
Practical
Haskell

A Real World Guide to Programming
—
Second Edition
—
Alejandro Serrano Mena

www.allitebooks.com

http://www.allitebooks.org

Practical Haskell
A Real World Guide to Programming

Second Edition

Alejandro Serrano Mena

www.allitebooks.com

http://www.allitebooks.org

Practical Haskell: A Real World Guide to Programming

ISBN-13 (pbk): 978-1-4842-4479-1   		 ISBN-13 (electronic): 978-1-4842-4480-7
https://doi.org/10.1007/978-1-4842-4480-7

Copyright © 2019 by Alejandro Serrano Mena

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484244791. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Alejandro Serrano Mena
Utrecht, The Netherlands

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4480-7
http://www.allitebooks.org

To Elena, and my two boys Quique and Julio, which bring
me joy every single day.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

Table of Contents

Part I: �First Steps��� 1

Chapter 1: Going Functional�� 3

Why Haskell?��� 3

Why Pure Functional Programming?�� 4

Why Strong Static Typing?�� 6

The Haskell Ecosystem��� 7

The History of Haskell�� 8

Your Working Environment��� 8

Installing on Windows or Mac OS X�� 9

Installing on Linux�� 9

First Steps with GHCi��� 11

The Time Machine Store�� 13

Summary��� 14

Chapter 2: Declaring the Data Model��� 17

Characters, Numbers, and Lists��� 17

Characters�� 18

Numbers��� 19

Strings�� 21

Lists�� 22

www.allitebooks.com

http://www.allitebooks.org

vi

Creating a New Project�� 27

Creating a Project with Cabal��� 27

Creating a Project with Stack��� 29

Understanding Modules�� 31

Cabal and Stack�� 33

Defining Simple Functions��� 33

Creating a Simple Function�� 34

Specifying the Function’s Type��� 34

Developing a Robust Example�� 35

Returning More Than One Value��� 38

Working with Data Types�� 40

Pattern Matching�� 44

Records�� 56

Summary��� 62

Chapter 3: Increasing Code Reuse��� 63

Parametric Polymorphism�� 64

Functions As Parameters��� 67

Higher-Order Functions�� 68

Anonymous Functions�� 70

Partial Application of a Function��� 73

More on Modules��� 77

Module Imports�� 77

Smart Constructors and Views��� 79

Diving into Lists��� 82

Folds��� 83

Lists and Predicates��� 87

Lists Containing Tuples��� 95

List Comprehensions�� 96

Haskell Origami�� 101

Summary��� 106

Table of Contents

vii

Chapter 4: Using Containers and Type Classes�� 109

Using Packages�� 110

Managing Dependencies�� 111

Building Packages�� 113

Obtaining Help�� 118

Containers: Maps, Sets, Trees, Graphs��� 118

Maps��� 119

Sets�� 124

Trees��� 126

Graphs�� 129

Ad Hoc Polymorphism: Type Classes�� 132

Declaring Classes and Instances�� 133

Built-in Type Classes�� 137

Binary Trees for the Minimum Price��� 143

Step 1: Simple Binary Trees�� 143

Step 2: Polymorphic Binary Trees��� 145

Step 3: Binary Trees with Monoidal Cache��� 147

Container-Related Type Classes��� 150

Functors��� 150

Foldables�� 153

Summary��� 155

Chapter 5: Laziness and Infinite Structures�� 157

An Infinite Number of Time Machines�� 158

Lazy Evaluation Model��� 163

Understanding Evaluation in Haskell�� 163

Problems with Laziness�� 168

Pattern Matching and Laziness�� 171

Profiling with GHC�� 173

Strictness Annotations��� 179

Summary��� 182

Table of Contents

viii

Part II: �Data Mining�� 183

Chapter 6: Knowing Your Clients Using Monads�� 185

Data Mining�� 186

Implementing K-means�� 186

Lenses�� 193

Discovering Monads��� 202

Watching Out for Incomplete Data�� 202

Combinators for State�� 205

Dissecting the Combinators��� 209

do Notation��� 212

Monad Laws��� 216

Different Sorts of State�� 217

State and Lenses�� 218

Reader, Writer, and RWS��� 220

Mutable References with ST�� 224

Summary��� 227

Chapter 7: More Monads: Now for Recommendations�� 229

Returning More Than One Value��� 230

The List Monad��� 230

A New View Over Monads��� 232

Failures and Alternatives�� 233

Association Rules Learning�� 237

Flattening Values into Transactions�� 238

The Apriori Algorithm�� 241

Search Problems�� 247

Paths in a Graph��� 247

The Logic Monad�� 249

Monads and Lists Redux�� 252

Combining Values Under a Monad�� 252

Monad Comprehensions��� 256

Table of Contents

ix

Combining Monads�� 259

Monad Transformers��� 260

Monad Classes��� 265

Summary��� 268

Chapter 8: Working in Several Cores��� 269

Parallelism, Concurrency, and Distribution�� 269

The Par Monad��� 271

Futures��� 271

Dataflow Parallelism with IVars�� 274

Parallelizing the Apriori Algorithm�� 276

Software Transactional Memory�� 279

Concurrent Use of Resources��� 280

Atomic Transactions��� 282

Rolling Back Transactions��� 286

Producer-Consumer Queues�� 288

Single-Process Queues�� 288

Message Queues Using AMQP�� 290

AMQP in Haskell��� 293

Summary��� 296

Part III: �Resource Handling�� 299

Chapter 9: Dealing with Files: IO and Conduit��� 301

Basic Input and Output��� 302

Randomness�� 307

Working with Files��� 310

Reading and Writing��� 310

Handling Files��� 314

Error Handling�� 316

Pure Errors��� 316

Catching Exceptions��� 319

Throwing Exceptions�� 324

Table of Contents

x

Streaming Data with Conduit��� 326

Problems with Lazy Input/Output��� 326

Introducing Conduits�� 328

Accessing Files via Conduit�� 332

Looking Further Than Text Files��� 335

Basic Networking��� 335

Binary Serialization�� 337

Comma-Separated Values�� 339

Summary��� 341

Chapter 10: Building and Parsing Text�� 343

The Five Textual Data Types��� 343

Building as Fast as the Wind�� 349

Parsing with attoparsec��� 353

Introducing New Type Classes��� 360

Applicative�� 361

Functors, Applicatives, and Monads��� 363

Alternative�� 366

Traversable��� 367

Don’t Overengineer: Just Use JSON��� 370

Summary��� 378

Chapter 11: Safe Database Access�� 379

Database Access Landscape��� 379

Abstracting Over Several DBMSs��� 380

Introducing Persistent and Esqueleto��� 381

Connection��� 382

Schemas and Migrations��� 385

Describing the Entities��� 386

Creating the Database�� 391

Table of Contents

xi

Queries��� 395

Queries by Identifier or Uniqueness��� 395

Selecting Several Entities��� 397

SQL Queries with Esqueleto��� 400

Insertions, Updates, and Deletions��� 404

Summary��� 408

Chapter 12: Web Applications��� 409

Haskell Web Ecosystem��� 409

Web Frameworks�� 410

Compilation to JavaScript��� 412

RESTful Structure��� 414

Back End with Spock��� 415

Simple Skeleton��� 415

Showing Products from the Database�� 417

Inserting New Products Using Forms��� 423

Front End with Elm��� 428

Retrieving Products�� 432

Summary��� 437

Part IV: �Domain Specific Languages�� 439

Chapter 13: Strong Types for Describing Offers�� 441

Domain-Specific Languages�� 441

Embedding Your Language in Haskell�� 442

The Offers Language�� 445

Adding Safety to the Expression Language�� 448

Type-Level Programming��� 452

Two Styles of Programming�� 454

Representing Natural Numbers�� 455

Functional Dependencies��� 457

Categories of Products with FDs�� 457

Vectors Using FDs��� 461

Table of Contents

xii

Enforcing the Presents Rule with FDs�� 464

Type Families��� 466

Vectors Using TFs��� 466

Enforcing the Presents Rule with TFs��� 468

Categories of Products with TFs��� 469

Data Type Promotion and Singletons��� 474

A Further Refinement to the Presents Rule�� 474

Cooking with Singletons��� 477

Enforcing the Duration Rule��� 478

Summary��� 485

Chapter 14: Interpreting Offers with Attributes��� 487

Interpretations and Attribute Grammars ��� 488

A Simple Interpretation��� 488

Introducing Attribute Grammars��� 488

Your First Attribute Grammar��� 491

Synthesizing the Result�� 491

Executing the Attribute Grammar��� 494

Integrating UUAGC in Your Package�� 495

Expressions Interpretation��� 498

Using an Attribute Grammar��� 498

Precomputing Some Values�� 501

A Different (Monadic) View��� 503

Offer Interpretations��� 505

Checking the Presents Rule��� 505

Showing an HTML Description��� 507

Programming with Data Types��� 513

Origami Programming Over Any Data Type��� 513

Data Type-Generic Programming�� 516

Summary��� 520

Table of Contents

xiii

Part V: �Engineering the Store�� 523

Chapter 15: Documenting, Testing, and Verifying�� 525

Documenting Binary Trees with Haddock�� 526

Unit Testing with HUnit��� 530

Declaring Tests in Cabal��� 531

Writing Unit Tests�� 532

Randomized Testing with QuickCheck��� 536

Testing List Properties�� 537

Testing Binary Tree Properties�� 538

Formal Verification with LiquidHaskell��� 541

Describing Binary Search Trees�� 544

Summary��� 546

Chapter 16: Architecting Your Application�� 547

Tools��� 547

Project and Dependency Management��� 548

Code Style�� 548

Documentation��� 549

Test and Verification��� 549

Benchmarking�� 549

Profiling�� 550

Coverage�� 550

Remote Monitoring��� 550

Design Patterns and Functional Programming�� 551

Medium-Level Guidelines�� 553

Use Higher-Order Combinators��� 553

Refactor�� 553

Use Type Classes Wisely��� 553

Enforce Invariants via the Type System�� 554

Stay (As) Pure and Polymorphic (As Possible)�� 554

Table of Contents

xiv

Patterns with Monads�� 555

Summary of Monads�� 555

Restrictive Monad Classes��� 561

Roll Your Own Monad��� 562

Summary��� 565

Chapter 17: Looking Further�� 567

Projects�� 567

Data Mining Library�� 568

Store Network Client�� 570

Administration Interface and Tetris�� 571

Additional Haskell Resources��� 573

Other Functional Languages��� 574

Appendix: Time Travelling with Haskell��� 575

Index�� 579

Table of Contents

xv

About the Author

Alejandro Serrano Mena works as a lecturer and researcher at the Department of

Information and Computing Sciences in Utrecht University. He is passionate about

functional programming and has been coding in Haskell for personal and professional

projects for more than 10 years. His current research focuses on how to increase the

usefulness of type systems while decreasing their costs and their learning curve; his PhD

dissertation discusses how to enhance error reporting in Haskell.

Alejandro has been very active in promoting functional languages, already since

his college years. In addition to his duties as a lecturer, he participates actively in both

academic and industry-oriented conferences, such as Lambda World and LambdaConf.

xvii

About the Technical Reviewer

Germán González-Morris is a polyglot Software Architect/Engineer with more than 20

years in the field, with knowledge in Java(EE), Spring, Haskell, C, Python, and Javascript,

among others. He works with web-distributed applications. Germán loves math

puzzles (including reading Knuth) and swimming. He has tech-reviewed several books,

including an application container book (Weblogic), as well as titles covering various

programming languages (Haskell, Typescript, WebAssembly, Math for coders, and

regexp). You can find more details at his blog site (https://devwebcl.blogspot.com/)

or twitter account (@devwebcl).

https://devwebcl.blogspot.com/

xix

Acknowledgments

These acknowledgments have been transported almost unchanged from the first to the

second edition of the book. It is great to see how the people that supported you on your

first writing adventure are still around and even more supportive than the first time.

First of all, I would like to acknowledge the great work of the technical reviewer and

the editorial board. Their comments and suggestions have been extremely valuable for

making the book better and more helpful. Jean-Philippe Moresmau did a great job in the

first edition; this time Germán has taken his witness and the result is even better.

Writing a book is a very rewarding task, but it’s also quite a consuming one. For those

times where the mood goes sour, there has not been anything better than the support

that Elena brought to me. She was there while I was thinking, refining the examples, and

reviewing the text one more time.

My family and my friends have also encouraged me the entire time, so a bit of thanks

to all of them too. My parents Carmen and Julián deserve a very special mention: they’ve

supported me during every single project, and as crazy as it may sound, throughout my

whole life. They bought me the first computer I worked with, which was the computer I

started programming in an old Visual Basic environment. It’s fair to say that without their

help, you wouldn’t be reading this book.

Being surrounded by people who share your passion is the best way to stay

motivated to learn and communicate what you know; my colleagues at Utrecht

University are a prime example. Many ideas in this book have their roots in that

department, and I feel honored to be part of it.

The entire Haskell community is wonderful. Having great mailing lists and IRC

rooms full of (quite clever!) people always willing to help encourages you to be curious

and to learn more. Every single library and compiler discussed in this book has been

carefuly crafted by this community: they are the reason why Haskell is such a great

language.

xxi

Introduction

Functional programming is gathering momentum. Mainstream languages such as

Java and C# are adopting features from this paradigm; and languages such as Haskell,

Scala, Rust, Clojure, or OCaml, which embody functional programming from the

very beginning, are being used in industry. Haskell is a noise-free, pure functional

language with a long history, having a huge number of library contributors and an active

community. This makes Haskell a great tool for both learning and applying functional

programming.

�Why You Should Learn Functional Programming
The rise in functional programming comes from two fronts. Nowadays, most

applications are heavily concurrent or need to be parallelized to perform better. Think of

any web server that needs to handle thousands of connections at the same time. The way

you express the intent of your code using Haskell makes it easier to move from a single-

thread application to a multi-threaded one at a negligible cost.

Apart from becoming more concurrent, applications are becoming much larger.

You would like your development environment to help you catch bugs and ensure

interoperation between all modules of your system. Haskell has a very strong type

system, which means that you can express a wide range of invariants in your code, which

are checked at compile time. Many of the bugs, which previously would be caught using

tests, are now completely forbidden by the compiler. Refactoring becomes easier, as you

can ensure that changes in your code do not affect those invariants.

Learning functional programming will put you in a much better position as

a developer. Functional thinking will continue permeating through mainstream

programming in the near future. You’ll be prepared to develop larger and faster

applications that bring satisfaction to your customers.

xxii

�Why You Should Read This Book
This book focuses both on the ideas underlying and on the practicalities of Haskell

programming. The chapters show you how to apply functional programming concepts

in real-world scenarios. They also teach you about the tools and libraries that Haskell

provides for each specific task. Newcomers to functional programming will not be the

only ones who will benefit from reading this book. Developers of Scala, Clojure, Lisp, or

ML will be also able to see what sets Haskell apart from other languages.

The book revolves around the project of building a web-based strorefront. In each of

the five parts, the focus is on a subsystem of this store: representing clients and products

in-memory, data mining (including parallelization and concurrency), persistent storage,

discounts and offers, and the general architecture of the application. The topics have

been carefully selected for you to get a glimpse of the whole Haskell ecosystem.

Introduction

PART I

First Steps

3
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_1

CHAPTER 1

Going Functional
Welcome to the world of Haskell! Before looking too deeply at the language itself, you

will learn about what makes Haskell different from other languages and what benefits

come with those differences. Haskell belongs to the family of functional languages, a

broad set that includes ML, Lisp, Scala, and Clojure. If you have a background mostly

in imperative or object-oriented languages, such as C, C++, or Java, you will see which

of the ideas present in those languages can be transported into the functional world.

If you already have experience with functional languages, you will see how other

features in Haskell, such as lazy evaluation and type classes, make this language

different from any other.

This book assumes some previous experience with the functional paradigm,

regardless of the language, but not with Haskell. Also, some minimal practice with the

shell or console is required.

After introducing Haskell, I will review how to install Haskell on your system. Finally,

you will take your first steps with the language in the Glasgow Haskell Compiler (GHC)

interpreter, a powerful tool that executes expressions in an interactive way. Throughout

the book you will develop parts of a time machine web store; as with many things in life,

the best way to learn Haskell is by writing Haskell programs!

�Why Haskell?
If you are reading this book, it means you are interested in learning Haskell.

But what makes this language special? Its approach to programming can be

summarized as follows:

•	 Haskell belongs to the family of functional languages.

•	 It embodies in its core the concept of purity, separating the code with

side effects from the rest of the application.

4

•	 The evaluation model is based on laziness.

•	 Types are statically checked by the compiler. Also, Haskell features a

type system that is much stronger and expressive than usual.

•	 Its approach to polymorphism is based on parametricity (similar to

generics in Java and C#) and type classes.

In the rest of this section, you will understand what the terms in this list mean and

their implications when using Haskell. Also, you will get a broad view of the entire Haskell

ecosystem in a typical distribution: the compiler, the libraries, and the available tools.

�Why Pure Functional Programming?
Functional programming is one of the styles, or paradigms, of programming.

A programming paradigm is a set of concepts shared by different programming languages.

For example, Pascal and C are part of the imperative paradigm, and Java and C++ mix

the imperative paradigm with the object-oriented one. The fundamental emphasis of

functional programming is the empowerment of functions as first-class citizens. This

means functions can be manipulated like any other type of data in a program. A function

can be passed as an argument to another function, returned as a result, or assigned to

a variable. This ability to treat functions as data allows a higher level of abstraction and

therefore more opportunities for reuse.

For example, consider the task of iterating through a data structure, performing

some action on each element. In an object-oriented language, the implementer of the

structure would have surely followed the iterator pattern, and you as a consumer would

write code similar to the following Java code:

Iterator it = listOfThings.iterator();

while (it.hasNext()) {

 Element e = it.next();

 action(e); // perform the action

}

As you can see, there is a lot of boilerplate code in the example. In Haskell, you

would use the map function, which takes as its argument the action to perform on each

element. The corresponding code is as follows:

map action listOfThings

Chapter 1 Going Functional

5

The code now is much more concise, and the actual intention of the programmer

is explicit from the use of the map function. Furthermore, you prevent any possible

issue related to applying the iterator pattern poorly because all the details have been

abstracted in a function. Actually, a function such as map is common in functional code,

which gives you confidence that any bug in its implementation will be found quickly.

Performing the same task in Java (up to version 7) requires, on the provider side,

you to create an interface that contains the function that will perform the operation.

Then, on the user side, you need to implement that interface through a class or use an

anonymous class. This code will be much longer than the one-line version you saw

earlier. In fact, new versions of Java (from version 8 on), C++, and C# (from the release of

.NET Framework 3.5) are embracing functional concepts and will allow you to write code

similar to the previous line.

In Haskell, a piece of code consists of expressions, which are evaluated in a similar

fashion to mathematical expressions. In an imperative language, methods consist of

statements that change a global state. This is an important distinction because in an

imperative program the same piece of code may have different results depending on

the initial state when it is executed. It’s important to notice here that elements outside

of the program control (known as side effects), such as input and output, network

communication, and randomness, are also part of this global state that may change

between executions of the same function.

Expressions in Haskell cannot have side effects by default; these expressions are

called pure. A common misunderstanding about functional programming is that it

disallows any kind of change to the outer state. This is not true; side effects are possible

in Haskell, but the language forces the programmer to separate the pure, side-effect-free

parts from the “impure” ones.

The main benefits of purity are the improved ability to reason about the code and an

easier approach for testing the code. You can be sure that the outcome of a pure function

depends only on its parameters and that every run with the same inputs will give the

same result. This property is called referential transparency, and it’s the foundation for

applying formal verification techniques, as you will see in Chapter 15.

Pure functions are easier to compose because no interference comes to life in their

execution. Actually, the evaluation of pure expressions is not dependent on the order

in which it is done, so it opens the door to different execution strategies for the same

piece of code. This is taken advantage of by the Haskell libraries providing parallel and

concurrent execution and has even been used for scheduling code in a GPU in the

Accelerate library.

Chapter 1 Going Functional

6

By default, Haskell uses an execution strategy called lazy evaluation. Under laziness,

an expression is never evaluated until it is needed for the evaluation of a larger one.

Once it has been evaluated, the result is saved for further computation, or it’s discarded

if it’s not needed in any other running code. This has an obvious benefit because only the

minimal amount of computation is performed during program execution, but it also has

drawbacks because all the suspended expressions that have not yet been evaluated must

be saved in memory. Lazy evaluation is powerful but can become tricky, as you will see

in Chapter 5.

�Why Strong Static Typing?
Type systems come in various formats in almost all programming languages. A type

system is an abstraction that categorizes the values that could appear during execution,

tagging them with a so-called type. These types are normally used to restrict the possible

set of actions that could be applied to a value. For example, it may allow concatenating

two strings but forbid using the division operator between them.

This tagging can be checked, broadly speaking, at two times: at execution time

(dynamic typing), which usually comes in languages with looser typing and allows

implicit conversions between things such as integers and strings, or at the moment of

compilation (static typing), in which case programs must be validated to be completely

well typed in terms of the language rules before generating the target output code

(usually machine code or bytecode) and being allowed to run. Haskell falls into this

second category: all your programs will be type checked before they are executed. Within

statically typed languages, some of them, such as Java or C#, need to perform extra type

checking at runtime. In contrast, once a Haskell program has been compiled, no more

type checks have to be done, so performance is vastly increased.

Haskell’s type system is very strong. Strength here means the number of invariants

that can be caught at compile time before an error materializes while the application is

running. This increases the confidence in code that is type checked, and it’s common

to hear the following in Haskell circles: “Once it compiles, it works.” This strong typing

gives rise to a way of programming dubbed type-oriented programming. Basically,

programmers know the type of the function they are developing and have a broad idea

of the structure of the code. Then, they “fill in the holes” with expressions from the

surrounding environment that fit into it. This approach has actually been formalized,

and there is another language similar to Haskell, called Agda, which comes with an

Chapter 1 Going Functional

7

interactive programming environment that helps in filling in the holes and even does so

automatically if only one option is available at one place.

In Chapters 13 and 15, I will move a bit from Haskell to Idris, a language with a

similar syntax that features dependent typing. Dependent typing is an even stronger form

of type checking, where you can actually express invariants such as “If I concatenate a

list of n elements to a list with m elements, I get back a list with n+m elements” or “I cannot

get the first element of an empty list.” Then, you will see how some of these techniques

can be transferred as patterns into Haskell.

The last difference in Haskell with respect to typing comes from polymorphism.

The problem is twofold. First, you want to write functions on lists without caring about

the type of the elements contained in them. This is known as parametric polymorphism,

and you will explore it in Chapter 3. In other cases, you want to express the fact that some

types allow some specific operations on their values. For example, the idea of applying

a function to all elements in a list, as you did before with map, can be generalized into

the concept of having an operation that applies a function to all elements in some data

structure, such as a tree or a graph. The solution here is called type classes, which groups

different types with a common interface. You will look at it in Chapter 4, where you will

also realize that this concept is a very high-level one that allows for expressing several

abstract ideas (functors, monads) and that gives an interesting flavor to Haskell code.

�The Haskell Ecosystem
Until now I have spoken only about Haskell the language. But the benefits of Haskell

come not only from the language but also from the large and growing set of tools and

libraries that can be used with the language.

Several compilers for Haskell are available, which usually take the name of a city:

GHC (from Glasgow), UHC (from Utrecht), and so on. Of those, GHC is usually taken

as the standard, and it’s the one with the largest number of features. At the moment of

writing, only GHC is actively maintained. You will follow this path and will work with

GHC throughout the book.

Like any other popular programming language, Haskell has an online repository of

libraries. It is called Hackage, and it’s available at http://hackage.haskell.org/.

A stable subset of Hackage, known as Stackage, is available at https://www.stackage.org/.

Both repositories integrate seamlessly with Cabal and Stack, the two alternative building

tools for Haskell projects. In Hackage you can find libraries ranging from bioinformatics

to game programming, window managers, and much more.

Chapter 1 Going Functional

http://hackage.haskell.org/
https://www.stackage.org/

8

Apart from GHC and Cabal, in the book you will look at some tools that aim

to help developers write better code faster. The first one will be the GHC profiler;

you will learn about it in Chapter 5 to detect space and time leaks. You will also

look at Hoogle and Haddock, which are used to browse and create documentation.

In Chapter 14, you will use the UU Attribute Grammar System to help you build

domain-specific languages.

�The History of Haskell
Haskell is usually considered the successor of the Miranda programming language,

which was one of the most important lazy functional programming languages in the

1980s. However, at that time, lots of other languages of the same kind existed in the

wild. That made it difficult for researchers to have a common base in which to perform

experiments in this paradigm. So, by the end of that decade, they decided to build a

completely new language that would become the groundwork for that research.

During the 1990s, several versions of the language were produced. During this

time Haskell evolved and incorporated some of the features that give the language its

particular taste, such as type classes and monads for managing input and output. In

1998, a report defined Haskell 98, which was taken as the standard for any compliant

Haskell compiler. This is the version targeted by most library developers.

However, new ideas from researchers and compiler writers were integrated into

Haskell compilers, mostly in GHC. Some of these extensions became widely used, which

made the case for a revised Haskell standard, which came out in 2010. At the time of this

writing, GHC targets this version of the language.

As the language has become more popular, more extensions have been added to

GHC and other compilers, and these features usually can be switched on or off at the

developer’s will. As a result, a more disciplined schedule has been created for issuing

revised Haskell standards on a timely basis.

�Your Working Environment
At this point you are probably feeling the need to try Haskell on your own computer.

The first step for this is, of course, to have a working Haskell installation on your system.

Haskell developers worried in the past about how to get people ready fast and easily.

Chapter 1 Going Functional

9

So, they created the Haskell Platform, a distribution containing the GHC compiler,

the Cabal build and library system, and a comprehensive set of libraries. To get the

Haskell Platform, go to http://www.haskell.org/platform/. Then, follow the steps

corresponding to the operating system you will be using.

�Installing on Windows or Mac OS X
Installing on the Microsoft or Apple operating system is easy because the file you

download is an executable package that will take care of everything.

�Installing on Linux
The world of Linux distributions is diverse, so it’s difficult to suggest the best way to get a

working Haskell installation on Linux systems. If you use a distribution supporting some

sort of package management system, it’s better to stick with that system. For example,

Debian-based systems support apt-get. Thus, you can run the following:

$ sudo apt-get install haskell-platform

The best known of Debian derivative, Ubuntu, features a different way to get the

GHC compiler and the Cabal build tool up and running. Herbert V. Riedel, one of the

maintainers of the Platform, provides a specific repository for this system, which you can

get by running

$ sudo add-apt-repository ppa:hvr/ghc

$ sudo apt-get update

Tip I f the call to add-apt-repository does not work, ensure that you
have the corresponding package installed. You can get it using sudo apt-get
install software-properties-common.

This repository gives access to every version of GHC since 7.0. To install the latest

GHC and Cabal at the moment of writing, you need to do the following:

$ sudo apt-get install ghc-8.6.3 cabal-install-2.4

In addition, you should also add the folder /opt/ghc/<version>/bin to your PATH.

How to do so depends on the shell you are using, but in the default configuration adding

a line to .bashrc should be enough.

Chapter 1 Going Functional

http://www.haskell.org/platform/

10

In Fedora and other Red Hat–based distros, this is the line to run:

$ yum install haskell-platform

You can also check the whole list of distributions that have Haskell Platform out of

the box on the Haskell Platform website.

�Installing on Linux from Source

In case you want or need to perform a complete installation from source code, you must

follow these steps:

	 1.	 Go to the GHC compiler web page, http://www.haskell.org/ghc/.

Click the Download link and get the binary package for the latest

stable release.

	 2.	 Uncompress the file you just downloaded into the place you want

it to live. It’s recommended that you add that folder to your PATH.

You may need to install some libraries, like GMP, to be able to run

this binary. In Debian and derivatives, those dependencies may

be obtained by running sudo apt-get build-dep ghc.

