getProperties();

 properties.list(System.out);

java.util.Scanner

You use a Scanner object to scan a piece of text. In this chapter,

we will only concentrate on its use to receive keyboard input.

Receiving keyboard input with Scanner is easy. All you need
to do is instantiate the Scanner class by passing System.in.
Then, to receive user input, call the next method on the
instance. The next method buffers the characters the user input
from the keyboard or other devices until the user presses Enter.
It then returns a String containing the characters the user
entered excluding the carriage-return character sequence.
Listing 5.3 demonstrates the use of Scanner to receive user
input.

Listing 5.3: Using Scanner to receive
user input

package app05;

import java.util.Scanner;

public class ScannerDemo {

 public static void main(String[]

args) {

 Scanner scanner = new

Scanner(System.in);

 while (true) {

 System.out.print("What's your

name? ");

 String input =

scanner.nextLine();

 if (input.isEmpty()) {

 break;

 }

 System.out.println("Your name

is " + input + ". ");

 }

 scanner.close();

 System.out.println("Good bye");

 }

}

Compared to the code in Listing 5.2, using Scanner is much
simpler.

Summary

In this chapter you examined several important classes such as
java.lang.String, arrays, java.lang.System and
java.util.Scanner. You also learned about variable arguments.
The last section covered the implementation of varargs in
java.lang.String and java.io.PrintStream.

Quiz

1. What does it mean when people say that
Strings are immutable objects?

2. How do you receive user input without
Scanner? And, how do you do it with
Scanner?

3. What is varargs?
4. Create a com.example.Car class that

has these private fields: year (int), make
(String) and model (String). Make Car
immutable by providing only get methods.
Fields are set by passing values to the
constructor.

5. Create a com.example.test.CarTest
class to instantiate Car and print its field
values by calling the get methods.

6. Create a utility/helper class named
StringUtil in com.example.util. This
class should have two static methods,
getFileName and getFileExtension.
Both methods receive a file path and

returns a file name or file extension,
respectively. Create a
com.example.test.StringUtilTest class
to test the methods.

7. Show how you can use the
java.util.StringTokenizer class to print
the number of tokens in a String and each
individual token.

Chapter 6
Arrays

In Java you can use an array to group primitives or objects of the
same type. The entities belonging to an array is called the
elements or components of the array. In this chapter you will
learn how to create, initialize and iterate over an array as well as
manipulate its elements. This chapter also features the
java.util.Arrays class, a utility class for manipulating arrays.

Overview

In the background, every time you create an array, the compiler
creates an object which allows you to:

get the number of elements in the array through the length
field. The length or size of an array is the number of
elements in it.

access each element by specifying an index. This indexing is
zero-based. Index 0 refers to the first element, 1 to the
second element, etc.

All the elements of an array have the same type, called the
element type of the array. An array is not resizable and an array
with zero element is called an empty array.

An array is a Java object. Therefore, an array variable behaves
like other reference variables. For example, you can compare an
array variable with null.

String[] names;

if (names == null) // evaluates to true

If an array is a Java object, shouldn’t there be a class that gets
instantiated when you create an array? May be something like
java.lang.Array? The truth is, no. Arrays are indeed special
Java objects whose class is not documented and is not meant to
be extended.

To use an array, first you need to declare one. You can use this
syntax to declare an array:

type[] arrayName;

or

type arrayName[]

For example, the following declares an array of longs named
numbers:

long[] numbers;

Declaring an array does not create an array or allocate space for
its elements, the compiler simply creates an object reference.
One way to create an array is by using the new keyword. You
must specify the size of the array you are creating.

new type[size]

As an example, the following code creates an array of four ints:

new int[4]

Alternatively, you can declare and create an array in the same
line.

int[] ints = new int[4];

After an array is created, its elements are either null (if the
element type is a reference type) or the default value of the

element type (if the array contains primitives). For example, an
array of ints contain zeros by default.

To reference an array element, use an index. If the size of an
array is n, then the valid indexes are all integers between 0 and
n-1. For example, if an array has four elements, the valid indexes
are 0, 1, 2 and 3. The following snippet creates an array of four
String objects and assigns a value to its first element.

String[] names = new String[4];

names[0] = "Hello World";

Using a negative index or a positive integer equal to or greater
than the array size will throw a
java.lang.ArrayIndexOutOfBoundsException. See
Chapter 8, “Error Handling” for information about exceptions.

Since an array is an object, you can call the getClass method
on an array. The string representation of the Class object of an
array has the following format:

[type

where type is the object type. Calling getClass().getName() on
a String array returns [Ljava.lang.String. The class name of a
primitive array, however, is harder to decipher. Calling

getClass().getName() on an int array returns [I and on a long
array returns [J.

You can create and initialize an array without using the new
keyword. Java allows you to create an array by grouping values
within a pair of braces. For example, the following code creates
an array of three String objects.

String[] names = { "John", "Mary", "Paul"

};

The following code creates an array of four ints and assign the
array to the variable matrix.

int[] matrix = { 1, 2, 3, 10 };

Be careful when passing an array to a method because the
following is illegal even though the method average takes an
array of ints.

int avg = average({ 1, 2, 3, 10 }); //

illegal

Instead, you have to instantiate the array separately.

int[] numbers = { 1, 2, 3, 10 };

int avg = average(numbers);

or you can do this

int avg = average(new int[] { 1, 2, 3, 10

});

Iterating over an Array

Prior to Java 5, the only way to iterate the members of an array
was to use a for loop and the array’s indexes. For example, the
following code iterates over a String array referenced by the
variable names:

for (int i = 0; i < 3; i++) {

 System.out.println("\t- " +

names[i]);

}

Java 5 enhanced the for statement. You can now use it to iterate
over an array or a collection without the index. Use this syntax to
iterate over an array:

for (elementType variable : arrayName)

Where arrayName is the reference to the array, elementType is
the element type of the array, and variable is a variable that
references each element of the array.

For example, the following code iterates over an array of
Strings.

String[] names = { "John", "Mary", "Paul"

};

for (String name : names) {

 System.out.println(name);

}

The code prints this on the console.

John

Mary

Paul

The java.util.Arrays Class

The Arrays class provides static methods to manipulate arrays.
Table 6.1 shows some of its methods.

Method

Description

asList

Returns a fixed-size List
backed by the array. No other
elements can be added to the
List. List is discussed in
Chapter 14, “The Collection
Framework.”

binarySearch

Searches an array for the
specified key. If the key is
found, returns the index of
the element. If there is no
match, returns the negative
value of the insertion point
minus one. See the section
“Searching An Array” for
details.

copyOf

Creates a new array having
the specified length. The new
array will have the same
elements as the original
array. If the new length is not
the same as the length of the
original array, it pads the new
array with null or default
values or truncates the
original array.

copyOfRange

Creates a new array based on
the specified range of the
original array.

equals

Compares the contents of two
arrays.

fill

Assigns the specified value to
each element of the specified
array.

sort

Sorts the elements of the
specified array.

parallelSort

Parallel sorts the elements of
the specified array.

toString

Returns the string
representation of the
specified array.

Table 6.1: More important methods of
java.util.Arrays

Some of these methods are explained further in the next
sections.

Changing an Array Size

Once an array is created, its size cannot be changed. If you want
to change the size, you must create a new array and populates it
using the values of the old array. For instance, the following code
increases the size of numbers, an array of three ints, to 4.

int[] numbers = { 1, 2, 3 };

int[] temp = new int[4];

int length = numbers.length;

for (int j = 0; j < length; j++) {

 temp[j] = numbers[j];

}

numbers = temp;

A shorter way of doing this is by using the copyOf method of
java.util.Arrays. For instance, this code creates a four-element
array and copies the content of numbers to its first three
elements.

int[] numbers = { 1, 2, 3 };

int[] newArray = Arrays.copyOf(numbers,

4);

Of course you can reassign the new array to the original variable:

numbers = Arrays.copyOf(numbers, 4);

The copyOf method comes with ten overloads, eight for each
type of Java primitives and two for objects. Here are their
signatures:

public static boolean[] copyOf(boolean[]

original, int newLength)

public static byte[] copyOf(byte[]

original, int newLength)

public static char[] copyOf(char[]

original, int newLength)

public static double[] copyOf(double[]

original, int newLength)

public static float[] copyOf(float[]

original, int newLength)

public static int[] copyOf(int[]

original, int newLength)

public static long[] copyOf(long[]

original, int newLength)

public static short[] copyOf(short[]

original, int newLength)

public static <T> T[] copyOf(T[]

original, int newLength)

public static <T,U> T[] copyOf(U[]

original, int newLength,

 java.lang.Class<? extends T[]>

newType)

Each of these overloads may throw a
java.lang.NullPointerException if original is null and a
java.lang.NegativeArraySizeException if newLength is
negative.

The newLength argument can be smaller, equal to, or larger
than the length of the original array. If it is smaller, then only the
first newLength elements will be included in the copy. If it is
larger, the last few elements will have default values, i.e. 0 if it is
an array of integers or null if it is an array of objects.

Another method similar to copyOf is copyOfRange.
copyOfRange copies a range of elements to a new array. Like
copyOf, copyOfRange also provides overrides for each Java
data type. Here are their signatures:

public static boolean[]

copyOfRange(boolean[] original,

 int from, int to)

public static byte[] copyOfRange(byte[]

original,

 int from, int to)

public static char[] copyOfRange(char[]

original,

 int from, int to)

public static double[]

copyOfRange(double[] original,

 int from, int to)

public static float[] copyOfRange(float[]

original,

 int from, int to)

public static int[] copyOfRange(int[]

original, int from, int to)

public static long[] copyOfRange(long[]

original, int from, int to)

public static short[] copyOfRange(short[]

original, int from,

 int to)

public static <T> T[] copyOfRange(T[]

original, int from, int to)

public static <T,U> T[] copyOfRange(U[]

original, int from,

 int to, java.lang.Class<? extends

T[]> newType)

You can also use System.arraycopy() to copy an array.
However, Arrays.copyOf() is easier to use and internally it

calls System.arraycopy().

Searching An Array

You can use the binarySearch method of the Arrays class to
search an array. This method comes with twenty overloads. Here
are two of its overloads:

public static int binarySearch(int[]

array, int key)

public static int

binarySearch(java.lang.Object[] array,

 java.lang.Object key)

There are also overloads that restrict the search area.

public static int binarySearch(int[]

array, int fromIndex,

 int toIndex, int key)

public static int

binarySearch(java.lang.Object[] array,

 int fromIndex, int toIndex,

java.lang.Object key)

The binarySearch method employs a binary search algorithm
to do the search. Using this algorithm, the array is first sorted in
ascending or descending order. It then compares the search key
with the middle element of the array. If there is a match, the
element index is returned. If there is no match, depending
whether the search key is lower or higher than the index, the
search continues in the first or second half of the array, repeating
the same procedure until there is no or only one element left. If
at the end of the search no match is found, the binarySearch
method returns the negative value of the insertion point minus
one. The example in Listing 6.1 will make this point clearer.

Listing 6.1: A binary search example
package app06;

import java.util.Arrays;

public class BinarySearchDemo {

 public static void main(String[]

args) {

 int[] primes = { 2, 3, 5, 7, 11,

13, 17, 19 };

 int index =

Arrays.binarySearch(primes, 13);

 System.out.println(index); //

prints 5

 index =

Arrays.binarySearch(primes, 4);

 System.out.println(index); //

prints -3

 }

}

The BinarySearchDemo class in Listing 6.1 uses an int array
containing the first eight prime numbers. Passing 13 as the
search key returns 5 because 13 is the sixth element in the array,
i.e. with index 5. Passing 4 does not find a match and the method
returns -3, which is -2 minus one. If the key were to be inserted
to the array, it would have the index 2.

Passing a String Array to
main

The public static void method main that you use to invoke a
Java class takes an array of Strings. Here is the signature of
main:

public static void main(String[] args)

You can pass arguments to main by typing them as arguments
to the java program. The arguments should appear after the
class name and two arguments are separated by a space. You use
the following syntax:

java className arg1 arg2 arg3 ... arg-n

Listing 6.2 shows a class that iterates over the main method’s
String array argument.

Listing 6.2.: Accessing the main
method’s arguments

package app06;

public class MainMethodTest {

 public static void main(String[]

args) {

 for (String arg : args) {

 System.out.println(arg);

 }

 }

}

The following command invokes the class and passes two
arguments to the main method.

java app06/MainMethodTest john mary

The main method will then print the arguments to the console.

john

mary

If no argument is passed to main, the String array args will be
empty and not null.

Multidimensional Arrays

In Java a multidimensional array is an array whose elements are
also arrays. As such, the rows can have different lengths, unlike
multidimensional arrays in C language.

To declare a two dimensional array, use two pairs of brackets
after the type:

int[][] numbers;

To create an array, pass the sizes for both dimensions:

int[][] numbers = new int[3][2];

Listing 6.3 shows a multidimensional array of ints.

Listing 6.3: A multidimensional array.
package app06;

import java.util.Arrays;

public class MultidimensionalDemo1 {

 public static void main(String[]

args) {

 int[][] matrix = new int[2][3];

 for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 3; j++) {

 matrix[i][j] = j + i;

 }

 }

 for (int i = 0; i < 2; i++) {

System.out.println(Arrays.toString(matrix

[i]));

 }

 }

}

The following will be printed on the console if you run the class.

[0, 1, 2]

[1, 2, 3]

Summary

In this chapter you learned how to declare and initialize an array
and work with this data structure. You also examined the
java.util.Arrays class for manipulating arrays.

Quiz

1. What is an array?
2. How do you resize an array?
3. How do you create an array and pass it to

a method without first assigning it to a
variable?

4. Write a
com.example.app06.ArrayUtil class
that contains two static methods, min and
max. Both methods receive an array of
ints and returns the smallest

largest element, respectively.

Chapter 7
Inheritance

Inheritance is a very important object-oriented programming
(OOP) feature. It is what makes code extensible in an OOP
language. Extending a class is also called inheriting or
subclassing. In Java, by default all classes are extendible, but you
can use the final keyword to prevent classes from being
subclassed. This chapter explains inheritance in Java.

Overview

You extend a class by creating a new class. The former and the
latter will then have a parent-child relationship. The original
class is the parent class or the base class or the superclass. The
new class is the child class or the subclass or the derived class of
the parent. The process of extending a class in OOP is called
inheritance. In a subclass you can add new methods and new
fields as well as override existing methods to change their
behaviors.

Figure 7.1 presents a UML class diagram that depicts a parent-
child relationship between a class and a child class.

Figure 7.1: The UML class diagram for a
parent class and a child class

Note that a line with an arrow is used to depict generalization,
e.g. the parent-child relationship.

A child class in turn can be extended, unless you specifically
make it inextensible by declaring it final. Final classes are
discussed in the section “Final Classes” later in this chapter.

The benefits of inheritance are obvious. Inheritance gives you
the opportunity to add some functionality that does not exist in
the original class. It also gives you the chance to change the
behaviors of the existing class to better suit your needs.

The extends Keyword
You extend a class by using the extends keyword in a class
declaration, after the class name and before the parent class.

Listing 7.1 presents a class named Parent and Listing 7.2 a class
named Child that extends Parent.

Listing 7.1: The Parent class
public class Parent {

}

Listing 7.2: The Child class
public class Child extends Parent {

}

Extending a class is as simple as that.

Note
All Java classes that do not explicitly extend a parent class automatically
extend the java.lang.Object class. Object is the ultimate superclass in
Java. Parent in Listing 7.1 by default is a subclass of Object.

Note
In Java a class can only extend one class. This is unlike C++ where
multiple inheritance is allowed. However, the notion of multiple
inheritance can be achieved by using interfaces in Java, as discussed in
Chapter 10, “Interfaces and Abstract Classes.”

The Is-A Relationship

There is a special relationship that is formed when you create a
new class by inheritance. The subclass and the superclass has an
“is-a” relationship.

For example, Animal is a class that represents animals. There
are many types of animals, including birds, fish and dogs, so you
can create subclasses of Animal that model specific types of
animals. Figure 7.2 features the Animal class with three
subclasses, Bird, Fish and Dog.

Figure 7.2: An example of inheritance

The is-a relationship between the subclasses and the superclass
Animal is very apparent. A bird “is an” animal, a dog is an
animal and a fish is an animal. A subclass is a special type of its
superclass. For example, a bird is a special type of animal. The
is-a relationship does not go the other way, however. An animal
is not necessarily a bird or a dog.

Listing 7.3 presents the Animal class and its subclasses.

Listing 7.3: Animal and its subclasses
package app07;

class Animal {

 public float weight;

 public void eat() {

 }

}

class Bird extends Animal {

 public int numberOfWings = 2;

 public void fly() {

 }

}

class Fish extends Animal {

 public int numberOfFins = 2;

 public void swim() {

 }

}

class Dog extends Animal {

 public int numberOfLegs = 4;

 public void walk() {

 }

}

In this example, the Animal class defines a weight field that
applies to all animals. It also declares an eat method because
animals eat.

The Bird class is a special type of Animal, it inherits the eat
method and the weight field. Bird also adds a
numberOfWings field and a fly method. This shows that the
more specific Bird class extends the functionality and behavior
of the more generic Animal class.

A subclass inherits all public methods and fields of its
superclass. For example, you can create a Dog object and call its
eat method:

Dog dog = new Dog();

dog.eat();

The eat method is declared in the Animal class; the Dog class
simply inherits it.

A consequence of the is-a relationship is that it is legal to
assign an instance of a subclass to a reference variable of the
parent type. For example, the following code is valid because
Bird is a subclass of Animal and a Bird is always an Animal.

Animal animal = new Bird();

However, the following is illegal because there is no guarantee
that an Animal is a Dog.:

Dog dog = new Animal();

Accessibility

From within a subclass you can access its superclass’s public and
protected methods and fields, but not the superclass’s private
methods. If the subclass and the superclass are in the same
package, you can also access the superclass’s default methods
and fields.

Consider the P and C classes in Listing 7.4.

Listing 7.4: Showing accessibility
package app07;

public class P {

 public void publicMethod() {

 }

 protected void protectedMethod() {

 }

 void defaultMethod() {

 }

}

class C extends P {

 public void testMethods() {

 publicMethod();

 protectedMethod();

 defaultMethod();

 }

}

P has three methods, one public, one protected and one with the
default access level. C is a subclass of P. As you can see in the C
class’s testMethods method, C can access its parent’s public
and protected methods. In addition, because C and P belong to
the same package, C can also access P’s default method.

However, it does not mean you can expose P’s non-public
methods through its subclass. For example, the following code
will not compile:

package test;

import app07.C;

public class AccessibilityTest {

 public static void main(String[]

args) {

 C c = new C();

 c.protectedMethod();

 }

}

protectedMethod is a protected method of P. It is not
accessible from outside P, except from a subclass. Since
AccessibilityTest is not a subclass of P, you cannot access P’s
protected method through its subclass C.

Method Overriding

When you extends a class, you can change the behavior of a
method in the parent class. This is called method overriding, and
this happens when you write in a subclass a method that has the
same signature as a method in the parent class. If only the name
is the same but the list of arguments is not, then it is method
overloading. (See Chapter 4, “Objects and Classes”)

You override a method to change its behavior. To override a
method, you simply have to write the new method in the
subclass, without having to change anything in the parent class.
You can override the superclass’s public and protected methods.
If the subclass and superclass are in the same package, you can
also override methods with the default access level.

An example of method overriding is demonstrated by the Box
class in Listing 7.5.

Listing 7.5: The Box class
package app07;

public class Box {

 public int length;

 public int width;

 public int height;

 public Box(int length, int width, int

height) {

 this.length = length;

 this.width = width;

 this.height = height;

 }

 @Override

 public String toString() {

 return "I am a Box.";

 }

 @Override

 public Object clone() {

 return new Box(1, 1, 1);

 }

}

The Box class extends the java.lang.Object class. It is an
implicit extension since the extends keyword is not used. Box

overrides the public toString method and the protected clone
method. Note that the clone method in Box is public whereas in
Object it is protected. Increasing the visibility of a method
defined in a superclass from protected to public is allowed.
However, reducing visibility is illegal.

An overridden method is normally annotated with
@Override. It is not required but it is good practice to do so.
You will learn about annotations in Chapter 17, “Annotations.”

What if you create a method that has the same signature as a
private method in the superclass? It is not method overriding,
since private methods are not visible from outside the class. It is
just a method that happens to have the same signature as the
private method.

Note
You cannot override a final method. To make a method final, use the
final keyword in the method declaration. For example:

 public final java.lang.String

toUpperCase(java.lang.String s)

Calling the Constructors of
the Superclass

A subclass is just like an ordinary class, you use the new
keyword to create an instance of it. If you do not explicitly write
a constructor in your subclass, the compiler will implicitly add a
no-argument (no-arg) constructor.

When you instantiate a child class by invoking one of its
constructors, the first thing the constructor does is call the no-
argument constructor of the direct parent class. In the parent
class, the constructor also calls the constructor of its direct
parent class. This process repeats itself until it reaches the
constructor of the java.lang.Object class. In other words, when
you create a child object, all its parent classes are also
instantiated.

This process is illustrated in the Base and Sub classes in
Listing 7.6.

Listing 7.6: Calling a superclass’s no-
arg constructor

package app07;

class Base {

 public Base() {

 System.out.println("Base");

 }

 public Base(String s) {

 System.out.println("Base." + s);

 }

}

public class Sub extends Base {

 public Sub(String s) {

 System.out.println(s);

 }

 public static void main(String[]

args) {

 Sub sub = new Sub("Start");

 }

}

If you run the Sub class, you’ll see this on the console:

Base

Start

This proves that the first thing that the Sub class’s constructor
does is invoke the Base class’s no-arg constructor. The Java
compiler has quietly changed Sub’s constructor to the following
without saving the modification to the source file.

public Sub(String s) {

 super();

 System.out.println(s);

}

The keyword super represents an instance of the direct
superclass of the current object. Since super is called from an
instance of Sub, super represents an instance of Base, its
direct superclass.

You can explicitly call a parent’s constructor from a subclass’s
constructor by using the super keyword, but super must be the
first statement in the constructor. Using the super keyword is
handy if you want another constructor in the superclass to be
invoked. For example, you can modify the constructor in Sub to
the following.

 public Sub(String s) {

 super(s);

 System.out.println(s);

 }

This constructor calls the single argument constructor of the
parent class, by using super(s). As a result, if you run the class
you will see the following on the console.

Base.Start

Start

Now, what if the superclass does not have a no-arg constructor

and you do not make an explicit call to another constructor from
a subclass? This is illustrated in the Parent and Child classes in
Listing 7.7.

Listing 7.7: Implicit calling to the
parent’s constructor that does not exist

package app07;

class Parent {

 public Parent(String s) {

System.out.println("Parent(String)");

 }

}

public class Child extends Parent {

 public Child() {

 }

}

This will generate a compile error because the compiler adds an
implicit call to the no-argument constructor in Parent, while
the Parent class has only one constructor, the one that accepts a
String. You can remedy this situation by explicitly calling the
parent’s constructor from the Child class’s constructor:

public Child() {

 super(null);

}

Note
It actually makes sense for a child class to call its parent’s constructor
from its own constructor because an instance of a subclass must always
be accompanied by an instance of each of its parents. This way, calls to a
method that is not overridden in a child class can be passed to its parent
until the first in the hierarchy is found.

Calling the Hidden Members
of the Superclass

The super keyword has another purpose in life. It can be used to
call a hidden member or an overridden method in a superclass.
Since super represents an instance of the direct parent,
super.memberName returns the specified member in the parent
class. You can access any member in the superclass that is visible
from the subclass. For example, Listing 7.8 shows two classes
that have a parent-child relationship: Tool and Pencil.

Listing 7.8: Using super to access a
hidden member

package app07;

class Tool {

 @Override

 public String toString() {

 return "Generic tool";

 }

}

public class Pencil extends Tool {

 @Override

 public String toString() {

 return "I am a Pencil";

 }

 public void write() {

System.out.println(super.toString());

 System.out.println(toString());

 }

 public static void main(String[]

args) {

 Pencil pencil = new Pencil();

 pencil.write();

 }

}

The Pencil class overrides the toString method in Tool. If you
run the Pencil class, you will see the following on the console.

Generic tool

I am a Pencil

Unlike calling a parent’s constructor, invoking a parent’s method
does not have to be the first statement in the caller method.

Type Casting

You can cast an object to another type. The rule is, you can only
cast an instance of a subclass to its parent class. Casting an
object to a parent class is called upcasting. Here is an example,
assuming that Child is a subclass of Parent.

Child child = new Child();

Parent parent = child;

To upcast a Child object, all you need to do is assign the object
to a reference variable of type Parent. Note that the parent
reference variable cannot access members that are only available
in Child.

Because parent in the snippet above references an object of
type Child, you can cast it back to Child. This time, it is called
downcasting because you are casting an object to a class down

the inheritance hierarchy. Downcasting requires that you write
the child type in brackets. For example:

Child child = new Child();

Parent parent = child;// parent pointing

to an instance of Child

Child child2 = (Child) parent; //

downcasting

Downcasting to a subclass is only allowed if the parent class
reference is already pointing to an instance of the subclass. The
following will generate a compile error.

Object parent = new Object();

Child child = (Child) parent; // illegal

downcasting, compile error

Final Classes

You can prevent others from extending your class by making it
final using the keyword final in the class declaration. final may
appear after or before the access modifier. For example:

public final class Pencil

final public class Pen

The first form is more common.

Even though making a class final makes your code slightly
faster, the difference is too insignificant to notice. Design
consideration, and not speed, should be the reason you make a
class final. For example, the java.lang.String class is final
because the designer of the class did not want you to change the
behavior of String.

The instanceof Operator

The instanceof operator can be used to test if an object is of a
specified type. It is normally used in an if statement and its
syntax is this.

if (objectReference instanceof type)

where objectReference references an object being investigated.
For example, the following if statement returns true.

String s = "Hello";

if (s instanceof java.lang.String)

However, applying instanceof on a null reference variable
returns false. For example, the following if statement returns
false.

String s = null;

if (s instanceof java.lang.String)

Also, since a subclass “is a” type of its superclass, the following if
statement, where Child is a subclass of Parent, returns true.

Child child = new Child();

if (child instanceof Parent) //

evaluates to true

Summary

Inheritance is one of the fundamental principles in object-
oriented programming. Inheritance makes code extensible. In
Java all classes by default extend the java.lang.Object class. To
extend a class, use the extends keyword. Method overriding is
another OOP feature directly related to inheritance. It enables

you to change the behavior of a method in the parent class. You
can prevent your class from being subclassed by making it final.

Quiz

1. Does a subclass inherit its superclass’s
constructors?

2. Why is it legal to assign an instance of a
subclass to a superclass variable?

3. What is the difference between method
overriding and method overloading?

4. Why is it necessary for an instance of a
subclass to be accompanied by an instance
of each parent?

5. Write a public
com.example.transport.Car class that
adds a public void method called run and
overrides toString(). run prints the
return value of toString(). Write another
public class called SUV in the same

package. SUV extends Car and overrides
its run and toString methods. The run
class of SUV should print the return value
of the parent’s toString method and its
own toString method. Next, add a main
method in SUV that creates an SUV
object and calls its run method.

Chapter 8
Error Handling

Error handling is an important feature in any programming
language. A good error handling mechanism makes it easier for
programmers to write robust applications and to prevent bugs
from creeping in. In some languages, programmers are forced to
use multiple if statements to detect all possible conditions that
might lead to an error. This could make code excessively
complex. In a larger program, this could easily lead to spaghetti
like code.

Java offers the try statement as a nice approach to error
handling. With this strategy, part of the code that could
potentially lead to an error is isolated in a block. Should an error
occur, this error is caught and resolved locally. This chapter
teaches you this.

Catching Exceptions

There are two types of errors, compile error and runtime error.

Compile errors or compilation errors are due to errors in the
source code. For example, if you forgot to terminate a statement
with a semicolon, the compiler will tell you that and refuse to
compile your code. Compile errors are caught by the compiler at
compile time. Runtime errors, on the other hand, can only be
caught when the program is running, i.e. at runtime, because the
compiler could not have caught them. For example, running out
of memory is a runtime error and a compiler could not have
predicted this. Or, if a program tries to parse a user input to an
integer, the input is only available when the program is running.
If the user enters non-digits, then the parsing process will fail
and a runtime error thrown. A runtime error, if not handled, will
cause the program to quit abruptly.

In your program you can isolate code that may cause a
runtime error using a try statement, which normally is
accompanied by the catch and finally statements. Such
isolation typically occurs in a method body. If an error is
encountered, Java stops the processing of the try block and
jump to the catch block. Here you can gracefully handle the
error or notify the user by ‘throwing’ a java.lang.Exception
object. Another scenario is to re-throw the exception or a new
Exception object back to the code that called the method. It is
then up to the client how he or she would handle the error. If a
thrown exception is not caught, the application will crash.

This is the syntax of the try statement.

try {

 [code that may throw an exception]

} [catch (ExceptionType-1 e) {

 [code that is executed when

ExceptionType-1 is thrown]

}] [catch (ExceptionType-2 e) {

 [code that is executed when

ExceptionType-2 is thrown]

}]

 ...

} [catch (ExceptionType-n e) {

 [code that is executed when

ExceptionType-n is thrown]

}]

[finally {

 [code that runs regardless of whether

an exception was thrown]]

}]

The steps for error handling can be summarized as follows:

1. Isolate code that could lead to an error in
the try block.

2. For each individual catch block, write
code that is to be executed if an exception

of that particular type occurs in the try
block.

3. In the finally block, write code that will
be run whether or not an error has
occurred.

Note that the catch and finally blocks are optional, but one or
both of them must exist. Therefore, you can have try with one or
more catch blocks, try with finally or try with catch and
finally.

The previous syntax shows that you can have more than one
catch block. This is because some code may throw different
types of exceptions. When an exception is thrown from a try
block, control is passed to the first catch block. If the type of
exception thrown matches the exception or is a subclass of the
exception in the first catch block, the code in the catch block is
executed and then control goes to the finally block, if one exists.

If the type of the exception thrown does not match the
exception type in the first catch block, the JVM goes to the next
catch block and does the same thing until it finds a match. If no
match is found, the exception object will be thrown to the
method caller. If the caller does not put the offending code that
calls the method in a try block, the program will crash.

To illustrate the use of this error handling, consider the

NumberDoubler class in Listing 8.1. When the class is run, it
will prompt you for input. You can type anything, including non-
digits. If your input is successfully converted to a number, it will
double it and print the result. If your input is invalid, the
program will print an “Invalid input” message.

Listing 8.1: The NumberDoubler class
package app08;

import java.util.Scanner;

public class NumberDoubler {

 public static void main(String[]

args) {

 Scanner scanner = new

Scanner(System.in);

 String input = scanner.next();

 try {

 double number =

Double.parseDouble(input);

 System.out.printf("Result:

%s", number);

 } catch (NumberFormatException e)

{

 System.out.println("Invalid

input.");

 }

 scanner.close();

 }

}

The NumberDoubler class uses the java.util.Scanner class
to take user input (Scanner was discussed in Chapter 5, “Core
Classes”).

Scanner scanner = new Scanner(System.in);

String input = scanner.next();

It then uses the static parseDouble method of the
java.lang.Double class to convert the string input to a double.
Note that the code that calls parseDouble resides in a try
block. This is necessary because parseDouble may throw a
java.lang.NumberFormatException, as indicated by the
signature of the parseDouble method:

public static double parseDouble(String

s)

 throws NumberFormatExcpetion

The throws statement in the method signature tells you that it
may throw a NumberFormatException and it is the
responsibility of the method caller to catch it.

Without the try block, invalid input will give you this

embarrassing error message before the system crashes:

Exception in thread "main"

java.lang.NumberFormatException:

try without catch

A try statement can be used with finally without a catch block.
You normally use this syntax to ensure that some code always
gets executed whether or not an unexpected exception has been
thrown in the try block. For example, after opening a database
connection, you want to make sure the connection’s close
method is called after you’re done with it. To illustrate this
scenario, consider the following pseudocode that opens a
database connection.

Connection connection = null;

try {

 // open connection

 // do something with the connection

and perform other tasks

} finally {

 if (connection != null) {

 // close connection

 }

}

If something unexpected occurs in the try block, the close
method will always be called to release the resource.

Catching Multiple Exceptions

Java 7 and later allow you to catch multiple exceptions in a single
catch block if the caught exceptions are to be handled by the
same code. The syntax of the catch block is as follows, two
exceptions being separated by the pipe character |.

catch(exception-1 | exception-2 ... e) {

 // handle exceptions

}

For example, the java.net.ServerSocket class’s accept
method can throw four exceptions:
java.nio.channels.IllegalBlockingModeException,
java.net.SocketTimeoutException,
java.lang.SecurityException, and java.io.Exception. If,

say, the first three exceptions are to be handled by the same
code, you can write your try block like this:

try {

 serverSocket.accept();

} catch (SocketTimeoutException |

SecurityException |

 IllegalBlockingModeException e) {

 // handle exceptions

} catch (IOException e) {

 // handle IOException

}

The try-with-resources
Statement

Many Java operations involve some kind of resource that has to
be closed after use. Before JDK 7, you used finally to make sure
a close method is guaranteed to be called:

try {

 // open resource

} catch (Exception e) {

} finally {

 // close resource

}

This syntax can be tedious especially if the close method can
throw an exception and can be null. For example, here’s a typical
code fragment to open a database connection.

Connection connection = null;

try {

 // create connection and do something

with it

} catch (SQLException e) {

} finally {

 if (connection != null) {

 try {

 connection.close();

 } catch (SQLException e) {

 }

 }

}

You see, you need quite a bit of code in the finally block just for
one resource, and it’s not uncommon to have to open multiple
resources in a single try block. JDK 7 added a new feature, the
try-with-resource statement, to make resource closing
automatic. Its syntax is as follows.

try (resources) {

 // do something with the resources

} catch (Exception e) {

 // do something with e

}

For example, here is opening a database connection would look
like in Java 7 and later.

Connection connection = null;

try (Connection connection =

openConnection();

 // open other resources, if any)

{

 // do something with connection

} catch (SQLException e) {

}

Not all resources can be automatically closed. Only resource
classes that implement java.lang.AutoCloseable can be
automatically closed. Fortunately, in JDK 7 many input/output
and database resources have been modified to support this
feature. You’ll see more examples of try-with-resources in
Chapter 16, “Input/Output” and Chapter 21, “Java Database
Connectivity.”

The java.lang.Exception Class

Erroneous code can throw any type of exception. For example,
an invalid argument may throw a
java.lang.NumberFormatException, and calling a method
on a null reference variable throws a
java.lang.NullPointerException. All Java exception classes
derive from the java.lang.Exception class. It is therefore
worthwhile to spend some time examining this class.

Among others, the Exception class overrides the toString
method and adds a printStackTrace method. The toString
method returns the description of the exception. The
printStackTrace method has the following signature.

public void printStackTrace()

This method prints the description of the exception followed by a
stack trace for the Exception object. By analyzing the stack
trace, you can find out which line is causing the problem. Here is
an example of what printStackTrace may print on the console.

java.lang.NullPointerException

 at

MathUtil.doubleNumber(MathUtil.java:45)

 at MyClass.performMath(MyClass.java:

18)

 at MyClass.main(MyClass.java: 90)

This tells you that a NullPointerException has been thrown.
The line that throws the exception is Line 45 of the
MathUtil.java class, inside the doubleNumber method. The
doubleNumber method was called by
MyClass.performMath, which in turns was called by
MyClass.main.

Most of the time a try block is accompanied by a catch block
that catches the java.lang.Exception in addition to other
catch blocks. The catch block that catches Exception must
appear last. If other catch blocks fail to catch the exception, the
last catch will do that. Here is an example.

try {

 // code

} catch (NumberFormatException e) {

 // handle NumberFormatException

} catch (Exception e) {

 // handle other exceptions

}

You may want to use multiple catch blocks in the code above
because the statements in the try block may throw a
java.lang.NumberFormatException or other type of
exception. If the latter is thrown, it will be caught by the last
catch block.

Be warned, though: The order of the catch blocks is
important. You cannot, for example, put a catch block for
handling java.lang.Exception before any other catch block.
This is because the JVM tries to match the thrown exception
with the argument of the catch blocks in the order of
appearance. java.lang.Exception catches everything;
therefore, the catch blocks after it would never be executed.

If you have several catch blocks and the exception type of one
of the catch blocks is derived from the type of another catch
block, make sure the more specific exception type appears first.
For example, when trying to open a file, you need to catch the
java.io.FileNotFoundException just in case the file cannot
be found. However, you may want to make sure that you also
catch java.io.IOException so that other I/O-related
exceptions are caught. Since FileNotFoundException is a
child class of IOException, the catch block that handles
FileNotFoundException must appear before the catch block
that handles IOException.

Throwing an Exception from
a Method

When catching an exception in a method, you have two options
to handle the error that occurs inside the method. You can either
handle the error in the method, thus quietly catching the
exception without notifying the caller (this has been
demonstrated in the previous examples), or you can throw the
exception back to the caller and let the caller handle it. If you
choose the second option, the calling code must catch the
exception that is thrown back by the method.

Listing 8.2 presents a capitalize method that changes the
first letter of a String to upper case.

Listing 8.2: The capitalize method
public String capitalize(String s) throws

NullPointerException {

 if (s == null) {

 throw new NullPointerException(

 "You passed a null

argument");

 }

 Character firstChar = s.charAt(0);

 String theRest = s.substring(1);

 return

firstChar.toString().toUpperCase() +

theRest;

}

If you pass a null to capitalize, it will throw a new
NullPointerException. Pay attention to the code that
instantiates the NullPointerException class and throws the
instance:

 throw new NullPointerException(

 "Your passed a null

argument");

The throw keyword is used to throw an exception. Don’t

confuse it with the throws statement which is used at the end of
a method signature to indicate that the method may throw an
exception of the given type.

The following example shows code that calls capitalize.

String input = null;

try {

 String capitalized =

util.capitalize(input);

 System.out.println(capitalized);

} catch (NullPointerException e) {

 System.out.println(e.toString());

}

Note
A constructor can also throw an exception.

User-Defined Exceptions

You can create a user-defined exception by subclassing
java.lang.Exception. There are several reasons for having a
user-defined exception. One of them is to create a customized
error message.

For example, Listing 8.3 shows the
AlreadyCapitalizedException class that derives from
java.lang.Exception.

Listing 8.3: The
AlreadyCapitalizedException class

package app08;

public class AlreadyCapitalizedException

extends Exception {

 @Override

 public String toString() {

 return "Input has already been

capitalized";

 }

}

You can throw an AlreadyCapitalizedException from the
capitalize method in Listing 8.2. The modified capitalize
method is given in Listing 8.4.

Listing 8.4: The modified capitalize
method

public String capitalize(String s)

 throws NullPointerException,

AlreadyCapitalizedException {

 if (s == null) {

 throw new NullPointerException(

 "Your passed a null

argument");

 }

 Character firstChar = s.charAt(0);

 if (Character.isUpperCase(firstChar))

{

 throw new

AlreadyCapitalizedException();

 }

 String theRest = s.substring(1);

 return

firstChar.toString().toUpperCase() +

theRest;

}

Now, capitalize may throw one of two exceptions. You comma-
delimit multiple exceptions in a method signature.

Clients that call capitalize must now catch both exceptions.
This code shows a call to capitalize.

StringUtil util = new StringUtil();

String input = "Capitalize";

try {

 String capitalized =

util.capitalize(input);

 System.out.println(capitalized);

} catch (NullPointerException e) {

 System.out.println(e.toString());

} catch (AlreadyCapitalizedException e) {

 e.printStackTrace();

}

Since NullPointerException and
AlreadyCapitalizedException do not have a parent-child
relationship, the order of the catch blocks above is not
important.

When a method throws multiple exceptions, rather than catch
all the exceptions, you can simply write a catch block that
handles java.lang.Exception. Rewriting the code above:

StringUtil util = new StringUtil();

String input = "Capitalize";

try {

 String capitalized =

util.capitalize(input);

 System.out.println(capitalized);

} catch (Exception e) {

 System.out.println(e.toString());

}

While it’s more concise, the latter lacks specifics and does not
allow you to handle each exception separately.

Note on Exception Handling

The try statement imposes some performance penalty.
Therefore, do not use it over-generously. If it is not hard to test
for a condition, then you should do the testing rather than
depending on the try statement. For example, calling a method
on a null object throws a NullPointerException. Therefore,
you could always surround a method call with a try block:

try {

 ref.method();

...

However, it is not hard at all to check if ref is null prior to calling
methodA. Therefore, the following code is better because it
eliminates the try block.

if (ref != null) {

 ref.methodA();

}

The NullPointerException is one of the most common
exceptions a developer has to handle. Java 8 adds the
java.util.Optional class that can reduce the amount of code for
handling the NullPointerException. Optional is discussed in
Chapter 19, “Lambda Expressions.”

Summary

This chapter discussed the use of structured error handling and
presented examples for each case. You have also been introduced
to the java.lang.Exception class and its properties and
methods. The chapter concluded with a discussion of user-
defined exceptions.

Quiz

1. What is the advantage of the try
statement?

2. Can a try statement be used with finally
and without catch?

3. What is try-with-resources?
4. Write a utility class called Util (part of

com.example.app08) that has a static

method named addArray for adding two
arrays of the same length. The signature of
addArray is as follows.

 public static long[] addArray(int[]

array1, int[] array2)

 throws

MismatchedArrayException,

 java.lang.NullPointerException

The method throws a
MismatchedArrayException if the
lengths of both arguments are not the
same. The toString method of the
exception class must return this value:

 Mismatched array length. The first

array's length is length1. The

second array's length is length2

where length1 is the length of the first
array and length2 the length of the
second array.

The method throws a
NullPointerException if one of the
arrays is null.

Chapter 9
Working with Numbers

In Java numbers are represented by the primitives byte, short,
int, long, float, double and their wrapper classes, which were
explained in Chapter 5, “Core Classes.” Conversion from a
primitive type to a wrapper object is called boxing and from a
wrapper object to a primitive is called unboxing. Boxing and
unboxing are the first topic in this chapter. Afterward, this
chapter explain three issues you have to deal with when working
with numbers, parsing, formatting and manipulation. Number
parsing is the conversion of a string into a number and number
formatting deals with presenting a number in a specific format.
For instance, 1000000 may be displayed as 1,000,000.

To conclude, this chapter show how to perform monetary
calculations and generate random numbers.

Boxing and Unboxing

Conversion from primitive types to corresponding wrapper

objects and vice versa can happen automatically. Boxing refers to
the conversion of a primitive to a wrapper instance, such as an
int to a java.lang.Integer. Unboxing is the conversion of a
wrapper instance to a primitive type, such as Byte to byte.

Here is an example of boxing.

Integer number = 3; // assign an int to

Integer

Here is an example of unboxing.

Integer number = new Integer(100);

int simpleNumber = number;

When you can choose between a primitive type and its wrapper
class, always favor the primitive over the wrapper, because
primitives are faster than objects. There are cases where you
need a wrapper class, however, such as when working with a
collection. A collection, as discussed in Chapter 14, “The
Collection Framework, accepts objects and does not accept
primitives.

Number Parsing

A Java program may require that the user input a number that
will be processed or become an argument to a method. For
example, a currency converter program would need the user to
type in a value to be converted. You can use the
java.util.Scanner class to receive user input. However, the
input will be a String, even though it represents a number.
Before you can work with the number, you need to parse the
string. The outcome of a successful parsing is a number.

Therefore, the purpose of number parsing is to convert a string
into a numeric primitive type. If parsing fails, for example
because the string is not a number or a number outside the
specified range, your program can throw an exception.

The wrappers of primitives—the Byte, Short, Integer,
Long, Float, and Double classes—provide static methods for
parsing strings. For example, Integer has a parseInteger
method with the following signature.

public static int parseInt(String s)

throws NumberFormatException

This method parses a String and returns an int. If the String
does not contain a valid integer representation, a
NumberFormatException is thrown.

For example, the following snippet uses parseInt to parse the
string “123” to 123.

int x = Integer.parseInt("123");

Similarly, Byte provides a parseByte method, Long a
parseLong method, Short a parseShort method, Float a
parseFloat method, and Double a parseDouble method.

For example, the NumberTest class in Listing 9.1 takes user
input and parses it. If the user types in an invalid number, an
error message will be displayed.

Listing 9.1: Parsing numbers
(NumberTest.java)

package app09;

import java.util.Scanner;

public class NumberTest {

 public static void main(String[]

args) {

 Scanner scanner = new

Scanner(System.in);

 String userInput =

scanner.next();

 try {

 int i =

Integer.parseInt(userInput);

 System.out.println("The

number entered: " + i);

 } catch (NumberFormatException e)

{

 System.out.println("Invalid

user input");

 }

 }

}

Number Formatting

Number formatting helps make numbers more readable. For
example, 1000000 is more readable if printed as 1,000,000 (or
1.000.000 if your locale uses . to separate the thousands). For
number formatting Java offers the java.text.NumberFormat
class, which is an abstract class. Since it is abstract, you cannot
create an instance using the new keyword. Instead, you
instantiate its subclass java.text.DecimalFormat, which is a
concrete implementation of NumberFormat.

NumberFormat nf = new DecimalFormat();

However, you should not call the DecimalFormat class’s
constructor directly. Instead, use the the NumberFormat
class’s getInstance static method. This method may return an

instance of DecimalFormat but might also return an instance
of a subclass other than DecimalFormat.

Now, how do you use NumberFormat to format numbers,
such as 1234.56? Easy, simply pass the numbers to its format
method and you’ll get a String. However, should number
1234.56 be formatted as 1,234.56 or 1234,56? Well, it really
depends in which side of the Atlantic you live. If you are in the
US, you may want 1,234.56. If you live in Germany, however,
1234,56 makes more sense. Therefore, before you start using the
format method, you want to make sure you get the correct
instance of NumberFormat by telling it where you live, or,
actually, in what locale you want it formatted. In Java, a locale is
represented by the java.util.Locale class, which I’ll explain in
Chapter 19, “Internationalization.” For now, remember that the
getInstance method of the NumberFormat class also has an
overload that accepts a java.util.Locale.

public NumberFormat

getInstance(java.util.Locale locale)

If you pass Locale.Germany to the method, you’ll get a
NumberFormat object that formats numbers according to the
German locale. If you pass Locale.US, you’ll obtain one for the
US number format. The no-argument getInstance method
returns a NumberFormat object with the user’s computer
locale.

Listing 9.2 shows the NumberFormatTest class that
demonstrates how to use the NumberFormat class to format a
number.

Listing 9.2: The NumberFormatTest
class

package app09;

import java.text.NumberFormat;

import java.util.Locale;

public class NumberFormatTest {

 public static void main(String[]

args) {

 NumberFormat nf =

NumberFormat.getInstance(Locale.US);

System.out.println(nf.getClass().getName(

));

System.out.println(nf.format(123445));

 }

}

When run, the output of the execution is

java.text.DecimalFormat

123,445

The first output line shows that a java.text.DecimalFormat
object was produced upon calling
NumberFormat.getInstance. The second shows how the
NumberFormat formats the number 123445 into a more
readable form.

Number Parsing with
java.text.NumberFormat

You can use the parse method of NumberFormat to parse
numbers. One of this method’s overloads has the following
signature:

public java.lang.Number

parse(java.lang.String source)

 throws ParseException

parse returns an instance of java.lang.Number, the parent of
such classes as Integer, Long, etc.

The java.lang.Math Class

The Math class is a utility class that provides static methods for
mathematical operations. There are also two static final double
fields: E and PI. E represents the base of natural logarithms (e).
Its value is close to 2.718. PI is the ratio of the circumference of a
circle to its diameter (pi). Its value is 22/7 or approximately
3.1428.

Some of the methods in Math are in Table 9.1.

Method

Description

abs

Returns the absolute value of
the specified double.

acos

Returns the arc cosine of an
angle, in the range of 0.0
through pi.

asin

Returns the arc sine of an
angle, in the range of –pi/2
through pi/2.

atan

Returns the arc tangent of an
angle, in the range of –pi/2
through pi/2.

cos

Returns the cosine of an
angle.

exp

Returns Euler’s number e
raised to the power of the
specified double.

log

Returns the natural logarithm
(base e) of a double.

log10

Returns the base 10 logarithm
of a double.

max

Returns the greater of two
double values.

min

Returns the smaller of two
double values.

random

Returns a pseudorandom
double greater than or equal
to 0.0 and less than 1.0.

round

Rounds a float to the nearest
int.

Table 9.1: More important methods of
java.lang.Math

Working with Money

Consider the following code that uses a double to represent a
bank account balance. Suppose you have $10.00 in your account
and you are charged a 10 cent account fee twice.

double balance = 10.00F;

balance -= 0.10F;

balance -= 0.10F;

What is the balance now? It should be $9.80, but no. The
balance is 9.799999997019768, which is wrong.

Due to the way floats and doubles are represented as bits,
these two primitives are not exact. If you are interested in
knowing how a float or double is presented in bits, consult this
Wikipedia page:

http://en.wikipedia.org/wiki/Single-

precision_floating-point_format

The consequence is, floats and doubles are not suitable for
monetary calculations. There are two ways to deal with money in
Java. First, you can use an int or a long and calculate the cents
(and not dollars) and convert the final result to the dollar.
Second, you can use the java.math.BigDecimal class. The first
approach is tedious so the second one is better even though
operations involving a BigDecimal are slower than those
involving an int or a long.

Listing 9.3 shows an example of using a double and
BigDecimal.

Listing 9.3: Using BigDecimal
package app09;

import java.math.BigDecimal;

public class BigDecimalDemo {

 public static void main(String[]

args) {

 double balance = 9.99;

 balance -= 0.10F;

 System.out.println(balance); //

prints 9.889999769628048

 BigDecimal balance2 =

BigDecimal.valueOf(9.99);

 BigDecimal accountFee =

BigDecimal.valueOf(.1);

 BigDecimal r =

balance2.subtract(accountFee);

System.out.println(r.doubleValue()); //

prints 9.89

 }

}

As you can see, BigDecimal gives you the exact result. You
should use this for monetary calculations and any other
calculations that require preciseness.

Generating Random Numbers

The java.util.Random class, which has been available since
JDK 1.0, models a random number generator. However, the
random method of the java.lang.Math class is much easier to
use. This method returns a double between 0.0 to 1.0.

Listing 9.4 shows a RandomNumberGenerator class that
generates an int between 0 and 9 (inclusive).

Lisitng 9.4: Random number generator
package app09;

public class RandomNumberGenerator {

 /*

 * Returns a random number between 0

and 9 (inclusive)

 */

 public int generate() {

 double random = Math.random();

 return (int) (random * 10);

 }

 public static void main(String[]

args) {

 RandomNumberGenerator generator =

 new

RandomNumberGenerator();

 for (int i = 0; i < 10; i++) {

System.out.println(generator.generate());

 }

 }

}

Summary

In Java you use primitives and wrapper classes to model
numbers. Conversion between a primitive and a wrapper class
and the other way around happen automatically. There are three
types of operations that you frequently perform when dealing
with number and dates: parsing, formatting and manipulation.
This chapter showed how to perform them.

In addition, this chapter explained the best way to perform
monetary calculations and generate random numbers.

Quiz

1. What can you do with the
java.lang.Math class’s static methods?

2. Are wrapper classes still useful since
boxing and unboxing happen
automatically in Java?

3. Explain why you should not use doubles
or floats to perform monetary calculations.
What should you use instead?

4. Write a class called
RangeRandomGenerator that can
generate random numbers between two
integers that you specify when
instantiating the class.

Chapter 10
Interfaces and Abstract

Classes

Java beginners often get the impression that an interface is
simply a class without implementation. While this is not
technically incorrect, it obscures the real purpose of having the
interface in the first place. The interface is more than that. The
interface should be regarded as a contract between a service
provider and its clients. This chapter therefore focuses on the
concepts before explaining how to write an interface.

The second topic in this chapter is the abstract class.
Technically speaking, an abstract class is a class that cannot be
instantiated and must be implemented by a subclass. However,
the abstract class is important because in some situations it can
take the role of the interface. You will learn how to use the
abstract class too in this chapter.

The Concept of Interface

When learning about the interface for the first time, novices
often focus on how to write one, rather than understanding the
concept behind it. They would think an interface is something
like a Java class declared with the interface keyword and whose
methods have no body.

While the description is not inaccurate, treating an interface as
an implementation-less class misses the big picture. A better
definition of an interface is a contract. It is a contract between a
service provider (server) and the user of such a service (client).
Sometimes the server defines the contract, sometimes the client
does.

Consider this real-world example. Microsoft Windows is the
most popular operating system today, but Microsoft does not
make printers. For printing, you still rely on those people at HP,
Canon, Samsung, and the like. Each of these printer makers uses
a proprietary technology. However, their products can all be
used to print documents from any Windows application. How
come?

This is because Microsoft said something to this effect to the
printer manufacturers, “If you want your products useable on
Windows (and we know you do), you must implement this
Printable interface.”

The interface is as simple as this:

interface Printable {

 void print(Document document);

}

where document is the document to be printed.

Implementing this interface, the printer makers then write
printer drivers. Every printer has a different driver, but they all
implement Printable. A printer driver is an implementation of
Printable. In this case, these printer drivers are the service
provider.

The client of the printing service is all Windows applications.
It is easy to print on Windows because an application just needs
to call the print method and pass a Document object. Because
the interface is freely available, client applications can be
compiled without waiting for an implementation to be available.

The point is, printing to different printers from different
applications is possible thanks to the Printable interface. This
interface is a contract between printing service providers and
printing clients.

An interface can define both fields and methods. Prior to JDK
1.8 all methods in an interface were abstract, but starting from
JDK 1.8 you can also write default and static methods in an
interface. Unless specified otherwise, an interface method refers
to an abstract method.

To be useful, an interface has to have an implementing class
that actually performs the action.

Figure 10.1 illustrates the Printable interface and its
implementation in an UML class diagram.

Figure 10.1: An interface and two
implementation classes in a class

diagram

In the class diagram, an interface has the same shape as a class,
however the name is printed in italic and prefixed with
<<interface>>. The HPDriver and CanonDriver classes are
classes that implement the Printable interface. The
implementations are of course different. In the HPDriver class,
the print method contains code that enables printing to a HP
printer. In CanonDriver, the code enables printing to a Canon
driver. In a UML class diagram, a class and an interface are
joined by a dash-line with an arrow. This type of relationship is
often called realization because the class provides real

implementation (code that actually works) of the abstraction
provided by the interface.

Note
This case study is contrived but the problem and the solution are real. I
hope this provides you with more understanding of what the interface
really is. It is a contract.

The Interface, Technically
Speaking

Now that you understand what the interface is, let’s examine
how you can create one. In Java, like the class, the interface is a
type. Follow this format to write an interface:

accessModifier interface interfaceName {

}

Like a class, an interface has either the public or default access
level. An interface can have fields and methods. All members of
an interface are implicitly public. Listing 10.1 shows an interface
named Printable.

Listing 10.1: The Printable interface
package app10;

public interface Printable {

 void print(Object o);

}

The Printable interface has a method, print. Note that print is
public even though there is no public keyword in front of the
method declaration. You are free to use the keyword public
before the method signature, but it would be redundant.

Just like a class, an interface is a template for creating objects.
Unlike an ordinary class, however, an interface cannot be
instantiated. It simply defines a set of methods that Java classes
can implement.

You compile an interface just you would a class. The compiler
creates a .class file for each interface compiled successfully.

To implement an interface, you use the implements keyword
after the class declaration. A class can implement multiple
interfaces. For example, Listing 10.2 shows the CanonDriver
class that implements Printable.

Listing 10.2: An implementation of the
Printable interface

package app10;

public class CanonDriver implements

Printable {

 @Override

 public void print(Object obj) {

 // code that does the printing

 }

}

Note that a method implementation should also be annotated
with @Override.

Unless specified otherwise, all interface methods are abstract.
An implementing class has to override all abstract methods in an
interface. The relationship between an interface and its
implementing class can be likened to a parent class and a
subclass. An instance of the class is also an instance of the
interface. For example, the following if statement evaluates to
true.

CanonDriver driver = new CanonDriver();

if (driver instanceof Printable) //

evaluates to true

Some interfaces have neither fields nor methods, and are known

as marker interfaces. Classes implement them as a marker. For
example, the java.io.Serializable interface, has no fields nor
methods. Classes implement it so that their instances can be
serialized, i.e. saved to a file or to memory. You will learn more
about Serializable in Chapter 16, “Input Output.”

Fields in an Interface
Fields in an interface must be initialized and are implicitly
public, static and final. However, you may redundantly use the
modifiers public, static, and final. These lines of code have the
same effect.

public int STATUS = 1;

int STATUS = 1;

public static final STATUS = 1;

Note that by convention field names in an interface are written
in upper case.

It is a compile error to have two fields with the same name in
an interface. However, an interface might inherit more than one
field with the same name from its superinterfaces.

Abstract Methods
You declare abstract methods in an interface just as you would
declare a method in a class. However, abstract methods in an

interface do not have a body, they are immediately terminated by
a semicolon. All abstract methods are implicitly public and
abstract, even though it is legal to have the public and abstract
modifiers in front of a method declaration.

The syntax of an abstract method in an interface is

[methodModifiers] ReturnType

MethodName(listOfArgument)

 [ThrowClause];

where methodModifiers is abstract and public.

Extending An Interface
The interface supports inheritance. An interface can extend
another interface. If interface A extends interface B, A is said to
be a subinterface of B. B is the superinterface of A. Because A
directly extends B, B is the direct superinterface of A. Any
interfaces that extend B are indirect subinterfaces of A. Figure
10.2 shows an interface that extends another interface. Note that
the type of the line connecting both interfaces is the same as the
one used for extending a class.

Figure 10.2: Extending an interface

What is the purpose of extending an interface? To safely add
functionality to an interface without breaking existing code. This
is so because you cannot add a new method to an interface once
the interface has been published. Suppose an imaginary interface
XYZ in JDK 1.7 was a popular interface with millions of
implementation classes. Now, the designers of Java wanted to
add a new method in XYZ in JDK 1.8. What would happen if a
class that implemented the old XYZ and was compiled with a
pre-JDK 1.8 compiler was deployed on JDK 1.8 (which would
have shipped with the new version of XYZ)? It would break
because the class had not provided the implementation for the
new method.

The safe way would be to provide a new interface that extends
XYZ so old software would still work and new applications can
choose to implement the extension interface instead of XYZ.

Default Methods

Extending an interface is a safe way of adding functionality to
the interface. However, you end up with two interfaces with
similar functionality. This is acceptable if you only need to
extend one or two interfaces. If you need to add features to
hundred of interfaces, this has certainly become a serious issue.

This is exactly what the Java language designers faced when
they were trying to add lambda expressions to Java 8 and add
support for lambda in dozens of interfaces in the Collection
Framework. Extending all the interfaces would double the
number of interfaces and some would probably end up with ugly
names such as List2 or ExtendedSet.

Instead, they chose to add default methods. In other words,
from JDK 1.8 onward, an interface can have default methods.

A default method in an interface is a method with
implementation. A class implementing the interface does not
have to implement the default method, which means you can add
new methods to an interface without breaking backward
compatibility.

To make a method in an interface a default method, add the
keyword default in front of the method signature. Additionally,
instead of terminating the signature with a semicolon, add a pair
of brackets and write code in the brackets. Here is an example.

default java.lang.String getDescription()

{

 return "This is a default method";

}

As you will learn later, a lot of Java interfaces in JDK 1.8 now
have default methods.

When extending an interface with default methods, you have
these options.

Ignore the default methods, in effect inheriting them,

Re-declare the default methods, which makes them abstract,

Override the default methods.

Remember that the main reason Java now support default
methods is for backward compatibility. By no means should you
start writing programs without classes.

Static Methods

A static method in a class is shared by all instances of the class.
In Java 8 and later you can have static methods in an interface so
that all static methods associated with an interface can be
written in the interface, rather than in a helper class.

The signature of a static method is similar to that of a default
method. Instead of the keyword default, however, you use the
keyword static. Static methods in an interface are public by
default.

Static methods in an interface are rare. Of the close to 30
interfaces in the java.util package, only two contain static
methods.

Base Classes

Some interfaces have many abstract methods, and implementing
classes must override all the methods. This can be a tedious task
if you only need some of the methods. For this reason, you can
create a generic implementation class that overrides the abstract
methods in an interface with default code. An implementing
class can then extend the generic class and overrides only
abstract methods it wants to change. This kind of generic class,
often called a base class, is handy because it helps you code
faster.

For example, the javax.servlet.Servlet interface is the
interface that must be implemented by all servlet classes. This
interface has five abstract methods: init, service, destroy,
getServletConfig, getServletInfo. Of the five, only the
service method is always implemented by servlet classes. The
init method is implemented occasionally, but the rest are rarely

used. Despite the fact, all implementing classes must provide
implementation for all five methods. What a chore this would be
for servlet programmers.

To make servlet programming easier and more fun, the Servlet
API defines the javax.servlet.GenericServlet class, which
provides default implementation for all methods in the Servlet
interface. When you write a servlet, instead of writing a class that
implements the javax.servlet.Servlet interface (and ending up
implementing five methods), you extend the
javax.servlet.GenericServlet and provide only
implementation for methods you need to use (most probably,
only the service method).

Compare the TediousServlet class in Listing 10.3, which
implements javax.servlet.Servlet, and the one in Listing 10.4,
which extends javax.servlet.GenericServlet. Which one is
simpler?

Listing 10.3: The TediousServlet class
package test;

import java.io.IOException;

import javax.servlet.Servlet;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

public class TediousServlet implements

Servlet {

 @Override

 public void init(ServletConfig

config)

 throws ServletException {

 }

 @Override

 public void service(ServletRequest

request,

 ServletResponse response)

 throws ServletException,

IOException {

response.getWriter().print("Welcome");

 }

 @Override

 public void destroy() {

 }

 @Override

 public String getServletInfo() {

 return null;

 }

 @Override

 public ServletConfig

getServletConfig() {

 return null;

 }

}

Listing 10.4: The FunServlet class
package test;

import java.io.IOException;

import javax.servlet.GenericServlet;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

public class FunServlet extends

GenericServlet {

 @Override

 public void service(ServletRequest

request,

 ServletResponse response)

 throws ServletException,

IOException {

response.getWriter().print("Welcome");

 }

}

Abstract Classes

With the interface, you have to write an implementation class
that perform the actual action. If there are many abstract
methods in the interface, you risk wasting time overriding
methods that you don’t use. An abstract class has a similar role
to an interface, i.e. provide a contract between a service provider
and its clients, but at the same time an abstract class can provide
partial implementation. Methods that must be explicitly
overridden can be declared abstract. You still need to create an
implementation class because you cannot instantiate an abstract
class, but you don’t need to override methods you don’t want to
use or change.

You create an abstract class by using the abstract modifier in
the class declaration. To make an abstract method, use the
abstract modifier in front of the method declaration. Listing
10.5 shows an abstract DefaultPrinter class as an example.

Listing 10.5: The DefaultPrinter class
package app10;

public abstract class DefaultPrinter {

 @Override

 public String toString() {

 return "Use this to print

documents.";

 }

 public abstract void print(Object

document);

}

There are two methods in DefaultPrinter, toString and
print. The toString method has an implementation, so you do
not need to override this method in an implementation class,
unless you want to change its return value. The print method is
declared abstract and does not have a body. Listing 10.6 presents
a MyPrinterClass class that is the implementation class of
DefaultPrinter.

Listing 10.6: An implementation of
DefaultPrinter

package app10;

public class MyPrinter extends

DefaultPrinter {

 @Override

 public void print(Object document) {

 System.out.println("Printing

document");

 // some code here

 }

}

A concrete implementation class such as MyPrinter must
override all abstract methods. Otherwise, it itself must be
declared abstract.

Declaring a class abstract is a way to tell the class user that you
want them to extend the class. You can still declare a class
abstract even if it does not have an abstract method.

In UML class diagrams, an abstract class looks similar to a
concrete class, except that the name is italicized. Figure 10.3
shows an abstract class.

Figure 10.3: An abstract class

Summary

The interface plays an important role in Java because it defines a
contract between a service provider and its clients. This chapter
showed you how to use the interface. A base class provides a
generic implementation of an interface and expedites program
development by providing default implementation of code.

An abstract class is like an interface, but it may provide

implementation of some of its methods.

Quiz

1. Why is it more appropriate to regard an
interface as a contract than as a
implementation-less class?

2. What is a base class?
3. What is an abstract class?
4. Is a base class the same as an abstract

class?
5. Create an interface named Calculator in

com.example with three methods, add,
subtract and multiply. All methods take
two int arguments and return a long.

6. Write an implementation of Calculator
called ScientificCalculator and
implement all the methods.

Chapter 11
Polymorphism

Polymorphism is the hardest concept to explain to those new to
object-oriented programming (OOP). In fact, most of the time its
definition does not make sense without an example or two. Well,
try this. Here is a definition in many programming books:
Polymorphism is an OOP feature that enables an object to
determine which method implementation to invoke upon
receiving a method call. If you find this hard to digest, you’re not
alone. Polymorphism is hard to explain in simple language, but it
does not mean the concept is hard to understand.

This chapter starts with a simple example that should make
polymorphism crystal clear. It then proceeds with another
example that demonstrates the use of polymorphism with
reflection.

Overview

In Java and other OOP languages, it is legal to assign to a

reference variable an object whose type is different from the
variable type, if certain conditions are met. In essence, if you
have a reference variable a whose type is A, it is legal to assign
an object of type B, like this

A a = new B();

provided one of the following conditions is met.

A is a class and B is a subclass of A.

A is an interface and B or one of its parents implements A.

As you have learned in Chapter 7, “Inheritance,” this is called
upcasting.

When you assign a an instance of B like in the code above, a is
of type A. This means, you cannot call a method in B that is not
defined in A. However, if you print the value of
a.getClass().getName(), you’ll get “B” and not “A.” So, what
does this mean? At compile time, the type of a is A, so the
compiler will not allow you to call a method in B that is not
defined in A. On the other hand, at runtime the type of a is B, as
proven by the return value of a.getClass().getName().

Now, here comes the essence of polymorphism. If B overrides
a method (say, one named play) in A, calling a.play() will cause

the implementation of play in B (and not in A) to be invoked.
Polymorphism enables an object (in this example, the one
referenced by a) to determine which method implementation to
choose (either the one in A or the one in B) when a method is
called. Polymorphism dictates that the implementation in the
runtime object be invoked. But, polymorphism does not stop
here.

What if you call another method in a (say, a method called
stop) and the method is not implemented in B? The JVM will be
smart enough to know this and look into the inheritance
hierarchy of B. B, as it happens, must be a subclass of A or, if A
is an interface, a subclass of another class that implements A.
Otherwise, the code would not have compiled. Having figured
this out, the JVM will climb up the class hierarchy and find the
implementation of stop and run it.

Now, there is more sense in the definition of polymorphism:
Polymorphism is an OOP feature that enables an object to
determine which method implementation to invoke upon
receiving a method call.

Technically, though, how does Java achieve this? The Java
compiler, as it turns out, upon encountering a method call such
as a.play(), checks if the class/interface represented by a
defines such a method (a play method) and if the correct set of
parameters are passed to the method. But, that is the farthest the
compiler goes. With the exception of static and final methods, it
does not connect (or bind) a method call with a method body.

The JVM determines how to bind a method call with the method
body at runtime. In other words, except for static and final
methods, method binding in Java happens at runtime and not at
compile time. Runtime binding is also called late binding or
dynamic binding. The opposite is early binding, in which binding
occurs at compile time or link time. Early binding occurs in other
languages, such as C.

Therefore, polymorphism is made possible by the late binding
mechanism in Java. Because of this, polymorphism is rather
inaccurately also called late binding, dynamic binding or runtime
binding in other languages.

Consider the Java code in Listing 11.1.

Listing 11.1: An example of
polymorphism

package app11;

class Employee {

 public void work() {

 System.out.println("I am an

employee.");

 }

}

class Manager extends Employee {

 public void work() {

 System.out.println("I am a

manager.");

 }

 public void manage() {

 System.out.println("Managing

...");

 }

}

public class PolymorphismDemo1 {

 public static void main(String[]

args) {

 Employee employee;

 employee = new Manager();

System.out.println(employee.getClass().ge

tName());

 employee.work();

 Manager manager = (Manager)

employee;

 manager.manage();

 }

}

Listing 11.1 defines two non-public classes: Employee and
Manager. Employee has a method called work, and
Manager extends Employee and adds a new method called
manage.

The main method in the PolymorphismDemo1 class
defines an object variable called employee of type Employee:

Employee employee;

However, employee is assigned an instance of Manager, as in:

employee = new Manager();

This is legal because Manager is a subclass of Employee, so a
Manager “is an” Employee. Because employee is assigned an
instance of Manager, what is the outcome of
employee.getClass().getName()? You’re right. It’s
“Manager,” not “Employee.”

Then, the work method is called.

employee.work();

Guess what is written on the console?

I am a manager.

This means that it is the work method in the Manager class

that got called, which was polymorphism in action.

Note
Polymorphism does not work with static methods because they are early-
bound. For example, if the work method in both the Employee and
Manager classes were static, a call to employee.work() would print “I
am an employee.”

Also, since you cannot extend final methods, polymorphism will not work
with final methods either.

Now, because the runtime type of a is Manager, you can
downcast a to Manager, as the code shows:

Manager manager = (Manager) employee;

manager.manage();

After seeing the code, you might ask, why would you declare
employee as Employee in the first place? Why didn’t you
declare employee as type Manager, such as this?

Manager employee;

employee = new Manager();

You do this to ensure flexibility in cases where you don’t know
whether the object reference (employee) will be assigned an

instance of Manager or something else.

The power of polymorphism will be more apparent in the
example in the next section.

Polymorphism in Action

Suppose you have a Greeting interface that defines an abstract
method named greet. This simple interface is given in Listing
11.2.

Listing 11.2: The Greeting interface
package app11;

public interface Greeting {

 public void greet();

}

The Greeting interface can be implemented to print a greeting
in different languages. For example, the EnglishGreeting class
in Listing 11.3 and the FrenchGreeting class in Listing 11.4
implement Greeting to greet the user in English and French,
respectively.

Listing 11.3: The EnglishGreeting class
package app11;

public class EnglishGreeting implements

Greeting {

 @Override

 public void greet() {

 System.out.println("Good Day!");

 }

}

Listing 11.4: The FrenchGreeting class
package app11;

public class FrenchGreeting implements

Greeting {

 @Override

 public void greet() {

 System.out.println("Bonjour!");

 }

}

The PolymorphismDemo2 class in Listing 11.5 shows
polymorphism in action. It asks the user in what language they
want to be greeted. If the user chooses English, then the

EnglishGreeting class will be instantiated. If French is
selected, FrenchGreeting will be instantiated. This is
polymorphism because the class to be instantiated is only known
at runtime, after the user types in a selection.

Listing 11.5: The PolymorphismDemo2
class

package app11;

import java.util.Scanner;

public class PolymorphismDemo2 {

 public static void main(String[]

args) {

 String instruction = "What is

your chosen language?" +

 "\nType 'English' or

'French'.";

 Greeting greeting = null;

 Scanner scanner = new

Scanner(System.in);

 System.out.println(instruction);

 while (true) {

 String input =

scanner.next();

 if

(input.equalsIgnoreCase("english")) {

 greeting = new

EnglishGreeting();

 break;

 } else if

(input.equalsIgnoreCase("french")) {

 greeting = new

FrenchGreeting();

 break;

 } else {

System.out.println(instruction);

 }

 }

 scanner.close();

 greeting.greet();

 }

}

Polymorphism and Reflection

Polymorphism is often used along with reflection. Consider this
scenario.

The Order Processing application is a business application for
handling purchase orders. It can store orders in various

databases (Oracle, MySQL, etc) and retrieve orders for display.
The Order class represents purchase orders. Orders are stored
in a database and an OrderAccessObject object handles the
storing and retrieval of Order objects.

The OrderAccessObject class acts as an interface between
the application and the database. All purchase order
manipulations are done through an instance of this class. The
OrderAccessObject interface is given in Listing 11.6.

Listing 11.6: The OrderAccessObject
Interface

package app11;

public interface OrderAccessObject {

 public void addOrder(Order order);

 public void getOrder(int orderId);

}

The OrderAccessObject interface needs an implementation
class that provides code for the two methods in it. The
application may have many implementation classes for
OrderAccessObject, each of which caters to a specific type of
database. For example, the implementation class that connects
to an Oracle database is called OracleOrderAccessObject
class and the one for MySQL is MySQLOrderAccessObject.
Figure 11.1 shows the UML diagram for OrderAccessObject
and its implementing classes.

Figure 11.1: The OrderAccessObject
interface and implementing classes

The need for multiple implementing classes arises from the fact
that each database could have a specific command for
performing certain function. For example, autonumbers are
common in MySQL, but do not exist in Oracle.

The Order Processing application needs to be flexible enough
that it can work with a different database without recompilation.
It should also be possible to add support for a new database in
the future without recompilation. In fact, you just need to specify
the implementing class of OrderAccessObject when invoking
the application. For example, to use an Oracle database you
specify this

java OrderProcessing

com.example.OracleOrderAccessObject

And to work with MySQL, you call it using this command:

java OrderProcessing

com.example.MySqlOrderAccessObject

Now, here is the part of the code that instantiates an
OrderAccessObject in the database:

public static void main (String[] args) {

 OrderAccessObject accessObject =

null;

 Class klass = null;

 try {

 klass = Class.forName(args[0]);

 accessObject =

(OrderAccessObject) klass.newInstance();

 } catch (ClassNotFoundException e) {

 } catch (Exception e) {

 }

 // continue here

}

This is polymorphism because the accessObject reference
variable can be assigned a different object type each time.

Note

The forName and newInstance methods are explained in the section
“java.lang.Class” in Chapter 5, “Core Classes.”

Summary

Polymorphism is one of the main pillars in object-oriented
programming. It is useful in circumstances where the type of an
object is not known at compile time. This chapter has
demonstrated polymorphism through several examples.

Quiz

1. In your own words, describe
polymorphism.

2. In what situations is polymorphism most
useful?

Chapter 12
Enums

In Chapter 2, “Language Fundamentals” you learned that you
sometimes use static final fields as enumerated values. Java 5
added a new type, enum, for enumerating values. You will learn
how to create and use enums in this chapter.

Overview

You use an enum to create a set of valid values for a field or a
method. For example, in a typical application, the only possible
values for the customer type are Individual or Organization.
For a State field, valid values may be all the states in the US plus
Canadian provinces, and probably some others. With an enum,
you can easily restrict your program to take only one of the valid
values.

The enum type can stand alone or can be part of a class. You
make it stand alone if it needs to be referenced from multiple
places in your application. If it is only used from inside a class,

an enum is better made part of the class.

As an example, consider the CustomerType enum definition
in Listing 12.1.

Listing 12.1: The CustomerType enum
package app12;

public enum CustomerType {

 INDIVIDUAL,

 ORGANIZATION

}

The CustomerType enum has two enumerated values:
INDIVIDUAL and ORGANIZATION. Enum values are case
sensitive and by convention are capitalized. Two enum values are
separated by a comma and values can be written on a single line
or multiple lines. The enum in Listing 12.1 is written in multiple
lines to improve readability.

Internally, enum constants are given ordinal values that are
integers starting with zero for the first constant. In case of the
CustomerType enum, INDIVIDUAL is given the ordinal
value 0 and ORGANIZATION the ordinal value 1. Enum
ordinal values are rarely used.

Using an enum is like using a class or an interface. For
example, the Customer class in Listing 12.2 uses the

CustomerType enum as a field type.

Listing 12.2: The Customer class that
uses CustomerType

package app12;

public class Customer {

 public String customerName;

 public CustomerType customerType;

 public String address;

}

You can use an enum constant just as you would a class’s static
member. For example, this code illustrates the use of
CustomerType.

Customer customer = new Customer();

customer.customerType =

CustomerType.INDIVIDUAL;

Notice how the customerType field of the Customer object is
assigned the enumerated value INDIVIDUAL of the
CustomerType enum? Because the customerType field is of
type CustomerType, it can only be assigned a value of the
CustomerType enum.

The use of an enum at first glance is no different than the use
of static finals. However, there are some basic differences
between an enum and a class incorporating static finals.

Static finals are not a perfect solution for something that
should accept only predefined values. For example, consider the
CustomerTypeStaticFinals class in Listing 12.3.

Listing 12.3: Using static finals
package app12;

public class CustomerTypeStaticFinals {

 public static final int INDIVIDUAL =

1;

 public static final int ORGANIZATION

= 2;

}

Suppose you have a class named OldFashionedCustomer
that resembles the Customer class in Listing 12.2, but uses an
int for its customerType field.

The following code creates an instance of
OldFashionedCustomer and assigns a value to its
customerType field:

OldFashionedCustomer ofCustomer = new

OldFashionedCustomer();

ofCustomer.customerType = 5;

Notice that there is nothing preventing you from assigning an
invalid integer to customerType? In guaranteeing that a
variable is assigned only a valid value, enums are better than
static finals.

Another difference is that an enumerated value is an object.
Therefore, it is compiled to a .class file and behaves like an
object. For example, you can use it as a Map key. The section,
“The Enum Class” discusses enums as objects in detail.

Enums in a Class

You can use enums as members of a class. You use this approach
if the enum is only used internally inside the class. For example,
the Shape class in Listing 12.4 defines a ShapeType enum.

Listing 12.4: Using an enum as a class
member

package app12;

public class Shape {

 private enum ShapeType {

 RECTANGLE, TRIANGLE, OVAL

 };

 private ShapeType type =

ShapeType.RECTANGLE;

 public String toString() {

 if (this.type ==

ShapeType.RECTANGLE) {

 return "Shape is rectangle";

 }

 if (this.type ==

ShapeType.TRIANGLE) {

 return "Shape is triangle";

 }

 return "Shape is oval";

 }

}

The java.lang.Enum Class

When you define an enum, the compiler creates a class definition
that extends the java.lang.Enum class. This class is a direct
descendant of java.lang.Object. Unlike ordinary classes,
however, an enum has the following properties:

There is no public constructor, making it impossible to
instantiate.

It is implicitly static

There is only one instance for each enum constant.

You can call the method values on an enum in order to
iterate its enumerated values. This method returns an array
of objects. If you call getClass().getName() on these
objects, they will return the Java qualified name of the
enum. See the next section “Iterating Enumerated Values”
for more details on this.

You can call the name and ordinal method on an object
returned by values to get the name and ordinal value of the
instance, respectively.

Iterating Enumerated Values

You can iterate the values in an enum using the for loop
(discussed in Chapter 3, “Statements”). You first need to call the
values method that returns an array-like object that contains all
values in the specified enum. Using the CustomerType enum
in Listing 12.1, you can use the following code to iterate over it.

for (CustomerType customerType :

CustomerType.values()) {

 System.out.println(customerType);

}

This prints all values in CustomerType, starting from the first
value. Here is the result:

INDIVIDUAL

ORGANIZATION

Switching on Enum

The switch statement can also work on enumerated values of an
enum. Here is an example using the CustomerType enum in
Listing 12.1 and the Customer class in Listing 12.2:

Customer customer = new Customer();

customer.customerType =

CustomerType.INDIVIDUAL;

switch (customer.customerType) {

case INDIVIDUAL:

 System.out.println("Customer Type:

Individual");

 break;

case ORGANIZATION:

 System.out.println("Customer Type:

Organization");

 break;

}

Note that you must not prefix each case with the enum type. The
following would raise a compile error:

case CustomerType.INDIVIDUAL:

 //

case CustomerType.ORGANIZATION:

 //

Enum Members

Since an enum is technically a class, an enum can have
constructors and methods. If it has constructors, their access
levels must be either private or default. If an enum definition
contains something other than constants, the constants must be
defined before anything else and the last constant be terminated
with a semicolon.

As an example, the Weekend enum in Listing 12.3 contains a
private constructor, a toString method and a static main
method for testing.

Listing 12.3: The Weekend enum
package app12;

public enum Weekend {

 SATURDAY,

 SUNDAY;

 private Weekend() {

 }

 @Override

 public String toString() {

 return "Fun day " +

(this.ordinal() + 1);

 }

 public static void main(String[]

args) {

 // print class name

 System.out.println(

Weekend.SATURDAY.getClass().getName());

 for (Weekend w :

Weekend.values()) {

 System.out.println(w.name() +

": " + w);

 }

 }

}

If you run this enum, it will print the following on the console.

app12.Weekend

SATURDAY: Fun day 1

SUNDAY: Fun day 2

You can pass values to a constructor, in which case the constants
must be accompanied by arguments for the constructor. As
another example, Listing 12.4 shows a FuelEfficiency enum
with a constructor that takes two ints, the minimum MPG (miles
per gallon) and the maximum MPG. These values are assigned to
private fields min and max. Each of the three constants,
EFFICIENT, ACCEPTABLE and GAS_GUZZLER, are
accompanied by two ints to be passed to the constructor. The
getMin and getMax methods return the minimum and
maximum MPGs.

Listing 12.4: The FuelEfficiency enum
package com.example;

public enum FuelEfficiency {

 EFFICIENT(33, 55),

 ACCEPTABLE(20, 32),

 GAS_GUZZLER(1, 19);

 private int min;

 private int max;

 FuelEfficiency(int min, int max) {

 this.min = min;

 this.max = max;

 }

 public int getMin() {

 return this.min;

 }

 public int getMax() {

 return this.max;

 }

}

See the Quiz for an example of how to use the enum.

Summary

Java supports enum, a special class that is a subclass of
java.lang.Enum. Enum is preferred over static finals because it
is more secure. You can switch on an enum and iterate its values

by using the values method in an enhanced for loop.

Quiz

1. How do you write an enum?
2. Why are enums safer than static final

fields?
3. Write an abstract Car class that has two

fields, name (of type String) and
fuelEfficiency (of type FuelEfficiency
given in Listing 12.4) and methods for
calculating the minimum and maximum
gas usage for a given distance (in miles).
Next, write three child classes,
EfficientCar, AcceptableCar and
GasGuzzler. The constructor of each of
this suclasses takes a name and sets the
fuelEfficiency field. Finally, write a class
to test it.

Chapter 13
Working with Dates and

Times

Support for dates and times has been available since Java
version 1.0, mainly through the java.util.Date class. However,
Date was poorly designed. For examples, months in Date start
at 1 but days start at 0. A lot of its methods were deprecated in
JDK 1.1 at the same time the java.util.Calendar was brought
in to take over some of the functionality in Date. The duo were
the main classes for dealing with dates and times, right up to
JDK 1.7, even though they had been considered inadequate and
not easy to work with, causing many to resort to third party
alternatives such as Joda Time (http://joda.org). The new Date
and Time API in JDK 1.8 resolves many of the issues in the old
API and is similar to the Joda Time API.

This chapter primarily covers the JDK 1.8 Date-Time API.
However, since Date and Calendar have been used for decades
in countless Java projects, they too will be discussed so that you
will be ready to tackle dates and times in pre-JDK 1.8 projects.

Overview

The new Date and Time API makes it extremely easy to work
with dates and times. The java.time package contains the core
classes in the API. In addition, there are four other packages
whose members are used less often: java.time.chrono,
java.time.format, java.time.temporal and
java.time.zone.

Within the java.time package, the Instant class represents a
point on the time-line and is often used to time an operation.
The LocalDate class models a date without the time component
and time zone, suitable, for example, to represent a birthday.

If you need a date as well as a time, then LocalDateTime is
for you. For instance, an order shipping date probably requires a
time in addition to a date to make the order easier to track. If you
need a time but do not care about the date, then you can use
LocalTime.

On top of that, if a time zone is important, the Date and Time
API provides the ZonedDateTime class. As the name implies,
this class models a date-time with a time zone. For instance, you
can use this class to calculate the flight time between two
airports located in different time zones.

Then there are two classes for measuring an amount of time,

Duration and Period. These two are similar except that
Duration is time-based and Period is date-based. Duration
provides a quantity of time to nanosecond precision. This class is
good, for example, to model a flight time as it is often given in
the number of hours and minutes. On the other hand, Period is
suitable when you are only concerned with the number of days,
months or years, such as when calculating your father’s age.

The java.time package also comes with two enums,
DayOfWeek and Month. DayOfWeek represents the day of
the week, from MONDAY to SUNDAY. The Month enum
represents the twelve months of the year, from JANUARY to
DECEMBER.

Working with dates and times frequently involves parsing and
formatting. The Date and Time API addresses these two issues
by providing parse and format methods in all its major classes.
In addition, the java.time.format contains a
DateTimeFormatter class for formatting dates and times.

The Instant Class

An Instant object represents a point on the time-line. The
reference point is the standard Java epoch, which is 1970-01-
01T00:00:00Z (January 1, 1970 00:00 GMT). The EPOCH field
of the Instant class returns an Instant representing the Java
epoch. Instants after the epoch have positive values and instants

prior to that have negative values.

The static method now of Instant returns an Instant object
that represents the current time:

Instant now = Instant.now();

The getEpochSecond method returns the number of seconds
that have elapsed since the epoch. The getNano method returns
the number of nanoseconds since the beginning of the last
second.

A popular use of the Instant class is to time an operation, as
demonstrated in Listing 13.1.

Listing 13.1: Using Instant to time an
operation

package app13;

import java.time.Duration;

import java.time.Instant;

public class InstantDemo1 {

 public static void main(String[]

args) {

 Instant start = Instant.now();

 // do something here

 Instant end = Instant.now();

System.out.println(Duration.between(start

, end).toMillis());

 }

}

As shown in Listing 13.1, the Duration class is used to return
the difference between two Instants. You will learn more about
Duration later in this chapter.

LocalDate

The LocalDate class models a date without a time component.
It also has no time zone. Table 13.1 shows some of the more
important methods in LocalDate.

Method

Description

now

A static method that returns
today’s date.

of

A static method that creates a
LocalDate from the
specified year, month and
date.

getDayOfMonth,
getMonthValue, getYear

Returns the day, month or
year part of this LocalDate
as an int.

getMonth

Returns the month of this
LocalDate as a Month
enum constant.

plusDays, minusDays

Adds or subtracts the given
number of days to or from
this LocalDate.

plusWeeks, minusWeeks

Adds or subtracts the given
number of weeks to or from
this LocalDate.

plusMonths, minusMonths

Adds or subtracts the given
number of months to or from
this LocalDate.

plusYears, minusYears

Adds or subtracts the given
number of years to or from
this LocalDate.

isLeapYear

Checks if the year specified by
this LocalDate is a leap year.

isAfter, isBefore

Checks if this LocalDate is
after or before the given date.

lengthOfMonth

Returns the number of days
in the month in this
LocalDate.

withDayOfMonth

Returns a copy of this
LocalDate with the day of
month set to the given value.

withMonth

Returns a copy of this
LocalDate with the month
set to the given value.

Returns a copy of this

withYear

LocalDate with the year set
to the given value.

Table 13.1: More important methods of
LocalDate

LocalDate offers various methods to create a date. For
example, to create a LocalDate that represents today’s date, use
the static method now.

LocalDate today = LocalDate.now();

To create a LocalDate that represents a specific year, month
and day, use its of method, which is also static. For instance, the
following snippet creates a LocalDate that represents
December 31, 2015.

LocalDate endOfYear = LocalDate.of(2015,

12, 31);

The method of has another override that accepts a constant of
the java.time.Month enum as the second argument. For
example, here is the code to construct the same date using the

second method override.

LocalDate endOfYear = LocalDate.of(2015,

Month.DECEMBER, 31);

There are also methods for obtaining the day, month or year of a
LocalDate, such as getDayOfMonth, getMonth,
getMonthValue and getYear. They all do not take any
argument and either return an int or a Month enum constant.
In addition, there is a get method that takes a TemporalField
and returns a part of this LocalDate. For example, passing
ChronoField.YEAR to get returns the year component of a
LocalDate.

int year =

localDate.get(ChronoField.YEAR));

ChronoField is an enum that implements the TemporalField
interface, therefore you can pass a ChronoField constant to
get. Both TemporalField and ChronoField are part of the
java.time.temporal package. However, not all constants in
ChronoField can be passed to get as not all of them are
supported. For example, passing
ChronoField.SECOND_OF_DAY to get throws an
exception. As such, instead of get, it is better to use getMonth,
getYear or a similar method to obtain a component of a

LocalDate.

In addition, there are methods for copying a LocalDate, such
as plusDays, plusYears, minusMonths, and so on. For
example, to get a LocalDate that represents tomorrow, you can
create a LocalDate that represents today and then calls its
plusDays method.

LocalDate tomorrow =

LocalDate.now().plusDays(1);

To get a LocalDate that represents yesterday, you can use the
minusDays method.

LocalDate yesterday =

LocalDate.now().minusDays(1);

In addition, there are plus and minus methods to get a copy of
a LocalDate in a more generic way. Both accept an int and a
TemporalUnit. The signatures of these methods are as follows.

public LocalDate plus(long amountToAdd,

 java.time.temporal.TemporalUnit

unit)

public LocalDate minus(long

amountToSubtract,

 java.time.temporal.TemporalUnit

unit)

As an example, to get a LocalDate that represents a past date
exactly two decades ago from today, you can use this code.

LocalDate pastDate =

LocalDate.now().minus(2,

ChronoUnit.DECADES);

ChronoUnit is an enum that implements TemporalUnit, so
you can pass a ChronoUnit constant to the plus or minus
method.

A LocalDate is immutable and therefore cannot be changed.
Any method that returns a LocalDate returns a new instance of
LocalDate.

Listing 13.2 shows an example of LocalDate.

Listing 13.2: LocalDate example
package app13;

import java.time.LocalDate;

import java.time.temporal.ChronoField;

import java.time.temporal.ChronoUnit;

public class LocalDateDemo1 {

 public static void main(String[]

args) {

 LocalDate today =

LocalDate.now();

 LocalDate tomorrow =

today.plusDays(1);

 LocalDate oneDecadeAgo =

today.minus(1,

 ChronoUnit.DECADES);

 System.out.println("Day of month:

"

 + today.getDayOfMonth());

 System.out.println("Today is " +

today);

 System.out.println("Tomorrow is "

+ tomorrow);

 System.out.println("A decade ago

was " + oneDecadeAgo);

 System.out.println("Year : "

 +

today.get(ChronoField.YEAR));

 System.out.println("Day of year:"

+ today.getDayOfYear());

 }

}

Period

The Period class models a date-based amount of time, such as
five days, a week or three years. Some of its more important
methods are presented in Table 13.2.

Method

Description

between

Creates a Period between
two LocalDates.

ofDays, ofWeeks, ofMonths,
ofYears

Creates a Period
representing the given
number of
days/weeks/months/years.

of

Creates a Period from the
given numbers of years,
months and days.

getDays, getMonths, getYears

Returns the number of
days/months/years of this
period as an int.

isNegative

Returns true if any of the
three components of this
Period is negative. Returns
false otherwise.

isZero

Returns true if all of the
three components of this
Period are zero. Otherwise,
returns false.

plusDays, minusDays

Adds or subtracts the given
number of days to or from
this Period.

plusMonths, minusMonths

Adds or subtracts the given
number of months to or from
this Period.

plusYears, minusYears

Adds or subtracts the given
number of years to or from
this Period.

withDays

Returns a copy of this Period
with the specified number of
days.

withMonths

Returns a copy of this Period
with the specified number of
months.

withYears

Returns a copy of this Period
with the specified number of
years.

Table 13.2 More important methods of
Period

Creating a Period is easy, thanks to the static factory methods
between, of, and ofDays/ofWeeks/ofMonths/ofYears. For
example, here is how you create a Period representing two
weeks.

Period twoWeeks = Period.ofWeeks(2);

To create a Period representing one year, two months and three
days, use the of method.

Period p = Period.of(1, 2, 3);

To obtain the year/month/day component of a Period, call its
getYears/getMonths/getDays method. For instance, the
howManyDays variable in the following code snippet will have
a value of 14.

Period twoWeeks = Period.ofWeeks(2);

int howManyDays = twoWeeks.getDays();

Finally, you can create a copy of a Period using the plusXXX
or minusXXX methods as well as one of the withXXX
methods. A Period is immutable so these methods return new
Period instances.

As an example, the code in Listing 13.3 shows an age
calculator that calculates a person’s age. It creates a Period
from two LocalDates and calls its getDays, getMonths, and
getYears methods.

Listing 13.3: Using Period
package app13;

import java.time.LocalDate;

import java.time.Period;

public class PeriodDemo1 {

 public static void main(String[]

args) {

 LocalDate dateA =

LocalDate.of(1978, 8, 26);

 LocalDate dateB =

LocalDate.of(1988, 9, 28);

 Period period =

Period.between(dateA, dateB);

 System.out.printf("Between %s and

%s"

 + " there are %d years,

%d months"

 + " and %d days%n",

dateA, dateB,

 period.getYears(),

 period.getMonths(),

 period.getDays());

 }

}

When run, the PeriodDemo1 class in Listing 13.3 will print this
string.

Between 1978-08-26 and 1988-09-28 there

are 10 years, 1 months and 2

days

LocalDateTime

The LocalDateTime class models a date-time without a time
zone. Table 13.3 shows some of the more important methods in
LocalDateTime. The methods are similar to those of
LocalDate plus some other methods for modifying the time
component, such as plusHours, plusMinutes and
plusSeconds, that are not available in LocalDate.

Method

Description

now

A static method that returns
the current date and time.

of

A static method that creates a
LocalDateTime from the
specified year, month, date,
hour, minute, second and

 millisecond.

getYear, getMonthValue,
getDayOfMonth, getHour,
getMinute, getSecond

Returns the year, month, day,
hour, minute or second part
of this LocalDateTime as
an int.

plusDays, minusDays

Adds or subtracts the given
number of days to or from the
current LocalDateTime.

plusWeeks, minusWeeks

Adds or subtracts the given
number of weeks to or from
the current LocalDateTime.

plusMonths, minusMonths

Adds or subtracts the given
number of months to or from

the current LocalDateTime.

plusYears, minusYears

Adds or subtracts the given
number of years to or from
the current LocalDateTime.

plusHours, minusHours

Adds or subtracts the given
number of hours to or from
the current LocalDateTime.

plusMinutes, minusMinutes

Adds or subtracts the given
number of minutes to or from
the current LocalDateTime.

plusSeconds, minusSeconds

Add or subtracts the given
number of seconds to or from
the current LocalDateTime.

IsAfter, isBefore

Checks if this
LocalDateTime is after or
before the given date-time.

withDayOfMonth

Returns a copy of this
LocalDateTime with the
day of month set to the given
value.

withMonth, withYear

Returns a copy of this
LocalDateTime with the
month or year set to the given
value.

withHour, withMinute,

Returns a copy of this
LocalDateTime with the

withSecond

hour/minute/second set to
the given value.

Table 13.3: More important methods of
LocalDateTime

LocalDateTime offers various static methods to create a date-
time. The method now comes with three overrides and return
the current date-time. The no-argument override is the easiest to
use:

LocalDateTime now = LocalDateTime.now();

To create a LocalDateTime with a specific date and time, use
the of method. This method has a number of overrides and
allows you to pass the individual component of a date-time or a
LocalDate and a LocalTime. Here are the signatures of some
of the of methods.

public static LocalDateTime of(int year,

int month, int dayOfMonth,

 int hour, int minute)

public static LocalDateTime of(int year,

int month, int dayOfMonth,

 int hour, int minute)

public static LocalDateTime of(int year,

Month month,

 int dayOfMonth, int hour, int

minute)

public static LocalDateTime of(int year,

Month month,

 int dayOfMonth, int hour, int

minute)

public static LocalDateTime of(LocalDate

date, LocalTime time)

For instance, the following snippet creates a LocalDateTime
that represents December 31, 2015 at eight o’clock in the
morning.

LocalDateTime endOfYear =

LocalDateTime.of(2015, 12, 31, 8, 0);

You can create a copy of a LocalDateTime using the plusXXX
or minusXXX method. For example, this code creates a
LocalDateTime that represents the same time tomorrow.

LocalDateTime now = LocalDateTime.now();

LocalDateTime sameTimeTomorrow =

now.plusHours(24);

Time Zones

The Internet Assigned Numbers Authority (IANA) maintains a
database of time zones that you can download from this web
page:

http://www.iana.org/time-zones

For easy viewing, however, you can just visit this Wikipedia
page:

http://en.wikipedia.org/wiki/List_of_tz_d

atabase_time_zones

The Java Date and Time API caters for time zones too. The
abstract class ZoneId (in the java.time package) represents a
zone identifier. It has a static method called
getAvailableZoneIds that returns all zone identifiers. Listing
13.4 shows how you can print a sorted list of all time zones using
this method.

Listing 13.4: Listing all zone identifiers

package app13;

import java.time.ZoneId;

import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

import java.util.Set;

public class TimeZoneDemo1 {

 public static void main(String[]

args) {

 Set<String> allZoneIds =

ZoneId.getAvailableZoneIds();

 List<String> zoneList = new

ArrayList<>(allZoneIds);

 Collections.sort(zoneList);

 for (String zoneId : zoneList) {

 System.out.println(zoneId);

 }

 // alternatively, you can use

this line of code to

 // print a sorted list of zone

ids

 //

ZoneId.getAvailableZoneIds().stream().sor

ted().

 //

forEach(System.out::println);

 }

}

getAvailableZoneIds returns a Set of Strings. You can sort
the Set using Collections.sort() or more elegantly by calling
its stream method. You could have written this code to sort the
zone identifiers.

ZoneId.getAvailableZoneIds().stream().sor

ted()

 .forEach(System.out::println);

Chapter 20, “Working with Streams” explains what streams are.

getAvailableZoneIds returns a Set of 586 zone identifiers.
Here are some of the zone identifiers from the code above.

Africa/Cairo

Africa/Johannesburg

America/Chicago

America/Los_Angeles

America/Mexico_City

America/New_York

America/Toronto

Antarctica/South_Pole

Asia/Hong_Kong

Asia/Shanghai

Asia/Tokyo

Australia/Melbourne

Australia/Sydney

Canada/Atlantic

Europe/Amsterdam

Europe/London

Europe/Paris

US/Central

US/Eastern

US/Pacific

ZonedDateTime

The ZonedDateTime class models a date-time with a time
zone. For example, the following is a zoned date-time:

2015-12-31T10:59:59+01:00 Europe/Paris

A ZonedDateTime is always immutable and the time
component is stored to nanosecond precision.

Table 13.4 shows the more important methods in
ZonedDateTIme.

