Practical Web
Development
with Haskell

Master the Essential Skills to Build Fast and
Scalable Web Applications

Ecky Putrady

Apress®

http://www.allitebooks.org

Practical Web
Development with Haskell

Master the Essential Skills to Build
Fast and Scalable Web Applications

Ecky Putrady

Apress’

vww .allitebooks.cond

http://www.allitebooks.org

Practical Web Development with Haskell

Ecky Putrady
Singapore, Singapore, Singapore

ISBN-13 (pbk): 978-1-4842-3738-0 ISBN-13 (electronic): 978-1-4842-3739-7
https://doi.org/10.1007/978-1-4842-3739-7

Library of Congress Control Number: 2018962969

Copyright © 2018 by Ecky Putrady

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jade Scard

Development Editor: James Markham

Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484237380. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-3739-7
http://www.allitebooks.org

Table of Contents

About the AULNOFKcccciiiiieemnmissssnnmssssnnes s aaa s annn e s s annnnen s nnnnnss ix
About the Technical REVIEWETScuuseesmmsssssnnssssssssnssssssssnssssssnsnssssssnsnsssssnnnnsssssnnnnss Xi
Acknowledgments........ccccciiisssssmmssnmmmmmmsssssssssssnsseessssssssssssnnnssesssssssnsnnnnnnsessssssnnnnnns Xiii
INtroduCtionccceumiissnnnmmmsssnnnnsssssnnnnsssssnnnnsssssnnnnssssnnnnnsssssnnnnnsssnnnnnssssnnnnnssssnnnnnnssnnns XV
Chapter 1: Getting Started.........ccounrmmmmmmmninnnnnnssss s ———— 1
STACK ...ttt e e e e ne s 1
HASKEII IDEoeeeieeeereesertesesessesessesesse e sessesessesesse e sessesessesessssessssesessenessenessssesensesensenessenessnsensnsenens 2
Default ProjeCt STTUCIUIEcoveeeecerie et s s 4
The BUild ConfigUIration.........cceceeererrerierienenserseressessssessessesessessessessssessessessessssessessessssessessessessssessens 5

£ 11134 7 8
Chapter 2: Practical Haskellccocccummmnssssnnnmsssssnnssssssssssssssssnsssssssssssssssssnssssssssnnnsssss 9
CIASSYPIEIUE ... e e s re e e e nnnne s 9
String, Text, and ByteSIring ..o s 11

Data Structures and OPErationscceccevcercerrerrererrerrer e s s e see s s s see e s s e s saesnesaesaees 13

Date And TIMEcccceeecr s e e e e bR nan 16
ReguIar EXPrESSIONccciierriiserresessssessssese s ssssessssese s ssssesessssesssssssssssnssssesssssssssssssssssssnsssnns 20
SON et E R R R A e e e e R e Re e e s 22
EXCEPtion HANAIINGcccvreereriereriere st se s se s e s s sss e s s sae e s e saesaesas e ssesaesaesansenaesaes 29

£ 1114 7 33
Chapter 3: Domain Modelingccuccuressenmmsssnsmsssnsssssssesssnsesssssesssnsesssssesssnnsssssnssssans 35
Port and Adapter ArChitECIUNE ... ——— 35
Auth Data STFUCTUIEoveeeere e e e e nae s 38
TYPES DEFiNITION ... 38
Validation Implementation..........ccoinnicnc s 40

iii

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

mkEmail and mkPassword Implementation.........c..ccovcvvnnvnnnnnnnsn e 43
312 10 R 44
TYPES DEFiNItION ... e 45
IMPIEMENTALIONceeece e 45
EMail VErifiCationcceeereeereriserese s s e s 47
TYPES DEfiNItIONcovreereer e e 47
IMPIEMENTALIONcceec e 48
Login and ReSOIVING SESSIONcccucerrierrrrinerresesrsessssse s sesse s sss s ssssessssssessssssssssssssssessssessnns 48
TYPES DEFiNITION ...t 49
IMPIEMENTALIONcereice e 50
LT g T - OSSOSO 51
EXPOSING SAfe FUNCHIONS......cciviirierererisserere s s se s e s sas e e s sae e s ssesaessesessesaesaessssenaesnes 52
L Ty (0] T D UL O 53
Software Transactional MEMOIY........ccvcevererrerreriererserseressesessessessessessssessessessssessessessessssessesaes 53
Repositories IMplementation............cccvverinininsn e s 56
SessionRepo IMPIEMENTALioN ... e 59
EmailVerificationNotif Implementation..........ccccvvvvninininnninrr e 60
AuthRepo Implementation ... e 61
Verification in REPL ... s 64
Tying Everything TOQEhEr........co et r e s 65
1] 4= OSSOSO 67
Chapter 4: LOGgiNgccusssssmsssanssssanssssanssssanssssanssssansssssnsssssnsssssnsssssnsssssanssssnnssssnnss 69
When putStrLn IS NOt ENOUGNcvceoiieiiccc s 69
2] OO 70
0T T (1102 (1 (RS 70
SCIIDB .ttt ——————— 72
6210101 R 73
LOOENV .. e e a e e 74
WOrking With Katipccveeveniirine s ss s s se s s sassessesnesnes 76
Integrating Log in QUK PrOJECTccvceveveeierere st sersere s se s e s e s e ssesae e s e s saesss e ssesneseesssnenaennes 78
£ 11114 7 83

iv

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 5: Databasescccureerrrmssnnnmmmssssnnmessssnnssesssssnssessssnnnesssssnnnsessssnnnsssssnnnnssnss 85
0] (0] PR 85
ORM VS. NON=0RM....ccooririiiirerenrssessssesesssssssesesesss s sssssesssssssssssesssssssssssssssssssssssssssssssssssans 86
POSEGreSqI-SIMPIE.......coicr e e 86
IMPIEMENTALION ... e e e s sn e e ae e 94
3= 0 104
T T 105
IMPIEMENTALIONcceveii e ———————— 108

£ 1T S 112
Chapter 6: QUEUEScccurrmssssnnnmsssssnsnmssssssnnesssssnnnesssssnnnssssssnnnssssssnnsessssnnnssssssnnnnss 113
amQpP Package OVEIVIBWcccvcveririniereresis s e s e e s sae e s e s s st s st s sae e s saesnes 114
Connection and Channel.............ccveernennnnnns e ss 114
Declaring Exchange, Queue, and Binding ... sesssssssssssessnses 116
PUDIiSHING MESSAUES.....civeerrrerrrrirerrese s s s sr s sr s sr s nra e nrnnis 119
CONSUMING MESSAGEScuervvueerrenerrssesessesnssesesessesessessssassssssessssssesssssssssssssssnsssessssssssssssnsssanes 120
IMPIEMENTALIONcc.civeiercerer e s nae e 122
Acquiring CONNECLIONccceeerieerrnesenesere e sr e p e sae e sr s nnna e 122
Creating Network Topology and Initializing Push-Based CONSUMENSccccvvererenserseraenns 124
Publishing and CONSUMINGcucueerinernsesrnesenese s s sesse s ssssesssssssssssessases 125
Repository Implementation ... 127
TYING TREM AILUD .ottt saa e s s s 130

£ 11134 R 134
Chapter 7: RESTul APIS.........ccccrmmsmmmnmmssssnnnmmssssssssssssssssssssssssssssssssnssssssnnnssssssnnnnss 135
SCOMY BASICSevreeirircriririre sttt et e e e e e e 135
HEHl0, SCOMY.....cceiiierc e s 136
310101 T OSSOSO 137
Request PArameters ... vt s e s r e s s sn e 138
Handling EXCEPLIONScceiircrie st re e s e s a e s s sn e s aeenenae e 140
BUIldING RESPONSESc..eeeeeereriee e ceres st s s e s s e ss e s s s sa e s s s s n e sa e sae s e s e e snesnennenns 142
MIAUIEWATE........cvevrerererereseseseseseseees s b p bt nenr s 143
L0010 QL= O 145

TABLE OF CONTENTS

INPUEVALIAALION ... ————————— 147
Implementing RESTIUI APL........co e s 150
0T T 151
Adapter.HTTP.Common Implementation.............cccccvvrinnininnninsnsse s sesesnes 154
Adapter.HTTPAPLAuth Implementation ... 157
Adapter.HTTP.Main Implementation.........ccccocrnririninnnnsnrs s 160
Modification in Lib MOUUIE ... 162
Running the APPliCAtiON...........ccoceriirin e 163
£ T 163
Chapter 8: Web Programmingcccccussssesnmssssssnnmssssssssmsssssssnsssssssnssssssssnssssssnnnnss 165
Serving Multiple WAI ApPlICALIONS.......c.cueeeerenernesriesers s se s se e e senns 165
Implementing Weh MOAUIEcccvierinrrererenirrersese s ssese s sesse s ssssessessessessssessessesssessesaens 172
£ 1134 7 187
Chapter 9: HTTP Client.......ccucccmmrmnnsnnnmmssssssnmmsssssssssssssssssssssssssssssssnssssssssnnssssssnnnnss 189
htP-ClieNt PACKAGE........cvcererrrir e e e 190
T T = OSSOSO 190
REOUEST ...t e e e e bR R e e 191
EXecuting @ REQUEST......cccov i s e 191
RESPONSE.......ciereie et e e e R e e nn 192
(1<) (0] OSSOSO 192
RESTful API Client for OUr ProJECLccccvvrinnirrne s s e snens 193
JSON PAYI0AU ...t e e e e e nne 193
Adapter.HTTP.APLTypes.AesonHelper Implementationcccoevvvinnennsninnennsensenennns 194
Adapter.HTTP.APLTypes.Auth Implementationccccoovvninininnnnnn e 197
AP Server REfaCtOrinNgcccccviirinierinssinse e s s s sr s s 198
Module RefaCtoringccccovcrcirieniinnsinic s s 200
HTTP Client Implementation ... 201
Adapter.HTTPAPL.Client.Common MOGUIEcccceeerriernieriresere s sessesessenens 201
Adapter.HTTPAPLClient. Auth MOQUIEcccrrerrecrererr et 203
Verifying Implementation with REPL ... 206
SUMIMANY ..ttt e e s b e e e e b e e e e e R e A e b e e e Re e Re R e e e e e Re b e e e e e Renrs 208

vi

TABLE OF CONTENTS

Chapter 10: Configuration........ccccussemnrnsssnnnmssssssnnmsssssssssssssssssssssssnnsssssssnnssssssnnnnss 209
System.EnVIironment MOAUIE ..ottt e 210
Making Our Application Configurable..........c..covvrrririninnn s 210
£ 1117 o T 217

Chapter 11: TeSting.....uuusseeeeemmmmmmmmssssssnsnsnnsmsssssssssssssssssssssssssssssnnsnssssssssssssnnnnnnnnness 219
Making Our Application More TeStable........c..ccovvrvrierinnrner s 219
Test IMPIEMENTALIONco.ovvecrerer e s e e 226

TeSt FrameWOrK SETUP.....cccveverirrerere et s e s sa e sae st s a e se s enes 226
Testing Domain.Validation ..o 228
Testing DOMaAiN AU TYPES ...covvverrerererirsirsere st s e s ss s e sae e s sae e s snes 230
Testing DomMain AUN.SEIVICE.ccvererrrirrere s e enen 232
Testing Adapter.PostgreSQL.AULN ..o 241
Testing Adapter.RediS. AULN..........ccvceeiecrcs e 246
Testing Adapter.RabbitMQ.AULNcovecerrcr 247
Testing Adapter.HTTPAPLSEIVELAULN.........cccvicrrcsere e 250
Refactoring HTTP MOTUIE.........cccveiereiernesrseserese e se e s se s sss s s ssnses 253
TeSHING CONTiQ...riricerricerrrisrnesere s r e s sr e srn e nrnne s 256
(0T LT 11T T T OO 258
£ 11134 7R 260

Chapter 12: Deploymentcccccrrmmssnnnmmssssssnessssssnsssssssssssssssssnsssssssnnssssssnnnssssssnnnnss 261

Building Application for Production..........ccccceviinnnnininnn s sss s ssessssessesnens 261

GHC ComPiler FIAQScoeiiiricrernrin s s st s st s s s 261
HLINE. oottt bR E e 263

L =TT 0 L SR 264
NPC-TRrESNOI ... ———————— 264
5T o ST) OSSN 266
Building and Deploying With DOCKETccccvrerrererrererenessesesessssessessessssessessessessssessessesssssssessens 268

£ 1§14 7 272
1T - 273

vii

About the Author

Ecky Putrady is a software engineer with extensive
experience in developing web applications. Specializing

in Java, Ecky discovered Haskell four years ago and was
amazed by the potential the language could bring. Although
resources were scarce, he learned the language by reading
multiple blog posts and participating in active discussions

in the Haskell community. That arduous process is what

/ motivated him to write this book, and he hopes that new
future practitioners of Haskell will become productive quickly.

ix

About the Technical Reviewers

Taylor Fausak is the lead developer at ITProTV. He has nearly a decade of web
development experience and supports the Haskell community by publishing the Haskell
Weekly newsletter. Find him online at https://taylor.fausak.me.

Samuli Thomasson is a self-taught programmer since 2008 and has been hacking
in Haskell since 2012. He has worked at Nokia and currently at Relex Solutions as an
Integration Specialist. He is interested in the application of mathematics in practical
software development.

xi

https://taylor.fausak.me/

Acknowledgments

I would like to express my appreciation and thanks to the amazing people who have
helped me in writing this book.

Thank you to Yolanda, who encouraged me to step beyond my comfort zone by
writing this book and has provided me with continuous support in the process.

Thank you to my parents for their words of encouragement and support.

Thank you to Keke for various tips and support. The book would not be completed
without her insights.

Thank you to the awesome editorial team of Apress: Nancy Chen and Jim Markham.
It has been a positive working experience for me. Without them, the book would not be
completed.

Thank you to the technical reviewers: Taylor Fausak and Samuli Thomasson. Their
insights have helped improve the technical quality of this book and me as a practicing
Haskell developer.

Thank you to the awesome people of the Haskell community that I can’t name one
by one. The community has been very friendly and helpful for me when learning Haskell
for the first time.

Finally, thanks to you, dear reader, to have chosen this book as your resource to learn
Haskell.

xiii

Introduction

Why Haskell

I was instantly hooked into Haskell when I stumbled upon this piece of code:

quicksort :: (Ord a) => [a] -> [a]
quicksort [] = []
quicksort (x:xs) =
let smallerSorted = quicksort [a | a <- xs, a <= x]
biggerSorted = quicksort [a | a <- xs, a > X]
in smallerSorted ++ [x] ++ biggerSorted

Itis indeed not the most efficient implementation of a quicksort algorithm, but it is
so terse while fully capturing the main idea of quicksort. I find it to be elegant.

Haskell is infamously known as a difficult programming language to learn. It is
true, but only if you are accustomed to OOP or an imperative way of thinking. If you are
already familiar with Java, you can spend a weekend learning C# and be productive with
it. It's because they are quite similar enough. The same thing cannot be said for Haskell.
Haskell is significantly different from those programming languages. You need to think
differently. And this way of thinking takes time to learn. In my experience, learning
Haskell is like learning Java or C# for the first time when you have no prior knowledge of
programming.

So why would one want to invest time to build applications in Haskell? What makes
it worth the initial learning curve?

Haskell is a statically typed programming language. Statically typed languages are
languages in which the types are checked at compile time. It prevents you from doing
stupid things, like passing in a string to a function that expects an integer. It is always
better to catch these problems up front rather than three days later in production when
a specific input is sent to the system. You might have lost the context already and you are
supposed to enjoy your weekend!

INTRODUCTION

Most statically-typed programming languages are correlated with verbosity. Itis a
sound statement. Since you are required to annotate the types, you are indeed writing
more code. For example, in Java, you would write something like this:

public String hello(String name) {

return "Hello, " + name + ;

}

See the String there? It’s a type that you need to tell the compiler so that it can check
your code for correctness.

Fortunately, Haskell has type inference. Type inference allows you to omit the types
almost entirely. The compiler will still be able to tell you if your code is not correct. The
same example can be rewritten in Haskell as:

hello name = "Hello, " ++ name ++

In this example, the compiler knows that name must be a string because the
operations being applied to it are string operations.

The preceding example also shows how Haskell code could be so terse. Besides the
syntax, there are many other features in Haskell that help you write concise code, such
as higher order function and partial function applications. These features, for example,
allow you to replace loops with a one-liner. It's powerful for processing and transforming
data.

Learning Haskell did change the way I think about programming. In OOP, I used to
think in terms of long-lived “organisms” called “objects” interacting with each other. I
used to think about how to structure my objects into the correct hierarchy. That’s how
OOP is taught. Remember the “Cat extends Animal” in OOP 101?

After learning Haskell, I think in terms of data transformation. What I usually do in
my work so far can be boiled down to just transforming one kind of data into another
kind of data. It’s straightforward. I notice that I now write less code to achieve the same
amount of functionalities with fewer defects.

Nowadays, you might have noticed that mainstream programming languages
include more and more functional programming constructs. Java 8, for example,
introduces “Optional” (from Haskell’s “Maybe”), and most importantly, lambda
function. Recently created programming languages like Swift, Kotlin, or Scala also favor
immutability, a concept from functional programming. It’s more apparent now where
the industry is heading.

INTRODUCTION

So, again, why would one want to invest time to build applications in Haskell? The
short answer is, Haskell lets you write applications faster and more correctly.

What This Book Is About

As I have said earlier, Haskell is infamously difficult to learn. Part of it is because there
are not many resources on the subject yet, especially if you want to apply Haskell to your
day-to-day job. If you investigate mainstream programming languages, there are a lot of
resources that teach you how to use them.

This book is about being practical with Haskell. I learned that there are a lot of
resources about Haskell aimed at beginners of the language. They teach you how to read
and write Haskell code. However, there is almost no resource once you are familiar with
Haskell and want to tackle bigger projects. I was struggling with these:

1. How would I structure my Haskell code to build bigger
applications?

2. What are the best practices?
3. What are the development tools to make me more productive?
4. What are the good libraries to use?

It took me quite some time to figure all those out. The available resources are not
complete and are scattered across blog posts and forum threads. This book aims to
provide complete and structured information on such topics.

In this book, we will be focusing on web development. If you are a web developer
aspiring to build systems with Haskell, then you will greatly benefit from this book.

If you are not a web developer, you may find the approach of building bigger Haskell
applications that you see in this book will also be applicable to your domain.

Intended Audience

The intended audience of this book is people who have basic knowledge of web
development. You should know how HTTP works. For example, HTTP request, HTTP
response, headers, cookies, etc. You also need to know a little bit about HTML, CSS,
and Javascript.

xvii

INTRODUCTION

You also need to have basic knowledge of Haskell. You should be familiar with the
syntax and basic typeclasses like Applicative, Functor, and Monad. You should also
know about Monad Transformer or mt1, like MonadReader. If you are unable to
understand what the following code snippet does, then you might have a slight difficulty
following along.

hello :: (MonadReader String m, MonadIO m) => m ()
hello = do

name <- ask

1iftI0O $ putStrLn $ "Hello, " <> name <> "!"

newtype AppT a = AppT
{ unAppT :: ReaderT String IO a
} deriving (Applicative, Functor, Monad, MonadReader String, MonadIO)

main :: I0 ()
main = flip runReaderT "World" $ unAppT hello

Project Overview

Since this book is all about being practical, then what’s more practical than building a
project? In this book, we will build a working user authentication feature. That feature
might sound simple, but it’s actually complex. Let’s see the requirements:

1. Registration Page
a. User should be able to register with email and password

b. Upon registration, an email verification link is sent to the
user’s email

2. Login Page
a. User should be able to login with email and password

b. User should not be able to login with invalid email and
password combination

c. User should not be able to log in if the email has not been
verified

xviii

INTRODUCTION

3. Email Verification Page
a. User should be informed if the verification link is incorrect
b. User’s email should be verified by visiting this page

4. User Page

a. User should be redirected to Login Page if the user is not
authenticated

b. User should be able to see the user’s email if the user is
authenticated

5. Inputvalidation

a. Email is case insensitive and should be unique across the
whole system

b. Email should be in the correct format

c. Password should have length of more than 5, and contain
number, uppercase letter, and lowercase letter

6. Misc
a. All of the preceding should be accessible in HTML format
b. All of the preceding should be accessible RESTful API format

Let’s analyze the requirements and break them down into manageable pieces. One
thing to note is that we will handle this like we do in a real production system; we will
be relying a lot on many external systems such as databases and queues. So, don’t be
overwhelmed as it’s as practical as the real-world challenges.

We need to store user information, such as email and password, so we obviously
need data storage. A common choice for this type of application is an SQL-based storage,
for example, PostgreSQL. In this book, we will use exactly that.

Email is sent after a user is registered into the system. Sending email is usually a
time-consuming process. We typically don’t want to make the user wait, as it impacts
the user experience. A standard solution to this problem is to send the email in the
background, so it doesn’t block the user from proceeding. A naive solution is to spawn
a thread to send the email. This approach has a problem: we can’t recover the email
sending job if the application crashes or restarted for deployment. A better alternative
method, which is also a standard solution, is to publish the email sending job to a

Xix

INTRODUCTION

queueing system, such as RabbitMQ. Our application listens to the queueing system
and acts on the received job. Another advantage of such an approach is the job can be
distributed to multiple workers. In this book, we will learn the latter approach.

When the user is logged in, we want to give the user a token so that we can
authenticate the user without him/her sending credentials all the time. Since we will
be building a web application, the common solution is to pass the token as a cookie.
Most browsers send the cookie back to the server for subsequent interactions. In the
server side, we need to store the token somewhere to identify the user from that token.
A common solution is to store it in an in-memory storage system. Example systems are
Redis and Memcached. In this book, we will use Redis.

This seemingly simple feature requires knowledge of many concepts of web
development as well as how to implement them in Haskell. The business logic in this
feature is not complicated, but we need to interface with many external systems like
databases and queues.

This system architecture is common in today’s web-based systems. After completing
this book, you are expected to be able to use the knowledge to build such systems.

Book Structure

The book is structured chronologically, akin to how you would build an application like
the one previously mentioned.

We will start our journey in Chapter 1, in which we will be setting up a productive
Haskell development environment.

In Chapter 2, we will learn some libraries that help us do the basic, bread-and-butter
tasks that we often encounter when building web applications.

In Chapter 3, we will build the main business logic of our project. We will learn how
to structure the code such that the business logic is decoupled from external systems.

In Chapter 4, we will learn about logging—an important component that allows us to
troubleshoot issues in production.

Chapters 5 and 6 explore how to interact with external systems, specifically
databases and queues.

Chapters 7, 8, and 9 are all about web programming. Chapter 7 is about writing a
RESTful web server. In Chapter 8, we will be building a web server that has the same
functionality offered in Chapter 7, but via HTML pages instead of RESTful API.

Finally, Chapter 9 explains about working with an HTTP client to interact with an

external web server.

XX

INTRODUCTION

In Chapter 10, we will be working on configuration management. Configuration
management is important, as usually we ship our application to multiple environments
and the configuration for each environment might be different.

Chapter 11 explores automated testing. Testing is an integral part of the development
process that ensures the quality of our application. The Haskell type system helps
eliminate a certain class of bugs, but not all. So, having automated testing is still
important in Haskell codebase.

Finally, we will learn about deployment of Haskell application in Chapter 12. We
will be using Docker to deploy our Haskell application. In addition to that, we will also
explore some tools that help ensure our code is of high quality.

xxi

CHAPTER 1

Getting Started

In this chapter, we will set up a Haskell development environment from scratch. The
setup includes the compiler, the IDE, and any other tools to the point you are at the most
productive level for developing Haskell applications. We will also briefly discuss hpack
and cabal, tools for building Haskell applications.

Stack

The easiest way to get started developing Haskell is by using stack. stack is a command
line application that does a bunch of things, like scaffolding a project, downloading and
setting up dependencies (including the compiler), run test, build application, and many
more.

You can install stack by using either one of the following commands:

$ brew install haskell-stack # for homebrew users
$ curl -sSL https://get.haskellstack.org/ | sh
$ wget -q0- https://get.haskellstack.org/ | sh

After stack is installed, we can create a new project by typing this command:
$ stack new hauth

In this case, hauth is the name of our project. You may supply other names if you
wish to create a project with a different name. This stack command will create a new
folder with the same name as the project. We will look into that in more detail shortly.

Now that the project is created, we need to download and set up the project
dependencies. Go into the project folder and run stack setup.

$ cd hauth
$ stack setup

© Ecky Putrady 2018
E. Putrady, Practical Web Development with Haskell, https://doi.org/10.1007/978-1-4842-3739-7_1

CHAPTER 1 GETTING STARTED

stack setup downloads the necessary dependencies of your project. One of the
dependencies is GHC, The Glasgow Haskell Compiler. Do note that GHC is only installed
when you don’t have it on your system yet. Get a coffee or stretch, as the setup process
might take some time.

Next, we want to try to build the project.

$ stack build

This command downloads the necessary external packages from Stackage,’
a package repository for Haskell; then you build your application. The build result is
then stored in . stack-work/install/<your os>/lts-<version>/<ghc version>/bin/.

In practice, you usually want to pass in --pedantic as the argument of the
command. This argument makes the build process check for common bad practices
when writing Haskell code and will fail the build if those bad practices are found in your
code. It’s a must-have if you want to deploy your application to production.

You may run the application with either one of the following commands:

$ stack exec hauth-exe
$.stack-work/install/<your os>/lts-<version>/<ghc version>/bin/hauth-exe

For running the tests, the command is stack test. Since we have not yet
implemented any test, it will just print “Test suite not yet implemented” text to the
console. You will usually use a test library that does assertions and outputs nicely
formatted test results.

Last but not least, you may run the REPL (Read-Eval-Print-Loop) using stack repl.
REPL is an essential tool for developing Haskell applications. REPL allows you to test and
prototype new code quickly.

Haskell IDE

It’s certainly possible to develop Haskell applications with any plain text editor. However,
it’s not the most efficient way to write Haskell code. In this section, we will set up our text
editor to be more productive when developing Haskell applications.

'www. stackage.org/

2

http://www.stackage.org/
http://www.stackage.org

CHAPTER 1 GETTING STARTED

Popular text editor options are emacs, vim, Atom, and Visual Studio Code. In this
book, we will use Visual Studio Code. Visual Studio Code is more user-friendly than
emacs and vim. Visual Studio Code is also free and cross-platform.

First, let’s install Visual Studio Code by visiting the official site? and follow the
installation instruction there. The installation should be very straightforward.

Next, we install the necessary Visual Studio Code plugin for Haskell. The one that we
want to install is Haskero. We install from within the Visual Studio Code itself. Go to the
“Extensions” tab, search for “Haskero,” and press “Install,” as shown in Figure 1-1.

3 ACE E == - Extension: Haskero x

haskero

S Haskero
A full featured Haskell IDE Vans | 11,662 | * XX XX | License
Vans

A full featured Haskell IDE

Install

Figure 1-1. Haskero installation

Haskero has a dependency on Intero. Intero is the backend for the IDE-like
functionalities. Haskero is the binding for Visual Studio Code. We install Intero by typing
this command at the root of our project:

$ stack build intero

Once Intero is installed, we may restart the Visual Studio Code and you'll see that
Haskero should function correctly. For example, you may see type signature when you
hover over a function, as shown in Figure 1-2.

*https://code.visualstudio.com

https://code.visualstudio.com

CHAPTER 1 GETTING STARTED

Lib.hs

Lib
(someFunc

) whe

someFunc :: putStrin

someFunc = putStrlLn "somel

Figure 1-2. Haskero in action

Default Project Structure

After creating a new project with stack, you should see the same generated files as
shown in Figure 1-3. In this section we will explore those files in more detail.

4 HAUTH
» .stack-work
4 app
Main.hs
4 src
Lib.hs
4 test
Spec.hs
- hauth.cabal
LICENSE
README.md
Setup.hs

stack.yaml|

Figure 1-3. Default project structure

CHAPTER 1 GETTING STARTED

Both the src and app folders contain Haskell code. The src folder is meant to contain
library code. If there’s a part of your project that can be reused in another context, then
put it here. The app folder is meant to contain executable code. The code here depends
on code in the src folder.

In practice, however, if you create a web application, it doesn’t matter where you put
the code. I usually put most of my code in the src folder, and the code in the app folder
only calls a one-liner function to kick off the application.

test folder, as the name suggests, contains test code.

hauth.cabal is the build file. This file is read by cabal, the build tool for Haskell.
stack wraps cabal and provides a nicer command line interface to do common
development tasks. In practice, however, you rarely need to deal with cabal directly.
You'll most likely work with stack exclusively. We'll look into the detail of cabal files
shortly.

Setup.hs is used by cabal for the build process. Most of the time, you don’t need to
touch this file.

stack.yaml is where you define the configuration for stack. There are many
configuration parameters in this file, but most of the time you'll only deal with extra-
deps. extra-deps contains a list of Haskell packages that are not available in Stackage.

The Build Configuration

In this section, we will look in more detail into hauth.cabal, a cabal file. As I have briefly
mentioned before, the cabal file is the build file. It contains configuration for building
your project. For example, it defines other packages that your project depends on.

Let’s open the hauth.cabal file to see what it looks like. On the first few lines, you
will see name, version, license, etc., which are self-explanatory. Following those lines is
the library block.

library
hs-source-dirs: sIC
exposed-modules: Lib
build-depends: base >= 4.7 8% < 5

default-language: Haskell2010

CHAPTER 1 GETTING STARTED

This section defines the library files in your project. hs-source-dirs defines which
folder in our project the source codes exists. In our case, it’s in the src folder. exposed-
modules are the modules that are available to users who import the package; in this case
the value is Lib. Let’s see the first few lines of the src/Lib.hs file:

module Lib
(someFunc
) where

This file defines a module named Lib, which is the one being included in exposed-
modules field.

If we create a new module, let’s say Hello, and we want to expose it, then we need to
add it in the exposed-modules, like so:

exposed-modules: Lib, Hello

Not shown here is a field called other-modules. This works like exposed-modules,
but the modules won’t be exposed to the users of your library. It means that the users of
this package will not be able to import those modules. The use-case of other-modules is
when you have modules that are internal to your package.

The build-depends field defines external libraries that we depend on. The one that
has been defined now is base >= 4.7 && < 5. This means that we depend on the base
library with any version equal to or greater than 4.7 but less than version 5.

The next following blocks are executable and test-suite, which have the same
fields as the library block. Those fields have the same functionalities as we have
explored previously.

As you have seen earlier, if we add a new module, we need to add it in either other-
modules or exposed-modules. This is slightly cumbersome when you have a lot of
modules since you need to add it manually. Also, if you happen to need to use the same
library in both 1ibrary and executable, then you also need to list it twice in both blocks.
This is also slightly cumbersome.

To remedy this issue, there is a tool that is supported out-of-the-box by stack: hpack.?
Both the hpack file and cabal file have the same purpose of defining the build
configuration. The advantage of using hpack is that it is less verbose by fixing issues
that I've mentioned before. For example, you don’t need to list each module in either

Shttps://github.com/sol/hpack
6

https://github.com/sol/hpack

CHAPTER 1 GETTING STARTED

exposed-modules or other-modules. Another advantage is in the file format. hpack uses
YAML* as the file format. The YAML format is quite popular, and chances are you and
other people are already familiar with it.

In this book, we will use hpack for its simplicity and efficiency. First, let’s generate
our hpack file from our cabal file.

$ stack install hpack-convert # install the converter tool
$ ~/.local/bin/hpack-convert # convert

hpack-convert finds the cabal file in the current directory and converts that to
package.yaml. If you read the package.yaml file, the format should be very similar to the
cabal file.

hpack (the application) actually does nothing more than converting the hpack file to
a cabal file. This cabal file is still the one being used to build the application. However,
stack supports hpack so transparently it’s as if you don’t need the cabal file at all. When
yourun stack build, stack will run hpack (the application) to convert the hpack file to a
cabal file before finally building the application.

Let’s see this in action. Change some values in the field to see how the cabal file is
generated after the change. Set the values of the following fields with your details, for
example:

author: Ecky Putrady
maintainer: eckyp@example.com
copyright: 2017 Ecky Putrady

Then build the application using stack build. Notice that now, the cabal file
contents are updated with values that we have set.

author: Ecky Putrady
maintainer: eckyp@example.com
copyright: 2017 Ecky Putrady

When we run stack build, stack automatically looks for package.yaml. If the file
is found, stack automatically generates the cabal file. This cabal file is then used for
building the application. If you are using git, it’s a good idea to list the cabal file in
.gitignore, since our “source of truth” for the build configuration is now package.yaml.

*http://yaml.org

http://yaml.org/
http://yaml.org

CHAPTER 1 GETTING STARTED

Summary

In this chapter, we have learned to set up various tools for working with Haskell
efficiently.

We have learned about stack, a command-line tool for managing Haskell projects.
We learned some stack commands that we will use most often:

1. stack new: for creating a new project
2. stack setup: for setting up Haskell development environment
3. stack build: for building the application

4. stack exec: for executing the binary that have been created by
stack build

5. stack test: for running tests

We have set up Visual Studio Code, our text editor of choice for writing Haskell.
We have also installed Haskero, a Visual Studio Code plugin that enables IDE-like
functionality for Haskell.

We have learned about cabal, the build tool and dependency manager for Haskell.
We have also learned to work with cabal files. Since there are some downsides to cabal,
we use another tool, hpack, to manage the build configuration. By using hpack, we write
the build configuration in YAML format and it will then be translated to a cabal file.

CHAPTER 2

Practical Haskell

As web developers, we face so many challenges daily to complete our tasks. For example,
we might need to find an element matching a predicate in a collection, parse this JSON
to compute some other values, replace the text in this paragraph to something else, and
many more. Each of those challenges is not particularly hard, but it’s not very easy either.
Most importantly, it’s not very related to your problem domain. It’s just not practical
and efficient to rewrite such code over and over again. In this chapter, we will learn to be
practical. We will learn about essential libraries that help you with common, day-to-day
tasks as a web developer.

We will be using REPL, a lot as it helps us experiment with code faster. This is
also for giving you a real-world example on how REPL is helpful for code exploration
and prototyping. Whenever you see a > in a code block example, it means we are in a
REPL. You can get into REPL by typing stack repl in the command line.

ClassyPrelude

Prelude is the base library that comes with GHC. It provides standard functionalities
that you would want when working with Haskell. However, the default prelude has some
downsides. One of them is the exposure of partial function. Partial function is a function
that throws an error on specific inputs. One such example is head. It throws an error
when you give it an empty list.

> head []
*** Exception: Prelude.head: empty list

Partial function is dangerous because it is unpredictable. It’s best to avoid working
with or creating such a function as much as possible.

© Ecky Putrady 2018
E. Putrady, Practical Web Development with Haskell, https://doi.org/10.1007/978-1-4842-3739-7_2

CHAPTER 2 PRACTICAL HASKELL

Another downside of the default prelude is that it doesn’t include libraries that
you will almost always use when building Haskell applications. Some examples of the
libraries are text and containers. It means you will always need to list them in your
dependency and import them in almost each of your Haskell files.

Due to those problems, there are multiple prelude alternatives created by the
Haskell community, for example, Protolude and ClassyPrelude. In this book, we will
be using ClassyPrelude. I find it to be the most enjoyable to work with compared
with other alternatives. To enable ClassyPrelude, add the following lines at the root of
our package.yml:

dependencies:
- base
- classy-prelude

default-extensions:
- NoImplicitPrelude
- OverloadedStrings

We put them in the root because we will use ClassyPrelude and base in our library,
executable, and test files.

The default-extensions block contains a list of language extension. For this case,
we putin NoImplicitPrelude, which instructs the compiler not to import the default
prelude implicitly. We will learn about the OverloadedStrings language extension
shortly.

If you run stack build, you'll notice that there will be an error similar to the
following:

/Users/ecky/Projects/hauth/src/Lib.hs:5:13: error:
Not in scope: type constructor or class 'IO

It says that the type I0 is not found. This type was exported in the default prelude
and implicitly imported. Now that we don’t import the prelude implicitly, the IO type is
not available anymore, and that makes the compilation fail.

To fix this, simply import ClassyPrelude into those files. Specifically, you need to
importitinto src/Lib.hs, app/Main.hs, and test/Spec.hs. Now you may run stack
build again, and the compilation should be successful.

10

CHAPTER 2 PRACTICAL HASKELL

ClassyPrelude documentation might be hard to digest. There are two places to look
for its capabilities: the ClassyPrelude! itself and MonoTraversable? ClassyPrelude
is built on top of MonoTraversable. Many functionalities exposed by ClassyPrelude
are provided by MonoTraversable. In the following sections, we will explore some
functionalities provided by both libraries.

String, Text, and ByteString

Haskell has five string-like types: String, Text, LText, ByteString, and LByteString.
Each of them has different use cases. Let’s look into them in more detail.

Stringis alist of characters ([Char]). The good thing about String being a list
of characters is that most list operations can be reused for String. However, String
is not really efficient for text processing. This type is generally frowned upon by the
community, and it’s best to avoid using this type for public APIs.

Text is an array of Unicode characters. It's more efficient than String because
the characters are stored in a contiguous block of array. The Haskell community has
generally converged to use this type instead of String for representing text.

LText is the lazy variant of Text. You can think of it as [Text]. LText is useful in
certain situations where you have a very big text you want to process. If you use Text,
then the whole text will need to reside in memory. That might be problematic if the
whole text doesn’t fit in memory. In this case, LText helps because it stores only chunks
of the text in memory at a given time.

ByteString is an array of bytes. If you are familiar with Java, ByteString is equal to
byte[]. We mostly use it for serializing data to be sent over a network or saved into a file.

Similar to Text, ByteString also has a lazy variant called LByteString that has the
same use cases as the LText counterpart.

With all these different string types, you are likely to encounter cases where you need
to convert from one type to another. ClassyPrelude provides some functions to do just
that, as you can see in Table 2.1.

'www. stackage.org/package/classy-prelude
2www . stackage.org/package/mono-traversable

11

http://www.stackage.org/package/classy-prelude
http://www.stackage.org/package/mono-traversable

CHAPTER 2 PRACTICAL HASKELL

Table 2-1. Functions to Convert Between String, LText, Text, LByteString, or

ByteString

From To Function

String Text fromString

String LText fromString

String ByteString fromString

String LByteString fromString

Text LText fromStrict

Text ByteString encodeUtf8

Text LByteString (fromStrict . encodeUtf8)
Text String unpack

LText Text toStrict

LText ByteString (toStrict . encodeUtf8)
LText LByteString encodeUtf8

LText String unpack

ByteString LByteString fromStrict

ByteString Text decodeUtf8

ByteString LText (fromStrict . decodeUtf8)
ByteString String (unpack . decodeUtf8)
LByteString ByteString toStrict

LByteString Text (toStrict . decodeUtf8)
LByteString LText decodeUtf8

LByteString String (unpack . decodeUtf8)

When you type any string in Haskell, like "Hello, " the type will automatically be
String. As mentioned a few paragraphs back, String is generally avoided. We want to
make it a Text most of the time. By looking at Table 2-1, we can easily convert String
to Text by using fromString. However, this means we need to litter our code base with
fromString anywhere. That would not look great! This is where the OverloadedStrings

12

CHAPTER 2 PRACTICAL HASKELL

language extension comes to the rescue. It allows you to write a normal string like
"Hello" and it will be converted to any of those five string-like types based on the
context. To be precise, OverloadedStrings allows you to build any type that is an
instance of IsString typeclass. The five string-like types just happen to be an instance of
that typeclass.

Data Structures and Operations

ClassyPrelude includes many data structures and tons of operations that work with the
data structure. The documentation for them is available in MonoTraversable. However,
as we are being practical, we don’t need to be familiar with all of them to get by. We can
get things done by knowing only a few of them. Most of the time, the data structures that
we will work with are List, Map, and Set.

Lists are created by using the [] or (:) notation. I'm pretty sure you are familiar
with that already.

> [1,2,3]
[1,2,3]
>1:2:3:[]
[1,2,3]

> 1 : [2,3]
[1,2,3]

Now let’s take a look at Map.

> mapFromList [(1,'a"), (2,'b"), (2,'c")] :: Map Int Char

fromList [(1,'a"),(2,'c")]

> let m1 = mapFromList [("hello", "world"), ("foo", "bar"), ("foo", "hey")]
1. Map Text Text

> ml

fromList [("hello","world"), ("foo","hey")]

> mapTolList m1
[(Ilhelloll’ llworldll)’ ("-FOO", Ilheyll)]

13

CHAPTER 2 PRACTICAL HASKELL

Maps are initialized using the mapFromList function by providing a list of key-value
tuples as its argument. The :: Map Int Char is required because mapFromList is
polymorphic. It’'s ambiguous for the compiler, as there are multiple types that fulfill
the constraints. To fix that, we need to give the compiler a hint on the exact type we are
instantiating.

In case there are multiple entries of the same keys, the last one being listed will be
kept in the map. The entries before that are omitted.

Map is meant to be printed as fromList ..., so don’t be surprised if the
representation of it is not what you usually see in other programming languages.

If you need to convert Map back to List, the function to use ismapToList.

Let’s explore Set next.

> let s1 = setFromList [2,3,2,4,1] :: Set Int
> s1
fromList [1,2,3,4]

> setTolist s1
[1,2,3,4]

Sets are created by using setFromList. As you can seg, it is quite similar to Map.
If you need to convert Set back to List, the function to use is setTolList.

As I have said earlier, there are tons of operations to do useful stuff with List, Map,
and Set. You will notice that some functions can work with multiple container types, as
shown with "Y" in Table 2-2. For all the functions in Table 2-2, the ones that can work on
List will also work on string-like types.

14

CHAPTER 2 PRACTICAL HASKELL

Table 2-2. Some Functions Provided in ClassyPrelude and on Which Container
Types They Can Work

Function List Set Map

headMay Y Y
lastMay
zip

map
filter
foldr

sortOn

groupAllOn

intercalate

take

drop
null
length
elem
(<)
(\\)

member

< < < < < < < < < < =< =< =< =< =<
1
1

intersect

< < < < < =< =< =

keys -

unionWithKey -

<~ < < < < < < =< =< =<

mapWithKey - -

I really suggest you take some time to read the documentation to get the full idea
of the capabilities. Alternatively, you can play around with autocompletion in REPL to
explore the variants of the listed functions. For example, drop has another variant:
> drop -- press TAB here
drop drophhile

15

CHAPTER 2 PRACTICAL HASKELL

Date and Time

The canonical library for dealing with date and time in Haskell is the time? library.
People coming from other programming languages must find the library unintuitive.
Reading the documentation would not help much as well, since there is almost no
example of what to use on what occasion. This is why we have a dedicated section for it.
Here, we will only look at the important bits and cover the common use cases so you can
get productive quickly.

For enabling a time package in our project, let’s add it to our package.yaml file:

dependencies:
- time

The first thing to do to work with this library effectively is to understand the types.
The following types are the ones that you are most likely to work with:

1. UTCTime: This type is used to reference an event in absolute time.
It contains date and time information, up to picoseconds precision.

2. NominalDiffTime: This type is used to represent the duration
between two UTCTimes. Internally it contains a fixed point number
representing the difference in picoseconds. Do note that the value
might be negative.

3. TimeZone: The representation is minutes offset from UTC.

4. ZonedTime: This type contains date and time information, like
UTCTime, but with the addition of TimeZone. We use this to refer to
an event in a specific time zone.

There are multiple ways to construct UTCTime. The first approach is to get the current
UTCTime. The function to use in this case is getCurrentTime. getCurrentTime is an
impure action, as represented by the I0 in the type.

> import Data.Time

> :t getCurrentTime
getCurrentTime :: IO UTCTime

> getCurrentTime

2017-11-14 23:50:49.576744 UTC

Swww . stackage.org/package/time

16

http://www.stackage.org/package/time

CHAPTER 2 PRACTICAL HASKELL

The second approach is to supply seconds since epoch. The function to use is
posixSecondsToUTCTime. There is also the utcTimeToPOSIXSeconds function to convert
in reverse direction.

> import Data.Time.Clock.POSIX

> let t1 = posixSecondsToUTCTime 60.500
> 11

1970-01-01 00:01:00.5 UTC

> utcTimeToPOSIXSeconds t1

60.5s

Another option is to parse date time from text.

> let dateTimeFormat = iso8601DateFormat (Just "%H:%M:%S%Q%z")

> let parseISO = parseTimeM True defaultTimelocale dateTimeFormat
> parseISO "2019-01-08T12:45:30.550+0800" :: Maybe UTCTime

Just 2019-01-08 04:45:30.55 UTC

> parseISO "2019-01-08T12:45:30.550+0800" :: Maybe ZonedTime

Just 2019-01-08 12:45:30.55 +0800

Since parseTimeM is polymorphic, we need to define the return value that we want.
In the preceding example, we converted a string to both UTCTime and ZonedDateTime.
Notice that when we define UTCTime, the time is automatically converted to UTC.

The second to last parameter of parseTimeM function is the date and time format. For
a complete listing of the format syntax, please refer to the official documentation.*

There is also the formatTime function that accepts a format and various time types,
including UTCTime, and returns a string of that time adhering to the given format.

The format syntax is the same one as we have seen previously.

For converting between UTCTime and ZonedTime, we use zonedTimeToUTC and
utcToZonedTime.

> zt <- getZonedTime

> zt

2017-11-15 08:24:28.191892 +08
> zonedTimeToUTC zt

2017-11-15 00:24:28.191892 UTC

‘www.stackage.org/haddock/1ts-9.13/time-1.6.0.1/Data-Time-Format.html

17

http://www.stackage.org/haddock/lts-9.13/time-1.6.0.1/Data-Time-Format.html
http://www.stackage.org/haddock/lts-9.13/time-1.6.0.1/Data-Time-Format.html

CHAPTER 2 PRACTICAL HASKELL

> ut <- getCurrentTime

> ut

2017-11-15 00:28:39.924547 UTC

> let sgt = minutesToTimeZone (8 * 60) -- +0800
> utcToZonedTime sgt ut

2017-11-15 08:28:39.924547 +0800

UTCTime supports comparison.

> 10 <- getCurrentTime
> 11 <- getCurrentTime

> to < t1
True
> 10 >»= 11
False

Unlike UTCTime, ZonedTime doesn’t support comparison. However, you may convert
ZonedTime to UTCTime first, with the functions we have seen earlier, before doing the
comparison.

Another common use case is to get the duration between times. The function to use
is diffUTCTime. It accepts two UTCTime and returns NominalDiffTime. NominalDiffTime
is not an absolute number. It might be a negative number, depending on the UTCTimes
input.

> :t diffUTCTime

diffUTCTime :: UTCTime -> UTCTime -> NominalDiffTime

> diffUTCTime t0 t1 -- assuming we already have t0 & t1 from before
-5.983774s

> diffUTCTime t1 to

5.983774s

NominalDiffTime supports numeric operation like addition and subtraction.
Although not commonly used, multiplication and division are also supported.

> let diff = realToFrac 60 :: NominalDiffTime
> diff + diff

3600s

> diff - diff

0s

18

CHAPTER 2 PRACTICAL HASKELL

As you have seen, to build a NominalDiffTime from a number, the function to use
is realToFrac. You might be baffled with the realToFrac. How is this unintuitive name
used to build NominalDiffTime? realToFrac converts any type that is an instance of
Real to any type that is an instance of Fractional. NominalDiffTime is an instance of
Fractional class, while the number we supplied is an instance of Real class.

For accessing and modifying specific component of the time-related types, the time
package doesn’t give us any convenient function. Fortunately, there is another library to
do just that: time-lens.’ Let’s add it to our package.yaml file.

dependencies:
- time-lens

The main functions are getL, modL, and setL. They are used for getting, modifying,
and setting, respectively. The first parameter for these functions is the date and time
component you want to tweak. The available components are timeZone, seconds,
minutes, hours, day, month, and year.

> zt <- getZonedTime

> zt

2017-11-16 05:39:21.457841 +08

> (getL timeZone zt, getlL seconds zt, getL minutes zt, getL hours zt)
(+08,21.457841000000,39,5)

> (getL day zt, getL month zt, getlL year zt) (16,11,2017)

> modL day (+20) zt

2017-12-06 05:39:21.457841 408

> setl year 1000 zt

1000-11-16 05:39:21.457841 +08

If you want to modify multiple components at once, I find the cleaner way to do it is
to compose the modifier functions using (.).

> setlL month 12 . modL day (subtract 1) $ zt
2017-12-15 05:39:21.457841 +08

That’s it. The functions and types along with the preceding example usage should be
enough for working with date and time in Haskell.

*www . stackage.org/package/time-lens

19

http://www.stackage.org/package/time-lens

CHAPTER 2 PRACTICAL HASKELL

Regular Expression

Regular expression (Regex) is another tool that we often use on day-to-day basis. We use
regular expression for text manipulation, capturing input based on a pattern, and input
validation.