Note  You can also build GHC from source. However, this is a tedious and error-
prone process, so using just the binary distribution is recommended. In case you
want to follow that path, the Haskell wiki page has a detailed description of the
process; see http://ghc.haskell.org/trac/ghc/wiki/Building.

	 3.	 Return to the Haskell Platform page to download its source.

	 4.	 Uncompress, build, and install it, which is usually accomplished

by running this:

$ tar -xzvf haskell-platform-*.tar.gz

$ cd haskell-platform-*

$./configure

$ make

$ make install

Chapter 1 Going Functional

http://www.haskell.org/ghc/
http://ghc.haskell.org/trac/ghc/wiki/Building

11

�First Steps with GHCi
It’s now time to see whether your Haskell Platform is correctly installed. To do so, open a

console, type ghci –e 5+3, and press Enter. You should see 8 as output. This application

is one instance of a read-eval-print loop (REPL), or, more succinctly, an interpreter.

In GHCi, you input an expression and press Enter. The expression gets evaluated, and

the result is shown on the screen. This allows for a programming methodology where

you navigate into and discover the functionality of a library by issuing commands in the

interpreter and also test your code interactively.

To open an interpreter in a console, just run ghci. A prompt with Prelude> at the

beginning should appear. This line tells you that the interpreter is ready to accept

commands and that the only loaded module at this moment is the Prelude, which

contains the most basic functions and data types in Haskell. As a first approximation,

GHCi can work as a fancy calculator, as shown here:

Prelude> 5 * 3

15

Prelude> 1/2 + 1/3

0.8333333333333333

If you now type s and press the Tab key, you will see a list of all possible functions

beginning with that letter. If you then type q and press Tab again, only one possibility

is left, sqrt, which is automatically written for you. One distinguishing choice made

by Haskell creators was that parentheses are not used when applying a function. This

means that if you want to find the square root of 7, you just write this:

Prelude> sqrt 7

2.6457513110645907

There are many other arithmetic operations you can perform in the interpreter: sin,

cos, log, exp, and so forth. In the next chapter you will learn how to use strings and lists

and how to define functions, which will make your experience with the interpreter much

more rewarding.

Chapter 1 Going Functional

12

GHCi does not by default allow you to input several lines of code. For example, if you

want to break the previous addition of two rational numbers into two lines, you cannot

do it easily. Try entering the expression again, but press Enter after inputting the plus

sign. If you press Enter, this error message will be produced:

Prelude> 1/2 +

<interactive>:2:6:

 parse error (possibly incorrect indentation or mismatched brackets)

The solution is to start a multiline block. A multiline block is an expression that is

allowed to span more than one line. To do so, enter :{ and then press Enter. The prompt

will change into Prelude|, showing that the input is expected to fill several lines. To end

the block, enter the opposite of the beginning symbol, :}. Here’s an example:

Prelude> :{

Prelude| 1/2 +

Prelude| 1/3

Prelude| :}

0.8333333333333333

Caution T o start a multiline block, :{ must be the only text entered in the
first line.

All the internal actions of the interpreter (i.e., those that are not functions on any

library) start with a colon. For example, typing :? and pressing Enter lists all the available

commands. Other possibilities are looking at the language standard version you are

using, in this case Haskell 2010 with some customizations. Here’s an example:

Prelude> :show language

base language is: Haskell2010

with the following modifiers:

 -XNoDatatypeContexts

 -XNondecreasingIndentation

Chapter 1 Going Functional

13

I stated before that Haskell has a strong static type system. You can check that it

forbids dividing two strings (which are written between double quotes), producing an

error when input in the interpreter, like so:

Prelude> "hello" / "world"

<interactive>:2:9:

 No instance for (Fractional [Char]) arising from a use of `/'

 Possible fix: add an instance declaration for (Fractional [Char])

 In the expression: "hello" / "world"

 In an equation for `it': it = "hello" / "world"

Fractional is the name of the type class that provides support for the / operator.

The error message is saying that in order to be able to divide two strings, you should tell

the compiler how to do so, by adding a declaration with the code for the Fractional

type class in the case of strings.

To close the interpreter and go back to the console, you can issue the command

:quit or just press the key combination Ctrl+D. In both cases the result is the same.

Prelude> :quit

Leaving GHCi.

Note  GHCi is a powerful and customizable tool. You can find lots of tips and tricks
on the Haskell wiki page devoted to the interpreter, https://wiki.haskell.
org/GHC/GHCi.

�The Time Machine Store
If you have already taken a look at the table of contents of this book, you will have

noticed that it is divided into four parts. Each part is devoted to a different module of a

small web store.

•	 In this first part, you will learn how to define the basic blocks of your

application, representing clients, products, and orders, and how to

manage them in-memory.

Chapter 1 Going Functional

https://wiki.haskell.org/GHC/GHCi
https://wiki.haskell.org/GHC/GHCi

14

•	 In Part 2, you will develop some data-mining algorithms to get a

better knowledge of the clients. In particular, you will develop a

classification algorithm based on K-means and a recommendation

algorithm.

•	 Part 3 will deal with saving data into a persistent store. For product

data you will use a custom file format, and for clients and orders you

will use a more traditional database solution. With all of this, you will

be able to build the initial application by Chapter 12.

•	 Finally, in Part 4 you will see how a domain-specific language can

be used to model special offers in the system, such as “20 percent

discount for all clients in Europe younger than 30.”

What will you sell in this store? Time machines!

Welcome to the exciting world of time machines! These machines are quite
special, and our clients come from all parts of the universe to get one. We
would like to have a web store to handle all the orders. And we would also
like to be developed in a language as special as our machines, like Haskell.

Sound exciting? Throughout this book you’ll be using Haskell to build your very own

store for selling time machines. It’s a fun example, and it should keep the book interesting.

�Summary
In this chapter you got familiar with Haskell.

•	 You learned about the distinguishing features of pure functional

programming and how it helps to build code that is more concise,

more maintainable, and less error prone.

•	 You looked at the benefits of having a strong, statically checked type

system, like the one embodied in Haskell, and how dependent typing

makes it possible to express invariants in a powerful way.

•	 The major tools in the Haskell ecosystem were introduced: the

GHC compiler, the Cabal build tool, the Hackage library repository,

and the GHC interpreter. You also took your first steps with the

interpreter.

Chapter 1 Going Functional

15

•	 You looked at the installation process of the Haskell Platform in the

most common computer environments.

•	 You were presented with the main target in the book (apart

from learning Haskell): building a web store focused on selling

time machines, with modules for simple data mining and offer

descriptions.

Chapter 1 Going Functional

17
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_2

CHAPTER 2

Declaring the Data Model
You already know how to get a working installation of the Haskell Platform. The next step

toward your Time Machine Store is to create the initial set of values and functions that

will represent the data in the system: clients, machines, and orders.

This chapter will give you the basic ingredients for creating these values and

functions. In a first approximation, you will create functions operating on basic

types. You already know numbers, and you will add lists and tuples to the mix.

Afterward, you will see how to create your own algebraic data types (ADTs) to better

represent the kind of values you are interested in here. As part of this, you will learn

about pattern matching, a powerful idiom to write concise code that follows closely

the shape of the types.

Sometimes ADTs and pattern matching lead to code that’s not clear enough. Records

introduce some syntactic forms that make values easier to create and modify, and they

are a well-known tool of Haskell programmers. In addition, you will look at two design

patterns that are common in Haskell libraries, namely, smart constructors and default

values.

This chapter will also introduce how to manage projects using Cabal and Stack.

In particular, you will see how to create a new project using both systems, along with

the usual structure in folders, and how to load the code into the GHC interpreter to

interactively test it.

�Characters, Numbers, and Lists
Characters and numbers are universally accepted as the most basic kind of values that

a language should provide to programmers. Haskell follows this tradition and offers

dedicated character and number types that will be introduced in this section. Afterward,

you will see how to put together several of these values to create strings or lists of

numbers, as well as the basic operations you can perform on any kind of list.

18

�Characters
In some programming languages, numbers are also used to represent characters,

usually in some encoding such as ASCII or Unicode. But following its tradition of clearly

separating different concerns of a value, Haskell has a special type called Char for

representing character data. To prevent problems with locales and languages, a Char

value contains one Unicode character. These values can be created in two ways.

•	 Writing the character itself between single quotes, like 'a'.

•	 Writing the code point, that is, the numeric value which represents

the character as defined in the Unicode standard, in decimal between

'\ and ' or in hexadecimal between '\x and '. For example, the

same 'a' character can be written as '\97' or '\x61'.

Using GHCi, you can check the actual type of each expression you introduce in the

system. To do so, you use the :t command, followed by the expression. Let’s check that

characters indeed are characters.

Prelude> :t 'a'

'a' :: Char

Let’s now explore some of the functionality that Haskell provides for Chars. Only a

few functions are loaded by default, so let’s import a module with a lot more functions, in

this case Data.Char.

Prelude> import Data.Char

Prelude Data.Char>

The prompt of the interpreter changes to reflect the fact that now two different

modules are loaded. Furthermore, if you now write to and press Tab, you will see a

greater number of functions than before. In Haskell, everything has its own type, so let’s

try to find out toUpper’s type.

Prelude Data.Char> :t toUpper

toUpper :: Char -> Char

The arrow syntax (shown as ->) is used to specify types of functions. In this case,

toUpper is a function taking a character (the Char on the left side) and returning another

one (because of the Char on the right side). Of course, types don’t have to be equal. For

example, chr takes an integer and gives the character corresponding to that code point.

Chapter 2 Declaring the Data Model

19

Prelude Data.Char> chr 97

'a'

Prelude Data.Char> :t chr

chr :: Int -> Char

For functions with more than one parameter, each argument type is separated from

the next with a single arrow. For example, if you had a min function taking two integers

and returning the smallest one, the type would be as follows:

min :: Integer -> Integer -> Integer

I mentioned in the previous chapter that Haskell is very strict at checking types. You

can indeed verify this: if you try to apply the chr function to a character, the interpreter

refuses to continue.

Prelude Data.Char> chr 'a'

<interactive>:7:5:

 Couldn't match expected type `Int' with actual type `Char'

 In the first argument of `chr', namely 'a'

 In the expression: chr 'a'

 In an equation for `it': it = chr 'a'

�Numbers
In Chapter 1 you may have noticed that several kinds of numeric constants were used.

Like most programming languages, Haskell supports a great variety of number types,

depending on the width, precision, and support for decimal parts.

•	 Int is the bounded integer type. It supports values between at least

±536870911, which corresponds to 229-1 (even though GHC uses a

much wider range). Usually, values of the Int type have the native

width of the architecture, which makes them the fastest.

•	 Integer is an unbounded integral type. It can represent any value

without a decimal part without underflow or overflow. This property

makes it useful for writing code without caring about bounds, but it

comes at the price of speed.

Chapter 2 Declaring the Data Model

20

•	 The Haskell base library also bundles exact rational numbers using

the Ratio type. Rational values are created using n % m.

•	 Float and Double are floating-point types of single and double

precision, respectively.

Haskell is strict with the types. If you need to convert between different numeric

representations, the functions fromInteger, toInteger, fromRational, and toRational

will help you deal with conversions. For example, you can switch between rational and

floating-point representations of values. The toRational function tries to create a Ratio

not far from the original value (this depends on its width), and you can move from

rational to floating-point by dividing the numerator by the denominator of the ratio. Be

aware that many of these functions are found in the Data.Ratio module, so you should

import it first.

Prelude> import Data.Ratio

Prelude Data.Ratio> 1 % 2 + 1 % 3

5 % 6

Prelude Data.Ratio> toRational 1.3

5854679515581645 % 4503599627370496

Prelude Data.Ratio> toRational (fromRational (13 % 10))

5854679515581645 % 4503599627370496

As you can see from the examples, perfect round-tripping between rational and

floating-point values is not always possible. You may also get a puzzling result if you try

to find the type of numeric constants.

Prelude> :t 5

5 :: Num a => a

Prelude> :t 3.4

3.4 :: Fractional a => a

Instead of making a numeric constant of a specific type, Haskell has a clever solution

for supporting constants for different types: they are called polymorphic. For example,

5 is a constant that can be used for creating values of every type supporting the Num type

class (which includes all types introduced before). On the other hand, 3.4 can be used

for creating values of any type that is Fractional (which includes Float and Double but

Chapter 2 Declaring the Data Model

21

not Int or Integer). You will read in detail about type classes in Chapter 4, but right

now you can think of a type class as a way to group sets of types that support the same

operations. They share many commonalities with interfaces commonly found in object-

oriented languages, and are close relatives of Scala’s traits and Swift’s protocols.

Caution  Since Haskell doesn’t use parentheses in function invocations, that is,
you write f a b instead of f(a,b), you must be a bit more careful than usual
when using negative numbers. For example, if you write atan -4 in GHCi, you will
get an error indicating

Non type-variable argument in the constraint (Num (a -> a))

This means it has interpreted that you are trying to compute the subtraction of
atan and 4. To get the arctangent of -4, you should instead write atan (-4).

�Strings
After playing for some time with characters, you may wonder whether you can have a

bunch of them together, forming what is commonly known as a string. The syntax for

strings in Haskell is similar to C: you wrap letters in double quotes. The following code

creates a string. If you ask the interpreter its type, what do you expect to get back?

Prelude Data.Char> :t "Hello world!"

"Hello world!" :: [Char]

Instead of some new type, like String, you see your old friend Char but wrapped

in square brackets. Those brackets indicate that "Hello world!" is not a character

but a list of characters. In general, given a type T, the notation [T] refers to the type

of all lists whose elements are of that type T. Lists are the most used data structure in

functional programming. The fact that a type like a list depends on other types is known

as parametric polymorphism, and you will delve into the details of it in the next chapter.

Right now, let’s focus on the practical side.

Chapter 2 Declaring the Data Model

22

�Lists
List literals (i.e., lists whose values are explicitly set into the program code) are written

with commas separating each of the elements, while wrapping everything between

square brackets. As I have said, there’s also special string syntax for a list of characters.

Let’s look at the types of some of these literals and the functions reverse, which gives a

list in reverse order, and (++), which concatenates two lists.

Prelude> :t [1,2,3]

[1, 2, 3] :: Num t => [t]

Prelude> :t reverse

reverse :: [a] -> [a]

Prelude> :t (++)

(++) :: [a] -> [a] -> [a]

Prelude> reverse [1,2,3]

[3,2,1]

Prelude> reverse "abc"

"cba"

Prelude> [1,2,3] ++ [4,5,6]

[1,2,3,4,5,6]

Notice from this example that there are functions, such as reverse and (++), that

can operate on any kind of list. This means once you know them, you can apply your

knowledge of them to any list (including strings of characters). To tell this fact, these

functions show in its type a type variable. It is a variable because it can be replaced by

any type because regular variables can take different values. Type variables must be

written in code starting with lowercase letters, and they consist usually of one or two

letters. Here, the type variable is shown as a.

Note  Functions whose names are built entirely by symbols, like ++, must be
called using the so-called infix syntax. That is, they should be written between
the arguments instead of in front of them. So, you write a ++ b, not ++ a b.
In the case where you want to use the function in the normal fashion, you must
use parentheses around its name. So, you can write (++) a b, meaning the
same as a ++ b.

Chapter 2 Declaring the Data Model

23

Lists in Haskell are homogeneous: each list can handle elements of only a single type.

Because of that, you are forbidden to create a list containing integers and characters and

also to concatenate two lists with different kinds of elements.

Prelude> [1,2,3,'a','b','c']

<interactive>:13:2:

 No instance for (Num Char) arising from the literal `1'

Prelude> "abc" ++ [1,2,3]

<interactive>:11:11:

 No instance for (Num Char) arising from the literal `1'

Like in most functional languages, lists in Haskell are linked lists. Such lists are

composed of a series of cells that hold the values in a list and a reference to the next cell

and a special marker for the end of the list. The basic operations to construct lists are []

(pronounced “nil”) to create an empty list and (:) (pronounced “cons”) to append an

element to an already existing list. That is, elt:lst is the list resulting from putting the

value elt in front of the list lst. So, list literals can also be written as follows:

Prelude> 1 : 2 : 3 : []

[1,2,3]

Prelude> 'a' : 'b' : 'c' : []

"abc"

Note how GHCi writes back the lists using the most common representation using

brackets. In the case of lists of characters, it uses string notation.

The functions that get information about the shape and the contents of the list are

null, to check whether a list is empty; head, to get the first element; and tail, to get the

list without that first element, also known as the rest of the list. Here are some examples

of applying these functions:

Prelude> null [1,2,3]

False

Prelude> null []

True

Prelude> head [1,2,3]

1

Chapter 2 Declaring the Data Model

24

Prelude> tail [1,2,3]

[2,3]

Prelude> head []

*** Exception: Prelude.head: empty list

Figure 2-1 shows a graphical representation of the operators and functions on lists

I have talked about. The (:) operator is used to bind together an element with the rest

of the list, and you can split those elements apart again using head and tail. You can

also see how a list is a series of cons operations that always end with the empty list

constructor, [].

If you try to get the head or the tail of an empty list, you get an error, as you may

expect. Be aware that exceptions are not the preferred way to handle errors in Haskell

(you will see why in more detail in subsequent chapters) and by default make the entire

program crash when found. To prevent errors from operations on empty lists, just be

sure to check for nonemptiness before applying functions such as head and tail (or

even better, use pattern matching, which will be introduced shortly).

In fact, looking at the output of null, you may have noticed two new values I

talked about before: True and False. These are the only two elements of the Bool

type, which represent Boolean values. Several standard functions for combining

these two values (and (&&), or (||) and not) are provided in the Prelude. Most

programming languages originating from C, such as C++ and Java, inherit from

the former two kinds of Boolean operators. You’ll find long-circuiting (& and |)

operators, which always evaluate both sides of the expression, and short-circuiting

(&& and ||) operators, which may stop after evaluating only one side. In Haskell,

because of its lazy evaluation model, these operators always perform their job in the

short-circuiting manner. Apart from that, there exist and and or functions that take a

list of Booleans and perform the operations.

Figure 2-1.  Graphical representation of list constructors and destructors

Chapter 2 Declaring the Data Model

25

Prelude> (True && False) || (False && not False)

False

Prelude> or [True, False, and [False, True, True]]

True

Prelude> (2 == 2.1) || (2 < 2.1) || (2 > 2.1)

True

Caution T he usual warnings about comparing floating-point values apply here.
Computers are not able to represent with exact precision all the values, so you
may find that equalities that you expect not to hold actually do. For example,
in my system the expression (4.00000000000000003 - 4) == 0 evaluates
to True.

Along with these functions, another important construction related to Booleans is

if-then-else. An expression with the form if b then t else f evaluates to t if the value

of b is True, and it evaluates to f otherwise. This structure looks similar to the one found

in imperative languages but has these important differences:

•	 Both then and else branches must be present along with the if. If

this were not the case, then the expression wouldn’t be evaluable for

some of the values of b. Other languages opt to return a default value

for the nonexistent else, but Haskell makes no commitment.

•	 The entire expression must have a defined type. The way Haskell

manages to ensure that is by forcing both t and f expressions to have

the same type. Thus, an expression such as if True then 1 else

"hello" won’t be accepted by either the compiler or the interpreter.

To make real use of if expressions, you need functions that return type Bool. This

includes the comparison functions between numbers: == (equality), /= (inequality, but

be aware that this function has a different name than in C and Java, where it’s called !=),

>= (greater than or equal to), > (greater than), <= (less than or equal to), and < (less than).

The following is an example of an if expression:

Prelude> if 3 < 4.5 then "3 is less than 4.5" else "3 is not less than 4.5"

"3 is less than 4.5"

Chapter 2 Declaring the Data Model

26

Let’s make the interpreter return the head of a list of strings if it is not empty or return

"empty" otherwise.

Prelude> :{

Prelude| if not (null ["hello","hola"])

Prelude| then (head ["hello","hola"]) else "empty"

Prelude| :}

"hello"

Prelude> if not (null []) then (head []) else "empty"

"empty"

Lists can contain other lists as elements (or to any level of nesting). As [T] are lists

of type T, lists of lists would be [[T]]. The inner lists inside the outer lists need not be

of the same length (so they are not equivalent to arrays of multiple dimensions). One

important thing to remember is that an empty list can be a member of a larger list of lists,

so [] and [[]] are not equivalent. The first is a completely empty list of lists, whereas the

second is a list that contains only one element, which is an empty list.

Prelude> :t [['a','b','c'],['d','e']]

["abc","de"] :: [[Char]]

Prelude> head [['a','b','c'],['d','e']]

"abc"

Prelude> head (head [['a','b','c'],['d','e']])

'a'

Prelude> head [[]]

[]

For sure you have become bored while typing more than once the same constant

list in the interpreter. To overcome this, you will learn about the essential ways to

reuse functionality across all programming languages: defining functions that work

on different input values and creating temporal bindings. But before that, Exercise 2-1

includes some tasks to see whether you have understood the concepts up to this

point.

Chapter 2 Declaring the Data Model

27

EXERCISE 2-1. LISTS OF LISTS

I have covered a lot of material about the most basic types and expressions in Haskell.

The following tasks exercise the knowledge you have gained so far. In all cases, the solutions

are expressions that can be typed in the interpreter to check whether they work.

•	 Rewrite the previous list literals using only (:) and the empty list constructor, [].

•	 Write an expression that checks whether a list is empty, [], or its first element is

empty, like [[],['a','b']].

•	 Write an expression that checks whether a list has only one element. It should

return True for ['a'] and False for [] or ['a','b'].

•	 Write an expression that concatenates two lists given inside another list. For

example, it should return "abcde" for ["abc","de"].

Use GHCi to check that those expressions work as required.

�Creating a New Project
You can create a new project through Cabal and Stack, the main tools for packaging

and building systems for Haskell projects. The advantage of using those tools is that

they have been especially tailored for Haskell and its package repository, Hackage. In

addition, the Cabal description file saves interesting metadata about the project, such

as its name, maintainer, and license. In this section you will see how to use both Cabal

and Stack from the command line. Feel free to change between them because the project

structures are fully compatible.

�Creating a Project with Cabal
If you want to create a project using the command line, the first thing to do is to create

the folder where the files will reside, usually named the same as the package name. Then

move inside the folder in the shell (usually by issuing a series of cd commands) and run

cabal init. You will need to answer some questions, as shown here:

$ cd path/to/my/haskell/projects

$ mkdir chapter2

Chapter 2 Declaring the Data Model

28

$ cd chapter2

$ cabal init

Package name? [default: chapter2]

Package version? [default: 0.1.0.0] 0.0.1

Please choose a license:

 ...

Your choice? [default: (none)]

Author name? Alejandro Serrano

Maintainer email? my@email-address.com

Project homepage URL? http://my-web-page.com

Project synopsis? Project example for Chapter 2

Project category:

 * 1) (none)

 ...

Your choice? [default: (none)]

What does the package build:

 1) Library

 2) Executable

 3) Library and Executable

Your choice? 1

Source directory:

 * 1) (none)

 2) src

 3) Other (specify)

Your choice? [default: (none)] 2

... -- More not very interesting questions

Include documentation on what each field means (y/n)? [default: n]

Note  You might receive a warning about cabal update. Don’t worry, we will
download a list of packages shortly, after I introduce how to add dependencies to a
Cabal project.

The most important answers to give are the package name and whether you want to

create a library or an executable, because what you create affects the name and structure

of the project file. The essential difference between a library and an executable project

Chapter 2 Declaring the Data Model

29

is whether a final program will be produced (in the latter case) or the code is just for

consuming other libraries or executables. Right now, it does not matter which one you

choose because you will be testing the code using the GHC interpreter. Furthermore, you

can refine the project later to add more library or executable descriptions.

Because having all the files in the root of the project makes them difficult to manage,

it’s customary to create a folder to hold all the source files of a project, as it is done in

other build tools such as Maven for Java. I strongly recommend placing your files in a src

folder, as shown in the project initialization above.

�Creating a Project with Stack
The creation of a new project in Stack follows a very similar structure. In contrast to

Cabal, you do not have to create the project folder before issuing the corresponding

command, and instead of init you use new:

$ cd path/to/my/haskell/projects

$ stack new chapter2

Downloading template "new-template" to create project "chapter2" in

chapter2...

...

Downloaded lts-12.18 build plan

...

Updating package index Hackage

Update complete

Populated index cache.

Matches lts-12.18

Selected resolver: lts-12.18

Initialising configuration using resolver: lts-12.18

Total number of user packages considered: 1

Writing configuration to file: chapter2\stack.yaml

All done.

Stack asks much fewer questions. It is your further responsibility to change the

author name, maintainer e-mail, and subsequent fields to the correct value.

Chapter 2 Declaring the Data Model

30

There is another possibility to initialize a project using Stack. If you already have a

Cabal file, maybe because you have created it previously, you can accommodate it for

using Stack by running the command stack init. The only visible difference is the

creation of a stack.yaml file in the root of the project.

EXERCISE 2-2. YOUR FIRST PROJECT

Create a new library project called chapter2 using either of the methods explained so far.

When doing Exercise 2-2, a pair of files named Setup.hs and chapter2.cabal will

be created in the folder. The file Setup.hs is not useful, so you will focus on the .cabal

file you have just created. The name of this file always coincides with the name of the

package you are developing.

A Cabal project file is composed of a series of package properties followed by

several blocks of code, called stanzas in Cabal terminology, that define the components

(libraries and executables) to be built, the source files making each of them, and the

options for compilation (such as flags or enabled extensions). If you are familiar with the

JSON format or with Python code, you will find Cabal syntax comfortable to read and

interpret. The following are the two important rules of interpretation:

•	 Each property is given a value in the form name: value. The name is

case-insensitive (it doesn’t matter whether you write name, Name, or

nAmE), and the value is written without any kind of quotes or marks.

If the value is a list, the elements are separated by commas.

•	 Stanzas begin with a header, usually library or executable, followed

by an application name. Be aware that there is no colon (:) after the

header. All properties within the stanza must be indented an equal

number of spaces or tabs.

For example, here is an extract of a possible Cabal file created after initializing a

project as required by Exercise 2-2:

name: chapter2

version: 0.1

cabal-version: >=1.2

build-type: Simple

author: John Doe

Chapter 2 Declaring the Data Model

31

library

 hs-source-dirs: src

 build-depends: base >= 4

 ghc-options: -Wall

�Understanding Modules
You build Haskell projects by writing what are termed modules. Each module contains a

set of definitions, such as functions and data types, and groups them under a common

umbrella. The names of modules are nested in a hierarchical fashion. For example,

inside Data there are a bunch of different modules, like Data.Bool, Data.Ratio, and so

forth. This nesting makes modules similar to packages in Java or to namespaces in C#.

You define each module in its own file. The file name should be equal to the last

component of the module name (the part after the last dot) and must be nested in

folders named like the rest of the components. For example, you would create a module

named Chapter2.Section2.Example in the path Chapter2/Section2/Example.hs. At

the source directory of your project (which is src is you have followed the instructions

above), create a folder named Chapter2. Inside it, create another folder named

Section2. Finally, inside Section2 create the Example.hs file.

CHANGING THE SOURCE DIRECTORY

You can always choose another source directory by adding a property

library

 hs-source-dirs: src

to each of the stanzas in the Cabal file. In fact, you can use different source folder for each

stanza, which helps us keeping files from libraries, executables, and tests apart.

Always begin a module file with a module declaration giving its name. For example,

you would begin the Example.hs module just mentioned by writing the following line:

module Chapter2.Section2.Example where

Then, you can start writing the definitions for that module.

Chapter 2 Declaring the Data Model

32

To tell Cabal to compile a module file, you must include that module in some stanza.

To do so, include a new property under the stanza adding the module either to the

exposed-modules property or to the other-modules property (the difference is that when

using your library from another project, only exposed modules will be available; the

others remain as internal). Here’s an example:

library

 exposed-modules: Chapter2.Section2.Example

 -- or

 other-modules: Chapter2.Section2.Example

If you are using the command line, you can now compile the project by running

cabal new-configure and then cabal new-build, or stack setup and then stack

build, depending on your choice of tool. At this point you shouldn’t encounter any

compiling errors.