Method

Description

now

A static method that returns
the current date and time of
the system’s default zone.

of

A static method that creates a
ZonedDateTime from the
specified date-time and zone
identifier.

getYear, getMonthValue,
getDayOfMonth, getHour,
getMinute, getSecond,
getNano

Returns the year, month, day,
hour, minute, second or
nanosecond part of this
ZoneDateTime as an int.

plusDays, minusDays

Adds or subtracts the given
number of days to or from the
current ZonedDateTime.

plusWeeks, minusWeeks

Adds or subtracts the given
number of weeks to or from
the current
ZonedDateTime.

plusMonths, minusMonths

Adds or subtracts the given
number of months to or from
the current
ZonedDateTime.

plusYears, minusYears

Adds or subtracts the given
number of years to or from
the current
ZonedDateTime.

plusHours, minusHours

Adds or subtracts the given
number of hours to or from
the current
ZonedDateTime.

plusMinutes, minusMinutes

Adds or subtracts the given
number of minutes to or from
the current
ZonedDateTime.

plusSeconds, minusSeconds

Add or subtracts the given
number of seconds to or from
the current
ZonedDateTime.

IsAfter, isBefore

Checks if this
ZonedDateTime is after or
before the given zoned date-

 time.

getZone

Returns the zone ID of this
ZonedDateTime.

withYear, withMonth,
withDayOfMonth

Returns a copy of this
ZonedDateTime with the
year/month/day of month set
to the given value.

withHour, withMinute,
withSecond

Returns a copy of this
ZonedDateTime with the
hour/minute/second set to
the given value.

withNano

Returns a copy of this
ZonedDateTime with the

nanosecond set to the given
value.

Table 13.4: More important methods of
ZonedDateTime

Like LocalDateTime, the ZonedDateTime class offers the
static methods now and of to construct a ZonedDateTime.
now creates a ZonedDateTime representing the date and time
of execution. The no-argument override of now creates a
ZonedDateTime with the computer’s default time zone.

ZonedDateTime now = ZonedDateTime.now();

Another override of now lets you pass a zone identifier:

ZonedDateTime parisTime =

ZonedDateTime.now(ZoneId.of("Europe/Paris

"));

The method of also comes with several overrides. In all cases,
you need to pass a zone identifier. The first override allows you

to pass each component of a zoned date-time, from the year to
the nanosecond.

public static ZonedDateTime of(int year,

int month, int dayOfMonth,

 int hour, int minute, int second,

int nanosecond,

 ZoneId zone)

The second override of of takes a LocalDate, a LocalTime and
a ZoneId:

public static ZonedDateTime of(LocalDate

date, LocalTime time,

 ZoneId zone)

The last override of of takes a LocalDateTime and a ZoneId.

public static ZonedDateTime

of(LocalDateTime datetime, ZoneId zone)

Like LocalDate and LocalDateTime, ZonedDateTime
offers methods to create a copy of an instance using the
plusXXX, minusXXX and withXXX methods.

For instance, these lines of code creates a ZonedDateTime
with the default time zone and calls its minusDays method to
create the same ZonedDateTime three days earlier.

ZonedDateTime now = ZonedDateTime.now();

ZonedDateTime threeDaysEarlier =

now.minusDays(3);

Duration

The Duration class models a time-based duration. It is similar
to Period except that a Duration has a time component to
nanosecond precision and takes into account the time zones
between ZonedDateTimes. Table 13.5 shows the more
important methods in Duration.

Method

Description

Creates a Duration between
two temporal objects, such as

between

between two
LocalDateTimes or two
LocalZonedDateTimes.

ofYears, ofMonths, ofWeeks,
ofDays, ofHours, ofMinutes,
ofSeconds, ofNano

Creates a Duration
representing the given
number of
years/months/weeks/days/h
ours/minutes/seconds/nanos
econds.

of

Creates a Duration from the
given number of temporal
units.

toDays, toHours, toMinutes

Returns the number of
days/hours/minutes of this
Duration as an int.

isNegative

Returns true if this
Duration is negative.
Returns false otherwise.

isZero

Returns true if this
Duration is zero length.
Otherwise, returns false.

plusDays, minusDays

Adds or subtracts the given
number of days to or from
this Duration.

plusMonths, minusMonths

Adds or subtracts the given
number of months to or from
this Duration.

plusYears, minusYears

Adds or subtracts the given
number of years to or from
this Duration.

withSeconds

Returns a copy of this
Duration with the specified
number of seconds.

Table 13.5: More important methods in
Duration

You can create a Duration by calling its between or of static
method. The code in Listing 13.5 creates a Duration between
two LocalDateTimes, between January 26, 2015 11:10 and
January 26, 2015 12:40.

Listing 13.5: Creating a Duration
between two LocalDateTimes

package app13;

import java.time.Duration;

import java.time.LocalDateTime;

public class DurationDemo1 {

 public static void main(String[]

args) {

 LocalDateTime dateTimeA =

LocalDateTime

 .of(2015, 1, 26, 8, 10,

0, 0);

 LocalDateTime dateTimeB =

LocalDateTime

 .of(2015, 1, 26, 11, 40,

0, 0);

 Duration duration =

Duration.between(

 dateTimeA, dateTimeB);

 System.out.printf("There are %d

hours and %d minutes.%n",

 duration.toHours(),

 duration.toMinutes() %

60);

 }

}

The result of running the DurationDemo1 class is this.

There are 3 hours and 30 minutes.

The code in Listing 13.6 creates a Duration between two
ZoneDateTimes, with the same date-time but different
timezones.

Listing 13.6: Creating a Duration
between two ZonedDateTimes

package app13;

import java.time.Duration;

import java.time.LocalDateTime;

import java.time.Month;

import java.time.ZoneId;

import java.time.ZonedDateTime;

public class DurationDemo2 {

 public static void main(String[]

args) {

 ZonedDateTime zdt1 =

ZonedDateTime.of(

 LocalDateTime.of(2015,

Month.JANUARY, 1,

 8, 0),

ZoneId.of("America/Denver"));

 ZonedDateTime zdt2 =

ZonedDateTime.of(

 LocalDateTime.of(2015,

Month.JANUARY, 1,

 8, 0),

ZoneId.of("America/Toronto"));

 Duration duration =

Duration.between(zdt1, zdt2);

 System.out.printf("There are %d

hours and %d minutes.%n",

 duration.toHours(),

 duration.toMinutes() %

60);

 }

}

Running the DurationDemo2 class prints this on the console.

There are -2 hours and 0 minutes.

This is expected, because there are two hours difference between
the time zones America/Denver and America/Toronto.

As a more complex example, the code in Listing 13.7 shows a
bus travel time calculator. It has one method,
calculateTravelTime, which takes a departure
ZonedDateTime and an arrival ZonedDateTime. The code
calls the calculateTravelTime method twice. Both times the

bus departs from Denver, Colorado at 8 in the morning Denver
time and arrives in Toronto at 8 in the next morning Toronto
time. The first time the bus leaves on March 8, 2014 and the
second time it leaves on March 18, 2014.

What are the travel time in both occasions?

Listing 13.7: Travel time calculator
package app13;

import java.time.Duration;

import java.time.LocalDateTime;

import java.time.Month;

import java.time.ZoneId;

import java.time.ZonedDateTime;

public class TravelTimeCalculator {

 public Duration calculateTravelTime(

 ZonedDateTime departure,

ZonedDateTime arrival) {

 return

Duration.between(departure, arrival);

 }

 public static void main(String[]

args) {

 TravelTimeCalculator calculator =

 new

TravelTimeCalculator();

 ZonedDateTime departure1 =

ZonedDateTime.of(

 LocalDateTime.of(2014,

Month.MARCH, 8,

 8, 0),

ZoneId.of("America/Denver"));

 ZonedDateTime arrival1 =

ZonedDateTime.of(

 LocalDateTime.of(2014,

Month.MARCH, 9,

 8, 0),

ZoneId.of("America/Toronto"));

 Duration travelTime1 = calculator

.calculateTravelTime(departure1,

arrival1);

 System.out.println("Travel time

1: "

 + travelTime1.toHours() +

" hours");

 ZonedDateTime departure2 =

ZonedDateTime.of(

 LocalDateTime.of(2014,

Month.MARCH, 18,

 8, 0),

ZoneId.of("America/Denver"));

 ZonedDateTime arrival2 =

ZonedDateTime.of(

 LocalDateTime.of(2014,

Month.MARCH, 19,

 8, 0),

ZoneId.of("America/Toronto"));

 Duration travelTime2 = calculator

.calculateTravelTime(departure2,

arrival2);

 System.out.println("Travel time

2: "

 + travelTime2.toHours() +

" hours");

 }

}

The result is this.

Travel time 1: 21 hours

Travel time 2: 22 hours

Why the difference? Because in 2014 daylight saving time began
on Sunday, March 9 at 2AM. As such, you ‘lost’ one hour
between March 8, 2014 and March 9, 2014.

Formatting A Date-Time

You use a java.time.format.DateTimeFormatter to format
a local or zoned date-time. The LocalDate, LocalDateTime,
LocalTime and ZoneDateTime classes offer a format
method that has the following signature.

public java.lang.String

format(java.time.format.DateTimeFormatter

 formatter)

It is clear that to format a date or time, you must first create an
instance of DateTimeFormatter.

The code in Listing 13.8 formats the current date using two
formatters.

Listing 13.8: Formatting dates
package app13;

import java.time.LocalDateTime;

import

java.time.format.DateTimeFormatter;

import java.time.format.FormatStyle;

public class DateTimeFormatterDemo1 {

 public static void main(String[]

args) {

 DateTimeFormatter formatter1 =

DateTimeFormatter

.ofLocalizedDateTime(FormatStyle.MEDIUM);

 LocalDateTime example =

LocalDateTime.of(

 2000, 3, 19, 10, 56, 59);

 System.out.println("Format 1: " +

example

 .format(formatter1));

 DateTimeFormatter formatter2 =

DateTimeFormatter

 .ofPattern("MMMM dd, yyyy

HH:mm:ss");

 System.out.println("Format 2: " +

example.format(formatter2));

 }

}

The results are as follows (the first result depends on your

locale).

Format 1: 19-Mar-2000 10:56:59 AM

Format 2: March 19, 2000 10:56:59

Parsing A Date-Time

There are two parse methods in many of the classes in the Java
Date and Time API. The first requires a formatter, the second
does not. The one that does not will parse the date-time based on
the default pattern. To use your own pattern, use a
DateTimeFormatter. The parse methods will throw a
DateTimeParseException if the string passed cannot be
parsed.

Listing 13.9 contains an age calculator to demonstrate date
parsing.

Listing 13.9: An age calculator
package app13;

import java.time.LocalDate;

import java.time.Period;

import

java.time.format.DateTimeFormatter;

import

java.time.format.DateTimeParseException;

import java.util.Scanner;

public class AgeCalculator {

 DateTimeFormatter formatter =

DateTimeFormatter.ofPattern("yyyy-M-d");

 public Period calculateAge(LocalDate

birthday) {

 LocalDate today =

LocalDate.now();

 return Period.between(birthday,

today);

 }

 public LocalDate getBirthday() {

 Scanner scanner = new

Scanner(System.in);

 LocalDate birthday;

 while (true) {

 System.out.println("Please

enter your birthday "

 + "in yyyy-MM-dd

format (e.g. 1980-9-28): ");

 String input =

scanner.nextLine();

 try {

 birthday =

LocalDate.parse(input, formatter);

 return birthday;

 }

catch(DateTimeParseException e) {

System.out.println("Error! Please try

again");

 }

 }

 }

 public static void main(String[]

args) {

 AgeCalculator ageCalculator = new

AgeCalculator();

 LocalDate birthday =

ageCalculator.getBirthday();

 Period age =

ageCalculator.calculateAge(birthday);

 System.out.printf("Today you are

%d years, %d months"

 + " and %d days old%n",

 age.getYears(),

age.getMonths(), age.getDays());

 }

}

The AgeCalculator class has two methods, getBirthday and
calculateAge. The getBirthday method employs a Scanner

to read user input and parses the input into a LocalDate using
the class level DateTimeFormatter. The getBirthday
method keeps begging for a date until the user types in a date in
the correct format, in which case the method returns. The
calculateAge method takes a birthday and creates a Period
between the birthday and today.

If you run this example, you will see this on your console.

Please enter your birthday in yyyy-MM-dd

format (e.g. 1980-9-28):

If you enter a date in the correct format, the program will print
the calculated age, such as the following.

Today you are 79 years, 0 months and 15

days old

Using the Old Date and Time
API

The old API centered around the Date and Calendar classes
and is discussed here only because they were used extensively in
pre-8 Java. Chances are you will still encounter them in many

existing projects.

The java.util.Date Class
The java.util.Date class is normally used to represent dates
and times. It has two constructors that you can safely use (the
other constructors are deprecated):

public Date()

public Date(long time)

The no-arg constructor creates a Date representing the current
date and time. The second constructor creates a Date that
represents the specified number of milliseconds since January 1,
1970, 00:00:00 GMT.

The Date class features several useful methods, two of them
are after and before.

public boolean after(Date when)

public boolean before(Date when)

The after method returns true if this date is a later time than
the when argument. Otherwise, it returns false. The before
method returns true if this date is before the specified date and
returns false otherwise.

Many of the methods in Date, such as getDate, getMonth,
getYear, are deprecated. You should not use these methods.
Instead, use similar methods in the java.util.Calendar class.

The java.util.Calendar Class
The java.util.Date class has methods that allow you to
construct a Date object from date components, such as the day,
month, and year. However, these methods are deprecated. You
should use java.util.Calendar instead.

To obtain a Calendar object, use one of the two static
getInstance methods. Here are their signatures:

public static Calendar getInstance()

public static Calendar getInstance(Locale

locale)

The first overload returns an instance that employs the
computer’s locale.

There’s a lot you can do with a Calendar. For example, you
can call its getTime method to obtain a Date object. Here is its
signature:

public final Date getTime();

The resulting Date object, needless to say, contains components
you initially passed to construct the Calendar object. In other
words, if you construct a Calendar object that represents May
7, 2000 00:00:00, the Date object obtained from its getTime
method will also represent May 7, 2000 00:00:00.

To obtain a date part, such as the hour, the month, or the year,
use the get method. A first glance at its signature does not reveal
much on how to use this method.

public int get(int field)

To use it, pass a valid field to the get method. A valid field is one
of the following values: Calendar.YEAR, Calendar.MONTH,
Calendar.DATE, Calendar.HOUR, Calendar.MINUTE,
Calendar.SECOND, and Calendar.MILLISECOND.

get(Calendar.YEAR) returns an int representing the year.
If it is year 2010, you get 2010. get(Calendar.MONTH)
returns a zero-based index of the month, with 0 representing
January and 11 representing December. The others
(get(Calendar.DATE), get(Calendar.HOUR), and so on)
return a number representing the date/time unit.

The last thing worth mentioning: if you already have a Date
object and want to make use of the methods in Calendar, you
can construct a Calendar object by using the setTime method:

public void setTime(Date date)

Here is an example:

// myDate is a Date

Calendar calendar =

Calendar.getInstance();

calendar.setTime(myDate);

To change a date/time component, call its set method:

public void set(int field, int value)

For example, to change the month component of a Calendar
object to December, write this.

calendar.set(Calendar.MONTH,

Calendar.DECEMBER)

There are also set method overloads for changing multiple
components at the same time:

public void set(int year, int month, int

date)

public void set(int year, int month, int

date,

 int hour, int minute, int second)

Parsing and Formatting with
DateFormat
In the old API, Java’s answer to date parsing and formatting is
the java.text.DateFormat and
java.text.SimpleDateFormat classes. DateFormat is an
abstract class with static getInstance methods that allows you
to obtain an instance of a subclass. SimpleDateFormat is a
concrete implementation of DateFormat that is easier to use
than its parent.

DateFormat
DateFormat supports styles and patterns. There are four styles
for formatting a Date. Each style is represented by an int value.
The four int fields that represent the styles are:

DateFormat.SHORT. For example, 12/2/15

DateFormat.MEDIUM. For example, Dec 2, 2015

DateFormat.LONG. For example, December 2, 2015

DateFormat.FULL. For example, Friday, December 2,
2015

When you create a DateFormat, you need to decide which style
you will be using for parsing or formatting. You cannot change a
DateFormat’s style once you create it, but you can definitely
have multiple instances of DateFormat that support different
styles.

To obtain a DateFormat instance, call this static method.

public static DateFormat

getDateInstance(int style)

where style is one of DateFormat.SHORT,
DateFormat.MEDIUM, DateFormat.Long, or
DateFormat.FULL. For example, the following code creates a
DateFormat instance having the MEDIUM style.

DateFormat df =

DateFormat.getDateInstance(DateFormat.MED

IUM)

To format a Date object, call its format method:

public final java.lang.String

format(java.util.Date date)

To parse a string representation of a date, use the parse
method. Here is the signature of parse.

public java.util.Date

parse(java.lang.String date)

 throws ParseException

Note that you must compose your string according to the style of
the DateFormat.

Listing 13.10 shows a class that parses and formats a date.

Listing 13.10: The DateFormatDemo1
class

package app13.oldapi;

import java.text.DateFormat;

import java.text.ParseException;

import java.util.Date;

public class DateFormatDemo1 {

 public static void main(String[]

args) {

 DateFormat shortDf =

DateFormat.getDateInstance(DateFormat.SHO

RT);

 DateFormat mediumDf =

DateFormat.getDateInstance(DateFormat.MED

IUM);

 DateFormat longDf =

DateFormat.getDateInstance(DateFormat.LON

G);

 DateFormat fullDf =

DateFormat.getDateInstance(DateFormat.FUL

L);

System.out.println(shortDf.format(new

Date()));

System.out.println(mediumDf.format(new

Date()));

System.out.println(longDf.format(new

Date()));

System.out.println(fullDf.format(new

Date()));

 // parsing

 try {

 Date date =

shortDf.parse("12/12/2016");

 } catch (ParseException e) {

 }

 }

}

Another point to note when working with DateFormat (and
SimpleDateFormat) is leniency. Leniency refers to whether or
not a strict rule will be applied at parsing. For example, if a
DateFormat is lenient, it will accept this String: Jan 32, 2016,
despite the fact that such a date does not exist. In fact, it will take
the liberty of converting it to Feb 1, 2016. If a DateFormat is
not lenient, it will not accept dates that do not exist. By default, a
DateFormat object is lenient. The isLenient method and
setLenient method allow you to check a DateFormat’s
leniency and change it.

public boolean isLenient()

public void setLenient(boolean value)

SimpleDateFormat
SimpleDateFormat is more powerful than DateFormat
because you can use your own date patterns. For example, you
can format and parse dates in dd/mm/yyyy, mm/dd/yyyy, yyyy-
mm-dd, and so on. All you need to do is pass a pattern to a
SimpleDateFormat constructor.

SimpleDateFormat is a better choice than DateFormat
especially for parsing. Here is one of the constructors in
SimpleDateFormat.

public SimpleDateFormat(java.lang.String

pattern)

 throws

java.lang.NullPointerException,

java.lang.IllegalArgumentException

The complete rules for a valid pattern can be read in the Javadoc
for the SimpleDateFormat class. The more commonly used
patterns can be used by a combination of y (representing a year
digit), M (representing a month digit) and d (representing a date
digit). Examples of patterns are dd/MM/yyyy, dd-MM-yyyy,
MM/dd/yyyy, yyyy-MM-dd.

Listing 13.11 shows a class that uses SimpleDateFormat for
parsing and formatting.

Listing 13.11: The
SimpleDateFormatDemo1 class

package app13.oldapi;

import java.text.ParseException;

import java.text.SimpleDateFormat;

import java.util.Date;

public class SimpleDateFormatDemo1 {

 public static void main(String[]

args) {

 String pattern = "MM/dd/yyyy";

 SimpleDateFormat format = new

SimpleDateFormat(pattern);

 try {

 Date date =

format.parse("12/31/2016");

 } catch (ParseException e) {

 e.printStackTrace();

 }

 // formatting

System.out.println(format.format(new

Date()));

 }

}

Summary

Java 8 brings with it a new Date-Time API to replace the old API
that centered around the java.util.Date class. In this chapter
you have learned to use the core classes in the new API, such as

Instant, LocalDate, LocalDateTime, ZonedDateTime,
Period and Duration, as well as learned to format and parse a
date-time.

Quiz

1. What were the two core classes in the old
Date-Time API?

2. Why is the old Date-Time API being
phased out?

3. What are the new packages for the new
Date-Time API?

4. What are the main classes in the core
package?

5. What are the two static methods for
creating a LocalDate, LocalDateTime
and ZonedDateTime?

6. What is the difference between Period
and Duration?

7. What is the easiest way to time an
operation?

8. How do you get a Set of all timezone
identifiers?

9. What is the date-time formatter class in
the new Date and Time API?

Chapter 14
The Collections Framework

When writing an object-oriented program, you often work with
groups of objects. In Chapter 6, “Arrays” you learned that arrays
can be used to group objects of the same type. Unfortunately,
arrays lack the flexibility you need to rapidly develop
applications. For example, arrays cannot be resized. Luckily,
Java comes with a set of interfaces and classes that make
working with groups of objects easier: the Collections
Framework. This chapter deals with the most important types in
the Collections Framework. Most of them are very easy to use
and there’s no need to provide extensive examples. More
attention is paid to the last section of the chapter, “Making Your
Objects Comparable and Sortable” where carefully designed
examples are given because it is important for every Java
programmer to know how to make objects comparable and
sortable.

Note on Generics
Discussing the Collections Framework will be incomplete without
generics. On the other hand, it is hard to explain generics without
previous knowledge of the Collections Framework. Therefore, there needs

to be a compromise: The Collections Framework will be explained first in
this chapter and revisited in Chapter 15, “Generics.” Since up to this point
no knowledge of generics is assumed, the discussion of the Collections
Framework in this chapter will have to use class and method signatures
as they appear in pre-5 JDK’s, instead of signatures used in Java 5 or
later that imply the presence of generics. As long as you read both this
chapter and Chapter 15, you will have up-to date knowledge of both the
Collections Framework and generics.

An Overview of the
Collections Framework

A collection is an object that groups other objects. Also referred
to as a container, a collection provides methods to store, retrieve,
and manipulate its elements. Collections help Java programmers
manage objects easily.

A Java programmer should be familiar with the most
important types in the Collections Framework, all of which are
part of the java.util package. The relationships between these
types are shown in Figure 14.1.

Figure 14.1: The Collections Framework

The main type in the Collections Framework is, unsurprisingly,
the Collection interface. List, Set, and Queue are three main
subinterfaces of Collection. In addition, there is a Map
interface that can be used for storing key/value pairs. A
subinterface of Map, SortedMap, guarantees that the keys are
in ascending order. Other implementations of Map are
AbstractMap and its concrete implementation HashMap.
Other interfaces include Iterator and Comparator. The latter
is used to make objects sortable and comparable.

Most of the interfaces in the Collections Frameworks come
with implementation classes. Sometimes there are two versions
of an implementation, the synchronized version and the
unsynchronized version. For instance, the java.util.Vector

class and the ArrayList class are implementations of the List
interface. Both Vector and ArrayList provide similar
functionality, however Vector is synchronized and ArrayList
unsynchronized. Synchronized versions of an implementation
were included in the first version of the JDK. Only later did Sun
add the unsynchronized versions so that programmers could
write better performing applications. The unsynchronized
versions should thus be in preference to the synchronized ones.
If you need to use an unsynchronized implementation in a multi-
threaded environment, you can still synchronize it yourself.

Note
Working in a multi-threaded environment is discussed in Chapter 22,
“Java Threads.”

The Collection Interface

The Collection interface groups objects together. Unlike arrays
that cannot be resized and can only group objects of the same
type, collections allow you to add any type of object and do not
force you to specify an initial size.

Collection comes with methods that are easy to use. To add
an element, you use the add method. To add members of
another Collection, use addAll. To remove all elements, use
clear. To inquire about the number of elements in a

Collection, call its size method. To test if a Collection
contains an element, use isEmpty. And, to move its elements to
an array, use toArray.

An important point to note is that Collection extends the
Iterable interface, from which Collection inherits the
iterator method. This method returns an Iterator object that
you can use to iterate over the collection’s elements. Check the
section, “Iterable and Iterator” later in this chapter.

In addition, you’ll learn how to use the for statement to iterate
over a Collection’s elements.

List and ArrayList

List is the most popular subinterface of Collection, and
ArrayList is the most commonly used implementation of List.
Also known as a sequence, a List is an ordered collection. You
can access its elements by using indices and you can insert an
element into an exact location. Index 0 of a List references the
first element, index 1 the second element, and so on.

The add method inherited from Collection appends the
specified element to the end of the list. Here is its signature.

public boolean add(java.lang.Object

element)

This method returns true if the addition is successful.
Otherwise, it returns false. Some implementations of List, such
as ArrayList, allow you to add null, some don’t.

List adds another add method with the following signature:

public void add(int index,

java.lang.Object element)

With this add method you can insert an element at any position.

In addition, you can replace and remove an element by using
the set and remove methods, respectively.

public java.lang.Object set(int index,

java.lang.Object element)

public java.lang.Object remove(int index)

The set method replaces the element at the position specified by
index with element and returns the reference to the element
inserted. The remove method removes the element at the
specified position and returns a reference to the removed
element.

To create a List, you normally assign an ArrayList object to a

List reference variable.

List myList = new ArrayList();

The no-argument constructor of ArrayList creates an
ArrayList object with an initial capacity of ten elements. The
size will grow automatically as you add more elements than its
capacity. If you know that the number of elements in your
ArrayList will be more than its capacity, you can use the second
constructor:

public ArrayList(int initialCapacity)

This will result in a slightly faster ArrayList because the
instance does not have to grow in capacity.

List allows you to store duplicate elements in the sense that
two or more references referencing the same object can be
stored. Listing 14.1 demonstrates the use of List and some of its
methods.

Listing 14.1: Using List
package app14;

import java.util.ArrayList;

import java.util.List;

public class ListDemo1 {

 public static void main(String[]

args) {

 List myList = new ArrayList();

 String s1 = "Hello";

 String s2 = "Hello";

 myList.add(100);

 myList.add(s1);

 myList.add(s2);

 myList.add(s1);

 myList.add(1);

 myList.add(2, "World");

 myList.set(3, "Yes");

 myList.add(null);

 System.out.println("Size: " +

myList.size());

 for (Object object : myList) {

 System.out.println(object);

 }

 }

}

When run, here is the result on the console.

Size: 7

100

Hello

World

Yes

Hello

1

null

The java.util.Arrays class provides an asList method that lets
you add an array or any number of elements to a List in one go.
For example, the following snippet adds multiple Strings in a
single call.

List members = Arrays.asList("Chuck",

"Harry", "Larry", "Wang");

However, Arrays.asList returns a List with a fixed size,
meaning you cannot add members to it.

List also adds methods to search the collection, indexOf and
lastIndexOf:

public int indexOf(java.lang.Object obj)

public int lastIndexOf(java.lang.Object

obj)

indexOf compares the obj argument with its elements by using
the equals method starting from the first element, and returns
the index of the first match. lastIndexOf does the same thing
but comparison is done from the last element to the first. Both
indexOf and lastIndexOf return -1 if no match was found.

Note
List allows duplicate elements. By contrast, Set does not.

the java.util.Collections class is a helper or utility class that
provides static methods for manipulating Lists and other
Collections. For example, you can sort a List easily using its
sort method, as shown in Listing 14.2.

Listing 14.2: Sorting a List
package app14;

import java.util.Arrays;

import java.util.Collections;

import java.util.List;

public class ListDemo2 {

 public static void main(String[]

args) {

 List numbers = Arrays.asList(9,

4, -9, 100);

 Collections.sort(numbers);

 for (Object i : numbers) {

 System.out.println(i);

 }

 }

}

If you run the ListDemo2 class, you will see this on your
console.

-9

4

9

100

Iterating Over a Collection
with Iterator and for

Iterating over a Collection is one of the most common tasks
around when working with collections. There are two ways to do
this: by using Iterator and by using for.

Recall that Collection extends Iterable, which has one
method: iterator. This method returns a java.util.Iterator
that you can use to iterate over the Collection. The Iterator
interface has the following methods:

hasNext. Iterator employs an internal pointer that
initially points to a place before the first element. hasNext
returns true if there are more element(s) after the pointer.
Calling next moves this pointer to the next element. Calling
next for the first time on an Iterator causes its pointer to
point to the first element.

next. Moves the internal pointer to the next element and
returns the element. Invoking next after the last element is
returned throws a java.util.NoSuchElementException.
Therefore, it is safest to call hasNext before invoking next
to test if there is a next element.

remove. Removes the element pointed to by the internal
pointer.

A common way to iterate over a Collection using an Iterator is
either by employing while or for. Suppose myList is an
ArrayList that you want to iterate over. The following snippet
uses a while statement to iterate over a collection and print each
element in the collection.

Iterator iterator = myList.iterator();

while (iterator.hasNext()) {

 String element = (String)

iterator.next();

 System.out.println(element);

}

This is identical to:

for (Iterator iterator =

myList.iterator(); iterator.hasNext();)

{

 String element = (String)

iterator.next();

 System.out.println(element);

}

The for statement can iterate over a Collection without the
need to call the iterator method. The syntax is

for (Type identifier : expression) {

 statement(s)

}

Here expression must be an Iterable. Since Collection extends
Iterable, you can use enhanced for to iterate over any
Collection. For example, this code shows how to use for.

for (Object object : myList) {

 System.out.println(object);

}

Using for to iterate over a collection is a shortcut for using
Iterator. In fact, the code that uses for above is translated into
the following by the compiler.

for (Iterator iterator =

myList.iterator(); iterator.hasNext();)

{

 String element = (String)

iterator.next();

 System.out.println(element);

}

Set and HashSet

A Set represents a mathematical set. Unlike List, Set does not
allow duplicates. There must not be two elements of a Set, say e1
and e2, such that e1.equals(e2). The add method of Set
returns false if you try to add a duplicate element. For example,
this code prints “addition failed.”

Set set = new HashSet();

set.add("Hello");

if (set.add("Hello")) {

 System.out.println("addition

successful");

} else {

 System.out.println("addition

failed");

}

The first time you called add, the string “Hello” was added. The
second time around it failed because adding another “Hello”
would result in duplicates in the Set.

Some implementations of Set allow at most one null element.
Some do not allow nulls. For instance, HashSet, the most
popular implementation of Set, allows at most one null element.
When using HashSet, be warned that there is no guarantee the
order of elements will remain unchanged. HashSet should be
your first choice of Set because it is faster than other
implementations of Set, TreeSet and LinkedHashSet.

Queue and LinkedList

Queue extends Collection by adding methods that support the
ordering of elements in a first-in-first-out (FIFO) basis. FIFO
means that the element first added will be the first you get when
retrieving elements. This is in contrast to a List in which you can
choose which element to retrieve by passing an index to its get
method.

Queue adds the following methods.

offer. This method inserts an element just like the add
method. However, offer should be used if adding an
element may fail. This method returns false upon failing to
add an element and does not throw an exception. On the
other hand, a failed insertion with add throws an exception.

remove. Removes and returns the element at the head of
the Queue. If the Queue is empty, this method throws a
java.util.NoSuchElementException.

poll. This method is like the remove method. However, if
the Queue is empty it returns null and does not throw an
exception.

element. Returns but does not remove the head of the
Queue. If the Queue is empty, it throws a
java.util.NoSuchElementException.

peek. Also returns but does not remove the head of the
Queue. However, peek returns null if the Queue is empty,
instead of throwing an exception.

When you call the add or offer method on a Queue, the
element is always added at the tail of the Queue. To retrieve an
element, use the remove or poll method. remove and poll
always remove and return the element at the head of the Queue.

For example, the following code creates a LinkedList (an

implementation of Queue) to show the FIFO nature of Queue.

Queue queue = new LinkedList();

queue.add("one");

queue.add("two");

queue.add("three");

System.out.println(queue.remove());

System.out.println(queue.remove());

System.out.println(queue.remove());

The code produces this result:

one

two

three

This demonstrates that remove always removes the element at
the head of the Queue. In other words, you cannot remove
“three” (the third element added to the Queue) before removing
“one” and “two.”

Note
The java.util.Stack class is a Collection that behaves in a last-in-first-
out (LIFO) manner.

Collection Conversion

Collection implementations normally have a constructor that
accepts a Collection object. This enables you to convert a
Collection to a different type of Collection. Here are the
constructors of some implementations:

public ArrayList(Collection c)

public HashSet(Collection c)

public LinkedList(Collection c)

As an example, the following code converts a Queue to a List.

Queue queue = new LinkedList();

queue.add("Hello");

queue.add("World");

List list = new ArrayList(queue);

And this converts a List to a Set.

List myList = new ArrayList();

myList.add("Hello");

myList.add("World");

myList.add("World");

Set set = new HashSet(myList);

myList has three elements, two of which are duplicates. Since
Set does not allow duplicate elements, only one of the duplicates
will be accepted. The resulting Set in the above code only has
two elements.

Map and HashMap

A Map holds key to value mappings. There cannot be duplicate
keys in a Map and each key maps to at most one value.

To add a key/value pair to a Map, you use the put method. Its
signature is as follows:

public void put(java.lang.Object key,

java.lang.Object value)

Note that both the key and the value cannot be a primitive.
However, the following code that passes primitives to both the
key and the value is legal because boxing is performed before the
put method is invoked.

map.put(1, 3000);

Alternatively, you can use putAll and pass a Map.

public void putAll(Map map)

You can remove a mapping by passing the key to the remove
method.

public void remove(java.lang.Object key)

To remove all mappings, use clear. To find out the number of
mappings, use the size method. In addition, isEmpty returns
true if the size is zero.

To obtain a value, you can pass a key to the get method:

public java.lang.Object

get(java.lang.Object key)

In addition to the methods discussed so far, there are three no-
argument methods that provide a view to a Map.

keySet. Returns a Set containing all keys in the Map.

values. Returns a Collection containing all values in the

Map.

entrySet. Returns a Set containing Map.Entry objects,
each of which represents a key/value pair. The Map.Entry
interface provides the getKey method that returns the key
part and the getValue method that returns the value.

There are several implementations of Map in the java.util
package. The most commonly used are HashMap and
Hashtable. HashMap is unsynchronized and Hashtable is
synchronized. Therefore, HashMap is the faster one between
the two.

The following code demonstrates the use of Map and
HashMap.

Map map = new HashMap();

map.put("1", "one");

map.put("2", "two");

System.out.println(map.size()); //prints

2

System.out.println(map.get("1"));

//prints "one"

Set keys = map.keySet();

// print the keys

for (Object object : keys) {

 System.out.println(object);

}

Making Objects Comparable
and Sortable

In real life, when I say “My car is the same as your car” I mean
my car is of the same type as yours, as new as your car, has the
same color, etc.

In Java, you manipulate objects by using the variables that
reference them. Bear in mind that reference variables do not
contain objects but rather contain addresses to the objects in the
memory. Therefore, when you compare two reference variables a
and b, such as in this code

if (a == b)

you are actually asking if a and b are referencing the same
object, and not whether or not the objects referenced by a and b
are identical.

Consider this example.

Object a = new Object();

Object b = new Object();

The type of object that a references is identical to the type of
object that b references. However, a and b reference two
different instances and a and b contains different memory
addresses. Therefore, (a == b) returns false.

Comparing object references this way is hardly useful because
most of the time you are more concerned with the objects, not
the addresses of the objects. If what you want is compare objects,
you need to look for methods specifically provided by the class to
compare objects. For example, to compare two String objects,
you can call its equals method. Whether or not you can compare
two objects depends on whether or not the objects’ class
supports it. A class can support object comparison by
implementing the equals and hashCode methods it inherits
from java.lang.Object.

In addition, you can make objects comparable by
implementing the java.lang.Comparable and
java.util.Comparator interfaces. You’ll learn to use these
interfaces in the following sections.

Using java.lang.Comparable
The java.util.Arrays class provides the static method sort that
can sort an array of objects. Here is its signature.

public static void

sort(java.lang.Object[] a)

Because all Java classes derive from java.lang.Object, all Java
objects are a type of java.lang.Object. This means you can pass
an array of any objects to the sort method.

Similar to Arrays, the java.util.Collections class has a sort
method for sorting a List.

How do the sort methods know how to sort arbitrary objects?
It’s easy to sort numbers or strings, but how do you sort an array
of Elephant objects, for example?

First, examine the Elephant class in Listing 14.3.

Listing 14.3: The Elephant class
public class Elephant {

 public float weight;

 public int age;

 public float tuskLength; // in

centimeters

}

Since you are the author of the Elephant class, you get to decide
how you want Elephant objects to be sorted. Let’s say you want

to sort them by their weights and ages. Now, how do you tell
Arrays.sort or Collections.sort of your decision?

Both sort methods define a contract between themselves and
objects that need sorting. The contract takes the form of the
java.lang.Comparable interface. (See Listing 14.4)

Listing 14.4: The java.lang.Comparable
method

package java.lang;

public interface Comparable {

 public int compareTo(Object obj);

}

Any class that needs to support sorting by Arrays.sort or
Collections.sort must implement the Comparable interface.
In Listing 14.4, the argument obj in the compareTo method
refers to the object being compared with this object. The code
implementation for this method in the implementing class must
return a positive number if this object is greater than the
argument object, zero if both are equal, and a negative number if
this object is less than the argument object.

Listing 14.5 presents a modified Elephant class that
implements Comparable.

Listing 14.5: The Elephant class

implementing Comparable
package app14;

public class Elephant implements

Comparable {

 public float weight;

 public int age;

 public float tuskLength;

 public int compareTo(Object obj) {

 Elephant anotherElephant =

(Elephant) obj;

 if (this.weight >

anotherElephant.weight) {

 return 1;

 } else if (this.weight <

anotherElephant.weight) {

 return -1;

 } else {

 // both elephants have the

same weight, now

 // compare their age

 return (this.age -

anotherElephant.age);

 }

 }

}

Now that Elephant implements Comparable, you can use

Arrays.sort or Collections.sort to sort an array or List of
Elephant objects. The sort method will treat each Elephant
object as a Comparable object (because Elephant implements
Comparable, an Elephant object can be considered a type of
Comparable) and call the compareTo method on the object.
The sort method does this repeatedly until the Elephant
objects in the array have been organized correctly by their
weights and ages. Listing 14.6 provides a class that tests the sort
method on Elephant objects.

Listing 14.6: Sorting elephants
package app14;

import java.util.Arrays;

public class ElephantTest {

 public static void main(String[]

args) {

 Elephant elephant1 = new

Elephant();

 elephant1.weight = 100.12F;

 elephant1.age = 20;

 Elephant elephant2 = new

Elephant();

 elephant2.weight = 120.12F;

 elephant2.age = 20;

 Elephant elephant3 = new

Elephant();

 elephant3.weight = 100.12F;

 elephant3.age = 25;

 Elephant[] elephants = new

Elephant[3];

 elephants[0] = elephant1;

 elephants[1] = elephant2;

 elephants[2] = elephant3;

 System.out.println("Before

sorting");

 for (Elephant elephant :

elephants) {

System.out.println(elephant.weight + ":"

+

 elephant.age);

 }

 Arrays.sort(elephants);

 System.out.println("After

sorting");

 for (Elephant elephant :

elephants) {

System.out.println(elephant.weight + ":"

+

 elephant.age);

 }

 }

}

If you run the ElephantTest class, you’ll see this on your
console.

Before sorting

100.12:20

120.12:20

100.12:25

After sorting

100.12:20

100.12:25

120.12:20

Classes such as java.lang.String, java.util.Date, and
primitive wrapper classes all implement
java.lang.Comparable. This explains why they can be sorted.

Using A Comparator
Implementing java.lang.Comparable enables you to define
one way of comparing instances of your class. However, objects
sometimes need to be comparable in more ways. For example,
two Person objects may need to be compared by age or by
last/first name. In cases like this, you need to create a
Comparator that defines how two objects should be compared.

To make objects comparable in two ways, you need two
comparators. With a Comparator, you can compare objects
even if their class does not implement Comparable.

To create a comparator, you write a class that implements the
Comparator interface. You then provide the implementation
for its compare method. This method has the following
signature.

public int compare(java.lang.Object o1,

java.lang.Object o2)

compare returns zero if o1 and o2 are equal, a negative integer
if o1 is less than o2, and a positive integer if o1 is greater than o2.

As an example, the Person class in Listing 14.7 implements
Comparable. Listings 14.8 and 14.9 present two comparators
of Person objects (by last name and by first name), and Listing
14.10 offers the class that instantiates the Person class and the
two comparators.

Listing 14.7: The Person class
implementing Comparable.

package app14;

public class Person implements Comparable

{

 private String firstName;

 private String lastName;

 private int age;

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String

firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

 return lastName;

 }

 public void setLastName(String

lastName) {

 this.lastName = lastName;

 }

 public int getAge() {

 return age;

 }

 public void setAge(int age) {

 this.age = age;

 }

 public int compareTo(Object

anotherPerson)

 throws ClassCastException {

 if (!(anotherPerson instanceof

Person)) {

 throw new ClassCastException(

 "A Person object

expected.");

 }

 int anotherPersonAge = ((Person)

anotherPerson).getAge();

 return this.age -

anotherPersonAge;

 }

}

Listing 14.8: The LastNameComparator
class

package app14;

import java.util.Comparator;

public class LastNameComparator

implements Comparator {

 public int compare(Object person,

Object anotherPerson) {

 String lastName1 = ((Person)

person).getLastName().toUpperCase();

 String firstName1 =

 ((Person)

person).getFirstName().toUpperCase();

 String lastName2 = ((Person)

anotherPerson).getLastName().toUpperCase(

);

 String firstName2 = ((Person)

anotherPerson).getFirstName()

 .toUpperCase();

 if (lastName1.equals(lastName2))

{

 return

firstName1.compareTo(firstName2);

 } else {

 return

lastName1.compareTo(lastName2);

 }

 }

}

Listing 14.9: The
FirstNameComparator class

package app14;

import java.util.Comparator;

public class FirstNameComparator

implements Comparator {

 public int compare(Object person,

Object anotherPerson) {

 String lastName1 = ((Person)

person).getLastName().toUpperCase();

 String firstName1 = ((Person)

person).getFirstName().toUpperCase();

 String lastName2 = ((Person)

anotherPerson).getLastName().toUpperCase(

);

 String firstName2 = ((Person)

anotherPerson).getFirstName()

 .toUpperCase();

 if

(firstName1.equals(firstName2)) {

 return

lastName1.compareTo(lastName2);

 } else {

 return

firstName1.compareTo(firstName2);

 }

 }

}

Listing 14.10: The PersonTest class

package app14;

import java.util.Arrays;

public class PersonTest {

 public static void main(String[]

args) {

 Person[] persons = new Person[4];

 persons[0] = new Person();

 persons[0].setFirstName("Elvis");

persons[0].setLastName("Goodyear");

 persons[0].setAge(56);

 persons[1] = new Person();

persons[1].setFirstName("Stanley");

 persons[1].setLastName("Clark");

 persons[1].setAge(8);

 persons[2] = new Person();

 persons[2].setFirstName("Jane");

 persons[2].setLastName("Graff");

 persons[2].setAge(16);

 persons[3] = new Person();

 persons[3].setFirstName("Nancy");

persons[3].setLastName("Goodyear");

 persons[3].setAge(69);

 System.out.println("Natural

Order");

 for (int i = 0; i < 4; i++) {

 Person person = persons[i];

 String lastName =

person.getLastName();

 String firstName =

person.getFirstName();

 int age = person.getAge();

 System.out.println(lastName +

", " + firstName +

 ". Age:" + age);

 }

 Arrays.sort(persons, new

LastNameComparator());

 System.out.println();

 System.out.println("Sorted by

last name");

 for (int i = 0; i < 4; i++) {

 Person person = persons[i];

 String lastName =

person.getLastName();

 String firstName =

person.getFirstName();

 int age = person.getAge();

 System.out.println(lastName +

", " + firstName +

 ". Age:" + age);

 }

 Arrays.sort(persons, new

FirstNameComparator());

 System.out.println();

 System.out.println("Sorted by

first name");

 for (int i = 0; i < 4; i++) {

 Person person = persons[i];

 String lastName =

person.getLastName();

 String firstName =

person.getFirstName();

 int age = person.getAge();

 System.out.println(lastName +

", " + firstName +

 ". Age:" + age);

 }

 Arrays.sort(persons);

 System.out.println();

 System.out.println("Sorted by

age");

 for (int i = 0; i < 4; i++) {

 Person person = persons[i];

 String lastName =

person.getLastName();

 String firstName =

person.getFirstName();

 int age = person.getAge();

 System.out.println(lastName +

", " + firstName +

 ". Age:" + age);

 }

 }

}

If you run the PersonTest class, you will get the following
result.

Natural Order

Goodyear, Elvis. Age:56

Clark, Stanley. Age:8

Graff, Jane. Age:16

Goodyear, Nancy. Age:69

Sorted by last name

Clark, Stanley. Age:8

Goodyear, Elvis. Age:56

Goodyear, Nancy. Age:69

Graff, Jane. Age:16

Sorted by first name

Goodyear, Elvis. Age:56

Graff, Jane. Age:16

Goodyear, Nancy. Age:69

Clark, Stanley. Age:8

Sorted by age

Clark, Stanley. Age:8

Graff, Jane. Age:16

Goodyear, Elvis. Age:56

Goodyear, Nancy. Age:69

Summary

In this chapter you have learned to use the core types in the
Collections Framework. The main type is the
java.util.Collection interface, which has three direct
subinterfaces: List, Set, and Queue. Each subtype comes with
several implementations. There are synchronized
implementations and there are unsynchronized ones. The latter
are usually preferable because they are faster.

There is also a Map interface for storing key/value pairs. Two
main implementations of Map are HashMap and Hashtable.
HashMap is faster than Hashtable because the former is
unsynchronized and the latter is synchronized.

Finally, you have learned the java.lang.Comparable and
java.util.Comparator interfaces. Both are important because
they can make objects comparable and sortable.

Quiz

1. Name at least seven types in the
Collections Framework.

2. What is the different between ArrayList
and Vector?

3. Why is Comparator more powerful than
Comparable?

4. Write a method to convert an array of
Strings to a resizable List.

Chapter 15
Generics

With generics you can write a parameterized type and create
instances of the type by passing a reference type or reference
types. The objects will then be restricted to the type(s). For
example, the java.util.List interface is generic. If you create a
List by passing java.lang.String, you’ll get a List that will only
accept Strings; In addition to parameterized types, generics
support parameterized methods too.

The first benefit of generics is stricter type checking at compile
time. This is most apparent in the Collections Framework. In
addition, generics eliminate most type castings you had to
perform when working with the Collections Framework.

This chapter teaches you how to use and write generic types. It
starts with the section “Life without Generics” to remind us what
we missed in earlier versions of JDK’s. Then, it presents some
examples of generic types. After a discussion of the syntax, this
chapter concludes with a section that explains how to write
generic types.

Life without Generics

All Java classes derive from java.lang.Object, which means all
Java objects can be cast to Object. Because of this, in pre-5
JDK’s, many methods in the Collections Framework accept an
Object argument. This way, collections become general-purpose
utility types that can hold objects of any type. This imposes
unpleasant consequences.

For example, the add method in List in pre-5 JDK’s takes an
Object argument:

public boolean add(java.lang.Object

element)

As a result, you can pass an object of any type to add. The use of
Object is by design. Otherwise, it could only work with a specific
type of objects and there would then have to be different List
types, e.g. StringList, EmployeeList, AddressList, etc.

The use of Object in add is fine, but consider the get method,
which returns an element in a List instance. Here is its signature
prior to Java 5.

public java.lang.Object get(int index)

 throws IndexOutOfBoundsException

get returns an Object. Here is where the unpleasant
consequences start to kick in. Suppose you have stored two
String objects in a List:

List stringList1 = new ArrayList();

stringList1.add("Java 5 and later");

stringList1.add("with generics");

When retrieving a member from stringList1, you get an
instance of java.lang.Object. In order to work with the original
type of the member element, you must first downcast it to
String.

String s1 = (String) stringList1.get(0);

With generic types, you can forget about type casting when
retrieving objects from a List. And, there is more. Using the
generic List interface, you can create specialized Lists, such as
one that only takes Strings.

Generic Types

A generic type can accept parameters. This is why a generic type
is often called a parameterized type. Declaring a generic type is
like declaring a non-generic one, except that you use angle
brackets to enclose the list of type variables for the generic type.

MyType<typeVar1, typeVar2, ...>

For example, to declare a java.util.List, you would write

List<E> myList;

E is called a type variable, namely a variable that will be replaced
by a type. The value substituting for a type variable will then be
used as the argument type or the return type of a method in the
generic type. For the List interface, when an instance is created,
E will be used as the argument type of add and other methods. E
will also be used as the return type of get and other methods.
Here are the signatures of add and get.

public boolean add<E o>

public E get(int index)

Note
A generic type that uses a type variable E allows you to pass E when

declaring or instantiating the generic type. Additionally, if E is a class,
you may also pass a subclass of E; if E is an interface, you may also pass a
class that implements E.

If you pass String to a declaration of List, as in

List<String> myList;

the add method of the List instance referenced by myList will
expect a String as its argument and its get method will return a
String. Because get returns a specific type of object, no
downcasting is required.

Note
By convention, you use a single uppercase letter for type variable names.

To instantiate a generic type, you pass the same list of
parameters as when declaring it. For instance, to create an
ArrayList that works with String, you pass String in angle
brackets.

List<String> myList = new

ArrayList<String>();

The diamond language change in Java 7 allows explicit type
arguments to constructors of parameterized classes, most

notably collections, to be omitted in many situations. Therefore,
the statement above can be written more concisely in Java 7 or
later.

List<String> myList = new ArrayList<>();

In this case, the compiler will infer the arguments to the
ArrayList.

As another example, java.util.Map is defined as

public interface Map<K, V>

K is used to denote the type of the map’s keys and V the type of
the map’s values. The put and values methods have the
following signatures:

V put(K key, V value)

Collection<V> values()

Note
A generic type must not be a direct or indirect child class of
java.lang.Throwable because exceptions are thrown at runtime, and
therefore it is not possible to check what type of exception that might be
thrown at compile time.

As an example, Listing 15.1 compares List with and without
generics.

Listing 15.1: Working with generic List
package app15;

import java.util.List;

import java.util.ArrayList;

public class GenericListDemo1 {

 public static void main(String[]

args) {

 // without generics

 List stringList1 = new

ArrayList();

 stringList1.add("Java");

 stringList1.add("without

generics");

 // cast to java.lang.String

 String s1 = (String)

stringList1.get(0);

System.out.println(s1.toUpperCase());

 // with generics and diamond

 List<String> stringList2 = new

ArrayList<>();

 stringList2.add("Java");

 stringList2.add("with generics");

 // no type casting is necessary

 String s2 = stringList2.get(0);

System.out.println(s2.toUpperCase());

 }

}

In Listing 15.1, stringList2 is a generic List. The declaration
List<String> tells the compiler that this instance of List can
only store Strings. When retrieving member elements of the
List, no downcasting is necessary because its get method
returns the intended type, namely String.

Note
With generic types, type checking is done at compile time.

What’s interesting here is the fact that a generic type is itself a
type and can be used as a type variable. For example, if you want
your List to store lists of strings, you can declare the List by
passing List<String> as its type variable, as in

List<List<String>>

myListOfListsOfStrings;

To retrieve the first string from the first list in myList, you

would write:

String s =

myListOfListsOfStrings.get(0).get(0);

Listing 15.2 presents a class that uses a List that accepts a List
of Strings.

Listing 15.2: Working with List of Lists
package app15;

import java.util.ArrayList;

import java.util.List;

public class ListOfListsDemo1 {

 public static void main(String[]

args) {

 List<String> listOfStrings = new

ArrayList<>();

 listOfStrings.add("Hello again");

 List<List<String>> listOfLists =

 new ArrayList<>();

 listOfLists.add(listOfStrings);

 String s =

listOfLists.get(0).get(0);

 System.out.println(s); // prints

"Hello again"

 }

}

Additionally, a generic type can accept more than one type
variables. For example, the java.util.Map interface has two
type variables. The first defines the type of its keys and the
second the type of its values. Listing 15.3 presents an example
that uses a generic Map.

Listing 15.3: Using the generic Map
package app15;

import java.util.HashMap;

import java.util.Map;

public class MapDemo1 {

 public static void main(String[]

args) {

 Map<String, String> map = new

HashMap<>();

 map.put("key1", "value1");

 map.put("key2", "value2");

 String value1 = map.get("key1");

 }

}

In Listing 15.3, to retrieve a value indicated by key1, you do not
need to perform type casting.

Using Generic Types without
Type Parameters

Now that the collection types in Java have been made generic,
what about legacy codes? Fortunately, they will still work in Java
5 or later because you can use generic types without type
parameters. For example, you can still use List the old way, as
demonstrated in Listing 15.1.

List stringList1 = new ArrayList();

stringList1.add("Java");

stringList1.add("without generics");

String s1 = (String) stringList1.get(0);

A generic type used without parameters is called a raw type. This
means that code written for JDK 1.4 and earlier versions will
continue to work in Java 5 or later.

One thing to note, though, starting from Java 5 the Java
compiler expects you to use generic types with parameters.
Otherwise, the compiler will issue warnings, thinking that you
may have forgotten to define type variables with the generic type.
For example, compiling the code in Listing 15.1 gave you the
following warning because the first List was used as a raw type.

Note: app15/GenericListDemo1.java uses

unchecked or unsafe operations.

Note: Recompile with –Xlint:unchecked for

details.

You have these options at your disposal to get rid of the warnings
when working with raw types:

compile with the –source 1.4 flag.

use the @SuppressWarnings("unchecked") annotation
(See Chapter 17, “Annotations”)

upgrade your code to use List<Object>. Instances of
List<Object> can accept any type of object and behave like
a raw type List. However, the compiler will not complain.

Warning
Raw types are available for backward compatibility. New development
should shun them. It is possible that future versions of Java will not allow
raw types.

Using the ? Wildcard

I mentioned that if you declare a List<aType>, the List works

with instances of aType and you can store objects of one of these
types:

an instance of aType.

an instance of a subclass of aType, if aType is a class

an instance of a class implementing aType if aType is an
interface.

However, note that a generic type is a Java type by itself, just like
java.lang.String or java.io.File. Passing different lists of type
variables to a generic type results in different types. For example,
list1 and list2 below reference to different types of objects.

List<Object> list1 = new ArrayList<>();

List<String> list2 = new ArrayList<>();

list1 references a List of java.lang.Object instances and list2
references a List of String objects. Even though String is a
subclass of Object, List<String> has nothing to do with
List<Object>. Therefore, passing a List<String> to a method
that expects a List<Object> raises a compile time error. Listing
15.4 shows this.

Listing 15.4: The AllowedTypeDemo1
class

package app15;

import java.util.ArrayList;

import java.util.List;

public class AllowedTypeDemo1 {

 public static void doIt(List<Object>

l) {

 }

 public static void main(String[]

args) {

 List<String> myList = new

ArrayList<>();

 // this will generate a compile

error

 doIt(myList);

 }

}

Listing 15.4 will not compile because you are passing the wrong
type to the doIt method. doIt expects an instance of
List<Object> and you are passing an instance of
List<String>.

The solution to this problem is the ? wildcard. List<?> means
a list of objects of any type. Therefore, the doIt method should
be changed to:

public static void doIt(List<?> l) {

}

There are circumstances where you want to use the wildcard. For
example, if you have a printList method that prints the
members of a List, you may want to make it accept a List of any
type. Otherwise, you would end up writing many overloads of
printList. Listing 15.5 shows the printList method that uses
the ? wildcard.

Listing 15.5: Using the ? wildcard
package app15;

import java.util.ArrayList;

import java.util.List;

public class WildCardDemo1 {

 public static void printList(List<?>

list) {

 for (Object element : list) {

 System.out.println(element);

 }

 }

 public static void main(String[]

args) {

 List<String> list1 = new

ArrayList<>();

 list1.add("Hello");

 list1.add("World");

 printList(list1);

 List<Integer> list2 = new

ArrayList<>();

 list2.add(100);

 list2.add(200);

 printList(list2);

 }

}

The code in Listing 15.4 demonstrates that List<?> in the
printList method means a List of any type.

Note, however, it is illegal to use the wildcard when declaring
or creating a generic type, such as this.

List<?> myList = new ArrayList<?>(); //

this is illegal

If you want to create a List that can accept any type of object,
use Object as the type variable, as in the following line of code:

List<Object> myList = new ArrayList<>();

Using Bounded Wildcards in
Methods

In the section “Using the ? Wildcard” above, you learned that
passing different type variables to a generic type creates different
Java types. In many cases, you might want a method that accepts
a List of different types. For example, if you have a getAverage
method that returns the average of numbers in a list, you may
want the method to be able to work with a list of integers or a list
of floats or a list of another number type. However, if you write
List<Number> as the argument type to getAverage, you
won’t be able to pass a List<Integer> instance or a
List<Double> instance because List<Number> is a different
type from List<Integer> or List<Double>. You can use List
as a raw type or use a wildcard, but this is depriving you of type
safety checking at compile time because you could also pass a list
of anything, such as an instance of List<String>. You could use
List<Number>, but you must always pass a List<Number>
to the method. This would make your method less useful because
you work with List<Integer> or List<Long> probably more
often than with List<Number>.

There is another rule to circumvent this restriction, i.e. by
allowing you to define an upper bound of a type variable. This
way, you can pass a type or its subtype. In the case of the
getAverage method, you may be able to pass a

List<Number> or a List of instances of a Number subclass,
such as List<Integer> or List<Float>.

The syntax for using an upper bound is as follows:

GenericType<? extends upperBoundType>

For example, for the getAverage method, you would write:

List<? extends Number>

Listing 15.6 illustrates the use of such a bound.

Listing 15.6: Using a bounded wildcard
package app15;

import java.util.ArrayList;

import java.util.List;

public class BoundedWildcardDemo1 {

 public static double getAverage(

 List<? extends Number>

numberList) {

 double total = 0.0;

 for (Number number : numberList)

{

 total +=

number.doubleValue();

 }

 return total/numberList.size();

 }

 public static void main(String[]

args) {

 List<Integer> integerList = new

ArrayList<>();

 integerList.add(3);

 integerList.add(30);

 integerList.add(300);

System.out.println(getAverage(integerList

)); // 111.0

 List<Double> doubleList = new

ArrayList<>();

 doubleList.add(3.0);

 doubleList.add(33.0);

System.out.println(getAverage(doubleList)

); // 18.0

 }

}

Thanks to the upper bound, the getAverage method in Listing
15.6 will allow you to pass a List<Number> or a List of
instances of any subclass of java.lang.Number.

Lower Bounds
The extends keyword is used to define an upper bound of a type
variable. It is also possible to define a lower bound of a type variable by
using the super keyword. For example, using List<? super Integer>
as the type to a method argument indicates that you can pass a
List<Integer> or a List of objects whose class is a superclass of
java.lang.Integer.

Generic Methods

A generic method is a method that declares their own type
parameters. The type parameters of a generic method are
declared in angle brackets and appear before the method’s
return value. The scope of a generic method’s type parameters is
limited to the method. Static and non-static generic methods are
allowed, as well as generic constructors.

Generic methods can be declared within a generic type or a non-
generic type.

For example, the emptyList method of the
java.util.Collections class is a generic method. Look at the
method signature:

public static final <T> List<T>

emptyList()

emptyList has one type parameter, T, that appears after the
keyword final and before the return value (List<T>).

Unlike a generic type where you have to explicitly specify the
parameter types when instantiating the type, the parameter
type(s) for a generic method are inferred from the method
invocation and corresponding declaration. That is why you can
simply write the following without specifying a parameter type
for the generic method.

List<String> emptyList1 =

Collections.emptyList();

List<Integer> emptyList2 =

Collection.emptyList();

In both statements, the Java compiler infers the parameter type
for emptyList from the reference variables that receive the
return values.

NoteType inference is a language feature that enables the compiler to
determine the type parameter(s) for a generic method from the
corresponding declaration.

If you so wish, you can explicitly specify the type parameters of a
generic method, in which case you pass the type parameters
within angle brackets before the method name.

List<String> emptyList1 = Collections.

<String>emptyList();

List<Integer> emptyList2 = Collection.

<Integer>emptyList();

A type parameter of a generic method can have an upper or
lower bound as well as use a wildcard. For example, the
binarySearch method of Collections specifies both an upper
bound and a lower bound:

public static <T> int binarySearch(List<?

extends T> list, T key,

 Comparator<? super T> c)

Writing Generic Types

Writing a generic type is not much different from writing other
types, except for the fact that you declare a list of type variables
that you intend to use somewhere in your class. These type
variables come in angle brackets after the type name. For
example, the Point class in Listing 15.7 is a generic class. A
Point object represents a point in a coordinate system and has
an X component (abscissa) and a Y component (ordinate). By
making Point generic, you can specify the degree of accuracy of

a Point instance. For example, if a Point object needs to be very
accurate, you can pass Double as the type variable. Otherwise,
Integer would suffice.

Listing 15.7: The generic Point class
package app15;

public class Point<T> {

 T x;

 T y;

 public Point(T x, T y) {

 this.x = x;

 this.y = y;

 }

 public T getX() {

 return x;

 }

 public T getY() {

 return y;

 }

 public void setX(T x) {

 this.x = x;

 }

 public void setY(T y) {

 this.y = y;

 }

}

In Listing 15.7, T is the type variable for the Point class. T is
used as the return value of both getX and getY and as the
argument type for setX and setY. In addition, the constructor
also accepts two T type variables.

Using Point is just like using other generic types. For
example, the following code creates two Point objects, point1
and point2. The former passes Integer as the type variable, the
latter Double.

Point<Integer> point1 = new Point<>(4,

2);

point1.setX(7);

Point<Double> point2 = new Point<>(1.3,

2.6);

point2.setX(109.91);

Summary

Generics enable stricter type checking at compile time. Used
especially in the Collections Framework, generics make two
contributions. First, they add type checking to collection types at
compile time, so that the type of objects that a collection can
hold is restricted to the type passed to it. For example, you can
now create an instance of java.util.List that hold strings and

will not accept Integer or other types. Second, generics
eliminate the need for type casting when retrieving an element
from a collection.

Generic types can be used without type variables, i.e. as raw
types. This provision makes it possible to run pre-Java 5 codes
with JRE 5 or later. For new applications, you should not use
raw types as future releases of Java may not support them.

In this chapter you have also learned that passing different
type variables to a generic type results in different Java types.
This is to say that List<String> is a different type from
List<Object>. Even though String is a subclass of
java.lang.Object, passing a List<String> to a method that
expects a List<Object> generates a compile error. Methods
that expect a List of anything can use the ? wildcard. List<?>
means a List of objects of any type.

Finally, you have seen that writing generic types is not that
different from writing ordinary Java types. You just need to
declare a list of type variables in angle brackets after the type
name. You then use these type variables as the types of method
return values or as the types of method arguments. By
convention, a type variable name consists of a single uppercase
letter.

Quiz

1. What are the main benefits of generics?
2. What is a parameterized type?
3. What is type inference?

Chapter 16
Input/Output

Input/output (I/O) is one of the most common operations
performed by computer programs. Examples of I/O operations
include

creating and deleting files

reading from and writing to a file or network socket

serializing (or saving) objects to persistent storage and
retrieving the saved objects

Java support for I/O has been available since JDK 1.0 in the
form of the I/O API in the java.io package. JDK 1.4 added the
New I/O (NIO) APIs that offer performance improvement in
buffer management, scalable network and file I/O. Java NIO
APIs are part of the java.nio package and its subpackages. JDK
7 introduced yet a new set of packages called NIO.2 to
complement the existing technologies. There is no java.nio2
package. Instead, new types can be found in the java.nio.file
package and its subpackages. One of the features in NIO.2 is the

Path interface, which was designed to displace the java.io.File
class, now considered inferior. The old File class has often been
a source of frustration because many of its methods fail to throw
exceptions, its delete method often fails for inexplicable reasons
and its rename method doesn’t work consistently across
different operating systems.

Another addition in JDK 7 that has big impacts on the I/O and
NIO APIs is the java.lang.AutoCloseable interface. The
majority of java.io classes in JDK 7 and later implement this
interface to support try-with-resources.

This chapter presents topics based on functionality and select
the most important members of java.io and java.nio.file.
java.io.File is no longer discussed in favor of the new Path
interface. However, java.io.File was widely used prior to JDK 7
and therefore can still be found in applications written in older
versions of Java.

File systems and paths are the first topic in this chapter. Here
you learn what a path is and how the file system is represented in
Java.

The second section, “File and Directory Handling and
Manipulation,” discusses the powerful java.nio.file.Files class.
You can use Files to create and delete files and directories,
check the existence of a file, and read from and write to a file.

Note that support for reading from and writing to a file in

Files is only suitable for small files. For larger files and for
added functionality, you need a stream. Streams, which are
discussed in the section “Input/Output Streams,” act like water
pipes that facilitate data transmission. There are four types of
streams: InputStream, OutputStream, Reader and Writer.
For better performance, there are also classes that wrap these
streams and buffer the data being read or written.

Reading from and writing to a stream dictate that you do so
sequentially, which means to read a second unit of data, you
must read the first one first. For random access files—in other
words, to access any part of a file randomly—you need a different
Java type. The java.io.RandomAccessFile class used to be a
good choice for non-sequential operations, however a better way
now is to use java.nio.channels.SeekableByteChannel. The
latter is discussed in the section “Random Access Files.”

This chapter concludes with object serialization and
deserialization.

File Systems and Paths

A file system can contain three types of objects: file, directory
(a.k.a folder) and symbolic link. Not all operating systems
support symbolic links, and early operating systems featured a
flat-file system with no subdirectories. However most operating
systems today support at least files and directories and allow

directories to contain subdirectories. A directory on top of the
directory tree is called a root. Linux/UNIX variants have one
root: /. Windows can have multiple roots: C:\, D:\ and so on.

An object in a file system can be uniquely identified by a path.
For instance, you can refer to the image1.png file in your Mac’s
/home/user directory as /home/user/image1.png, which is
a path. A temp directory under your Windows’ C:\ drive is
C:\temp, which is also a path. Paths must be unique throughout
the file system. For example, you cannot create a
document.bak directory in /home/user if there is already a
file named document.bak in that directory.

A path can be absolute or relative. An absolute path has all the
information to point to an object in the file system. For instance,
/home/kyleen and /home/alexis are absolute paths. A
relative path does not have all the information needed. For
example, home/jayden is relative to the current directory. Only
if the current directory is known, can home/jayden be
resolved.

In Java a file or a directory was traditionally represented by a
java.io.File object. However, the File class has many
drawbacks and Java 7 brought with it a better replacement in its
NIO.2 package, the java.nio.file.Path interface.

The aptly named Path interface represents a path, which can
be a file, a directory, or a symbolic link. It can also represent a
root. Before I explain Path in detail, let me introduce you to

another member of the java.nio.file package, the FileSystem
class.

As the name implies, FileSystem models a file system. It is
an abstract class and its static method getDefault returns the
current file system:

FileSystem fileSystem =

FileSystems.getDefault();

FileSystems has other methods. The getSeparator method
returns the name separator as String. In Windows this will be
“\” and in UNIX/Linux it will be “/”. Here is its signature.

public abstract java.lang.String

getSeparator()

Another method of FileSystem, getRootDirectories, returns
an Iterable for iterating root directories.

public abstract java.lang.Iterable<Path>

getRootDirectories()

To create a Path, use FileSystem’s getPath method:

public abstract Path getPath(String

first, String... more)

Only the first argument in getPath is required, the more
argument is optional. If more is present, it will be appended to
first. For example, to create a path that refers to
/home/user/images, you would write either of these two
statements.

Path path =

FileSystems.getDefault().getPath("/home/u

ser/images");

Path path =

FileSystems.getDefault().getPath("/home",

"user",

 "images");

The java.nio.file.Paths class provides a shortcut for creating a
Path through its static get method:

Path path1 =

Paths.get("/home/user/images");

Path path2 = Paths.get("/home", "user",

"images");

Path path3 = Paths.get("C:\temp");

Path path4 = Paths.get("C:\", "temp");

Paths like /home/user/images or C:\temp can be broken
into its elements. /home/user/images has three names,
home, user, and images. C:\temp has only one name, temp,
because the root does not count. The getNameCount method
in Path returns the number of names in a path. Each individual
name can be retrieved using getName:

Path getName(int index)

The index parameter is zero-based. Its value must be between 0
and the number of elements minus 1. The first element closest to
the root has index 0. Consider this code snippet.

Path path =

Paths.get("/home/user/images");

System.out.println(path.getNameCount());

// prints 3

System.out.println(path.getName(0)); //

prints home

System.out.println(path.getName(1)); //

prints user

System.out.println(path.getName(2)); //

prints images

Other important methods of Path include getFileName,
getParent, and getRoot.

Path getFileName()

Path getParent()

Path getRoot()

getFileName returns the file name of the current Path.
Therefore, if path1 denotes /home/user1/Calculator.java,
path1.getFileName() will return a relative path referring to
the Calculator.java file. Calling path1.getParent() would
return /home/user1 and calling path1.getRoot() would
return /. Calling getParent on a root returns null.

A very important note: Creating a Path does not create a
physical file or directory. Often Path instances reference non-
existent physical objects. To create a file or directory, you need to
use the Files class, which is discussed in the next section.

File and Directory Handling
and Manipulation

java.nio.file.Files is a very powerful class that provides static
methods for handling files and directories as well as reading
from and writing to a file. With it you can create and delete a

path, copy files, check if a path exists, and so on. In addition,
Files comes with methods for creating stream objects that you’ll
find useful when working with input and output streams.

The following subsections elaborate what you can do with
Files.

Creating and Deleting Files and
Directories
To create a file you use the createFile method of Files. Here is
its signature.

public static Path createFile(Path file,

java.nio.file.attribute.FileAttribute<?

>... attrs)

The attrs argument is optional, so you can ignore it if you don’t
need to set the file attributes. For example:

Path newFile =

Paths.get("/home/jayden/newFile.txt");

Files.createFile(newFile);

createFile throws an IOException if the parent directory does
not exist. It throws a FileAlreadyExistsException if there
already exists a file, a directory, or a symbolic link by the name
specified by file.

To create a directory, use the createDirectory method.

public static Path createDirectory(Path

directory,

java.nio.file.attribute.FileAttribute<?

>... attrs)

Like createFile, createDirectory may throw an
IOException or a FileAlreadyExistsException.

To delete a file, a directory or a symbolic link, use the delete
method:

public static void delete(Path path)

If path is a directory, then the directory must be empty. If path is
a symbolic link, only the link is deleted and not the link target. If
path does not exist, a NoSuchFileException is thrown.

To avoid having to check if a path exists when deleting a path,

use deleteIfExists:

public static void deleteIfExists(Path

path)

If you’re deleting a directory with deleteIfExists, the directory
must be empty. If not, a DirectoryNotEmptyException will
be thrown.

Retrieving A Directory’s Objects
You can retrieve the files, subdirectories and symbolic links in a
directory with the newDirectoryStream method of the Files
class. This method returns a DirectoryStream to iterate over
all objects in a directory. Here is the signature of
newDirectoryStream.

public static DirectoryStream<Path>

newDirectoryStream(Path path)

The returned DirectoryStream must be closed after use.

For example, the following snippet prints all the subdirectories
and files in a directory.

Path parent = ...

try (DirectoryStream<Path> children =

 Files.newDirectoryStream(parent))

{

 for (Path child : children) {

 System.out.println(child);

 }

} catch (IOException e) {

 e.printStackTrace();

}

Copying and Moving Files
There are three copy methods for copying files and directories.
The easiest one to use is this one.

public static Path copy(Path source, Path

target,

 CopyOption... options) throws

java.io.IOException

CopyOption is an interface in java.nio.file. The
StandardCopyOption enum is one of its implementations and
offers three copy options:

ATOMIC_MOVE. Move the file as an atomic file system
operation.

COPY_ATTRIBUTES. Copy attributes to the new file.

REPLACE_EXISTING. Replace an existing file if it exists.

As an example, the following code creates a copy of the
C:\temp\line1.bmp file in the same directory and names it
backup.bmp.

Path source =

Paths.get("C:/temp/line1.bmp");

Path target =

Paths.get("C:/temp/backup.bmp")

try {

 Files.copy(source, target,

StandardCopyOption.REPLACE_EXISTING);

} catch (IOException e) {

 e.printStackTrace();

}

You use the move method to move a file.

public static Path move(Path source, Path

target,

 CopyOption... options) throws

java.io.IOException

For example, the following code moves C:\temp\backup.bmp
to C:\data.

Path source =

Paths.get("C:/temp/backup.bmp");

Path target =

Paths.get("C:/data/backup.bmp")

try {

 Files.move(source, target,

StandardCopyOption.REPLACE_EXISTING);

} catch (IOException e) {

 e.printStackTrace();

}

Reading from and Writing to A
File
The Files class provides methods for reading from and writing
to a small binary and text file. The readAllBytes and
readAllLines methods are for reading from a binary and text
file, respectively.

public static byte[] readAllBytes(Path

path)

 throws java.io.IOException

public static List<String>

readAllLines(Path path,

 java.nio.charset.Charset charset)

throws java.io.IOException

These write methods are for writing to a binary and text file,
respectively.

public static Path write(Path path,

byte[] bytes,

 OpenOption... options) throws

java.io.IOException

public static Path write(Path path,

java.lang.Iterable<? extends

 CharSequence> lines,

java.nio.charset.Charset charset,

 OpenOption... options) throws

java.io.IOException

Both write method overloads take an optional OpenOption
and the second overload also takes a Charset. The
OpenOption interface defines options for opening a file for
write access. The StandardOpenOption enum implements
OpenOption and provides these values.

APPEND. If the file is opened for write access, the data

written will be appended to the end of the file.

CREATE. Create a new file if it does not exist.

CREATE_NEW. Create a new file and throws an exception
if it already exists.

DELETE_ON_CLOSE. Delete the file on close.

DSYNC. Dictate that update to the file content be written
synchronously.

READ. Open for read access.

SPARSE. Sparse file.

SYNC. Dictate that update to the file content and metadata
be written synchronously.

TRUNCATE_EXISTING. Truncate the file’s length to 0 if
it is opened for write and it already exists.

WRITE. Open for write access.

java.nio.charset.Charset is an abstract class that represents a
character set. You need to specify the character set being used
when encoding characters to bytes and decoding bytes to
characters. See the discussion of ASCII and Unicode in Chapter
2, “Language Fundamentals,” if you’ve forgotten about it.

The easiest way to create a Charset is by calling the static
Charset.forName method, passing a character set name. For
instance, to create a US ASCII Charset, you would write

Charset usAscii = Charset.forName("US-

ASCII");

Now that you know a little bit about OpenOption and
Charset, have a look at the following code snippet, which writes
a few lines of text to C:\temp\speech.txt and read them back.

// write to and read from a text file

Path textFile =

Paths.get("C:/temp/speech.txt");

Charset charset = Charset.forName("US-

ASCII");

String line1 = "Easy read and write";

String line2 = "with

java.nio.file.Files";

List<String> lines = Arrays.asList(line1,

line2);

try {

 Files.write(textFile, lines,

charset);

} catch (IOException ex) {

 ex.printStackTrace();

}

// read back

List<String> linesRead = null;

try {

 linesRead =

Files.readAllLines(textFile, charset);

} catch (IOException ex) {

 ex.printStackTrace();

}

if (linesRead != null) {

 for (String line : linesRead) {

 System.out.println(line);

 }

}

Note that the read and write methods in Files are only good
for small files. For medium-sized and large files, use streams
instead.

Input/Output Streams

I/O streams can be likened to water pipes. Just like water pipes
connect city houses to a water reservoir, a Java I/O stream
connects Java code to a “data reservoir.” In Java terminology,
this “data reservoir” is called a sink and could be a file, a network
socket or memory. The good thing about streams is you employ a
uniform way to transport data from and to different sinks, hence
simplifying your code. You just need to construct the correct

stream.

Depending on the data direction, there are two types of
streams, input stream and output stream. You use an input
stream to read from a sink and an output stream to write to a
sink. Because data can be classified into binary data and
characters (human readable data), there are also two types of
input streams and two types of output streams. These streams
are represented by the following four abstract classes in the
java.io package.

Reader. A stream for reading characters from a sink.

Writer. A stream for writing characters to a sink.

InputStream. A stream for reading binary data from a
sink.

OutputStream. A stream for writing binary data to a sink.

The benefit of streams is they define methods for data reading
and writing that can be used regardless of the data source or
destination. To connect to a particular sink, you just need to
construct the correct implementation class. The
java.nio.file.Files class provides methods for constructing
streams that connect to a file.

A typical sequence of operations when working with a stream
is as follows:

1. Create a stream. The resulting object is
already open, there is no open method to
call.

2. Perform reading or writing operations.
3. Close the stream by calling its close

method. Since most stream classes now
implement java.lang.AutoCloseable,
you can create a stream in a try-with-
resources statement and get the streams
automatically closed for you.

The stream classes will be discussed in clear detail in the
following sections.

Reading Binary Data

You use an InputStream to read binary data from a sink.
InputStream is an abstract class with a number of concrete
subclasses, as shown in Figure 16.1.

Figure 16.1: The hierarchy of
InputStream

Prior to JDK 7 you used FileInputStream to read binary from
a file. With the advent of NIO.2, you can call
Files.newInputStream to obtain an InputStream with a file
sink. Here is the signature of newInputStream:

public static java.io.InputStream

newInputStream(Path path,

 OpenOption... options) throws

java.io.IOException

InputStream implements java.lang.AutoCloseable so you
can use it in a try-with-resources statement and don’t need to
explicitly close it. Here is some boilerplate code.

Path path = ...

try (InputStream inputStream =

Files.newInputStream(path,

StandardOpenOption.READ) {

 // manipulate inputStream

} catch (IOException e) {

 // do something with e

}

The InputStream returned by Files.newInputStream is not
buffered so you should wrap it with a BufferedInputStream
for better performance. As such, your boilerplate code would
look like this.

Path path = ...

try (InputStream inputStream =

Files.newInputStream(path,

 StandardOpenOption.READ;

 BufferedInputStream buffered =

 new

BufferedInputStream(inputStream)) {

 // manipulate buffered, not

inputStream

} catch (IOException e) {

 // do something with e

}

At the core of InputStream are three read method overloads.

public int read()

public int read(byte[] data)

public int read(byte[] data, int offset,

int length)

InputStream employs an internal pointer that points to the
starting position of the data to be read. Each of the read method
overloads returns the number of bytes read or -1 if no data was
read into the InputStream. It returns -1 when the internal
pointer has reached the end of file.

The no-argument read method is the easiest to use. It reads
the next single byte from this InputStream and returns an int,
which you can then cast to byte. Using this method to read a file,
you can employ a while block that keeps looping until the read
method returns -1:

int i = inputStream.read();

while (i != -1) {

 byte b = (byte) I;

 // do something with b

}

For speedier reading, you should use the second or third read
method overload, which requires you to pass a byte array. The
data will then be stored in this array. The size of the array is a
matter of compromise. If you assign a big number, the read
operation will be faster because more bytes are read each time.
However, this means allocating more memory space for the
array. In practice, the array size should start from 1000 and up.

What if there are fewer bytes available than the size of the
array? The read method overloads return the number of bytes
read, so you always know which elements of your array contain
valid data. For example, if you use an array of 1,000 bytes to
read an InputStream and there are 1,500 bytes to read, you
will need to invoke the read method twice. The first invocation
will give you 1,000 bytes, the second 500 bytes.

You can choose to read fewer bytes than the array size using
the three-argument read method overload:

public int read(byte[] data, int offset,

int length)

This method overload reads length bytes into the byte array. The
value of offset determines the position of the first byte read in
the array.

In addition to the read methods, there are also these
methods:

public int available() throws IOException

This method returns the number of bytes
that can be read (or skipped over) without
blocking.

public long skip(long n) throws

IOException

Skips over the specified number of bytes
from this InputStream. The actual
number of bytes skipped is returned and
this may be smaller than the prescribed
number.

public void mark(int readLimit)

Remembers the current position of the

internal pointer in this InputStream.
Calling reset afterwards would return the
pointer to the marked position. The
readLimit argument specifies the number of
bytes to be read before the mark position
gets invalidated.

public void reset()

Repositions the internal pointer in this
InputStream to the marked position.

public void close()

Closes this InputStream. Unless you
created an InputStream in a try-with-
resources statement, you should always call
this method when you are done with the
InputStream to release resources.

As an example, the code in Listing 16.1 shows an
InputStreamDemo1 class that contains a compareFiles

method for comparing two files. You need to adjust the values of
path1 and path2 and make sure the files exist before running
this class.

Listing 16.1: The compareFiles method
that uses InputStream

package app16;

import java.io.IOException;

import java.io.InputStream;

import java.nio.file.Files;

import java.nio.file.LinkOption;

import java.nio.file.NoSuchFileException;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.nio.file.StandardOpenOption;

public class InputStreamDemo1 {

 public boolean compareFiles(Path

path1, Path path2)

 throws NoSuchFileException {

 if (Files.notExists(path1)) {

 throw new

NoSuchFileException(path1.toString());

 }

 if (Files.notExists(path2)) {

 throw new

NoSuchFileException(path2.toString());

 }

 try {

 if (Files.size(path1) !=

Files.size(path2)) {

 return false;

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 try (InputStream inputStream1 =

Files.newInputStream(

 path1,

StandardOpenOption.READ);

 InputStream inputStream2 =

Files.newInputStream(

 path2,

StandardOpenOption.READ)) {

 int i1, i2;

 do {

 i1 = inputStream1.read();

 i2 = inputStream2.read();

 if (i1 != i2) {

 return false;

 }

 } while (i1 != -1);

 return true;

 } catch (IOException e) {

 return false;

 }

 }

 public static void main(String[]

args) {

 Path path1 =

Paths.get("C:\\temp\\line1.bmp");

 Path path2 =

Paths.get("C:\\temp\\line2.bmp");

 InputStreamDemo1 test = new

InputStreamDemo1();

 try {

 if (test.compareFiles(path1,

path2)) {

 System.out.println("Files

are identical");

 } else {

 System.out.println("Files

are not identical");

 }

 } catch (NoSuchFileException e) {

 e.printStackTrace();

 }

 // the compareFiles method is not

the same as

 // Files.isSameFile

 try {

System.out.println(Files.isSameFile(path1

, path2));

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

compareFiles returns true if the two files compared are
identical. The brain of the method is this block.

 int i1, i2;

 do {

 i1 = inputStream1.read();

 i2 = inputStream2.read();

 if (i1 != i2) {

 return false;

 }

 } while (i1 != -1);

 return true;

It reads the next byte from the first InputStream to i1 and the
second InputStream to i2 and compares i1 with i2. It will

continue reading until i1 and i2 are different or the end of file is
reached.

Writing Binary Data

The OutputStream abstract class represents a stream for
writing binary data to a sink. Its child classes are shown in
Figure 16.2.

Figure 16.2: OutputStream
implementation classes

In pre-7 JDKs you would use java.io.FileOutputStream to
write binary to a file. Thanks to NIO.2, you can now call
Files.newOutputStream to obtain an OutputStream with a
file sink. Here’s the signature of newOutputStream:

public static java.io.OutputStream

newOutputStream(Path path,

 OpenOption... options) throws

java.io.IOException

OutputStream implements java.lang.AutoCloseable so you
can use it in a try-with-resources statement and don’t need to
explicitly close it. Here is how you can create an OutputStream
with a file sink:

Path path = ...

try (OutputStream outputStream =

Files.newOutputStream(path,

StandardOpenOption.CREATE,

StandardOpenOption.APPEND) {

 // manipulate outputStream

} catch (IOException e) {

 // do something with e

}

The OutputStream returned from Files.newOutputStream
is not buffered so you should wrap it with a
BufferedOutputStream for better performance. Therefore,
your boilerplate code would look like this.

Path path = ...

try (OutputStream outputStream =

Files.newOututStream(path,

 StandardOpenOption.CREATE,

StandardOpenOption.APPEND;

 BufferedOutputStream buffered =

 new

BufferedOutputStream(outputStream)) {

 // manipulate buffered, not

outputStream

} catch (IOException e) {

 // do something with e

}

OutputStream defines three write method overloads, which
are mirrors of the read method overloads in InputStream:

public void write(int b)

public void write(byte[] data)

public void write(byte[] data, int

offset, int length)

The first overload writes the lowest 8 bits of integer b to this
OutputStream. The second writes the content of a byte array

to this OutputStream. The third overload writes length bytes
of the data starting at position offset.

In addition, there are also the no-argument close and flush
methods. close closes the OutputStream and flush forces any
buffered content to be written out to the sink. You don’t need to
call close if you created the OutputStream in a try-with-
resources statement.

As an example, Listing 16.2 shows how to copy a file using
OutputStream.

Listing 16.2: The OutputStreamDemo1
class

package app16;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.nio.file.StandardOpenOption;

public class OutputStreamDemo1 {

 public void copyFiles(Path

originPath, Path destinationPath)

 throws IOException {

 if (Files.notExists(originPath)

 ||

Files.exists(destinationPath)) {

 throw new IOException(

 "Origin file must

exist and " +

 "Destination file

must not exist");

 }

 byte[] readData = new byte[1024];

 try (InputStream inputStream =

Files.newInputStream(originPath,

StandardOpenOption.READ);

 OutputStream outputStream =

Files.newOutputStream(destinationPath,

StandardOpenOption.CREATE)) {

 int i =

inputStream.read(readData);

 while (i != -1) {

outputStream.write(readData, 0, i);

 i =

inputStream.read(readData);

 }

 } catch (IOException e) {

 throw e;

 }

 }

 public static void main(String[]

args) {

 OutputStreamDemo1 test = new

OutputStreamDemo1();

 Path origin =

Paths.get("C:\\temp\\line1.bmp");

 Path destination =

Paths.get("C:\\temp\\line3.bmp");

 try {

 test.copyFiles(origin,

destination);

 System.out.println("Copied

Successfully");

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

This part of the copyFile method does the work.

 byte[] readData = new byte[1024];

 try (InputStream inputStream =

Files.newInputStream(originPath,

StandardOpenOption.READ);

 OutputStream outputStream =

Files.newOutputStream(destinationPath,

StandardOpenOption.CREATE)) {

 int i =

inputStream.read(readData);

 while (i != -1) {

outputStream.write(readData, 0, i);

 i =

inputStream.read(readData);

 }

 } catch (IOException e) {

 throw e;

 }

The byte array readData is used to store the data read from the
InputStream. The number of bytes read is assigned to i. The
code then calls the write method on the OutputStream,
passing the byte array and i as the third argument.

outputStream.write(readData, 0, i);

Writing Text (Characters)

The abstract class Writer defines a stream used for writing
characters. Figure 16.3 shows the implementations of Writer.

Figure 16.3: Writer subclasses

OutputStreamWriter facilitates the translation of characters
into byte streams using a given character set. The character set
guarantees that any Unicode characters you write to this
OutputStreamWriter will be translated into the correct byte
representation. FileWriter is a subclass of
OutputStreamWriter that provides a convenient way to write
characters to a file. However, FileWriter is not without flaws.
When using FileWriter you are forced to output characters
using the computer’s encoding, which means characters outside
the current character set will not be translated correctly into

bytes. A better alternative to FileWriter is PrintWriter.

The following sections cover Writer and some of its
descendants.

Writer
This class is similar to OutputStream, except that Writer
deals with characters instead of bytes. Like OutputStream,
Writer has three write method overloads:

public void write(int b)

public void write(char[] text)

public void write(char[] text, int

offset, int length)

When working with text or characters, however, you ordinarily
use strings. As such, there are two other overloads of the write
method that accept a String object.

public void write(String text)

public void write(String text, int

offset, int length)

The last write method overload allows you to pass a String and
write part of the String to the Writer.

OutputStreamWriter
An OutputStreamWriter is a bridge from character streams
to byte streams: Characters written to an
OutputStreamWriter are encoded into bytes using a specified
character set. The latter is an important element of
OutputStreamWriter because it enables the correct
translations of Unicode characters into byte representation.

The OutputStreamWriter class offers four constructors:

public OutputStreamWriter(OutputStream

out)

public OutputStreamWriter(OutputStream

out,

 java.nio.charset.Charset cs)

public OutputStreamWriter(OutputStream

out,

 java.nio.charset.CharsetEncoder

enc)

public OutputStreamWriter(OutputStream

out, String encoding)

All the constructors accept an OutputStream, to which bytes
resulting from the translation of characters written to this
OutputStreamWriter will be written. Therefore, if you want
to write to a file, you simply need to create an OutputStream
with a file sink:

OutputStream os =

Files.newOutputStream(path, openOption);

OutputStreamWriter writer = new

OutputStreamWriter(os, charset);

Listing 16.3 shows an example of OutputStreamWriter.

Listing 16.3: Using
OutputStreamWriter

package app16;

import java.io.IOException;

import java.io.OutputStream;

import java.io.OutputStreamWriter;

import java.nio.charset.Charset;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.nio.file.StandardOpenOption;

public class OutputStreamWriterDemo1 {

 public static void main(String[]

args) {

 char[] chars = new char[2];

 chars[0] = '\u4F60'; //

representing ?

 chars[1] = '\u597D'; //

representing ?;

 Path path =

Paths.get("C:\\temp\\myFile.txt");

 Charset chineseSimplifiedCharset

=

Charset.forName("GB2312");

 try (OutputStream outputStream =

Files.newOutputStream(path,

StandardOpenOption.CREATE);

 OutputStreamWriter writer =

new OutputStreamWriter(

 outputStream,

chineseSimplifiedCharset)) {

 writer.write(chars);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

The code in Listing 16.3 creates an OutputStreamWriter
based on a OutputStream that writes to C:\temp\myFile.txt
on Windows. Therefore, if you are using Linux or Mac OS X, you

need to change the value of textFile. The use of an absolute path
is intentional since most readers find it easier to find if they want
to open the file. The OutputStreamWriter uses the GB2312
character set (simplified Chinese).

The code in Listing 16.3 passes two Chinese characters: ?
(represented by the Unicode 4F60) and ? (Unicode 597D). ??
means ‘How are you?’ in Chinese.

When executed, the OutputStreamWriterTest class will
create a myFile.txt file. It is 4 bytes long. You can open it and
see the Chinese characters. For the characters to be displayed
correctly, you need to have the Chinese font installed in your
computer.

PrintWriter
PrintWriter is a better alternative to OutputStreamWriter.
Like OutputStreamWriter, PrintWriter lets you choose an
encoding by passing the encoding information to one of its
constructors. Here are two of its constructors:

public PrintWriter(OutputStream out)

public PrintWriter(Writer out)

To create a PrintWriter that writes to a file, simply create an
OutputStream with a file sink.

PrintWriter is more convenient to work with than
OutputStreamWriter because the former adds nine print
method overloads for printing any type of Java primitives and
objects. Here are the method overloads:

public void print(boolean b)

public void print(char c)

public void print(char[] s)

public void print(double d)

public void print(float f)

public void print(int i)

public void print(long l)

public void print(Object object)

public void print(String string)

There are also nine println method overloads, which are the
same as the print method overloads, except that they print a
new line character after the argument.

In addition, there are two format method overloads that
enable you to print according to a print format. This method was
covered in Chapter 5, “Core Classes.”

Always wrap your Writer with a BufferedWriter for better
performance. BufferedWriter has the following constructors
that allow you to pass a Writer object.

public BufferedWriter(Writer writer)

public BufferedWriter(Writer writer, in

bufferSize)

The first constructor creates a BufferedWriter with the default
buffer size (the documentation does not say how big). The
second one lets you choose the buffer size.

With PrintWriter, however, you cannot wrap it like this

PrintWriter printWriter = ...;

BufferedWriter bw = new

BufferedWriter(printWriter);

because then you would not be able to use the methods of the
PrintWriter. Instead, wrap the Writer that is passed to a
PrintWriter.

PrintWriter pw = new PrintWriter(new

BufferedWriter(writer));

Listing 16.4 presents an example of PrintWriter.

Listing 16.4: Using PrintWriter

package app16;

import java.io.BufferedWriter;

import java.io.IOException;

import java.io.PrintWriter;

import java.nio.charset.Charset;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.nio.file.StandardOpenOption;

public class PrintWriterDemo1 {

 public static void main(String[]

args) {

 Path path =

Paths.get("c:\\temp\\printWriterOutput.tx

t");

 Charset usAsciiCharset =

Charset.forName("US-ASCII");

 try (BufferedWriter

bufferedWriter =

Files.newBufferedWriter(path,

usAsciiCharset,

StandardOpenOption.CREATE);

 PrintWriter printWriter =

 new

PrintWriter(bufferedWriter)) {

printWriter.println("PrintWriter is easy

to use.");

 printWriter.println(1234);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

The nice thing about writing with a PrinterWriter is when you
open the resulting file, everything is human-readable. The file
created by the preceding example says:

PrinterWriter is easy to use.

1234

Reading Text (Characters)

You use the Reader class to read text (characters, i.e. human
readable data). The hierarchy of this class is shown in Figure
16.4.

Figure 16.4: Reader and its descendants

The following sections discuss Reader and some of its
descendants.

Reader
Reader is an abstract class that represents an input stream for
reading characters. It is similar to InputStream except that
Reader deals with characters and not bytes. Reader has three
read method overloads that are similar to the read methods in
InputStream:

public int read()

public int read(char[] data)

public int read(char[] data, int offset,

int length)

These method overloads allow you to read a single character or

multiple characters that will be stored in a char array.
Additionally, there is a fourth read method for reading
characters into a java.nio.CharBuffer.

public int read(java.nio.CharBuffer

target)

Reader also provides the following methods that are similar to
those in InputStream: close, mark, reset, and skip.

InputStreamReader
An InputStreamReader reads bytes and translates them into
characters using the specified character set. Therefore,
InputStreamReader is ideal for reading from the output of an
OutputStreamWriter or a PrintWriter. The key is you must
know the encoding used when writing the characters to correctly
read them back.

The InputStreamReader class has four constructors, all of
which require you to pass an InputStream.

public InputStreamReader(InputStream in)

public InputStreamReader(InputStream in,

 java.nio.charset.Charset charset)

public InputStreamReader(InputStream in,

 java.nio.charset.CharsetDecoder

decoder)

public InputStreamReader(InputStream in,

String charsetName)

For instance, to create an InputStreamReader that reads
from a file, you can pass to its constructor an InputStream
from Files.newInputStream.

Path path = ...

Charset charset = ...

InputStream inputStream =

Files.newInputStream(path,

 StandardOpenOption.READ);

InputStreamReader reader = new

InputStreamReader(

 inputStream, charset);

Listing 16.5 presents an example that uses a PrintWriter to
write two Chinese characters and read them back.

Listing 16.5: Using InputStreamReader
package app16;

import java.io.BufferedWriter;

import java.io.FileInputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.nio.charset.Charset;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.nio.file.StandardOpenOption;

public class InputStreamReaderDemo1 {

 public static void main(String[]

args) {

 Path textFile =

Paths.get("C:\\temp\\myFile.txt");

 Charset chineseSimplifiedCharset

=

Charset.forName("GB2312");

 char[] chars = new char[2];

 chars[0] = '\u4F60'; //

representing ?

 chars[1] = '\u597D'; //

representing ?

 // write text

 try (BufferedWriter writer =

Files.newBufferedWriter(textFile,

chineseSimplifiedCharset,

StandardOpenOption.CREATE)) {

 writer.write(chars);

 } catch (IOException e) {

System.out.println(e.toString());

 }

 // read back

 try (InputStream inputStream =

Files.newInputStream(textFile,

 StandardOpenOption.READ);

 InputStreamReader reader =

new

InputStreamReader(inputStream,

chineseSimplifiedCharset)) {

 char[] chars2 = new char[2];

 reader.read(chars2);

 System.out.print(chars2[0]);

 System.out.print(chars2[1]);

 } catch (IOException e) {

System.out.println(e.toString());

 }

 }

}

BufferedReader
BufferedReader is good for two things:

1. Wraps another Reader and provides a
buffer that will generally improve
performance.

2. Provides a readLine method to read a
line of text.

The readLine method has the following signature:

public java.lang.String readLine() throws

IOException

It returns a line of text from this Reader or null if the end of the
stream has been reached.

The java.nio.file.Files class offers a newBufferedReader
method that returns a BufferedReader. Here is the signature.

public static java.io.BufferedReader

newBufferedReader(Path path,

 java.nio.charset.Charset charset)

As an example, this snippet reads a text file and prints all lines.

Path path = ...

BufferedReader br =

Files.newBufferedReader(path, charset);

String line = br.readLine();

while (line != null) {

 System.out.println(line);

 line = br.readLine();

}

Also, prior to the addition of the java.util.Scanner class in
Java 5, you had to use a BufferedReader to read user input to
the console. Listing 16.6 shows a getUserInput method for
taking user input on the console.

Listing 16.6: The getUserInput method
public static String getUserInput() {

 BufferedReader br = new

BufferedReader(

 new

InputStreamReader(System.in));

 try {

 return br.readLine();

 } catch (IOException ioe) {

 }

 return null;

}

You can do this because System.in is of type
java.io.InputStream.

Note
java.util.Scanner was discused in Chapter 5, “Core Classes.”

Logging with PrintStream

By now you must be familiar with the print method of
System.out. You use it especially for displaying messages to
help you debug your code. However, by default System.out
sends the message to the console, and this is not always
preferable. For instance, if the amount of data displayed exceeds
a certain lines, previous messages are no longer visible. Also, you
might want to process the messages further, such as sending the
messages by email.

The PrintStream class is an indirect subclass of
OutpuStream. Here are some of its constructors:

public PrintStream(OutputStream out)

public PrintStream(OutputStream out,

boolean autoFlush)

public PrintStream(OutputStream out,

boolean autoFlush,

 String encoding)

PrintStream is very similar to PrintWriter. For example,
both have nine print method overloads. Also, PrintStream has
a format method similar to the format method in the String
class.

System.out is of type java.io.PrintStream. The System
object lets you replace the default PrintStream by using the
setOut method. Listing 16.7 presents an example that redirects
System.out to a file.

Listing 16.7: Redirecting System.out to
a file

package app16;

import java.io.IOException;

import java.io.OutputStream;

import java.io.PrintStream;

import java.nio.file.Files;

import java.nio.file.OpenOption;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.nio.file.StandardOpenOption;

public class PrintStreamDemo1 {

 public static void main(String[]

args) {

 Path debugFile =

Paths.get("C:\\temp\\debug.txt");

 try (OutputStream outputStream =

Files.newOutputStream(

 debugFile,

StandardOpenOption.CREATE,

StandardOpenOption.APPEND);

 PrintStream printStream = new

PrintStream(outputStream,

 true)) {

 System.setOut(printStream);

 System.out.println("To

file");

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Note
You can also replace the default in and out in the System object by
using the setIn and setErr methods.