There are many packages for doing regular expression, but the one that I find to
be complete and easiest to use is pcre-heavy.® Let’s learn to work with this package by
updating our package.yaml file.

dependencies:
- pcre-heavy

If you encounter any issue while compiling, you may need to have the pcre and
pkg-config package installed in your system. In MacOS, this is quite simple if you use
homebrew. Justissue brew install pcre pkg-configand you are golden.

In addition to the package dependency mentioned, we also need to use the
QuasiQuotes language extension.

This extension basically allows you to process something during compile time. We
will see the usage of it shortly. Let’s add that extension in our package.yaml.

default-extensions:
- QuasiQuotes

Now that we have listed the required package and language extension, we can start
playing around with the library.

> import Text.Regex.PCRE.Heavy -- 1

> let regexi = [re|~(hell.), (.+)!$]] -- 2

[re|(hel|] -- 3

Exception when trying to run compile-time code:
Text.Regex.PCRE.Light: Error in regex: missing)

> let regex2

> asText "Mamamia" =~ regexi - 4

False

> asText "hello, world!" =~ regexl -- 5
True

> asByteString "hello, world!" =~ regexi
True

Swww.stackage.org/package/pcre-heavy

20

http://www.stackage.org/package/pcre-heavy

CHAPTER 2 PRACTICAL HASKELL

> scan regexl "hello, world!" :: [(Text, [Text])] -- 6
[("hello, world!",["hello","world"])]
> scan regex1l "hello, world!" :: [(String, [String])]

[("hello, world!",["hello", "world"])]

> gsub [re|\d+|] "x" "1 and 2 and 3" :: Text -- 7
"x and x and x"
> sub [re|\d+|] "x" "1 and 2 and 3" :: Text -- 8
"x and 2 and 3"

Example (1) shows how to import the package. To create a regular expression, we
use the [re| ...|], afunctionality from QuasiQuotes language extension, as shown in
(2). The nice thing about using QuasiQuotes is that your regular expression is validated
at compile time. If you create an invalid regular expression, an error will be thrown at
compile time. Example (3) shows such a scenario. Notice that the error message is “Error
in regex: missing).” Useful, isn’t it?

To check whether a string matches a regular expression, we use the =~ function as
shown in examples (4) and (5). It returns a Bool (True or False). =~ accepts any string-
like argument. The compiler might get confused about exactly which string we want.
asText is a function from ClassyPrelude that coerces a plain string like "hello, world"
to Text. This way, the compiler can infer that the actual type that we want is Text.
ClassyPrelude comes with other type-coercing functions as well. Please do check its
documentation to learn more.

scan is a function to do regular expression capture. The usage is shown in example (6).
scanreturns a list of tuples. The first part of the tuple is the whole matching segment.
The second part of the tuple is a list of captured groups. The tuple is polymorphic,
meaning it might be ambiguous for the compiler to guess which string-like type we
meant. The :: [(Text, [Text])] is there to give a hint to the compiler on which type
to return.

gsub and sub are used for text replacement. The difference is that gsub replaces all
matching instances, while sub only replaces the first matching instance. The usage of
both functions is shown in example (7) and (8).

We are now ready to be productive with regular expressions.

21

CHAPTER 2 PRACTICAL HASKELL

JSON

Although there are many other alternative for data exchange format, JSON is the lingua-
franca of the web. Communication between microservices? Most likely JSON. RESTful
API response? Most likely JSON. It’s crucial to be able to work with JSON in today’s
software development. In this section we will learn about aeson,” the most popular
library for working with JSON.

aeson represents JSON in Haskell with a type called Value.

data Value
= Object Object
| Array Array
| String Text
| Number Scientific
| Bool Bool
| Null
type Object = HashMap Text Value
type Array = Vector Value

You might see some unfamiliar types. I'll quickly explain them to avoid confusion.
Vector is a data structure from the vector library. Vector is similar to List. The
difference is that List is basically a linked list, while Vector is an array. Vector fits
the use case where you want to have a fast index access. Scientific is a type from the
scientific package that represents an arbitrary-precision number. In practice, you'll
use it just like any other number.

It’s easy to build Value by hand. Let’s say we want to build a JSON like the following:

"id": 123,

"name": "Ecky",

"hobbies": ["Running", "Programming"],
"country": null

“www.stackage.org/package/aeson

22

http://www.stackage.org/package/aeson

CHAPTER 2 PRACTICAL HASKELL
Then we build it like the following:

> import Data.Aeson

> i

| object ["id" .= 123

, 'name" .= "Ecky"

, "hobbies" .= ["Running", "Programming"]
"country" .= Null

-

Object (fromList [("country",Null),("name",String "Ecky"),("id",Number 123.0),
("hobbies",Array [String "Running",String "Programming"])])

Writing a Value instance by hand might be a hassle in certain situations. Your
domain types usually are not aeson’s Value. Wouldn't it be nice if we can convert basic
data types directly? Fortunately, we can. toJSON is the function we use to convert Haskell
types to Value. toJSON accepts a value that is an instance of ToJSON typeclass. aeson has
already implemented a ToJSON instance for basic data types so we can use it without
writing our own implementation.

> toJSON "asdf" String "asdf"

> toJSON 1990

Number 1990.0

> let m1 = mapFromList [("hello", "world"), ("dunk", "dunk")] :: Map Text Text
> toJSON m1

Object (fromList [("hello",String "world"), ("dunk",String "dunk")])

In contrast, fromJSON converts Value to any Haskell types that implement a FromJSON
instance. Like ToJSON, aeson also has implemented instances for basic data types.
fromJSON returns Result a to signal whether the conversion is a success or a failure.

> let j1 = toJSON m1

> fromJSON j1 :: Result (Map Text Text)

Success (fromList [("dunk","dunk"),("hello","world")])
> fromJSON j1 :: Result Text

Error "expected Text, encountered Object"

23

CHAPTER 2 PRACTICAL HASKELL

Value represents JSON within Haskell, but we usually want to work with a string
that is a JSON. Fret not, as this is easy to do with aeson. encode is the function to convert
any ToJSON instance to LByteString. Once we have LByteString, we can convert it to
another string-like type using a function that we have seen in a previous section.

> encode m1 -- m1 from previous code block

“{\"dunk\" :\"dunk\",\"hello\":\"world\" }"

> encode j1 -- j1 from previous code block "{\"hello\":\"world\",\"dunk\":\
lldunk\ll}ll

Asyou can see, Value (j1) itselfis an instance of ToJSON. So, if we happen to build
Value manually and want to convert it to LByteString, then we can use encode.

Astute readers might wonder if types like tuple, Maybe, or Either have ToJSON
instance. Unsurprisingly, they do. So how are they encoded? Let’s just try them out.

> encode (Just "Hello")

"\"Hello\""

> encode (Nothing :: Maybe Text) -- Nothing is ambiguous "null"
> encode (1, "two", 3.3)

"[1,\"two\",3.3]"

> encode (Left "Hello" :: Either Text Text)
"{\"Left\":\"Hello\"}"

> encode (Right "World" :: Either Text Text)
"{\"Right\":\"World\"}"

Now that we have seen how to convert a Haskell type to a JSON string, we might
also want to convert in the other direction. The function to look for is eitherDecode.
This function converts LByteString to any FromJSON instance. It returns Either String
Value to a signal parsing failure if any. aeson comes with FromJSON implementation of
many basic types. In the following example, we will see how the same json string can be
decoded to Value and to Map Text Text.

> let json = encode j1 -- j1 from previous code block

> json

"{\"hello\":\"world\",\"dunk\" :\"dunk\" }"

> eitherDecode json :: Either String Value

Right (Object (fromList [("hello",String "world"), ("dunk",String "dunk")]))
> eitherDecode json :: Either String (Map Text Text)

24

CHAPTER 2 PRACTICAL HASKELL

Right (fromList [("dunk","dunk"),("hello","world")])
> eitherDecode json :: Either String Text
Left "Error in $: expected Text, encountered Object"

But wait, we usually have our own types, right? As we have seen, we are able to
encode and decode any basic types to a JSON string. Now how do we convert from a
JSON string to our own data structure? It’s simple; we just need to implement a ToJSON
and FromJSON instance for our data structure.

Let’s say we have the following type:

data User = User
{ userId :: Int, userName :: Text, userHobbies :: [Text]
} deriving (Show)

We then implement the ToJSON and FromJSON instance for that type:

instance ToJSON User where
t0JSON (User uId name hobbies) = object ["id" .= uIld , "name" .= name,
"hobbies" .= hobbies |

instance FromJSON User where
parseJSON = withObject "User" $ \v ->
User <$> v .: "id"
<*> v .1 "name"
<*> v .: "hobbies"

Now we should be able to encode and decode the type to a JSON string. Let’s try that
out in REPL.

> let encoded = encode $ User 1 "Ecky" ["Running", "Programming"]
> encoded
"{\"name\" :\"Ecky\",\"id\":1,\"hobbies\":[\"Running\",\"Programming\"]}"

> eitherDecode encoded :: Either String User
Right (User {userId = 1, userName = "Ecky", userHobbies =

["Running","Programming"]})

Sweet, we are now able to convert our data structure directly to JSON and vice versa.

25

CHAPTER 2 PRACTICAL HASKELL

The functions for parsing JSON that we’ve seen in the previous code block might look
like they need more explanation. But actually, once you have seen the documentation,?
you will surely know what to use.

Let’s take a brief detour to talk about field names. In Haskell, field name is the same
as function. If you have two records with the same field name in a module, the compiler
will refuse to compile. Let me show you an example:

data User = User { age :: Int }
data Country = Country { age :: Int }

The preceding code won'’t compile because of the name clash for age. A common
solution to fix that is to simply prefix the field name with the type’s name. In this case, the
field names will be "userAge" and "countryAge."

Now back again to JSON. Writing FromJSON and ToJSON instances by hand is easy, but
boring. Fortunately, aeson provides a way to generate those instances using a language
extension called TemplateHaskell. Let’s try that out, shall we?

default-extensions:
- TemplateHaskell

Now replace the ToJSON and FromJSON instances with this one-liner:
$(deriveISON defaultOptions "User)
Let’s see what JSON is produced now in REPL.

> encode $ User 1 "Ecky" ["Running”, "Programming"] "{\"userId\":1,
\"userName\":\"Ecky\",\"userHobbies\":[\"Running\",\"Programming\"]}"

Cool! It looks similar, but the field names are a little bit off. We want the user part to
be omitted. If we look into defaultOptions docs,’ it actually has the capability to modify
the field name using fieldLabelModifier. Let’s try that out. Change the previous code
to the following:

import Language.Haskell.TH.Syntax (nameBase)
import Data.Aeson.TH

$(let structName = nameBase "User

dwww.stackage.org/haddock/1ts-9.13/aeson-1.1.2.0/Data-Aeson.html
‘www.stackage.org/haddock/1ts-9.13/aeson-1.1.2.0/Data-Aeson-TH.html

26

http://www.stackage.org/haddock/lts-9.13/aeson-1.1.2.0/Data-Aeson.html
http://www.stackage.org/haddock/lts-9.13/aeson-1.1.2.0/Data-Aeson-TH.html
http://www.stackage.org/haddock/lts-9.13/aeson-1.1.2.0/Data-Aeson.html
http://www.stackage.org/haddock/lts-9.13/aeson-1.1.2.0/Data-Aeson-TH.html

CHAPTER 2 PRACTICAL HASKELL

lowercaseFirst (x:xs) = toLower [x] <> xs
lowercaseFirst xs = xs
options = defaultOptions
{ fieldLabelModifier = lowercaseFirst . drop (length
structName)

}

in derive]SON options "User)

Also, we need to import the template-haskell' package to our package.yaml for
the preceding code to compile.

dependencies:
- template-haskell

The preceding code begs more explanation. fieldLabelModifier has String ->
String asit’s type signature. This function accepts a field name as an input and outputs
another String that will be used as the field name in JSON. In our case, this function will

receive "userId," "username," and "userHobbies." lowercaseFirst is a simple function
to convert the first letter of any String to lowercase. ''User is a functionality provided by
Template Haskell language extension to get the full qualified name of any Haskell type.
Then, we apply the nameBase function provided by template-haskell to get only the

type name. In this particular case ''User yields "Lib.User." When we apply nameBase to
it, we get just "User." In fieldLabelModifier, we basically drop the first few letters and
convert the first letter to lowercase. This converts "userHobbies" to "hobbies."

Let’s see how our preceding code affect the JSON string produced.

> encode $ User 1 "Ecky" ["Running", "Programming"] "{\"id\":1,\"name\":
\"Ecky\",\"hobbies\":[\"Running\",\"Programming\"]}"

Our custom data structure is now converted to JSON correctly as we wanted.
derive]SON also generates a FromJSON instance, which means we can convert the JSON
string back to our Haskell type.

> let json = encode $ User 1 "Ecky" ["Running", "Programming"]
> eitherDecode json :: Either String User
Right (User {userId = 1, userName = "Ecky", userHobbies =

["Running","Programming"]})

"'www.stackage.org/package/template-haskell

27

http://www.stackage.org/package/template-haskell

CHAPTER 2 PRACTICAL HASKELL

As you can see, the preceding logic produces a camelCase field name for the
JSON. Some people might prefer to use snake_case for field names. Fortunately, aeson
provides a utility function to do that.

camelTo2 :: Char -> String -> String

Here’s a usage example:

camelTo2 ' ' 'CamelAPICase' == "camel api case"

camelTo2 '-' 'userHobbies' == "user-hobbies"

Should you want the produced JSON to have snake_case as the field name, then you
may use camelTo2 as an alternative to lowercaseFirst.

Not all Haskell types are naively convertible to JSON. Let’s see how deriveJSON works
with such Haskell types. Let’s say we have the following types that we want to convert to JSON:

data Test

= TestNullary

| TestUnary Int

| TestProduct Int Text Double

| TestRecord { recA :: Bool, recB :: Int }
$(deriveJSON defaultOptions "Test)

Next, let’s play around with REPL and see how it’s encoded.

> encode $ TestNullary
"{\"tag\":\"TestNullary\"}"

> encode $ TestUnary 10
“{\"tag\":\"TestUnary\",\"contents\":10}"

> encode $ TestProduct 10 "Hello" 3.14 "{\"tag\":\"TestProduct\",\"contents
\":[10,\"Hello\",3.14]}"

> encode $ TestRecord True 10
"{\"tag\":\"TestRecord\",\"recA\":true,\"recB\":10}"

As you can see, the sum type constructor will be encoded using the "tag" field. The
content of product type will be encoded as a JSON array in a field named "contents". For
record types, unsurprisingly, the field names become the field names of the produced JSON.

That’s all we need to productively work with JSON in Haskell.

28

CHAPTER 2 PRACTICAL HASKELL

Exception Handling

It's inevitable that things can go wrong at runtime. For example, we try to write a file
but there’s not enough disk space. Or maybe we open an HTTP connection but are
unable to reach the server. In general, any I0 operation may fail at runtime. For these
cases, Haskell represents the exceptional cases as Exception. Haskell Exceptions are
unchecked, meaning there’s nothing in the type signature that signals that an exception
will be thrown. So we need to be careful when reading the documentation of the
packages we are using, as it usually mentions that some exceptions might be thrown.

Based on how the exception is thrown, we have three types of exceptions: impure
exception, synchronous exception, and asynchronous exception.

Impure exception is a kind of exception that is thrown inside a pure context. An
example would be:

isBelow10 :: Int -> Bool
isBelow10 n = if n < 10 then True else error "above 10!"

Haskell is a lazy programming language. Values are not evaluated until it’s truly
necessary. The implication of this is that the program might crash at an unpredictable
location when evaluating values that happen to be an exception. Let’s see an example:

isBelow10 :: Int -> Either Text ()
isBelow10 n = if n < 10 then Right () else Left (error "above 10!")

let result = isBelow10 20
run :: I0 ()
run =
case result of
Left e -> do
putStrLn "something went wrong!"
putStrln e
Right _ ->
putStrLn "All good!"

If you execute the run function from the preceding snippet you'll find the following
output:

something went wrong!
*** Exception: above 10!

29

CHAPTER 2 PRACTICAL HASKELL

That may look counterintuitive at first, especially if you come from strict
programming languages background. You might expect that the program should crash
on the first call of isBelow10, specifically the isBelow10 20. However, what we find is
that "something went wrong" is still being printed. The reason for this behavior is that
the error is not evaluated until it’s really used. It is finally being used on the putStrLn e
call. Since e is not evaluated until that point, "something went wrong!" is still being
printed. Being aware of this behavior helps when you need to debug your program. In
general, it's more ideal if you never use an impure exception at all.

The second kind of exception is synchronous exception. This exception is generated
by the current thread. We generally want to catch this kind of exceptions and recover
from it. We will see later how to do that.

The third kind of exception is asynchronous exception. This exception is generated
by different thread or by the runtime system. For example, the race function (that
you have access to once you have imported ClassyPrelude) will run two actions on
separate threads and kill the longer running one with asynchronous exception once the
shorter running one finishes. Unlike a synchronous exception, you usually don’t want to
recover from an asynchronous exception.

The package that allows us to work with exceptions is safe-exceptions. The
modules in this package are re-exported in ClassyPrelude. So, if you have imported
ClassyPrelude into your module, you immediately have access to it.

Any type that you wish to throw and catch as exceptions needs to be an instance of
the Exception typeclass. For example:

data ServerException
= ServerOnFireException
| ServerNotPluggedInException
deriving (Show)

instance Exception ServerException

To throw a synchronous exception, the function to use is throw, defined as follows:
throw :: (MonadThrow m, Exception e) => e -> m a
To catch a synchronous exception, the function to use is catch, defined as follows:

catch :: (MonadCatch m, Exception e) =>ma -> (e ->ma) ->m a

"www.stackage.org/1ts-10.3/package/safe-exceptions-0.1.6.0

30

http://www.stackage.org/lts-10.3/package/safe-exceptions-0.1.6.0

CHAPTER 2 PRACTICAL HASKELL

An example use of throw and catch is as follows:
throw ServerOnFireException “catch™ (\e -> putStrLn $ show (e :: ServerException))

We need to explicitly tell the catch handler to handle ServerException, otherwise it
won'’t compile because it’s ambiguous for the compiler.
In addition to catch, there are other ways to handle synchronous exception.

handle :: (MonadCatch m, Exception e) => (e ->ma) ->ma ->ma
try :: (MonadCatch m, Exception e) => m a -> m (Either e a)

handle is basically the same as catch. The difference is that the arguments’ order
is flipped. try, on the other hand, is a bit different. It returns an Either where the Left
contains the exception (if m a generates an exception) and the Right contains the result
of runningm a provided m a doesn’t generate any exception.

Now that we have a basic understanding of how to manage exceptions in Haskell,
let’s see a more complicated example:

data ServerException
= ServerOnFireException
| ServerNotPluggedInException
deriving (Show)

instance Exception ServerException

data MyException
= ThisException
| ThatException
deriving (Show)

instance Exception MyException

run :: I0 () -> I0 ()
run action =
action
“catch™ (\e -> putStrLn $ "ServerException: " <> tshow (e :: ServerException))
“catch® (\e -> putStrLn $ "MyException: " <> tshow (e :: MyException))
“catchAny™ (\e -> putStrLn $ tshow e)

31

CHAPTER 2 PRACTICAL HASKELL

Here, we define two exception types: ServerException and MyException. We also
define a run function that runs the action and has multiple catch blocks. The last catch
block is catchAny. catchAny has the following type signature:

catchAny :: MonadCatch m => m a -> (SomeException -> m a) -> m a

Basically, catchAny is just a catch where e is specialized to SomeException.
SomeException is a catch-all type for exception. So it means that any exception will be
caught in the catchAny block.

Now, let’s load the preceding code into REPL and try to execute the following

commands:

> run (throw ServerOnFireException)
ServerException: ServerOnFireException

> run (throw ThisException)
MyException: ThisException

> run (throwString "unexpected exception")
Control.Exception.Safe.throwString called with:

unexpected exception

On the first call to the run function, we throw ServerOnFireException. This
exception is then caught in the first catch block.

On the second call to the run function, we throw ThisException type. Notice that it’s
caught in the second catch block. Since the first block’s exception type doesn’t match
the thrown exception type, the block is not executed and is skipped.

Finally, on the third call to run function, we throw a StringException (from the
throwString function). We don’t define any specific catch block for StringException,
but we define a catchAny block. Since catchAny catches any type of exception, then
StringExceptionis cast as SomeException and handled there.

32

CHAPTER 2 PRACTICAL HASKELL

Summary

In this chapter, we have seen how to use various libraries for doing day-to-day tasks in
Haskell. The libraries that we have covered are:

1. classy-prelude: for working with common data structures
2. aeson: for working with JSON

3. time and time-lens: for working with date and time

4. pcre-heavy: for working with regular expression

5. safe-exception: for working with exceptions

33

CHAPTER 3

Domain Modeling

In this chapter, we will start writing pieces of code that are truly related to our project.
At the end of this chapter, we will have a working authentication feature backed by an
in-memory database.

Port and Adapter Architecture

Before writing any code, it’s worthwile to think through the architecture first. It helps to
give us a big picture of how the application will be laid out. It guides us to structure the
interaction between components so that we can make sense of the application as a whole.

The architecture pattern that we want to follow is Port and Adapter Architecture.
This architecture was first introduced by Alistair Cockburn in a blog post back in
2005." Since then, variations of this architecture pattern have emerged, such as Onion
Architecture? and Clean Architecture.® They have slight differences in the details, but the
essence is still the same.

The main intent of Port and Adapter Architecture is to allow an application to be
driven by users, programs, or automated test and to be developed in isolation from its
eventual runtime external dependencies such as databases and queues. This pattern
strictly separates what’s internal from what'’s external to the application. The internal
part contains the main business or domain logic and should never depend on the
external part. The external and internal parts interact with each other through the use of
Port and Adapter. Figure 3-1 illustrates this architecture.

'https://web.archive.org/web/20180822100852/
*http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
Shttps://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html

35
© Ecky Putrady 2018

E. Putrady, Practical Web Development with Haskell, https://doi.org/10.1007/978-1-4842-3739-7_3

http://alistair.cockburn.us/Hexagonal+architecture
https://web.archive.org/web/20180822100852/
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/
https://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html

CHAPTER 3 DOMAIN MODELING

Adapter

PostgreSQL
Adapter

PostgreSQL

Figure 3-1. Port and Adapter architecture

Port is a “contract” on how external entities may interact with the application. In
Java, for example, Ports are most likely to be represented using an interface. In Haskell, it
could be a typeclass.

In addition to Port, there is the notion of Adapter. Adapter is a component that bridges
between the Port and external entities. It translates the protocol that a Port understands
to protocol that external entities understand. For example, if the external entity is an SQL
database, then the adapter’s job is to translate the Port’s protocol into SQL.

This architecture is very useful to keep your application maintainable. Over time, the
codebase would become more complex. Without guidance on where to put which code,
the codebase will become messy.

Another advantage is having clear separation between the domain logic and the
delivery mechanism. The Web, for example, is a delivery mechanism. Command line
interface is another delivery mechanism. If you keep them separated from domain logic,
it’s easier to deliver your application through other mechanisms. The same argument
also applies to databases and queues. If in the future you want to switch those to different
technologies, you can just write another adapter without touching any of the domain logic.

36

CHAPTER 3 DOMAIN MODELING

So how does this architecture apply to our program? Our application is about
authentication. So, for the domain part, we have authentication domain logic. It contains
functionalities such as user registration and user login. As discussed in Chapter 1, the
application interacts with multiple databases and uses HTTP as the delivery mechanism.
So, here is the list of external entities that we will need to interact with:

1. InMemory database

2. PostgreSQL

3. Redis
4. RabbitMQ
5. Email

6. HTTP with RESTful API
7. HTTP with HTML

We will structure our source code to strictly follow the architecture. At the root level,
we have two folders: Domain and Adapter. Domain logic code should be put inside
Domain folder. Inside the Adapter folder, we have folders representing each external
entity, such as InMemory and PostgreSQL. Code for which the main focus is to bridge
external entities and the domain should be put here. In summary, our folders should be
like the following:

Domain/
Adapter/
InMemory/
PostgreSQL/
Redis/
RabbitMQ/
Email/
HTTP/
Web/
API/

37

CHAPTER 3 DOMAIN MODELING

Auth Data Structure

We will begin our implementation by getting the data structure right. In this section, we
will start by defining our data structure and implement the necessary validations logic.

Types Definition

A common practice for developing Haskell applications is by starting with type
definitions. The Haskell type system is rich. We have sum types, product types,
constraints, etc. In general we want to model everything as precisely as possible. We
want to make illegal values or states irrepresentable in the type system. This way,
some classes of bugs that may possible in other programming language will not even
compile in Haskell. We will see an example of this shortly. Once we have types defined,
programming Haskell feels very much like filling in the blanks.

In order to define types, we need to look into some of the requirements:

1. User should be able to register with email and password

2. Email is case insensitive and should be unique across the whole
system

3. Email should be in the correct format

4. Password should have length of more than five and contain
number, uppercase letter, and lowercase letter

We know that registration accepts email and password, so Auth is naturally a record
with such data.

data Auth = Auth
{ authEmail :: Text
, authPassword :: Text
} deriving (Show, Eq)

Requirements points 2 to 4 state the validations that need to take place on
registration. However, I see two kinds of validation there. The kind that depends on the
application state and the kind that is independent of application state. “Email should be
unique across the whole system” is the former kind. In order to validate this, we need
to query the system state and see if the same email has already registered. The other
validations, like “Email should be in correct format” are the latter kind.

38

CHAPTER 3 DOMAIN MODELING

The reason I made this distinction is because each kind has a different preferable way
to implement. For the independent kind, it is better to make such a value irrepresentable
in our types in the first place. The Auth record that we defined earlier is too loose. We can
create an Auth with an invalid email format. Ideally, the compiler should refuse to create
an Auth record if the email format is invalid. We will see how to do that shortly.

For the dependent kind, there is no choice other than to handle the error at runtime.
In our case, the error is represented as RegistrationError. For now, the error that we
have is only because of duplicate email.

data RegistrationError
= RegistrationErrorEmailTaken
deriving (Show, Eq)

As we have seen, the Auth record is not good enough since it still allows invalid email
to be passed in. Let’s make the Auth record stricter.

newtype Email = Email { emailRaw :: Text } deriwving (Show, Eq)

rawEmail :: Email -> Text
rawEmail = emailRaw

mkEmail :: Text -> Either [Text] Email
mkEmail = undefined

newtype Password = Password { passwordRaw :: Text } deriwing (Show, Eq)

rawPassword :: Password -> Text
rawPassword = passwordRaw

mkPassword :: Text -> Either [Text] Password
mkPassword = undefined

data Auth = Auth
{ authEmail :: Email
, authPassword :: Password
} deriving (Show, Eq)

We create a newtype for Email. We also create a function called mkEmail. This
function accepts Text and returns an Either of [Text] or Email. The [Text] contains
error messages. For email, the error message might be only one, such as “invalid format.”
For password, however, there might be multiple errors, such as “length should be more

than 5” and “should contain number’”
39

CHAPTER 3 DOMAIN MODELING

As an alternative to Text for representing error, we could define our own sum types
for those errors. For example:

data EmailValidationErr = EmailValidationErrInvalidEmail

mkEmail :: Text -> Either [EmailValidationErr] Email
mkEmail = undefined

data PasswordValidationErr = PasswordValidationErrLength Int
| PasswordValidationErrMustContainUpperCase
| PasswordValidationErrMustContainLowerCase
| PasswordValidationErrMustContainNumber

mkPassword :: Text -> Either [PasswordValidationErr] Password
mkPassword = undefined

Using sum types to define an error is useful if we want to act based on the type of the
error. For validation-related errors, we usually just want to display the error as-is to the
user without doing anything specific based on the error type. That’s why we will stick
with Text as the error type.

The main idea of creating newtypes for Email is that we won'’t export the constructor
of Email and only allow Email construction through the use of the mkEmail function.
This way, it is guaranteed at compile time that any Email that is used in the domain is
always valid. We use the same approach for Password as well. This pattern is known as
smart constructor.

Validation Implementation

We need some helper functions to implement the mkEmail and mkPassword functions.
From the requirements, we know that we need to check the following:

1. Whether the text has some specified length

2. Whether the text matches he specified regex

40

CHAPTER 3 DOMAIN MODELING

Those functions are general enough and can be used for other purposes. So let’s
create them in the Domain.Validation module.

module Domain.Validation where

import ClassyPrelude
import Text.Regex.PCRE.Heavy

We import Text.Regex.PCRE.Heavy because we will need to validate based on
regular expression.

We also define Validation type. Validation is a synonym for function that receives
any input and returns a Maybe of any error message e. It returns Nothing if the input is

valid and otherwise if not valid.
type Validation e a = a -> Maybe e

Next, we define the validate function. This function receives three inputs:

1. (a -> b):aconstructor function, which will be called if validation

passes
2. [Vvalidation a]:alist of validation functions
3. a:the value we want to validate

It outputs an Either of error messages or b, a successful value.

validate :: (a -> b) -> [Validation e a] -> a -> Either [e] b
validate constructor validations val =
case concatMap (\f -> maybeTolList $ f val) validations of
[] -> Right $ constructor val
errs -> Left errs

The concatMap here applies each validation to val and then concatenate the results.
Then we check whether the result is an empty list or not. If it is an empty list, meaning
there is no error message, we know that the value passes all validations. If that’s the case,
then we just apply the constructor function to the value and return it as Right. On the
other hand, if there are error messages being returned, we know that the value does not
pass validations, so we return Left with the error messages. The usage of this might be
clearer once you see how it’s being employed.

41

CHAPTER 3 DOMAIN MODELING

Next, we create some validation functions. From our requirement, we know
that we need to check for length and regular expression. Let’s first create a length
checking validation.

rangeBetween :: (Ord a) => a -> a -> e -> Validation e a
rangeBetween minRange maxRange msg val =
if val >= minRange && val <= maxRange then Nothing else Just msg

lengthBetween :: (MonoFoldable a) => Int -> Int -> e -> Validation e a
lengthBetween minLen maxLen msg val =
rangeBetween minLen maxLen msg (length val)

We define two functions: rangeBetween and lengthBetween. rangeBetween checks
whether the input value is within a specified range. An example would be “is this
number between 5 and 10?”. However, instead of just a number, our function works for
all types that can be compared, thanks to the Ord constraint. lengthBetween internally
uses rangeBetween. It makes sense, because length is just a number and we can check
whether a number is within the specified range using rangeBetween. MonoFoldable
constraint is there because we use the length function from ClassyPrelude. This
basically means that this function works for all types that have length, for example Set,
List, or Map. Both functions accept an error message as the third argument. This error
message will be used when the validation doesn’t pass.

The next function that we want to define is the regular expression check. The
function is simple enough: just check whether the value matches a given regex.

regexMatches :: Regex -> e -> Validation e Text
regexMatches regex msg val =
if val =~ regex then Nothing else Just msg

Let’s try the code we just wrote in REPL.
> :1 Domain.Validation

> lengthBetween 1 5 "err" "12345"
Nothing

> lengthBetween 1 5 "err" "123456"
Just "err"

42

CHAPTER 3 DOMAIN MODELING

> regexMatches [re|*hello|] "err" "hello world"
Nothing

> regexMatches [re|*hello|] "err" "failed world"
Just "err"

> let mustContainA = regexMatches [re|A|] "Must contain 'A'"
> let mustContainB = regexMatches [re|B|] "Must contain 'B'"
> validate id [mustContainA, mustContainB] "abc
Left ["Must contain 'A'","Must contain 'B'"]

> validate id [mustContainA, mustContainB] "ABc"
Right "ABc"

Great, the code work as expected.

mkEmail and mkPasswoxrd Implementation

Now that we have handy validation functions, let’s go back to Domain.Auth and finish up
the mkEmail and mkPassword functions.

First, we import the validation module that we have just created along with the
regular expression library.

import Domain.Validation
import Text.Regex.PCRE.Heavy

Next, we implement the mkEmail function. For email, we simply use regular
expression check. Don’t put too much effort on understanding the regular expression
for email as it’s not our main goal here. We pass Email as the first argument of validate
function. Remember that Email is a constructor for Email newtype.

mkEmail :: Text -> Either [Text] Email
mkEmail = validate Email
[regexMatches
[re|~[A-Z0-9a-z. %+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,64}$|]
"Not a valid email"

43

CHAPTER 3 DOMAIN MODELING

Password is a bit more complicated, as we have many checks to do. Per the
requirements, we would need to check the length and whether the password contains
number, uppercase letter, and lowercase letter. Actually, the requirement doesn’t say
anything about the maximum password length. However, I think having a maximum
length check would not hurt.

mkPassword :: Text -> Either [Text] Password
mkPassword = validate Password
[lengthBetween 5 50 "Should between 5 and 50"
, regexMatches [re|\d|] "Should contain number"
, regexMatches [re|[A-Z]|] "Should contain uppercase letter
, regexMatches [re|[a-z]|] "Should contain lowercase letter

]

Let’s try that again in REPL.

> :1 Domain.Auth

> mkEmail "test"
Left ["Not a valid email"]

> mkEmail "test@example.com"
Right (Email {emailRaw = "test@example.com"})

> mkPassword "ABC"
Left ["Should between 5 and 50","Should contain number","Should contain
lowercase letter"]

> mkPassword "1234ABCdef"
Right (Password {passwordRaw = "1234ABCdef"})

Congratulations, you have just learned how to create safer domain types with validations!

Registration

In the previous section, we defined and put necessary validations to our essential
data structure. In this section, we will continue building on top of that to finish the
registration scenario.

44

CHAPTER 3 DOMAIN MODELING

Types Definition

Registration would require us to store the authentication. This storage could be
PostgreSQL or in-memory database. In addition to that, we also need to send an email
verification link. As we have explored previously in the architecture section, we will

need some Ports to interact with this storage and notification system. We will use Haskell
typeclass to represent the Port.

type VerificationCode = Text

class Monad m => AuthRepo m where
addAuth :: Auth -> m (Either RegistrationError VerificationCode)

class Monad m => EmailVerificationNotif m where
notifyEmailVerification :: Email -> VerificationCode -> m ()

AuthRepo contains functions for interaction with the authentication
repository. For now, we only need to add an authentication into the repository.
EmailVerificationNotif represents the notification system where email will be
dispatched to the user. All of these typeclasses are constrained by Monad typeclass, since
inherently these operations have side effects.

Finally, the type signature for the registration function would be as follow:

register :: (AuthRepo m, EmailVerificationNotif m)
=> Auth -> m (Either RegistrationError ())
register auth = undefined

Implementation

Now let’s implement the register function.
import Control.Monad.Except

register :: (AuthRepo m, EmailVerificationNotif m)
=> Auth -> m (Either RegistrationError ())
register auth = runExceptT $ do
vCode <- ExceptT $ addAuth auth
let email = authEmail auth
lift $ notifyEmailVerification email vCode

45

CHAPTER 3 DOMAIN MODELING

What we do in this function is to add the Auth to the repository using the addAuth
function provided by AuthRepo typeclass. addAuth returns a VerificationCode. We then
use it along with email to notify the user for email verification.

We also need to import Control.Monad. Except for ExceptT and runExceptT. By
using ExceptT, we can short-circuit the logic if addAuth auth returns a Left. The lines
following that line will not be evaluated. runExceptT converts an ExceptT into Either.
You will need to put mtl in package.yml to use ExceptT.

dependencies:
- mtl # NEW

In order to run this code, we now need to implement an instance of AuthRepo and
EmailVerificationNotif typeclass. Let’s write a temporary code for an implementation
over I0. What this implementation does is to just print something to the screen. Please
note that this code is temporary and we will remove it once we have implemented a
proper storage implementation.

instance AuthRepo IO where
addAuth (Auth email pass) = do
putStrLn $ "adding auth: " <> rawEmail email
return $ Right "fake verification code"

instance EmailVerificationNotif IO where
notifyEmailVerification email vcode =
putStrLn $ "Notify " <> rawEmail email <> " - " <> vcode

Now let’s get into REPL and see our implementation in action:
> :1 Domain.Auth

> let Right email = mkEmail "test@example.com"

> let Right password = mkPassword "1234ABCdef"

> let auth = Auth email password

> register Auth

adding auth: test@example.com

Notify test@example.com - fake verification code
Right ()

As you can see, our implementation works as expected. Later we will use a proper
storage implementation instead of just printing a message to the screen.

46

CHAPTER 3 DOMAIN MODELING

Email Verification

In this section, we will look into the next feature that we will be building: Email
verification. We will follow the previous approach by starting with the type definition and
finally implementing the necessary functions.

Types Definition

The requirements regarding email verification are as follow:
1. Email verification page
1. User should be informed if the verification link is incorrect
2. User’s email should be verified by visiting this page

Although the requirement is web focused, we can imagine that a web route handler
calls a function in our domain with some verification code as the input and our function
will return an error if the verificaton code is incorrect.

Verifying email requires interaction with an authentication repository. For this, we
introduce a new function in the AuthRepo typeclass, setEmailAsVerified.

class Monad m => AuthRepo m where
setEmailAsVerified :: VerificationCode -> m (Either
EmailVerificationError ())

We have a type for email verification error: EmailVerificationError.
For now, the error is only because of invalid code, in which we represent it as
EmailVerificationErrorInvalidCode.

data EmailVerificationError = EmailVerificationErrorInvalidCode
deriving (Show, Eq)

The function that we will use to verify email is verifyEmail, which accepts a
VerificationCode and returns an Either of EmailVerificationError and ().

verifyEmail :: AuthRepo m
=> VerificationCode -> m (Either EmailVerificationError ())
verifyEmail = undefined

47

CHAPTER 3 DOMAIN MODELING

Implementation

Let’s move onward to verifyEmail implementation.

verifyEmail :: AuthRepo m
=> VerificationCode -> m (Either EmailVerificationError ())
verifyEmail = setEmailAsVerified

This feels like a waste of effort, since we basically just create a synonym for a function
in AuthRepo. However, I would argue keeping things like this is good in the long run
because it maintains consistency. This also prepares us should we want to extend the
functionality in email verification. For example, we might want to log certain things or
notify other systems if the email has been verified.

We won’t be running our code, since there’s nothing much to show.

Login and Resolving Session

In this section, we will work on the login functionality. The requirement says the
following for login:

1. Login Page
1. User should be able to log in with email and password

2. User should not be able to log in with invalid email and
password combination

3. User should not be able to log in if the email has not been
verified

In addition to the requirement listed, we will also have a session mechanism. This is
a very common practice in web applications. The basic idea is that we want to give the
user a temporary “ticket” after logging in to our system. The user can use this ticket for
further actions that require authentication.

48

CHAPTER 3 DOMAIN MODELING

Types Definition

Let’s start by defining the types. Login functionality essentially receives an Auth and
returns a SessionId. We know that this functionality needs to query the repository of
registered Auth and to write the mapping of SessionId to UserId in another repository.
Login may also fail due to invalid authentication or if the email has not verified. So, we
can define them as follows:

type UserId = Int
type Sessionld = Text

data LoginError = LoginErrorInvalidAuth
| LoginErrorEmailNotVerified
deriving (Show, Eq)

class Monad m => AuthRepo m where
findUserByAuth :: Auth -> m (Maybe (UserId, Bool))

class Monad m => SessionRepo m where
newSession :: UserId -> m SessionId

login :: (AuthRepo m, SessionRepo m)
=> Auth -> m (Either LoginError SessionId)
login = undefined

We define UserId as an alias for Int. We choose to do so over defining a newtype
because unlike Email and Password, there’s no specific constraint required on UserId.
There is, however, an advantage if we define a newtype for it like so:

newtype UserId = Userld Int

It ensures that we won’t mix Int that is meant to represent UserId to other Int that
represents something else, for example, OrderId. In my experience, I rarely do that kind
of mistake and making it a newtype makes it a bit cumbersome to use. So I rarely wrap
these in a newtype. It might be different in your experience. You can always use this
approach if it suits your need better.

49

CHAPTER 3 DOMAIN MODELING

Moving on, we introduce a new function in AuthRepo, findUserByAuth. This function
returns aMaybe (UserId, Bool).The Bool partis used to represent whether the email
has been verified or not. We will need it to fulfill a requirement where we want to reject
logins with unverified email.

In addition to the authentication repository, login also needs to interact with the
session repository. When the user logs in, we need to create a new session for that user.
The function to do that is newSession.

There are two possible errors that may happen when the user tries to log in: when the
email and password combination is incorrect, and when the email is not yet verified. We
represent those errors as LoginErrorInvalidAuth and LoginErrorEmailNotVerified,
respectively.

In addition to the login function, we also need to resolve SessionId back to
UserId. For this use case, we have the resolveSessionId function. The return value
of this function is a Maybe UserId instead of just UserId because the session might be
invalid or expire, in which case no UserId can be resolved from that SessionId. This
function obviously needs to query the repository of sessions, so we add a new function in
SessionRepo called findUserIdBySessionId.

class Monad m => SessionRepo m where
findUserIdBySessionId :: SessionId -> m (Maybe UserId)

resolveSessionId :: SessionRepo m => SessionId -> m (Maybe UserId)
resolveSessionId = findUserBySessionId

resolveSessionId is now justa synonym for findUserBySessionId. This seems
like unnecessary boilerplate. However, let’s keep it for now for consistency and possible
future functionality additions.

Implementation

We only have one hole to fill in, the login function. We implement it as follows:

login :: (AuthRepo m, SessionRepo m)
=> Auth -> m (Either LoginError SessionId)
login auth = runExceptT $ do
result <- lift $ findUserByAuth auth

50

CHAPTER 3 DOMAIN MODELING

case result of
Nothing -> throwError LoginErrorInvalidAuth
Just (_, False) -> throwError LoginErrorEmailNotVerified
Just (uld,) -> lift $ newSession uld

We first use the findUserByAuth function to find a user id from Auth. The result is
then pattern matched; in the case of Nothing, we signal an invalid authentication error.
In the case of Just (_, False), we signal an email not verified error. Otherwise, we just
create a new session using the newSession function.

User Page

The last requirement that we want to implement is the following:
1. User Page

1. User should be redirected to the Login Page if the user is not
authenticated

2. User should be able to see the user’s email if the user is
authenticated

We can ignore the first requirement, as it’s web application centric. For now,
our concern is that there should be a domain function to get Email from UserId.
Obviously, this requires interaction with the authentication repository. So, let’s
introduce another function.

class Monad m => AuthRepo m where
findEmailFromUserId :: UserId -> m (Maybe Email)

getUser :: AuthRepo m => UserId -> m (Maybe Email)
getUser = findEmailFromUserId

We return a Maybe Email because we can’t guarantee that the given UserId always
exists in our system.

Similar to the preceding, we also have a seemingly unnecessary function that just
wraps a function in AuthRepo. Bear with it for now as we shall see how this is useful in
Chapter 11 (Testing).

51

CHAPTER 3 DOMAIN MODELING

Exposing Safe Functions

Not all functions and types that we have defined are meant to be used by the user of this
module. For example, we don’t want the user of this module to use the constructor of
Email and Password directly, so that they cannot create Email and Password with invalid
values. To achieve that, we simply don’t export those constructors. Our module will then
have the following export:

module Domain.Auth (
-- * Types
Auth(..),
Email,
mkEmail,
rawEmail,
Password,
mkPassword,
rawPassword,
Userld,
VerificationCode,
Sessionld,
RegistrationError(..),
EmailVerificationError(..),
LoginError(..),

-- * Ports

AuthRepo(..),
EmailVerificationNotif(..),
SessionRepo(..),

-- * Use cases
register,
verifyEmail,
login,
resolveSessionld,
getUser

52

CHAPTER 3 DOMAIN MODELING

In-Memory Database

Up until this point, we have finished the implementation of the main domain logic.
However, it’s still unusable because the logic requires a repository to store the data. In this
chapter, we will create one implementation of such a data repository. For simplicity, we
will store all of the data in-memory. It’s not usable for production, but it’s great for getting
started. In later chapters, we will learn how to use other databases for storing the data.

We start by learning thea concept of Software Transactional Memory in Haskell. This
concept is necessary to learn, knowing that our in-memory database will be read and
written concurrently. Without understanding this concept, our implementation might
fail in a concurrent scenario. We will then continue to implement each function in the
typeclasses that we've defined in previous sections.

Software Transactional Memory

In an imperative programming language, like Java, having a mutable state is easy and

the norm. Just declare a variable and change it as necessary. However, extra care needs
to be taken in a concurrent scenario. Consider a registration process. The process would
be: read the list of authentications, insert a new authentication, and store this whole list
back—very straightforward. Now consider what happens if there are multiple registration
processes that happen concurrently. The following scenario could happen:

1. Process A: Get the list of authentications; it’s an empty list.
2. Process B: Get the list of authentications; it’s an empty list.

3. Process A: Append the list with authentication A; it’s currently a list

with one element: A.

4. Process B: Append the list with authentication B; it’s currently a list
with one element: B.

5. Process A: Store the list of authentications.
6. Process B: Store the list of authentications.

In the preceding scenario, authentication A will be lost. It’s because process B
overwrites what process A has done. For mitigating this issue, we need to use a locking
mechanism. It’s not a very straightforward process; if you are not careful, you may hit
deadlock.

53

CHAPTER 3 DOMAIN MODELING

In Haskell, there is a library to mitigate the aforementioned issue. The library is
called stm.* It’s re-exported in ClassyPrelude. Since we use ClassyPrelude, we can use
it without importing any other packages.

stm has a data type called TVar. Think of it as a box containing a value that can be
mutated atomically. TVar can be created with the newTVarIO function. Let’s try it out
in REPL.

> :t newTVarIO :: a -> I0 (TVar a)
> tvar <- newTVarIO 10

In the preceding snippet, we create a new TVar with a value of 10. For reading and
writing, the functions to use are readTVar and writeTVar, respectively. Both of these
functions return an STM monad. We can then use atomically to convert STM into IO.

> :t readTVar

readTVar :: TVar a -> STM a

> :t writeTVar

writeTVar :: TVar a -> a -> STM ()

> :t atomically

atomically :: MonadIO m => STM a -> m a

> let add5 = readTVar tvar »>»>= \val -> writeTVar tvar (val + §5)
> :t adds

adds :: STM()

> atomically $ readTVar tvar
10

> atomically add5

> atomically $ readTVar tvar
15

In the preceding example, we defined a new function add5, which adds 5 to tvar.
Then, we executed that using the atomically function and we observed that the value in
tvar is mutated from 10 to 15.

*https://www.stackage.org/package/stm
54

https://www.stackage.org/package/stm

CHAPTER 3 DOMAIN MODELING

STM operation can be nested, for example:

> atomically $ add5 >> add5
> atomically $ readTVar tvar
25

One common case is when we want to just read the value contained in TVar in
I0 monad without doing any write back. As we have seen so far, the way to do it is

quite verbose, atomically $ readTVar tvar. Fortunately, there is an alias for that:

readTVarIO.

> readTVarIO tvar
25

The increment works correctly in a single-threaded scenario. How about a
concurrent scenario? Will it also work? Let’s find out.

> tvar <- newTVarIO O

> let add1 = readTVar tvar >>= \val -> writeTVar tvar (val + 1)
> let addiActions = replicate 100 addi :: [STM ()]

> mapConcurrently atomically addiActions

> readTVarIO tvar

100

In the preceding example, we initialized a TVar with a starting value of 0. We then

defined a function to increment the value inside tvar by one. The mapConcurrently
function is used to apply the actions concurrently. In this case, the actions are 100
add1s. As we have seen, the increment also works correctly in a concurrent scenario.

That concludes our crash course on Haskell's STM. In short, if you want a safe

mutable variable in Haskell, you almost always want to use STM. You can be productive

in using STM by just remembering a few functions: newTVarI0, readTVar, writeTVar,

and atomically.

55

CHAPTER 3 DOMAIN MODELING

Repositories Implementation

Now that we’ve learned about STM, let’s use it for our repositories implementation. We
will write our code in a new module Adapter.InMemory.Auth.

module Adapter.InMemory.Auth where

import ClassyPrelude
import qualified Domain.Auth as D

Besides the usual ClassyPrelude, we need to import Domain.Auth. We also make it a
qualified import to avoid name collision.

Since we want to store the data in memory, we need to define a data structure to hold
all these data. Here’s one I came up with:

data State = State
{ stateAuths :: [(D.UserId, D.Auth)]
, stateUnverifiedEmails :: Map D.VerificationCode D.Email
, stateVerifiedEmails :: Set D.Email
, stateUserIdCounter :: Int
, stateNotifications :: Map D.Email D.VerificationCode
, stateSessions :: Map D.SessionId D.UserId
} deriving (Show, Eq)

If you try to compile this, you would get an error saying Email needs to be an
instance of Ord typeclass. This error comes up because we have Set D.Email. Set
requires the element to be an instance of Ord typeclass. No need to worry, because we
can have GHC generate such an instance. Simply add Ord in the deriving clause of

Email newtype.
newtype Email = Email { rawEmail :: Text } deriwving (Show, Eq, Ord)

stateAuths is a list of UserId and Auth pairs that is used for storing user authentications.
We will use stateUserIdCounter for generating a unique UserId. stateAuths is defined as a
list of tuple instead of a Map, because our algorithm needs to traverse to the values as we will
see later. Map is great if we want a random access based on a key.

stateUnverifiedEmails is a Map of VerificationCode and Email. We
use VerificationCode as a key, since our use case is to look up an Email by
VerificationCode. We also have stateVerifiedEmails thatis a Set of Email. We use
this Set to check whether an email is verified or not.