NEW- COMMANDS IN CABAL

At the moment of writing, Cabal is undergoing an internal reorganization. For that reason, it

keeps two sets of commands: those starting with the new- prefix (like new-build), and the

older ones which do not start like that (e.g., build). Whenever possible, use the former set of

commands, because it provides several benefits such as automatic sandboxing of projects.

In summary, to add a new module to your project, you follow these steps:

	 1.	 Choose a name for the module, for example A.B.C.

	 2.	 Create a folder for each component of its name but the last one, in

this case a folder A inside a folder B.

	 3.	 Create a file with the same name of the last component ending in

.hs (here C.hs) and write the module declaration you saw earlier.

	 4.	 Tell Cabal to include the file in your project.

Note  From now on, create a new project for each chapter in the book. Create a
new module or set of modules for each section. This convention will help keep your
work organized.

Chapter 2 Declaring the Data Model

33

�Cabal and Stack
The Haskell ecosystem has not one but two tools for building projects and managing

their dependencies. A fair question to ask is what the differences between them are.

In general, Stack is focused on having reproducible builds, whereas Cabal encompasses

many more usage scenarios.

The first point of divergence between the two tools is that Stack manages your

Haskell installation (including the compiler), whereas Cabal does not. Each Stack project

comes with a stack.yaml file in addition to the .cabal one which declares which version

of the compiler is targeted. If that specific version is not present in the system, Stack

would download and install it in a local directory.

The other main difference is the source of the dependencies declared by each project.

Cabal by default uses Hackage, the community-maintained repository of packages. This

provides access to every single package in the Haskell ecosystem, but there is no guarantee

that a specific combination of packages will work (or even compile) together.

Stack, on the other hand, targets Stackage by default. In Stackage, packages are

grouped as resolvers, which specify not only an available set of packages, but also their

specific versions. Each of those sets is known to compile together in a specific version of

the compiler. Thus, by declaring that your project uses a certain resolver, you are fixing

the version of every tool and package, leading to reproducible builds. The downside is

that Stackage provides a smaller set of packages than Hackage, although there are ways

to declare that some dependency ought to be obtained from the bigger brother.

If you are in doubt of which tool to use, don’t worry and start with any. As I discussed

above, both share the same package description format, so changing from one to the

other is fairly easy.

�Defining Simple Functions
Now you are going to start creating functions in a module file. Function declarations

include the following:

•	 A name, which in Haskell always starts with a lowercase letter

•	 The list of parameters, each of which must also begin with a

lowercase letter, separated from the rest by spaces (not by commas,

like in most languages) and not surrounded by parentheses

•	 An = sign and the body of the function

Chapter 2 Declaring the Data Model

34

�Creating a Simple Function
Let’s try to abstract the last function created in the earlier section “List operations.” Given

a list of strings, that function returns either the first string in the list or the string "empty"

if there is nothing in the list. You can reuse most of the expression, replacing the constant

lists by the parameter name.

firstOrEmpty lst = if not (null lst) then head lst else "empty"

To test the function, first create a new module Chapter2.SimpleFunctions for

holding it. Then, load the file in the interpreter by issuing the command :l followed by

the entire path to the file. Afterward, you can call firstOrEmpty directly.

Prelude> :l src/Chapter2/SimpleFunctions.hs

[1 of 1] Compiling Chapter2.SimpleFunctions (src/Chapter2/SimpleFunctions.

hs, interpreted)

Warning: Top-level binding with no type signature:

 firstOrEmpty :: [[Char]] -> [Char]

Ok, modules loaded: Chapter2.SimpleFunctions.

*Chapter2.SimpleFunctions> firstOrEmpty []

"empty"

*Chapter2.SimpleFunctions> firstOrEmpty ["hello","hola"]

"hello"

You surely have noticed that loading the file has resulted in a warning. This warning

tells you that you have given no type signature, that is, that you haven’t specified the type

of the function.

�Specifying the Function’s Type
I emphasized in Chapter 1 that Haskell is a strong, statically typed language, and now

you are writing functions without any kind of type annotation. How is this possible?

The answer is in the same warning message: you didn’t tell anything to Haskell,

and it inferred the correct type for the function. Type inference (i.e., the automatic

determination of the type of each expression based on the functions and syntax

construct being used) is a key point that makes a strong type system such as Haskell’s

Chapter 2 Declaring the Data Model

35

still manageable to developers. This is a big contrast with other programming languages,

such as Java and C#, which until their last revisions asked developers to write the types of

all variables in the code.

However, it’s not considered good practice to leave a function definition without

an annotation about its type. That’s the reason why a warning shows up even when the

interpreter was able to realize the type of the function. The way to solve this is by adding

a type signature: the name of the function being defined followed by :: and its type.

Type signatures are conventionally added just before the definition of the element being

typed. Being reminded that function types are written using ->, you can see that the type

signature for firstOrEmpty is as follows:

firstOrEmpty :: [[Char]] -> [Char]

firstOrEmpty lst = if not (null lst) then head lst else "empty"

�Developing a Robust Example
Now you’ll try to define your own functions for concatenating and reversing a list, which

you will call (+++) and reverse2, respectively. A general way to define functions over

lists (and most of the other data structures) in Haskell is by using recursion. In this case,

defining a function by recursion boils down to considering these two general cases:

•	 What to do when the list is empty

•	 What to do when the list has some initial element and some tail

The basic skeleton is the same in both cases:

if null list

then <case for empty list>

else <do something with (head list) and (tail list)>

Let’s start with the concatenation function. First, because of its symbolic name of

(+++), you have to write the name infix. So, in the definition, you will write the following:

lst1 +++ lst2

Remember the two general cases from the earlier list. Now that you are

implementing a specific function, those cases can be stated in more specific terms.

•	 When concatenating an empty list with any other list, just return the

second list because the first one adds no elements.

Chapter 2 Declaring the Data Model

36

•	 When having a nonempty list and appending it to a second list, you

have to think about what to do with the head and tail of the first list.

Using recursion, you can call (+++) to append the tail of the first list

and the second one. The return value from this call will be the list you

need, but without the first element. To solve this problem, you can

just plug the head of the first list using the (:) operator.

When this definition is translated into code, the result is as follows:

lst1 +++ lst2 = if null lst1 {- check emptyness -}

 then lst2 -- base case

 else (head lst1) : (tail lst1 +++ lst2)

This example also showcases for the first time the use of comments in Haskell

code. Comments can include any kind of text and are completely ignored by both

the interpreter and the compiler (although some tools like Haddock get information

from the comments). As in many programming languages, there are two kinds of

comments in Haskell. The first one is a multiline comment, which spans from {- to

the nearest -}. Multiline comments are not affected by carriage returns like single-

line comments are. Single-line comments span from -- to the first newline symbol

found in the source code.

If you have problems understanding this recursive definition, I encourage you to try

applying it to some small lists. For example, the following are the steps when evaluating

[1, 2] +++ [3, 4]:

•	 The initial expression comes in as [1,2] +++ [3,4].

•	 It evaluates recursively to 1:([2] +++ [3,4]).

•	 That evaluates recursively to 1:(2:([] +++ [3,4])).

•	 The first list is now empty, so the recursion ends by returning lst2

with 1:(2:[3,4]).

•	 The colon operators simply append list items. Thus, 2:[3,4]

evaluates to [2,3,4], and so forth.

•	 The final result is [1,2,3,4].

Chapter 2 Declaring the Data Model

37

From now on, you will go through traces of execution often. To make the examples

more concise, the book will use the convention of showing the steps separated by the =>

symbol. Here’s what that looks like for the previous example:

[1,2] +++ [3,4] => 1:([2] +++ [3,4]) => 1:(2:([] +++ [3,4]))

 => 1:(2:[3,4]) = [1,2,3,4]

Now let’s move on to the reverse2 function. Once again you will follow the

methodology of separating the work by the possible cases of a list to be passed as input.

Reversing an empty list is quite easy: you simply return an empty list. To reverse a list

with some number of elements, you could take the following approach:

	 1.	 Reverse the tail of the list.

	 2.	 Concatenate the head of the list to the end of the reversed tail.

The recursion occurs in step 1. Reversing the tail of a list means to reverse a list that

is shorter by one element than the original input list. That shorter-by-one list is passed

to the reversal function, creating yet another list, shorter by one more element. This

process continues until the tail becomes empty.

Since you have no direct way to add elements at the end of a list, you will use the

(+++) function just defined to concatenate a list with a single element. The result in this

case is as follows:

reverse2 list = if null list

 then []

 else reverse2 (tail list) +++ [head list]

I mentioned in Chapter 1 that a useful feature of the Haskell ecosystem is the ability

to interactively test functions. Exercise 2-3 describes the steps you should follow for the

functions in this section.

EXERCISE 2-3. TESTING FUNCTIONS

Load the file where you defined the functions into GHCi and call them with different arguments

to test them. Based on the warnings that appear, add type signatures to your code.

Chapter 2 Declaring the Data Model

38

�Returning More Than One Value
You are moving toward defining larger functions. The next one will compute the

maximum and minimum of a list of numbers. The first question you may have is, how

can I return more than one value in a function? In other programming languages,

doing so would require defining some kind of structure or data type to hold the result.

Doing this is a valid approach in Haskell, but for easy cases like this one you can use a

built-in type called the tuple. A tuple is just a type with a fixed number of components,

each of them holding a value, not necessarily of the same type. Tuple values are written

between parentheses and separated by commas, and the same notation is used for

tuple types. For example, the following code creates a tuple with two elements; the first

one is just the string "hello", and the second one is the result of evaluating a numeric

condition:

Prelude> :t ("hello", True, if 2 > 3 then 'a' else 'b')

("hello", True, if 2 > 3 then 'a' else 'b') :: ([Char], Bool, Char)

Warning T uple types of different lengths are completely different types.
For example, a function working on tuples in the form (a,b) cannot be applied
to tuples such as (a,b,c) that have some other number of values.

Right now you will work only with pairs, that is, tuples of two components. For those

tuples, there are two destructor functions: fst gives the first component, and snd gives

the second one. Now you have all the ingredients to create a function computing both

a maximum and a minimum of a list. If you forget for now the case of empty lists that

don’t have a well-defined maximum or minimum, you can proceed again by cases. The

first case is the list with a single element, and that element should be returned as both

the maximum and the minimum and thus in both components of the tuple. If the list

has more than one element, you can get the maximum and minimum of the tail of the

list and then compare those values with the head. Thus, the recursive solution looks as

follows:

maxmin list = if null (tail list)

 then (head list, head list)

 else (if (head list) > fst (maxmin (tail list))

 then head list

Chapter 2 Declaring the Data Model

39

 else fst (maxmin (tail list))

 , if (head list) < snd (maxmin (tail list))

 then head list

 else snd (maxmin (tail list))

)

Wow! Somehow a function for such an easy task has become completely

incomprehensible and unmaintainable: the code is full of repetition, and even worse,

maxmin (tail list) is recomputed four times per recursive call, which is not very

performant. The solution is to use a local binding, which gives a name to an expression

to be used in a larger one. There are two kinds of binding constructs in Haskell: let and

where. In both cases, a binding is introduced by name = expression. The difference

lies in the position over the main expression: let introduces bindings before the main

expression and must end with the in keyword. On the other hand, where does so after

the expression. The following code rewrites the previous code by using local bindings to

refer to the head of the list and the return values of the recursive case:

maxmin list = let h = head list

 in if null (tail list)

 then (h, h)

 else (if h > t_max then h else t_max

 , if h < t_min then h else t_min)

 where t = maxmin (tail list)

 t_max = fst t

 t_min = snd t

The special position of the code in all of these examples is not random or just

aesthetic, as you have noticed if you’ve tried to copy the code by hand into an editor.

A first guess about the reason may lead you to think about indentation-sensitive languages

such as Python. However, Haskell uses a different solution, called layout. In a layout-

based syntax, how a line is indented isn’t as important as the fact that all elements in the

same block start in the same column. Here’s an example:

•	 In an if block, the lines for then and else must be indented the

same way.

•	 In a let or a where block, all local bindings must start in the same

position.

Chapter 2 Declaring the Data Model

40

Note  When reading Haskell code, you will notice that Haskellers also tend
to align other symbols, like the = signs in a local bindings block. The layout
rule applies only to the beginning of expressions, so alignment is not enforced.
However, it’s a common convention that you should follow or at least get used to.

As a final remark, Haskell also allows you to group blocks with { and } and separate

expressions with ;. For example, you can rewrite the last where clause in the example as

follows:

where { t = maxmin (tail list) ; t_max = fst t ; t_min = snd t }

Be aware that this kind of syntax is highly discouraged when writing new code (it

is typically used in cases where Haskell code is produced automatically by some other

program).

�Working with Data Types
Haskell provides tuples to group a fixed number of components of different types and

lists to contain an unlimited number of elements of a homogeneous type. It seems that

this is enough to start modeling the data for the web application. For example, a client

named Paul, age 25 and buyer of two time machines, could be represented as follows:

("Paul", 25, ["Super Time Machine 2013", "Medieval Machine"])

There are two problems with using this approach. First, code is difficult to read

because of nested calls to fst, snd, and head. Second, it defies strong typing because the

compiler cannot distinguish a client from, say, the description of a fish with its common

name, its length, and a list of seas where it is found. The solution is to introduce a new

data type specific for representing clients. The most basic kind of data type that you

can create in Haskell is called an algebraic data type (ADT) and will be the focus of this

section. An ADT is defined by two pieces of data.

•	 A name for the type that will be used to represent its values.

•	 A set of constructors that will be used to create new values. These

constructors may have arguments that hold values of the specified

types.

Chapter 2 Declaring the Data Model

41

In many languages, different constructors can be defined for a data type (or a class,

if you are working on an object-oriented language). However, these constructors are

somehow linked and tend to be more like shortcuts for default values. In most functional

languages, such as Haskell, different constructors are used to represent completely

different alternatives to construct values.

To make these ideas clear, let’s begin modeling clients. There are three kinds of

clients, listed here:

	 1.	 Government organizations, which are known by their name

	 2.	 Companies, for which you need to record a name, an

identification number, a contact person, and that person’s

position within the company hierarchy

	 3.	 Individual clients, known by their name, surname, and whether

they want to receive further information about offers and

discounts

The way to represent these three client types in Haskell is as follows:

data Client = GovOrg String

 | Company String Integer String String

 | Individual String String Bool

As you can see, the syntax for declaring data types starts with the data keyword,

followed by the type name. After that, constructors are listed, separated by |. Each of them

starts with a constructor name and then the types of the arguments to that constructor.

CAPITALIZATION IN HASKELL

One of the special characteristics of Haskell syntax is that names given by the user must

follow some capitalization rules. Here is a brief summary of the conventions:

•	 Functions, parameters, and bindings must start with a lowercase letter.

In the case of an operator name, it must not start with :.

•	 Types, constructors, type classes, and kinds must start with an uppercase letter.

If using an operator name, it must start with the : symbol.

These rules make it easier to determine the kind of element you are looking at.

Chapter 2 Declaring the Data Model

42

Using constructors, you can create values of type Client by just writing the

constructor name and the value for each of the parameters in the order in which they

appear in the declaration.

*Chapter2.DataTypes> :t GovOrg "Nasa"

GovOrg "Nasa" :: Client

*Chapter2.DataTypes> :t Company "Pear Inc." 342 "Mr. Sparrow" "CEO"

Company "Pear Inc." 342 "Mr. Sparrow" "CEO" :: Client

But when you try to print the values, something goes wrong.

*Chapter2.DataTypes> Individual "Jack" "Smith" True

 No instance for (Show Client) arising from a use of `print'

 Possible fix: add an instance declaration for (Show Client)

 In a stmt of an interactive GHCi command: print it

To show the values on the screen, the interpreter internally calls a print function

over them. However, you haven’t written the corresponding code for this data type, so

an error arises. To fix this problem, you can use a facility in Haskell called automatic

deriving that allows you to add some functionality to an ADT without writing any code.

In this case, you want to be able to get a string representation of the values, so you need

to derive Show. Show is a type class: implementing it means that there’s a way to get a

string out of any value of this type. You can write the code yourself, or you can allow

Haskell to write it for you. The following example specifies deriving Show, causing

Haskell to generate it automatically:

data Client = GovOrg String

 | Company String Integer String String

 | Individual String String Bool

 deriving Show

Now the interpreter can display the values on the screen.

*Chapter2.DataTypes> Individual "Jack" "Smith" True

Individual "Jack" "Smith" True

There’s no impediment when using one ADT that you define inside another one.

For example, in the previous code, there are some divergent options for representing

a person as a member of a company and as an individual. One path you can take is to

define a completely new data type called Person and use it inside Client.

Chapter 2 Declaring the Data Model

43

data Client = GovOrg String

 | Company String Integer Person String

 | Individual Person Bool

 deriving Show

data Person = Person String String

 deriving Show

Here are some key points regarding this refactoring:

•	 If you tried to create a completely new ADT, for example, named

Client2, but you used the same constructor names, you would get

a build error. This is because inside a module all constructors must

have different names. If you think about it, it’s sensible to ask for

that condition because otherwise the compiler wouldn’t be able to

distinguish which type you are trying to create.

•	 Data types and constructor names live in different worlds. That

means it is possible to create a constructor with the same name as

a data type. Indeed, it’s a common convention for one-alternative

types, such as Person, to have two names that coincide.

•	 To be able to use the default deriving functionality, all types used

inside another one must be showable. For example, if you didn’t

include deriving Show in Person, a compilation error would be

signaled.

Sometimes you are just interested in the alternatives themselves, without saving

any extra information apart from the constructors. For example, you could add gender

information for people. Instead of using a raw Boolean value, for which you can forget

which value corresponds to men and which to women, you can create a new Gender data

type. This kind of data type with empty alternatives is similar to enumerations in other

languages.

data Gender = Male | Female | Unknown

Exercise 2-4 provides a step-by-step recipe on how to integrate this new Gender data

type in the existing code base and how to modify the existing functionality for covering it.

In the following sections I assume that the Gender type has been defined.

Chapter 2 Declaring the Data Model

44

EXERCISE 2-4. MORE TYPES OF VALUES

You have just defined a new Gender data type. The reason you defined it was to include such

information in a Person record, so you should add a new field in Person.

•	 Add a Gender argument to Person and make it Showable.

•	 Create new values of the new Client data type with the enhanced definition

you worked with throughout this section.

You have learned how to define new data types, so it’s time to look at other types that could

be useful for the Time Machine Store. Time machines are defined by their manufacturer, their

model (which is an integer), their name, whether they can travel to the past and to the future,

and a price (which can be represented as a floating-point number). Define a TimeMachine

data type holding that information. Try to use more than one ADT to structure the values.

�Pattern Matching
Now it’s time to define functions over your shiny new data types. The bad news is that

I haven’t taught you how to extract the information from the constructors because you

have been taught to use head and tail for lists and to use fst and snd for tuples. The

general solution for this task is pattern matching. Matching a value against a pattern

allows you to discern the structure of the value, including the constructor that was used

to create the value, and to create bindings to the values encoded inside it. When entering

the body of the match, the pattern variables will hold the actual inner values, and you

can work with them.

�Simple Patterns

To see a first example, let’s create a function giving the name of a client. In the case of

a company or a government organization, the client name will be the first component

of the constructor. In the case of an individual, you will have to look inside Person and

Chapter 2 Declaring the Data Model

45

concatenate the first and last names. As you can see, the patterns in this case look exactly

like the ADT constructors but with the parameters replaced by bindings:

clientName :: Client -> String

clientName client = case client of

 GovOrg name -> name

 Company name id person resp -> name

 Individual person ads ->

 case person of

 Person fNm lNm gender -> fNm ++ " " ++ lNm

Let’s see how the execution of a call to clientName (Individual [Person "Jack"

"Smith" Male]) False proceeds. First the system finds a case expression. So, it tries

to match with the first and second patterns, but in both cases the constructor is not

the same as the value. In the third case, the system finds the same constructor, and it

binds the values: person now holds Person "Jack" "Smith" Male, and ads holds the

value False. In the body of the match, there’s again a case expression, from which a

match is done to the Person constructor, binding fNm to "Jack", lNm to "Smith", and

gender to Male. Finally, the system proceeds into the innermost body and executes the

concatenation, giving “Jack Smith” as the result.

Note  When loading this definition into the interpreter, you will receive a collection
of warnings that look like:

Defined but not used: `id'

This tells you that you created a binding that was not used in the body of the
match. The solution for this warning is telling the compiler that you won’t use
that binding in your code, and this is done by replacing its binding variable by a
single underscore, _. For example, the nonwarning pattern for Company name id
person resp would have been Company name _ _ _ because you are using
only the first pattern variable in the subsequent matching code.

Chapter 2 Declaring the Data Model

46

For this example, I have used the simplest kind of match, which just looks at the

constructors and binds the values of the parameters. But you can specify more complex

patterns, in which some inner parts of the value will have to match also against other

patterns. Using this approach, you can rewrite the match in clientName to be shorter, as

shown here:

clientName :: Client -> String

clientName client = case client of

 GovOrg name -> name

 Company name _ _ _ -> name

 Individual (Person fNm lNm _) _ -> fNm ++ " " ++ lNm

One important question that arises here is, what happens if no pattern matches the

value that is given? The best way to find this out is by an easy example. Let’s consider a

companyName function, shown here:

companyName :: Client -> String

companyName client = case client of

 Company name _ _ _ -> name

The interpreter already warns about the pattern not covering all the cases, that is, not

being exhaustive.

Warning: Pattern match(es) are non-exhaustive

In a case alternative:

 Patterns not matched:

 GovOrg _

 Individual _ _

Applying the function to a value that is not expected yields an exception. This is

similar to what happens if you try to get the head of an empty list.

*Chapter2.DataTypes> companyName (GovOrg "NATO")

"*** Exception: Non-exhaustive patterns in case

The functions that are not defined over the complete domain of their arguments are

called partial (the other side of the coin are the total functions). In some cases, a default

value can be returned when you don’t get an applicable value (for example, returning

Chapter 2 Declaring the Data Model

47

"unknown" in companyName if the input is not a Company). However, this problem is so

common in practice that the Haskell Platform already bundles a special data type for this

matter: Maybe T. As lists and tuples, the Maybe type is parameterized by the type of value

it holds, so you have Maybe Integer, Maybe String, Maybe [Integer], and so on. There

are only two kinds of values that this type can have: Nothing, with no arguments, usually

signaling that the function doesn’t have nothing sensible to return for that specific

value; and Just v, which holds a single value v of the corresponding type. Let’s rewrite

companyName.

companyName :: Client -> Maybe String

companyName client = case client of

 Company name _ _ _ -> Just name

 _ -> Nothing

One interesting fact is that you can pattern match directly on let and where

bindings. In that case, you can handle only one pattern, but it is useful when you know

that only one kind of value can happen in a specific place. Let’s say you are sure at some

point that the client you are working with is a company. Instead of this not very clear

code:

let name = case companyName client of

 Just n -> n

You can write the following much more concise version:

let Just name = companyName client

Constants are also patterns, which match the exact values written. Let’s focus

on an archetypical example for teaching programming languages: the Fibonacci

numbers. The nth Fibonacci number, F(n), is defined as F(0) = 0, F(1) = 1, and

F(n) = F(n-1) + F(n-2) for a larger value of n. This is easily expressed in terms of

patterns and recursion.

fibonacci :: Integer -> Integer

fibonacci n = case n of

 0 -> 0

 1 -> 1

 _ -> fibonacci (n-1) + fibonacci (n-2)

Chapter 2 Declaring the Data Model

48

In this case, you have implicitly used the fact that patterns are checked in the

same order they appear in the code. This order-dependent behavior can lead to

subtle bugs and sometimes even to programs that don’t terminate or run out of

resources. As an exercise, rewrite the fibonacci function putting the last pattern in

the first position. Now try to test the function in the interpreter. You will see that it

never terminates.

Also, once a pattern has matched, it completely stops trying other alternatives,

even if a further match raises an error. For example, the following two functions are not

equivalent:

f :: Client -> String

f client = case client of

 Company _ _ (Person name _ _) "Boss" -> name ++ " is the boss"

 _ -> "There is no boss"

g :: Client -> String

g client = case client of

 Company _ _ (Person name _ _) pos ->

 case pos of "Boss" -> name ++ " is the boss"

 _ -> "There is no boss"

*Chapter2.DataTypes> f (Company "A" 5 (Person "John" "Do" Male) "Director")

"There is no boss"

*Chapter2.DataTypes> g (Company "A" 5 (Person "John" "Do" Male) "Director")

"*** Exception: Non-exhaustive patterns in case

When the value is given to f, the first pattern does not match because "Director"

is not equal to "Boss". So, the system goes into the second black-hole match and sees

that there is no boss. However, on g it first matches into being a Company, which the

value satisfies, and in this point it enters the body of the match and forgets about other

alternatives. Then, the inner match fails, raising the exception.

Note I strongly emphasize the fact that pattern matching does not backtrack
when something goes wrong in the body of a match. This is important to
remember, especially if you are coming from a logic programming background in
which unification with backtracking is the norm.

Chapter 2 Declaring the Data Model

49

You may have noticed that most of the case expressions just pattern match on some

parameter to a function. For these cases, Haskell allows you to encode the pattern

directly in the definition. You include several lines for the function, each defining it for

a pattern. This approach creates code that is similar to the way you write mathematical

functions. For example, new versions of clientName and fibonacci look like this:

clientName (GovOrg name) = name

clientName (Company name _ _ _) = name

clientName (Individual (Person fNm lNm _) _) = fNm ++ " " ++ lNm

fibonacci 0 = 0

fibonacci 1 = 1

fibonacci n = fibonacci (n-1) + fibonacci (n-2)

Try to use this new syntax when writing the solution for Exercise 2-5, which provides

a set of tasks to practice pattern matching on different kind of values, both clients and

time machines.

EXERCISE 2-5. THE PERFECT MATCH FOR YOUR TIME MACHINES

These exercises focus on pattern matching on data types defined by you. For working with

lists, follow the pattern of having different branches for the empty and general case. Also, think

carefully about the order of the patterns. Afterward, test the functions in the interpreter.

For statistical purposes, write a function that returns the number of clients of each gender. You

may need to define an auxiliary data type to hold the results of this function.

Every year a time comes when time machines are sold with a big discount to encourage

potential buyers. Write a function that, given a list of time machines, decreases their price by

some percentage. Use the TimeMachine data type you defined in Exercise 2-4.

�Lists and Tuples

One question that may have naturally arisen while doing the previous exercises is

whether it’s also possible to use pattern matching on lists and tuples because it seems that

doing so will lead to more concise code. It’s indeed possible because lists and tuples are

no more special than any other user-defined data type. Lists constructors are [] and (:),

Chapter 2 Declaring the Data Model

50

and those are the ones you can use to pattern match. Furthermore, using pattern

matching in lists allows you to get rid of all the null checks and calls to head and tail.

For example, the function (+++) defined earlier could be rewritten as follows:

(+++) :: [a] -> [a] -> [a]

list1 +++ list2 = case list1 of

 [] -> list2

 x:xs -> x:(xs +++ list2)

Or directly matching in the function declaration would look like this:

[] +++ list2 = list2

(x:xs) +++ list2 = x:(xs +++ list2)

Note I t’s customary in Haskell to write pattern matching on lists using a letter or
a small word followed by the same identifier in plural, like x:xs.

The Prelude function’s null, head, and tail have no special magic inside them; they

can be defined easily using pattern matching. Are you able to do so?