Random Access Files

Using a stream to access a file dictates that the file is accessed
sequentially, e.g. the first character must be read before the
second, etc. Streams are ideal when the data comes in a
sequential fashion, for example if the medium is a tape (widely
used long ago before the emergence of harddisk) or a network
socket. Streams are good for most of your applications, however
sometimes you need to access a file randomly and using a stream
would not be fast enough. For example, you may want to change
the 1000th byte of a file without having to read the first 999. For
random access like this, there are a few Java types that offer a
solution. The first is the java.io.RandomAccessFile class,
which is easy to use but now out-dated. The second is the
java.nio.channels.SeekableByteChannel interface, which
should be used in new applications. A discussion of
RandomAccessFile can be found in Chapter 13 of the second
edition of this book. This edition, however, teaches random

access files using SeekableByteChannel.

A SeekableByteChannel can perform both read and write
operations. You can get an implementation of
SeekableByteChannel using one of the Files class’s
newByteChannel methods:

public static

java.nio.channels.SeekableByteChannel

 newByteChannel(Path path,

OpenOption... options)

When using Files.newByteChannel() to open a file, you can
choose an open option such as read-only or read-write or create-
append. For instance

Path path1 = ...

SeekableByteChannel readOnlyByteChannel =

Files.newByteChannel(path1,

EnumSet.of(READ)));

Path path2 = ...

SeekableByteChannel writableByteChannel =

Files.newByteChannel(path2,

EnumSet.of(CREATE,APPEND));

SeekableByteChannel employs an internal pointer that points
to the next byte to read or write. You can obtain the pointer
position by calling the position method:

long position() throws

java.io.IOException

When a SeekableByteChannel is created, initially it points to
the first byte and position() would return 0L. You can change
the pointer’s position by invoking another position method
whose signature is as follows.

SeekableByteChannel position(long

newPosition)

 throws java.io.IOException

This pointer is zero-based, which means the first byte is
indicated by index 0. You can pass a number greater than the file
size without throwing an exception, but this will not change the
size of the file. The size method returns the current size of the
resource to which the SeekableByteChannel is connected:

long size() throws java.io.IOException

SeekableByteChannel is extremely simple. To read from or

write to the underlying file, you call its read or write method,
respectively.

int read(java.nio.ByteBuffer buffer)

throws java.io.IOException

int write(java.nio.ByteBuffer buffer)

throws java.io.IOException

Both read and write take a java.nio.ByteBuffer. This means
to use SeekableByteChannel you need to be familiar with the
ByteBuffer class. So, here is a crash course in ByteBuffer.

ByteBuffer is one of the many descendants of
java.nio.Buffer, a data container for a specific primitive type.
A ByteBuffer is of course a buffer for bytes. Other subclasses of
Buffer include CharBuffer, DoubleBuffer, FloatBuffer,
IntBuffer, LongBuffer, and ShortBuffer.

A buffer has a capacity, which is the number of elements it
contains. It also employs an internal pointer to indicate the next
element to read or write. An easy way to create a ByteBuffer is
by calling the static allocate method of the ByteBuffer class:

public static ByteBuffer allocate(int

capacity)

For example, to create a ByteBuffer with a capacity of 100, you
would write

ByteBuffer byteBuffer =

ByteBuffer.allocate(100);

As you may suspect, a ByteBuffer is backed by a byte array. To
retrieve this array, call the array method of ByteBuffer:

public final byte[] array()

The length of the array is the same as the ByteBuffer’s capacity.

ByteBuffer provides two put methods for writing a byte:

public abstract ByteBuffer put(byte b)

public abstract ByteBuffer put(int index,

byte b)

The first put method writes on the element pointed by the
ByteBuffer’s internal pointer. The second allows you to put a
byte anywhere by specifying an index.

There are also two put methods for writing a byte array. The
first one allows the content of a byte array or a subset of it to be

copied to the ByteBuffer. It has this signature:

public ByteBuffer put(byte[] src, int

offset, int length)

The src argument is the source byte array, offset is the location of
the first byte in src, and length is the number of bytes to be
copied.

The second put method puts the whole source byte array to be
copied from position 0:

public ByteBuffer put(byte[] src)

ByteBuffer also provides various putXXX methods for writing
different data types to the buffer. The putInt method, for
example, writes an int whereas putShort puts a short. There
are two versions of putXXX, one for putting a value at the next
location pointed by the ByteBuffer’s internal pointer, one for
putting a value at an absolute position. The signatures of the
putInt methods are as follows.

public abstract ByteBuffer putInt(int

value)

public abstract ByteBuffer putInt(int

index, int value)

To read from a ByteBuffer, the ByteBuffer class provides a
number of get and getXXX methods, which come in two
flavors: one for reading from the relative position and one for
reading from an absolute element. Here are the signatures of
some of the get and getXXX methods:

public abstract byte get()

public abstract byte get(int index)

public abstract float getFloat()

public abstract float getFloat(int index)

Okay. That’s all you need to know about ByteBuffer, and now
you are ready for SeekableByteChannel. Listing 16.8 shows
how to use SeekableByteChannel.

Listing 16.8: Random access file
package app16;

import java.io.IOException;

import java.nio.ByteBuffer;

import

java.nio.channels.SeekableByteChannel;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.nio.file.StandardOpenOption;

public class SeekableByteChannelDemo1 {

 public static void main(String[]

args) {

 ByteBuffer buffer =

ByteBuffer.allocate(12);

System.out.println(buffer.position()); //

prints 0

 buffer.putInt(10);

System.out.println(buffer.position()); //

prints 8

 buffer.putLong(1234567890L);

System.out.println(buffer.position()); //

prints 16

 buffer.rewind(); // sets position

to 0

System.out.println(buffer.getInt()); //

prints 10000

System.out.println(buffer.getLong()); //

prints 1234567890

 buffer.rewind();

System.out.println(buffer.position()); //

prints 0

 Path path =

Paths.get("C:/temp/channel");

 System.out.println("-------------

------------");

 try (SeekableByteChannel

byteChannel =

Files.newByteChannel(path,

StandardOpenOption.CREATE,

StandardOpenOption.READ,

StandardOpenOption.WRITE);) {

System.out.println(byteChannel.position()

); // prints 0

 byteChannel.write(buffer);

System.out.println(byteChannel.position()

); //prints 20

 // read file

 ByteBuffer buffer3 =

ByteBuffer.allocate(40);

 byteChannel.position(0);

 byteChannel.read(buffer3);

 buffer3.rewind();

 System.out.println("get int:"

+ buffer3.getInt());

 System.out.println("get

long:" + buffer3.getLong());

System.out.println(buffer3.getChar());

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

The SeekableByteChannelDemo1 class in Listing 16.8 starts
by creating a ByteBuffer with a capacity of twelve and putting
an int and a long in it. Remember that an int is four bytes long
and a long takes 8 bytes.

 ByteBuffer buffer =

ByteBuffer.allocate(12);

 buffer.putInt(10);

 buffer.putLong(1234567890L);

After receiving an int and a long, the buffer’s position is at 16.

System.out.println(buffer.position()); //

prints 16

The class then creates a SeekableByteChannel and calls its
write method, passing the ByteBuffer.

 Path path =

Paths.get("C:/temp/channel");

 try (SeekableByteChannel

byteChannel =

Files.newByteChannel(path,

StandardOpenOption.CREATE,

StandardOpenOption.READ,

StandardOpenOption.WRITE);) {

 byteChannel.write(buffer);

It then reads the file back and prints the results to the console.

 // read file

 ByteBuffer buffer3 =

ByteBuffer.allocate(40);

 byteChannel.position(0);

 byteChannel.read(buffer3);

 buffer3.rewind();

 System.out.println("get int:"

+ buffer3.getInt());

 System.out.println("get

long:" + buffer3.getLong());

System.out.println(buffer3.getChar());

Object Serialization

Occasionally you need to persist objects into permanent storage
so that the states of the objects can be retained and retrieved
later. Java supports this through object serialization. To serialize
an object, i.e. save it to permanent storage, you use an
ObjectOutputStream. To deserialize an object, namely to
retrieve the saved object, use ObjectInputStream.
ObjectOutputStream is a subclass of OutputStream and
ObjectInputStream is derived from InputStream.

The ObjectOutputStream class has one public constructor:

public ObjectOutputStream(OutputStream

out)

After you create an ObjectOutputStream, you can serialize
objects or primitives or the combination of both. The
ObjectOutputStream class provides a writeXXX method for
each individual type, where XXX denotes a type. Here is the list
of the writeXXX methods.

public void writeBoolean(boolean value)

public void writeByte(int value)

public void writeBytes(String value)

public void writeChar(int value)

public void writeChars(String value)

public void writeDouble(double value)

public void writeFloat(float value)

public void writeInt(int value)

public void writeLong(long value)

public void writeShort(short value)

public void writeObject(java.lang.Object

value)

For objects to be serializable their classes must implement
java.io.Serializable. This interface has no method and is a
marker interface. A marker interface is one that tells the JVM
that an instance of an implementing class belongs to a certain

type.

If a serialized object contains other objects, the contained
objects’ classes must also implement Serializable for the
contained objects to be serializable.

The ObjectInputStream class has one public constructor:

public ObjectInputStream(InputStream in)

To deserialize from a file, you can pass a InputStream that is
connected to a file sink. The ObjectInputStream class has
methods that are the opposites of the writeXXX methods in
ObjectOutputStream. They are as follows:

public boolean readBoolean()

public byte readByte()

public char readChar()

public double readDouble()

public float readFloat()

public int readInt()

public long readLong()

public short readShort()

public java.lang.Object readObject()

One important thing to note: object serialization is based on a

last in first out method. When deserializing multiple
primitives/objects, the objects that were serialized first must be
deserialized last.

Listing 16.10 shows a class that serializes an int and a
Customer object. Note that the Customer class, given in
Listing 16.9, implements Serializable. The serialization
runtime associates with each serializable class a version number
called serialVersionUID. This number is used during
deserialization to verify that the sender and receiver of a
serialized object have loaded classes for that object that are
compatible with respect to serialization. All classes
implementing Serializable should declare a static final long
serialVersionUID field. Otherwise, one will be calculated by
the serialization runtime automatically.

Listing 16.9: The Customer class
package app16;

import java.io.Serializable;

public class Customer implements

Serializable {

 private static final long

serialVersionUID = 1L;

 public int id;

 public String name;

 public String address;

 public Customer (int id, String name,

String address) {

 this.id = id;

 this.name = name;

 this.address = address;

 }

}

Listing 16.10: Object serialization
example

package app16;

import java.io.IOException;

import java.io.InputStream;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.io.OutputStream;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.nio.file.StandardOpenOption;

public class ObjectSerializationDemo1 {

 public static void main(String[]

args) {

 // Serialize

 Path path =

Paths.get("C:\\temp\\objectOutput");

 Customer customer = new

Customer(1, "Joe Blog",

 "12 West Cost");

 try (OutputStream outputStream =

Files.newOutputStream(path,

StandardOpenOption.CREATE);

 ObjectOutputStream oos = new

ObjectOutputStream(outputStream)) {

 // write first object

 oos.writeObject(customer);

 // write second object

 oos.writeObject("Customer

Info");

 } catch (IOException e) {

System.out.print("IOException");

 }

 // Deserialize

 try (InputStream inputStream =

Files.newInputStream(path,

 StandardOpenOption.READ);

 ObjectInputStream ois = new

ObjectInputStream(inputStream)) {

 // read first object

 Customer customer2 =

(Customer) ois.readObject();

 System.out.println("First

Object: ");

System.out.println(customer2.id);

System.out.println(customer2.name);

System.out.println(customer2.address);

 // read second object

 System.out.println();

 System.out.println("Second

object: ");

 String info = (String)

ois.readObject();

 System.out.println(info);

 } catch (ClassNotFoundException

ex) { // readObject still throws this

exception

System.out.print("ClassNotFound " +

ex.getMessage());

 } catch (IOException ex2) {

 System.out.print("IOException

" + ex2.getMessage());

 }

 }

}

Summary

Input/output operations are supported through the members of
the java.io package. You can read and write data through
streams and data is classified into binary data and text. In
addition, Java support object serialization through the
Serializable interface and the ObjectInputStream and
ObjectOutputStream classes.

Quiz

1. What is an I/O stream?
2. Name four abstract classes that represent

streams in the java.io package.
3. What is object serialization?
4. What is the requirement for a class to be

serializable?

Chapter 17
Annotations

Annotations are notes in Java programs to instruct the Java
compiler to do something. Java annotations were first defined in
JSR 175, “A Metadata Facility for the Java Programming
Language.” Later JSR 250, “Common Annotations for the Java
Platform” added annotations for common concepts. Both
specifications can be downloaded from http://www.jcp.org.

This chapter starts with an overview of annotations, and then
teaches you how to use the standard and common annotations. It
concludes with a discussion of how to write your own custom
annotation types.

Overview

Annotations are notes for the Java compiler. When you annotate
a program element in a source file, you add notes to the Java
program elements in that source file. You can annotate Java
packages, types (classes, interfaces, enumerated types),

constructors, methods, fields, parameters and local variables.
For example, you can annotate a Java class so that any warnings
that the javac program would otherwise issue are suppressed.
Or, you can annotate a method that you want to override to ask
the compiler to verify that you are really overriding the method,
not overloading it.

The Java compiler can be instructed to interpret annotations
and discard them (so those annotations only live in source files)
or include them in resulting Java classes. Those that are included
in Java classes may be ignored by the Java virtual machine, or
they may be loaded into the virtual machine. The latter type is
called runtime-visible and you can use reflection to inquire about
them.

Annotations and Annotation
Types
When studying annotations, you will come across these two
terms very frequently: annotations and annotation types. To
understand their meanings, it is useful to first bear in mind that
an annotation type is a special interface type. An annotation is an
instance of an annotation type. Just like an interface, an
annotation type has a name and members. The information
contained in an annotation takes the form of key/value pairs.
There can be zero or multiple pairs and each key has a specific
type. It can be a String, int or other Java types. Annotation
types with no key/value pairs are called marker annotation

types. Those with one key/value pair are often referred to single-
value annotation types.

Annotations were first added to Java 5, which brought with it
three annotation types: Deprecated, Override and
SuppressWarnings. They are part of the java.lang package
and you will learn to use them in the section “Built-in
Annotations.” (Java 7 and 8 later added SafeVarargs and
FunctionalInterface to java.lang) On top of that, there are
six other annotation types that are part of the
java.lang.annotation package, including Documented,
Inherited, Retention and Target. These four annotation
types are used to annotate annotations. Java 6 added common
annotations, which are explained in the section “Common
Annotations.”

Annotation Syntax
You declare an annotation type using this syntax.

@AnnotationType

or

@AnnotationType(elementValuePairs)

The first syntax is for marker annotation types and the second
for single-value and multi-value types. It is legal to put white
spaces between the at sign (@) and annotation type, but this is
not recommended.

For example, here is how you use the marker annotation type
Deprecated:

@Deprecated

And, this is how you use the second syntax for multi-value
annotation type Author:

@Author(firstName="Ted",lastName="Diong")

There is an exception to this rule. If an annotation type has a
single key/value pair and the name of the key is value, then you
can omit the key from the bracket. Therefore, if fictitious
annotation type Stage has a single key named value, you can
write

@Stage(value=1)

or

@Stage(1)

The Annotation Interface
An annotation type is a Java interface. All annotation types are
subinterfaces of java.lang.annotation.Annotation. One of
its methods, annotationType, returns a java.lang.Class
object.

java.lang.Class<? extends Annotation>

annotationType()

In addition, any implementation of Annotation will override
the equals, hashCode, and toString methods from the
java.lang.Object class. Here are their default implementations.

public boolean equals(Object object)

Returns true if object is an instance of the
same annotation type as this one and all
members of object are equal to the
corresponding members of this annotation.

public int hashCode()

Returns the hash code of this annotation,
which is the sum of the hash codes of its
members

public String toString()

Returns a string representation of this
annotation, which typically lists all the
key/value pairs of this annotation.

You will use this class when learning custom annotation types
later in this chapter.

Standard Annotations

Annotations were a new feature in Java 5 and originally there
were three standard annotations, all of which are in the
java.lang package: Override, Deprecated and
SuppressWarnings. They are discussed in this section.

Override
Override is a marker annotation type that can be applied to a
method to indicate to the compiler that the method overrides a
method in a superclass. This annotation type guards the
programmer against making a mistake when overriding a
method.

For example, consider this class Parent:

class Parent {

 public float calculate(float a, float

b) {

 return a * b;

 }

}

Suppose, you want to extend Parent and override its calculate
method. Here is a subclass of Parent:

public class Child extends Parent {

 public int calculate(int a, int b) {

 return (a + 1) * b;

 }

}

The Child class compiles. However, the calculate method in
Child does not override the method in Parent because it has a
different signature, namely it returns and accepts ints instead of
floats. In this example, such a programming mistake is easy to
spot because you can see both the Parent and Child classes.
However, you won’t be always this lucky. Sometimes the parent
class is buried somewhere in another package. This seemingly
trivial error could be fatal because when a client class calls the
calculate method on a Child object and passes two floats, the
method in the Parent class will be invoked and the wrong result
returned.

Using the Override annotation type will prevent this kind of
mistake. Whenever you want to override a method, declare the
Override annotation type before the method:

public class Child extends Parent {

 @Override

 public int calculate(int a, int b) {

 return (a + 1) * b;

 }

}

This time, the compiler will generate a compile error and you’ll
be notified that the calculate method in Child is not overriding
the method in the parent class.

It is clear that @Override is useful to make sure
programmers override a method when they intend to override it,
and not overload it.

Deprecated
Deprecated is a marker annotation type that can be applied to
a method or a type to indicate that the method or type is
deprecated. A deprecated method or type is marked so by the
programmer to warn the users of his code that they should not
use or override the method or use or extend the type. The reason
why a method or a type is marked deprecated is usually because
there is a better method or type and the deprecated method or
type is retained in the current software version for backward
compatibility.

For example, the DeprecatedDemo1 class in Listing 17.1
uses the Deprecated annotation type.

Listing 17.1: Deprecating a method
package app17;

public class DeprecatedDemo1 {

 @Deprecated

 public void serve() {

 }

}

If you use or override a deprecated method, you will get a

warning at compile time. For example, Listing 17.2 shows a
DeprecatedDemo2 class that uses the serve method in
DeprecatedDemo1.

Listing 17.2: Using a deprecated method
package app17;

public class DeprecatedDemo2 {

 public static void main(String[]

args) {

 DeprecatedDemo1 demo = new

DeprecatedDemo1();

 demo.serve();

 }

}

Compiling DeprecatedDemo2 generates this warning:

Note: app17/DeprecatedDemo2.java uses or

overrides a deprecated

API.

Note: Recompile with -Xlint:deprecation

for details.

On top of that, you can use @Deprecated to mark a class or an
interface, as shown in Listing 17.3.

Listing 17.3: Marking a class deprecated
package app17;

@Deprecated

public class DeprecatedDemo3 {

 public void serve() {

 }

}

SuppressWarnings
SuppressWarnings is used, as you must have guessed, to
suppress compiler warnings. You can apply
@SuppressWarnings to types, constructors, methods, fields,
parameters, and local variables.

You use it by passing a String array that contains warnings
that need to be suppressed. Its syntax is as follows.

@SuppressWarnings(value={string-1, ...,

string-n})

where string-1 to string-n indicate the set of warnings to be
suppressed. Duplicate and unrecognized warnings will be
ignored.

The following are valid parameters to

@SuppressWarnings:

unchecked. Gives more detail for unchecked conversion
warnings that are mandated by the Java Language
Specification.

path. Warns about nonexistent path (classpath, sourcepath,
etc) directories.

serial. Warns about missing serialVersionUID definitions
on serializable classes.

finally. Warns about finally clauses that cannot complete
normally.

fallthrough. Checks switch blocks for fall-through cases,
namely cases, other than the last case in the block, whose
code does not include a break statement, allowing code
execution to "fall through" from that case to the next case.
As an example, the code following the case 2 label in this
switch block does not contain a break statement:

 switch (i) {

 case 1:

 System.out.println("1");

 break;

 case 2:

 System.out.println("2");

 // falling through

 case 3:

 System.out.println("3");

 }

As an example, the SuppressWarningsDemo1 class in
Listing17.4 uses the SuppressWarnings annotation type to
prevent the compiler from issuing unchecked and fallthrough
warnings.

Listing 17.4 Using @SuppressWarnings
package app17;

import java.io.File;

import java.io.Serializable;

import java.util.ArrayList;

@SuppressWarnings(value=

{"unchecked","serial"})

public class SuppressWarningsDemo1

implements Serializable {

 public void openFile() {

 ArrayList a = new ArrayList();

 File file = new

File("X:/java/doc.txt");

 }

}

Common Annotations

Java includes an implementation of JSR 250, “Common
Annotations for the Java Platform,” which specifies annotations
for common concepts. The goal of this JSR is to avoid different
Java technologies define similar annotations which would result
in duplication.

The full list of common annotations can be found in the
document that can be downloaded from
http://jcp.org/en/jsr/detail?id=250.

Except for Generated, all of the annotations specified are,
unfortunately, advanced materials or suitable for Java EE, and
therefore beyond the scope of this book. As such, the only
common annotation discussed is @Generated.

@Generated is used to mark computer generated source
code, as opposed to hand-written code. It can be applied to
classes, methods, and fields. The following are parameters to
@Generated:

value. The name of the code generator. The convention is to
use the fully qualified name of the generator.

date. The date the code was generated. It must be in a
format compliant with ISO 8601.

comments. Comments accompanying the generated code.

For example, in Listing 17.5 @Generated is used to annotate a
generated class.

Listing 17.5: Using @Generated
package app17;

import javax.annotation.Generated;

@Generated(value="com.example.robot.CodeG

enerator",

 date="2014-12-31",

comments="Generated code")

public class GeneratedTest {

}

Standard Meta-Annotations

Meta annotations are annotations that annotate annotations.
There are four meta-annotation types that can be used to
annotate annotations: Documented, Inherited, Retention
and Target. All the four are part of the java.lang.annotation
package. This section discusses these annotation types.

Documented
Documented is a marker annotation type used to annotate the
declaration of an annotation type so that instances of the
annotation type will be included in the documentation generated
using Javadoc or similar tools.

For example, the Override annotation type is not annotated
using Documented. As a result, if you use Javadoc to generate
a class whose method is annotated @Override, you will not see
any trace of @Override in the resulting document.

For instance, Listing 17.6 shows a OverrideDemo2 class that
uses @Override to annotate the toString method.

Listing 17.6: The OverrideDemo2 class
package app17;

public class OverrideDemo2 {

 @Override

 public String toString() {

 return "OverrideDemo2";

 }

}

On the other hand, the Deprecated annotation type is
annotated @Documented. Recall that the serve method in the
DeprecatedTest class in Listing 17.2 is annotated
@Deprecated. Now, if you use Javadoc to generate the

documentation for OverrideTest2, the details of the serve
method in the documentation will also include @Deprecated,
like this:

serve

@Deprecated

public void serve()

Inherited
You use Inherited to annotate an annotation type so that any
instance of the annotation type will be inherited. If you annotate
a class using an inherited annotation type, the annotation will be
inherited by any subclass of the annotated class. If the user
queries the annotation type on a class declaration, and the class
declaration has no annotation of this type, then the class’s parent
class will automatically be queried for the annotation type. This
process will be repeated until an annotation of this type is found
or the root class is reached.

Check the section “Custom Annotation Types” on how to query
an annotation type.

Retention
@Retention indicates how long annotations whose annotated
types are annotated @Retention are to be retained. The value
of @Retention can be one of the members of the

java.lang.annotation.RetentionPolicy enum:

SOURCE. Annotations are to be discarded by the Java
compiler.

CLASS. Annotations are to be recorded in the class file but
not retained by the JVM. This is the default value.

RUNTIME. Annotations are to be retained by the JVM so
they can be queried using reflection.

For example, the declaration of the SuppressWarnings
annotation type is annotated @Retention with the value of
SOURCE.

@Retention(value=SOURCE)

public @interface SuppressWarnings

Target
Target indicates which program element(s) can be annotated
using instances of the annotated annotation type. The value of
Target is one of the members of the
java.lang.annotation.ElementType enum:

ANNOTATION_TYPE. The annotated annotation type
can be used to annotate annotation type declaration.

CONSTRUCTOR. The annotated annotation type can be
used to annotate constructor declaration.

FIELD. The annotated annotation type can be used to
annotate field declaration.

LOCAL_VARIABLE. The annotated annotation type can
be used to annotate local variable declaration.

METHOD. The annotated annotation type can be used to
annotate method declaration.

PACKAGE. The annotated annotation type can be used to
annotate package declarations.

PARAMETER. The annotated annotation type can be used
to annotate parameter declarations.

TYPE. The annotated annotation type can be used to
annotate type declarations.

As an example, the Override annotation type declaration is
annotated the following Target annotation, making Override
only applicable to method declarations.

@Target(value=METHOD)

You can have multiple values in the Target annotation. For
example, this is from the declaration of SuppressWarnings:

@Target(value={TYPE,FIELD, METHOD,

PARAMETER,CONSTRUCTOR,

LOCAL_VARIABLE})

Custom Annotation Types

An annotation type is a Java interface, except that you must add
an at sign before the interface keyword when declaring it.

public @interface CustomAnnotation {

}

By default, all annotation types implicitly or explicitly extend the
java.lang.annotation.Annotation interface. In addition,
even though you can extend an annotation type, its subtype is
not treated as an annotation type.

Writing Your Own Custom
Annotation Type
Listing 17.7 shows a custom annotation type called Author.

Listing 17.7: The Author annotation

type
package app17.custom;

import java.lang.annotation.Documented;

import java.lang.annotation.Retention;

import

java.lang.annotation.RetentionPolicy;

@Documented

@Retention(RetentionPolicy.RUNTIME)

public @interface Author {

 String firstName();

 String lastName();

 boolean internalEmployee();

}

Using Custom Annotation Types
The Author annotation type is like any other Java type. Once
you import it into a class or an interface, you can use it simply by
writing

@Author(firstName="firstName",lastName="l

astName",

internalEmployee=true|false)

For example, the Test1 class in Listing 17.8 is annotated

Author.

Listing 17.8: A class annotated Author
package app17.custom;

@Author(firstName="John",lastName="Guddel

l",internalEmployee=true)

public class Test1 {

}

Is that it? Yes, that’s it. Very simple, isn’t it?

The next subsection “Using Reflection to Query Annotations”
shows how the Author annotations can be of good use.

Using Reflection to Query
Annotations
The java.lang.Class class has several methods related to
annotations.

public <A extends

java.lang.annotation.Annotation> A

getAnnotation

 (Class<A> annotationClass)

Returns this element’s annotation for the
specified annotation type, if present.
Otherwise, returns null.

public java.lang.annotation.Annotation[]

getAnnotations()

Returns all annotations present on this
class.

public boolean isAnnotation()

Returns true if this class is an annotation
type.

public boolean

isAnnotationPresent(Class<? extends

 java.lang.annotation.Annotation>

annotationClass)

Indicates whether an annotation for the

specified type is present on this class

The app17.custom package includes three test classes, Test1,
Test2, and Test3, that are annotated Author. Listing 17.9
shows a test class that employs reflection to query the test
classes.

Listing 17.9: Using reflection to query
annotations

package app17.custom;

public class CustomAnnotationDemo1 {

 public static void

printClassInfo(Class c) {

 System.out.print(c.getName() + ".

");

 Author author = (Author)

c.getAnnotation(Author.class);

 if (author != null) {

 System.out.println("Author:"

+ author.firstName()

 + " " +

author.lastName());

 } else {

 System.out.println("Author

unknown");

 }

 }

 public static void main(String[]

args) {

CustomAnnotationDemo1.printClassInfo(Test

1.class);

CustomAnnotationDemo1.printClassInfo(Test

2.class);

CustomAnnotationDemo1.printClassInfo(Test

3.class);

CustomAnnotationDemo1.printClassInfo(

CustomAnnotationDemo1.class);

 }

}

When run, you will see the following message in your console:

app17.custom.Test1. Author:John Guddell

app17.custom.Test2. Author:John Guddell

app17.custom.Test3. Author:Lesley Nielsen

app17.custom.CustomAnnotationDemo1.

Author unknown

Summary

You use annotations to instruct the Java compiler to do
something to an annotated program element. Any program
element can be annotated, including Java packages, classes,
constructors, fields, methods, parameters, and local variables.
This chapter explained standard annotation types and taught
how to create custom annotation types.

Quiz

1. What is an annotation type?
2. What is a meta-annotation?
3. What were the standard annotation types

fist included in Java 5?

Chapter 18
Nested and Inner Classes

Nested and inner classes are often considered too confusing for
beginners. However, they have some merits that make them a
proper discussion topic in this book. To name a few, you can hide
an implementation completely using a nested class and it
provides a shorter way of writing an event-listener.

This chapter starts by defining what nested classes and inner
classes are and continues by explaining types of nested classes.

An Overview of Nested
Classes

Let’s start by learning the correct definitions of nested and inner
classes. A nested class is a class declared within the body of
another class or interface. There are two types of nested classes:
static and non-static. Non-static nested classes are called inner
classes.

There are several types of inner classes:

member inner classes

local inner classes

anonymous inner classes

The term “top level class” is used to refer to a class that is not
defined within another class or interface. In other words, there is
no class enclosing a top level class.

A nested class behaves pretty much like an ordinary (top level)
class. A nested class can extend another class, implements
interfaces, be the parent class of subclasses, etc. Here is an
example of a simple nested class called Nested that is defined
within a top level class named Outer.

package app18;

public class Outer {

 class Nested {

 }

}

And, though uncommon, it is not impossible to have a nested
class inside another nested class, such as this:

package app18;

public class Outer {

 class Nested {

 class Nested2 {

 }

 }

}

To a top-level class, a nested class is just like other class
members, such as methods and fields. For example, a nested
class can have one of the four access modifiers: private,
protected, default (package) and public. This is unlike a top level
class that can only have either public or default.

Because nested classes are members of an enclosing class, the
behavior of static nested classes and the behavior of inner classes
are not exactly the same. Here are some differences.

Static nested classes can have static members, inner classes
cannot.

Just like instance methods, inner classes can access static
and non-static members of the outer class, including its
private members. Static nested classes can only access the
static members of the outer class.

You can create an instance of a static nested class without
first creating an instance of its outer class. By contrast, you

must first create an instance of the outer class enclosing an
inner class before instantiating the inner class itself.

These are the benefits of inner classes:

1. Inner classes can have access to all
(including private) members of the
enclosing classes.

2. Inner classes help you hide the
implementation of a class completely.

3. Inner classes provide a shorter way of
writing listeners in Swing and other event-
based applications.

Now, let’s review each type of static class.

Static Nested Classes

A static nested class can be created without creating an instance
of the outer class. Listing 18.1 shows this.

Listing 18.1: A Static Nested Class
package app18;

class Outer1 {

 private static int value = 9;

 static class Nested1 {

 int calculate() {

 return value;

 }

 }

}

public class StaticNestedDemo1 {

 public static void main(String[]

args) {

 Outer1.Nested1 nested = new

Outer1.Nested1();

System.out.println(nested.calculate());

 }

}

There are a few things to note about static nested classes:

You refer to a nested class by using this format:

 OuterClassName.InnerClassName

You do not need to create an instance of the enclosing class

to instantiate a static nested class.

You have access to the outer class static members from
inside your static nested class

In addition, if you declare a member in a nested class that has
the same name as a member in the enclosing class, the former
will shadow the latter. However, you can always reference the
member in the enclosing class by using this format.

OuterClassName.memberName

Note that this will still work although memberName is private.
Examine the example in Listing 18.2.

Listing 18.2: Shadowing an outer class’s
member.

package app18;

class Outer2 {

 private static int value = 9;

 static class Nested2 {

 int value = 10;

 int calculate() {

 return value;

 }

 int getOuterValue() {

 return Outer2.value;

 }

 }

}

public class StaticNestedDemo2 {

 public static void main(String[]

args) {

 Outer2.Nested2 nested = new

Outer2.Nested2();

System.out.println(nested.calculate());

// returns 10

System.out.println(nested.getOuterValue()

); // returns 9

 }

}

Member Inner Classes

A member inner class is a class whose definition is directly
enclosed by another class or interface declaration. An instance of
a member inner class can be created only if you have a reference
to an instance of its outer class. To create an instance of an inner
class from within the enclosing class, you call the inner class’s

constructor, just as you would other ordinary classes. However,
to create an instance of an inner class from outside the enclosing
class, you use the following syntax:

EnclosingClassName.InnerClassName inner =

 enclosingClassObjectReference.new

InnerClassName();

As usual, from within an inner class, you can use the keyword
this to reference the current instance (the inner class’s
instance). To reference the enclosing class’s instance you use this
syntax.

EnclosingClassName.this

Listing 18.3 shows how you can create an instance of an inner
class.

Listing 18.3: A member inner class
package app18;

class TopLevel {

 private int value = 9;

 class Inner {

 int calculate() {

 return value;

 }

 }

}

public class MemberInnerDemo1 {

 public static void main(String[]

args) {

 TopLevel topLevel = new TopLevel

();

 TopLevel.Inner inner =

topLevel.new Inner();

System.out.println(inner.calculate());

 }

}

Notice how you created an instance of the inner class in Listing
18.3?

A member inner class can be used to hide an implementation
completely, something you cannot do without employing an
inner class. The following example shows how you can use a
member class to hide an implementation completely.

Listing 18.4: Hiding implementations
completely

package app18;

interface Printer {

 void print(String message);

}

class PrinterImpl implements Printer {

 public void print(String message) {

 System.out.println(message);

 }

}

class SecretPrinterImpl {

 private class Inner implements

Printer {

 public void print(String message)

{

 System.out.println("Inner:" +

message);

 }

 }

 public Printer getPrinter() {

 return new Inner();

 }

}

public class MemberInnerDemo2 {

 public static void main(String[]

args) {

 Printer printer = new

PrinterImpl();

 printer.print("oh");

 // downcast to PrinterImpl

 PrinterImpl impl = (PrinterImpl)

printer;

 Printer hiddenPrinter =

 (new

SecretPrinterImpl()).getPrinter();

 hiddenPrinter.print("oh");

 // cannot downcast hiddenPrinter

to Outer.Inner

 // because Inner is private

 }

}

The Printer interface in Listing 18.4 has two implementations.
The first is the PrinterImpl class, which is a normal class. It
implements the print method as a public method. The second
implementation can be found in SecretPrinterImpl. However,
rather than implementing the Printer interface, the
SecretPrinterImpl defines a private class called Inner, which
implements Printer. The getPrinter method of
SecretPrinterImpl returns an instance of Inner.

What is the difference between PrinterImpl and
SecretPrinterImpl? You can see this from the main method in
the test class:

Printer printer = new PrinterImpl();

printer.print("Hiding implementation");

// downcast to PrinterImpl

PrinterImpl impl = (PrinterImpl) printer;

Printer hiddenPrinter = (new

SecretPrinterImpl()).getPrinter();

hiddenPrinter.print("Hiding

implementation");

// cannot downcast hiddenPrinter to

Outer.Inner

// because Inner is private

You assign printer an instance of PrinterImpl, and you can
downcast printer back to PrinterImpl. In the second instance,
you assign Printer with an instance of Inner by calling the
getPrinter method on SecretPrinterImpl. However, there is
no way you can downcast hiddenPrinter back to
SecretPrinterImpl.Inner because Inner is private and
therefore not visible.

Local Inner Classes

A local inner class, or local class for short, is an inner class that
by definition is not a member class of any other class (because its
declaration is not directly within the declaration of the outer
class). Local classes have a name, as opposed to anonymous

classes that do not.

A local class can be declared inside any block of code, and its
scope is within the block. For example, you can declare a local
class within a method, an if block, a while block, and so on. You
want to write a local class if an instance of the class is only used
within the scope. For example, Listing 18.5 shows an example of
a local class.

Listing 18.5: Local inner class
package app18;

import java.time.LocalDateTime;

import

java.time.format.DateTimeFormatter;

import java.time.format.FormatStyle;

interface Logger {

 public void log(String message);

}

public class LocalClassDemo1 {

 String appStartTime =

LocalDateTime.now().format(

 DateTimeFormatter

.ofLocalizedDateTime(FormatStyle.MEDIUM));

 public Logger getLogger() {

 class LoggerImpl implements

Logger {

 public void log(String

message) {

System.out.println(appStartTime + " : " +

message);

 }

 }

 return new LoggerImpl();

 }

 public static void main(String[]

args) {

 LocalClassDemo1 test = new

LocalClassDemo1();

 Logger logger = test.getLogger();

 logger.log("Local class

example");

 }

}

The class in Listing 18.5 has a local class named LoggerImpl
that resides inside a getLogger method. The getLogger
method must return an implementation of the Logger interface
and this implementation will not be used anywhere else.
Therefore, it is a good idea to make an implementation that is

local to getLogger. Note also that the log method within the
local class has access to the instance field appStartTime of the
outer class.

However, there is more. Not only does a local class have access
to the members of its outer class, it also has access to the local
variables. However, you can only access final local variables. The
compiler will generate a compile error if you try to access a local
variable that is not final.

Listing 18.6 modifies the code in Listing 18.5. The getLogger
method in Listing 18.6 allows you to pass a String that will
become the prefix of each line logged.

Listing 18.6: PrefixLogger test
package app18;

import java.util.Date;

interface PrefixLogger {

 public void log(String message);

}

public class LocalClassDemo2 {

 public PrefixLogger getLogger(final

String prefix) {

 class LoggerImpl implements

PrefixLogger {

 public void log(String

message) {

 System.out.println(prefix

+ " : " + message);

 }

 }

 return new LoggerImpl();

 }

 public static void main(String[]

args) {

 LocalClassDemo2 test = new

LocalClassDemo2();

 PrefixLogger logger =

test.getLogger("DEBUG");

 logger.log("Local class

example");

 }

}

Anonymous Inner Classes

An anonymous inner class does not have a name. A use of this
type of nested class is for writing an interface implementation.
For example, the AnonymousInnerClassDemo1 class in
Listing 18.7 creates an anonymous inner class which is an
implementation of Printable.

Listing 18.7: Using an anonymous inner
class

package app18;

interface Printable {

 void print(String message);

}

public class AnonymousInnerClassDemo1 {

 public static void main(String[]

args) {

 Printable printer = new

Printable() {

 public void print(String

message) {

System.out.println(message);

 }

 }; // this is a semicolon

 printer.print("Beach Music");

 }

}

The interesting thing here is that you create an anonymous inner
class by using the new keyword followed by what looks like a

class’s constructor (in this case Printable()). However, note
that Printable is an interface and does not have a constructor.
Printable() is followed by the implementation of the print
method. Also, note that after the closing brace, you use a
semicolon to terminate the statement that instantiates the
anonymous inner class.

In addition, you can also create an anonymous inner class by
extending an abstract or concrete class, as demonstrated in the
code in Listing 18.8.

Listing 18.8: Using an anonymous inner
class with an abstract class

package app18;

abstract class Printable2 {

 void print(String message) {

 }

}

public class AnonymousInnerClassDemo2 {

 public static void main(String[]

args) {

 Printable2 printer = new

Printable2() {

 public void print(String

message) {

System.out.println(message);

 }

 }; // this is a semicolon

 printer.print("Beach Music");

 }

}

Behind Nested and Inner
Classes

The JVM does not know the notion of nested classes. It is the
compiler that works hard to compile an inner class into a top
level class incorporating the outer class name and the inner class
name as the name, both separated by a dollar sign. That is, the
code that employs an inner class called Inner that resides inside
Outer like this

public class Outer {

 class Inner {

 }

}

will be compiled into two classes: Outer.class and

Outer$Inner.class.

What about anonymous inner classes? For anonymous classes,
the compiler takes the liberty of generating a name for them,
using numbers. Therefore, you’ll see something like
Outer$1.class, Outer$2.class, etc.

When a nested class is instantiated, the instance lives as a
separate object in the heap. It does not actually live inside the
outer class object.

However, with inner class objects, they have an automatic
reference to the outer class object as shown. This reference does
not exist in an instance of a static nested class, because a static
nested class does not have access to its outer class’s instance
members.

How does an inner class object obtain a reference to its outer
class object? Again, this happens because the compiler changes
the constructor of the inner class a bit when the inner class is
compiled, namely it adds an argument to every constructor. This
argument is of type the outer class.

For example, a constructor like this:

public Inner()

is changed to this.

public Inner(Outer outer)

And, this

public Inner(int value)

to

public Inner(Outer outer, int value)

Note
Remember that the compiler has the discretion to change the code it
compiles. For example, if a class (top level or nested) does not have a
constructor, it adds a no-arg constructor to it.

The code that instantiates an inner class is also modified, with
the compiler passing a reference to the outer class object to the
inner class constructor. If you write:

Outer outer = new Outer();

Outer.Inner inner = outer.new Inner();

the compiler will change it to

Outer outer = new Outer();

Outer.Inner inner = outer.new

Inner(outer);

When an inner class is instantiated inside the outer class, of
course, the compiler passes the current instance of the outer
class object using the keyword this.

// inside the Outer class

Inner inner = new Inner();

becomes

// inside the Outer class

Inner inner = new Inner(this);

Now, here is another piece of the puzzle. How does a nested class
access its outer class’s private members? No object is allowed to
access another object’s private members. Again, the compiler
changes your code, creating a method that accesses the private
member in the outer class definition. Therefore,

class TopLevel {

 private int value = 9;

 class Inner {

 int calculate() {

 return value;

 }

 }

}

is changed to two classes like this:

class TopLevel {

 private int value = 9;

 TopLevel() {

 }

 // added by the compiler

 static int access$0(TopLevel

toplevel) {

 return toplevel.value;

 }

}

class TopLevel$Inner {

 final TopLevel this$0;

 TopLevel$Inner(TopLevel toplevel) {

 super();

 this$0 = toplevel;

 }

 int calculate() {

 // modified by the compiler

 return TopLevel.access$0(this$0);

 }

}

The addition happens in the background so you will not see it in
your source. The compiler adds the access$0 method that
returns the private member value so that the inner class can
access the private member.

Summary

A nested class is a class whose declaration is within another
class. There are four types of nested classes:

Static nested classes

Member inner classes

Local inner classes

Anonymous inner classes

The benefits of using nested classes include hiding the
implementation of a class completely and as a shorter way of
writing a class whose instance will only live within a certain
context.

Quiz

1. What is a nested class and what is an inner
class?

2. What can you use nested classes for?
3. What is an anonymous class?

Chapter 19
Lambda Expressions

The lambda expression is the most important new feature in
Java SE 8. Long considered a missing feature in Java, it has
made the Java language complete. At least for now. In this
chapter you will learn what lambda expressions are and why they
are a nice addition to the language. You will also be introduced to
new technical terms such as single abstract method (SAM) and
functional interface as well as learn about method references.

Why Lambda Expressions?

Also known as closures, lambda expressions can make certain
constructs shorter and more readable, especially when you are
dealing with inner classes.

Consider the following code snippet that defines an
anonymous inner class out of the java.lang.Runnable
interface and instantiates the class.

Runnable runnable = new Runnable() {

 @Override

 public void run() {

 System.out.println("Running...");

 }

}

The code can be replaced with a lambda expression as short as
this:

Runnable runnable = () ->

System.out.println("Running...")

In other words, if you need to pass a Runnable to a
java.util.concurrent.Executor like so

executor.execute(new Runnable() {

 @Override

 public void run() {

 System.out.println("Running...");

 }

});

you can use a lambda expression to produce code with the same

effect:

executor.execute(() ->

System.out.println("Running..."));

Short and sweet. And clearer and more expressive too.

Functional Interfaces

Before I explain the lambda expression further, I will introduce
the functional interface. A functional interface is an interface
that has exactly one abstract method that does not override a
java.lang.Object method. A functional interface is also called a
single abstract method (SAM) interface. For example,
java.lang.Runnable is a functional interface because it has
only one abstract method, run. A functional interface may have
any number of default and static methods and methods that
override public methods in java.lang.Object and still qualifies
as a functional interface. For example, the Calculator interface
in Listing 19.1 is a functional interface with a single abstract
method called calculate. It is a functional interface even though
it has two default methods and another abstract method
overriding the toString method from java.lang.Object.

Listing 19.1: A functional interface

package app19;

public interface Calculator {

 double calculate(int a, int b);

 public default int subtract(int a,

int b) {

 return a - b;

 }

 public default int add(int a, int b)

{

 return a * b;

 }

 @Override

 public String toString();

}

Examples of functional interfaces in the core Java library include
java.lang.Runnable, java.lang.AutoCloseable,
java.lang.Comparable and java.util.Comparator. In
addition, the new package java.util.function contains dozens
of functional interfaces and is discussed in the section
“Predefined Functional Interfaces” later in this chapter.
Optionally, a functional interface can be annotated with
@FunctionalInterface.

Why is the functional interface important? Because you can
use a lambda expression to create the equivalent of an
anonymous inner class from a functional interface. You cannot
use an interface that is not a functional interface for this
purpose.

So, let the fun begin.

Lambda Expression Syntax

The Calculator interface in Listing 19.1 has a calculate
method that can be the basis of a lambda expression. The
method allows you to define any mathematical operation that
takes two integers and return a double. For instance, here are
two lambda expressions based on Calculator.

Calculator addition = (int a, int b) ->

(a + b);

System.out.println(addition.calculate(5,

20)); // prints 25.0

Calculator division = (int a, int b) ->

(double) a / b;

System.out.println(division.calculate(5,

2)); // prints 2.5

The lambda expression is such an elegant design. How many
more lines of code would you need to implement the same
program without lambda expressions?

Now that you have acquainted yourself with the lambda
expression, I will show you its formal syntax.

(parameter list) -> expression

or

(parameter list) -> {

 statements

}

The parameter list is the same as the list of parameters of the
abstract method in the underlying functional interface. However,
the type for each parameter is optional. In other words, both of
these expressions are valid.

Calculator addition = (int a, int b) ->

(a + b);

Calculator addition = (a, b) -> (a + b);

To summarize, a lambda expression is a shortcut to defining an
implementation of a functional interface. A lambda expression is
equivalent to an instance of a functional interface
implementation. Since it is possible to pass objects as
parameters to a method, it is too possible to pass lambda
expressions as parameters to a method.

Predefined Functional
Interfaces

The java.util.function package is a new package in JDK 8. It
contains more than forty predefined functional interfaces that
can make it easier for you to write lambda expressions. Some of
the predefined functional interfaces are shown in Table 19.1.

Functional Interface

Description

Function

Models a function that can
take one parameter and
return a result. The result can
be of a different type than the

 parameter.

BiFunction

Models a function that can
take two parameters and
return a result. The result can
be of a different type than any
of the parameters.

UnaryOperator

Represents an operation on a
single operand that returns a
result whose type is the same
as the type of the operand. A
UnaryOperator can be
thought of as a Function
whose return value is of the
same type as the parameter.
In fact, UnaryOperator is a
subinterface of Function.

BiOperator

Represents an operation on
two operands. The result and
the operands must be of the
same type.

Predicate

A Function that takes a
parameter and returns true
or false based on the value of
the parameter.

Supplier

Represents a supplier of
results.

Consumer

An operation that takes a
parameter and returns no
result.

Table 19.1: Core functional interfaces

Function, BiFunction and Other
Variants
The Function interface is used to create a one-argument
function that returns a result. It is a parameterized type and here
is its definition.

public interface Function<T, R>

Here, T represents the type of the argument and R the type of the
result.

Function has one abstract method, apply, whose signature is
as follows.

R apply(T argument)

This is the method you need to override when using Function.
For example, the class in Listing 19.2 defines a Function for
converting miles to kilometers. The Function takes an Integer
as an argument and returns a Double.

Listing 19.2: The FunctionDemo1 class
package app19.function;

import java.util.function.Function;

public class FunctionDemo1 {

 public static void main(String[]

args) {

 Function<Integer, Double>

milesToKms =

 (input) -> 1.6 * input;

 int miles = 3;

 double kms =

milesToKms.apply(miles);

 System.out.printf("%d miles =

%3.2f kilometers\n",

 miles, kms);

 }

}

If you run the FunctionDemo1 class, you will see this on your
console.

3 miles = 4.80 kilometers

A variant of Function, BiFunction takes two arguments and
returns a result. Listing 19.3 shows an example of BiFunction.
It uses BiFunction to create a function that calculates an area
given a width and a length. Invoking the function is done by
calling its apply method.

Listing 19.3: The BiFunctionDemo1
class

package app19.function;

import java.util.function.BiFunction;

public class BiFunctionDemo1 {

 public static void main(String[]

args) {

 BiFunction<Float, Float, Float>

area =

 (width, length) -> width

* length;

 float width = 7.0F;

 float length = 10.0F;

 float result = area.apply(width,

length);

 System.out.println(result);

 }

}

Running the BiFunctionDemo1 class prints the following on
the console.

70.0

In addition to BiFunction, there are also variants that are
specializations of Function. For example, the IntFunction
interface always takes an Integer and requires only one
parameterized type for the result type. Its apply method returns
an int.

R apply(int input)

The LongFunction and DoubleFunction interfaces are
similar to IntFunction, except they take a long and a double as
an argument, respectively.

Then, there are variants that do not require parameterized
arguments at all, because they have been designed for a specific
argument type and a specific return type. For instance, the
IntToDoubleFunction interface can be used to create a
function that accepts an int and returns a double. Instead of
apply, the interface offers an applyAsDouble method. An
example of IntToDoubleFunction interface is given in Listing
19.4. It is a function that converts a temperature on the Celcius
scale to Fahrenheit.

Listing 19.4: The
IntToDoubleFunctionDemo1 class

package app19.function;

import

java.util.function.IntToDoubleFunction;

public class IntToDoubleFunctionDemo1 {

 public static void main(String[]

args) {

 IntToDoubleFunction

celciusToFahrenheit =

 (input) -> 1.8 * input +

32;

 int celcius = 100;

 double fahrenheit =

celciusToFahrenheit.applyAsDouble(celcius

);

 System.out.println(celcius +

"\u2103" + " = "

 + fahrenheit +

"\u2109\n");

 }

}

This is the output of IntToDoubleFunctionDemo1.

100? = 212.0?

Similar to IntToDoubleFunction are

LongToDoubleFunction and LongToIntFunction. I am
sure you can guess what they do from their names.

The UnaryOperator interface is another specialization of
Function whose operand type is the same as the return type. Its
declaration is as follows.

public interfaceUnaryOperator<T> extends
Function<T,T>BinaryOperator is a specialization of
BiFunction. BinaryOperator represents an operation with
two operands of the same type and returns a result that has the
same type as the operands.

Predicate
A Predicate is a function that takes a parameter and returns
true or false based on the value of the parameter. It has a single
abstract method called test.

For example, the PredicateDemo1 class in Listing 19.5
defines a Predicate that evaluates a string input and returns
true if every character in the string is a number.

Listing 19.5: The PredicateDemo1 class
package app19.function;

import java.util.function.Predicate;

public class PredicateDemo1 {

 public static void main(String[]

args) {

 Predicate<String> numbersOnly =

(input) -> {

 for (int i = 0; i <

input.length(); i++) {

 char c = input.charAt(i);

 if

("0123456789".indexOf(c) == -1) {

 return false;

 }

 }

 return true;

 };

System.out.println(numbersOnly.test("1234

5"));// true

System.out.println(numbersOnly.test("100a

")); // false

 }

}

Supplier
A Supplier takes no parameter and returns a value.
Implementations must override its get abstract method and
returns an instance of the interface’s type parameter.

Listing 19.6 shows an example of Supplier. It defines a
Supplier that returns a one-digit random number and uses a
for loop to print five random numbers.

Listing 19.6: The SupplierDemo1 class
package app19.function;

import java.util.Random;

import java.util.function.Supplier;

public class SupplierDemo1 {

 public static void main(String[]

args) {

 Supplier<Integer> oneDigitRandom

= () -> {

 Random random = new Random();

 return random.nextInt(10);

 };

 for (int i = 0; i < 5; i++) {

 System.out.println(

oneDigitRandom.get());

 }

 }

}

There are also specialized variants of Supplier, such as
DoubleSupplier (returns a Double), IntSupplier and

LongSupplier.

Consumer
A Consumer is an operation that returns no result. It has one
abstract method called accept.

Listing 19.7 shows an example of Consumer that takes a
string and print it center-justified.

Listing 19.7: Consumer example
package app19.function;

import java.util.function.Consumer;

import java.util.function.Function;

public class ConsumerDemo1 {

 public static void main(String[]

args) {

 Function<Integer, String> spacer

= (count) -> {

 StringBuilder sb = new

StringBuilder(count);

 for (int i = 0; i < count;

i++) {

 sb.append(" ");

 }

 return sb.toString();

 };

 int lineLength = 60; //

characters

 Consumer<String> printCentered =

 (input) -> {

 int length =

input.length();

 String spaces =

spacer.apply(

 (lineLength -

length) / 2);

System.out.println(spaces + input);

 };

 printCentered.accept("A lambda

expression a day");

 printCentered.accept("makes

you");

 printCentered.accept("look

smarter");

 }

}

The example in Listing 19.7 features a Consumer that takes a
String and prints it after prefixing it with a certain number of
spaces. The maximum number of characters in each line is 60
and the spaces are obtained by calling a Function named

spacer. The implementation of the Consumer’s accept method
is given by this Lambda expression.

 (input) -> {

 int length =

input.length();

 String spaces =

spacer.apply(

 (lineLength -

length) / 2);

System.out.println(spaces + input);

 }

The function spacer returns the specified number of spaces and
is defined as

 Function<Integer, String> spacer

= (count) -> {

 StringBuilder sb = new

StringBuilder(count);

 for (int i = 0; i < count;

i++) {

 sb.append(" ");

 }

 return sb.toString();

 };

The function employs a for loop that appends a space to a
StringBuilder count number of times, where count is the
parameter to the function. When the loop exits, it returns the
String representation of the StringBuilder.

If you run the ConsumerDemo1 class, you will see this on
your console.

 A lambda expression a

day

 makes you

 look smarter

Method References

A lot of Java methods take a functional interface as an argument.
For instance, one of the sort methods in java.util.Arrays
accepts an instance of Comparator, which is a functional
interface. The signature of the sort method is as follows.

public static T[] sort(T[] array,

Comparator<? super T> comparator)

Instead of passing an implementation of Comparator to the
sort method, you can pass a lambda expression. You have seen
how to do this in the previous sections.

Now, you can go one step further by passing a method
reference in lieu of a lambda expression. A method reference is
simply a class name or an object reference followed by the
double colon operator (::) and a method name.

Why would you want to use a method reference? There are two
reasons for this.

1. A method reference has shorter syntax
than a lambda expression because a
method reference does not contain a
definition like a lambda expression. The
method body is defined somewhere else.

2. You can use an existing method, thus
promoting code reuse.

You can use a reference to a static method, an instance method
or even a constructor. You use the double colon (::), a new
operator in Java 8, to separate the class name/object reference
and the method/constructor name. The class that encapsulates
the referenced method does not have to implement the

functional interface.

The syntax for method references is one of the following.

ClassName::staticMethodName

ContainingType::instanceMethod

objectReference::methodName

ClassName::new

Each of the kinds of method references are discussed in the
following subsections.

Reference to A Static Method
A reference to a static method can be passed as an argument to a
method that expects a functional interface if the method has a
compatible return type and compatible argument types with the
functional interface’s abstract method.

As the first example in this topic, consider the NoMethodRef
class in Listing 19.8, which illustrates the use of a functional
interface without method references. The class defines a
functional interface called StringListFormatter that takes a
List of Strings and formats the strings. The format method,
the abstract method of the interface, takes a delimiter and a
List of Strings. There is also a formatAndPrint static method
that takes an instance of StringListFormatter, a delimiter and
a List of Strings. This method in turn calls the format method

on the StringListFormatter and prints the formatted list.

Listing 19.8: The NoMethodRef class
package app19.methodref;

import java.util.Arrays;

import java.util.List;

public class NoMethodRef {

 @FunctionalInterface

 interface StringListFormatter {

 String format(String delimiter,

List<String> list);

 }

 public static void

formatAndPrint(StringListFormatter

formatter,

 String delimiter,

List<String> list) {

 String formatted =

formatter.format(delimiter, list);

 System.out.println(formatted);

 }

 public static void main(String[]

args) {

 List<String> names =

Arrays.asList("Don", "King", "Kong");

 StringListFormatter formatter =

 (delimiter, list) -> {

 StringBuilder sb =

new StringBuilder(100);

 int size =

list.size();

 for (int i = 0; i <

size; i++) {

sb.append(list.get(i));

 if (i < size - 1)

{

sb.append(delimiter);

 }

 }

 return sb.toString();

 };

 formatAndPrint(formatter, ", ",

names);

 }

}

The main method in NoMethodRef constructs a string list
with three elements and creates an implementation of
StringListFormatter with this lambda expression.

 StringListFormatter formatter =

 (delimiter, list) -> {

 StringBuilder sb =

new StringBuilder(100);

 int size =

list.size();

 for (int i = 0; i <

size; i++) {

sb.append(list.get(i));

 if (i < size - 1)

{

sb.append(delimiter);

 }

 }

 return sb.toString();

 };

Basically, it iterates over the List and adds a delimiter between
two elements. No delimiter is appended after the last element.

The main method then calls the formatAndPrint method
passing the lambda expression , a delimiter and the string list. If
you run NoMethodRef, you will see the formatted list:

Don, King, Kong

After spending twenty minutes writing the code, you realized
that the lambda expression does the same job as the join
method of the String class. This is a static method added to
String in JDK 1.8. One of its overrides has the following
signature.

public static String join(CharSequence

delimiter,

 Iterable<? extends CharSequence>

elements)

Compare it with the format method in the functional interface
in Listing 19.8.

public String format(java.langString

delimiter,

 java.util.List<String> list);

Since List extends Iterable and String implements
CharSequence, join is compatible with format.

A method reference allows you to reuse an existing
implementation such as String.join(). As such, you can rewrite
the NoMethodRef class to use a reference to String.join().

This is illustrated in the MethodReferenceDemo1 class in
Listing 19.9.

Listing 19.9: The
MethodReferenceDemo1 class

package app19.methodref;

import java.util.Arrays;

import java.util.List;

public class MethodReferenceDemo1 {

 @FunctionalInterface

 interface StringListFormatter {

 String format(String delimiter,

List<String> list);

 }

 public static void

formatAndPrint(StringListFormatter

formatter,

 String delimiter,

List<String> list) {

 String formatted =

formatter.format(delimiter, list);

 System.out.println(formatted);

 }

 public static void main(String[]

args) {

 List<String> names =

Arrays.asList("Don", "King", "Kong");

 formatAndPrint(String::join, ",

", names);

 }

}

You still have the same StringListFormatter interface and the
same formatAndPrint method. However, the main method
no longer contains a lambda expression implementing
StringListFormatter. Instead, you use String.join as an
implementation of StringListFormatter.

formatAndPrint(String::join, ", ",

names);

As a side note, you notice that the abstract method in
StringListFormatter takes two parameters and returns a
value. This is a good candidate for a BiFunction. The
WithBiFunction class in Listing 19.10 is a rewrite of the
MethodReferenceDemo1 class that eliminates the
StringListFormatter interface entirely. The
formatAndPrint method has also been modified to accept a
BiFunction as its first parameter.

Listing 19.10: The WithBiFunction class
package app19.methodref;

import java.util.Arrays;

import java.util.List;

import java.util.function.BiFunction;

public class WithBiFunction {

 public static void formatAndPrint(

 BiFunction<String,

List<String>, String> formatter,

 String delimiter,

List<String> list) {

 String formatted =

formatter.apply(delimiter, list);

 System.out.println(formatted);

 }

 public static void main(String[]

args) {

 List<String> names =

Arrays.asList("Don", "King", "Kong");

 formatAndPrint(String::join, ",

", names);

 }

}

Reference to An Instance Method
where An Object Reference Is
Available
The compatibility rule for this kind of method reference is the
same as the method reference to a static method. The referenced
method must have a compatible return value and compatible
arguments as the abstract method of the functional interface the
method replaces.

For example, in JDK 1.8 the java.lang.Iterable interface has
a default method named forEach that accepts a Consumer:

default void

forEach(java.util.function.Consumer<?

super T> action)

forEach performs the given action for each element of the
Iterable. Thanks to inheritance, this method is inherited by its
subinterface List, which I will use in the example in Listing
19.11.

Listing 19.11: Referencing an instance
method in an object

package app19.methodref;

import java.util.Arrays;

import java.util.List;

public class MethodReferenceDemo2 {

 public static void main(String[]

args) {

 List<String> fruits =

Arrays.asList("Apple", "Banana");

 // with lambda expression

 fruits.forEach((name) ->

System.out.println(name));

 // with method reference

fruits.forEach(System.out::println);

 }

}

The MethodReferencDemo2 class has a list of fruits that
needs to be printed. You can do this by calling the forEach
method, passing a Consumer in the form of a lambda
expression like so:

fruits.forEach((name) ->

System.out.println(name));

Alternatively, since System.out is an existing object that the
system has created for you, you can use a method reference to
the println method on System.out.

fruits.forEach(System.out::println);

Reference to An Instance Method
where No Object Reference Is
Available
Hold on tight. This one is a bit tricky and requires your full
concentration.

You can pass a reference to an instance method as a method
argument to replace a functional interface. In this case, you do
not have to explicitly create an instance of the containing class.
The syntax for this kind of method reference is different from
that of the first and second kinds of method references. With the
first two kinds, the number of arguments must be the same as
the number of arguments expected by the functional interface’s
abstract method. When using an instance method without an
object reference, the referenced method must have one fewer
argument than the number of arguments expected by the
functional interface’s abstract method. Therefore, if the
functional interface’s abstract method takes four arguments, the
referenced instance method must take only three arguments,

which must be compatible with the second, third and fourth
arguments of the abstract method. In addition, the first
argument of the abstract method must be of a type that is
compatible as the class containing the instance method.

The compatibility rule for this kind of method reference is
depicted below. The first line is a pseudo-signature of the
functional interface’s abstract method and the second line a
pseudo-signature of the referenced instance method.

returnType abstractMethod(type-1, type-2,

type-3, type-4)

returnType instanceMethod(type-2, type-3,

type-4)

Here, type-1 must be compatible with the class containing the
instance method because the class will be instantiated and the
instance passed as the first argument to the abstract method,
along with the other arguments.

This will become clear after you have seen the example for this
kind of method reference.

Listing 19.12: The
MethodReferenceDemo3 class

package app19.methodref;

import java.util.Arrays;

public class MethodReferenceDemo3 {

 public static void main(String[]

args) {

 String[] names = {"Alexis",

"anna", "Kyleen"};

 Arrays.sort(names,

String::compareToIgnoreCase);

 for (String name : names) {

 System.out.println(name);

 }

 }

}

The example in Listing 19.12 shows how to pass an instance
method reference to Arrays.sort in lieu of a Comparator. The
MethodReferenceDemo3 class contains a string array with
three names where case-sensitivity is not strictly adhered to. If
you use an override of Arrays.sort that only takes one
argument to sort this array, the names will be sorted as

Alexis, Kyleen, anna

This is not really what you really want. So, you need to use
Arrays.sort that also takes a Comparator:

public static <T> void sort(T[] array,

Comparator<? super T> c)

The example shows how you can use an instance method
reference String.compareIgnoreCase to replace a
Comparator (Recall that Comparator is a functional
interface). Here is the signature of
String.compareToIgnoreCase.

public int compareToIgnoreCase(String

str)

It has one less argument than the signature of
Comparator.compare.

int compare(String str1, String str2)

This is perfect for the second kind of method reference.

If you run the code, you will see that the names are sorted
correctly. Here is the result.

Alexis

anna

Kyleen

Reference to A Constructor
The fourth kind of method reference uses a constructor. The
syntax for a constructor reference is as follows.

ClassName::new

Suppose you need a method to convert an Integer array to a
Collection and you need to be able to determine whether the
resulting collection is a List or a Set. To this end, you can create
the arrayToCollection method in Listing 19.13.

Listing 19.13: The
MethodReferenceDemo4 class

package app19.methodref;

import java.util.ArrayList;

import java.util.Collection;

import java.util.HashSet;

import java.util.function.Supplier;

public class MethodReferenceDemo4 {

 public static Collection<Integer>

arrayToCollection(

 Supplier<Collection<Integer>>

supplier, Integer[]

 numbers) {

 Collection<Integer> collection =

supplier.get();

 for (int i : numbers) {

 collection.add(i);

 }

 return collection;

 }

 public static void main(String[]

args) {

 Integer[] array = {1, 8, 5};

 Collection<Integer> col1

 =

arrayToCollection(ArrayList<Integer>::new

, array);

 System.out.println("Natural

order");

col1.forEach(System.out::println);

System.out.println("=====================

==");

 System.out.println("Ascending

order");

 Collection<Integer> col2

 =

arrayToCollection(HashSet<Integer>::new,

array);

col2.forEach(System.out::println);

 }

}

Instead of passing this lambda expression as the first argument
to the method.

() -> new ArrayList<Integer>()

You can simply pass this reference to the ArrayList constructor.

ArrayList<Integer>::new

And, instead of this

() -> new HashSet<Integer>()

You can write

HashSet<Integer>::new

If you run the example, you will see this on the console.

Natural order

1

8

5

=======================

Ascending order

1

5

8

More examples of constructor references can be found in
Chapter 19, “Working with Streams.”

Optional and Similar Classes

Java 8 adds the Optional, OptionalInt, OptionalLong and
OptionalDouble classes to deal with
NullPointerExceptions. Part of the java.util package, these

classes are excellent examples of classes that heavily use lambda
expressions and method references.

These four classes are similar and Optional is the most
important of them as it can be used with any type whereas the
other classes are only suitable for integers, longs or doubles.
Consequently, Optional is the main focus of this section.

Optional is a container for a value that can potentially be
null. As you should know by now, trying to call a method or a
field on a null reference variable throws a
NullPointerException. Handling null is not hard, but it can
be tedious. Consider the code in Listing 19.14 that shows a
Company class that can have an Office, which in turn can have
an Address. To make things simple, here an Address only
contains two fields, street and city. All these properties can be
null. A Company may not have an Office and an Address may
not have full data about the street and city.

Listing 19.14: Tedious way of checking
for nullity

package app19.optional1;

class Company {

 private String name;

 private Office office;

 public Company(String name, Office

office) {

 this.name = name;

 this.office = office;

 }

 public String getName() {

 return name;

 }

 public Office getOffice() {

 return office;

 }

}

class Office {

 private String id;

 private Address address;

 public Office(String id, Address

address) {

 this.id = id;

 this.address = address;

 }

 public String getId() {

 return id;

 }

 public Address getAddress() {

 return address;

 }

}

class Address {

 private String street;

 private String city;

 public Address(String street, String

city) {

 this.street = street;

 this.city = city;

 }

 public String getStreet() {

 return street;

 }

 public String getCity() {

 return city;

 }

}

public class OptionalDemo1 {

 public static void main(String[]

args) {

 Address address1 = new

Address(null, "New York");

 Office office1 = new

Office("OF1", address1);

 Company company1 = new

Company("Door Never Closed",

 office1);

 // What is the street address of

company1?

 // In which city company1 is

located?

 String streetAddress = null;

 String city = null;

 if (company1 != null) {

 Office office =

company1.getOffice();

 if (office != null) {

 Address address =

office.getAddress();

 if (address != null) {

 streetAddress =

address.getStreet();

 city =

address.getCity();

 }

 }

 }

 System.out.println("Street Name:"

+ streetAddress);

 System.out.println("City:" +

city);

 }

}

The OptionalDemo1 class in Listing 19.14 creates a Company
for testing and tries to get the street address of the company.
Realizing that any of the fields can be null, the programmer
made a conscious attempt to test each single instance for nullity
before calling a method on it, resulting in this code:

 if (company1 != null) {

 Office office =

company1.getOffice();

 if (office != null) {

 Address address =

office.getAddress();

 if (address != null) {

 streetAddress =

address.getStreet();

 city =

address.getCity();

 }

 }

 }

This is kind of tedious and readability suffers.

The Optional class can help. If you decide to use it, you wrap
every field that can potentially be null in an Optional. For
example, the office field in Company should now be:

private Optional<Office> office;

And the city field in Address should be

private Optional<String> city;

Before you learn how to rewrite the example in Listing 19.14
using Optional, look at the methods of Optional in Table 19.2.

Method

Description

empty

Returns an empty Optional

filter

If a value is present and
matches the given predicate,
return an Optional
describing the value.
Otherwise, returns an empty
Optional.

flatMap

If a value is preset, apply the
specified mapping function
on the value and return and
Optional describing the
mapping result. If a value is
not present, return an empty
Optional.

get

If a value is present, returns
the value. Otherwise, throw a
NoSuchElementException

.

ifPresent

If a value is present, invoked
the given Consumer with the
value.

isPresent

Returns true if a value is
present. Otherwise, returns
false.

map

If a value is present, apply the
given mapping function to it.
If the result is not null, return
an Optional describing the
result.

Returns an Optional

of

describing the given non-null
value.

ofNullable

If the given value is non-null,
returns an Optional
describing the value. If the
value is null, returns an
empty Optional.

orElse

If a value is present, returns
the value. Otherwise, returns
the specified value.

Table 19.2: More important methods of
Optional

The methods are easy to use. To wrap a value in an Optional,
call its static of or ofNullable method. You use of if you are
certain the value you are wrapping is not null. If the value is
potentially null, use ofNullable instead. Alternatively, the

empty method is also static and returns an empty Optional,
i.e. an Optional without a value.

The rest of the methods are for handling an Optional. If you
simply want to retrieve the value in an Optional, you would first
check if a value is present. You can do this by using isPresent
followed by get:

if (optional.isPresent()) {

 value = optional.get();

}

However, this is similar to checking for nullity when not using
Optional. There are better ways, though.

The ifPresent method accepts a Consumer that will be
called if a value is present. So if you simply want to print the
value, you can do this.

optional.ifPresent(System.out::println);

If no value is present, nothing will happen. So this is getting
better, isn’t it?

However, wait until you get to use flatMap. This method
applies a mapping function and returns an Optional describing

the value. Better still, it can be cascaded, like this to replace the
series of null check in Listing 19.14:

company1.flatMap(Company::getOffice)

 .flatMap(Office::getAddress)

 .flatMap(Address::getCity)

 .ifPresent(System.out::println);

Now look at Listing 19.15 that contains a rewrite of the code in
Listing 19.14. All fields that can potentially be null have been
wrapped in Optionals.

Listing 19.15: Using Optional
package app19.optional2;

import java.util.Optional;

class Company {

 private String name;

 private Optional<Office> office;

 public Company(String name,

Optional<Office> office) {

 this.name = name;

 this.office = office;

 }

 public String getName() {

 return name;

 }

 public Optional<Office> getOffice() {

 return office;

 }

}

class Office {

 private String id;

 private Optional<Address> address;

 public Office(String id,

Optional<Address> address) {

 this.id = id;

 this.address = address;

 }

 public String getId() {

 return id;

 }

 public Optional<Address> getAddress()

{

 return address;

 }

}

class Address {

 private Optional<String> street;

 private Optional<String> city;

 public Address(Optional<String>

street, Optional<String> city) {

 this.street = street;

 this.city = city;

 }

 public Optional<String> getStreet() {

 return street;

 }

 public Optional<String> getCity() {

 return city;

 }

}

public class OptionalDemo2 {

 public static void main(String[]

args) {

 Optional<Address> address1 =

Optional.of(

 new

Address(Optional.ofNullable(null),

 Optional.of("New

York")));

 Optional<Office> office1 =

Optional.of(

 new Office("OF1",

address1));

 Optional<Company> company1 =

Optional.of(

 new Company("Door Never

Closed", office1));

 // What is the street address of

company1?

 // In which city company1 is

located?

 Optional<Office> maybeOffice =

company1.flatMap(Company::getOffice);

 Optional<Address> maybeAddress =

maybeOffice.flatMap(Office::getAddress);

 Optional<String> maybeStreet =

maybeAddress.flatMap(Address::getStreet);

maybeStreet.ifPresent(System.out::println

);

 if (maybeStreet.isPresent()) {

System.out.println(maybeStreet.get());

 } else {

 System.out.println("Street

not found");

 }

 // shorter way

 String city =

company1.flatMap(Company::getOffice)

 .flatMap(Office::getAddress)

 .flatMap(Address::getCity)

 .orElse("City not found");

 System.out.println("City: " +

city);

 // only print if city is not null

company1.flatMap(Company::getOffice)

.flatMap(Office::getAddress)

.flatMap(Address::getCity)

.ifPresent(System.out::println);

 }

}

The OptionalDemo2 class shows how to get the street and city
of a company, first by assigning the return value of each
flatMap invocation to a variable and then by cascading it.

The OptionalInt, OptionalLong and OptionalDouble
classes have a subset of the methods offered by Optional. For
example, they have these methods: empty, ifPresent,
isPresent, and of. of takes a primitive and since a primitive
cannot be null, there is no ofNullable method. There is no get
method either. Instead, OptionalInt has a getAsInt method,
OptionalLong a getAsLong method and OptionalDouble a
getAsDouble method. There are no filter, flatMap and map
methods either.

Summary

A new feature in Java 8, lambda expressions can make certain
constructs shorter and more readable, especially when you are
dealing with inner classes. This chapter discussed lambda
expressions, functional interfaces, the pre-defined functional
interfaces and method references. The last section of this chapter
explained how to deal with null pointer exceptions using
Optional.

Quiz

1. Why add lambda expressions to Java?
2. What are lambda expressions also known

as?
3. What is a function interface?
4. What is a method reference?
5. What is the operator used in the method

reference?
6. What are the four classes in java.util for

handling null pointer exceptions?

Chapter 20
Working with Streams

In this chapter you will learn about the Stream API, a new
feature of JDK 8. To understand the topics in this chapter, you
need to know how to use Lambda expressions and the
predefined functional interfaces in java.util.function, both
discussed in Chapter 19, “Lambda Expressions.”

Overview

A stream is like a pipe, but instead of transporting water or oil, a
stream transfers data from a source to a destination. Depending
on the mode of transfer, a stream can be either sequential or
parallel. A parallel stream is especially useful if the computer the
program is running on has a multicore CPU.

At first glance, a stream may look like a collection. However, a
stream is not a data structure for storing objects, it only moves
them. As such, you cannot add an element to a stream as you
would to a collection.

The main reason for using a stream is for its supports for
sequential and parallel aggregate operations. For example, you
can easily filter, sort or map the elements in a stream.

The Stream API consists of the types in the java.util.stream
package. The Stream interface is the most frequently used
stream type. A Stream can be used to transfer any type of
objects. There are also specializations of Stream: IntStream,
LongStream and DoubleStream. All the four stream types
are derived from BaseStream.

Table 20.1 shows some of the methods defined in the Stream
interface.

Method

Description

concat

Lazily concatenates or links
together two streams. It
returns a new stream whose
elements are all the elements
of the first stream followed by
all the elements of the second
stream.

count

Returns the number of
elements of the stream.

empty

Creates and returns an empty
stream.

filter

Returns a new stream whose
elements are all the elements
of this stream that match the
given predicate.

forEach

Performs an action on each
element of the stream.

limit

Returns a new stream having
the specified maximum
number of elements from the
current stream.

map

Returns a stream consisting
of the results of applying the
given function to the
elements of this stream.

max

Returns the maximum
element of this stream
according to the given
comparator.

min

Returns the minimum
element of this stream
according to the given
comparator.

of

Returns a stream whose
source is the given values.

reduce

Performs a reduction on this
stream’s elements using an
identity and an accumulator.

sorted

Returns a new stream
containing the elements of
this stream in natural order

toArray

Returns an array containing
the elements of this stream.

Table 20.1: More important methods of
Stream

Some of the Stream methods perform intermediate operations
and some perform terminal operations. An intermediate
operation transforms a stream into another stream. Methods
such as filter, map and sorted are examples of methods that
perform intermediate operations. A terminal operation produces
a result or side-effect. Methods such as count and forEach
perform terminal operations.

It is worth noting that streams are lazy. Computation on the
source is only performed when a terminal operation is started.

Stream’s methods will be explained in detail in the sections to
come.

Creating and Obtaining a
Stream

You can use the of static method in Stream to create a
sequential stream. For example, the following code snippet
creates a Stream of Integers with three elements.

Stream<Integer> stream = Stream.of(100,

200, 300);

Or, you can pass an array to the of method:

String[] names = {"Bart", "Lisa",

"Maggie"};

Stream<String> stream = Stream.of(names);

The java.util.Arrays utility class now has a stream method
for converting an array to a sequential stream. For instance, you
can rewrite the code above using Arrays to create a Stream
from an array.

String[] names = {"Bart", "Lisa",

"Maggie"};

Stream<String> stream =

Arrays.stream(names);

In addition, the java.util.Collection interface also has default
methods named stream and parallelStream that return a
sequential or a parallel stream, respectively, with the collection
as its source. Their signatures are as follows.

default java.util.stream.Stream<E>

stream()

default java.util.stream.Stream<E>

parallelStream()

Thanks to these methods in Collection, getting a Stream from
a List or a Set is a breeze.

On top of that, the java.nio.file.Files class offers two
methods that return a Stream<Path>, list and walk. list
returns a Stream of Paths that point to the entries in the given
path. On the other hand, walk walks through the entries in the
given path and return them as a stream.

Files also contains a lines method that returns all lines in a
text file as a Stream<String>.

For example, the ObtainStreamDemo class in Listing 20.1
shows how to obtain a stream from the Files class.

Listing 20.1: The ObtainStreamDemo
class

package app20;

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.util.stream.Stream;

public class ObtainStreamDemo {

 public static void main(String[]

args) {

 Path path = Paths.get(".");

 try {

 Stream<Path> list =

Files.list(path);

list.forEach(System.out::println);

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

}

The code in Listing 20.1 constructs a Path that references the
current directory (i.e. the directory from which the Java program
was run) and passes it to Files.list. The method returns a
Stream of Paths. The code then calls the forEach method on
the Stream passing a Consumer that prints each entry. If you
run the code, you will see all entries in the current path printed
on the console.

Concatenating Streams

The Stream interface provides a concat method for lazily
concatenating or linking two streams together. This method
returns a new stream whose elements are all the elements of the
first stream followed by all the elements of the second stream.

The code in Listing 20.2 shows how to concatenate two
Streams of Strings and sort them.

Listing 20.2: Joining streams
package app20;

import java.util.stream.Stream;

public class StreamConcatDemo {

 public static void main(String[]

args) {

 Stream<String> stream1 =

 Stream.of("January",

"Christie");

 Stream<String> stream2 =

 Stream.of("Okanagan",

"Sydney", "Alpha");

 Stream.concat(stream1,

stream2).sorted().

forEach(System.out::println);

 }

}

If you run the StreamConcatDemo class in Listing 20.2, you
will see the following printed on the console.

Alpha

Christie

January

Okanagan

Sydney

Filtering

When you filter a stream you select the elements of the stream
based on certain criteria and return a new Stream for the
selected elements. You filter a stream by calling the filter
method on a Stream object, passing a Predicate. The
Predicate determines whether or not an element will be
included in the new stream.

Here is the signature of the filter method.

Stream<T>

filter(java.util.function.Predicate<?

super T> predicate)

As an example, the code in Listing 20.3 reads the example.txt
file in Listing 20.4 and let pass only lines that are not empty and
not a comment. A comment line starts with a hash (#) after
removing all trailing spaces.

Listing 20.3: The StreamFilterDemo1
class

package app20;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.util.function.Predicate;

import java.util.stream.Stream;

public class StreamFilterDemo1 {

 public static void main(String[]

args) {

 Predicate<String>

notCommentOrEmptyLine

 = (line) ->

line.trim().length() > 0

 &&

!line.trim().startsWith("#");

 try (FileReader fr = new

FileReader("example.txt");

 BufferedReader br = new

BufferedReader(fr)) {

 Stream<String> lines =

br.lines();

lines.filter(notCommentOrEmptyLine)

.forEach(System.out::println);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Listing 20.4: The example.txt file
Set path so it includes user's private

bin if it exists

if [-d "$HOME/bin"] ; then

 PATH="$HOME/bin:$PATH"

fi

If you run the class in Listing 20.3, you will see these lines on the
console. It prints three of five lines in the text file.

if [-d "$HOME/bin"] ; then

 PATH="$HOME/bin:$PATH"

fi

As a second example, the class in Listing 20.5 shows how you
can use a stream to do a file search on your computer. To be
more precise, the code displays all java files located in a given
directory and any of its subdirectories.

Listing 20.5: The StreamFilterDemo2
class

package app20;

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.util.stream.Stream;

public class StreamFilterDemo2 {

 public static void main(String[]

args) {

 // find all java files in the

parent directory and

 // all its subdirectories

 Path parent = Paths.get("..");

 try {

 Stream<Path> list =

Files.walk(parent);

 list.filter((Path p) ->

p.toString().endsWith(".java"))

.forEach(System.out::println);

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

}

The StreamFilterDemo2 class starts by constructing a Path
that points to the parent of the current directory. It then passes
the Path to Files.walk to obtain a Stream of Paths and assign
the result to a local variable named list. Next, it filters the
stream with a Predicate that will include all Paths whose name
ends with .java and calls the forEach method to print the path.

Mapping

The Stream interface’s map method maps each element of a
stream with the result of passing the element to a function. Here
is the signature of map.

<R> Stream<R>

map(java.util.function.Function<? super

T,

 ? extends R> mapper)

As you can see from the signature, the map method returns a
new Stream of elements whose type may be different from the
type of the elements of the current stream.

Consider the code in Listing 20.6 that shows a more useful and
realistic example of a Stream to calculate the average age of all
employees in a company. It does this in two steps. First, it calls
the map method to convert a Stream of Employee objects to a
Stream of Period objects. Each Period element of the new
stream contains the period between today and each employee’s
birthday. In other words, each Period element contains the age
of an employee. In the second step, the code calls the
mapToLong method to calculate the average age of all the
employees.

Listing 20.6: The StreamMapDemo
class

package app20;

import java.time.LocalDate;

import java.time.Month;

import java.time.Period;

import java.util.stream.Stream;

public class StreamMapDemo {

 class Employee {

 public String name;

 public LocalDate birthday;

 public Employee(String name,

LocalDate birthday) {

 this.name = name;

 this.birthday = birthday;

 }

 }

 public Employee[] getEmployees() {

 Employee[] employees = {

 new Employee("Will Biteman",

 LocalDate.of(1984,

Month.JANUARY, 1)),

 new Employee("Sue Everyman",

 LocalDate.of(1980,

Month.DECEMBER, 25)),

 new Employee("Ann Wangi",

 LocalDate.of(1976,

Month.JULY, 4)),

 new Employee("Wong Kaching",

 LocalDate.of(1980,

Month.SEPTEMBER, 1))

 };

 return employees;

 }

 public double

calculateAverageAge(Employee[] employees)

{

 LocalDate today =

LocalDate.now();

 Stream<Employee> stream =

Stream.of(employees);

 Stream<Period> periods =

stream.map(

 (employee)->

Period.between(

employee.birthday, today));

 double avgAge =

periods.mapToLong(

 (period)-

>period.toTotalMonths())

 .average().getAsDouble()

/ 12;

 return avgAge;

 }

 public static void main(String[]

args) {

 StreamMapDemo demo = new

StreamMapDemo();

 Employee[] employees =

demo.getEmployees();

 double avgAge =

demo.calculateAverageAge(employees);

 System.out.printf("Average

employee age : %2.2f\n",

 avgAge);

 }

}

If you run the StreamMapDemo class, you will see the average
age of the employees. Of course, the result will depend on when
you run the program. When I ran it on my computer at the time
of writing this book, I got the following result.

Average employee age : 34.13

Reduction

One of the more useful methods in Stream is reduce, which
can perform reduction operations. There are two overloads of
this method:

java.util.Optional<T>

reduce(java.util.function.BinaryOperator<

T>

 accumulator)

T reduce(T identity,

java.util.function.BinaryOperator<T>

accumulator)

Looking at the two signatures, you probably notice that the
reduce method reduces a Stream of type T to a single instance
of type T, with the help of the specified BinaryOperator. Even
though the description in the Java documentation is not that
intuitive, in reality this method is not that hard to understand.

Figure 20.1 shows what happens behind the scene when a
sequential stream of four elements is being reduced.

Figure 20.1: Reducing a stream

First, element-1 and element-2 are used as operands to the
specified binary operator. The result of this operation is an
object of the same type as the elements, which I call result-a.
Next, result-a and element-3 are passed to the binary operator,

resulting result-b, which again has the same type as the
elements. Finally, result-b and element-4 are passed to the
binary operator, returning result-c. Since there is no more
element in the stream, result-c is returned as the result of the
reduction.

For a parallel stream, operations can be done in parallel. This
means, the operation on element-1 and element-2 may take place
at the same time as the operation on element-3 and element-4,
and then the results of the first operation and the second
operation are passed to the binary operator and its result
returned.

Okay. Let’s now look at an example.

The StreamReductionDemo1 class in Listing 20.7 shows a
Stream of four Order objects that is reduced to a single Order
object, which is the Order placed most recently and having the
largest value.

Listing 20.7: StreamReductionDemo1
class

package app20;

import java.time.LocalDate;

import java.time.Month;

import java.util.Optional;

import java.util.stream.Stream;

public class StreamReductionDemo1 {

 class Order {

 public int orderId;

 public double value;

 public LocalDate orderDate;

 public Order(int orderId, double

value,

 LocalDate orderDate) {

 this.orderId = orderId;

 this.value = value;

 this.orderDate = orderDate;

 }

 }

 public Order[] getOrders() {

 Order[] orders = {

 new Order(1, 100.49,

 LocalDate.of(2014,

Month.DECEMBER, 11)),

 new Order(1, 88.09,

 LocalDate.of(2014,

Month.DECEMBER, 29)),

 new Order(1, 10.29,

 LocalDate.of(2014,

Month.DECEMBER, 30)),

 new Order(1, 100.49,

 LocalDate.of(2014,

Month.NOVEMBER, 22))

 };

 return orders;

 }

 public Optional<Order>

getLatestLargestOrder(Order[] orders) {

 Stream<Order> stream =

Stream.of(orders);

 Optional<Order> theOrder =

stream.reduce((a, b) -> {

 if (a.value > b.value) {

 return a;

 } else if (a.value <

b.value) {

 return b;

 } else {

 if

(a.orderDate.isAfter(b.orderDate)) {

 return a;

 } else {

 return b;

 }

 }

 });

 return theOrder;

 }

 public static void main(String[]

args) {

 StreamReductionDemo1 demo = new

StreamReductionDemo1();

 Order[] orders =

demo.getOrders();

 Optional<Order> latestLargest =

demo.getLatestLargestOrder(

 orders);

 if (latestLargest.isPresent()) {

 Order order =

latestLargest.get();

 System.out.printf("Latest

largest order value: $%2.2f,",

 order.value);

 System.out.println(" date : "

+ order.orderDate);

 } else {

 System.out.println("No order

found");

 }

 }

}

First, look at the Order class. The Order class models an order
and has three fields, orderId, value and orderDate. The
method main instantiates the StreamReductionDemo1 class
and calls its getOrders method, which returns an Order array

containing four orders. main then calls the
getLatestLargestOrder method, passing the Order array.

The getLatestLargestOrder method is of interest here. It
first creates a Stream<Order> using Stream’s of static
method.

 Stream<Order> stream =

Stream.of(orders);

It then calls the reduce method on the Stream passing a binary
operator.

 Optional<Order> theOrder =

stream.reduce((a, b) -> {

 if (a.value > b.value) {

 return a;

 } else if (a.value <

b.value) {

 return b;

 } else {

 if

(a.orderDate.isAfter(b.orderDate)) {

 return a;

 } else {

 return b;

 }

 }

 });

The binary operator compares the values of the two Order
operands and returns the one with the larger value. If both
values are equal, the order with the latest order date is returned.

main then checks if the returned Optional has an Order. If
so, the Order is unwrapped and its value and date are printed. If
not, an error message will be displayed.

If you run the class you will see this on the console.

Latest largest order value: $100.49, date

: 2014-12-11

If the stream is empty, the reduce method will not throw an
exception. It simply returns an empty Optional.

As a second example, consider the code in Listing 20.8. The
demo class uses a Stream to calculate the total order value in a
given month.

Listing 20.8: StreamReductionDemo2
class

package app20;

import java.time.LocalDate;

import java.time.Month;

import java.time.YearMonth;

import java.util.function.Predicate;

import java.util.stream.Stream;

public class StreamReductionDemo2 {

 class Order {

 public int orderId;

 public double value;

 public LocalDate orderDate;

 public Order(int orderId, double

value,

 LocalDate orderDate) {

 this.orderId = orderId;

 this.value = value;

 this.orderDate = orderDate;

 }

 }

 public Order[] getOrders() {

 Order[] orders = {

 new Order(1, 100.49,

 LocalDate.of(2014,

Month.DECEMBER, 11)),

 new Order(1, 88.09,

 LocalDate.of(2014,

Month.DECEMBER, 29)),

 new Order(1, 10.29,

 LocalDate.of(2014,

Month.DECEMBER, 30)),

 new Order(1, 100.49,

 LocalDate.of(2014,

Month.NOVEMBER, 22))

 };

 return orders;

 }

 public double

calculateSalesTotal(Order[] orders,

 YearMonth yearMonth) {

 Predicate<Order>

orderInGivenMonth

 = (order) ->

order.orderDate.getMonth()

 ==

yearMonth.getMonth()

 &&

order.orderDate.getYear()

 ==

yearMonth.getYear();

 Stream<Order> stream =

Stream.of(orders);

 return

stream.filter(orderInGivenMonth)

 .mapToDouble((order) ->

order.value)

 .reduce(0, (a, b) ->

a+b);

 }

 public static void main(String[]

args) {

 StreamReductionDemo2 demo = new

StreamReductionDemo2();

 Order[] orders =

demo.getOrders();

 double totalSalesForMonth =

demo.calculateSalesTotal(

 orders,

YearMonth.of(2014, Month.NOVEMBER));

 System.out.printf("Sales for Nov

2014 : $%2.2f\n",

 totalSalesForMonth);

 totalSalesForMonth =

demo.calculateSalesTotal(

 orders,

YearMonth.of(2014, Month.DECEMBER));

 System.out.printf("Sales for Dec

2014 : $%2.2f\n",

 totalSalesForMonth);

 }

}

The StreamReduceDemo2 class employs the same Order
objects as those in StreamReduceDemo1. The
calculateSalesTotal method creates a Stream from the
Order array, filters the Orders to those having a given
year/month and maps the elements to doubles before finally
reducing them to a double.

If you run this demo class, you will see this on your console.

Sales for Nov 2014 : $100.49

Sales for Dec 2014 : $198.87

Mutable Reductions

A mutable reduction operation accumulates a Stream’s
elements into a container and returns the container. The
container is mutable, hence the term mutable.

You use the Stream interface’s collect method to perform a
mutable reduction operation. Its signature is as follows.

<R> R

collect(java.util.function.Supplier<R>

supplier,

 java.util.function.BiConsumer<R,

? super T> accumulator,

 java.util.function.BiConsumer<R,

R> combiner);

The collect method does its job in three steps, each step
processing one of the arguments to the method.

In the first step, the method handles its first argument, which
is a Supplier that returns a container such as a Collection or a
StringBuilder. In a sequential stream, the Supplier is only
called once and there will only be one container. In a parallel
stream, however, the Supplier may be called multiple times and
there may be multiple containers.

In the second step, the method tackles the second argument,
which is a BiConsumer that performs the collection. Recall
that a BiConsumer accepts two arguments of different types
and do not return any value. Practically, the BiConsumer adds
each stream element to the container or containers that the
Supplier produced. In the case of a sequential stream, all
elements are added to the same container because there is only
one container. In a parallel stream, each element is added to a
different container.

In the last step, the method processes the third argument,
which is also a BiConsumer. In a sequential stream, no
processing takes place and the argument has no effect as it is
never called. Nevertheless, you cannot pass a null as the third
argument. In a parallel stream, the collectors are merged using
the operation specified by the BiConsumer.

The first example of this kind of operation is given in Listing
20.9. It demonstrates how you can collect an array of strings into
a StringBuilder. There are two streams involved, both doing
the same thing. The first stream uses lambda expressions and
the second uses method references.

Listing 20.9: StreamCollectDemo1 class
package app20;

import java.util.stream.Stream;

public class StreamCollectDemo1 {

 public static void main(String[]

args) {

 String[] strings = { "a", "b",

"c", "d" };

 Stream<String> stream1 =

Stream.of(strings);

 StringBuilder sb1 =

stream1.collect(

 () -> new

StringBuilder(),

 (a1, b1) ->

a1.append(b1),

 (a2, b2) ->

a2.append(b2));

System.out.println(sb1.toString());

 Stream<String> stream2 =

Stream.of(strings);

 StringBuilder sb2 =

stream2.collect(

 StringBuilder::new,

 StringBuilder::append,

 StringBuilder::append);

System.out.println(sb2.toString());

 }

}

For each stream, the collect method starts by creating a
StringBuilder. Since a sequential stream is involved, there is
only one StringBuilder. Next, the method appends each
stream element to the StringBuilder. Since there are four
elements in the stream, the append method of the
StringBuilder is called four times.

Since this is a sequential stream, the third argument is not
processed. The collect method simply returns the

StringBuilder that now contains “abcd”.

Listing 20.10 shows a second example for the mutable
reduction operation. This time I use a List as the container, in a
sequential stream setting. Again, there are two streams involved,
one using lambda expression one using a method reference. The
collect method here returns a List that contains four elements.

Listing 20.10: StreamCollectDemo2
class

package app20;

import java.util.ArrayList;

import java.util.List;

import java.util.stream.Stream;

public class StreamCollectDemo2 {

 public static void main(String[]

args) {

 String[] strings = { "a", "b",

"c", "d" };

 Stream<String> stream1 =

Stream.of(strings);

 List<String> list1 =

stream1.collect(

 () -> new ArrayList<>(),

 (a1, b1) -> a1.add(b1),

 (a2, b2) ->

a2.addAll(b2));

 for (String s: list1) {

 System.out.println(s);

 }

 Stream<String> stream2 =

Stream.of(strings);

 List<String> list2 =

stream2.collect(

 ArrayList::new,

 ArrayList::add,

 ArrayList::addAll);

 for (String s: list2) {

 System.out.println(s);

 }

 }

}

The last example in this category, the StreamCollectDemo3
class in Listing 20.11, is a rewrite of StreamCollectDemo1.
However, a parallel stream is used to show you how collection
really works. The parallel stream is created by calling the
parallel method on the initial stream. To show the exact
moment each argument is processed, I have also created a
custom Supplier by extending ArrayList and overriding its
add and addAll methods. The new methods print a message
and call a super method.

Listing 20.11: StreamCollectDemo3
class

package app20;

import java.util.ArrayList;

import java.util.Collection;

import java.util.List;

import

java.util.concurrent.atomic.AtomicInteger;

import java.util.function.Supplier;

import java.util.stream.Stream;

public class StreamCollectDemo3 {

 public static void main(String[]

args) {

 AtomicInteger counter = new

AtomicInteger();

 Supplier<List<String>> supplier =

() -> {

 System.out.println("supplier

called");

 return new ArrayList<String>

() {

 int id =

counter.getAndIncrement();

 @Override

 public boolean add(String

e) {

 System.out.println(

 "\"add\"

called for " + e

 + " on

ArrayList " + id);

 return super.add(e);

 }

 @Override

 public boolean addAll(

 Collection<?

extends String> c) {

System.out.println("\"addAll\" called"

 + " on ArrayList

" + id);

 return

super.addAll(c);

 }

 };

 };

 String[] strings = { "a", "b",

"c", "d" };

 Stream<String> stream1 =

Stream.of(strings).parallel();

 List<String> list1 =

stream1.collect(

 supplier,

 (a1, b1) -> a1.add(b1),

 (a2, b2) ->

a2.addAll(b2));

 for (String s: list1) {

 System.out.println(s);

 }

 }

}

If you run this example in a multi-core computer, you will see
something similar to this on your console.

supplier called

supplier called

supplier called

supplier called

"add" called for d on ArrayList 0

"add" called for c on ArrayList 2

"add" called for a on ArrayList 1

"add" called for b on ArrayList 3

"addAll" called on ArrayList 2

"addAll" called on ArrayList 1

"addAll" called on ArrayList 1

a

b

c

d

You see that the Supplier was called four times since there were
four elements in the stream, resulting in four brand new
ArrayLists. Then, the add method on each ArrayList was
called once for each element. Finally, the content of the four
ArrayLists were merged into a single ArrayList and the
ArrayList was returned.

Parallel Streams

Most computers today have a multi-core processor. This means,
multiple threads can run concurrently in different cores, which
makes using parallel streams make sense. However, a parallel
stream is more expensive to construct than a sequential stream,
which means using a parallel stream does not always make your
program run faster.

The ParallelStreamDemo class in Listing 20.12 maps six
integers with their fibonacci numbers. The objective of this
example is to show how a parallel stream can run much faster in
a multi-core processor machine.

Listing 20.12: The ParallelStreamDemo
class

package app20;

import java.time.Duration;

import java.time.Instant;

import java.util.Arrays;

import java.util.List;

public class ParallelStreamDemo {

 public static long fibonacci(long i)

{

 if (i == 1 || i == 2) {

 return 1;

 }

 return fibonacci(i - 1) +

fibonacci(i - 2);

 }

 public static void main(String[]

args) {

 List<Integer> numbers =

 Arrays.asList(10, 20, 30,

40, 41, 42);

 Instant start = Instant.now();

 numbers.parallelStream()

 .map((input) ->

fibonacci(input))

.forEach(System.out::println);

 Instant end = Instant.now();

 System.out.printf(

 "Processing time with

parallel stream : %dms\n",

 Duration.between(start,

end).toMillis());

 start = Instant.now();

 numbers.stream()

 .map((input) ->

fibonacci(input))

.forEach(System.out::println);

 end = Instant.now();

 System.out.printf(

 "Processing time with

sequential stream : %dms\n",

 Duration.between(start,

end).toMillis());

 }

}

If you run the code, you will see this on your console.