56

CHAPTER 3 DOMAIN MODELING

stateSessions is a mapping of SessionId and UserId. We use this structure to look
up UserId from SessionId.

Last but not least is stateNotification. This represents notification that is sent to
an Email. Having this state around would be handy for automated testing.

We also define initialState. This is used when we start the application.

initialState :: State
initialState = State
{ stateAuths = []
, stateUnverifiedEmails = mempty
, stateVerifiedEmails = mempty
, stateUserIdCounter = 0
, stateNotifications = mempty
, stateSessions = mempty

Since we want to implement each function in repositories, let’s copy over all those
functions here with slight modifications.

import Data.Has
type InMemory r m = (Has (TVar State) r, MonadReader r m, MonadIO m)

addAuth :: InMemory r m
> Auth -> m (Either RegistrationError VerificationCode)
undefined

addAuth

setEmailAsVerified :: InMemory r m
=> VerificationCode -> m (Either EmailVerificationError ())
setEmailAsVerified = undefined

findUserByAuth :: InMemory r m
> Auth -> m (Maybe (UserId, Bool))
undefined

findUserByAuth

findEmailFromUserId :: InMemory r m
> UserId -> m (Maybe Email)
undefined

findEmailFromUserId

57

CHAPTER 3 DOMAIN MODELING

notifyEmailVerification :: InMemory r m
=> Email -> VerificationCode -> m ()
notifyEmailVerification = undefined

newSession :: InMemory r m
=> UserId -> m SessionId
newSession = undefined

findUserIdBySessionId :: InMemory r m
=> SessionId -> m (Maybe UserId)
findUserIdBySessionId = undefined

The modification that we did is just adding a new constraint, InMemory r m, in the
beginning of each function. InMemory r mbasically says: “The following computation
works for any m that is an instance of MonadI0 and MonadReader 1, where 1 is any
structure that has TVar State”

We need MonadIO because we need to do IO, such as changing the content of the
TVar and generating a random string.

We need the Has (TVar State) r, MonadReader r mconstraint because in each
function we need access to the state. In this case, we choose to thread the state through
MonadReader. Otherwise, we need to pass in the state as a function argument, such as:

setEmailAsVerified :: TVar State
-> VerificationCode -> I0 (Either EmailVerification
Error ())

The implication of such function design is that whoever calls the function needs
to explicitly pass the state. Once you need to call such functions deep in the call chain,
those functions get unwieldly pretty fast.

Has a r comes from the data-has® package. If you try to compile the preceding
code, you may encounter a compile error. That’s because we have not added that
package to our project yet. Let’s edit our package.yaml to be the following

dependencies:
- data-has # New!

*www . stackage.org/package/data-has

58

http://www.stackage.org/package/data-has

CHAPTER 3 DOMAIN MODELING

In addition to data-has, we also need to enable two new language extensions. Let’s
add those to our package.yaml:

default-extensions:
- ConstraintKinds
- FlexibleContexts

ConstraintKinds language extension allows you to write something like this:
type InMemory r m = (Has (TVar State) r, MonadReader r m, MonadIO m)

Without this language extension, you have to write the full constraints in each
function type signature, such as:

addAuth :: (Has (TVar State) r, MonadReader r m, MonadIO m)
=> Auth -> m (Either RegistrationError VerificationCode)

It’s slightly unpleasant because it’s too long. Imagine writing that if you have so many

functions requiring the same constraint.

SessionRepo Implementation

findUserBySessionldis a simple one. We just get the current state and then look for
SessionIDin stateSessions structure.

findUserIdBySessionId :: InMemory r m
=> D.SessionId -> m (Maybe D.UserId)
findUserIdBySessionId sId = do
tvar <- asks getter
1iftI0O $ lookup sId . stateSessions <$> readTVarIO tvar

getter is a function that comes from data-has. It has the type signature of Has a t =>
t -> a.From the type signature, we can infer that this function simply gets an a from t,
provided t has a, as implied by Has a t constraint.

newSession is another simple one. First, we need to generate a unique and random
SessionID. We implement it by generating a random sixteen alphanumeric letters using
stringRandomIO from the Text.StringRandom module. Sixteen is picked arbitrarily, as
I think it would generate a unique enough string for our use case. Since it’s just random

59

CHAPTER 3 DOMAIN MODELING

letters, there is no guarantee that it will be unique. So, we will reduce the collision
probability even further by prefixing it with UserId, since we know UserID is unique.
Once we have this SessionId, we just need to insert it in stateSessions.

import Text.StringRandom

newSession :: InMemory r m
=> D.UserId -> m D.SessionId
newSession uld = do
tvar <- asks getter
sId <- 1iftI0 $ ((tshow uId) <>) <$> stringRandomIO "[A-Za-z0-9]{16}"
atomically $ do
state <- readTVar tvar
let sessions = stateSessions state
newSessions = insertMap sId uld sessions
newState = state { stateSessions = newSessions }
writeTVar tvar newState
return sId

For this to compile, we need to list string-random as our dependency in the
package.yaml file.

dependencies:
- string-random # NEW!

string-random might not be available in Stackage. If that’s the case, then we need to
add itin stack.yaml

extra-deps:
- string-random-0.1.0.0

EmailVerificationNotif Implementation

EmailVerificationNotif typeclass has only one function: notifyEmailVerification.
It's also a simple one, as we just need to insert the given VerificationCode to
stateNotifications.

60

CHAPTER 3 DOMAIN MODELING

notifyEmailVerification :: InMemory r m
=> D.Email -> D.VerificationCode -> m ()
notifyEmailVerification email vCode = do
tvar <- asks getter
atomically $ do
state <- readTVar tvar
let notifications = stateNotifications state
newNotifications = insertMap email vCode notifications
newState = state { stateNotifications = newNotifications }
writeTVar tvar newState

The next function that we will implement is actually only useful for testing purposes.
Since we fake email notification by storing it in a memory, there is no way to get the
verification code unless we provide a function to get it. This function does just that. It
simply looks up the stateNotifications by that Email.

getNotificationsForEmail :: InMemory r m
=> D.Email -> m (Maybe D.VerificationCode)
getNotificationsForEmail email = do
tvar <- asks getter
state <- 1iftIO $ readTVarIO tvar
return $ lookup email $ stateNotifications state

AuthRepo Implementation

Let’s move on to the four functions in AuthRepo. The first one that we want to implement
is findEmailFromUserId. What we need to do here is to read stateAuths and find one
entry that matches the given UserId and get the Email out of that entry.

findEmailFromUserId :: InMemory r m
=> D.UserId -> m (Maybe D.Email)
findEmailFromUserId uld = do
tvar <- asks getter
state <- 1iftIO $ readTVarIO tvar
let mayAuth = map snd . find ((uld ==) . fst) $ stateAuths state
return $ D.authEmail <$> mayAuth

61

CHAPTER 3 DOMAIN MODELING

findUserByAuth is slightly more complicated. We first need to look up UserId from
the given Auth. If such Auth is not found, then return Nothing. If it’s found, then we need
to check whether the Email is verified or not by checking with stateVerifiedEmails.
The result of this check is then put into the return value.

findUserByAuth :: InMemory r m
=> D.Auth -> m (Maybe (D.UserId, Bool))
findUserByAuth auth = do
tvar <- asks getter
state <- 1iftI0O $ readTVarIO tvar
let mayUserId = map fst . find ((auth ==) . snd) $ stateAuths state
case mayUserId of
Nothing -> return Nothing
Just uld -> do
let verifieds = stateVerifiedEmails state
email = D.authEmail auth
isVerified = elem email verifieds
return $ Just (uld, isVerified)

For setEmailAsVerified, the basic idea is to look up an Email in
stateUnverifiedEmails from the given VerificationCode and move it into
stateVerifiedEmails. Since VerificationCode might not map to any Email, we may
throw EmailVerificationErrorInvalidCode.

setEmailAsVerified :: InMemory r m
=> D.VerificationCode
-> m (Either D.EmailVerificationError ())
setEmailAsVerified vCode = do
tvar <- asks getter
atomically . runExceptT $ do
state <- lift $ readTVar tvar
let unverifieds = stateUnverifiedEmails state
verifieds = stateVerifiedEmails state
mayEmail = lookup vCode unverifieds
case mayEmail of
Nothing -> throwError D.EmailVerificationErrorInvalidCode
Just email -> do

62

CHAPTER 3 DOMAIN MODELING

let newUnverifieds = deleteMap vCode unverifieds
newVerifieds = insertSet email verifieds
newState = state
{ stateUnverifiedEmails = newUnverifieds
, stateVerifiedEmails = newVerifieds

}
lift $ writeTVar tvar newState

addAuth is the most complex one so far. First, we generate a random
VerificationCode using the similar mechanism as generating SessionId. Then, we
check whether the email is a duplicate by traversing stateAuths. If it is a duplicate,
we return a RegistrationErrorEmailTaken error. Otherwise, we continue to insert
the user’s Auth into stateAuths. UserId is generated using a counter. We simply
increment the counter by one when generating a new UserId. Since we also want
users to verify their email, we store the Email along with VerificationCode in
stateUnverifiedEmails.

addAuth :: InMemory r m
=> D.Auth -> m (Either D.RegistrationError D.VerificationCode)
addAuth auth = do
tvar <- asks getter

-- gen verification code
vCode <- liftIO $ stringRandomIO "[A-Za-z0-9]{16}"

atomically . runExceptT $ do
state <- 1lift $ readTVar tvar
-- check whether the given email is duplicate
let auths = stateAuths state
email = D.authEmail auth
isDuplicate = any (email ==) . map (D.authEmail . snd) $ auths
when isDuplicate $ throwError D.RegistrationErrorEmailTaken
-- update the state
let newUserId = stateUserIdCounter state + 1
newAuths = (newUserId, auth) : auths
unverifieds = stateUnverifiedEmails state
newUnverifieds = insertMap vCode email unverifieds

63

CHAPTER 3 DOMAIN MODELING

newState = state
{ stateAuths = newAuths
, stateUserIdCounter = newUserId
, stateUnverifiedEmails = newUnverifieds

}
lift $ writeTVar tvar newState
return vCode

Verification in REPL

As usual, whenever we write a new code, the quickest way to get feedback whether our
code is correct is to just try it out in REPL.

> :1 Adapter.InMemory.Auth

> let email = D.mkEmail "ecky@test.com"
>

>

let passw = D.mkPassword "1234ABCDefgh"
let auth = either undefined id $ D.Auth <$> email <*> passw

> s <- newTVarIO initialState

> addAuth s auth

Right "aBNhtG653Bgadkas”

> findUserByAuth s auth

Just (1,False)

> findEmailFromUserId s 1

Just (Email {rawEmail = "ecky@test.com"})

> newSession s 1

"1gkCTScCqWePhMg66"

> findUserIdBySessionId s "1gkCTScCqWePhMg66"
Just 1

Great; so far it looks correct.

64

CHAPTER 3 DOMAIN MODELING

Tying Everything Together

Let’s take a step back and recap what we have done so far. We have defined types that are
required to fulfill our project requirements. We also have implemented the main domain
logic, like registering and logging in a user. We have created a few typeclasses to manage
side-effecting parts of our application. Last but not least, we have implemented an in-
memory implementation for the side-effecting part.

What'’s missing is to be able to tie the in-memory implementation with our domain
logic. This section will guide you on how to do that. Let’s start by opening the Lib
module and import both the domain and in-memory implementation.

import qualified Adapter.InMemory.Auth as M
import Domain.Auth

Next, we define the application state. For now, the application state is just the same
as the in-memory state. In the future, our application state might contain a connection to
databases or queues. We also create a monad transformer stack for our application, App.
Since our application only needs to read from the “environment,” which is the State, and
also do IO, then ReaderT State IO ashould be sufficient. The function run is a helper
to unwind the App stack into an IO0.

type State = TVar M.State
newtype App a = App
{ unApp :: ReaderT State I0 a
} deriving (Applicative, Functor, Monad, MonadReader State, MonadIO)

run :: State -> App a -> I0 a
run state = flip runReaderT state . unApp

In order for the preceding code to work, we need to enable another language
extension: GeneralizedNewtypeDeriving. Let’s add that to our package.yaml.

default-extensions:
- GeneralizedNewtypeDeriving # NEW!

Next, we create instances of AuthRepo, EmailVerificationNotif, and SessionRepo
for App. These instances are the glue between in-memory implementation and domain
logic. In general, we just delegate the calls to in-memory implementations.

65

CHAPTER 3 DOMAIN MODELING

instance AuthRepo App where
addAuth = M.addAuth
setEmailAsVerified = M.setEmailAsVerified
findUserByAuth = M.findUserByAuth
findEmailFromUserId = M.findEmailFromUserId

instance EmailVerificationNotif App where
notifyEmailVerification = M.notifyEmailVerification

instance SessionRepo App where
newSession = M.newSession
findUserIdBySessionId = M.findUserIdBySessionId

And with that, we are done. But let’s write a simple program using it to see it in action.

someFunc :: I0 ()

someFunc = do
state <- newTVarIO M.initialState
run state action

action :: App ()
action = do
let email = either undefined id $ mkEmail "ecky@test.com"
passw = either undefined id $ mkPassword "1234ABCDefgh"
auth = Auth email passw
register auth
Just vCode <- M.getNotificationsForEmail email

verifyEmail vCode

Right session <- login auth

Just uld <- resolveSessionId session
Just registeredEmail <- getUser uld
print (session, uld, registeredEmail)

This simple program shows how the code is meant to be used. First, we initialize the
state. Then use the run function using the initialized state. The program registers a user
using the given Auth. Since we know it’s using the in-memory implementation, we get
the verification code using the getNotificationsForEmail helper function. Once we
get the verification code, we verify the email using it. After that, we log in, resolve the
session, and get the user email. Finally, we print what we have.

66

CHAPTER 3 DOMAIN MODELING
If we run it in REPL, here’s what we get:

> someFunc
("1zAfj9UFIFD7J4edE",1,Email {rawEmail = "ecky@test.com"})

Summary

In this chapter, we have built an authentication feature with in-memory database.

We started by exploring Port and Adapter architecture. This architecture should
help to keep our code base maintainable, and strictly separate what are the domain and
the external of the application.

After that, we started defining the types for our application. We want to make our
types as precise as possible to the requirements, that is, illegal states should not compile.
One example of this is that we strictly use the smart constructor approach to define
Email and Password type. We then separate the side-effecting part of our application
using typeclass.

We briefly learned about STM and used it for out in-memory database
implementation. We learned the problem STM solves, which is concurrent read and
write, and how easily the STM interface solves the problem.

Finally, we tie everything together by creating our own monad transformer stack and
defining typeclass instances for repositories that we defined in our domain.

67

CHAPTER 4

Logging

If you put any system in production, logging is an essential part that you want to get
right. Without logging, it would be very hard to troubleshoot production issues that may
appear. In this chapter, we will learn about how to do logging in Haskell.

When putStrLn Is Not Enough

The easiest way to get started with logging is to just use putStrLn that comes with
ClassyPrelude. After all, logging basically is just printing something while the
application is running, right? Well, not quite true. There are various requirements
for logging in production scenarios. For starters, you may want to attach extra
information along with each log, such as on which line the log is created or arbitrary
information such as user ID. It is cumbersome and error prone to manually add
such information on each call to putStrLn. Another thing to consider is about
performance. We need to design our putStrLn call so that it doesn’t flush the text on
every call. It would slow down the application. It’s best to buffer the texts for quite
some time before finally flushing.

Considering the preceding points, we learned that putStrLn is only half of the
solution for logging. In the following sections we’ll learn to use a package that helps with
the logging scenario.

69
© Ecky Putrady 2018

E. Putrady, Practical Web Development with Haskell, https://doi.org/10.1007/978-1-4842-3739-7_4

CHAPTER 4

Katip

If you look into available packages for logging, you will find plenty of them. Some of
the most popular ones are logging-effect,! monad-logger,? and katip.® In this book,

LOGGING

we will learn about Katip. I find that Katip is the most flexible to use, while providing
sensible defaults.

Before writing any log, it’s best to spend some time to learn important concepts in
Katip so that you can use it effectively beyond the examples presented in this book.

Log Structure

The first concept to understand is Item a. It’s a data structure that Katip uses to
represent the actual log item. We will explore some of the following fields.

data Item a = Item

{ _itemApp :: Namespace

, _itemNamespace :: Namespace

, _itemEnv :: Environment
, _itemHost :: HostName

, _itemProcess :: ProcessID

, _itemSeverity :: Severity

, _itemThread :: ThreadIdText
, _itemPayload :: a

, _itemMessage :: LogStr

, _itemTime :: UTCTime

, _itemloc :: Maybe Loc

_itemApp represents the name of the application. _itemNamespace represents the
“area” of the application. Namespace is basically just a wrapper around [Text] and
intended to represent a hierarchy from general to specific. Let’s say your application
consists of two big components: web server and worker. You can put ["webserver"] and
["worker"] as _itemNamespace respectively to inform where the log originates from.

'www. stackage.org/package/logging-effect
“www.stackage.org/package/monad-logger
Swww . stackage.org/package/katip

70

http://www.stackage.org/package/logging-effect
http://www.stackage.org/package/monad-logger
http://www.stackage.org/package/katip

CHAPTER4 LOGGING

Environment is basically a wrapper for Text. itemEnv is meant to represent the
environment name where the log originates from. For example, “Prod” or “Staging.”

HostName is a synonym for String. itemHost records the hostname of the node
where the log is produced. It would be helpful if your application runs on multiple
nodes. Once the logs are collected in a single place (e.g., via the ELK* stack), it will be
easy to identify which node actually produced this log.

_itemMessage contains the message for the log. LogStr is a wrapper for Text that
provides a more efficient text concatenation.

_itemlLoc contains the information of exact location, such as filename and line
number where the log is produced.

_itemPayload is a generic type. In general, you can put anything here as long
as it can be serialized to JSON and have a ToObject instance. Practically, though,
you are most likely just to use the one that has already been provided by Katip:
SimplelogPayload. We will see later on how to use it.

_itemSeverity informs the severity of this particular log message. Katip defines
eight level of severity, as we can see in the following:

data Severity
= DebugS

| InfoS

| NoticeS

| WarningS

| ErrorS

| CriticalS
| AlertS

| EmergencyS

There is no clear guideline on how to choose the right severity. However, I consistently
use the following guidelines:

1. Debugs for logs that are meaningful only for the developer
and operation team, for example, logging which database the
application connects to.

2. InfoS for logs that are business- or domain-specific events, such
as “user registered” or “user published a new post.”

‘www.elastic.co/elk-stack

71

http://www.elastic.co/elk-stack

CHAPTER4 LOGGING

3. WarningS for oddities that are recovered automatically. Too many
of these might indicate that there is something wrong in the
system. For example, if you are issuing an HTTP request but the
server is unavailable and you provide a fallback, then it is a good
candidate for logging at this level.

4. ErrorS for events that need to be actionable by someone. For
example, if customer’s payment failed to be captured, usually a
manual process needs to be carried out to resolve the issue.

Scribe

Scribe is a component that does the actual writing of the log to the external system.

It receives an Item that we have seen above, formats it as required, and writes it to

the external system. Since the formatting and where the log is sent are up to Scribe

implementation to decide, the implementation may choose to log the format as syslog

and write it to a file on disk or maybe format it as JSON and send it to ElasticSearch.
Katip provides a default Scribe implementation:

mkHandleScribe
:: ColorStrategy -> Handle -> Severity -> Verbosity -> IO Scribe

data ColorStrategy = ColorlLog Bool
| ColorIfTerminal

Handle could be stdout, stderr, or a file. The function formats the logs to be
something like this:

[2016-05-11 21:01:15][MyApp][Info][myhost.example.com][1724][Thre
adId 1154][main:Helpers.Logging Helpers/Logging.hs:32:7] Started

It accepts Severity as a parameter. It means that it will not write a log that has
severity below the given parameter. For example, if you set the Severity to ExrorS but
the log’s severity is InfoS, then that log will not be written.

Verbosity has four levels and is defined as follow:

data Verbosity = Vo | V1 | V2 | V3

72

CHAPTER4 LOGGING

It is meant to control how verbose the log will be printed. V3 is the most verbose,
while VO is the least verbose. The log format that we have seen previously is printed using
V2 as the input parameter.

Of course, you can create your own Scribe implementation. Scribe is defined as follows:

data Scribe = Scribe

{ 1liPush :: LogItem a => Item a -> I0 ()
, scribeFinalizer :: I0 ()
}

liPush is the function that is supposed to transform and push a log item into the
external system. scribeFinalizer is a function that will be called when the scribe
is no longer used. If it’s not relevant, you can just put return () for this function

implementation.

KatipContext

KatipContext is a typeclass that provides functionality to do contextual logging. By
“contextual,” I mean the logging will get the various informations from the environment
and attach it to the log. The following snippet shows how KatipContext is being used:

logSomething :: (KatipContext m) => m ()
logSomething = do
$(logT™) InfoS "Log in no namespace"
katipAddNamespace "ns1" $
$(log™) InfoS "Log in ns1"
katipAddNamespace "ns2" $ do
$(logT™) WarningS "Log in ns2"
katipAddNamespace "ns3" $
katipAddContext (sl "userId" $ asText "12") $ do
$(logT™) InfoS "Log in ns2.ns3 with userId context"
katipAddContext (sl "country" $ asText "Singapore") $
$(logT™) InfoS "Log in ns2.ns3 with userId and country context"

The main function for logging is 1ogTM. You might be wondering why it needs to
be wrapped with strange $(. .) notation. It’s because 1logTM is meant to be evaluated
at compile time using the TemplateHaskell language extension. This function only
receives two inputs: the severity and the log message. However, under the hood, this

73

CHAPTER4 LOGGING

function also populates the various fields for Item structure that we have seen earlier,
such as _itemlLoc and _itemNamespace. This information is available from LogEnv, a data
structure that can be obtained in KatipContext. We will see the details of LogEnv later.
katipAddNamespace and katipAddContext both temporarily alter the LogEnv
structure. Since we do logging inside the altered LogEnv, the resulting Item object
will be different. In the preceding example, logTM actions that are being called under
katipAddNamespace "ns2" will produce an Item that has “ns2” in its namespace.
katipAddContext accepts SimpleLogPayload as the first argument. Actually, it accepts
something more general than that, but in most cases SimpleLogPayload should be what
you want. This first argument will be present in the resulting I'tem’s payload field.
You can think of SimpleLogPayload as a map in which the key is Text and the value
is Value from aeson. SimpleLogPayload can be created by using the s1 function. Here’s
the sl function:

sl :: ToJSON a => Text -> a -> SimplelogPayload

It says that it takes Text, which is the key, and value of anything that is an instance
of ToJSON. SimpleLogPayload is an instance of Monoid, which means you can combine
multiple SimpleLogPayloads into one, as in:

combined :: SimplelogPayload
combined = (sl "userId" "12") <> (sl "country" "Singapore")

In the case of combination with the same key, the latter value will overwrite the
former values.

LogEnv
LogEnv is defined as follow:

data LogEnv = LogEnv

{ _logEnvHost :: HostName

» _logEnvPid :: ProcessID

, _logEnvApp :: Namespace

, _logEnvEnv :: Environment

, _logEnvTimer :: IO UTCTime

, _logEnvScribes :: M.Map Text ScribeHandle
}

74

CHAPTER4 LOGGING

You have seen most of the preceding fields in Item. However, logEnvTimer and _
logEnvScribes need a bit more explanation. _logEnvTimer is an IO action that is used to
get the current time. _logEnvScribes is a collection of Scribes that are registered in this
environment. You may have multiple Scribes registered. Each Item will be processed
by each Scribe. For example, you might have two Scribes, the one that writes to stdout
and the one that writes to ElasticSearch. In that case, Item will be written to stdout and
also shipped to ElasticSearch.

There are a few helpful operations that Katip has provided us to work with LogEnv.
initLogEnv is a function that creates LogEnv with a sensible default.

initLogEnv :: Namespace -> Environment -> IO LogEnv

It’s important to note that initLogEnv uses the AutoUpdate® package
for logEnvTimer. By using AutoUpdate, basically logEnvTimer won't give a
super precise timing. It’s because the current time information is cached for a few
milliseconds. This helps with performance when a lot of logging is happening at
the same time. In case you want a precise logging time, you can just replace it with
getCurrentTime like the code snippet below:

preciselLogEnv = do
le <- initlLogEnv mempty "repl”
return $ le { logEnvTimer = getCurrentTime }

registerScribe, as the name suggests, is a function to modify the given LogEnv to
add a new Scribe.

registerScribe :: Text -> Scribe -> ScribeSettings -> LogEnv -> IO LogEnv

The first parameter represents the name of the Scribe. ScribeSettings is basically
a configuration on how much we should buffer the logs before we flush them to the
external system. This is mostly for performance reasons. For simplicity, we can just use
the ScribeSettings provided by Katip, defaultScribeSettings. These settings set the
buffer size to 4096.

closeScribes :: LogEnv -> IO LogEnv

*www . stackage.org/package/auto-update

75

http://www.stackage.org/package/auto-update

CHAPTER4 LOGGING

closeScribes basically flushes the remaining log in the buffer of each Scribe so
that they are written to the external system. This will also execute the scribeFinalizer
function that exists in the Scribe. Ideally, this function should be called upon
application termination to make sure that all is being written to the external system.

Working with Katip

Phew, we have explored the important concepts of Katip. Now let’s see how to tie all of
the concepts together so that we have a better idea of how to work with it.

First, we need to import Katip and enable the TemplateHaskell language extension
in our package.yaml file.

dependencies:
- katip # new

default-extensions:
- TemplateHaskell

Let’s write some temporary code in the Lib module for simplicity to experiment
with Katip.

import Katip

runKatip :: I0 ()
runKatip = withKatip $ \le ->
runKatipContextT le () mempty logSomething

withKatip :: (LogEnv -> I0 a) -> I0 a
withKatip app =
bracket createlLogEnv closeScribes app
where
createlLogEnv = do
logEnv <- initlogEnv "HAuth" "dev"
stdoutScribe <- mkHandleScribe ColorIfTerminal stdout InfoS V2
registerScribe "stdout" stdoutScribe defaultScribeSettings logEnv

76

CHAPTER 4

logSomething :: (KatipContext m) => m ()
logSomething = do
$(logT™) InfoS "Log in no namespace"
katipAddNamespace "ns1" $
$(log™) InfoS "Log in ns1"
katipAddNamespace "ns2" $ do
$(logT) WarningS "Log in ns2"
katipAddNamespace "ns3" $
katipAddContext (sl "userId" $ asText "12") $ do
$(log™) InfoS "Log in ns2.ns3 with userId context"
katipAddContext (sl "country" $ asText "Singapore") $

$(logT™) InfoS "Log in ns2.ns3 with userId and country context

Try to run runKatip in REPL to see the results. You should see that the logs

LOGGING

containing various information are printed in the terminal similar to the following:

[2018-05-09 13:08:58][HAuth][Info][machine][56579][ThreadId 281]
[main:Lib Lib.hs:116:5] Log in no namespace

[2018-05-09 13:08:58][HAuth.ns1][Info][machine][56579][ThreadId 2

81][main:Lib Lib.hs:118:7] Log in ns1

[2018-05-09 13:08:58][HAuth.ns2][Warning][machine][56579][ThreadI

d 281][main:Lib Lib.hs:120:7] Log in ns2

[2018-05-09 13:08:58][HAuth.ns2.ns3][Info][machine][56579][Thread
Id 281][userId:12][main:Lib Lib.hs:123:11] Log in ns2.ns3 with us

erId context

[2018-05-09 13:08:58][HAuth.ns2.ns3][Info][machine][56579][Thread
Id 281][country:Singapore][userId:12][main:Lib Lib.hs:125:13] Log
in ns2.ns3 with userId and country context

Let’s look a bit closer at the preceding code snippet to understand what it does.

withKatip is a function where we initialize and close LogEnv. It accepts another function

(LogEnv -> IO a), which basically means any IO action that has direct dependency to

LogEnv.

bracket :: MonadMask m =>ma -> (a ->mb) -> (a ->mc) ->mc

77

CHAPTER4 LOGGING

bracket is a function that comes from ClassyPrelude. It's meant to be used for safe
resource allocation and deallocation. The resource could be anything, like a database
connection or file handle. In our case, the resource is LogEnv. It is “safe” because it
handles error that may arise. If an error is thrown, then the resource is deallocated before
rethrowing the error.

bracket accepts three parameters:

1. m a:the function that allocates the resource a
2. (a -> m b): the function that deallocates or frees the resource a

3. (a -> m c):the function that uses the resources after it's
allocated and before it’s deallocated

We deallocate LogEnv using the closeScribes function that we have previously seen,
to make sure that the logs in the buffer are flushed.

createlogEnv is a helper function that we define to initialize the LogEnv. We use
initLogEnv that we have seen previously, to create LogEnv with sensible defaults. We
then create a Scribe that writes to stdout. The Scribe is then registered to the LogEnv
that we have just created.

The runKatip function internally calls withKatip to get the reference to LogEnv.
This LogEnv is then passed on to runKatipContextT. The second and third arguments of
runKatipContextT are the initial payload and initial namespace, respectively. We use ()
for empty payload and mempty for empty namespace. runKatipContextT essentially
unwraps KatipContextT m atom a.It’s analog to ReaderT and runReaderT. As you
might have noticed, KatipContextT is an instance of KatipContext typeclass.

Integrating Log in Our Project

Now back to our project; what are the things that we want to log? We want to log events
that are “state changing” and meaningful for the business. For our case it should be:

1. User registration
2. Userlogin

3. Email verification

78

CHAPTER4 LOGGING

In addition to that, we also want to put the user ID in each log when applicable. It
would be helpful for troubleshooting issues. We can just filter the log with a specific user
id and see what activities the user did in our system.

Now that we have decided what the important logs are, let’s consider what needs to be
changed. We need to change the following type signatures in the Domain.Auth module:

class (Monad m) => AuthRepo m where
addAuth :: Auth -> m (Either RegistrationError VerificationCode)
+ addAuth :: Auth -> m (Either RegistrationError (Userld,
VerificationCode))

setEmailAsVerified :: VerificationCode -> m (Either EmailVerificationError ())
setEmailAsVerified :: VerificationCode

+

-> m (Either EmailVerificationError (UserId, Email))

As we have explored previously, we want to add user ID in the log context. So, we
modified some of our repo’s functions to return UserId along with the usual values.
Next, we modify the register function to the following:

+

withUserIdContext :: (KatipContext m) => UserId -> m a -> m a
withUserIdContext uld = katipAddContext (sl "userId" uld)

+

register :: (AuthRepo m, EmailVerificationNotif m)

=+

register :: (KatipContext m, AuthRepo m, EmailVerificationNotif m)
=> Auth -> m (Either RegistrationError ())

register auth = runkExceptT $ do
- vCode <- ExceptT $ addAuth auth
+ (uld, vCode) <- ExceptT $ addAuth auth
let email = authEmail auth
lift $ notifyEmailVerification email vCode
withUserIdContext uld $

$(logT™) InfoS $ 1ls (rawEmail email) <> " is registered successfully"”

+

We introduced the withUserIdContext helper function as shorthand for appending
Userld to the log context.

The register function now has another constraint: KatipContext m. This allows
logging-related functions from Katip to be used here. The last two lines of the function
are where we do the logging. We use the withUserIdContext helper function that we
have defined in the preceding code to embed UserId to the log context. Then print an

79

CHAPTER4 LOGGING

Info-level log informing that this particular email and user are successfully registered.
You might be confused about 1s. 1ogTM expects to receive LogStr as the last parameter.
1s basically converts string-like types to LogStr.

We also need to modify the verifyEmail function as in the following. This should be
straightforward to understand, as it is very similar to the preceding change.

- verifyEmail :: (AuthRepo m)
+ verifyEmail :: (KatipContext m, AuthRepo m)
=> VerificationCode -> m (Either EmailVerificationError ())
- verifyEmail = setEmailAsVerified
verifyEmail vCode = runExceptT $ do
(uld, email) <- ExceptT $ setEmailAsVerified vCode
withUserIdContext uld $
$(logT™) InfoS $ 1ls (rawEmail email) <> " is verified successfully”
return ()

+ + + + +

The login function also needs to change. Again, it is very similar like before.

- login :: (AuthRepo m, SessionRepo m)
+ login :: (KatipContext m, AuthRepo m, SessionRepo m)
=> Auth -> m (Either LoginError SessionId)
login auth = runExceptT $ do
result <- lift $ findUserByAuth auth
case result of
Nothing -> throwError LoginErrorInvalidAuth
Just (_, False) -> throwError LoginErrorEmailNotVerified
- Just (uld,) -> 1lift $ newSession uld
Just (uld,) -> withUserIdContext uld . 1lift $ do

+ sId <- newSession uld

+ $(log™) InfoS $ 1ls (rawEmail $ authEmail auth) <> " logged in
successfully"”

+ return sId

Since we changed the type signatures of AuthRepo, we also need to adjust the repo
implementation as well. Let’s open the Adapter. InMemory.Auth module. The first
function that we need to change is addAuth. The only change we need to do is to also
return the UserId at the end of the function.

80

CHAPTER4 LOGGING

addAuth :: InMemory r m
=> D.Auth -> m (Either D.RegistrationError D.VerificationCode)
=> D.Auth -> m (Either D.RegistrationError (D.UserId,
D.VerificationCode))
addAuth auth = do
-- code does not change, except below:
return vCode
return (newUserId, vCode)

Another function that we need to modify is setEmailAsVerified.

+ orThrow :: MonadError e m => Maybe a -> e -> m a
+ orThrow Nothing e = throwError e
+ orThrow (Just a) _ = return a

setEmailAsVerified :: InMemory r m
=> D.VerificationCode
-> m (Either D.EmailVerificationError ())
-> m (Either D.EmailVerificationError (D.UserId,
D.Email))
setEmailAsVerified vCode = do
tvar <- asks getter
atomically . runExceptT $ do
state <- lift $ readTVar tvar
let unverifieds = stateUnverifiedEmails state
verifieds = stateVerifiedEmails state
mayEmail = lookup vCode unverifieds
case mayEmail of
Nothing -> throwError D.EmailVerificationErrorInvalidCode
Just email -> do
let newUnverifieds = deleteMap vCode unverifieds
newVerifieds = insertSet email verifieds
newState = state
{ stateUnverifiedEmails = newUnverifieds
, stateVerifiedEmails = newVerifieds

}

81

CHAPTER4 LOGGING

lift $ writeTVar tvar newState
email <- mayEmail “orThrow™ D.EmailVerificationErrorInvalidCode
let auths = stateAuths state

mayUserId = map fst . find ((email ==) . D.authEmail . snd) $ auths
uld <- mayUserId “orThrow™ D.EmailVerificationErrorInvalidCode

let verifieds = stateVerifiedEmails state
newVerifieds = insertSet email verifieds
newUnverifieds = deleteMap vCode unverifieds
newState = state
{ stateUnverifiedEmails = newUnverifieds
, stateVerifiedEmails = newVerifieds
}
lift $ writeTVar tvar newState
return (uld, email)

+ + + + + + + + + + + + o+

Nothing much changed from the previous implementation. An extra functionality
added here was getting the UserId from the given Email. We later return this UserId
along with Email. We also introduce a helper function orThrow. What this helper
function does, basically, is to throw the given error from the second parameter if the first
parameter is Nothing.

The final piece we need to modify is in the Lib module, to glue everything together.
The first thing we need to modify is our application’s monad, App. Since we want logging
functionality from Katip, we need to add KatipContextT and derive an instance for
KatipContext and Katip. If you are wondering why our monad stack is ReaderT State
(KatipContextT I0) notKatipContextT (ReaderT State I0), my answer would be: it
doesn’t matter. Both would work. I just arbitrarily chose the former one.

newtype App a = App
{ unApp :: ReaderT State IO a
} deriving (Applicative, Functor, Monad, MonadReader State, MonadIO)

+ { unApp :: ReaderT State (KatipContextT IO) a
+ } deriving (Applicative, Functor, Monad, MonadReader State, MonadIO
+ , KatipContext, Katip)

In addition to that, we need to modify the run function, since our application’s
monad stack changes. We accept another parameter, LogEnv, which is used by Katip for
logging. We then use this LogEnv in runKatipContextT.

82

+ 4+ o+ o+ + o+ + o+ + + o+ o+ o+

CHAPTER 4

run :: State -> App a -> I0 a
run state = flip runReaderT state . unApp
run :: LogEnv -> State -> App a -> I0 a
run le state =

= runKatipContextT le () mempty

. flip runReaderT state

. unApp

Finally, we just edit someFunc to initialize LogEnv.

withKatip :: (LogEnv -> I0 a) -> IO a
withKatip app =
bracket createlLogEnv closeScribes app
where
createlogEnv = do
logEnv <- initlogEnv "HAuth" "prod"

LOGGING

stdoutScribe <- mkHandleScribe ColorIfTerminal stdout InfoS V2
registerScribe "stdout" stdoutScribe defaultScribeSettings logEnv

someFunc :: I0 ()

someFunc = do

someFunc = withKatip $ \le -> do
state <- newTVarIO M.initialState
run state action

run le state action

We are done with the implementation. If you run someFunc in REPL, you will see the

log printed on the terminal. Notice that UserId, which we set as the log context, appears

in the log

Summary

In this chapter, we have added logging capabilities to our application using Katip, a

Haskell library for logging. We learned many concepts about Katip, such as Item, LogEnv,

KatipContext, etc. We learned how to leverage existing functions in Katip to do our

logging effectively.

83

CHAPTER 5

Databases

For most web-based applications, storing data in memory is usually not practical.

The data will be wiped out when the application terminates. It’s not a rare case for an
application to be terminated, for example, when you want to deploy a newer version of
the same application.

Another downside of storing data in-memory is that you may not able to share the
data between application instances. We sometimes need multiple application instances
for availability and scalability. If one of the instances is down, we still can serve user
requests by using the other instances (availability). If there are too many requests to
handle, we can add more instances to cope (scalability).

For those reasons, we usually store the data in a database that is outside of the
application.

There are many databases to choose from, each having its own characteristic that
may suit certain types of use cases. Redis, for example is a key-value store that stores the
data in-memory. Since it’s in-memory, it means the lookup is very fast but the data could
be lost when Redis is down. Knowing this limitation, Redis is better suited for caching.
In this book we will be using PostgreSQL and Redis. Both databases are popular and
versatile while being more than enough for our use cases.

PostgreSQL

In this section, we will look in detail how we could integrate PostgreSQL to our
application. We will start by discussing ways to interact with an SQL database and the
available packages from the community. Then we will have a deep-dive on how to
use a specific package to interact with PostgreSQL. Finally, we will build a repository
implementation for our application using PostgreSQL.

85
© Ecky Putrady 2018

E. Putrady, Practical Web Development with Haskell, https://doi.org/10.1007/978-1-4842-3739-7_5

CHAPTER5 DATABASES

ORM vs. Non-ORM

A common way to interface with PostgreSQL or other relational DB is by using object-
relational mapping (ORM). Using ORM has its pros and cons. On the pros side, ORM
allows us to easily switch databases. Although they are all relational databases, there

are slight differences in SQL among relational databases that make the same SQL
statement possibly not run on other relational databases. ORM solves this problem

by giving a higher level abstraction for application developers. Another pro is that it’s
easier to do Create, Read, Update, and Delete (CRUD) operations. ORM handles the SQL
generation and mapping between SQL result and types that the programming language
understands.

On the cons side, using ORM can be perceived as adding complexity to the problem.
Learning ORM doesn’t mean you don’t have to learn SQL and the actual relational
database you will be using. This means, in addition to learn SQL and the database, you
also need to learn how ORM works. You might as well drop ORM altogether, since it is
simpler overall. Another con is that the generated query might not always be the most
optimized. If your application needs a complex query, such as grouping and window
functions, ORM is useless. You will need to drop to the SQL level and issue a query.

In my experience, ORM is usually more of a hassle than a help. In addition to the
cons described, my biggest issue with it is it’s very tempting to mix database concern
with domain concern. This is a violation of port and adapter architecture. In an ideal
world, database models map exactly to the domain model. In the real world, however,
this is less likely the case. The database might be shared with other applications, and
those applications need extra data that is not relevant to our domain. There are also the
cases where some data get duplicated intentionally for performance reasons. For those
reasons, we won'’t be using ORM in this book.

postgresql-simple

In Haskell, there are well-known packages for interfacing with PostgreSQL. If you are
keen on ORM, you might want to use persistent! and esqueleto.? persistent is
designed to work with SQL and NoSQL back end, while esqueleto is built on top of
persistent and provides capabilities to do joins on SQL back end.

'www.stackage.org/1ts-10.3/package/persistent-2.7.1
“www.stackage.org/1ts-10.3/package/esqueleto-2.5.3

86

http://www.stackage.org/lts-10.3/package/persistent-2.7.1
http://www.stackage.org/lts-10.3/package/esqueleto-2.5.3

CHAPTER5 DATABASES

For non-ORM packages, we have hasql® and postgresql-simple.* hasql is known to
be faster compared with postgresql-simple, but postgresql-simple is more mature.
In this book we will use the postgresql-simple package.

Connection Management

Before issuing any query to the database, we need to open a new connection. The
function to do that is connectPostgreSQL. It accepts a connection string as specified
in PostgreSQL docs.® It returns a Connection that can later be used to issue queries to
the database. Once you are done with the connection you can close it with the close
function provided by the package. The function accepts a Connection that we acquire
from connectPostgreSQL. The following code snippet shows how to open and close a
connection:

openAndClose = do
conn <- connectPostgreSQL "postgresql://localhost/hauth”
close conn

Connection Pool

PostgreSQL has a constraint on the maximum simultaneous open connections. By
default, we can only open 100 connections simultaneously. Now, consider if you have a
very busy server serving a lot of users. It would be possible for you to open more than 100
connections at the same time. This means you hit the connection limit and you will get
an error from PostgreSQL. This is of course not desirable. In addition to the connection
limit, opening a new connection is also not a cheap operation. It would be more efficient
to keep the connection open and reuse it.

A common solution to the problem is by using a connection pool. The idea of a
connection pool is that you have a number of open connections in the pool and your
application will take it from the pool before using and then return it to the pool when
done. With a connection pool, we can limit the number of actual opened connections to
the database and not have to create and close connections every time.

*www.stackage.org/1ts-10.3/package/hasql-1.1.1
‘www.stackage.org/lts-10.3/package/postgresql-simple-0.5.3.0
*www.postgresql.org/docs/current/static/libpg-connect.html#LIBPQ-CONNSTRING

87

http://www.stackage.org/lts-10.3/package/hasql-1.1.1
http://www.stackage.org/lts-10.3/package/postgresql-simple-0.5.3.0
http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING

CHAPTER5 DATABASES

In Haskell, the package for managing a connection pool is resource-pool. To be
precise, this package actually is not specialized for connection. It is general enough to be
used for anything.

resource-pool is a fairly simple package with minimal APIs. There are only three
essential functions worth knowing about: createPool, destroyAllResources, and
withResources. Let’s look into each of them.

createPool is a function to create the pool. It returns I0 (Pool a) and receives the
following input in order:

1. IO a:the action to create the resource
2. (a -> I0 ()):the action to destroy resource a
3. Int:the number of stripes (subpools) to maintain

4. NominalDiffTime: amount of time that an unused resource is kept

alive
5. Int: maximum number of resource to keep alive per stripe

resource-pool has a concept of “Stripe.” Stripe is a subpool within the pool. The
purpose of having multiple stripes is to reduce contention. Acquiring a resource from a
stripe requires a locking mechanism. Only one thread can acquire a resource at a given
time. Other threads need to wait until the resource acquisition is completed. This might
be a bottleneck for a busy application. With multiple subpools, it’s possible for multiple
concurrent processes to acquire resources from each pool. Figure 5-1 illustrates the
relationship between pool, stripes, and resource.

Resource Resource Resource Resource Resource Resource

Stripe Stripe

Pool

Figure 5-1. resource-pool—pool contains stripes; stripes contain resources

Swww . stackage.org/package/resource-pool

88

http://www.stackage.org/package/resource-pool

CHAPTER5 DATABASES

destroyAllResources is a function of type Pool a -> I0 (). It basically destroys all
resources that are alive in the pool by calling the destroy action defined when we create
the pool. It’s best to call this function whenever we don’t need the pool anymore, for
example, during application shutdown.

withResource has the following type signature:

withResource :: MonadBaseControl IO m => Pool a -> (@ ->mb) ->mb

Please just ignore MonadBaseControl IO for now. In practice, we will use I0 as the
m. This function accepts the pool and an action, given the resource. What will happen is
that we will take a resource from the pool temporarily, execute the action in the second
parameter, then return the resource back to the pool. If there is an idle resource in the
pool, the resource will be used immediately. If there is no idle resource in the pool and
the pool still has room for more resources, then a new resource is created and used
immediately. If the pool is at full capacity, then this function will be blocked until a
resource is available. In the case of the action throwing an exception, the resource will be
destroyed.

Database Migration

When we start our application, the very next thing that we want to do is to set up or
modify database tables to the latest version so that our application can interact with
it. This process is known as database migration. We will use postgresql-simple-
migration,” a member of the postgresql-simple package ecosystem that focuses on
doing database migration.

Among many functions provided, we are just interested with runMigrations. The
function has the following type signature:

runMigrations :: Bool -- Run in verbose mode?
-> Connection -- The postgres connection to use
-> [MigrationCommand] -- The commands to run
-> 10 (MigrationResult String) -- The result of the migration

“www.stackage.org/1ts-10.3/package/postgresql-simple-migration-0.1.11.0

89

http://www.stackage.org/lts-10.3/package/postgresql-simple-migration-0.1.11.0

CHAPTER 5 DATABASES
We use it like this:

migrate :: Connection -> I0 ()
migrate conn = do
result <- withTransaction conn (runMigrations False conn cmds)
case result of
MigrationError err -> throwString err
_-> return ()
where
cmds = [MigrationInitialization
, MigrationDirectory "src/Adapter/PostgreSQL/Migrations”

]

withTransaction is a function that comes from postgresql-simple that is used
to perform an action within a database transaction. withTransaction receives a
connection and an action. If the action finishes without error, the transaction will
be committed. On the other hand, if the action throws an error, the transaction will
be rollbacked before rethrowing the error. We wrap our migration action inside a
transaction so that if there is any error during the migration, everything is aborted
instead of partially applied.

We pass in two MigrationCommands as the last parameter for runMigrations:
MigrationInitialization and MigrationDirectory.MigrationInitializationisa
command to initialize required tables in our database to track the migrations. We will
cover how this works later. MigrationDirectory is a command to execute SQL files, in
alphabetical order, in a given directory. In the preceding example, the directory happens
to be src/Adapter/PostgreSQL/Migration

Finally, we interpret the result of the migration. If the migration fails, we want
to purposefully crash the application. In our case, having a working database is a
prerequisite of running the application. That’s why we crash our application if the
migration fails.

Suppose that we have files named 00000 _auths.sql and 00001_posts.sql in the
migration directory. If you run the migration, we may look into our database and we
will find a table named schema_migrations. schema_migrations is a table created by

90

CHAPTER5 DATABASES

MigrationInitialization command and is used to manage the migrations. If you do a
select all for that table, you will get the following output:

filename | checksum | executed at
________________ o o o e
00000_auths.sql | PD4DRG/ODR5xk2tDVLmNeg== | 2018-01-20 09:35:16.712525
00001_posts.sql | AAFSVH/ASc68sa9cnISnbG== | 2018-01-20 09:37:02.638962

The schema_migrations table has three columns: filename, checksum, and
executed at. Whenever we run migrations, each file being executed is checked against
this table. The checksum of the file is checked to make sure the one that is going to be
executed now is the same one as the one executed last time. If it’s not the same, the
migration is aborted. So, once a file is executed in a migration, you should not alter
the file anymore. If a file is executed successfully, it will then be written to this table.

Queries

In postgresql-simple, there are only six functions for issuing database queries.
They are different in terms of whether the query should return a value and how many
parameters the query accepts. Please refer to the following chart for the comparison
between functions:

Return nothing Return values

No parameter execute_ query
One parameter execute query

Many parameters executeMany returning

execute_is used for queries that don’t return any values and require no parameters, for
example, creating a new database, dropping a table, or updating a row to a specific value.

> execute_ conn "update auths set is_email verified = 't

In the preceding example, we update every row in the auths table to have the
is_email verified column set to true.