Sometimes you need to match on lists of more than one element. A possible function

where you would need these is one that checks whether a list of integers is sorted. To

check for sorted data, three cases need to be considered. The first two are the empty or

singleton cases, and those are always sorted. But if more than one element is contained

in a list, you need to compare the first with the second and then see whether the list

comprised of the second and subsequent elements is sorted. That check on the second

and subsequent elements is done recursively. The implementation of such a sorted

function is as follows:

sorted :: [Integer] -> Bool

sorted [] = True

sorted [_] = True

sorted (x:y:zs) = x < y && sorted (y:zs)

There is still some repetition in this code; you are matching on y:zs just to later

reconstruct it. This sequence of checking whether some value conforms to some pattern

but later to use the value as a whole and not its components is quite common in Haskell

code. For that reason, Haskell introduces a syntactic form referred to by the term as

Chapter 2 Declaring the Data Model

51

pattern. As pattern allows you to bind some value in the match, while at the same time

allowing you to match on inner components of that value. To use it, you have to wrap

into parentheses the whole pattern you want to give a name to and prepend it by the

variable that will be used to refer to the whole pattern and the @ symbol. A new definition

of sorted that uses as patterns for y:zs looks like this:

sorted [] = True

sorted [_] = True

sorted (x : r@(y:_)) = x < y && sorted r

One last remark about matching on lists: In many cases you have a function that

at first sight makes sense only on a nonempty list, such as when computing the sum of

all elements in a list. In most cases, this function can be extended in a sensible way to

empty lists. For example, you can assign the value 0 to the sum of an empty list because

if you add that value to any number, it does not change. Values such as 0, which can be

safely applied with respect to an operation, such as sum, are called the neutral elements

of that operation. I will cover such neutral elements in more detail in Chapter 3 when

discussing folds and again in Chapter 4 when discussing monoids.

Matching on tuples is also easy. Just use the syntax of a comma-separated list of

components between parentheses. Rewriting the maxmin example from the previous

section in this style makes the algorithm much more apparent to the reader or

maintainer of that code.

maxmin [x] = (x,x)

maxmin (x:xs) = (if x > xs_max then x else xs_max

 , if x < xs_min then x else xs_min

) where (xs_max, xs_min) = maxmin xs

�Guards

A guard is part of the pattern-matching syntax that allows you to refine a pattern using

Boolean conditions that must be fulfilled by the bound values after a successful match.

Guards are useful for writing clearer code and avoiding certain problems, helping you to

obtain the full power of pattern matching.

Two examples can help make the need for guards clear. The first is an extension

of the Fibonacci function to any integer value. You will wrap the value on a Just

if you are asked to get the Fibonacci number of a nonnegative number and return

Chapter 2 Declaring the Data Model

52

Nothing otherwise. With the syntax introduced up to this point, you could write the

following code:

ifibonacci :: Integer -> Maybe Integer

ifibonacci n = if n < 0

 then Nothing

 else case n of

 0 -> Just 0

 1 -> Just 1

 n' -> let Just f1 = ifibonacci (n'-1)

 Just f2 = ifibonacci (n'-2)

 in Just (f1 + f2)

At this time, your developing sense of clear code signals you that the initial check for

negativeness hides part of the algorithm, which is mostly expressed in a pattern match.

And that is true. Apart from that, notice that the case statement has used a binding n'.

You could have reused n, but the interpreter would complain about shadowing a

previous definition. Even though the interpreter knows completely well which n the

code refers to, the fact you have used the same name twice may create confusion for

another developer. It’s customary in Haskell code to use the same identifier, but with '

(pronounced prime) afterward, to refer to a highly related binding.

Another mathematical function I will cover is the binomial coefficient of n and k,

usually written
n

k

æ

è
ç

ö

ø
÷ . This coefficient gives the number of ways in which you can get k

balls from a bag of n without repetition. Using the famous Pascal’s triangle, you can give

a closed definition of this coefficient as follows:

	

n

k

k n k

n

k

n

k
otherwise

æ

è
ç

ö

ø
÷ =

= =

-
-

æ

è
ç

ö

ø
÷ +

-æ

è
ç

ö

ø
÷

ì

í
ï

î
ï

1 0

1

1

1

,

,

V

	

Your task is translating this mathematical definition into Haskell code. A first

approximation could be as follows:

binom _ 0 = 1

binom x x = 1

binom n k = (binom (n-1) (k-1)) + (binom (n-1) k)

Chapter 2 Declaring the Data Model

53

But sadly this approach doesn’t make the interpreter happy, which shows the error

Conflicting definitions for `x'. This error is because of the restriction imposed on

patterns in which a variable can appear only once in each of them. A possible solution is

to change the entire shape of the function. Once again, it seems that pattern matching is

not giving you all the power you are asking from it.

The solution to the problems found in both functions is to use guards. A guard is

itself part of a pattern, so it allows backtracking (choosing other alternative) if it fails,

in contrast to matching a pattern and later checking for a condition. The Boolean

conditions in a guard are separated by a | sign from the rest of the pattern and allow the

use of the variables bound during the match. The following is how you would rewrite the

Fibonacci and binomial functions using guards:

ifibonacci n | n < 0 = Nothing

ifibonacci 0 = Just 0

ifibonacci 1 = Just 1

ifibonacci n | otherwise = let Just f1 = ifibonacci (n-1)

 Just f2 = ifibonacci (n-2)

 in Just (f1 + f2)

binom _ 0 = 1

binom x y | x == y = 1

binom n k = (binom (n-1) (k-1)) + (binom (n-1) k)

Apart from the use of guards, you should notice another tidbit in the previous code. The

use of otherwise in the last pattern when using guards is a common convention in Haskell.

While using otherwise doesn’t add anything to the code (using no guard is equivalent), it

signals clearly that the remaining pattern takes care of all the cases not handled by other cases.

Any expression returning a Boolean value can be used in a guard. This means you

can also call a function that you have defined. For example, the following code returns

special strings when a number is a multiple of 2, 3, or 5, and a default string otherwise:

multipleOf :: Integer -> Integer -> Bool

multipleOf x y = (mod x y) == 0

specialMultiples :: Integer -> String

specialMultiples n | multipleOf n 2 = show n ++ " is multiple of 2"

specialMultiples n | multipleOf n 3 = show n ++ " is multiple of 3"

specialMultiples n | multipleOf n 5 = show n ++ " is multiple of 5"

specialMultiples n | otherwise = show n ++ " is a beautiful number"

Chapter 2 Declaring the Data Model

54

For this example where you are checking several conditions on the same

argument, Haskell allows an even more compact declaration. You don’t need to write

specialMultiples n every time.

specialMultiples n

 | multipleOf n 2 = show n ++ " is multiple of 2"

 | multipleOf n 3 = show n ++ " is multiple of 3"

 | multipleOf n 5 = show n ++ " is multiple of 5"

 | otherwise = show n ++ " is a beautiful number"

Up to this point, I have introduced matching on user defined data types, on lists, and

on tuples and guards. The tasks in Exercise 2-6 will help ensure that you understand

these concepts.

EXERCISE 2-6. MORE MATCHES AND GUARDS

Up to this point I have introduced matching on lists and tuples and guards. The following tasks

will help you ensure that you understand these concepts:

Define the famous Ackermann function. Try using guards:

A m n

n m

A m m n

A m A m n m n

, ,

, ,

() =
+ =

-() > =
- -()() > >

ì

í
ï

î
ï

1 0

1 1 0 0

1 1 0 0

,

, ,

, ,

Define the unzip function, which takes a list of tuples and returns two lists, one with

all the first components and other one with the seconds. Here’s an example: unzip

[(1,2),(3,4)] = ([1,3],[2,4]).

�View Patterns

Sometimes you want to look for patterns in a value, but in some way they are not directly

encoded. So, you need to preprocess the value before matching. For those cases, you

can use view patterns. These patterns extend all of those previously seen with a new

Chapter 2 Declaring the Data Model

55

syntax element, (function -> pattern), which applies function to the value and then

matches the result with the pattern. For example, remember the clientName function

from the beginning of the chapter, and let’s add a responsibility one:

responsibility :: Client -> String

responsibility (Company _ _ _ r) = r

responsibility _ = "Unknown"

Now you can create a function returning whether a given client is special. Let’s

consider a client special if the client is the director of a company or the client’s name is

"Mr. Alejandro". View patterns allow very clear code.

specialClient :: Client -> Bool

specialClient (clientName -> "Mr. Alejandro") = True

specialClient (responsibility -> "Director") = True

specialClient _ = False

Oops! It seems that you rushed into making some sort of mistake. Notice the

following interpreter error:

 Illegal view pattern: clientName -> "Mr. Alejandro"

 Use -XViewPatterns to enable view patterns

This problem arises because view patterns are not part of the Haskell 2010

specification but rather an extension made by GHC developers. For that reason, you are

asked to explicitly enable compatibility with this extension. You can do so adding special

options to the compiler or interpreter, but the suggested approach is to add a pragma

to the file. A pragma is a special comment that is interpreted by the compiler and that is

used to enable or disable some flags. In this case, you need to include the following at

the beginning of the source:

{-# LANGUAGE ViewPatterns #-}

If you are working in the interpreter, you need to execute a :set command to enable

an extension. Notice that the extension name must be prefixed by –X.

Prelude> :set -XViewPatterns

In the rest of the book, I shall remark that an extension needs to be enabled for a

specific piece of code by including the corresponding pragma as you would do in the

beginning of a source file.

Chapter 2 Declaring the Data Model

56

Note GH C includes a great many extensions (more than 30 at the moment
of writing). They range from simple extensions to the syntax (like the view
patterns discussed earlier) for complete overhauls of the type system. Being so
different in power, some of them are accepted by the community while others are
controversial. All the GHC extensions that will be introduced in this book belong
to the first set: they are seen as beneficial because they make code more elegant
and easier to understand, without running into any problems. The main con of
extensions, even with not-controversial ones, is that they are not part of the
Haskell 2010 Report, so in theory they could make your code less interoperable
between different Haskell compilers. However, this interoperability is almost never
a problem.

�Records
In most programming languages you can find the idea of a field as something that holds

a value in a larger structure. Furthermore, fields can be accessed or changed easily (e.g.,

in C or Java using structure.field). From what you have learned so far, you can see that

pattern matching on big structures may get unwieldy quickly, because it forces to write

long matches to retrieve just a single value and to re-create entire data structures merely

to change just a single field.

�Creation and Use

The concept of a data structure with fields that can be accessed by name does exist

in Haskell. Records make accessing or updating part of a structure much easier than

otherwise. Records are defined using data declarations, but instead of just using a type

for each parameter, you write parameter name :: parameter type. These declarations

are the only exception to the layout rule. You always need to write the set of fields

between { and } and to separate them by commas.

Let’s write the Client and Person definitions but now using record syntax. To leave

all the previous functions from this chapter unchanged, you are going to encode the new

records in new ClientR and PersonR types. Remember, constructor names should not

Chapter 2 Declaring the Data Model

57

clash; that’s why you need to use new names for the record types. But field names can,

so you are allowed to use clientRName for fields in different alternatives, given that they

have the same type. Here are the new record definitions:

data ClientR = GovOrgR { clientRName :: String }

 | CompanyR { clientRName :: String

 , companyId :: Integer

 , person :: PersonR

 , duty :: String }

 | IndividualR { person :: PersonR }

 deriving Show

data PersonR = PersonR { firstName :: String

 , lastName :: String

 } deriving Show

You can create values from these types using the same constructor syntax that you’ve

been using. However, if the data is declared as a record, you can also use the constructor

name followed by a list of each field name, followed by an = sign and the corresponding

value. There are two benefits for doing this. First, constructing the new value this way

results in better documentation because you can see directly to which field each value

corresponds. Also, this syntax allows you to write the field names in any order, giving you

more freedom. Here’s an example showing this named notation:

*Chapter2.DataTypes> IndividualR { person = PersonR { lastName = "Smith",

firstName = "John" } }

IndividualR {person = PersonR {firstName = "John", lastName = "Smith"}}

*Chapter2.DataTypes> GovOrgR "NATO"

GovOrgR {clientRName = "NATO"}

Field names are also used to create special functions that access those particular

fields. Here’s an example:

*Chapter2.DataTypes> clientRName (GovOrgR "NATO")

"NATO"

*Chapter2.DataTypes> :t duty

duty :: ClientR -> String

Chapter 2 Declaring the Data Model

58

Because these functions will be automatically created, Haskell enforces two extra

restrictions on field names.

•	 They must not clash with any other field or function name.

•	 As I mentioned earlier, you are allowed to use the same field name

in more than one alternative of your data type. However, if you do so,

all those fields must have the same type. If such is not the case, no

correct type can be given to the corresponding function.

Records are useful when pattern matching. For a traditional constructor, you need to

write a binding or another pattern for each field in it. Thus, in many cases the code ends

up with a collection of _ bindings, which are difficult to maintain. With a record, you can

use a new pattern that resembles the building one: the constructor, plus a list of field

name = pattern elements enclosed in brackets. You don’t need to include all the fields,

just those for which you want to bind or match. You are even allowed to write an empty

list of fields, as this example highlights:

greet :: ClientR -> String

greet IndividualR { person = PersonR { firstName = fn } } = "Hi, " ++ fn

greet CompanyR { clientRName = c } = "Hi, " ++ c

greet GovOrgR { } = "Welcome"

There are two interesting additions in GHC to record matching that encode very

usual patterns, allowing for a lesser amount of boilerplate code. The first addition is

record puns, which are enabled by the pragma NamedFieldPuns. When using record

puns, you can replace all field patterns of the form field name = field name, which

creates a binding for the corresponding field available with the same name in the body

of the match, with a single field name. You can interleave this kind of matching with the

more usual one. Here’s an example:

{-# LANGUAGE NamedFieldPuns #-}

greet IndividualR { person = PersonR { firstName } } = "Hi, " ++ firstName

greet CompanyR { clientRName } = "Hi, " ++ clientRName

greet GovOrgR { } = "Welcome"

Another common idiom is making some field obey a pattern and binding the rest

of the fields to use them in the body of the match. Even with record puns, doing so can

take a large amount of code. But GHC can take advantage of its knowledge of the field

Chapter 2 Declaring the Data Model

59

names and automatically generate all that code for you. In particular, the extension

RecordWildCards allows the use of .. (two dots) to automatically create bindings for

all variables that haven’t been mentioned in the pattern up to that point. The previous

example could get a minimal form such as follows:

{-# LANGUAGE RecordWildCards #-}

greet IndividualR { person = PersonR { .. } } = "Hi, " ++ firstName

greet CompanyR { .. } = "Hi, " ++ clientRName

greet GovOrgR { } = "Welcome"

Note R emember that to use these extensions, you need to include the {-#
LANGUAGE Extension #-} declaration at the beginning of your source code.

I have spoken about facilities for record building and matching. The last step is using

record syntax for updating a record. If r is a binding containing a value of a record type,

you can use r { field name = new value } to create an exact copy of r where the

corresponding field has been changed. For example, here is a function that ensures that

PersonR’s first name always starts with a capital letter:

nameInCapitals :: PersonR -> PersonR

nameInCapitals p@(PersonR { firstName = initial:rest }) =

 let newName = (toUpper initial):rest

 in p { firstName = newName }

nameInCapitals p@(PersonR { firstName = "" }) = p

Take the time to understand this last example because it shows a lot of features from

this chapter. Record syntax is used to pattern match on PersonR. Inside it, x:xs is used

to match a list. As you later want to refer to the entire value to update it, an as pattern is

used to bind it to p. Finally, the new name is computed inside a let expression, which is

used to update p using record-updating syntax.

As you have done for clients, you can also benefit from record syntax when

describing time machines. That is the purpose of Exercise 2-7.

Chapter 2 Declaring the Data Model

60

EXERCISE 2-7. TIME MACHINE RECORDS

Rewrite the TimeMachine data type defined earlier using records. You should find that

updating the prices of time machines is now much more concise.

�The Default Values Idiom

We are going to end this chapter by showing a particularly helpful convention the

Haskell community has come up with to support a common use case. You will look at

functions that can take a long list of parameters, but most of the time those parameters

take on default values. Take as an example a network library. For creating a connection,

you need information about the following:

•	 URL to connect to

•	 Connection type: TCP or UDP

•	 Connection speed

•	 Whether to use a proxy

•	 Whether to use caching

•	 Whether to use keep-alive

•	 Time-out lapse

These elements can be encoded as follows:

data ConnType = TCP | UDP

data UseProxy = NoProxy | Proxy String

data TimeOut = NoTimeOut | TimeOut Integer

data Connection = ... -- Definition omitted

connect :: String -> ConnType -> Integer -> UseProxy

 -> Bool -> Bool -> TimeOut -> Connection

Chapter 2 Declaring the Data Model

61

Of course, most people simply want to connect to a target URL using TCP at the

highest speed, with some sensible defaults for proxying, caching, keep-alive, and time-

out lapse. A first solution is to create a special function for that case.

connectUrl :: String -> Connection

connectUrl u = connect u TCP 0 NoProxy False False NoTimeOut

This solution makes it easy to connect in the simple case but poses two problems.

	 1.	 Maintainability is harmed. If at some point you need to add a new

connection parameter, all users of the function need to change

their calls to connect. Or if the default value changes, all the uses

must be reconsidered and rewritten.

	 2.	 Using the library is easy only for the simplest case. If you want to

connect to a URL using a proxy, you need to step back and use the

full connect function, passing all the parameters. In some cases,

knowing which the sensible defaults are may be difficult.

Records come to the rescue. Instead of passing parameters one by one, you can

group all or most of them into a record and use the record as a parameter. Here’s how

that would look for the connection example:

data ConnOptions = ConnOptions { connType :: ConnType

 , connSpeed :: Integer

 , connProxy :: UseProxy

 , connCaching :: Bool

 , connKeepAlive :: Bool

 , connTimeOut :: TimeOut

 }

connect' :: String -> ConnOptions -> Connection

connect' url options = ...

The second step is to create a constant, which encodes sensible defaults.

connDefault :: ConnOptions

connDefault = ConnOptions TCP 0 NoProxy False False NoTimeOut

Chapter 2 Declaring the Data Model

62

Now creating a connection with the default parameters takes just a tad more code,

but you gain in return the ability to change just one parameter (like the type to UDP)

without having to write all the default values. The following examples show the simplest

case and also the case of specifying UDP as the connection type:

*Chapter2.DefaultValues> connect' "https://apress.com" connDefault

*Chapter2.DefaultValues> :{

*Chapter2.DefaultValues> connect' "https://apress.com"

*Chapter2.DefaultValues> connDefault { connType = UDP }

*Chapter2.DefaultValues> :}

There is only one problem left. If you add a new option and the developer has made

direct use of the constructor for the record type, that use must be changed. The solution

is to forbid calling the constructor directly, forcing the use of connDefault in some way

or another. This can be done by not exporting the constructor. You will see how to do this

in the next chapter, where you will also learn about smart constructors.

�Summary
In this chapter you learned the basics of first-order Haskell programming.

•	 Basic data types were introduced: characters, Booleans, lists, and

tuples.

•	 You learned how to define new functions and how to use let and

where to create temporary bindings that allow reusing expressions

and thus writing better code. Afterward, you learned how to define a

function by cases.

•	 You defined your first data types, learned about ADTs and

constructors, and played with creating new values in the interpreter.

•	 Pattern matching is a fundamental tool for Haskell programming,

which I touched upon in this chapter. You saw how to match both

primitive and user-defined types and how guards, as patterns and

view patterns, make matching more concise.

•	 Records were introduced as a better syntax for building, accessing,

and updating fields in a Haskell value. You saw the default values

design pattern, which uses records at its core.

Chapter 2 Declaring the Data Model

63
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_3

CHAPTER 3

Increasing Code Reuse
Chapter 1 explained that a functional language like Haskell is characterized by its

profuse use of functions as parameters or return values. However, Chapter 2 didn’t

mention anything about this topic. I’ll rectify that here. In this chapter, you will focus on

not one but three ways in which Haskell allows for a great amount of reuse.

One of the ways in which Haskell shines in the area of reusability is through the

creation of functions that can work over values of any type that respects a certain form,

or design. List functions such as head can operate on any type of the form [T], whatever

type T is. This concept is also applicable to data types that can store values on any

possible type, which is known as parametric polymorphism.

Another way in which Haskell allows for reuse is this ability of using functions as any

other value of the language. Functions that manipulate other functions are called higher-

order functions. In contrast, the concepts in the previous chapter belong to first-order

Haskell.

The third way in which code can be reused (and shared) is by taking functions

or data types from one module and applying them in another. You will learn how to

do that from both sides: exporting definitions to make them available and importing

them later.

Most of the examples in this chapter focus on lists and the functions in the module

Data.List. The intention is twofold: lists illustrate the new concepts to be introduced,

and at the same time they are practical tools in daily programming with Haskell. As proof

of their importance, the language includes special syntax to create and manage them,

namely, the syntax of comprehensions. I’ll explain how to use the syntax before moving to

the last stop of the list train: how to fold and unfold lists properly.

64

�Parametric Polymorphism
You may have noticed that in previous chapters all the functions defined operated on

some particular data type. However, some built-in functions such as head or empty

seem to be able to operate on any kind of list: [Integer], [Client], and so forth.

A fair question is, are list functions somehow treated differently by the compiler and

interpreter, or do I also have the power to create such functions that can operate on

any type? The correct answer is the latter: you could have defined the list functions by

yourself with no problem. You do have the power.

Let’s look at the type of a function such as head:

*Chapter3.ParamPoly> :t head

head :: [a] -> a

In the previous chapter you learned that type names must start with an uppercase

letter. However, you can see a lowercase identifier in this particular signature. If you

remember the conventions, you know lowercase identifiers are reserved for function

definitions, bindings, and parameters. Indeed, that identifier refers to a type variable that

can be bound to different types depending on each use.

For example, consider the application of head to the string "Hello". The type of

the string is [Char]. At the moment of application, you need to find the value for the

type parameter a in the type of head. The solution in this case is a = Char. So, the type

that head gets when applied to "Hello" is [Char] -> Char (once a type parameter gets

assigned to a value, it must be replaced throughout the type in its entirety). Figure 3-1

illustrates the logic I’ve just described, where a type variable and a concrete type are

unified to be the same one.

Figure 3-1.  Inferring the type of head "Hello"

Chapter 3 Increasing Code Reuse

65

Functions such as head are said to work for any value of the type parameter a: they

don’t care about the shape of the inner elements. This is parametric polymorphism,

and it allows multiple (“poly”) types (μορφή – morphé is Ancient Greek for “shape”)

as parameters. The etymology for the concept is actually a bit misleading because a

polymorphic function must work for all types, not just for some. Haskell also allows

functions to be applicable for just a subset of all types. That is referred to as ad hoc

polymorphism and will be presented in the next chapter.

Note P arametric polymorphism is available in many programming languages
under different names; for example, templates in C++ and generics in Java or C#
provide similar functionality.

Note that a function may have more than one type parameter, and each of them will

take its value independently from the others. One example of this kind of function is fst,

which gives the first component of a tuple of two elements.

*Chapter3.ParamPoly> :t fst

fst :: (a, b) -> a

When you supply a concrete tuple to fst, the type of (a, b) is inferred from the

types within that tuple. For example, you can supply the tuple ([3,8], "Hello"), and

the type (a, b) becomes ([Integer], [Char]).

There is no special syntax, apart from type parameters, for writing polymorphic

functions. When you do not use a value in a way in which its type plays a role (e.g.,

pattern matching on its possible constructors), Haskell will infer a parametric type.

For example, let’s write a function that returns a different string depending on a

Maybe value.

maybeString (Just _) = "Just"

maybeString Nothing = "Nothing"

If you now load this function into the interpreter, and ask for its type, you will get the

one inferred by GHC:

*Chapter3.ParamPoly> :t maybeString

maybeString :: Maybe a -> [Char]

Chapter 3 Increasing Code Reuse

66

Polymorphism is available not only in functions but also in data types. This

assumption was implicit when you wrote [T] to refer to a list of any possible type T.

As you can see from the examples, a polymorphic type is written with its name along with

a list of all its type parameters, like Maybe Integer. The definition of polymorphic types

is similar to that of basic types, but after the name of the type, you write the names of the

type parameters for that declaration. Later, you can use those names in the constructors

in the position of any other type. For example, you may decide to give a unique identifier

to each client in your program, but it does not matter which kind of identifier you are

using (integers or strings are usual choices) because you never manipulate the identifier

directly.

The following is a good example of polymorphism:

data Client i = GovOrg { clientId :: i, clientName :: String }

 | Company { clientId :: i, clientName :: String

 , person :: Person, duty :: String }

 | Individual { clientId :: i, person :: Person }

 deriving (Show, Eq, Ord)

 -- Eq and Ord will be introduced in Chapter 4

data Person = Person { firstName :: String, lastName :: String }

 deriving (Show, Eq, Ord)

When you create a value, the type parameter will be instantiated to a specific type, in

this case Char.

*Chapter3.ParamPoly> :t GovOrg 'n' "NTTF" -- National Time Travel Fund

GovOrg 'n' "NTTF" :: Client Char

More than one type variable can be used in a data type. This is the case for tuples.

For example, those with three components have type (a,b,c). If you were to define

triples by yourself, the data declaration would look like this:

data Triple a b c = Triple a b c

Note that you can use the same type variable multiple times in the definition of your

ADT. But that doesn’t mean the values on the fields must be the same, just that they

must have the same type. This is a typical source of confusion when learning Haskell,

but a counterexample is easy to build: ('a','b') has type (Char,Char), with both type

variables holding the same type Char, but the value 'a' is different from the value 'b'.

Chapter 3 Increasing Code Reuse

67

Another tidbit to remember is that even though a type parameter may appear several

times in a constructor, it is a single type variable. For example, let’s declare a type for a pair

of elements, with each element being of the same type. Here’s how you would do that:

data SamePair a = SamePair a a

A value like SamePair 1 2 will have type SamePair Integer, not SamePair Integer

Integer. Admittedly, the fact that the same identifier is usually reused for both the type

name and its constructor adds more confusion to the mix, but it’s something you must

get used to. Exercise 3-1 will help you.

EXERCISE 3-1. A NEW LIFE AS TYPE CHECKER

Try to understand what the following functions do and which type will be inferred by the

interpreter. Give the most polymorphic answer from all possible ones.

swapTriple (x,y,z) = (y,z,x)

duplicate x = (x,x)

nothing _ = Nothing

index [] = []

index [x] = [(0,x)]

index (x:xs) = let indexed@((n,_):_) = index xs

 in (n+1,x):indexed

maybeA [] = 'a'

Remember that you can use GHCi to check your answers. Refer to Chapter 2 if you need a

reminder on how to do that.

�Functions As Parameters
This is finally the point where we explain how to treat functions as any other value in

Haskell. You may already be familiar with this idea, as the concept of “function

as parameter” has permeated to many other languages, not necessarily functional.

For example, Java or C# includes them as a language feature.

Chapter 3 Increasing Code Reuse

68

As mentioned at the beginning of the chapter, most of the examples relate to lists.

Lists are one of the basic data structures in functional programming, especially while

learning. Many more complex concepts, such as functor or fold, are generalizations of

patterns that can be found when working with lists.

�Higher-Order Functions
The first, most basic, function you will look at is map, which applies another function

throughout an entire list. Consider the function succ, which adds 1 to a number.

*Chapter3.FnsParams> succ 1

2

Caution  It may be the case that the interpreter shows warning messages about
Defaulting the following constraint(s) to type `Integer'.
I mentioned in the previous chapter that a constant like 1 is polymorphic on the
number type, so the interpreter makes a choice in order to run the code. The
warning is telling you that Integer is its default choice. You can safely ignore
these warnings, or you can disable them by running the interpreter using ghci
-fno-warn-type-defaults. In the rest of the book, I will omit this kind of
warning in the output.

You can now add 1 to all members of the list [1,2,3] using map in combination with

the function succ:

*Chapter3.FnsParams> map succ [1,2,3]

[2,3,4]

How does it work? First let’s look at the type.

*Chapter3.FnsParams> :t map

map :: (a -> b) -> [a] -> [b]

You can see the notation for functions, a -> b, but now in the position of a

parameter. This type signature encodes the fact that map takes a function from a to b and

a list of a’s, and it returns a list of b’s. Functions such as map, which take other functions

as parameters, are known as higher-order functions.