55

6765

832040

102334155

165580141

267914296

Processing time with parallel stream :

953ms

55

6765

832040

102334155

165580141

267914296

Processing time with sequential stream :

1764ms

As you can see, you can benefit from a parallel stream. However,
for not so resource-intensive tasks, the advantage gets less and
less and there is a point where the cost of setting up a parallel
stream outweighs the cost of setting up a sequential stream plus
the speed-up. For instance, if I replace the numbers with

 List<Integer> numbers =

 Arrays.asList(1, 2, 3, 4,

5, 6);

On my machine, the parallel stream actually takes more time to

complete this.

So, before you decide to use a parallel stream, do some testing
to see if a parallel stream is faster than a sequential stream for a
particular task.

Summary

JDK 1.8 introduces a new Stream API that lets you work with
streams. A stream is like a pipe. However, instead of
transporting oil or water, a stream transfers data from a source
to a destination. The main reason for using a stream is for its
supports for sequential and parallel aggregate operations. You
can easily filter, sort or map the elements of a stream.

Quiz

1. What is a Stream?
2. What are the four main types of streams?
3. What are reduction operations?
4. When do you use a parallel stream?

Chapter 21
Java Database Connectivity

Even though Java is an object-oriented programming language,
data and object states are commonly stored in a relational
database. Accessing a database and manipulating data are
therefore a very important topic.

There are many brands of databases. To name a few: MySQL,
Oracle, Sybase, Microsoft SQL Server, Microsoft Access,
PostgreSQL, HSQLDB and Apache Derby. Derby is particularly
interesting because it is included in the JDK. Every database
engine allows access through a proprietary protocol. As such,
accessing different databases requires different skills.
Fortunately for Java programmers, Java Database Connectivity
(JDBC) makes it easy to manipulate data in the database by
providing a uniform way of accessing different relational
databases.

Java 8 comes with JDBC version 4.2. The JDBC Application
Programming Interface (API) is comprised of two parts: the
JDBC Core API and the JDBC Optional Package API. The Core
part is good for basic database programming, such as creating

tables, retrieving data from a single table or multiple tables,
storing data in a table and updating and deleting data. The
classes and interfaces in the Core part are members of the
java.sql package. The JDBC Optional Package API is specified
in the javax.sql package and supports advanced features such
as connection pooling, support for Java Naming and Directory
Interface (JNDI), distributed transactions, etc. This chapter only
deals with the Core part. Also, it is assumed you have basic
knowledge of SQL.

Introduction to JDBC

JDBC enables Java programmers to use the same code to access
different databases. This is achieved through the use of JDBC
drivers that act as translators between Java code and relational
databases.

Every database needs a different JDBC driver. Fortunately,
there are JDBC drivers for virtually all database drivers on the
market today. Because Java is so popular, database
manufacturers make efforts to provide JDBC drivers for their
products, even though JDBC drivers can also come from third
parties. Popular databases even come with multiple JDBC
drivers. Take Oracle as an example. There is an Oracle JDBC
driver for server-side applications, there is one optimized for
working with stored procedures, etc.

Technically, there are four types of JDBC drivers. They are
simply called Type 1, Type 2, Type 3 and Type 4. Here are brief
descriptions of each type.

Type 1. Type 1 drivers implement the JDBC API as a
mapping to another data access API, such as ODBC (Open
Database Connectivity). The JDBC-ODBC bridge is the most
prominent example of the Type 1 driver. It allows Java code
to access any database that could be accessed via ODBC.
This type of driver is slow and only appropriate for
situations where no other JDBC driver is available. The
JDBC-ODBC bridge was removed in JDK 8.

Type 2. Type 2 drivers are written partly in native API and
partly in Java. This type of driver uses the client API of the
database to connect to the database.

Type 3. This type of driver translates JDBC calls into the
middleware vendor’s protocol, which is then translated to
the database access protocol by the middleware server.

Type 4. This type of driver is written in Java and connects to
the database directly.

You can find the architecture for each driver type here.

http://www.oracle.com/technetwork/java/ja

vase/jdbc/index.html

No More JDBC-ODBC

When Java was first released, ODBC was the primary technology for connecting to
the relational database. By providing a JDBC-ODBC bridge, Sun made it possible for
developers to write Java code that could connect to virtually any database, without
waiting for database vendors to provide JDBC drivers for their products. This proved
a brilliant strategy to persuade businesses to start writing their business applications
in Java.
Today ODBC is less relevant and no longer included in the JDK starting Java 8.
Good-bye ODBC.

Four Steps to Data Access

Database access and data manipulation through JDBC require
four steps.

1. Loading the JDBC driver of the database
to connect to. Java now does this
automatically in JDBC 4.0 and later.

2. Obtaining a database connection.
3. Creating a java.sql.Statement or

java.sql.PreparedStatement instance
that represents an SQL statement.

4. Optionally creating a java.sql.ResultSet
object to store data returned from the
database.

5. Closing JDBC objects to free resources.
Thanks to try-with-resources, you don’t
have to do this manually.

These steps are detailed in the following subsections.

Loading the JDBC Driver
You can skip this step if you are using JDBC 4.0 or later, that is if
you are using Java 6 or later. Java 8, for example, comes with
JDBC 4.2, so this step is optional in Java 8 because drivers are
loaded automatically.

A JDBC driver is represented by the java.sql.Driver
interface, which defines a contract between a JDBC driver and
any Java class that needs to connect to the database. A JDBC
driver is often deployed as a jar or zip file. You need to make sure
that the driver file is included in the class path when running
your Java application.

There are two ways of loading a JDBC driver, manual and
dynamic loading.

You load a JDBC driver manually using forName static
method of the java.lang.Class class:

class.forName(driverClass)

Here driverClass is the fully qualified name of the driver. For
example, here is code for loading the MySQL driver and
PostgreSQL driver:

Class.forName("com.mysql.jdbc.Driver");

Class.forName("org.postgresql.Driver");

The forName method may throw a
java.lang.ClassNotFoundException, therefore you must
enclose it in a try block like this:

try {

Class.forName("org.postgresql.Driver");

} catch (ClassNotFoundException e) {

 // process the exception or re-throw

it

}

When you load a JDBC driver, you automatically register it with
the java.sql.DriverManager object so that the latter can find
the driver to create connections.

With dynamic loading, there’s no need to call Class.forName
because the DriverManager searches for JDBC drivers in the
class path and call the forName method in the background.

There is more advantage of dynamic loading than simply
removing a few lines of code. Since you do not need to hard code
the JDBC driver class name, upgrading a driver involves only
replacing the old jar with a new one. The new class name does
not need to match the old one.

Obtaining a Database Connection
A database connection facilitates communication between Java
code and a relational database. The java.sql.Connection
interface is the template for connection objects. You use the
java.sql.DriverManager class’s getConnection static
method to obtain a Connection. This method searches the
loaded JDBC drivers in memory and returns a
java.sql.Connection object.

Here are the signatures of the most commonly used
getConnection method overloads.

public static Connection

getConnection(java.lang.String url)

 throws SQLException

public static Connection

getConnection(java.lang.String url,

 java.lang.String userName,

java.lang.String password)

 throws SQLException

The first overload is suitable for connecting to a database that
requires no user authentication. The second is for connecting to
one that requires user authentication. You can still use the first
overload to pass user credentials. When using the second
overload to connect to a database that requires no
authentication, pass null to both the second and third
arguments.

The url argument specifies the location of the database server
and the name of the database to connect. The database server
can reside in the same computer as the running Java code or in a
computer in the network. In addition to the location, you must
also pass your user name and password to prove to the database
you are an authorized user. Most database servers require this
before they grant you a connection. As such, the second
getConnection method overload is easier to use. If you use the
first overload, you can append the user name and password to
the database URL. Here is the format of the url argument.

jdbc:subprotocol:subname

The subprotocol part specifies the database type. The JDBC
driver documentation should tell you the value of the
subprotocol. Here are some examples:

postgresql: Connecting to a PostgreSQL database.

mysql: Connecting to a My SQL database.

oracle:thin. Connecting to an Oracle database using the
thin driver (there are several types of Oracle JDBC drivers).

derby. Specify this if you are connecting to an Apache
Derby database.

The subname part specifies the name of the machine running the
database server, the port the database is servicing connections
and the database name. For example, the following is a URL for
accessing a PostgreSQL database named PurchasingDB on
localhost:

jdbc:postgresql://localhost/PurchasingDB

As another example, the following URL is used to connect to an
Oracle database named Customers residing on a machine
called Production01. Note that by default Oracle works on port
1521.

jdbc:oracle:thin:@Production01:1521:Custo

mers

The following is a URL to connect to a MySQL database named

CustomerDB on a computer named PC2.

jdbc:mysql://PC2/CustomerDB

The following is a URL to connect to a Derby database whose
data source name is Legacy located in the /home/db directory
on a Linux system.

jdbc:derby:/home/db/Legacy

And this is for connecting to a Derby database named
Marketing on C:\db on a Windows machine.

jdbc:derby:c:/db/Marketing

The user name and password are best passed-in as separate
arguments using the second getConnection overload.
However, if you must use the first overload, use the following
syntax:

url?user=username&password=password

Assuming that the user name is Ray and the password is Pwd,

the previous three database URLs can be rewritten as follows.

jdbc:postgresql://localhost/PurchasingDB?

user=Ray&password=Pwd

jdbc:oracle:thin:@Production01:1521:Custo

mers?user=Ray&password=Pwd

jdbc:mysql://PC2/CustomerDB?

user=Ray&password=Pwd

jdbc:derby:/home/db/Legacy?

user=Ray&password=Pwd

The Connection interface has the close method to close the
connection once you’re finished with it.

Creating A Statement Object
A java.sql.Statement represents an SQL statement. You can
get a Statement by calling the createStatement method on a
java.sql.Connection object.

Statement statement =

connection.createStatement();

Next, you need to call a method on the Statement object,
passing an SQL statement. If your SQL statement retrieves data,
you use the executeQuery method. Otherwise, use

executeUpdate.

ResultSet executeQuery(java.lang.String

sql) throws SQLException

int executeUpdate(java.lang.String sql)

throws SQLException

Both executeUpdate and executeQuery methods accept a
String containing an SQL statement. The SQL statement does
not end with a database statement terminator, which can vary
from one database to another. For example, Oracle uses a
semicolon (;) to indicate the end of a statement, and Sybase uses
the word go. The driver will automatically supply the
appropriate statement terminator, and you will not need to
include it in your JDBC code.

The executeUpdate method executes an SQL INSERT,
UPDATE, or DELETE statement as well as data definition
language (DDL) statements to create, drop, and alter tables. This
method returns the row count for INSERT, UPDATE, or
DELETE statements or returns 0 for SQL statements that return
nothing.

The executeQuery method executes an SQL SELECT
statement that returns data. This method returns a
java.sql.ResultSet that contains the data produced by the
given query. If there is no data returned, executeQuery returns

an empty ResultSet. It never returns null.

Note that the SQL statement is executed on the server.
Therefore, though not recommended, you could pass database-
specific instructions.

PreparedStatement, which derives from Statement, is a
popular alternative to Statement. PreparedStatement
differs from Statement in that it pre-compiles and stores the
SQL statement so that subsequent calls to the same SQL
statement will be faster. You obtain a PreparedStatement by
calling the prepareStatement method of Connection,
passing an SQL statement.

PreparedStatement pStatement =

connection.prepareStatement(java.lang.Str

ing sql);

You can then call the executeQuery or executeUpdate on the
PreparedStatement.

ResultSet executeQuery() throws

SQLException

int executeUpdate() throws SQLException

Note that the signatures for both methods are different from
those in Statement. Because you pass an SQL statement when
creating a PreparedStatement, you no longer need one when
calling executeQuery or executeUpdate.

Creating a ResultSet Object
A ResultSet is the representation of a database table that is
returned from a Statement or PreparedStatement. A
ResultSet object maintains a cursor pointing to its current row
of data. When the cursor is first returned, it is positioned before
the first row. To access the first row of the ResultSet, you call
the next method on the ResultSet.

The next method moves the cursor to the next row and
returns either true or false. It returns true if the new current
row is valid; it returns false if there are no more rows. Normally,
you use this method in a while loop to iterate over the
ResultSet.

To get data from a ResultSet, you can use one of the many
getXXX methods of ResultSet, such as getInt, getLong,
getShort, and so forth. You use getInt to obtain the value of
the designated column in the current row as an int. getLong
obtains the cell data as a long, etc. The most commonly used
method is getString, which returns the cell data as a String.
Using getString is preferable in many cases because you don’t
need to worry about the data type of the table field in the
database.

The getString method, similar to other getXXX methods,
has two overloads that allow you to retrieve a cell’s data by
passing either the column index or the column name. The
signatures of the two overloads of getString are as follows:

public java.lang.String getString(int

columnIndex)

 throws SQLException

public java.lang.String

getString(java.lang.String columnName)

 throws SQLException

Closing JDBC Objects
If you’re using a pre-7 JDK, you should always close all JDBC
objects after use by calling their close methods. In an
application that employs a connection pool, forgetting to close a
Connection will cause it not to be returned to the pool for
reuse. In addition, you should call close properly. Here is an
unsafe way of calling close.

resultSet.close();

statement.close();

connection.close();

This method is not perfect because resultSet.close() and

statement.close() might fail and throw an exception. Should
this happen, connection.close() will never be executed.

The correct way is to enclose calls to close in a finally clause
like this:

Connection connection = null;

PreparedStatement pStatement = null;

ResultSet resultSet = null;

try {

 connection = getConnection();

 pStatement =

connection.prepareStatement(sql);

 resultSet =

pStatement.executeQuery();

 while (resultSet.next()) {

 // manipulate the data here

 }

} catch (SQLException e) {

 throw newException;

} finally {

 if (resultSet != null) {

 try {

 resultSet.close();

 } catch (Exception e) {

 }

 }

 if (statement != null) {

 try {

 statement.close();

 } catch (Exception e) {

 }

 }

 if (connection != null) {

 try {

 connection.close();

 } catch (Exception e) {

 }

 }

}

In Java 7 and later, closing is done automatically when you use a
try-with-resources statement to create JDBC objects. Here is
what the previous code would look like in Java 7 and later.

try (Connection connection =

getConnection();

 Prepared pStatement =

connection.prepareStatement(sql);

 ResultSet resultSet =

pStatement.executeQuery()) {

 while (resultSet.next()) {

 // manipulate the data here

 }

} catch (SQLException e) {

 throw newException;

}

Using Java DB

Java DB is Oracle’s distribution of the Apache Derby database
engine, an open source project written in Java. Java DB is
included in the JDK and can be found in the db directory under
the installation directory of the JDK. A JDBC driver is also
included and can be found in the lib directory under the db
directory. The driver comes in a jar file named derby.jar.

Apache Derby can run as a stand-alone server or embedded in
a Java application. If run embedded, Derby runs on the same
JVM as the Java application.

The example in Listing 21.1 shows how to create and run
Derby in embedded mode. The code creates a new database
named testdb in the current directory and creates a table called
person. The table has two columns, person_id and name. It then
inserts some data to the table and reads it back.

The URL used for connecting to the database is

jdbc:derby:testdb;create=true

The create=true part indicates that the database should be
created if none exists.

Listing 21.1: Using Java DB
package app21;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

public class JavaDBDemo1 {

 private static String dbUrl =

"jdbc:derby:testdb;create=true";

 private static final String

CREATE_TABLE_SQL =

 "CREATE TABLE person "

 + "(person_id INT, name

VARCHAR(100))";

 public void createTable() {

 try (Connection connection =

DriverManager.getConnection(dbUrl);

 Statement statement =

connection.createStatement()) {

statement.execute(CREATE_TABLE_SQL);

 } catch (SQLException e) {

System.out.println(e.getMessage());

 }

 }

 private static final String

INSERT_DATA_SQL =

 "INSERT INTO person

(person_id, name) "

 + "VALUES (?, ?)";

 public void insertData(int id, String

name) {

 try (Connection connection =

DriverManager.getConnection(dbUrl);

 PreparedStatement

pStatement =

connection.prepareStatement(

INSERT_DATA_SQL);) {

 pStatement.setInt(1, id);

 pStatement.setString(2,

name);

 pStatement.executeUpdate();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 private static final String

READ_DATA_SQL =

 "SELECT person_id, name FROM

person";

 public void readData() {

 try (Connection connection =

DriverManager.getConnection(dbUrl);

 PreparedStatement

pStatement =

connection.prepareStatement(READ_DATA_SQL

);

 ResultSet resultSet =

pStatement.executeQuery()) {

 while (resultSet.next()) {

System.out.println(resultSet.getString(2)

);

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 public static void main(String[]

args) {

 // must add derby.jar to

classpath

 JavaDBDemo1 demo = new

JavaDBDemo1();

 demo.createTable();

 demo.insertData(2, "Alvin

Average");

 demo.readData();

 }

}

The JavaDBDemo1 class in Listing 21.1 provides methods for
creating a table, insert a record and read the data back.

To compile the class, you do not need the JDBC driver. Just
change directory to the parent directory of app21 (the directory
that contains the JavaDBDemo1.java file) and type

javac app21/JavaDBDemo1.java

To run it, however, you need to pass the JDBC driver in the
classpath. From the same directory you compiled the Java file,
and assuming the derby.jar file is located in
/usr/local/jdk1.8.0_25/db/lib on a Linux or Mac OS X
machine, type this to run the class.

java -cp

./:/usr/local/jdk1.8.0_25/db/lib/derby.ja

r app21/JavaDBDemo1

Note that you need to pass two paths to the java program, the
current directory (./) and the path to the derby.jar file.

On a Windows machine, assuming the JDK is installed on
C:\Program Files\Java, type this:

java -cp ./;"C:/Program

Files/Java/jdk1.8.0_25/db/lib/derby.jar"

app21/JavaDBDemo1

Using the DAO Pattern

Java is an object-oriented programming language and most of
the time you deal with objects. The data you insert into and
retrieve from a relational database is not structured as objects

and is inconvenient to work with.

A good approach to accessing data in a database is by using a
separate module for managing the complexity of obtaining a
connection and building SQL statements. The DAO design
pattern is a simple pattern that does this job very well. There are
a few variants of this pattern, but one of the simplest is depicted
in Figure 21.1.

Figure 21.1: The DAO pattern

With this pattern, you write a class for each type of object you
need to persist. For example, if your application needs to persist
three types of objects—Product, Customer, and Order—you
need three DAO classes, each of which takes care of an object

type. Therefore, you would have the following classes:
ProductDAO, CustomerDAO, and OrderDAO. The DAO
suffix at the end of the class name indicates that the class is a
DAO class. It is a convention that you should follow unless you
have compelling reasons not to do so.

A typical DAO class takes care of the addition, deletion,
modification and retrieval of objects as well as the searching for
those objects. For example, a ProductDAO class might support
the following methods:

void addProduct(Product product)

void updateProduct(Product product)

void deleteProduct(int productId)

Product getProduct(int productId)

List<Product> findProducts(SearchCriteria

searchCriteria)

In your DAO implementation classes, you can either write SQL
statements manually or use a Java Persistence API (JPA)
implementation such as Hibernate to take care of database data.
JPA is unfortunately outside the scope of this book, but you
should know that it is a popular technology and many people
would choose JPA for their data access needs. For now, I will use
SQL statements.

For example, instances of the Product class in Listing 21.2

need to be persisted into a Derby database.

Listing 21.3: The Product class
package app21.model;

import java.math.BigDecimal;

public class Product {

 private String name;

 private String description;

 private BigDecimal price;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String getDescription() {

 return description;

 }

 public void setDescription(String

description) {

 this.description = description;

 }

 public BigDecimal getPrice() {

 return price;

 }

 public void setPrice(BigDecimal

price) {

 this.price = price;

 }

 @Override

 public String toString() {

 return name + ", $" + price + ",

" + description;

 }

}

Product is a simple class with three properties, name,
description and price.

First, you need to create a database and a products table.
Database creation in Derby may happen automatically so you do
not have to worry about it. However, you still have to create the
table using the SQL statement in Listing 21.3.

Listing 21.3: The SQL statement for
creating the products table

CREATE TABLE products

 (id INTEGER NOT NULL GENERATED ALWAYS

AS IDENTITY,

 name VARCHAR(255) NOT NULL,

 description VARCHAR(1000) default

NULL,

 price DECIMAL(10,2) NOT NULL,

 PRIMARY KEY (id))

The DAO module consists of these interfaces and classes:

The DAO interface in Listing 21.4, which all DAO interfaces
are derived from.

The BaseDAO class in Listing 21.5, which provides basic
implementation for all DAO classes.

The DAOException class in Listing 21.6 that a DAO
method throws in the event of a runtime exception.

ProductDAO interface in Listing 21.7 and
ProductDAOImpl class in Listing 21.8. Both provide
methods for persisting Product instances and retrieving
them from the database.

Listing 21.4: The DAO interface
package app21.dao;

import java.sql.Connection;

public interface DAO {

 Connection getConnection() throws

DAOException;

}

Listing 21.5: The BaseDAO class
package app21.dao;

import java.sql.Connection;

import java.sql.DriverManager;

public class BaseDAO implements DAO {

 public static final String dbUrl =

"jdbc:derby:daotest";

 public Connection getConnection()

throws DAOException {

 try {

 return

DriverManager.getConnection(dbUrl);

 } catch (Exception e) {

 throw new DAOException();

 }

 }

}

For this example, the database URL is hardcoded in the
BaseDAO class. However, it does not have to be so. It can come
from a file or be passed to it so that you can change the URL
without recompiling the classes.

Listing 21.6: The DAOException class
package app21.dao;

public class DAOException extends

Exception {

 private static final long

serialVersionUID = 19192L;

 public DAOException() {

 }

 public DAOException(String message) {

 this.message = message;

 }

 public String getMessage() {

 return message;

 }

 public void setMessage(String

message) {

 this.message = message;

 }

 private String message;

 public String toString() {

 return message;

 }

}

Listing 21.7: The ProductDAO interface
package app21.dao;

import java.util.List;

import app21.model.Product;

public interface ProductDAO extends DAO {

 List<Product> getProducts() throws

DAOException;

 void insert(Product product) throws

DAOException;

}

For this example, the ProductDAO interface only contains two
methods. In real-life applications, you may need methods for
search, update and delete.

Listing 21.8: The ProductDAOImpl class
package app21.dao;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.ArrayList;

import java.util.List;

import app21.model.Product;

public class ProductDAOImpl extends

BaseDAO

 implements ProductDAO {

 private static final String

GET_PRODUCTS_SQL =

 "SELECT name, description,

price FROM products";

 public List<Product> getProducts()

throws DAOException {

 List<Product> products = new

ArrayList<Product>();

 try (Connection connection =

getConnection();

 PreparedStatement

pStatement = connection

.prepareStatement(GET_PRODUCTS_SQL);

 ResultSet resultSet =

pStatement.executeQuery()) {

 while (resultSet.next()) {

 Product product = new

Product();

product.setName(resultSet.getString("name

"));

 product.setDescription(

resultSet.getString("description"));

 product.setPrice(

resultSet.getBigDecimal("price"));

 products.add(product);

 }

 } catch (SQLException e) {

 throw new DAOException(

 "Error getting

products. " + e.getMessage());

 }

 return products;

 }

 private static final String

INSERT_PRODUCT_SQL =

 "INSERT INTO products "

 + "(name, description, price)

" + "VALUES (?, ?, ?)";

 public void insert(Product product)

throws DAOException {

 try (Connection connection =

getConnection();

 PreparedStatement

pStatement = connection

.prepareStatement(INSERT_PRODUCT_SQL);) {

 pStatement.setString(1,

product.getName());

 pStatement.setString(2,

product.getDescription());

 pStatement.setBigDecimal(3,

product.getPrice());

 pStatement.execute();

 } catch (SQLException e) {

 throw new DAOException(

 "Error adding

product. " + e.getMessage());

 }

 }

}

Finally, Listing 21.9 shows a class for testing the DAO module.

Listing 21.9: Testing the DAO module
package app21.test;

import java.math.BigDecimal;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

import java.util.List;

import app21.dao.DAOException;

import app21.dao.ProductDAO;

import app21.dao.ProductDAOImpl;

import app21.model.Product;

public class ProductDAOTest {

 private static final String

CREATE_TABLE_SQL =

 "CREATE TABLE products ("

 + "id INTEGER NOT NULL

GENERATED ALWAYS AS IDENTITY,"

 + "name VARCHAR(255) NOT

NULL,"

 + "description VARCHAR(1000)

default NULL,"

 + "price DECIMAL(10,2) NOT

NULL,"

 + "PRIMARY KEY (id))";

 private static void createDatabase()

{

 String dbUrl =

"jdbc:derby:daotest;create=true";

 try (Connection connection =

DriverManager.getConnection(dbUrl);

 Statement statement =

connection.createStatement()) {

statement.execute(CREATE_TABLE_SQL);

 } catch (SQLException e) {

System.out.println(e.getMessage());

 }

 }

 public static void main(String[]

args) {

 createDatabase();

 Product product = new Product();

 product.setName("Kiano tablet

keyboard");

 product.setDescription("Low cost

tablet keyboard, "

 + "compatible will all

Android devices");

 product.setPrice(new

BigDecimal(24.95));

 ProductDAO productDAO = new

ProductDAOImpl();

 try {

 productDAO.insert(product);

 } catch (DAOException e) {

 e.printStackTrace();

 }

 List<Product> products = null;

 try {

 products =

productDAO.getProducts();

 } catch (DAOException e) {

 e.printStackTrace();

 }

products.stream().forEach(System.out::pri

ntln);

 }

}

The test class starts by creating a database called daotest in the
working directory, i.e. the directory you run java. It then creates
a Product and a ProductDAO and inserts the product into the
database by calling the insert method on the ProductDAO.
Finally, it reads back the product from the database by calling
the getProducts method on the ProductDAO.

Reading Metadata

In a few rare cases, you may want to read the metadata of a
ResultSet. Metadata includes the number of columns in the
ResultSet, the name and type of each individual column, and so
on.

Metadata is encapsulated in a java.sql.ResultSetMetaData
object, which you can by calling the getMetaData method on a
ResultSet.

public ResultSetMetaData getMetaData()

throws SQLException

Some of the methods in ResultSetMetaData are given below.

public int getColumnCount() throws

SQLException

Returns the number of columns in the
ResultSet

public java.lang.String getColumnName(int

columnIndex)

 throws SQLException

Returns the name of the specified column.
The index is 1-based, getColumnName(1)
returns the first column name.

public int getColumnType(int columnIndex)

throws SQLException

Returns the type of the column. The value is
one of the static final fields in the
java.sql.Types class, such as ARRAY,
BIGINT, BINARY, BLOB, CHAR,
DATE, DECIMAL, TINYINT,
VARCHAR, etc.

The following example shows how to deal with metadata. It
presents an application that you can use to input an SQL
statement and display the result. It uses the Derby database you
created from the previous example, but can be modified to
support other databases as well.

The SQLTool Class
Listing 21.10 shows the SQLTool class that you can use to pass
SQL statements to the MySQL server running on the local
machine.

Listing 21.10: The SQLTool class
package app21;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.ResultSetMetaData;

import java.sql.SQLException;

import java.sql.Statement;

import javax.swing.JOptionPane;

public class SQLTool {

 private String dbUrl;

 private String dbUserName;

 private String dbPassword;

 private static final int COLUMN_WIDTH

= 25;

 public SQLTool(String dbUrl,

 String dbUserName, String

dbPassword) {

 this.dbUrl = dbUrl;

 this.dbUserName = dbUserName;

 this.dbPassword = dbPassword;

 }

 public void executeSQL(String sql) {

 sql = sql.trim();

 try (Connection connection =

DriverManager.getConnection(dbUrl,

 dbUserName,

dbPassword);

 Statement statement =

connection.createStatement()) {

 if

(sql.toUpperCase().startsWith("SELECT"))

{

 try (ResultSet resultSet

=

statement.executeQuery(sql)) {

 ResultSetMetaData

metaData =

resultSet.getMetaData();

 int columnCount =

metaData.getColumnCount();

 for (int i = 0; i <

columnCount; i++) {

System.out.print(pad(

metaData.getColumnName(i + 1)));

 }

 // draw line

 int length =

columnCount * COLUMN_WIDTH;

 StringBuilder sb =

new StringBuilder(length);

 for (int i = 0; i <

length; i++) {

 sb.append('=');

 }

 System.out.println();

System.out.println(sb.toString());

 while

(resultSet.next()) {

 String[] row =

new String[columnCount];

 for (int i = 0; i

< columnCount; i++) {

 row[i] =

resultSet.getString(i + 1);

System.out.print(pad(row[i]));

 }

System.out.println();

 }

 } catch (SQLException e)

{

 e.printStackTrace();

 }

 } else {

 int recordsUpdated =

statement.executeUpdate(sql);

System.out.println(recordsUpdated

 + " record(s)

affected");

 }

 } catch (SQLException e) {

System.err.println(e.getMessage());

 }

 System.out.println();

 }

 // appends s with spaces so that the

length is 25

 private String pad(String s) {

 int padCount = COLUMN_WIDTH -

s.length();

 StringBuilder sb = new

StringBuilder(25);

 sb.append(s);

 for (int i = 0; i < padCount;

i++) {

 sb.append(" ");

 }

 return sb.toString();

 }

 public static void main(String[]

args) {

 String dbUrl =

"jdbc:derby:testdb";

 String dbUserName = null;

 String dbPassword = null;

 SQLTool sqlTool = new

SQLTool(dbUrl,

 dbUserName, dbPassword);

 String sql = null;

 do {

 sql = JOptionPane

.showInputDialog("Enter an SQL

Statement");

 if (sql != null &&

!sql.trim().isEmpty()) {

 sqlTool.executeSQL(sql);

 }

 } while (sql != null);

 }

}

Note that the class takes a string input using a Swing class
named JOptionPane. The code for this is only one statement
long, so you do not have to know Swing well to use it.

Basically, the program uses a do-while loop to receive SQL
statements and pass them to a JDBC driver. To quit, click the
Cancel button on the JOptionPane.

 do {

 sql = JOptionPane

.showInputDialog("Enter an SQL

Statement");

 if (sql != null &&

!sql.trim().isEmpty()) {

 sqlTool.executeSQL(sql);

 }

 } while (sql != null);

The JOptionPane is shown in Figure 21.2:

Figure 21.2: The JOptionPane for
taking SQL statements

If you enter an SQL statement and click the OK button on the
JOptionPane, the SQL statement will be passed to the

executeSQL method:

 sqlTool.executeSQL(sql);

For example, try this SQL statement:

SELECT name, price FROM products

The executeSQL method will create a connection to the
database:

 try (Connection connection =

DriverManager.getConnection(dbUrl,

 dbUserName,

dbPassword);

 Statement statement =

connection.createStatement()) {

It then checks if the SQL statement is a SELECT statement or
something else. If it is a SELECT statement, the executeQuery
method of the Statement object is called and a ResultSet is
returned. Opening a ResultSet is done in a try-with-resources
statement.

 if

(sql.toUpperCase().startsWith("SELECT"))

{

 try (ResultSet resultSet

=

statement.executeQuery(sql)) {

The executeSQL method will first display the ResultSet’s
column names:

 ResultSetMetaData

metaData =

resultSet.getMetaData();

 int columnCount =

metaData.getColumnCount();

 for (int i = 0; i <

columnCount; i++) {

System.out.print(pad(metaData.getColumnNa

me(i

 + 1)));

 }

 // draw line

 int length = columnCount

* COLUMN_WIDTH;

 StringBuilder sb = new

StringBuilder(length);

 for (int i = 0; i <

length; i++) {

 sb.append('=');

 }

 System.out.println();

System.out.println(sb.toString());

It then uses a while loop to iterate the ResultSet and prints the
columns to the console.

 while (resultSet.next())

{

 String[] row = new

String[columnCount];

 for (int i = 0; i <

columnCount; i++) {

 row[i] =

resultSet.getString(i + 1);

System.out.print(pad(row[i]));

 }

 System.out.println();

 }

If the SQL statement passed is not a SELECT statement, the
executeSQL method displays the number of records affected by
the statement.

 } else {

 int recordsUpdated =

statement.executeUpdate(sql);

System.out.println(recordsUpdated +

 " record(s)

updated");

 }

Passing the SQL statement “SELECT name, price FROM
products” on my machine prints the following output on the
console.

NAME PRICE

===

=========

Kiano tablet keyboard 24.94

Summary

Java has its own technology for database access and data
manipulation called JDBC. Its functionality is wrapped in the
types in the java.sql package. In this chapter, you have seen
various members of this package and learned how to use them.
You also have learned how to create a tool that takes any SQL
statement and pass it to a Derby database.

Quiz

1. Name the five steps to accessing a
database and manipulating the data in it.

2. Name the five most important types in the
java.sql package.

3. What pattern can you use to hide the
complexity of JDBC-related code?

Chapter 22
Swing Basics

There are three Java technologies you can use to develop desktop
user-interface: Abstract Window Toolkit (AWT), Swing and
JavaFX. AWT is an old technology—having been in existence
since Java 1.0—that has been replaced by Swing. Swing has been
the technology of choice for some time, but it will soon be
superseded by JavaFX. JavaFX should be used for new projects.
This chapter and the next cover Swing programming and they
are only here because there are still a lot of Swing applications
out there and you may be tasked with maintaining or extending
some of them.

This chapter starts with AWT components, which will be only
briefly discussed. Following it are sections on simple Swing
components, such as JFrame, JButton, JLabel, JTextArea,
JOptionPane, and JDialog. Chapter 23, “Swinging Higher”
focuses on layout management and event handling. In addition,
there is discussion of thread-related Swing classes in Chapter 27,
“Java Threads” and Chapter 28, “The Concurrency Utilities.”

Overview

Swing has a better collection of ready-to-use components than
the AWT. Swing components are also much more powerful than
their AWT counterparts. For one, some Swing components can
render HTML tags, something AWT developers would not even
dare to dream about. Nonetheless, the AWT is still relevant
because Swing relies on the AWT event handling mechanism and
layout managers as well as its various classes; therefore you still
need to know about those classes. Moreover, when developing
applets (See Chapter 24, “Applets”), your knowledge of AWT will
come in handy too.

There are three things you need to learn to become an effective
UI programmers:

UI components. These include top-level containers
(JFrame, JDialog, etc) and components that can be added
to a container.

Layout managers. How to lay out your components in a
container.

Event handling. How to write code that responds to an
event, such as a button click, a mouse move, a window
resize, etc.

The main difference between AWT and Swing lies in how they

draw graphic components. AWT calls the native GUI functions of
the operating system to do that. This means, programs that use
AWT will look different on Windows than on Unix. The term
‘peer’ is often used when describing this approach. When you
invoke an AWT method to draw a button, AWT will in turn
delegate the task to a ‘peer’ native function. However, writing
high-quality drawing methods that rely on native functions
proves to be difficult because the native operating system does
not always have a necessary function that can be used to perform
certain functionality. As a result, Sun Microsystems invented
Swing. Swing draws all its UI components itself, hence
eliminating dependence on native peers. With Swing, a GUI
program will look the same anywhere, be in on Linux, Mac OS X
or Windows. (In practice, this is not really true.) In older
machines, the side-effect of having to draw everything itself is
that Swing programs look a little sluggish, because of course it
takes more time than if the same graphics were displayed using
native functions. However, with today’s computers, it is no
longer a problem.

AWT Components

AWT components are grouped into the java.awt package. At its
core is the Component class, which is a direct subclass of
java.lang.Object. This is described in Figure 22.1.

Figure 22.1: AWT components

The Component class has subclasses that represent
components that you can draw on your UI program:

Button. Represents a clickable button.

Canvas. Represents a blank screen you can draw custom
paintings on.

Checkbox. Represents a check box.

Choice. Represents a radio button.

Container. Represents a component that can contain other
components.

Label. Represents a non-editable piece of text.

List. Represents a list of options.

Scrollbar. Represents horizontal and vertical scrollbars.

TextComponent. A parent class of two concrete classes:
TextArea and TextField. TextField can contain a single

line of text and TextArea multiple lines of text.

Of special interest is the Container class. You can add
components to a Container using one of its add methods. A
concrete implementation of Container is Window, which is
the parent of the Frame class. Even though you can instantiate
Window, more often you will use a Frame or Dialog to
contain other components because Frame and Dialog are
easier to use and have more features than Window. Frame and
Dialog are similar, except for the fact that Dialog is often used
to take user input. Almost all AWT applications will have at least
one Frame.

The Frame class offers the following methods:

setTitle. Sets the frame’s title.

add. Adds an AWT component on to the frame.

remove. Removes an AWT component from the frame.

show. Displays this Frame.

In a typical AWT application, you normally start your program
by constructing an instance of Frame and adding components
to it. Listing 22.1 features the AWTFrameDemo1 class that
adds various AWT components to a Frame.

Listing 22.1: Using AWT components

package app22;

import java.awt.Button;

import java.awt.Checkbox;

import java.awt.FlowLayout;

import java.awt.Frame;

import java.awt.Label;

import java.awt.TextField;

public class AWTFrameDemo1 extends Frame

{

 private static final long

serialVersionUID = 1L;

 public static void main(String[]

args) {

 AWTFrameDemo1 frame = new

AWTFrameDemo1();

 frame.setTitle("My AWT Frame");

 frame.setSize(300, 100);

 frame.setLayout(new

FlowLayout());

 // add components

 Label label = new Label("Name");

 frame.add(label);

 TextField textField = new

TextField();

 frame.add(textField);

 Button button = new

Button("Register");

 frame.add(button);

 Checkbox checkbox = new

Checkbox();

 frame.add(checkbox);

 frame.setVisible(true);

 }

}

The AWTFrameDemo1 class extends java.awt.Frame. After
you create a Frame, you can call its setTitle method and pass a
String for its title. You can also invoke the setSize method to
set the frame’s width and height in pixels.

The line in bold in Listing 22.1 is a call to the setLayout
method. You pass a LayoutManager to this method and the
object will determine how child components added to a frame
are laid out. I discuss LayoutManager further in Chapter 16,
“Swinging Higher.”

You can add components to a frame by using the add method
of the Frame class. In Listing 22.1, I added four components, a
Label, a TextField, a Checkbox and a Button. Finally, the
setVisible method is invoked to make the frame visible.

If you run the AWTFrameTest class, you will see something
like Figure 22.2. Its actual appearance depends on the operating
system the program is running on.

Figure 22.2: An AWT Frame and some
components

The frame in Figure 22.2 has a size of 300 by 100 pixels. Its title
says “My AWT Frame.” There are four components added to it.

Note
The close button (indicated by X) does not close the frame. In fact,
making an AWT frame closable by a single click is not straight-forward.
This has been remedied in Swing, which is one of the reasons Swing is
better and easier to program.

The GUI application in Figure 22.2 looks good enough for
introduction, but you can do more with the AWT library. You can
add menus and submenus, write code that responds to an event
(such as a button click or window resize), use a layout manager
to lay out components, and so on.

Useful AWT Classes

In addition to AWT classes that are parents to Swing
components, there are other classes that are often used in Swing
applications. These classes are discussed in this section.

java.awt.Color
A Color models a color. Creating a Color is supereasy because
the Color class provides static fields that return specific Colors.
The names of these fields are the same as the colors they
represent. Here are some of the static final fields in Color:
BLACK, BLUE, GREEN, RED, CYAN, ORANGE,
YELLOW.

For example, here is how you obtain a green Color:

Color color = Color.GREEN;

You can also create a custom color by passing red-green-blue
(RGB) values to the Color class’s constructor. For example:

Color myColor = new Color(246, 27, 27);

To change a component’s color, call the setForeGround and
setBackGround methods of the component.

component.setForeGround(Color.YELLOW) ;

component.setBackGround(Color.RED);

java.awt.Font
A Font represents a font. Here is a constructor of the Font
class.

public Font(java.lang.String name, int

style, int size)

Here, name is the font name (such as “Verdana”, “Arial”, etc)
and size is the point size of the font. The style argument takes an
integer bitmask that may be PLAIN or a bitwise union of BOLD
and/or ITALIC.

For example, the following code construct a Font object.

int style = Font.BOLD | Font.ITALIC;

Font font = new Font("Garamond", style ,

11);

java.awt.Point
A Point represents a point in a coordinate system. It has two int
fields, x and y. You can construct a Point object by using one of
its constructors.

public Point()

public Point(int x, int y)

public Point(Point anotherPoint)

The Point class’s getX and getY methods return the value of
the x and y fields in double, respectively.

java.awt.Dimension
A Dimension represents a width and a height in int. It is
meant to represent the dimension of an AWT or Swing
component. There are two int fields, width and height. The
getWidth and getHeight methods return a double, not an
int. You can construct an instance of Dimension by using one
of its constructors:

public Dimension()

public Dimension(Dimension d)

public Dimension(int width, int height)

The no-arg constructor creates a Dimension with a zero width
and height.

java.awt.Rectangle
A Rectange specifies a rectangular area in the coordinate
system. Its x and y fields specify the top-left corner coordinate.
Its width and height fields specify the width and height of the

rectangle, respectively.

Here are some of the constructors of Rectangle.

public Rectangle()

public Rectangle(Dimension d)

public Rectangle(int width, int height)

public Rectangle(int x, int y, int width,

int height)

java.awt.Graphics
The Graphics class is an abstract class for rendering AWT and
Swing components. You need to work with a Graphics if you
want to change the appearance of a component, create a custom
component, and so on. To do this, you override the component’s
paint method:

public void paint(Graphics graphics)

The overridden method takes a Graphics that you can use to
paint your component. After you obtain a Graphics, you can
call its various methods to draw on it. Here are some of the
methods in Graphics: drawArc, drawChars, drawImage,
drawLine, drawOval, drawPolygon, drawPolyline,
drawRect, drawString, fillArc, fillOval, etc.

java.awt.Toolkit
The Toolkit abstract class has the following methods that make
it interesting.

public static Toolkit getDefaultToolkit()

Returns the default implementation of the
Toolkit class.

public abstract void beep()

Produces a beep sound.

public abstract Dimension getScreenSize()

Returns a java.awt.Dimension object
containing the width and the height of the
screen.

Basic Swing Components

Swing is the Java technology for developing desktop applications
that need graphical user interface (GUI), replacing AWT but still
using the AWT event model. As a technology, Swing is mature
and complete, its rich set of classes and interfaces spanning
across 17 packages. Swing components are contained in the
javax.swing package. Figure 22.3 depicts the class hierarchy of
Swing components. To save space, all classes with no package
name belong to the javax.swing package.

Figure 22.3: Swing components

Except for the three top-level containers JFrame, JDialog, and
JApplet, all Swing components must reside in a container. You
normally use JFrame as the main container of your Swing
application. A JDialog represents a dialog, a window used to
interact with the user. A JDialog is like a JFrame, but it
normally lives within a JFrame or another JDialog. There are
also other dialogs that are not made from JDialog, for example
JOptionPane and JColorChooser. JApplet is a subclass of
java.applet.Applet. It allows applet developers to use Swing

components on applets. You will learn more about applets in
Chapter 24, “Applets.” To differentiate Swing components from
AWT components, the names of Swing components are normally
prefixed with J.

Note that the javax.swing.JFrame class is derived from
java.awt.Frame and other Swing components from
javax.swing.JComponent, which in turn extends
java.awt.Container.

The following sections discuss the more important Swing
components.

JFrame
A JFrame represents a frame container. JFrame is one of the
three Swing top-level containers (the other two are JDialog and
JApplet). Only top-level containers can appear onscreen
without having to live in another container. Other Swing
components must be child components of a container.

Just like java.awt.Frame, you can add components to a
JFrame by calling one of its add methods. However, JFrame
has only one child component, JRootPane, that manages a
java.awt.Container called the content pane. The rule is you
can only add non-menu components to this content pane, not to
the JFrame itself. Therefore, you use this code to add a
component:

jFrame.getContentPane().add(component)

However, Sun later added an add method as a shortcut to add a
component directly to a JFrame.

jFrame.add(component)

The same holds true for the remove and setLayout methods.

A Swing component can only be added to one container.
Adding a component that is already in a container to another
container will automatically remove the component from the
first container.

In addition, JFrame has the setDefaultCloseOperation
method to control what the JFrame’s close button does. The
setDefaultCloseOperation method can take one of these
static finals defined in JFrame:

WindowConstants.DO_NOTHING_ON_CLOSE. Do
nothing.

WindowConstants.HIDE_ON_CLOSE (the default).
Hides the frame after invoking all registered
WindowListener objects.

WindowConstants.DISPOSE_ON_CLOSE. Hides and

disposes the frame after invoking all registered
WindowListener objects.

JFrame.EXIT_ON_CLOSE. Exits the application by
calling System.exit().

Note that JFrame implements the
javax.swing.WindowConstants interface, so you can use the
static finals above directly from inside a JFrame.

As an example, to make a JFrame exit when the user clicks
the close button, write this:

jFrame.setDefaultCloseOperation(JFrame.EX

IT_ON_CLOSE)

JFrame has two methods to show a JFrame instance, pack
and setVisible.

public void pack()

public void setVisible(boolean visible)

pack resizes the JFrame to fit the sizes and layouts of its child
components. After calling pack, you would want to invoke
setVisible(true) to display the JFrame. Two alternatives to
pack are setSize and setBounds, which will be discussed in

the subsection “Resizing and Positioning.”

Listing 22.2 presents a class that creates a simple JFrame.

Listing 22.2: The JFrameDemo1 class
package app22;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.SwingUtilities;

public class JFrameDemo1 {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new JFrame();

 frame.setTitle("My First Swing

Application");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 // add a JLabel that says Welcome

 JLabel label = new

JLabel("Welcome");

 frame.add(label);

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

The JFrameTest1 class in Listing 22.2 displays a JFrame that
looks like the one in Figure 22.4.

Figure 22.4: A JFrame

Notice that the window in the JFrame consists of two areas, the
title bar and the content pane. The window has an icon on the
left side of the title bar. There are also three buttons (minimize,
restore, close) to the right of the title bar. The content pane is
another object that gets created for each JFrame.

How does the code in Listing 22.2 work?

First, let’s talk about the main method.

public static void main(String[] args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

}

Sun recommends that you call the static invokeLater method
of the javax.swing.SwingUtilities class to make sure that a
special thread called the event-dispatching thread takes care of
the creation of the GUI. The use of this method makes your code
a bit more complex, but it ensures your Swing applications will
be displayed correctly. If you do not understand this part, that’s
fine. Just make sure that the code in the main method becomes
your standard way of creating Swing GUI. Read the Javadoc for
the SwingUtilities class’s invokeLater method for more
information.

The constructGUI method constructs a JFrame, and you
pass a String to its setTitle method. You then call the
JFrame’s setDefaultCloseOperation method, passing
JFrame.EXIT_ON_CLOSE. This line is useful because by
default clicking the close button on a JFrame does not stop the

JVM. Assigning JFrame.EXIT_ON_CLOSE to the
setDefaultCloseOperation method allows you to exit the
application when you click the close button.

 JFrame frame = new JFrame();

 frame.setTitle("My First Swing

Application");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

The constructGUI method then creates a JLabel control and
adds it to the JFrame’s content pane.

 JLabel label = new JLabel("Welcome");

 frame.getContentPane().add(label);

Finally, it calls the pack method on the JFrame to size it to fit
the preferred size and layout of its subcomponents. Lastly, it
calls the setVisible method to make the JFrame visible.

 frame.pack();

 frame.setVisible(true);

The static setDefaultLookAndFeelDecorated method
makes your JFrame decorated. Without this method, your
JFrame would look like the frame in Figure 22.5.

Figure 22.5: An undecorated JFrame

Resizing and Positioning
The pack method resizes a JFrame to a default width and
height. Alternatively, you can resize a JFrame by calling the
setSize and setBounds methods. If you choose to do this,
setSize and setBound should be called just before the
setVisible method. If you call setSize, you don’t need to call
pack.

JFrame inherits setSize from java.awt.Component and
this method has two overloads:

public void setSize(int width, int

height)

public void setSize(java.awt.Dimension d)

The setBounds method sets the size as well as the new top-left
corner of the JFrame, relative to the screen’s top-left corner.

Here is its signature.

public void setBounds(int x, int y, int

width, int height)

JFrame inherits setBounds from java.awt.Window.

In addition, the setLocationRelativeTo method sets a
Swing component location relative to another component.

public void

setLocationRelativeTo(java.awt.Component

component)

If component is not visible or if you pass null, your JFrame will
be centered on the screen.

Listing 22.3 presents another JFrame that is manually
resized and positioned at the top-right corner of the screen.

Listing 22.3: Resizing and positioning a
JFrame

package app22;

import java.awt.Dimension;

import java.awt.GridLayout;

import java.awt.Toolkit;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JTextField;

import javax.swing.SwingUtilities;

public class JFrameDemo2 {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new JFrame();

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.setTitle("JFrame Test");

 frame.setLayout(new GridLayout(3,

2));

 frame.add(new JLabel("First

Name:"));

 frame.add(new JTextField());

 frame.add(new JLabel("Last

Name:"));

 frame.add(new JTextField());

 frame.add(new

JButton("Register"));

 int frameWidth = 200;

 int frameHeight = 100;

 Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize

();

 frame.setBounds((int)

screenSize.getWidth() - frameWidth,

 0, frameWidth,

frameHeight);

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

The Running JFrameDemo2 displays a JFrame like the one
in Figure 22.6.

Figure 22.6: A JFrame that has been
resized and repositioned.

Extending JFrame
As your Swing applications grow more complex, it is often easier
to extend JFrame and construct your GUI from inside a
subclass than from within a static constructGUI method.
Listing 22.4 rewrites the JFrameTest2 class to extend
JFrame. You still construct your GUI using the event-
dispatching thread, however the complexity of constructing your
GUI has been moved to a subclass.

Listing 22.4: Extending JFrame
package app22;

import java.awt.Dimension;

import java.awt.GridLayout;

import java.awt.Toolkit;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JTextField;

import javax.swing.SwingUtilities;

class MyFrame extends JFrame {

 public MyFrame() {

 super();

 init();

 }

 public MyFrame(String title) {

 super(title);

 init();

 }

 private void init() {

this.setDefaultCloseOperation(JFrame.EXIT

_ON_CLOSE);

 this.setTitle("JFrame Test");

 this.setLayout(new GridLayout(3,

2));

 this.add(new JLabel("First

Name:"));

 this.add(new JTextField());

 this.add(new JLabel("Last

Name:"));

 this.add(new JTextField());

 this.add(new

JButton("Register"));

 int frameWidth = 200;

 int frameHeight = 100;

 Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize

();

 this.setBounds((int)

screenSize.getWidth() - frameWidth, 0,

 frameWidth, frameHeight);

 }

}

public class JFrameDemo3 {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 MyFrame frame = new MyFrame();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

When run, the JFrameDemo3 class produces the same result
as the JFrameDemo2 class in Listing 22.3.

JComponent
All Swing components derive from the abstract
javax.swing.JComponent class. The following are the
JComponent class’s methods for manipulating the appearance
of a component.

public int getWidth()

Returns the current width of this
component in pixel.

public int getHeight()

Returns the current height of this
component in pixel.

public int getX()

Returns the current x coordinate of the
component’s top-left corner.

public int getY()

Returns the current y coordinate of the
component’s top-left corner.

public java.awt.Graphics getGraphics()

Returns this component’s Graphics object
you can draw on. This is useful if you want
to change the appearance of a component.

public void setBackground(java.awt.Color

bg)

Sets this component’s background color.

public void setEnabled(boolean enabled)

Enables or disables this component.

public void setFont(java.awt.Font font)

Set the font used to print text on this
component.

public void setForeground(java.awt.Color

fg)

Set this component’s foreground color.

public void

setToolTipText(java.lang.String text)

Sets the tool tip text.

public void setVisible(boolean visible)

Makes this component visible or hides it.

I will discuss other methods later in this chapter.

Icon and ImageIcon
The javax.swing.Icon interface is a template for small images
used to decorate Swing components. Icon is discussed before
other Swing components because we often use icons to decorate
Swing components. Components that can use an Icon object
include JLabel and JButton. The Icon interface defines
getWidth and getHeight methods that return the Icon’s
width and height (in pixels), respectively.

public int getWidth()

public int getHeight()

The javax.swing.ImageIcon class is an implementation of
Icon. The easiest constructor to use is the one that accepts a
filename.

public ImageIcon(java.lang.String

filename)

The filename argument can be a file name or the path to a file.
Use a forward slash as a separator of a directory from a
subdirectory. Formats supported include GIF, JPEG, and PNG.

Constructing an Icon by creating an instance of ImageIcon
is as easy as this.

Icon icon = new

ImageIcon("images/logo.gif");

You will see examples that create an Icon to decorate a Swing
component in the sections “JLabel” and “JButton” later in this
chapter.

JLabel
A JLabel represents a label, i.e. a display area for non-editable
text. A JLabel can display both text and images. It can even
render HTML tags so that you can create a JLabel that displays
multicolors or multiline text. The javax.swing.JLabel class
offers these constructors.

public JLabel()

public JLabel(java.lang.String text)

public JLabel(java.lang.String text, int

horizontalAlignment)

public JLabel(Icon image)

public JLabel(Icon image, int

horizontalAlignment)

public JLabel(java.lang.String text, Icon

icon, int horizontalAlignment)

The value of horizontalAlignment is one of the following:

SwingConstants.LEFT

SwingConstants.CENTER

SwingConstants.RIGHT

SwingConstants.LEADING

SwingConstants.TRAILING

JLabel has a setText method that takes a String. It also has a
setFont method to set the font. Alternatively, if you want to use
multifonts or multicolors in a JLabel, you can pass HTML tags,
as demonstrated in the example in Listing 22.5.

Listing 22.5: Using JLabel
package app22;

import java.awt.Color;

import java.awt.FlowLayout;

import java.awt.Font;

import javax.swing.ImageIcon;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.SwingConstants;

import javax.swing.SwingUtilities;

public class JLabelDemo extends JFrame {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new JFrame();

 frame.setTitle("JLabel Test");

 frame.setLayout(new

FlowLayout());

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 JLabel label1 = new JLabel("First

Name");

 label1.setFont(new Font("Courier

New", Font.ITALIC, 12));

 label1.setForeground(Color.GRAY);

 JLabel label2 = new JLabel();

 label2.setText(

 "<html>Last Name
<font

face='courier new'"

 + " color=red>(mandatory)

</html>");

 JLabel label3 = new JLabel();

 label3.setText("<html>Last

Name
<font face=garamond "

 + "color=red>(mandatory)

</html>");

 ImageIcon imageIcon = new

ImageIcon("triangle.jpg");

 JLabel label4 = new

JLabel(imageIcon);

 JLabel label5 = new

JLabel("Mixed", imageIcon,

 SwingConstants.RIGHT);

 frame.add(label1);

 frame.add(label2);

 frame.add(label3);

 frame.add(label4);

 frame.add(label5);

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

If you pass HTML tags to the setText method on a JLabel, the
tags must start with “<html>” and end with “</html>”.

Figure 22.7 shows the result from running the code in Listing

22.5.

Figure 22.7: The JLabel example

JButton
A JButton represents a clickable button. In a typical Swing
application, a JButton is connected to an event listener that
provides code that gets executed when the JButton is clicked.
Event listeners are discussed in Chapter 23, “Swinging Higher.”

JButton has several constructors. Here are some of them.

public JButton()

public JButton(Icon icon)

public JButton(java.lang.String text)

public JButton(java.lang.String text,

Icon icon)

You can create a JButton that has text on it or that has an Icon
or text and an icon. The setText and getText methods allows
you to assign text and retrieve a JButton’s text, respectively.

The code in Listing 22.6 shows a JButton example. The

JButton contains both text and an icon.

Listing 22.6: Using JButton
package app22;

import javax.swing.ImageIcon;

import javax.swing.JFrame;

import javax.swing.JButton;

import javax.swing.SwingUtilities;

public class JButtonDemo extends JFrame {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new JFrame();

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.setTitle("JButton Test");

 ImageIcon imageIcon = new

ImageIcon("triangle.jpg");

 JButton loginButton = new

JButton("Login", imageIcon);

 frame.add(loginButton);

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

Figure 22.8 shows how a JButton looks like when the code in
Listing 22.6 is run. Note that in this example the JButton
occupies the whole area of the JFrame’s content pane.

Figure 22.8: Using JButton

JTextField and JPasswordField
A JTextField represents a text field. The JTextField class
derives from JTextComponent, which is also the direct parent
of JTextArea and JEditorPane. JFormattedTextField and
JPasswordField are some of JTextField’s subclasses.

A JTextField can only take a single line of text. By contrast, a
JTextArea allows multiline text.

Here are two of the JTextField class’s constructors.

public JTextField()

public JTextField(java.lang.String text)

The second constructor expects a String that will be used as the
text of the constructed JTextField. If you use the first
constructor, you can call the setText method to set the text:

public void setText(java.lang.String

text)

To get the text, use the getText method.

public java.lang.String getText()

Both setText and getText are inherited from
JTextComponent.

A descendant of JTextField, JPasswordField is similar to
JTextField, except that each character of the text is displayed
as an echo character, which by default is an asterisk. Here are

two constructors of JPasswordField.

public void JPasswordField()

public void

JPasswordField(java.lang.String

initialPassword)

To set a password, use the setText method inherited from
JComponentText. JPasswordField overrides the getText
method which is now deprecated. To obtain the contents of a
JPasswordField, use the getPassword method instead.

public char[] getPassword()

You can set the echo character using the setEchoChar method:

public void setEchoChar(char c)

Passing 0 to setEchoChar tells the JPasswordField to
display the characters unmasked. The getEchoChar method
allows you to obtain the echo character.

Listing 22.7 shows an example of JTextField and
JPasswordField.

Listing 22.7: Using JTextField and
JPasswordField

package app22;

import java.awt.GridLayout;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPasswordField;

import javax.swing.JTextField;

import javax.swing.SwingConstants;

import javax.swing.SwingUtilities;

public class JTextFieldDemo extends

JFrame {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new JFrame();

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.setTitle("JTextField

Test");

 frame.setLayout(new GridLayout(2,

2));

 JLabel label1 = new JLabel("User

Name:",

 SwingConstants.RIGHT);

 JLabel label2 = new

JLabel("Password:",

 SwingConstants.RIGHT);

 JTextField userNameField = new

JTextField(20);

 JPasswordField passwordField =

new JPasswordField();

 frame.add(label1);

 frame.add(userNameField);

 frame.add(label2);

 frame.add(passwordField);

 frame.setSize(200, 70);

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

The result of running the code in Listing 22.7 is shown in Figure

22.9.

Figure 22.9: Using JTextField and
JPasswordField

JTextArea
A JTextArea represents a multiline area for displaying text. You
can change the number of lines that can be displayed as well as
the number of columns. You can wrap lines and words too. You
can also put a JTextArea in a JScrollPane to make it
scrollable.

Here are some of the JTextArea class’s constructors:

public JTextArea()

public JTextArea(int rows, int columns)

public JTextArea(java.lang.String text)

public JTextArea(java.lang.String text,

int rows, int columns)

And, here are some of the more important methods in
JTextArea.

public void append(java.lang.String str)

Appends a String to the end of the text.

public int getColumns()

Returns the number of columns in the
JTextArea.

public int getRows()

Returns the number of rows in the
JTextArea.

public void setColumns(int columns)

Sets the number of columns in the
JTextArea.

public void setRows(int rows)

Sets the number of rows in the JTextArea.

The code in Listing 22.8 creates a JFrame with two JTextArea
components. The second one is displayed in a JScrollPane.

Listing 22.8: Using JTextArea
package app22;

import java.awt.Dimension;

import java.awt.FlowLayout;

import javax.swing.JFrame;

import javax.swing.JTextArea;

import javax.swing.JScrollPane;

import javax.swing.SwingUtilities;

public class JTextAreaDemo {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new

JFrame("JTextArea Test");

 frame.setLayout(new

FlowLayout());

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 String text = "A JTextArea object

represents" +

 "a multiline area for

displaying text. " +

 "You can change the

number of lines " +

 "that can be displayed at

a time, " +

 "as well as the number of

columns. " +

 "You can wrap lines and

words too. " +

 "You can also put your

JTextArea in a " +

 "JScrollPane to make it

scrollable.";

 JTextArea textArea1 = new

JTextArea(text, 5, 10);

 textArea1.setPreferredSize(new

Dimension(100, 100));

 JTextArea textArea2 = new

JTextArea(text, 5, 10);

 textArea2.setPreferredSize(new

Dimension(100, 100));

 JScrollPane scrollPane = new

JScrollPane(textArea2,

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,

JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

 textArea1.setLineWrap(true);

 textArea2.setLineWrap(true);

 frame.add(textArea1);

 frame.add(scrollPane);

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

When run, the class will display something similar to Figure
22.10.

Figure 22.10: Using JTextArea

JCheckbox
A JCheckBox represents a check box. You construct a
JCheckBox by passing a String, an icon, or a String and an
icon to its constructor. Here are some of the constructors in the
JCheckBox class.

public JCheckBox(java.lang.String text)

public JCheckBox(Icon icon)

public JCheckBox(java.lang.String text,

Icon icon)

You can programmatically check a JCheckBox by passing true
to its setSelected method. However, there is no getSelected
method that you can use to check if a JCheckBox is checked.
For this, you need to use an event listener. See Chapter 16,
“Swinging Higher” for information about event listeners.

As an example, the code in Listing 22.9 demonstrates how to
use JCheckBox. If you run it, you’ll see something similar to
Figure 22.11

Listing 22.9: Using JCheckBox
package app22;

import javax.swing.JFrame;

import javax.swing.JCheckBox;

import java.awt.FlowLayout;

import javax.swing.JLabel;

import javax.swing.SwingUtilities;

public class JCheckBoxDemo {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new

JFrame("JCheckBox Test");

 frame.setLayout(new

FlowLayout());

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 JCheckBox ac = new

JCheckBox("A/C");

 ac.setSelected(true);

 JCheckBox cdPlayer = new

JCheckBox("CD Player");

 JCheckBox cruiseControl = new

JCheckBox("Cruise Control");

 JCheckBox keylessEntry = new

JCheckBox("Keyless Entry");

 JCheckBox antiTheft = new

JCheckBox("Anti-Theft Alarm");

 JCheckBox centralLock = new

JCheckBox("Central Lock");

 frame.add(new JLabel("Car

Features"));

 frame.add(ac);

 frame.add(cdPlayer);

 frame.add(cruiseControl);

 frame.add(keylessEntry);

 frame.add(antiTheft);

 frame.add(centralLock);

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

Figure 22.11: Using JCheckBox

JRadioButton
A JRadioButton represents a radio button. You can use
multiple JRadioButtons to represent a selection from which
only one item can be selected. To indicate a logical grouping of
radio buttons, you use a javax.swing.ButtonGroup object.

Like JCheckBox, you can pass a String, an icon, or a String
and an icon to construct a JRadioButton. Here are some of its
constructors.

public JRadioButton(java.lang.String

text)

public JRadioButton (Icon icon)

public JRadioButton (java.lang.String

text, Icon icon)

To programmatically select a JRadioButton, you pass true to
its setSelected method. However, to detect which radio button
in a button group is selected, you need to use a listener. Read
Chapter 16, “Swinging Higher” to learn how to achieve this.

As an example, Listing 22.10 shows code that displays three
radio buttons in a button group.

Listing 22.10: Using JRadioButton
package app22;

import java.awt.FlowLayout;

import javax.swing.ButtonGroup;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JRadioButton;

import javax.swing.SwingUtilities;

public class JRadioButtonDemo {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new

JFrame("JRadioButton Test");

 frame.setLayout(new

FlowLayout());

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 JRadioButton button1 = new

JRadioButton("Red");

 JRadioButton button2 = new

JRadioButton("Green");

 JRadioButton button3 = new

JRadioButton("Blue");

 ButtonGroup colorButtonGroup =

new ButtonGroup();

 colorButtonGroup.add(button1);

 colorButtonGroup.add(button2);

 colorButtonGroup.add(button3);

 button1.setSelected(true);

 frame.add(new JLabel("Color:"));

 frame.add(button1);

 frame.add(button2);

 frame.add(button3);

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

Figure 22.12 shows the result of running the class in Listing

22.10.

Figure 22.12: Using JRadioButton

JList
A JList displays a selection of objects from which the user can
choose one or more options. The easiest way to construct a JList
is to pass an array of java.lang.Object to its constructor:

public JList(java.lang.Object[]

selections)

You can determine if the user can select a single item or multiple
items from a JList by using the setSelectionMode method.

public void setSelectionMode(int

selectionMode)

The valid value for selectionMode is one of the fields in the
ListSelectionModel interface.

SINGLE_SELECTION. Allows a single item selection.

SINGLE_INTERVAL_SELECTION. Allows multiple
item selection, but the selected items must be contiguous.

MULTIPLE_INTERVAL_SELECTION. Allows multiple
items and the selected items may or may not be contiguous.

You can set an initial selection(s) by using setSelectedIndex
and setSelectedIndices methods (the indexing is zero-based,
so index 0 refers to the first option in the JList).

public void setSelectedIndex(int index)

public void setSelectedIndices(int[]

indices)

In addition, you can get the selected item(s) by using one of
these methods:

public int getSelectedIndex()

Returns the first selected index or -1 if there
is no selected item.

public int[] getSelectedIndices()

Returns an array of the selected indices.

public java.lang.Object

getSelectedValue()

Returns the first selected value, or null if no
item is being selected.

public java.lang.Object[]

getSelectedValues()

Returns all the selected items as an array of
Objects.

Listing 22.11 shows code that uses JList.

Listing 22.11: Using JList
package app22;

import java.awt.FlowLayout;

import javax.swing.JFrame;

import javax.swing.JList;

import javax.swing.SwingUtilities;

public class JListDemo {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new JFrame("JList

Test");

 frame.setLayout(new

FlowLayout());

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 String[] selections = { "green",

"red", "orange",

 "dark blue" };

 JList<String> list = new

JList<String>(selections);

 list.setSelectedIndex(1);

System.out.println(list.getSelectedValue(

));

 frame.add(list);

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

When run, you should see something like Figure 22.13.

Figure 22.13: Using JList

JComboBox
JComboBox is very similar to JList, except that only one item
can be selected. On top of that, JComboBox does not show all
the options but only the selected item and an arrow that the user
can click to see other options and select one of them.

Like JList, you can pass an array of selection objects to
JComboBox:

public JComboBox(java.lang.Object[]

selection)

Also, JComboBox has getSelectedIndex, getSelectedItem,
and getSelectedObjects methods that return the selected
item(s). Here are the signatures of these methods:

public int getSelectedIndex()

Returns the selected first item or -1 if there
is no selected item.

public java.lang.Object getSelectedItem()

Returns the first value in the selection or
null if no item is currently being selected.

public java.lang.Object[]

getSelectedObjects()

Returns the selected item as an array of
objects.

Note that getSelectedObjects returns an array that contains a

maximum of one element because you cannot select multiple
items with a JComboBox.

Listing 22.12 shows a JFrame that contains a JComboBox.

Listing 22.12: Using JComboBox
package app22;

import java.awt.FlowLayout;

import javax.swing.JComboBox;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

public class JComboBoxDemo {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new

JFrame("JComboBox Test");

 frame.setLayout(new

FlowLayout());

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 String[] selections = { "green",

"red", "orange",

 "dark blue" };

 JComboBox<String> comboBox =

 new JComboBox<String>

(selections);

 comboBox.setSelectedIndex(1);

System.out.println(comboBox.getSelectedIt

em());

 frame.add(comboBox);

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

When run, you’ll see a JFrame that looks like that in Figure
22.14.

Figure 22.14: A JComboBox

JDialog
A JDialog represents a dialog, a top-level container that you can
extend to create a window to interact with the user. You can use
it to display messages, receive user input, etc. A dialog can be
either modal or modeless. A modal dialog blocks user input to all
other windows in the same application when it is visible. In other
words, you have to close a modal dialog before other windows in
the same application can get focus. A modeless one does not
block user input. A dialog can belong to another dialog or a
frame or stand alone like a JFrame. However, most of the time
you would want to use a dialog that is part of a frame. For a
stand alone top level container, you normally use a JFrame.
When a dialog is part of another dialog or a frame, it will be
destroyed when the owner is destroyed.

Note
The JOptionPane class, discussed in the section “JOptionPane,” is
handy for creating simple modal dialogs.

Like JFrame, JDialog has a JRootPane as its only child. This

means, you only add components to its content pane. However,
the add, remove, and setLayout methods have been
overridden to call the appropriate methods in the content pane.
In other words, like in JFrame, you can add a component to a
JDialog just like this:

jDialog.add(component)

Here are some of the constructors of JDialog.

public JDialog()

public JDialog(java.awt.Dialog owner)

public JDialog(java.awt.Frame owner)

public JDialog(java.awt.Dialog owner,

boolean modal)

public JDialog(java.awt.Frame owner,

boolean modal)

You can use the last two constructors to create a modal JDialog.

As an example, Listing 22.13 shows an AddressDialog class
for asking for the user's address.

Listing 22.13: AddressDialog
package app22;

import java.awt.Frame;

import java.awt.GridLayout;

import javax.swing.JDialog;

import javax.swing.JLabel;

import javax.swing.JTextField;

public class AddressDialog extends

JDialog {

 JLabel label1 = new

JLabel("Address");

 JLabel label2 = new JLabel("City");

 JLabel label3 = new JLabel("State");

 JLabel label4 = new JLabel("Zip

Code");

 JTextField addressField = new

JTextField();

 JTextField cityField = new

JTextField();

 JTextField stateField = new

JTextField();

 JTextField zipCodeField = new

JTextField();

 String[] address = new String[4];

 public AddressDialog(Frame owner,

boolean modal) {

 super(owner, modal);

 init();

 }

 private void init() {

 this.setTitle("Address Dialog");

 this.setLayout(new GridLayout(4,

2));

 this.add(label1);

 this.add(addressField);

 this.add(label2);

 this.add(cityField);

 this.add(label3);

 this.add(stateField);

 this.add(label4);

 this.add(zipCodeField);

 }

 public String[] getAddress() {

 address[0] =

addressField.getText();

 address[1] = cityField.getText();

 address[2] =

stateField.getText();

 address[3] =

zipCodeField.getText();

 return address;

 }

}

Note that clients of AddressDialog can call its getAddress
method to obtain the user’s address information. When
displayed, an AddressDialog looks like the one in Figure 22.15.

Figure 22.15: The AddressDialog

The JDialogTest class in Listing 22.14 uses the
AddressDialog class.

Listing 22.14: The JDialogDemo class
package app22;

import java.awt.FlowLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JDialog;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

public class JDialogDemo extends JFrame {

 AddressDialog dialog = new

AddressDialog(this, false);

 public JDialogDemo(String title) {

 super(title);

 init();

 }

 public JDialogDemo() {

 super();

 init();

 }

 private void init() {

this.getContentPane().setLayout(new

FlowLayout());

this.setDefaultCloseOperation(JFrame.EXIT

_ON_CLOSE);

 AddressDialog dialog = new

AddressDialog(this, false);

 JButton button = new

JButton("Show Dialog");

 button.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent ae) {

 displayDialog();

 }

 });

this.getContentPane().add(button);

 }

 private void displayDialog() {

 dialog.setSize(250, 120);

 dialog.setVisible(true);

 }

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

JDialog.setDefaultLookAndFeelDecorated(tr

ue);

 JDialogDemo frame = new

JDialogDemo();

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

The JDialogDemo class displays a JButton you can click to
display the AddressDialog. To achieve this JDialogDemo
uses an ActionListener, a type discussed in Chapter 23,
“Swinging Higher.”

JOptionPane
A JOptionPane object represents a dialog box that you can use
for several purposes:

Display a message (through the use of the
showMessageDialog method)

Ask for user's confirmation (using the
showConfirmDialog method)

Obtain the user’s input (using the showInputDialog
method)

Do all the three above (using the showOptionDialog
method)

Most methods in JOptionPane are static, so you can create a
dialog with a single line of code. You can use JOptionPane as a
dialog of a frame or independently. You can pass a message, a
visual component, or an icon to be displayed in the dialog. In
addition, JOptionPane provides four default icons that are
ready for use. You can even use JOptionPane in non-Swing
applications as an easy way to interact with the user.

The following sections discuss the four main functions you can
achieve using JOptionPane.

Using JOptionPane to Display a Message
You use the JOptionPane class’s showMessageDialog
method to display a message. There are three overloads of this
method.

public static void

showMessageDialog(java.awt.Component

parent,

 java.lang.Object message)

public static void

showMessageDialog(java.awt.Component

parent,

 java.lang.Object message,

java.lang.String title,

 int messageType)

public static void

showMessageDialog(java.awt.Component

parent,

 java.lang.Object message,

java.lang.String title,

 int messageType, Icon icon)

The parent argument specifies a java.awt.Component in
which the JOptionPane is to be displayed. If component is
null or does not have a frame, the default frame will be used.

The message argument specifies the message to display. The
title argument specifies the title for the dialog window. If the first
overload is used, the title is “Message.”

The messageType argument can be assigned one of these
static finals:

JOptionPane.ERROR_MESSAGE

JOptionPane.INFORMATION_MESSAGE

JOptionPane.WARNING_MESSAGE

JOptionPane.QUESTION_MESSAGE

JOptionPane.PLAIN_MESSAGE (no icon will be used)

Each value of messageType implies the use of a different

default icon. No icon is used if messageType is assigned
JOptionPane.PLAIN_MESSAGE.

For example, this code snippet displays four different
JOptionPane dialogs.

JDialog.setDefaultLookAndFeelDecorated(tr

ue);

JOptionPane.showMessageDialog(null,

 "Thank you for visiting our

store", "Thank You",

 JOptionPane.INFORMATION_MESSAGE);

JOptionPane.showMessageDialog(null,

 "You have not saved this

document", "Warning",

 JOptionPane.WARNING_MESSAGE);

JOptionPane.showMessageDialog(null,

"First Name must have a value",

 "Error",

JOptionPane.ERROR_MESSAGE);

Figures 22.16, 22.17, and 22.18 show an information message
dialog, a warning message dialog, and error message dialog,
respectively.

Figure 22.16: An information message
dialog

Figure 22.17: A warning message dialog

Figure 22.18: An error message dialog

Using JOptionPane to Prompt User Confirmation
You can use the showConfirmDialog static method to ask for
user confirmation. This method displays a dialog with buttons on

it, such as a Yes button, a No button, a Cancel button, or an OK
button. You can select which buttons to appear or you can create
your own buttons. Upon the user clicking a button,
JOptionPane returns one of the following predefined ints:

JOptionPane.YES_OPTION

JOptionPane.NO_OPTION

JOptionPane.CANCEL_OPTION

JOptionPane.OK_OPTION

In addition, if the user closes a JOptionPane by clicking the
close button at the top right hand corner of the dialog, the
JOptionPane.CLOSED_OPTION int is returned.

The showConfirmDialog method has four overloads whose
signatures are as follows.

public static int

showConfirmDialog(java.awt.Component

parent,

 java.lang.Object message)

public static int

showConfirmDialog(java.awt.Component

parent,

 java.lang.Object message,

java.lang.String title,

 int optionType)

public static int

showConfirmDialog(java.awt.Component

parent,

 java.lang.Object message,

java.lang.String title,

 int optionType, int messageType)

public static int

showConfirmDialog(java.awt.Component

parent,

 java.lang.Object message,

java.lang.String title,

 int optionType, int messageType,

Icon icon)

The parent argument specifies the java.awt.Frame in which
this JOptionPane will be displayed. If null is passed to this
argument or if the parent component does not have a frame, the
default frame will be used.

The message argument specifies the message to be displayed.
The title argument specifies the title that will be printed on the
dialog title bar.

The optionType argument specifies the buttons that will be
displayed. The possible values are as follows:

JOptionPanel.YES_NO_OPTION, which causes the Yes
and No button to be displayed.

JOptionPane.YES_NO_CANCEL_OPTION, which
causes the Yes, No, and Cancel buttons to be displayed.

If the first overload is used where there is no argument
optionType is required,
JOptionPane.YES_NO_CANCEL_OPTION is assumed.

For example, the JOptionPaneTest2 class in Listing 22.15
shows how you can use the JOptionPane class to prompt user
confirmation.

Listing 22.15: Using JOptionPane to
prompt user confirmation

package app22;

import javax.swing.JDialog;

import javax.swing.JOptionPane;

public class JOptionPaneDemo2 {

 public static void main(String[]

args) {

JDialog.setDefaultLookAndFeelDecorated(tr

ue);

 int response =

JOptionPane.showConfirmDialog(null,

 "Do you want to

continue?", "Confirm",

JOptionPane.YES_NO_OPTION,

JOptionPane.QUESTION_MESSAGE);

 if (response ==

JOptionPane.NO_OPTION) {

 System.out.println("No button

clicked");

 } else if (response ==

JOptionPane.YES_OPTION) {

 System.out.println("Yes

button clicked");

 } else if (response ==

JOptionPane.CLOSED_OPTION) {

System.out.println("JOptionPane closed");

 }

 }

}

If you run the program, you’ll see a JOptionPane dialog like
the one shown in Figure 22.19.

Figure 22.19: Asking user confirmation

Using JOptionPane to Obtain User Input
The third use of JOptionPane is to obtain user input, by using
the showInputDialog method. This method displays a
JOptionPane with a box for the user to type in a value.
showInputDialog can return one of these:

the string entered by the user, if the OK button is clicked
after the user types in a value.

an empty string, if the user clicks the OK button without
entering a value and there is no initial value displayed.

null, if the JOptionPane is closed by clicking the close
button or the Cancel button.

a java.lang.Object, if the user selects one of the
predefined options displayed by the JOptionPane.

The showInputDialog method has six overloads whose
signatures are as follows.

public static java.lang.String

showInputDialog(

 java.awt.Component parent,

java.lang.Object message)

public static java.lang.String

showInputDialog(

 java.awt.Component parent,

java.lang.Object message,

 java.lang.Object

initialSelectionValue)

public static java.lang.String

showInputDialog(

 java.awt.Component parent,

java.lang.Object message,

 java.lang.String title, int

messageType)

public static java.lang.String

showInputDialog(

 java.awt.Component parent,

java.lang.Object message,

 java.lang.String title, int

messageType, Icon icon,

 java.lang.Object[]

selectionValues,

 java.lang.Object

initialSelectionValue)

public static java.lang.String

showInputDialog(

 java.lang.Object message)

public static java.lang.Object

showInputDialog(

 java.lang.Object message,

 java.lang.Object

intialSelectionValue)

The parent argument specifies the java.awt.Frame in which
this JOptionPane will be displayed. If null is passed to this
argument or if the parent component does not have a frame, the
default frame is used.

The message argument specifies the message to be displayed.

The title argument specifies the title that will be printed on the

dialog title bar. If no title argument is present, the string “Input”
is displayed on the title bar.

The messageType argument specifies the type of the message,
and its values is one of the following:

JOptionPane.INFORMATION_MESSAGE

JOptionPane.ERROR_MESSAGE

JOptionPane.WARNING_MESSAGE

JOptionPane.QUESTION_MESSAGE

JOptionPane.PLAIN_MESSAGE

The JOptionPane.QUESTION_MESSAGE value is assumed
if no messageType argument is present.

The selectionValues argument specifies an array of objects
that provides possible selections and the initialSelectionValue
argument specifies the initial value in the input field.

For example, the following lines of code display an input data
shown in Figure 22.20.

String input =

JOptionPane.showInputDialog(null,

 "Enter Your Name", "John

Average");

Figure 22.20: The Input data

As another example, consider the JOptionPaneTest3 class in
Listing 22.16.

Listing 22.16: Using JOptionPane with a
predefined selections

package app22;

import javax.swing.JDialog;

import javax.swing.JOptionPane;

public class JOptionPaneDemo3 {

 public static void main(String[]

args) {

JDialog.setDefaultLookAndFeelDecorated(tr

ue);

 Object[] selectionValues = {

"Pandas", "Dogs", "Horses" };

 String initialSelection = "Dogs";

 Object selection =

JOptionPane.showInputDialog(null,

 "What are your favorite

animals?", "Zoo Quiz",

JOptionPane.QUESTION_MESSAGE, null,

 selectionValues,

initialSelection);

 System.out.println(selection);

 }

}

The JOptionPaneDemo3 class displays a predefined
selections. Here there are three values predefined, “Pandas”,
“Dogs”, and “Horses.” The value for the initialSelection
argument is “Dogs,” so this is the initial selected value. When
run, the JOptionPaneDemo3 class displays something that
looks like Figure 22.21

Figure 22.21: Using JOptionPane with
predefined values

JFileChooser

A JFileChooser is a dialog specifically designed to enable users
to easily select a file or files. You can create a JFileChooser
that allows multiple selection by passing true to its
setMultiSelectionEnabled method.

After you create an instance of JFileChooser, you can call its
showXXX method to make it visible. There are three methods
you can use for this purpose.

public int showDialog(java.awt.Component

parent,

 java.lang.String

approveButtonText)

Displays the JFileChooser with a custom
Approve button.

public int

showOpenDialog(java.awt.Component parent)

Displays the JFileChooser in the “Open
File” mode.

public int

showSaveDialog(java.awt.Component parent)

Displays the JFileChooser in the “Save
File” mode.

The return value of the three methods is one of the following:

JFileChooser.CANCEL_OPTION, if the user clicks
Cancel.

JFileChooser.APPROVE_OPTION, if the user clicks an
OK/Open/Save button.

JFileCHooser.ERROR_OPTION, if the user closes the
dialog

A return value of JFileChooser.APPROVE_OPTION
indicates that you can call its getSelectedFile or
getSelectedFiles methods. Here are the signatures of the
methods.

public java.io.File getSelectedFile()

public java.io.File[] getSelectedFiles()

The JFileChooserTest class in Listing 22.17 presents a
JFrame with a button. Clicking the button brings up a
JFileChooser dialog. The name of the selected file will be

displayed after you click the Open button.

Listing 22.17: Using JFileChooser
package app22;

import java.awt.FlowLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.File;

import javax.swing.JButton;

import javax.swing.JDialog;

import javax.swing.JFileChooser;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

public class JFileChooserDemo extends

JFrame {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

JDialog.setDefaultLookAndFeelDecorated(tr

ue);

 JFrame frame = new

JFrame("JComboBox Test");

 frame.setLayout(new

FlowLayout());

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 JButton button = new

JButton("Select File");

 button.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent ae) {

 JFileChooser fileChooser

= new JFileChooser();

 int returnValue =

fileChooser.showOpenDialog(null);

 if (returnValue ==

JFileChooser.APPROVE_OPTION) {

 File selectedFile =

fileChooser.getSelectedFile();

System.out.println(selectedFile.getName()

);

 }

 }

 });

 frame.add(button);

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

Figure 22.22 displays a JFileChooser.

Figure 22.22: A JFileChooser

Summary

This chapter is the first of two installments on Swing. In this
chapter you learned the AWT basic components as well as some
in the Swing collection. This chapter covered JFrame,
JButton, JLabel, JList, JComboBox, JDialog,
JOptionPane, and JFileChooser.

Quiz

1. Why is studying AWT still relevant today?
2. What is the AWT class that represents a

component?
3. What is the easiest way to construct a

Color object?
4. What is the only non-menu child

component that can be added to a
JFrame?

5. What is the significance of using
SwingUtilities.invokeLater to
construct Swing GUI?

6. What are the three top-level Swing
containers?

Chapter 23
Swinging Higher

In Chapter 22, “Swing Basics” you learned about AWT and Swing
components. This chapter is the second installment of Swing and
discusses techniques that you invariably use in Swing
programming: layout management and event handling. In
addition, there is discussion about menus, the look and feel, fast
splash screens, the system tray and Java Desktop.

Layout Managers

A container, such as a JFrame and a JDialog, needs a
java.awt.LayoutManager to lay out child components. A
LayoutManager resizes and positions all child components, as
well as rearranges the components when the container is resized.
The java.awt.Container class has a setLayout method for
adding a layout manager. Since javax.swing.JComponent
extends Container, you can add a LayoutManager to a Swing
component as well. For example, it is not uncommon to add a
LayoutManager to a JLabel if the latter has components

added to it.

With some components, you can pass a LayoutManager to
the component class. This is the case for JPanel.

JPanel panel = new JPanel(layoutManager);

As for JFrame, you add a LayoutManager to its content pane:

jFrame.getContentPane().setLayoutManager(

layoutManager)

There is also a setLayoutManager method in JFrame to add
a LayoutManager to its content pane:

jFrame.setLayoutManager(layoutManager)

To tell the layout manager the preferred size of a component,
pass a java.awt.Dimension object to the setPreferredSize
method on the component. For example:

button.setPreferredSize(new

Dimension(300, 300));

The LayoutManager interface defines the methods that a
layout manager has to implement. There are a few default
implementations of this interface in both java.awt and
javax.swing packages. Unless you are writing a
LayoutManager implementation, you seldom have to call the
LayoutManager interface’s methods. In most scenarios, these
default implementations are sufficient.

Figure 23.1 shows the LayoutManager interface and some of
its implementations.

Figure 23.1: The LayoutManager
interface and its implementations

To save space, members of java.awt are drawn without package
information in Figure 23.1. Two implementations in Figure 23.1,
BoxLayout and SpringLayout, belong to the javax.swing
package.

Some of the LayoutManager implementations are discussed
in the following sections.

BorderLayout
A BorderLayout arranges components to fit in five regions:
north, south, east, west, and center. There are five static final
fields of type java.lang.String in BorderLayout that indicate
these regions: NORTH, SOUTH, EAST, WEST, and
CENTER. Each region may not contain more than one
component. If you add multiple components to a region, only the
last one will be displayed.

To add a component to a container employing a
BorderLayout, you call the container’s add method, passing
the component and the region field. For example, the following
code adds a JButton to a JFrame.

jFrame.add(new JButton("Register"),

BorderLayout.NORTH);

The absence of a region field will place the component at the
center.

BorderLayout is the default layout manager. If you do not
specifically add a LayoutManager to a container, a
BorderLayout will be used to lay out child components in the
container.

Listing 23.1 presents an example to show how to use
BorderLayout.

Listing 23.1: Using BorderLayout
package app23;

import java.awt.BorderLayout;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JTextField;

import javax.swing.SwingUtilities;

public class BorderLayoutDemo1 extends

JFrame {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new

JFrame("BorderLayout Test");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.setLayout(new

BorderLayout());

 JTextField textField = new

JTextField("<your name>");

 frame.add(textField,

BorderLayout.WEST);

 JButton button =

 new JButton("

<html>Register</html>");

 frame.add(button,

BorderLayout.EAST);

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

The result of running the BorderLayoutTest1 class is shown in
Figure 23.2.

Figure 23.2: A JFrame that uses a
BorderLayout (left) and the same

JFrame resized (right)

Note that the JTextField and the JButton are placed in the
west and east regions of the JFrame. If you resize the JFrame,
the components will maintain their positions. The size of each
component adjusts accordingly, and setting the size of the
components (by using setSize) does not have effect. It is clear
the BorderLayout has the final say with regard to the
components’ sizes and positions.

Listing 23.2 shows another example of BorderLayout.

Listing 23.2: Another example of
BorderLayout

package app23;

import java.awt.BorderLayout;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JTextField;

import javax.swing.SwingUtilities;

public class BorderLayoutDemo2 extends

JFrame {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new

JFrame("BorderLayout Test");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.setLayout(new

BorderLayout());

 JLabel label1 = new

JLabel("Registration Form");

label1.setHorizontalAlignment(JLabel.CENT

ER);

 frame.add(label1,

BorderLayout.NORTH);

 JLabel label2 = new

JLabel("Name:");

 frame.add(label2,

BorderLayout.WEST);

 JTextField textField = new

JTextField("<your name>");

 frame.add(textField,

BorderLayout.CENTER);

 JButton button1 = new

JButton("Register");

 frame.add(button1,

BorderLayout.EAST);

 JButton button2 = new

JButton("Clear Form");

 frame.add(button2,

BorderLayout.SOUTH);

 frame.setSize(300, 150);

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

Figure 23.3 shows the result of running the code in Listing 23.2.

Figure 23.3: Another example of
BorderLayout

BorderLayout is also appropriate for containers with a single

component. In this case, you add the component to the center
region to make it occupy the whole area of the container.

FlowLayout
The FlowLayout arranges components in a horizontal line. By
default, the flow goes from left to right, which means
components added first will be on the left side of components
added later. Components will be added to the same line until
there is no more room for a component, then the next line will be
used. You can change the direction of the flow by changing the
componentOrientation property of the container:

frame.setComponentOrientation(java.awt.Co

mponentOrientation.LEFT)

There are three constructors in the FlowLayout class.

public FlowLayout()

public FlowLayout(int align)

public FlowLayout(int align, int

horizontalGap, int verticalGap)

The align argument indicates the alignment of each component
row. The possible values are these.

FlowLayout.LEFT. Left-justifies component rows.

FlowLayout.RIGHT. Right-justifies component rows.

FlowLayout.CENTER. Centers component rows.

FlowLayout.LEADING. Justifies component rows to the
leading edge of the container’s orientation, e.g. to the left in
the left-to-right orientation.

FlowLayout.TRAILING. Justifies component rows to the
trailing edge of the container’s orientation, e.g. to the right
in the left-to-right orientation.

In the absence of the align argument, the default
FlowLayout.LEFT will be used.

The horizontalGap argument determines the distance between
two components in the same row and between the components
and the container border. The verticalGap argument determines
the distance between components in adjacent rows and the
components and the container border. The default for both
horizontalGap and verticalGap is 5 units.

Listing 23.3 shows a JFrame that uses a FlowLayout.

Listing 23.3: Using FlowLayout
package app23;

import java.awt.Dimension;

import java.awt.FlowLayout;

import javax.swing.JFrame;

import javax.swing.JScrollPane;

import javax.swing.JTextArea;

import javax.swing.SwingUtilities;

public class FlowLayoutDemo {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new

JFrame("FlowLayout Test");

 frame.setLayout(new

FlowLayout());

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 String text = "A JTextArea object

represents "

 + "a multiline area for

displaying text. "

 + "You can change the

number of lines "

 + "that can be displayed

at a time. ";

 JTextArea textArea1 = new

JTextArea(text, 5, 10);

 textArea1.setPreferredSize(new

Dimension(100, 100));

 JTextArea textArea2 = new

JTextArea(text, 5, 10);

 textArea2.setPreferredSize(new

Dimension(100, 100));

 JScrollPane scrollPane = new

JScrollPane(textArea2,

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,

JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

 textArea1.setLineWrap(true);

 textArea2.setLineWrap(true);

 frame.add(textArea1);

 frame.add(scrollPane);

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

If you run this program, you’ll see something similar to Figure
23.4.

Figure 23.4: Using FlowLayout

BoxLayout
If you’ve been using FlowLayout for a while, you might be
wondering if it is possible to change the direction of the flow
from top to bottom or bottom to top. While you cannot do it with
FlowLayout, javax.swing.BoxLayout is there to take up the
challenge.

The BoxLayout class has only one constructor:

public BoxLayout(java.awt.Container

target, int axis)

The target argument specifies the container that needs to be laid
out and axis specifies the axis to lay out components along. The

value of axis can be one of the following:

BoxLayout.X_AXIS

BoxLayout.Y_AXIS

BoxLayout.LINE_AXIS

BoxLayout.PAGE_AXIS

As an example, examine the code in Listing 23.4.

Listing 23.4: Using BoxLayout
package app23;

import javax.swing.BoxLayout;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

public class BoxLayoutDemo {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new

JFrame("BoxLayout Test");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 BoxLayout boxLayout = new

BoxLayout(frame.getContentPane(),

 BoxLayout.Y_AXIS); // top

to bottom

 frame.setLayout(boxLayout);

 frame.add(new JButton("Button

1"));

 frame.add(new JButton("Button

2"));

 frame.add(new JButton("Button

3"));

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

When you run it, you’ll get a JFrame like the one in Figure 23.5.

Figure 23.5: Using BoxLayout

GridLayout
As the name implies, the GridLayout arranges components in a
grid of cells. You decide the number of cells per row and how
many cells per column when you call the GridLayout class’s
constructor. Here are two of its three constructors:

public GridLayout(int rows, int columns)

public GridLayout(int rows, int columns,

 int horizontalGap, int

verticalGap)

At least one of the rows and columns arguments must be
nonzero.

Listing 23.5 shows an example of GridLayout.

Listing 23.5: Using GridLayout

package app23;

import java.awt.GridLayout;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

public class GridLayoutDemo {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new

JFrame("GridLayout Test");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.setLayout(new GridLayout(3,

2));

 frame.add(new JButton("Button

1"));

 frame.add(new JButton("Button

2"));

 frame.add(new JButton("Button

3"));

 frame.add(new JButton("Button

4"));

 frame.add(new JButton("Button

5"));

 frame.add(new JButton("Button

6"));

 frame.add(new JButton("Button

7"));

 frame.add(new JButton("Button

8"));

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

The GridLayoutTest class in Listing 23.5 produces something
like Figure 23.6.

Figure 23.6: Using GridLayout

No LayoutManager
If none of the default layout manager suits your need, you can try
absolute positioning by passing null to the setLayout method
of a container. This is the most flexible layout manager out there,
but use it with care because you have to rearrange your
components when your container is resized.

For each component added to a container with no layout
manager, you specify its size and its position in the container.
The setBounds method of a component can help you achieve
both with a single line. As an example, Listing 23.6 features a
JFrame that utilizes no layout manager.

Listing 23.6: Absolute positioning
package app23;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JTextField;

import javax.swing.SwingUtilities;

public class NoLayoutDemo extends JFrame

{

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new

JFrame("NoLayout Test");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.setLayout(null);

 JLabel label = new JLabel("First

Name:");

 label.setBounds(20, 20, 100, 20);

 JTextField textField = new

JTextField();

 textField.setBounds(124, 25, 100,

20);

 frame.add(label);

 frame.add(textField);

 frame.setSize(300, 100);

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

If you run this class, you’ll see something similar to Figure 23.7.

Figure 23.7: Absolute positioning

Event Handling

Swing is event-driven. A component can raise an event or events
and you can write code to handle the events. This event-driven-
ness is the foundation of user interactivity in Swing applications.
Before you jump straight to handling events in Swing, you
should first get yourself familiar with the Java event model
because Swing follows this model.

The Java Event Model
In the Java event model any object can notify other objects about
a change in its state. In event-driven programming, such change
in state is called an event. The information about the event is
encapsulated in an event object. In this model, there are three

participants involved:

The event source, which is the object whose state changes

The event object, which encapsulates the state changes in
the event source

The event listener, which is the object that wants to be
notified of the state changes in the event source.

To put it more briefly: When an event occurs, the event source
generates an event object and sends it to the event listener.

Let's take a look at each participant in the Java event model.

The Event Source
Any object can be an event source. However, an event source
class must provide methods for event listeners to register and
de-register their interest in receiving events. Also, an event
source must maintain a list of interested event listeners. For
example, a JButton emits a java.awt.event.ActionEvent
object when clicked. Therefore, the JButton is an event source.
The JButton class has an addActionListener and a
removeActionListener methods for action event listeners to
register and deregister their interests. In addition, JButton has
a protected field called listenerList (inherited from
JComponent) that helps maintain registered event listeners

internally.

Note
An object can be the source of more than one event. For example,
JButton can raise a java.awt.event.ActionEvent as well as a
javax.swing.event.Change events.

The Event Object
An event object encapsulates information about a particular type
of event, such as the old and new values of the state that
changed. The class for an event object must extends the
java.util.EventObject class. EventObject has a getSource
method that returns the event source.

public java.lang.Object getSource()

For example, when a JButton is clicked, it emits the action
event. Information about the event is encapsulated in a
java.awt.event.ActionEvent object. The ActionEvent class
extends java.awt.AWTEvent, which in turns extends
java.util.EventObject.

Event Listeners
An event listener can receive a particular type of event by
implementing the appropriate listener interface. All listener
interfaces are subinterfaces of java.util.EventListener. This
interface has no methods and acts as a marker interface. Your

event listener interface must then define a method for receiving
the appropriate event object.

For example, to receive a notification from a JButton when it
is clicked, you can create a class that implements
java.awt.event.ActionListener, a subinterface of
java.util.EventListener. ActionListener has one method,
actionPerformed.

public void actionPerformed(ActionEvent

event)

There are two things to note about the listener. First, you do not
call its methods directly. Instead, they are called by the JVM
when the event in question occurs. Second, the method being
called receives an event object. For instance, when an action
event occurs, the actionPerformed method of any registered
action listener gets called and passed an ActionEvent object.

Note
To handle a Swing event, you write an event listener. You do not have to
worry about event sources and event objects because Swing’s support for
event handling is very thorough.

Swing Event Handling
Different Swing components raise different events. Events can be

raised by a user action (such as a user clicking a button) or by the
application itself (such as when you programmatically add items
to a JList). In either case, you need to write an event listener if
you want some code to be executed when an event occurs.

The API for event handling does not come with Swing.
Instead, it is available in the java.awt.event package.
Therefore, Swing’s event handling is based on the AWT. The
good thing about the AWT (and Swing) event handling is the
availability of adapters, which are base classes that provide
default implementations for event listener interfaces. For
example, the java.awt.event.MouseListener interface has
five methods. If you write a listener class by implementing
MouseListener, you have to write the implementations for all
these five methods, even if you are only interested in one. The
MyMouseListener class in Listing 23.7 should make this clear.

Listing 23.7: Writing a listener by
implementing an interface

package app23;

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

public class MyMouseListener implements

MouseListener {

 public void mouseClicked(MouseEvent

e) {

 System.out.println("Mouse

clicked");

 }

 public void mouseEntered(MouseEvent

e) {

 }

 public void mouseExited(MouseEvent e)

{

 }

 public void mousePressed(MouseEvent

e) {

 }

 public void mouseReleased(MouseEvent

e) {

 }

}

Fortunately, the java.awt.event package also provides the
java.awt.event.MouseAdapter class. This class implements
java.awt.event.MouseListener and provides default
implementations of its five methods. Instead of implementing
MouseListener, you can extend MouseAdapter and override
only the methods you want to change. The
MyShorterMouseListener class in Listing 23.8 has the same
functionality as the MyMouseListener class in Listing 23.7,
but is shorter.

Listing 23.8: Writing listener by

extending an adapter
package app23;

import java.awt.event.MouseAdapter;

import java.awt.event.MouseEvent;

public class MyShorterMouseListener

extends MouseAdapter {

 // override methods here

 public void mouseClicked(MouseEvent

e) {

 System.out.println("Mouse

clicked");

 }

}

In addition to ActionEvent and MouseEvent described
earlier, there are also other types of events you can capture in
your Swing applications. Some of these events are listed in Table
23.1.