91

CHAPTER 5 DATABASES
query_is similar to execute_, but it returns values.

> query conn "select (2+4)" :: IO [Only Int]
[Only {fromOnly = 6}]

> query conn "select (1+2), (3+4)" :: I0 [(Int, Int)]
[(3, 7)]

> query conn "select (1+2), (3+4)" :: IO [(Int, Int, Int)]

% Exception: ConversionFailed {errSQLType = "2 values: [\"int4\",\"int4\"]",
errSQLTableOid = Nothing, errSQLField = "", errHaskellType = "at least 3
slots in target type", errMessage = "mismatch between number of columns to
convert and number in target type"}

> query conn "select (1+2), (3+4)" :: I0 [(Int, Text)]

*** Exception: Incompatible {errSQLType = "int4", errSQLTableOid = Nothing,
errSQLField = "?column?”, errHaskellType = "Text", errMessage = "types
incompatible"}

As we can see from the preceding examples, we need to specify the return type so
that the compiler knows what function to use to parse the result. In the first example,
since the number of columns being returned is one, then we need to use Only to wrap
the expected value. In the second example, there are two columns being returned, so we
use a tuple to parse it. The third and fourth examples are showing what happens if we
choose the wrong types. Yes, it will result in runtime errors. Since the error is a runtime
one, we need to be very careful when dealing with the postgresql-simple package. It’s
best if we have full automated test coverage for each query.

Up next, we have execute. It’s used for queries that don’t return any value but
require a parameter.

> execute conn "update auths set is_email verified

?" (Only True)

> execute conn "update auths set is_email verified
(True, 123)

? where user_id = ?"

execute accepts two parameters: the query and the query parameter. As you can see,
when we write a query, we may put a ? as a placeholder for query parameter. If there is
only one query parameter, we need to wrap it with Only, as shown by the first code in
the snippet. If we have more than one parameter, we may put our parameters in a tuple,

92

CHAPTER5 DATABASES

as shown by the second code in the snippet. You might notice that many things can go
wrong there: mismatched number of parameters, mismatched query parameter type,
etc. If any of those things happen, the function will throw an error.

Next, we have executeMany. It’s similar to execute, but you want to accept multiple
query parameters instead of one parameter. One good use case for that is when you want
to insert multiple rows of data.

> executeMany conn "insert into auths (pass, email, email verification code,

is email verified) values (?, ?, ?, ?)" [("passi","emaili@test.com",
"vcode1l", False), ("pass2", "email2@test.com", "vcode2", False)]

query is another function for querying. This is the function that you will often use.
We use query for issuing a query with parameters and a return value. One example is to
fetch some data from the database as follows:

> query conn "select id, pass from auths where id < ?" (Only 15) :: IO
[(Integer, Text)]

Another example is to get some values from the database after writing, as
shown here:

> query conn "update auths set is _email verified = ? returning id, is_
email verified"
(Only True) :: IO [(Integer, Bool)]

The last query-related function that we want to explore is returning. We use that for
a query that requires many parameters and returns values, such as:

> returning conn "insert into auths (pass, email, email verification code,
is _email verified) values (?, ?, ?, ?) returning id, pass" [("passi”,
"emaili@test.com", "vcodel", False), ("pass2", "email2@test.com", "vcode2",
False)] :: IO [(Integer, Text)]

Transaction

If you are working with an SQL database in a nontrivial application, sooner or later
you will encounter the need to use a transaction. We will not explore in deep how a
transaction works in SQL as it’s not the focus of this book. We will only look into the
function in postgresql-simple that does a transaction.

93

CHAPTER5 DATABASES

The function that we are interested in is withTransaction. It has the following type
signature:

withTransaction :: Connection -> I0 a -> I0 a

The function accepts Connection as the first argument and an I0 a as the second
argument. Since the second argument is an I0, we can nest as many actions as we want.

withTransaction will begin the transaction before executing the second argument.
If the second argument finishes without throwing any exception, then the transaction
will be committed. On the other hand, if the second argument throws any exception,
then the transaction will be rollbacked before the exception is rethrown.

An example usage of withTransaction is as follow:

multiUpdates = withTransaction conn $ do
execute conn "update auths set is email verified = ?" (Only True)
execute conn "update posts set is visible = ?" (Only True)

In the preceding example, we do modifications on two tables inside a transaction.
If both are run successfully, then the transaction will be committed. Otherwise it will be
rollbacked before the exception is rethrown. Some examples of an exception that may
happen would be violations of database constraints or a malformed query.

Implementation

We have done quite a walkthrough of the package; now we are ready to integrate
PostgreSQL to our project. At the high level, the steps that we are going to take for
integrating the package are the following:

1. Importrequired dependencies
2. Prepare migration file and code
3. Implement repositories

4. Tie everything together

Let’s start my importing the required dependencies. Add the following lines to the
package.yaml file:

dependencies:

- resource-pool # NEW!

- postgresql-simple # NEW!
94

CHAPTER5 DATABASES

Let’s move on to the migration file. For our project, we only need one table for storing
user authentication. We write it in 00000_auths.sql the src/Adapter/PostgreSQL/
Migrations folder. Yes, we put the migrations folder under a sibling folder of Haskell
source codes. The contents of 00000 auths.sql are as follows:

create extension citext;
create extension pgcrypto;

create table auths (
id bigserial primary key not null,
pass text not null,
email citext not null unique,
email verification code text not null,
is_email verified boolean not null

)5

We enable the citext extension so that we can compare two texts with case-
insensitivity. As you can see, we use citext for the email field. Email is case insensitive,
so citext neatly applies to it. pgcrypto is an extension that allows us to do encryption
and decryption using an SQL statement. We will use it for storing a user password in an
encrypted format.

The filename 00000 auths.sql is purposefully selected due to the behavior of the
MigrationDirectory command that applies the SQL files in alphabetical order. If we
want to apply a new migration, we just need to increment the number part, for example
00001_new_migration.sql.

Next, we write the code to execute the migration in the Adapter.PostgreSQL.Auth
module:

module Adapter.PostgreSQL.Auth where

import ClassyPrelude

import Data.Pool

import Database.PostgreSQL.Simple.Migration
import Database.PostgreSQL.Simple

type State = Pool Connection

95

CHAPTER5 DATABASES

migrate :: State -> I0 ()
migrate pool = withResource pool $ \conn -> do
result <- withTransaction conn (runMigrations False conn cmds)
case result of
MigrationError err -> throwString err
_-> return ()
where
cmds = [MigrationInitialization
, MigrationDirectory "src/Adapter/PostgreSQL/Migrations”

]

We begin the previous snippet with imports to various modules that we will be
using. Next, we declare a type synonym for Pool Connection so thatit’s easier to type for
upcoming functions that we will be implementing.

Next, we write the implementation of the migration function. The function acquires
connection from the pool using the withResource function. The connection is then
used in the runMigrations function. The migration is run within a transaction, provided
neatly by the withTransaction function. Since we run our migration in a transaction, if
any error happens during the migration, the whole migration will be aborted.

The migration reads files from the src/Adapter/PostgreSQL/Migrations folder and
executes it in alphabetical order. One would think that hardcoding the migration folder
is not a best practice. However, I'd argue that this is something that you don’t want to
change. So let’s keep it simple and hardcode.

Alright, we have implemented the migration function. But wait, how do we get State
in the first place? Glad you asked; that’s exactly what we are going to do next. Add the
following code in the same file as before:

import Data.Time

data Config = Config
{ configUrl :: ByteString
, configStripeCount :: Int

, configMaxOpenConnPerStripe :: Int
, configIdleConnTimeout :: NominalDiffTime
}

96

CHAPTER5 DATABASES

withPool :: Config -> (State -> I0 a) -> I0 a
withPool cfg action =
bracket initPool cleanPool action
where
initPool = createPool openConn closeConn
(configStripeCount cfg)
(configIdleConnTimeout cfg)
(configMaxOpenConnPerStripe cfg)
cleanPool = destroyAllResources
openConn = connectPostgreSQL (configUrl cfg)
closeConn = close

withState :: Config -> (State -> I0 a) -> I0 a
withState cfg action =
withPool cfg $ \state -> do
migrate state
action state

We want the user of this module to tweak the connection pool configuration and
also the PostgreSQL connection string. So, we created a Config type so that the user can
easily discover what things can be configured.

withPool internally calls the bracket function. We have seen bracket in a previous
chapter. Whenever there is an object with a “lifetime,” that is, it needs to be destroyed
after use, then it’s best to manage the creation and destruction with bracket. Here, we
use bracket to create and destroy the pool.

The pool creation is handled by initPool. initPool calls createPool, a function
that comes from the Data.Pool module. We pass in some values from Config type
into createPool function to set the pool configuration. openConn and closeConn are
functions that we use to open and close a PostgreSQL connection, respectively.

withState is a simple function that internally calls withPool and immediately
executes database migration before continuing on executing action from the function
parameter. We have this because it’s common for an application to have database
migration executed during startup.

Let’s now move on to the repositories implementation. We start by implementing the
addAuth function. This function is meant to store a new authentication into PostgreSQL.

97

CHAPTER5 DATABASES

import qualified Domain.Auth as D
import Data.Has
import Text.StringRandom

type PG r m = (Has State r, MonadReader r m, MonadIO m, MonadThrow m)

withConn :: PG r m => (Connection -> I0 a) -> m a
withConn action = do

pool <- asks getter

1iftIO . withResource pool $ \conn -> action conn

addAuth :: PG rm
=> D.Auth
-> m (Either D.RegistrationError (D.UserId, D.VerificationCode))
addAuth (D.Auth email pass) = do
let rawEmail = D.rawEmail email
rawPassw = D.rawPassword pass

-- generate vCode
vCode <- 1iftIO $ do
r <- stringRandomIO "[A-Za-z0-9]{16}"
return $ (tshow rawEmail) <> " " <> 1
-- issue query
result <- withConn $ \conn ->
try $ query conn qry (rawEmail, rawPassw, vCode)
-- interpret result
case result of
Right [Only uId] -> return $ Right (uId, vCode)
Right _ -> throwString "Should not happen: PG doesn't return userId"
Left err@SqlError{sqlState = state, sqlErrorMsg = msg} ->
if state == "23505" 8& "auths_email key" “isInfixOf msg
then return $ Left D.RegistrationErrorEmailTaken
else throwString $ "Unhandled PG exception: " <> show err
where
qry = "insert into auths \
\(email, pass, email verification code, is email verified) \
\values (?, crypt(?, gen salt('bf')), ?, 'f') returning id"

98

CHAPTER5 DATABASES

We define a constraint synonym PG r m. This constraint synonym basically says that
m is a monad where you can perform IO action (via MonadI0), throw an exception (via
MonadThrow), read r from environment (via MonadReader 1), and you can get State from
1 (viaHas State). This constraint synonym is defined so that it’s easier to type, as the
functions that we will define later share the same constraints.

withConn is a small helper function to execute PostgreSQL-related functions, given
you are in PG r m context. It first gets the connection pool from the environment, then
acquires connection from that connection pool. The acquired connection is later
handed over to the action from the function parameter.

The type signature of addAuth is the same as the one in the Domain.Auth module:
we receive an Auth and we return either RegistrationError or a tuple of UserId and
VerificationCode. This function is divided into three chunks of logic: generating
VerificationCode, issuing a query to PostgreSQL, and interpreting the result.

Generating the VerificationCode part is done by concatenating the email with 16
random alphanumeric characters. The VerificationCode must be unique system-wide
and unguessable. The email part helps to ensure the uniqueness property, while the
random alphanumeric characters help to ensure the unguessable property.

The query that we issue basically inserts the auth to the auths table, as you can see
in the preceding code. The query is quite straightforward, except for the crypt(?, gen_
salt('bf")) part. That part is for encrypting the user’s salted password so that it can be
stored securely in our database. Those functions are SQL functions that come from the
pgcrypto extension.

try is a function that we have access to by importing ClassyPrelude. The function has
the following type signature:

try :: (Exception e, MonadCatch m) => m a -> m (Either e a)

try executes the first argument (m a) and catches a synchronous exception with type
e that is thrown. If the exception is indeed thrown, then this function will return Left e.
If no exception is thrown, the function will return Right a.

We use try to wrap the query action, as it may throw an exception and we are
interested in handling the exception that may be thrown.

The last chunk is for interpreting the result. As you can see, we pattern match on the
Right [Only uId] since we expect the function to return one row and one column that
contains UserId. If that's the result that we get, we return Right (uId, vCode).The next

99

CHAPTER5 DATABASES

pattern match, Right _ should not happen. Well, it might happen, but it means that we
have introduced a bug to our program. For this case, we just want to throw an error with
a meaningful error message.

You might be thinking that a String-based exception is not a good practice and we
should use our own exception data type here. The reason that a String-based exception
is bad is because it’s error prone to catch that specific exception. However, in this case,
we don’t have the need to handle such an exception. So, unless we have the need to
handle it, I wouldn’t bother to introduce a new exception data type.

Finally, the last pattern match is to check for SqlError. One case that is possible is
when we insert an email that already exists in our system. We put a unique constraint
for the email in our table. So, inserting a duplicated email will result in an error. This
is a legit use case that we want to handle. So, what we did is to inspect the SqlError
and check whether the error state is 23505, which means unique constraint violation,?
and whether msg contains the auths_email key string, that is, the constraint
name for email column in our table. If the exception did occur, we just return Left
RegistrationErrorEmailTaken, otherwise, we want to throw an error, as it’s not
something that should happen.

Let’s move on to implement the setEmailAsVerified function. Write the following
code in the same file as previously:

setEmailAsVerified :: PG r m
=> D.VerificationCode
-> m (Either D.EmailVerificationError (D.Userld,
D.Email))
setEmailAsVerified vCode = do
result <- withConn $ \conn -> query conn qry (Only vCode)
case result of
[(uId, mail)] -> case D.mkEmail mail of
Right email -> return $ Right (uld, email)
_ -> throwString $ "Should not happen: email in DB is not valid: " <>
unpack mail
-> return $ Left D.EmailVerificationErrorInvalidCode

www . postgresql.org/docs/10/static/errcodes-appendix.html

100

http://www.postgresql.org/docs/10/static/errcodes-appendix.html

CHAPTER5 DATABASES

where
qry = "update auths \
\set is_email verified = 't' \
\where email verification _code = ? \
\returning id, cast (email as text)"

In this function, we basically want to modify a row in our auths table that has the
given verification code and set the is_email verified column to t. After that, we want
to get the UserId and Email of the modified auths. If you see the preceding query, that’s
basically what we do. One that needs a bit more explanation is the cast (email as
text) part. Remember that we define the email column in our table as citext, as itis
case-insensitive? Unfortunately, postgresql-simple doesn’t know how to parse that
to Text. So, we cast it to text in PostgreSQL so that postgresql-simple will be able to
parse that.

The result of the query is pattern matched. There are two possible cases of query
result. The first one is when the query returns exactly one row. The second one is when
the query returns 0 or more than 1 row.

The first case is the happy case. We successfully modified a row. In this case, we get
the UserId and Email from the returned row. The email we get from the row is a Text,
but we want it to be Email. So, we need to use the mkEmail function to parse the Text.
Since mkEmail also does input validation, we pattern-match the resulting validation. If
it'’sa Right, then good, just return it. Otherwise we throw an error. If an error is indeed
thrown, then it means that there is a bug in our addAuth function. This should never
occur if our program is correct.

The second case is the unhappy case. This happens when we can’t find
the given verification code in our database. In this case, we just return a Left
EmailVerificationErrorInvalidCode.

The next function to implement is findUserByAuth, and the code is as follows:

findUserByAuth :: PG r m
=> D.Auth -> m (Maybe (D.UserId, Bool))
findUserByAuth (D.Auth email pass) = do

let rawEmail = D.rawEmail email

rawPassw = D.rawPassword pass
result <- withConn $ \conn -> query conn qry (rawEmail, rawPassw)

101

CHAPTER5 DATABASES

return $ case result of
[(uld, isVerified)] -> Just (uld, isVerified)
_ -> Nothing
where
qry = "select id, is_email verified \
\from auths \
\where email = ? and pass = crypt(?, pass)"

In this function, we basically want to find a UserId and information on whether
the user has his email verified or not. To do this we do a select by filtering Email and
Password. Since the password is encrypted in the database, we need to use crypt(), a
function from the pgcrypto extension.

The result of that query can be one row or no row. In the case of one row being
returned, we just wrap it in Just and return it. Otherwise, we return Nothing, as it means
such a record doesn’t exist in our database.

The last function that we want to implement is findEmailFromUserId and the code is
as follows:

findEmailFromUserId :: PG r m
=> D.UserId -> m (Maybe D.Email)
findEmailFromUserId uld = do
result <- withConn $ \conn -> query conn qry (Only uld)
case result of
[Only mail] -> case D.mkEmail mail of
Right email -> return $ Just email
_ -> throwString $ "Should not happen: email in DB is not valid:
" <> unpack mail
_
return Nothing
where
qry = "select cast(email as text) \
\from auths \
\where id = ?"

This function is quite straightforward. We get an email in our auths table where the
id is the same as the input parameter. Again, we parse the input to Email and throw an
error if the email is not valid.

102

CHAPTER5 DATABASES

Phew, we have finished writing the repositories implementation. Now it’s time to tie
everything together. Let’s open the Lib module and write the following code:

+import qualified Adapter.PostgreSQL.Auth as PG

-type State = TVar M.State
+type State = (PG.State, TVar M.State)
newtype App a = App
{ unApp :: ReaderT State (KatipContextT IO0) a
} deriving (Applicative, Functor, Monad, MonadReader State, MonadIO
- , KatipContext, Katip)
+ , KatipContext, Katip, MonadThrow)

instance AuthRepo App where

- addAuth = M.addAuth

- setEmailAsVerified = M.setEmailAsVerified

- findUserByAuth = M.findUserByAuth

- findEmailFromUserId = M.findEmailFromUserId
addAuth = PG.addAuth

setEmailAsVerified = PG.setEmailAsVerified
findUserByAuth = PG.findUserByAuth
findEmailFromUserId = PG.findEmailFromUserId

+ + + +

We modify our State definition. Previously, it was equivalent to TVar M.State. Now,
since we want to support both in-memory and PostgreSQL implementation, we add PG.
State to our State.

We also need to modify the deriving clause of our App definition by adding
MonadThrow. MonadThrow is necessary because we define MonadThrow m as one of the
constraints for executing PostgreSQL-related functions. There will be a compile error if
we don’t add MonadThrow here.

In addition to modifying State and App, we also modify our AuthRepo instance
implementation. Previously, we used functions from the Adapter.InMemory.Auth
module. Now, we want to use our PostgreSQL implementation that we have just defined.
So, we just swap out existing functions to functions from the Adapter.PostgreSQL.Auth
module.

103

CHAPTER5 DATABASES

We are not done yet; further modifications need to be done in the someFunc function
as follows:

someFunc :: I0 ()
someFunc = withKatip $ \le -> do
- state <- newTVarIO M.initialState
run le state action
mState <- newTVarIO M.initialState
PG.withState pgCfg $ \pgState -> run le (pgState, mState) action
where
pgCfg = PG.Config
{ PG.configUrl = "postgresql://localhost/hauth”
, PG.configStripeCount = 2

, PG.configMaxOpenConnPerStripe = 5
, PG.configIdleConnTimeout = 10

}

We simply add the PG.withState function here to acquire PG. State. Then, we

+ + + + + + + + +

use it to build our State that will later be passed in to the run function. For simplicity,
we hardcode our PostgreSQL configuration. We could improve it later by parsing the
configuration from the environment.

Now, we may open REPL and run someFunc. If you have the PostgreSQL database
running and have a database named hauth, you should see that the code is still working
as expected.

Great! With that, we have finished integrating our application with PostgreSQL.

Redis

Up next, we are going to integrate Redis to our application. Why Redis? What do we

use it for? Well, we use it to store SessionId to UserId mapping. Once a user is logged
in, the user gets a SessionId that will be used to authenticate with our application for
every interaction that requires authentication. For this, we need to look up the UserId
based on the given SessionId. This operation will occur often and we want it to be very
fast. The fastest way is to store the mapping in the application’s memory. However,

104

CHAPTER5 DATABASES

this wouldn’t work if you have multiple instances of the application running. What if
the user’s request is going to the instance that has no such mapping? So, we need a
dedicated key-value system to store such mapping. Sure, we can store it in PostgreSQL,
but since PostgreSQL saves the values to disk, it is not as fast as getting it from memory.
So, we want a database of in-memory key-value store. Redis is one such database. It’s
quite popular and widely used in the industry.

hedis

There is a good package in Haskell for interacting with Redis, called hedis.® hedis is
complete and low level, as in, it mimics Redis commands.! It’s the similar level of
abstraction as the postgresql-simple package that we have used earlier.

In this section we will explore a bit about how to use the package. Redis actually
does so much more than just key-value store. However, for our use case, setting
and getting values from a key-value store is enough. For that reason, we will only
look into those functions. Moreover, exploring other functions on your own should
be straightforward once you understand the basics laid out in this section. I would
suggest looking into the documentation and playing around with it in the REPL if you
would like to explore.

For opening a connection to Redis using the hedis package, the function we want to
use is checkedConnect. It has the following type signature:

checkedConnect :: ConnectInfo -> IO Connection

This function initiates the connection to Redis and checks whether the connection
is established; that’s why it has “checked” as part of its name. It returns a Connection,
which actually is a connection pool. Unlike postgresql-simple, hedis already managed
the connection pool. Internally, it uses the resource-pool package. It’s the same
package that we used previously for PostgreSQL.

*http://hackage.haskell.org/package/hedis-0.10.0
"https://redis.io/commands

105

http://hackage.haskell.org/package/hedis-0.10.0
https://redis.io/commands

CHAPTER5 DATABASES

ConnectInfois a configuration for creating Connection. You can use the
defaultConnectInfo function to construct a default configuration. By default, the values
for ConnectInfo will be as follows:

connectHost = "localhost"

connectPort = PortNumber 6379 -- Redis default port
connectAuth = Nothing -- No password
connectDatabase =0 -- SELECT database 0
connectMaxConnections = 50 -- Up to 50 connections
connectMaxIdleTime = 30 -- Keep open for 30 seconds
connectTimeout = Nothing -- Don't add timeout logic

Should you wish to override any of the configurations, you can do the following:

let cfg = defaultConnectInfo { connectHost = "127.0.0.1"
, connectMaxConnections = 100

}

Another approach that I actually prefer is to use parseConnectInfo. It accepts a
string in the format of redis://uname:pass@host:port/db, for example, redis://
user:pass@localhost:6379/0, and converts it to ConnectInfo. The type signature for
parseConnectInfo is as follows:

parseConnectInfo :: String -> Either String ConnectInfo

Asyou can see, it returns an Either. It may return Left in the case of malformed
input.

For setting values to Redis, we use the set function. set has the following type
signature:

set :: RedisCtx m f => ByteString -> ByteString -> m (f Status)

set receives two arguments: the key and the value that both are in ByteString. It
returns a seemingly confusing typem (f Status).RedisCtx m fisbasically a constraint
that applies to all Redis-related operations. It has two concrete types: Redis and RedisTx.
The first one is normal Redis action, while the second one is for Redis transaction. For
our application, we only need the Redis type. We don’t have a need for RedisTx. If we
specialize the preceding function to Redis, the type signature becomes:

106

CHAPTER 5 DATABASES
set :: ByteString -> ByteString -> Redis (Either Reply Status)

data Reply
= Singleline ByteString
| Error ByteString
| Integer Integer
| Bulk (Maybe ByteString)
| MultiBulk (Maybe [Reply])

data Status
= 0k
| Pong
| Status ByteString

We can just ignore all of those Reply and Status constructors. What we are
interested in is that set should return Right Ok in a successful scenario.
For getting a value from Redis, the function to use is get:

get :: RedisCtx m f => ByteString -> m (f (Maybe ByteString))
Again, for simplicity sake, we can just specialize this to Redis so it will be:
get :: ByteString -> Redis (Either Reply (Maybe ByteString))

The first argument it accepts is the key. It then returns Maybe ByteString, the value.
It is wrapped in Maybe because the value might not exist.

The last function we are interested in is runRedis. Basically, this function turns Redis
action into I0, as we can infer from the type signature:

runRedis :: Connection -> Redis a -> IO a

The following example shows how all the functions that we have seen previously

work together:
main :: I0 ()
main = do

conn <- checkedConnect defaultConnectInfo
world <- runRedis conn $ do

set "hello" "world"

get "hello"
print world

107

CHAPTER5 DATABASES

That wraps up our brief introduction to the hedis package. We can now proceed to
integrate the package to our application.

Implementation

In this section, we are going to integrate Redis with our application using hedis, the
package that we have just explored.

First thing first: import the package. We want to use at least version 0.10.0 of the
hedis package. The reason is that the parseConnectInfo function is only available
starting with version 0.10.0. At the time of this writing, the version is not yet available in
Stackage. So, we need to list it in our extra-deps section in stack.yaml:

extra-deps:
- hedis-0.10.0

We also need to import that in our package.yaml:

dependencies:
- hedis

Next, let’s create a new module Adapter.Redis.Auth and write the necessary imports:
module Adapter.Redis.Auth where

import ClassyPrelude

import qualified Domain.Auth as D
import Text.StringRandom

import Data.Has

import qualified Database.Redis as R

Next, we write the necessary function to acquire a connection:
type State = R.Connection
-- | Create state from redis url string.
-- format: redis://user:pass@host:port/db

-- sample: redis://abc:def@localhost:6379/0
withState :: String -> (State -> I0 a) -> I0 a

108

CHAPTER5 DATABASES

withState connUrl action = do
case R.parseConnectInfo connUrl of
Left _ ->
throwString "Invalid Redis conn URL"
Right connInfo -> do
conn <- R.checkedConnect connInfo
action conn

Here we define State as a type synonym for R.Connection. This is for consistency
with the existing PostgreSQL implementation as well as for future proofing. Should
we, in the future, need more than just R.Connection, we can just edit the State type
synonym.

withState is quite straightforward. We just parse a String, which is supposed to be
the Redis connection URL, make a Redis connection, and then execute the action from
the parameter. In the case of an invalid connection string URL, we just throw an error.

Moving on, we implement the newSession function from the SessionRepo typeclass:

type Redis r m = (Has State r, MonadReader r m, MonadIO m, MonadThrow m)

withConn :: Redis r m => R.Redis a -> m a
withConn action = do

conn <- asks getter

1iftI0 $ R.runRedis conn action

newSession :: Redis r m => D.UserId -> m D.Sessionld
newSession userId = do
sId <- 1iftI0 $ stringRandomIO "[a-zA-Z0-9]{32}"
result <- withConn $ R.set (encodeUtf8 sId) (fromString . show $ userId)
case result of
Right R.Ok -> return sId
err -> throwString $ "Unexpected redis error:

<> show err

We define the Redis r mconstraint synonym. It’s pretty similar to PostgreSQL that
we have seen previously. Functions with Redis r m constraint basically say that the
function can perform IO (via MonadIO), throw an exception (via MonadThrow), read r from
environment (via MonadReader r), and we can get State from r (via Has State r).

109

CHAPTER5 DATABASES

withConnis a small helper function to execute R.Redis under Redis r m constraint.
What we do is basically get the connection from the environment, then execute the
R.Redis action using the R.runRedis function.

In newSession, we create a Sessionld; it’s a random alphanumeric generated by
the stringRandomIO function. Then, we store the mapping between the SessionId and
UserId from the function parameter to Redis. Since R.set only accepts ByteString, we
need to convert both values to ByteString.

The result of setting the key and value to Redis is then inspected. If it’s a Right
R.0k, then the operation was successful and we just return the generated Sessionld.
Otherwise, we just throw an error with a meaningful message.

findUserIdBySessionId is the last function in the SessionRepo typeclass that we
want to implement:

findUserIdBySessionId :: Redis r m => D.SessionId -> m (Maybe D.UserId)
findUserIdBySessionId sId = do
result <- withConn $ R.get (encodeUtf8 sId)
return $ case result of
Right (Just uIdStr) -> readMay . unpack . decodeUtf8 $ uIdStr
err -> throwString $ "Unexpected redis error: " <> show err

It’s quite straightforward; just do an R. get with the given SessionId and inspect the
result. In the case of Right (Just uldStr), we just parse the uIdStr from ByteString to
UserId. decodeUtf8 is a function to convert ByteString to Text. unpack is a function to
convert Text to String. This functions chain is necessary, since readMay receives a String.

We are done with the repository implementation. Now, we’re moving on to the Lib
module to finally integrate the functions we have just written.

We start by importing Adapter.Redis.Auth and modifying State type synonym,
since we want to introduce Redis:

+import qualified Adapter.Redis.Auth as Redis

(PG.State, Tvar M.State)
(PG.State, Redis.State, TVar M.State)

-type State
+type State

110

CHAPTER5 DATABASES

Next, since we want to store user sessions in Redis instead of in-memory, we modify
the SessionRepo instance to the following
instance SessionRepo App where

newSession = M.newSession

findUserIdBySessionId = M.findUserIdBySessionId
newSession = Redis.newSession

findUserIdBySessionId = Redis.findUserIdBySessionld

+

+

Asyou can see, we just change the functions. Previously, it was from the Adapter.
InMemory.Auth module, now it is from the Adapter.Redis.Auth module.
Finally, we modify the someFunc function to include Redis initialization:

someFunc :: I0 ()
someFunc = withKatip $ \le -> do
+ mState <- newTVarIO M.initialState
PG.withState pgCfg $ \pgState -> run le (pgState, mState) action

+ PG.withState pgCfg $ \pgState ->

+ Redis.withState redisCfg $ \redisState ->

+ run le (pgState, redisState, mState) action
where

+ redisCfg = "redis://localhost:6379/0"

pgCfg = PG.Config
{ PG.configUrl = "postgresql://localhost/hauth"
, PG.configStripeCount = 2
, PG.configMaxOpenConnPerStripe = 5
, PG.configIdleConnTimeout = 10

}

It’s basically the same as before but we just added Redis.withState and redisCfg.

Now, if you go to REPL and run someFunc, you'll see the application still works as
usual provided you have a running Redis instance.

That’s it. Congratulations! We have successfully integrated Redis to our application.

111

CHAPTER5 DATABASES

Summary

In this chapter, we have reached quite a milestone: integrating databases to our
application. Most web applications use some sort of database for storing data, so it’s
important for us to know how to do that.

We started by learning about the postgresql-simple package. It’s a package for
integrating with the PostgreSQL database. We learned how to open and close a database
connection as well as managing them efficiently using the resource-pool package. We
explored six important queries-related functions in the library and learned how to write
a query, passing parameters and parsing the query result.

We finished our journey by integrating Redis to our application using the hedis
package. Like PostgreSQL, we also learned how to open and close a connection as well
as reading and writing data to Redis.

112

CHAPTER 6

Queues

In this chapter, we will integrate our application with RabbitMQ.' RabbitMQ is a popular
queueing system. One common use case of RabbitMQ is for running a background

task. A background task is a task that need not be done within a request-response cycle.
Having a background task to handle a noncritical process helps make your application
more responsive.

But wait, Haskell supports multithreading. Why don’t we just spawn a new thread to
run the task and call it a day? Well, there are multiple reasons why an external queueing
system is more preferable than just spawning a new thread.

The first reason is that spawning a thread blindly may hog your application,
especially if the task takes a long time to finish. In this case, an external queueing
system acts as a buffer so that the tasks are consumed according to the capacity of
the processors.

The second reason is that the tasks will survive application shut down. Suppose
that a single node of your application spawns 100 threads, each working on these tasks.
Suddenly the application shuts down for any reason. In this case, those tasks will be
gone for good. An external queueing system acts as a store for those tasks and we can
reprocess it again later.

The third reason is to distribute the tasks evenly across many nodes. You may also
spawn background-process-only nodes and connect them to the queueing system.

In our application, we will use RabbitMQ for sending a verification email upon user
registration. This doesn’t seem like much, and probably you can get away with just doing
it without a queueing system. However, this is just for the purpose of showing you how to
integrate with an external queueing system.

'www . rabbitmq.com/

113
© Ecky Putrady 2018

E. Putrady, Practical Web Development with Haskell, https://doi.org/10.1007/978-1-4842-3739-7_6

http://www.rabbitmq.com/
http://www.rabbitmq.com

CHAPTER6 QUEUES

We will not be covering the basics of RabbitMQ, as it is not the focus of this book.
However, the official RabbitMQ website has a great section on the concepts? and
tutorials.?

amqp Package Overview

amqp* is a Haskell package for interfacing with RabbitMQ. In this section, we will learn
how to use it to interface with RabbitMQ.

Connection and Channel

Since RabbitMQ is an external system to your application, you need to acquire a
connection and open a channel in order to communicate with it. Unlike PostgreSQL, the
connection is thread-safe. It means that multiple threads can use it concurrently.

The following code shows functions to acquire and close a RabbitMQ connection:

openConnection'' :: ConnectionOpts -> IO Connection
closeConnection :: Connection -> I0 ()

ConnectionOpts is the data structure that describes parameters pertaining to
RabbitMQ connection. It has the following fields:

data ConnectionOpts = ConnectionOpts {
coServers :: ![(String, PortNumber)],
-- * A list of host-port pairs.
coVHost :: !Text,
-- " The VHost to connect to.

coAuth :: ![SASLMechanism],
-- " The 'SASLMechanism's to use for authenticating with the broker.
coMaxFrameSize :: !(Maybe Word32),

-- * The maximum frame size to be used. If not specified, no limit is
assumed.
coHeartbeatDelay :: !(Maybe Word16),

www . rabbitmq.com/tutorials/amgp-concepts.html
*www.rabbitmqg.com/getstarted.html
‘www.stackage.org/1ts-10.3/package/amqp-0.18.1

114

http://www.rabbitmq.com/tutorials/amqp-concepts.html
http://www.rabbitmq.com/getstarted.html
http://www.rabbitmq.com/tutorials/amqp-concepts.html
http://www.rabbitmq.com/getstarted.html
http://www.stackage.org/lts-10.3/package/amqp-0.18.1

CHAPTER6 QUEUES

-- * The delay in seconds for receiving Heartbeat

coMaxChannel :: !(Maybe Word16),

-- " The maximum number of channels the client will use.

coTLSSettings :: Maybe TLSSettings,

-- ” Whether or not to connect to servers using TLS.

coName :: !(Maybe Text)

-- ~ optional connection name (will be displayed in the RabbitMQ web
interface)

To create a ConnectionOpts, you may use the defaultConnectionOpts function and
override each fields as necessary, for example:

defaultConnectionOpts { coName = Just "hauth" }

Another method to use is the fromURI function. It builds a ConnectionOpts from a
string with the following format: amqp://<user>:<pass>@<host>:<port>/<vhost>. If any
part is missing, then the value will be the same one as the default. An example would be:

fromURI "amgp://guest:guest@localhost:5672/%2F"

Now that we know how to open a connection, it’s time to learn how to open a
channel. The following functions are used to open and close a channel, respectively:

openChannel :: Connection -> IO Channel
closeChannel :: Channel -> I0 ()

Closing a channel manually is usually unnecessary because closing a connection
implicitly closes all channels.

A channel in this package is thread-safe. Many threads can interact with RabbitMQ
using the same channel concurrently without you needing to manually manage the
locking mechanism.

After opening a channel, you may want to adjust the prefetch count. Prefetch
count is the limit of the amount of data the server delivers to the client before requiring
acknowledgements. The function to do it is qos:

gos :: Channel -> Word32 -> Wordi6 -> Bool -> IO ()
qos chan prefetchSize prefetchCount global

115

CHAPTER6 QUEUES

The second parameter, prefetchSize, should always be 0, otherwise this function
will throw an exception. The reason for such a strange design decision is that this
package is designed for AMQP in general instead of just RabbitMQ. RabbitMQ is just one
implementation of AMQP. However, RabbitMQ doesn’t support prefetchSize. That’s
why it’s required to be 0.

The third parameter is the prefetch count.

The fourth parameter is a Bool indicating whether this restriction is for a per-
consumer or per-channel basis. If the value is True, then the prefetch count applies
to the whole channel, that is, the number of unacknowledged messages across all
consumers that consume from this channel is capped. On the other hand, if the value is
False, then the number of unacknowledged messages applies to each consumer instead
of the whole channel.

I would suggest using the global prefetch count. Think of it as the maximum number
of threads that you allow to be running at any given time to handle RabbitMQ messages.

Finally, you may want to add a listener to a channel whenever there is an exception
being thrown. It will be helpful to log those exceptions for troubleshooting issues in
production. The following functions allow us to do that:

addChannelExceptionHandler :: Channel -> (SomeException -> I0 ()) -> I0 ()
addChannelExceptionHandler chan callback

The callback receives SomeException and returns an I0 action. SomeException
comes from the GHC. Exception module. SomeException is the base of all exceptions. You
may convert this to a human-friendly string using the displayException function.

Declaring Exchange, Queue, and Binding

The very next thing that you want to do after establishing a connection and a channel is
to declare all exchanges, queues, and bindings. The following function is the one to use
for declaring an exchange:

declareExchange :: Channel -> ExchangeOpts -> I0 ()
ExchangeOpts has the following data structure:

data ExchangeOpts = ExchangeOpts
{ exchangeName :: Text,
-- ~ (must be set); the name of the exchange

116

CHAPTER6 QUEUES

exchangeType :: Text,

-- * (must be set); the type of the exchange

exchangePassive :: Bool,

-- * (default 'False'); If set, the server will not create the exchange.

exchangeDurable :: Bool

-- * (default 'True'); Non-durable exchanges are purged if a server
restarts.

exchangeAutoDelete :: Bool,

-- * (default 'False');
-- If set, the exchange is deleted when all queues have finished using it.
exchangeInternal :: Bool,
-- * (default 'False');
-- Internal exchanges are used to construct wiring that is not visible
to applications.
exchangeArguments :: FieldTable
-- ~ (default empty); A set of arguments for the declaration.
}

To create one, we can use newExchange and override the necessary fields, as shown
in the following example:

newExchange
{ exchangeName = "auth"
, exchangeType = "topic"

}

For declaring queues, we have a similar function to an exchange. It’s called
declareQueue:

declareQueue :: Channel -> QueueOpts -> IO (Text, Int, Int)

It returns a tuple of three values. The first value is the name of the queue. You can
create a queue with an empty name, but then RabbitMQ will autogenerate the name.
The second value is the number of messages in the queue. If it’s a new queue, this value
should be 0. The third value is the number of consumers for this queue.

117

CHAPTER 6 QUEUES
QueueOpts has the following fields:

data QueueOpts = QueueOpts
{ queueName :: Text,
-- " (default \"\"); the name of the queue;
-- if left empty, the server will generate a new name
queuePassive :: Bool,
-- * (default 'False'); If set, the server will not create the queue.
queueDurable :: Bool,
-- ~ (default 'True');
-- Non-durable queues are purged if the server restarts.
queueExclusive :: Bool,
-- * (default 'False');
-- Exclusive queues may only be consumed from by the current connection.
queueAutoDelete :: Bool,
-- ~ (default 'False');
-- If set, the queue is deleted when all consumers have finished using it.
queueHeaders :: FieldTable
-- ~ (default empty);
-- Headers to use when creating this queue.

Similar to an exchange, to create a new QueueOpts, we can use newQueue and
override the fields as necessary:

newQueue
{ queueName = "emailVerification"
, queueDurable = False

}
For binding a queue to an exchange, the function to use is bindQueue:
bindQueue :: Channel -> Text -> Text -> Text -> I0 ()

The first parameter is the channel to use to declare the binding. The second
parameter is the queue name. The third parameter is the exchange name. The fourth
parameter is the routing key. The routing key is a RabbitMQ concept and is used to
route messages augmented with the key to a specific queue. For example, let’s say that

118

CHAPTER6 QUEUES

you bind a queue named “myQueue” to an exchange “myExchange” with routing key
“myRoutingKey.” When a message with routing key “myRoutingKey” is sent to the
“myExchange” exchange, the message will then be routed to “myQueue” queue.

Publishing Messages

For publishing a message to RabbitMQ), the function to use is the following:

publishMsg :: Channel -> Text -> Text -> Message -> IO (Maybe Int)
publishMsg channel exchange routingKey msg

It returns a Maybe Int, which represents the sequence number of the message. This
number is wrapped in a Maybe because this only happens if the channel is in “publisher
confirm” mode. If the channel is not in that mode, the return value will be Nothing.

In short, “publisher confirm” mode is a mode where the publisher receives a
confirmation back from the server. It’s good to be in this mode so that we can make sure
the message is indeed received by the server. To enable “publisher confirm” mode in a

channel, you can just use the following function:

confirmSelect :: Channel -> Bool -> IO ()
confirmSelect channel noblock

The second parameter, noblock, is a flag that tells whether this function should
block or not. If noblock is True, then this function will not block until the confirmation
is received. We can get the confirmation by some other means, like using the
waitForConfirms function or addConfirmationListener function.

The last parameter of publishMsg is a Message. Message has the following fields:

data Message = Message
{ msgBody :: BL.ByteString,
-- " the content of your message
msgDeliveryMode :: Maybe DeliveryMode,
msgTimestamp :: Maybe Timestamp,
-- " use in any way you like; this doesn't affect the way the message
is handled
msgID :: Maybe Text,
-- " use in any way you like; this doesn’t affect the way the message
is handled
msgType :: Maybe Text,
119

CHAPTER6 QUEUES

-- * use in any way you like; this doesn't affect the way the message
is handled msgUserID :: Maybe Text,
msgApplicationID :: Maybe Text,
msgClusterID :: Maybe Text,
msgContentType :: Maybe Text,
msgContentEncoding :: Maybe Text,
msgReplyTo :: Maybe Text,
msgPriority :: Maybe Octet,
msgCorrelationID :: Maybe Text,
msgExpiration :: Maybe Text,
msgHeaders :: Maybe FieldTable

}

There are two values for DeliveryMode: Persistent and NonPersistent. Persistent

means that the message will survive after RabbitMQ restarts, provided that the message
is sent to the queue that is marked as durable. On the other hand, a NonPersistent
message will be gone after RabbitMQ restarts.

We can create a new Message by using the newMsg function and override the fields as
necessary. Usually, you just want to override the message body:

newMsg { msgBody = "fire the missile!" }

Consuming Messages

There are two ways of consuming RabbitMQ messages: poll and push. Push-based
consumers are more efficient than the poll-based one. So it’s preferable to go for the
push-based one if possible.

For polling the message out of a queue, the function to use is getMsg. It has the
following type signature:

getMsg :: Channel -> Ack -> Text -> I0 (Maybe (Message, Envelope))

The second parameter is of the type Ack and it has two possible values: Ack and
NoAck. If Ack is passed in as the second parameter, it means we need to acknowledge
or reject the message explicitly. Failing to acknowledge or reject the message will result
in the same message being sent again in the future. If NoAck is passed in as the second
parameter, the message will be acknowledged automatically upon being consumed.

120

CHAPTER6 QUEUES

It's best to use the Ack mode and acknowledge or reject explicitly after you are done
processing the message. That way, if the application crashes during message processing,
the message will be sent again in the future.

The third parameter is the queue name to consume the message from.

Finally, it returns a Maybe of (Message, Envelope). The Message structure is the
same as we have seen in the previous section. We don’t need to care about the Envelope
structure, as we won't need to inspect it.

The second approach for consuming a message is to use the push-based consumer:

consumeMsgs :: Channel -> Text -> Ack
-> ((Message, Envelope) -> I0 ())
-> I0 ConsumerTag

consumeMsgs chan queue ack callback

The parameters are similar to getMsg. The fourth parameter is the callback that will
be invoked when we receive a message. The callback is simply an I0 action that accepts
(Message, Envelope) as its input. The return value of this function is a ConsumerTag,
which actually is just a synonym for Text. ConsumerTag is a string that is generated by
RabbitMQ that identifies a consumer uniquely.

Please be aware that the callback is executed on the same thread as the channel
thread. Every channel spawns its own thread to listen to incoming data. So it’s best to
immediately spawn a new thread for processing the message.

For acknowledging and rejecting the message, the functions to use are:

ackEnv :: Envelope -> I0 ()
rejectEnv :: Envelope -> Bool -> IO ()

Both receive Envelope as the first parameter. You can get the Envelope when
consuming a message.

The second parameter in rejectEnv is a Bool indicating whether the message is
requeued or not. If it is a True, then the message will be put into the queue again and the
consumer will consume the message again in the future.

121

CHAPTER6 QUEUES

Implementation

In this section, we will write the necessary code that integrates RabbitMQ to our
application. As we have seen previously, we will use RabbitMQ in our project for
offloading the email verification task. Upon user registration, we will send a new
message to an exchange named “auth” with a routing key named “userRegistered.”
We will have a queue named “emailVerification” that is bound to that exchange with
“userRegistered” as the routing key. With that network configuration, messages that
are published to the “auth” exchange with routing key “userRegistered” will land on the
“emailVerification” queue.

The message that we will be sending is a JSON containing email and verification
code, something like this:

{

"email": "some.email@test.com",
"verificationCode": "aisdh934bso0908vcAHis90"

Actually, we can send anything as a message in RabbitMQ, as it accepts ByteString.
However, let’s just stick to JSON as it’s a well-supported serialization format.

The messages in the “emailVerification” queue will eventually be received by our
application again. Once we receive that, we ideally send the verification email. However,
we won't be doing that in this chapter, to keep our focus on RabbitMQ. Instead, we will
store the message in an in-memory data structure that we have defined previously in
Chapter 3.

Acquiring Connection

It’s time to write some actual code. As usual, we start by importing the package in our
package.yaml file:

dependencies:
- amgp

Next, we will write code that initializes RabbitMQ integration in our project. Things
that need to be done are: acquiring the connection, then creating the network topology
(exchanges and queues), and finally initializing the consumers.

122

CHAPTER6 QUEUES

We will write such code in the Adapter.RabbitMQ.Common module. The code is
as follows:

import ClassyPrelude
import Network.AMQP

data State = State
{ statePublisherChan :: Channel
, stateConsumerChan :: Channel

}

withState :: String -> Integer -> (State -> I0 a) -> I0 a
withState connUri prefetchCount action = bracket initState destroyState
action’
where
initState = do

publisher <- openConnAndChan

consumer <- openConnAndChan

return (publisher, consumer)

openConnAndChan = do
conn <- openConnection" . fromURI $ connUri
chan <- openChannel conn
confirmSelect chan False
gos chan 0 (fromInteger prefetchCount) True
return (conn, chan)

destroyState ((conni,), (conn2,)) = do
closeConnection conni
closeConnection conn2

action' ((_, pubChan), (_, conChan)) = action (State pubChan conChan)

withState is the function to initialize the RabbitMQ state, do the action with
the state, then destroy the state. It receives three inputs. The first one is a string that
represents the URI, such as amqp://user:pass@localhost:5678/vhost. The second
parameter is the prefetch count, the maximum number of messages to be received
without confirmation. The third parameter is the action to be carried out now that we
have constructed the state.

123

CHAPTER6 QUEUES

State is composed of two Channels: one for publisher and one for consumer. If you
see the implementation in withState, you'll notice that we open two connections to
RabbitMQ. This is intentional. It’s considered a best practice to separate the connection
between publisher and consumer. RabbitMQ may throttle the data being sent per TCP
connection. This means that if you are consuming a lot of messages, there is a chance
that the publisher will be blocked.

For each connection, we will only open one channel. It’s usually recommended to
open one channel per thread. However, amgp’s Channel is thread-safe. So, we will just
open one channel.

For destroying the state, we just need to close the connections. The channels will be
closed implicitly.

Creating Network Topology and Initializing Push-Based
Consumers

After opening the connection and channel, we will need to declare exchanges, queues,
bindings, and consumers. We will start by declaring an exchange:

initExchange :: State -> Text -> I0 ()
initExchange (State pubChan _) exchangeName = do
let exchange = newExchange { exchangeName = exchangeName
, exchangeType = "topic" }
declareExchange pubChan exchange

initExchange is a function to create an exchange. Most of the time, you want the
exchange type to be “topic.” That’s why that exchange type is hard-coded here. We use
the publisher’s channel to create this exchange. Actually, it’s just an arbitrary choice. We
may as well use the consumer’s channel to create the exchange.

initQueue :: State -» Text -> Text -> Text -> I0 ()

initQueue state@(State pubChan _) queueName exchangeName routingKey = do
initExchange state exchangeName
void $ declareQueue pubChan (newQueue { queueName = queueName })
bindQueue pubChan queueName exchangeName routingKey

124

CHAPTER6 QUEUES

initQueue is a function to create a queue along with an exchange and the binding.
Most of the time, you want to send a message through an exchange with a routing key
instead of directly to a queue. This implicitly requires you to set up an exchange, queue,
and the binding. This function aims to simplify that process.