Chapter 3 Increasing Code Reuse

69

In the declaration of functions, other functions given as parameters follow the same

naming conventions as any other argument to a function. You don’t need any special

marker to distinguish a parameter for having a functional type. But being a function, you

can apply the parameter to any other parameter or value as if it were defined elsewhere.

For example, the definition of map looks like this:

map _ [] = []

map f (x:xs) = (f x) : (map f xs)

This is also an example of parametric polymorphism. However, polymorphism and

higher-order functions are completely separate concepts. You could define a function

that applies another function but to an integer two units higher and then multiplies it

by 3, that is, 3f (x + 2). In this case, reasonable fs should take and return a number, so

the function should have an Integer -> Integer type.

apply3f2 :: (Integer -> Integer) -> Integer -> Integer

apply3f2 f x = 3 * f (x + 2)

Let’s follow the steps for a call to this function using succ as a value for f.

apply3f2 succ 7 => 3 * succ (7 + 2) => 3 * succ 9

 => 3 * (9 + 1) => 3 * 10 => 30

Now that you’re in touch with higher-order functions, it’s time to introduce a popular

idiom in Haskell code. The idiom works around the ($) function, which performs

function application.

($) :: (a -> b) -> a -> b

f $ a = f a

Why is this ($) function useful at all? At first glance, it seems like a rather

cumbersome way to apply a function to some arguments, given that this is the main

use of functions. But apart from this definition, Haskell gives a very low precedence to

($), so both sides of this operator will be evaluated before f is applied to a. Therefore,

you can omit a lot of parentheses when using ($). Doing this is common in Haskell. For

example, the following:

maximum (map succ [1, 2, 3])

would usually be written like so:

maximum $ map succ [1, 2, 3]

Chapter 3 Increasing Code Reuse

70

�Anonymous Functions
Until now, you have always used as parameters other functions that were defined

elsewhere. However, it may be the case that you want to create a small function just to

be applied via map to a list. It wouldn’t make sense to add an entire new declaration,

polluting your module. You already know a solution, which is to define the function

inside a let or where block. The following example demonstrates this solution by adding

2 to every number in a list:

*Chapter3.FnsParams> :{

*Chapter3.FnsParams| let f x = x + 2

*Chapter3.FnsParams| in map f [1,2,3]

*Chapter3.FnsParams| :}

[3,4,5]

This solution is not completely satisfactory: Haskell encourages passing and

returning functions, so with this design, the code would be full of let blocks. Instead,

Haskell includes anonymous functions. These are function bodies that are not given a

name and that can be written anywhere in the code where a function is expected. The

function body syntax is as follows:

\param1 param2 ... -> body

The previous map operation can then be written as follows:

map (\x -> x + 2) [1,2,3]

Note T he notation \... -> ... comes from a mathematical theory of
computation called lambda calculus. In that formalism, an expression like \x ->
x + 2 is called an abstraction and is written λx. x + 2 (Haskell designers chose
the symbol \ because it resembles λ but it’s easier to type). Because of these
historical roots, anonymous functions are sometimes called lambda abstractions,
or simply abstractions.

Chapter 3 Increasing Code Reuse

71

In anonymous functions, as in any other function, you can pattern match directly

on the parameters. For example, you can build a function checking whether pairs of

integers are equal.

equalTuples :: [(Integer,Integer)] -> [Bool]

equalTuples t = map (\(x,y) -> x == y) t

However, not all forms of regular function declarations are allowed when used

anonymously. Anonymous functions don’t have a name, so they cannot call themselves,

thus forbidding recursion. Furthermore, only one pattern can be matched. So, if you

want to match several patterns, you must resort to a case statement.

sayHello :: [String] -> [String]

sayHello names = map (\name -> case name of

 "Alejandro" -> "Hello, writer"

 _ -> "Welcome, " ++ name

) names

This last restriction is lifted if you are using GHC and enable the LambdaCase

extension. Then, you can use the special syntax \case to create an anonymous function

with only one parameter to match on. Here’s an example:

{-# LANGUAGE LambdaCase #-}

sayHello names = map (\case "Alejandro" -> "Hello, writer"

 name -> "Welcome, " ++ name

) names

Abstractions are also useful for returning functional values. For example, say you

want to define a function that takes a number n and returns another function that

multiplies by n.

multiplyByN :: Integer -> (Integer -> Integer)

multiplyByN n = \x -> n*x

You can now use that returned function in places that take one, such as map.

*Chapter3.FnsParams> map (multiplyByN 5) [1,2,3]

[5,10,15]

Chapter 3 Increasing Code Reuse

72

As you can see, the function multiplyByN 5 “remembers” the value given to n

when it is applied. You say that the function encloses the values from the surrounding

environment (in this case, only n) along with the body. For that reason, these functions

are usually known as closures in almost all languages supporting functional features.

filter is another function operating on lists. In this case, filter takes a function

of type a -> Bool (i.e., a function returning a Boolean value) and applies it to each

element, returning just those that fulfill the condition. For example, you can filter a list of

numbers and keep only the even ones using the aforementioned function and giving as

an argument the even function from the standard libraries.

*Chapter3.FnsParams> filter even [1,2,3,4,5]

[2,4]

EXERCISE 3-2. WORKING WITH FILTERS

Using the function filter as the basis for your solution, write the following functions:

•	 filterOnes, which returns only the elements equal to the constant 1.

•	 filterANumber, which returns only the elements equal to some number that is

given via a parameter.

•	 filterNot, which performs the reverse duty of filter. It returns only those

elements of the list that do not fulfill the condition.

•	 filterGovOrgs, which takes a list of Clients (as defined before) and returns

only those that are government organizations. Write it using both an auxiliary

function isGovOrg and a \case expression.

Hint: search for documentation of the function not :: Bool -> Bool.1

1�The easiest way is to point your browser to www.haskell.org/ghc/docs/latest/html/
libraries/base/Prelude.html#v:not.

Chapter 3 Increasing Code Reuse

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html#v:not
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html#v:not

73

�Partial Application of a Function
Let’s get back to map. You already know two ways to write a function that doubles all

elements in a list.

double list = map (\x -> x * 2) list

double = \list -> map (\x -> x * 2) list

Haskell allows a third approach. The keyword list is at the end of both parameter

lists, so you can just omit it.

double = map (\x -> x * 2)

To better understand the reason why omitting list makes sense, let’s look at the

process in which the compiler infers the type of the double function. First, start with map

:: (a -> b) -> [a] -> [b]. The function (\x -> x * 2) takes and returns a number;

for example, it can be typed as Integer -> Integer. Now, if you apply the numeric

function to map, you are first matching a = b = Integer and then removing the first

parameter in the type because you already have provided a value for it. The result is the

following:

map (\x -> x * 2) :: [Integer] -> [Integer]

That is, if given a list of integers, it will return a new list of integers.

Following this path of partial application, you can apply it also for the \x -> x * 2

anonymous function. There is just one syntactic remark to be made: when the function

has an operator name (only with symbols, like *), you cannot just use its name and

arguments; you need to use a section. A section is just a specification of the operation to

be done, enclosed in parentheses. The syntax resembles the application of the operator

where the parameters have been wiped out. In this case, the new definition for double is

as follows:

double = map (*2)

Caution T he usual warnings about commutatively of operations apply here. You
must be careful about where you are omitting the parameter because it may make
a huge difference in the result.

Chapter 3 Increasing Code Reuse

74

Look carefully, for example, at the difference in the result from the following two

examples:

*Chapter3.FnsParams> map (/2) [1,2,3]

[0.5,1.0,1.5]

*Chapter3.FnsParams> map (2/) [1,2,3]

[2.0,1.0,0.6666666666666666]

It should be noted that type constructors also behave as functions in any possible

sense except for the distinction in capitalization (remember that function names must

start with a lowercase letter and type constructors must start with an uppercase one).

You can ask the type of a constructor or partially apply it as usual.

*Chapter3.FnsParams> :t Just

Just :: a -> Maybe a

*Chapter3.FnsParams> :t ('a' :)

('a' :) :: [Char] -> [Char]

Once you know about the possibility of partially applying functions, it’s time to

look more deeply into the meaning of the function types as they are written. First,

the -> symbol binds to the right. That is, the type a -> b -> c -> d is a prettier, but

equivalent, version of a -> (b -> (c -> d)). So, at its core, every function with more

than one parameter is just a function that takes one parameter and returns a closure with

one parameter less, which may indeed consume another parameter, and so on, until you

reach a nonfunction type. At that moment, all the information to apply the function is

there, and its body can be evaluated. So, now you have at least four interchangeable ways

to declare the same two-argument function.

f x y = ...

f x = \y -> ...

f = \x y -> ...

f = \x -> \y -> ...

Let’s look at map with these new glasses. Previously, I spoke about map as taking a

function and a list and applying the function to the list. But, if now the type is written

as (a -> b) -> ([a] -> [b]), there’s a new view: map takes a function and returns a

version of that function that works over a list!

Chapter 3 Increasing Code Reuse

75

Partial application encourages a programming style where functions are combined

without ever mentioning their parameters. This is called point-free style (because in

mathematics, parameters to functions are called points). Without any doubt, the most

important of these combinators is the period2 (.), which composes two functions. By

composes, I mean that the period applies one function after the other. For example, the

following is how to write function f applied to the output from g:

f . g = \x -> f (g x)

As a reminder, functions are written backward in comparison to other notations: you

write first the outermost function that will be applied to the result of the innermost. This

comes again from the roots of the language in lambda calculus and mathematics, where

composition is denoted this way.

For example, say you want to write a function that duplicates all the odd numbers in

a list. The most natural way seems to be as follows:

duplicateOdds list = map (*2) $ filter odd list

Here you want to first apply filter odd, which takes out the even numbers, and

then double each of the elements of the resulting list using map (*2). This is exactly the

composition of the two functions, so you can write the following in point-free style:

duplicateOdds = map (*2) . filter odd

In many cases an expression can be written in point-free style as a sequence of

transformations over some data, rendering the code clear once you become accustomed

to the notation.

In the rest of the section I’ll introduce additional functions that create a point-

free style. Since these functions have the task of combining other functions, they are

sometimes called combinators. The two next combinators are used to convert multi-

argument functions to single-argument functions which take a tuple of values.

uncurry :: (a -> b -> c) -> (a,b) -> c

uncurry f = \(x,y) -> f x y

curry :: ((a,b) -> c) -> a -> b -> c

curry f = \x y -> f (x,y)

2�Since (.) could also be called a point, there’s some risk of confusion about the name point-free.
The point-free style encourages the use of (.) and discourages explicit parameters.

Chapter 3 Increasing Code Reuse

76

Functions that take a sequence of arguments are called the curried versions of those

that take a tuple. I’ll stress the subtle difference: the not-curried version of a function

takes only one argument, but it is a tuple, so in one value it holds more than one piece

of information. For example, the max function, returning the maximum of two numbers,

takes two arguments.

*Chapter3.FnsParams> max 3 2

3

But if you curry it, you must call it with only one argument, which is a tuple.

*Chapter3.FnsParams> (uncurry max) (3,2)

3

Usually you will prefer these curried versions, because you can partially apply them.

But sometimes an uncurried version is also interesting to consider. For example, say you

are given a list of pairs of numbers, and you want to get the list of the maximums of pairs.

You cannot directly use map max because max requires two arguments. The solution is to

curry the function before application.

*Chapter3.FnsParams> map (uncurry max) [(1,2),(2,1),(3,4)]

[2,2,4]

You may need to define an extra combinator to reverse the order of parameters

in a function. The most usual name for this combinator is flip, with the following

type:

flip :: (a -> b -> c) -> (b -> a -> c)

flip f = \x y -> f y x

Note  Both the language Haskell and the term curried function take their names
from the American logician Haskell Brooks Curry (1900–1982), who studied a field
called combinatory logic that provided the groundwork for later developments in
functional programming.

Chapter 3 Increasing Code Reuse

77

�More on Modules
In the previous chapter you learned how to create modules to organize your functions

and data types. The next logical step is being able to get the definitions in one module

to be used in another. This is called importing a module, and it’s similar to importing

packages in Java or namespaces in C#.

�Module Imports
Module imports are listed after the module declaration but before any other definition.

There are different ways to import a module. The most basic approach brings into scope

all the functions from the module and makes them available for use as if they were

defined in the importing module. In this chapter you are learning about list functions,

so you can import Data.List and use the permutations function, such as the function

permutationsStartingWith, which returns all the permutations of a string that start

with a specific letter.

module Chapter3.MoreModules

import Data.List

permutationsStartingWith :: Char -> String -> [String]

permutationsStartingWith letter

 = filter (\l -> head l == letter) . permutations

Note E ven though Haskell modules have a hierarchical structure, importing
a module does not bring into scope any child modules. For example, importing
Data won’t provide any access to Data.List.permutations because
permutations lives in module Data.List, and Data.List was not
imported.

In some cases, names found in different modules clash. That is, you import

definitions from two modules, and both include the same function or type, so the

compiler doesn’t know which one to use. The better solution is to control exactly which

Chapter 3 Increasing Code Reuse

78

definitions to import. To do so, you must include a list of desired elements in a list

surrounded by parentheses. For example, you can specify that you want to import only

the permutations and subsequence functions, like so:

import Data.List (permutations, subsequence)

Sometimes the case is just the opposite: you want to import an entire module except

some specific elements (usually, those whose names clash). This usually happens when

some names conflict between the imported module and the one being developed. For

those cases, Haskell provides hiding imports. The declarations you don’t want to bring

into scope are written again as a list but preceded by the keyword hiding. For example,

to import all but the head and tail functions, you use this:

import Data.List hiding (head, tail)

Data types need some extra syntax for being selected for import or hiding. This need

comes from the fact that an ADT really encompasses two pieces of information: the

type itself and its constructors. The Haskell committee decided to use Type(List of

Constructors) for this matter. Here are several ways in which you can import the Client

data type from the first section:

import Chapter3.ParamPoly (Client()) -- only type, no constructors

import Chapter3.ParamPoly (Client(GovOrg,Individual))

 -- a subset of constructors

import Chapter3.ParamPoly (Client(..)) -- .. imports all constructors

Until now I have spoken about how to import modules without qualification. Once

declarations are imported, you don’t need any further syntax to use them. Qualified

imports are the other side of the coin. A qualified import requires you to prefix a function

with the name of the module it came from. In that way, you can use functions or types

with the same name but from different modules without any problem. For example, you

can import filter and permutations as qualified imports.

import qualified Data.List (filter, permutations)

permutationsStartingWith :: Char -> String -> [String]

permutationsStartingWith letter

 = Data.List.filter (\l -> head l == letter) . Data.List.permutations

Chapter 3 Increasing Code Reuse

79

As you can see, you can combine the selection of a subset of functions with the

qualification of the module. Indeed, those concepts are orthogonal, and you can

combine them freely.

In some cases, the name of a module is too long to be used as a prefix. To save

endless typing, you can rename the module using an as clause. Afterward you prefix the

declarations with the new name.

import qualified Data.List as L

permutationsStartingWith :: Char -> String -> [String]

permutationsStartingWith letter

 = L.filter (\l -> head l == letter) . L.permutations

As in the previous case, you can mix qualified imports with renaming and explicit

import lists. The module import that just includes permutations and subsequences is as

follows:

import qualified Data.List as L(permutations, subsequences)

THE PRELUDE

By default, any Haskell module always imports without qualification the module named

Prelude. This module contains the most basic and used functions in the Haskell Platform,

such as (+) or head. This automatic import is essential to your being able to write Haskell

code without worrying about importing every single function you invoke. You have actually

been benefiting from Prelude throughout all the examples so far in this book.

In rare cases you may need to disable this automatic import. You can do so in GHC by enabling

the language extension NoImplicitPrelude. Remember that, in this case, if you need to

use any function in Prelude, you need to import it explicitly.

�Smart Constructors and Views
You not only can control imported declaration from a module but also can control which

of the declarations in your own modules you want to make public for consumption

elsewhere. That is, you can control which declarations you want to export. By default,

Chapter 3 Increasing Code Reuse

80

every single declaration in a module is exported. To restrict the availability of your

functions and data types, you need to build an explicit export list in which all the public

declarations are written and write that list just after the module name. For example, the

following module exports only the function f:

module M (f) where

f = ...

g = ...

Of course, you can also control which data types and type constructors will be

exported. As with importing lists, you have several options for exporting a data type:

merely exporting the type but no constructor (thus disallowing the creation of values

by directly calling the constructors), exporting just some subset of constructors, or

exporting all of them.

Remember that in the previous chapter I talked about the default values design

pattern but also stated that it was not completely finished because there was no way to

restrict the creation of ConnOptions values. Now you have what is needed to finish the

pattern. You can export only the ConnOptions data type, without any of its constructors,

and also the connDefault constant that is refined by changes to the default values. Here’s

an example:

module Chapter2.DataTypes (ConnOptions(), connDefault) where

This idea of hiding the constructors of a given data type opens the door to a new

design pattern, usually called smart constructors. The use case is as follows: sometimes

not all the values that can be obtained using a constructor are correct values for the

concept you are modeling. In those cases, you want to make sure that the developer can

only construct values in the correct space.

For example, you may need to represent a closed integer range, that is, the set of

values between some integers a (the lower bound) and b (the upper bound). A sensible

invariant is that a ≤ b in all cases. But the definition of the Range ADT looks like this:

data Range = Range Integer Integer deriving Show

This definition does not prevent incorrect values. Instead, the idea is to provide a

function range that performs the check. If everything is OK and the check is passed,

the function range proceeds with the construction. Otherwise, the function throws

an error.

Chapter 3 Increasing Code Reuse

81

range :: Integer -> Integer -> Range

range a b = if a <= b then Range a b else error "a must be <= b"

Note  error is a built-in function that can be used anywhere to signal a point at
which the program cannot continue and should be halted, showing the specified
error message. This is one of several possibilities for dealing with errors in Haskell.
You will explore other ways to signal errors throughout the book.

This range function is called a smart constructor. It works basically like a regular

constructor but performs some extra checking on its parameters. You can enforce the

use of this constructor in all cases by not exporting the Range constructor, but only the

type. Here’s an example:

module Chapter3.Ranges (Range(), range) where

But there is a problem! Since you have hidden the constructor, any pattern match of

the following form outside the private code of the module won’t even compile.

case ... of Range x y -> ...

Code in this form won’t compile because the constructor is not available. The

solution is to create a new data type that encodes the observed values of that type and

then uses views when pattern matching. Of course, this doesn’t stop users from creating

wrong RangeObs values, but in case all functions work with Range and not RangeObs,

there will be no choice but to use it correctly. In this case, the observation data type and

the conversion function can be as follows:

data RangeObs = R Integer Integer deriving Show

r :: Range -> RangeObs

r (Range a b) = R a b

If you export the RangeObs constructor, you can now pattern match using a view.

Remember to include the ViewPatterns extension in your source file.

{-# LANGUAGE ViewPatterns #-}

Chapter 3 Increasing Code Reuse

82

prettyRange :: Range -> String

prettyRange rng = case rng of

 (r -> R a b) -> "[" ++ show a ++ "," ++ show b ++ "]"

You can go one step further and create a pattern synonym which packages this

specific form of building and deconstructing Range values. By doing so, the user of

your type does not have to be aware of the implementation using several types. In this

case, we need to use a bidirectional pattern, because we require different behavior for

matching and constructing.

{-# LANGUAGE PatternSynonyms #-}

pattern R :: Integer -> Integer -> Range

pattern R a b <- Range a b

 where R a b = range a b

The syntax is a big cumbersome, though. A bidirectional pattern synonym is

composed of three parts. The first one is a type signature, which coincides with the Range

constructor. In general, the arguments refer to each of the positions in the pattern. The

next element is the matcher: in this case, I declare that matching over R a b is equivalent

to writing a pattern match of the form Range a b. The trick comes in the final element,

after the where keyword, which declares that using R x y in a building position is

equivalent to calling the range function. Note that this is not Range, the constructor, but

the smart constructor which checks the invariant.

Finally, this is a solution to the problem of not exposing constructors for creating

values, while at the same time not harming the ability to use pattern matching for

working on it.

�Diving into Lists
You have already learned about two of the most common list functions, namely, map and

filter. In this section, you will see more examples of higher-order functions on lists

and discover some patterns such as folds that are useful in Haskell code. Most of these

functions live in the Prelude module, so you don’t need to explicitly import them. The

rest of them live in the Data.List module.

Chapter 3 Increasing Code Reuse

83

DIVING INTO LISTS CODE

While reading this section, try to write the definition of each list function once its description

has been introduced. Doing so is a good exercise to cement the concepts of parametric

polymorphism and higher-order functions in your mind. You can start by writing the filter

function.

�Folds
The first function you will look at is foldr, which introduces you to the world of folds.

A fold over a data structure such as a list is a function that aggregates or combines all the

values contained in that structure to produce a single result. Folds are an expressive and

powerful tool, often underestimated. Examples of folds are summing all integers in a list

and finding the maximum of the values in the nodes of a tree (I will speak more about

trees later).

The definition of foldr includes three arguments: a binary function f that is used to

combine elements step-by-step, the initial value for starting aggregation, and finally

the list itself.

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f initial [] = initial

foldr f initial (x:xs) = f x (foldr f initial xs)

This initial value plus binary operation is a common pattern in Haskell code. Usually,

the initial value is chosen in such a way that using it as an argument in the binary

operation doesn’t change the result. We call such a value a neutral or identity element

of the operation. Take, for example, the task of summing all the elements in a list.

The chosen operation should intuitively be addition, (+). Then, the initial value should

be chosen so as not to affect that operation, and you should now ideally be thinking in

terms of the value 0. Let’s follow the evaluation of a call to foldr that exactly performs

that task of summing all the elements in a list.

foldr (+) 0 [1,2,3] => 1 + foldr (+) 0 [2,3]

 => 1 + (2 + foldr (+) [3])

 => 1 + (2 + (3 + foldr (+) 0 []))

Chapter 3 Increasing Code Reuse

84

 => 1 + (2 + (3 + 0))

 => 1 + (2 + 3) => 1 + 5 => 6

As you can see, foldr traverses the list element by element until it reaches

the end. At that moment, foldr uses the initial value to start evaluating the

whole call stack that has been created, from the end up to the first application of

the corresponding combining function, in this case (+). If you look at a list as a

combination of (:) and [] constructors, you can rephrase the algorithm as follows:

foldr replaces all instances of (:) by f and all occurrences of [] by the initial value.

Figure 3-2 illustrates this thinking.

Another example of fold is maximum, which finds the largest value from a list. In

this case, the initial value is a bit more elusive because you must consider what the

maximum of an empty list is. To help in answering that question, you need to recall the

other property that is wanted for the initial value: it should not change the outcome

of the binary operation, which in this case is max. This means you have to find a value

z such that max(z,x) = max(x,z) = x any value x. You can check that the value that

satisfies that property is negative infinity (-∞).

By default, Haskell integers don’t allow representing infinite values, so you need to

define a custom data type for this matter. After some thought, you find that the concept

of adding infinity values is not unique to integers. The concept also applies to ratios,

floating-point values, and so forth. To make the new type more useful, you can define the

InfNumber data type as being polymorphic.

data InfNumber a = MinusInfinity

 | Number a

 | PlusInfinity

 deriving Show

Figure 3-2.  Visual description of foldr

Chapter 3 Increasing Code Reuse

85

By making the type polymorphic, you allow for the possibility of using the type for

more than just integers. The immediate problem requires just infinite integer values, but

future problems might require, say, infinite floating-point values. Polymorphism here is

an investment in the future.

The next step is defining a new binary operation, infMax, to combine two of these

numbers.

infMax MinusInfinity x = x

infMax x MinusInfinity = x

infMax PlusInfinity _ = PlusInfinity

infMax _ PlusInfinity = PlusInfinity

infMax (Number a) (Number b) = Number (max a b)

Let’s try to write the fold.

*Chapter3.Lists> foldr infMax MinusInfinity [1,2,3]

 No instance for (Ord t0) arising from a use of `infMax'

Clearly, it’s not done yet. You are getting an error because the expression that has

been written doesn’t pass the type checker. The operation infMax combines elements

of type InfNumber, but [1,2,3] is a list of integers. A first solution is to convert the list to

InfNumbers by mapping the Number constructor over the list.

*Chapter3.Lists> foldr infMax MinusInfinity $ map Number [1,2,3]

Number 3

However, if you look carefully at the type of foldr, you will see that there’s no need

for the combining function (the f argument in foldr) to take values of the same type

because it’s not of type a -> a -> a. Rather, the type is a -> b -> b, which means

that f should take as the first parameter a value of the type contained in the list, and the

second should be the one of the type you are accumulating, which coincides with the

type of the initial value (called initial in the definition of foldr shown here). In this

case, this means the aggregation function should have type Integer -> InfNumber

Integer -> InfNumber Integer since the initial value is MinusInfinity :: InfNumber

Integer. You already know how to convert existing numbers into InfNumbers, which is

the only special thing you need in the fold.

*Chapter3.Lists> foldr (\x y -> infMax (Number x) y) MinusInfinity [1,2,3]

Number 3

Chapter 3 Increasing Code Reuse

86

The name foldr is a reminder of the algorithm the function implements. It is a fold

that associates to the right. That is, the innermost parenthesis will be found on the right

side of the expression. Similarly, you can build a fold that associates to the left, which is

included in the Haskell Platform as foldl.

foldl :: (a -> b -> a) -> a -> [b] -> a

foldl _ initial [] = initial

foldl f initial (x:xs) = foldl f (f initial x) xs

The innermost parentheses are now at the left, as this evaluation trace shows:

foldl (+) 0 [1,2,3] => foldl (+) (0 + 1) [2,3]

 => foldl (+) ((0 + 1) + 2) [3]

 => foldl (+) (((0 + 1) + 2) + 3) []

 => ((0 + 1) + 2) + 3

 => (1 + 2) + 3

 => 3 + 3 => 6

The result value of the fold in the examples so far does not depend on whether it is

performed to the right or to the left. But for this to hold, the aggregation operator that is

chosen must be commutative. In other words, the following must hold true: f(x,y) =

f(y,x)f(x, y) = f(y, x). So long as the order in which parameters are input does not matter,

you can make it so that folding left or right also does not matter.

Some operations cannot be made commutative. Subtraction, for example, is not

commutative, so the result changes between folds.

*Chapter3.Lists> foldr (-) 0 [1,2,3]

2

*Chapter3.Lists> foldl (-) 0 [1,2,3]

-6

One last version of folds is the one composed of those that do not take an initial

value, namely, foldr1 and foldl1. In those, the starting value is the last element (in

foldr1) or the first element (in foldl1) of the list. If you know any language derived from

Lisp, such as Common Lisp, Racket, or Clojure, you will know this folding operation as

reduce. It is not used much in Haskell, but it may come in handy in cases where handling

Chapter 3 Increasing Code Reuse

87

the empty list case is guaranteed not to happen and where handling it tangles the code.

As an example, the previously defined maximum function is much easier using foldr1.

maximum' :: [Integer] -> Integer

maximum' = foldr1 max

EXERCISE 3-3. YOUR FIRST FOLDS

Consider the functions product, minimumClient, and all. The product function

computes the product of a list of integers. The minimumClient function computes the

Client with the shortest name. Finally, the all function computes the conjunction (&&) of a

list of Boolean values. Given these functions, do the following:

•	 Write the functions using pattern matching, without resorting to any higher-order

function.

•	 Write the functions as folds. In each case, first try to find the aggregation

operation and from that derive a sensible initial value.

Can you find the structure that all these functions share when written in the first style? In

which cases is it true that using foldr and foldl give the same results?

Extra: Try to write a minimumBy function such that the order is taken by first applying a

function g on the result. For example, minimumBy (\x -> -x) [1,2,3] should return 3.