Event

Listener/Adapte
r

Component

ActionEvent

ActionListener

JButton,
JCheckBox,
JRadioButton,
JMenuItem, etc

MouseEvent

MouseListener

JFrame, JDialog,
all Swing
components

KeyEvent

KeyListener

JFrame, JDialog,
all Swing
components

WindowEvent

WindowListener

JFrame, JDialog

Table 23.1: Swing events

What events a JComponent can trigger are indicated by what

listeners you can register. For example, the JButton class has
an addActionListener method. This indicates that a JButton
can raise an action event.

JButton, JCheckBox, and some other components can raise
both ActionEvent and MouseEvent. The difference between
the two events are sometimes unclear. However, as a rule, you
should use ActionEvent if you want to be notified when it is
clicked. This is because a JButton can be ‘pushed’ or a
JCheckBox can be checked by using a keyboard shortcut.
Pushing a JButton like this will still trigger an action event, but
not a mouse event. MouseEvent, on the other hand, is captured
if you want to know the coordinate of where the mouse pointer is
clicked, etc.

The AWT Event API
Before I present some event-handling examples, let’s review
several types in the java.awt.event package commonly used in
Swing applications.

The java.awt.event.ActionEvent Class
An ActionEvent object encapsulates information about an
action event. This event is raised by several components to signal
that a JButton is pushed or a JCheckBox is
checked/unchecked, either by clicking the mouse or by pressing
the keyboard. Here are the methods defined in ActionEvent.

public java.lang.String

getActionCommand()

Returns the command string associated
with this action. This is normally the text on
a JButton or JCheckBox that raised the
event.

public long getWhen()

Returns a long that represents the time the
action occurred.

public int getModifiers()

Returns the modifier keys held down when
this event was raised.

public java.lang.String paramString()

Returns a parameter identifying the event.

The java.awt.event.ActionListener Interface
You implement this interface to capture an action event. There is
only one method defined in this interface, actionPerformed.

public void actionPerformed(ActionEvent

e)

The actionPerformed method of a registered action listener is
invoked when an action event occurred.

The java.awt.event.MouseEvent Class
A MouseEvent encapsulates information about a mouse event.
There are several actions that can raise a mouse event, including
clicking a mouse button, pressing and releasing a mouse button,
moving the mouse cursor to enter a component area, and moving
the mouse cursor to exit a component area.

Here are some of the methods in MouseEvent.

public int getButton()

Returns an int that indicates which button
has changed state. The value can be one of
the following static final fields:

NOBUTTON, BUTTON1, BUTTON2,
and BUTTON3.

public int getClickCount()

Returns the number of times the mouse was
clicked.

public java.awt.Point getPoint()

Returns the coordinate relative to the top-
left corner of the component at which the
mouse event occurred.

public int getX()

Returns the horizontal position relative to
the left edge of the component at which the
mouse event occurred.

public int getY()

Returns the vertical position relative to the
top edge of the component at which the
mouse event occurred.

The java.awt.event.MouseListener Interface
You implement this interface to capture a mouse event. There
are five methods, all self-explanatory, defined in this interface.

public void mouseClicked(MouseEvent e)

public void mousePressed(MouseEvent e)

public void mouseReleased(MouseEvent e)

public void mouseEntered(MouseEvent e)

public void mouseExited(MouseEvent e)

The java.awt.event.KeyEvent Class
This class represents a key event as a result of a keystroke on the
keyboard. There are a good number of static final int fields that
each represent a keyboard key, such as VK_A (representing the
A key), VK_Z (representing the Z key), VK_SHIFT,
VK_SPACE, VK_F1, VK_ALT, VK_AMPERSAND, etc.

In addition, here are methods you often invoke on a
KeyEvent object.

public int getKeyCode()

Returns an integer key code associated with
the key in the event. For example, if the A
key was pressed this method returns
KeyEvent.VK_A.

public char getKeyChar()

Returns the char associated with the key in
this event.

The java.awt.event.KeyListener Interface
You implement this interface to handle a key event. This
interface defines the following methods.

public void keyPressed(KeyEvent e)

public void keyReleased(KeyEvent e)

public void keyTyped(KeyEvent e)

The java.awt.event.WindowEvent Class
A WindowEvent encapsulates information on a window event.
A window event is triggered when a source object is opened,
closed, activated, deactivated, iconified, deiconified, or when it
gets focus. The following methods are defined in
WindowEvent.

public int getNewState()

Returns the new state of the window. The
return value is a bitwise mask of the
following static final fields: NORMAL,
ICONIFIED, MAZIMIZED_HORIZ,
MAXIMIZED_VERT and
MAXIMIZED_BOTH.

public int getOldState()

Returns the old state of the window. The
return value is a bitwise mask of the final
fields described under the getNewState
method.

public java.awt.Window getWindow()

Returns the source object.

The java.awt.event.WindowListener Interface

You implement this interface to handle a
window event. This interface defines the
following methods.

public void windowActivated(WindowEvent

e)

public void windowClosed(WindowEvent e)

public void windowClosing(WindowEvent e)

public void windowDeactivated(WindowEvent

e)

public void windowDeiconified(WindowEvent

e)

public void windowIconified(WindowEvent

e)

public void windowOpened(WindowEvent e)

Handling ActionEvent
Let’s now learn how to handle an action event
that originates from a JButton. Please read
the MyActionListener class and the
ActionListenerTest1 class in Listing 23.9.

Listing 23.9: Handling an action
listener

package app23;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JDialog;

import javax.swing.JFrame;

import javax.swing.JOptionPane;

import javax.swing.SwingUtilities;

class MyActionListener implements

ActionListener {

 public void

actionPerformed(ActionEvent e) {

 JButton source = (JButton)

e.getSource();

 String buttonText =

source.getText();

JOptionPane.showMessageDialog(null,

 "You clicked " +

buttonText);

 }

}

public class ActionListenerDemo1 {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

JDialog.setDefaultLookAndFeelDecorated(tr

ue);

 JFrame frame = new

JFrame("ActionListener Test 1");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 JButton button = new

JButton("Register");

 button.addActionListener(new

MyActionListener());

frame.getContentPane().add(button);

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

The MyActionListener class is an action listener that captures
an action event of a JButton. Here is its actionPerformed
method.

 public void

actionPerformed(ActionEvent e) {

 JButton source = (JButton)

e.getSource();

 String buttonText =

source.getText();

JOptionPane.showMessageDialog(null,

 "You clicked " +

buttonText);

 }

It downcasts the source object to a JButton and displays its text
in a JOptionPane.

The ActionListenerTest1 class constructs a JFrame with a
JButton. Pay attention to the code in bold in the

constructGUI method:

button.addActionListener(new

MyActionListener());

This line of code creates an instance of MyActionListener and
passes it to the addActionListener method. This in effect
registers the MyActionListener object as an interested party
for the JButton’s action event.

To test this example, run the ActionListenerTest1 class.
You’ll see a JFrame like the one in Figure 23.8:

Figure 23.8: The result of running the
ActionListenerTest1 class

Now, click the Register button. You will see a JOptionPane like
that in Figure 23.9.

Figure 23.9: A JOptionPane that is
displayed when a Jbutton is clicked

Handling MouseEvent
This example shows how you can handle a mouse event. There
are two classes in this example, MouseClickListener and
MouseListenerTest1. The MouseClickListener class is a
mouse listener that extends the
java.awt.event.MouseAdapter. The MouseListenerTest1
displays an area you can click on. Both classes are shown in
Listing 23.10.

Listing 23.10: Handling a mouse event
package app23;

import java.awt.event.MouseAdapter;

import java.awt.event.MouseEvent;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

class MouseClickListener extends

MouseAdapter {

 public void mouseClicked(MouseEvent

e) {

 if

(SwingUtilities.isLeftMouseButton(e)) {

 System.out.print("The mouse

left button was clicked ");

 } else if

(SwingUtilities.isRightMouseButton(e)) {

 System.out.print(

 "The mouse right

button was clicked ");

 } else if

(SwingUtilities.isMiddleMouseButton(e)) {

 System.out.print(

 "The mouse middle

button was clicked ");

 }

System.out.print(e.getClickCount() + "

time(s)");

 int x = e.getX();

 int y = e.getY();

 System.out.println(" at (" + x +

"," + y + ")");

 }

}

public class MouseListenerDemo1 {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new

JFrame("MouseListener Test 1");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.addMouseListener(new

MouseClickListener());

 frame.setSize(200, 200);

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

If you run the MouseListenerDemo1 class, you will see a
JFrame like the one shown in Figure 23.10.

Figure 23.10: Handling mouse events

Now click on the area, you will see a message printed on your
console. For example:

The mouse right button was clicked 1

time(s) at (110,165)

Writing a Listener as an
Anonymous Class
In the last two examples, you created a different class for each
listener. While this works well, you can reduce the number of
classes in your Swing application by using anonymous classes.
(Anonymous classes were explained in Chapter 14, “Nested and
Inner Classes.”)

First, let’s review the code in Listing 23.11, which features an
action listener written as a nested class.

Listing 23.11: Writing a listener as a
nested class

package app23;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JFileChooser;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

public class ActionListenerDemo2 extends

JFrame {

 String fileSelected;

 public ActionListenerDemo2(String

title) {

 super(title);

 }

 public void init() {

 JButton button = new

JButton("Select File");

 button.addActionListener(new

MyActionListener());

this.getContentPane().add(button);

 }

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 ActionListenerDemo2 frame = new

ActionListenerDemo2(

 "ActionListener Demo 2");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.init();

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

 class MyActionListener implements

ActionListener {

 public void

actionPerformed(ActionEvent e) {

 JFileChooser fileChooser =

new JFileChooser();

 int returnVal =

fileChooser.showOpenDialog(null);

 if (returnVal ==

JFileChooser.APPROVE_OPTION) {

 fileSelected =

fileChooser.getSelectedFile().getName();

System.out.print(fileSelected);

 }

 }

 }

}

The MyActionListener nested class is an action listener that
listens on a JButton. If the source object is clicked, it will
display a JFileChooser and print the name of the file the user
selected.

Running the ActionListenerTest2 class gives you the
JFrame in Figure 23.11.

Figure 23.11: A listener as a nested class

When you click the JButton, a JFileChooser like the one in
Figure 23.12 will be displayed.

Figure 23.12: A JFileChooser that is
displayed when a Jbutton is clicked

Now, examine the code in Listing 23.12.

Listing 23.12: An anonymous listener
class

package app23;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JFileChooser;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

public class ActionListenerDemo3 extends

JFrame {

 String fileSelected;

 public ActionListenerDemo3(String

title) {

 super(title);

 }

 public void init() {

 JButton button = new

JButton("Select File");

 button.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent e) {

 JFileChooser fileChooser

= new JFileChooser();

 int returnVal =

fileChooser.showOpenDialog(null);

 if (returnVal ==

JFileChooser.APPROVE_OPTION) {

 fileSelected =

fileChooser.getSelectedFile().getName();

System.out.print(fileSelected);

 }

 }

 });

this.getContentPane().add(button);

 }

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 ActionListenerDemo3 frame = new

ActionListenerDemo3(

 "ActionListener Demo 3");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.init();

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

The code in bold shows the anonymous class. If a listener is only
used to listen on a single component, then it may be a good
candidate for an anonymous class.

Handling ActionEvent of
JRadioButton
As another example, let’s see how we can handle action events
raised by a JRadioButton. There are three JRadioButtons
used in this example and they share the same listener. As such,
you cannot write your listener as an anonymous class. This
example writes it as a nested class.

The code is given in Listing 23.13.

Listing 23.13: Handling JRadioButtons’
action event

package app23;

import java.awt.FlowLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.ButtonGroup;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JRadioButton;

import javax.swing.SwingUtilities;

public class ActionListenerDemo4 extends

JFrame {

 class RadioClickListener implements

ActionListener {

 public void

actionPerformed(ActionEvent e) {

 String command =

e.getActionCommand();

ActionListenerDemo4.this.setTitle(command

);

 }

 }

 public ActionListenerDemo4(String

title) {

 super(title);

 init();

 }

 private void init() {

 this.setLayout(new FlowLayout());

this.setDefaultCloseOperation(JFrame.EXIT

_ON_CLOSE);

 JRadioButton button1 = new

JRadioButton("Red");

 JRadioButton button2 = new

JRadioButton("Green");

 JRadioButton button3 = new

JRadioButton("Blue");

 RadioClickListener listener = new

RadioClickListener();

button1.addActionListener(listener);

button2.addActionListener(listener);

button3.addActionListener(listener);

 ButtonGroup colorButtonGroup =

new ButtonGroup();

 colorButtonGroup.add(button1);

 colorButtonGroup.add(button2);

 colorButtonGroup.add(button3);

 button1.setSelected(true);

 this.add(new JLabel("Color:"));

 this.add(button1);

 this.add(button2);

 this.add(button3);

 }

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 ActionListenerDemo4 frame = new

ActionListenerDemo4(

 "ActionListener Demo 4");

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

If you run the ActionListenerTest4 class, you’ll see a JFrame
like the one in Figure 23.13.

Figure 23.13: Capturing JRadioButtons’
action event

The actionPerformed method in the RadioClickListener
class reads the return value of the getActionCommand
method and assigns it as the JFrame’s title.

Handling KeyEvent
The following example shows how you can handle a key event.
The listener captures the user’s keyboard input and capitalizes it.
The code is shown in Listing 23.14.

Listing 23.14: Key event listener
package app23;

import java.awt.BorderLayout;

import java.awt.event.KeyEvent;

import java.awt.event.KeyListener;

import javax.swing.JFrame;

import javax.swing.JTextField;

public class KeyListenerDemo1 extends

JFrame

 implements KeyListener {

 public KeyListenerDemo1(String title)

{

 super(title);

this.getContentPane().setLayout(new

BorderLayout());

 JTextField textField = new

JTextField(20);

 textField.addKeyListener(this);

this.getContentPane().add(textField);

 }

 public void keyTyped(KeyEvent e) {

e.setKeyChar(Character.toUpperCase(e.getK

eyChar()));

 }

 public void keyPressed(KeyEvent e) {

 }

 public void keyReleased(KeyEvent e) {

 }

 private static void constructGUI() {

 // Make sure we have nice window

decorations.

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 KeyListenerDemo1 frame =

 new

KeyListenerDemo1("KeyListener Demo 1");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

javax.swing.SwingUtilities.invokeLater(ne

w Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

What’s special in this example is that the listener interface is
implemented by the main class itself. As a result, you override
the KeyListener interface methods within the class itself.

If you run the KeyListenerTest1 class, you will see a
JFrame with a JTextField control like the one in Figure 23.14.

Figure 23.14: Using KeyListener

Handling WindowListener
This example demonstrates how you can write a window listener.
The listener is implemented as an anonymous class that
overrides the windowIconified method and sets the window
state to normal. As a result, you cannot minimize the window.

The code is given in Listing 23.15.

Listing 23.15: A window listener
package app23;

import java.awt.Frame;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import javax.swing.JFrame;

public class WindowListenerDemo1 extends

JFrame {

 public WindowListenerDemo1(String

title) {

 super(title);

 this.addWindowListener(new

WindowAdapter() {

 public void

windowIconified(WindowEvent e) {

WindowListenerDemo1.this.setState(Frame.N

ORMAL);

 }

 });

 }

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 WindowListenerDemo1 frame =

 new

WindowListenerDemo1("WindowEventDemo");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.setSize(100, 100);

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

javax.swing.SwingUtilities.invokeLater(ne

w Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

Working with Menus

A serious Swing application rarely goes by without menus.
Menus are handy because they only take little space out of the
screen real estate. Also, only a menu bar needs to appear at all
times. Most menu items are hidden and do not take space at all.
To use menus, first add a menu bar to the container and add
menus to the menu bar. Then, add menu items to a menu. To
support hierarchical menus, you can add menu items to a menu
item.

In Swing, a menu bar is represented by the
javax.swing.JMenuBar class, a menu by
javax.swing.JMenu, and a menu item by
javax.swing.JMenuItem, which is a child class of
JAbstractButton. JMenuItem has the following subclasses:

JMenu, JCheckboxMenuItem, and
JRadioButtonMenuItem

Clicking a menu on the menu bar displays the menu. This
happens automatically without you having to write a listener. A
menu item acts more like a JButton, you can add an action
listener to handle a mouse click.

The JMenuTest1 class in Listing 23.16 displays a JFrame
with menus.

Listing 23.16: Using JMenu
package app23;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JFrame;

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JMenuItem;

import javax.swing.SwingUtilities;

class MyMenuActionListener implements

ActionListener {

 public void

actionPerformed(ActionEvent e) {

System.out.println(e.getActionCommand());

 }

}

public class JMenuDemo1 {

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new JFrame("JMenu

Demo 1");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 MyMenuActionListener

actionListener =

 new

MyMenuActionListener();

 JMenuBar menuBar = new

JMenuBar();

 JMenu fileMenu = new

JMenu("File");

 JMenu editMenu = new

JMenu("Edit");

 JMenu helpMenu = new

JMenu("Help");

 menuBar.add(fileMenu);

 menuBar.add(editMenu);

 menuBar.add(helpMenu);

 JMenuItem fileNewMI = new

JMenuItem("New");

 JMenuItem fileOpenMI = new

JMenuItem("Open");

 JMenuItem fileSaveMI = new

JMenuItem("Save");

 JMenuItem fileExitMI = new

JMenuItem("Exit");

 fileMenu.add(fileNewMI);

fileNewMI.addActionListener(actionListene

r);

 fileMenu.add(fileOpenMI);

fileOpenMI.addActionListener(actionListen

er);

 fileMenu.add(fileSaveMI);

fileSaveMI.addActionListener(actionListen

er);

 fileMenu.addSeparator();

 fileMenu.add(fileExitMI);

fileExitMI.addActionListener(actionListen

er);

 JMenuItem editCopyMI = new

JMenuItem("Copy");

 JMenuItem editPasteMI = new

JMenuItem("Paste");

 editMenu.add(editCopyMI);

 editMenu.add(editPasteMI);

 JMenuItem helpAboutMI = new

JMenuItem("About");

 helpMenu.add(helpAboutMI);

 frame.setJMenuBar(menuBar);

 frame.setSize(200, 100);

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

Running the JMenuDemo1 class produces a JFrame like that
in Figure 23.15.

Figure 23.15: Using JMenu

The Look and Feel

The look and feel of a GUI application is very important. Swing is
a GUI technology where you can expect uniformity of the look
and feel of your GUI, regardless the operating system the
application is running on. This is in contrast to the AWT or the
Eclipse SWT (the GUI technology used and developed by the
Eclipse community) whereby the look and feel of your
application depends on the platform. However, it does not mean
Swing only supports one type of look and feel. In fact, there are
several. Once you choose a look and feel, your application looks
the same everywhere. Figures 23.16 to 23.18 show some of the
look and feels available in Swing.

Figure 23.16: Swing on GTK

Figure 23.17: Swing on Macintosh

Figure 23.18: Swing on Windows

Changing the look and feel is easy because each look and feel is
governed by a javax.swing.LookAndFeel object. Changing
the LookAndFeel class of an application results in a different
look and feel.

Choosing the Look and Feel
Unless instructed otherwise, Java uses the default look and feel.
To change the look and feel, you use the
javax.swing.UIManager class’s setLookAndFeel method to
select a look and feel. Here is its signature:

public static void

setLookAndFeel(java.lang.String

className)

 throws

java.lang.ClassNotFoundException,

 java.lang.InstantiationException,

 java.lang.IllegalAccessException,

 UnsupportedLookAndFeelException

The default JDK has provided a few subclass of LookAndFeel
that you can use as the argument to setLookAndFeel. They are
as follows:

com.sun.java.swing.plaf.gtk.GTKLookAndFeel

javax.swing.plaf.metal.MetalLookAndFeel

com.sun.java.swing.plaf.windows.WindowsLookAn
dFeel

com.sun.java.swing.plaf.motif.MotifLookAndFeel

com.sun.java.swing.plaf.nimbus.NimbusLookAndF
eel

For instance, the following code forces the application to use the
Nimbus look and feel.

UIManager.setLookAndFeel(

"com.sun.java.swing.plaf.nimbus.NimbusLoo

kAndFeel");

In addition, you can pass the return value of the following
methods as an argument to setLookAndFeel:

UIManager.getCrossPlatformLookAndFeelClas

sName()

Returns the look and feel tat works on all
platforms (the Java look and feel).

UIManager.getSystemLookAndFeelClassName()

Returns the look and feel for the current
platform, that is, if the application is
running on Windows the Windows look and
feel will be used, etc.

You must call the setLookAndFeel method before constructing
your GUI. Normally, you do this before calling the
constructGUI method in your application. Here is an example
of using the current system’s look and feel:

public static void main(String[] args) {

 try {

 UIManager.setLookAndFeel(

UIManager.getSystemLookAndFeelClassName()

);

 } catch (Exception e) {

 e.printStackTrace();

 }

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

}

Alternatively, you can select a look and feel by using the –D flag
when invoking the application. This way, you do not have to
hardcode it in your class. For example, the following command
invokes the MySwingApp application and tells the JVM to use
the com.sun.java.swing.plaf.gtk.GTKLookAndFeel class:

java –

Dswing.defaultlaf=com.sun.java.swing.plaf

.gtk.GTKLookAndFeel

Fast Splash Screens

The java.awt.SplashScreen class can be used to display a
splash screen before the JVM starts. The splash screen is a
window that contains an image and is centered in the screen.
The GIF, PNG, and JPG formats are supported, and so are
transparency in GIF and PNG and animation in GIF. The splash
screen is shown until the first Swing/AWT window is displayed.

To use a splash screen, include the new splash option in java
when you invoke your application. For example, the following
uses the myImage.jpg file as the splash screen.

java -splash:myImage.jpg MyClass

To use a splash screen in an application packaged in a JAR file,
you must use the SplashScreenImage option in a manifest file
and include the image file in the JAR. You must also specify the
path to the image without a leading slash. For instance, the
following manifest.mf file indicates that the myImage.jpg file
should be used as the splash screen.

Manifest-Version: 1.0

Main-Class: MyClass

SplashScreen-Image: myImage.jpg

The SplashScreen class is a singleton whose instance can be
obtained by calling the static getSplashScreen method. The
createGraphics method returns a Graphics2D object that
allows you to draw over the splash screen. Here is the complete
list of methods in SplashScreen.

public void close() throws

IllegalStateException

Closes the splash screen and releases all
related resources.

public Graphics2D createGraphics()

Returns a Graphics2D object as a context
for drawing on the splash screen.

public Rectangle getBounds()

Returns the bounds of the splash screen
window.

public java.net.URL getImageURL()

Returns the URL of the current splash
screen.

public Dimension getSize()

Returns the size of the splash screen.

public static SplashScreen

getSplashScreen()

Returns the SplashScreen Instance.

public boolean isVisible()

Indicates whether the splash screen is
visible

public void setImageURL(java.net.URL

imageURL)

Specifies a new image for the splash screen.

public void update()

Updates the splash screen with current
contents of the overlay image.

The SplashScreenDemo class in Listing 23.17 demonstrates
the power of SplashScreen.

Listing 23.17: The splash screen
package app23;

import java.awt.AlphaComposite;

import java.awt.Color;

import java.awt.Graphics2D;

import java.awt.SplashScreen;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

public class SplashScreenDemo {

 private static void constructGUI() {

 SplashScreen splash =

SplashScreen.getSplashScreen();

 if (splash != null) {

 Graphics2D g = (Graphics2D)

splash.createGraphics();

 // Simulate lengthy loading

 for (int i = 0; i < 10; i++)

{

 String message = "Process

" + i + " of 10 ...";

g.setComposite(AlphaComposite.Clear);

 g.fillRect(130, 350, 280,

40);

 g.setPaintMode();

 g.setColor(Color.RED);

 g.drawString(message,

130, 360);

 g.fillRect(130, 370, i *

30, 20);

 splash.update();

 try {

 Thread.sleep(500);

 } catch

(InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

 JFrame frame = new JFrame("Splash

Screen Demo");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.setSize(300, 200);

frame.setLocationRelativeTo(null);

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

You need to run the class from the location of the
SplashScreenDemo.class file and make sure the splash.jpg
is in the same directory. To run the application, type this:

java -splash:splash.jpg

app23/SplashScreenDemo

The code itself is nothing more than a blank frame. However,
before it is uploaded, the user will see a splash screen like that in
Figure 23.19.

Figure 23.19: Splash screen

System Tray Support

Thinking about learning C++ so you can create GUI applications
that can be added to the system tray? Maybe it’s no longer
necessary because Java can now access the operating system’s
system tray through the SystemTray class.

Like SplashScreen, SystemTray is a singleton, so there is
only one instance per application. You can get the instance by

calling the SystemTray class’s getSystemTray method:

public static SystemTray getSystemTray()

Because you normally use Java to write programs that run in
various operating systems, a word of caution here. SystemTray
works on many platforms, including Windows, KDE, and
Gnome, but some systems may not be supported. Therefore, you
may want to check if SystemTray is supported using the
isSupported method:

public static boolean isSupported()

The SystemTray class represents the tray bar, each icon on it is
represented by the TrayIcon class. You can add a TrayIcon to
the SystemTray by invoking the add method.

public void add(TrayIcon trayIcon) throws

AWTException

To remove a TrayIcon, use its remove method:

public void remove(TrayIcon trayIcon)

In addition, all the TrayIcons in the SystemTray can be
retrieved by using getTrayIcons.

public TrayIcon[] getTrayIcons()

Now, let’s take a look at the TrayIcon class. An instance of this
class resembles a tray icon in a native application. It can have a
tooltip, an image, and a popup menu. You can create a
TrayIcon using one of its three constructors:

public TrayIcon(Image image)

public TrayIcon(Image image,

java.lang.String tooltip)

public TrayIcon(Image image,

java.lang.String tooltip,

 PopupMenu popup)

The SystemTrayDemo class in Listing 23.18 uses
SystemTray and TrayIcon. The application adds a TrayIcon
with an image, a tooltip, and a PopupMenu.

Listing 23.18: Using system tray
package app23;

import java.awt.AWTException;

import java.awt.Image;

import java.awt.MenuItem;

import java.awt.PopupMenu;

import java.awt.SystemTray;

import java.awt.Toolkit;

import java.awt.TrayIcon;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JOptionPane;

import javax.swing.SwingUtilities;

public class SystemTrayDemo {

 private static void constructGUI() {

 if (! SystemTray.isSupported()) {

System.out.println("SystemTray is not

supported");

 return;

 }

 SystemTray tray =

SystemTray.getSystemTray();

 Toolkit toolkit =

Toolkit.getDefaultToolkit();

 Image image =

toolkit.getImage("trayIcon.jpg");

 PopupMenu menu = new PopupMenu();

 // Menu item to show the message

 MenuItem messageItem = new

MenuItem("Show Message");

 messageItem.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent e) {

JOptionPane.showMessageDialog(null,

 "Java 6 -

Mustang");

 }

 });

 menu.add(messageItem);

 // create menu item to close the

application

 MenuItem closeItem = new

MenuItem("Close");

 closeItem.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent e) {

 System.exit(0);

 }

 });

 menu.add(closeItem);

 TrayIcon icon = new

TrayIcon(image, "SystemTray Demo",

 menu);

 icon.setImageAutoSize(true);

 try {

 tray.add(icon);

 } catch (AWTException e) {

 System.err.println(

 "Could not add tray

icon to system tray");

 }

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

Upon running the class, an icon will be added to the system tray.
If you right-click on it, the menu will be shown. (See Figure
23.20)

Figure 23.20: Java system tray

Desktop Help Applications

If you are a Windows user, you must know how handy Windows
Explorer could be. Not only does it allow you to navigate through
the file system, it also lets you double-click on a document file to
open the file with the default application and right-click on it to
print it. You can do the same in Java thanks to the
java.awt.Desktop class. In addition to launching the default
application to open, edit, or print, Desktop also allows you to
open the default browser and direct it to a URL as well as launch
the user’s default email client.

Desktop is a singleton class and you get the instance by using
the static getDesktop method:

public static Desktop getDesktop()

After you obtain the instance, you should check if Desktop is
supported on the running platform using the
isDesktopSupported method, before calling other methods of

Desktop. Here is the signature of isDesktopSupported.

public static boolean

isDesktopSupported()

The open, edit, and print methods allow you to pass a
java.io.File to open, edit, or print the file.

public void open(java.io.File file)

throws java.io.IOException

public void edit(java.io.File file)

throws java.io.IOException

public void print(java.io.File file)

throws java.io.IOException

Each of these methods can throw an IOException if the
extension of the specified file has no associated application that
can handle it. For example, an IOException will be thrown if
you try to open a PDF file and your computer does not have a
PDF reader registered.

The browse method launches the default browser and direct
the browser to the specified URL. Here is its signature.

public void browse(java.net.URI uri)

throws java.io.IOException

browse throws an IOException if the default browser cannot
be found or fails to launch.

Also, the mail methods launches the Compose window of the
default email client application.

public void mail() throws

java.io.IOException

public void mail(java.netURI mailtoURI)

throws java.io.IOException

The mail methods throw an IOException if the user’s default
mail client is not found or if it fails to launch.

Now, how do you prevent an embarrassing IOException
when trying to perform a Desktop action? By using
isSupported method:

public void boolean

isSupported(Desktop.Action action)

The Desktop.Action enum has these values: BROWSE,
EDIT, MAIL, OPEN, and PRINT. You should always test if an

action is supported before calling the action.

The DesktopDemo class in Listing 23.19 shows how
convenient and powerful the Desktop class can be.

Listing 23.19: Using the Desktop class
package app23;

import java.awt.Desktop;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.File;

import java.net.URI;

import java.net.URISyntaxException;

import java.net.URL;

import javax.swing.JFileChooser;

import javax.swing.JFrame;

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JMenuItem;

import javax.swing.SwingUtilities;

public class DesktopDemo {

 private static Desktop desktop;

 private static void constructGUI() {

 JMenuItem openItem;

 JMenuItem editItem;

 JMenuItem printItem;

 JMenuItem browseToItem;

 JMenuItem mailToItem;

 JMenu fileMenu = new

JMenu("File");

 JMenu mailMenu = new

JMenu("Email");

 JMenu browseMenu = new

JMenu("Browser");

 openItem = new JMenuItem("Open");

 openItem.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent e) {

 JFileChooser chooser =

new JFileChooser();

if(chooser.showOpenDialog(null) ==

JFileChooser.APPROVE_OPTION) {

 try {

desktop.open(chooser.getSelectedFile().

getAbsoluteFile());

 } catch (Exception

ex) {

ex.printStackTrace();

 }

 }

 }

 });

 fileMenu.add(openItem);

 editItem = new JMenuItem("Edit");

 editItem.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent e) {

 JFileChooser chooser =

new JFileChooser();

if(chooser.showOpenDialog(null) ==

JFileChooser.APPROVE_OPTION) {

 try {

desktop.edit(chooser.getSelectedFile()

.getAbsoluteFile());

 } catch (Exception

ex) {

ex.printStackTrace();

 }

 }

 }

 });

 fileMenu.add(editItem);

 printItem = new

JMenuItem("Print");

 printItem.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent e) {

 JFileChooser chooser =

new JFileChooser();

if(chooser.showOpenDialog(null) ==

JFileChooser.APPROVE_OPTION) {

 try {

desktop.print(chooser.getSelectedFile().

getAbsoluteFile());

 } catch (Exception

ex) {

ex.printStackTrace();

 }

 }

 }

 });

 fileMenu.add(printItem);

 browseToItem = new JMenuItem("Go

to www.yahoo.com");

browseToItem.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent e) {

 try {

 URI browseURI = new

URI("www.yahoo.com");

desktop.browse(browseURI);

 } catch (Exception ex) {

System.out.println(ex.getMessage());

 }

 }

 });

 browseMenu.add(browseToItem);

 mailToItem = new JMenuItem("Email

to sun@sun.com");

 mailToItem.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent e) {

 try {

 URI mailURI = new

URI("mailto:support@mycompany.com");

 desktop.mail(mailURI);

 } catch (Exception ex) {

System.out.println(ex.getMessage());

 }

 }

 });

 mailMenu.add(mailToItem);

 JMenuBar jMenuBar = new

JMenuBar();

 jMenuBar.add(fileMenu);

 jMenuBar.add(browseMenu);

 jMenuBar.add(mailMenu);

 JFrame frame = new JFrame();

 frame.setTitle("Desktop Helper

Applications");

 frame.setSize(300, 100);

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.setJMenuBar(jMenuBar);

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 if (Desktop.isDesktopSupported())

{

 desktop =

Desktop.getDesktop();

 } else {

 System.out.println("Desktop

class is not supported");

 System.exit(1);

 }

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

If you run the class in Listing 23.19, you’ll see something similar
to Figure 23.21. You can select a file from the File menu and

open, edit, and print the file. Alternatively, you can go to
Yahoo.com or send an email.

Figure 23.21: Java Desktop

Summary

Chapter 22, “Swing Basics” discussed simple Swing components.
This chapter covered more advanced topics such as layout
management, event handling, working with menus, the look and
feel, splash screen, the system tray, and Java Desktop.

Quiz

1. What is a layout manager?
2. Name at least four types of layout

managers.
3. What is a source object in event-handling?
4. Name at least four Swing events.

5. What is the advantage of writing your
listener as an anonymous class?

Chapter 24
Applets

An applet is small a Java program that runs inside another
application, usually a web browser or an applet viewer. The JDK
includes an applet viewer to help you test your applets. However,
most of the time applets will run inside a web browser.

This chapter starts with a brief history of applets and by
introducing the java.applet.Applet class. However, don’t use
Applet directly. Instead, use javax.swing.JApplet, a subclass
of Applet that is more powerful than its parent.

A Brief History of Applets

A couple of years after Java 1.0 was launched in 1995, applets
dominated the World Wide Web’s dynamic content arena.
People used applets to achieve what server technologies are good
for today as well as to improve interactivity on the client-side.
Applets used to be the only widely accepted technology that
could read and write to the server, access and manipulate data in

the database, take user input, perform interactive animation,
play sound files on the browser, and so on.

Then, we saw server-side technologies such as Servlet/JSP,
Microsoft’s ASP and ASP.NET, PHP, etc, mature and get
accepted as the technologies for developing server applications.
They can do many things that applets can plus more. The role of
applets started to diminish and applets started to become less
and less appealing. Several factors attributed to the near-demise
of applets.

1. The emergence of scripting languages
such as JavaScript and VBScript. These
scripts are easier to write and do not need
to be compiled.

2. The emergence of competing technologies
that can add interactivity to the client side,
such as Microsoft’s ActiveX components,
Adobe Flash and HTML 5.

3. The lawsuit between Sun Microsystems
and Microsoft that resulted in Microsoft’s
unplugging its Microsoft Java Virtual
Machine from Internet Explorer 6. Even

though users can download a JVM from
Sun’s website to run applets, application
developers realized applets would not run
automatically in IE 6 (the most commonly
used browser then) and many started to
shy away from applets. Apart from this,
Microsoft’s winning the browser war
certainly did not help applets. Microsoft
JVM in Internet Explorer was only
compliant with JDK 1.1, making it
impractical to write JApplets because
they would not run automatically in IE. If
JApplet, which allows you to use the
richer Swing components (rather than
AWT components) in your applets, had
been given all possible supports, it’s not
impossible that applets would have
continued to be the main technology for
writing active contents on the browser.

Later on, top computer makers such as Dell,

HP, and Lenovo took the initiative of
installing a JVM in all boxes they sell, but
this did not help applets make a comeback.

The Applet API

The API for writing applets is packaged into the java.applet
package. There is only one class, Applet, in this package and
three interfaces: AppletContext, AudioClip, and
AppletStub. These members of java.applet are discussed in
the next sections.

The Applet Class
The java.applet.Applet class is a template for all applets. This
class is a subclass of java.awt.Panel, so to write effective
applets, you also need some knowledge of the Abstract Window
Toolkit (AWT) discussed in Chapter 22, “Swing Basics.”

Because an Applet is a Panel, you can add AWT components
to it. As such, writing applets is like writing AWT applications.
You use AWT components or draw on its java.awt.Graphics
object. You can also use AWT layout managers and event
listeners described in Chapter 23, “Swinging Higher.”

The class diagram in Figure 24.1 shows the Applet class with

its parent and child.

Figure 24.1: Applet class hierarchy

What makes Applet different from other AWT controls are its
four lifecycle methods.

public void init()

Called by the web browser or applet viewer
right after the applet class is loaded. It is
called before the first invocation of the
start method.

public void start()

Called by the Web browser or applet viewer
to tell this applet that it can start execution.
The start method is called each time the
applet is revisited in the web page.

public void stop()

Called by the web browser or applet viewer
before the current Web page containing the
applet is unloaded, for example when the
user navigates to another page. The stop
method is called before the destroy
method is called.

public void destroy()

Called by the web browser or applet viewer
to tell this applet that it is being reclaimed
and it should release all resources it has
allocated.

In addition, there are also the following methods in the Applet
class.

public boolean isActive()

Indicates if the current applet is active. An
applet is made active just before the start
method is called and made inactive just
before the stop method is invoked.

public void paint(java.awt.Graphics g)

This method is inherited from
java.awt.Container to draw on an applet
user interface. The paint method is called
to draw the content of an applet.

public void showStatus(java.lang.String

message)

This method displays a method in the status

bar of the applet viewer or the Web browser
running this applet.

public String

getParameter(java.lang.String

parameterName)

Returns a parameter passed by using the
param tag in the HTML file. If the
specified parameter name is not found,
getParameter returns null.

public java.net.URL getCodeBase()

Returns the URL of the directory from
which this applet was downloaded.
getCodeBase is different from
getDocumentBase because the latter
returns the URL of the Web page that
contains this applet. If the applet and its
containing Web page come from the same

directory, the getCodeBase method and
the getDocumentBase method return
identical URL objects.

public java.net.URL getDocumentBase()

Returns the URL of the directory of the web
page containing this applet. The
getDocumentBase method is different
from the getCodeBase method. See the
description of the getCodeBase method.

public AudioClip

getAudioClip(java.net.URL url)

Returns the AudioClip object specified by
the URL.

public AudioClip

getAudioClip(java.net.URL url,

 java.lang.String filename)

Returns the AudioClip object specified by
the URL and the filename argument.

public void play(java.net.URL url)

Plays the audio clip specified by the URL.

public void play(java.net.URL url,

java.lang.String filename)

Plays the audio clip specified by the URL
and filename.

public static final AudioClip

newAudioClip(java.net.URL url)

A convenience method that returns an
AudioClip object specified by the URL.
This method can be used in non-applet
applications.

public java.awt.Image

getImage(java.net.URL url)

Returns an Image object from the specified
URL.

public java.awt.Image

getImage(java.net.URL url,

 java.lang.String filename)

Returns an Image object from the specified
URL and filename.

public AppletContext getAppletContext()

Returns the AppletContext object. Read
the description of the AppletContext
interface.

The AppletContext Interface
An AppletContext is created by the web browser or applet
viewer and represents the environment in which an applet is
running. An applet can obtain the reference to its

AppletContext object by calling the getAppletContext
method. Most methods in AppletContext are duplicated in
Applet, except the showDocument methods, that you can use
to navigate to a different web page than the current one. Here
are the two overloads of showDocument.

public void showDocument(java.net.URL

url)

Navigates to the specified URL

public void showDocument(java.net.URL

url,

 java.lang.String filename)

Navigates to the specified URL and
filename.

See the NewsTickerApplet applet for an example.

The AudioClip Interface
An AudioClip object represents an audio clip. The following
audio formats can be played by the AudioClip interface’s play
and loop methods: .au, .wav, mid, rmf, aif.

The AudioClip interface has three methods:

public void play()

Plays the audio clip.

public void loop()

Plays the audio clip and keeps repeating
indefinitely, until the stop method is called..

public void stop()

Stops playing this audio clip.

The AppletStub Interface
When a web browser or an applet viewer creates an applet, it
also creates an AppletStub object that it passes to the applet by
calling the setStub method on the Applet object. AppletStub
acts as an interface between an applet and the browser
environment or applet viewer environment in which the applet is
running. Unless you are writing an applet viewer, you will rarely
need to worry about creating an AppletStub.

Security Restrictions

For security reasons, applets downloaded from the Internet are
restricted. They cannot do the following operations:

read from and write to files in the client computer

make network connections other than the originating host.

define native calls.

read system properties other than those listed in Table 24.1.

Property

Description

file.separator

File separator (for example,
"/")

java.class.version

Java class version number

java.vendor

Java vendor-specific string

java.vendor.url

Java vendor URL

java.version

Java version number

line.separator

Line separator

os.arch

Operating system
architecture

os.name

Operating system name

path.separator

Path separator (for example,
":")

Table 24.1: System properties
accessible to applets

To read a system property from within an applet, use the
getProperty method of the java.lang.System class. For
example:

String newline =

System.getProperty("line.separator");

To give an applet greater access, you need to digitally sign it.

Writing and Deploying
Applets

As an example, the code in Listing 24.1 presents an applet class.

Listing 24.1: LifeCycleApplet
package app24;

import java.applet.Applet;

import java.awt.Graphics;

public class LifeCycleApplet extends

Applet {

 StringBuilder stringBuilder = new

StringBuilder();

 public void init() {

 stringBuilder.append("init()...

");

 }

 public void start() {

 stringBuilder.append("start()...

");

 }

 public void stop() {

 stringBuilder.append("stop()...

");

 }

 public void destroy() {

stringBuilder.append("destroy()... ");

 }

 public void paint(Graphics g) {

 stringBuilder.append("paint(g)...

");

g.drawString(stringBuilder.toString(), 4,

10);

 }

}

You can compile the applet as you would other Java classes. To
run the applet, you first have to write an HTML page that
references the applet’s class. Listing 24.2 shows the content of
runApplet.html, an HTML file that references the
LifeCycleApplet applet.

Listing 24.2: The runApplet.html page
<html>

<head>

<title>Testing LifeCycleApplet</title>

</head>

<body>

<applet

code="app24.LifeCycleApplet.class"

 width="400" height="300">

</applet>

</body>

</html>

The HTML file must reside in the same directory as the class’s

root directory. Figure 24.2 shows the directory structure of the
applet and the HTML file (runApplet.html file).

Figure 24.2: The directory structure of
the HTML file and the applet class

You can either run the HTML file using a web browser or by
using the AppletViewer application that comes with the JDK.
The appletviewer.exe file can be found in the same directory
as the java.exe and javac.exe programs.

To run your applet using AppletViewer, from the directory
on which the runApplet.html file resides, type

appletviewer runApplet.html

Figure 24.3 displays the applet in AppletViewer and Figure
24.4 in a web browser.

Figure 24.3: Running LifeCycleApplet
in AppletViewer

Figure 24.4: Running LifeCycleApplet
in a web browser

There is a difference between running in the applet viewer and
the browser. When you minimize the applet viewer, it invokes
the stop method of the applet. When you restore the applet
viewer, it invokes the start method and paint method again.
When you minimize your browser, the applet’s stop method is
not invoked.

How AppletViewer Works

It is not hard to understand how an applet viewer, such as the
AppletViewer program, works. These are the things you need
to bear in mind. An applet is an AWT component that can be
added to a container, and an applet viewer needs to call the init

and start methods of the applet it’s running.

Listing 24.3 presents a JFrame that acts as an applet viewer.

Listing 24.3: A custom applet viewer
called AppletRunner

package app24;

import java.applet.Applet;

import java.awt.BorderLayout;

import javax.swing.JFrame;

public class AppletRunner extends JFrame

{

 private static final long

serialVersionUID =

 -4158064205501217649L;

 public void run(String

appletClassName) {

this.setDefaultCloseOperation(JFrame.EXIT

_ON_CLOSE);

 this.setLayout(new

BorderLayout());

 this.setTitle("Applet Runner");

 Applet applet = null;

 try {

 // use reflection to

instantiate the applet

 Class appletClass =

Class.forName(appletClassName);

 applet = (Applet)

appletClass.newInstance();

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 if (applet!=null) {

 this.add(applet);

 this.pack();

 this.setVisible(true);

 // call the applet's

lifecycle methods

 applet.init();

 applet.start();

 }

 else {

 System.exit(-1);

 }

 }

 public static void main(String[]

args) {

 if (args.length!=1) {

 System.out.println(

 "Usage: AppletRunner

appletClassName");

 System.exit(0);

 }

 // args[0] should be the fully

qualified class name of the

 // applet to be run

 (new

AppletRunner()).run(args[0]);

 }

}

To use the program, you pass an applet’s fully qualified class
name as the argument to the AppletRunner class:

java AppletRunner appletClassName

For example, to run the LifeCycleApplet, type

java AppletRunner app24.LifeCycleApplet

Figure 24.5 shows the LifeCycleApplet in AppletRunner.

Figure 24.5: A home-made applet
viewer

Passing Parameters to an
Applet

To pass parameters to an applet, you use the param tag inside
the applet tag in your HTML file. The param tag can have two
attributes:

name. Represents the parameter name.

value. Represents the parameter value.

For example:

<param name="customer" value="Jane

Goddall"/>

From inside an applet, you can retrieve a parameter by using the
Applet class’s getParameter method:

public java.lang.String

getParameter(java.lang.String paramName)

Let’s now examine the NewsTickerApplet class in Listing
24.4. The applet can be used to display headlines that you pass
as parameters in param tags. A headline can be associated with
a URL. If a headline is clicked, the applet redirects you the
corresponding URL.

Listing 24.4: The NewsTickerApplet
class

package app24;

import java.applet.Applet;

import java.awt.BorderLayout;

import java.awt.Color;

import java.awt.Label;

import java.awt.event.MouseAdapter;

import java.awt.event.MouseEvent;

import java.net.MalformedURLException;

import java.net.URL;

import java.util.ArrayList;

import java.util.List;

public class NewsTickerApplet extends

Applet implements Runnable {

 Label label = new Label();

 String[] headlines;

 String[] urls;

 boolean running = true;

 Thread thread;

 int counter = 0;

 public void run() {

 while (running) {

label.setText(headlines[counter]);

 try {

 Thread.sleep(1500);

 } catch (InterruptedException

e) {

 }

 counter++;

 if (counter ==

headlines.length)

 counter = 0;

 }

 }

 public void init() {

 this.setLayout(new

BorderLayout());

 this.add(label);

label.setBackground(Color.LIGHT_GRAY);

 label.addMouseListener(new

MouseAdapter() {

 public void

mouseClicked(MouseEvent me) {

 try {

 URL url = new

URL(urls[counter]);

getAppletContext().showDocument(url);

 } catch

(MalformedURLException e) {

 } catch (Exception e) {

 }

 }

 });

 }

 public void start() {

 List<String> list = new

ArrayList<>();

 for (int i = 1;; i++) {

 String headline =

this.getParameter("headline"

 +

Integer.toString(i));

 if (headline != null) {

 list.add(headline);

 } else {

 headlines = new

String[list.size()];

 list.toArray(headlines);

 break;

 }

 }

 list.clear();

 for (int i = 1;; i++) {

 String url =

this.getParameter("url" +

 Integer.toString(i));

 if (url != null) {

 list.add(url);

 } else {

 urls = new

String[list.size()];

 list.toArray(urls);

 break;

 }

 }

 if (thread == null) {

 thread = new Thread(this);

 thread.start();

 }

 }

 public void stop() {

 running = false;

 }

}

The NewsTickerApplet class uses a java.awt.Label to
display headlines. It also employs two class-level String arrays
to store headlines and corresponding URLs.

Label label = new Label();

String[] headlines;

String[] urls;

The init method, which is called when the applet is initialized,
adds the label to the applet and adds a mouse listener to the
label. This listener will redirects the user to the URL
corresponding to the headline clicked.

public void init() {

 this.setLayout(new BorderLayout());

 this.add(label);

label.setBackground(Color.LIGHT_GRAY);

 label.addMouseListener(new

MouseAdapter() {

 public void

mouseClicked(MouseEvent me) {

 try {

 URL url = new

URL(urls[counter]);

getAppletContext().showDocument(url);

 } catch

(MalformedURLException e) {

 } catch (Exception e) {

 }

 }

 });

}

The listener is implemented as an anonymous class (discussed in
Chapter 18, “Nested and Inner Classes”).

The start method reads parameters from the param tags.
The first headline is stored in the parameter named headline1
and the first URL by url1. Similarly, the second headline is
stored in the headline2 parameter, and so on.

To display the headlines, you use a thread. Java threads are
explained in Chapter 27, for now know that the run method in
the applet displays the headlines one at a time.

Listing 24.5 shows the HTML file that contains the
NewsTickerApplet applet.

Listing 24.5: The HTML file that
contains NewsTickerApplet

<html>

<head>

<title>Testing NewsTickerApplet</title>

</head>

<body>

<applet

code="app24.NewsTickerApplet.class"

 width="200" height="20">

<param name="headline1" value="Economic

Survey"/>

<param name="url1"

value="http://www.economist.com"/>

<param name="headline2" value="Business

Today"/>

<param name="url2"

value="http://news.yahoo.com"/>

<param name="headline3" value="World

Live"/>

<param name="url3"

value="http://www.cnn.com"/>

</applet>

</body>

</html>

Load the HTML file in Listing 24.5 to a web browser, and you
should be able to see the applet in the browser, like the one
shown in Figure 24.6.

Figure 24.6: Passing parameters to the
NewsTickerApplet

SoundPlayerApplet

The following example shows an important feature of the
Applet class: play audio clips. Playing an audio clip is as easy as
composing a URL that points to the location of an audio file.
Most of the time, you can simply call the getCodeBase and
getDocumentBase methods to get a URL object.

Listing 24.6 shows the SoundPlayerApplet class that play
the quick.au sound file.

Listing 24.6: The SoundPlayerApplet
class

package app24;

import java.applet.Applet;

import java.applet.AudioClip;

public class SoundPlayerApplet extends

Applet {

 private static final long

serialVersionUID = 1L;

 public void start() {

 AudioClip audioClip =

this.getAudioClip(getCodeBase(),

 "quack.au");

 // audioClip.play();

 audioClip.loop();

 }

}

Note that calling play before loop causes the audio clip to be
played once only.

JApplet

The Swing API (discussed in Chapter 22, “Swing Basics”)
includes the javax.swing.JApplet class. This class is a direct
child of java.applet.Applet and allows you to add Swing
components on it. When Swing was first released, people
shunned JApplet because most browsers did not yet support
Java 1.2. As such, applets that subclass JApplet would not run
in many web browsers. Those awful years have passed, though,
because now most browsers that support Java use JDK 1.2 or
later. Therefore, JApplet is the preferred choice when writing
applets today.

JApplet is a Swing component, but it is also a subclass of
java.applet.Applet. As such, a JApplet is still an applet that
needs to run on an applet viewer or a Web browser. On the other
hand, it behaves much like a JFrame. For example, you can add
Swing components, respond to events, and use Swing layout
management.

Listing 24.7 presents an example of JApplet.

Listing 24.7: A JApplet
package app24;

import java.awt.BorderLayout;

import javax.swing.JApplet;

import javax.swing.JButton;

import javax.swing.JLabel;

import javax.swing.JTextField;

public class MyJApplet extends JApplet {

 private static final long

serialVersionUID = 1L;

 public void start() {

 this.setLayout(new

BorderLayout());

 JLabel label1 = new

JLabel("Registration Form");

label1.setHorizontalAlignment(JLabel.CENT

ER);

 this.add(label1,

BorderLayout.NORTH);

 JLabel label2 = new

JLabel("Name:");

 this.add(label2,

BorderLayout.WEST);

 JTextField textField = new

JTextField("<your name>");

 this.add(textField,

BorderLayout.CENTER);

 JButton button1 = new

JButton("Register");

 this.add(button1,

BorderLayout.EAST);

 JButton button2 = new

JButton("Clear Form");

 this.add(button2,

BorderLayout.SOUTH);

 }

}

When run, the JApplet looks like a JFrame, but it runs on an
applet viewer or a Web browser. Figure 24.7 shows this.

Figure 24.7: A JApplet

Applet Deployment in a JAR
File

Applets can be packaged into a jar file and deployed. The
advantage is you can deploy your applet and its resources in one
single file. In addition, if your applet needs to access restricted
resources, you can digitally sign it. Signing a jar file is discussed

in Chapter 25, “Security.”

To package Java classes and related resources into a jar file,
you use the jar tool included in the JDK. To create a jar file, use
this command.

jar cf jarfile inputfiles

where jarfile is the name of the JAR file to be created and
inputfiles is a list of files to be included in the JAR file.

For example, to jar all Java classes that belong to the package
app24 and all audio files in the working directory into the
MyJar.jar file, change directory to the working directory of this
chapter’s application and type this.

jar cf MyJar.jar app24/*.class *.au

Note
A jar file has the same format as a zip file. If you have a zip file viewer,
you can change the extension of the jar file to .zip and use the viewer to
view the content of the jar file.

The jar tool can also be used with options and to update and
extract a jar file. For details see Appendix C, “The Jar Tool.”

If you deploy your applet in a jar file, you need to use the
archive attribute in your applet tag to tell Web browsers how
to find the jar file. Because a jar file can house more than one
Java class, you still need the code attribute to tell Web browsers
which class to invoke. The following is an applet tag that
downloads an applet from a jar file (MyJar.jar) and invoke the
MyApplet.class in the jar file.

<applet code="MyApplet.class"

archive="MyJar.jar" width="600"

 height="50">

</applet>

If you have dependencies, you can specify the dependencies in
the archive attribute separated by commas. For instance, this
applet tag has two dependencies, one in the parent directory
and one in the lib directory.

<applet code="MyApplet.class"

archive="MyJar.jar,../dependencies1.jar,l

ib/dependencies2.jar"

 width="600"

 height="50">

</applet>

Faster Loading

An applet tag will start the class specified in its code attribute.
If an archive attribute is present, the first jar file will be
downloaded. However, it will not download other dependencies
until one of the classes in the dependencies is needed. Therefore,
it’s a good idea to divide a big applet in different jar files for
faster loading.

Summary

Applets are small Java programs that run on an applet viewer or
a web browser. The Applet API is deployed in the java.applet
package. The Applet class represents an applet. The init, start,
and destroy methods are life cycle methods of an applet. They
get called by the applet viewer.

When Swing was released, it included javax.swing.JApplet
that is a child class of java.applet.Applet. JApplet is a Swing
component and allows you to add Swing components on it.

Applets are normally downloaded from the Internet. As such,
it must be defined using the applet tag in the HTML file.

Quiz

1. What are the life cycle methods of an
applet?

2. How do you pass parameters to an applet?
3. Is JApplet an applet or a JFrame?

Chapter 25
Introduction to JavaFX

JavaFX is a technology for creating rich client applications that
can run on the desktop and in the browser. It is similar to Swing
but with a better and simpler object model and will replace
Swing and AWT.

This chapter provides an introduction to JavaFX and Chapter
26, “JavaFX with FXML” explains how to separate the
presentation layer and business logic using a special markup
language called FXML.

Overview

JavaFX is a technology for building rich applications that can be
deployed as desktop applications as well as run in the browser as
applets. JavaFX will eventually replace Swing, and to ease
transition from Swing to JavaFX, there is support for
interoperability between the two. You can easily use Swing
components from within your JavaFX application.

As a desktop technology, JavaFX is an excellent choice for any
Java developer or anyone aspiring to be a GUI developer, thanks
to its features and ease of use. In addition, JavaFX enjoys the full
support from Oracle and the Java community at large, so getting
help is easy.

As a technology for building in-browser applications, JavaFX
must compete with other technologies, notably HTML 5, Flash,
and Microsoft Silverlight. HTML 5 has the advantage of being
natively supported by modern browsers, which means everything
built in HTML 5 is guaranteed to work seamlessly in those
browsers, despite the fact thatHTML 5 is not as feature-rich as
JavaFX, Flash, and Silverlight. JavaFX, Flash, and Silverlight
applications require plug-ins to run in a browser and browsers
do not necessarily ship with these plug-ins so JavaFX applet
users, for example, may have to install a Java browser plug-in
before being able to run a JavaFX applet. Installing a plug-in
may or may not discourage people from liking JavaFX applets.
You can judge yourself whether it is easy enough to install the
plug-in by reading the instructions on this web page.

http://java.com/en/download/help/enable_b

rowser.xml

Setting up

JavaFX started as an independent technology that had to be
downloaded separately from the JDK. Starting from JDK 1.7
update 6 (JDK7u6), however, the JDK ships with the latest
version of JavaFX. JDK 1.7 includes JavaFX 2.2 and Java 8
comes with JavaFX 8, the release after version 2.2.

At the time of writing, the easiest way to develop JavaFX
applications is by using NetBeans 8 or later. Simply click File →
New Project → JavaFX to create a new JavaFX project.

If you are not using NetBeans, you need to include the
jfxrt.jar file in your class path when compiling and running
your application. In JDK 1.8, the file is located in
$JAVA_HOME/jre/lib/ext/ where $JAVA_HOME is the
installation directory of your JDK. In JDK 1.7 update 6 and later,
the file can be found in $JAVA_HOME/jre/lib/.

If you’re using Eclipse, right-click the project icon and click on
Properties. On the left hand side of the window that appears,
click Java Build Path, then select the Libraries tab on the
right. Next, click the Add External JARs button and navigate
to the location of the jar file and select it.

There is an Eclipse plug-in called e(fx)clipse that you can add
to Eclipse 4.4 and later to help you develop JavaFX applications.
The instruction can be found here.

http://www.eclipse.org/efxclipse/install.

html

You can also compile and run a JavaFX application from outside
an IDE. To compile a JavaFX class named MyFXApp in
package mypackage using the javac program on the command
line, go to the source directory of your project and type

javac -cp

${JAVA_HOME}/jre/lib/ext/jfxrt.jar

mypackage/MyFXApp.java

replacing ${JAVA_HOME} with the path to Java installation.
For example, if your Java installation is in /opt/jdk1.8.0_25,
use this command.

javac -cp

/opt/jdk1.8.0_25/jre/lib/ext/jfxrt.jar

mypackage/MyFXApp.java

To run the application (on Linux and Mac OS X), include the
current directory in the class path:

java -cp

/opt/jdk1.8.0_25/jre/lib/ext/jfxrt.jar:.

mypackage.MyFXApp

On Windows, replace the colon with a semicolon.

java -cp

/opt/jdk1.8.0_25/jre/lib/ext/jfxrt.jar;.

mypackage.MyFXApp

Your First JavaFX
Application

This section shows how easy it is to develop a JavaFX
application. The example consists of only one class, which is
called FirstApp and shown in Listing 25.1.

Listing 25.1: The FirstApp class
package app25;

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.control.Label;

import javafx.scene.layout.StackPane;

import javafx.scene.paint.Color;

import javafx.stage.Stage;

public class FirstApp extends Application

{

 @Override

 public void start(Stage stage) {

 Label label = new

Label("Welcome");

 StackPane root = new StackPane();

 root.getChildren().add(label);

 Scene scene = new Scene(root,

400, 100);

 scene.setFill(Color.BEIGE);

 stage.setTitle("First FX");

 stage.setScene(scene);

 stage.show();

 }

 public static void main(String[]

args) {

 launch(args);

 }

}

Run it just as you would any Java application and you’ll see a
window like the one in Figure 25.1.

Figure 25.1: A simple JavaFX
application (on Ubuntu)

The JavaFX API is explained
in the next
section.Application, Stage,
and Scene

The JavaFX API takes the form of the types in the javafx
package and its subpackages. One of its most important types is
the javafx.application.Application class, which represents a
JavaFX application. A JavaFX application consists of one or
more windows and other resources.

In JavaFX a window is represented by the
javafx.stage.Window class, which has two subclasses, Stage
and PopupWindow. A Stage (an instance of
javafx.stage.Stage) is a top-level container to which you add a

second-level container called Scene, which in turn contains the
UI components for that window. The primary Stage is created
for you by the JavaFX runtime, but you can create additional
Stages and PopupWindows if needed.

The javafx.scene.Scene class is a container for UI
components. In JavaFX a UI component is called a graph scene
node (or a node, for short). To create a Scene you must pass a
parent node (an instance of javafx.scene.Parent) responsible
for laying out child UI components.

Now let’s take a look at the three main classes, Application,
Stage, and Scene. Details on other JavaFX types can be viewed
here.

http://docs.oracle.com/javase/8/javafx/ap

i/toc.htm

The Application Class
You extend the Application class to create a JavaFX
application. To run it as a stand-alone program, you call one of
its launch methods.

public static void

launch(java.lang.String... args)

public static void

launch(java.lang.Class<? extends

Application>

 appClass, java.lang.String...

args)

Any parameter you pass to the launch methods can be retrieved
from inside an Application using the getParameters method.

public final Application.Parameters

getParameters()

The Application class has the following life-cycle methods that
will be called when an instance is launched.

public void init() throws

java.lang.Exception

This method is called after the application is
constructed. It should be overriden if the
application needs to perform initialization.

public abstract void start(Stage stage)

throws

 java.lang.Exception

This method is called after init() returns
and you should construct your UI in this
method implementation. The JavaFX
runtime creates a Stage object that is
passed as a method argument.

public void stop() throws

java.lang.Exception

This method is called when the application
should stop. You should release any held
resources here.

Of the life-cycle methods, only start must be overriden.

The Stage Class
The Stage class represents a top-level container for your UI
components. An instance is created and passed to you when the
application’s start method is called. The Stage that the
application created is the primary window of the application.
You can create your own Stage if necessary.

A Stage, just like any other UI window, can have a title that

you can populate using the Stage class’s title property. On top
of that, you can add a Scene to a Stage by calling the setScene
method on the Stage. Then, to show a Stage you call its show
method.

The Scene Class
A Scene is a container that can be added to a Stage. A Scene
must contain a parent node that is the root of all components
added to the Scene. A parent node is represented by the
javafx.scene.Parent class. The simplest constructor in Scene
takes one argument, an instance of Parent.

public Scene(Parent root)

There are other constructors that let you specify the dimension
of the Scene as well as its fill.

public Scene(Parent root, double width,

double height)

public Scene(Parent root,

javafx.scene.paint.Paint fill)

public Scene(Parent root, double width,

double height,

 javafx.scene.paint.Paint fill)

UI Components

Built-in UI components make writing JavaFX applications so
easy and fun. A UI component is called a scene graph node (or
simply a node) in the parlance of JavaFX developers. The
javafx.scene.Node class is the base class for all nodes. It has
five subclasses that distinguish the types of nodes in JavaFX:

Canvas. A rectangular area you can draw on.

Parent. A container to which you can add other UI
components.

Shape. Represents a shape, such as a rectangle, a circle, or
an arc.

ImageView. A view area for showing an image.

MediaView. Provides a view of media being played by a
MediaPlayer.

Canvas, ImageView, and MediaView do not have subclasses.
Parent and Shape do.

The Parent class has the following subclasses.

Control. This class is a base class for all UI controls, from
simple controls like Button and Label to more complex
ones such as ProgressBar, TreeView, and TableView.

Region. Represents a screen area that can contain other
nodes and be styled using CSS. Subclasses include Chart
and various Panes, including BorderPane, StackPane,
FlowPane, GridPane, HBox, VBox, AnchorPane, etc.

Group. An area that contains an ObservableList of
children and is the best Parent for working with Shape
objects.

WebView. A WebView is used to manage a WebEngine
and display its content. As the name implies, a WebEngine
can load web pages, create document models, and run
JavaScript on pages.

The Control and Region classes are discussed further in the
next sections.

The javafx.scene.shape.Shape class is a base class for
various geometric shapes, including Arc, Circle, Ellipse, Line,
Path, and Rectangle.

Controls

UI controls are nodes that the user can interact with. The
javafx.scene.control.Control class is the base class for all UI
controls. Figure 25.2 shows direct and indirect subclasses of
Control.

Figure 25.2: Control implementations

Figure 25.3 shows a Scene that contains some JavaFX controls
and Listing 25.2 presents the code that produces the Scene.

Figure 25.3: JavaFX UI Controls

Listing 25.2: The ControlsDemo class
package app25;

import javafx.application.Application;

import javafx.geometry.Insets;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.control.CheckBox;

import javafx.scene.control.ChoiceBox;

import javafx.scene.control.ColorPicker;

import javafx.scene.control.ComboBox;

import javafx.scene.control.Hyperlink;

import javafx.scene.control.Label;

import javafx.scene.control.ListView;

import javafx.scene.control.MenuButton;

import javafx.scene.control.MenuItem;

import

javafx.scene.control.PasswordField;

import javafx.scene.control.RadioButton;

import javafx.scene.control.ScrollBar;

import javafx.scene.control.Separator;

import javafx.scene.control.Slider;

import javafx.scene.control.TextArea;

import javafx.scene.control.TextField;

import javafx.scene.control.ToggleGroup;

import

javafx.scene.layout.ColumnConstraints;

import javafx.scene.layout.GridPane;

import javafx.scene.paint.Color;

import javafx.stage.Stage;

public class ControlsDemo extends

Application {

 @Override

 public void start(Stage stage) {

 GridPane grid = new GridPane();

 grid.setHgap(15);

 grid.setVgap(25);

 ColumnConstraints constraint =

new ColumnConstraints();

 constraint.setPercentWidth(25);

grid.getColumnConstraints().addAll(constr

aint,

 constraint, constraint,

constraint);

 grid.setPadding(new Insets(10));

 grid.add(new Label("Label"), 0,

0);

 grid.add(new Button("Button"), 1,

0);

 grid.add(new

CheckBox("CheckBox"), 2, 0);

 ChoiceBox<String> choiceBox = new

ChoiceBox<String>();

choiceBox.getItems().addAll("ChoiceBox

1", "ChoiceBox 2");

 choiceBox.setValue("ChoiceBox

1");

 grid.add(choiceBox, 3, 0);

 grid.add(new

ColorPicker(Color.GREEN), 0, 1);

 ComboBox<String> comboBox = new

ComboBox<String>();

 comboBox.getItems().addAll("Combo

1", "Combo 2");

 comboBox.setValue("Combo 1");

 grid.add(comboBox, 1, 1);

 grid.add(new

Hyperlink("Hyperlink"), 2, 1);

 ListView<String> listView = new

ListView<String>();

 listView.getItems().addAll("List

Item 1",

 "List Item 2", "List Item

3");

 grid.add(listView, 3, 1);

 MenuButton menuButton = new

MenuButton("Menu");

 menuButton.getItems().addAll(new

MenuItem("Menu 1"),

 new MenuItem("Menu 1"));

 grid.add(menuButton, 0, 2);

 grid.add(new

TextField("TextField"), 1, 2);

 PasswordField passwordField = new

PasswordField();

passwordField.setText("Password");

 grid.add(passwordField, 2, 2);

 grid.add(new ScrollBar(), 3, 2);

 ToggleGroup group = new

ToggleGroup();

 RadioButton radioButton1 = new

RadioButton("Radio 1");

radioButton1.setToggleGroup(group);

 radioButton1.setSelected(true);

 RadioButton radioButton2 = new

RadioButton("Radio 2");

radioButton2.setToggleGroup(group);

 grid.add(radioButton1, 0, 3);

 grid.add(radioButton2, 1, 3);

 TextArea textArea = new

TextArea("TextArea");

 textArea.setMinHeight(60.00);

 grid.add(textArea, 2, 3);

 grid.add(new Separator(), 3, 3);

 Slider slider2 = new Slider(0,

100, 30);

 slider2.setShowTickMarks(true);

 slider2.setShowTickLabels(true);

 grid.add(slider2, 0, 4, 4, 1);

 Scene scene = new Scene(grid,

600, 320);

 scene.setFill(Color.BEIGE);

 stage.setTitle("JavaFX

Controls");

 stage.setScene(scene);

 stage.show();

 }

 public static void main(String[]

args) {

 launch(args);

 }

}

Regions

A Region is a screen area that can contain other nodes and be
styled using CSS. All Regions are subclasses of the
javafx.scene.layout.Region class. There are three direct
descendents of Region: Axis, Chart, and Pane. An Axis is
used to render an axis on a chart area and a Chart models a
chart. A Pane is a region that is normally used for laying out UI
controls.

This section only discusses Pane.

Subclasses of Pane include BorderPane, StackPane,
GridPane, FlowPane, AnchorPane, HBox, and VBox.

BorderPane divides a Parent into five areas, top, bottom,
left, right, and center. The diagram in Figure 25.4 shows the

different areas in a BorderPane.

Figure 25.4: The five areas of
BorderPane

HBox lays out its children in a single horizontal row and VBox
does it in a single vertical row. GridPane, on the other hand,
arranges children in a grid and is often used to layout the
controls of a form.

The BorderPaneDemo class Listing 25.3 uses BorderPane
to lay out controls. Only the top, left and center areas are used.
The top section contains an HBox with two buttons and the left
section contains a Label and a ColorPicker. The center section
has an ImageView with an Image.

Listing 25.3: The BorderPaneDemo
class

package app25;

import javafx.application.Application;

import javafx.geometry.Insets;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.control.ColorPicker;

import javafx.scene.control.Label;

import javafx.scene.image.ImageView;

import javafx.scene.layout.BorderPane;

import javafx.scene.layout.HBox;

import javafx.scene.layout.VBox;

import javafx.stage.Stage;

public class BorderPaneDemo extends

Application {

 @Override

 public void start(Stage stage) {

 Button okButton = new

Button("OK");

 okButton.setDefaultButton(true);

 Button cancelButton = new

Button("Cancel");

 HBox hBox = new HBox();

 hBox.setPadding(new Insets(15,

12, 15, 12));

 hBox.setSpacing(10);

 hBox.setStyle("-fx-background-

color: #886699;");

hBox.getChildren().addAll(okButton,

cancelButton);

 BorderPane root = new

BorderPane();

 root.setTop(hBox);

 ImageView imageView = new

ImageView("image/1.jpg");

 root.setCenter(imageView);

 VBox vBox = new VBox();

 vBox.setStyle("-fx-background-

color: " +

 "#ddeeff;-fx-

padding:10px");

 vBox.getChildren().addAll(

 new Label("Select

Color:"),

 new ColorPicker());

 root.setLeft(vBox);

 root.setStyle("-fx-background-

color: #6680e6;");

 Scene scene = new Scene(root,

740, 530);

 stage.setTitle("HBox, VBox,

BorderPane Demo");

 stage.setScene(scene);

 stage.show();

 }

 public static void main(String[]

args) {

 launch(args);

 }

}

Figure 25.5 shows the BorderPaneDemo application on
Windows.

Figure 25.5: BorderPane demo

Event Handling

JavaFX is event-driven. A UI component can raise events and
you can write code to handle the events. This event-driven-ness
enables user interactivity in JavaFX applications.

There are many types of events, all derive from the
javafx.event.Event class. Subclasses of Event include
ActionEvent, InputMethodEvent, MouseEvent,
MouseDragEvent, ScrollEvent, SwipeEvent, and so on.

Different components may raise different events. For example,
clicking a button raises an ActionEvent and changing the text
in a TextField triggers an InputMethodEvent. You can write
and register an event handler that will be called when the
corresponding event occurs. For instance, you can write a
handler for the InputMethodEvent of a TextField to change
entered text to upper case. Or, you can write a handler that will
open another Stage if a button is clicked.

The easiest way to write and register an event handler in
JavaFX is by using one of the convenience methods provided by
the Node class. The method names have the pattern
setOnXXX and the methods are inherited by all descendents of
Node. Examples of the convenience methods are
setOnDragEntered, setOnDragExited,
setOnInputMethodTextChanged, setOnKeyTyped,

setOnMouseClicked, and many, many others. Subclasses of
Node may add more convenience methods to accommodate
events specific to them.

These convenience methods take an EventHandler object as
an argument. javafx.event.EventHandler is a parameterized
interface with a method, handle. Here is the definition of
EventHandler.

package javafx.event;

public interface EventHandler<T extends

Event> extends

 java.util.EventListener {

 void handle(T event)

}

When constructing an EventHandler, you must pass an
appropriate event type. For example, the following code
construct an EventHandler for the ActionEvent.

EventHandler handler = new

EventHandler<ActionEvent>() {

 @Override

 public void handle(ActionEvent event)

{

 // do something

 }

};

The RotateTest class in Listing 25.4 shows JavaFX event
processing. The class has a Rectangle and a Button and
captures the ActionEvent of the Button. Whenever the button
is clicked, the Rectangle is rotated 10 degrees clock-wise.

Listing 25.4: The RotateTest class
package app25;

import javafx.application.Application;

import javafx.collections.ObservableList;

import javafx.event.ActionEvent;

import javafx.event.EventHandler;

import javafx.scene.Node;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.layout.VBox;

import javafx.scene.paint.Color;

import javafx.scene.shape.Rectangle;

import javafx.stage.Stage;

public class RotateDemo extends

Application {

 @Override

 public void start(Stage stage) {

 VBox root = new VBox(40);

 ObservableList<Node> children =

root.getChildren();

 final Rectangle rect = new

Rectangle(80, 50);

 rect.setFill(Color.AQUAMARINE);

 children.add(rect);

 Button button = new

Button("Rotate");

 button.setOnAction(new

EventHandler<ActionEvent>() {

 @Override

 public void

handle(ActionEvent event) {

rect.setRotate(rect.getRotate() + 10);

 }

 });

 children.add(button);

 Scene scene = new Scene(root,

120, 130);

 scene.setFill(Color.BEIGE);

 stage.setTitle("Rotate Test");

 stage.setScene(scene);

 stage.show();

 }

 public static void main(String[]

args) {

 launch(args);

 }

}

In the start method of the application, a Button is created and
its setOnAction method called.

 Button button = new

Button("Rotate");

 button.setOnAction(new

EventHandler<ActionEvent>() {

 @Override

 public void

handle(ActionEvent event) {

rect.setRotate(rect.getRotate() + 10);

 }

 });

Note how the EventHandler was created and passed to the
button’s setOnAction convenience method.

Figure 25.6 shows the application. Try clicking the button and
watch the effect.

Figure 25.6: Event handling in JavaFX

Styling with CSS

Some of the controls offer methods to change their look and feel.
For example, the setFont method of the Label class allows you
to set the font to display the label text. While these methods are
easy to use, they have to be called from within the code and this
implies tight-coupling between the presentation layer and the
business logic. A better way is to style the UI components using
CSS (Cascading Style Sheet). JavaFX CSS is not exactly the same
as that used in web design. In this chapter CSS refers to the CSS
used in JavaFX applications.

A CSS file contains styles that can be referred to by id or by
class. Each of the JavaFX controls is already assigned a default
CSS class that is similar to the Java class name of the control.
For example, the default style for Button is button and the
default style for Label is label. This means, to provide a style
that affects all buttons, you simply need a style named button in
your CSS file. For example,

.button {

 -fx-border-width: 3px;

 -fx-background-color:#dd8818;

}

The default style for a control with a multiword name is the
combination of the words separated by a hyphen. For instance,
the default style for CheckBox is check-box and the default
style for ProgressBar is progress-bar.

Non-control nodes do not have a default style. If you want to
style a VBox, for example, you first need to add a CSS class to
the instance. For example, the following code adds a style named
vbox to a Vbox.

VBox vBox = new VBox();

vBox.getStyleClass().add("vbox");

The VBox will then react to a vbox style in any CSS file referred
to by the application.

In addition to using style classes, you can also create a style
that will be referred by the component identifier. You do this if
you want a style that will only affect a certain instance of a type,
and not all instances of that particular type. For example, the
.button style affects all Button controls in an application. If
you want a style to affect a certain Button and not all Buttons,
you can either add a new class to the Button or add an identifier
to it. Here is an example of a Button that is assigned the id
nextBtn.

Button nextButton = new Button("Next");

nextButton.setId("nextBtn");

You can then create this style in your CSS file that will only affect
that Button.

#nextBtn {

 -fx-font-weight: bold;

}

Note that each node has a setStyle method that you can call to
assign a CSS style. However, this practice is not recommended as

you are mixing presentation and business logic. Here is an
example of how you can use setStyle.

Button button = new Button();

button.setStyle("-fx-background-

color:green");

It’s better to write all your styles in a CSS file. Once your CSS file
is ready, you can load it from the application’s start method, like
this.

@Override

public void start(Stage stage) {

 ...

 Scene scene = ...;

scene.getStylesheets().add("style.css");

 ...

}

Here, style.css is the CSS file located in the same location as the
class file.

The following are some of the styles used in this chapter.

-fx-fill

-fx-font-family

-fx-font-size

-fx-font-style

-fx-font-weight

-fx-background-color

-fx-text-fill

As an example, consider the CSSDemo class in Listing 25.5 that
uses the style.css file in Listing 25.6.

Listing 25.5: The CSSDemo class
package app25;

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.control.Label;

import javafx.scene.layout.BorderPane;

import javafx.scene.layout.HBox;

import javafx.stage.Stage;

public class CSSDemo extends Application

{

 @Override

 public void start(Stage stage) {

 BorderPane root = new

BorderPane();

 root.setCenter(new

Label("Welcome"));

 HBox hBox = new HBox();

 hBox.getStyleClass().add("hbox");

 Button backButton = new

Button("Back");

hBox.getChildren().add(backButton);

 Button nextButton = new

Button("Next");

 nextButton.setId("nextBtn");

hBox.getChildren().add(nextButton);

 root.setBottom(hBox);

 Scene scene = new Scene(root,

400, 300);

scene.getStylesheets().add("style.css");

 stage.setTitle("CSS Demo");

 stage.setScene(scene);

 stage.show();

 }

 public static void main(String[]

args) {

 launch(args);

 }

}

Listing 25.6: The style.css file
.label {

 -fx-background-color: #778855;

 -fx-font-family: helvetica;

 -fx-font-size: 450%;

 -fx-text-fill: yellow;

}

.hbox {

 -fx-background-color: #2f4f4f;

 -fx-padding: 15;

 -fx-spacing: 10;

 -fx-alignment: center-right;

}

.button {

 -fx-border-width: 2px;

 -fx-background-color:#ff8800;

 -fx-cursor: hand;

}

#nextBtn {

 -fx-font-weight: bold;

}

If you run the application, you’ll see a Stage just like that in
Figure 25.7.

Figure 25.7: CSS Demo

As a side note, the jfxrt.jar file, the JavaFX runtime file,
includes a modena.css file. This is the default style sheet for
the root node and UI controls. I recommend that you look at the
content of this file to learn all the styles defined. To view this file,

go to the directory the jar file is located and run this command.

jar xf jfxrt.jar

com/sun/javafx/scene/control/skin/modena/

modena.css

Summary

JavaFX is a Java technology for creating desktop and in-browser
applications. It is a better solution than both AWT and Swing
and is therefore destined to replace its predecessors.

This chapter introduced JavaFX and provided a couple of
examples. The next chapter, “JavaFX with FXML” explains how
to separate the presentation layer and the business logic using a
special markup language called FXML.

Quiz

What is the class that is a template for all
JavaFX applications?

What is the top-level container window in
JavaFX?

What is a node?
What is the best way to style JavaFX UI

components?

Chapter 26
JavaFX with FXML

FXML is an XML-based markup language for constructing
JavaFX user interface (UI). Using FXML in JavaFX applications
is a great way of separating the presentation layer and the
application logic. This chapter discusses FXML and shows how
to use it in JavaFX application development.

Overview

A new feature of JavaFX 2, FXML greatly reduces the complexity
of your JavaFX classes by moving user interface component
construction to an XML-based document. In addition, FXML
visualizes the UI component hierarchy much better than Java
classes. The root of an FXML document represents a
javafx.scene.Parent that can be loaded to JavaFX using a
special loader called FXMLLoader. Here is the start method
of an Application subclass that uses FXML.

@Override

public void start(Stage stage) throws

Exception {

 stage.setTitle("FXML Example");

 Parent root = (Parent)

FXMLLoader.load(

getClass().getResource("example1.fxml"));

 Scene scene = new Scene(root, 740,

530);

 stage.setScene(scene);

 stage.show();

}

The code above calls the load method of FXMLLoader to read
an FXML file and convert its content to a Parent object. The
Parent object is then used to construct a Scene.

Writing an FXML file is easy. You start by creating a text file
and saving it in the same directory as your class file. You can
store it somewhere else, but it is easiest to load it if it is in the
same directory as the class that will load it.

As an FXML file is an XML document, all FXML documents
start with this declaration.

<?xml version="1.0" encoding="UTF-8"?>

Next come the import directives to import types you will
reference in the FXML file. You can import a package or a type.

<?import javafx.scene.*?>

<?import javafx.scene.control.*?>

<?import javafx.scene.layout.*?>

<?import javafx.geometry.Insets?>

The root element comes next. It can be any subclass of Parent.
Here is an example.

<GridPane

xmlns:fx="http://javafx.com/fxml"

 hgap="5" vgap="12" layoutY="30">

</GridPane>

The fx prefix is a special prefix in FXML. You will learn its use
later in this chapter.

To set a property in an object, use a nested element or an
attribute. For example, the hgap attribute in the GridPane

element above populates the GridPane’s hgap property.

Inside the root element, construct your UI. Listing 26.1 shows
an example FXML file.

Listing 26.1: An example FXML file
<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.*?>

<?import javafx.scene.control.*?>

<?import javafx.scene.layout.*?>

<?import javafx.geometry.Insets?>

<?import javafx.scene.image.Image?>

<?import javafx.scene.image.ImageView?>

<BorderPane>

 <top>

 <HBox spacing="10.0" style="-fx-

background-color:#886699;">

 <padding>

 <Insets top="15"

bottom="15" left="12" right="12"/>

 </padding>

 <Button id="okButton"

text="OK" defaultButton="true"/>

 <Button text="Cancel"/>

 </HBox>

 </top>

</BorderPane>

An element may contain a class to be instantiated or a property
to be populated. The FXML file in Listing 26.1 contains a root of
type BorderPane. The BorderPane has its top property
populated with an HBox. The HBox in turn contains two
Buttons and has its padding property populated with an
Insets.

More details on FXML can be found here.

http://docs.oracle.com/javafx/2/api/javaf

x/fxml/doc-files/

introduction_to_fxml.html

Note
It is recommended that you use an IDE that supports JavaFX when
writing an FXML and take advantage of its code completion feature to
make writing FXML easier. NetBeans and IntelliJ support JavaFX, and
Eclipse supports JavaFX through a plug-in.

The next sections present examples of using FXML in JavaFX
applications.

A Simple FXML-Based
Application

This example is a rewrite of the BorderPaneDemo application
created in the previous chapter. This time an FXML document is
used to construct and organize the UI components. For your
reading convenience, the BorderPaneDemo class is reprinted
here.

package app26;

import javafx.application.Application;

import javafx.geometry.Insets;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.control.ColorPicker;

import javafx.scene.control.Label;

import javafx.scene.image.ImageView;

import javafx.scene.layout.BorderPane;

import javafx.scene.layout.HBox;

import javafx.scene.layout.VBox;

import javafx.stage.Stage;

public class BorderPaneDemo extends

Application {

 @Override

 public void start(Stage stage) {

 Button okButton = new

Button("OK");

 okButton.setDefaultButton(true);

 Button cancelButton = new

Button("Cancel");

 HBox hBox = new HBox();

 hBox.setPadding(new Insets(15,

12, 15, 12));

 hBox.setSpacing(10);

 hBox.setStyle("-fx-background-

color: #886699;");

hBox.getChildren().addAll(okButton,

cancelButton);

 BorderPane root = new

BorderPane();

 root.setTop(hBox);

 ImageView imageView = new

ImageView("image/1.jpg");

 root.setCenter(imageView);

 VBox vBox = new VBox();

 vBox.setStyle("-fx-background-

color: " +

 "#ddeeff;-fx-

padding:10px");

 vBox.getChildren().addAll(

 new Label("Select

Color:"),

 new ColorPicker());

 root.setLeft(vBox);

 root.setStyle("-fx-background-

color: #6680e6;");

 Scene scene = new Scene(root,

740, 530);

 stage.setTitle("HBox, VBox,

BorderPane Demo");

 stage.setScene(scene);

 stage.show();

 }

 public static void main(String[]

args) {

 launch(args);

 }

}

The UI construction part of the BorderPaneDemo class can be
replaced with the markup in the example1.fxml file shown in
Listing 26.2.

Listing 26.2: The example1.fxml file
<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.*?>

<?import javafx.scene.control.*?>

<?import javafx.scene.layout.*?>

<?import javafx.geometry.Insets?>

<?import javafx.scene.image.Image?>

<?import javafx.scene.image.ImageView?>

<BorderPane>

 <top>

 <HBox spacing="10.0" style="-fx-

background-color:#886699;">

 <padding>

 <Insets top="15"

bottom="15" left="12" right="12"/>

 </padding>

 <Button id="okButton"

text="OK" defaultButton="true"/>

 <Button text="Cancel"/>

 </HBox>

 </top>

 <left>

 <VBox style="-fx-background-

color:#ddeeff;-fx-padding:10px">

 <Label text="Select Color:"/>

 <ColorPicker />

 </VBox>

 </left>

 <center>

 <ImageView>

 <Image url="/image/1.jpg">

</Image>

 </ImageView>

 </center>

</BorderPane>

The main Java class, called Example1, is given in Listing 26.3.
It extends Application and provides an implementation of the
start method.

Listing 26.3: The Example1 class
package app26;

import javafx.application.Application;

import javafx.fxml.FXMLLoader;

import javafx.scene.Parent;

import javafx.scene.Scene;

import javafx.stage.Stage;

public class Example1 extends Application

{

 @Override

 public void start(Stage stage) throws

Exception {

 // Example1.fxml must be located

in the same directory

 // as Example1.class

 Parent root = FXMLLoader.load(

getClass().getResource("example1.fxml"));

 root.setStyle("-fx-background-

color: #6680e6;");

 Scene scene = new Scene(root,

740, 530);

 stage.setTitle("JavaFX with FXML

(Example 1)");

 stage.setScene(scene);

 stage.show();

 }

 public static void main(String[]

args) {

 launch(args);

 }

}

The start method uses FXMLLoader to load the FXML
document and return a Parent object that contains the
components declared in the document. The method then creates
a Scene and passes the Scene to the Stage before calling the
show method on the Stage.

Figure 26.1 shows the result of running the application.

Figure 26.1: Using FXML

Event Handling with FXML

FXML is a powerful language. Among its features is the ability to
bind a UI component with an event-processing method (event
handler) in a controller, so that the method will be called when
the event occurs. A controller is a Java class that implements
javafx.fxml.Initializable. To take advantage of this feature,
you must use the fx:controller attribute in your root element,
like this.

<Group

fx:controller="app26.Example2Controller"

Recall that fx is a special prefix in FXML.

To bind a component to an event handler, use the relevant
onXXX attribute of the element. For example, to bind the
ActionEvent with a method called handleAction in the
controller, write this.

onAction="#handleAction"

For example, consider the following application that features a
Login form that takes a user name and password. The primary
stage of the application is shown in Figure 26.2.

Figure 26.2: The Login form in Example

2

The user may enter a user name and password. Clicking Reset
clears the User Name and Password fields. Clicking Login
authenticates the user. The authentication result will be written
on the Label above the fields.

The application consists of an FXML document
(example2.fxml in Listing 26.4), a controller class
(Example2Controller in Listing 26.5), and the main class
(Example2 in Listing 26.6).

Listing 26.4: The example2.fxml file
<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.*?>

<?import javafx.scene.control.*?>

<?import javafx.scene.layout.*?>

<?import javafx.geometry.Insets?>

<GridPane

xmlns:fx="http://javafx.com/fxml"

fx:controller="app26.Example2Controller"

 hgap="5" vgap="12" layoutY="30"

>

 <columnConstraints>

 <ColumnConstraints

percentWidth="15"/>

 <ColumnConstraints

percentWidth="35"

 halignment="RIGHT"/>

 <ColumnConstraints

percentWidth="35"/>

 <ColumnConstraints

percentWidth="10"/>

 </columnConstraints>

 <children>

 <Label fx:id="statusLabel" >

<GridPane.columnIndex>1</GridPane.columnI

ndex>

<GridPane.rowIndex>0</GridPane.rowIndex>

<GridPane.columnSpan>2</GridPane.columnSp

an>

 </Label>

 <Label text="User Name:">

<GridPane.columnIndex>1</GridPane.columnI

ndex>

<GridPane.rowIndex>1</GridPane.rowIndex>

 </Label>

 <TextField fx:id="userNameField">

<GridPane.columnIndex>2</GridPane.columnI

ndex>

<GridPane.rowIndex>1</GridPane.rowIndex>

 </TextField>

 <Label text="Password:">

<GridPane.columnIndex>1</GridPane.columnI

ndex>

<GridPane.rowIndex>2</GridPane.rowIndex>

 </Label>

 <PasswordField

fx:id="passwordField">

<GridPane.columnIndex>2</GridPane.columnI

ndex>

<GridPane.rowIndex>2</GridPane.rowIndex>

 </PasswordField>

 <Button fx:id="resetButton"

text="Reset"

 onAction="#handleReset">

<GridPane.columnIndex>1</GridPane.columnI

ndex>

<GridPane.rowIndex>3</GridPane.rowIndex>

 </Button>

 <Button fx:id="loginButton"

text="Login"

 defaultButton="true"

onAction="#handleLogin">

<GridPane.columnIndex>2</GridPane.columnI

ndex>

<GridPane.rowIndex>3</GridPane.rowIndex>

 </Button>

 </children>

</GridPane>

The FXML document in Listing 26.2 uses a GridPane as the
root element. The markup also populates the
columnConstraints and children properties of the
GridPane. The columnContraints contains
ColumnConstraints elements that specify the width for each
of its columns. The children property specifies the UI
components to be rendered inside the GridPane.

Pay special attention to the onAction attributes of the

Button elements. They are used to bind the ActionEvent with
the handleLogin and handleReset methods, respectively.

Listing 26.5: The Example2Controller
class

package app26;

import java.net.URL;

import java.util.ResourceBundle;

import javafx.event.ActionEvent;

import javafx.fxml.FXML;

import javafx.fxml.Initializable;

import javafx.scene.control.Label;

import

javafx.scene.control.PasswordField;

import javafx.scene.control.TextField;

public class Example2Controller

implements Initializable {

 @FXML

 private TextField userNameField;

 @FXML

 private PasswordField passwordField;

 @FXML

 private Label statusLabel;

 @FXML

 private void handleReset(ActionEvent

event) {

 userNameField.setText("");

 passwordField.setText("");

 statusLabel.setText("");

 }

 @FXML

 private void handleLogin(ActionEvent

event) {

 String userName =

userNameField.getText();

 String password =

passwordField.getText();

 if ("john".equals(userName)

 &&

"secret".equals(password)) {

 statusLabel.setText("Login

successul");

 } else {

 statusLabel.setText("Login

failed");

 }

 }

 @Override

 public void initialize(URL url,

ResourceBundle rb) {

 }

}

A controller provides event-handlers for the FXML document it
is bound with. An event-handler must be annotated with
@FXML. In addition, to allow access to a UI component, you
can annotate a field with @FXML. The annotated field must
have the same name as the fx:id attribute of the component it is
bound to.

In the controller class in Listing 26.5, three fields are declared
and annotated with @FXML: userNameField,
passwordField, and statusLabel.

Listing 26.6: The Example2 class
package app26;

import javafx.application.Application;

import javafx.fxml.FXMLLoader;

import javafx.scene.Parent;

import javafx.scene.Scene;

import javafx.stage.Stage;

public class Example2 extends Application

{

 @Override

 public void start(Stage stage) throws

Exception {

 Parent root = FXMLLoader.load(

getClass().getResource("example2.fxml"));

 Scene scene = new Scene(root,

300, 200);

 stage.setTitle("Login Form");

 stage.setScene(scene);

 stage.show();

 }

 public static void main(String[]

args) {

 launch(args);

 }

}

Finally, the Example2 class in Listing 26.6 loads the FXML
document and creates and shows the primary stage.

Summary

FXML is a markup language for constructing the UI component
graph of a JavaFX application. Using FXML makes writing the
UI easier. In this chapter you learned the basics of FXML and

how to use it.

Quiz

1. What is FXML?
2. What is a controller class?

Chapter 27
Java Threads

One of the most appealing features in Java is the support for
easy thread programming. Prior to 1995, the year Java was
released, threads were the domain of programming experts only.
With Java, even beginners can write multi-threaded
applications.

This chapter explains what threads are and why they are
important. It also talks about related topics such as
synchronization and the visibility problem.

Introduction to Java Threads

The next time you play a computer game, ask yourself this
question: I am not using a multi-processor computer, how come
there seems to be two processors running at the same time, one
moving the asteroids and one moving the spaceships? Well, the
simultaneous movements are possible thanks to multi-threaded
programming.

A program can allocate processor time to units in its body.
Each unit is then given a portion of the processor time. Even if
your computer only has one processor, it can have multiple units
that work at the same time. The trick for single-processor
computers is to slice processor time and give each slice to each
processing unit. The smallest unit that can take processor time is
called a thread. A program that has multiple threads is referred
to as a multi-threaded application. Therefore, a computer game
is often multi-threaded.

The formal definition of thread is this. A thread is a basic
processing unit to which an operating system allocates processor
time, and more than one thread can be executing code inside a
process. A thread is sometimes called an lightweight process or
an execution context.

Threads do consume resources, so you should not create more
threads than necessary. In addition, keeping track of many
threads is a complex programming task.

Every Java program has at least one thread, the thread that
executes the Java program. It is created when you invoke the
static main method of your Java class. Many Java programs
have more than one thread without you realizing it. For example,
a Swing application has a thread for processing events in
addition to the main thread.

Multi-threaded programming is not only for games. Non-game
applications can use multithreads to improve user

responsiveness. For example, with only one single thread
executing, an application may seem to be ‘hanging’ when writing
a large file to the hard disk, with the mouse cursor unable to
move and buttons refusing to be clicked. By dedicating a thread
to save a file and another to receive user input, your application
can be more responsive.

Creating a Thread

There are two ways to create a thread.

1. Extend the java.lang.Thread class.
2. Implement the java.lang.Runnable

interface.

If you choose the first, you need to override its run method and
write in it code that you want executed by the thread. Once you
have a Thread object, you call its start method to start the
thread. When a thread is started, its run method is executed.
Once the run method returns or throws an exception, the thread
dies and will be garbage-collected.

Note
The Concurrency Utilities, discussed in Chapter 24, provides a better way
of creating and executing a thread. In most cases, you should not work
with the Thread class directly.

In Java you can give a Thread object a name, which is a
common practice when working with multiple threads. In
addition, every Thread has a state and can be in one of these six
states.

new. A state in which a thread has not been started.

runnable. A state in which a thread is executing.

blocked. A state in which a thread is waiting for a lock to
access an object.

waiting. A state in which a thread is waiting indefinitely for
another thread to perform an action.

timed_waiting. A state in which a thread is waiting for up to
a specified period of time for another thread to perform an
action.

terminated. A state in which a thread has exited.

The values that represent these states are encapsulated in the
java.lang.Thread.State enum. The members of this enum are
NEW, RUNNABLE, BLOCKED, WAITING,
TIMED_WAITING, and TERMINATED.

The Thread class provides public constructors you can use to
create Thread objects. Here are some of them.

public Thread()

public Thread(String name)

public Thread(Runnable target)

public Thread(Runnable target, String

name)

Note
I will explain the third and fourth constructors later after the discussion
of the Runnable interface.

Here are some useful methods in the Thread class.

public String getName()

Returns the thread’s name.

public Thread.State getState()

Returns the state the thread is currently in.

public void interrupt()

Interrupts this thread.

public void start()

Starts this thread.

public static void sleep(long millis)

Stops the current thread for the specified
number of milliseconds.

In addition, the Thread class provides the static
currentThread method that returns the current working
thread.

public static Thread currentThread()

Extending Thread
The code in Listing 27.1 shows how you can create a thread by
extending java.lang.Thread.

Listing 27.1: A simple multi-threaded
program

package app27;

public class ThreadDemo1 extends Thread {

 public void run() {

 for (int i = 1; i <= 10; i++) {

 System.out.println(i);

 try {

 sleep(1000);

 } catch (InterruptedException

e) {

 }

 }

 }

 public static void main(String[]

args) {

 (new ThreadDemo1()).start();

 }

}

The ThreadDemo1 class extends the Thread class and
overrides its run method. The ThreadDemo1 class begins by
instantiating itself. A newly created Thread will be in the NEW
state. Calling the start method will make the thread move from
NEW to RUNNABLE, which causes the run method to be called.
This method prints number 1 to 10 and between two numbers
the thread sleeps for a second. When the run method returns
the thread dies and will be garbage collected. There is nothing
fancy about this class, but it gives you a general idea of how to
work with Thread.

Of course, you do not always have the luxury of extending
Thread from the main class. For example, if your class extends
javax.swing.JFrame, then you cannot extend Thread
because Java does not support multiple inherintance. However,
you can always create a second class that extends Thread, as
shown in the code in Listing 27.2. Or, if you need to access
members of the main class, you can write a nested class that
extends Thread.

Listing 27.2: Using a separate class that
extends Thread

package app27;

class MyThread extends Thread {

 public void run() {

 for (int i = 1; i <= 10; i++) {

 System.out.println(i);

 try {

 sleep(1000);

 } catch (InterruptedException

e) {

 }

 }

 }

}

public class ThreadDemo2 {

 public static void main(String[]

args) {

 MyThread thread = new MyThread();

 thread.start();

 }

}

The ThreadDemo2 class in Listing 27.2 does exactly the same
thing as ThreadDemo1 in Listing 27.1. The difference is the
ThreadDemo2 class is free to extend another class.

Implementing Runnable
Another way to create a thread is by implementing
java.lang.Runnable. This interface has a run method that you
need to implement. The run method in Runnable is the same
as the run method in the Thread class. In fact, Thread itself
implements Runnable.

If you use Runnable, you have to instantiate the Thread
class and pass the Runnable. Listing 27.3 shows how to work
with Runnable. It does the same thing as the classes in Listings
27.1 and 27.2.

Listing 27.3: Using Runnable
package app27;

public class RunnableDemo1 implements

Runnable {

 public void run() {

 for (int i = 1; i <= 10; i++) {

 System.out.println(i);

 try {

 Thread.sleep(1000);

 } catch (InterruptedException

e) {

 }

 }

 }

 public static void main(String[]

args) {

 RunnableDemo1 demo = new

RunnableDemo1();

 Thread thread = new Thread(demo);

 thread.start();

 }

}

Working with Multiple
Threads

You can work with multiple threads. The following example is a
Swing application that creates two Thread objects. The first is
responsible for incrementing a counter and the second for

decrementing another counter. Listing 27.4 shows it.