Note that declaring an exchange is an idempotent operation. Declaring an exchange
with the exact same configuration will do nothing. However, if you declare an exchange
with the same name but a different configuration, RabbitMQ will return an error.
Declaring a queue also results in this same behavior.

initConsumer :: State -> Text -> (Message -> IO Bool) -> I0 ()
initConsumer (State _ conChan) queueName handler = do
void . consumeMsgs conChan queueName Ack $ \(msg, env) -> void . fork $
do
result <- handler msg
if result then ackEnv env else rejectEnv env False

initConsumer is a function to initialize a consumer. It receives three inputs:
RabbitMQ state, queue name to consume from, and an action on the message. The
action has a type of (Message -> I0 Bool). Basically, we process the RabbitMQ
Message and return True if the message is processed successfully and False otherwise.
We acknowledge the message using ackEnv when the message processing has finished
successfully. We reject the message using rejectEnv if the message processing finished
with a failure.

We hard-coded the rejectEnv’s last parameter to False. This means that any
message being rejected will not be requeued again. In my experience, I rarely requeue
the message immediately. If I needed to retry the message processing, I would retry it in
the application.

Publishing and Consuming

We will be using JSON as the data format on the wire. In this section, we will create
publishing and consuming functions that work with JSON. Let’s add the following code
into the Adapter.RabbitMQ.Common module.

import Data.Has
import Data.Aeson

type Rabbit r m = (Has State r, MonadReader r m, MonadIO m)
125

CHAPTER6 QUEUES

publish :: (ToJSON a, Rabbit r m) => Text -> Text -> a -> m ()
publish exchange routingKey payload = do

(State chan) <- asks getter

let msg = newMsg { msgBody = encode payload }

1iftIO . void $ publishMsg chan exchange routingKey msg

We define a Rabbit r m constraint synonym. This constraint says that we can get
State from m (via Has State r,MonadReader r m)and are able to do 10 (via MonadIO m).
The purpose of creating this synonym is purely for minimize typing.

The publish function allows us to send any data to RabbitMQ, provided the data
can be serialized to JSON. This can be seen from the ToJSON a constraint in the type
signature. What this function does is to get a publisher channel from the environment,
construct the payload, and send it to RabbitMQ.

Up next, we have a function that helps with consuming RabbitMQ messages. We do
expect to receive a JSON, but there is no guarantee that we will receive a JSON all the
time. There might be some error that causes the payload to be malformed. So, we need
to handle that.

import Katip

consumeAndProcess :: (KatipContext m, FromJSON a, MonadCatch m)
=> Message -> (a -> m Bool) -> m Bool
consumeAndProcess msg handler =
case eitherDecode’ (msgBody msg) of
Left err -> withMsgAndErr msg err $ do
$(log™) ErrorS "Malformed payload. Rejecting."
return False
Right payload -> do
result <- tryAny (handler payload)
case result of
Left err -> withMsgAndErr msg (displayException err) $ do
$(logT™™) ErrorS "There was an exception when processing the msg.
Rejecting.”
return False
Right bool ->
return bool

126

CHAPTER6 QUEUES

withMsgAndErr :: (KatipContext m, ToJSON e) => Message -> e -> ma ->m a
withMsgAndErr msg err =
katipAddContext (sl "mgMsg" (show msg) <> sl "error" err)

What we do here is decoding the message’s body. If the decoding fails, we will then
log the error and return False—indicating we want to reject the message. We use the
logging functionality from Katip that we learned in Chapter 4.

Upon successful decoding, we will pass the decoded data to the handler function
that we receive from the second parameter of the function. We wrap the handler action
in a tryAny to catch any synchronous exceptions. tryAny becomes accessible for use
once we import ClassyPrelude. tryAny requires us to operate under the MonadCatch
typeclass. Since we have generalized our function and have not pinned it to the I0
monad, we add MonadCatch as a constraint for m.

If there’s a synchronous exception, we will log it and return False. Since we use
tryAny, the exception will be of the type SomeException. SomeException is basically a
catch-all exception. We want to catch any exception here to prevent our application from
crashing. displayException is a function that comes from the Exception typeclass and
is used for displaying the exception as a string. If there is no exception, then we are on a
happy path. Simply return True and the message will be acknowledged.

Repository Implementation

In the previous section, we've written some functions that are not exactly related to our
domain. In this section we will build on top of the code from the previous section to
write code that is really related to our domain.

We’ll be writing the code in the Adapter.RabbitMQ.Auth module. We'll start with the
imports.

import ClassyPrelude

import Adapter.RabbitMQ.Common

import qualified Adapter.InMemory.Auth as M
import Network.AMQP

import Katip

import Data.Aeson

import Data.Aeson.TH

import qualified Domain.Auth as D

127

CHAPTER6 QUEUES

As I have stated before, in this chapter we won’t actually be sending the email,
to keep our focus on RabbitMQ. Instead, we will store the message in an in-memory
database. We are going to reuse Adapter.InMemory.Auth. Hence we import it in the
preceding import block.

Next, we define the message payload. The payload should contain the email and the
verification code:

data EmailVerificationPayload = EmailVerificationPayload
{ emailVerificationPayloadEmail :: Text
, emailVerificationPayloadVerificationCode :: Text

}

In addition to the structure definition, we will also need to make it serializable and
deserializable to JSON. The following function is a TemplateHaskell to do that.

$(let structName = fromMaybe . lastMay . splitElem . show
$ "EmailVerificationPayload
lowercaseFirst (x:xs) = tolLower [x] <> xs
lowercaseFirst xs = xs
options = defaultOptions
{ fieldLabelModifier = lowercaseFirst . drop (length
structName)

}

in deriveJSON options "EmailVerificationPayload)

This looks daunting, but this is basically the same code block that we have seen
in the JSON section in Chapter 2. This is used to derive the FromJSON and ToJSON
implementation for EmailVerificationPayload. Ideally, we will have this as a utility
function. However, let’s stick with this for now.

The preceding function allows us to convert EmailVerificationPayload to a JSON
with the following structure:

{ "email": "abc@aaa.com", "verificationCode": "bv87sadg9" }

Now that we have defined the structure and made it serializable to JSON, it’s time to
implement the notifyEmailVerification function thatis defined in the Domain.Auth
module.

128

CHAPTER6 QUEUES

notifyEmailVerification :: (Rabbit r m)
=> D.Email -> D.VerificationCode -> m ()
notifyEmailVerification email vCode =
let payload = EmailVerificationPayload (D.rawEmail email) vCode
in publish "auth" "userRegistered" payload

The function is quite straightforward. We just build the message based on the input
parameters, and then publish it to the “auth” exchange while using “userRegistered” as
the routing key.

Next, we want to implement the consumer of this message. In the previous section,
we defined the initConsumer function. The handler that we pass in to that function
should be of the type Message -> I0 Bool. The following function is the message
handler that is supposed to a user registration event.

consumeEmailVerification :: (M.InMemory r m, KatipContext m, MonadCatch m)
=> (m Bool -> IO Bool) -> Message -> IO Bool
consumeEmailVerification runner msg =
runner $ consumeAndProcess msg handler
where
handler payload = do
case D.mkEmail (emailVerificationPayloadEmail payload) of
Left err -> withMsgAndErr msg err $ do
$(logTM) ErrorS "Email format is invalid. Rejecting.”
return False
Right email -> do
let vCode = emailVerificationPayloadVerificationCode payload
M.notifyEmailVerification email vCode
return True

The first parameter is a function that convertsm Bool to I0 Bool.mis constrained to
(M.InMemory r m, KatipContext m, MonadCatch m).KatipContext mand MonadCatch
mis there, since we use consumeAndProcess in the function body. M. InMemory r mis
there because we will simply store the message in memory for now using a function that
we have already defined in Chapter 3.

consumeAndProcess returnsm Bool, but we need the function to return I0 Bool. This
is where the runner function comes into play: to convertm Bool to I0 Bool.

129

CHAPTER6 QUEUES

In the handler inner function, what we do is to parse the email from the payload and
check whether it’s a valid email or not. If it’s not valid, we will just log the error and return
False. Otherwise, we proceed to callM.notifyEmailVerification and return True.

Finally, we just need a function to set up the necessary network topology and
listener. Let’s call this function “init”:

init :: (M.InMemory r m, KatipContext m, MonadCatch m)
=> State -> (m Bool -> IO Bool) -> IO ()
init state runner = do
initQueue state "verifyEmail" "auth" "userRegistered"
initConsumer state "verifyEmail" (consumeEmailVerification runner)

The function is quite simple. We just create a queue, which implicitly creates an

exchange as well, and initialize the consumer.

Tying Them All Up

We have finished writing the repository implementation. Now it’s time to integrate this
implementation to our application. Go to the Lib module and write the following import
lines:

+import qualified Adapter.RabbitMQ.Common as MQ
+import qualified Adapter.RabbitMQ.Auth as MQAuth

Next, we need to modify the State to include the MQ. State:

(PG.State, Redis.State, TVar M.State)
(PG.State, Redis.State, MQ.State, TVar M.State)

-type State
+type State

Since we need our application monad to be an instance of MonadCatch, we will need
to modify our monad too. Simply MonadCatch as follows:

newtype App a = App
{ unApp :: ReaderT State (KatipContextT I0) a
} deriving (Applicative, Functor, Monad, MonadReader State, MonadIO
- , KatipContext, Katip, MonadThrow)
+ , KatipContext, Katip, MonadThrow, MonadCatch)

130

CHAPTER6 QUEUES

Next, we will modify the EmailVerificationNotif instance implementation of the
App. Previously, we put the message in memory using the M.notifyEmailVerification
function. Now, we want to send it to RabbitMQ before putting it into memory. To do that,
we just need to use the MQAuth.notifyEmailVerification. So, our implementation will
be as follows:

instance EmailVerificationNotif App where
- notifyEmailVerification = M.notifyEmailVerification
+ notifyEmailVerification = MQAuth.notifyEmailVerification

Moving on, we need to modify the someFunc function to initialize the RabbitMQ
state. The changes required are to call MQ.withState and MQAuth. init, as follows:

someFunc :: I0 ()
someFunc = withKatip $ \le -> do
mState <- newTVarIO M.initialState
PG.withState pgCfg $ \pgState ->
Redis.withState redisCfg $ \redisState ->
MQ.withState mqCfg 16 $ \mgState -> do
let runner = run le (pgState, redisState, mgState, mState)
MQAuth.init mqState runner
runner action
where
mqCfg = "amqgp://guest:guest@localhost:5672/%2F"
redisCfg = "redis://localhost:6379/0"
pgCfg =
PG.Config
{ PG.configUrl = "postgresql://localhost/hauth”
, PG.configStripeCount = 2
, PG.configMaxOpenConnPerStripe = 5
, PG.configIdleConnTimeout = 10

}

We arbitrarily pick 16 as the prefetch count. Ideally you would experiment with this
value to find one that fits the application use case and the hardware it runs on.

131

CHAPTER6 QUEUES

The function is getting too complex now. Let’s just refactor a bit and extract the “state
initialization” piece to its own function named withState:

withState :: (LogEnv -> State -> I0 ()) -> I0 ()
withState action =
withKatip $ \le -> do
mState <- newTVarIO M.initialState
PG.withState pgCfg $ \pgState ->
Redis.withState redisCfg $ \redisState ->
MQ.withState mqCfg $ \mqState -> do
let state = (pgState, redisState, mqState, mState)
action le state
where
mqCfg = "amqgp://guest:guest@localhost:5672/%2F"
redisCfg = "redis://localhost:6379/0"
pgCfg = PG.Config
{ PG.configUrl = "postgresql://localhost/hauth"
, PG.configStripeCount = 2
, PG.configMaxOpenConnPerStripe = 5
, PG.configIdleConnTimeout = 10

}

main :: I0 ()
main =
withState $ \le state@(, , mqState,) -> do
let runner = run le state
MQAuth.init mqState runner
runner action

While we are at it, we also rename someFunc to main. Due to this change, we will
need to make changes in a few places. Try compiling the code and see if you can fix the
compile errors. It should be simple.

132

CHAPTER6 QUEUES

Finally, we need to modify the action function. Previously, we wrote the email
verification notification directly to an in-memory database. So, we expected that the
notification was stored immediately. Now, since we’re using RabbitMQ, the notification
is being processed on a separate thread. This means that the notification will take a
while before appearing in our in-memory database. To cater for this, we will repeatedly
poll the message, blocking until it’s available. That functionality exists in the pol1Notif
function, as you can see in the following code:

action :: App ()
action = do
randEmail <- 1iftIO $ stringRandomIO "[a-z0-9]{5}@test\\.com"
let email = either undefined id $ mkEmail randEmail
passw = either undefined id $ mkPassword "1234ABCDefgh"
auth = Auth email passw
register auth
vCode <- pollNotif email
verifyEmail vCode
Right session <- login auth
Just uld <- resolveSessionId session
Just registeredEmail <- getUser uld
print (session, uld, registeredEmail)
where
pollNotif email = do
result <- M.getNotificationsForEmail email
case result of
Nothing -> pollNotif email
Just vCode -> return vCode

Try going to the REPL and run the main function. Assuming you have Redis,
PostgreSQL, and RabbitMQ running, you should see the logs as usual. This means that
you have correctly implemented the RabbitMQ integration. Congratulations!

133

CHAPTER6 QUEUES

Summary

In this chapter, we have learned to integrate RabbitMQ to our application.

RabbitMQ is a popular queueing system. We use it primarily to offload tasks that are
not necessary to be processed immediately. By offloading such tasks, our application
should be more responsive to the user.

amqp is a Haskell package for interfacing with RabbitMQ. The library is quite low level
but is easy to use. We have learned how to open a connection and a channel, declaring
network topology, sending messages, and consuming messages. We use this knowledge
to implement email verification logic that is backed by RabbitMQ.

134

CHAPTER 7

RESTful APls

In this chapter, we are going to explore how to do web programming in Haskell. When
building web applications, it’'s common to use a web framework. Haskell also has
such frameworks. The most popular ones are scotty,' servant,? and yesod.® All those
frameworks are built on top of wai.* wai is a Haskell package that defines the types for
HTTP request and response. It has no actual implementation. The only production-
ready implementation of wai is warp.®

scotty is a minimal web framework for Haskell. “Framework” may be an
overstatement. scotty is more like a library that handles routing, parsing HTTP requests,
and building HTTP responses.

servant is another minimal web framework. It's newer than scotty. The
differentiating feature of servant is that you'll use advanced type-level programming to
define routes and handle the request. However, the downside is that compilation errors
are usually harder to understand.

yesod, unlike the others, is a fully fledged web framework.

In this book, we will use scotty as our web framework. I find that scotty is very
pleasant to work with and easy to grok.

Scotty Basics

scotty is just a thin layer on top of wai. It provides a friendlier way to do routing, parsing
HTTP requests, and building HTTP responses. In this section, we will explore each one
of them to get a better understanding of how to use them.

'www. stackage.org/1ts-10.3/package/scotty-0.11.0
>stackage.org/lts-10.3/package/servant-0.11

*www. stackage.org/1ts-10.3/package/yesod-1.4.5
‘www.stackage.org/lts-10.3/package/wai-3.2.1.1
*www.stackage.org/1ts-10.3/package/warp-3.2.13

135
© Ecky Putrady 2018

E. Putrady, Practical Web Development with Haskell, https://doi.org/10.1007/978-1-4842-3739-7_7

http://www.stackage.org/lts-10.3/package/scotty-0.11.0
http://stackage.org/lts-10.3/package/servant-0.11
http://www.stackage.org/lts-10.3/package/yesod-1.4.5
http://www.stackage.org/lts-10.3/package/wai-3.2.1.1
http://www.stackage.org/lts-10.3/package/warp-3.2.13

CHAPTER 7 RESTFUL APIS

Hello, Scotty

Let’s start by writing a simple hello world application with scotty. First, list scotty as
our dependency in a package.yaml file:

dependencies:
- scotty

We will write our hello world code in a module named Adapter.HTTP.Main. The
code is as follows:

module Adapter.HTTP.Main wherxe

import ClassyPrelude hiding (delete)
import Web.Scotty.Trans

main :: I0 ()
main =
scottyT 3000 id routes

routes :: (MonadIO m) => ScottyT LText m ()
routes =
get "/hello" $ text "Hello!"

In the preceding code, we define a GET route, /hello, that will return a text Hello!.
Before explaining in more detail about the code, let’s first try running that to make sure it
works. Open the REPL and type the following snippet:

> :1 Adapter.HTTP.Main -- load the file
> main
Setting phasers to stun... (port 3000) (ctrl-c to quit)

Open http://localhost:3000/hello in your browser and you should see “Hello!”
being printed on the screen.

Now let’s dive a bit into the code. First, we look into scottyT. scottyT is the function
that “kicks” the scotty application to run. The type signature for that function is:

scottyT :: (Monad m, MonadIO n)
=> Port
-> (m Response -> IO Response)
-> ScottyT e m ()

->n ()

136

CHAPTER 7 RESTFUL APIS

The first parameter, Port, is just a synonym for Int. It specifies to which port our
application listens. In our case, we set it to 3000.

The second parameter is a function to transform the monad m we are using in our
Scotty application into I0. In our case, our monad m is I0. It means we are asked to
supply a function I0 Response -> IO Response. Since we don’t do anything with it, we
supply id as the function. Recall that id is the “identity” function. It returns the input as
the output.

The third parameter is the Scotty application to be run. We define our Scotty
application in the routes function. We will look into that function in more detail in the
next section.

Routing

Defining routes in Scotty is straightforward. I'll write some code first, and then explain
what they are.

routes :: (MonadIO m) => ScottyT LText m ()
routes = do

get "/" $ text "home"

get "/hello/:name" $ do

name <- param ":name"
text $ "Hello, " <> name

post "/users" $ text "adding user"

put "/users/:id" $ text "updating user"

patch "/users/:id" $ text "partially updating users”

delete "/users/:id" $ text "deleting user"

matchAny "/admin" $ text "I don't care about your HTTP verb"
options (regex ".*") $ text "CORS usually use this"

notFound $ text "404"

137

CHAPTER 7 RESTFUL APIS

In the preceding code, the pieces before $ are the routes definition, while the pieces
after $ are “action” that will be carried out when the route is requested.

The routes are processed from top to bottom. The first route that matches the request
will have its action executed. Once a route is a match, the rule matching logic will not be
carried out for the subsequent routes.

As you can see, Scotty supports common HTTP verbs: GET, POST, PUT, PATCH,
DELETE, and OPTIONS.

matchAny will match any verb. In the preceding code, the action in /admin path will
be executed regardless of the verb in the request.

notFound actually matches any verb and any path. So, make sure to put it at the very
end of your routes definition. You define this route to handle requests that don’t match
any route.

The first parameter of those functions (get, put, etc.) is path definition. There are
multiple ways to define the path.

The first one is with String, like "/users". By using this approach, you are looking
for an exact path match.

The second one is also with String, but you supply a path parameter, like
"/users/:id". This definition matches /users/ecky or /users/jack. The :id part
is a parameter that you can later get in the action. We will see more about this in the
next section. You may also define multiple path parameters, like " /users/:userId/
books/:bookId".

The third one is using regex, like regex "~/page.*". That regex matches anything
that starts with /page. You may also capture the path using standard regex capture
syntax, like regex "*/users/(\\d+)/books/(\\d+)$". We will see more about capturing
path parameters in the next section.

Request Parameters

There are multiple ways to get a user’s input from the HTTP request. The first one is
to read parameters from the path. The second one is by parsing the query parameters.
The third one is to read from HTTP headers. Finally, we can also parse the HTTP
request body.

138

CHAPTER 7 RESTFUL APIS

As we have seen in the previous section, we can define parameters in the path by
using String and regex. Let’s study the following code:

routes :: (MonadIO m) => ScottyT LText m ()
routes = do
get "/users/:userId/books/:bookId" $ do
userId <- param "userId"
bookId <- param "bookId"
text $ userId <> " - " <> bookId

get (regex ""/users/(.+)/investments/(.+)$") $ do
fullPath <- param "0"
userId <- param "1"
investmentId <- param "2"
text $ fullPath <> " : " <> userId <> " - " <> investmentId

To get the path parameter, we use the param function with the parameter name. If we
define the path using String, we can use the exact parameter name from the path as the
parameter in the param function. However, if we use regex, we need to use their position
as the name.

For parsing query parameters, the function to use is also param. param reads from
multiple places in the request. It first looks at the path and sees if there is any matching
parameter. If it’s not found, then it looks into the HTTP request body. If the request
body is in URL-encoded format and the parameter being searched appears in the body,
then it will return it. If the parameter does not exist there, then it will look into the query
parameters. Finally, if it’s still not found, it will throw a ScottyError. We will see how to
handle exceptions in a later section.

param has the following type signature:

param :: (Parsable a, ScottyError e, Monad m) => Text -> ActionT e m a

ActionT e m aisamonad for a single route. From the preceding type signature, we
can infer that param returns any type that is an instance of Parsable a. scotty comes
with predefined Parsable instances, such as instances for Bool, Text, or Int. If you need,

you can also create a new instance for your type.

139

CHAPTER 7 RESTFUL APIS

If param found the parameter but the type doesn’t match, this route is simply
skipped. For example, let’s say we have the following route:

routes =
get "/add/:p1/:p2" $ do
pl <- param "p1"
p2 <- param "p2"
let sum = p1 + p2 :: Int
text "Finish adding!"

If the HTTP request is GET /add/not/number, the action defined in the preceding
code will not be executed. To get the parameter in the HTTP request header, the
functions to use are:

header :: (ScottyError e, Monad m) => LText -> ActionT e m (Maybe LText)
headers :: (ScottyError e, Monad m) => ActionT e m [(LText, LText)]

The difference between those two functions is that the first one gets the header value
with the given parameter, while the second one gets all headers. As you can see, the first
one returns a Maybe, indicating that the value might not be found.

To get the raw HTTP request body, the function to use is as follows:

body :: (ScottyError e, MonadIO m) => ActionT e m LByteString

scotty provides a utility function to parse JSON from the HTTP request body with
the following function:

jsonData :: (FromJSON a, ScottyError e, MonadIO m) => ActionT e m a

The FromJSON a constraint says that this function will decode the raw HTTP request
body to a value that is an instance of the FromJSON typeclass. In a case where the HTTP
request body can’t be converted to the target type, this function will throw an exception.
You will see how to handle the exception in the next section.

Handling Exceptions

ScottyError is a typeclass for exceptions that can be thrown from within the route
action. Actually, this is not a technically correct term. ScottyError has no relation
at all to Haskell’s exception. ScottyError is more like a short-circuit mechanism for

140

CHAPTER 7 RESTFUL APIS

scotty. However, the way it is designed feels like an exception mechanism, as we
will see shortly. For this reason, we will just call this an “exception” although it’s not
technically correct.

For throwing exceptions, we can use the raise function that has the following
type signature:

raise :: (ScottyError e, Monad m) => e -> ActionT e m a

One instance of ScottyError that by default comes from scotty is LText. It means
that we can just pass in LText to the raise function.

If raise is executed in a route, the code following after it will not be executed.
For example, let’s study the following code:

routes :: (MonadIO m) => ScottyT LText m ()
routes =
get "/users" $ do
raise "Something failed!"
text "will never be executed"

If you run the code and call GET /users endpoint, you will encounter an internal
server error. That is because of the raise function there.

We can recover from ScottyErrors using rescue. rescue has the following type
signature:

rescue :: (ScottyError e, Monad m)
=> ActionT e m a -> (e -> ActionT e m a) -> ActionT e m a

An example usage of rescue would be like the following:

routes :: (MonadIO m) => ScottyT LText m ()
routes =
get "/users" $
raise "Something failed!" “rescue” _ -> text "just kidding!"

If we run the preceding program, the server will respond with “just kidding!”

141

CHAPTER 7 RESTFUL APIS

One common use case for rescue is if you want to have a default value for query
parameters. Query parameters, by convention, are optional. However, as we have seen, the
param function will throw an exception if the parameter can’t be found within the request.
By using rescue after param, we can provide a default value for such cases. For example:

routes :: (MonadIO m) => ScottyT LText m ()
routes =
get "/hello" $ do
name <- param "name" “rescue _ -> return "anonymous"
text $ "Hello, " <> name

If we run the preceding program and perform a request to GET /hello, the server
will respond with Hello, anonymous. On the other hand, if we perform a request to GET
/hello?name=John, the server will respond with Hello, John.

All uncaught exceptions are by default converted to a 500 (internal server error)
response with an error string. We may override this behavior using the defaultHandler
function. For example:

routes :: (MonadIO m) => ScottyT LText m ()
routes = do
get "/users" $
raise "Something failed!"

defaultHandler $ _ ->
text "Something went wrong. We are looking into it!"

Building Responses

There are multiple parts of the HTTP response that we can build: status code, headers,
and body.
For setting status code, the function to use is status:

status :: Monad m => Status -> ActionT e m ()

The first parameter is of the type Status. This type comes from the http-types®
package. If you are going to use this function, then you need to list http-types in
our package.yaml and import the Network .HTTP.Types.Status module. There are

https://www.stackage.org/lts-10.3/package/http-types-0.9.1
142

https://www.stackage.org/lts-10.3/package/http-types-0.9.1

CHAPTER 7 RESTFUL APIS

predefined status codes available from that module, for example, 0k200, accepted202,
and internalServerError500.
The function to add response headers is addHeader:

addHeader :: Monad m => LText -> LText -> ActionT e m ()
addHeader key value

For writing raw LByteString to the HTTP response body, the function to use is raw:
raw :: Monad m => LByteString -> ActionT e m ()

In practice, actually, you will rarely use raw. You usually want to use one or more of
the following functions:

text :: (ScottyError e, Monad m) => LText -> ActionT e m ()
html :: (ScottyError e, Monad m) => LText -> ActionT e m ()
json :: (ToJSON a, ScottyError e, Monad m) => a -> ActionT e m ()

In addition to writing the given value to the HTTP response body, the preceding
functions also set the correct HTTP header. For example, json adds Content-Type:
application/json; charset=utf-8 to the header.

An example of how one would set HTTP response would be:

routes :: (MonadIO m) => ScottyT LText m ()
routes =
get "/hello" $ do
status unauthorized401

addHeader "serverName" "gandalfService"
text "you shall not pass!"

Middleware

When you are building a web application, there might be some shared functionalities
that you want to run on all HTTP requests—for example, intercepting a request for a
static resource, logging, or gzipping response.

Middleware is a way to organize such shared behavior. Middleware runs before
the HTTP request enters your application and after the response is produced by your
application. Figure 7-1 illustrates this relationship.

There are several middlewares already available, for example:

143

CHAPTER 7 RESTFUL APIS

Request Response
Application

Middleware 3

Middleware 2

Middleware 1

Figure 7-1. Relationship between middleware and application

o Gzip”: allows response to be GZipped depending on client’s sent
headers

e VHost® routes requests to a configured wai application
o HttpAuth®: HTTP Basic Authentication
o Static'%: serves static files

o RequestlLogger'':logs HTTP request

“www. stackage.org/haddock/1ts-10.3/wai-extra-3.0.21.0/Network-Wai-Middleware-Gzip.html
®www . stackage.org/haddock/1ts-10.3/wai-extra-3.0.21.0/Network-Wai-Middleware-Vhost.html

“www.stackage.org/haddock/1ts-10.3/wai-extra-3.0.21.0/Network-Wai-Middleware-
HttpAuth.html

"www. stackage.org/package/wai-middleware-static
"waw. stackage.org/haddock/1ts-10.4/wai-extra-3.0.22.0/Network-Wai-Middleware-
RequestLogger.html

144

http://www.stackage.org/haddock/lts-10.3/wai-extra-3.0.21.0/Network-Wai-Middleware-Gzip.html
http://www.stackage.org/haddock/lts-10.3/wai-extra-3.0.21.0/Network-Wai-Middleware-Vhost.html
http://www.stackage.org/haddock/lts-10.3/wai-extra-3.0.21.0/Network-Wai-Middleware-HttpAuth.html
http://www.stackage.org/haddock/lts-10.3/wai-extra-3.0.21.0/Network-Wai-Middleware-HttpAuth.html
http://www.stackage.org/package/wai-middleware-static
http://www.stackage.org/haddock/lts-10.4/wai-extra-3.0.22.0/Network-Wai-Middleware-RequestLogger.html
http://www.stackage.org/haddock/lts-10.4/wai-extra-3.0.22.0/Network-Wai-Middleware-RequestLogger.html

CHAPTER 7 RESTFUL APIS

Ifyou look into the documentation of the preceding, you will notice that each of
them has a function that outputs a Middleware type. Once we have this Middleware type,
we can use scotty’s middleware function to enable the middleware. The following code
snippet shows how the function is used:

routes :: (MonadIO m) => ScottyT LText m ()
routes = do
-- gzip
middleware $ gzip (def { gzipFiles = GzipCompress })
-- request logging
middleware logStdout
-- serve static files
middleware static

get "/hello" $
text "Hello!™

The middleware that is first declared is the first one that is executed before entering
the application and the last one to be executed after the response is produced by the
application. In other words, the first declared middleware is the outermost middleware,
as shown in Figure 7-1.

Cookies

A cookie is a piece of data that the server sends to the browser and the browser will
resend this data back to the server on subsequent requests. It is a common mechanism
for maintaining a user’s state.

Let’s see an example. Say that a browser sends the following HTTP request:

GET /index.html HTTP/1.1
Host: www.test.com

The server responds with two Set-Cookie headers:

HTTP/1.1 200 OK
Set-Cookie: keyl=vali
Set-Cookie: sessionId=123abc

145

CHAPTER 7 RESTFUL APIS

The browser will store these cookies somehow and will resend them on subsequent
requests. For example, let’s say that the browser sends another HTTP request to a
different path:

GET /about.html HTTP/1.1
Host: www.test.com
Cookie: keyl=vall; sessionId=123abc

Notice that the cookies that the server sent earlier are being resent back in a header
with key Cookie.

There’s more to Set-Cookie than just key and values. There are other settings such as
HttpOnly and Expires that allow you to control the behavior of the cookie. You may look
into the documentation provided by Mozilla'? for the list of available parameters.

Since Set-Cookie and Cookie follow a certain format, there is a Haskell package that
allows us to work with the format easily. The package is neatly called cookie."

For creating a Set-Cookie value, we can use the defaultSetCookie function and

override some fields as necessary. For example:

defaultSetCookie
{ setCookieName = "cookieName"
, setCookieValue = "cookieValue"
, setCookiePath = Just "/"
, setCookieMaxAge = Just 7200
, setCookieHttpOnly = True
, setCookieSameSite = Just sameSitelax

defaultSetCookie produces SetCookie type. To convert this type to the actual
Set-Cookie format, the function to use is renderSetCookie. renderSetCookie receives
SetCookie and produces Builder. Builder comes from the blaze-builder' package.
We won'’t dive deep into the details of this library, as we won’t use it much. We just need
to know that this package has a toLazyByteString function that allows us to convert
Builder to LByteString.

?https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
Bwww. stackage.org/1ts-10.3/package/cookie-0.4.3
“www.stackage.org/1ts-10.3/package/blaze-builder-0.4.0.2

146

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
http://www.stackage.org/lts-10.3/package/cookie-0.4.3
http://www.stackage.org/lts-10.3/package/blaze-builder-0.4.0.2

CHAPTER 7 RESTFUL APIS

scotty’s addHeader function expects an LText. So we need to convert this
LByteString to LText. The function to use is decodeUtf8.
Allin all, the following code snippet shows how one would send cookies in scotty:

setCookie :: (ScottyError e, Monad m) => SetCookie -> ActionT e m ()
setCookie =
addHeader "Set-Cookie" . decodeUtf8 . tolazyByteString . renderSetCookie

Moving on to parsing cookies that are sent by the browser: as you can see in the
preceding code, cookies are sent via HTTP headers named Cookie. So, we first need to get
the whole value from the header using scotty’s header function. header returns an LText.
However, the function to parse the cookies, parseCookies, expects a ByteString. So, we
need to convert this LText to ByteString. The function to use is encodeUtf8 . toStrict.

parseCookies returns Cookies type, which is a synonym for [(ByteString,
ByteString)]. It’s a list of key-value pairs.

The following code snippet shows how one would get a cookie value with a specific key:

getCookie :: (ScottyError e, Monad m) => Text -> ActionT e m (Maybe Text)
getCookie key = do
mCookieStr <- header "Cookie"
return $ do
cookie <- parseCookies . encodeUtf8 . toStrict <$> mCookieStr
let bsKey = encodeUtf8 key
val <- lookup bsKey cookie
return $ decodeUtf8 val

Input Validation

Validating input is always necessary when developing a web application. We can’t just
trust the user input. The user might send a payload that doesn’t conform to the structure
that we expect or send a string where it should have been an integer.

For handling input validation, the package to use is digestive-functors.' This
package makes validating and reporting errors easier. For example, in JSON, you'll get
the error message in the same fields as the input.

Bhttps://www.stackage.org/package/digestive-functors

147

https://www.stackage.org/package/digestive-functors

CHAPTER 7 RESTFUL APIS

There are two important types to know in this package: Form v m aand View v. Form
is used for doing the validation, while View is used for error reporting.

The vin Form v m ais used to indicate the error type. The mis the monad we are
operating with. The a is the result of the validation. For example, Form Text I0 Email
means this form operates under the I0 monad, outputs Email on successful validation,
and outputs Text as the error message.

Let’s use our own Auth type for an example. Recall that Auth has the following
structure:

newtype Email = Email { rawEmail :: Text }
newtype Password = Password { rawPassword :: Text }
data Auth = Auth

{ authEmail :: Email
, authPassword :: Password

}

We also have a special validation function for email and password: mkEmail and
mkPassword:

mkEmail :: Text -> Either [ErrMsg] Email
mkPassword :: Text -> Either [ErrMsg] Password

We can create the Form as follows:

import Text.Digestive.Form ((.:))
import qualified Text.Digestive.Form as DF

authForm :: (Monad m) => DF.Form [Text] m Auth
authForm =
Auth <$> "email" .: emailForm
<*> "password" .: passwordForm
where
emailForm = DF.validate (toResult . mkEmail) (DF.text Nothing)
passwordForm = DF.validate (toResult . mkPassword) (DF.text Nothing)

toResult :: Either e a -> DF.Result e a
toResult = either DF.Error DF.Success

148

CHAPTER 7 RESTFUL APIS

((.:)) isused to label a part of the form. Later, such a label is used for parsing the
correct field from the input and error reporting. For example, if the input is a URL-encoded
string, the labels correspond to the key value in the string, for example, email=abc@def.
com@password=abcDEF123. On the other hand, if your input is JSON, the labels will match:

{

"email": "abc@def.com"
"password": "abcDEF123"

}
DF.Validate has the following type:

DF.validate :: (Monad m, Monoid v)
=> (a -> DF.Result v b) -> DF.Form v m a -> DF.Form v m b

DF.Result v a = DF.Error v | DF.Success a

The first parameter is a function that is used to validate the input. It returns DF.
Result, a type that is similar to Either. Our mkEmail and mkPassword function returns
an Either. So, we need to convert that to DF.Result. We created a small function named
toResult to do this conversion.

In the preceding example, we use DF.text Nothing as the second parameter of the
DF.validate function. That particular part means that we are getting a Text from the
input and there is no default value. There are other functions that we can use to read
from the input, for example, DF .bool and DF.stringRead. Much more can be found in
the official documentation.

Now that we have defined a Form, we need to run it against our input. For JSON
input, we would need to include the digestive-functors-aeson'® package. This
package provides two functions:

digestJSON :: Monad m
=> Form v m a
-- " The form to evaluate.
-> Value
-- * The JSON document to use for validation.

->m (View v, Maybe a)

jsonErrors :: ToJSON v => View v -> Value

https://www.stackage.org/package/digestive-functors-aeson

149

https://www.stackage.org/package/digestive-functors-aeson

CHAPTER 7 RESTFUL APIS

digestISON returns (View v, Maybe a).If the form evaluation is successful, the
Maybe will be a Just. Otherwise, it will be a Nothing. View will always be available
regardless of the form evaluation result. View contains the error messages as well as the
actual input. Typically, you will handle the result of form evaluation as follows:

evaluateFormAndHandle someJSON = do
result <- digestJSON authForm someJSON
case result of
(_, Just val) -> -- handle success
(v,) -> -- handle failure

jsonErrors is a small function to convert View to Value. It will format the errors so
that it corresponds to the input—for example, if you give an input like this:

{ "email": "email", "password": "notAPassword" }

Then jsonErrors will output the following assuming the error type is a list of Text:

{

"email": ["your defined error message"],
"password": ["your defined error message"]

}

In this section, we only saw briefly how digestive-functors is used to validate JSON
input. In the later chapter, we will see how digestive-functor is used to handle HTML
forms.

Implementing RESTful API

Our application has four main functionalities: registration, email verification, login, and
getting the user details. In this section, we will implement RESTful APIs so that those
functionalities can be invoked via HTTP.

150

Overview
Let’s first define the APIs:

Registration:
Request:
POST /api/auth/register
{
"email": "abc@def.com",
"password": "abcDEF123"

}

Response:

Wrong email or password format:

400

{
"email": "errmsg",
"password": "errmsg"

}

Email taken:
400
"EmailTaken"

Success:
200

Email verification:
Request:
POST /api/auth/verifyEmail
"verificationCode"

Response:
Invalid input:
400
"required"

CHAPTER 7

RESTFUL APIS

151

CHAPTER 7 RESTFUL APIS

Invalid code:
400
"InvalidCode"

Success:
200

Login:
Request:
POST /api/auth/login
{
"email": "abc@def.com",
"password": "abcDEF123"

}

Response:
Invalid input:
400
{
"email": "errmsg",
"password": "errmsg"

}

Invalid auth:
400
"InvalidAuth"

Email not yet verified:
400
"EmailNotVerified"

Success:
200

Get User:
Request:
GET /api/users

152

CHAPTER 7 RESTFUL APIS

Response:
Not authenticated:
401
"AuthRequired"

Succes:
200
"abc@def"

We also want to add a gzip compression on every request to improve performance.
We start by adding the necessary dependencies in package.yaml:
dependencies:

— http-types

— scotty

— cookie

— wai

— wai-extra

— blaze-builder

— digestive-functors

— digestive-functors-aeson

Also, add extra dependencies in stack.yaml if necessary. For example:
extra-deps:

— digestive-functors-0.8.3.0
— digestive-functors-aeson-1.1.22
For implementing the HTTP-related code, we will split the code into three modules:

1. Adapter.HTTP.API.Auth: Handle HTTP routings for auth related
functionalities

2. Adapter.HTTP.Common: Common functionalities that may be
shared throughout other HTTP routes, for example, setting and
reading cookies

3. Adapter.HTTP.Main: Compose the routes and start the HTTP server

153

CHAPTER 7 RESTFUL APIS

Adapter .HTTP.Common Implementation

We will begin our implementation from Adapter .HTTP.Common module with the function
to parse and validate JSON input:

module Adapter.HTTP.Common where

import ClassyPrelude

import Web.Scotty.Trans

import qualified Text.Digestive.Form as DF
import qualified Text.Digestive.Types as DF
import qualified Text.Digestive.Aeson as DF
import Data.Aeson hiding (json)

import Network.HTTP.Types.Status

parseAndValidateJSON :: (ScottyError e, MonadIO m, ToJSON v)
=> DF.Form v m a -> ActionT e m a
parseAndValidateJSON form = do
val <- jsonData “rescue” (_ -> return Null)
validationResult <- lift $ DF.digestJSON form val
case validationResult of
(v, Nothing) -> do
status status400
json $ DF.jsonErrors v
finish
(_, Just result) -»
return result

The main use of the parseAndValidate function is to parse JSON from the
HTTP request body and run the form. If the validation results in an error, we want to
immediately respond with 400, indicating a bad request, and put the error messages in
the HTTP response body.

jsonData is a function that comes from scotty. It’s the function that parses the HTTP
body to JSON. The function may throw an error in the case of malformed JSON. In this
case, we want to recover the error and just return a Null JSON value.

DF.digestJSON comes from Text.Digestive.Aeson and is used to run the given
form against the parsed JSON value.

154

CHAPTER 7 RESTFUL APIS

Next, we have a small function that is related to form: toResult. It's used to convert
Either to DF.Result thatis used by digestive-functors for form validation.

toResult :: Either e a -> DF.Result e a
toResult = either DF.Error DF.Success

We have seen the following functions in the previous section. These functions are
used to manage cookies:

import Blaze.ByteString.Builder (tolLazyByteString)
import Web.Cookie

setCookie :: (ScottyError e, Monad m) => SetCookie -> ActionT e m ()
setCookie =
setHeader "Set-Cookie" . decodeUtf8 . tolazyByteString . renderSetCookie

getCookie :: (ScottyError e, Monad m) => Text -> ActionT e m (Maybe Text)
getCookie key = do
mCookieStr <- header "Cookie"
return $ do
cookie <- parseCookies . encodeUtf8 . toStrict <$> mCookieStr
let bsKey = encodeUtf8 key
val <- lookup bsKey cookie
return $ decodeUtf8 val

In our application, we use the cookies for session management. So, we add the
following functions:

import Domain.Auth
import Data.Time.Lens

setSessionIdInCookie :: (MonadIO m, ScottyError e) => SessionId ->
ActionT e m ()
setSessionIdInCookie sId = do
curTime <- 1liftIO getCurrentTime
setCookie $ def { setCookieName = "sId"
, setCookiePath = Just "/"
, setCookieValue = encodeUtf8 sId
, setCookieExpires = Just $ modL month (+ 1) curTime

155

CHAPTER 7 RESTFUL APIS

, setCookieHttpOnly = True
, setCookieSecure = False
, setCookieSameSite = Just sameSitelax

}

getCurrentUserId :: (SessionRepo m, ScottyError e) => ActionT e m
(Maybe UserId)
getCurrentUserId = do
maySessionld <- getCookie "sId"
case maySessionld of
Nothing -> return Nothing
Just sId -> lift $ resolveSessionId sId

reqCurrentUserId :: (SessionRepo m, ScottyError e) => ActionT e m UserId
reqCurrentUserId = do
mayUserId <- getCurrentUserId
case mayUserld of
Nothing -> do
status status401
json ("AuthRequired" :: Text)
finish
Just userId ->
return userId

setSessionIdInCookie is used to set the cookie that is going to be sent to the client
with relevant details. As you can see, we put in the SessionId as the cookie value. We
also set the expiry to be one month from now.

getCurrentUserId is used to infer the current UserId from the HTTP request. We
first get the relevant cookie that contains SessionId information. Once we have this
Sessionld, we use the resolveSessionId function from the Domain.Auth module to get
the current UserId. Since the request might not contain Sessionld, the return value of
that function is a Maybe.

reqCurrentUserId is similar to getCurrentUserId. The difference is that we just
respond with 401 and finish processing the request. We use this to guard the endpoint
that requires the user to be authenticated.

156

CHAPTER 7 RESTFUL APIS

Adapter .HTTP.API.Auth Implementation

We now move to the implementation of Adapter .HTTP.API.Auth. This module is
responsible for interpreting an HTTP request to our domain logic and vice versa.

module Adapter.HTTP.API.Auth where

import ClassyPrelude

import Web.Scotty.Trans

import Domain.Auth

import qualified Text.Digestive.Form as DF
import Text.Digestive.Form ((.:))

import Adapter.HTTP.Common

import Network.HTTP.Types.Status

import Data.Aeson hiding (json, (.:))
import Katip

routes :: (ScottyError e, MonadIO m, KatipContext m, AuthRepo m
, EmailVerificationNotif m, SessionRepo m)
=> ScottyT e m ()
routes = do
-- register
post "/api/auth/register" undefined

-- verify email
post "/api/auth/verifyEmail" undefined

-- login
post "/api/auth/login" undefined

-- get user
get "/api/users" undefined

In the preceding code snippet, we imported the necessary modules and defined the
routes in a single function. The long list of type constraints on routes is necessary for our
implementation later.

157

CHAPTER 7 RESTFUL APIS

Let’s implement the “register” route now. Update the “register” route within the
routes function to the following:

post "/api/auth/register" $ do
input <- parseAndValidateJSON authForm
domainResult <- lift $ register input
case domainResult of
Left RegistrationErrorEmailTaken -> do
status status400
json ("EmailTaken" :: Text)
Right _ ->
return ()

We use the parseAndValidateJSON function that we have defined in the Adapter.
HTTP.Common module. The form that we are using is authForm. We will see the details
of that form later. Remember that parseAndValidateJSON will not continue processing
if the input does not pass form validation. If the input is valid, we store it in a binding
named input. The input is then used as the input for the register function. The
register function comes from the Domain.Auth module. The result of that function is an
Either. We pattern match on it to see if the process returns any error. If it does, we then
just translate it to HTTP response 400 and the error message. If it is a success, then we
don’t need to do anything, as scotty returns 200 by default.
authFormis defined as follows:

authForm :: (Monad m) => DF.Form [Text] m Auth
authForm =
Auth <$> "email" .: emailForm
<*> "password" .: passwordForm
where
emailForm = DF.validate (toResult . mkEmail) (DF.text Nothing)
passwordForm = DF.validate (toResult . mkPassword) (DF.text Nothing)

This form definition is meant to parse JSON with the following structure:

{ "email": "the email", "password": "the password" }

158

CHAPTER 7

Next, we implement the route to handle email verification. Update the
corresponding route within the routes function to the following:

post "/api/auth/verifyEmail" $ do
input <- parseAndValidate]SON verifyEmailForm
domainResult <- 1ift $ verifyEmail input
case domainResult of
Left EmailVerificationErrorInvalidCode -> do
status status400
json ("InvalidCode" :: Text)
Right _ ->
return ()

The preceding logic is not much different from the registration handler.
verifyEmailFormis defined as follows:

verifyEmailForm :: (Monad m) => DF.Form [Text] m VerificationCode

verifyEmailForm = DF.text Nothing

This form is meant to parse JSON with the following structure:
"verification code"

Let’s move on to the login handler. Update the code to the following:

post "/api/auth/login" $ do
input <- parseAndValidateJSON authForm
domainResult <- lift $ login input
case domainResult of
Left LoginErrorInvalidAuth -> do
status status400
json ("InvalidAuth" :: Text)
Left LoginErrorEmailNotVerified -> do
status status400
json ("EmailNotVerified" :: Text)
Right sId -> do
setSessionIdInCookie sId
return ()

RESTFUL APIS

159

CHAPTER 7 RESTFUL APIS

In the preceding code snippet, we reuse authForm because the input structure for
registration and login is the same. The logic is more or less the same; however, notice
that there is a call to setSessionIdInCookie. Since this is a login, we send the SessionId
in the cookie so that the same client can be authenticated on the subsequent calls.

Finally, we move on to the last route to implement: getting the user details. Like
before, please update the code to the following:

get "/api/users" $ do
userld <- reqCurrentUserId
mayEmail <- lift $ getUser userId
case mayEmail of
Nothing ->
raise $ stringError "Should not happen: SessionId map to invalid UserId"
Just email ->
json $ rawEmail email

We use reqCurrentUserId because the user needs to be authenticated here. If the
user is not authenticated, then we will show the HTTP 401 response. The UserId that
we got from the HTTP request is used in the getUser function. The function returns a
Maybe, which means we need to pattern match it. The Nothing case should not happen
in practice, since all valid users in our application must have email. So, if it is triggered,
there is something wrong with our application code. In that case, we just raise an error.
scotty will handle this error by responding with HTTP status 500. However, as you
will see later, we will override scotty’s default behavior so that the error details are not
exposed to the client.

Adapter .HTTP.Main Implementation

The Adapter .HTTP.Main module is responsible for defining the “higher-level” routes as
well as running the actual server. The implementation would be as follows:

import Domain.Auth import ClassyPrelude

import Web.Scotty.Trans

import Network.HTTP.Types.Status

import qualified Adapter.HTTP.API.Auth as AuthAPI
import Adapter.HTTP.Common

160

CHAPTER 7 RESTFUL APIS

import Katip
import Network.Wai
import Network.Wai.Middleware.Gzip

main :: (MonadIO m, KatipContext m, AuthRepo m
, EmailVerificationNotif m, SessionRepo m)
=> Int -> (m Response -> IO Response) -> I0 ()
main port runner =
scottyT port runner routes

routes :: (MonadIO m, KatipContext m, AuthRepo m
, EmailVerificationNotif m, SessionRepo m)
> ScottyT LText m ()
do
middleware $ gzip $ def { gzipFiles = GzipCompress }

routes

AuthAPI.routes

defaultHandler $ \e -> do
1lift $ $(logT™) ErrorS $ "Unhandled error: " <> ls (showError e)
status status500
json ("InternalServerError" :: Text)

In the routes function, we add in gzip middleware. This middleware allows any
response that is sent to the client to be compressed with Gzip, provided that the client
sends a particular header.

middleware is a function that comes from scotty that accepts Middleware type.
The gzip function comes from Network.Wai.Middleware.Gzip. You may refer to the
documentation for more details.

After defining middlewares, we put in the AuthAPI.routes that we have just written.