�Lists and Predicates
Another big family of list functions comprise those that take Boolean predicates, that is,

functions with the type a -> Bool. The filter function I’ve already talked about is a

representative of this family. I have already asked you to write the dual version of filter,

which only takes elements from a list that doesn’t fulfill a condition. One often needs to

group the members of a list depending on whether they satisfy a condition. A naïve way

to do this would be as follows:

bothFilters :: (a -> Bool) -> [a] -> ([a],[a])

bothFilters p list = (filter p list, filter (not . p) list)

Chapter 3 Increasing Code Reuse

88

This definition is correct but has a problem: it will traverse the whole list twice.

Intuitively, just one pass should suffice. Haskell defines a function partition inside the

Data.List module just for that matter: splitting a list in just one go.

*Chapter3.Lists> import Data.List

*Chapter3.Lists Data.List> partition (> 0) [1,2,-3,4,-5,-6]

([1,2,4],[-3,-5,-6])

If you want to get only the first element in the list that satisfies the condition, you

should use find instead of filter. There’s the chance that the list contains no such

element. For that reason, find returns a Maybe value.

*Chapter3.Lists Data.List> find (> 0) [1,2,-3,4,-5,-6]

Just 1

*Chapter3.Lists Data.List> find (> 7) [1,2,-3,4,-5,-6]

Nothing

Let’s now move to the following use case: you have a processing system for the shop,

with a queue for the clients, which is itself represented as a list where the head is the

next client to be served. At high load times, you want to impose the following policy: skip

all the clients that are not government organizations. The Data.List module provides

a dropWhile function that returns some list from the point in which some predicate

becomes false.

skipUntilGov :: [Client a] -> [Client a]

skipUntilGov = dropWhile (\case { GovOrg {} -> False ; _ -> True })

Note R emember you need to enable the LambdaCase extension for the previous
code to be accepted by GHC.

Its counterpart is takeWhile, which takes the initial elements until the predicate

becomes false. You can use takeWhile to get a list of all the commands in a list until one

equals "stop", at which point you quit processing. Here’s the code to do that:

*Chapter3.Lists Data.List> let lst = ["hello", "send", "stop", "receive"]

*Chapter3.Lists Data.List> takeWhile (/= "stop") lst

["hello","send"]

Chapter 3 Increasing Code Reuse

89

The takeWhile and dropWhile functions are the two components of the function

span, which returns both the taken list and the dropped list:

*Chapter3.Lists Data.List> span (/= "stop") lst

(["hello","send"],["stop","receive"])

A related function is break, which does the same work as span but negates the

predicate before. Actually, break could be defined as span (not . p).

The last couple of functions that take unary predicates are any and all. As their

names suggest, they check whether at least one or all the elements of the list, respectively,

fulfill some condition. They are similar to the logical quantifiers “exists” (∃) and

“for all” (∀). For example, in the monthly analytics you may want to be sure you have

an individual registered in the web shop and that you have at least a company or

government organization in the system, that is, some Client that is not an Individual.

You may define an isIndividual function to start.

isIndividual :: Client a -> Bool

isIndividual (Individual {}) = True

isIndividual _ = False

checkAnalytics :: [Client a] -> (Bool, Bool)

checkAnalytics cs = (any isIndividual cs, not $ all isIndividual cs)

Now let’s move to another kind of predicate: binary ones. These are functions that

take two arguments and return some Boolean value by comparing them somehow.

The first kind of comparison you can do is whether two elements are equivalent (or

not): (==) and (/=) belong to that family. And those are the kind of predicates that the

function nubBy expects: it takes out elements such that no two elements in the returned

list are equivalent. In this example, you get only one representative of each parity.

*Chapter3.Lists Data.List> let p x y = (even x && even y)||(odd x && odd y)

*Chapter3.Lists Data.List> nubBy p [1,2,3,4,5]

[1,2]

If you use (==) in nubBy, you are essentially removing duplicates in the list.

*Chapter3.Lists Data.List> nubBy (==) [1,2,1,1,3,2,4,1]

[1,2,3,4]

Chapter 3 Increasing Code Reuse

90

In many cases, types come equipped with a default comparison. You will see how

to add that default comparison to your own types in the next chapter, when I talk about

type classes. If the values support it, like those of the Integer type, you can just use nub

and drop the equivalence function.

*Chapter3.Lists Data.List> nub [1,2,1,1,3,2,4,1]

[1,2,3,4]

Note  nub and nubBy are not very performant functions because they must
check for equality between all possible pairs of elements. This means the order of
the function is quadratic. In the next chapter, you will learn a faster way to remove
duplicates from a list.

Equality checks, or more broadly equivalence checks, can be used to maintain lists

as sets: holding only a copy of each value. The main functions are union(By), which

returns a new set with all the elements from the initial ones; intersect(By), which

returns a set holding only the elements in both sets; insert(By), which adds only one

element to a set; and (\\), which performs the difference between sets: x1 \\ x2

contains all elements in x1 that are not in x2. In each case, the version ending in By takes

a parameter telling how to check elements for equivalence, whereas the other versions

use the default comparison.

*Chapter3.Lists Data.List> :{

*Chapter3.Lists Data.List | let x1 = [1,2,3,4]

*Chapter3.Lists Data.List | x2 = [2,3,5]

*Chapter3.Lists Data.List | in (x1 `union` x2, x1 `intersect` x2, x1 \\ x2)

*Chapter3.Lists Data.List | :}

([1,2,3,4,5],[2,3],[1,4])

This example also shows an interesting feature of Haskell syntax: infix notation.

Each time you have a two-argument function that doesn’t have a name made only of

symbols (such as union or intersect), you can write the name between the arguments

surrounding it by back quotes, ``.

Chapter 3 Increasing Code Reuse

91

Finally, elem just points out whether an element is a member of a list.

*Chapter3.Lists Data.List> 2 `elem` [1,2,3]

True

*Chapter3.Lists Data.List> 4 `elem` [1,2,3]

False

Mini-exercise  Write elem using find and pattern matching.

The other usual meaning for binary predicates is ordering: p x y means that in

some way x precedes y. However, for both clarity and performance reasons, ordering in

Haskell is not defined by returning a Bool but by returning an Ordering value, which can

be LT (less than), EQ (equal), or GT (greater than). For example, you can define a function

representing that companies and government organizations go first in an ordering of

clients and individuals are next. In each level, draws are decided by the names of the

clients. The following is the code to implement that function, and it is written knowing

that the built-in compare function defines an Ordering for strings:

compareClient :: Client a -> Client a -> Ordering

compareClient (Individual{person = p1}) (Individual{person = p2})

 = compare (firstName p1) (firstName p2)

compareClient (Individual {}) _ = GT

compareClient _ (Individual {}) = LT

compareClient c1 c2 = compare (clientName c1) (clientName c2)

In the following examples, the code will use part of my list of clients. As you may

suspect, many of the popular scientists, writers, and adventurers of the time buy or read

books in the store.

listOfClients

 = [Individual 2 (Person "H. G." "Wells")

 , GovOrg 3 "NTTF" -- National Time Travel Foundation

 , Company 4 "Wormhole Inc." (Person "Karl" "Schwarzschild") "Physicist"

 , Individual 5 (Person "Doctor" "")

 , Individual 6 (Person "Sarah" "Jane")

]

Chapter 3 Increasing Code Reuse

92

Using the auxiliary function named compareClient, you can sort a whole list of

Clients using sortBy.

*Chapter3.Lists Data.List> sortBy compareClient listOfClients

[GovOrg { clientId = 3, clientName = "NTTF" }

, Company { clientId = 4, clientName = "Wormhole Inc."

 , person = Person { firstName = "Karl"

 , lastName = "Schwarzschild" }

 , duty = "Physicist"}

, Individual { clientId = 5, person = Person { firstName = "Doctor"

 , lastName = "" }}

, Individual { clientId = 2, person = Person { firstName = "H. G."

 , lastName = "Wells" }}

, Individual { clientId = 6, person = Person { firstName = "Sarah"

 , lastName = "Jane" }}]

Some types already come defined with a default way in which to order values.

Numbers and characters are examples of such types, which are readily compared.

In those cases, you can invoke the function sort, which doesn’t need a comparison

function. Here’s an example:

*Chapter3.Lists Data.List> sort [1,4,2,-3]

[-3,1,2,4]

It’s interesting to see that orders are also defined for tuples and lists if their contained

elements have a default comparison. In both cases, this order is lexicographic: values

are compared element by element. Lexicographic comparison means that if the first

component of the tuples is different, then the ordering of those two values decides the

ordering of the tuple. If the leading values match, the second elements are compared,

and so on. The same approach is taken for lists as with tuples. Also, for lists, a smaller

list is considered previous in order to a longer list that contains the shorter list as a

prefix. Let’s look at same examples of comparison that clearly show this lexicographic

comparison. In the first and third cases, tuples or lists are equal up to some point,

whereas in the second case the first list is shorter than the second one.

*Chapter3.Lists> compare (1,2) (1,1)

GT

*Chapter3.Lists> compare "Hello" "Hello world

Chapter 3 Increasing Code Reuse

93

LT

*Chapter3.Lists> compare "This" "That"

GT

When a compare function is defined, Haskell also provides implementations of the

(>), (<), (>=), and (<=) operators. These operators usually help clarify the code that

you write because you don’t need to call compare and then pattern match on the output.

Furthermore, these operators are more familiar. The previous example could have been

expressed also using (<=), as follows. Notice that this operator returns a simple Boolean

instead of a value of the Ordering type.

*Chapter3.Lists> (1,2) <= (1,1)

False

*Chapter3.Lists> "Hello" <= "Hello world"

True

*Chapter3.Lists> "This" <= "That"

False

It may become handy when performing analytics to group clients depending on

some characteristic. The function groupBy, with type (a -> a -> Bool) -> [a] ->

[[a]], puts in a single list all those elements for which the equivalence predicate returns

True; that is, they must be in the same group.

For example, you would like to find out which company duties are the most common

in the database (which right now is just a list). To find this out, you can first filter out

those elements that are not companies, using filter. Then, you can group the clients

depending on their duty (the comparison function to groupBy). A third step would be

sorting the lists depending on their length. While sorting, keep in mind that if you want

to have the most common duty first, you need to sort the list lengths in reverse order;

you need the longest list first. Finally, you retrieve the duty from each list by accessing

the head element. You can do so safely because all lists will be nonempty. You also know

that all elements in a given list will share the same duty, so any element that you access is

as good as any other. The resulting function to do all this would be as follows:

companyDutiesAnalytics :: [Client a] -> [String]

companyDutiesAnalytics = map (duty . head) .

 sortBy (\x y -> compare (length y) (length x)) .

 groupBy (\x y -> duty x == duty y) .

 filter isCompany

Chapter 3 Increasing Code Reuse

94

 where isCompany (Company {}) = True

 isCompany _ = False

There’s a more elegant way to write this function. As you can see, there’s a pattern

in which two elements are compared but only after applying some operation to the

values. The higher-order function on, in the module Data.Function, allows composing

the comparison and the value-extracting functions as you want, as the following code

illustrates. To reverse the ordering for list lengths, a useful trick is calling the comparison

function with the arguments in the reverse order. There’s a combinator specifically

designed for calling a two-parameter function with the arguments reversed, which is

called flip :: (a -> b -> c) -> (b -> a -> c). The following code is a point-free

version of the previous one:

companyDutiesAnalytics :: [Client a] -> [String]

companyDutiesAnalytics = map (duty . head) .

 sortBy (flip (compare `on` length)) .

 groupBy ((==) `on` duty) .

 filter isCompany

 where isCompany (Company {}) = True

 isCompany _ = False

HASKELL IS DECLARATIVE

You may wonder why Haskell provides so many different functions on lists, whereas other

programming languages do fine with constructs such as iterators or for loops. The idea is

that instead of explicitly transforming a list element by element, you declare transformations

at a higher level of abstraction. Languages supporting this idea, such as Haskell, are called

declarative.

A classical fear when programming in Haskell is that this higher level of abstraction hurts

performance. However, compilers of declarative languages are able to apply a wider range of

optimizations because they can change the code in many more ways while retaining the same

behavior. A typical example takes the form map f . map g. This code performs multiple

passes over the data but can safely be converted by the compiler to map (f . g), which

performs the same duty in just one pass over the data.

Chapter 3 Increasing Code Reuse

95

�Lists Containing Tuples
Another family of list functions is the one that considers lists that have tuples inside.

These list types will all ultimately be founded on some instance of the type [(a,b)].

I’ve already mentioned that default comparisons work on tuples lexicographically. Set

functions such as nub and sorting functions such as sort work in that same way.

Previously in the book you wrote a function converting two lists into a list of tuples.

This function is known as zip because it interleaves elements like a zipper does. One use

of zip is to include the position of each element next to the element itself. For example,

applying zip to ['a', 'b', 'c'] would give you [(1,'a'),(2,'b'),(3,'c')]. This

involves zipping the original list with a list from the number 1 to the length of the list

itself. Picture two sides of a zipper, one corresponding to the list of numbers and the

second to the list of characters. As you pull up the fastener, each number is associated to

a character, one by one.

As an example, let’s define a function enum that generates a list of numbers.

enum :: Int -> Int -> [Int]

enum a b | a > b = []

enum a b = a : enum (a+1) b

The length function in Prelude returns the number of elements contained in a list.

With these two ingredients, you can build the function you want.

withPositions :: [a] -> [(Int,a)]

withPositions list = zip (enum 1 $ length list) list

There is a special way to construct lists for types that have a default ordering, such as

integers or characters. This is called a range and has the syntax [a .. b] to get a list

with all elements in between and including a and b. For example, you can substitute the

function enum as shown here:

withPositions list = zip [1 .. length list] list

There is an unzip function that does the reverse of zip and gets two lists back from a

list of tuples. For example, let’s split countries and their capitals from a list of pairs.

*Chapter3.Lists> unzip [("France","Paris"),("Spain","Madrid"),("Portugal","

Lisbon")]

(["France","Spain","Portugal"],["Paris","Madrid","Lisbon"])

Chapter 3 Increasing Code Reuse

96

This last example shows one possible use of a list of tuples: to implement a mapping

between keys and values. A list of such characteristics is called an association list and is

a well-known structure in functional programming. The function named lookup enables

searching for the value associated with a particular key. Once again, the possibility of not

finding the key implies that the returned value is wrapped on a Maybe.3

*Chapter3.Lists> lookup "Spain" [("France","Paris"),("Spain","Madrid"),

("Portugal","Lisbon")]

Just "Madrid"

*Chapter3.Lists> lookup "UK" [("France","Paris"),("Spain","Madrid"),

("Portugal","Lisbon")]

Nothing

Caution  You have seen how a list can be used to represent sets and maps.
However, those implementations are inefficient because they require traversing a
list for most operations. In the next chapter, you will look at other containers such
as those found in the modules Data.Set and Data.Map. These other containers
are especially suited for their particular uses and have highly performant
implementations.

�List Comprehensions
The fact that so many list functions are included in the standard library, and most of

them even in Prelude (and hence available by default in any Haskell source), highlights

the importance of lists in functional programming. You have seen how function

composition allows for a very declarative programming style, where transformations are

defined by steps. Remember the function duplicateOdds for computing the double of all

odd numbers in list is written as follows:

duplicateOdds :: [Integer] -> [Integer]

duplicateOdds list = map (*2) $ filter odd list

3�The expression “wrapped on Maybe” means that rather than a value of type T, you use Maybe T.
In addition, it implies that in the regular case, the function will return a value constructed with
Just.

Chapter 3 Increasing Code Reuse

97

However, if you remember your algebra classes, mathematicians have a terse but

intuitive language for manipulating sets. The previous example can be written in set

notation as {2x| x ∈ list. odd(x)}. The Haskell designers also like this syntax, so they

included list comprehensions to mimic it. The example becomes the following:

duplicateOdds list = [2 * x | x <- list, odd x]

List comprehensions have two parts, separated by | and wrapped by square brackets.

The first part is the expression, which defines a transformation to apply to all the

elements that will be returned. The second part consists a list of qualifiers and specifies

from whence the elements will come and the constraints upon them.

The first kind of qualifiers are generators, which take the form e <- list. Generators

indicate that elements from list will be acted upon, and each of the elements will be

referred as e in the rest of the comprehension. Optionally, the e part can be a pattern,

stating that only values matching it will be included. For example, you can get the client

names of all government organizations using this:

*Chapter3.Compr> [clientName x | x@(GovOrg _ _) <- listOfClients]

["NTTF"]

A list comprehension may have multiple generators. The simplest way to implement

multiple generators is to iterate in two different lists without any relationship between

them and get all possible combinations of elements coming from each list. This

result of all possible combinations is called the product of those lists. As an example,

the following code applies the product of two lists to the problem of generating the

multiplication tables from 1 to 4:

*Chapter3.Compr> [(x,y,x*y) | x <- [1 .. 4], y <- [1 .. 10]]

[(1,1,1),(1,2,2),(1,3,3),(1,4,4),(1,5,5),(1,6,6),(1,7,7),(1,8,8),(1,9,9),

(1,10,10),(2,1,2),(2,2,4),(2,3,6),(2,4,8),(2,5,10),(2,6,12),(2,7,14),

(2,8,16),(2,9,18),(2,10,20),(3,1,3),(3,2,6),(3,3,9),(3,4,12),(3,5,15),

(3,6,18),(3,7,21),(3,8,24),(3,9,27),(3,10,30),(4,1,4),(4,2,8),(4,3,12),

(4,4,16),(4,5,20),(4,6,24),(4,7,28),(4,8,32),(4,9,36),(4,10,40)]

Chapter 3 Increasing Code Reuse

98

But a generator may also depend on other values in the comprehension, in particular

on an element from another generator. For example, you may want to enumerate all

possible dominoes. But you know that once you have (1,6), the piece (6,1) is exactly

the same, so you shouldn’t show that one. A way to get the correct result is, for each

first component in the list of dominoes, get only values equal or greater than that in the

second component. Thus, a result of (6,1) is excluded, because 1 is less than 6. Here’s

some code to implement that approach:

*Chapter3.Compr> [(x,y) | x <- [0 .. 6], y <- [x .. 6]] [(0,0),(0,1),(0,2),

(0,3),(0,4),(0,5),(0,6), (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),

(2,2),(2,3),(2,4),(2,5),(2,6),

(3,3),(3,4),(3,5),(3,6),

(4,4),(4,5),(4,6),

(5,5),(5,6),

(6,6)]

Finally, an element in a list may itself be a list, which allows it to appear on the

right side of the generator. Given a list of words (remember that a string is itself a list of

characters), you can concatenate all of them and show them in uppercase by iterating

twice.

*Chapter3.Compr> import Data.Char

*Chapter3.Compr Data.Char> [toUpper c | s <- "A","list"], c <- ' ':s]

" A LIST"

Sometimes you want to introduce local bindings inside a comprehension, usually

to enhance the readability of the code. This second form of qualifiers has a syntax that

is similar to that in expressions, and the form is let b = expression. For example, you

may be interested in computing the norms of a list of vectors represented as tuples.4

*Chapter3.Compr> [sqrt v | (x,y) <- [(1,2),(3,8)], let v = x*x+y*y]

[2.23606797749979,8.54400374531753]

4�The norm of a vector (x, y) is the quantity x y2 2+ .

Chapter 3 Increasing Code Reuse

99

Finally, list comprehensions allow filtering out some elements using a guard. Guards

are the third form of qualifiers and are syntactically just a call to a predicate. Only those

elements satisfying the guard will go in the returned list. Guards allow expressing the

invariant for dominoes in a different way.

*Chapter3.Compr> [(x,y) | x <- [1 .. 6], y <- [1 .. 6], x <= y]

[(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6),

(3,3),(3,4),(3,5),(3,6),(4,4),(4,5),(4,6),(5,5),(5,6),(6,6)]

Note  If you know Scala, list comprehensions in Haskell will be familiar to you.
The changes are merely syntactic: [e | q] becomes for (q) yield e;,
and the generators are written the same. Local bindings are introduced without
any keyword, whereas guards must be preceded by if.

You have looked at comprehensions as coming from mathematical notation for sets.

But if you look closer, they also look a bit like SQL. The notation [x | x <- list, b x]

can be seen in SQL as select x from list where b=x. However, if you want to have a

full-fledged query language, you need also grouping and sorting. The great news is that

GHC already provides those operations; you need only to enable the TransformListComp

extension.

The first qualifier that is provided by the TransformListComp extension is then.

A qualifier then f transforms the input list by applying the function f to the result of

the comprehension up to that point. The constraint is that f should have type [a] ->

[a], so its applicability is a bit limited. Nevertheless, you can use it to reverse a list at

the end.

*Chapter3.Compr> :set -XTransformListComp

*Chapter3.Compr> [x*y | x <- [-1,1,-2], y <- [1,2,3], then reverse]

[-6,-4,-2,3,2,1,-3,-2,-1]

A more powerful enhancement is then f by e, which must transform the list

depending on some expression. The most common use is to sort a list. To do so, you

first need to import the module GHC.Exts, which contains the function sortWith. Now,

include the qualifier then sortWith by v to sort depending on the values in v. You may

decide to return the previous list but now ordered by the values of x.

Chapter 3 Increasing Code Reuse

100

*Chapter3.Compr> import GHC.Exts

*Chapter3.Compr GHC.Exts> :{

*Chapter3.Compr GHC.Exts| [x*y | x <- [-1,1,-2], y <- [1,2,3]

*Chapter3.Compr GHC.Exts| , then sortWith by x]

*Chapter3.Compr GHC.Exts| :}

[-2,-4,-6,-1,-2,-3,1,2,3]

The final extension concerns grouping. The syntax is then group by e using

f, where f is a function of the type (a -> b) -> [a] -> [[a]]. In the most

common case, you use as groupWith, also in GHC.Exts, which computes e for

each element in the list and groups together those values for which e returns the

same result. After a grouping qualifier, all the previous bindings are considered

to be lists made up of the previous elements. This is important because all the

transformations to the grouped elements should be done prior to that point. In

many cases, all grouped elements will be equal, so GHC provides a the function

that takes just one element from the list.

For example, you can group the numbers from the previous example according to

whether they are positive.

*Chapter3.Compr GHC.Exts> :{

*Chapter3.Compr GHC.Exts| [(the p, m) | x <- [-1,1,-2]

*Chapter3.Compr GHC.Exts| , y <- [1,2,3]

*Chapter3.Compr GHC.Exts| , let m = x*y

*Chapter3.Compr GHC.Exts| , let p = m > 0

*Chapter3.Compr GHC.Exts| , then group by p using groupWith]

*Chapter3.Compr GHC.Exts| :}

 [(False,[-1,-2,-3,-2,-4,-6]),(True,[1,2,3])]

Notice how this code computes the product of the items before the grouping using

let m = x*y. Then you group according to the value m > 0, and at this point you have

the list [([False,False,False,False,False,False],[-1,-2,-3,-2,-4,-6]),([True,

True,True],[1,2,3])]. Finally, you apply the to conflate the first components to a

single element.

To help you understand these ideas about list comprehensions, let’s try to build a

comprehension to analyze your enterprise clients. As you may remember, you can have

more than one person from each company in the database. The idea is to group all the

Chapter 3 Increasing Code Reuse

101

records belonging to the same company sorted by duty and then to sort the companies

by the number of records. The following code accomplishes those goals:

companyAnalytics :: [Client a] -> [(String, [(Person, String)])]

companyAnalytics clients = [(the clientName, zip person duty)

 | client@(Company { .. }) <- clients

 , then sortWith by duty

 , then group by clientName using groupWith

 , then sortWith by length client

]

Note T hese comprehensions resemble the query expressions introduced in the
C# language in version 3.0.

GHC supports another extension, parallel comprehension, which performs a duty

that is not found in SQL queries: traversing several lists at the same time. The extension

is enabled via the ParallelListComp pragma. Using this functionality, more than one

branch of qualifiers can be stated in the comprehension, each of them separated by |.

Instead of performing nested iterations, the result of all the branches will be zipped and

available for the expression. Here’s an example where you perform the multiplication

of pairs of numbers, each component being given in a different list. Compare the result

when using traditional nesting and when zipping.

*Chapter3.Compr> :set -XParallelListComp

*Chapter3.Compr> [x*y | x <- [1,2,3], y <- [1,2,3]] -- nesting

[1,2,3,2,4,6,3,6,9]

*Chapter3.Compr> [x*y | x <- [1,2,3] | y <- [1,2,3]] -- zipping

[1,4,9]

�Haskell Origami
Origami is the Japanese art of folding and unfolding paper in order to create beautiful

pieces of art. You have already looked at list folds. In this section you will look at them

and meet their colleagues, the unfolds. The goal is gaining some deeper understanding

of the structure of list functions and how this huge set of functions I have described can

Chapter 3 Increasing Code Reuse

102

be fit into a small family of schemas. Since these schemas are based on fold and unfold

functions, they are known as Haskell origami. This section contains some optional and

more advanced material. Don’t worry if you don’t understand this upon first read; just

come try it again after some time.5

Let’s start with an observation: folds are much more powerful than you imagine.

You can write almost all list functions using foldr. For example, you can write filter as

a fold by accumulating values on a list.

filterAsFold :: (a -> Bool) -> [a] -> [a]

filterAsFold p = foldr (\x l -> if p x then x : l else l) []

But, how to ensure that the definition of filter using regular pattern matching

and recursion on lists and this definition using a fold are equivalent? The answer lies

in induction and equational reasoning, a technique for formally verifying code that

manipulates equations between functions. In this particular case, you need to prove that

both ways to define filtering work in the same way for the empty list (this is called the

base case) and that by assuming that they are equal for a list xs you can prove that they

are equal for a longer list x:xs (this is called the inductive step).

Remapping our landscape, we want to prove that filter p xs is equal to

filterAsFold p xs for any list xs. We start by considering the base case, in which we

make xs = []. By the definition of the function, filter p [] = []. For the other side,

we can write the following set of equalities:

filterAsFold p [] = foldr (\x l -> if p x then x : l else l) [] []

 = [] -- we get back the initial value

Since both expressions give us the same result, they must be equal among

themselves. Now for the inductive step, we need to consider a list of the form x:xs.

filter p (x:xs) = if p x

 then x : filter p xs

 else filter p xs

5�Most of these ideas are taken from the papers “A tutorial on the universality and expressiveness
of fold” by Graham Hutton and “Origami programming” by Jeremy Gibbons.

Chapter 3 Increasing Code Reuse

103

filterAsFold p (x:xs) = foldr (\x l -> if p x then x : l else l) [] (x:xs)

 = (\x l -> if p x then x : l else l)

 x (foldr (\x l -> if p x then x : l else l) [] xs)

 = if p x

 then x : �(foldr (\x l -> if p x then x : l else l)

[] xs)

 else �(foldr (\x l -> if p x then x : l else l)

[] xs)

We can see that the structure of the code is the same. Remember that we are allowed

to assume that the equality foldr p xs = filterAsFold p xs holds, let us call this

common expression ys. Thus both expressions can be rewritten to:

if p x then x : ys else ys

By induction, the equality between both ways to write the function is now proven, in

the mathematical sense of the word.

You can also define map in terms of foldr. Exercise 3-4 asks you to prove that both

definitions are equivalent:

mapAsFold :: (a -> b) -> [a] -> [b]

mapAsFold f = foldr (\x l -> f x : l) []

EXERCISE 3-4. PROOF FOR MAP

Using the same techniques as we used for filter, prove that the usual map definition and

the one given in terms of foldr are equal.

The techniques of induction and equational reasoning are not limited to prove

equivalence between different function definitions. We can also state laws which

combine several operations. One such law is:

foldr f v . map g = foldr (\x xs -> f (g x) xs) v

In that form, this law relates two functions. However, in order to prove their equality,

we need to introduce explicit arguments. That is, what we want to hold is that for any

input list is,

foldr f v (map g is) = foldr (\x xs -> f (g x) xs) v is

Chapter 3 Increasing Code Reuse

104

At this point, we can start using our techniques. First, we have to prove that the

equality holds for the case in which is is the empty list.

foldr f v (map g []) = foldr f v [] = v

foldr (\x xs -> f (g x) xs) v is = v

Since both expressions rewrite to the initial value v, the base case is proven.