Listing 27.4: Using two threads
package app27;

import java.awt.FlowLayout;

import javax.swing.JFrame;

import javax.swing.JLabel;

public class ThreadDemo3 extends JFrame {

 JLabel countUpLabel = new

JLabel("Count Up");

 JLabel countDownLabel = new

JLabel("Count Down");

 class CountUpThread extends Thread {

 public void run() {

 int count = 1000;

 while (true) {

 try {

 sleep(100);

 } catch

(InterruptedException e) {

 }

 if (count == 0)

 count = 1000;

countUpLabel.setText(Integer.toString(cou

nt--));

 }

 }

 }

 class CountDownThread extends Thread

{

 public void run() {

 int count = 0;

 while (true) {

 try {

 sleep(50);

 } catch

(InterruptedException e) {

 }

 if (count == 1000)

 count = 0;

countDownLabel.setText(Integer.toString(c

ount++));

 }

 }

 }

 public ThreadDemo3(String title) {

 super(title);

 init();

 }

 private void init() {

this.setDefaultCloseOperation(JFrame.EXIT

_ON_CLOSE);

this.getContentPane().setLayout(new

FlowLayout());

 this.add(countUpLabel);

 this.add(countDownLabel);

 this.pack();

 this.setVisible(true);

 new CountUpThread().start();

 new CountDownThread().start();

 }

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 ThreadDemo3 frame = new

ThreadDemo3("Thread Demo 3");

 }

 public static void main(String[]

args) {

javax.swing.SwingUtilities.invokeLater(ne

w Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

The ThreadTest3 class defines two nested classes,
CountUpThread and CountDownThread, that extend
Thread. Both are nested in the main class so that they can
access the JLabel controls and change their labels. Running the
code, you will see something similar to Figure 27.1.

Figure 27.1: Using two threads

Thread Priority

When dealing with multiple threads, you sometimes have to
think about thread scheduling. In other words, you need to make
sure each thread gets a fair chance to run. This is achieved by
calling sleep from a thread’s run method. A long processing
thread should always calls the sleep method to give other
threads a slice of the CPU processing time. A thread that calls
sleep is said to yield.

Now, if there are more than one thread waiting, which one gets
to run when the running thread yields? The thread with the
highest priority. To set a thread priority, call its setPriority
method. Its signature is as follows.

public final void setPriority(int

priority)

The following example is a Swing application that has two
counters. The counter on the left is powered by a thread that has
a priority of 10 and another by a thread whose priority is 1. Run
the code and see how the thread with the higher priority runs
faster.

Listing 27.5: Testing thread priority
package app27;

import java.awt.FlowLayout;

import javax.swing.JFrame;

import javax.swing.JLabel;

public class ThreadPriorityDemo extends

JFrame {

 JLabel counter1Label = new

JLabel("Priority 10");

 JLabel counter2Label = new

JLabel("Priority 1");

 class CounterThread extends Thread {

 JLabel counterLabel;

 public CounterThread(JLabel

counterLabel) {

 super();

 this.counterLabel =

counterLabel;

 }

 public void run() {

 int count = 0;

 while (true) {

 try {

 sleep(1);

 } catch

(InterruptedException e) {

 }

 if (count == 50000)

 count = 0;

counterLabel.setText(Integer.toString(cou

nt++));

 }

 }

 }

 public ThreadPriorityDemo(String

title) {

 super(title);

 init();

 }

 private void init() {

this.setDefaultCloseOperation(JFrame.EXIT

_ON_CLOSE);

 this.setLayout(new FlowLayout());

 this.add(counter1Label);

 this.add(counter2Label);

 this.pack();

 this.setVisible(true);

 CounterThread thread1 = new

CounterThread(counter1Label);

 thread1.setPriority(10);

 CounterThread thread2 = new

CounterThread(counter2Label);

 thread2.setPriority(1);

 thread2.start();

 thread1.start();

 }

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 ThreadPriorityDemo frame = new

ThreadPriorityDemo(

 "Thread Priority Demo");

 }

 public static void main(String[]

args) {

javax.swing.SwingUtilities.invokeLater(ne

w Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

The two threads running are instances of the same class
(CounterThread). The first thread has a priority of 10, and the
second 1. Figure 27.2 shows that even though the second thread
starts first, the first thread runs faster.

Figure 27.2: Threads with different
priorities

Stopping a Thread

The Thread class has a stop method to stop a thread. However,
you should not use this method because it is unsafe. Instead, you
should arrange so that the run method exits naturally when you
want to stop a thread. A common technique used is to employ a
while loop with a condition. When you want to stop the thread,
simply make the condition evaluates to false. For example:

boolean condition = true;

public void run {

 while (condition) {

 // do something here

 }

}

In your class, you also need to provide a method to change the
value of condition.

public synchronized void stopThread() {

 condition = false;

}

Note
The keyword synchronized is explained in the section, “Synchronizing
Threads.”

Stopping a thread is illustrated in the example in Listing 27.6.

Listing 27.6: Stopping a thread
package app27;

import java.awt.FlowLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

public class StopThreadDemo extends

JFrame {

 JLabel counterLabel = new

JLabel("Counter");

 JButton startButton = new

JButton("Start");

 JButton stopButton = new

JButton("Stop");

 CounterThread thread = null;

 boolean stopped = false;

 int count = 1;

 class CounterThread extends Thread {

 public void run() {

 while (!stopped) {

 try {

 sleep(10);

 } catch

(InterruptedException e) {

 }

 if (count == 1000) {

 count = 1;

 }

counterLabel.setText(Integer.toString(cou

nt++));

 }

 }

 }

 public StopThreadDemo(String title) {

 super(title);

 init();

 }

 private void init() {

this.setDefaultCloseOperation(JFrame.EXIT

_ON_CLOSE);

this.getContentPane().setLayout(new

FlowLayout());

this.stopButton.setEnabled(false);

 startButton.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent e) {

StopThreadDemo.this.startButton.setEnable

d(false);

StopThreadDemo.this.stopButton.setEnabled

(true);

 startThread();

 }

 });

 stopButton.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent e) {

StopThreadDemo.this.startButton.setEnable

d(true);

StopThreadDemo.this.stopButton.setEnabled

(false);

 stopThread();

 }

 });

this.getContentPane().add(counterLabel);

this.getContentPane().add(startButton);

this.getContentPane().add(stopButton);

 this.pack();

 this.setVisible(true);

 }

 public synchronized void

startThread() {

 stopped = false;

 thread = new CounterThread();

 thread.start();

 }

 public synchronized void stopThread()

{

 stopped = true;

 }

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 StopThreadDemo frame = new

StopThreadDemo(

 "Stop Thread Demo");

 }

 public static void main(String[]

args) {

javax.swing.SwingUtilities.invokeLater(ne

w Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

The StopThreadDemo class uses a JLabel to display a
counter and two JButtons to start and stop the counter,
respectively. An action listener is added to each JButton. The
action listener in the Start button calls the startThread method
and the one in the Stop button invokes the stopThread
method.

 public synchronized void

startThread() {

 stopped = false;

 thread = new CounterThread();

 thread.start();

 }

 public synchronized void stopThread()

{

 stopped = true;

 }

To stop the counter, simply change the stopped variable to
true. This will cause the while loop in the run method to exit.
To start or restart the counter, you must create a new Thread.
Once the run method of a thread exits, the thread is dead and
you cannot re-call the thread’s start method.

Figure 27.3 shows the counter from the StopThreadTest
class. It can be stopped and restarted.

Figure 27.3: Stopping and restarting a
thread

Synchronization

You’ve seen threads that run independently from each other. In

real life, however, there are often situations whereby multiple
threads need access to the same resource or data. Thread
interference problems might arise if you cannot guarantee that
no two threads will simultaneously have access to the same
object.

This section explains the topic of thread interference and the
language built-in locking mechanism for securing exclusive
access to an object through the synchronized modifier.

Note
Java offers the Concurrency Utilities, which include better locks. When
possible you should use these locks instead of synchronized. The
Concurrency Utilities are explained in Chapter 24.

Thread Interference
To better appreciate the issues associated with multiple threads
attempting to access the same resource, consider the code in
Listing 27.7.

Listing 27.7: The UserStat class
package app27;

public class UserStat {

 int userCount;

 public int getUserCount() {

 return userCount;

 }

 public void increment() {

 userCount++;

 }

 public void decrement() {

 userCount--;

 }

}

What happens if a thread attempts to read the userCount
variable by calling getUserCount while another thread is
incrementing it? Bear in mind that the statement userCount++
is actually composed of three consecutive steps:

Read the value of userCount and store it in some
temporary storage;

Increment the value

Write the incremented value back to userCount

Suppose a thread reads and increments the value of userCount.
Before it has the opportunity to store the incremented value
back, another thread reads it and gets the old value. When the
second thread finally gets a chance to write to userCount, it
replaces the incremented value of the first thread. As a result,

userCount does not reflect the number of users correctly. An
event whereby two non-atomic operations running in different
threads, but acting on the same data, interleave is called thread
interference.

Atomic Operations
An atomic operation is a set of operations that can be combined to appear
to the rest of the system as a single operation. It cannot cause thread
interference. As you have witnessed, incrementing an integer is not an
atomic operation.

In Java, all primitives except long and double are atomically readable
and writable.Thread Safety

Thread safe code functions correctly when accessed by multiple threads.
The UserStat class in Listing 27.7 is not thread-safe.

Thread interference can lead to a race condition. It is one in
which multiple threads are reading or writing some shared data
simultaneously and the result is unpredictable. Race conditions
can lead to subtle or severe bugs that are hard to find.

The next sections, “Method Synchronization” and “Block
Synchronization” explain how to use synchronized to write
thread-safe code.

Method Synchronization
Every Java object has an intrinsic lock, which is sometimes called a
monitor lock. Acquiring an object's intrinsic lock is a way of having
exclusive access to the object. To acquire an object's intrinsic lock is the

same as locking the object. Threads attempting to access a locked object
will block until the thread holding the lock releases the lock.Mutual
Exclusion and Visibility

Because a locked object can be accessed only by one thread, locks are said
to offer a mutual exclusion feature. Another feature offered by locks is
visibility, which is discussed in the next section.

The synchronized modifier can be used to lock an object.
When a thread calls a non-static synchronized method, it will
automatically attempt to acquire the intrinsic lock of the
method’s object before the method can execute. The thread holds
the lock until the method returns. Once a thread locks an object,
other threads cannot call the same method or other
synchronized methods on the same object. The other threads will
have to wait until the lock becomes available again. The lock is
reentrant, which means the thread holding the lock can invoke
other synchronized methods in the same object. The intrinsic
lock is released when the method returns.

Note
You can also synchronize a static method, in which case the lock of the
Class object associated with the method’s class will be used.

The SafeUserStat class in Listing 27.8 is a rewrite of the
UserStat class. Unlike UserStat, SafeUserStat is thread-safe.

Listing 27.8: The SafeUserStat class
package app27;

public class SafeUserStat {

 int userCount;

 public synchronized int

getUserCount() {

 return userCount;

 }

 public synchronized void increment()

{

 userCount++;

 }

 public synchronized void decrement()

{

 userCount--;

 }

}

Within a program, the code segments that guarantee only one
thread at a time has access to a shared resource are called critical
sections. In Java critical sections are achieved using the
synchronized keyword. In the SafeUserStat class, the
increment, decrement, and getUserCount methods are
critical sections. Access to userCount is only permitted through
a synchronized method. This ensures race conditions will not
happen.

Block Synchronization
Synchronizing a method is not always possible. Imagine writing
a multi-threaded application with multiple threads accessing a
shared object, but the object class was not written with thread
safety in mind. Worse still, you do not have access to the source
code of the shared object. Just say, you have to work with a
thread-unsafe UserStat class and its source code is not
available.

Fortunately, Java allows you to lock any object through block
synchronization. Its syntax is this.

synchronized(object) {

 // do something while locking object

}

A synchronized block gives you the intrinsic lock of an object.
The lock is released after the code in the block is executed.

For instance, the following code uses the thread-unsafe
UserStat class in Listing 27.7 as a counter. To lock the counter
when incrementing it, the incrementCounter method locks
the UserStat instance.

UserStat userStat = new UserStat();

...

public void incrementCounter() {

 synchronized(userStat) {

 // statements to be synchronized,

such as calls to

 // the increment, decrement, and

getUserCount methods

 // on userStat

 userStat.increment();

 }

}

As an aside note, method synchronization is the same as block
synchronization that locks the current object:

synchronized(this) {

 ...

}

Visibility

In the section “Synchronization” you learned to synchronize
non-atomic operations that could be accessed by multiple
threads. At this point you probably got the impression that if you
don't have non-atomic operations, then you don't have to bother

synchronizing resources that are accessed by multiple threads.

This is not true.

In a single-threaded program, reading the value of a variable
always gives you the value last written to the variable. However,
due to the memory model in Java, it's not always so in a
multithreaded application. A thread may not see changes made
by another thread unless the operations that act on the data are
synchronized.

For example, the Inconsistent class in Listing 27.9 creates a
background thread that is supposed to wait three seconds before
changing the value of started, a boolean. The while loop in the
main method should continuously check the value of started
and continue once started is set to true.

Listing 27.9: The Inconsistent class
package app27;

public class Inconsistent {

 static boolean started = false;

 public static void main(String[]

args) {

 Thread thread1 = new Thread(new

Runnable() {

 public void run() {

 try {

 Thread.sleep(3000);

 } catch

(InterruptedException e) {

 }

 started = true;

System.out.println("started set to

true");

 }

 });

 thread1.start();

 while (!started) {

 // wait until started

 }

 System.out.println("Wait 3

seconds and exit");

 }

}

However, when I ran it in my computer, it never printed the
string and exited. What happened? It looks like the while loop
(running in the main method) never saw the value of started
change.

You can remedy this by synchronizing access to started, as
illustrated in the Consistent class in Listing 27.10.

Listing 27.10: The Consistent class
package app27;

public class Consistent {

 static boolean started = false;

 public synchronized static void

setStarted() {

 started = true;

 }

 public synchronized static boolean

getStarted() {

 return started;

 }

 public static void main(String[]

args) {

 Thread thread1 = new Thread(new

Runnable() {

 public void run() {

 try {

 Thread.sleep(3000);

 } catch

(InterruptedException e) {

 }

 setStarted();

System.out.println("started set to

true");

 }

 });

 thread1.start();

 while (!getStarted()) {

 // wait until started

 }

 System.out.println("Wait 3

seconds and exit");

 }

}

Note that both setStarted and getStarted are synchronized to
have the desire effect. It won't work if only setStarted is
synchronized.

However, synchronization comes at a price. Locking an object
incurs runtime overhead. If what you’re after is visibility and you
don't need mutual exclusion, you can use the volatile keyword
instead of synchronized.

Declaring a variable volatile guarantees visibility by all threads
accessing the variable. Here is an example.

static volatile boolean started = false;

You can therefore rewrite the Consistent class to use volatile
to reduce overhead.

Listing 27.11: Solving visibility problem
with volatile

package app27;

public class LightAndConsistent {

 static volatile boolean started =

false;

 public static void main(String[]

args) {

 Thread thread1 = new Thread(new

Runnable() {

 public void run() {

 try {

 Thread.sleep(3000);

 } catch

(InterruptedException e) {

 }

 started = true;

System.out.println("started set to

true");

 }

 });

 thread1.start();

 while (!started) {

 // wait until started

 }

 System.out.println("Wait 3

seconds and exit");

 }

}

Note that while volatile solves the visibility problem, it cannot
be used to address a mutual exclusion issue.

Thread Coordination

There are even more delicate situations where the timing of a
thread accessing an object affects other threads that need to
access the same object. Such situations compel you to coordinate
the threads. The following example illustrates this situation and
presents a solution.

You own a courier service company that picks up and delivers
goods. You employ a dispatcher and several truck drivers. The
dispatcher’s job is to prepare delivery notes and place them in a

delivery note holder. Any free driver checks the note holder. If a
delivery note is found, the driver should perform a pick up and
delivery service. If no delivery note is found, he/she should wait
until there is one. In addition, to guarantee fairness you want the
delivery notes to be executed in a first-in-first-out fashion. To
facilitate this, you only allow one delivery note to be in the holder
at a time. The dispatcher will notify any waiting driver if a new
note is available in the holder.

The java.lang.Object class provides several methods that are
useful in thread coordination:

public final void wait() throws

InterruptedException

Causes the current thread to wait until
another thread invokes the notify or
notifyAll method. wait normally occurs in
a synchronized method and causes the
calling thread that is accessing the
synchronized method to place itself in the
wait state and relinquish the object lock.

public final void wait(long timeout)

throws InterruptedException

Causes the current thread to wait until
another thread invokes the notify or
notifyAll method for this object, or the
specified amount of time has elapsed. wait
normally occurs in a synchronized method
and causes the calling thread that is
accessing the synchronized method to place
itself in the wait state and relinquish the
object lock.

public final void notify()

Notifies a single thread that is waiting on
this object’s lock. If there are multiple
threads waiting, one of them is chosen to be
notified and the choice is arbitrary.

pubic final void notifyAll()

Notifies all the threads waiting on this
object’s lock.

Let’s see how we can implement the delivery service business
model in Java using wait, notify, and notifyAll. There are
three types of objects involved:

DeliveryNoteHolder. Represents the note holder and is
given in Listing 27.12. It is accessed by the
DispatcherThread and DriverThread.

DispatcherThread. Represents the dispatcher and is
presented in Listing 27.13.

DriverThread. Represents a driver, shown in Listing
27.14.

Listing 27.12: The DeliveryNoteHolder
class

package app27;

public class DeliveryNoteHolder {

 private String deliveryNote;

 private boolean available = false;

 public synchronized String get() {

 while (available == false) {

 try {

 wait();

 } catch (InterruptedException

e) { }

 }

 available = false;

System.out.println(System.currentTimeMill

is()

 + ": got " +

deliveryNote);

 notifyAll();

 return deliveryNote;

 }

 public synchronized void put(String

deliveryNote) {

 while (available == true) {

 try {

 wait();

 } catch (InterruptedException

e) { }

 }

 this.deliveryNote = deliveryNote;

 available = true;

System.out.println(System.currentTimeMill

is() +

 ": Put " + deliveryNote);

 notifyAll();

 }

}

There are two synchronized methods in the
DeliveryNoteHolder class, get and put. The
DispatcherThread object calls the put method and the
DriverThread object calls the get method. A delivery note is
simply a String (deliveryNote) that contains delivery
information. The available variable indicates if a delivery note
is available in this holder. The initial value of available is false,
denoting that the DeliveryNoteHolder object is empty. Note
that only one thread at a time can call any of the synchronized
methods.

If the DriverThread is the first thread that accesses
DeliveryNoteHolder, it will encounter the following while
loop in the get method:

 while (available == false) {

 try {

 wait();

 } catch (InterruptedException

e) {

 }

 }

Since available is false, the thread will invoke wait that causes
the thread to lie dormant and relinquish the lock. Now, other
threads can access the DeliveryNoteHolder object.

If the DispatcherThread is the first thread that accesses
DeliveryNoteHolder, it will see the following code:

 while (available == true) {

 try {

 wait();

 } catch (InterruptedException

e) {

 }

 }

 this.deliveryNote = deliveryNote;

 available = true;

 notifyAll();

Because the value of available is false, it will skip the while
loop and causes the DeliveryNoteHolder object’s
deliveryNote to be assigned a value. The thread will also set
available to true and notify all waiting threads.

On the invocation of notifyAll, if the DriverThread is
waiting on the DeliveryNoteHolder object, it will awaken,
reacquire the DeliveryNoteHolder object’s lock, escape from
the while loop, and execute the rest of the get method:

 available = false;

 notifyAll();

 return deliveryNote;

The available boolean will be switched back to false, the
notifyAll method called, and the deliveryNote returned.

Now, let’s examine the DispatcherThread class in Listing
27.13.

Listing 27.13: The DispatcherThread
class

package app27;

public class DispatcherThread extends

Thread {

 private DeliveryNoteHolder

deliveryNoteHolder;

 String[] deliveryNotes = { "XY23.

1234 Arnie Rd.",

 "XY24. 3330 Quebec St.",

 "XY25. 909 Swenson Ave.",

 "XY26. 4830 Davidson Blvd.",

 "XY27. 9900 Old York Dr." };

 public

DispatcherThread(DeliveryNoteHolder

holder) {

 deliveryNoteHolder = holder;

 }

 public void run() {

 for (int i = 0; i <

deliveryNotes.length; i++) {

 String deliveryNote =

deliveryNotes[i];

deliveryNoteHolder.put(deliveryNote);

 try {

 sleep(100);

 } catch (InterruptedException

e) {

 }

 }

 }

}

The DispatcherThread class extends java.lang.Thread and
declares a String array that contain delivery notes to be put in
the DeliveryNoteHolder object. It gets access to the
DeliveryNoteHolder object from its constructor. Its run
method contains a for loop that attempts to call the put method
on the DeliveryNoteHolder object.

The DriverThread class also extends java.lang.Thread
and is given in Listing 27.14.

Listing 27.14: The DriverThread class
package app27;

public class DriverThread extends Thread

{

 DeliveryNoteHolder

deliveryNoteHolder;

 boolean stopped = false;

 String driverName;

 public

DriverThread(DeliveryNoteHolder holder,

String

 driverName) {

 deliveryNoteHolder = holder;

 this.driverName = driverName;

 }

 public void run() {

 while (!stopped) {

 String deliveryNote =

deliveryNoteHolder.get();

 try {

 sleep(300);

 } catch (InterruptedException

e) {

 }

 }

 }

}

The DriverThread method attempts to obtain delivery notes by
calling the get method on the DeliveryNoteHolder object.
The run method employs a while loop controlled by the
stopped variable. A method to change stopped is not given
here to keep this example simple.

Finally, the ThreadCoordinationDemo class in Listing
27.15 puts everything together.

Listing 27.15:
ThreadCoordinationDemo class

package app27;

public class ThreadCoordinationDemo {

 public static void main(String[]

args) {

 DeliveryNoteHolder c = new

DeliveryNoteHolder();

 DispatcherThread dispatcherThread

=

 new DispatcherThread(c);

 DriverThread driverThread1 = new

DriverThread(c, "Eddie");

 dispatcherThread.start();

 driverThread1.start();

 }

}

Here is the output from running ThreadCoordinationDemo
class.:

1135212236001: Put XY23. 1234 Arnie Rd.

1135212236001: got XY23. 1234 Arnie Rd.

1135212236102: Put XY24. 3330 Quebec St.

1135212236302: got XY24. 3330 Quebec St.

1135212236302: Put XY25. 909 Swenson Ave.

1135212236602: got XY25. 909 Swenson Ave.

1135212236602: Put XY26. 4830 Davidson

Blvd.

1135212236903: got XY26. 4830 Davidson

Blvd.

1135212236903: Put XY27. 9900 Old York

Dr.

1135212237203: got XY27. 9900 Old York

Dr.

Using Timers

The java.util.Timer class provides an alternative approach to
performing scheduled or recurrent tasks. It is easy to use too.
After you create a Timer, call its schedule method, passing a
java.util.TimerTask object. The latter contains code that
needs to be executed by the Timer.

The easiest constructor to use is the no-argument one.

public Timer()

The Timer class’s schedule method has several overloads:

public void schedule(TimerTask task, Date

time)

Schedules the specified task to be executed
once at the specified time.

public void schedule(TimerTask task, Date

firstTime, long period)

Schedules the specified task to be executed
for the first time at the specified time and

then recurrently at an interval specified by
the period argument (in milliseconds)

public void schedule(TimerTask task, long

delay, long period)

Schedules the specified task to be executed
for the first time after the specified delay
and then recurrently at an interval specified
by the period argument (in milliseconds).

To cancel a scheduled task, call the Timer class’s cancel
method:

public void cancel()

The TimerTask class has a run method that you need to
override in your task class. Unlike the run method in
java.lang.Runnable, you do not need to enclose the scheduled
or recurrent task code in a loop.

The TimerDemo class in Listing 27.16 shows a Swing
application that uses Timer and TimerTask to conduct a quiz.
There are five questions in the quiz and each question is

displayed in a JLabel for ten seconds, giving the user enough
time to answer. Any answer will be inserted into a JComboBox
control.

Listing 27.16: Using Timer
package app27;

import java.awt.BorderLayout;

import java.awt.Dimension;

import java.awt.Toolkit;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.util.Timer;

import java.util.TimerTask;

import javax.swing.JButton;

import javax.swing.JComboBox;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JTextField;

public class TimerDemo extends JFrame {

 String[] questions = { "What is the

largest mammal?",

 "Who is the current prime

minister of Japan?",

 "Who invented the Internet?",

 "What is the smallest country

in the world?",

 "What is the biggest city in

America?",

 "Finished. Please remain

seated" };

 JLabel questionLabel = new

JLabel("Click Start to begin");

 JTextField answer = new JTextField();

 JButton startButton = new

JButton("Start");

 JComboBox answerBox = new

JComboBox();

 int counter = 0;

 Timer timer = new Timer();

 public TimerDemo(String title) {

 super(title);

 init();

 }

 private void init() {

this.setDefaultCloseOperation(JFrame.EXIT

_ON_CLOSE);

this.getContentPane().setLayout(new

BorderLayout());

this.getContentPane().add(questionLabel,

BorderLayout.WEST);

questionLabel.setPreferredSize(new

Dimension(300, 15));

 answer.setPreferredSize(new

Dimension(100, 15));

 this.getContentPane().add(answer,

BorderLayout.CENTER);

this.getContentPane().add(startButton,

BorderLayout.EAST);

 startButton.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent e) {

 ((JButton)

e.getSource()).setEnabled(false);

 timer.schedule(

 new

DisplayQuestionTask(), 0, 10 * 1000);

 }

 });

this.getContentPane().add(answerBox,

BorderLayout.SOUTH);

this.startButton.setFocusable(true);

 this.pack();

 this.setVisible(true);

 }

 private String getNextQuestion() {

 return questions[counter++];

 }

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 TimerDemo frame = new

TimerDemo("Timer Demo");

 }

 public static void main(String[]

args) {

javax.swing.SwingUtilities.invokeLater(ne

w Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

 class DisplayQuestionTask extends

TimerTask {

 public void run() {

Toolkit.getDefaultToolkit().beep();

 if (counter > 0) {

answerBox.addItem(answer.getText());

 answer.setText("");

 }

 String nextQuestion =

getNextQuestion();

questionLabel.setText(nextQuestion);

 if (counter ==

questions.length) {

 timer.cancel();

 }

 }

 }

}

The questions are stored in the String array questions. It
contains six members, the first five being questions and the last
one being an instruction for the user to remain seated.

The DisplayQuestionTimerTask nested class extends
java.util.TimerTask and provides the code to be executed.
Each task begins with a beep and continues with displaying the
next question in the array. When all the array members have

been displayed, the cancel method of the Timer object is
called.

Figure 27.4 shows the application.

Figure 27.4: A Timer application

Swing Timers

Similar to the java.util.Timer class, the javax.swing.Timer
class can only be used in Swing applications.
javax.swing.Timer is not as powerful as java.util.Timer but
gives you the familiar feeling of working with Swing and is a
more appropriate choice than java.util.Timer for Swing
applications because javax.swing.Timer handles thread
sharing. Instead of putting scheduled tasks in the run method of
a TimerTask subclass, you implement the
java.awt.event.ActionListener interface and write your task
code in its actionPerformed method. In addition, to cancel a
task, you use the javax.swing.Timer class’s stop method.

The javax.swing.Timer class only has one constructor:

public Timer(int delay,

java.awt.event.ActionListener listener)

where delay specifies the number of milliseconds from the time
the start method is invoked to the first invocation of the task
and listener is an ActionListener instance that contains code
to be called.

The quiz application in Listing 27.16 is rewritten in Listing
27.17 to use javax.swing.Timer.

Listing 27.17: Using Swing Timer.
package app27;

import java.awt.BorderLayout;

import java.awt.Dimension;

import java.awt.Toolkit;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JComboBox;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JTextField;

import javax.swing.Timer;

public class SwingTimerDemo extends

JFrame {

 String[] questions = { "What is the

largest mammal?",

 "Who is the current prime

minister of Japan?",

 "Who invented the Internet?",

 "What is the smallest country

in the world?",

 "What is the biggest city in

America?",

 "Finished. Please remain

seated" };

 JLabel questionLabel = new

JLabel("Click Start to begin");

 JTextField answer = new JTextField();

 JButton startButton = new

JButton("Start");

 JComboBox answerBox = new

JComboBox();

 int counter = 0;

 Timer timer = new Timer(10000, new

MyTimerActionListener());

 public SwingTimerDemo(String title) {

 super(title);

 init();

 }

 private void init() {

this.setDefaultCloseOperation(JFrame.EXIT

_ON_CLOSE);

this.getContentPane().setLayout(new

BorderLayout());

this.getContentPane().add(questionLabel,

BorderLayout.WEST);

questionLabel.setPreferredSize(new

Dimension(300, 15));

 answer.setPreferredSize(new

Dimension(100, 15));

 this.getContentPane().add(answer,

BorderLayout.CENTER);

this.getContentPane().add(startButton,

BorderLayout.EAST);

 startButton.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent e) {

 ((JButton)

e.getSource()).setEnabled(false);

 timer.start();

 }

 });

this.getContentPane().add(answerBox,

BorderLayout.SOUTH);

this.startButton.setFocusable(true);

 this.pack();

 this.setVisible(true);

 }

 private String getNextQuestion() {

 return questions[counter++];

 }

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 SwingTimerTest frame = new

SwingTimerTest(

 "Swing Timer Demo");

 }

 public static void main(String[]

args) {

javax.swing.SwingUtilities.invokeLater(ne

w Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

 class MyTimerActionListener

implements ActionListener {

 public void

actionPerformed(ActionEvent e) {

Toolkit.getDefaultToolkit().beep();

 if (counter > 0) {

answerBox.addItem(answer.getText());

 answer.setText("");

 }

 String nextQuestion =

getNextQuestion();

questionLabel.setText(nextQuestion);

 if (counter ==

questions.length) {

 timer.stop();

 }

 }

 }

}

Summary

Multi-threaded application development in Java is easy, thanks
to Java support for threads. To create a thread, you can extend
the java.lang.Thread class or implement the
java.lang.Runnable interface. In this chapter you have
learned how to write programs that manipulate threads and
synchronize threads. You have also learned how to write thread-
safe code. In the last two sections of this chapter, you have
learned how to use the java.util.Timer and
javax.swing.Timer classes to run scheduled tasks.

Quiz

1. What is a thread?
2. What does the synchronized modifier

do?
3. What is a critical section?
4. Where do you write a scheduled task for a

java.util.Timer?

5. What is the difference between
java.util.Timer and
javax.swing.Timer.

Chapter 28
Concurrency Utilities

Java’s built-in support for writing multi-threaded applications,
such as the Thread class and the synchronized keyword, are
hard to use correctly because they are too low level. Java 5 added
the Concurrency Utilities in the java.util.concurrent package
and subpackages. The types in these packages have been
designed to provide better alternatives to Java’s built-in thread
and synchronization features. This chapter discusses the more
important types in the Concurrency Utilities, starting from
atomic variables and followed by executors, Callable, and
Future. Also included is a discussion of SwingWorker, which
is a utility for writing asynchronous tasks in Swing.

Atomic Variables

The java.util.concurrent.atomic package provides classes
such as AtomicBoolean, AtomicInteger, AtomicLong, and
AtomicReference. These classes can perform various
operations atomically. For example, an AtomicInteger stores

an integer internally and offers method to atomically manipulate
the integer, such as addAndGet, decrementAndGet,
getAndIncrement, incrementAndGet, and so on.

The getAndIncrement and incrementAndGet methods
return different results. getAndIncrement returns the current
value of the atomic variable and then increments the value.
Therefore, after executing these lines of code, the value of a is 0
and the value of b is 1.

AtomicInteger counter = new

AtomicInteger(0);

int a = counter.getAndIncrement(); // a =

0

int b = counter.get(); // b =

1

The incrementAndGet method, on the other hand, increments
the atomic variable first and returns the result. For instance,
after running this snippet both a and b will have a value of 1.

AtomicInteger counter = new

AtomicInteger(0);

int a = counter.incrementAndGet(); // a =

1

int b = counter.get(); // b =

1

Listing 28.1 presents a thread safe counter that utilizes
AtomicInteger. Compare this with the thread-unsafe
UserStat class in Chapter 27.

Listing 28.1: A counter with an
AtomicInteger

package app28;

import

java.util.concurrent.atomic.AtomicInteger;

public class AtomicCounter {

 AtomicInteger userCount = new

AtomicInteger(0);

 public int getUserCount() {

 return userCount.get();

 }

 public void increment() {

 userCount.getAndIncrement();

 }

 public void decrement() {

 userCount.getAndDecrement();

 }

}

Executor and ExecutorService

Whenever possible, do not use java.lang.Thread to execute a
Runnable task. Instead, use an implementation of
java.util.concurrent.Executor or its subinterface
ExecutorService.

Executor has only one method, execute.

void execute(java.lang.Runnable task)

ExecutorService, an extension to Executor, adds termination
methods and methods for executing Callable. Callable is akin
to Runnable except that it can return a value and facilitate
cancellation through the Future interface. Callable and
Future are explained in the next section “Callable and Future.”

You rarely have to write your own implementation of
Executor (or ExecutorService). Instead, use one of the static
methods defined in the Executors class, a utility class.

public static ExecutorService

newSingleThreadExecutor()

public static ExecutorService

newCacheThreadPool()

public static ExecutorService

newFixedThreadPool(int numOfThreads)

newSingleThreadExecutor returns an Executor that
contains a single thread. You can submit multiple tasks to the
Executor, but only one task will be executing at any given time.

newCacheThreadPool returns an Executor that will
create more threads to cater for multiple tasks as more tasks are
submitted. This is suitable for running short lived asynchronous
jobs. However, use this with caution as you could run out of
memory if the Executor attempts to create new threads while
memory is already low.

newFixedThreadPool allows you to determine how many
threads will be maintained in the returned Executor. If there
are more tasks than the number of threads, the tasks that were
not allocated threads will wait until the running threads finish
their jobs.

Here is how you submit a Runnable task to an Executor.

Executor executor =

Executors.newSingleThreadExecutor();

executor.execute(new Runnable() {

 @Override

 public void run() {

 // do something

 }

});

Constructing a Runnable task as an anonymous class like this
is suitable for short tasks and if you don’t need to pass
arguments to the task. For longer tasks or if you need to pass an
argument to the task, you need to implement Runnable in a
class.

The example in Listing 28.2 illustrates the use of Executor. It
is a Swing application with a button and a list that will search for
JPG files when the button is clicked. The results will be shown in
the list. We limit the results to 200 files or we run the risk of
running out of memory.

Listing 28.2: The ImageSearcher class
package app28.imagesearcher;

import java.awt.BorderLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.nio.file.FileSystems;

import java.nio.file.Path;

import java.util.concurrent.Executor;

import java.util.concurrent.Executors;

import

java.util.concurrent.atomic.AtomicInteger;

import javax.swing.DefaultListModel;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JList;

import javax.swing.JScrollPane;

public class ImageSearcher extends JFrame

 implements ActionListener {

 public static final int MAX_RESULT =

300;

 JButton searchButton = new

JButton("Search");

 DefaultListModel listModel;

 JList imageList;

 Executor executor =

Executors.newFixedThreadPool(10);

 AtomicInteger fileCounter = new

AtomicInteger(1);

 public ImageSearcher(String title) {

 super(title);

 init();

 }

 private void init() {

this.setDefaultCloseOperation(JFrame.EXIT

_ON_CLOSE);

 this.setLayout(new

BorderLayout());

 this.add(searchButton,

BorderLayout.NORTH);

 listModel = new

DefaultListModel();

 imageList = new JList(listModel);

 this.add(new

JScrollPane(imageList),

BorderLayout.CENTER);

 this.pack();

 this.setSize(800, 650);

searchButton.addActionListener(this);

 this.setVisible(true);

 // center frame

 this.setLocationRelativeTo(null);

 }

 private static void constructGUI() {

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 ImageSearcher frame = new

ImageSearcher("Image Searcher");

 }

 public void

actionPerformed(ActionEvent e) {

 Iterable<Path> roots =

FileSystems.getDefault().getRootDirectori

es();

 for (Path root : roots) {

 executor.execute(new

ImageSearchTask(root, executor,

 listModel,

fileCounter));

 }

 }

 public static void main(String[]

args) {

javax.swing.SwingUtilities.invokeLater(ne

w Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

Look carefully at the actionPerformed method:

 Iterable<Path> roots =

FileSystems.getDefault().getRootDirectori

es();

 for (Path root : roots) {

 executor.execute(new

ImageSearchTask(root, executor,

 listModel,

fileCounter));

 }

The FileSystem.getRootDirectories method returns the
roots of the file system. If you're on Windows, then it will return
Drive C, Drive D, and so on. If you're using Linux or Mac, then it
will return /. Notice how it creates an ImageSearchTask
instance and pass it to the Executor? It passes a root directory,
the Executor, a DefaultListModel object that the task can
access, and an AtomicInteger that records how many files
have been found.

The ImageSearchTask class in Listing 28.3 is an
implementation of Runnable for searching JPG files in the

given directory and its subdirectories. Note that for each
subdirectory it spawns a new ImageSearchTask and submits
it to the passed in Executor.

Listing 28.3: The ImageSearchTask
class

package app28.imagesearcher;

import java.io.IOException;

import java.nio.file.DirectoryStream;

import java.nio.file.Files;

import java.nio.file.Path;

import java.util.concurrent.Executor;

import

java.util.concurrent.atomic.AtomicInteger;

import javax.swing.DefaultListModel;

import javax.swing.SwingUtilities;

public class ImageSearchTask implements

Runnable {

 private Path searchDir;

 private Executor executor;

 private DefaultListModel listModel;

 private AtomicInteger fileCounter;

 public ImageSearchTask(Path

searchDir, Executor executor,

DefaultListModel listModel,

 AtomicInteger fileCounter) {

 this.searchDir = searchDir;

 this.executor = executor;

 this.listModel = listModel;

 this.fileCounter = fileCounter;

 }

 @Override

 public void run() {

 if (fileCounter.get() >

ImageSearcher.MAX_RESULT) {

 return;

 }

 try (DirectoryStream<Path>

children =

Files.newDirectoryStream(searchDir)) {

 for (final Path child :

children) {

 if

(Files.isDirectory(child)) {

 executor.execute(new

ImageSearchTask(child,

 executor,

listModel, fileCounter));

 } else if

(Files.isRegularFile(child)) {

 String name =

child.getFileName()

.toString().toLowerCase();

 if

(name.endsWith(".jpg")) {

 final int

fileNumber =

fileCounter.getAndIncrement();

 if (fileNumber >

ImageSearcher.MAX_RESULT){

 break;

 }

SwingUtilities.invokeLater(new Runnable()

{

 public void

run() {

listModel.addElement(fileNumber +

": " + child);

 }

 });

 }

 }

 }

 } catch (IOException e) {

System.out.println(e.getMessage());

 }

 }

}

The run method inspects the directory passed to the task and
checks its content. For each JPG file it increments the fileCount
variable and for each subdirectory it spawns a new
ImageSearchTask so that the search can be done more
quickly.

Callable and Future

Callable is one of the most valuable members of the
Concurrency Utilities. A Callable is a task that returns a value
and may throw an exception. Callable is similar to Runnable,
except that the latter cannot return a value or throw an
exception.

Callable defines a method, call:

V call() throws java.lang.Exception

You can pass a Callable to an ExecutorService’s submit
method:

Future<V> result =

executorService.submit(callable);

The submit method returns a Future which can be used to
cancel the task or retrieve the return value of the Callable. To
cancel a task, call the cancel method on the Future object:

boolean cancel(boolean

myInterruptIfRunning)

You pass true to cancel if you want to cancel the task even
though it’s being executed. Passing false allows an in-progress
task to complete undisturbed. Note that cancel will fail if the
task has been completed or previously cancelled or for some
reason cannot be cancelled.

To get the result of a Callable, call the get method of the
corresponding Future. The get method comes in two overloads:

V get()

V get(long timeout, TimeUnit unit)

The first overload blocks until the task is complete. The second
one waits until a specified time lapses. The timeout argument
specifies the maximum time to wait and the unit argument
specifies the time unit for timeout.

To find out if a task has been cancelled or complete, call
Future’s isCancelled or isDone method.

boolean isCancelled()

boolean isDone()

For example, the FileCountTask class in Listing 28.4 presents
a Callable task for counting the number of files in a directory
and its subdirectories.

Listing 28.4: The FileCountTask class
package app28.filecounter;

import java.io.IOException;

import java.nio.file.DirectoryStream;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.util.ArrayList;

import java.util.List;

import java.util.concurrent.Callable;

public class FileCountTask implements

Callable {

 Path dir;

 long fileCount = 0L;

 public FileCountTask(Path dir) {

 this.dir = dir;

 }

 private void doCount(Path parent) {

 if (Files.notExists(parent)) {

 return;

 }

 try (DirectoryStream<Path>

children =

Files.newDirectoryStream(parent)) {

 for (Path child : children) {

 if

(Files.isDirectory(child)) {

 doCount(child);

 } else if

(Files.isRegularFile(child)) {

 fileCount++;

 }

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 @Override

 public Long call() throws Exception {

 System.out.println("Start

counting " + dir);

 doCount(dir);

 System.out.println("Finished

counting " + dir);

 return fileCount;

 }

}

The FileCounter class in Listing 28.5 uses FileCountTask to
count the number of files in two directories and prints the
results. It specifies a Path array (dirs) that contains the paths to
the directories which you want to count the number of files of.
Replace the values of dirs with directory names in your file
system.

Listing 28.5: The FileCounter class
package app28.filecounter;

import java.nio.file.Path;

import java.nio.file.Paths;

import

java.util.concurrent.ExecutionException;

import

java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

import java.util.concurrent.Future;

public class FileCounter {

 public static void main(String[]

args) {

 Path[] dirs = {

 Paths.get("C:/temp"),

 Paths.get("C:/temp/data")

 };

 ExecutorService executorService =

Executors.newFixedThreadPool(dirs.length);

 Future<Long>[] results = new

Future[dirs.length];

 for (int i = 0; i < dirs.length;

i++) {

 Path dir = dirs[i];

 FileCountTask task = new

FileCountTask(dir);

 results[i] =

executorService.submit(task);

 }

 // print result

 for (int i = 0; i < dirs.length;

i++) {

 long fileCount = 0L;

 try {

 fileCount =

results[i].get();

 } catch (InterruptedException

| ExecutionException ex){

 ex.printStackTrace();

 }

 System.out.println(dirs[i] +

" contains "

 + fileCount + "

files.");

 }

 // it won't exit unless we shut

down the ExecutorService

 executorService.shutdownNow();

 }

}

When run, the FileCounter class creates the same number of
threads as the number of directories in dirs using the
newFixedThreadPool method of ExecutorService. One
thread for each directory.

 ExecutorService executorService =

Executors.newFixedThreadPool(dirs.length);

It also defines an array of Futures for containing the results of
executing the FileCountTask tasks.

 Future<Long>[] results = new

Future[dirs.length];

It then creates a FileCountTask for each directory and submits
it to the ExecutorService.

 for (int i = 0; i < dirs.length;

i++) {

 Path dir = dirs[i];

 FileCountTask task = new

FileCountTask(dir);

 results[i] =

executorService.submit(task);

 }

Finally, it prints the results and shuts down the

ExecutorService.

 // print result

 for (int i = 0; i < dirs.length;

i++) {

 long fileCount = 0L;

 try {

 fileCount =

results[i].get();

 } catch (InterruptedException

| ExecutionException ex){

 ex.printStackTrace();

 }

 System.out.println(dirs[i] +

" contains "

 + fileCount + "

files.");

 }

 // it won't exit unless we shut

down the ExecutorService

 executorService.shutdownNow();

Swing Worker

In any Swing application, a single thread is responsible for

painting the GUI and handling events. This thread is called the
event-dispatching thread (EDT). The use of the same thread for
both tasks guarantees that each event handler finishes executing
before the next one executes and that GUI painting will not be
interrupted by events. If an event handler must perform a
lengthy task, the task needs to run in a separate thread, or else
your application will become unresponsive during the execution
of the event handler. On the other hand, Swing components
should be accessed on the EDT only, and, unfortunately,
communication between the EDT and another thread could be
tricky. Therefore, if you need to access Swing components from
another thread, you need to be extra-careful.

The javax.swing.SwingWorker abstract class is a utility
class that helps you with time-consuming tasks in a Swing
application. After you instantiate a subclass of SwingWorker,
you can call its execute method to start the worker. Calling
execute in turn invokes the doInBackground method on a
different thread. You should write your code in this method.
From within doInBackground you can call the publish
method to publish intermediate data that will be received by the
process method. SwingWorker invokes the process method
each time the publish method is called on the EDT. Therefore,
this is your chance to update any Swing component. For
example, you can send intermediate results to the publish
method from doInBackground and let process prints the
results in a JLabel. Finally, when doInBackground finishes
executing, SwingWorker will invoke the done method. In

addition, there are also a cancel method to cancel a running
SwingWorker and a isCancelled method that indicates if the
worker has been cancelled.

The following example shows a Swing application with a
SwingWorker subclass named CounterTask. The task takes
10 seconds to complete and during its execution all other Swing
components must still be responsive. For example, you can click
a Cancel button to cancel the task. During execution, it will also
repeatedly send the status that will be displayed in a JTextArea
in the application. The CounterTask class is given in Listing
28.6. The main Swing application that instantiates
CounterTask and provides a handler to call the
CounterTask’s execute method is named
SwingWorkerDemo and is presented in Listing 28.7.

Listing 28.6: The CounterTask class
package app28.swingworker;

import java.util.List;

import javax.swing.JTextArea;

import javax.swing.SwingWorker;

public class CounterTask extends

SwingWorker<Integer, Integer> {

 private static final int DELAY =

1000;

 private JTextArea textArea;

 // A calling application must pass a

JTextArea

 public CounterTask(JTextArea

textArea) {

 this.textArea = textArea;

 }

 @Override

 protected Integer doInBackground()

throws Exception {

 int i = 0;

 int count = 10;

 while (! isCancelled() && i <

count) {

 i++;

 publish(new Integer[] {i});

 setProgress(count * i /

count);

 Thread.sleep(DELAY);

 }

 return count;

 }

 @Override

 protected void process(List<Integer>

chunks) {

 for (int i : chunks)

 textArea.append(i + "\n");

 }

 @Override

 protected void done() {

 if (isCancelled())

 textArea.append("Cancelled

!");

 else

 textArea.append("Done !");

 }

}

Listing 28.7: The SwingWorkerDemo
class

package app28.swingworker;

import java.awt.LayoutManager;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.beans.PropertyChangeEvent;

import java.beans.PropertyChangeListener;

import javax.swing.BoxLayout;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JProgressBar;

import javax.swing.JScrollPane;

import javax.swing.JTextArea;

import javax.swing.SwingUtilities;

public class SwingWorkerDemo {

 private static void constructGUI() {

 // Text area that displays

results

 JTextArea textArea = new

JTextArea(10, 20);

 // Progress bar displaying the

progress of the

 // time-consuming task

 final JProgressBar progressBar =

new JProgressBar(0, 10);

 final CounterTask task = new

CounterTask(textArea);

task.addPropertyChangeListener(new

PropertyChangeListener(){

 public void

propertyChange(PropertyChangeEvent evt) {

 if

("progress".equals(evt.getPropertyName())

) {

 progressBar.setValue(

(Integer)evt.getNewValue());

 }

 }

 });

 // Start button

 JButton startButton = new

JButton("Start");

 startButton.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent e) {

 task.execute();

 }

 });

 // Cancel button

 JButton cancelButton = new

JButton("Cancel");

cancelButton.addActionListener(new

ActionListener() {

 public void

actionPerformed(ActionEvent e) {

 task.cancel(true);

 }

 });

 JPanel buttonPanel = new

JPanel();

 buttonPanel.add(startButton);

 buttonPanel.add(cancelButton);

 JPanel cp = new JPanel();

 LayoutManager layout = new

BoxLayout(cp, BoxLayout.Y_AXIS);

 cp.setLayout(layout);

 cp.add(buttonPanel);

 cp.add(new

JScrollPane(textArea));

 cp.add(progressBar);

 JFrame frame = new

JFrame("SwingWorker Demo");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.setContentPane(cp);

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

If you run the application, you can see a Swing application with
two buttons like the one in Figure 28.1. Click the Start button to
start the process. Notice that the Cancel button is still
responsive during the SwingWorker execution and can be
clicked to cancel the execution.

Figure 28.1: SwingWorker demo

Locks

In Chapter 27, “Java Threads” you have learned that you can lock
a shared resource using the synchronized modifier. While
synchronized is easy enough to use, such a locking mechanism
is not without limitations. For instance, a thread attempting to
acquire such a lock cannot back off and will block indefinitely if
the lock cannot be acquired. Also, locking and unlocking are
limited to methods and blocks; there's no way to lock a resource
in a method and release it in another method.

Luckily, the Concurrency Utilities comes with much more
advanced locks. The Lock interface, the only one discussed in
this book, offers methods that overcome the limitations of Java's
built-in locks. Lock comes with the lock method as well as the
unlock method. This means, you can release a lock anywhere in
the program as long as you retain a reference to the lock. In most
circumstances, however, it is a good idea to call unlock in a
finally clause following the invocation of lock to make sure
unlock is always called.

aLock.lock();

try {

 // do something with the locked

resource

} finally {

 aLock.unlock();

}

If a lock is not available, the lock method will block until it is.
This behavior is similar to the implicit lock resulting from using
synchronized.

In addition to lock and unlock, however, the Lock interface
offers the tryLock methods:

boolean tryLock()

boolean tryLock(long time, TimeUnit

timeUnit)

The first overload returns true only if the lock is available.
Otherwise, it returns false. In the latter case, it does not block.

The second overload returns true immediately if the lock is
available. Otherwise, it will wait until the specified time lapses
and will return false if it fails to acquire the lock. The time
argument specifies the maximum time it will wait and the
timeUnit argument specifies the time unit for the first argument.

The code in Listing 28.8 shows the use of ReentrantLock, an
implementation of Lock. This code is taken from a document
management suite that allows users to upload and share files.
Uploading a file with the same name as an existing file in the
same server folder will make the existing file a history file and
the new file the current file.

To improve performance, multiple users are allowed to upload

files at the same time. Uploading files with different names or to
different server folders poses no problem as they will be written
to different physical files. Uploading files with the same name to
the same server folder can be a problem if the users do it at the
same time. To circumvent this issue, the system uses a Lock to
ensure multiple threads attempting to write to the same physical
file do not do so concurrently. In other words, only one thread
can do the writing and other threads will have to wait until the
first one is done.

In Listing 28.8, which in fact is real code taken from the
document management package by Brainy Software, the system
uses a Lock to protect access to a file and obtains locks from a
thread-safe map that maps paths with locks. As such, it only
prevents writing files with the same name. Writing files with
different names can occur at the same time because different
paths maps to different locks.

Listing 28.8: Using locks to prevent
threads writing to the same file

ReentrantLock lock =

fileLockMap.putIfAbsent(fullPath,

 new ReentrantLock());

lock.lock();

try {

 // index and copy the file, create

history etc

} finally {

 lock.unlock();

 fileLockMap.remove(fullPath, lock);

}

The code block starts by attempting to obtain a lock from a
thread-safe map. If a lock is found, it means another thread is
accessing the file. If no lock is found, the current thread creates a
new ReentrantLock and stores it in the map so that other
threads will notice that it's currently accessing the file.

ReentrantLock lock =

fileLockMap.putIfAbsent(fullPath,

 new ReentrantLock());

It then calls lock. If the current thread is the only thread trying
to acquire the lock, the lock method will return. Otherwise, the
current thread will wait until the lock holder releases the lock.

Once a thread successfully obtains a lock, it has exclusive
access to the file and can do anything with it. Once it's finished,
it calls unlock and the map’s remove method. The remove
method will only removes the lock if no thread is holding it.

Summary

The Concurrency Utilities are designed to make writing multi-
threaded applications easier. The classes and interfaces in the
API are meant to replace Java’s lower-level threading
mechanism such as the Thread class and the synchronized
modifier. This chapter discussed the basics of the Concurrency
Utilities, including atomic variables, executors, Callable,
Future, and SwingWorker.

Quiz

1. What are atomic variables?
2. How do you obtain an ExecutorService

instance?
3. What is a Callable and what is a

Future?
4. Name one of the standard

implementations of the Lock interface.

Chapter 29
Internationalization

In this era of globalization, it is now more compelling than ever
to be able to write applications that can be deployed in different
countries and regions that speak different languages. There are
two terms you need to be familiar with in this regard. The first is
internationalization, often abbreviated to i18n because the word
starts with an i and ends with an n, and there are 18 characters
between the first i and the last n. Internationalization is the
technique for developing applications that support multiple
languages and data formats without rewriting the programming
logic. The second term in localization, which is the technique of
adapting an internationalized application to support a specific
locale. A locale is a specific geographical, political, or cultural
region. An operation that takes a locale into consideration is said
to be locale-sensitive. For example, displaying a date is locale-
sensitive because the date must be in the format used by the
country or region of the user. The fifteenth day of November
2016 is written 11/15/2016 in the US, but printed as 15/11/2016
in Australia. For the same reason internationalization is
abbreviated i18n, localization is abbreviated l10n.

Java was designed with internationalization in mind,
employing Unicode for characters and strings. Making
internationalized applications in Java is therefore easy. How you
internationalize your applications depends on how much static
data needs to be presented in different languages. There are two
approaches.

1. If a large amount of data is static, create a
separate version of the resource for each
locale. This approach normally applies to
Web application with lots of static HTML
pages. It is straightforward and will not be
discussed in this chapter.

2. If the amount of static data that needs to
be internationalized is limited, isolate
textual elements such as component labels
and error messages into text files. Each
text file stores the translations of all textual
elements for a locale. The application then
retrieves each element dynamically. The
advantage is clear. Each textual element
can be edited easily without recompiling

the application. This is the technique that
will discussed in this chapter.

This chapter starts by explaining what a locale is. Next comes the
technique for internationalizing your applications, followed by a
Swing example.

Locales

The java.util.Locale class represents a locale. There are three
main components of a Locale object: language, country, and
variant. The language is obviously the most important part;
however, sometimes the language itself is not sufficient to
differentiate a locale. For example, the English language is
spoken in countries such as the US and England. However, the
English language spoken in the US is not exactly the same as the
one used in the UK. Therefore, it is necessary to specify the
country of the language. As another example, the Chinese
language used in China is not exactly the same as the one used in
Taiwan.

The variant argument is a vendor- or browser-specific code.
For example, you use WIN for Windows, MAC for Macintosh,
and POSIX for POSIX. Where there are two variants, separate
them with an underscore, and put the most important one first.
For example, a Traditional Spanish collation might construct a
locale with parameters for language, country, and variant as es,

ES, Traditional_WIN, respectively.

To construct a Locale object, use one of the Locale class’s
constructors.

public Locale(java.lang.String language)

public Locale(java.lang.String language,

java.lang.String country)

public Locale(java.lang.String language,

java.lang.String country,

 java.lang.String variant)

The language code is a valid ISO language code. Table 29.1
displays examples of language codes.

The country argument is a valid ISO country code, which is a
two-letter, uppercase code specified in ISO 3166
(http://userpage.chemie.fu-
berlin.de/diverse/doc/ISO_3166.html). Table 29.1 lists some of
the country codes in ISO 3166.

Code

Language

de

German

el

Greek

en

English

es

Spanish

fr

French

hi

Hindi

it

Italian

ja

Japanese

nl

Dutch

pt

Portuguese

ru

Russian

zh

Chinese

Table 29.1: Examples of ISO 639
Language Codes

Country

Code

Australia

AU

Brazil

BR

Canada

CA

China

CN

Egypt

EG

France

FR

Germany

DE

India

IN

Mexico

MX

Switzerland

CH

Taiwan

TW

United Kingdom

GB

United States

US

Table 29.2: Examples of ISO 3166
Country Codes

For example, to construct a Locale object representing the
English language used in Canada, write this.

Locale locale = new Locale("en", "CA");

In addition, the Locale class provides static final fields that
return locales for specific countries or languages, such as
CANADA, CANADA_FRENCH, CHINA, CHINESE,

ENGLISH, FRANCE, FRENCH, UK, US, etc. Therefore, you
can also construct a Locale object by calling its static field:

Locale locale = Locale.CANADA_FRENCH;

In addition, the static getDefault method returns the user
computer’s locale.

Locale locale = Locale.getDefault();

Internationalizing
Applications

Internationalizing and localizing your applications require you to

1. isolate textual components into properties
files

2. be able to select and read the correct
properties file

This section elaborates the two steps and provides a simple
example. The section “An Internationalized Swing Application”

later in this chapter presents another example.

Isolating Textual Components
into Properties Files
An internationalized application stores its textual elements in a
separate properties file for each locale. Each file contains
key/value pairs, and each key uniquely identifies a locale-specific
object. Keys are always strings, and values can be strings or any
other type of object. For example, to support American English,
German, and Chinese you will have three properties files, all of
which have the same keys.

The following is the English version of the properties file. Note
that it has two keys: greetings and farewell.

greetings = Hello

farewell = Goodbye

The German version would be as follows:

greetings = Hallo

farewell = Tschüß

And the properties file for the Chinese language is as follows:

greetings=\u4f60\u597d

farewell=\u518d\u89c1

Read the sidebar “Converting Chinese Characters to Unicode” on
how we arrived at the previous properties file.

Converting Chinese Characters to Unicode

In the Chinese language, ?? (meaning hello, represented by the Unicode codes 4f60
and 597d, respectively) and ?? (meaning good bye and is represented by Unicode
codes 518d and 89c1, respectively) are the most common expressions. Of course,
no one remembers the Unicode code of each Chinese character. Therefore, you
create the .properties file in two steps:

Using your favorite Chinese text editor, create a text file like this:

 greetings=??

 farewell=??

Convert the content of the text file into the Unicode representation. Normally, a
Chinese text editor has the feature for converting Chinese characters into Unicode
codes. You will get the end result:

 greetings=\u4f60\u597d

 farewell=\u518d\u89c1

Now, you need to master the java.util.ResourceBundle class.
It enables you to easily choose and read the properties file
specific to the user’s locale and look up the values.
ResourceBundle is an abstract class, but it provides static

getBundle methods that return an instance of a concrete
subclass.

A ResourceBundle has a base name, which can be any
name. In order for a ResourceBundle to pick up a properties
file, the filename must be composed of the ResourceBundle
base name, followed by an underscore, followed by the language
code, and optionally followed by another underscore and the
country code. The format for the properties file name is as
follows:

basename_languageCode_countryCode

For example, suppose the base name is MyResources and you
define the following three locales:

US-en

DE-de

CN-zh

Then you would have these three properties files:

MyResources_en_US.properties

MyResources_de_DE.properties

MyResources_zh_CN.properties

Reading Properties Files using
ResourceBundle
As mentioned previously, ResourceBundle is an abstract class.
Nonetheless, you can obtain an instance of ResourceBundle
by calling its static getBundle method. The signatures of its
overloads are

public static ResourceBundle

getBundle(java.lang.String baseName)

public static ResourceBundle

getBundle(java.lang.String baseName,

 Locale locale)

For example:

ResourceBundle rb =

ResourceBundle.getBundle("MyResources",

Locale.US);

This will load the ResourceBundle with the values in the

corresponding properties file.

If a suitable properties file is not found, the
ResourceBundle object will fall back to the default properties
file. The name of the default properties file will be the base name
with a properties extension. In this case, the default file would
be MyResources.properties. If this file is not found, a
java.util.MissingResourceException will be thrown.

Then, to read a value, you use the ResourceBundle class’s
getString method, passing the key.

public java.lang.String

getString(java.lang.String key)

If the entry with the specified key is not found, a
java.util.MissingResourceException will be thrown.

An Internationalized Swing
Application

The following example illustrates the effort to support
internationalization with two languages: English and French.
This example uses three properties files:

MyResources_en_US.properties, given in Listing 29.1

MyResources_fr_CA.properties, shown in Listing 29.2

MyResources.properties (the default), presented in
Listing 29.3

These files are placed in the directory specified in the class path.

Listing 29.1: The
MyResources_en_US.properties File

userName=User Name

password=Password

login=Login

Listing 29.2: The
MyResources_fr_CA.properties File

userName=Compte

password=Mot de passe

login=Ouvrir session

Listing 29.3: The
MyResources.properties File

userName=User Name

password=Password

login=Login

Note
The properties file should be placed in the working directory, even if the
class that uses the ResourceBundle class is part of a non-default
package.

The I18NDemo class, shown in Listing 29.4, obtains the
ResourceBundle object according to the locale of your
computer and supplies localized messages for the JLabels and
JButton.

Listing 29.4: The I18NDemo class
package app29;

import java.awt.GridLayout;

import java.util.Locale;

import java.util.ResourceBundle;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPasswordField;

import javax.swing.JTextField;

import javax.swing.SwingUtilities;

public class I18NDemo {

 private static void constructGUI() {

 Locale locale =

Locale.getDefault();

 ResourceBundle rb =

ResourceBundle.getBundle("MyResources",

locale);

JFrame.setDefaultLookAndFeelDecorated(tru

e);

 JFrame frame = new JFrame("I18N

Test");

frame.setDefaultCloseOperation(JFrame.EXI

T_ON_CLOSE);

 frame.setLayout(new GridLayout(3,

2));

 frame.add(new

JLabel(rb.getString("userName")));

 frame.add(new JTextField());

 frame.add(new

JLabel(rb.getString("password")));

 frame.add(new JPasswordField());

 frame.add(new

JButton(rb.getString("login")));

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[]

args) {

 SwingUtilities.invokeLater(new

Runnable() {

 public void run() {

 constructGUI();

 }

 });

 }

}

The English version of the application is shown in Figure 29.1.

Figure 29.1: The English version of the
example

To test a different language, change your computer locale setting.

In practice, most internationalized applications will create
localized contents that are based on different languages, rather
than different locales. This is to say that if an application has
provided textual elements in the German language for people
from Germany, chances are slim that it will also provide another

variant of German for people in Austria or Switzerland.
Providing many variants of the same language is expensive and
impractical. Any German speaking user should understand any
variant of the German language, anyway.

Summary

This chapter explains how to develop an internationalized
application. First it explained the java.util.Locale class and the
java.utilResourceBundle class. It then continued with an
example of an internationalized application.

Quiz

1. What is the approach to internationalizing
applications with plenty of static contents?

2. How do you isolate textual elements of a
Java application?

3. What are the two classes used in
internationalization and localization?

Chapter 30
Java Networking

Computer networking is concerned with communication
between computers. Nowadays, this form of interaction is
ubiquitous. Whenever you surf the Internet, it is your machine
exchanging messages with remote servers. When you transfer a
file over an FTP channel, you are also using some kind of
networking service. Java comes equipped with the java.net
package that contains types that make network programming
easy. We’ll examine some of the types after an overview of
networking. Towards the end of the chapter, some examples are
presented for you to play with.

An Overview of Networking

A network is a collection of computers that can communicate
with each other. Depending on how wide the coverage is, a
network can be referred to as a local area network (LAN) or a
wide area network (WAN). A LAN is normally confined to a
limited geographic area, such as a building, and comprises from

as few as three to as many as hundreds of computers. A WAN, by
contrast, is a combination of multiple LANs that are
geographically separate. The largest network of all is, of course,
the Internet.

The communication medium within a network can be cables,
telephone lines, high-speed fiber, satellites, and so on. As the
wireless technology gets more and more mature and
inexpensive, a wireless local area network (WLAN) is becoming
more commonplace nowadays.

Just like two people use a common language to converse, two
computers communicate by using a common ‘language’ both
agreed on. In computer jargon, this ‘language’ is referred to as
protocol. What’s confusing is that there are several layers of
protocols. This is because at the physical layer two computer
communicate by exchanging bitstreams, which are collections of
ones and zeroes. This is too hard to be understood by
applications and humans. Therefore, there is another layer that
translates bitstreams into something more tangible and vice
versa.

The easiest protocols are those at the application layer.
Writing applications require you to understand protocols in the
application layer. There are several protocols in this layer: HTTP,
FTP, telnet, etc.

Application layer protocols use the protocols in the transport
layer. Two popular ones at the transport layer are TCP and UDP.

In turn transport layer protocols utilize the protocols at the layer
below it. The diagram in Figure 30.1 shows some of these layers.

Figure 30.1: Layers of protocol in the
computer network

Thanks to this strategy, you don’t have to worry about protocols
in other layers than the application layer. Java even goes the
extra mile to provide classes that encapsulate application layer
protocols. For example, with Java, you do not need to
understand the HTTP to be able to send a message to an HTTP
server. The HTTP, one of the most popular protocols, is covered
in detail in this chapter for those who want to know more than
the surface.

Another thing that you should know is that a network employs
an addressing system to distinguish a computer from another,
just like your house has an address so that the mailman can
deliver your mail. The equivalent of the street address on the
Internet is the IP address. Each computer is assigned a unique IP
address.

The IP address is not the smallest unit in the network
addressing system. The port is. The analogy is an apartment
building that share the same street address but has many units,
each with its own suite number.

The Hypertext Transfer
Protocol (HTTP)

The HTTP is the protocol that allows web servers and browsers
to send and receive data over the Internet. It is a request and
response protocol. The client requests a file and the server
responds to the request. HTTP uses reliable TCP connections—
by default on TCP port 80. The first version of HTTP was
HTTP/0.9, which was then overridden by HTTP/1.0. Replacing
HTTP/1.0 is the current version of HTTP/1.1, which is defined in
Request for Comments (RFC) 2616 and downloadable from
http://www.w3.org/Protocols/HTTP/1.1/rfc2616.pdf.

In the HTTP, it is always the client who initiates a transaction
by establishing a connection and sending an HTTP request. The
web server is in no position to contact a client or make a callback
connection to the client. Either the client or the server can
prematurely terminate a connection. For example, when using a
web browser you can click the Stop button on your browser to
stop downloading a file, effectively closing the HTTP connection
with the Web server.

HTTP Requests
An HTTP request consists of three components:

Method—Uniform Resource Identifier (URI)—
Protocol/Version

Request headers

Entity body

The following is an example of an HTTP request:

POST /examples/default.jsp HTTP/1.1

Accept: text/plain; text/html

Accept-Language: en-gb

Connection: Keep-Alive

Host: localhost

User-Agent: Mozilla/5.0 (Macintosh; U;

Intel Mac OS X 10.5; en-US;

 rv:1.9.2.6) Gecko/20100625

Firefox/3.6.6

Content-Length: 33

Content-Type: application/x-www-form-

urlencoded

Accept-Encoding: gzip, deflate

lastName=Franks&firstName=Michael

The method—URI—protocol version appears as the first line of
the request.

POST /examples/default.jsp HTTP/1.1

where POST is the request method, /examples/default.jsp
the URI and HTTP/1.1 the Protocol/Version section.

Each HTTP request can use one of the many request methods
as specified in the HTTP standards. The HTTP 1.1 supports seven
types of request: GET, POST, HEAD, OPTIONS, PUT, DELETE,
and TRACE. GET and POST are the most commonly used in
Internet applications.

The URI specifies an Internet resource. It is usually
interpreted as being relative to the server’s root directory. Thus,
it should always begin with a forward slash /. A Uniform
Resource Locator (URL) is actually a type of URI (See
http://www.ietf.org/rfc/rfc2396.txt). The protocol version
represents the version of the HTTP protocol being used.

The request header contains useful information about the
client environment and the entity body of the request. For
example, it could contain the language the browser is set for, the
length of the entity body, and so on. Each header is separated by
a carriage return/linefeed (CRLF) sequence.

Between the headers and the entity body, there is a blank line

(CRLF) that is important to the HTTP request format. The CRLF
tells the HTTP server where the entity body begins. In some
Internet programming books, this CRLF is considered the fourth
component of an HTTP request.

In the previous HTTP request, the entity body is simply the
following line:

lastName=Franks&firstName=Michael

The entity body can easily become much longer in a typical
HTTP request.

HTTP Responses
Similar to an HTTP request, an HTTP response also consists of
three parts:

Protocol—Status code—Description

Response headers

Entity body

The following is an example of an HTTP response:

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Date: Thu, 12 Aug 2010 13:13:33 GMT

Content-Type: text/html

Last-Modified: Thu, 5 Aug 2010 13:13:12

GMT

Content-Length: 112

<html>

<head>

<title>HTTP Response Example</title>

</head>

<body>

Welcome to Brainy Software

</body>

</html>

The first line of the response header is similar to the first line of a
request header. The first line tells you that the protocol used is
HTTP version 1.1, the request succeeded (200 is the success
code), and that everything went okay.

The response headers contain useful information similar to
the headers in the request. The entity body of the response is the
HTML content of the response itself. The headers and the entity
body are separated by a sequence of CRLFs.

java.net.URL

A URL is a unique address to an Internet resource. For example,
every page on the Internet has a different URL. Here is a URL:

http://www.yahoo.com:80/en/index.html

A URL has several components. The first component denotes the
protocol to use to retrieve the resource. In the preceding
example, the protocol is HTTP. The second part,
www.yahoo.com, is the host. It tells you where the resource
resides. Number 80 after the host is the port number. The last
part, /en/index.html, specifies the path of the URL. By default,
the HTTP uses port 80.

The HTTP is the most common protocol used in a URL.
However, it is not the only one. For example, this URL refers to a
jpeg file in the local computer.

file://localhost/C:/data/MyPhoto.jpg

Detailed information about URLs can be found at this location:

http://www.ietf.org/rfc/rfc2396.txt

In Java, a URL is represented by a java.net.URL object. You
construct a URL by invoking one of the URL class’s

constructors. Here are some easier constructors:

public URL(java.lang.String spec)

public URL(java.lang.String protocol,

java.lang.String host,

 java.lang.String file)

public URL(java.lang.String protocol,

java.lang.String host,

 int port, java.lang.String file)

public URL(URL context, String spec)

Here is an example.

URL myUrl = new

URL("http://www.brainysoftware.com/");

Because no page is specified, the default page is assumed.

As another example, the following lines of code create
identical URL objects.

URL yahoo1 = new

URL("http://www.yahoo.com/index.html");

URL yahoo2 = new URL("http",

"www.yahoo.com", "/index.html");

URL yahoo3 = new URL("http",

"www.yahoo.com", 80, "/index.html");

Parsing a URL
You can retrieve the various components of a URL object by
using these methods:

public java.lang.String getFile()

public java.lang.String getHost()

public java.lang.String getPath()

public int getPort()

public java.lang.String getProtocol()

public java.lang.String getQuery()

For example, the code in Listing 30.1 creates a URL and prints
its various parts.

Listing 30.1: Parsing a URL
package app30;

import java.net.URL;

public class URLDemo1 {

 public static void main(String[]

args) throws Exception {

 URL url = new URL(

"http://www.yahoo.com:80/en/index.html?

name=john#first");

 System.out.println("protocol:" +

url.getProtocol());

 System.out.println("port:" +

url.getPort());

 System.out.println("host:" +

url.getHost());

 System.out.println("path:" +

url.getPath());

 System.out.println("file:" +

url.getFile());

 System.out.println("query:" +

url.getQuery());

 System.out.println("ref:" +

url.getRef());

 }

}

The result of running the URLTest1 class is as follows.

protocol:http

port:80

host:www.yahoo.com

path:/en/index.html

file:/en/index.html?name=john

query:name=john

ref:first

Reading A Web Resource
You can use the URL class’s openStream method to read a web
resource. Here is the signature of this method.

public final java.io.InputStream

openStream()

 throws java.io.IOException

For example, the URLDemo2 class in Listing 30.2 prints the
content of http://www.google.com.

Listing 30.2: Opening a URL’s stream
package app30;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.MalformedURLException;

import java.net.URL;

public class URLDemo2 {

 public static void main(String[]

args) {

 try {

 URL url = new

URL("http://www.google.com/");

 InputStream inputStream =

url.openStream();

 BufferedReader bufferedReader

= new BufferedReader(

 new

InputStreamReader(inputStream));

 String line =

bufferedReader.readLine();

 while (line!= null) {

 System.out.println(line);

 line =

bufferedReader.readLine();

 }

 bufferedReader.close();

 }

 catch (MalformedURLException e) {

 e.printStackTrace();

 }

 catch (IOException e) {

 e.printStackTrace();

 }

 }

}

Note
You can use a URL only to read a web resource. To write to a server, use
a java.net.URLConnection object.

java.net.URLConnection

A URLConnection represents a connection to a remote
machine. You use it to read a resource from and write to a
remote machine. The URLConnection class does not have a
public constructor, so you cannot construct a URLConnection
using the new keyword. To obtain an instance of
URLConnection, call the openConnection method on a
URL object.

The URLConnection class has two boolean fields,
doInput and doOutput, that indicate whether the
URLConnection can be used for reading and writing,
respectively. The default value of doInput is true, indicating
you can always use a URLConnection to read a Web resource.
The default value of doOutput is false, meaning a
URLConnection is not for writing. To use a URLConnection
object to write, you need to set the value of doOutput to true.
Setting the values of doInput and doOutput can be done using
the setDoInput and setDoOutput methods:

public void setDoInput(boolean value)

public void setDoOutput(boolean value)

You can use the following methods to get the values of doInput
and doOutput:

public boolean getDoInput()

public boolean getDoOutput()

To read using a URLConnection object, call its
getInputStream method. This method returns a
java.io.InputStream object. This method is similar to the
openStream method in the URL class. This is to say that

URL url = new

URL("http://www.google.com/");

InputStream inputStream =

url.openStream();

has the same effect as

URL url = new

URL("http://www.google.com/");

URLConnection urlConnection =

url.openConnection();

InputStream inputStream =

urlConnection.getInputStream();

However, URLConnection is more powerful than
URL.openStream because you can also read the response
headers and write to the server. Here are some methods you can
use to read the response headers:

public java.lang.String

getHeaderField(int n)

Returns the value of the nth header.

public java.lang.String

getHeaderField(java.lang.String

headerName)

Returns the value of the named header.

public long

getHeaderFieldDate(java.lang.String

headerName,

 long default)

Returns the value of the named field as a
date. The result is the number of
milliseconds that has lapsed since January
1, 1970 GMT. If the field is missing, default
is returned.

public java.util.Map getHeaderFields()

Returns a java.util.Map containing the
response headers.

And, here are some other useful methods:

public java.lang.String

getContentEncoding()

Returns the value of the content-
encoding header

public int getContentLength()

Returns the value of the content-length

header.

public java.lang.String getContentType()

Returns the value of the content-type
header.

public long getDate()

Returns the value of the date header.

public long getExpiration()

Returns the value of the expires header.

Reading Web Resources
Listing 30.3 shows a class that reads from a server and displays
the response headers.

Listing 30.3: Reading a web resource’s
headers and content

package app30;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.MalformedURLException;

import java.net.URL;

import java.net.URLConnection;

import java.util.List;

import java.util.Map;

import java.util.Set;

public class URLConnectionDemo1 {

 public static void main(String[]

args) {

 try {

 URL url = new

URL("http://www.java.com/");

 URLConnection urlConnection =

url.openConnection();

 Map<String, List<String>>

headers =

urlConnection.getHeaderFields();

 Set<Map.Entry<String,

List<String>>> entrySet =

 headers.entrySet();

 for (Map.Entry<String,

List<String>> entry : entrySet){

 String headerName =

entry.getKey();

System.out.println("Header Name:" +

headerName);

 List<String> headerValues

= entry.getValue();

 for (String value :

headerValues) {

System.out.print("Header value:" +

value);

 }

 System.out.println();

 System.out.println();

 }

 InputStream inputStream =

urlConnection.getInputStream();

 BufferedReader bufferedReader

= new BufferedReader(

 new

InputStreamReader(inputStream));

 String line =

bufferedReader.readLine();

 while (line != null) {

 System.out.println(line);

 line =

bufferedReader.readLine();

 }

 bufferedReader.close();

 } catch (MalformedURLException e)

{

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

The first few lines of the response are the headers: (you might
get different ones)

Header Name:Connection

Header value:keep-alive

Header Name:Last-Modified

Header value:Sat, 24 Nov 2014 02:01:26

UTC

Header Name:Server

Header value:Oracle-Application-Server-

11g

Header Name:Content-type

Header value:text/html; charset=UTF-8

Header Name:null

Header value:HTTP/1.1 200 OK

The headers are followed by the resource content (not displayed
here to save space).

Writing to a web server
You can use a URLConnection to send an HTTP request. For
example, the snippet here sends a form to
http://www.mydomain.com/form.jsp page.

URL url = new

URL("http://www.mydomain.com/form.jsp");

URLConnection connection =

url.openConnection();

connection.setDoOutput(true);

PrintWriter out = new

PrintWriter(connection.getOutputStream());

out.println("firstName=Joe");

out.println("lastName=Average");

out.close();

While you can use a URLConnection to post messages, you
don’t normally use it for this purpose. Instead, you use the more
powerful java.net.Socket and java.net.ServerSocket classes
discussed in the next sections.

java.net.Socket

A socket is an endpoint of a network connection. A socket
enables an application to read from and write to the network.
Two software applications residing on two different computers
can communicate with each other by sending and receiving byte
streams over a connection. To send a message from your
application to another application, you need to know the IP
address as well as the port number of the socket of the other
application. In Java, a socket is represented by a
java.net.Socket object.

To create a socket, you can use one of the many constructors of
the Socket class. One of these constructors accepts the host
name and the port number:

public Socket(java.lang.String host, int

port)

where host is the remote machine name or IP address and port is
the port number of the remote application. For example, to

connect to yahoo.com at port 80, you would construct the
following Socket object:

new Socket("yahoo.com", 80)

Once you create an instance of the Socket class successfully, you
can use it to send and receive streams of bytes. To send byte
streams, you must first call the Socket class’s
getOutputStream method to obtain a
java.io.OutputStream object. To send text to a remote
application, you often want to construct a java.io.PrintWriter
object from the OutputStream object returned. To receive byte
streams from the other end of the connection, you call the
Socket class's getInputStream method that returns a
java.io.InputStream.

The code in Listing 30.4 simulates an HTTP client using a
socket. It sends an HTTP request to the host and displays the
response from the server.

Listing 30.4: A simple HTTP client
package app30;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.OutputStream;

import java.io.PrintWriter;

import java.net.Socket;

public class SocketDemo1 {

 public static void main(String[]

args) {

 String host =

"books.brainysoftware.com";

 try {

 Socket socket = new

Socket(host, 80);

 OutputStream os =

socket.getOutputStream();

 boolean autoflush = true;

 PrintWriter out = new

PrintWriter(socket.getOutputStream(),

 autoflush);

 BufferedReader in = new

BufferedReader(

 new

InputStreamReader(socket.getInputStream()

));

 // send an HTTP request to

the web server

 out.println("GET /

HTTP/1.1");

 out.println("Host: " + host +

":80");

 out.println("Connection:

Close");

 out.println();

 // read the response

 boolean loop = true;

 StringBuilder sb = new

StringBuilder(8096);

 while (loop) {

 if (in.ready()) {

 int i = 0;

 while (i != -1) {

 i = in.read();

 sb.append((char)

i);

 }

 loop = false;

 }

 }

 // display the response to

the out console

System.out.println(sb.toString());

 socket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

}

To get a proper response from the Web server, you need to send
an HTTP request that complies with the HTTP protocol. If you
have read the previous section, “The Hypertext Transfer Protocol
(HTTP),” you should be able to understand the HTTP request in
the code above.

Note
The HttpClient library from the Apache HTTP Components project
(http://hc.apache.org) provides classes that can be used as a more
sophisticated HTTP client.

java.net.ServerSocket

The Socket class represents a “client” socket, i.e. a socket that
you construct whenever you want to connect to a remote server
application. Now, if you want to implement a server application,
such as an HTTP server or an FTP server, you need a different
approach. Your server must stand by all the time as it does not
know when a client application will try to connect to it. In order
for your application to be able to do this, you need to use the
java.net.ServerSocket class. ServerSocket is an
implementation of a server socket.

ServerSocket is different from Socket. The role of a server
socket is to wait for connection requests from clients. Once the
server socket gets a connection request, it creates a Socket
instance to handle the communication with the client.

To create a server socket, you need to use one of the four
constructors the ServerSocket class provides. You need to
specify the IP address and port number the server socket will be
listening on. Typically, the IP address will be 127.0.0.1, meaning
that the server socket will be listening on the local machine. The
IP address the server socket is listening on is referred to as the
binding address. Another important property of a server socket
is its backlog, which is the maximum queue length of incoming
connection requests before the server socket starts to refuse the
incoming requests.

One of the constructors of the ServerSocket class has the
following signature:

public ServerSocket(int port, int

backLog,

 InetAddress bindingAddress);

Notice that for this constructor, the binding address must be an
instance of java.net.InetAddress. An easy way to construct an
InetAddress object is by calling its getByName static method,
passing a String containing the host name, such as in the

following code.

InetAddress.getByName("127.0.0.1");

The following line of code constructs a ServerSocket that
listens on port 8080 of the local machine. The ServerSocket
has a backlog of 1.

new ServerSocket(8080, 1,

InetAddress.getByName("127.0.0.1"));

Once you have a ServerSocket, you can tell it to wait for an
incoming connection request to the binding address at the port
the server socket is listening on. You do this by calling the
ServerSocket class's accept method. This method will only
return when there is a connection request and its return value is
an instance of the Socket class. This Socket object can then be
used to send and receive byte streams from the client
application, as explained in the previous section,
“java.net.Socket.” Practically, the accept method is the only
method used in the application accompanying this chapter.

The web server application in the next section, “A Web Server
Application” illustrates the use of ServerSocket.

A Web Server Application

This application illustrates the use of the ServerSocket and
Socket classes to communicate with remote computers. The
Web server application contains the following three classes that
belong to the app30.webserver package:

HttpServer

Request

Response

The entry point of this application is the main method in the
HttpServer class. The method creates an instance of
HttpServer and calls its await method. The await method, as
the name implies, waits for HTTP requests on a designated port,
processes them, and sends responses back to the clients. It keeps
waiting until a shutdown command is received.

The application cannot do more than sending static resources,
such as HTML files and image files, residing in a certain
directory. It also displays the incoming HTTP request byte
streams on the console. However, it does not send any header,
such as dates or cookies, to the browser.

We will now look at the three classes in the following
subsections.

The HttpServer Class
The HttpServer class represents a web server and is presented
in Listing 30.5. Note that the await method is given in Listing
30.6 and is not included in Listing 30.5 to save space.

Listing 30.5: The HttpServer class
package app30.webserver;

import java.net.Socket;

import java.net.ServerSocket;

import java.net.InetAddress;

import java.io.InputStream;

import java.io.OutputStream;

import java.io.IOException;

public class HttpServer {

 // shutdown command

 private static final String

SHUTDOWN_COMMAND = "/SHUTDOWN";

 // the shutdown command received

 private boolean shutdown = false;

 public static void main(String[]

args) {

 HttpServer server = new

HttpServer();

 server.await();

 }

 public void await() {

 ServerSocket serverSocket = null;

 int port = 8080;

 try {

 serverSocket = new

ServerSocket(port, 1, InetAddress

.getByName("127.0.0.1"));

 } catch (IOException e) {

 e.printStackTrace();

 System.exit(1);

 }

 // Loop waiting for a request

 while (!shutdown) {

 Socket socket = null;

 InputStream input = null;

 OutputStream output = null;

 try {

 socket =

serverSocket.accept();

 input =

socket.getInputStream();

 output =

socket.getOutputStream();

 // create Request object

and parse

 Request request = new

Request(input);

 request.parse();

 // create Response object

 Response response = new

Response(output);

response.setRequest(request);

response.sendStaticResource();

 // Close the socket

 socket.close();

 // check if the previous

URI is a shutdown command

 shutdown =

request.getUri().equals(SHUTDOWN_COMMAND);

 } catch (Exception e) {

 e.printStackTrace();

 continue;

 }

 }

 }

}

The code listings include a directory called webroot that
contains some static resources that you can use for testing this
application. To request for a static resource, you type the
following URL in your browser’s Address or URL box:

http://machineName:port/staticResource

If you are sending a request from a different machine from the
one running your application, machineName is the name or IP
address of the computer running this application. If your
browser is on the same machine, you can use localhost as the
machine name. port is 8080 and staticResource is the name of
the file requested and must reside in WEB_ROOT.

For instance, if you are using the same computer to test the
application and you want to ask the HttpServer object to send
the index.html file, you use the following URL:

http://localhost:8080/index.html

To stop the server, you send a shutdown command from a web
browser by typing the pre-defined string in the browser’s
Address or URL box, after the host:port section of the URL.

The shutdown command is defined by the SHUTDOWN static
final variable in the HttpServer class:

private static final String

SHUTDOWN_COMMAND = "/SHUTDOWN";

Therefore, to stop the server, you use the following URL:

http://localhost:8080/SHUTDOWN

Now, let’s look at the await method printed in Listing 30.6.

Listing 30.6: The HttpServer class’s
await method

public void await() {

 ServerSocket serverSocket = null;

 int port = 8080;

 try {

 serverSocket = new

ServerSocket(port, 1, InetAddress

 .getByName("127.0.0.1"));

 } catch (IOException e) {

 e.printStackTrace();

 System.exit(1);

 }

 // Loop waiting for a request

 while (!shutdown) {

 Socket socket = null;

 InputStream input = null;

 OutputStream output = null;

 try {

 socket =

serverSocket.accept();

 input =

socket.getInputStream();

 output =

socket.getOutputStream();

 // create Request object and

parse

 Request request = new

Request(input);

 request.parse();

 // create Response object

 Response response = new

Response(output);

 response.setRequest(request);

response.sendStaticResource();

 // Close the socket

 socket.close();

 // check if the previous URI

is a shutdown command

 shutdown =

request.getUri().equals(SHUTDOWN_COMMAND);

 } catch (Exception e) {

 e.printStackTrace();

 continue;

 }

 }

}

The method name await is used instead of wait because the
latter is the name of an important method in java.lang.Object
that is frequently used in multithreaded programming.

The await method starts by creating an instance of
ServerSocket and then entering a while loop.

serverSocket = new ServerSocket(port, 1,

InetAddress.getByName("127.0.0.1"));

 ...

// Loop waiting for a request

while (!shutdown) {

 ...

}

The code inside the while loop stops at the accept method of
ServerSocket, which blocks until an HTTP request is received
on port 8080:

socket = serverSocket.accept();

Upon receiving a request, the await method obtains a
java.io.InputStream and a java.io.OutputStream from the
Socket returned by the accept method.

input = socket.getInputStream();

output = socket.getOutputStream();

The await method then creates a Request and calls its parse
method to parse the HTTP request raw data.

// create Request object and parse

Request request = new Request(input);

request.parse();

Afterwards, the await method creates a Response, assigns the
Request to it, and calls its sendStaticResource method.

// create Response object

Response response = new Response(output);

response.setRequest(request);

response.sendStaticResource();

Finally, the await method closes the Socket and calls the
getUri method of Request to check if the URI of the HTTP
request is a shutdown command. If it is, the shutdown variable
is set to true and the program exits the while loop.

// Close the socket

socket.close();

//check if the previous URI is a shutdown

command

shutdown =

request.getUri().equals(SHUTDOWN_COMMAND);

The Request Class
The Request class represents an HTTP request. An instance of
this class is constructed by passing the java.io.InputStream
object obtained from the Socket object that handles
communication with the client. You call one of the read
methods on the InputStream object to obtain the HTTP

request raw data.

The Request class is offered in Listing 30.7. It has two public
methods, parse and getUri, which are given in Listings 30.8
and 30.9, respectively.

Listing 30.7: The Request class
package app30.webserver;

import java.io.InputStream;

import java.io.IOException;

public class Request {

 private InputStream input;

 private String uri;

 public Request(InputStream input) {

 this.input = input;

 }

 public void parse() {

 ...

 }

 private String parseUri(String

requestString) {

 ...

 }

 public String getUri() {

 return uri;

 }

}

The parse method parses the raw data in the HTTP request. Not
much is done by this method. The only information it makes
available is the URI of the HTTP request that it obtains by calling
the private method parseUri. parseUri stores the URI in the
uri variable. The public getUri method is invoked to return the
URI of the HTTP request.

To understand how parse and parseUri work, you need to
know the structure of an HTTP request, discussed in the
previous section, “The Hypertext Transfer Protocol (HTTP).” In
this section, we are only interested in the first part of the HTTP
request, the request line. A request line begins with a method
token, followed by the request URI and the protocol version, and
ends with carriage-return linefeed (CRLF) characters. Elements
in a request line are separated by a space character. For instance,
the request line for a request for the index.html file using the
GET method is as follows.

GET /index.html HTTP/1.1

The parse method reads the whole byte stream from the
socket’s InputStream that is passed to the Request and stores

the byte array in a buffer. It then populates a StringBuilder
called request using the bytes in the buffer byte array, and
passes the string representation of the StringBuilder to the
parseUri method.

The parse method is given in Listing 30.8.

Listing 30.8: The Request class’s parse
method

public void parse() {

 // Read a set of characters from the

socket

 StringBuilder request = new

StringBuilder(2048);

 int i;

 byte[] buffer = new byte[2048];

 try {

 i = input.read(buffer);

 } catch (IOException e) {

 e.printStackTrace();

 i = -1;

 }

 for (int j = 0; j < i; j++) {

 request.append((char) buffer[j]);

 }

 System.out.print(request.toString());

 uri = parseUri(request.toString());

}

The parseUri method then obtains the URI from the request
line. Listing 30.9 presents the parseUri method. This method
searches for the first and the second spaces in the request and
obtains the URI from it.

Listing 30.9: the Request class’s
parseUri method

private String parseUri(String

requestString) {

 int index1 = requestString.indexOf('

');

 int index2;

 if (index1 != -1) {

 index2 = requestString.indexOf('

', index1 + 1);

 if (index2 > index1) {

 return

requestString.substring(index1 + 1,

index2);

 }

 }

 return null;

}

The Response Class
The Response class represents an HTTP response and is given
in Listing 30.10.

Listing 30.10: The Response class
package app30.webserver;

import java.io.OutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

/*

 HTTP Response =

 Status-Line ((general-header |

response-header | entity-header) CRLF)

 CRLF

 [message-body]

 Status-Line = HTTP-Version SP Status-

Code SP Reason-Phrase CRLF

 */

public class Response {

 private static final int BUFFER_SIZE

= 1024;

 Request request;

 OutputStream output;

 public Response(OutputStream output)

{

 this.output = output;

 }

 public void setRequest(Request

request) {

 this.request = request;

 }

 public void sendStaticResource()

throws IOException {

 byte[] bytes = new

byte[BUFFER_SIZE];

 Path path =

Paths.get(System.getProperty("user.dir"),

 "webroot",

request.getUri());

 if (Files.exists(path)) {

 try (InputStream inputStream

=

Files.newInputStream(path)) {

 int ch =

inputStream.read(bytes, 0, BUFFER_SIZE);

 while (ch != -1) {

 output.write(bytes,

0, ch);

 ch =

inputStream.read(bytes, 0, BUFFER_SIZE);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

 } else {

 // file not found

 String errorMessage =

"HTTP/1.1 404 File Not Found\r\n"

 + "Content-Type:

text/html\r\n"

 + "Content-Length:

23\r\n" + "\r\n"

 + "<h1>File Not

Found</h1>";

output.write(errorMessage.getBytes());

 }

 }

}

First note that the Response class’s constructor accepts a
java.io.OutputStream object:

public Response(OutputStream output) {

 this.output = output;

}

A Response object is constructed by the HttpServer class’s
await method by passing the OutputStream object obtained
from the socket.

The Response class has two public methods: setRequest
and sendStaticResource method. The setRequest method is
used to pass a Request object to the Response object.

sendStaticResource is used to send a static resource, such
as an HTML file. It starts by creating a Path that points to a
resource under the webroot directory under the user directory:

 Path path =

Paths.get(System.getProperty("user.dir"),

 "webroot",

request.getUri());

It then tests if the resource exists. If it exists,
sendStaticResource calls Files.newInputStream and gets
an InputStream that connects to the resource file. Then, it

invokes the read method of the InputStream and writes the
byte array to the OutputStream output. Note that in this case
the content of the static resource is sent to the browser as raw
data.

 if (Files.exists(path)) {

 try (InputStream inputStream

=

Files.newInputStream(path)) {

 int ch =

inputStream.read(bytes, 0, BUFFER_SIZE);

 while (ch != -1) {

 output.write(bytes,

0, ch);

 ch =

inputStream.read(bytes, 0, BUFFER_SIZE);

 }

 } catch (IOException e) {

 e.printStackTrace();

 }

If the resource does not exist, sendStaticResource sends an
error message to the browser.

String errorMessage = "HTTP/1.1 404 File

Not Found\r\n" +

 "Content-Type: text/html\r\n" +

 "Content-Length: 23\r\n" +

 "\r\n" +

 "<h1>File Not Found</h1>";

output.write(errorMessage.getBytes());

Running the Application
To run the application, from the working directory, type the
following:

java app30.webserver.HttpServer

To test the application, open your browser and type the following
in the URL or Address box:

http://localhost:8080/index.html

You will see the index.html page displayed in your browser, as
in Figure 30.2.

On the console, you can see the HTTP request similar to the
following:

GET /index.html HTTP/1.1

Accept: image/gif, image/x-xbitmap,

image/jpeg, image/pjpeg,

application/vnd.ms-excel,

application/msword, application/vnd.ms-

powerpoint, application/x-shockwave-

flash, application/pdf, */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/5.0 (Macintosh; U;

Intel Mac OS X 10.5; en-US; rv:1.9.2.6)

Gecko/20100625 Firefox/3.6.6

Host: localhost:8080

Connection: Keep-Alive

GET /images/logo.gif HTTP/1.1

Accept: */*

Referer: http://localhost:8080/index.html

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/5.0 (Macintosh; U;

Intel Mac OS X 10.5; en-US; rv:1.9.2.6)

Gecko/20100625 Firefox/3.6.6

Host: localhost:8080

Connection: Keep-Alive

Figure 30.2: The output from the web
server

Note
This simple web server application was taken from my other book, “How
Tomcat Works: A Guide to Developing Your Own Java Servlet
Container.” Consult this book for more detailed discussion of how web
servers and servlet containers work.

Summary

With the emergence of the Internet, computer networking has
become an integral part of life today. Java, with its java.net
package, makes network programming easy. This chapter
discussed the more important types of the java.net package,
including URL, URLConnection, Socket, and
ServerSocket. The last section of the chapter presented a
simple Web application that illustrates the use of Socket and

ServerSocket.

Quiz

1. Why are there several layers of protocols
in computer networking?

2. What are the components of a URL?
3. What is the class that represents URLs?
4. What is a socket?
5. What is the difference between a socket

and a server socket?

Chapter 31
Security

Along with a bag of goodies, the Internet brings with it a box full
of viruses, spyware and other malevolent programs. You’ve been
warned too many times to always watch what you run on your
PC or Mac. A malicious program, once run, can do anything,
including send your confidential files over the Internet and
mercilessly wipe your hard disk. If only all applications were
written in Java, then you wouldn’t need to worry so much.

Java was designed with security in mind and Java security was
designed for:

Java users, i.e. people running Java applications. With Java,
at least, there is ease of mind. However, as you will see later,
Java users need to understand Java’s security feature in
order to configure security settings.

Java developers. You can use Java APIs to incorporate fine-
grained security features into your applications, such as
security checks and cryptography.

There are two main topics of Java security in this chapter:

Restricting running Java applications. Unlike applets that
by default run in a restricted environment, Java applications
are unrestricted.

Cryptography, namely encrypting and decrypting your
message and Java code.

This chapter starts with an overview of the security feature in
Java. This section explains how you can secure a Java
application and how it works in general. Then, it discusses
cryptography with emphasis on asymmetric cryptography, the
type of cryptography used extensively over the Internet. The
immediate and practical use of cryptography is to digitally sign
your code, an example of which is also given in at the end of this
chapter.

Java Security Overview

When people say that Java is secure, it does not mean security
comes automatically. Generally, running a Java application is
not secure because it runs in an unrestricted environment. This
means, a malicious Java program can do anything to its
environment, including making you cry when it deletes all your
precious data. It can do anything because by default, when you
run an application, you give it permissions to do anything.

To impose restrictions, you must run the application with the
security manager, which is a Java component responsible for
restricting access to system resources. When the security
manager is on, all the permissions are revoked.

Web browsers install a security manager that imposes security
restrictions on applets. This is why applets by default run in a
restricted environment. Java applications, on the other hand, by
default run with the security manager turned off.

The security model in Java is traditionally called the sandbox
model. The idea of a sandbox is that you, the user of a Java
application, may restrict the application you’re running within a
certain “playing ground.” This means, you may dictate what the
application can and cannot do, especially with regard to file
reading/writing, network access, etc.

With the security manager on, a Java application is pretty
limited because no access to system resources is allowed. For
example, it cannot read from and write to a file, it cannot
establish connections to a network, it cannot read system
properties, etc. I mean, you can still write methods that do those
things, however when your application is run with the security
manager on, the application will be paralyzed.

Most applications cannot run properly in this very restricted
situation, so you need to relax some of the restrictions by giving
the application some permissions. For example, you might give
an application the permission to read files but not to delete

them. Or, you might grant an application access to the network
but ban input/output operations. The way to tell the security
manager what permissions are allowed is by passing a policy file.
A policy file is a text file, so no programming is necessary to
configure security settings for the security manager.

Using the Security Manager

The security manager is often used in a Java program that
executes other Java classes written by other people. Here are
some examples:

An applet viewer. An applet viewer is a Java application that
runs applets. Applets can be written by other parties and it
is in the interest of the applet viewer to make sure those
applets do not attack the host.

A servlet container is a Java application that runs servlets.
Servlets are like applets but run on the server side. A servlet
container is normally written in Java, and when run, it can
be set to restrict access of the servlets it is running. For
example, if you are an ISP, you want to make sure the
servlets you are hosting do not breach security.

To run a Java application with the security manager, invoke the
java program with a –D flag.

java –Djava.security.manager MyClass

arguments

Applications invoked this way will run under the scrutiny of the
security manager and will have none of the permissions
discussed in the previous section. In other words, the application
will not have access to a file, will not be able to open a socket
connection, and so on. In many cases, this is too restrictive.

You can give an application permissions to perform otherwise
restricted operations by telling the security manager which
permissions you are willing to relax. You do this by writing a
policy file. It is a text file with the policy extension and lists all
the permissions granted to the application.