Finally, we define defaultHandler that will catch any uncaught exceptions. In this
function, we will just log it with the level set to ErrorS. If this is ever logged, then there’s
something wrong in our application and we need to look into that. After logging, we just
send a 500 with abody of { "error": "InternalServerError" }.

161

CHAPTER 7 RESTFUL APIS

Modification in Lib Module

Alright, we're almost finished. The final thing to do is to kick-start our server during
application initialization. For this, we need to go to the Lib module.

We need to import the module that we have just written in the previous section. Add
the following line in the import sections of the Lib module:

+import qualified Adapter.HTTP.Main as HTTP

Then, we need to modify the withState function to initialize HTTP port. The code
will be as below.

-withState :: (LogEnv -> State -> I0 ()) -> I0 ()
+withState :: (Int -> LogEnv -> State -> I0 ()) -> I0 ()
withState action =
withKatip $ \le -> do
mState <- newTVarIO M.initialState
PG.withState pgCfg $ \pgState ->
Redis.withState redisCfg $ \redisState ->
MQ.withState mqCfg 16 $ \mgState -> do
let state = (pgState, redisState, mqState, mState)
- action le state
+ action port le state
where
mqCfg = "amqgp://guest:guest@localhost:5672/%2F"
redisCfg = "redis://localhost:6379/0"
pgCfg =
PG.Config
{ PG.configUrl = "postgresql://localhost/hauth"
, PG.configStripeCount = 2
, PG.configMaxOpenConnPerStripe = 5
, PG.configIdleConnTimeout = 10

}

+ port = 3000

162

CHAPTER 7 RESTFUL APIS
main function also needs to be modified to be as follows:

main :: I0 ()

main =

- withState $ \le state@(_, _, mqState,) -> do

+ withState $ \port le state@(, , mqState,) -> do
let runner = run le state
MQAuth.init mqState runner

- runner action

+ HTTP.main port runner

We replace runner actionwith HTTP.main port runner. We no longer need the
action function. You may remove it if you wish. HTTP.main internally calls scottyT.
scottyT blocks forever. It makes sense, since it’s running a web server to handle any
requests. So, this function will also block.

Running the Application

We have finished writing the necessary code for opening our application to be accessible
via RESTful API. It's now time to test drive it. Go to the REPL and run the main function in
the Lib module. You will see that the server runs on port 3000 and it blocks forever. You
may use a REST client like Insomnia'” to send an HTTP request to the server. If you have,
you should see that the server behaves as expected.

Congratulations! We have successfully implemented a RESTful API for our application!

Summary

In this chapter, we have built RESTful APIs for our application. We started by exploring
the ecosystem of web development in Haskell. Among many web development
frameworks and packages, we chose to develop our RESTful APIs using scotty due to
its simplicity.

We've looked into the basics of scotty, such as how to define routes, parsing an
HTTP request, building HTTP response, and handling exceptions. scotty is pretty
minimal regarding functionality.

https://insomnia.rest/

163

https://insomnia.rest

CHAPTER 7 RESTFUL APIS

It doesn’t handle cookies management and input validation. So, we use cookies and
digestive-functors, respectively, to handle them. We also looked into Middleware, a
way to share common functionalities in a web application. We explored a few ready-to-
use middlewares, such as gzip, request-response logger, etc.

The source code for this chapter is available in the attachment of this book with the
same name as this chapter’s number.

164

CHAPTER 8

Web Programming

Nowadays, RESTful API consumed by a single page application is a popular way to
deliver product functionality over the Internet. This approach is more preferable if the
user needs to do many state-changing operations to the application, because it will feel
more responsive. However, if the application is meant to be mostly consumed, such as
forums and blogs, then having a more traditional, MVC-style web application could be
more preferable because it is simpler.

In this chapter, we will learn about building an MVC web application.

Serving Multiple WAI Applications

We can represent our RESTful API web application and our MVC web application as two
different WAI applications. We will then use a WAI middleware to route the request to the
right application. So, we will structure our HTTP module of the application as follows:

API/
Auth.hs
Common.hs
Main.hs
Web/
static/
images/
logo.png
Auth.hs
Common. hs
Main.hs
Common. hs
Main.hs

165
© Ecky Putrady 2018

E. Putrady, Practical Web Development with Haskell, https://doi.org/10.1007/978-1-4842-3739-7_8

CHAPTER 8 WEB PROGRAMMING

Anything under the API folder is only related to RESTful API, while anything under
the Web folder is only related to the web MVC part.

Both folders contain a Common module. The Common module here is meant to be shared by
other modules within the same folder. For example, Common in the APT folder might contain
a function to build a JSON response, while Common in the Web folder might contain a function
to build HTML layouts. There is also a Common module at the top level. This Common module is
meant to be shared by both API and Web. It contains functions like setting a cookie.

Main modules are responsible for running the application. In API, the Main module
is responsible for creating the RESTful API application. The same thing also happens
in the Main module under the Web folder. The Main module at the top level depends on
both Main modules and sets up the necessary logic to route the request to the correct
application.

Now that we have understood the overall architecture, let’s hit our first milestone of
properly routing the request to the correct application.

First off, list the required dependencies in package.yaml:

dependencies:

blaze-html

digestive-functors-blaze

digestive-functors-scotty

— wai-middleware-static

warp

blaze-html!is a package to help in building HTMLs. digestive-functors-blaze?
is a package to bind digestive-functors’s View to HTML defined with blaze-html.
digestive-functors-scotty?is a package to do form validation with scotty. wai-
middleware-static*is a package to serve static assets. We could use it to serve favicon,
CSS, or javascript files. In our case, we will only use it to serve favicon. warp is a package
to run a web server that is compatible with wai specification. Internally, scotty uses this.
However, since we want to serve Web and API separately, we will need this package.

'www.stackage.org/1ts-10.3/package/blaze-html-0.9.0.1
*http://hackage.haskell.org/package/digestive-functors-blaze-0.6.2.0
Shttp://hackage.haskell.org/package/digestive-functors-scotty-0.2.0.2
“www . stackage.org/1ts-10.3/package/wai-middleware-static-0.8.1

166

http://www.stackage.org/lts-10.3/package/blaze-html-0.9.0.1
http://hackage.haskell.org/package/digestive-functors-blaze-0.6.2.0
http://hackage.haskell.org/package/digestive-functors-scotty-0.2.0.2
http://www.stackage.org/lts-10.3/package/wai-middleware-static-0.8.1

CHAPTER 8 WEB PROGRAMMING

Some packages my not be available in stackage, so we need to list them directly
under extra-deps in the stack.yaml file:

— digestive-functors-blaze-0.6.2.0
— digestive-functors-scotty-0.2.0.2

Next, we will clean up our code a bit. Let’s move some functions that are only
related to API from the Adapter .HTTP.Common module to the Adapter .HTTP.API.Common

module.
module Adapter.HTTP.API.Common where

import ClassyPrelude

import Web.Scotty.Trans

import Domain.Auth

import qualified Text.Digestive.Form as DF
import qualified Text.Digestive.Aeson as DF
import Data.Aeson hiding (json)

import Network.HTTP.Types.Status

import Adapter.HTTP.Common

-- * Forms

parseAndValidateJSON :: (ScottyError e, MonadIO m, ToJSON v)
=> DF.Form v m a -> ActionT e m a
parseAndValidateJSON form = do
val <- jsonData “rescue™ (_ -> return Null)
validationResult <- lift $ DF.digestJSON form val
case validationResult of
(v, Nothing) -> do
status status400
json $ DF.jsonErrors v
finish
(_, Just result) ->
return result

167

CHAPTER 8 WEB PROGRAMMING
-- * Sessions

reqCurrentUserId :: (SessionRepo m, ScottyError e) => ActionT e m UserId
reqCurrentUserId = do
mayUserId <- getCurrentUserId
case mayUserld of
Nothing -> do
status status401
json $ errorResponse (“"AuthRequired" :: Text)
finish
Just userId ->
return userId

-- * Error response

errorResponse :: (ToJSON a) => a -> Value
errorResponse val = object ["error" .= val]

Next, we create the Adapter .HTTP.Main module that is responsible for creating a WAI
application for RESTful API.

module Adapter.HTTP.API.Main where

import Domain.Auth

import ClassyPrelude

import Web.Scotty.Trans

import Network.HTTP.Types.Status

import qualified Adapter.HTTP.API.Auth as Auth
import Adapter.HTTP.API.Common

import Katip

import Network.Wai

import Network.Wai.Middleware.Gzip

main :: (MonadIO m, KatipContext m, AuthRepo m
, EmailVerificationNotif m, SessionRepo m)
=> (m Response -> IO Response) -> IO Application
main runner =
scottyAppT runner routes

168

CHAPTER 8 WEB PROGRAMMING

routes :: (MonadIO m, KatipContext m, AuthRepo m
, EmailVerificationNotif m, SessionRepo m)
=> ScottyT LText m ()
routes = do
middleware $ gzip $ def { gzipFiles = GzipCompress }

Auth.routes

notFound $ do
status status404
json $ errorResponse ("NotFound" :: Text)

defaultHandler $ \e -> do
1lift $ $(logT™) ErrorS $ "Unhandled error: " <> ls (showError e)
status status500
json $ errorResponse ("InternalServerError" :: Text)

As you can see, in the main function we use the scottyAppT function instead of
the scottyT function. scottyT internally calls scottyAppT and then runs the resulting
Application using warp. Since we are only interested in creating an Application here,
we use scottyAppT.

We have finished doing necessary changes in the RESTful API part. Let’s now move
on to the Web part. For now, we will only create the Adapter .HTTP.Web.Main module

with some dummy routes.
module Adapter.HTTP.Web.Main where

import Domain.Auth

import ClassyPrelude

import Web.Scotty.Trans

import Network.HTTP.Types.Status
import Katip

import Network.Wai

main :: (MonadIO m, KatipContext m, AuthRepo m
, EmailVerificationNotif m, SessionRepo m)
=> (m Response -> IO Response) -> IO Application
main runner =
scottyAppT runner routes

169

CHAPTER 8 WEB PROGRAMMING

routes :: (MonadIO m, KatipContext m, AuthRepo m
, EmailVerificationNotif m, SessionRepo m)
=> ScottyT LText m ()
routes = do
get "/" $
text "Hello from web!"

notFound $ do
status status404
text "Not found"

defaultHandler $ \e -> do
1ift $ $(logTM) ErrorS $ "Unhandled error: " <> 1ls (showError e)
status status500
text "Internal server error!"

Finally, let’s modify the Adapter .HTTP.Main module to the following:
module Adapter.HTTP.Main where

import Domain.Auth
import ClassyPrelude
-import Web.Scotty.Trans
-import Network.HTTP.Types.Status
-import qualified Adapter.HTTP.API.Auth as AuthAPI
-import Adapter.HTTP.Common
+import qualified Adapter.HTTP.API.Main as API
+import qualified Adapter.HTTP.Web.Main as Web
import Katip
import Network.Wai
-import Network.Wai.Middleware.Gzip
+import Network.Wai.Handler.Warp
+import Network.Wai.Middleware.Vhost

main :: (MonadIO m, KatipContext m, AuthRepo m
, EmailVerificationNotif m, SessionRepo m)
=> Int -> (m Response -> IO Response) -> I0 ()

170

CHAPTER 8 WEB PROGRAMMING

-main port runner =

- scottyT port runner routes

-routes :: (MonadIO m, KatipContext m, AuthRepo m

- , EmailVerificationNotif m, SessionRepo m)

- => ScottyT LText m ()

-routes = do

- middleware $ gzip $ def { gzipFiles = GzipCompress }

- AuthAPI.routes

- defaultHandler $ \e -> do

- 1lift $ $(logT™) ErrorS $ "Unhandled error: " <> ls (showError e)
- status status500

- json ("InternalServerError" :: Text)

+main port runner = do

+ web <- Web.main runner

+ api <- API.main runner

+ run port $ vhost [(pathBeginsWith "api", api)] web

+ where

+ pathBeginsWith path req = headMay (pathInfo req) == Just path

In the main function, we build two Applications, web and api using the Web.main
and API.main functions, respectively. We also use a middleware called vhost. This
function comes from the wai-extra package. It has the following type:

vhost :: [(Request -> Bool, Application)] -> Application -> Application

The first parameter is a list of tuple. The first part of the tuple is a function that tests
whether to route the request to the application in the second part of the tuple or not.
The second parameter is the default application the request will be routed to, in case the
request does not pass any test function in the list.

In our case, our test function is pathBeginsWith, which basically check whether the
request path begins with “api” The function uses pathInfo function that comes from
Network.Wai. This function receives a Request and outputs a list of string representing
the path. For example, ["api", "auth", "register"]isthe output when the pathis/
api/auth/register.

171

CHAPTER 8 WEB PROGRAMMING

Now, we may run the application from the REPL and try to send HTTP request to the
application. You'll notice that sending GET http://localhost:3000 will be responded
by “Hello from web!” text. On the other hand, if we send a request to POST
http://localhost:3000, the response will be a 400 containing a JSON about the error.
This indicates that the request is correctly routed to both applications.

Implementing Web Module

In this section, we will fully implement the Web module.
Create an Adapter .HTTP.Web.Common module and write the following code:

module Adapter.HTTP.Web.Common where

import ClassyPrelude

import Web.Scotty.Trans

import Domain.Auth

import qualified Text.Digestive.View as DF

import Text.Blaze.Html5 ((!))

import qualified Text.Blaze.Html5 as H

import qualified Text.Blaze.Html5.Attributes as A
import qualified Text.Blaze.Html.Renderer.Text as H
import Adapter.HTTP.Common

-- * Views

renderHtml :: (ScottyError e, Monad m) => H.Html -> ActionT e m ()
renderHtml = html . H.renderHtml

mainLayout :: Text -> H.Html -> H.Html
mainLayout title content =
H.docTypeHtml $ do
H.head $ do
favicon "/images/logo.png"
H.title $ H.toHtml title
H.body $ do
H.div $ H.img ! A.src "/images/logo.png"
H.div content

172

CHAPTER 8 WEB PROGRAMMING

where
favicon path =
H.link ! A.rel "icon"
I A.type_ "image/png"
I A.href path

formLayout :: DF.View a -> Text -> H.Html -> H.Html
formLayout view action =
H.form ! A.method "POST"
I A.enctype (H.toValue $ show $ DF.viewEncType view)
I A.action (H.toValue action)

-- * Sessions

reqCurrentUserId :: (SessionRepo m, ScottyError e) => ActionT e m UserId
reqCurrentUserId = do
mUserId <- getCurrentUserId
case mUserIld of
Nothing ->
redirect "/auth/login"
Just userId ->
return userId

This module implements functions that are meant to be shared by other modules in
the Web module.

reqCurrentUserIdis a function to get the current UserId from the request. It
internally calls getCurrentUserId. However, it will redirect the user to the /auth/login
endpoint if the user is not logged in.

mainLayout is a function that builds HTML. As you can see, it uses various functions
like H.head, H.body, H.1ink, etc. Those HTML-related functions come from the blaze-
html package.

If you think about it, they are just like normal HTML tags without the angle brackets.
Another interesting thing about them is that those are all just functions. It means that
we can reuse them in a higher level function to build a more complex view component.
This technique can be observed in the favicon and formLayout functions in the
preceding code.

173

CHAPTER 8 WEB PROGRAMMING
The mainLayout function will produce the following HTML:

<!DOCTYPE HTML>
<html>
<head>
<link rel="icon" type="image/png" href="/images/logo.png"/>
<title>Title form first parameter</title>
</head>
<body>
<div>

</div>
<div>
Any content from the second parameter
</div>
</body>
</html>

The type of these HTML functions is H.HTML. However, scotty demands LText to
be passed in to the html function. So, we need to convert H.Html to LText. The function
to do that is H. renderHtml. To make things easier when we want to render HTML using
scotty, we will just define a helper function, renderHtml, as you have seen.

Let’s now implement the Adapter .HTTP.Web.Auth module. Let’s start with the
following outline:

module Adapter.HTTP.Web.Auth where

import ClassyPrelude

import Web.Scotty.Trans

import Domain.Auth

import Text.Digestive.Scotty

import qualified Text.Digestive.Form as DF
import qualified Text.Digestive.View as DF
import Text.Digestive.Form ((.:))

import Adapter.HTTP.Common

import Adapter.HTTP.Web.Common

import Katip

174

CHAPTER 8 WEB PROGRAMMING

import Text.Blaze.Htmls ((!))

import qualified Text.Digestive.Blaze.Html5 as DH
import qualified Text.Blaze.Html5 as H

import qualified Text.Blaze.Html5.Attributes as A

-- * Routes

routes :: (ScottyError e, MonadIO m, KatipContext m, AuthRepo m
, EmailVerificationNotif m, SessionRepo m)

> ScottyT e m ()

do

routes
-- home
get "/" %
redirect "/users"

-- register
get "/auth/register" undefined

post "/auth/register" undefined

-- verify email
get "/auth/verifyEmail/:code" undefined

-- login
get "/auth/login" undefined

post "/auth/login" undefined

-- get user
get "/users" undefined

We imported a lot of modules although they are not used. Rest assured, we will use
them later. So ignore any unused warnings for now.
As you can see from the routes function, we defined a few routes:

1. GET /:Thisredirects to GET /users.
2. GET /auth/register: This shows the registration form.

3. POST /auth/register: This handles the submission of the
registration form.

175

CHAPTER 8 WEB PROGRAMMING

4. GET /auth/verifyEmail/:code: This handles email activation.
5. GET /auth/login: This shows the login form.
6. POST /auth/login: This handles the submission of the login form.

7. GET /users: This shows the user email address if the user is
logged in.

We'll start implementing from the GET /users endpoint:

get "/users" $ do
userIld <- reqCurrentUserld
mayEmail <- lift $ getUser userId
case mayEmail of
Nothing ->
raise $ stringError "Should not happen: email is not found"
Just email ->
renderHtml $ usersPage (rawEmail email)

In this function, we use the reqCurrentUserId thatis defined in the Adapter .HTTP.
Web.Common module. As we have seen before, this function will redirect the user to the
login page if the user is not logged in. Once we get the UserId, we will then use the
getUser function from the Domain.Auth module to get the user’s email. If we get the
email successfully, we display it in an HTML page that we build using the usersPage
function.

The usersPage function has the following implementation:

usersPage :: Text -> H.Html
usersPage email =
mainLayout "Users" $ do
H.div $
H.h1 "Users”
H.div $
H.toHtml email

We use the mainLayout function defined in the Adapter .HTTP.Web.Common module.
The content of the page is just a simple title and the email. Figure 8-1 shows how the
page will look in the browser.

176

CHAPTER 8 WEB PROGRAMMING

That was easy; now let’s move on to the email verification functionality. Write the
following code to handle email verification:

get "/auth/verifyEmail/:code" $ do
code <- param "code" “rescue® const (return "")
result <- lift $ verifyEmail code
case result of
Left EmailVerificationErrorInvalidCode ->
renderHtml $ verifyEmailPage "The verification code is invalid"
Right _ ->
renderHtml $ verifyEmailPage "Your Email has been verified"

Users

ecky+1@test.com

Figure 8-1. Users page

We first acquire the code from the path. Then the code is passed into the
verifyEmail function defined in the Domain.Auth module. The result of that is pattern
matched. If it’s an invalid code, we return an HTML page stating about the error.
Otherwise, we show a success message.

verifyEmailPage is implemented as follows:

verifyEmailPage :: Text -> H.Html
verifyEmailPage msg =
mainLayout "Email Verification" $ do

177

CHAPTER 8 WEB PROGRAMMING

H.h1 "Email Verification"
H.div $ H.toHtml msg
H.div $ H.a ! A.href "/auth/login" $ "Login"

Figure 8-2 shows how the page will look in the browser.
Next, we have registration functionality to work on. The following code implements
the handler for user registration:

get "/auth/register" $ do
view <- DF.getForm "auth" authForm
renderHtml $ registerPage view []

post "/auth/register" $ do
(view, mayAuth) <- runForm "auth" authForm
case mayAuth of
Nothing ->
renderHtml $ registerPage view []
Just auth -> do
result <- lift $ register auth
case result of
Left RegistrationErrorEmailTaken ->
renderHtml $ registerPage view ["Email has been taken"]
Right _ -> do
v <- DF.getForm "auth" authForm
renderHtml $ registerPage v ["Registered successfully"]

The GET /auth/register endpoint is just displaying the form. We use DF.getForm
to get the empty View of the form. The view is then passed into the registerPage
function to build the form. We will see the authForm and registerPage function
shortly.

In the POST /auth/register endpoint, we “run” the form using the runForm
function from the digestive-functors-scotty package. Basically, this function parses
the URL-encoded string from the HTTP request body and runs the form validation
against it.

178

CHAPTER 8 WEB PROGRAMMING

ke

Email Verification

Your Email has been verified
Login

Figure 8-2. Email verification page

The result of the runForm s a tuple of View and Maybe Auth. We then pattern match
on the mayAuth. If it’s a Nothing, then it means that the validation has failed. In this case,
view must contain the error messages. So, we just rerender the whole form with the error
messages shown.

In the case of successful form validation, we pass in the input into register function
from the Domain.Auth module. This function also has a failure scenario. So, we will
display the appropriate error message. In a successful registration scenario, we just
display an empty registration page with a successful message.

authFormis defined as follows:

authForm :: (Monad m) => DF.Form [Text] m Auth
authForm =
Auth <$> "email" .: emailForm
<*> "password" .: passwordForm
where
emailForm = DF.validate (toResult . mkEmail) (DF.text Nothing)
passwordForm = DF.validate (toResult . mkPassword) (DF.text Nothing)

It's exactly the same as in the API one. However, I think it’s better to keep them
separated, as the form in API might not be exactly the same as in the Web.

179

CHAPTER 8 ~WEB PROGRAMMING
registerPage is implemented as follows:

authFormLayout :: DF.View [Text] -> Text -> Text -> [Text] -> H.Html
authFormLayout view formTitle action msgs =
formLayout view action $ do

H.h2 $

H.toHtml formTitle
H.div $

errorlList msgs
H.div $ do

H.label "Email"
DH.inputText "email" view
H.div $
errorlList
H.div $ do
H.label "Password"
DH.inputPassword "password" view
H.div $
errorlist

email"

password"
H.input ! A.type "submit" ! A.value "Submit"
where
errorList' path =
errorList . mconcat $ DF.errors path view
errorlist =
H.ul . concatMap errorItem
errorItem =
H.1i . H.toHtml

registerPage :: DF.View [Text] -> [Text] -> H.Html
registerPage view msgs =
mainLayout "Register" $ do
H.div $
authFormLayout view "Register
H.div $
H.a ! A.href "/auth/login" $ "Login"

/auth/register" msgs

180

CHAPTER 8 WEB PROGRAMMING

registerPage only has two components in it: authFormLayout and a link to the
login page.

authFormLayout is a function that represents a form that captures user registration
input. Most of it is just simple blaze-html functions; however, there are a few notable
pieces there. The first one is the errorList function. This function receives a list of Text
and converts it to an HTML list by combining H.ul and H. 11 functions. There is another
function called errorList’ that basically does the same as errorList but with the error
messages sourced from the form’s View. As you can see, we use the DF.errors function
to extract error messages at a specific path.

The second notable piece includes the DH. inputText and DH. inputPassword. Those
functions come from the digestive-functors-blaze package. Basically, those functions
set up the necessary input field’s name and value based on the view parameter. If you
go back and see our authForm function, you should note that we specify some part of
the form with some names, such as “email” and “password.” Those same names are
the input for the first parameter of the digestive-functors-blaze’s functions to guide
which part of the form to be displayed and captured.

digestive-functors-blaze has more functions in addition to inputText and
inputPassword. I strongly suggest checking the documentation® to see what the available
options are.

Figures 8-3 and 8-4 show how the registration looks in various scenarios.

Let’s move on to the login functionality. Write the following code to handle login
endpoints:

get "/auth/login" $ do
view <- DF.getForm "auth" authForm
renderHtml $ loginPage view []

post "/auth/login" $ do
(view, mayAuth) <- runForm "auth" authForm
case mayAuth of
Nothing ->
renderHtml $ loginPage view []
Just auth -> do
result <- lift $ login auth

*https://hackage.haskell.org/package/digestive-functors-blaze-0.6.2.0/docs/
Text-Digestive-Blaze-Html5.html

181

https://hackage.haskell.org/package/digestive-functors-blaze-0.6.2.0/docs/Text-Digestive-Blaze-Html5.html
https://hackage.haskell.org/package/digestive-functors-blaze-0.6.2.0/docs/Text-Digestive-Blaze-Html5.html

CHAPTER 8 WEB PROGRAMMING

case result of

Left LoginErrorEmailNotVerified ->

renderHtml $ loginPage view ["Email has not been verified"]
Left LoginErrorInvalidAuth ->

renderHtml $ loginPage view ["Email/password is incorrect"]
Right sId -> do

setSessionIdInCookie sId

redirect "/"

Register
Email
Password

Submit

Login

Figure 8-3. Empty registration form

182

CHAPTER 8 WEB PROGRAMMING

Register
Email wrongEmail

e Not a valid email
Password

Should be between 5 and 50
Should contain number

Should contain uppercase letter
Should contain lowercase letter

Submit

Login

Figure 8-4. Registration form with error

The preceding function is pretty similar with registration ones. Please note that in
the successful login scenario, we set the session id in a cookie so that the user could be
authenticated in future interactions.

loginPage is also similar to registerPage

loginPage :: DF.View [Text] -> [Text] -> H.Html
loginPage view msgs =
mainLayout "Login" $ do

183

CHAPTER 8 WEB PROGRAMMING

H.div $

authFormLayout view "Login
H.div $

H.a ! A.href "/auth/register" $ "Register"

/auth/login" msgs

Since the input that we need is the same as registration, we can just reuse the form.
Figures 8-5 and 8-6 show the login page in various scenarios.

We have finished implementing the handler for various authentication
functionalities. Now, we need to modify the Adapter .HTTP.Web.Main module to include
these new route handlers. Update the routes function to the following:

import qualified Adapter.HTTP.Web.Auth as Auth
import Network.Wai.Middleware.Static
import Network.Wai.Middleware.Gzip

routes :: (MonadIO m, KatipContext m, AuthRepo m
, EmailVerificationNotif m, SessionRepo m)
=> CacheContainer -> ScottyT LText m ()
routes cachingStrategy = do
middleware $
gzip $ def { gzipFiles = GzipCompress }
middleware $
staticPolicy' cachingStrategy (addBase "src/Adapter/HTTP/Web")

Auth.routes

notFound $ do
status status404
text "Not found"

defaultHandler $ \e -> do
1lift $ $(logT™) ErrorS $ "Unhandled error: " <> ls (showError e)
status status500
text "Internal server error!"

184

CHAPTER 8 WEB PROGRAMMING

Login

Email
Password

Submit
Register

Figure 8-5. Empty login form

185

CHAPTER 8 WEB PROGRAMMING

Login

« Email/password is incorrect
Email wrongEmail@test.com
Password «eeeecses

Submit
Register

Figure 8-6. Login form with errors

We import the Adapter .HTTP.Web.Auth module and use Auth.routes in our routes
function.

We also add a few middlewares: gzip and staticPolicy'. We've seen gzip in the
previous chapter. So we will skip that. staticPolicy' is a function from the middleware-
static package that basically serves static assets.

If you trace back to mainLayout function in the Adapter .HTTP.Web.Common module,
you should see that we use "/images/logo.png" as the source path for favicon. However,
we store our assets in the /src/Adapter/HTTP/Web folder. So, how does middleware-
static know which path to serve from? The answer is because we define the base path
in the second parameter of staticPolicy'. What happens here is that on every request,
middleware-static will first try to serve the static assets. If the asset is not found, then
the request is routed to the application.

186

CHAPTER 8 WEB PROGRAMMING

The first parameter of staticPolicy' is a CacheContainer. This allows sensible
caching headers to be sent along with the asset. We acquire CacheContainer from the
function parameter.

Now that we have covered the routes function, let’s move on to the main function.

main :: (MonadIO m, KatipContext m, AuthRepo m
, EmailVerificationNotif m, SessionRepo m)
=> (m Response -> IO Response) -> IO Application
main runner = do
cacheContainer <- initCaching PublicStaticCaching
scottyAppT runner $ routes cacheContainer

In this function, we initialize the cacheContainer and pass it into the routes function.
Alright, we have finished all the implementation. Now, you can go to REPL and
run the application. You may go to http://localhost:3000 in your browser and play
around with it. Try registering, verifying email, and logging in. You should see that the
application works as intended. Note that you should see a favicon as well, indicating that
serving static assets functionality works as intended.

Summary

In this chapter, we have exposed our domain functionality via HTML pages. We've
seen how to serve multiple WAI applications in a single Haskell executable using vhost
middleware. We have also seen how easy it is to build composable views using blaze-
html. For handling form validation and showing error messages, we have digestive-
functors-blaze and the digestive-functors-scotty package that makes achieving
those things easy.

187

CHAPTER 9

HTTP Client

Nowadays, a lot of services expose their functionality over HTTP via RESTful API. Even
within the same company, we may use microservices architecture with RESTful API as
the primary means of communication. So, it’s inevitable that we would need to talk to
other services via HTTP.

Haskell’s ecosystem fortunately has quite good support for executing an HTTP request.
Some of the available packages are:

1. http-client!and http-client-tls?
2. wreg®

3. req

4. http-conduit®

Both wreq and req are more high level compared with http-client. In fact, both
depend on http-client for doing the actual HTTP request.

wreq uses lens heavily. lens is a well-known library in Haskell for doing data structure
manipulation. However, if you are not familiar with it, you might find it a bit daunting.

req does not use lens but uses rather advanced type level tricks to make sure you are
doing the correct stuff according to the HTTP semantics. Depending on your knowledge
of Haskell, you may find it complex.

http-conduit is another high-level library built on top of http-client. It provides
extra functionality to process the response in a streaming fashion. It’s useful for cases
where you have a large response body and you don’t want to have it all in memory before
processing further. http-conduit also provides a simple interface for http-client.

'www.stackage.org/1ts-10.3/package/http-client-0.5.7.1
2www . stackage.org/1ts-10.3/package/http-client-tls-0.3.5.1
*www.stackage.org/lts-10.3/package/wreq-0.5.2.0
‘www.stackage.org/lts-10.3/package/req-1.0.0
*www.stackage.org/1ts-10.3/package/http-conduit-2.2.4

189
© Ecky Putrady 2018

E. Putrady, Practical Web Development with Haskell, https://doi.org/10.1007/978-1-4842-3739-7_9

http://www.stackage.org/lts-10.3/package/http-client-0.5.7.1
http://www.stackage.org/lts-10.3/package/http-client-tls-0.3.5.1
http://www.stackage.org/lts-10.3/package/wreq-0.5.2.0
http://www.stackage.org/lts-10.3/package/req-1.0.0
http://www.stackage.org/lts-10.3/package/http-conduit-2.2.4

CHAPTER9 HTTP CLIENT

Despite them being high level, I find that http-client is easy enough to use and gets
the job done. http-client-tls is used in conjunction with http-client to make secure
HTTP requests. Yes, you might not have the one liner to send and read JSON, but I don’t
find it to be a big turnoft.

http-client package

In this section, we will learn about how to work with the http-client package. There are
three main components in this package: Manager, Request, and Response. We will look
into them in more detail.

Manager

Manager does connection pooling for our HTTP requests. It keeps the connection to
various hosts open for quite some time. So, if there are subsequent requests to the same
host, a new connection is not opened but rather the old one is reused. If the connection
is idle for some defined amount of time, it is then finally disconnected. Manager is meant
to be reused throughout your application.

For creating a manager, the function to use is:

newManager :: ManagerSettings -> IO Manager

ManagerSettings configures the behavior of the Manager. The following code snippet
shows an example of creating and modifying ManagerSettings:

let settings = defaultManagerSettings
{ managerConnCount = 20
, managerIdleConnectionCount = 512
, managerResponseTimeout = responseTimeoutMicro 30000000

}

Besides the preceding settings, there are a few other settings that you can modify,
such as action to modify request or response, action to create connection, etc. However,
I find that the common ones to modify are the aforementioned. You may consult the
documentation to see the full configuration listing.

190

CHAPTER9 HTTP CLIENT

In practice, however, we won't use defaultManagerSettings. It's because this setting
does not support HTTPS. So, the connection will fail if you try to send a request to an
HTTPS endpoint (which should be everywhere nowadays). What you want to do is to use
the tlsManagerSettings function from the http-client-tls package.

Allin all, here’s what we do to create a Manager:

manager <- newManager tlsManagerSettings

Request

The second component is Request. As the name suggests, this represents the HTTP
request to be performed. For creating a Request, we can do the following:

initReq <- parseRequest "http://example.com/path/to/resource”
let req = initReq
{ method = "POST"
, requestHeaders = [("x-header-1", "something")
, ("x-header-2", "hello")
]
RequestBodyLBS "{\"hello\":1}"
"parami=hello¶m2=world"

, requestBody
» queryString
, cookieJar = Nothing

}

As you can see, they are pretty low level. For example, there is no native function to

send JSON as the request body. However, I find it not to be an issue. It’s very easy to build
them without a special function.

The settings you have seen are the ones that are commonly used. There are other
configurations like proxy or request timeout as well. Do read up on the docs for those.

Executing a Request

Now that we know how to build a Request, let’s learn how to execute it. httplbs is the

function to use:

httpLbs :: Request -> Manager -> IO (Response LByteString)

191

CHAPTER9 HTTP CLIENT

This function accepts a Request and a Manager. This executes the request and reads
the HTTP body fully before returning a Response LByteString. This function may throw
a synchronous exception. We will see the exception handling part in a later section.

Response

Once we get the response, we usually want to read various parts of it using the
following functions:

responseStatus :: Response body -> Status
responseHeaders :: Response body -> ResponseHeaders
responseCookieJar :: Response body -> CookieJar
responseBody :: Response body -> body

-- from http-types package
data Status = Status { statusCode :: Int, statusMessage :: ByteString }

ResponseHeaders is basically an alias for [(ByteString, ByteString)]. For getting
a specific header, you may use responseHeader with find. For example:

response <- ... -- get the response somehow
let (Just val) = lookup "Authorization" . responseHeaders $ response

CookieJar contains the cookies that you get from the server. Usually, we don’t do
anything with it other than passing it to subsequent requests.

Exceptions

An HTTP request is an IO operation. The nature of 10 is that it may throw a synchronous
exception. This package is no different. It defines an HttpException type for various
HTTP-related synchronous exceptions as follows:

data HttpException
= HttpExceptionRequest Request HttpExceptionContent
| InvalidUrlException String String

192

CHAPTER9 HTTP CLIENT

data HttpExceptionContent
ResponseTimeout
ConnectionTimeout

|

| ConnectionClosed

| TooManyRedirects [Response ByteString]
|

-- and many others

I'm not showing the whole list, as it is not a small list. Please check the
documentation for the complete listing.

Handling the synchronous exception is no different than normal Haskell’s
synchronous exception. We use catch:

let handler e = case e of
ResponseTimeout -> ...
ConnectionTimeout -> ...
_ -> ... -- for other cases

httpLBS request manager “catch™ handler

RESTful API Client for Our Project
JSON Payload

Since the client and the server are both in Haskell, then it’s more beneficial for the

client and server to share the Haskell data structures as well as JSON serialization and
deserialization. This makes sure that any changes to such structures or logic are correctly
propagated to both the client and the server.

So, we start by defining the shared data structures and JSON serde in a dedicated
module named Adapter.HTTP.API.Types.Auth. However, we also foresee that the JSON
serde logic can be reused should a new domain be added to our application. So, we
would like to put the common JSON serde logic in a separate module named Adapter.
HTTP.API.Types.AesonHelper.

193

CHAPTER9 HTTP CLIENT

Adapter .HTTP.API.Types.AesonHelper Implementation

We start by defining the module and imports.
module Adapter.HTTP.API.Types.AesonHelper where

import ClassyPrelude

import Data.Aeson.TH

import Data.Aeson.Types

import Language.Haskell.TH.Syntax

Recall that we can generate JSON implementation for any data type using the
Template Haskell functions provided by the aeson package. In this module, we will use
the provided functions with specific options.

For this to compile, we need to include template-haskell as our project
dependency. Let’s do that now by editing our package.yaml as follows:

dependencies:
- template-haskell

The first function that we will create is to parse JSON to types that require a smart
constructor. In our project, we have two such types:

newtype Email = Email { rawEmail :: Text } deriwving (Show, Eq, Ord)
newtype Password = Password { rawPassword :: Text } deriwving (Show, Eq)

The behavior that we want is that encoding such types should produce the raw
values without the enclosing structure. For example, we want these:

"eckyputrady@test.com" -- email JSON
"abcDEF123" -- password JSON

instead of:

{ "rawEmail": "eckyputrady@test.com" }
{ "rawPassword": "abcDEF123" }

On the decoding side, we want to parse a value from JSON by leveraging the smart
constructor so that it can’t be created using an illegal parameter. The following function
is a JSON parser that reads a value using the smart constructor provided in the function
parameter. This might not make sense for now, but once you see how this is used, it
should be obvious.

194

CHAPTER9 HTTP CLIENT

withSmartConstructor :: (a -» Either [Text] b) -> a -> Parser b
withSmartConstructor constructor a =
case constructor a of

Left errs -> fail $ intercalate . map unpack $ errs

Right val -> return val

The next function is a helper function to derive JSON for record types. In our
application, an example of a record type is Auth

data Auth = Auth
{ authEmail :: Email
, authPassword :: Password
} deriving (Show, Eq)

For this type, we want the JSON representation to be:

{

"email": "test@test.com",
"password": "abcDEF123"

}

Notice that it doesn’t map exactly to our Haskell’s record type. Specifically, a few
characters at the beginning of the fields are dropped. Our convention for writing a
Haskell record is that each field should be prefixed with the record name. So, when
serializing to JSON, we want to drop the prefix. The following function does this:

derive]SONRecord :: Name -> Q [Dec]
derive]SONRecord record =
let lowerCaseFirst (y:ys) = tolLower [y] <> ys
lowerCaseFirst "" = ""
structName = nameBase record
opts = defaultOptions
{ fieldLabelModifier = lowerCaseFirst . drop (length
structName)

}

in deriveJSON opts record

195

CHAPTER9 HTTP CLIENT

Asyou can see, we override the fieldLabelModifier of the default options to omit
the prefix and modify the letter casing. We know how many characters to drop based on
the record name.

This function receives the Name and outputs a Q [Dec]. Both come from
template-haskell. Suffice it to say that the Name is the record name and Q [Dec] is
the generated code.

Next, we want to create a function to derive JSON for sum types. In our application,
we use sum types heavily for representing errors. For example, LoginError:

data LoginError
= LoginErrorInvalidAuth
| LoginErrorEmailNotVerified
deriving (Show, Eq)

When we serialize this, we want the output JSON to be a simple string:

"InvalidAuth"
"EmailNotVerified"

As you can see, we also drop the prefix for each constructor. The following function
gets the job done to achieve what we want:

derive]SONSumType :: Name -> Q [Dec]
deriveJSONSumType record =
let structName = nameBase record
opts = defaultOptions
{ constructorTagModifier = drop (length structName)
, tagSingleConstructors = True

}

in deriveJSON opts record

We modify the default settings. constructorTagModifier is used to drop the prefix.
tagSingleConstructor makes sure that the constructor name is serialized to JSON. If we
don’t override this value, "[]" will be the serialized value instead.

Beside records and sum types, we have one more class of data structure: one that
requires a smart constructor. Usually, we use newtype to encapsulate the raw value. One
example is Email:

newtype Email = Email { rawEmail :: Text } deriwving (Show, Eq, Ord)

196

CHAPTER9 HTTP CLIENT
We want it to be serialized as a simple string without the enclosing structure:
"eckyputrady@test.com”

The following function does the necessary for the previously mentioned behavior.
We just override the default settings and set unwrapUnaryRecords to True.

deriveToJSONUnwrap :: Name -> Q [Dec]

deriveToJSONUnwrap =
let opts = defaultOptions { unwrapUnaryRecords = True }
in deriveToJSON opts

Adapter .HTTP.API.Types.Auth Implementation

In this section, we will implement the JSON serialization and deserialization for the
domain types. This module should not be complex, as most of the serialization and
deserialization logic has been provided by the aeson module.

module Adapter.HTTP.API.Types.Auth where

import ClassyPrelude

import Domain.Auth

import Data.Aeson

import Adapter.HTTP.API.Types.AesonHelper

instance FromJSON Email where
parse]SON =
withText "Email" $ withSmartConstructor mkEmail

instance FromJSON Password where
parseJSON =
withText "Password" $ withSmartConstructor mkPassword

$(map concat . sequence $
[derivelSONRecord “Auth
, deriveToJSONUnwrap “Email
, deriveToJSONUnwrap “Password

197

CHAPTER9 HTTP CLIENT

, deriveJSONSumType “RegistrationError
, deriveJSONSumType “EmailVerificationError
, derive]SONSumType “LoginError

D

The preceding code snippet is all we have write to make our types JSON convertible.

If you try to compile this module so far, you will get an “orphan instance” warning.
An orphan instance warning happens when you define a type A in module A’; define a
typeclass B in module B'; but then define the typeclass B instance for type A in module C.
This is problematic when, for example, you have defined the same typeclass instances in
different modules but then you depend on both modules. The compiler will not compile,
because it’s not clear which instance implementation you want.

To prevent an orphan instance warning, you may do one of the following:
1. Define the instances where the type is defined.
2. Define the instances where the typeclass is defined.

3. Wrap the type in a newtype and define a typeclass instance for the
newtype instead.

In my opinion, if you are building a library that others will depend on, having an
orphan instance is a big no-no, as you can’t predict how the users will use your library.
However, if you are building an application, this is less of an issue. You can fully control
the code that you write in your application. So I feel it’s justified to ignore this warning.

Based on the preceding reasoning, we can have the compiler ignore an orphan
instance in this module by adding the following pragma on the top of the file:

{-# OPTIONS GHC -fno-warn-orphans #-}

API Server Refactoring

In the previous section, we have created JSON. Now we can modify our existing API
server implementation to use those JSON instances.

Go to the Adapter .HTTP.API.Auth module. Then, edit the import sections to add the
following line:

import Adapter.HTTP.API.Types.Auth ()

The preceding line imports the FromJSON and ToJSON instances definition

198

CHAPTER 9
After that, edit the routes function to be the following:

routes :: (ScottyError e, MonadIO m, KatipContext m, AuthRepo m
, EmailVerificationNotif m, SessionRepo m)
=> ScottyT e m ()

routes = do

-- register
post "/api/auth/register” $ do
input <- parseAndValidateJSON authForm
domainResult <- 1lift $ register input
case domainResult of
Left err -> do
status status400
json err
Right _ ->
return ()

-- verify email
post "/api/auth/verifyEmail" $ do
input <- parseAndValidateJSON verifyEmailForm
domainResult <- lift $ verifyEmail input
case domainResult of
Left err -> do
status status400
json err
Right _ ->
return ()

-- login
post "/api/auth/login" $ do
input <- parseAndValidateJSON authForm
domainResult <- 1ift $ login input
case domainResult of
Left err -> do
status status400
json err

HTTP CLIENT

199

CHAPTER9 HTTP CLIENT

Right sId -> do
setSessionIdInCookie sId
return ()

-- get user
get "/api/users" $ do
userId <- reqCurrentUserId
mayEmail <- lift $ getUser userId
case mayEmail of
Nothing ->
raise $ stringError "Should not happen: Sessionld map to invalid
UserId"
Just email ->
json email

The function is mostly unchanged. The main difference is that we pass in our types
directly to the json function provided by scotty. This is now possible because we have
defined FromJSON and ToJSON instances in Adapter .HTTP.API.Types.Auth module and
import it here.

Module Refactoring

Since we will introduce an HTTP Client for RESTful API, it makes sense to put it
somewhere under the Adapter.HTTP.API namespace. Currently, we have the server
implementation under this namespace directly. Now, we will move them all to a new
namespace: Adapter .HTTP.API.Server. Simply create a folder named Server under
API and move Auth.hs, Common.hs, and Main.hs there. As you might have expected,
this produces compile errors. However, they are all easy to resolve. Usually, you just
need to edit the module name and the import lines. Just follow the compile error
messages.

Since this error resolving work is trivial, I will not put the exact changes in
this section.

200

CHAPTER9 HTTP CLIENT

HTTP Client Implementation

We will have two modules for HTTP Client:

1. Adapter.HTTP.API.Client.Common: Defines common types and
functions as well as initialization function

2. Adapter.HTTP.API.Client.Auth: Defines functions that are
specific to Auth domain, such as registration and login.

Adapter .HTTP.API.Client.Common Module

Let’s start by creating the Adapter .HTTP.API.Client.Common module:
module Adapter.HTTP.API.Client.Common wherxe

import ClassyPrelude

import Network.HTTP.Client
import Network.HTTP.Client.TLS
import Data.Has

import Data.Aeson

As usual, we define the module name and imports.

newtype Config = Config
{ configUrl :: String
}

data State = State
{ stateInitReq :: Request
, stateManager :: Manager

}
type HttpClient r m = (MonadReader r m, Has State r, MonadIO m, MonadThrow m)

In the preceding snippet, we define the types for configuration. For now, we only
have one field for configuration: configUrl. It's meant to configure the URL to hit to
when using the HTTP Client.

201

CHAPTER9 HTTP CLIENT

Next, we define the state. As you can see, we have the initial Request and Manager.
The initial Request is meant to be overridden on each HTTP request function. The
Manager is a requirement for doing an HTTP request.

Finally, we have constraint alias HttpClient r m. This alias basically constrains m to
any type that may throw an exception (via MonadThrow), may do IO (via MonadI0), and is
able to get State from the environment (via MonadReader r m, Has State r).

type Session = CookieJar

The preceding snippet defines Session as an alias for CookieJar. CookieJar is a type
that comes from http-client, as we have seen in an earlier section of this chapter.

data UnexpectedResponse a =
UnexpectedResponse Request (Response a) deriwving (Show)

instance (Typeable a, Show a) => Exception (UnexpectedResponse a)

The preceding snippet defines the UnexpectedResponse data type. As the name
suggest, this is used for representing an error that is caused by an unexpected response
from the server.

Since this is an exception, we define the Exception instance of this data type so that
we can throw it using MonadThrow capability.

withState :: Config -> (State -> I0 a) -> I0 a
withState cfg action = do
mgr <- newManager tlsManagerSettings
initReq <- parseRequest $ configUrl cfg
let initRegWithJson =
initReq { requestHeaders =
[("Content-Type", "application/json; charset=utf-8")]

}
action $ State initRegqWithJson mgr

The preceding function defines how to initialize the State. We create a Manager and
initial Request. We then put them in the State data structure.

202

CHAPTER9 HTTP CLIENT

parseOrkErr :: (MonadThrow m, FromJSON a)
=> Request -> Response LByteString -> m a
parseOrErr req resp =
case eitherDecode' $ responseBody resp of
Left _ -> throw $ UnexpectedResponse req resp
Right a -> return a

The preceding function is used to extract JSON from the HTTP response body. We
use eitherDecode' from an HTTP response body. If the body is not a parsable JSON,
then eitherDecode’ will return a Left, otherwise it will be a Right. Using pattern
matching, we handle the Left case by throwing UnexpectedResponse.

Adapter .HTTP.API.Client.Auth Module

In this module, we define the actual functions that talk to the HTTP RESTful API
endpoint that we have implemented in Chapter 7. The following snippet lists the
required imports:

module Adapter.HTTP.API.Client.Auth wherxe

import ClassyPrelude

import Network.HTTP.Client

import Data.Has

import qualified Domain.Auth as D
import Network.HTTP.Types

import Adapter.HTTP.API.Types.Auth ()
import Adapter.HTTP.API.Client.Common
import Data.Aeson

The first function we define is register, as you can see in the following:

register :: HttpClient r m => D.Auth -> m (Either D.RegistrationError ())
register auth = do
State initReq mgr <- asks getter
let req = initReq
{ method = "POST"
, path = "/api/auth/register"
, requestBody = RequestBodylLBS $ encode auth
}

203

CHAPTER9 HTTP CLIENT

resp <- 1liftIO $ httplbs req mgr
case responseStatus resp of
(Status 200) ->
return $ Right ()
->

Left <$> parseOrErr req resp

The function signature is similar to the one we see in the Domain.Auth module. We
return an Either indicating a success or a failure. However, as this is a network call, it’s
possible for this function to throw an exception.

This function is quite straightforward. We first get the state from the environment.
Then we build an HTTP request. For registration, the endpoint to call is POST /api/
auth/register. This aligns with the code that we’ve previously written. As for the
request body, we need to pass in the D.Auth as JSON.

After building the HTTP request, we execute it using the httplLbs function. The
response is then interpreted to the domain data types.