The inductive step leads us to consider the case in which the list has the form i:is.

foldr f v (map g (i:is)) = foldr f v (g i : map g is)

 = f (g i) (foldr f v (map g is))

foldr (\x xs -> f (g x) xs) v (i:is)

 = (\x xs -> f (g x) xs) i (foldr (\x xs -> f (g x) xs) v is)

 = f (g i) (foldr (\x xs -> f (g x) xs) v is)

As in the case of filter, we see that the final expressions have the same structure.

Remember that we can assume that the equality already holds for is while proving the

inductive step. If we call such common expression js, in both cases we obtain f (g i)

js. The proof is finished.

If you don’t feel completely confident about how I reasoned, try to go step-by-

step with pencil and paper. Pay close attention in each step to how you apply the

rules of the game. Once you are sure about the details, try to prove the so-called

fusion law for maps:

map f . map g = map (f . g).

Note  Knowing these laws may seem like just a theoretical exercise. However,
they have important applications for Haskell programs because the compiler uses
them to transform the code into a more efficient one, while ensuring the same
behavior. For example, map (f . g) traverses a list only once, whereas
map f . map g does it twice and needs an intermediate data structure in memory.
So, the compiler aims to replace each instance of the latter with the former.

Up to now I have talked about folds, which consume lists to provide a single

value. However, there’s a corresponding concept, unfolds, which create lists out of

some seed. Like with folds, there are both right and left unfolds. Here, the focus will

Chapter 3 Increasing Code Reuse

105

be on the right unfold function unfoldr, which is available in Data.List. Let’s begin

looking at its type.

*Chapter3.Origami Data.List> :t unfoldr

unfoldr :: (b -> Maybe (a, b)) -> b -> [a]

The algorithm for unfolding is the following: start with a seed of type b. Apply the

function given as the first argument. You can get two kinds of output: Nothing signals

that unfoldr should stop producing elements, whereas Just (x, s) attaches x to

the new list and continues the process with a new seed, s. For example, let’s create

a list from n to m. The function should produce a number in each step and increase

it for the next iteration, and it should stop when the seed is larger than m. Here’s the

code to do this:

enumUnfold :: Int -> Int -> [Int]

enumUnfold n m = unfoldr (\x -> if x > m then Nothing else Just (x, x+1)) n

Figure 3-3 illustrates the step-by-step execution of this code.

Figure 3-3.  Evaluation steps for enumUnfold 1 3

Another algorithm that can be expressed as an unfold is minimum sort for lists.

In minimum sort, you make a series of steps, and in each one you find the minimum

element in the input list, take it out of this input list, and add it to the output list,

which will end sorted. To implement it as an unfold, you will use a list as the seed,

containing the elements that are yet to be ordered. In each step, take the minimum

element from the list, making the new seed the previous list without that element.

When you have an empty list as a seed, you should stop generating new elements.

Here it is in Haskell code:

minSort :: [Integer] -> [Integer]

minSort = unfoldr (\case [] -> Nothing

 xs -> Just (m, delete m xs) where m = minimum xs)

Chapter 3 Increasing Code Reuse

106

WHY ARE FOLDS AND UNFOLDS DUALS?

The two concepts of folding and unfolding are dual, but how do I back up that claim? The key

point is that unfoldr returns eithers Nothing for stopping or Just for continuing, whereas

foldr takes different arguments for the empty and general cases. You can group the initial

value and combination function into a single function of type Maybe (a,b) -> b, which will

return the initial value if given nothing or apply the combination for Just.

{-# LANGUAGE LambdaCase #-}

foldr2 :: (Maybe (a,b) -> b) -> [a] -> b

foldr2 f [] = f Nothing

foldr2 f (x:xs) = f $ Just (x, foldr2 f xs)

mapAsFold2 :: (a -> b) -> [a] -> [b]

mapAsFold2 f = foldr2 (\case Nothing -> []

 Just (x,xs) -> f x : xs)

Now you can see how the two functions have reflected types.

foldr2 :: (Maybe (a,b) -> b) -> [a] -> b

unfoldr :: (b -> (Maybe (a,b)) -> b -> [a]

I find this duality elegant and an example of how higher-order functions allow you to find

relations between different abstractions.

�Summary
The chapter covered many concepts related to reusability and lists. It finished with a look

at list origami.

•	 You got in touch with the idea of parametric polymorphism, which

allows you to define functions operating on several types and also

write data types that may contain values of different types.

•	 You learned how to use functions as parameters or return values,

giving rise to higher-order functions, which greatly enhance the

reusability of your code.

Chapter 3 Increasing Code Reuse

107

•	 Anonymous functions were introduced as a way to write some code

directly in place instead of having to define a new function each time

you want to pass it as an argument.

•	 You saw how the idea of functions returning functions permeates the

Haskell language and saw the syntax for partially applying them.

•	 You looked at the point-free programming style, which encourages

the use of combinators between functions to write more concise

code. In particular, the focus was on the (.) composition operator.

•	 The chapter covered the import and export of definitions in other

modules in a project. In particular, you saw how hiding definitions

allows for the smart constructors pattern.

•	 You walked through the most important functions in the Data.List

module, introducing the important concept of a fold.

•	 In many cases, list comprehensions provide an intuitive syntax

for list transformations. You delved into its basic characteristics

and the particular GHC extensions providing sorting and

grouping à la SQL.

•	 Finally, you saw how fold and unfolds are at the core of most list

functions, and you learned how to use them and reason with them.

Chapter 3 Increasing Code Reuse

109
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_4

CHAPTER 4

Using Containers and
Type Classes
You have seen how parametric polymorphism and higher-order functions help in the

process of abstraction. In this chapter, I’ll introduce a new kind of polymorphism that

sits in between parametric and the absence of polymorphism: ad hoc polymorphism.

Using this feature, you can express that certain types exhibit a common behavior.

Incidentally, you will also learn how Haskell makes it possible to use addition, (+), on

different numeric types like Integer and Float while maintaining a strong type system.

Containers will be used in the examples throughout this chapter. A container is any

data structure whose purpose is to hold elements of other types in it, such as lists or

trees. In addition to writing your own implementation of binary trees with a caching

mechanism, you will look at implementations that are available in Hackage and

Stackage, the Haskell community’s package repositories. This will lead you deeper into

the features of Cabal and how you can use it to manage not only projects but also their

dependencies. In addition to repositories or libraries, the Haskell community provides

a lot of ways to search for code and documentation; I’ll introduce the Hoogle tool in this

chapter.

While using and implementing these containers, a lot of patterns will emerge. This

will be the dominant situation from now on; after looking at some useful types, you will

look at their commonalities. In particular, this chapter will introduce functors, foldables,

and monoids.

110

�Using Packages
Until this point you have been using functions and data types from the base package.

However, a lot of functionality is available in other packages. In this section you will first

learn how to manage packages, and add them as dependencies to your projects.

A package is the distribution unit of code understood by Cabal and Stack, the tools I

have already introduced for building projects. Each package is identified by a name and

a version number and includes a set of modules. Optionally, the package can include

some metadata such as a description or how to contact the maintainer. In fact, the

projects you created previously are all packages.

You can manipulate packages by hand, but there’s an easier way to obtain and install

them in your system: to make your own projects depend on them. If Cabal finds out

that a package is not available in your system, it contacts the Hackage package database

(which lives at http://hackage.haskell.org) and downloads, compiles, and installs

the corresponding package. Hackage started as a mere repository for hosting packages,

but now it provides some extra features such as the ability to generate documentation.

Anyone with an account is allowed to upload new packages to Hackage. This ability,

combined with the active Haskell community, means a wide range of libraries are

available.

When your use Stack to build your projects, Hackage is not consulted by default.

Instead, packages are looked for in Stackage (which lives at https://www.stackage.

org). Stackage provides snapshots of Hackage (called resolvers) in which all packages are

known to work well together. This provides a huge gain for reproducibility at the expense

of not always containing the bleeding-edge version of the packages.

Tip  Go to the Hackage web page and click the Packages link. Take some time to
browse the different categories and the packages available in each of them. Then,
find the containers package in the Data Structures category and click it. Now
go the Stackage web page and click the link of the latest LTS corresponding to
your version of GHC. Try to find containers in the list of packages. Compare the
version of this package to the latest one available in Hackage.

In both cases, you will see the list of modules that are exported, along with its
documentation. It’s important that you become comfortable with these sites
because they are the main entrance to the world of Haskell libraries.

Chapter 4 Using Containers and Type Classes

http://hackage.haskell.org
https://www.stackage.org
https://www.stackage.org

111

�Managing Dependencies
The most common way of getting a package is not by manually downloading it but rather

by adding it as a dependency of another package. You just need to add it to the property

build-depends of the corresponding stanza in your .cabal file. You can add a package

dependency both in the library or in executable stanzas. For example, let’s create a new

project for this chapter and add the containers package as a dependency because you

will use it throughout this chapter. The relevant parts of the package description file will

look like this:

name: chapter4

version: 0.1

library

 hs-source-dirs: src

 build-depends: base >= 4, containers

Dependencies may also specify constraints over the versions that are required.

Versions are of the form a.b.c.d, with each of them being a number. The order is

lexicographical; to compare two versions, the first component, a, is checked, and only

if they are equal is the second is checked. If that also coincides, further components are

checked in the same way. You can use any comparison operator (==, >=, >, <=, and <)

and also combine them using && for conjunction and || for alternative constraints. Even

though the constraint system is powerful, you should follow this rule of thumb: add a

constraint requiring the minimum version where you know that your package compiles

and runs (usually the version installed in your system), and another constraint to limit

future versions to the next major one, that is, the next a.b in the lexicographical order.

For example, at the moment of writing, the current containers version is 0.6.0.1, so

the next major version would be 0.7. The suggested dependency declaration is thus as

follows:

containers >= 0.6.0.1 && < 0.7

Chapter 4 Using Containers and Type Classes

112

PACKAGE VERSIONING POLICY

The meaning of the version numbers for Haskell packages has been in flux for a long time.

That made it difficult to decide the range to express for a particular dependency. In Hackage,

package authors are expected to adhere to the following policy:1

•	 If any function, data type, type class, or instance has been changed or its type

or behavior removed, the major version (i.e., the first two components) must be

increased.

•	 Otherwise, if only additions have been done, you can just increase the remaining

components. This also holds for new modules, except in the case of a likely

conflict with a module in another package.

In addition to these recommendations for package writers, the previously explained rule for

specifying dependencies was introduced.

Note however that this versioning policy is a controversial issue within the Haskell community.

You might find fierce arguments by defendants and opponents. But in practice, as a user of

Haskell, tools work well enough even when not all packages in the repositories adhere to this

practice.

As you can see, the package name and version are important parts of the project

Cabal file. Furthermore, if your package is intended to be published in Hackage or

publicly available in any other way, it’s important to include precise metadata. The

metadata is specified by top-level properties in the package description file. The only

required ones are name and version, but it’s also common to include the license, the

author, the current maintainer, a small synopsis, and a larger description, the project

home page, and a list of categories in which Hackage will include the package. For the

chapter4 package, it might look like this:

name: chapter4

version: 0.1

cabal-version: >=1.2

build-type: Simple

1�You can read the full Package Versioning Policy at pvp.haskell.org.

Chapter 4 Using Containers and Type Classes

http://pvp.haskell.org

113

author: Alejandro Serrano

synopsis: Package for chapter 4

maintainer: Alejandro Serrano <my@email.com>

homepage: http://haskell.great.is

Note Y ou may see some extra properties, such as cabal-version and build-
type. Those are meant to be used when the developer needs to tweak the building
system or maintain compatibility with older versions of Cabal. My suggestion is to
leave those properties as they are initially created.

�Building Packages
In Chapter 2 we looked very briefly at the steps required to build a package with either of

the build tools of the Haskell ecosystem, namely Cabal and Stack. In this section we look

at them in more detail and describe the underlying notions in their package systems.

�Building Packages with Cabal

Cabal used to be one of the very few sources of mutability in a Haskell system. All

packages, including dependencies, were installed in a global location. This made

the state of a Haskell installation quite brittle, especially when different packages

required different versions of the same package. Fortunately, this landscape changes

with the introduction of sandboxes, which isolated the dependencies of each package

being developed. For a long time, sandboxes have been opt-in, and global installation

remained the default method. Not any more: if you use the Cabal commands starting

with new-, you use an enhanced form of sandboxes. This is now the recommended way

of dealing with Haskell packaging, and it’s the one we shall describe in this section.

Since the new- commands try to isolate the package being developed from the rest

of the system state, they must be run in a folder in which a .cabal file exists. This is in

contrast to the previous mode of operation, in which commands could be run anywhere

since they affected the global environment.

As we have discussed above, Cabal uses Hackage by default as source for our

dependencies. However, the Hackage index is not consulted every time you build

a package. Instead, your local Cabal installation maintains a list of all the available

Chapter 4 Using Containers and Type Classes

114

packages in the remote Hackage repository. Alas, this mirror of the package list is not

updated automatically. You must explicitly ask Cabal to download the new version,

something you should do from time to time. When using the command line, you do this

by executing the cabal new-update command, as shown here:

$ cabal new-update

Downloading the latest package list from hackage.haskell.org

Now you are ready to build a package along with its dependencies. You do so by

simply running cabal new-build,

$ cabal new-build

Build profile: -w ghc-8.4.3 -O1

In order, the following will be built (use -v for more details):

 - exceptions-0.10.0 (lib) (requires build)

 - ...

Downloading exceptions-0.10.0...

Configuring exceptions-0.10.0 (lib)...

Configuring exceptions-0.10.0 (lib)...

...

Configuring library for chapter4-0.1...

Preprocessing library for chapter4-0.1..

Building library for chapter4-0.1..

If you get any error in this step, double check that the src folder exists.

In a first step, all the dependencies (in this example output, package exceptions

version 0.10.0) are downloaded and built. Then, the package itself (in this case,

chapter4) is configured and built. Of course, dependencies are only compiled in the first

run, or whenever they change.

A very common scenario when developing Haskell projects is to have several

packages you are developing together. Cabal can help you in that situation; the only

requirement is to put all the packages in a common folder. Then create a cabal.project

file with the following line:

packages: chapter4 wonderful

Then you can build one specific package by issuing the new-build command

followed by the name of the package. The great benefit of using a cabal.project file

is that if one of the packages depends on any other, Cabal knows where to find it. This

Chapter 4 Using Containers and Type Classes

115

solves one of the problems of the older behavior of Cabal, in which global mutation of the

environment was the only way to develop several interdependent packages in parallel.

�Building Packages with Stack

In my initial description of building packages with Stack, I hinted to the idea of resolvers.

This is in fact a central idea for Stack: a resolver describes a set of packages with a

specific version, and a specific compiler environment in which they work. In other

words, a resolver is defined by giving a version of GHC and a version of all the packages

belonging to that resolver. There are two types of resolvers: nightlies, which include

newer versions but are less stable, and LTSs, which are guaranteed to work correctly.

I recommend to always use an LTS for production environments.

In order to start using Stack with a Cabal project, you need to create a stack.yaml

file. The main goal of that file is to specify which resolver to use. From that point on,

Stack creates an isolated environment for your project, including a local version of GHC

as specified by the resolver.

You don’t need to create that file by hand, though. By running stack init Stack

infers which resolver to use from the current set of dependencies in your package. In

particular, it tries to use the most recent LTS resolver in which all dependencies can be

satisfied. Here’s the output for the chapter4 project; note how the lts-13.7 resolver is

chosen.

$ stack init

Looking for .cabal or package.yaml files to use to init the project.

...

Selecting the best among 14 snapshots...

* Matches lts-13.7

Selected resolver: lts-13.7

Afterwards, you need to run stack setup. This downloads the corresponding

version of GHC, if needed.

$ stack setup

Writing implicit global project config file to: ...\stack.yaml

Note: You can change the snapshot via the resolver field there.

Using latest snapshot resolver: lts-13.7

Downloaded lts-13.7 build plan.

Chapter 4 Using Containers and Type Classes

116

Preparing to install GHC to an isolated location.

This will not interfere with any system-level installation.

... – downloads and installs compilers and utilities

What a waste of space, I hear you muttering. GHC is not light, indeed, and having

one copy per project would result in thousands of duplicated files. Fortunately, Stack

tries to share as many compilation artifacts as possible, so the same compiler is used for

all the packages using the same major LTS version.

Building a package is quite similar to Cabal. Just run stack build. The main

difference is that Stack takes care of updating the information about its repositories

before downloading any dependencies. Then the packages are built, starting with the

dependencies and ending with the package being developed.

$ stack build

exceptions-0.10.0: download

exceptions-0.10.0: configure

exceptions-0.10.0: build

exceptions-0.10.0: copy/register

chapter4-0.1.0.0: configure (lib)

Configuring chapter4-0.1.0.0...

chapter4-0.1.0.0: build (lib)

Preprocessing library for chapter4-0.1.0.0..

Building library for chapter4-0.1.0.0..

chapter4-0.1.0.0: copy/register

Installing library in <somewhere>

Registering library for chapter4-0.1.0.0..

Let’s have a look at the contents of the stack.yaml file. In your system you might find

many additional comments, which are lines starting with the # symbol.

resolver: lts-13.7

packages:

- .

extra-deps: []

The first line specifies the resolver. The packages section defines which are the

folders containing the packages. By default, this section points to the folder in which

the stack.yaml file resides. You can use this option to create a project with more than

Chapter 4 Using Containers and Type Classes

117

one package, in the same fashion as I described for Cabal. For example, you can move

the file one folder up and then indicate that your folder contains both a chapter4 and a

wonderful package using

packages:

- chapter4

- wonderful

The last section specifies extra dependencies, which are packages which are not

available in Stackage, but are available in Hackage. Remember that Stackage provides a

snapshot of Hackage, so this is a common scenario. You need to declare both the name

of the package and the version. For example:

extra-deps:

- wonderful-0.2.1.0

The reason for mandating a version with every package is to keep the reproducibility

guarantees of the Stack tool. Another nice ability of Stack is to point not to a package, but

to a Git repository:

extra-deps:

- git: my.server/my.repo.git

 commit: a67bc8...

With all this information, you are ready to create the package for the store. Follow

Exercise 4-1, and try looking carefully at all the steps needed to bring a new package to

life.

EXERCISE 4-1: TIME MACHINE STORE PACKAGE

Create a new package that will be the origin of Time Machine Store, using either Cabal or

Stack. Since it will become a web application, make it an executable. Add containers and

persistent as dependencies (remember to use the version rule) and then configure and

build the project. Experiment with the different metadata fields.

In addition, create both a cabal.project and a stack.yaml file. Ensure that your package

builds with both tools.

Chapter 4 Using Containers and Type Classes

118

�Obtaining Help
I already mentioned that the Hackage and Stackage websites contains documentation

about all the packages available in their databases, including module, function, type,

and class descriptions. It’s a great source of information for both when you want to find

information about some specific function and when you want to get a broad overview of

a module. Furthermore, all the packages in the Haskell Platform come with high-quality

explanations and examples.

One really cool tool that helps in daily Haskell programming is Hoogle, available at

www.haskell.org/hoogle/. The powerful Hoogle search engine allows you to search by

name but also by type. Furthermore, it understands Haskell idioms. For example, if you

look for a function with a specific type, it may find a more general function using a type

class that the types in the signature implement, or the order of the arguments may be

swapped in the found version. This tool is available also as the command-line program

hoogle, which you can obtain by running cabal install hoogle in the command

line. Note that this will take some time, since it needs to download and compile all

dependencies in addition to the executable. Before being able to issue any query, you

must run hoogle generate at the console.

Here is an example of the outcome of Hoogle for a map-like function:

$ hoogle '(a -> b) -> ([a] -> [b])'

Prelude map :: (a -> b) -> [a] -> [b]

Data.List map :: (a -> b) -> [a] -> [b]

Control.Parallel.Strategies parMap :: Strategy b -> (a -> b) -> [a] -> [b]

Control.Applicative liftA :: Applicative f => (a -> b) -> f a -> f b

Data.Traversable fmapDefault :: Traversable t => (a -> b) -> t a -> t b

Prelude fmap :: Functor f => (a -> b) -> f a -> f b

Data.Functor fmap :: Functor f => (a -> b) -> f a -> f b

and it continues to 80 results

�Containers: Maps, Sets, Trees, Graphs
In this section you will look at some container types that are common in programming.

As I introduced earlier, a container is a data type whose main purpose is to hold any

number of elements of a homogeneous type. In particular, you will look at maps, trees,

Chapter 4 Using Containers and Type Classes

http://www.haskell.org/hoogle/

119

graphs, and sets. All these structures could be implemented by using lists and tuples

(e.g., you have already seen how association lists can be used to represent maps). But

using specialized data types has two advantages.

•	 They are much faster because they were specially developed for a

particular pattern. For example, looking for the value associated to

a key in a list involves searching the entire list, whereas in a map the

time is almost constant.

•	 Libraries implementing these structures provide functions that were

created for the specific use cases of each of them. For example, you

have functions for visiting nodes or getting the strongly connected

components of a graph. These functions could be implemented if

using lists but are not already available in the Haskell Platform.

All the containers I will talk about are provided by the containers package, so to try the

examples, you need to include that package as a dependency, as in the previous section.

�Maps
Let’s start with maps, which allow you to associate values with keys efficiently. No

duplicate keys are allowed, so if you want to alter the value for a specific key, the new

one will override the previous one. In contrast, with association lists, by implementing

mappings as a list of tuples, you were responsible for maintaining such an invariant.

You’ll find the implementation of maps in the Data.Map module. However, many

functions in that module collide with names from the built-in Prelude module. For

that reason, you will need to qualify the module when you import it. Here you’ll qualify

Data.Map by the name M, so you’ll prefix any declaration from the module with M instead

of Data.Map. It’s common practice to abbreviate the qualification to a small one-letter

name to write less code. In the following examples I’ll assume that the module has been

imported with this line:

import qualified Data.Map as M

The type itself is Map k a. It takes as parameters the type k of the keys that will index

values of type a. For example, a mapping between clients and the list of products that

each client has bought will have type Map Client [Product]. In the examples you will

work with simpler maps from strings to integers, which are much more concise.

Chapter 4 Using Containers and Type Classes

120

In the previous chapters, I introduced the special syntax for creating lists: either

using the constructor [] for an empty list or listing the elements between square

brackets. Haskell has no special syntax for maps or for exporting any of its data

constructors. Rather, you must create new maps either by using empty to create a map

with no pairs or by using singleton, which takes a key and a value and generates a map

with that single element.

*Chapter4.Containers M> M.empty

fromList []

*Chapter4.Containers M> M.singleton "hello" 3

fromList [("hello",3)]

Maps are by default shown as a list of pairs. You can convert between that style of

lists and real maps by using the fromList function. If two pairs have the same key, only

the last value is retained.

*Chapter4.Containers M> M.fromList [("hello",1),("bye",2),("hello",3)]

fromList [("bye",2),("hello",3)]

When inserting new values, you must remember that only one value can be

associated with a specific key. This leads to two different ways in which you can proceed

if a value is already associated with a key.

•	 You can completely ignore that old value and just replace it with the

new one. This is achieved via the insert function, which takes just

the new key and value, and the map where the association must be

changed, in that order.

•	 You can combine the old value with the new one. To do so, use

insertWith, of the following type:

(a -> a -> a) -> k -> a -> Map k a -> Map k a

The first parameter is the combining function that will be called

with the old and new values whenever the corresponding key is

already present. In some cases, you will also want to have the key

as a parameter of the combining function; in that case, you should

use insertWithKey, whose first parameter is of type k -> a ->

a -> a. This is an instance of a common pattern in the Data.Map

Chapter 4 Using Containers and Type Classes

121

module; each time that a function will be called with a value of the

map, there’s an alternative function ending in WithKey that also

gives the key to the function.

Here’s an example of several chained insertions:

*Chapter4.Containers M> :{

*Chapter4.Containers M| let m1 = M.singleton "hello" 3

*Chapter4.Containers M| m2 = M.insert "bye" 2 m1

*Chapter4.Containers M| m3 = M.insert "hello" 5 m2

*Chapter4.Containers M| m4 = M.insertWith (+) "hello" 7 m3

*Chapter4.Containers M| in (m1,m2,m3,m4)

*Chapter4.Containers M| :}

(fromList [("hello",3)]

, fromList [("bye",2),("hello",3)]

, fromList [("bye",2),("hello",5)]

, fromList [("bye",2),("hello",12)])

Notice how in the last step the pair ("hello",5) lived in the map and ("hello",7)

was going to be inserted. You specified addition as the combinator, so you get

("hello",12) in the final map.

Note  If you come from an imperative language such as C or Java, you will be
used to functions directly changing the contents of a container. By contrast, Haskell
is pure, so all these functions return a new map with the corresponding change
applied. However, the underlying implementation does not create a whole new
copy of the data structure every time it’s changed, due to laziness (which will be
explained in the next chapter). That way, performance is not compromised.

In addition to holding elements, maps are used to query by key. The null function

allows you to check whether the map is empty, whereas member tells whether a specific

key is available in the map. To get the associated value of a key, you can either use

lookup, which returns Just value if available, or use Nothing if the key is not present.

Chapter 4 Using Containers and Type Classes

122

Alternatively, findWithDefault takes a value to return if the key that you query is

not present. In the following interpreter session, you can see examples of what these

functions do in a range of cases:

*Chapter4.Containers M> M.null M.empty

True

*Chapter4.Containers M> let m = M.fromList [("hello",3),("bye",4)]

*Chapter4.Containers M> M.null m

False

*Chapter4.Containers M> M.member "hello" m

True

*Chapter4.Containers M> M.lookup "hello" m

Just 3

*Chapter4.Containers M> M.lookup "welcome" m

Nothing

*Chapter4.Containers M> M.findWithDefault 0 "welcome" m

0

You can also delete pairs from the map, using the delete function, as shown here:

*Chapter4.Containers M> M.delete "hello" m

fromList [("bye",4)]

In addition to inserting or deleting, you can also change the value of a specific key via

adjust. It takes the function that will be applied to the old value to get the new value. If

the key is not present, the map is not modified.

*Chapter4.Containers M> M.adjust (+7) "hello" m

fromList [("bye",4),("hello",10)]

insert, delete, and adjust are all instances of a general function called alter that

subsumes all of them. The first argument is a function of type Maybe a -> Maybe a.

The input will be Nothing if the key is not already present, or it will be the previous

value wrapped in a Just. What to do with that key is specified by the return value of that

function. If it is Nothing, the key will be dropped, and if it is Just v, that would be the

new value for the key. The following code does the same work of the previous example:

*Chapter4.Containers M> M.alter (\(Just v) -> Just (v+7)) "hello" m

fromList [("bye",4),("hello",10)]

Chapter 4 Using Containers and Type Classes

123

Exercise 4-2 asks you to check whether alter is a general form of the functions that

were introduced earlier.

EXERCISE 4-2: ALTERING YOUR MAPS

It’s common for Haskell libraries to contain a fully general function such as alter, which is

later made more concrete in other functions. This makes it easier to work with the library.

Put yourself for a moment in the place of a library designer and write the functions insert,

delete, and adjust using alter.

You can also combine entire maps using union, intersection, and difference,

which will produce a new map key from both maps (even if they appear in only one of

them), appearing in both maps or in the first map but not the second, respectively. In

the case of a key with different associated values in each map, the first map will take

precedence, and its value will be used. You can have finer control by using unionWith,

intersectionWith, and differenceWith, which take an extra argument that is the

function that combines the elements with the same key.