Note
You can use a text editor to create or edit a policy file or you can use the
Policy Tool, which is included in the JDK. The Policy Tool is discussed in
the section “The Policy Tool.”

Here is the syntax for passing a policy file to the java tool.

java -Djava.security.manager -

Djava.security.policy=policyFile

 MyClass arguments

where policyFile is the path to a policy file, MyClass is the Java
class to invoke, and arguments is the list of arguments for the
Java class.

If the java program is invoked with –
Djava.security.manager but no -Djava.security.policy is
used, the default policy files is used. The default policy files are
specified in the security properties file (java.security file)
under the ${java.home}/lib/security directory, where
${java.home} is the installation directory of your JRE.

The security properties file specifies security-related settings,
such as policy files, provider package names, whether or not
property file expansion is allowed, etc.

To add a policy file into the security properties file, use the
property name policy.url.n, where n is a number. For instance,
the following sets a policy file called myApp.policy located in
C:\user directory (in Windows):

policy.url.3=file:/C:/user/myApp.policy

And, this one sets the policy file myApp.policy in
/home/userX directory:

policy.url.3=file:/home/userX/myApp.policy

Policy Files

A policy configuration file, or a policy file for short, contains a
list of entries. It can contain an optional keystore entry and any
number of grant entries. Listing 31.1 shows the the content of
the default policy file java.policy that can be found under
${java.home}/lib/security. It has two grant entries and no
keystore entry. Note that the line starting with // is a comment.

Listing 31.1: The default policy file
// Standard extensions get all

permissions by default

grant codeBase

"file:${{java.ext.dirs}}/*" {

 permission

java.security.AllPermission;

};

// default permissions granted to all

domains

grant {

 // Allows any thread to stop itself

using the

 // java.lang.Thread.stop() method

that takes no argument.

 // Note that this permission is

granted by default only to

 // remain backwards compatible.

 // It is strongly recommended that

you either remove this

 // permission from this policy file

or further restrict it to

 // code sources that you specify,

because Thread.stop() is

 // potentially unsafe.

 // See the API specification of

java.lang.Thread.stop() for more

 // information.

 permission

java.lang.RuntimePermission "stopThread";

 // allows anyone to listen on dynamic

ports

 permission java.net.SocketPermission

"localhost:0", "listen";

 // "standard" properies that can be

read by anyone

 permission

java.util.PropertyPermission

"java.version", "read";

 permission

java.util.PropertyPermission

"java.vendor", "read";

 permission

java.util.PropertyPermission

"java.vendor.url",

 "read";

 permission

java.util.PropertyPermission

"java.class.version",

 "read";

 permission

java.util.PropertyPermission "os.name",

"read";

 permission

java.util.PropertyPermission

"os.version", "read";

 permission

java.util.PropertyPermission "os.arch",

"read";

 permission

java.util.PropertyPermission

"file.separator",

 "read";

 permission

java.util.PropertyPermission

"path.separator",

 "read";

 permission

java.util.PropertyPermission

"line.separator",

 "read";

 permission

java.util.PropertyPermission

 "java.specification.version",

"read";

 permission

java.util.PropertyPermission

 "java.specification.vendor",

"read";

 permission

java.util.PropertyPermission

 "java.specification.name",

"read";

 permission

java.util.PropertyPermission

 "java.vm.specification.version",

"read";

 permission

java.util.PropertyPermission

 "java.vm.specification.vendor",

"read";

 permission

java.util.PropertyPermission

 "java.vm.specification.name",

"read";

 permission

java.util.PropertyPermission

"java.vm.version",

 "read";

 permission

java.util.PropertyPermission

"java.vm.vendor",

 "read";

 permission

java.util.PropertyPermission

"java.vm.name", "read";

};

The default policy file lists the activities that are permitted when
running the security manager using this file. For example, the
last few lines specify the permission to read system properties.
The java.version, and java.vendor system properties are
allowed to be read. But, reading other system properties, such as
user.dir is not allowed. Therefore, the default policy is very
restricted. In most cases you want to write a policy file that gives
the application more room to maneuver.

The rest of this section discusses keystore and grant entries.
It teaches you how to write your own policy file.

Note
Policy file syntax can be found at
http://download.oracle.com/javase/8/docs/technotes/guides/security/

PolicyFiles.html.

keystore
This entry specifies a keystore that stores private keys and
related certificates. Keystores are discussed in the section “Java
Cryptography.”

grant
A grant entry includes one or more permission entries,
preceded by optional codeBase, signedBy, and principal
name/value pairs that specify which code to be granted
permissions. The syntax of the grant entry is as follows.

grant [signedBy "signerNames"], [codeBase

"URL"],

 [principal principal_class_name_1

"principal_name_1",

 principal principal_class_name_2

"principal_name_2",

 ...

 principal principal_class_name_n

principal_name_n

]

{

 permission permission_class_name_1

"target_name_1", "action_1",

 signedBy "signer_name_1"

 permission permission_class_name_2

"target_name_2", "action_2",

 signedBy "signer_name_2"

 ...

 permission permission_class_name_n

"target_name_n", "action_n",

 signedBy "signer_name_n"

}

The order of signedBy, codeBase, and principal values is not
important.

A codeBase value indicates the URL of the source code you
are granting permission(s) to. An empty codeBase means any
code. For example, the following grant entry grants the
permission associated with the java.security.AllPermission
class to the directory denoted by the value of java.ext.dirs
directory:

grant codeBase "file:${{java.ext.dirs}}/*" {

permission java.security.AllPermission;

};

The signedBy entry indicates the alias for a certificate stored in
the keystore. This explanation probably does not make sense
unless you have read and understood the section on Java
cryptography. Therefore, feel free to revisit this section after you
read the whole chapter.

A principal value specifies a className/principalName pair
which must be present within the executing threads principal
set. Again, revisit this section after you’ve understood the
concept of Java cryptography.

For now, note that a grant entry consists of one or more
permission entry. Each entry specifies a permission type that
the application is allowed to perform. For instance, the following
permission entry specifies that the application may read the
value of the java.vm.name system property.

permission java.util.PropertyPermission

"java.vm.name", "read";

The permission entry is discussed in the next section
“Permissions.”

Permissions

A permission is represented by the java.security.Permission

class, which is an abstract class. Its subclasses represent
permissions to access different types of access to system
resources. For example, the java.io.FilePermission class
represents a permission to read and write to a file.

The permission entry in a policy file has the following syntax:

permission permissionClassName target

action

The permissionClassName argument specifies a permission type
that corresponds to a specific permission. For example, the
java.io.FilePermission class refers to file manipulation
operations.

The target argument specifies the target of the permission.
Some permission types require a target, some don’t.

The action argument specifies the type of action associated
with this permission.

For example, consider the following permission entry.

permission java.util.PropertyPermission

"os.name", "read";

The permission class java.util.PropertyPermission concerns

with reading and writing system properties. The “os.name”
target specifies the system property os.name, and “read”
specifies the action. The permission entry says that the
application is permitted to read the system property os.name.

The following subsections describe each of the standard
permission classes in Java.

java.io.FilePermission
This class represents permissions for file reading, writing,
deletion, and execution. The constructor of this class accept two
arguments, a target and an action.

public FilePermission(java.lang.String

path,

 java.lang.String actions)

The target argument contains the name of a file or a directory.
There must be no white spaces in the string. You can use an
asterisk to represent all files in a directory and a hyphen to
represent the contents of a directory recursively. Table 31.1 lists
some examples and their descriptions.

The action argument describe a possible action. Its value is
one of the following: read, write, delete, and execute. You
can use the combination of the four. For example, “read,write”

means that the permission concerns the reading and writing of
the target file or directory.

Target

Description

myFile

the myFile file in the current
directory

myDirectory

the myDirectory directory in
the current directory

myDirectory/

the myDirectory directory in
the current directory

all files in the myDirectory

myDirectory/*

directory

myDirectory/-

all files under myDirectory
and under direct and indirect
subdirectories of myDirectory

*

all files in the current
directory

-

all files under the current
directory

<<ALL FILES>>

a special string that denotes
all files in the system.

Table 31.1: Examples of targets of
FilePermission

Note
Use \ as the directory separator in Windows. Therefore, C:\\temp*
denotes all files under C:\temp. You need to escape the backslash
character.

java.security.BasicPermission
The BasicPermission class is a subclass of Permission. It is
used as the base class for “named” permissions, i.e. ones that
contain no actions. Subclasses of this class include
java.lang.RuntimePermission,
java.security.SecurityPermission,
java.util.PropertyPermission, and
java.net.NetPermission.

java.util.PropertyPermission
The PropertyPermission class represents the permissions to
read the specified system property (by using the getProperty
method on java.lang.System) and to alter the value of the
specified property (by invoking the setProperty method on
java.lang.System). The targets for this permission are the
names of Java properties, such as “java.home” and “user.dir”.
You can use an asterisk to denote any property or to substitute
part of the name of a property. In other words, “user.*” denotes

all properties whose names have the prefix “user.”.

java.net.SocketPermission
This permission represents access to a network via sockets. The
target for this permission has the following syntax.

hostName:portRange

where hostname can be expressed as a single host, an IP address,
localhost, an empty string (the same as localhost),
hostname.domain, hostname.subDomain.domain, *.domain (all
hosts in the specified domain), *.subDomain.domain, and * (all
hosts).

portRange can be expressed as a single port, N- (all ports
numbered N and above), -N (all ports numbered N and below),
and N1-N2 (all ports between N1 and N2, inclusive). A port
number must be between 0 and 65535 (inclusive).

The possible values for actions are accept, connect, listen,
and resolve. Note that the first three values imply resolve as
well.

java.security.UnresolvedPermissi
on
This class represents permissions that were unresolved when the

Policy was initialized, i.e. permissions whose classes do not yet
exist at the time the policy is initialized.

java.lang.RuntimePermission
The RuntimePermission class represents a runtime
permission. It is used without an action and the target can be
one of the following (all self-explanatory)

createClassLoader

getClassLoader

setContextClassLoader

setSecurityManager

createSecurityManager

exitVM

setFactory

setIO

modifyThread

modifyThreadGroup

stopThread

getProtectionDomain

readFileDescriptor

writeFileDescriptor

loadLibrary.{libraryName}

accessClassInPackage.{packageName}

defineClassInPackage.{packageName}

accessDeclaredMembers.{className}

queuePrintJob

java.awt.AWTPermission
AWTPermission represents permissions related to the AWT
package. It has no actions and its possible targets are

accessClipboard

accessEventQueue

listenToAllAWTEvents

showWindowWithoutWarningBanner

java.net.NetPermission
This permission is also used without actions, and its possible
targets are

requestPasswordAuthentication

setDefaultAuthenticator

specifyStreamHandler

java.lang.reflect.ReflectPermissi
on
This permission is related to reflective operations and has no
actions. There is only one name defined:

suppressAccessChecks, which is used to denote the
permission to suppress the standard Java language access checks
for public, default, protected, or private members.

java.io.SerializablePermission
This permission has no action and its target is one of the
following.

enableSubclassImplementation

enableSubstitution

java.security.SecurityPermission
The SecurityPermission class represents a permission to
access security-related objects, such as Identity, Policy, Provider,
Security, and Signer. This permission is used with no actions and
here are its possible targets.

setIdentityPublicKey

setIdentityInfo

printIdentity

addIdentityCertificate

removeIdentityCertificate

getPolicy

setPolicy

getProperty.{key}

setProperty.{key}

insertProvider.{providerName}

removeProvider.{providerName}

setSystemScope

clearProviderProperties.{providerName}

putProviderProperty.{providerName}

removeProviderProperty.{providerName}

getSignerPrivateKey

setSignerKeyPair

java.security.AllPermission
This permission is used as a shortcut to denote all permissions.

javax.security.auth.AuthPermissi
on
This permission represents authentication permissions and
authentication-related objects, such as Configuration,
LoginContext, Subject, and SubjectDomainCombiner.
This class is used without actions and can have one of the
following as its target.

doAs

doAsPrivileged

getSubject

getSubjectFromDomainCombiner

setReadOnly

modifyPrincipals

modifyPublicCredentials

modifyPrivateCredentials

refreshCredential

destroyCredential

createLoginContext.{name}

getLoginConfiguration

setLoginConfiguration

refreshLoginConfiguration

Using the Policy Tool

Using a text editor to create and edit a policy file is error-prone.
Besides, you will have to remember a number of things,
including the permission classes and the syntax of each entry.
Java comes with a tool named Policy Tool that you can invoke by
typing policytool.

Figure 31.1 shows the Policy Tool window. When it opens it
always attempts to open the .java.policy file (note, the filename
starts with a .) in the user’s home directory. If it cannot find one
it will report it as an error.

Figure 31.1: The Policy Tool window

If the default policy file is not found, you can create a new one by
clicking New from the File menu or open an existing one by
clicking Open from the File menu. The File menu also contains
the Save menu item that you can click to save the policy file.

You can now proceed with adding a policy entry by clicking the
Add Policy Entry button, that will open the Policy Entry
window as shown in Figure 31.2.

Figure 31.2: The Policy Entry window

You can add a permission by clicking the Add Permission
button in the Policy Entry window. This will bring up the
Permissions window, shown in Figure 31.3.

Figure 31.3: The Permission window

From the Permission window, you can select a permission class
name, specify a target, and select an action. After you’re finished,
click the OK button, the new permission will be added to the
lower box on the Policy Entry window. You can continue adding
permissions and then save the policy file when you are done.

Applet Security

By default, web browsers run applets with the security manager
on. In fact, an applet is very restricted because most of the time
you run one written by someone else. Applets downloaded from
the Net are untrusted applets and are prohibited from doing the
following:

Reading and writing to files in the client computer

Making network connections other than the originating
host.

Defining native calls.

An applet can be made trusted by doing one of these.

Installing the applet class on the local hard disk.

Digitally sign the applet.

The first one is normally not an option because this means you
cannot distribute your applet on the Internet. This leaves us with
the second option, which is fortunately is easy enough to do
using the JarSigner tool, one of the tools included in the JDK. In
fact, the section “The JarSigner Tool” later in this chapter tells
you how to sign an applet. However, digital signing requires you
to understand cryptography, therefore you should read the
section “Cryptography Overview” before starting to sign your
code.

Note
More information on applet security can be found at
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-
136007.html.

Programming with Security

Your users may run your application with the security manager
on. If nothing is done to check this in your code, your application
could throw a security exception and exit unexpectedly.

To make your application security manager aware, watch out
for methods that can throw a java.lang.SecurityException.
For example, the delete method of the java.nio.file.Files,
which you can use to delete a file, has the following signature:

public static void delete(Path path)

throws java.io.IOException

However, if you read the description for the method in the
Javadoc more carefully , you will see the following entry:

Throws:

SecurityException – In the case of the

default provider, and a security manager

is installed, the

SecurityManager.checkDelete(String)

method is invoked to check delete access

to the file.

This indicates that the File.delete method can be restricted by a
security manager. If the user runs your application that performs
Files.delete with a security manager that does not allow this

operation, your program will crash. To avoid such an abrupt exit,
enclose your code with a try block that catches a
SecurityException. For example:

try {

 Path file = Paths.get(filename);

 Files.delete(file);

} catch (IOException e) {

} catch (SecurityException e) {

 System.err.println("You do not have

permission to " +

 "delete the file.");

}

Cryptography Overview

From time to time there has always been a need for secure
communication channels, i.e. where messages are safe and other
parties cannot understand and tamper with the messages even if
they can get access to them.

Historically, cryptography was only concerned with encryption
and decryption, where two parties exchanging messages can be
rest assured that only they can read the messages. In the
beginning, people encrypt and decrypt messages using

symmetric cryptography. In symmetric cryptography, you use
the same key to encrypt and decrypt messages. Here is a very
simple encryption/decryption technique. Today, of course,
encryption techniques are more advanced than the example.

Suppose, the encryption method uses a secret number to shift
forward each character in the alphabet. Therefore, if the secret
number is 2, the encrypted version of "ThisFriday" is
"VjkuHtkfca". When you reach the end of the alphabet, you start
from the beginning, therefore y becomes a. The receiver,
knowing the key is 2, can easily decrypt the message.

However, symmetric cryptography requires both parties know
in advance the key for encryption/decryption. Symmetric
cryptography is not suitable for the Internet for the following
reasons

Two people exchanging messages often do not know each
other. For example, when buying a book at Amazon.com you
need to send your particulars and credit card details. If
symmetric cryptography was to be used, you would have to
call Amazon.com prior to the transaction to agree on a key.

Each person wants to be able to communicate with many
other parties. If symmetric cryptography was used, each
person would have to maintain different unique keys, each
for a different party.

Since you do not know the entity you are going to
communicate with, you need to be sure that they are really

who they claim to be.

Messages over the Internet pass through many different
computers. It is fairly trivial to tap other people’s messages.
Symmetric cryptography does not guarantee that a third
party may not tamper with the data.

Therefore, today secure communication over the Internet uses
asymmetric cryptography that offers the following three
features:

encryption/decryption. Messages are encrypted to hide the
messages from third parties. Only the intended receiver can
decrypt them.

authentication. Authentication verifies that an entity is who
it claims to be.

data integrity. Messages sent over the Internet pass many
computers. It must be ensured that the data sent is
unchanged and intact.

In asymmetric cryptography, public key encryption is used. With
this type of encryption, data encryption and decryption is
achieved through the use of a pair of asymmetric keys: a public
key and a private key. A private key is private. The owner must
keep it in a secure place and it must not fall into the possession
of any other party. A public key is to be distributed to the public,
usually downloadable by anyone who would like to communicate

with the owner of the keys. You can use tools to generate pairs of
public keys and private keys. These tools will be discussed later
in this chapter.

The beauty of public key encryption is this: data encrypted
using a public key can only be decrypted using the corresponding
private key; at the same token data encrypted using a private key
can only be decrypted using the corresponding public key. This
elegant algorithm is based on very large prime numbers and was
invented by Ron Rivest, Adi Shamir, and Len Adleman at
Massachusetts Institute of Technology (MIT) in 1977. They
simply called the algorithm RSA, based on the initials of their
last names.

The RSA algorithm proves to be practical for use on the
Internet, especially for e-commerce, because only a vendor is
required to have one single pair of keys for communications with
all its buyers and purchasers do not need to have a key at all.

An illustration of how public key encryption works normally
use two figures called Bob and Alice, so we’ll use them too here.

Encryption/Decryption
One of the two parties who want to exchange messages must
have a pair of keys. Suppose Alice wants to communicate with
Bob and Bob has a public key and a private key. Bob will send
Alice his public key and Alice can use it to encrypt messages sent
to Bob. Only Bob can decrypt them because he owns the

corresponding private key. To send a message to Alice, Bob
encrypts it using his private key and Alice can decrypt it using
Bob’s public key.

However, unless Bob can meet with Alice in person to hand
over his public key, this method is far from perfect. Anybody
with a pair of keys can claim to be Bob and there is no way Alice
can find out. On the Internet, where two parties exchanging
messages often live half a globe away, meeting in person is often
not possible.

Authentication
In SSL authentication is addressed by introducing certificates. A
certificate contains the following:

a public key,

information about the subject, i.e. the owner of the public
key,

the certificate issuer’s name,

some timestamp to make the certificate expire after a
certain period of time.

The crucial thing about a certificate is that it must be digitally
signed by a trusted certificate issuer, such as VeriSign or Thawte.
To digitally sign an electronic file (a document, a Java jar file,
etc) is to add your signature to your document/file. The original

file is not encrypted, and the real purpose of signing is to
guarantee that the document/file has not been tampered with.
Signing a document involves creating the digest of the document
and encrypted the digest using the signer’s private key. To check
if the document is still in its still original condition, you perform
these two steps.

1. Decrypt the digest accompanying the
document using the signer’s public key.
You will soon learn that the public key of a
trusted certificate issuer is widely
available.

2. Create a digest of the document.

3. Compare the result of Step 1 and the result of Step 2. If
the two match, then the file is original.

Such authentication method works because only the holder of
the private key can encrypt the document digest, and this digest
can only be decrypted using the associated public key. Assuming
you trust that you hold the original public key, then you know
that the file has not been changed.

Note
Because certificates can be digitally signed by a trusted certificate issuer,

people make their certificates publicly available, instead of their public
keys.

There are a number of certificate issuers, including VeriSign and
Thawte. A certificate issuer has a pair of public key and private
key. To apply for a certificate, Bob has to generate a pair of keys
and send his public key to a certificate issuer, who would later
authenticate Bob by asking him to send a copy of his passport or
other types of identification. Having verified Bob, a certificate
issuer will sign the certificate using its private key. By ‘signing’ it
means encrypting. Therefore, the certificate can only be read by
using the certificate issuer’s public key. The public key of a
certificate issuer is normally distributed widely. For example,
Internet Explorer, Netscape, FireFox and other browsers by
default include several certificate issuers’ public keys.

For example, in Chrome, click the Chrome menu on the
browser toolbar --> Settings --> Show advanced settings -->
Manage certificates. Then, click the Trusted Root Certification
Authorities tab to see the list of certificates. (See Figure 31.4).

Figure 31.4: Certificate issuers whose
public keys are embedded in Chrome

Now, having a certificate, Bob will distribute the certificate
instead of his public key before exchanging messages with
another party.

Here is how it works.

A->B Hi Bob, I’d like to speak with you, but first of all I need
to make sure that you’re really Bob.

B->A Understandable, here is my certificate

A->B This is not sufficient, I need something else from you

B->A Alice, it’s really me + [message digest encrypted using
Bob’s private key]

In the last message from Bob to Alice, the message has been
signed using Bob’s private key, to convince Alice that the
message is authentic. This is how authentication is proved. Alice
contacts Bob and Bob sends his certificate. However, a certificate
alone is not sufficient because anyone can get Bob’s certificate.
Remember that Bob sends his certificate to anyone who wants to
exchange messages with him. Therefore, Bob sends her a
message (“Alice, it’s really me”) and the digest of the same
message encrypted using his private key.

Alice gets Bob’s public key from the certificate. She can do it
because the certificate is signed using the certificate issuer’s
private key and Alice has access to the certificate issuer’s public
key (her browser keeps a copy of it). Now, she also gets a
message and the digest encrypted using Bob’s private key. All
Alice needs to do is digest the message and compare it with the
decrypted digest Bob sent. Alice can decrypt it because it has
been encrypted using Bob’s private key, and Alice has Bob’s
public key. If the two match, Alice can be sure that the other
party is really Bob.

The first thing Alice does after authenticating Bob is to send a
secret key that will be used in subsequent message exchange.
That’s right, once a secure channel is established, SSL uses
symmetric encryption because it is much faster than asymmetric
encryption.

Now, there is still one thing missing from this picture.
Messages over the Internet pass many computers. How do you
make sure the integrity of those messages because anyone could
intercept those messages on the way?

Data Integrity
Mallet, a malicious party, could be sitting between Alice and Bob,
trying to decipher the messages being sent. Unfortunately, even
though he could copy the messages, they are encrypted and
Mallet does not know the key. However, Mallet could still
destroy the messages or not relay some of them. To overcome
this, SSL introduces a message authentication code (MAC). A
MAC is a piece of data that is computed by using a secret key and
some transmitted data. Because Mallet does not know the secret
key, he cannot compute the right value for the digest. The
message receiver can and therefore will discover if there is an
attempt to tamper with the data, or if the data is not complete. If
this happens, both parties can stop communicating.

One of such message digest algorithm is MD5. It is invented by
RSA and is very secure. If 128-bit MAC values are employed, for
example, the chance of a malicious party’s of guessing the right
value is about 1 in 18,446,744,073,709,551,616, or practically
never.

How SSL Works
Now you know how SSL addresses the issues of

encryption/decryption, authentication, and data integration,
let’s review how SSL works. This time, let’s take Amazon as an
example (in lieu of Bob) and a buyer (instead of Alice).
Amazon.com, like any other bona fide e-commerce vendor has
applied for a certificate from a trusted certificate issuer. The
buyer is using Chrome, which embeds the public keys of trusted
certificate issuers. The buyer does not really need to know about
how SSL works and does not need to have a public key or a
private key. One thing he needs to ensure is that when entering
important details, such as a credit card number, the protocol
being used is HTTPS, instead of HTTP. This has to appear on the
URL box. Therefore, instead of http://www.amazon.com, it has
to start with https, such as https://secure.amazon.com. Most
browsers also display a secure icon on the status bar or the URL
field. Figure 31.5 shows a secure sign in Chrome.

Figure 31.5: The secure sign in Chrome

When the buyer enters a secure page (when he finishes
shopping), this is the sequence of events that happens in the
background, between his browser and Amazon’s server.

browser: Are you really Amazon.com?

server: Yes, here is my certificate.

The browser then checks the validity of the certificate using the
certificate issuer’s public key to decrypt it. If something is wrong,
such as if the certificate has expired, the browser warns the user.
If the user agrees to continue despite the certificate being
expired, the browser will continue.

browser: A certificate alone is not sufficient, please send
something else.

server: I’m really Amazon.com + [the digest of the same
message encrypted using Amazon.com’s private key].

The browser decrypts the digest using Amazon’s public key
and create a digest of “I’m Really Amazon.com”. If the two
match, authentication is successful. The browser will then
generate a random key, encrypt it using Amazon’s public key.
This random key is to encrypt and decrypt subsequent messages.
In other words, once Amazon is authenticated, symmetric
encryption is used because it is faster then asymmetric
cryptography. In addition to messages, both parties also send
message digests for making sure that the messages are intact and
unchanged.

Let’s now examine how you can create a digital certificate of
your own.

Creating Certificates

You can use a Java tool called Keytool, discussed in the section
“The Keytool Program,” to generate pairs of public and private
keys. A public key is normally wrapped in a certificate since a
certificate is a more trusted way of distributing a public key. The
certificate is signed using the private key that corresponds to the
public key contained in the certificate. It is called a self-signed
certificate. In other words, a self-signed certificate is one for
which the signer is the same as the subject described in the
certificate.

A self-signed certificate is good enough for people to
authenticate the sender of a signed document if those people
already know the sender. For better acceptance, you need a
certificate signed by a Certificate Authority, such as VeriSign and
Thawte. You need to send them your self-signed certificate.

After a CA authenticates you, they will issue you a certificate
that replaces the self-signed certificate. This new certificate may
also be a chain of certificates. At the top of the chain is the ‘root’,
which is the self-signed certificate. Next in the chain is the
certificate from a CA that authenticates you. If the CA is not well
known, they will send it to a bigger CA that will authenticate the
first CA’s public key. The last CA will also send the certificate,
hence forming a chain of certificates. This bigger CA normally
has their public keys widely distributed so people can easily
authenticate certificates they sign.

Java provides a set of tools and APIs that can be used to work
with asymmetric cryptography explained in the previous section.

With them you can do the following:

Generate pairs of public and private keys. You can then send
the public key generated to a certificate issuer to obtain your
own certificate. For a fee, of course.

Store your private and public keys to a database called a
keystore. A keystore has a name and is password protected.

Store other people’s certificates in the same keystore.

Create your own certificate by signing it with your own
private key. However, such certificates will have limited use.
For practice, self-signed certificates are good enough.

Digitally sign a file. This is particularly important because
browsers will only allow applets access to resources if the
applets are stored in a jar file that has been signed. Signed
Java code guarantee the user that you are really the
developer of the class. If they trust you they may have less
doubt in running the Java class.

Let’s now review the tools.

The KeyTool Program

The KeyTool program is a utility to create and maintain public
and private keys and certificates. It comes with the JDK and is
located in the bin directory of the JDK. Keytool is a command-

line program. To check the correct syntax, simply type keytool at
the command prompt. The following will provide examples of
some important functions.

Generating Key Pairs
Before you start, there are a few things to notice with regard to
key generation in Java.

1. Keytool will generate a pair of public key
and private key and create a certificate
signed using the private key (self-signed
certificate). Among others, the certificate
contains the public key and the identity of
the entity whose key it is. Therefore, you
need to supply your name and other
information. This name is called a
distinguished name and contains the
following information:

 CN= common name, e.g. Joe Sample

 OU=organizational unit, e.g.

Information Technology

 O=organization name, e.g. Brainy

Software Corp

 L=locality name, e.g. Vancouver

 S=state name, e.g. BC

 C=country, (two letter country code)

e.g. CA

2. Your keys will be stored in a database
called a keystore. A keystore is file-based
and password-protected so that no
unauthorized persons can access the
private keys stored in it.

3. If no keystore is specified when
generating keys or when performing other
functions, the default keystore is assumed.
The default keystore is named .keystore
in the user’s home directory (i.e. in the
directory defined by the user.home
system property. For example, for
Windows XP the default keystore is located
under C:\Documents and
Settings\userName directory in Windows.

4. There are two types of entries in a

keystore:
a. Key entries, each of which is a private
key accompanies by the certificate chain of
the corresponding public key.
b. Trusted certificate entries, each of which
contains the public key of an entity you
trust. Each entry is also password-
protected, therefore there are two types of
passwords, the one that protects the
keystore and one that protects an entry.

5. Each entry in a keystore is identified by a
unique name or an alias. You must specify
an alias when generating a key pair or
doing other activities with keytool.

6. If when generating a key pair you don’t
specify an alias, mykey is used as an alias.

The shortest command to generate a key pair is this.

keytool –genkeypair

Using this command, the default keystore will be used or one will
be created if none exists in the user’s home directory. The
generated key will have the alias mykey. You will then be
prompted to enter a password for the keystore and supply
information for your distinguished name. Finally, you will be
prompted for a password for the entry.

Invoking keytool –genkeypair again will result in an error
because it will attempt to create a pair key and use the alias
mykey again.

To specify an alias, use the –alias argument. For example, the
following command creates a key pair identified using the
keyword email.

keytool –genkeypair –alias email

Again, the default keystore is used.

To specify a keystore, use the –keystore argument. For
example, this command generate a key pair and store it in the
keystore named myKeystore in the C:\javakeys directory.

keytool –genkeypair –keystore

C:\javakeys\myKeyStore

After you invoke the program, you will be asked to enter mission
information.

A complete command for generating a key pair is one that uses
the genkeypair, alias, keypass, storepass and dname arguments.
For example.

keytool -genkeypair -alias email4 -

keypass myPassword -dname

"CN=JoeSample, OU=IT, O=Brain Software

Corp, L=Surrey, S=BC, C=CA"

-storepass myPassword

Getting Certified
While you can use Keytool to generate pairs of public and private
keys and self-signed certificates, your certificates will only be
trusted by people who already know you. To get more
acceptance, you need your certificates signed by a certificate
authority (CA), such as VeriSign, Entrust or Thawte.

If you intend to do this, you need to generate a Certificate
Signing Request (CSR) by using the –certreq argument of
Keytool. Here is the syntax:

keytool –certreg –alias alias –file

certregFile

The input of this command is the certificate referenced by alias
and the output is a CSR, which is the file whose path is specified
by certregFile. Send the CSR to a CA and they will authenticate
you offline, normally by asking you to provide valid
identification details, such as a copy of your passport or driver’s
license.

If the CA is satisfied with your credentials, they will send you a
new certificate or a certificate chain that contains your public
key. This new certificate is used to replace the existing certificate
chain you sent (which was self-signed). Once you receive the
reply, you can import your new certificate into a keystore by
using the importcert argument of Keytool.

Importing a Certificate into the
Keystore
If you receive a signed document from a third party or a reply
from a CA, you can store it in a keystore. You need to assign an
alias you can easily remember to this certificate.

To import or store a certificate into a keystore, use the
importcert argument. Here is the syntax.

keytool –importcert –alias anAlias –file

filename

As an example, to import the certificate in the file
joeCertificate.cer into the keystore and give it the alias
brotherJoe, you use this:

keytool –importcert –alias brotherJoe –

file joeCertificate.cer

The advantages of storing a certificate in a keystore is twofold.
First, you have a centralized store that is password protected.
Second, you can easily authenticate a signed document from a
third party if you have imported their certificate in a keystore.

Exporting a Certificate from the
Keystore
With your private key you can sign a document. When you sign
the document, you make a digest of the document and then
encrypt the digest with your private key. You then distribute the
document as well as the encrypted digest.

For others to authenticate the document, they must have your
public key. For security, your public key needs to be signed too.
You can self-sign it or you can get a trusted certificate issuer to
sign it.

The first thing to do is extract your certificate from a keystore
and save it as a file. Then, you can easily distribute the file. To

extract a certificate from a keystore, you need to use the –
exportcert argument and pass the alias and the name of the file
to contain your certificate. Here is the syntax:

keytool –exportcert –alias anAlias –file

filename

A file containing a certificate is typically given the .cer extension.
For example, to extract a certificate whose alias is Meredith and
save it to the meredithcertificate.cer file, you use this command:

keytool –exportcert –alias Meredith –file

meredithcertificate.cer

Listing Keystore Entries
Now that you have a keystore to store your private keys and the
certificates of parties you trust, you can enquiry its content by
listing it using the keytool program. You do it by using the list
argument.

keytool –list –keystore myKeyStore –

storepass myPassword

Again, the default keystore is assumed if the keystore argument

is missing.

The JarSigner Tool

As you have seen, Keytool is a great tool for generating keys and
maintaining them. To sign documents or Java classes, you need
another tool: JarSigner. In addition to sign documents,
JarSigner can also be used to verify the signatures and integrity
of signed jar files from third parties.

Using JarSigner, you must first save your file(s) in a jar file.
You can do this using the jar tool, which was explained in
Appendix C, “jar.” In addition to signing a jar file, JarSigner can
also be used to verify the signature and integrity of a signed jar
file. Let’s review these two functions below.

Signing JAR Files
As the name implies, JarSigner can only be used to sign jar files,
one at a time. Therefore, if you have a document you want to
sign, you need to first package it using the jar tool (explained in
Appendix C, “jar”).

Here is the syntax for JarSigner.

jarsigner [options] –signedJar newJarFile

jarFile alias

where jarFile is the path to the jar file to be signed, and
newJarFile is the resulting output. The new jar file is exactly the
same as the signed jar, except that it has two extra files under the
META-INF directory. The two extra files are a signature file
(with a .SF extension) and a signature block file (with a .DSA
extension).

You can sign a jar file multiple times, each using a different
alias.

Verifying Signed JAR Files
Verifying a signed jar file includes checking that the signature in
the jar file is valid and the documents signed have not been
tampered with. You use the jarsigner program with the –verify
argument to verify a signed jar file. Its syntax is as follows:

jarsigner –verify [options] jarFile

where jarFile is the path to the jar file to be verified.

The jarsigner program verifies a jar file by examining the
signature in the .SF file and the digest listed in each entry in the
.SF file with each corresponding section in the manifest.

An Example: Signing an Applet

The following example shows how to use Java cryptography to
sign an applet. The applet class (MyApplet) is given in Listing
31.2.

Listing 31.2: MyApplet.java
package app31;

import java.applet.Applet;

import java.awt.Graphics;

import java.io.BufferedWriter;

import java.io.IOException;

import java.io.PrintWriter;

import java.nio.charset.Charset;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.nio.file.StandardOpenOption;

public class MyApplet extends Applet {

 StringBuilder buffer = new

StringBuilder();

 public void start() {

 buffer.append("Trying to create

Test.txt "

 + "in the browser's

installation directory.");

 Path file =

Paths.get("Test.txt");

 Charset charset =

Charset.forName("US-ASCII");

 try (BufferedWriter

bufferedWriter = Files.newBufferedWriter(

 file, charset,

StandardOpenOption.CREATE,

StandardOpenOption.APPEND);

 PrintWriter pw = new

PrintWriter(bufferedWriter)) {

 pw.write("Hello");

 pw.close();

 buffer.append(" Writing

successful");

 } catch (IOException e) {

 buffer.append(e.toString());

 } catch (SecurityException e) {

 buffer.append(e.toString());

 }

 repaint();

 }

 public void paint(Graphics g) {

 //Draw a Rectangle around the

applet's display area.

 g.drawRect(0, 0, getSize().width

- 1,

 getSize().height - 1);

 g.drawString(buffer.toString(),

10, 20);

 }

}

The MyApplet applet attempts to write to a file and needless to
say it will throw a SecurityException if run in a browser
because the browser will impose a security restriction against
access to the client’s file system. Signing the applet would
persuade the browser to relax its security restriction. The
browser will check if the applet has been signed by a trusted
party. If it has, the applet will be granted access. If the signer is
not trusted, the browser will ask the user to either grant or reject
permissions.

Before you can sign the applet, you must first package it in a
jar file. This is very easy to achieve by using the jar program
discussed in Appendix C, “jar.” Basically, all you need is run this
command in the directory that contains the app31 subdirectory
where the class file resides.

jar –cf MyJar.jar app31/MyApplet.class

You’ll get a jar file named MyJar.jar.

Now, sign the jar file using jarsigner:

jarsigner –verbose –signedJar

MySignedJar.jar MyJar.jar mykey

where mykey is a key in your keystore. you’ll be prompted to
enter the password for the keystore. The result will be the
MySignedJar.jar file. We’re ready to test it to run in a
browser. The HTML file in Listing 31.3 is needed to call the
applet.

Listing 31.3: The HTML that calls the
applet

<html>

<head>

<title>Testing Signed Applet</title>

</head>

<body>

<applet code="app31.MyApplet.class"

archive="MySignedJar.jar" width="600"

height="50">

</applet>

</body>

</html>

Now, when you invoke the HTML page containing the applet, the
browser will ask you the permission to run the applet, because
the applet has not been signed by a trusted CA. Figure 31.6
shows the security warning.

Figure 31.6: The security warning
asking the user whether to grant

permissions to an applet

The More Details button reveals the details of the signature in
the signed applet. Figure 31.7 shows these details.

Figure 31.7: The details of the signature
used to sign the applet

If you grant it access, the applet will have access to create a file
and write to the file. You will see something like Figure 31.8.

Figure 31.8: The applet has successfully
access the file system

Note

The application that accompanies this chapter include the
MySignedJar.jar file that has been signed using my signature.
Included for your convenience.

Java Cryptography API

For a beginner, it is sufficient if you understand the concept of
public key encryption and know how to generate key pairs and
sign a jar file. Java offers more, however. You can do what you
can do with keytool programmatically by using the Java
Cryptography API. You are recommended to look into the
javax.crypto package if you are interested in knowing more
about Java cryptography.

Summary

This chapter explained how the security manager restricts a Java
application and how to write a policy file to grant permissions to
the application. It also discussed asymmetric cryptography and
how Java implements it. Towards the end of the chapter you
have seen how to digitally sign an applet so it could write to the
user’s file system.

Quiz

1. What is a policy file?
2. Why is symmetric cryptography not

suitable for use on the Internet?
3. What is a keystore?
4. What are the steps to digitally sign an

applet?

Chapter 32
Java Web Applications

There are three ‘official’ technologies for developing web
applications in Java: Servlet, JavaServer Pages (JSP), and
JavaServer Faces (JSF). They are not part of the Java Standard
Edition (SE) but members of the Java Enterprise Edition (EE).
However, considering that web applications are the most
popular applications today, they are also covered in this book.
Each technology is complex enough to require a book of its own,
therefore I can only promise an introduction here. I recommend
my own Servlet & JSP: A Tutorial (ISBN 978-0-9808396-2-3) if
you’re interested in learning more.

Of the three, Servlet is the core technology on which JSP and
JSF are based. The emergence of JSP after servlets did not make
Servlet obsolete. Rather, they are used together in modern Java
web applications.

This chapter explores the Servlet 3.0 API and presents a few
servlet applications as examples. Chapter 33, “JavaServer Pages”
covers JSP.

Servlet Application
Architecture

A servlet is basically a Java program. A servlet application
consists of one or more servlets. A servlet application runs inside
a servlet container and cannot run on its own. A servlet
container, also known as a servlet engine, passes requests from
the user to the servlet application and responses from the servlet
application back to the user. Most servlet applications include at
least several JSP pages. As such, it’s more appropriate to use the
term “servlet/JSP application” to refer to a Java web application
than to leave JSP out.

Figure 32.1 shows the architecture of a servlet/JSP
application. Web users use a web browser such as Internet
Explorer, Mozilla Firefox or Google Chrome to access servlet
applications. A web browser is referred to as a web client.

Figure 32.1: Servlet/JSP application

architecture

In all web applications, the server and the client communicate
using a language they both are fluent in: the Hypertext Transfer
Protocol (HTTP). Because of this, a web server is also called an
HTTP server. HTTP is covered in Chapter 30, “Java
Networking.”

A servlet/JSP container is a special web server that can
process servlets as well as serve static contents. In the past,
people were more comfortable running a servlet/JSP container
as a module of an HTTP server such as the Apache HTTP Server
because an HTTP server was considered more robust than a
servlet/JSP container. In this scenario, the servlet/JSP container
was tasked with generating dynamic contents and the HTTP
server with serving static resources. Today servlet/JSP
containers are considered mature and widely deployed without
an HTTP server. Apache Tomcat and Jetty are the most popular
servlet/JSP containers that are free and open-source. You can
download them from http://tomcat.apache.org and
http://jetty.codehaus.org, respectively.

Servlet and JSP are two of a multitude of technologies defined
in the Java EE. Other Java EE technologies include Java
Message Service (JMS), Enterprise JavaBeans (EJB), JavaServer
Faces (JSF), and Java Persistence. The complete list of
technologies in Java EE version 7 (the current version) can be
found here.

http://www.oracle.com/technetwork/java/ja

vaee/tech/index.html

To run a Java EE application, you need a Java EE container,
such as GlassFish, WildFly, Apache TomEE, Oracle WebLogic or
IBM WebSphere. You can deploy a servlet/JSP application in a
Java EE container, but a servlet/JSP container is sufficient and
is more light-weight than a Java EE container. Tomcat and Jetty
are not Java EE containers, so they can’t run EJB or JMS.

Servlet API Overview

The Servlet API comes in four packages

javax.servlet. Contains classes and interfaces that define
the contract between a servlet and a servlet container.

javax.servlet.http. Contains classes and interfaces that
define the contract between an HTTP servlet and a servlet
container.

javax.servlet.annotation. Contains annotations to
annotate servlets, filters, and listeners. It also specifies the
metadata for the annotated component.

javax.servlet.descriptor. Contains types that provide
programmatic access to a web application’s configuration

information.

This chapter focuses on some of the more important members of
the javax.servlet and javax.servlet.http packages.

The javax.servlet Package
Figure 32.2 shows the main types in the javax.servlet package.

Figure 32.2: Prominent members of the
javax.servlet package

At the center of Servlet technology is Servlet, an interface that
all servlet classes must implement either directly or indirectly.
This interface defines a contract between a servlet and the servlet
container. The contract boils down to the promise by the servlet
container to load the servlet class into memory and call specific
methods on the servlet instance. There is only one instance for
each servlet type, which is shared by all requests for the servlet.
See the section “Servlet” for details.

A user request for a servlet causes the servlet container to call
the servlet’s service method, passing an instance of

ServletRequest and an instance of ServletResponse. The
ServletRequest object encapsulates the current HTTP request.
The ServletResponse object represents the HTTP response for
the current user and makes sending response to the user easy.

In addition, the servlet container creates an instance of
ServletContext that encapsulates the environment all servlets
in the same application are running on. For each servlet, there is
also a ServletConfig object that encapsulates the servlet
configuration.

Let’s look at these interfaces in detail in the next sections.

Servlet

All servlets must implement javax.servlet.Servlet, either
directly or indirectly. The Servlet interface defines five
methods:

void init(ServletConfig config) throws

ServletException

void service(ServletRequest req,

ServletResponse res)

 throws ServletException,

java.io.IOException

void destroy()

java.lang.String getServletInfo()

ServletConfig getServletConfig()

init, service, and destroy are life cycle methods. The servlet
container invokes these three methods according to these rules.

init. The servlet container invokes this method the first time
the servlet is requested. This method is not called at
subsequent requests. You use this method to write
initialization code. When invoking this method, the servlet
container passes a ServletConfig. Normally, you assign
the ServletConfig to a class level variable so that this
object can be used from other points in the servlet class.

service. The servlet container invokes this method each
time the servlet is requested. You write the code that the
servlet is supposed to do here. The first time the servlet is
requested, the servlet container calls the init method and, if
the init method finishes successfully, the service method.
For subsequent requests, only the service method is
invoked. When invoking the service method, the servlet
container passes two objects: a ServletRequest object and
a ServletResponse object.

destroy. The servlet container invokes this method when
the servlet is about to be destroyed. A servlet container
destroys a servlet when the application is unloaded or when
the servlet container is being shut down. Normally, you
write clean-up code in this method.

getServletInfo and getServletConfig are non-life cycle
methods defined in Servlet.

getServletInfo. This method returns the description of the
servlet. You can return any string that might be useful or
even null.

getServletConfig. This method returns the
ServletConfig object passed by the servlet container to the
init method. However, for the getServletConfig method
to be able to do so, you must have assigned the
ServletConfig object to a class level variable in the init
method. ServletConfig is explained in the section
“ServletConfig” in this chapter.

A very important point to note is thread safety. The servlet
container creates an instance of a servlet which is shared among
all users, so class-level variables are not recommended, unless
they are read-only or atomic variables.

The next section, “Writing a Basic Servlet Application,” shows
how to implement Servlet to write your first servlet.
Implementing Servlet directly is not the easiest way to write a
servlet. It would be easier to extend either GenericServlet or
HttpServlet. However, working directly with Servlet will
familiarize you with the most important member of the API.

Writing a Basic Servlet

Application

Writing a servlet application is surprisingly easy. You just need
to create a directory structure and place your servlet classes in a
certain directory. In this section you learn how to write a simple
servlet application named app32a. Initially it contains only one
servlet, MyServlet, which sends a greeting to the client.

You need a servlet container to run your servlets. Tomcat, an
open source servlet container, is available free of charge and
runs on any platform where Java is available. You should now
read the following section and install Tomcat if you haven’t done
so.

Installing Tomcat
You can download Tomcat from http://tomcat.apache.org. To
run the examples in this chapter, you need Tomcat 7 or later.
You should get the latest binary distribution in either zip or gz.

After you download a Tomcat binary, extract the file. You will
see several directories under the installation directory. Of special
interest are the bin and webapps directories. In the bin
directory, you will find programs to start and stop Tomcat. The
webapps directory is important because you store your servlet
applications there.

After the extraction, set the JAVA_HOME environment

variable to the JDK installation directory.

For Windows users, it is a good idea to download the Windows
installer for easier installation.

Once you’re finished, you can start Tomcat by running the
startup.bat (in Windows) or the startup.sh file (in
Unix/Linux). By default, Tomcat runs on port 8080, so you can
test Tomcat by directing your Web browser to this address:

http://localhost:8080

Writing and Compiling the
Servlet Class
After you install a servlet container on your local machine, the
next step is to write and compile a servlet class. This servlet class
must implement javax.servlet.Servlet. The servlet class for
this example, MyServlet, is given in Listing 32.1. By
convention, the names of servlet classes are suffixed with
Servlet.

Listing 32.1: The MyServlet class
package app32a;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.Servlet;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import

javax.servlet.annotation.WebServlet;

@WebServlet(name = "MyServlet",

urlPatterns = { "/my" })

public class MyServlet implements Servlet

{

 private transient ServletConfig

servletConfig;

 @Override

 public void init(ServletConfig

servletConfig)

 throws ServletException {

 this.servletConfig =

servletConfig;

 }

 @Override

 public ServletConfig

getServletConfig() {

 return servletConfig;

 }

 @Override

 public String getServletInfo() {

 return "My Servlet";

 }

 @Override

 public void service(ServletRequest

request,

 ServletResponse response)

throws ServletException,

 IOException {

 String servletName =

servletConfig.getServletName();

response.setContentType("text/html");

 PrintWriter writer =

response.getWriter();

 writer.print("<html><head>

</head>"

 + "<body>Hello from " +

servletName

 + "</body></html>");

 }

 @Override

 public void destroy() {

 }

}

The first thing that springs to mind when looking at the source
code in Listing 32.1 is this annotation.

@WebServlet(name = "MyServlet",

urlPatterns = { "/my" })

The WebServlet annotation type is used to declare a servlet.
You can name the servlet as well as tell the container what URL
invokes the servlet. The name attribute is optional and, when
present, is ordinarily given the name of the servlet class. What’s
important is the urlPatterns attribute, which is also optional
but almost always present. When present, urlPatterns specifies
the URL pattern or patterns to invoke the servlet. In MyServlet,
urlPatterns is used to tell the container that the pattern /my
should invoke the servlet.

Note that a URL pattern must begin with a forward slash.

The init method in MyServlet assigns the private transient
servletConfig variable to the ServletConfig object passed to
the method.

 private transient ServletConfig

servletConfig;

 @Override

 public void init(ServletConfig

servletConfig)

 throws ServletException {

 this.servletConfig =

servletConfig;

 }

You only have to assign the passed ServletConfig to a class
variable if you intend to use it from inside your servlet.

The service method sends a String “Hello from MyServlet” to
the browser. It is invoked for every incoming HTTP request that
targets the servlet.

To compile the servlet, you must include the types in the
Servlet API used in the class. Tomcat includes the servlet-
api.jar file that packages members of the javax.servlet and
javax.servlet.http packages. The jar file is located in the lib
directory under Tomcat’s installation directory.

Application Directory Structure
A servlet application must be deployed in a certain directory
structure. Figure 32.3 shows the directory structure for this
application.

Figure 32.3: The application directory
structure

The app32a directory at the top of the hierarchy is the
application directory. Under the application directory is the
WEB-INF directory. It in turn has two subdirectories.

classes. Your servlet classes and other Java classes must
reside here. The directories under classes reflect the class
package. In Figure 32.3 there is one class deployed,
app32a.MyServlet.

lib. Deploy jar files required by your servlet application
here. The Servlet API jar file does not need to be deployed
here because the servlet container already has a copy of it.
In this application, the lib directory is empty. An empty lib
directory may be deleted.

You should not include your source code with your application.

A servlet/JSP application normally has JSP pages, HTML files,
image files, and other resources. These should go under the
application directory and are often organized in subdirectories.

For instance, all image files should go to an image directory, all
JSPs to jsp, etc.

Now, deploy the application to Tomcat. There are a couple of
ways of doing this. The easiest is to copy the application
directory and its content to the webapps directory under
Tomcat installation. Other servlet containers offer different ways
of deploying applications.

Alternatively, you can deploy your application as a war file. A
war file is a jar file with war extension. You can create a war file
using the jar program that comes with the JDK or other tools
like WinZip. After you create a war file, copy it to Tomcat’s
webapps directory, restart Tomcat, and Tomcat will extract the
WAR file automatically when it starts.

Another way to deploy a Web application on Tomcat is by
editing the server.xml file in Tomcat’s conf directory or by
deploying a special XML file.

Invoking the Servlet
Start or restart Tomcat and direct your browser to the following
URL (assuming Tomcat is configured to listen on port 8080, its
default port):

http://localhost:8080/app32a/my

The output should be similar to Figure 32.4.

Figure 32.4: Response from MyServlet

ServletRequest

For every HTTP request, the servlet container creates an
instance of ServletRequest, which encapsulates the
information about the request and passes the object to the
servlet’s service method.

These are some of the methods in the ServletRequest
interface.

public int getContentLength()

Returns the number of bytes of the request

body. If the length is not known, this
method returns -1.

public java.lang.String getContentType()

Returns the MIME type of the body of the
request, or null if the type is not known.

public java.lang.String

getParameter(java.lang.String name)

Returns the value of the specified request
parameter.

public java.lang.String getProtocol()

Returns the name and version of the
protocol of this HTTP request.

The most important method is getParameter. A common use
of this method is to return the value of an HTML form field.
You’ll learn how to retrieve form values in the section “HTTP
Servlets” later in this chapter.

getParameter can also be used to get the value of a query
string. For example, if a servlet is invoked using this URI

http://domain/context/servletName?id=123

you can retrieve the value of id from inside your servlet using
this statement:

String id = request.getParameter("id");

getParameter returns null if the parameter does not exist.

In addition to getParameter, you can also use
getParameterNames, getParameterMap, and
getParameterValues to retrieve form field names and values
as well as the values of query strings. See the section “Http
Servlets” for examples on how to use these methods.

ServletResponse

The javax.servlet.ServletResponse interface represents a
servlet response. Prior to invoking a servlet’s service method,
the servlet container creates a ServletResponse object and
pass it as the second argument to the service method. The
ServletResponse object hides the complexity of sending

response to the client’s browser.

The most important method of ServletResponse is the
getWriter method, which returns a java.io.PrintWriter
object for sending character text to the client. By default, the
PrintWriter object uses ISO-8859-1 encoding.

When sending response to the client, you send it as HTML.
Before sending any HTML tag, you also want to set the content
type of the response by calling the setContentType method,
passing “text/html” as the argument. This is how you tell the
browser that the content type is HTML. Most browsers by
default render a response as HTML in the absence of a content
type. However, some browsers will display HTML tags as plain
text if you don’t set the response content type.

ServletConfig

You’ve seen that the servlet container passes a ServletConfig
object to the servlet’s init method when the servlet container
initializes the servlet. The ServletConfig object encapsulates
configuration information that you can pass to a servlet. This
could be useful if you want to pass dynamic information that
may be different from one deployment to another to the
application.

Every piece of information for the ServletConfig object is

called an initial parameter. An initial parameter has two
components: key and value. You pass an initial parameter to a
servlet by using an attribute in @WebServlet or by declaring it
in a configuration file called the deployment descriptor. You’ll
learn more about the deployment descriptor later in this chapter.

To retrieve an initial parameter from inside a servlet, call the
getInitParameter method on the ServletConfig passed by
the servlet container to the servlet’s init method. The signature
of getInitParameter is as follows.

java.lang.String

getInitParameter(java.lang.String name)

For example, to retrieve the value of the contactName
parameter, you would write

String contactName =

servletConfig.getInitParameter("contactNa

me");

Another method, getInitParameterNames, returns an
Enumeration of all initial parameter names:

java.util.Enumeration<java.lang.String>

getInitParameterNames()

In addition to getInitParameter and
getInitParameterNames, ServletConfig offers another
useful method, getServletContext. Use this method to retrieve
the ServletContext object from inside a servlet. See the section
“ServletContext” later in this chapter for a discussion of this
object.

As an example on how to use ServletConfig, let’s add a
servlet named ServletConfigDemoServlet to app26a. The
new servlet is given in Listing 32.2.

Listing 32.2: The
ServletConfigDemoServlet class

package app32a;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.Servlet;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import

javax.servlet.annotation.WebInitParam;

import

javax.servlet.annotation.WebServlet;

@WebServlet(name =

"ServletConfigDemoServlet",

 urlPatterns = { "/servletConfigDemo"

},

 initParams = {

 @WebInitParam(name="admin",

value="Harry Taciak"),

 @WebInitParam(name="email",

value="admin@example.com")

 }

)

public class ServletConfigDemoServlet

implements Servlet {

 private transient ServletConfig

servletConfig;

 @Override

 public ServletConfig

getServletConfig() {

 return servletConfig;

 }

 @Override

 public void init(ServletConfig

servletConfig)

 throws ServletException {

 this.servletConfig =

servletConfig;

 }

 @Override

 public void service(ServletRequest

request,

 ServletResponse response)

 throws ServletException,

IOException {

 ServletConfig servletConfig =

getServletConfig();

 String admin =

servletConfig.getInitParameter("admin");

 String email =

servletConfig.getInitParameter("email");

response.setContentType("text/html");

 PrintWriter writer =

response.getWriter();

 writer.print("<html><head></head>

<body>" +

 "Admin:" + admin +

 "
Email:" + email +

 "</body></html>");

 }

 @Override

 public String getServletInfo() {

 return "ServletConfig demo";

 }

 @Override

 public void destroy() {

 }

}

As you can see in Listing 32.2, you pass two initial parameters
(admin and email) to the servlet in the initParams attribute in
@WebServlet:

@WebServlet(name =

"ServletConfigDemoServlet",

 urlPatterns = { "/servletConfigDemo"

},

 initParams = {

 @WebInitParam(name="admin",

value="Harry Taciak"),

 @WebInitParam(name="email",

value="admin@example.com")

 }

)

You can invoke ServletConfigDemoServlet using this URL:

http://localhost:8080/app32a/servletConfi

gDemo

The result should be similar to that in Figure 32.5.

Figure 32.5: ServletConfigDemoServlet
in action

Alternatively, you can pass initial parameters in the deployment
descriptor. Utilizing the deployment descriptor for this purpose
is easier since the deployment descriptor is a text file and you
can edit it without recompiling the servlet class. On the other
hand, passing initial parameters in a @WebServlet feels counter-
intuitive since initial parameters were originally designed to be
easily passable to a servlet, i.e. without recompiling the servlet
class.

The deployment descriptor is discussed in the section “Using
the Deployment Descriptor” later in this chapter.

ServletContext

The ServletContext object represents the servlet application.
There is only one context per web application. In the case of
distributed environment, where the same application is deployed
simultaneously to multi containers, there is one
ServletContext object per Java Virtual Machine.

You can obtain the ServletContext object by calling the
getServletContext method on the ServletConfig object.

The main reason for the existence of ServletContext is to
share common information among resources in the same
application and to enable dynamic registration of web objects.
The former is done by storing objects in an internal Map within
the ServletContext. Objects stored in ServletContext are
called attributes, and objects stored here can be accessed by any
servlets in the application.

The following methods are defined in ServletContext to deal
with attributes:

java.lang.Object

getAttribute(java.lang.String name)

java.util.Enumeration<java.lang.String>

getAttributeNames()

void setAttribute(java.lang.String name,

java.lang.Object object)

void removeAttribute(java.lang.String

name)

For example, this code snippet stores a List in the
ServletContext:

List<String> countries = ...

servletContext.setAttribute("countries",

countries);

GenericServlet

The preceding examples showed how you could write servlets by
implementing the Servlet interface. However, did you notice
that you had to provide implementations for all methods in
Servlet, even though often some of the methods did not contain
code? In addition, you needed to preserve the ServletConfig
object into a class level variable.

Fortunately, there is the GenericServlet abstract class. To
ease development, GenericServlet implements both Servlet
and ServletConfig (as well as java.io.Serializable) and
perform the following tasks:

Assign the ServletConfig object in the init method to a
class level variable so that it can be retrieved by calling
getServletConfig.

Provide default implementations of all methods in the
Servlet interface.

Provide methods that call the methods in the
ServletConfig object.

GenericServlet preserves the ServletConfig object by
assigning it to a class level variable servletConfig. However, if
you override this method, the init method in your servlet will be
called instead. To preserve the ServletConfig object, you must
call super.init(servletConfig) before your initialization code.
To save you from having to do so, GenericServlet provides a
second init method that does not take arguments. This method
is called by the first init method after ServletConfig is
assigned to servletConfig:

public void init(ServletConfig

servletConfig)

 throws ServletException {

 this.servletConfig = servletConfig;

 this.init();

}

This means, you can write initialization code by overriding the

no-argument init method and the ServletConfig object will
still be preserved by the GenericServlet instance.

The GenericServletDemoServlet class in Listing 32.3 is a
rewrite of ServletConfigDemoServlet in Listing 32.2. Note
that the new servlet extends GenericServlet instead of
implementing Servlet.

Listing 32.3: The
GenericServletDemoServlet class

package app32a;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.GenericServlet;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import

javax.servlet.annotation.WebInitParam;

import

javax.servlet.annotation.WebServlet;

@WebServlet(name =

"GenericServletDemoServlet",

 urlPatterns = { "/generic" },

 initParams = {

 @WebInitParam(name="admin",

value="Harry Taciak"),

 @WebInitParam(name="email",

value="admin@example.com")

 }

)

public class GenericServletDemoServlet

extends GenericServlet {

 private static final long

serialVersionUID = 62500890L;

 @Override

 public void service(ServletRequest

request,

 ServletResponse response)

 throws ServletException,

IOException {

 ServletConfig servletConfig =

getServletConfig();

 String admin =

servletConfig.getInitParameter("admin");

 String email =

servletConfig.getInitParameter("email");

response.setContentType("text/html");

 PrintWriter writer =

response.getWriter();

 writer.print("<html><head></head>

<body>" +

 "Admin:" + admin +

 "
Email:" + email +

 "</body></html>");

 }

}

As you can see, by extending GenericServlet you do not need
to override methods that you don’t plan on changing. As a result,
you have cleaner code. In Listing 32.3, the only method
overridden is the service method. Also, there is no need to
preserve the ServletConfig object yourself. If you need to
access the ServletConfig object, you can simply call the
getServletConfig method of GenericServlet.

Invoke the servlet using this URL and the result should be
similar to that of ServletConfigDemoServlet.

http://localhost:8080/app32a/generic

Even though GenericServlet is a nice enhancement to Servlet,
it is not something you use frequently, however, as it is not as
advanced as HttpServlet. HttpServlet is in fact the real deal
and used in real-world applications. This class is explained in the
next section, “HTTP Servlets.”

HTTP Servlets

Most, if not all, servlet applications you write will work with
HTTP. The javax.servlet.http package contains classes and
interfaces you can use to write HTTP servlet applications. Many
of the members in javax.servlet.http override those in
javax.servlet. Most of the time, you will use the members in
javax.servlet.http.

Figure 32.6 shows the main types in javax.servlet.http.

Figure 32.6: The main members of
javax.servlet.http

HttpServlet
The HttpServlet class overrides
javax.servlet.GenericServlet. When using HttpServlet, you
will also work with the HttpServletRequest and
HttpServletResponse objects that represent the servlet
request and the servlet response, respectively. The

HttpServletRequest interface extends
javax.servlet.ServletRequest and HttpServletResponse
extends javax.servlet.ServletResponse.

HttpServlet overrides the service method in
GenericServlet and adds another service method with the
following signature:

protected void service(HttpServletRequest

request,

 HttpServletResponse response)

 throws ServletException,

java.io.IOException

The difference between the new service method and the one in
javax.servlet.Servlet is that the former accepts an
HttpServletRequest and an HttpServletResponse, instead
of a ServletRequest and a ServletResponse.

The servlet container, as usual, calls the original service
method in javax.servlet.Servlet, which in HttpServlet is
written as follows:

public void service(ServletRequest req,

ServletResponse res)

 throws ServletException,

IOException {

 HttpServletRequest request;

 HttpServletResponse response;

 try {

 request = (HttpServletRequest)

req;

 response = (HttpServletResponse)

res;

 } catch (ClassCastException e) {

 throw new ServletException("non-

HTTP request or response");

 }

 service(request, response);

}

The original service method downcasts the request and
response objects from the servlet container to
HttpServletRequest and HttpServletResponse,
respectively, and call the new service method. The
downcasting is always successful because the servlet container
always passes an HttpServletRequest and an
HttpServletResponse objects when calling a servlet’s service
method, to anticipate the use of HTTP. Even if you are
implementing javax.servlet.Servlet or extending
javax.servlet.GenericServlet, you can downcast the servlet
request and servlet response passed to the service method to
HttpServletRequest and HttpServletResponse.

The new service method in HttpServlet then examines the
HTTP method used to send the request (by calling
request.getMethod) and call one of the following methods:
doGet, doPost, doHead, doPut, doTrace, doOptions, and
doDelete. Each of the seven methods represents an HTTP
method. doGet and doPost are the most frequently used. In
addition, you rarely override the service methods anymore.
Instead, you override doGet or doPost or both doGet and
doPost.

To summarize, there are two features in HttpServlet that you
do not find in GenericServlet:

Instead of the service method, you will override doGet,
doPost, or both of them. In rare cases, you will also
override any of these methods: doHead, doPut, doTrace,
doOptions, doDelete.

You will work with HttpServletRequest and
HttpServletResponse, instead of ServletRequest and
ServletResponse.

HttpServletRequest
HttpServletRequest represents the servlet request in the
HTTP environment. It extends the
javax.servlet.ServletRequest interface and adds several
methods. Some of the methods are:

java.lang.String getContextPath()

Returns the portion of the request URI that
indicates the context of the request.

Cookie[] getCookies()

Returns an array of Cookie objects.

java.lang.String

getHeader(java.lang.String name)

Returns the value of the specified HTTP
header.

java.lang.String getMethod()

Returns the name of the HTTP method with
which this request was made.

java.lang.String getQueryString()

Returns the query string in the request
URL.

HttpSession getSession()

Returns the session object associated with
this request. If none is found, creates a new
session object.

HttpSession getSession(boolean create)

Returns the current session object
associated with this request. If none is
found and the create argument is true,
create a new session object.

HttpServletResponse
HttpServletResponse represents the servlet response in the
HTTP environment. Here are some of the methods defined in it.

void addCookie(Cookie cookie)

Adds a cookie to this response object.

void addHeader(java.lang.String name,

java.lang.String value)

Adds a header to this response object.

void sendRedirect(java.lang.String

location)

Sends a response code that redirects the
browser to the specified location.

Writing an Http Servlet
Extending HttpServlet is similar to subclassing
GenericServlet. However, instead of overriding the service
method, you override the doGet and doPost methods in a
HttpServlet subclass.

The app32b application that accompanies this chapter
features a servlet that renders an HTML form and process the
form submission. The servlet is given in Listing 32.4.

Listing 32.4: The FormServlet class

package app32b;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Enumeration;

import javax.servlet.ServletException;

import

javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import

javax.servlet.http.HttpServletRequest;

import

javax.servlet.http.HttpServletResponse;

@WebServlet(name = "FormServlet",

urlPatterns = { "/form" })

public class FormServlet extends

HttpServlet {

 private static final long

serialVersionUID = 54L;

 private static final String TITLE =

"Order Form";

 @Override

 public void doGet(HttpServletRequest

request,

 HttpServletResponse response)

 throws ServletException,

IOException {

response.setContentType("text/html");

 PrintWriter writer =

response.getWriter();

 writer.println("<html>");

 writer.println("<head>");

 writer.println("<title>" + TITLE

+ "</title></head>");

 writer.println("<body><h1>" +

TITLE + "</h1>");

 writer.println("<form

method='post'>");

 writer.println("<table>");

 writer.println("<tr>");

 writer.println("<td>Name:</td>");

 writer.println("<td><input

name='name'/></td>");

 writer.println("</tr>");

 writer.println("<tr>");

 writer.println("<td>Address:

</td>");

 writer.println("<td><textarea

name='address' "

 + "cols='40' rows='5'>

</textarea></td>");

 writer.println("</tr>");

 writer.println("<tr>");

 writer.println("<td>Country:

</td>");

 writer.println("<td><select

name='country'>");

 writer.println("<option>United

States</option>");

 writer.println("

<option>Canada</option>");

 writer.println("</select></td>");

 writer.println("</tr>");

 writer.println("<tr>");

 writer.println("<td>Delivery

Method:</td>");

 writer.println("<td><input

type='radio' " +

 "name='deliveryMethod'"

 + " value='First

Class'/>First Class");

 writer.println("<input

type='radio' " +

 "name='deliveryMethod'

"

 + "value='Second

Class'/>Second Class</td>");

 writer.println("</tr>");

 writer.println("<tr>");

 writer.println("<td>Shipping

Instructions:</td>");

 writer.println("<td><textarea

name='instruction' "

 + "cols='40' rows='5'>

</textarea></td>");

 writer.println("</tr>");

 writer.println("<tr>");

 writer.println("<td>

</td>");

 writer.println("<td><textarea

name='instruction' "

 + "cols='40' rows='5'>

</textarea></td>");

 writer.println("</tr>");

 writer.println("<tr>");

 writer.println("<td>Please send

me the latest " +

 "product catalog:

</td>");

 writer.println("<td><input

type='checkbox' " +

"name='catalogRequest'/></td>");

 writer.println("</tr>");

 writer.println("<tr>");

 writer.println("<td>

</td>");

 writer.println("<td><input

type='reset'/>" +

 "<input type='submit'/>

</td>");

 writer.println("</tr>");

 writer.println("</table>");

 writer.println("</form>");

 writer.println("</body>");

 writer.println("</html>");

 }

 @Override

 public void doPost(HttpServletRequest

request,

 HttpServletResponse response)

 throws ServletException,

IOException {

response.setContentType("text/html");

 PrintWriter writer =

response.getWriter();

 writer.println("<html>");

 writer.println("<head>");

 writer.println("<title>" + TITLE

+ "</title></head>");

 writer.println("</head>");

 writer.println("<body><h1>" +

TITLE + "</h1>");

 writer.println("<table>");

 writer.println("<tr>");

 writer.println("<td>Name:</td>");

 writer.println("<td>" +

request.getParameter("name")

 + "</td>");

 writer.println("</tr>");

 writer.println("<tr>");

 writer.println("<td>Address:

</td>");

 writer.println("<td>" +

request.getParameter("address")

 + "</td>");

 writer.println("</tr>");

 writer.println("<tr>");

 writer.println("<td>Country:

</td>");

 writer.println("<td>" +

request.getParameter("country")

 + "</td>");

 writer.println("</tr>");

 writer.println("<tr>");

 writer.println("<td>Shipping

Instructions:</td>");

 writer.println("<td>");

 String[] instructions = request

.getParameterValues("instruction");

 if (instructions != null) {

 for (String instruction :

instructions) {

writer.println(instruction + "
");

 }

 }

 writer.println("</td>");

 writer.println("</tr>");

 writer.println("<tr>");

 writer.println("<td>Delivery

Method:</td>");

 writer.println("<td>"

 +

request.getParameter("deliveryMethod")

 + "</td>");

 writer.println("</tr>");

 writer.println("<tr>");

 writer.println("<td>Catalog

Request:</td>");

 writer.println("<td>");

 if

(request.getParameter("catalogRequest")

== null) {

 writer.println("No");

 } else {

 writer.println("Yes");

 }

 writer.println("</td>");

 writer.println("</tr>");

 writer.println("</table>");

 writer.println("<div

style='border:1px solid #ddd;" +

 "margin-top:40px;font-

size:90%'>");

 writer.println("Debug

Info
");

 Enumeration<String>

parameterNames = request

 .getParameterNames();

 while

(parameterNames.hasMoreElements()) {

 String paramName =

parameterNames.nextElement();

 writer.println(paramName + ":

");

 String[] paramValues =

request

.getParameterValues(paramName);

 for (String paramValue :

paramValues) {

 writer.println(paramValue

+ "
");

 }

 }

 writer.println("</div>");

 writer.println("</body>");

 writer.println("</html>");

 }

}

You invoke the FormServlet using this URL:

http://localhost:8080/app32b/form

Typing the URL in your browser invokes the servlet’s doGet
method and you’ll see an HTML form in your browser. The form
is shown in Figure 32.7.

Figure 32.7: The empty Order form

If you look at the HTML source, you’ll find a form with a post
method like this:

<form method='post'>

Submitting the form will invoke the servlet’s doPost method. As
a result, you’ll see in your browser the values that you entered to
the form. Figure 32.8 shows the result of submitting the Order
form.

Figure 32.8: Result from submitting the
Order form

Using the Deployment
Descriptor

As you can see in the previous examples, writing and deploying a
servlet application is easy. One aspect of deployment deals with
mapping your servlet with a path. In the examples, you used the
WebServlet annotation type to map a servlet with a path.
There’s another way of doing this, by using the deployment
descriptor. In this section you’ll learn how to configure your
application using the deployment descriptor.

The app26c application contains two servlets,
SimpleServlet and WelcomeServlet to demonstrate how you
can use the deployment descriptor to map servlets. Listings 32.5
and 32.6 show SimpleServlet and WelcomeServlet,
respectively. Note that the servlet classes are not annotated
@WebServlet.

Listing 32.5: The SimpleServlet class
package app32c;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import

javax.servlet.http.HttpServletRequest;

import

javax.servlet.http.HttpServletResponse;

public class SimpleServlet extends

HttpServlet {

 private static final long

serialVersionUID = 8946L;

 @Override

 public void doGet(HttpServletRequest

request,

 HttpServletResponse response)

 throws ServletException,

IOException {

response.setContentType("text/html");

 PrintWriter writer =

response.getWriter();

 writer.print("<html><head>

</head>" +

 "<body>Simple

Servlet</body></html");

 }

}

Listing 32.6: The WelcomeServlet class

package app32c;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import

javax.servlet.http.HttpServletRequest;

import

javax.servlet.http.HttpServletResponse;

public class WelcomeServlet extends

HttpServlet {

 private static final long

serialVersionUID = 27126L;

 @Override

 public void doGet(HttpServletRequest

request,

 HttpServletResponse response)

 throws ServletException,

IOException {

response.setContentType("text/html");

 PrintWriter writer =

response.getWriter();

 writer.print("<html><head>

</head>"

 + "<body>Welcome</body>

</html>");

 }

}

Listing 32.7 shows the deployment descriptor for app26c that
includes mapping information for the two servlets. The
deployment descriptor must be named web.xml and saved to
the WEB-INF directory of the application.

Listing 32.7: The deployment descriptor
<?xml version="1.0" encoding="ISO-8859-

1"?>

<web-app

xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSche

ma-instance"

xsi:schemaLocation="http://java.sun.com/x

ml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-

app_3_0.xsd"

 version="3.0">

 <servlet>

 <servlet-

name>SimpleServlet</servlet-name>

 <servlet-

class>app32c.SimpleServlet</servlet-

class>

 <load-on-startup>10</load-on-

startup>

 </servlet>

 <servlet-mapping>

 <servlet-

name>SimpleServlet</servlet-name>

 <url-pattern>/simple</url-

pattern>

 </servlet-mapping>

 <servlet>

 <servlet-

name>WelcomeServlet</servlet-name>

 <servlet-

class>app32c.WelcomeServlet</servlet-

class>

 <load-on-startup>20</load-on-

startup>

 </servlet>

 <servlet-mapping>

 <servlet-

name>WelcomeServlet</servlet-name>

 <url-pattern>/welcome</url-

pattern>

 </servlet-mapping>

</web-app>

There are many advantages of using the deployment descriptor.
For one, you can include elements that have no equivalent in
@WebServlet, such as the load-on-startup element. This
elements loads the servlet at the application start-up, rather than
when the servlet is first called. Using load-on-startup means
the first call to the servlet will not take longer than subsequent
calls. This is especially useful if the init method of the servlet
may take a while to complete.

Another advantage of using the deployment descriptor is that
you don’t need to recompile your servlet class if you need to
change configuration values, such as a servlet path. In addition,
you can pass initial parameters to a servlet and edit them
without recompiling the servlet class.

The deployment descriptor also allows you to override values
specified in a servlet annotation. A WebServlet annotation on a
servlet that is also declared in the deployment descriptor will
have no effect. However, annotating a servlet not in the
deployment descriptor in an application with a deployment
descriptor will still work. This means, you can have annotated
servlets and declare servlets in the deployment descriptor in the
same application.

Figure 32.9 shows the directory structure of app26c. The
directory structure does not differ much from that of app26a.
The only difference is that app26c has a web.xml file (the
deployment descriptor) in the WEB-INF directory.

Figure 32.9: Directory structure of
app32c with deployment descriptor

Now that SimpleServlet and WelcomeServlet are declared
in the deployment descriptor, you can use these URLs to access
them:

http://localhost:8080/app32c/simple

http://localhost:8080/app32c/welcome

Summary

Servlet technology is part of the Java EE. Servlets run in a servlet
container, and the contract between the container and servlets
takes the form of the javax.servlet.Servlet interface. The

javax.servlet package also provides the GenericServlet
abstract class, a convenient class that you can extend to write a
servlet. However, most modern servlets will work in the HTTP
environment and, as such, subclassing the
javax.servlet.http.HttpServlet class is more convenient. The
HttpServlet class itself is a subclass of GenericServlet.

Quiz

1. What are the three life cycle methods of
the javax.servlet.Servlet interface?

2. What’s the main difference between the
getWriter method and the
getOutputStream method in the
javax.servlet.ServletResponse
interface? Which one of the two do you use
more often?

3. Name four interfaces in javax.servlet
and three interfaces in
javax.servlet.http.

Chapter 33
JavaServer Pages

As evidenced in Chapter 32, there are two drawbacks servlets are
not capable of overcoming. First, when sending a response, all
HTML tags must be enclosed in strings, making sending HTTP
response a tedious effort. Second, all text and HTML tags are
hardcoded, and, as a result, minor changes to an application
presentation part, such as changing a page background color,
requires recompilation.

JavaServer Pages (JSP) comes to the rescue and solves the two
problems in servlets. JSP does not replace Servlet, however, but
complements it. Modern Java Web applications use servlets and
JSP pages at the same time. The latest version of JSP at the time
of writing is 2.3.

A JSP Overview

A JSP page is essentially a servlet. However, working with JSP
pages is easier than with servlets because of two reasons. First,

you do not have to compile JSP pages. Second, JSP pages are
basically text files with the jsp extension and you can use any
text editor to write them.

JSP pages run on a JSP container. A servlet container is
normally also a JSP container. Tomcat, for instance, is a
servlet/JSP container. The first time a JSP page is requested, the
JSP container does two things:

1. Translate the JSP page into a JSP page
implementation class. This class must
implement the javax.servlet.Servlet
interface. The result of the translation is
dependent on the JSP container. The class
name is also JSP container-specific. You
do not have to worry about this
implementation class or its name because
you never need to work with it directly. If
there is a translation error, an error
message will be sent to the client.

2. If the translation was successful, the JSP
container compiles the implementation
class, and then loads and instantiate it and

perform the normal lifecycle operations it
does for a servlet.

For subsequent requests for the same JSP page, the JSP
container checks if the JSP page has been modified since the last
time it was translated. If so, it was retranslated, recompiled, and
executed. If not, the JSP servlet already in memory is executed.
This way, the first invocation of a JSP page always takes longer
than subsequent requests because it involves translation and
compilation. To get around this problem, you can do one of the
following:

Configure the application so that all JSP pages will be called
(so that they will be translated and compiled) when the
application starts, rather than wait for the first requests.

Precompile the JSP pages and deploy them as servlets.

JSP comes with an API that comprises three packages. However,
when working with JSP, you do not often work directly with this
API. Instead, you will work with classes and interfaces in the
Servlet API. In addition, you need to familiarize yourself with the
syntax of a JSP page.

A JSP page can contain template data and syntactic elements.
An element is something that has a special meaning to the JSP
translator. For example, <% is an element because it denotes the
start of a Java code block within a JSP page. %> is also an

element because it ends a Java code block. Anything else that is
not an element is template data. Template data is sent as is to the
browser. For instance, HTML tags and text in a JSP page are
template data.

Listing 33.1 presents a JSP page named welcome.jsp that
sends “Welcome” to the client. Notice how simple it is compared
to the servlet in Listing 32.1 that does the same thing?

Listing 33.1: The welcome.jsp page
<!DOCTYPE html>

<html>

<head><title>Welcome</title></head>

<body>

Welcome

</body>

</html>

In addition, JSP application deployment is simpler too. A JSP
page is compiled into a servlet class, but a JSP does not need to
be registered in the deployment descriptor or mapped. Every JSP
page deployed in an application directory can be invoked by
typing the name of the page. Figure 33.1 shows the directory
structure of app26, the JSP application accompanying this
chapter..

Figure 33.1: The app33 directory
structure

With only a JSP page, the structure of the app33 application is
very simple. It only has the WEB-INF directory and the
welcome.jsp page. The WEB-INF directory is empty. You
don’t even need a deployment descriptor.

You can invoke the welcome.jsp page using this URL:

http://localhost:8080/app33/welcome.jsp

Note
You do not need to restart Tomcat when adding a new JSP page.

Listing 33.2 shows how to use Java code to produce a dynamic
page. The todaysDate.jsp page in Listing 33.2 shows today’s
date.

Listing 33.2: The todaysDate.jsp page
<%@page import="java.time.LocalDate"%>

<%@page

import="java.time.format.DateTimeFormatte

r"%>

<%@page

import="java.time.format.FormatStyle"%>

<!DOCTYPE html>

<html>

<head><title>Today's date</title></head>

<body>

<%

 LocalDate today = LocalDate.now();

 String s =

today.format(DateTimeFormatter.ofLocalize

dDate(FormatStyle.LONG));

 out.println("Today is " + s);

%>

</body>

</html>

The todaysDate.jsp page sends the string “Today is” followed
by today’s date (in the long format, such as August 30, 2015) to
the browser.

There are two things to note. First, Java code can appear
anywhere in a page and is enclosed by <% and %>. Second, to
import a type to be used from Java code, you use the import
attribute of the page directive. Both the <% … %> block and the
page directive will be discussed much later in this chapter.

You can invoke the todayDate.jsp page using this URL:

http://localhost:8080/app33/todaysDate.jsp

jspInit, jspDestroy, and Other
Methods

As mentioned before, a JSP is translated into a servlet source file
and then compiled into a servlet class. A JSP page body more or
less translates into the service method of Servlet. However, in
a servlet you have the init and destroy methods for writing
initialization and cleaning up code. How do you override these
methods in a JSP page?

In a JSP page you have two similar methods:

jspInit. This method is similar to the init method in
Servlet. jspInit is invoked when the JSP page is initialized.
One difference is jspInit does not take an argument. You
can still obtain the ServletConfig object through the
config implicit object. (See the next section, “Implicit
Objects.”)

jspDestroy. This method is similar to the destroy method
in Servlet and is invoked when the JSP page is about to be
destroyed.

A method definition in a JSP page is enclosed with <%! and %>.
Listing 33.3 presents the lifeCycle.jsp page that demonstrates
how you can override jspInit and jspDestroy.

Listing 33.3: The lifeCycle.jsp page
<%!

 public void jspInit() {

 System.out.println("jspInit

...");

 }

 public void jspDestroy() {

 System.out.println("jspDestroy

...");

 }

%>

<!DOCTYPE html>

<html>

<head><title>jspInit and

jspDestroy</title></head>

<body>

Overriding jspInit and jspDestroy

</body>

</html>

You can invoke the JSP page by using this URL:

http://localhost:8080/app27/lifeCycle.jsp

You will see “jspInit …” on your console when you first invoke
the JSP page, and “jspDestroy …” when you shut down Tomcat.

A <%! … %> block can appear anywhere in a JSP page, and
there can be more than one <%! … %> block in a single page.

You can also write other methods using the <%! … %> block.
These methods can be invoked from inside the JSP page.

Implicit Objects

With the service method in javax.servlet.Servlet, you get an
HttpServletRequest and an HttpServletResponse objects.
You also get a ServletConfig object (passed to the init method)
and the ServletContext object. In addition, you can obtain an
HttpSession object by calling the getSession method on the
HttpServletRequest object.

In JSP, you retrieve those objects using JSP implicit objects.
The implicit objects are listed in Table 33.1.

For example, the request implicit object represents the
HttpServletRequest object passed by the servlet/JSP
container to the servlet’s service method. You can use request

as if it was a variable reference to the HttpServletRequest
object. For instance, the following code retrieves the userName
parameter from the HttpServletRequest object.

<%

 String userName =

request.getParameter("userName");

%>

Object

Type

request

javax.servlet.http.HttpServlet
Request

response

javax.servlet.http.HttpServlet
Response

out

javax.servlet.jsp.JspWriter

session

javax.servlet.http.HttpSession

application

javax.servlet.ServletContext

config

javax.servlet.ServletConfig

pageContext

javax.servlet.jsp.PageContext

page

javax.servlet.jsp.HttpJspPage

exception

java.lang.Throwable

Table 33.1: JSP Implicit Objects

The out implicit object references a JspWriter object, which is
similar to the java.io.PrintWriter object you obtain from the
getWriter method of the HttpServletResponse object. You
can call its print method overloads just as you would a
PrintWriter object, to send messages to the browser.

out.println("Welcome");

The implicitObjects.jsp page in Listing 33.4 demonstrates the
use of some of the implicit objects.

Listing 33.4: The implicitObjects.jsp
page

<%@page import="java.util.Enumeration"%>

<!DOCTYPE html>

<html>

<head><title>JSP Implicit Objects</title>

</head>

<body>

Http headers:

<%

 for (Enumeration e =

request.getHeaderNames();

 e.hasMoreElements();) {

 String header = (String)

e.nextElement();

 out.println(header + ": " +

request.getHeader(header) +

 "
");

 }

%>

<hr/>

<%

 out.println("Buffer size: " +

response.getBufferSize() +

 "
");

 out.println("Session id: " +

session.getId() + "
");

 out.println("Servlet name: " +

config.getServletName() +

 "
");

 out.println("Server info: " +

application.getServerInfo());

%>

</body>

</html>

Even though you can have retrieve the HttpServletResponse
object through the response implicit object, you do not need to
set the content type. By default, the JSP compiler sets the
content type of every JSP to text/html.

The page implicit object represents the current JSP page and
is not normally used by JSP page authors.

JSP Syntactic Elements

To write JSP pages, you need to be familiar with the JSP syntax,
more than with the JSP API. There are three types of JSP
syntactic elements: directives, scripting elements, and actions.
Directives and scripting elements are discussed in this chapter.

Directives
Directives are instructions for the JSP translator on how a JSP
page should be translated into a servlet implementation class.
There are several directives defined in JSP 2.1, but only the two
most important ones, page and include, are discussed in this
chapter. The other directives that are not covered are taglib,
tag, attribute, and variable.

The page Directive
You use the page directive to instruct the JSP translator on
certain aspects of the current JSP page. For example, you can tell
the JSP translator the size of the buffer that should be used for

the out implicit object, what content type to use, what Java types
to import, and so on.

You use the page directive using this syntax:

<%@ page attribute1="value1"

attribute2="value2" ... %>

where the space between @ and page is optional and attribute1,
attribute2, and so on are the page directive’s attributes. There
are 13 attributes of the page directive.

import. Specifies the type that will be imported and
useable by the Java code in this page. For example,
specifying import="java.util.ArrayList" will import the
ArrayList class. You can use the wildcard * to import the
whole package, such as in import="java.util.*". To
import multiple types you can separate two types with a
comma, such as in import="java.util.ArrayList,
java.nio.file.Files, java.io.PrintWriter". All types in
the following packages are implicitly imported: java.lang,
javax.servlet, javax.servlet.http, javax.servlet.jsp.

session. A value of true indicates that this page
participates in session management, and a value of false
indicates otherwise. By default, the value is true, which
means the invocation of this page will cause a
javax.servlet.http.HttpSession instance to be created, if

one does not yet exist.

buffer. Specifies the buffer size of the out JspWriter
object in kilobytes. The suffix kb is mandatory. The default
buffer size is 8kb or more, depending on the JSP container.
It is also possible to assign none to this attribute to indicate
that no buffering should be used, which will cause all output
is written directly through to the corresponding
PrintWriter object.

autoFlush. A value of true, the default value, indicates
that the buffered output should be flushed automatically
when the buffer becomes full. A value of false indicates that
buffer is only flushed if the flush method of the response
object is called. Consequently, an exception will be thrown
in the case of buffer overflow.

isThreadSafe. Indicates the level of thread safety
implemented in the page. JSP authors are advised against
using this attribute as it could result in the generated servlet
containing deprecated code.

info. Specifies the return value of the getServletInfo
method of the generated servlet.

errorPage. Indicates the page that will handler errors in
this page.

isErrorPage. Indicates if this page is an error page
handler.

contentType. Specifies the content type of the response

object of this page. By default, the value is text/html.

pageEncoding. Specifies the character encoding for this
page. By default, the value is ISO-8859-1.

isELIgnored. Indicates whether EL expressions are
ignored. EL, which is short for expression language, is not
discussed in this chapter.

language. Specifies the scripting language used in this
page. By default, its value is java and this is the only valid
value in JSP 2.0.

extends. Specifies the superclass that this JSP page’s
implementation class must extend. This attribute is rarely
used and should only be used with extra caution.

The page directive can appear anywhere in a page, except if it
contains the contentType attribute or the pageEncoding
attribute, because the content type and the character encoding
must be set prior to sending any content.

The page directive can also appear multiple times. However,
an attribute that appears in multiple page directives must have
the same value. An exception to this is the import attribute. The
effect of the import attribute appearing in multiple page
directives is cumulative. For example, the following page
directives import both java.util.ArrayList and
java.nio.file.Path.

<%@page import="java.util.ArrayList"%>

<%@page import="java.nio.file.Path"%>

This is the same as

<%@page import="java.util.ArrayList,

java.nio.file.Path"%>

As another example, here is another page directive:

<%@page session="false" buffer="16kb"%>

The include Directive
You use the include directive to include the content of another
file in the current JSP page. You can use multiple include
directives in a JSP page. Modularizing a particular content into
an include file is useful if that content is used by different pages
or used by a page in different places.

The syntax of the include directive is as follows:

<%@ include file="url"%>

where the space between @ and include is optional and url
represents the relative path to an include file. If url begins with a
forward slash (/), it is interpreted as an absolute path on the
server. If it does not, it is interpreted as relative to the current
JSP page.

The JSP translator translates the include directive by
replacing the directive with the content of the include file. In
other words, if you have written the copyright.html file in
Listing 33.5.

Listing 33.5: The copyright.html
include file

<hr/>

©2015 BrainySoftware

<hr/>

And, you have the main.jsp page in Listing 33.6.

Listing 33.6: The main.jsp page
<!DOCTYPE html>

<html>

<head><title>Including a file</title>

</head>

<body>

This is the included content: <hr/>

<%@ include file="copyright.html"%>

</body>

</html>

Using the include directive in the main.jsp page has the same
effect as writing the following JSP page.

<!DOCTYPE html>

<html>

<head><title>Including a file</title>

</head>

<body>

This is the included content: <hr/>

<hr/>

©2015 BrainySoftware

<hr/>

</body>

</html>

For the above include directive to work, the copyright.html
file must reside in the same directory as the including page.

Scripting Elements
You use scripting elements to insert Java code into a JSP page.
There are three types of scripting elements: scriptlets,

declarations, and expressions. They are discussed in the
following subsections.

Scriptlets
A scriptlet is a block of Java code. A scriptlet starts with the <%
tag and ends with the %> tag. You have seen the use of scriplets
throughout this chapter. As another example, consider the JSP
page in Listing 33.7.

Listing 33.7: Using a scriplet
<%@page import="java.util.Enumeration"%>

<!DOCTYPE html>

<html>

<head><title>Scriptlet example</title>

</head>

<body>

Http headers:

<%

 for (Enumeration e =

request.getHeaderNames();

 e.hasMoreElements();) {

 String header = (String)

e.nextElement();

 out.println(header + ": " +

request.getHeader(header) +

 "
");

 }

 String message = "Thank you.";

%>

<hr/>

<%

 out.println(message);

%>

</body>

</html>

There are two scriptlets in the JSP page in Listing 33.7. Note that
variables defined in a scriptlet is visible to other scriptlets below
it.

It is legal for the first line of code in a scriptlet to be in the
same line as the <% tag and for the %> tag to be in the same line
as the last line of code. However, this would result in a less
readable page.

Expressions
An expression is evaluated and its result is fed to the print
method of the out implicit object. An expression starts with
<%= and ends with %>. For example, here is an expression:

Today is

<%=java.time.LocalDate.now().toString()%>

Note that there is no semicolon after the expression. With this
expression, the JSP container first evaluates

java.time.LocalDate.now().toString(), and then passes the
result to out.print(). This is the same as writing the following
scriptlet:

Today is

<%

out.print(java.time.LocalDate.now().toStr

ing());

%>

Declarations
You can declare variables and methods that can be used in a JSP
page. You enclose a declaration with <%! and %>. For example,
Listing 33.8 shows a JSP page that declares a method named
getTodayDate.

Listing 33.8: Using a declaration
<%!

 public String getTodaysDate() {

 return

java.time.LocalDate.now().toString();

 }

%>

<!DOCTYPE html>

<html>

<head><title>Declarations</title></head>

<body>

Today is <%=getTodaysDate()%>

</body>

</html>

Handling Errors

Error handling is well supported in JSP. Java code can be
handled using the try statement, however you can also specify a
page that will be displayed should any of the pages in the
application encounter an uncaught exception. In such events, the
user will see a well designed page that explains what happened,
and not an error message that makes them frown.

You make a JSP page an error page by using the attribute
isErrorPage attribute of the page directive. The value of the
attribute must be true. Listing 33.9 shows such an error
handler.

Listing 33.9: The errorHandler.jsp page
<%@page isErrorPage="true"%>

<html>

<head><title>Error</title></head>

<body>

An error has occurred.

Error message:

<%

 out.println(exception.toString());

%>

</body>

</html>

Other pages that need protection against uncaught exception will
have to use the errorPage attribute of the page directive, citing
the path to the error handling page as the value. For example,
the buggy.jsp page in Listing 33.10 uses the error handler in
Listing 33.9.

Listing 33.10: The buggy.jsp page
<%@page errorPage="errorHandler.jsp"%>

Deliberately throw an exception

<%

 Integer.parseInt("Throw me");

%>

If you run the buggy.jsp page, it will throw an exception.
However, you will not see the error message produced by the
servlet/JSP container. Instead, the content of the
errorHandler.jsp page is displayed.

Summary

JSP is the second technology for building Web applications. JSP
was invented after Servlet to complement it, not to replace it.
Well designed Java Web applications use both servlets and JSP.

This chapter presented a brief introduction to JSP.

Quiz

1. What are the two problems in Servlet
technology that JSP solves?

2. Why is it easier to program JSP than to
write servlets?

Chapter 34
Javadoc

You already know how to write comments in your classes using
the // and /* … */ notations. These comments serve as
documentation that is good mostly for the developer who is
writing the class and developers who will continue work on the
class. There is another type of documentation in Java. This type
is suitable if you are writing API that will be used by other
people. This chapter shows how to use the javadoc program to
generate Java API documentation.

Overview

You use the javadoc program that comes with the JDK and can
be found under the bin directory of your JDK installation. By
default, javadoc generates HTML files that describe packages
and types. Every single HTML file generated describes either a
package or a type. Within a description of a type you can also
describe methods and fields of the type, plus constructors of the
type if the type is a class.

The input to javadoc is Java source files and javadoc is
happy to overlook any compile errors in the source code. This
means, you can generate documentation even before the project
is complete. The output by default is a set of HTML files,
however you can customize javadoc to format output
differently.

The chapters provides two topics of discussions.

How to write documentation in your Java class,

How to use javadoc to generate HTML files.

Figure 34.1: Java API documentation

Writing Documentation in

Java Classes

This section teaches you how to embed documentation
comments, or doc comments for short, in your source code. You
can write doc comments for a class, an interface, a method,
constructor, and a field.

A doc comment begins with a /* sequence and ends with a */.
It can contains one or more lines of text, which is called the main
description, and each line can be preceded by a *. When parsed,
any leading * and tabs are ignored. A doc comment must appear
right before the declaration of a class, an interface, a constructor,
a method, or a field.

For example, here is a doc comment with a description “This is
a comment”.

/**

 * This is a comment

*/

Because by default doc comments will be generated as HTML
files, be careful when part of the text in a comment contains what
looks like an HTML tag, such as or <i>. These will be
interpreted by the browser as HTML tags. Therefore, a < has to
be written as its entity code (<) and > as >, and ampersand

& as &.

A doc comment can also contain tags, which are special
keywords that can be processed. Tags must appear after the
description of a doc comment. There can be multiple tags in a
comment and it is possible to have tags and no description.

There are two types of tags:

Block tags or standalone tags. Appear as @tag

In-line tags. Appear within curly braces, as {@tag}.

To be processed, a tag must appear at the beginning of a line,
ignoring leading asterisks, white spaces, and the separator (/**).
A @tag that appears elsewhere will not be translated as a tag. If
part of the description starts a line with @, you need to escape it
using the HTML entity @.

For example, the following doc comment contains an author
tag that specifies the name of the developer writing the class.

/**

 * This is a comment

 * @author Brian Softwood

*/

The following sections list tags that can be used in doc
comments.

@author
You use the author tag to specify the author of the commented
class or method. You can have multiple author tags in a doc
comment, in which case two names will be separated by a
comma in the resulting HTML.

You specify the author tag by using this syntax:

@author name

For example:

@author John Clueless

or

@author Keunho Lee; Cindy Choa

Note that the author tag will only be included in documentation
if the -author option is used when using javadoc.

{@code}
You use the code tag to display text in code font, the same as
using the HTML code tag. For example, the following doc
comment results in StringParser printed in font code:

This method creates a {@code

StringParser} object.

This is similar to:

This method creates a

<code>StringParser</code> object.

The difference is HTML tags within a {@code} will be printed
literally. For example, {@code StringUtil} will be
printed as StringUtil, whereas <code>
StringUtil</code> will be printed as StringUtil in
bold face.

{@docRoot}
You use {@docRoot} to specify the generated document’s root
directory. This tag is useful when you need to include an external
file in all generated pages. {@docRoot} can appear in any doc
comment, including the text portion of another tag.

For example, the following {@docRoot} specifies the
location of the help.html file.

Details can be found in <a href="

{@docRoot}/help.html">here

@deprecated
Use @deprecated to indicate that a type or a method is
deprecated. See also the Deprecated annotation in Chapter 18,
“Annotations.”

@exception
You use @exception in a doc comment for a method or a
constructor to indicate that the method or constructor may
throw an exception. For example, the openFile method below
may throw a java.io.FileNotFoundException.

/**

 * @throws java.io.FileNotFoundException.

If the specified file is

 * not found.

 */

public void openFile(String filename) {

 // code

}

@exception and @throws are synonyms.

{@inheritDoc}
This tag explicitly inserts a description in a method main
description or @return, @param, or @throws tag comment
from the nearest superclass or implemented interface.

Note that if a main description, or @return, @param, or
@throws tag is missing from a method comment, javadoc
automatically copies the corresponding main description or tag
comment from the method it overrides or implements.

{@link}
Inserts an HTML hyperlink that references the documentation
for the specified package, class, or member name of a referenced
class. The syntax of this tag is

{@link package.class#member label}

where label denotes the text that will appear as the link in code
font. If one of the package, class, or member elements is
missing, the same package or class as the documented type is
assumed.

For example, if you have the

com.brainysoftware.common.StringUtil class in your API,
and it possesses the convertString method whose signature is
as follows:

public java.lang.String

convertString(java.lang.String s)

From another class you can reference the convertString
method by using this link tag:

Use the {@link

com.brainysoftware.common.StringUtil#toMi

xedCase(java.lang.String)

 StringUtil.toMixedCase} method.

The link will be translated into this HTML tag in the generated
HTML document:

Use the

<A

HREF="../../../com/brainysoftware/common/

StringUtil.html#

toMixedCase(java.lang.String)">

<CODE>StringUtil.toMixedCase</CODE>

 method.

{@linkplain}
This tag is very similar to {@link}, except that the label is not
shown in code font.

{@literal}
You use this tag if you want to display text and escape all special
characters in the text. This means, <i> does not mean italicizing
the text. The syntax for this tag is

{@literal text}

@param
You use this tag to describe a parameter of a method or a
constructor. The syntax of the param tag is as follows.