The similar pattern is also reused for the verifyEmail function as you can see in
the following:

verifyEmail :: HttpClient r m
=> D.VerificationCode -> m (Either D.EmailVerificationError ())
verifyEmail code = do
State initReq mgr <- asks getter
let req = initReq
{ method = "POST"
, path = "/api/auth/verifyEmail®
, requestBody = RequestBodyLBS . encode $ code
}
resp <- 1liftIO $ httplbs req mgr
case responseStatus resp of
(Status 200) ->
return $ Right ()
->

Left <$> parseOrErr req resp

204

CHAPTER9 HTTP CLIENT

For the login function, we also reuse the pattern as in the preceding. However, the
difference is that we return a Session. Recall that Session is an alias for CookieJar. We

can get the CookieJar from the response using the responseCookieJar function.

login :: HttpClient r m => D.Auth -> m (Either D.LoginError Session)
login auth = do
State initReq mgr <- asks getter
let req = initReq
{ method = "POST"
, path = "/api/auth/login"
, requestBody = RequestBodylLBS $ encode auth
}
resp <- 1iftIO $ httplbs req mgr
case responseStatus resp of
(Status 200) ->
return $ Right $ responseCookielar resp
->

Left <$> parseOrErr req resp

For getUser, we pass in the Session that we get from login. This Session is set to
the request using the cookieJar function. In this function, we assume that the session is
always valid. In case it’s not valid, the function throws an UnexpectedResponse exception.

getUser :: HttpClient r m => Session -> m D.Email
getUser session = do
State initReq mgr <- asks getter
let req = initReq
{ method = "GET"
, path = "/api/users"
, cookieJar = Just session
}
resp <- liftI0 $ httplbs req mgr
case responseStatus resp of
(Status 200 _) ->
parseOrErr req resp
->

throw $ UnexpectedResponse req resp

205

CHAPTER9 HTTP CLIENT

Verifying Implementation with REPL

In previous sections, we have implemented the code for the client. In this section, we will
verify it using REPL.

We need two REPLs for this. One REPL is used to run the server. The other REPL is
used to call the client functions. Type the following commands in the first REPL to start
the server:

-- load the Lib module
> :1 Lib

-- run the server
> main

Now that the server has started, let’s open the other REPL and type the following
commands:

> -- load the client module
> :1 Adapter.HTTP.API.Client.Auth

> -- Define a helper function to run the client that connects to
localhost:3000

> let cfg = Config "http://localhost:3000"

> let run action = withState cfg $ \state -> flip runReaderT state $ action

> -- Define the "D.Auth’ data structure that we use for testing
> let (Right auth) = D.Auth <$> D.mkEmail "hi@hello.com" <*> D.mkPassword
"abcDEF123"

> -- Successful registration test
> run $ register auth
Right ()

> -- Failed registration test due to duplicate email
> run $ register auth
Left RegistrationErrorEmailTaken

> -- Failed login test due to email not yet verified
> run $ login auth
Left LoginErrorEmailNotVerified

206

CHAPTER9 HTTP CLIENT

> -- Failed verifyEmail command test due to wrong verification code
> run $ verifyEmail "wrongCode"
Left EmailVerificationErrorInvalidCode

> -- We open the database and get the verification

> -- This verifyEmail command should be successful now
> run $ verifyEmail "\"hi@hello.com\" sk9v9vXLDt3RuK3V"
Right ()

> -- Try login again, this should now be successful since we have verified
the email
> Right session <- run $ login auth

> -- Get the email of current user using the session we get from previous step
> run $ getUser session
Email {rawEmail = "hi@hello.com"}

> -- Turn off the server

> -- Try to get the user info again now that we have turned off the server
> -- We should get an exception

> run $ getUser session

Exception: HttpExceptionRequest Request {

host = "localhost"
port = 3000
secure = False
requestHeaders = [("Content-Type", "application/json; charset=utf-8")]
path = "/api/users"
queryString ="
method = "GET"
pIOXy = Nothing
rawBody = False
redirectCount = 10
responseTimeout = ResponseTimeoutDefault
requestVersion = HTTP/1.1
}

(ConnectionFailure Network.Socket.connect: <socket: 15>: does not exist
(Connection refused))

207

CHAPTER9 HTTP CLIENT

If you run the preceding commands and get a similar result, then our HTTP Client
implementation is a success. Congratulations for having reached this far!

Summary

In this chapter, we have learned about working with HTTP Client in Haskell. We have
explored some available packages and we settled on http-client due to its simplicity.

We learned about the important concepts of the http-client package, such as
creating a request, executing the request, parsing the response, and handling exceptions.

With the knowledge about the package, we built ourselves a Haskell client library for
interacting with our application. Recall that we exposed our application functionalities
via RESTful API. Our Haskell client library interacts with this API to invoke the necessary
functionalities.

208

CHAPTER 10

Configuration

When building a web application, there’s a good chance you will need to deploy it to
multiple environments. For example, besides the production environment, you might
have a QA environment for the quality assurance process. The database you connect
to in a production environment will have a different host and credential than the one
in a QA environment. For this reason, you want your application to read the necessary
configuration at runtime.

There are multiple ways to get these configuration values:

1. Environment variables
2. Files
3. Centralized configuration server

If you happen to choose centralized configuration server to manage your
configuration, there are many such servers to choose from. One example is Consul.! If
you use Consul, then you may want to use the consul-haskell? package.

If you choose files for managing the configuration values, then you can store it as
JSON and read it via the aeson package. There are Haskell packages that are focused
on configuration management, such as configurator?® and dhall.* Both are quite
similar: both provide their own format for putting configuration values. Both also have
a feature to read from environment variables. However, one differentiating feature that
configurator has is that you might get notified when the configuration changes.

'www . consul.io/

2www. stackage.org/package/consul-haskell
*www. stackage.org/package/configurator
“www . stackage.org/package/dhall

209
© Ecky Putrady 2018

E. Putrady, Practical Web Development with Haskell, https://doi.org/10.1007/978-1-4842-3739-7_10

http://www.consul.io/
http://www.consul.io
http://www.stackage.org/package/consul-haskell
http://www.stackage.org/package/configurator
http://www.stackage.org/package/dhall

CHAPTER 10 CONFIGURATION

I find environment variables to be the simplest among the three. In Haskell, we can
interact with environment variables using a System.Environment module provided from
the base package.

In this chapter, we will use environment variables to manage the configuration

values for our application. I find it to be enough even for bigger applications.

System.Environment Module

An environment variable is basically a key-value pair. So, the operations we are
interested in are simply how to set and get values from it. The following code snippet
shows such operations:

getEnv :: String -> IO String
lookupEnv :: String -> IO (Maybe String)
setEnv :: String -> String -> I0 ()

The difference between getEnv and lookupEnv is that the former throws an
exception if the value is not found, while the latter returns a Nothing if the value is not
found.

lookupEnv seems to be more desirable, considering it doesn’t throw any exception.
However, we usually read configuration values at the start of the program. It’s desirable
for the program to fail to start if the required configuration value is not found. So, using
getEnv would be more fitting for this scenario.

Both functions return a String. However, you may need to read it as a number.

So, you might want to use readMay to parse the string to a type that you use in your
application.

setEnv is quite straightforward, as is evident by looking at the type. It just receives
two inputs: the first one is the key and the second is the value.

Making Our Application Configurable

Now that we have learned about the basics of the System.Environment module, it’s time
to modify our application so that it reads from environment variables on startup.

210

CHAPTER 10 CONFIGURATION

First, let’s see what values we want to be configurable. Currently, we hardcode our
configuration values in the Lib module as follows:

withState :: (Int -> LogEnv -> State -> I0 ()) -> I0 ()
withState action =
withKatip $ \le -> do
mState <- newTVarIO M.initialState
PG.withState pgCfg $ \pgState ->
Redis.withState redisCfg $ \redisState ->
MQ.withState mqCfg 16 $ \mqState -> do
let state = (pgState, redisState, mqState, mState)
action port le state
where
mqCfg = "amqgp://guest:guest@localhost:5672/%2F"
redisCfg = "redis://localhost:6379/0"
pgCfg = PG.Config
{ PG.configUrl = "postgresql://localhost/hauth"
, PG.configStripeCount = 2
, PG.configMaxOpenConnPerStripe = 5
, PG.configIdleConnTimeout = 10

}

port = 3000

The values under the where clause are the hardcoded configuration. We want to
have some of them read from environment variables. However, you might also notice
that for creating a RabbitMQ state, we hardcode a 16 as the second parameter. It would
feel cleaner if we have an MQ config data structure that is similar to PostgreSQL. Let’s
refactor that part now.

Go to Adapter.RabbitMQ.Common and introduce the following type for representing
the MQ configuration:

data Config = Config
{ configUrl :: String
, configPrefetchCount :: Integer
}

211

CHAPTER 10 CONFIGURATION
Then, modify the withState function to receive this Config as the first parameter:

withState :: Config -> (State -> I0 a) -> I0 a
withState config action = bracket initState destroyState action'
where
initState = do
publisher <- openConnAndChan
consumer <- openConnAndChan
return (publisher, consumer)

openConnAndChan = do
conn <- openConnection” . fromURI . configUrl $ config
chan <- openChannel conn
confirmSelect chan False
gos chan 0 (fromInteger $ configPrefetchCount config) True
return (conn, chan)

destroyState ((conni,), (conn2,)) = do
closeConnection conni
closeConnection conn2

action' ((_, pubChan), (_, conChan)) = action (State pubChan conChan)
Now, go back to the Lib module and modify the withState function again:

withState :: (Int -> LogEnv -> State -> I0 ()) -> I0 ()
withState action =
withKatip $ \le -> do
mState <- newTVarIO M.initialState
PG.withState pgCfg $ \pgState ->
Redis.withState redisCfg $ \redisState ->
MQ.withState mqCfg $ \mgqState -> do
let state = (pgState, redisState, mqState, mState)
action port le state

where
port = 3000
redisCfg = "redis://localhost:6379/0"
mqCfg =

212

CHAPTER 10 CONFIGURATION

MQ.Config
{ MQ.configUrl = "amqp://guest:guest@localhost:5672/%2F"
» MQ.configPrefetchCount = 16
}
peCfg =
PG.Config
{ PG.configUrl = "postgresql://localhost/hauth"
, PG.configStripeCount = 2
, PG.configMaxOpenConnPerStripe = 5
, PG.configIdleConnTimeout = 10

}

Next, let’s create a Config module where we will define the application-wide
configuration. We will also define how such a configuration is to be read from the
environment variables.

module Config where

import ClassyPrelude

import System.Environment

import qualified Adapter.PostgreSQL.Auth as PG
import qualified Adapter.RabbitMQ.Common as MQ

Let’s first start by defining a Config type to represent the application-wide
configuration.

data Config = Config
{ configPort :: Int
, configRedis :: String
, configMQ :: MOQ.Config
, configPG :: PG.Config

Next, we define some helper functions to read a value from an environment variable.

envFromString :: (IsString a) => String -> IO a
envFromString key = fromString <$> getEnv key

213

CHAPTER 10 CONFIGURATION

The preceding function parses environment variables to anything that is an instance
of the IsString typeclass. This can be used, for example, to read environment variable
as Text or LByteString. This function throws an exception if the environment variable is
not found.

envRead :: Read a => String -> I0 a
envRead key = do
rawVal <- getEnv key
case readMay rawVal of
Just val -> return val

Nothing -> throwString $ key <> ": Unable to parse " <> rawVal

The preceding function parses the environment variable into any type thatis an
instance of Read type. This supports a lot of type, for example, Integer or Double. This
function throws an exception if the environment variable is not found and if the value of
the environment variable is not parsable to the target type.

Now that we have created some helper functions, we can use them to build our
Config from environment variables. Add the following code snippet in the same module:

fromenv :: IO Config
fromEnv = Config
<$> envRead "PORT"
<*> getEnv "REDIS URL"
<*> (MQ.Config
<$> getEnv "MQ URL"
<*> pure 16
)
<*> (PG.Config
<$> envFromString "PG_URL"
<*> pure 2
<*> pure 5
<*> pure 10

)

We use the help of the Applicative typeclass, which I0 happens to be an instance of,
to create our Config. Notice that we don’t read everything from environment variables.
The purpose of this is mainly to show you how to hardcode some values, should they
have no benefit to be configurable.

214

CHAPTER 10 CONFIGURATION

In addition to reading from environment variable, we also create a devConfig
function that creates a Config for development purposes.

devConfig :: Config
devConfig = Config
{ configPort = 3000
, configRedis = "redis://localhost:6379/0"
, configMQ = MOQ.Config
{ MQ.configUrl = "amqp://guest:guest@localhost:5672/%2F"
» MQ.configPrefetchCount = 16
}
, configPG = PG.Config
{ PG.configUrl = "postgresql://localhost/hauth"
, PG.configStripeCount = 2
, PG.configMaxOpenConnPerStripe = 5
, PG.configIdleConnTimeout = 10

}
}

The required changes in the Config module are enough. Now, go back to Lib
module and use the Config module during startup.

import qualified Config

withState :: Config.Config -> (Int -> LogEnv -> State -> I0 ()) -> I0 ()
withState config action =
withKatip $ \le -> do
mState <- newTVarIO M.initialState
PG.withState (Config.configPG config) $ \pgState ->
Redis.withState (Config.configRedis config) $ \redisState ->
MO.withState (Config.configMQ config) $ \mqState -> do
let state = (pgState, redisState, mgState, mState)
action (Config.configPort config) le state

mainWithConfig :: Config.Config -> IO ()
mainWithConfig config =
withState config $ \port le state@(, , mqState,) -> do

215

CHAPTER 10 CONFIGURATION

let runner = run le state
MQAuth.init mqState runner
HTTP.main port runner

main :: I0 ()

main = do
config <- Config.fromEnv
mainWithConfig config

With the preceding code, running main will read the Config from environment
variables. For development purposes, we will also create a function called mainDev. This
function uses the devConfig instead of reading from environment variables.

mainDev :: I0 ()
mainDev = mainWithConfig Config.devConfig

Our implementation is done. Let’s test drive it. Open REPL and type the following
commands:

> :1 Lib
> main
k Exception: PORT: getEnv: does not exist (no environment variable)

> mainDev

As you can see, running main will crash the application during startup because we
have not yet set any environment variables. Running the application using mainDev
succeeded, since it uses the hardcoded config for development.

Let’s now set the necessary environment variables to make main run successfully.
In your terminal, type the following commands to export environment variables:

$ export REDIS URL=redis://localhost:6379/0
$ export MQ URL=amqgp://guest:guest@localhost:5672/%2F
$ export PG_URL=postgresql://localhost/hauth

Then, using the same terminal, open REPL again and type the following command:

> :1 Lib
> main

216

CHAPTER 10 CONFIGURATION

Notice that now the main function runs successfully. This is because we have set the
necessary environment variables so that the application is able to read them on start,
thus not crashing.

Summary

This chapter is short, but we have learned how to make our application configurable
by reading configuration values at runtime using environment variables. We use the
System.Environment module for interfacing with environment variables.

217

CHAPTER 11

Testing

In real-world software development, automated testing is one of the key practices to
ensure our application quality. Automated testing allows us to scale the testing effort
once our application gets bigger. Consider this: on every new feature, would you prefer
to manually test all existing features to make sure they don’t break instead of having an
automated process to do that? In addition to catching regression bugs, testing may also
act as documentation on how the software should behave.

In this chapter, we will look into how we would test our Haskell application.

Making Our Application More Testable

We want to test each component of our application separately so that we are confident
that the component works as intended. For components that are of the adapter type
(ones that interact with an external system), we want to test against the real external
system if possible. For example, our components that talk to PostgreSQL are better tested
against the actual PostgreSQL database. This kind of testing is also known as “integration
testing.” On the other hand, we also have components that represent the domain. These
components talk to the external system by going through port components. For domain
components, we want to test against the mocked port components. By mocking these
components, we can simulate various scenarios easily without using the actual external
system. This makes it possible to have thorough testing and keep the test code fast.

If you look closely at the adapter components, you may notice that they are
comprised of two different kinds. One calls the domain, such as HTTP and RabbitMQ
consumer, and one that is being called by the domain, such as PostgreSQL and Redis.
Let’s call the first one a “driving” adapter and the latter one a “driven” adapter.

As I have mentioned earlier, when our domain calls our “driven” adapters, they
are called through port components. We can then mock the port components to test

our domain. However, in our current implementation, the “driving” adapters call our

219
© Ecky Putrady 2018

E. Putrady, Practical Web Development with Haskell, https://doi.org/10.1007/978-1-4842-3739-7_11

CHAPTER 11 TESTING

domain directly. This means that we can’t test our “driving” adapters separately from our
domain. This makes them harder to test. So, before writing any test code, let’s refactor
our codebase a bit to make it more testable. The main change is that we introduce a new
port component that our “driving” adapters use to invoke functionalities in the domain.

The first thing that we will do for refactoring is to split the Domain.Auth module into
two modules. One is for types and ports declaration; let’s call this Domain.Auth.Types.
The second one is where we implement the actual domain logic. Let’s call that Domain.
Auth.Service.

Domain.Auth.Types has the following content:

module Domain.Auth.Types (
-- * Types
Auth(..),
Email(rawEmail),
mkEmail,
Password(rawPassword),
mkPassword,
UserlId,
VerificationCode,
Sessionld,
RegistrationError(..),
EmailVerificationError(..),
LoginError(..),

-- * Services
AuthService(..)
) where

import ClassyPrelude
import Domain.Validation
import Text.Regex.PCRE.Heavy

newtype Email = Email { rawEmail :: Text } deriving (Show, Eq, Ord)

mkEmail :: Text -> Either [ErrMsg] Email
mkEmail =
validate Email
[regexMatches

220

CHAPTER 11

[re|~[A-Z0-9a-z. %+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,64}$|]

"Not a valid email"

]

newtype Password = Password { rawPassword ::

mkPassword :: Text -> Either [ErrMsg] Password

mkPassword =
validate Password

[lengthBetween 5 50 "Should between 5 and 50"
, regexMatches [re|\d|] "Should contain number"

, regexMatches [re|[A-Z]|] "Should contain uppercase letter"
, regexMatches [re|[a-z]|] "Should contain lowercase letter"

]

data Auth = Auth
{ authEmail :: Email
, authPassword :: Password
} deriving (Show, Eq)

type Userld = Int
type VerificationCode = Text
type Sessionld = Text

data RegistrationError
= RegistrationErrorEmailTaken
deriving (Show, Eq)

data EmailVerificationError
= EmailVerificationErrorInvalidCode
deriving (Show, Eq)

data LoginError
= LoginErrorInvalidAuth
| LoginErrorEmailNotVerified
deriving (Show, Eq)

TESTING

Text } deriving (Show, Eq)

221

CHAPTER 11 TESTING

class (Monad m) => AuthService m where
register :: Auth -> m (Either RegistrationError ())
verifyEmail :: VerificationCode -> m (Either EmailVerificationError ())
login :: Auth -> m (Either LoginError SessionId)
resolveSessionId :: SessionId -> m (Maybe UserId)
getUser :: UserId -> m (Maybe Email)

We have seen most of the preceding code. One notable addition is the AuthService
typeclass. This typeclass is the port for “driving” adapters to invoke the domain’s
functionalities.

The Domain.Auth.Service module contains the remaining code from Domain.Auth
that doesn’t make it to Domain.Auth.Types:

module Domain.Auth.Service where

import ClassyPrelude

import Domain.Auth.Types
import Control.Monad.Except
import Katip

class (Monad m) => AuthRepo m where
addAuth :: Auth -> m (Either RegistrationError (UserId, VerificationCode))
setEmailAsVerified :: VerificationCode
-> m (Either EmailVerificationError (UserId, Email))
findUserByAuth :: Auth -> m (Maybe (UserId, Bool))
findEmailFromUserId :: UserId -> m (Maybe Email)

class (Monad m) => EmailVerificationNotif m where
notifyEmailVerification :: Email -> VerificationCode -> m ()

class (Monad m) => SessionRepo m where
newSession :: UserId -> m SessionId
findUserIdBySessionId :: SessionId -> m (Maybe UserId)

withUserIdContext :: (KatipContext m) => UserId -> ma -> m a
withUserIdContext uld = katipAddContext (sl "userId" uld)

register :: (KatipContext m, AuthRepo m, EmailVerificationNotif m)
=> Auth -> m (Either RegistrationError ())

222

CHAPTER 11 TESTING

register auth = runExceptT $ do
(uld, vCode) <- ExceptT $ addAuth auth
let email = authEmail auth
lift $ notifyEmailVerification email vCode
withUserIdContext uld $
$(logT™) InfoS $ 1s (rawEmail email) <> " is registered successfully”

verifyEmail :: (KatipContext m, AuthRepo m)
=> VerificationCode -> m (Either EmailVerificationError ())
verifyEmail vCode = runExceptT $ do
(uId, email) <- ExceptT $ setEmailAsVerified vCode
withUserIdContext uld $
$(logT™) InfoS $ ls (rawEmail email) <> " is verified successfully”
return ()

login :: (KatipContext m, AuthRepo m, SessionRepo m)
=> Auth -> m (Either LoginError SessionId)
login auth = runkExceptT $ do
result <- lift $ findUserByAuth auth
case result of
Nothing -> throwError LoginErrorInvalidAuth
Just (_, False) -> throwError LoginErrorEmailNotVerified
Just (uId,) -> withUserIdContext uld . lift $ do
sId <- newSession uld
$(log™) InfoS $ 1s (rawEmail $ authEmail auth) <> " logged in
successfully"”
return sId

resolveSessionId :: (SessionRepo m) => SessionId -> m (Maybe UserId)
resolveSessionId = findUserIdBySessionld

getUser :: (AuthRepo m) => UserId -> m (Maybe Email)
getUser = findEmailFromUserId

The removal of Domain.Auth should trigger compile errors. Just follow those errors
and replace Domain.Auth with Domain.Auth.Types. In the HTTP adapter modules, you
will notice that there will be complaints about AuthRepo m, EmailVerificationNotif m,

223

CHAPTER 11 TESTING

and SessionRepo mnot being found. Remove those constraints and replace them with
AuthService mand you will be good to go. As the changes for this are quite easy to
follow using the compiler errors, I'm not laying out all the changes.

Now we move on to Adapter.RabbitMQ.Auth. As you can see, this module talks to
Adapter.InMemory.Auth directly. We should introduce a port so that it can be mocked
or swapped out with something else. We will name the port EmailVerificationSender.
The content of the Adapter.RabbitMQ.Auth module is now as follows:

module Adapter.RabbitMQ.Auth where

import ClassyPrelude

import Adapter.RabbitMQ.Common

import Network.AMQP

import Katip

import Data.Aeson

import Data.Aeson.TH

import qualified Domain.Auth.Types as D

data EmailVerificationPayload = EmailVerificationPayload
{ emailVerificationPayloadEmail :: Text
, emailVerificationPayloadVerificationCode :: Text

}

class (Monad m) => EmailVerificationSender m where
sendEmailVerification :: D.Email -> D.VerificationCode -> m ()

init :: (EmailVerificationSender m, KatipContext m, MonadCatch m)
=> State -> (m Bool -> I0 Bool) -> IO ()
init state runner = do
initQueue state "verifyEmail" "auth" "userRegistered"
initConsumer state "verifyEmail" (consumeEmailVerification runner)

consumeEmailVerification :: (EmailVerificationSender m, KatipContext m,
MonadCatch m)
=> (m Bool -> IO Bool) -> Message -> IO Bool
consumeEmailVerification runner msg =
runner $ consumeAndProcess msg handler

224

CHAPTER 11 TESTING

where
handler payload =
case D.mkEmail (emailVerificationPayloadEmail payload) of

Left err -> withMsgAndErr msg err $ do
$(logT™) ErrorS "Email format is invalid. Rejecting.”
return False

Right email -> do
let vCode = emailVerificationPayloadVerificationCode payload
sendEmailVerification email vCode
return True

notifyEmailVerification :: (Rabbit r m) => D.Email -> D.VerificationCode -> m ()
notifyEmailVerification email vCode =

let payload = EmailVerificationPayload (D.rawEmail email) vCode

in publish "auth" "userRegistered" payload

-- JSON serde

$(let structName = fromMaybe "" . lastMay . splitElem '.' . show $
""EmailVerificationPayload
lowercaseFirst (x:xs) = tolLower [x] <> xs
lowercaseFirst xs = xs
options = defaultOptions
{ fieldLabelModifier = lowercaseFirst . drop (length
structName)

}

in derive]SON options ''EmailVerificationPayload)

Finally, we move on to Lib module to wire these new ports that we have just created.
Add the following code:

import Domain.Auth.Types
import qualified Domain.Auth.Service as D

instance AuthService App where
register = D.register
verifyEmail = D.verifyEmail

225

CHAPTER 11 TESTING

login = D.login
resolveSessionId = D.resolveSessionId
getUser = D.getUser

instance MOAuth.EmailVerificationSender App where
sendEmailVerification = M.notifyEmailVerification

Our refactoring effort has now been completed. It’s time to move on to the actual
testing.

Test Implementation

In this section, we will implement the actual testing code. We first start by setting up the
test framework. After that, we will write a test for the each of the following modules:

1. Domain.Validation

2. Domain.Auth.Service

3. Adapter.PostgreSQL.Auth

4. Adapter.Redis.Auth

5. Adapter.RabbitMQ.Auth

6. Adapter.HTTP.API.Server.Auth
7. Config

Test Framework Setup

There are many test frameworks to choose from for Haskell. A few popular ones are
tasty,! HTF,>HUnit,® and hspec.* In this book, we will be using hspec. I find hspec to
be very intuitive to use; it produces the human-friendliest output; and it has a rich
ecosystem around it.

'www.stackage.org/package/tasty
“www. stackage.org/package/HTF

*www.stackage.org/package/HUnit
“www . stackage.org/package/hspec

226

http://www.stackage.org/package/tasty
http://www.stackage.org/package/HTF
http://www.stackage.org/package/HUnit
http://www.stackage.org/package/hspec

CHAPTER 11 TESTING

Add the hspec package to our package.yaml under the tests.hauth-test.dependencies
section:

dependencies:
- hspec

We will also do one more tweak to the hspec configuration so that hspec will only
run tests that were previously failed before running the whole test. This makes the test
development cycle much quicker. Execute the following command on the terminal:

$ echo --failure-report .hspec-failures >> ~/.hspec
$ echo --rerun >> ~/.hspec
$ echo --rerun-all-on-success >> ~/.hspec

To run the test, we can use the following stack command:
$ stack test

The preceding command will run the test once. However, during development,
it's better to automatically rerun the test when any file is changed. To do this, just add
--file-watch to the preceding command like so:

$ stack test --file-watch

Combined with the hspec’s “only re-run previously failing tests” functionality, this
makes a very productive test development workflow.

The main entry point for test code is the test/Spec.hs file. You may organize your
test any way you like, as long as it’s being invoked directly or indirectly from this file.
For hspec, however, there’s a suggested test organization convention. The organization
is simple: just create the same module with Spec added to its name. For example, if
we have a Domain.Validation module, then the test should be put in the Domain.
ValidationSpec module. Effectively, this means that we put the code inside the test/
Domain/ValidationSpec.hs file. In that file, there must be one function named spec.
That function will be called to execute the test in the module. Simple, right?

If we organize the tests like that, then we can leverage a neat feature from hspec:
automatic test discovery. With this feature, the tests following the organization approach
described previously will be automatically included during the test run. This reduces
the amount of boilerplate code that we need to write. To enable that feature, change the
content of test/Spec.hs to just this line:

{-# OPTIONS GHC -F -pgmF hspec-discover #-}

227

CHAPTER 11 TESTING

In this book, we will use the aforementioned organization approach and use the
automatic test discovery feature for writing our tests.

Testing Domain.Validation

Let’s start testing the Domain.Validation module. As stated previously, create a file
named test/Domain/ValidationSpec.hs and write the following code:

module Domain.ValidationSpec where

import ClassyPrelude

import Test.Hspec

import Domain.Validation
import Text.Regex.PCRE.Heavy

spec :: Spec
spec = do
describe "rangeBetween" $ do
let validator = rangeBetween 1 10 "fail"
it "val < min should fail" $
validator 0 “shouldBe™ Just "fail"
it "val == min should pass" $
validator 1 “shouldBe™ Nothing
it "min < val < max should pass" $
validator 5 “shouldBe™ Nothing
it "val == max should pass" $
validator 10 “shouldBe™ Nothing
it "val > max should fail" $
validator 11 “shouldBe™ Just "fail"

describe "lengthBetween" $ do
let validator = lengthBetween 1 10 "fail"
it "val < min should fail" $
validator [] “shouldBe™ Just "fail"
it "val == min should pass" $
validator [1] “shouldBe™ Nothing
it "min < val < max should pass" $

228

CHAPTER 11

validator [1..5] “shouldBe™ Nothing
it "val == max should pass" $
validator [1..10] “shouldBe™ Nothing
it "val > max should fail" $
validator [1..11] “shouldBe™ Just "fail"

describe "regexMatches" $ do
let validator = regexMatches [re|*hello|] "fail"
it "if matches found then it should pass" $
validator "hello world" “shouldBe™ Nothing
it "if no match found then it should fail" $
validator "world hello" “shouldBe™ Just "fail"

If we run the test, we should see the following output:

Domain.Validation

rangeBetween
val < min should fail
val == min should pass
min < val < max should pass
val == max should pass
val > max should fail

lengthBetween
val < min should fail
val == min should pass
min < val < max should pass
val == max should pass
val > max should fail

regexMatches
if matches found then it should pass
if no match found then it should fail

TESTING

It might not be visible in this book, but there are colors for the preceding output.

Lines with green color indicate that the test passed. On the other hand, a red color

indicates test failure.

229

CHAPTER 11 TESTING

As you can see, the output structure mimics the code that we had written previously.
In the preceding code, we observed a few hspec constructs: describe, it, and shouldBe.
describe is basically just a grouping of tests. You can nest multiple describe. As you
might have expected, every nested call to describe will indent the output within it. it
is a function to do the actual test. it can’t be nested, unlike describe. shouldBe is an
assertion that the two input parameters are equal. If the assertion fails, it will show an
informative error message showing the expected and the actual values. There are more
hspec constructs; we will discover more of them as we progress in this chapter.

Testing Domain.Auth.Types

In the Domain.Auth.Types module, the functionalities that we want to test are the smart
constructors. We write the test in the test/Domain/Auth/TypesSpec.hs file:

module Domain.Auth.TypesSpec where

import ClassyPrelude
import Test.Hspec
import Domain.Auth.Types

spec :: Spec
spec = do
describe "mkEmail" $ do
describe "should pass" $
mkEmailSpec "ecky@test.com" True
describe "should fail" $ do
mkEmailSpec "invalid email@test.com" False
mkEmailSpec "email@test." False
mkEmailSpec "test.com" False

describe "mkPassword" $ do
describe "should pass" $
mkPasswordSpec "abcDEF123" []
describe "should fail" $ do
mkPasswordSpec "aA1" ["Should between 5 and 50"]
mkPasswordSpec (fromString . take 51 . join $ repeat "aA1")
["Should between 5 and 50"]

230

CHAPTER 11 TESTING

mkPasswordSpec "abcDEF" ["Should contain number"]
mkPasswordSpec "abc123" ["Should contain uppercase letter"]
mkPasswordSpec "ABC123" ["Should contain lowercase letter"]

mkEmailSpec :: Text -> Bool -> Spec
mkEmailSpec email isValid =
it (unpack email) $
case (isValid, mkEmail email) of
(True, result) -»>
result “shouldSatisfy™ either (const False) ((email ==) . rawEmail)
(False, result) ->
result “shouldSatisfy™ either (["Not a valid email"] ==
(const False)

mkPasswordSpec :: Text -> [Text] -> Spec
mkPasswordSpec password errMsgs =
it (unpack password) $
case (errMsgs, mkPassword password) of
([1, result) -»
result “shouldSatisfy™ either (const False) ((password ==
rawPassword)
(msgs, result) -»
result “shouldSatisfy™ either (msgs ==) (const False)

If run, it will output the following:

Domain.Auth.Types
mkEmail
should pass
ecky@test.com
should fail
invalid email@test.com
email@test.
test.com
mkPassword
should pass
abcDEF123

231

CHAPTER 11 TESTING

should fail
aA1
aAlaAlaAlaA1aAlaAl1aAlaA1aA1aA1aA1aA1aA1aA1aA1aA1aA1
abcDEF
abc123
ABC123

One notable thing to take away from the preceding code is that we define two helper
functions to build a test scenario: mkEmailSpec and mkPasswordSpec. Bear in mind that
hspec functions are by no means anything special. They are just regular functions and
we can treat them as such, including calling them in a different function.

Testing Domain.Auth.Service

In the previous sections, we've seen how to test a simple module that doesn’t need to call
any external dependencies. In this section, we will test a module that requires interaction
with external dependencies. We will learn how to mock those external dependencies so
that we can test various scenarios easily. Following the test organization approach so far,
the test code should be put in the test/Domain/Auth/ServiceSpec.hs file.

As we've discussed earlier, we want to mock the port components. In this case,
the port components are AuthRepo, SessionRepo, and EmailVerificationNotif. The
functionality that we want to have regarding mocking is that we are able to define what
each function of the port components return upon calling on each test case. To achieve
this, we first need to define a record containing the functions from each repo as its field:

import Domain.Auth.Types

data Fixture m = Fixture
{ _addAuth
:: Auth -> m (Either RegistrationError (UserId, VerificationCode))
, _setEmailAsVerified
:: VerificationCode -> m (Either EmailVerificationError (UserId, Email))
, _fTindUserByAuth
:: Auth -> m (Maybe (UserId, Bool))
, _tindEmailFromUserId
:: UserId -> m (Maybe Email)
, _notifyEmailVerification

232

CHAPTER 11 TESTING

:: Email -> VerificationCode -> m ()
, _nhewSession

:: UserId -> m Sessionld
, _tindUserIdBySessionId

:: SessionId -> m (Maybe UserId)

}

As you can see, the name that we use for each field in the fixture is basically the same
as the function name in the port components, except that we add a leading underscore.
This underscore is used to prevent name clash.

We also define an empty fixture, which will throw an error if any of the functions are
called:

unimplemented s
unimplemented = error "unimplemented"

emptyFixture ss Fixture m
Fixture

emptyFixture
{ _addAuth = const unimplemented
, _setEmailAsVerified = const unimplemented
, _findUserByAuth = const unimplemented
, _findEmailFromUserId = const unimplemented
, _notifyEmailVerification = _ _ -> unimplemented

, _hewSession = const unimplemented
, _findUserIdBySessionId = const unimplemented

}

Next, we define a monad transformer stack for our application:
import Katip

newtype App a = App
{ unApp :: ReaderT (Fixture I0) (KatipContextT IO0) a
} deriving (Applicative, Functor, Monad, MonadReader (Fixture I0), MonadIO
, KatipContext, Katip

)

233

CHAPTER 11 TESTING

The Katip-related function is there because the functions that we are testing require
it. Since we are not interested in testing and mocking the logging functionalities, we will
use the real logging from Katip and make it silent.

By defining a specialized monad transformer stack, we can define an instance of
AuthRepo, SessionRepo, and EmailVerificationNotif that uses the function defined in
the fixture. The code looks as follows:

dispatch :: (MonadIO m, MonadReader r m)
=> (r -> a -> I0 b)
-> (a -> m b)
dispatch getter param = do
func <- asks getter
1iftI0 $ func param

dispatch2 :: (MonadIO m, MonadReader r m)
=> (r ->a->b -> 10 c)
> (@->b->mc)
dispatch2 getter paraml param2 = do
func <- asks getter
1iftI0 $ func parami param2

instance AuthRepo App where
addAuth = dispatch _addAuth
setEmailAsVerified = dispatch _setEmailAsVerified
findUserByAuth = dispatch findUserByAuth
findEmailFromUserId = dispatch _findEmailFromUserId

instance EmailVerificationNotif App where
notifyEmailVerification = dispatch2 _notifyEmailVerification

instance SessionRepo App where
newSession = dispatch newSession
findUserIdBySessionId = dispatch findUserIdBySessionId

What the preceding dispatch function does is to basically get a function from the
fixture using the given getter and then apply the same function with the given param.
dispatch2 does the same, but it works for functions with two parameters instead of one
parameter.

234

CHAPTER 11 TESTING
We also define a function to unwind or run the monad transformer:

runApp :: Fixture IO -> App a -> I0 a
runApp fixture action = do
le <- initlogEnv "HAuth" "test"
runKatipContextT le () mempty . flip runReaderT fixture . unApp $ action

We defined Katip’s logging environment but we don’t define any Scribe. This means
the log will not be sent anywhere. This is OK, since we are not interested in the logging.

With the preceding boilerplate, we are ready to mock the external dependencies.
Let’s see an example of how it is used:

it "should fail if the auth is incorrect” $ do
let fixture = emptyFixture
{ _findUserByAuth =
_ -> return Nothing
}
runApp fixture (login auth)
“shouldReturn™ Left LoginErrorInvalidAuth

In the preceding example, we define our fixture to be the same as emptyFixture but
with the _findUserByAuth function overridden to always return Nothing. This setup
allows us to test a scenario where the user logs in but we are unable to find the supplied
credential in our repository. The fixture is then used in the runApp function as the first
parameter, while the function under test, login, is supplied as the second parameter.
We use shouldReturn, a function from hspec, to check whether the return value of that
action is as expected.

shouldReturn works similarly to shouldBe that we have seen before. The difference
is that shouldReturn works on a monad. The following code snippet should give a
clearer understanding of the two functions:

-- with “shouldReturn’:
runApp fixture (login auth)
“shouldReturn™ Left LoginErrorInvalidAuth

-- with “shouldBe:
result <- runApp fixture (login auth)
result “shouldBe™ Left LoginErrorInvalidAuth

235

CHAPTER 11 TESTING
Let’s see another example of the usage of a fixture:

it "should return a session if the login is successful" $ do
let fixture = emptyFixture
{ _findUserByAuth =
_ -> return $ Just (1, True)
, _hewSession =
\uld -> if uld == 1 then return "sId" else unimplemented
}
runApp fixture (login auth)
“shouldReturn™ Right "sId"

In the preceding example, we override two functions of the fixture. Remember,
since they are just normal functions, you can define anything you like. For example, in
_newSession, we check the input parameter and throw an error if it’s not as expected.

In general, you have seen how mocking is done in Haskell. We will not go through
each test scenario in detail for that reason.

Let’s step back to some helper functions that we defined earlier for building our
fixture. We are definitely going to need those again if we are to define a fixture in other
test modules. So, it’s better for them to be moved into their own module for reusability.
We’ll name the module Fixture and define it in the test/Fixture.hs file. The content of
that file would be as follows:

module Fixture where
import ClassyPrelude

unimplemented :: a
unimplemented = error "unimplemented"

dispatch :: (MonadIO m, MonadReader r m)
=> (r -> a -> I0 b)
-> (a -> m b)
dispatch getter param = do
func <- asks getter
1iftI0 $ func param

dispatch2 :: (MonadIO m, MonadReader r m)
=> (r ->a->b -> 10 c)

236

CHAPTER 11 TESTING

->(@->b->mc)
dispatch2 getter paraml param2 = do
func <- asks getter
1iftI0 $ func parami param2

Now that we've refactored those helper functions, the content of the Domain.Auth.
ServiceSpec function would be as follows:

module Domain.Auth.ServiceSpec where

import ClassyPrelude

import Domain.Auth.Types hiding (AuthService(..))
import Domain.Auth.Service

import Test.Hspec

import Fixture

import Katip

data Fixture m = Fixture
{ _addAuth
:: Auth -> m (Either RegistrationError (UserId, VerificationCode))
, _setEmailAsVerified
:: VerificationCode -> m (Either EmailVerificationError (UserId, Email))
, _fTindUserByAuth
:: Auth -> m (Maybe (UserId, Bool))
, _tindEmailFromUserId
:: UserId -> m (Maybe Email)
, _notifyEmailVerification
:: Email -> VerificationCode -> m ()
, _nhewSession
:: UserId -> m Sessionld
, _tindUserIdBySessionId
:: SessionId -> m (Maybe UserId)

}
emptyFixture :: Fixture m
emptyFixture = Fixture

{ _addAuth = const unimplemented

, _setEmailAsVerified = const unimplemented

237

CHAPTER 11 TESTING

, _tindUserByAuth = const unimplemented

, _findEmailFromUserId = const unimplemented

, _notifyEmailVerification = _ _ -> unimplemented
, _hewSession = const unimplemented

, _fTindUserIdBySessionId = const unimplemented

}

newtype App a = App
{ unApp :: ReaderT (Fixture IO) (KatipContextT IO) a
} deriving (Applicative, Functor, Monad, MonadReader (Fixture I0), MonadIO
, KatipContext, Katip

)

runApp :: Fixture IO -> App a -> I0 a
runApp fixture action = do
le <- initlogEnv "HAuth" "test"
runKatipContextT le () mempty . flip runReaderT fixture . unApp $ action

instance AuthRepo App where
addAuth = dispatch _addAuth
setEmailAsVerified = dispatch _setEmailAsVerified
findUserByAuth = dispatch _findUserByAuth
findEmailFromUserId = dispatch findEmailFromUserId

instance EmailVerificationNotif App where
notifyEmailVerification = dispatch2 notifyEmailVerification

instance SessionRepo App where
newSession = dispatch newSession
findUserIdBySessionId = dispatch findUserIdBySessionId

spec :: Spec
spec = do

let auth = either (error . show) id
$ Auth <$> mkEmail "abc@®123.com" <*> mkPassword "abcDEF123"

describe "register" $ do
it "should notify email verification upon successful registration" $ do

238

CHAPTER 11 TESTING

tvar <- newTVarIO Nothing
let fixture = emptyFixture
{ _addAuth =
_ -> return $ Right (1, "vcode")
, _notifyEmailVerification =
\email vCode -> atomically . writeTVar tvar $ Just
(email, vCode)
}
runApp fixture (register auth) “shouldReturn™ Right ()
readTVarIO tvar “shouldReturn™ Just (authEmail auth, "vcode")

it "should return failure and not notify any email verification" $ do
let fixture = emptyFixture
{ _addAuth = _ -> return $ Left RegistrationErrorEmailTaken
}
runApp fixture (register auth)
“shouldReturn™ Left RegistrationErrorEmailTaken
-- the fact that no exception thrown means no email verification is
triggered

describe "verifyEmail" $ do
it "should call the correct repo function" $ do
let fixture = emptyFixture
{ _setEmailAsVerified = \vcode -> case vcode of
"vCode" -> return $ Right (1, authEmail auth)
_ -> unimplemented
}
runApp fixture (verifyEmail "vCode")
“shouldReturn™ Right ()

it "should return the failure if writing to repo fail" $ do
let fixture = emptyFixture
{ _setEmailAsVerified =
_ -> return $ Left EmailVerificationErrorInvalidCode
}
runApp fixture (verifyEmail "vCode")
“shouldReturn™ Left EmailVerificationErrorInvalidCode

239

CHAPTER 11 TESTING

describe "login" $ do
it "should fail if the auth is incorrect" $ do
let fixture = emptyFixture
{ _findUserByAuth =
_ -> return Nothing
}
runApp fixture (login auth)
“shouldReturn™ Left LoginErrorInvalidAuth
it "should fail if the email has not been verified" $ do
let fixture = emptyFixture
{ _findUserByAuth =
_ -> return $ Just (1, False)
}
runApp fixture (login auth)
“shouldReturn™ Left LoginErrorEmailNotVerified
it "should return a session if the login is successful"” $ do
let fixture = emptyFixture
{ _findUserByAuth =
_ -> return $ Just (1, True)
, _hewSession =
\uld -> if uld == 1 then return "sId" else unimplemented
}
runApp fixture (login auth)
“shouldReturn™ Right "sId"

describe "resolveSessionId" $ do
it "should return Nothing if the session is not found" $ do
let fixture = emptyFixture
{ _findUserIdBySessionId =
_ -> return Nothing
}
runApp fixture (resolveSessionId "sId")
“shouldReturn™ Nothing
it "should return UserId if the session is found" $ do
let fixture = emptyFixture
{ _findUserIdBySessionId =

240

CHAPTER 11 TESTING

\sId -> if sId == "sId" then return (Just 1) else unimplemented
}
runApp fixture (resolveSessionId "sId")
“shouldReturn™ Just 1

describe "getUser" $ do
it "should return Nothing if the user is not found" $ do
let fixture = emptyFixture
{ _findEmailFromUserId =
_ -> return Nothing
}
runApp fixture (getUser 1)
“shouldReturn™ Nothing
it "should return Email if the user is found" $ do
let expected = Just (authEmail auth)
let fixture = emptyFixture
{ _findEmailFromUserId =
\uld -> if uld ==
then return expected
else unimplemented
}
runApp fixture (getUser 1)
“shouldReturn™ expected

Testing Adapter.PostgreSQL.Auth

We will write our test implementation in the test/Adapter/PostgreSQL/AuthSpec.hs

file. Let’s start by writing the necessary imports:

module Adapter.PostgreSQL.AuthSpec where

import ClassyPrelude
import Test.Hspec
import qualified Domain.Auth.Types as D

import Database.PostgreSQL.Simple

import Adapter.PostgreSQL.Auth
import Text.StringRandom

241

CHAPTER 11 TESTING

Since we test against the real database, we will need to set up the database first
before executing any test. To execute any action at the beginning of the test group once,
we can use the beforeAll function from hspec like so:

spec :: Spec
spec = beforeAll initDB $ do
describe "addAuth" $
it "should return email taken if the email already exists" pending

describe "setEmailAsVerified" $
it "should return invalid code if the code is invalid" pending

describe "findUserByAuth" $ do
it "should return Nothing if matching auth not found" pending
it "should find the user (email has been verified) if matching auth
found" pending
it "should find the user (email not yet verified) if matching auth
found" pending

describe "findEmailFromUserId" $ do
it "should return Nothing if user id is not found" pending
it "should return correct email if user id is found" pending

In the preceding snippet, we also see a new function from hspec: pending. This
basically indicates that the test has not yet been written. When running, a pending test
will be marked with yellow color. In addition to passes and failures count, hspec output
also shows the pending count.

Next, we define the initDB function:

initDB :: I0 ()
initDB = do
conn <- connectPostgreSQL "postgresql://localhost”
void $ execute_ conn "drop database if exists hauth_test auth"
void $ execute conn "create database hauth test auth"
close conn
withState testConf (const $ return ())

testConf :: Config
testConf =

242

CHAPTER 11 TESTING

Config { configUrl = "postgresql://localhost/hauth test auth"
, configStripeCount = 2
, configMaxOpenConnPerStripe = 5
, configIdleConnTimeout = 10

In the preceding function, we connect to our PostgreSQL instance as root. Then, we
drop the test database and recreate it to make sure that the database is in a pristine state.
Finally, we use a withState function to connect to the test database. This serves two
purposes: to make sure the database is reachable and to perform any database migrations.