@param parameterName description

For example, the following method is described using the
param tag.

/**

 * Convert the specified string according

to Rule A

 * @param s the String to be converted

 */

public String convertString(String s) {

 // code

}

@return
Use this tag to describe the return value of a method. The syntax
is

@return description

For example, the return value of the convertString method
below is described.

/**

 * Convert the specified string according

to Rule A.

 * @param s the String to be converted

 * @return A new String object converted

according to Rule A.

 */

public String convertString(String s) {

 // code

}

@see
Use this tag to add a “See Also” section, which may be followed
by a text entry or a link that references a resource. The syntax
has three forms:

@see text

@see link

@see package.class#member label

The first form does not generate a hyperlink. For example:

@see "The Specification Guide"

The second form is followed by an HTML hyperlink. For
instance:

@see Specification

Guide

The third form is most common and is similar to a {@link}. For
example:

* @see

com.brainysoftware.common.StringUtil#toMi

xedCase(

java.lang.String) StringUtil.toMixedCase

method

@serial
This tag is used to describe a default serializable field. Its syntax
is

@serial fieldDescription | include |

exclude

The optional fieldDescription argument explains the meaning of
the field and list acceptable values. The include and exclude
arguments indicate whether a class or package should be
included or excluded from the serialized form page. The rule is
as follows.

A public or protected class that implements
java.io.Serializable is included unless that class or its
package is marked @serial exclude.

A private or package-private class implementing
java.io.Serializable is excluded unless that class or its
package is marked @serial include.

@serialData
Describes the types and order of data in the serialized form.

@serialField
Describes an ObjectStreamField component of a
Serializable class’s serialPersistentFields member.

@since
Adds a “Since” heading with the specified argument. The syntax
is

@since text

Normally, the text argument contains the software version since
which a class or a class member became available. For example:

@since 1.7

@throws

This tag is a synonym for @exception.

{@value}
The syntax of {@value} has two forms:

{@value}

{@value package.class#field}

When used without an argument, this tag describes a static field
and displays the value of that constant. For example:

/**

 * The default value is {@value}.

 */

public static final int FIELD_COUNT = 5;

When used with the argument package.class#field, this tag can
be used to described any program element and displays the value
of the specified constant. For example, the following value tag is
used in a doc comment for a method.

/**

 * Insert {@value #FIELD_COUNT} columns.

 */

public void insertColumns() {

 // code

}

@version
Use this tag to add a “Version” subheading with the specified text
argument. Its syntax is

@version text

This tag will only appear in the documentation if javadoc is
invoked using the –version option.

Javadoc Syntax

The javadoc tool is an application to generate API
documentation. It reads Java source files and generate output
based on doc comments found in the source files. Javadoc
formulates its output based on the standard doclet that generates
HTML pages. Doclets are Java programs that use the Doclet API
to specify the content and format of the output of the javadoc
tool.

You can use javadoc to generate documentation for a single

Java source file, multiple source files, or the whole package. Just
like other Java tools, Javadoc can be used with options. Among
others, there are options to specify the location of the source files
and the location of generated output. The rule for specifying
these locations are similar to that used by java and javac.

One way to generate documentation for a single source file is
to run javadoc from the directory containing the source file. For
example, to generate documentation for the
com.brainysoftware.component.HtmlParser.java file,
run javadoc from the directory containing the com folder.

javadoc

com/brainysoftware/component/HtmlParser.j

ava

To generate documentation from multiple sources, separate two
filenames with a space. For example, the following javadoc
command reads two sources:

javadoc com/domain/Parent.java

com/domain/Child.java

To generate a documentation for a package, use the asterisk wild
character:

javadoc com/domain/*.java

Of course, you can generate from multiple packages by
separating two packages with a space:

javadoc packageA/*.java packageB/*.java

packageC/*.java

However, it is also easy to generate documentation for a whole
package and recursively traverse subpackages in it. For example,
the following javadoc command documents the contents of the
com package and all its subpackages:

javadoc -subpackages com

Or, you can specify multiple packages too, by separating two
package names with a space or a colon:

javadoc -subpackages com:org

If you don’t specify an output location, the generated
documentation will be stored in the same folder as the source,
using the same directory structure. However, often you want to
separate source files from documentation, and for this purpose

you can use the -d option provided by the standard doclet. For
example, the following javadoc command saves the generated
documents in the doc folder under the current directory:

javadoc -subpackages com -d ./doc

Alternatively, you can use an absolute path such as this:

javadoc -subpackages com -d

C:/documents/java/doc

or

javadoc -subpackages com -d

/home/user1/doco

Javadoc options are discussed in the subsection “Javadoc
Options” and standard doclet options in the subsection
“Standard Doclet Options.” The last subsection “Generated
Documents” discuss the types of documents that Javadoc and
the standard doclet generates.

Javadoc Options
You can pass options to Javadoc. To use an option, you use a

hyphen right before the option name. An option may take
arguments. The syntax is as follows:

javadoc -optionA argumentA ... -optionN

argumentN

Here are some of the more important options.

-classpath classPathList

Specifies the paths where javadoc will look
for referenced classes.

-doclet class

Uses the specified doclet class in generating
the documentation.

-exclude packageName1:packageName2:...

Excludes the specified packages and their
subpackages.

-help

Displays the online help that lists all javadoc
command line options.

Instructs javadoc to obtain the text for the overview
documentation from the file specified by path/filename and
place it on the overview-summary.html file.

-overview path/filename

Instructs javadoc to obtain the text for the
overview documentation from the file
specified by path/filename and place it on
the overview-summary.htm file.

-package

Documents only package, protected, and
public classes and members.

-private

Documents all classes and members.

-protected

Documents only public and protected
classes and members. This is the default.

-public

Documents only public classes and
members.

-source javaVersion

Specifies the version of source code
accepted. The default is 1.8, which refers to
JDK 1.8. Other possible values are 1.7, 1.6,
1.5, 1.4 and 1.3.

-sourcepath sourcePathList

Specifies the search paths for finding Java
source files to be documented.

-subpackages package1:package2:...

Indicates that javadoc should traverse the
specified packages recursively.

Standard Doclet Options
Unless explicitly ordered otherwise, javadoc uses the standard
doclet to generate HTML files that document an API. You can
pass options to the standard doclet too, the same way as passing
arguments to the javadoc. Also, options for the standard doclet
can be interspersed with options for javadoc.

Here is the list of the more important options for the standard
doclet.

-author

Includes @author text in the generated

documents.

-d directory

Specifies the target directory to which
generated HTML files will be saved.

-doctitle title

Specifies the title for the overview summary
file.

-footer text

Specifies the footer that will be place in the
end of every generated file.

-header text

Specifies the header that will be placed at
the beginning of every generated file.

-nodeprecated

Excludes any deprecated API.

-nodeprecatedlist

Indicates to the standard doclet to not
generate the deprecated-list.html file.

-noindex

Omits the index from the generated
documents.

-nosince

Ignore all @since tags.

-notree

Omits the class/interface hierarchy pages

from the generated documents.

-stylesheetfile path/filename

Specifies the path of a stylesheet file other
than the standard one.

-windowtitle title

Specifies the value for the HTML title tag in
the generated documents. The title
argument should not contain any HTML
tags.

Generated Documents
Javadoc generates an HTML file for each Java class. The location
of this HTML file is in accordance with the package the class
belonging in. If a Java class belongs to the com.domain
package, the corresponding HTML file will be located in the
com/domain directory.

In addition, there are three other HTML files generated for
each package:

package-frame.html. Lists the members of a package.

package-summary.html. Provides a brief description of
each package member.

package-tree.html. Contains the package class hierarchy.

By default, there is no description in the package-
summary.html file. You can provide a description by creating
either a package-info.java file or a package.html file in the
package directory. The package-info.java option is preferred.
For example, here is a package-info.java file.

/**

 * The com.brainysoftware.common package

contains classes

 * that are shared by all other packages.

 */

package com.brainysoftware.common;

Note that you must have the package declaration in the Java
source.

On top of package-specific files, Javadoc creates files that
summarize all packages in the document. These files are located
at the root of the destination directory and are as follows.

allclasses-frame.html. List all classes and interfaces.

Interfaces are printed in italic. This file is to be one of the
frames contained by the index.html file.

allclasses-noframe.html. Similar to allclasses-
frame.html but to be used when the user browser does not
support frames.

constant-values.html. List constant field values.

deprecated-list.html. List all deprecated members.

help-doc.html. A general file explaining the organization
of the API document.

index.html. The main page that conveniently acts as the
entry point to the whole documentation. It contains
framesets that reference the overview-frame.html,
allclasses-frame.html, and overview-summary.html
files. Figure 34.1 shows a typical index.html file.

index-all.html. An index of all package names and
package member names.

overview-frame.html. Provides an overview of the
document.

overview-summary.html. Provides descriptions of all
packages in the document. The descriptions are taken from
the package-info.java or package.html file for each
package.

overview-tree.html. Contains the hierarchy of each
package in the document.

package-list. Lists all packages.

stylesheet.css. The stylesheet for the generated HTML
files.

Summary

One secret to successful API is the availability of documentation
that explains how to safely use the members of the API and its
class hierarchies. Java supports this by allowing you to provide
comments for each package, type, and type member of your API.
Each doc comment can contain a description and tags.

Javadoc is a tool that comes with the JDK to generate the
document based on comments found in source files. Javadoc
works by reading source files and generates document based on
a doclet. The standard doclet in Javadoc generates HTML files.

Quiz

1. What is the difference between doc
comments and Java comments in code?

Chapter 35
Application Deployment

After you finish developing and testing your application, you
now need to think about deploying it to the end user. The
technology for Java application deployment is Java Web Start
(JWS). It is a tool that runs on the Java Network Launching
Protocol (JNLP). This chapter starts with an overview of JWS
and proceeds with JNLP. At the end of this chapter, an example
is given.

JWS Overview

JWS is a sophisticated deployment tool for deploying Java
applications over the Internet, a local network, or from a CD. The
most common is through Internet deployment, however. You can
also configure JWS to automatically download the correct
version of JRE if the user’s computer does not have the right JRE
installed. Caching is also supported. If you decide to let JWS
cache your application, JWS can run it even though the user
computer is not connected to the Internet.

In short, to deploy your application you need to package it in a
jar file and create a JNLP file that describes the jar file. The
JNLP file can also give the user instructions on what to do to
download and install the application. In addition, you may need
to configure your web server to add a MIME type for the jnlp
extension, if the MIME type has not been added. Optionally, you
can create an HTML page that provides a link to the JNLP file
and uses JavaScript to check the JDK versions in the user’s
computer.

Typically, here are what you tell JWS to do using a JNLP file.

1. If there is no JRE installed on the user’s
computer, Java Web Start can download
the latest version of JRE and installs it.

2. If there is a JRE with the correct version,
JWS simply runs the application.

3. If the JRE on the user’s machine is older
than that required to run the application,
JWS installs the appropriate JRE and runs
the application using the downloaded JRE.
The new JRE is only used to run this
application and will not affect the old JRE.

JWS is installed as part of the JDK. If the user computer does
not have a JDK yet, then no JWS is available. Therefore, you
need to detect if JWS is already installed and download it
automatically if it has not.

If JWS is not installed, then you have two options:

1. Install it silently (only works if the user is
using IE, in other words on Windows only)

2. Direct the user to a page that provides
links to download a JRE (in Linux/Unix)

In the example that illustrates the use of JWS in this chapter,
you can use a JavaScript script to detect if JWS is available and
either installs it silently or redirects the user to a JRE download
area.

JNLP File Syntax

You need a JNLP file that guides JWS to run your application
smoothly. A JNLP is an XML document, and in it you can specify
the following:

What version of JWS can handle this JNLP file.

What version of JRE is required to run the described

application

The name and the location of the jar file containing Java
classes, icons, and other resources.

The name of the main Java class to invoke.

The permission the application requires.

Whether or not the user will be allowed to run the
application offline.

Whether or not a shortcut should be created on the desktop
that points to this application for the user to run it after the
first time.

The root element of a JNLP file if jnlp. Nested within <jnlp> are
the following:

information

security

resources

application-desc

applet-desc

All the tags are discussed in these sections.

The jnlp Element
The jnlp element is the root element in a JNLP document. It can
have three attributes:

spec. Specifies the version of JWS required to handle this
JNLP file. The default is “1.0+”, which means all JWS can
handle this. Another valid values are “1.6” or “1.6+”, which
means only JWS that comes with JRE 6 or later can handle
it. In most cases, you may want to use the default value so
users with older versions of JWS can still run your
application.

codebase. Specifies a base URL to which all URL specified
in this JNLP file will be relative.

href. The URL of this JNLP file. The value can be an
absolute URL or a relative URL to the value of the
codebase attribute.

For example, the following jnlp element specifies that this JNLP
file can be handled by any version of JWS and that this JNLP file
can be found at
http://books.brainysoftware.com/java/deploy/myApp.jnlp.

<jnlp

 spec="1.0+"

codebase="http://books.brainysoftware.com

/java/deploy"

 href="myApp.jnlp">

The jnlp element also implies that the name of this JNLP file is
myApp.jnlp.

Starting from JDK 7, the codebase attribute does not have to
contain an absolute path. If no codebase attribute is specified,
it is assumed that the codebase is relative to the web page from
which the JWS application is launched. This is a significant
change because it means now you can deploy your JNLP file in
different environments without updating the codebase
attribute.

The information Element
This element specifies informational details of the application. It
can have the following subelements, some of which are required.

title. The name of the application. This is a required
element.

vendor. Specifies the application vendor. This is a required
element.

homepage. You use its href attribute to point to a web site
that provides more information about the application. The
user can get this information from the Java Application

Cache Viewer.

description. A short description about the application.
And, more than one description element can appear in the
same JNLP file. Which one to use depends on the situation
and on the value of the kind attribute. The value of the
kind attribute is one of the following: one-line, short and
tooltip. You use one-line if the application will display a
description in a list or a table. You use short if the
application will display a description in a paragraph and
there is enough room for it. You use tooltip if the
application will display a description as a tooltip.

Only one description element of each kind can be specified.

icon. Its href attribute specifies the URL of an image (in gif
or jpeg) used to represent the application during the
application launch, in the Java Application Cache Viewer,
and as a desktop shortcut. For example:

 <icon href="images/splash.gif"/>

If an icon element has a kind="splash" attribute, the icon
specified will be used as a splash screen during the
application launch.

offline-allowed. If present, indicates that the application
can be launched offline. If JWS launches an application

offline, it will still check for updates but will not wait long.
This means, if the user connection is slow the cached
version of the application will be launched. If the connection
is fast, there is a chance that the more up to date version will
be downloaded and launched.

shortcut. Creates a shortcut on the desktop. It may nest the
desktop and menu subelements. For example, the
following shortcut element causes a shortcut to the
application is created both on the desktop and in the menu.
The sub menu is My Swing Apps.

 <shortcut online="false">

 <desktop/>

 <menu submenu="My Swing Apps"/>

 </shortcut>

association. Tells the client computer to register the
application with the operating system as the primary
handler of certain extensions and a certain mime-type. If
present, the association element must have the extensions
and mime-type attributes. For example, this association
element begs the operating system to associate the
extension SwingApp with the MIME type application-
x/swing-app.

 <association mime-

type="application-x/swing-app"

 extensions="swingApp"/>

The security Element
By default, applications deployed using JWS will have restricted
access which is effectively the same as an applet in the web
browser. You can use the security element if you want to have
unrestricted access. However, for unrestricted access your jar file
must be signed. See Chapter 25, “Security” for information on
how to digitally sign a jar file.

For example, the following security element requests
unrestricted access for the application.

<security>

 <all-permissions/>

</security>

The resources Element
You use the resources element to specify the location of your
resources, such as your jar file(s), system properties, and images.
Here are some of the subelements that can reside inside the
resources element.

jar. Specifies a jar file that is part of the application’s
classpath.

nativelib. Specifies a jar file containing native libraries.

j2se. This element specifies what JRE version is required to
run the application.

java. This element also specifies what JRE version is
required to run the application. It is a new addition to Java
6 and only works in JRE 6 or later and will one day replace
the j2se element entirely.

property. Defines a system property that will be available
to the application. This property has two attributes, name
and value, to specify the attribute key and value,
respectively.

The application-desc Element
Use this element to describe the application, such as the main
class to invoke through the main-class attribute. The presence
of this element also indicates to JWS that the JNLP file is
launching a Java application (and not an applet). You can pass
arguments through the use of the argument subelement. For
example, the following application-desc element specifies the
Java class to launch and passes two arguments.

<application-desc

 main-class="app35.SwingApp">

 <argument>Simple App</argument>

 <argument>400</argument>

</application-desc>

The applet-desc Element
Use this element if the JNLP file is used to launch a Java applet.
The applet itself must be contained in the jar file specified using
the resources element. The applet-desc element has the
following attributes:

documentBase. The document base of the applet. This
must be specified explicitly since applets launched using
JWS are not embedded in an HTML page.

name. The name of the applet

main-class. Specifies the fully qualified name of the applet.

width. The width of the applet.

height. The height of the applet.

The applet-desc element can have the param subelement that
has two attributes, name and value.

For example, the following applet-desc element launches the
AnimationApplet applet.

<applet-desc

documentBase="http://www.brainysoftware.c

om/applet/"

 name="Animation Applet Demo"

 main-class="app35.AnimationApplet"

 width="400"

 height="400">

 <param name="interval" value="100"/>

</applet-desc>

A Deployment Example

The following is an example of how to deploy a Java Swing
application.

Configure the web server to use
the Java Web Start MIME type
The browser needs to know what it needs to do when it
downloads a jnlp file, just as it knows that it has to start
Microsoft Word when the user clicks on a doc file. You need to
configure your web server so that for the jnlp file extension, the
content type application/x-java-jnlp-file will be used. How to
configure depends on the type of the web server. You should
consult the documentation provided by the web server.

For example, for the Apache web server you must add the
following line to the httpd.conf configuration file:

application/x-java-jnlp-file JNLP

Create a jnlp file
The jnlp file for this example is given in Listing 35.1.

Listing 35.1: myApp.jnlp file
<?xml version="1.0" encoding="utf-8"?>

<jnlp

 spec="1.0+"

codebase="http://books.brainysoftware.com/

java/deploy"

 href="myApp.jnlp">

 <information>

 <title>A Demo Swing

Application</title>

 <vendor>Crouching Panda Software,

Inc.</vendor>

 <description>A little app that

swings</description>

 <description kind="short">Swing

JMenu</description>

 <icon kind="splash"

href="images/splash.gif"/>

 <offline-allowed/>

 <shortcut online="false">

 <desktop/>

 <menu submenu="My Downloaded

Apps"/>

 </shortcut>

 </information>

 <resources>

 <j2se version="1.6+"/>

 <jar href="MySwingApp.jar"/>

 </resources>

 <application-desc main-

class="JMenuTest1"/>

</jnlp>

Create an HTML File
An optional HTML file named download.html (given in
Listing 35.2) is provided. This HTML file uses JavaScript to
detect the browser type (IE or Netscape) and whether or not
JWS can be found, and act based on those situations.

Listing 35.2: The HTML file
<script type="text/javascript">

 var jnlpUrl =

"http://books.brainysoftware.com/java/dep

loy/myApp.jnlp";

 var isIE =

(navigator.userAgent.indexOf("MSIE")!=-1);

 var jwsFound = false;

 if (isIE) {

 try {

 if (new

ActiveXObject("JavaWebStart.isInstalled"))

 jwsFound = true;

 }

 catch(e) {}

 }

 else { // is not IE

 // a Netscape/FireFox

 if (navigator.mimeTypes &&

navigator.mimeTypes.length) {

 if

(navigator.mimeTypes['application/x-java-

jnlp-file'])

 jwsFound = true;

 }

 }

 if (jwsFound) {

 // redirect to JNLP file

 location=jnlpUrl;

 }

 else {

 if (isIE) {

 // use ActiveX component to

automatically download

 document.write('<object codebase='

+

'"http://java.sun.com/update/1.6.0/' +

 'jinstall-6-windows-

i586.cab#Version=6,0,0,0" ' +

 'classid="clsid:5852F5ED-8BF4-

11D4-A245-0080C6F74284" ' +

 'height="0" width="0">' +

 '<param name="app" value="' +

jnlpUrl + '">' +

 '<param name="back"

value="true">' +

 '<a

href="http://java.sun.com/javase/download

s/ea.jsp">' +

 'Download Java Web Start"' +

 '</object>');

 }

 else { //no JWS and not IE

 // provide a link to download

 document.write('You do not have a

Java Runtime Environment ' +

 'to run the application. ' +

 'Please download JRE 6.0 from ' +

 '<a

href="http://java.sun.com/javase/download

s/ea.jsp">' +

 'here');

 }

 }

</script>

Test the deployment
You can try this example by directing your browser to

http://books.brainysoftware.com/java/depl

oy/download.html

If the correct JRE can be found on the user computer, the user
will see a dialog similar to the one in Figure 35.1.

Figure 35.1: A dialog that tells the user
that the correct JRE was found

If you click Yes, you will see the JMenuTest1 application shown
in Figure 35.2.

Figure 35.2: The deployed application

If the correct JRE cannot be found, the user will see a dialog like
that in Figure 35.3.

Figure 35.3: A dialog that tells the user
that the correct JRE could not be found

In the case where the correct JRE cannot be found, JWS will

offer to download the correct one. If you agree to download, it
will show the license agreement that you must agree on. Once
you accept, it will download the correct JRE.

Security Concerns

Chapter 31, “Security” explained the difference between an
applet and an ordinary Java application in terms of security.
Because applets may come from untrusted resources, the JRE
impose security restrictions that cause applets not to be able to
access the file system, etc. Unless the applets are signed.

Likewise, applications that are deployed over the Internet are
more like applets and the JRE will impose the same restrictions
as it does applets. If you are deploying your applications over the
Internet and want to have access to resources, then you must
deploy your applications in a jar file and sign it. See Chapter 31,
“Security” on how to digitally sign a jar file.

Summary

In this chapter you have seen how you can deploy Java
applications. JWS is the main tool for deployment and using it
you can deploy applications over the Internet or a local network.
Also, you can do it from a CD. JWS is also smart enough to
detect if the user computer has the correct version of JRE and

acts accordingly.

Quiz

1. What does JWS stand for?
2. What are the steps required to deploy a

Java application via JNLP?
3. Why does the JRE restrict Java

applications downloaded from the
Internet?

Appendix A
javac

javac is a Java compiler for compiling Java programs to
bytecode. Source files must have a java extension and be
organized in a directory structure that reflects the package tree.
The results are class files in a directory structure reflecting the
package tree.

javac has the following syntax.

javac [options] [sourceFiles] [@argFiles]

where options are command-line options, sourceFiles one or
more Java source files, and @argFiles one or more files that list
options and source files.

You can pass source code file names to javac in one of two
ways:

List the file names on the command line. This method is
suitable if the number of source files is small.

List the file names in a file, separated by blanks or line
breaks, then pass the path to the list file to the javac
command line prefixed by an @ character. This is
appropriate for a large number of source files.

Options

Options are used to pass instructions to javac. For example, you
can tell javac where to find classes referenced in the source files,
where to put the generated class files, etc. There are two types of
options, standard and nonstandard. Nonstandard options start
with -X.

Here are the lists of standard and nonstandard options.

Standard Options
-classpath classpath

If in your source files you reference other
Java types than those packaged in the Java
standard libraries, you need to tell javac
how to find these external types by using the
–classpath option. The value should be the

path to a directory containing referenced
Java types or a jar file containing them. The
path can be absolute or relative to the
current directory. Two paths are separated
by a semicolon in Windows and by a colon
in Unix/Linux.

For example, the following Windows
command line compiles MyClass.java that
references the primer.FileObject class
located in the C:\program\classes
directory.

 javac -classpath

C:/program/classes/ MyClass.java

Note that the FileObject class is in the
primer package, so you pass the directory
containing the package.

The following Linux command line compiles
MyClass.java that references the

primer.FileObject class located in the
/home/user1/classes directory.

 javac -classpath

/home/user1/classes/ MyClass.java

To reference class files packaged in a jar file,
pass the full path to the jar file. For
instance, here is how you compile
MyClass.java that reference
primer.FileObject in the MyLib.jar file
located in C:\temp in a Windows system.

 javac -classpath C:/temp/MyLib.jar

MyClass.java

This example compiles MyClass.java that
references classes located in the
/home/user1/lib directory and packaged
in the Exercises.jar file located in the
/home/jars directory in Linux:

 javac -classpath

/home/user1/lib/:/home/user1/Exercises.ja

r

 MyClass.java

If you are referencing a class whose root is
the same as the class being compiled, you
can pass ./ as the value for the classpath.
For example, the following command line
compiles MyClass.java that references
both C:\temp and the current directory:

 javac -classpath C:/temp/;./

MyClass.java

The alternative to the classpath option is
to assign the value to the CLASSPATH
environment variable. However, if the
classpath option is present, the value of
the CLASSPATH environment variable
will be overridden.

If the -sourcepath option is not specified,
the user class path is searched for both
source files and class files.

-cp classpath

The same as -classpath.

-Djava.endorsed.dirs=directories

Override the location of endorsed standards
path.

-d directory

Specify the target directory for class files.
The target directory must already exist.
javac puts the class files in a directory
structure that reflects the package name,
creating directories as needed.

By default, javac creates class files in the
same directory as the source file.

-deprecation

List each use or override of a deprecated
member or class. Without this option, javac
shows the names of source files that use or
override deprecated members or classes. -
deprecation is shorthand for -
Xlint:deprecation.

-encoding encoding

Specify the source file encoding name, such
as UTF-8. By default, javac uses the
platform default converter.

-g

Print debug information, including local

variables. By default, only line number and
source file information is generated.

-g:none

Prevent javac from generating debug
information.

-g:{keyword list}

Generate only some kinds of debug
information, specified by a comma
separated list of keywords. Valid keywords
are:

? source. Source file debug information

? lines. Line number debug information

? vars. Local variable debug information

-help

Print a description of standard options.

-nowarn

Disable warning messages. This has the
same effect as -Xlint:none.

-source release

Specifies the version of source code
accepted. The values allowed are 1.3 to 1.8
and 6 to 8.

-sourcepath sourcePath

Set the source code path to search for class
or interface definitions. As with the user
class path, source path entries are separated
by semicolons (in Windows) or colons (in
Linux/Unix) and can be directories, jar
archives, or zip archives. If packages are

used, the local path name within the
directory or archive must reflect the package
name.

Note: Classes found through the classpath
are subject to automatic recompilation if
their sources are found.

-verbose

Include information about each class loaded
and each source file compiled.

-X

Display information about nonstandard
options.

Nonstandard Options
-Xbootclasspath/p:path

Prepend to the bootstrap class path.

-Xbootclasspath/a:path

Append to the bootstrap class path.

-Xbootclasspath/:path

Override location of bootstrap class files.

-Xlint

Enable all recommended warnings.

-Xlint:none

Disable all warnings not mandated by the
Java Language Specification.

-Xlint:-xxx

Disable warning xxx, where xxx is one of the
warning names supported for -Xlint:xxx.

Xlint:unchecked

Provide more detail for unchecked
conversion warnings that are mandated by
the Java Language Specification.

-Xlint:path

Warn about nonexistent path directories
specified in the classpath, sourcepath, or
other option.

-Xlint:serial

Warn about missing serialVersionUID
definitions on serializable classes.

-Xlint:finally

Warn about finally clauses that cannot
complete normally.

-Xlint:fallthrough

Check switch blocks for fall-through cases
and provide a warning message for any that
are found. Fall-through cases are cases in a
switch block, other than the last case in the
block, whose code does not include a break
statement.

-Xmaxerrors number

Specify the maximum number of errors that
will be reported

-Xmaxwarns number

Specify the maximum number of warnings
to be reported.

-Xstdout filename

Send compiler messages to the named file.
By default, compiler messages go to
System.err.

The -J Option
-Joption

Pass option to the java launcher called by
javac. For example,

-J-Xms48m sets the startup memory to 48
megabytes. Although it does not begin with
-X, it is not a `standard option' of javac. It
is a common convention for -J to pass
options to the underlying VM executing
applications written in Java.

Command Line Argument

Files

If you have to pass long arguments to javac again and again, you
will save a lot typing if you save those arguments in a file and
pass the file to javac instead. An argument file can include both
javac options and source filenames in any combination. Within
an argument file, you can separate arguments using a space or
separate them as new lines. The javac tool even allows multiple
argument files.

For example, the following command line invokes javac and
passes the file MyArguments to it:

javac @MyArguments

The following passes two argument files, Args1 and Args2:

javac @Args1 @Args2

Appendix B
java

The java program is a tool for launching a Java program. Its
syntax has two forms.

java [options] class [argument ...]

java [options] -jar jarFile [argument

...]

where options represents command-line options, class the name
of the class to be invoked, jarFile the name of the jar file to be
invoked, and argument the argument passed to the invoked
class’s main method

Options

There are two types of options you can pass to java, standard
and nonstandard.

Standard Options
-client

Select the Java HotSpot Client VM.

-server

Select the Java HotSpot Server VM.

-agentlib:libraryName[=options]

Load native agent library libraryName.
Example values of libraryName are hprof,
jdwp=help, and hprof=help.

-agentpath:pathname[=options]

Load a native agent library by full
pathname.

-classpath classpath

The same as the -cp option.

-cp classpath

Specify a list of directories, jar archives, and
zip archives to search for class files. Two
class paths are separated by a colon in
Unix/Linux and by a semicolon in
Windows. For examples on using -cp and –
classpath, see the description of the javac
tool’s classpath option in Appendix A.

-Dproperty=value

Set a system property value.

-d32

See the description of the –d64 option.

-d64

Specify whether the program is to be run in
a 32-bit or a 64-bit environment if available.
Currently only the Java HotSpot Server VM
supports 64-bit operation, and the -server
option is implicit with the use of -d64. This
is subject to change in a future release. If
neither -d32 nor -d64 is specified, the
default is to run in a 32-bit environment,
except for 64-bit only systems. This is
subject to change in a future release.

-enableassertions[:<package name>"..." |

:<class name>]

See the description for the –ea option.

-ea[:<package name>"..." | :<class name>

]

Enable assertions. Assertions are disabled
by default.

-disableassertions[:<package name>"..." |

:<class name>]

See the description for the –da option.

-da[:<package name>"..." | :<class name>

]

Disable assertions. This is the default.

-enablesystemassertions

See the description for the –esa option.

-esa

Enable asserts in all system classes (set the
default assertion status for system classes to
true).

-disablesystemassertions

See the description for the –dsa option.

-dsa

Disables asserts in all system classes.

-jar

Execute a Java class in a jar file. The first
argument is the name of the jar file instead
of a startup class name. To tell java the
class to invoke, the manifest of the jar file
must contain a line of the form Main-
Class: classname, where classname
identifies the class having the public static
void main(String[] args) method that
serves as your application's starting point.

-javaagent:jarpath[=options]

Load a Java programming language agent.

-verbose

See the description for the –verbose:class
option.

-verbose:class

Display information about each class
loaded.

-verbose:gc

Report on each garbage collection event.

-verbose:jni

Report information about use of native

methods and other Java Native Interface
activity.

-version

Display the JRE version information and
exit.

-showversion

Display the version information and
continue.

-?

See the description for the –help option.

-help

Display usage information and exit.

-X

Display information about nonstandard
options and exit.

Nonstandard Options
-Xint

Operate in interpreted-only mode.
Compilation to native code is disabled, and
all bytecodes are executed by the
interpreter. You will not be able to enjoy the
performance benefits offered by the Java
HotSpot VMs’ adaptive compiler.

-Xbatch

Disable background compilation so that
compilation of all methods proceeds as a
foreground task until it completes. Without

this option, the VM will compile the method
as a background task, running the method
in interpreter mode until the background
compilation is finished.

-Xdebug

Start with support for JVMDI enabled.
JVMDI has been deprecated and is not used
for debugging in Java SE 5 and later.

-Xbootclasspath:bootclasspath

Specify a list of directories, jar archives, and
zip archives to search for boot class files.
Entries are separated by colons (in
Linux/Unix) or by semicolons (in
Windows). These are used in place of the
boot class files included in Java 5 and 6.

-Xbootclasspath/a:path

Specify a list of directories, jar archives, and
zip archives to append to the default
bootstrap class path. Entries are separated
by colons (in Linux/Unix) or by semicolons
(in Windows).

-Xbootclasspath/p:path

Specify a list of directories, jar archives, and
zip archives to prepend in front of the
default bootstrap class path. Entries are
separated by colons (in Linux/Unix) or by
semicolons (in Windows).

-Xcheck:jni

Perform additional checks for Java Native
Interface (JNI) functions. Specifically, the
Java Virtual Machine validates the
parameters passed to the JNI function as

well as the runtime environment data before
processing the JNI request. Any invalid data
encountered indicates a problem in the
native code, and the JVM will terminate
with a fatal error in such cases. Using this
option imposes a performance penalty.

-Xfuture

Perform strict class-file format checks. For
backwards compatibility, the default format
checks performed by the Java 2 SDK’s
virtual machine are no stricter than the
checks performed by 1.1.x versions of the
JDK software. This flag turns on stricter
class-file format checks that enforce closer
conformance to the class-file format
specification. Developers are encouraged to
use this flag when developing new code
because the stricter checks will become the

default in future releases of the Java
application launcher.

-Xnoclassgc

Disable class garbage collection.

-Xincgc

Enable the incremental garbage collector.
The incremental garbage collector, which is
off by default, will reduce the occasional
long garbage-collection pauses during
program execution. The incremental
garbage collector will at times execute
concurrently with the program and during
such times will reduce the processor
capacity available to the program.

-Xloggc:file

Report on each garbage collection event, as
with -verbose:gc, but record this data to
file. In addition to the information -
verbose:gc gives, each reported event will
be preceded by the time (in seconds) since
the first garbage-collection event. Always
use a local file system for storage of this file
to avoid stalling the JVM due to network
latency. The file may be truncated in the
case of a full file system and logging will
continue on the truncated file. This option
overrides the -verbose:gc option if both
are present.

-Xmsn

Specify the initial size of the memory
allocation pool in bytes. The value must be a
multiple of 1024 greater than 1MB. Append
the letter k or K to indicate kilobytes, or m

or M to indicate megabytes. The default
value is 2MB. For example:

 -Xms6291456

 -Xms6144k

 -Xms6m

-Xmxn

Specify the maximum size of the memory
allocation pool in bytes. The value must a
multiple of 1024 greater than 2MB. Append
k or K to indicate kilobytes, or m or M to
indicate megabytes. The default value is
64MB. For instance:

 -Xmx83880000

 -Xmx8192k

 -Xmx86M

-Xprof

Profile the running program and send

profiling data to standard output. This
option is provided as a utility that is useful
in program development and should not be
used in production.

-Xrunhprof[:help][:<suboption>=

<value>,...]

Enable cpu, heap, or monitor profiling. This
option is typically followed by a list of
comma-separated "<suboption>=<value>"
pairs. You can display the list of suboption
and their default values by running the
command java -Xrunhprof:help.

-Xrs

Reduce the use of operating-system signals
by the Java virtual machine (JVM).

-Xssn

Set thread stack size.

-XX:+UseAltSigs

The JVM uses SIGUSR1 and SIGUSR2 by
default, which can sometimes conflict with
applications that signal-chain SIGUSR1 and
SIGUSR2. This option will cause the JVM to
use signals other than SIGUSR1 and
SIGUSR2 as the default.

Appendix C
jar

jar, short for Java archive, is a tool for packaging Java class files
and other related resources into a jar file. The jar tool is
included in the JDK and initially the reason for its creation was
so that an applet class and its related resources could be
downloaded with a single HTTP request. Over time, jar became
the preferred way of packaging any Java classes, not only
applets.

The jar format is based on the zip format. As such, you can
change the extension of a jar file to .zip and view it using a ZIP
viewer, such as WinZip. A jar file can also include the META-INF
directory for storing package and extension configuration data,
including security, versioning, extension and services. jar is also
the only format that allows you to digitally sign your code.

This appendix provides the syntax of the jar tool and
examples of how to use it.

Syntax

You can use jar to create, update, extract, and list the content of
a jar file. A jar command can be used with options, which are
explained in the section “Options.” Here is the syntax of the jar
program commands.

To create a jar file, use this syntax.

jar c[v0M]f jarFile [-C dir] inputFiles

[-Joption]

jar c[v0]mf manifest jarFile [-C dir]

inputFiles [-Joption]

jar c[v0M] [-C dir] inputFiles [-Joption]

jar c[v0]m manifest [-C dir] inputFiles

[-Joption]

To update a jar file, use this syntax.

jar u[v0M]f jarFile [-C dir] inputFiles

[-Joption]

jar u[v0]mf manifest jarFile [-C dir]

inputFiles [-Joption]

jar u[v0M] [-C dir] inputFiles [-Joption]

jar u[v0]m manifest [-C dir] inputFiles

[-Joption]

To extract a jar file, use this.

jar x[v]f jarFile [inputFiles] [-Joption]

jar x[v] [inputFiles] [-Joption]

To list the contents of a jar file, use the following syntax.

jar t[v]f jarFile [inputFiles] [-Joption]

jar t[v] [inputFiles] [-Joption]

And, to add index to a jar file, use this syntax.

jar i jarFile [-Joption]

The arguments are as follows.

cuxtiv0Mmf

Options that control the jar command.
These will be detailed in the section
“Options.”

jarFile

The jar file to be created, updated,
extracted, have its contents viewed, or add
index to. The absence of the f option and
jarFile indicates that we are accepting input
from the standard input (when extracting
and viewing the contents) or sending output
to the standard output (for creating and
updating).

inputFiles

Files or directories, separated by spaces, to
be packaged into a jar file (when creating
and updating), or to be extracted or listed
from jarFile. All directories are processed
recursively. The files are compressed unless
option O (zero) is used.

manifest

Pre-existing manifest file whose name:
value pairs are to be included in
MANIFEST.MF in the jar file. The options
m and f must appear in the same order that
manifest and jarFile appear.

-C dir

Temporarily changes directories to dir while
processing the following inputFiles
argument. Multiple -C dir inputFiles sets
are allowed.

-Joption

Option to be passed into the Java runtime
environment. (There must be no space
between -J and option).

Options

The options that can be used in a jar command is as follows.

c

Indicates that the jar command is invoked
to create a new jar file.

u

Indicates that the jar command is invoked
to update the specified jar file.

x

Indicates that the jar command is invoked
to extract the specified jar file. If inputFiles
is present, only those specified files and
directories are extracted. Otherwise, all files

and directories are extracted.

t

Indicates that the jar command is invoked
to list the contents of the specified jar file. If
inputFiles is present, only those specified
files and directories are listed. Otherwise, all
files and directories are listed.

i

Generate index information for the specified
jarFile and its dependent jar files.

f

Specifies the file jarFile to be created,
updated, extracted, indexed, or viewed.

v

Generates verbose output to standard
output.

0

This is a zero that indicates that files should
be stored without being compressed.

M

Indicates that a manifest file entry should
not be created for creation and update. This
option also instructs the jar tool to delete
any manifest during update.

m

Includes name: value attribute pairs from
the specified manifest file manifest in the
file at META-INF/MANIFEST.MF. A
name: value pair is added unless one with

the same name already exists, in which case
its value is updated.

-C dir

Temporarily changes directories (cd dir)
during execution of the jar command while
processing the following inputFiles
argument.

-Joption

Pass option to the Java runtime
environment, where option is one of the
options described on the reference page for
the java application launcher. For example,
-J-Xmx32M sets the maximum memory to
32 megabytes.

Examples

The following are examples of how to use jar.

Create
This jar command packages all directories and files in the
current directory into a jar file named MyJar.jar.

jar cf MyJar.jar *

The following, with the v option, does the same but outputs all
messages to the console:

jar cvf MyJar.jar *

The following packages all class files in the
com/brainysoftware/jdk/ directory into the MyJar.jar file.

jar cvf MyJar.jar

com/brainysoftware/jdk/*.class

Update
This command adds MathUtil.class to MyJar.jar.

jar uf MyJar.jar MathUtil.class

This command updates the MyJar.jar manifest with the name:
value pairs in manifest.

jar umf manifest MyJar.jar

The following command adds MathUtil.class in the classes
directory to MyJar.jar.

jar uf MyJar.jar -C classes

MathUtil.class

List
The following command lists the contents of MyJar.jar:

jar tf MyJar.jar

Extract
The following command extracts all files in MyJar.jar to the
current directory.

jar xf MyJar.jar

Index
This command generates in MyJar.jar an INDEX.LIST file
that contains location information for each package in
MyJar.jar and all the jar files specified in the Class-Path
attribute of MyJar.jar.

jar i MyJar.jar

Setting an Application Entry
Point

The java tool, explained in Appendix B, allows you to invoke a
class in a jar file. Here is the syntax:

java -jar jarFile

For java to be able to invoke the correct class, you need to
include in the jar file a manifest that has the following entry:

Main-Class: className

Appendix D
NetBeans

Sun Microsystems launched the NetBeans open source project in
2000. The name NetBeans came from Netbeans Ceska
Republika, a Czech company that Sun bought over. The new
project was based on the code Sun acquired as the result of the
purchase.

This appendix provides a quick tutorial to using NetBeans to
build Java applications. NetBeans requires a JDK to work.

Download and Installation

You can download NetBeans free from http://netbeans.org. The
latest version at the time of writing is 8.0. You need version 8 or
later to enjoy the new features in Java 8. NetBeans is written in
Java and, as such, can run on any platform where Java is
available. Each distribution includes an installer for easy
installation. Make sure you download the correct version for
your operating system. The installer guides you through step-by-

step instructions that are easy to follow. You will be prompted to
agree on the terms and conditions of use, specify the installation
directory, and select the JDK version to use if your computer has
more than one.

Once installed, you can run the NetBeans IDE just like you
would other applications.

Creating a Project

NetBeans organizes resources in projects. Therefore, before you
can create a Java class, you must first create a project. To do so,
follow these steps.

Click File, New Project. The New Project dialog will be
displayed (See Figure D.1).

Figure D.1: The New Project dialog

Click Java from the Categories box and Java
Application from the Projects box. And then, click Next.
The next screen will be displayed, as shown in Figure D.2.

Enter a project name in the Project Name box and browse
to the directory where you want to save the project’s
resources. Afterwards, click Finish.

NetBeans will create a new project plus the first class in the
project. This is depicted in Figure D.3.

Figure D.2: Select a project name

Figure D.3: A Java Project

Figure D.3 shows two windows, the Projects window on
the left and the source file window on the right. You are
ready to write your code.

Creating a Class

To create a class other than that created by default by NetBeans,
right-click the project icon in the Projects window, then click
New, Java Class. You will see the New Java Class dialog like
that in Figure D.4.

Figure D.4: The New Java Class dialog

Type in the class name and the package for this class, then click
Finish. A new Java class will be created for you. You can see the
new class listed on the Projects window.

You can now write your code. As you type, NetBeans will check
and correct the syntax of your Java code. You can save your code
by clicking Ctrl+S and NetBeans automatically compiles it as
you save.

Running a Java Class

Once you are finished with a class, you can run it to test it. To
run a class, click Run, Run File, then select the Java class you
want to run. Any result will be displayed in the Console window.
Another way to run a Java class is to right-click on the source

code and click Run File.

Also, to run the last run class, press Shift+F6.

Adding Libraries

Oftentimes your classes or interfaces reference types in other
projects or in a jar file. To compile these classes/interfaces, you
need to tell NetBeans where to find the referenced library by
adding a reference to it. You do this by right-clicking the
Libraries icon in the Projects window, and then clicking Add
JAR/Folder. A navigation window will then appear that lets
you select your library file.

Debugging Code

A powerful feature offered by many IDE’s is support for
debugging. In NetBeans, you can step through a program line by
line. The steps for debugging a program are as follows.

1. Add a breakpoint. You do this by clicking
on the line on your code and click Toggle
Breakpoint.

2. Execute the program by clicking Run,

Run File, and then select the Java class to
debug.

After selecting a class to debug in Step 2, these windows will
open: Watches, Call Stack, and Local Variables. They allow
you to monitor the progress of your code. The Local Variables
window, for instance, allows you to inspect the value of a local
variable.

To continue, click the Run menu and select whether to step
into, step over, continue, or pause the program.

Appendix E
Eclipse

IBM launched Eclipse in 2001 after buying Object Technology
International, a Canadian company. Including the purchase,
IBM spent $40 million on the code that it finally released as an
open source project. Written in Java, Eclipse ships with its own
compiler, so it does not rely on Oracle’s Java compiler. As a
result, you don’t need a JDK to run Eclipse, just a JRE. In fact,
Eclipse comes with compilers for other languages as well, such as
C, C++ and PHP because its developers have the ambition to
make Eclipse the ultimate IDE.

Another thing to note, even though Eclipse is written in Java,
it does not use the Swing technology. It uses its own graphics
library called the Standard Widget Toolkit in order to make
Eclipse look and feel more like a native application. You can still
use Eclipse to write Swing applications, though.

This appendix provides a quick tutorial to using Eclipse to
build Java applications.

Download and Installation

You can download Eclipse free from http://www.eclipse.org.
Only version 4.4 (code-named Luna) and later support Java 8.
Make sure you download the version that will run on your
operating system. Currently Eclipse is available on Windows,
Linux and Mac OS X. You can even download the source code.

Eclipse distributions are packaged in a zip or gz file. In
addition, if you have slow Internet connection, you can
download Eclipse in torrent format. The are many package
solutions available. Make sure you choose Eclipse IDE for
Java Developers.

Installation is a matter of extracting the distribution zip or gz
file into a directory. No other steps are necessary. Once you have
extracted the distribution file, you will find an executable file
that you can double-click to launch Eclipse.

The first time you run Eclipse, you will see the Workspace
Launcher dialog like that in Figure E1, prompting you to select a
workspace folder. A workspace folder is the default directory for
storing all the files in your Eclipse projects.

Figure E.1: The Workspace Launcher
dialog

Even though you selected a workspace folder, you can choose a
different directory than the workspace folder for your project
files. You can even have multiple workspaces that each contains
a different set of projects.

After you select a workspace, Eclipse will show its main
window, shown in Figure E.2. If you instead see a Welcome page,
just close the page.

Figure E.2: Eclipse main window

Adding A JRE

Even though Eclipse ships with its own Java compiler, it still
needs a JRE or a JDK to run Java programs. Make sure you have
installed a JRE 1.8 or a JDK 1.8. Then, follow these steps to add
the JRE/JDK so that you can use it in your Java projects.

Click the Window menu on the Eclipse main window, and
then select Preferences. The Preferences dialog will appear,
as shown in Figure E.3.

Figure E.3: Eclipse Preferences dialog

On the left pane, click Java and select Installed JREs. If
you don’t see a JRE 1.8 or a JDK 1.8 on the center pane,
click the Add button and browse to the installation directory
of the JDK you have installed.

Select the JRE 1.8 or JDK 1.8 as the default and click the OK
button.

Creating a Java Project

Eclipse organizes resources in projects. Therefore, before you
can create a Java class, you must first create a Java project. To

do so, follow these steps.

Click File, New and Java Project. Make sure you click
Java Project, and not Project, after you click New. The
New Java Project dialog will appear (See Figure E.4).

Figure E.4: Select a project name

Supply a name for your project. Once you type something in
the Project name box, the Next and Finish buttons will
become active. Note that by default your project will be
created in the current workspace folder. However, you can
choose a different location by unchecking the Use default
location checkbox and browsing to a directory in your file
system.

Make sure Java SE 1.8 is selected in the JRE panel. If you
do not see Java SE 1.8, it means you have not added one
and need to do so by following the instructions in the
previous section. Next, click Next or Finish. Clicking
Finish uses default settings to create the project, clicking
Next allows you to select directories for your source and
class files. For now, simply click Finish. A project will be
created for you. Figure E.5 shows a project named
SQLTool.

Figure E.5: A new Java project

What you see in Figure E.5 is called the Java perspective. A
perspective is the combination of views that are suitable for
performing a certain task. The Java perspective is used for
writing Java code. It consists of the Package Explorer View on
the left, the Outline view on the right, and the Problems view at
the bottom. The location of each view is changeable by dragging
the header of the view. Figure E.5 shows the default position of
each view. There are many other views, all of which can be seen
by clicking Window, Show View.

Other perspectives include Java browsing and Debug. You can
select a perspective by clicking Window, Open Perspective.

Creating a Class

To create a class, right-click the project icon in the Package
Explorer view, then click New, Class. You will see the New
Java Class dialog like the one in Figure E.6.

Figure E.6: The New Java Class dialog

Enter the package and the class name, then click Finish to
create a class. The Java perspective displays the class code in a
new pane, as shown in Figure E.7.

Figure E.7: Editing a Java class

You can now write your code. As you type, Eclipse checks and
corrects the syntax of your Java code. You can save your work by
clicking Ctrl+S and Eclipse automatically compiles it.

Running a Java Class

Once you are finished with a class, you can run it to test it. To
run a class, click Run, Run As, Java Application. Any result
will be displayed in the Console view. Another way to run a Java
class is to right-click on the class pane and click Run As, Java
Application.

Also, to run the last run class, press Ctrl+F11.

Adding Libraries

Oftentimes your classes or interfaces reference types in a jar file
or in another project. To compile these classes/interfaces, you
need to tell Eclipse where to find the library by adding a
reference to it. You do this by clicking Project, Properties. The
Properties window will appear.

Click Java Build Path on the right pane and then click the
Libraries tab on the left. Then, click Add External JARs and
navigate to select the jar file. If the referenced types are in
another project, click the Projects tab and add the required
project.

Debugging Code

A powerful feature offered by many IDE’s is support for
debugging. In Eclipse, you can step through a program line by
line. The steps for debugging a program are as follows.

1. Add a breakpoint. You do this by clicking
on the line on your code and click Run,

Toggle Line Breakpoint.
2. Execute the program by clicking Run,

Debug As, Java Application.

Debugging requires the Debug perspective be open. After
clicking Java Application in Step 2, a window will appear that
asks you if you want to switch to the Debug perspective. Click
Yes, and you will see the Debug perspective like that in Figure
E.8.

Figure E.8: The Debug Perspective

A useful view that appears is the Variables view. It displays the
list of variables in your program and lets you inspect their values.

To continue, click the Run menu and select whether to step
into, step over, resume, or terminate the program.

Useful Shortcuts

There are many useful shortcuts that can speed up
development. In my opinion, the top six shortcuts are

1. Type main in a class definition and press
Ctrl+space to create the main method.

2. Type syso in a method and press
Ctrl+space to add
System.out.println().

3. Press Ctrl+Shift+F in a class definition
to format the code.

4. Press Ctrl+F11 to run a class.
5. Press F11 to start debugging a class.
6. Press Ctrl+Shift+O to automatically

import types and remove unused imports.
For example, if you type Scanner in a
method and press Ctrl+Shift+O, Eclipse

will import the java.util.Scanner class to
the class.

Answers

Chapter 1: Getting Started

1.What is a compiler?

A compiler is a computer program that converts program
source code into an executable file or an intermediate format
such as bytecode.

2. How is Java different from traditional programming?

In traditional programming, the source code is compiled into
an executable file that is native to the target operating system.
Therefore, the executable can only run on Windows or Linux. In
Java, the source code is compiled into bytecode, which can only
be run by a Java Virtual Machine (JVM). Since JVMs are
available in many operating systems, the same bytecode can run
on multiple operating systems, hence the term cross-platform or
platform-independence.

3. What is bytecode?

Bytecode is a set of instructions that can run on a virtual

machine. The concept of bytecode is used in Java and other
programming frameworks such as Microsoft’s .NET Framework.

4. What is the difference between the JRE and the JDK?

The JRE is needed to run a Java program. It contains the Java
Virtual Machine and the Java core libraries. The JDK is required
for developing Java programs. The JDK includes a compiler and
other tools as well as the JRE.

5. If you had saved the code in Listing 1.1 using a different name,
such as whatever.java, would it have compiled?

Yes, since it is not a public class. However, you should name
your Java file the same as the class name.

6. If you had used a file extension other than java when saving
the code in Listing 1.1, for example as MyFirstProgram.txt,
would it have compiled?

No, a Java source file must have java extension.

7. Are these valid Java class names: FirstJava,
scientificCalculator, numberFormatter?

They all are valid Java class names. However, by convention
the first letter of a Java class name should be capitalized. In
addition, if a class name consists of multiple words, the first
letter of each word should be in upper case. Therefore, instead of
scientificCalculator, you should call it

ScientificCalculator. Instead of numberFormatter, it
should be NumberFormatter.

8. How do you write to the console?

By using System.out.print() or System.out.println().
The latter adds an end-of-line character to the output.

9. Write a Java class named HelloWorld that will print “Hello
World” when run.

Create a HelloWorld.java file with the following content.

class HelloWorld {

 public static void main(String[]

args) {

 System.out.println("Hello

World");

 }

}

Chapter 2: Language
Fundamentals

1. What does ASCII stand for?

ASCII stands for American Standard Code for Information
Interchange.

2. Does Java use ASCII characters or Unicode characters?

Java uses both ASCII characters and Unicode characters. It
uses ASCII characters for almost all input elements, except
comments, identifiers, and the contents of characters and
strings. Java uses Unicode characters for comments, identifiers
and the contents of characters and strings.

3. What is a reference type variable, and what is a primitive type
variable?

A reference type variable holds the reference (address) of an
object, a primitive type variable is used to store a primitive.

4. How are constants implemented in Java?

By using the final keyword.

5. What is an expression?

An expression is a legal combination of Java operators and
operands that gets evaluated.

6. You need to assign the British pound symbol to a char but
you do not have the £ key on your keyboard. How do you do this

if you know the Unicode code for it is 00A3?

By escaping the Unicode code like so:

char britishPound = '\u00A3';

7. Name at least ten operators in Java.

unary minus operator (-).

increment operator (++)

decrement operator (--)

logical complement operator (!)

bitwise complement operator (~)

addition operator (+)

subtraction operator (-)

modulus operator (%)

AND conditional operator (&&)

OR conditional operator (||)

left shift operator (<<)

8. What is the ternary operator in Java?

A ternary operator operates on three operands. The ? :

operator is the only ternary operator in Java.

9. What is operator precedence?

The operator precedence indicates which operation is
performed first in the presence of multiple operators in an
expression.

10.Consider the following code. What are the values of result1
and result2? Why the difference?

int result1 = 1 + 2 * 3;

int result2 = (1 + 2) * 3;

1 + 2 * 3 = 7, because the * operator has higher precedence
over the + operator so 2 * 3 is evaluated first and its result is
added to 1.

(1 + 2) * 3 = 9, because the parentheses have the highest
precedence so (1 + 2) is evaluated first.

11. Name two types of Java comments.

Traditional comments and end-of-line comments.

Chapter 3: Statements

1. What is the difference between an expression and a statement?

An expression is a legal combination of Java operators and
operands that gets evaluated. A statement is an instruction to do
something.

2. How do you escape from the following while loop?

while (true) {

 // statements

}

You can escape from a while loop using the break statement.
For example:

while (true) {

 // statements

 if (expression) {

 break;

 }

}

3. Is there any difference between using the postfix increment
operator and the prefix increment operator as the update
statement of a for loop?

for (int x = 0; x < length; x++)

for (int x = 0; x < length; ++x)

No. Both for statements have the same effect.

4. What will be printed on the console if the code below is
executed:

int i = 1;

switch (i) {

case 1 :

 System.out.println("One player is

playing this game.");

case 2 :

 System.out.println("Two players are

playing this game.");

 break;

default:

 System.out.println("You did not enter

a valid value.");

}

This will be printed because there is no break after case 1.

One player is playing this game.

Two players are playing this game.

5. Write a class that uses for to print all even numbers from 1 to
9.

package app03;

public class ForDemo1 {

 public static void main(String[]

args) {

 for (int i = 2; i < 9; i+=2) {

 System.out.println(i);

 }

 }

}

6. Write a class that uses for to print all even numbers between
two integers, a and b, including b if b is an even number.

Since you do not know if a is even or odd, you do not know if
you can use a to initialize the variable of the for statement.
Therefore, you cannot use the same technique as in the previous
assignment. However, you can inquiry if a number is even by
checking the modulus after dividing the number by two. If the
modulus is zero, then it is an even number.

package app03;

public class ForDemo2 {

 public static void main(String[]

args) {

 int a = ...;

 int b = ...;

 for (int i = a; i <= b; i++) {

 if (i % 2 == 0) {

 System.out.println(i);

 }

 }

 }

}

7. Same as before, but print the numbers in descending order.

package app03;

public class ForDemo3 {

 public static void main(String[]

args) {

 int a = 10;

 int b = 16;

 for (int i = b; i >= a; i--) {

 if (i % 2 == 0) {

 System.out.println(i);

 }

 }

 }

}

Chapter 4: Objects and
Classes

1. Name at least three element types that a class can contain.

Constructors, methods and fields.

2. What are the differences between a method and a constructor?

A constructor is used to construct an object. A method is used

to perform an action. A constructor does not have a return value,
and, as you will see in Chapter 7, “Inheritance,” methods are
inherited but constructors are not.

3. Does a class in a class diagram display its constructors?

No.

4. What does null mean?

A null reference variable is not referencing any object.

5. What do you use the this keyword for?

To refer to the current object from a method or a constructor.

6. When you use the == operator to compare two object
references, do you actually compare the contents of the objects?
Why?

No. Applying the equal operator == to reference variables
compare the addresses to objects, not the contents of the objects.

7. What is variable scope?

Variable scope refers to the accessibility of a variable.

8. What does “out of scope” mean?

Technically, a variable that has been destroyed or no longer

accessible.

9. How does the garbage collector decide which objects to
destroy?

By checking if the object is still being referenced.

10. What is method overloading?

Having more than one method with the same name in the
same class.

11. Create a class whose fully-qualified name is
com.example.Tablet to model an Android tablet. The class
must have three private fields, weight (int), screenSize (float)
and wifiOnly (boolean). Access to the fields must be through
pairs of public get and set methods, i.e.
getWeight/setWeight, getScreenSize/setScreenSize and
isWifiOnly/setWifiOnly. The class must also have one
constructor, a no-argument constructor.

Because the fully-qualified name is com.example.Tablet,
the class name must be Tablet and the package name
com.example. Here is the class definition.

package com.example;

public class Tablet {

 private int weight;

 private float screenSize;

 private boolean wifiOnly;

 public int getWeight() {

 return weight;

 }

 public void setWeight(int weight) {

 this.weight = weight;

 }

 public float getScreenSize() {

 return screenSize;

 }

 public void setScreenSize(float

screenSize) {

 this.screenSize = screenSize;

 }

 public boolean isWifiOnly() {

 return wifiOnly;

 }

 public void setWifiOnly(boolean

wifiOnly) {

 this.wifiOnly = wifiOnly;

 }

}

For a boolean field, the getXXX method is often named
isXXX. Note that since the class only has one constructor, which
is the default constructor, the compiler will create one
automatically in the absence of an explicit constructor.

12. Create a TabletTest class in the package
com.example.test and instantiate the Tablet class. Print the
value of the fields (by calling its get methods) right after
instantiation. Then, set the field values and print them again.

Here is the TabletTest class. Since it is in a different package
than Tablet, it must import the Tablet class.

package com.example.test;

import com.example.Tablet;

public class TabletTest {

 public static void main(String[]

args) {

 Tablet tablet = new Tablet();

 System.out.println("Weight: " +

tablet.getWeight());

 System.out.println("Screen Size:

" + tablet.getScreenSize());

 System.out.println("Wifi Only: "

+ tablet.isWifiOnly());

 System.out.println("=== Setting

tablet field values ...");

 tablet.setWeight(600);

 tablet.setScreenSize(8.9F);

 tablet.setWifiOnly(true);

 System.out.println("Weight: " +

tablet.getWeight());

 System.out.println("Screen Size:

" + tablet.getScreenSize());

 System.out.println("Wifi Only: "

+ tablet.isWifiOnly());

 }

}

Here is what you will see on the console when the class is run.
Initially, all fields will have default values.

Weight: 0

Screen Size: 0.0

Wifi Only: false

=== Setting tablet field values ...

Weight: 600

Screen Size: 8.9

Wifi Only: true

Chapter 5: Core Classes

1. What does it mean when people say that Strings are
immutable objects?

The state of an immutable object cannot change. String
objects are immutable and manipulating a String object, such as
calling its trim method, returns a new String instance.

2. How do you receive user input without Scanner? And, how
do you do it with Scanner?

Prior to JDK 5, use System.in.read() as in the
getUserInput method below

public String getUserInput() {

 StringBuilder sb = new

StringBuilder();

 try {

 char c = (char) System.in.read();

 while (c != '\r' && c != '\n') {

 sb.append(c);

 c = (char) System.in.read();

 }

 } catch (IOException e) {

 }

 return sb.toString();

}

In Java 5 and later, use the java.util.Scanner class.

Scanner scanner = new Scanner(System.in);

String input = scanner.nextLine();

scanner.close();

3. What is varargs?

Varargs is a feature in Java 5 and later that allows methods to
have a variable length of argument list.

4. Create a com.example.Car class that has these private
fields: year (int), make (String), model (String). Make Car
immutable by providing only get methods. Fields are set by
passing values to the constructor.

You can make a class immutable by making all its fields
private and providing get methods without set methods.

package com.example;

public class Car {

 private int year;

 private String make;

 private String model;

 public Car(int year, String make,

String model) {

 this.year = year;

 this.make = make;

 this.model = model;

 }

 public int getYear() {

 return year;

 }

 public String getMake() {

 return make;

 }

 public String getModel() {

 return model;

 }

}

5. Create a com.example.test.CarTest class to instantiate Car
and print its field values by calling the get methods.

Here is the CarTest class.

package com.example.test;

import com.example.Car;

public class CarTest {

 public static void main(String[]

args) {

 Car car = new Car(2015, "Ford",

"Escape");

 System.out.println("Year: " +

car.getYear());

 System.out.println("Make: " +

car.getMake());

 System.out.println("Model: " +

car.getModel());

 }

}

6. Create a utility/helper class named StringUtil in
com.example.util. This class should have two static methods,
getFileName and getFileExtension. Both methods receive a

file path and returns a file name or file extension, respectively.
Create a com.example.test.StringUtilTest class to test the
methods.

Assume that a file path may contain \ or / that separates a
directory from a file or a subdirectory. An extension is optional
and is the substring after the last period. For instance, in the file
path “C:\temp\document.txt”, the file name will be document.txt
and the extension will be txt.

Here is the StringUtil class.

package com.example.util;

public class StringUtil {

 public static String

getFileName(String path) {

 int lastIndex1 =

path.lastIndexOf("\\");

 int lastIndex2 =

path.lastIndexOf("/");

 int index = lastIndex1 <

lastIndex2? lastIndex2 : lastIndex1;

 if (index != -1) {

 return path.substring(index +

1);

 } else {

 return path;

 }

 }

 public static String

getFileExtension(String path) {

 int lastIndex =

path.lastIndexOf(".");

 if (lastIndex != -1) {

 return

path.substring(lastIndex + 1);

 } else {

 return "";

 }

 }

}

Here is the StringUtilTest class.

package com.example.test;

import com.example.util.StringUtil;

public class StringUtilTest {

 public static void main(String[]

args) {

 String path1 =

"C:\\temp\\document.txt";

 String fileName =

StringUtil.getFileName(path1);

 String extension =

StringUtil.getFileExtension(path1);

 System.out.println("File Name: "

+ fileName);

 System.out.println("Extension: "

+ extension);

 String path2 =

"/home/users/jayden/README";

 fileName =

StringUtil.getFileName(path2);

 extension =

StringUtil.getFileExtension(path2);

 System.out.println("File Name: "

+ fileName);

 System.out.println("Extension: "

+ extension);

 String path3 = "Help.html";

 fileName =

StringUtil.getFileName(path3);

 extension =

StringUtil.getFileExtension(path3);

 System.out.println("File Name: "

+ fileName);

 System.out.println("Extension: "

+ extension);

 String path4 = "setup";

 fileName =

StringUtil.getFileName(path4);

 extension =

StringUtil.getFileExtension(path4);

 System.out.println("File Name: "

+ fileName);

 System.out.println("Extension: "

+ extension);

 }

}

7. Show how you can use the java.util.StringTokenizer class
to print the number of tokens in a String and each individual
token.

StringTokenizer is easy to use.

package app05;

import java.util.StringTokenizer;

public class StringTokenizerDemo {

 public static void main(String[]

args) {

 String text = "Energy efficient

car";

 StringTokenizer tokenizer = new

StringTokenizer(text);

 System.out.format("Number of

tokens: %d\n",

 tokenizer.countTokens());

 System.out.println("Tokens:");

 while (tokenizer.hasMoreTokens())

{

 System.out.println("- " +

tokenizer.nextToken());

 }

 }

}

Running the class prints this on the console.

Number of tokens: 3

Tokens:

- Energy

- efficient

- car

Chapter 6: Arrays

1. What is an array?

A Java feature to group primitives or objects of the same type.
An array has a fixed size.

2. How do you resize an array?

You cannot resize an array, but you can create another array
and copy the contents of the first array to the new one.

3. How do you create an array and pass it to a method without
first assigning it to a variable?

Use this syntax:

new type[] { elements }

For example:

method1(new int[] { 1, 2, 3, 10 });

4. Write a com.example.app06a.ArrayUtil class that
contains two static methods, min and max. Both methods

receive an array of ints and returns the smallest and largest
element, respectively.

Below is the ArrayUtil class. It comes with a main method to
test the min and max methods.

package com.example.app06;

public class ArrayUtil {

 public static int min(int[] numbers)

{

 int smallest = Integer.MAX_VALUE;

 for (int i = 0; i <

numbers.length; i++) {

 int element = numbers[i];

 if (element < smallest) {

 smallest = element;

 }

 }

 return smallest;

 }

 public static int max(int[] numbers)

{

 int largest = Integer.MIN_VALUE;

 for (int element : numbers) {

 if (element > largest) {

 largest = element;

 }

 }

 return largest;

 }

 public static void main(String[]

args) {

 int[] numbers = {-1, 9, -100,

1000, 255};

 System.out.printf("Min: %d\n",

min(numbers));

 System.out.printf("Max: %d\n",

max(numbers));

 }

}

Running the ArrayUtil class prints this on the console.

Min: -100

Max: 1000

Chapter 7: Inheritance

1. Does a subclass inherit its superclass’s constructors?

No.

2. Why is it legal to assign an instance of a subclass to a
superclass variable?

Because of the “is a” relationship between a subclass and a
superclass. An instance of a subclass can therefore be assigned to
a superclass variable.

3. What is the difference between method overriding and method
overloading?

Method overloading is a feature in many OOP language that
allows methods in the same class to have the same name.
Method overriding is an OOP feature that enables you to change
the behavior of a method in a subclass. In method overloading,
the signatures of the methods must not be the same. In method
overriding, the signatures of the methods must be identical.

4. Why is it necessary for an instance of a subclass to be
accompanied by an instance of each parent?

So that you can call a method in the parent class and not
overridden in the subclass.

5. Write a public com.example.transport.Car class that adds
a public void method called run and overrides toString(). run
prints the return value of toString(). Write another public class
called SUV in the same package. SUV extends Car and

overrides its run and toString methods. The run class of SUV
should print the return value of the parent’s toString method
and its own toString method. Next, add a main method in
SUV that creates an SUV object and calls its run method.

Here are the Car and SUV classes. Since they are public
classes, the Car class must be saved in a Car.java file and SUV
in a SUV.java file.

package com.example.transport;

public class Car {

 @Override

 public String toString() {

 return "I am a car.";

 }

 public void run() {

 System.out.println(toString());

 }

}

package com.example.transport;

public class SUV extends Car {

 @Override

 public String toString() {

 return "I can carry stuff.";

 }

 @Override

 public void run() {

System.out.println(super.toString());

 System.out.println(toString());

 }

 public static void main(String[]

args) {

 SUV suv = new SUV();

 suv.run();

 }

}

If you run the SUV class, you will see this printed on the
console.

I am a car.

I can carry stuff.

Chapter 8: Error Handling

1. What is the advantage of the try statement?

The try statement provides an easy way to handle runtime
errors. The alternative to this strategy is a series of if statements
that tests each of the conditions that might lead to an error.
Using the latter is harder and may make your code hard to read.

2. Can a try statement be used with finally and without catch?

Yes.

3. What is try-with-resources?

This is a feature added to JDK 7 to automatically close a
resource after use. try-with-resource can be used with any
resource whose class implements java.lang.AutoCloseable.

4. Write a utility class called Util (part of
com.example.app08) that has a static method named
addArray for adding two arrays of the same length. The
signature of addArray is as follows.

public static long[] addArray(int[]

array1, int[] array2)

 throws MismatchedArrayException,

 java.lang.NullPointerException

The method throws a MismatchedArrayException if the
lengths of both arguments are not the same. The toString
method of the exception class must return this value:

Mismatched array length. The first

array's length is length1. The

second array's length is length2

where length1 is the length of the first array and length2 the
length of the second array.

The method throws a NullPointerException if one of the
arrays is null.

First, notice from the addArray method signature that
MismatchedArrayException is written without package
information, which means it is in the same package as the
containing class. This is therefore a user-defined exception class.
Second, the class must somehow have access to the lengths of
both arrays, which means you have to pass the two arguments to
MismatchedArrayException.

The MismatchedArrayException class is as follows.

package com.example.app08;

public class MismatchedArrayException

extends Exception {

 private int[] array1;

 private int[] array2;

 public MismatchedArrayException(int[]

array1, int[] array2) {

 this.array1 = array1;

 this.array2 = array2;

 }

 @Override

 public String toString() {

 return "Mismatched array length.

"

 + "The first array's

length is " + array1.length

 + ". The second array's

length is "

 + array2.length;

 }

}

And here is the Util class.

package com.example.app08;

import java.util.Arrays;

public class Util {

 public static long[] addArrays(int[]

array1, int[] array2)

 throws

MismatchedArrayException,

 NullPointerException {

 if (array1 == null || array2 ==

null) {

 throw new

NullPointerException(

 "One of the arrays is

null");

 }

 if (array1.length !=

array2.length) {

 throw new

MismatchedArrayException(array1, array2);

 }

 int length = array1.length;

 long[] result = new long[length];

 for (int i = 0; i < length; i++)

{

 result[i] = (long) array1[i]

+ array2[i];

 }

 return result;

 }

 public static void main(String[]

args) {

 int[] array1 = {100, 1000, 10000,

Integer.MAX_VALUE};

 int[] array2 = {10, 100, 1000,

Integer.MAX_VALUE};

 int[] array3 = {1, 2};

 try {

 long[] result =

addArrays(array1, array2);

System.out.println(Arrays.toString(result

));

 } catch (NullPointerException e)

{

 System.out.println(e);

 } catch (MismatchedArrayException

e) {

 System.out.println(e);

 }

 try {

 long[] result =

addArrays(array1, array3);

 Arrays.toString(result);

 } catch (NullPointerException e)

{

 System.out.println(e);

 } catch (MismatchedArrayException

e) {

 System.out.println(e);

 }

 }

}

Running the Util class gives you the following message on the
console.

[110, 1100, 11000, 4294967294]

Mismatched array length. The first

array's length is 4. The second

array's length is 2

Chapter 9: Working with
Numbers

1. What can you do with the java.lang.Math class’s static
methods?

Simple and complex mathematical operations as well as
random number generation.

2. Are wrapper classes still useful since boxing and unboxing
happen automatically in Java?

Yes. Some classes, such as those in the Collection framework,
only deal with objects and not primitives. In addition, wrapper
classes posses methods that can be used for parsing and
formatting.

3. Explain why you should not use doubles or floats to perform
monetary calculations. What should you use instead?

Due to bit representation of floats and doubles, they are not
precise. You should use java.math.BigDecimal.

4. Write a class called RangeRandomGenerator that can
generate random numbers between two integers that you specify
when instantiating the class.

The class is printed below.

package com.example;

public class RangeRandomGenerator {

 private int from;

 private int to;

 private int range;

 /*

 * Returns a random number between

'from' and 'to' (inclusive)

 */

 public int generate() {

 double random = Math.random();

 return (int) (from + random *

range);

 }

 public RangeRandomGenerator(int from,

int to) {

 this.from = from;

 this.to = to;

 this.range = this.to - this.from

+ 1;

 }

 public static void main(String[]

args) {

 RangeRandomGenerator generator =

 new

RangeRandomGenerator(5, 20);

 for (int i = 0; i < 10; i++) {

System.out.println(generator.generate());

 }

 }

}

Chapter 10: Interfaces and
Abstract Classes

1. Why is it more appropriate to regard an interface as a contract
than as a implementation-less class?

Because thinking of an interface as a class without
implementation misses the big picture. An interface defines
methods that both the service provider and its client must agree
on.

2. What is a base class?

A concrete class that provides default implementations of an
interface.

3. What is an abstract class?

A class that provides partial implementation. An abstract
cannot be instantiated and must be extended by another class.

4. Is a base class the same as an abstract class?

Base classes and abstract classes look similar but their reasons
for existence are different, albeit similar.

5. Create an interface named Calculator in com.example with
three methods, add, subtract and multiply. All methods take
two int arguments and return a long.

Here is the interface.

package com.example;

public interface Calculator {

 long add(int a, int b);

 long subtract(int a, int b);

 long multiply(int a, int b);

}

6. Write an implementation of Calculator called
ScientificCalculator and implement all the methods.

Here is the implementing class.

package com.example;

public class ScientificCalculator

implements Calculator {

 @Override

 public long add(int a, int b) {

 return a + b;

 }

 @Override

 public long subtract(int a, int b) {

 return a - b;

 }

 @Override

 public long multiply(int a, int b) {

 return a * b;

 }

}

Chapter 11: Polymorphism

1. In your own words, describe polymorphism.

The ability of the JVM to invoke the correct method
implementation when a superclass variable is assigned an
instance of a subclass.

2. In what situations is polymorphism most useful?

When the type of object is not known at compile time.

Chapter 12: Enums

1. How do you write an enum?

You use the enum keyword to define an enum, which can be
part of a class or it can stand alone. For the latter, you write it as
you would a class.

2. Why are enums safer than static final fields?

Enums are safer than static final fields as enumerated values
because they can restrict values. On the other hands, with static
final fields you use ints and can assign any int.

3. Write an abstract Car class that has two fields, name (of type

String) and fuelEfficiency (of type FuelEfficiency given in
Listing 12.4) and methods for calculating the minimum and
maximum gas usage for a given distance (in miles). Next, write
three child classes, EfficientCar, AcceptableCar and
GasGuzzler. The constructor of each of this suclasses takes a
name and sets the fuelEfficiency field. Finally, write a class to
test it.

All the classes are given below in a single file named
FuelEfficiencyTest.

package com.example.test;

import com.example.FuelEfficiency;

abstract class Car {

 protected String name;

 protected FuelEfficiency

fuelEfficiency;

 public double

calculateMinGasUsage(int miles) {

 int mpg =

fuelEfficiency.getMax();

 return (double) miles / mpg;

 }

 public double

calculateMaxGasUsage(int miles) {

 int mpg =

fuelEfficiency.getMin();

 return (double) miles / mpg;

 }

 public String getName() {

 return this.name;

 }

}

class EfficientCar extends Car {

 public EfficientCar(String name) {

 this.name = name;

 this.fuelEfficiency =

FuelEfficiency.EFFICIENT;

 }

}

class AcceptableCar extends Car {

 public AcceptableCar(String name) {

 this.name = name;

 this.fuelEfficiency =

FuelEfficiency.ACCEPTABLE;

 }

}

class GasGuzzler extends Car {

 public GasGuzzler(String name) {

 this.name = name;

 this.fuelEfficiency =

FuelEfficiency.GAS_GUZZLER;

 }

}

public class FuelEfficiencyTest {

 public static void main(String[]

args) {

 Car[] cars = new Car[3];

 cars[0] = new EfficientCar("2015

Jupiter CX");

 cars[1] = new AcceptableCar("2015

SoSo");

 cars[2] = new GasGuzzler("2015

Guzzly");

 int miles = 1000;

 for (Car car : cars) {

 System.out.printf("To drive

%d miles in a \"%s\",%n"

 + "you need between

%.2f and %.2f gallons "

 + "of gasoline.%n%n",

 miles, car.name,

car.calculateMinGasUsage(miles),

car.calculateMaxGasUsage(miles));

 }

 }

}

Running the FuelEfficiencyTest class prints this on the
console.

To drive 1000 miles in a "2015 Jupiter

CX",

you need between 18.18 and 30.30 gallons

of gasoline.

To drive 1000 miles in a "2015 SoSo",

you need between 31.25 and 50.00 gallons

of gasoline.

To drive 1000 miles in a "2015 Guzzly",

you need between 52.63 and 1000.00

gallons of gasoline.

Chapter 13: Working with
Dates and Times

1. What were the two core classes in the old Date-Time API?

java.util.Date and java.util.Calendar.

2. Why is the old Date-Time API being phased out?

The core classes are hard to use.

3. What are the new packages for the new Date-Time API?

java.time, java.time.chrono, java.time.format,
java.time.temporal and java.time.zone.

4. What are the main classes in the core package?

Instant, LocalDate, LocalTime, LocalDateTime,
ZonedDateTime, Period, Duration.

5. What are the two static methods for creating a LocalDate,
LocalDateTime and ZonedDateTime?

now and of.

6. What is the difference between Period and Duration?

Period is date-based, Duration is time-based.

7. What is the easiest way to time an operation?

By creating Instants using the static method now right
before and after the operation and calculate the Duration
between the two.

8. How do you get a Set of all timezone identifiers?

By calling the static method getAvailableZoneIds of the
ZoneId class.

9. What is the date-time formatter class in the new Date and
Time API?

java.time.format.DateTimeFormatter.

Chapter 14: The Collections
Framework

1. Name at least seven types in the Collections Framework.

Collection, List, Set, Queue, ArrayList, Vector,
Comparator, Map, HashMap, Hashtable.

2. What is the different between ArrayList and Vector?

ArrayList is unsynchronized, Vector is synchronized.

3. Why is Comparator more powerful than Comparable?

Comparator is more powerful than Comparable because
with Comparator you can compare objects in more than one
way.

4. Write a method to convert an array of Strings to a resizable
List.

The method is called arrayToList and written as a member
of a ListUtil class.

package com.example;

import java.util.ArrayList;

import java.util.List;

public class ListUtil {

 public static List

arrayToList(String[] array) {

 List list = new ArrayList();

 for (String s : array) {

 list.add(s);

 }

 return list;

 }

 public static void main(String[]

args) {

 String[] names = {"Ariana",

"April", "Sydney"};

 List list =

ListUtil.arrayToList(names);

 list.add("Julie");

 for (Object name : list) {

 System.out.println(name);

 }

 }

}

Chapter 15: Generics

1. What are the main benefits of generics?

Generics impose stricter type checking at compile time and
eliminates most type castings.

2. What is a parameterized type?

A parameterized type is a generic type.

3. What is type inference?

Type inference is a language feature that enables the compiler
to determine the type parameter(s) for a generic method from
the corresponding declaration.

Chapter 16: Input Output

1. What is an I/O stream?

An I/O stream connects Java code to a data reservoir.

2. Name four abstract classes that represent streams in the
java.io package.

InputStream, OutputStream, Reader, Writer.

3. What is object serialization?

Storing objects to persistent storage, such as a file.

4. What is the requirement for a class to be serializable?

The class must implement java.io.Serializable.

Chapter 17: Annotations

1. What is an annotation type?

An annotation type is a type of annotation objects. Technically,
an annotation type is a special type of interface. Annotations are
instances of annotation types.

2. What is a meta-annotation?

An annotation type for annotation annotations.

3. What were the standard annotation types fist included in Java
5?

Override, Deprecated and SuppressWarnings.

Chapter 18: Inner Classes

1. What is a nested class and what is an inner class?

A nested class is a class declared within the body of another
class or interface. An inner class is a type of nested class, a non-
static one.

2. What can you use nested classes for?

You can use nested classes to completely hide an
implementation. Anonymous classes provide for a shorter way of
writing event listeners.

3. What is an anonymous class?

A class that has no name.

Chapter 19: Lambda
Expressions

1. Why add lambda expressions to Java?

They can make certain constructs shorter and more
expressive.

2. What are lambda expressions also known as?

Closures.

3. What is a function interface?

An interface with exactly one abstract method that does not
override a method of java.lang.Object.

4. What is a method reference?

A reference to a method or constructor that can be passed to a
method in lieu of a lambda expression.

5. What is the operator used in the method reference?

The double colon operator (::).

6. What are the four classes in java.util for handling null pointer
exceptions?

Optional, OptionalInt, OptionalLong and
OptionalDouble.

Chapter 20: Working with
Streams

1. What is a Stream?

A pipe for transferring data.

2. What are the four main types of streams?

Stream, IntStream, LongStream and DoubleStream.

3. What are reduction operations?

Operations that reduce the elements in a stream to a single
value or element.

4. When do you use a parallel stream?

When you have a resource-intensive task that can be split into
different threads.

Chapter 21: Java Database
Connectivity

1.Name the four steps to accessing a database and manipulating
the data in it.

Load the JDBC driver, create a Connection object, create a
Statement or PreparedStatement object, and optionally
obtain a ResultSet object.

2.Name the five most important types in the java.sql package.

Driver, DriverManager, Connection, Statement,
ResultSet.

3.What pattern can you use to hide the complexity of JDBC-
related code?

The Data Access Object (DAO) pattern.

Chapter 22: Swing Basics

1. Why is studying AWT still relevant today?

Because Swing still rely on the AWT, among others for layout
management and event handling. In addition, Swing

components are descendants of AWT components and Swing
application will often use AWT classes such as Font, Color,
Dimension, etc.

2. What is the AWT class that represents a component?

java.awt.Component.

3. What is the easiest way to construct a Color object?

By invoking one of the java.awt.Color class’s static final fields.

4. What is the only non-menu child component that can be
added to a Jframe?

javax.swing.JRootPane.

5. What is the significance of using
SwingUtilities.invokeLater to construct Swing GUI?

To make sure that Swing GUI will be constructed by the event-
dispatching thread.

6. What are the three top-level Swing containers?

JApplet, JFrame, JDialog.

Chapter 23: Swinging Higher

1. What is a layout manager?

A layout manager is a component in a container that is
responsible for resizing and positioning the child components of
the container.

2. Name at least four types of layout managers.

BorderLayout, FlowLayout, GridLayout, BoxLayout.

3. What is a source object in event-handling?

An object that raises the event.

4. Name at least four Swing events.

Action event, window event, mouse event, key event.

5. What is the advantage of writing your listener as an
anonymous class?

An anonymous class does not need a name and its code is
tightly integrated with the definition of the component that
raises the event.

Chapter 24: Applets

1. What are the life cycle methods of an applet?

init, start, stop, destroy.

2. How do you pass parameters to an applet?

By using the param tag within the applet tag in the HTML file.

3. Is JApplet an applet or a JFrame?

A JApplet is an applet because JApplet is a subclass of
java.applet.Applet. However, JApplet is also a member of
the Swing API that has similar functionality as JFrame.

Chapter 25: Introduction to
JavaFX

1. What is the class that is a template for all JavaFX applications?

javafx.application.Application.

2. What is the top-level container window in JavaFX?

javafx.stage.Stage.

3. What is a node?

Basically, a UI component.

4. What is the best way to style JavaFX UI components?

By using CSS.

Chapter 26: JavaFX with
FXML

1. What is FXML?

FXML is an XML-based markup language for constructing
JavaFX user interface (UI). Using FXML in JavaFX applications
is a great way of separating the presentation layer and the
business logic.

2. What is a controller class?

A controller is a Java class that implements
javafx.fxml.Initializable. A controller contains event-
handlers and bound fields.

Chapter 27: Java Threads

1. What is a thread?

The smallest unit of processing.

2. What does the synchronized modifier do?

Protecting a critical section so that only one thread at a time
can access an object’s critical sections.

3. What is a critical section?

A code segment that guarantees only one thread at a time have
access to a shared resource.

4. Where do you write a scheduled task for a java.util.Timer?

In a subclass of java.util.TimerTask.

5. What is the difference between java.util.Timer and
javax.swing.Timer.

java.util.Timer is a general purpose timer,
javax.swing.Timer is a more precise timer that can only be
used in Swing applications.

Chapter 28: Concurrency
Utilities

1. What are atomic variables?

Classes in the java.util.concurrent.atomic package that
can perform atomic operations.

2. How do you obtain an ExecutorService instance?

By calling one of these static methods in the
java.util.concurrent.Executors class:
newSingleThreadExecutor, newCacheThreadPool,
newFixedThreadPool.

3. What is a Callable and what is a Future?

A Callable is a task that returns a value and may throw an
exception. A Future represents the result of an asynchronous
computation.

4. Name one of the standard implementations of the Lock
interface.

java.util.concurrent.locks.ReentrantLock.

Chapter 29:
Internationalization

1. What is the approach to internationalizing applications with
plenty of static contents?

Create different versions of the parts with static contents.

2. How do you isolate textual elements of a Java application?

By creating a different properties file for every locale.

3. What are the two classes used in internationalization and
localization?

java.util.Locale and java.util.ResourceBundle.

Chapter 30: Java Networking

1. Why are there several layers of protocols in computer
networking?

Because it is very hard to deal with data streams directly at the
hardware level.

2. What are the components of a URL?

The protocol, the host, the port, and the path.

3. What is the class that represents URLs?

java.net.URL.

4. What is a socket?

A socket is an endpoint of a network connection. A socket
enables an application to read from and write to the network.
Two software applications residing on two different computers

can communicate with each other by sending and receiving byte
streams over a connection.

5. What is the difference between a socket and a server socket?

A server socket is used in a server application and its primary
task is to wait for connections. For each connection obtained, a
server socket creates a socket to communicate with the remote
computer making the connection.

Chapter 31: Security

1. What is a policy file?

A policy file is a text file with the policy extension that lists all
the permissions granted to the application that is run with the
security manager turned on.

2. Why is symmetric cryptography not suitable for use on the
Internet?

Symmetric cryptography is not suitable for the Internet for the
following reasons

Two people exchanging messages must first agree on a key.
This is not practical since Internet users are scattered all
around the world.

Each person wants to be able to communicate with many
other parties. If symmetric cryptography was used, each
person would have to maintain different unique keys, each
for a different party.

Since you do not know the entity you are going to
communicate with, you need to be sure that they are really
who they claim to be.

Messages over the Internet pass through many different
computers. It is fairly trivial to tap other people’s messages.
Symmetric cryptography does not guarantee that a third
party may not tamper with the data.

3. What is a keystore?

A keystore is a database to store your own public and private
keys as well as certificates from third parties.

4. What are the steps to digitally sign an applet?

Steps to digitally signing an applet:

Package the applet in a jar file using the jar tool.

Sign the jar file using the jarsigner tool.

Chapter 32: Java Web

Applications

1. What are the three life cycle methods of the
javax.servlet.Servlet interface?

init, service, destroy.

2. What’s the main difference between the getWriter method
and the getOutputStream method in the
javax.servlet.ServletResponse interface? Which one of the
two do you use more often?

You use the getWriter method to obtain a PrintWriter for
sending text. You call the getOutputStream method to get an
OutputStream for sending binary data. Most of the time you
will use getWriter.

3. Name four interfaces in javax.servlet and three interfaces in
javax.servlet.http.

Four interfaces in javax.servlet: Servlet, ServletRequest,
ServletResponse, ServletConfig. Three interfaces in
javax.servlet.http: HttpServletRequest,
HttpServletResponse, HttpSession.

Chapter 33: JavaServer Pages

1. What are the two problems in Servlet technology that JSP
solves?

When sending a response in a servlet, all HTML tags must be
enclosed in strings, making sending HTTP response a tedious
effort. In addition, all text and HTML tags are hardcoded,
causing minor changes to require recompilation.

2. Why is it easier to program JSP than to write servlets?

JSP pages are compiled automatically and reloaded every time
they are modified.

Chapter 34: Javadoc

1. What is the difference between doc comments and Java
comments in code?

Java comments are for Java programmers to maintain the
code. Doc comments are for the users of the API.

Chapter 35: Application
Deployment

1. What does JWS stand for?

Java Web Start.

2. What are the steps required to deploy a Java application via
JNLP?

Package the application as a jar file and create a jnlp file that
describes the jar file.

3. Why does the JRE restrict Java applications downloaded from
the Internet?

Because they are untrusted resources.

	Introduction
	Java, the Language and the Technology
	An Overview of Object-Oriented Programming
	About This Book
	Downloading Program Examples and Answers

	Chapter 1: Getting Started
	Downloading and Installing Java
	Your First Java Program
	Java Code Conventions
	Integrated Development Environments (IDEs)
	Summary
	Quiz

	Chapter 2: Language Fundamentals
	ASCII and Unicode
	Separators
	Primitives
	Variables
	Constants
	Literals
	Primitive Conversions
	Operators
	Comments
	Summary
	Quiz

	Chapter 3: Statements
	Overview
	The if Statement
	The while Statement
	The do-while Statement
	The for Statement
	The break Statement
	The continue Statement
	The switch Statement
	Summary
	Quiz

	Chapter 4: Objects and Classes
	What Is An Object?
	Java Classes
	Creating An Object
	The null Keyword
	Memory Allocation for Objects
	Java Packages
	Encapsulation and Access Control
	The this Keyword
	Using Other Classes
	Final Variables
	Static Members
	Static Final Variables
	Static import
	Variable Scope
	Method Overloading
	Static Factory Methods
	By Value or By Reference?
	Loading, Linking, and Initialization
	Object Creation Initialization
	The Garbage Collector
	Summary
	Quiz

	Chapter 5: Core Classes
	java.lang.Object
	java.lang.String
	java.lang.StringBuffer and java.lang.StringBuilder
	Primitive Wrappers
	java.lang.Class
	java.lang.System
	java.util.Scanner
	Summary
	Quiz

	Chapter 6: Arrays
	Overview
	Iterating over an Array
	The java.util.Arrays Class
	Changing an Array Size
	Searching An Array
	Passing a String Array to main
	Multidimensional Arrays
	Summary
	Quiz

	Chapter 7: Inheritance
	Overview
	Accessibility
	Method Overriding
	Calling the Constructors of the Superclass
	Calling the Hidden Members of the Superclass
	Type Casting
	Final Classes
	The instanceof Operator
	Summary
	Quiz

	Chapter 8: Error Handling
	Catching Exceptions
	try without catch
	Catching Multiple Exceptions
	The try-with-resources Statement
	The java.lang.Exception Class
	Throwing an Exception from a Method
	User-Defined Exceptions
	Note on Exception Handling
	Summary
	Quiz

	Chapter 9: Working with Numbers
	Boxing and Unboxing
	Number Parsing
	Number Formatting
	Number Parsing with java.text.NumberFormat
	The java.lang.Math Class
	Working with Money
	Generating Random Numbers
	Summary
	Quiz

	Chapter 10: Interfaces and Abstract Classes
	The Concept of Interface
	The Interface, Technically Speaking
	Default Methods
	Static Methods
	Base Classes
	Abstract Classes
	Summary
	Quiz

	Chapter 11: Polymorphism
	Overview
	Polymorphism in Action
	Polymorphism and Reflection
	Summary
	Quiz

	Chapter 12: Enums
	Overview
	Enums in a Class
	The java.lang.Enum Class
	Iterating Enumerated Values
	Switching on Enum
	Enum Members
	Summary
	Quiz

	Chapter 13: Working with Dates and Times
	Overview
	The Instant Class
	LocalDate
	Period
	LocalDateTime
	Time Zones
	ZonedDateTime
	Duration
	Formatting A Date-Time
	Parsing A Date-Time
	Using the Old Date and Time API
	Summary
	Quiz

	Chapter 14: The Collections Framework
	An Overview of the Collections Framework
	The Collection Interface
	List and ArrayList
	Iterating Over a Collection with Iterator and for
	Set and HashSet
	Queue and LinkedList
	Collection Conversion
	Map and HashMap
	Making Objects Comparable and Sortable
	Summary
	Quiz

	Chapter 15: Generics
	Life without Generics
	Generic Types
	Using Generic Types without Type Parameters
	Using the ? Wildcard
	Using Bounded Wildcards in Methods
	Generic Methods
	Writing Generic Types
	Summary
	Quiz

	Chapter 16: Input/Output
	File Systems and Paths
	File and Directory Handling and Manipulation
	Input/Output Streams
	Reading Binary Data
	Writing Binary Data
	Writing Text (Characters)
	Reading Text (Characters)
	Logging with PrintStream
	Random Access Files
	Object Serialization
	Summary
	Quiz

	Chapter 17: Annotations
	Overview
	Standard Annotations
	Common Annotations
	Standard Meta-Annotations
	Custom Annotation Types
	Summary
	Quiz

	Chapter 18: Nested and Inner Classes
	An Overview of Nested Classes
	Static Nested Classes
	Member Inner Classes
	Local Inner Classes
	Anonymous Inner Classes
	Behind Nested and Inner Classes
	Summary
	Quiz

	Chapter 19: Lambda Expressions
	Why Lambda Expressions?
	Functional Interfaces
	Lambda Expression Syntax
	Predefined Functional Interfaces
	Method References
	Optional and Similar Classes
	Summary
	Quiz

	Chapter 20: Working with Streams
	Overview
	Creating and Obtaining a Stream
	Concatenating Streams
	Filtering
	Mapping
	Reduction
	Mutable Reductions
	Parallel Streams
	Summary
	Quiz

	Chapter 21: Java Database Connectivity
	Introduction to JDBC
	Four Steps to Data Access
	Using Java DB
	Using the DAO Pattern
	Reading Metadata
	Summary
	Quiz

	Chapter 22: Swing Basics
	Overview
	AWT Components
	Useful AWT Classes
	Basic Swing Components
	Summary
	Quiz

	Chapter 23: Swinging Higher
	Layout Managers
	Event Handling
	Working with Menus
	The Look and Feel
	Fast Splash Screens
	System Tray Support
	Desktop Help Applications
	Summary
	Quiz

	Chapter 24: Applets
	A Brief History of Applets
	The Applet API
	Security Restrictions
	Writing and Deploying Applets
	How AppletViewer Works
	Passing Parameters to an Applet
	SoundPlayerApplet
	JApplet
	Applet Deployment in a JAR File
	Faster Loading
	Summary
	Quiz

	Chapter 25: Introduction to JavaFX
	Overview
	Setting up
	Your First JavaFX Application
	The JavaFX API is explained in the next section.Application, Stage, and Scene
	UI Components
	Controls
	Regions
	Event Handling
	Styling with CSS
	Summary
	Quiz

	Chapter 26: JavaFX with FXML
	Overview
	A Simple FXML-Based Application
	Event Handling with FXML
	Summary
	Quiz

	Chapter 27: Java Threads
	Introduction to Java Threads
	Creating a Thread
	Working with Multiple Threads
	Thread Priority
	Stopping a Thread
	Synchronization
	Visibility
	Thread Coordination
	Using Timers
	Swing Timers
	Summary
	Quiz

	Chapter 28: Concurrency Utilities
	Atomic Variables
	Executor and ExecutorService
	Callable and Future
	Swing Worker
	Locks
	Summary
	Quiz

	Chapter 29: Internationalization
	Locales
	Internationalizing Applications
	An Internationalized Swing Application
	Summary
	Quiz

	Chapter 30: Java Networking
	An Overview of Networking
	The Hypertext Transfer Protocol (HTTP)
	java.net.URL
	java.net.URLConnection
	java.net.Socket
	java.net.ServerSocket
	A Web Server Application
	Summary
	Quiz

	Chapter 31: Security
	Java Security Overview
	Using the Security Manager
	Policy Files
	Permissions
	Using the Policy Tool
	Applet Security
	Programming with Security
	Cryptography Overview
	Creating Certificates
	The KeyTool Program
	The JarSigner Tool
	Java Cryptography API
	Summary
	Quiz

	Chapter 32: Java Web Applications
	Servlet Application Architecture
	Servlet API Overview
	Servlet
	Writing a Basic Servlet Application
	ServletRequest
	ServletResponse
	ServletConfig
	ServletContext
	GenericServlet
	HTTP Servlets
	Using the Deployment Descriptor
	Summary
	Quiz

	Chapter 33: JavaServer Pages
	A JSP Overview
	jspInit, jspDestroy, and Other Methods
	Implicit Objects
	JSP Syntactic Elements
	Handling Errors
	Summary
	Quiz

	Chapter 34: Javadoc
	Overview
	Writing Documentation in Java Classes
	Javadoc Syntax
	Summary
	Quiz

	Chapter 35: Application Deployment
	JWS Overview
	JNLP File Syntax
	A Deployment Example
	Security Concerns
	Summary
	Quiz

	Appendix A: javac
	Options
	Command Line Argument Files

	Appendix B: java
	Options

	Appendix C: jar
	Syntax
	Options
	Examples
	Setting an Application Entry Point

	Appendix D: NetBeans
	Download and Installation
	Creating a Project
	Creating a Class
	Running a Java Class
	Adding Libraries
	Debugging Code

	Appendix E: Eclipse
	Download and Installation
	Adding A JRE
	Creating a Java Project
	Creating a Class
	Running a Java Class
	Adding Libraries
	Debugging Code
	Useful Shortcuts

	Answers
	Chapter 1: Getting Started
	Chapter 2: Language Fundamentals
	Chapter 3: Statements
	Chapter 4: Objects and Classes
	Chapter 5: Core Classes
	Chapter 6: Arrays
	Chapter 7: Inheritance
	Chapter 8: Error Handling
	Chapter 9: Working with Numbers
	Chapter 10: Interfaces and Abstract Classes
	Chapter 11: Polymorphism
	Chapter 12: Enums
	Chapter 13: Working with Dates and Times
	Chapter 14: The Collections Framework
	Chapter 15: Generics
	Chapter 16: Input Output
	Chapter 17: Annotations
	Chapter 18: Inner Classes
	Chapter 19: Lambda Expressions
	Chapter 20: Working with Streams
	Chapter 21: Java Database Connectivity
	Chapter 22: Swing Basics
	Chapter 23: Swinging Higher
	Chapter 24: Applets
	Chapter 25: Introduction to JavaFX
	Chapter 26: JavaFX with FXML
	Chapter 27: Java Threads
	Chapter 28: Concurrency Utilities
	Chapter 29: Internationalization
	Chapter 30: Java Networking
	Chapter 31: Security
	Chapter 32: Java Web Applications
	Chapter 33: JavaServer Pages
	Chapter 34: Javadoc
	Chapter 35: Application Deployment