Let’s see an example of a test:

it "should return email taken if the email already exists" $ do
auth <- randomAuth
runTestApp (addAuth auth >> addAuth auth)
“shouldReturn™ Left D.RegistrationErrorEmailTaken

The preceding test says that we are testing duplicate email behavior. We first
generate a random Auth, then we insert the same Auth twice. Finally, we check whether
itreturns D.RegistrationErrorEmailTaken. In the preceding code snippet, we use two
helper functions, randomAuth and runTestApp, which are defined as follows:

runTestApp :: ReaderT State I0 a -> IO a
runTestApp action =
withPool testConf $ runReaderT action

randomAuth :: IO D.Auth
randomAuth = do
email <- stringRandomIO "[A-Za-z0-9]{16}@test\\.com"
return
$ either (error . show) id
$ D.Auth <$> D.mkEmail email <*> D.mkPassword "abcDEF123"

runTestApp is necessary, considering the definition of the addAuth function in our
Adapter.PostgreSQL.Auth module:

type PG r m = (Has State r, MonadReader r m, MonadIO m)

addAuth :: PG r m
=> D.Auth
-> m (Either D.RegistrationError (D.UserId, D.VerificationCode))

243

CHAPTER 11 TESTING

This function works for any m that fulfills the preceding constraint. ReaderT State
I0is one concrete monad transformer stack that fulfills the constraint.
Here’s a complete content of the test module:

module Adapter.PostgreSQL.AuthSpec where

import ClassyPrelude

import Test.Hspec

import qualified Domain.Auth.Types as D
import Database.PostgreSQL.Simple
import Adapter.PostgreSQL.Auth

import Text.StringRandom

spec :: Spec
spec = beforeAll initDB $ do
describe "addAuth" $
it "should return email taken if the email already exists" $ do
auth <- randomAuth
runTestApp (addAuth auth >> addAuth auth)
“shouldReturn™ Left D.RegistrationErrorEmailTaken

describe "setEmailAsVerified" $
it "should return invalid code if the code is invalid" $
runTestApp (setEmailAsVerified "invalidCode")
“shouldReturn™ Left D.EmailVerificationErrorInvalidCode

describe "findUserByAuth" $ do
it "should return Nothing if matching auth not found" $ do
auth <- randomAuth
runTestApp (findUserByAuth auth)
“shouldReturn™ Nothing
it "should find the user (email has been verified) if matching auth
found" $ do
auth <- randomAuth
runTestApp $ do
Right (uld, vCode) <- addAuth auth
void $ setEmailAsVerified vCode
val <- findUserByAuth auth
1iftI0 $ val “shouldBe™ Just (uld, True)

244

CHAPTER 11

it "should find the user (email not yet verified) if matching auth

found" $ do
auth <- randomAuth
runTestApp $ do
Right (uld,) <- addAuth auth
val <- findUserByAuth auth
1iftI0 $ val “shouldBe™ Just (uld, False)

describe "findEmailFromUserId" $ do
it "should return Nothing if user id is not found" $
runTestApp (findEmailFromUserId 0)
“shouldReturn™ Nothing
it "should return correct email if user id is found" $ do
auth <- randomAuth
runTestApp $ do
Right (uld,) <- addAuth auth
mayEmail <- findEmailFromUserId uld
1iftI0 $ mayEmail “shouldBe™ Just (D.authEmail auth)

initDB :: I0 ()

initDB = do

conn <- connectPostgreSQL "postgresql://localhost”

void $ execute_ conn "drop database if exists hauth_test auth"”
void $ execute_ conn "create database hauth_test auth"

close conn

withState testConf (const $ return ())

testConf :: Config

testConf =

Config { configUrl = "postgresql://localhost/hauth test auth"
, configStripeCount = 2
, configMaxOpenConnPerStripe = 5
, configIdleConnTimeout = 10

}

TESTING

245

CHAPTER 11 TESTING

runTestApp :: ReaderT State I0 a -> IO a
runTestApp action =
withPool testConf $ runReaderT action

randomAuth :: IO D.Auth
randomAuth = do
email <- stringRandomIO "[A-Za-z0-9]{16}@test\\.com" return
$ either (error . show) id
$ D.Auth <$> D.mkEmail email <*> D.mkPassword "abcDEF123"

Testing Adapterx.Redis.Auth

We will write our test code in the test/Adapter/Redis/AuthSpec.hs file. Similar

to Adapter.PostgreSQL.Auth, this module also needs to be tested against the real
database. There’s actually not much to be tested in this module, since this module only
provides two functions. The whole content of the test file is as follows:

module Adapter.Redis.AuthSpec where

import ClassyPrelude

import Test.Hspec

import qualified Database.Redis as R
import Adapter.Redis.Auth

spec :: Spec
spec = beforeAll initDB $
describe "findUserIdBySessionId" $ do
it "should return Nothing if session is invalid" $
runTestApp (findUserIdBySessionId "invalidSession™)
“shouldReturn™ Nothing
it "should return valid user id if session is valid" $ do
let uld = 1
runTestApp (newSession uld >>= findUserIdBySessionId)
“shouldReturn™ Just uld

initDB :: I0 ()
initDB = do

246

CHAPTER 11 TESTING

let connInfo = either (error "Invalid Redis conn URL") id
$ R.parseConnectInfo testConf

conn <- R.checkedConnect connInfo

void $ R.runRedis conn R.flushdb

testConf :: String
testConf = "redis://localhost:6379/8"

runTestApp :: ReaderT State I0 a -> IO a
runTestApp action =
withState testConf $ runReaderT action

You should see a striking similarity with the test implementation of PostgreSQL.
Remember that redis provides multiple databases that we can refer to by index number?
For testing, we use database index 8. This use of an index is to avoid clashing with the
development database, which is in index 0. In the 1nitDB function, we connect to the test
DB and clean it up using the flushdb function from the Database.Redis module. This
makes sure that the database is in a pristine state.

Testing Adapterx.RabbitMQ.Auth

The whole test code for this module is as follows:
module Adapter.RabbitMQ.AuthSpec where

import ClassyPrelude

import Test.Hspec

import qualified Domain.Auth.Types as D

import qualified Adapter.RabbitMQ.Common as MQ
import qualified Adapter.RabbitMQ.Auth as MQ
import Katip

import Fixture

import System.Process

newtype Fixture m = Fixture
{ _sendEmailVerification :: D.Email -> D.VerificationCode -> m ()

}

247

CHAPTER 11 TESTING

newtype App a = App
{ unApp :: ReaderT (Fixture I0) (KatipContextT IO0) a
} deriving (Applicative, Functor, Monad, MonadIO, MonadReader (Fixture IO)
, Katip, KatipContext, MonadThrow, MonadCatch

)

instance MQ.EmailVerificationSender App where
sendEmailVerification = dispatch2 sendEmailVerification

runConsumerTestApp :: Fixture IO -> App a -> IO a
runConsumerTestApp fixture action = do
le <- initlLogEnv "HAuth" "test"
runKatipContextT le () mempty . flip runReaderT fixture . unApp $ action

type PublisherStateApp a = ReaderT MQ.State IO a

runPublisherTestApp :: MQ.State -> ReaderT MQ.Statema -> m a
runPublisherTestApp = flip runReaderT

spec :: Spec
spec = beforeAll initMQ $
it "send and consume email verification notification should work" $
MQ.withState testConf $ \mgqState -> do
mvar <- newEmptyMVar
-- run consumer
let fixture = Fixture
{ _sendEmailVerification =
\mail code -> 1iftIO $ putMVar mvar (mail, code)
}
MQ.init mgState (runConsumerTestApp fixture)
-- publish msg
let email = either (error . show) id $ D.mkEmail "ecky@test.com"
vCode = "vCode"
runPublisherTestApp mqState $ MQ.notifyEmailVerification email vCode

-- wait till the msg come

takeMVar mvar "shouldReturn™ (email, vCode)
initMQ :: I0 ()
initMQ = do
248

CHAPTER 11 TESTING

void $ readProcessWithExitCode "rabbitmqgctl"
["delete vhost", "hauth test auth”
] nn
void $ readProcessWithExitCode "rabbitmqctl"
"add_vhost", "hauth test auth"

[— |

void $ readProcessWithExitCode "rabbitmqctl"

"set_permissions", "-p", "hauth_test auth", "guest"
n * n n * n n * n
KT

—

testConf :: MQ.Config
testConf =
MQ.Config { MQ.configUrl = "amqgp://guest:guest@localhost:5672/
hauth_test_auth"
» M0.configPrefetchCount = 8

}

There are two parts of RabbitMQ: The consumer and the publisher part. The main
thing that we want to test is whether the message from the publisher is consumed
successfully by the consumer. The mechanics of how this is done is by using a mocked
EmailVerificationSender. When building the fixture, we define it so that we put the
parameters into an MVar. We can think of an MVar as a variable that can be shared by
multiple threads. We need this because the consumer runs on separate thread. We use
takeMVar to get the value back from the MVar. This function blocks until the value is
available in an MVar. Once we get the value, we then assert it against our expectations.

Like other modules with an integration test, we also want to test it in a special test
environment and set it up in a pristine state. For RabbitMQ, the environment can be
isolated using a virtual host. In development, our virtual host is “/”. For testing, we will
use “hauth_test_auth”.

Before using, we first need to create the virtual host and assign some permissions
to our credential. The easiest way to do that is by using rabbitmqctl, a command-
line utility that comes packaged when we install RabbitMQ in our system. To invoke
this command-line utility programmatically from our Haskell program, we can
use the process package. We won't go into the details of this package, as this is not
closely related to web development. Suffice it to say that we just use one function,
readProcessWithExitCode, in which we invoke a process then wait for it to finish.

249

CHAPTER 11 TESTING

The preceding code won'’t compile, because we have not added the process package
yet to our test dependencies. To add that, just list it in our package.yaml file like so:

tests:
hauth-test:
dependencies:
- process

Testing Adaptex .HTTP.API.Sexrver.Auth

The Adapter .HTTP.API.Server.Auth module’s main functionality is to parse an HTTP
request, call the right function in AuthService with the correct parameters, and finally
convert the result into an HTTP response. So, the testing approach that we want to

do is to mock AuthService, then send an HTTP request and finally verify whether the
resulting HTTP response is correct.

hspec-wai Crash Course

For testing a WAI application, it’s best to use the hspec-wai® package. This package
provides us with a convenient function to send an HTTP request to our WAI application,
as well as HTTP response matchers. In addition to that, we also want to use the hspec-
wai-json® package that allows us to test JSON response easier. This functionality is very
helpful for testing a RESTful application that uses JSON. Let’s add both packages to our
dependencies:

tests:
hauth-test:
dependencies:
- hspec-wai
- hspec-wai-json

*www.stackage.org/package/hspec-wai
Swww . stackage.org/package/hspec-wai-json

250

http://www.stackage.org/package/hspec-wai
http://www.stackage.org/package/hspec-wai-json

CHAPTER 11 TESTING
To make an HTTP request to a WAI application, we can use the following functions:

type Path = ByteString
type Body = ByteString

get, options, delete :: Path -> WaiSession SResponse
post, put, patch :: Path -> Body -> WaiSession SResponse

SResponse contains any data that you may find in an HTTP response. For
completeness, here’s how SResponse is defined:

SResponse = SResponse
{ simpleStatus :: Status

, simpleHeaders :: ResponseHeaders
, simpleBody :: ByteString
}

data Status = Status
{ statusCode :: Int
, statusMessage :: ByteString

}

type ResponseHeaders = [Header]
type Header = (CI ByteString, ByteString)

CI ByteStringis a case-insensitive ByteString. Basically it allows us to check for
equality without caring about the letter casing.
HTTP response from the application can be asserted using the following function:

shouldRespondWith :: WaiSession SResponse -> ResponseMatcher ->
WaiExpectation

data ResponseMatcher = ResponseMatcher
{ matchStatus :: Int
, matchHeaders :: [MatchHeader]
, matchBody :: MatchBody

}

data MatchHeader = MatchHeader ([Header] -> Body -> Maybe String)
data MatchBody = MatchBody ([Header] -> Body -> Maybe String)

251

CHAPTER 11 TESTING

MatchHeader and MatchBody are basically functions that check the header and body
of the HTTP request and are meant to return a Nothing if the input matches according
to our expectation. We may return Just with the error message and it will treat the
assertion as a failure.

ResponseMatcher is an instance of the Num typeclass. This means that
ResponseMatcher can be created from a number. If we create it from a number, then the
ResponseMatcher will match the HTTP response status code according to the number.
Let’s see an example:

get "/health" "shouldRespondWith™ 200

In the preceding example, we see that we passed in 200 as the second parameter
of the shouldRespondWith function. This number will then be converted to a
ResponseMatcher that matches status code 200.

In addition to Num, ResponseMatcher is also an instance of the IsString typeclass.
This means that we can also create ResponseMatcher from String. If we create a
ResponseMatcher this way, the ResponseMatcher will do an exact match on the HTTP
response body. Let’s see an example:

get "/health" “shouldRespondWith™ "healthy"

In the preceding example, we passed in "healthy" as the second parameter to the
shouldRespondWith function. This String will then be converted to a ResponseMatcher
that asserts that the HTTP response body has to be healthy.

Usually, we want to have multiple assertions of the HTTP response. For example, we
want to ensure that the body and status code are of some certain values.

To do that, we can just override the created ResponseMatcher. An example of that
would be:

get "/health" “shouldRespondWith™ "healthy" { matchStatus = 200 }

The preceding code asserts that the HTTP response should have a status code of 200
and healthy as the body.

When testing JSON RESTful API, we can use a quasiquoter that allows us to build
JSON easily. This quasiquoter comes from the hspec-wai-json package. We use it as
follows:

post "/login" [json|{"username":"uname", "password":"passw"|]
“shouldRespondWith™ [json|"OK"|] { matchStatus = 200 }

252

CHAPTER 11 TESTING

This quasiquoter can be used to create both a ResponseMatcher as well as a
ByteString, as we can see from the preceding code snippet. The first instance of a
json quasiquoter is converted to a ByteString, while the second one is converted to a
ResponseMatcher.

Finally, we will look into one more function: with. This function basically expects an
I0 Application. Application is a WAI application that we want to test against. All in all,
here’s what the test with hspec-wai and hspec-wai-json looks like:

app :: IO Application
app = -- some WAI application

spec :: Spec
spec = with app $ do
describe "GET /health" $ do
it "responds with 200 and healthy" $ do
get "/" “shouldRespondWith™ "healthy" { matchStatus = 200 }

describe "POST /auth" $ do
it "responds with some JSON" $ do
post "/login" [json|{"username":"uname", "password":"passw"|]
“shouldRespondWith™ [json|"0K"|] { matchStatus = 200 }

Refactoring HTTP Module

As we've seen in the hspec-wai section, it expects us to provide an I0 Application.
However, when we look into our HTTP.Main module, we don’t have a function that
exposes an I0 Application. We only have one function, main, that runs the WAI
application. So, we need to refactor this module a bit so that there is a function that
returns an I0 Application. This is quite an easy change; the updated code looks as
follows:

module Adapter.HTTP.Main where

import ClassyPrelude

import qualified Adapter.HTTP.API.Server.Main as API
import qualified Adapter.HTTP.Web.Main as Web

import Domain.Auth.Types

import Katip

253

CHAPTER 11 TESTING

import Network.Wai
import Network.Wai.Handler.Warp
import Network.Wai.Middleware.Vhost

app :: (MonadIO m, KatipContext m, AuthService m)
=> (m Response -> IO Response) -> IO Application
app runner = do
web <- Web.main runner
api <- API.main runner
return $ vhost [(pathBeginsWith "api", api)] web
where
pathBeginsWith path req = headMay (pathInfo req) == Just path

main :: (MonadIO m, KatipContext m, AuthService m)
=> Int -> (m Response -> IO Response) -> I0 ()
main port runner =
app runner >>= run port

Fixture Setup

Let’s continue by creating the necessary boilerplate to allow AuthService to be mocked.
We will create it in the test/Adapter/HTTP/Fixture.hs file. This is because the fixture
can be reused for a Web module test, in addition to an API module test. The fixture code
looks as follows:

module Adapter.HTTP.Fixture where

import ClassyPrelude

import Domain.Auth.Types

import Katip

import Network.Wai

import qualified Adapter.HTTP.Main as HTTP
import Fixture

data Fixture m = Fixture
{ _register :: Auth -> m (Either RegistrationError ())
, _verifyEmail :: VerificationCode -> m (Either EmailVerificationError ())
, _login :: Auth -> m (Either LoginError SessionId)

254

CHAPTER 11 TESTING

, _resolveSessionId :: SessionId -> m (Maybe UserId)
, _getUser :: UserId -> m (Maybe Email)

}

emptyFixture :: Fixture IO
emptyFixture = Fixture
{ _register = const unimplemented
, _verifyEmail = const unimplemented
, _login = const unimplemented
, _resolveSessionId = const unimplemented
, _getUser = const unimplemented

}

newtype App a = App
{ unApp :: ReaderT (Fixture I0) (KatipContextT I0) a
} deriving (Applicative, Functor, Monad, MonadReader (Fixture I0),
MonadIO
, KatipContext, Katip

)

app :: Fixture IO -> IO Application

app fixture = do
le <- initlogEnv "HAuth" "test"
let runner = runKatipContextT le () mempty . flip runReaderT fixture . unApp
HTTP.app runner

instance AuthService App where
register = dispatch _register
verifyEmail = dispatch verifyEmail
login = dispatch login
resolveSessionld = dispatch _resolveSessionId
getUser = dispatch getUser

255

CHAPTER 11 TESTING

Test Implementation

Let’s see one example of a test for this module:

spec :: Spec
spec = do
describe "POST /api/auth/register" $ do
let emailTakenFixture = emptyFixture
{ _register = _ -> return $ Left RegistrationErrorEmailTaken }
with (app emailTakenFixture) $
it "should reject account creation" $
post "/api/auth/register”
[json|{"email": "abc@test.com", "password":"abcDEF123"}|]
“shouldRespondWith™ [json|"EmailTaken"|]
{ matchStatus = 400 }

In the preceding code snippet, we created a fixture where calling a register
would return a RegistrationErrorEmailTaken error. The fixture is then passed as the
parameter for app. Recall that we define app in the test/Fixture.hs file. The result of
the app function is an Application, a WAI application.

The resulting Application is then passed in to the with function. After that, we
use the post function to send an HTTP POST request to our application. The endpoint
we are sending the request to requires a JSON body. For this, we use the [json|...|]
quasiquoter to build our JSON payload. We verify the response as having the correct
status and JSON body using the shouldRespondWith function.

The other tests in this module follow this same pattern, so we will not write all of
them here. You could look into the attached source code for this chapter to see the
complete code for this module.

Testing Config

For the Config module, the main functionality that we want to test is whether we could
read the configuration values from environment variable or not. We will write the code in
the test/ConfigSpec.hs file. Let’s see how the code looks:

module ConfigSpec environment variables
import ClassyPrelude

256

CHAPTER 11

import Test.Hspec

import System.Environment

import Config

import qualified Adapter.PostgreSQL.Auth as PG
import qualified Adapter.RabbitMQ.Common as MQ

spec :: Spec
spec = before initEnv $ do
it "should fail if PORT is missing" $ do
unsetEnv "PORT"
void fromEnv “shouldThrow™ anyException
it "should fail if PORT is not a number" $ do
setEnv "PORT" "NOT A NUMBER"
void fromEnv “shouldThrow™ anyException
it "should fail if REDIS URL is missing" $ do
unsetEnv "REDIS_URL"
void fromEnv ~shouldThrow™ anyException
it "should fail if MQ URL is missing" $ do
unsetEnv "MQ_URL"
void fromEnv ~shouldThrow™ anyException
it "should fail if PG _URL is missing" $ do
unsetEnv "PG_URL"
void fromEnv “shouldThrow™ anyException
it "should parse config correctly” $
fromenv “shouldReturn™ Config
{ configPort = 1234
, configRedis = "REDIS_URL"
, configMQ = MQ.Config "MQ_URL" 16
, configPG = PG.Config "PG_URL" 2 5 10

initEnv :: I0 ()

initEnv = do
setEnv "PORT" "1234"
setEnv "REDIS URL" "REDIS URL"
setEnv "MQ URL" "MQ URL"
setEnv "PG_URL" "PG_URL"

TESTING

257

CHAPTER 11 TESTING

In the preceding code snippet, we have an initEnv function to initiate the
environment variables. We use the setEnv function from the System.Environment
module to set the environment variables.

initEnv is used as the first parameter in the before function. The before function
comes from hspec. The main difference between before and beforeAll is that before
is executed for every test case (the it), while beforeAll is only executed once in the test
group.

Let’s look into some test cases of the preceding code. The first five of the test cases
check whether the fromEnv will throw an exception if the required environment variable
is not set. To check whether the function throws an exception, we use the shouldThrow
function provided by hspec. Since we are fine with any exception, as long as something is
thrown, then we use anyException. The second parameter of shouldThrow is actually a
predicate. So, if you have a specific concrete exception you would like to verify, then you
can do so as follows:

someAction “shouldThrow™ (== ExitFailure 1)

In the final test case, we check for the happy case: we check whether the
environment is parsed successfully. This would require us to make Config an instance of
the Eq typeclass, so make the change as required.

Code Coverage

Code coverage is one of many code quality metrics. It basically tells you how much
of your code has been tested. The higher it is, the more confident you are that your
application works as intended.

We can generate such metrics using the following command:

$ stack test --coverage

The preceding command should produce an output that shows where the generated
coverage report is located. Figure 11-1 shows what the coverage report looks like. In our
case, we managed to reach around 50% of coverage. We can also click into each module
to see which part of the code has not been covered. Figure 11-2 shows an example of this.

258

CHAPTER 11 TESTING

[100%[35/35
| | 27%[1348 |

Figure 11-1. Coverage report summary

never exccuted always true INEUSNESISS

module Domain.huth.Service where

import ClassyPrelude
import Domain.huth.Types
import Control.Monad.Except
import Katip

class (Monad m) => AuthRepo m where
addAuth :: Auth -> m (Either RegistrationError (UserId, VerificationCode))
setEmailAsVerified :: VerificationCode
=> m (Either EmailVerificationError (Userld, Email))
findUserByAuth :: Auth -> m (Maybe (UserId, Bool))
findEmailFromUserId :: Userld -> m (Maybe Email)

CoOSamewhN -

clasas (Monad m) => EmailVerificationNotif m where
notifyEmailverification :: Email -> VerificationCode -> m ()

class (Monad m) => SessionRepo m where
newSession :: Userld -> m Sessionld
findUserIdBySessionld :: Sessionld -> m (Maybe Userld)

withUserIdContext :: (KatipContext m) => Userld -> m a -> m a
withUserIdContext uld = katipAddContext (sl "userId” uld)

register :: (KatipContext m, AuthRepo m, EmailVerificationNotif m)
=> Auth -> m (Either RegistrationError ())

register auth = runExceptT § do

(uld, vCode) <- ExceptT $ addAuth auth

let email = authEmail auth

lift $ notifyEmailVerification email vCode

withUserIdContext uld §

$(logTM) InfoS § ls (rawEmail email) <> " is registered successfully”

verifyEmail :: (KatipContext m, AuthRepo m)
=> VerificationCode -> m (Either EmailVerificationError ())
verifyEmail vCode = runExceptT § do
(uld, email) <- ExceptT § sctEmailAsVerified vCode
withUserIdContext uld $
$(logTM) InfoS $ ls (rawEmail email) <> " is verified successfully”
return ()

login :: (KatipContext m, RAuthRepo m, SessionRepo m)
=> Auth -> m (Either LoginError SessionId)
login auth = runExceptT § do
result <- lift $§ findUserByAuth auth
case result of
Nothing -> throwError LoginErrorInvalidAuth
Just (_, False) -> th ror Logi ror ilNotVerified
Just (uld, _) -> withUserIdContext uld . lift $ do

Figure 11-2. Coverage report detail for a module
259

CHAPTER 11 TESTING

Summary

In this chapter, we learned about automated testing of a Haskell application. Doing
automated testing requires our application architecture to be testable. The strategy
that we took to make our application testable is by using typeclass to separate between
the protocol (port) and the actual implementation (adapter). In the test, we mock the
protocol so that we can test various scenarios.

The testing framework that we chose was hspec. hspec provides a nice, human-
readable API that we can use to build our test cases. For testing a WAI application, we
use a package called hspec-wai or hspec-wai-json. Both packages provide a nice, high-
level syntax for executing an HTTP request to a WAI application as well as asserting the
HTTP response.

In terms of writing the test, we use a mix of unit testing and integration testing. We
write integration tests for adapter components. For example, we test the PostgreSQL
adapter component against the actual PostgreSQL database. For domain components,
we use a unit testing approach with the help of mocks. We've seen how we could easily
create test fixtures without resorting to external packages.

Last but not least, we also looked into code coverage report. It’s simply just one
command line parameter to enable it. We've walked through the report and understood
which part of our code has not been covered in test.

The resulting code for this chapter can be found in the files that shipped along with
this book.

260

CHAPTER 12

Deployment

In previous chapters, our main focus was on the development part of the application.
We've seen the result: we have a slick web application that we can run locally. However,
eventually we will need to deploy it to a server so that more people are able to access it.
In this chapter, we will turn our focus into the deployment part of the application. We will
first learn to build the application for production and then finally deploy it with Docker.

Building Application for Production

Our application requires some external resources to be able to run correctly, for
example, images and SQL migration files. This needs to be taken into consideration
when building an application that is easily shippable. In addition to that, we also want to
use many tools that statically analyze our code for common Haskell pitfalls. This helps to
prevent trivial issues from appearing in production. In this section we will look into code
quality tools and how to package our external resources, along with application binary.

GHC Compiler Flags

The first tool that we will look at for ensuring our code quality is not exactly a tool, but rather
some flags in our compiler. GHC comes with functionalities that would warn of common
mistakes in Haskell source code. We just need to enable that by specifying the correct flags.
Add the following lines at the root of your package.yaml file for enabling them:

ghc-options:

- -Wall

- -Werror

- -Wincomplete-record-updates
- -Wincomplete-uni-patterns

- -Wredundant-constraints

261
© Ecky Putrady 2018

E. Putrady, Practical Web Development with Haskell, https://doi.org/10.1007/978-1-4842-3739-7_12

CHAPTER 12 DEPLOYMENT

The -Wall flag enables GHC to warn for basic, common mistakes. Some examples of
warning produced with this flag are unused imports, usage of tabs, and unused variables.

The -Wincomplete-record-updates flag checks for a record update that might fail at
runtime. Let’s see an example code:

In the preceding example, the code will compile just fine. However, if f is called with C,
then the program will crash at runtime. With -Wincomplete-record-updates enabled,
this code will produce a warning.

-Wincomplete-uni-patterns checks for incomplete pattern matching in lambda
expressions. For example, the following code will produce a warning if this flag is
enabled:

a=\[] ->2
-Wredundant-constraints checks for constraints that are unnecessary. For example:
f :: (Monad m, MonadIO m) => m ()

In the preceding example, Monad constraint is unnecessary because MonadIO already
implies Monad constraint

Unfortunately, this flag does not detect redundant constraints in type if we use
ConstraintKinds language pragma. For example, the following code does not produce
any warning:

type Repo m = (Monad m, MonadIO m)
f :: Repom=>m ()

-Werror turns any warning into a fatal error during compilation. This effectively
causes the build to fail if there is any warning in our code. Without enabling this flag,
the warnings will all just be printed and not fail the build. Since our purpose is to build a
production-ready application, it’s better to turn this flag on to make sure we address any
warnings that might cause production issues.

262

CHAPTER 12 DEPLOYMENT

Once we have enabled those flags, we can then run our build command as per
normal:

$ stack build

If you run it in our current codebase, you might notice that we have triggered a lot of
warnings. As an exercise, [would suggest cleaning all the warnings by yourself. See how
and why they are a warning.

HLint

HLint! is a tool that analyzes Haskell code and provides code improvement suggestions.
The suggestion could range from style, unnecessary parenthesis, or alternative function
to use that leads to a more performant and shorter code.

Install HLint using stack as follows:

$ stack install hlint
Then, we can use it by:

$ hlint .

If you run the preceding command in our project, you will notice that there are some
warnings being triggered, for example, unnecessary usage of do keywords. Try fixing all
those warnings.

It’s possible to tell HLint to ignore certain warnings by writing some configurations.
HLint reads a configuration file named .hlint.yaml in the same directory where HLint is
run. The easiest way to write this file is by fixing all warnings that we think it’s necessary
to fix, while leaving ones that we think are unnecessary. Then, we run the following

command:
$ hlint . --default > .hlint.yaml

The preceding command will generate a settings file that ignores all outstanding
warnings.

'www. stackage.org/package/hlint

263

http://www.stackage.org/package/hlint
http://www.stackage.org/package/hlint

CHAPTER 12 DEPLOYMENT

Weeder

Weeder? detects, among other things, unused Haskell exports and unused dependencies
packages. We accumulate code over time. The stuff that we used previously might not be
used anymore due to the code change that we made. Weeder frees us from doing these
checks manually.

Install Weeder using stack as follows:

$ stack install weeder
Then, we can run it as follows:
$ weeder .

If you run the preceding command in our project, you will get a lot of warnings about
unused packages. This is because we put all our package dependencies at the top level
of our package.yaml file. This means our application, library, and test code depend on
that module. We did that for simplicity. However, it’s better to keep things minimal and
clean. So, let’s fix those warnings by moving appropriate dependencies to an appropriate
compilation group.

Like HLint, we may also choose to ignore certain warnings. Weeder reads a
configuration named .weeder.yaml in the same directory where the tool is run. We can
generate this configuration by issuing the following command:

$ weeder . --yaml > .weeder.yaml

This puts outstanding warnings in the configuration file and marks them as ignored.

hpc-threshold

hpc-threshold? is a tool to ensure that code coverage is above some configurable
thresholds. This is useful to keep new code being sufficiently tested over time.
Install this package by issuing the following command:

$ stack install hpc-threshold

“www.stackage.org/package/weeder
Shttps://hackage.haskell.org/package/hpc-threshold

264

http://www.stackage.org/package/weeder
http://www.stackage.org/package/weeder
https://hackage.haskell.org/package/hpc-threshold

CHAPTER 12 DEPLOYMENT

If you get an error saying this package is not found, it means that the package is not
available in Stackage yet. We can add the package in our stack.yaml file to fix this:

extra-deps:
- hpc-threshold-0.1.0.3

Next, we proceed to create a configuration file. This program reads a configuration
from a file named . hpc-threshold that presents in the same directory where the
program is run. The contents of the configuration file are as follows:

[Threshold
{ thresholdName = "Expressions used"
, thresholdRegex = "(\\d+)% expressions used"
, thresholdValue = 45.0
}
, Threshold
{ thresholdName = "Boolean coverage"

, thresholdRegex
, thresholdValue
}

, Threshold
{ thresholdName
, thresholdRegex
, thresholdValue
}

, Threshold
{ thresholdName = "Local declarations used"
, thresholdRegex = "(\\d+)% local declarations used"
, thresholdValue = 65.0
}

, Threshold
{ thresholdName = "Top-level declarations used"
, thresholdRegex = "(\\d+)% top-level declarations used"
, thresholdValue = 45.0

}

"(\\d+)% boolean coverage"
15.0

"Alternatives used"
"(\\d+)% alternatives used"
45.0

265

CHAPTER 12 DEPLOYMENT

As you might have noticed, the file format is actually a default Show instance
of a Haskell record. Each Threshold configuration represents the thing that we
need to check. Most of the time, you only want to configure the thresholdValue.
This is the threshold that the code coverage needs to reach before it is considered
to be passing.

Run this program by using this command:

$ stack build --test --coverage
$ (stack hpc report --all 2>81) | hpc-threshold

The first command is used to build the coverage report. In the second command,
we use stack hpc report to print those reports to stdout. Please note that 2>81
is necessary because the stack hpc report command prints the result in stderr.
The 2>81 is there to pipe stderr to stdout. The stdout stream is then piped to
hpc-threshold to be processed.

An example output of this program is as follows:

$ (stack hpc report --all 2&>1) | hpc-threshold
Code coverage threshold check: FAIL
Expressions used: 67.0% (< 45.0%)
Boolean coverage: 14.0% (< 15.0%)
Alternatives used: 42.0% (< 45.0%)
Local declarations used: 88.0% (> 65.0%)
Top-level declarations used: 80.0% (> 45.0%)

Build Script

In the previous sections, we have explored various compiler flags and tools that help
improve our Haskell code quality. Ideally, we just want a single command to run all
of the above. Hence we need to write a script whose purpose is to build and apply
the code quality tools. We want the build to fail if there are any warnings from the
tools that we used. The build process also includes packaging external resources,
like SQL migration files, images, and other files that are necessary to make our
application run correctly.

266

CHAPTER 12 DEPLOYMENT

The simplest way to achieve this is by simply using bash script. Let’s name it build.
sh and put it at the root of our project. Here’s the content of the script:

#1/bin/bash
set -e # makes the script fail if any one of the below operation fails

##t# prepare for distribution

m -rf dist
mkdir dist

build & test

echo "Build & test”

stack build --test --coverage

echo "Build & test finished with exit code $?"

cp -r $(stack path --local-install-root)/bin dist/bin

##t# copy non-hs resources

cp - app dist/app

cp -r src dist/src

cd dist

find . -name "*.hs" -type f -delete
find . -type d -empty -delete

cd ..

code quality tools

echo "Installing code quality tools"
stack install hlint weeder hpc-threshold

echo "Running HLint ...
hlint .
echo "HLint finished with exit code $?"

echo "Running Weeder ...
weeder .
echo "Weeder finished with exit code $?"

267

CHAPTER 12 DEPLOYMENT

echo "Running hpc-threshold ..."
(stack hpc report --all 2>&1) | hpc-threshold
echo "hpc-threshold finished with exit code $?"

report
echo "Build finished. see /dist."

At high-level, the script does the following:
1. Prepare ./dist as the folder for build artifacts distribution.

2. Build and test the application and put the result in the . /dist
folder.

3. Copy extra files that are necessary for running the application.
4. Run code quality tools: HLint, Weeder, hpc-threshold.

By having this script, our build process is simplified from running multiple
commands to just one command: . /build.sh.

Our build result should be available in the . /dist folder. For running the resulting
application, we may do the following:

$ cd dist
$./bin/hauth-exe

It’s essential to run the application from dist instead of from the dist/bin folder.
This is so the external resources like SQL migrations and images are picked up correctly
when the application is run.

Building and Deploying with Docker

With our existing build process, the compiled Haskell application is unfortunately not
portable. For example, if we build the application on a MacBook Air and then try to
run it on an Ubuntu machine, then we’ll get an error saying that the system can’t run
the executable. This is because there are missing libraries that are not included in the
resulting application. This situation is not ideal, because this forces our build machine
to be the same as our target machine—which is not always the case. Fixing the build
process is unfortunately quite complicated. Instead of doing that, we will use another
approach to make our application easily runnable on any machine.

268

CHAPTER 12 DEPLOYMENT

Nowadays, Docker* is one of the most popular choices for shipping an application.
There is a big and growing ecosystem around it. Major cloud providers built toolings to
support it. For example, Google developed Kubernetes® to do container orchestration.
Amazon provided ECS® that allows us to easily deploy Docker-based applications.

In a nutshell, we can think of a Docker container as a lightweight virtual machine.
We can leverage Docker to solve our portability problem. The idea is that we build our
application in a Docker container. The result is then packaged into another Docker
container. This container is then shipped to the target machine. As long as the target
machine has Docker in it, we can run any Docker container, including our application.

We need to separate the container to build the application and the container to run
the application. When running the application, we don’t need GHC and many other
tools that are used to build the application. GHC is heavy in size. Having this in your
container considerably increases the size of your container. It’s always better to reduce
your container to the absolute minimum to run the application.

We will use the following script, scripts/docker-build. sh, to build our application
in a Docker container:

#1/bin/bash

docker run \
-v ~/.stack:/root/.stack \
-v .:/root/work \
eckyputrady/haskell-build-web:1ts-10.3

cd scripts

cp -r ../dist ./dist

docker build -t eckyputrady/hauth:latest .
m -rf ./dist

The docker run ... command is the one that builds the application inside a
docker container. This uses a Docker image—a template to build a docker container—
eckyputrady/haskell-build-web. This image contains everything that is necessary to
build the application, including GHC, PostgreSQL, RabbitMQ, and Redis. The results of
the build are then available in the dist folder of our project.

‘www . docker . com/
https://kubernetes.io/
https://aws.amazon.com/ecs/

269

http://www.docker.com/
http://www.docker.com
https://kubernetes.io
https://aws.amazon.com/ecs/

CHAPTER 12 DEPLOYMENT

The second Docker command, docker build -t ..., instructs Docker to package
our application into a Docker image named eckyputrady/hauth:latest. The Docker
image is created from the Dockerfile file in the same folder with the following content:

FROM eckyputrady/haskell-run:1ts-10.3

COPY ["./dist", "/dist"]
ENTRYPOINT respawn ./bin/hauth-exe

Suffice it to say that the preceding script tells Docker to base off the image from
another Docker image named eckyputrady/haskell-run:1ts-10.3, copy the dist
folder from our computer into the image, and run respawn ./bin/hauth-exe when the
container is run.

Now that we have a Docker image for our application, we can ship it to any
machine that has Docker in it. A common workflow is to push this image into a Docker
Registry—a repository of Docker images—and have your target machine pull the image
from this registry and then run it.

Since our machine has Docker in it, then it means we can run the Docker image
that we've just build. Since we need PostgreSQL, RabbitMQ, and Redis to be able to run
the application, we will use Docker Compose” to start it. In a nutshell, Docker Compose
is a tool that allows us to orchestrate multiple docker containers. We use the following
Docker Compose script that we put in scripts/docker-compose.yaml:

version: "3.3"
services:
hauth:
image: eckyputrady/hauth:latest
environment:
- PORT=3000
- PG_URL=postgresql://hauth:hauthpass@postgres:5432/hauth
- MQ_URL=amqp://hauth:hauthpass@rabbitmq:5672/%2F
- REDIS URL=redis://redis:6379/0
depends_on:
- postgres
- redis
- rabbitmq

"https://docs.docker.com/compose/

270

https://docs.docker.com/compose/

CHAPTER 12

ports:
- "80:3000"

postgres:
image: postgres:9.6
environment:
- POSTGRES_PASSWORD=hauthpass
- POSTGRES_USER=hauth
- POSTGRES_DB=hauth
ports:
- "5432:5432"

redis:
image: redis:4
ports:
- "6379:6379"

rabbitmq:
image: rabbitmq:3-management
hostname: rabbitmq
ports:
- "15672:15672"
environment:
- RABBITMQ_ DEFAULT USER=hauth
- RABBITMQ_ DEFAULT_PASS=hauthpass

DEPLOYMENT

We won'’t dive into the details of Docker Compose in this book. Suffice it to say that
the preceding script sets up PostgreSQL, Redis, and RabbitMQ, then finally links them to

our application.

We may run this script by going to the scripts folder and typing the following

command in our terminal:

$ docker-compose up

Once everything has been up and running, we may open our browser and go to

http://localhost to see that our application is running correctly.

271

CHAPTER 12 DEPLOYMENT

Summary

In this chapter, we've learned about deployment of a Haskell application. We started
by ensuring that our application contains a good quality code by running various static
analysis tools. Our static analysis tools consist of GHC compiler flags, HLint, Weeder,
and hpc-threshold. Those tools have done a great job to point out multiple issues in
our code.

The build and deployment strategy that we chose is Docker. Docker fixes the
portability problem of a Haskell application by allowing it to run on any machine that
has Docker in it. We deliberately chose to separate the container to build and to run the
application for efficiency purposes.

The modified code and various scripts that we have worked on in this chapter
are available in the zip file with the same name as this chapter that comes along
with the book.

272

Index

A C

amgp package Cabal file, 5-7
channels, 115-116 CacheContainer, 187
connection, 114-115 ClassyPrelude
consuming messages, 120-121 bracket function, 78
declaring exchange, 116-117 data structures, 13-15
publishing message, 119-120 enable, 10
queue, binding, 118 stack build, 10-11
queues, declaring, 117-118 Code coverage report, 258-259
Application-wide Configurable application
configuration, 213 application-wide configuration, 213
Auth data structure Config module, 215-216
create safer domain types, 44 devConfig function, 215
dependent kind, 39 Lib module, 211
DomainValidation module, 41 preceding function, 214
independent kind, 39 REPL, 216
length checking validation, 42 withState function, 212
mkEmail, 40 Connection pool, 87-88
RegistrationError, 39 Consuming messages, 120-121
types, 38 Contextual logging, 73-74
validate function, 41 Cookie, 145-147

Automatic test discovery, 227

D
B Digestive-functors package, 147-150
Build process Docker deployment
bash script, 267-268 container, 269
Docker deployment, 269-271 Docker Compose, 270-271
ByteString array, 11 image, 270

273
© Ecky Putrady 2018

E. Putrady, Practical Web Development with Haskell, https://doi.org/10.1007/978-1-4842-3739-7

https://doi.org/10.1007/978-1-4842-3739-7

INDEX

Domain modeling
Auth data (see Auth data structure)
email verification, 47-48
in-memory database, 65-66
login and resolving session, 48-50
port and adapter architecture, 35-37
registration, 44-46
safe functions, 52
user page, 51

Driving adapters, 219-223

E,F

ECS, 269

Email verification, 47-48

Environment variable, 210

errorList function, 181

Exception handling
asynchronous exception, 30
catchAny, 32
impure exception, 29-30
run function, 32
ServerException, 31-32
synchronous exception, 30

G

Glasgow Haskell Compiler (GHC), 2
compiler flags, 261-263

H

Haskero, 3-4
hedis package, Redis
checkedConnect, 105
Connectlnfo, 106
integrating package
import, 108

274

Lib module, 110-111
repository implementation,
108-110
parseConnectInfo, 106
runRedis, 107
set function, 106
Hello world application, 136-137
HLint tool, 263
hpack application, 7
hpc-threshold tool, 264-266
hspec testing framework
automatic test discovery, 227
create file, 228-229
HTTP module
Config module, 256, 258
10 Application, 253-254, 256
WAI application, 250-253
mocking port components
empty fixture, 233
external dependencies, 235-241
monad transformer stack, 233-234
repo, 232
organization method, 227
PostgreSQL
beforeAll function, 242
pending function, 242
test module, 243-246
RabbitMQ, 247-250
Redis, 246-247
smart constructors, 230-231
HTML, 173-174
HTTP Client
Adapter. HTTP.API.Client.Auth, 201,
203-205
Adapter. HTTP.API.Client. Common,
201-203
manager, 190-191

REPL, 206-208
request, 191-192
response, 192
synchronous exceptions, 192-193
HTTP request
header, 140
http-conduit package, 189
path parameter, 139
query parameters, 139
req package, 189
wreq package, 189
HTTP response, 142-143

Impure exception, 29-30
In-memory database
AuthRepo, 61, 63-64
domain logic, 65-66
EmailVerificationNotif, 60-61
PostgreSQL (see PostgreSQL)
Redis (see Redis)
REPL, 64
repositories, 56-59
SessionRepo, 59
STM, 53-55
Integration testing, 219

J

JSON
aeson, 22-24
camelCase field, 28
fieldLabelModifier, 27
field name, 26
REPL, 28
string, 24-25
TemplateHaskell, 26-27

INDEX

K
Katip logging
bracket function, 78
data structure, 70-71
guidelines, 71
import, 76-77
KatipContext, 73-74
LogEnv, 74-75
REPL, 77-78
scribe, 72-73
user id
AuthRepo, 79
Lib module, 82-83
register function, 79-80
repo implementation, 80, 82
Key-value system, 105
Kubernetes, 269

L

LByteString function, 11, 146
Logging
katip (see Katip logging)
putStrLn, 69
LText, 11

Middleware, 143-145
Minimal web framework
scotty (see Scotty)
servant, 135
yesod, 135
Monad transformer stack, 233-234

N

NominalDiffTime, 16, 18

275

INDEX

O

Object-relational mapping (ORM), 86
Organization method, 227-228
Orphan instance warning, 198

P

Partial function, 9
Pending test, 242
Port and adapter architecture, 35-37
Port components
driving adapters, 219-223
RabbitMQ, 224-226
PostgreSQL
integrating package
importing, 94
Lib module, 103-104
migration function, 95-97
repositories implementation, 97,
99-102
ORM vs. non-ORM, 86
postgresql-simple
connectPostgreSQL, 87
database migration, 89-91
database queries, 91-93
vs. hasql, 87
resource-pool, 88-89
transaction, 93-94
Publishing message, 119-120
Push-based consumers, 124-125

Q

QuasiQuotes language extension, 20-21
Queueing system

external, 113

See also RabbitMQ
Queues, 117-118

276

R

RabbitMQ
acquiring connection, 122-123
amgp (see amqp package)
consuming messages, 125-127
creating network topology,
124-125
email verification, 122
integrating application,
130-131, 133
publishing messages, 125-127
push-based consumers, 124-125
repository implementation,
127-130
use case, 113
Read-Eval-Print-Loop (REPL), 2, 9
Redis
hedis (see hedis package, Redis)
key-value system, 105
Regular expression (Regex), 20-21, 138
req package, 189
resource-pool package, 88-89
RESTful APIs
Adapter. HTTP.API.Auth, 153,
157-160
Adapter. HTTP.Common, 153-156
Adapter.HTTP.Main, 153, 160-161
dependencies, 153
functionalities, 150-153
JSON
Adapter.HTTP.APL.Types.
AesonHelper, 193-197
Adapter.HTTP.APL.Types.Auth,
197-198
API server refactoring, 198-200
Lib module, 162-163
scotty (see Scotty)

INDEX

S LText, 11
string, 11

Scotty &
text, 11

cookie, 145-147
digestive-functors, 147-150
hello world application, 136-137
HTTP request, 138-140

HTTP response, 142-143

HTTP verbs, 138 T, U
libraries, 135
middleware, 143-145
routes, 137-138 timeZone, 16

ScottyError, 140, 142 UTCTime, 16-17

Scribe logging, 72-73 ZonedTime, 16-19
Servant framework, 135

Software Transactional Memory

Stripe, resource-pool, 88
Synchronous exceptions, 192-193
System.Environment module, 210

Time library
NominalDiffTime, 16, 18

(STM), 53-55 Vv
Stack Vhost middleware, 171
create new project, 1 Visual Studio Code, 3
exposed-modules, 6
GHC, 2
hauth.cabal file, 5, 7 W, X
hpack, 6-7 WAI applications, 135
install, 1 API functions, 167-168
--pedantic argument, 2 dependencies, 166
REPL, 2 dummy routes, 169
src folder, 5 hspec-wai, 250-253
stack.yaml, 5 HTTP module, 165-166
test folder, 5 modification, 170-171
Static analysis tools REPL, 172
GHC compiler flags, 261-263 for RESTful API, 168-169
HLint, 263 vhost, 171
Weeder, 264, 266 Web module
staticPolicy middlewares, 186-187 create, 172-173
String-like types email verification, 177-179
ByteString, 11 HTML, 174
functions to convert, 12 login page, 184-186
LByteString, 11 outline, 174-175

277

INDEX

Web module (cont.)
registration page, 179-183
routes function, 175-176
users page, 176-177

Weeder
configuration file, 264
hpc-threshold tool, 264-266

278

install, 264
withState function, 212
wreq package, 189

Y,Z

Yesod, 135

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	Stack
	Haskell IDE
	Default Project Structure
	The Build Configuration
	Summary

	Chapter 2: Practical Haskell
	ClassyPrelude
	String, Text, and ByteString
	Data Structures and Operations

	Date and Time
	Regular Expression
	JSON
	Exception Handling
	Summary

	Chapter 3: Domain Modeling
	Port and Adapter Architecture
	Auth Data Structure
	Types Definition
	Validation Implementation
	mkEmail and mkPassword Implementation

	Registration
	Types Definition
	Implementation

	Email Verification
	Types Definition
	Implementation

	Login and Resolving Session
	Types Definition
	Implementation

	User Page
	Exposing Safe Functions
	In-Memory Database
	Software Transactional Memory
	Repositories Implementation
	SessionRepo Implementation
	EmailVerificationNotif Implementation
	AuthRepo Implementation
	Verification in REPL

	Tying Everything Together
	Summary

	Chapter 4: Logging
	When putStrLn Is Not Enough
	Katip
	Log Structure
	Scribe
	KatipContext
	LogEnv
	Working with Katip

	Integrating Log in Our Project
	Summary

	Chapter 5: Databases
	PostgreSQL
	ORM vs. Non-ORM
	postgresql-simple
	Connection Management
	Connection Pool
	Database Migration
	Queries
	Transaction

	Implementation

	Redis
	hedis
	Implementation

	Summary

	Chapter 6: Queues
	amqp Package Overview
	Connection and Channel
	Declaring Exchange, Queue, and Binding
	Publishing Messages
	Consuming Messages

	Implementation
	Acquiring Connection
	Creating Network Topology and Initializing Push-Based Consumers
	Publishing and Consuming
	Repository Implementation
	Tying Them All Up

	Summary

	Chapter 7: RESTful APIs
	Scotty Basics
	Hello, Scotty
	Routing
	Request Parameters
	Handling Exceptions
	Building Responses
	Middleware
	Cookies
	Input Validation

	Implementing RESTful API
	Overview
	Adapter.HTTP.Common Implementation
	Adapter.HTTP.API.Auth Implementation
	Adapter.HTTP.Main Implementation
	Modification in Lib Module
	Running the Application

	Summary

	Chapter 8: Web Programming
	Serving Multiple WAI Applications
	Implementing Web Module
	Summary

	Chapter 9: HTTP Client
	http-client package
	Manager
	Request
	Executing a Request
	Response
	Exceptions

	RESTful API Client for Our Project
	JSON Payload
	Adapter.HTTP.API.Types.AesonHelper Implementation
	Adapter.HTTP.API.Types.Auth Implementation
	API Server Refactoring
	Module Refactoring
	HTTP Client Implementation
	Adapter.HTTP.API.Client.Common Module
	Adapter.HTTP.API.Client.Auth Module
	Verifying Implementation with REPL

	Summary

	Chapter 10: Configuration
	System.Environment Module
	Making Our Application Configurable
	Summary

	Chapter 11: Testing
	Making Our Application More Testable
	Test Implementation
	Test Framework Setup
	Testing Domain.Validation
	Testing Domain.Auth.Types
	Testing Domain.Auth.Service
	Testing Adapter.PostgreSQL.Auth
	Testing Adapter.Redis.Auth
	Testing Adapter.RabbitMQ.Auth
	Testing Adapter.HTTP.API.Server.Auth
	hspec-wai Crash Course

	Refactoring HTTP Module
	Fixture Setup
	Test Implementation

	Testing Config

	Code Coverage
	Summary

	Chapter 12: Deployment
	Building Application for Production
	GHC Compiler Flags

	HLint
	Weeder
	hpc-threshold

	Build Script
	Building and Deploying with Docker
	Summary

	Index