*Chapter4.Containers M> :{

*Chapter4.Containers M| let m1 = M.fromList [("hello",3),("bye",4)]

*Chapter4.Containers M| m2 = M.fromList [("hello",5),("welcome",6)]

*Chapter4.Containers M| in (m1 `M.union` m2, M.intersectionWith (-) m1 m2)

*Chapter4.Containers M| :}

(fromList [("bye",4),("hello",3),("welcome",6)]

, fromList [("hello",-2)])

Once you know how to operate on lists, you can usually transfer that knowledge to

other data structures. In the case of maps, there are functions map, foldr, foldl, filter,

and partition, among others, that have the same behavior as they have for lists but

return a map. Again, for each function there’s a corresponding one suffixed by WithKey

whose parameter functions also take the key that you are modifying, folding upon, or

filtering. Let’s duplicate all the values in a map and then return its sum.

*Chapter4.Containers M> (M.map (*2) m, M.foldr (+) 0 m)

(fromList [("bye",8),("hello",6)], 7)

Chapter 4 Using Containers and Type Classes

124

I have already talked about converting from a list of tuples into a map using

fromList. You can do the inverse transformation using assocs. You may have noticed

that maps are always shown with their keys ordered. The map itself maintains that

invariant, so it can easily access the maximal and minimal elements in the map. Indeed,

functions such as findMin/findMax, deleteMin/deleteMax, and updateMin/updateMax

take advantage of this fact and allow for fast retrieving, deleting, or updating of the values

associated to those keys.

�Sets
Sets are found in the Data.Set module. They behave essentially like lists but do not allow

duplicates. The set of functions for this data type is virtually identical to that of maps, but

only taking the value as a parameter (elements in a set don’t have a key). In the following

examples, the module Data.Set will be imported qualified as S:

Prelude> import qualified Data.Set as S

You create sets with empty and singleton, much like their map counterparts. empty

creates a set with no elements, and singleton creates a set with a single element. Later,

you can add new elements via the insert function. The following example showcases a

way to create a set with the elements "welcome" and "hello":

Prelude S> S.insert "welcome" $ S.singleton "hello"

fromList ["hello","welcome"]

Alternatively, you can create a set directly from a list of their elements using the

fromList function. Duplicate elements in the list will be taken to just one, since sets can

contain a sole appearance of each element.

Prelude S> S.fromList ["hello","bye","hello"]

fromList ["bye","hello"]

Similarly, there’s a toList function to convert a set to a list of its elements. The

behavior of these two functions provides a way to implement the functionality of

removing duplicates from a list (and also sort it in ascending order), which is actually

much more performant than the nub function.

Prelude S> S.toList $ S.fromList ["duplicate","boom","duplicate"]

["boom","duplicate"]

Chapter 4 Using Containers and Type Classes

125

As mentioned, the interface for Data.Set is similar to that of Data.Map. The following

code shows an example of using set operations (in this case, intersection, but also

union and difference are available). You can see how to check for membership with

the member function. Finally, like with lists and maps, you can apply a function to each

element in the set using map (but be careful because duplicate results will be compressed

into just one element, and order may not be respected).

Prelude S> :{

Prelude S| let set1 = S.insert "welcome" $ S.singleton "hello"

Prelude S| set2 = S.fromList ["hello","bye"]

Prelude S| in (set1 `S.intersection` set2

Prelude S| , "welcome" `S.member` set1

Prelude S| , S.map length set2)

Prelude S| :}

(fromList ["hello"], True, fromList [3,5])

INTMAP, INTSET, HASHMAP, AND HASHSET

Maps can be made much more efficient if you use only integers as keys. The same happens

for sets holding only integer values. For that reason, the containers library provides specific

data types for that purpose, namely, IntMap and IntSet.

Alternatively, the keys on a map or the values on a set might not be integers but could be

mapped almost uniquely to one integer. This mapping is called a hash of the original value.

The types HashMap and HashSet in the unordered-containers package provide

implementations of maps and sets whose keys and elements, respectively, can be hashed; this

is much more efficient than the Map and Set types discussed in this section, if the type can to

be hashed.

Like with any other value, the following containers can be nested one inside another:

lists of sets, maps with string keys and values that are lists of numbers, and so on. In

Exercise 4-3 you will use a map with sets as values to classify a list of clients in the store.

Chapter 4 Using Containers and Type Classes

126

EXERCISE 4-3: CLASSIFYING CLIENTS

For analysis purposes, it interesting to classify clients according to their type such as

government organization, company, or individual. First, create a new data type to represent

these kinds of clients:

data ClientKind = GovOrgKind | CompanyKind | IndividualKind

Now, create a function called classifyClients that traverses a list of clients (of type

[Client Integer], with Client defined as in the previous chapter) and generates a value

of type Map ClientKind (Set (Client Integer)). You should create two different

implementations.

•	 The first should traverse the list element by element and perform on each

element the classification, decide which map item to modify, and then add itself

to the set.

•	 The second should first create lists corresponding to the three different kinds

and at the end convert those lists to sets and generate the mentioned map from

them.

You can create a large client list and run the two implementations to compare which one

behaves better in speed.

�Trees
Trees are composed of nodes, which hold a value and may have other trees as children.

In the Data.Tree module, those children are represented as a bare list of trees,

sometimes called a forest. Be aware that this representation is not specialized for any

particular purpose. For some algorithms, you may want to use another kind of tree, such

as AVL or red-black trees. For those cases, we have specialized packages supporting

these data types, such as TreeStructures, AvlTree, and RBTree. Here’s the code defining

Data.Tree.Tree:

data Tree a = Node { rootLabel :: a, subForest :: Forest a }

type Forest a = [Tree a]

Chapter 4 Using Containers and Type Classes

127

The type keyword, which I haven’t yet introduced, is used to create type synonyms,

that is, to give an alternative name to a type. Usually, it’s used to call a large type by

a smaller or more expressive name. For example, you can introduce the following

synonym for those functions returning a Boolean value:

type Predicate a = a -> Bool

The type synonym and its expansion are interchangeable in all circumstances.

That is, you can also write the type of filter as Predicate a -> [a] -> [a], and the

compiler would be fine with it. In contrast, the other way to define alternative names,

using newtype, doesn’t make the types equivalent. When should you use this second

option will be covered later in the chapter.

As you may already know, there are several ways to visit a tree (such as traversing all

of their elements), which are broadly divided in two families: depth-first traversal and

breadth-first traversal. In depth-first traversal, each node of the tree recursively visits

its subtrees. There’s still a choice of when to visit the value in the node itself: before any

subtree (pre-order) or after all subtrees are visited (post-order). Figure 4-1 illustrates

both ways of traversing a tree’s elements.

Figure 4-1.  Traversing in pre-order, post-order, and breadth-first fashions

Let’s try to implement a function that traverses the tree in pre-order, applying a

function to each value and returning the result in a list.

import Data.Tree

preOrder :: (a -> b) -> Tree a -> [b]

preOrder f (Node v subtrees)

 = let subtreesTraversed = concat $ map (preOrder f) subtrees

 in f v : subtreesTraversed

Chapter 4 Using Containers and Type Classes

128

Notice how the code uses the map function to run the partially evaluated preOrder f

on each of the subtrees. Thus, you will obtain a list of elements for each subtree, and

map will return a list of lists. So, you need to flatten it to get just a single list, which is

achieved using concat. Indeed, this pattern of mapping against a list and then flattening

the resulting list is so common that the Prelude includes a function concatMap f, which

is exactly defined as concat . map f. You can check that the function works on the tree

shown in Figure 4-1.

pictureTree :: Tree Int

pictureTree = Node 1 [Node 2 [Node 3 []

 , Node 4 []

 , Node 5 []]

 , Node 6 []]

-- In GHCi

*Chapter4.Containers> preOrder show pictureTree

["1","2","3","4","5","6"]

This pre-order traversal can be achieved using the flatten function defined in the

Data.Tree module. However, it does not apply any operation of the nodes values; it just

returns them as they are. The breadth-first traversal is available via the levels function,

where also each level is returned as a list.

*Chapter4.Containers> flatten pictureTree

[1,2,3,4,5,6]

*Chapter4.Containers> levels pictureTree

[[1],[2,6],[3,4,5]]

Like any other container, trees in Haskell support mapping and folding over them.

However, instead of functions in the same module, these operations are available

through the functions fmap in Prelude and foldr in Data.Foldable. In the rest of the

chapter, I will discuss why this is the case.

*Chapter4.Containers> fmap (*2) pictureTree

Node { rootLabel = 2

 , subForest = [Node { rootLabel = 4

 , subForest = [Node { rootLabel = 6

 , subForest = [] }

Chapter 4 Using Containers and Type Classes

129

 , Node { rootLabel = 8

 , subForest = [] }

 , Node { rootLabel = 10

 , subForest = [] }] }

 , Node { rootLabel = 12, subForest = [] }] }

*Chapter4.Containers> Data.Foldable.foldr (+) 0 pictureTree

21

�Graphs
Trees are just an instance of a more general data structure called a graph. A graph is

composed of a set of vertices, joined via a set of edges. In the implementation in Data.

Graph, nodes are always identified by an integer, and edges are directed (an edge from a

to b does not imply an edge from b to a) and without weights.

There are two ways to create a graph.

•	 You use graphFromEdges when you have a list of nodes; each of

them is identified by a key and holds a value, and for each node

you also have its list of neighbors – that is, the list of any other

nodes that receive an edge from the former. In such a case, you call

graphFromEdges, which takes a list of triples, (value, key, [key]),

the latest component being the aforementioned list of neighbors. In

return, you get a graph but also two functions. The first one of type

Vertex -> (node, key, [key]) maps a vertex identifier from the

graph to the corresponding information of the node, whereas the

second one, with type key -> Maybe Vertex, implements the inverse

mapping: from keys to vertex identifiers.

•	 If you already have your graph in a form where you have integer

identifiers, you can use buildG instead. This function takes as

parameters a tuple with the minimal and maximum identifiers (its

bounds) and a list of tuples corresponding to each directed edge in

the graph.

Chapter 4 Using Containers and Type Classes

130

There is a large set of functions for inspecting the graph itself, like vertices and

edges, returning the sets corresponding to their names. However, the great power of this

module is the complete set of functions for walking through the elements in graphs and

working with them, which are usually quite tricky to implement by hand. For example,

let’s say you have a list of things to do for building a time machine. However, these tasks

have some relative order. To create the door of the time machine, you first need to buy

the aluminum from which it is made. This ordering can be represented using a graph,

where there’s an edge from a to b if a must precede b. The following code generates the

first graph in Figure 4-2:

import Data.Graph

timeMachineGraph :: [(String, String, [String])]

timeMachineGraph =

 [("wood","wood",["walls"]), ("plastic","plastic",["walls","wheels"])

 ,("aluminum","aluminum",["wheels","door"]),("walls","walls",["done"])

 ,("wheels","wheels",["done"]),("door","door",["done"]),("done","done",[])]

timeMachinePrecedence

 :: (Graph, Vertex -> (String,String,[String]), String -> Maybe Vertex)

timeMachinePrecedence = graphFromEdges timeMachineGraph

You can build a plan for constructing the time machine by asking for a topological

sort of the elements. In this sort scheme, each node n is always before any other node

that receives an edge from n. Notice how in the example the mapping between vertices

and keys has been used to write the results using the string representations, not the

internal integer identifiers.

*Chapter4.Containers> :{

*Chapter4.Containers> let (g,v,_) = timeMachinePrecedence

*Chapter4.Containers> in map (\x -> let (k,_,_) = v x in k) $ topSort g

*Chapter4.Containers> :}

["wood","plastic","walls","aluminum","door","wheels","done"]

One detail that most of the people don’t know about time machines is that you

cannot travel to any point in time with a machine. Instead, each machine has some

points where you can travel, and it may be the case that you can travel to one point in

only one direction. So, when performing time travel, you should be sure you are able

Chapter 4 Using Containers and Type Classes

131

get to the time where you want to go or that you can go back to the initial point. You can

model these constraints as a graph. From each year you will have edges to each year to

which you can arrive. The following code translates this idea applied to the second graph

in Figure 4-2 to code:

timeMachineTravel :: Graph

timeMachineTravel = buildG (103,2013)

 [(1302,1614),(1614,1302),(1302,2013),(2013,1302),(1614,2013)

 ,(2013,1408),(1408,1993),(1408,917),(1993,917),(917,103),(103,917)]

Figure 4-2.  Graphs about time machines

You may ask whether you can travel from 1302 to 917; the path function will give the

answer. Indeed, if you want to know every vertex that can be reached from that year, you

can use reachable to find them. Let’s look at some examples starting from 1302:

*Chapter4.Containers> path timeMachineTravel 1302 917

True

*Chapter4.Containers> reachable timeMachineTravel 1302

[1302,2013,1408,917,103,1993,1614]

How can you partition the vertices such that you can always travel between all years

in each set? Each component of this partition is called a strongly connected component.

You can get it using scc, which will return a set of trees, each of them specifying one of

those components. But if you run this function directly, you will get some enormous

output. This is because when creating a graph using buildG, the library creates vertices

Chapter 4 Using Containers and Type Classes

132

for all identifiers in between. For that reason, you are going to filter the trees with only

one node. This filtering will eliminate those vertices that were not in the initial list but

also the connected components with only one element. Here’s the filtering code:

*Chapter4.Containers> filter (\(Node { subForest = s }) -> s /= []) $ scc

timeMachineTravel

[Node { rootLabel = 103

 , subForest = [

 Node { rootLabel = 917, subForest = []}]}

 , Node { rootLabel = 2013

 , subForest = [

 Node { rootLabel = 1302

 , subForest = [

 Node { rootLabel = 1614

 , subForest = [] }] }] }]

The previous output is definitely not very manageable. If instead of using buildG

your graph is represented as with graphFromEdges, the output is much better. You

need only to use stronglyConnComp. A special type SCC is used for representing each

component. You need to run flattenSCC to obtain a printable version, as shown in the

following example:

*Chapter4.Containers> map flattenSCC $ stronglyConnComp timeMachineGraph

[["done"],["door"],["walls"],["wood"],["wheels"],["plastic"],["aluminum"]]

�Ad Hoc Polymorphism: Type Classes
Up to this point in the book you have seen the types of several functions in the Haskell

Platform. However, if you look at some functions in the Data.Map or Data.Set module,

you will find something that hasn’t yet been explained.

*Chapter4.Containers> :t M.insert

M.insert :: Ord k => k -> a -> M.Map k a -> M.Map k a

Notice how Ord k is separated from the rest of the type by => (not to be confused by

the arrow -> used in the type of functions). The purpose of Ord k is to constrain the set

of possible types that the k type variable can take. This is different from the parametric

Chapter 4 Using Containers and Type Classes

133

polymorphism of the list functions in the previous chapters. Here you ask the type to

be accompanied by some functions. This kind of polymorphism is known as ad hoc

polymorphism. In this case, the Ord type class is saying that the type must provide

implementations of comparison operators such as < or ==. Thus, it formalizes the notion

of default order that I talked about previously.

�Declaring Classes and Instances
A type class (usually abbreviated as simply class) is a declaration of a set of functions

along with their types, and it receives a name (in the previous case, Ord). The declaration

of a type class has this syntax:

class ClassName variable where

 oneFunction :: oneType

 ...

 otherFunction :: otherType

The variable introduced in the declaration can be used in the functions to refer to a

type that supports the type class. For example, both clients and time machines have a

name, so you can introduce a type class for expressing the concept “values of this type

have a name” that you will call Nameable. Check how the type variable n is used in the

type of the function name, as shown here:

class Nameable n where

 name :: n -> String

Now if you look at the type of name, it declares the constraint of being a Nameable.

*Chapter4.TypeClasses> :t name

name :: Nameable n => n -> String

From now on, using the name function also comes with the associated restriction,

which must be specified in the corresponding type declaration. An example using

Nameable could involve a function, declared outside the type class, which returns the

initial of the name.

initial :: Nameable n => n -> Char

initial n = head (name n)

Chapter 4 Using Containers and Type Classes

134

Of course, the main purpose of having a type class is to declare that some specific

type supports the operations introduced by the class. Such a type is called an instance

of a type class. The declaration of such a fact must include the implementation of the

functions declared in the class.

instance ClassName Type where

 oneFunction = ... -- implementation

 ...

 otherFunction = ... -- implementation

Following the example, the following is the instantiation of the Nameable type class

by Client. Here’s a reminder of how this type looked in Chapter 3:

data Person = Person { firstName :: String, lastName :: String }

 deriving (Show, Eq, Ord)

data Client i = GovOrg { clientId :: i, clientName :: String }

 | Company { clientId :: i, clientName :: String

 , person :: Person, duty :: String }

 | Individual { clientId :: i, person :: Person }

 deriving (Show, Eq, Ord)

In the instance declaration, you need to include the whole type. This means you

must also write the type parameters that should be applied in the declaration (in this

case, the i parameter).

instance Nameable (Client i) where

 name Individual { person = Person { firstName = f, lastName = n } }

 = f ++ " " ++ n

 name c = clientName c

Caution  Type classes in Haskell should not be confused with classes in object-
oriented (OO) programming. Actually, if you had to make a connection, you can
think of type classes as interfaces in those languages, but they have many more
applications, such as linking together several types in a contract (e.g., specifying
that an IntSet holds elements of type Int). The word instance is also used in
both worlds with very different meanings. In OO languages it refers to a concrete
value of a class, whereas in Haskell it refers to the implementation of a class by a

Chapter 4 Using Containers and Type Classes

135

type. This points to a third difference: in OO the declaration of a class includes a list
of all the interfaces it implements, whereas in Haskell the declaration of a type and
its implementation of a type class are separated. Indeed, in some cases they are
even in different modules (these instances are referred to as orphan ones).

When you use a type that implements a class, the Haskell compiler must look for

the corresponding instance declaration. It does so by looking in all the modules that

are imported, independently of how they are imported. Currently, it’s not possible to

prevent an instance declaration from being imported. This means that if you see some

source code like the following, it may not be an error (what’s the point of having such

a declaration if nothing is imported?) but rather an import of the instance declarations

found in Module:

import Module ()

Exercise 4-4 shows you how to use type classes and instances. It does so in the

direction of fulfilling the main target: creating a powerful time machine store.

EXERCISE 4-4: PRICES FOR THE STORE

Besides time machines, the web store will also sell travel guides and tools for maintaining

the machines. All of them have something in common: a price. Create a type class called

Priceable of types supporting a price, and make those data types implement it.

The next step is creating a totalPrice function, which, given a list of things with price,

computes the total amount of money to pay. The type of this function will be as follows:

totalPrice :: Priceable p => [p] -> Double

Be aware that the meaning of this signature may not match your intuition, especially if you are

coming from an object-oriented programming background. When the compiler processes this

code, it will look for a concrete type for the type variable p. This means it can work only with

homogeneous lists. You can compute the price of a list of time machines, [TimeMachine], or

a list of books, [Book]. But there’s no way to type or create a heterogeneous list containing

both values of type TimeMachine and Book.

Chapter 4 Using Containers and Type Classes

136

Nameable is similar to the Show type class, which provides a function called show to

convert a value into a string. You have already met this type class in the definition of

previous data types, but you haven’t written any instance for those data types. The reason

is that Haskell can automatically write instances of a set of type classes, deriving them from

the shape of the data type. This is called the deriving mechanism because the instances to

generate are specified after the deriving keyword at the end of the data type definition.

Note A ccording to the standard, Haskell is able to derive instances for only
some type classes, which are hard-coded in the compiler. However, there’s a field
of functional programming, called generic programming, that provides ways to
write functions that depend on the structure of data types. Chapter 14 provides an
introduction to that topic.

There’s a dual class to Show, called Read, which performs the inverse function:

converting a string representation into an actual value of a type, via the read function.

The implementation of a Read instance is usually tricky since you must take care of

spacing, proper handling of parentheses, different formats for numbers, and so forth.

The good news is that Haskell also allows you to derive Read instances automatically,

which are guaranteed to read back any value produced by the show function. If deriving

both, you can be sure that read . show is the identity on the values of the data type; that

is, the final value will be the same as the initial one.

Let’s derive Read also for the Person data type.

data Person = Person { firstName :: String, lastName :: String }

 deriving (Show, Eq, Ord, Read)

And now let’s try to parse a string representing a person.

*Chapter4.TypeClasses> read "Person { firstName = \"A\", lastName = \"S\" }"

*** Exception: Prelude.read: no parse

The problem is that GHC has no clue about which instance of Read should be used.

You haven’t specified any further operation on the result that Haskell could use to infer

the final type. From the compiler point of view, the string may refer to any type. The

solution is to explicitly tell what the type to be returned is. This is achieved by annotating

the expression with :: followed by the type.

Chapter 4 Using Containers and Type Classes

137

*Chapter4.TypeClasses> :{

*Chapter4.TypeClasses| read "Person { firstName = \"A\", lastName = \"S\" }"

*Chapter4.TypeClasses> :: Person

*Chapter4.TypeClasses| :}

Person {firstName = "A", lastName = "S"}

Once again, you can check that Haskell infers always the most general type based

on the functions used in the expressions. For example, the function read . show would

work on any data type supporting both Show and Read. But in general, it also works if

some data type supports Show and another one supports Read, which is more general

than a single type supporting both.

*Chapter4.TypeClasses> :t read . show

read . show :: (Read c, Show a) => a -> c

�Built-in Type Classes
I have spoken in the previous chapters about some list functions involving types having

“default comparisons” and “default equivalences.” Now that you know about type

classes, it is time to introduce the specific classes that encode those concepts, namely,

Ord and Eq.

Eq is the type class declaring that a type supports checking equality (and inequality)

between their values. Let’s look at its definition from the GHC source code (you can

access it looking at the base package, surfing inside the Prelude module and then

clicking the Source link next to the class information).

class Eq a where

 (==), (/=) :: a -> a -> Bool

 x /= y = not (x == y)

 x == y = not (x /= y)

I mentioned that type classes include only the declaration of functions to be

implemented, but here you find some code implementation. The reason is that those

are default definitions: code for a function that works whenever some of the rest are

implemented. For example, if you implement (==), there’s a straightforward way to

implement (/=), as shown earlier. When instantiating a type class, you are allowed to

leave out those functions with a default implementation.

Chapter 4 Using Containers and Type Classes

138

This means that when implementing Eq, you may do it without any actual

implementation because all functions have default implementations. In that case, any

comparison will loop forever because (/=) calls (==), which then calls (/=), and so

on, indefinitely. This may lead to the program crashing out of memory or just staying

unresponsive until you force its exit. For preventing such cases, type classes in Haskell

usually specify a minimal complete definition; in other words, which set of functions

should be implemented for the rest to work without problems? For Eq, the minimal

complete definition is either (==) or (/=), so you need to implement at least one.

Caution  Knowing the minimal complete definitions for a type class is important
since it’s the only way to enforce that programs behave correctly. The GHC
compiler is able to check that you have defined all necessary functions from
version 7.8 on. However, because this feature was not present since the beginning
in the compiler, some libraries do not explicitly mention the minimal complete
definition in code. Thus, you should double-check by looking at the documentation
of the type class.

Given (==), you can always write (/=) as not . (==), so you may be wondering

why you would include both in the type class and then have to introduce the concept

of minimal complete definition? Shouldn’t (/=) be defined outside the type class? The

reason for having everything in the same type class is twofold.

•	 Ease of instantiation: For some types it may be more natural to write

the Eq instance by defining (==), whereas in others the code for

(/=) will be easier to write. Being able to do it in both ways makes it

easy for consumers to instantiate the type class. This may not be so

apparent for Eq, but for more complex type classes it is important.

•	 Performance: Having both functions in the type classes allows you

to implement the two of them if desired. This is usually done for

performance reasons; maybe your type has a faster way of checking

for nonequality than trying to check equality and failing.

The case of equality leads to other interesting features of Haskell’s type class system:

instantiation for a type with variables and restrictions for instantiating a type class. For

example, you can implement an instance of Eq for any possible list type in a generic way.

Chapter 4 Using Containers and Type Classes

139

You only have to check the equality element by element. However, in order to be correct,

you must require the inner elements to also implement the Eq class. Let’s look at the code:

instance Eq a => Eq [a] where

 [] == [] = True

 (x:xs) == (y:ys) = x == y && xs == ys

 _ == _ = False

Let’s focus on the highlighted parts. First, there is the restriction on the elements that

have been introduced using the same syntax as in functions. Then, the declaration uses a

parametric [a] in the type name, with a type variable. In sum, this instance is applicable

to lists of any type a that also is an Eq. The Haskell Platform already includes these

declarations for many common containers, not only lists. Instances of Eq are specified

for tuples, maps, sets, trees, Maybe, and so on.

As usual, the power of instantiating type classes by parametric types is not exclusive

of a special set of built-in types, but it’s available for use in your own data types, as

Exercise 4-5 shows.

EXERCISE 4-5: THE SAME CLIENT

Implement Eq for the Person and Client i types introduced in the previous chapters so

that it checks the equality of all the fields. Notice that for Client you may need to add some

restrictions over the type of the identifiers.

The good news is that in daily work you don’t need to write those instances because Haskell

can also derive Eq like it does with Show and Read.

In addition to equality, in some cases you need the notion of ordering. This is the

duty of the Ord type class.

class Eq a => Ord a where

 compare :: a -> a -> Ordering

 (<), (<=), (>), (>=) :: a -> a -> Bool

 max, min :: a -> a -> a

 compare x y = if x == y then EQ

 else if x <= y then LT

 else GT

Chapter 4 Using Containers and Type Classes

140

 x < y = case compare x y of { LT -> True; _ -> False }

 x <= y = case compare x y of { GT -> False; _ -> True }

 x > y = case compare x y of { GT -> True; _ -> False }

 x >= y = case compare x y of { LT -> False; _ -> True }

 max x y = if x <= y then y else x

 min x y = if x <= y then x else y

Once again, it has a lot of members, but thanks to default definitions, the minimal

complete one is either implementing compare or implementing <=. However, if you

look at the code in compare, you may notice that it’s using (==), which is a member

of Eq. Indeed, at the beginning of the definition of Ord there’s a prerequisite for its

implementation. Every type belonging to the class Ord must also belong to the class

Eq. The syntax is similar again to including restrictions in functions or in instance

implementations: Eq a =>.

In this case, you say that Eq is a superclass of Ord. Once again, I must warn you

against any possible confusion when comparing the concept with the one in object-

oriented languages. A type class does not inherit anything from its superclass but the

promise that some functions will be implemented in their instances. For all the rest,

they are completely different type classes. In particular, type implementations will go in

separate instance declarations.

Like with Eq, Haskell provides automatic derivation of Ord instances. When doing

so, it will consider that different alternatives follow the same order as in the data

declaration. For example, in the declaration of clients at the beginning of the section,

government organizations will always precede companies, which will always precede

individuals. Then, if two values have the same constructor, Haskell will continue looking

along each field in declaration order. In this case, it means that after the kind of client,

the next thing to compare is its identifier. However, this may not be the best behavior, as

Exercise 4-6 points out.

EXERCISE 4-6: ORDERING CLIENTS

The automatically derived Ord instance for Clients doesn’t make much sense. As discussed,

it checks the kind of client and then its identifier. Instead of that, write a new instance with the

following properties: first, the instance should compare the name of the client. Then, if they

coincide, it should put individuals first and then companies and government organizations at

Chapter 4 Using Containers and Type Classes

141

the end. You may need to add further comparisons in the rest of the fields to make the order

correct (e.g., for two companies whose responsibility fields are different, so you must decide

which one to put first).

Think beforehand whether you need to include some restriction in the instance.

Other type classes you have been using are Num and its subclasses. As you may guess,

Num is the class for all those types representing numbers, whether integers, rationals,

or floating-point. Each subclass adds some refinement. For example, Num includes only

addition, subtraction, and multiplication, but Integral adds to the mix integer division

and remainders. The operations belonging to each class are summarized in Table 4-1,

along with the superclass relations.

Table 4-1.  Number-Related Type Classes

Type class Parent class Description

Num n/a Basic number type. Supports addition (+), subtraction (-), multiplication

(*), unary negation (negate), absolute value (abs), sign (signum), and

conversion from an Integer value (fromInteger).

Real Num Subclass supporting conversion to Rational values (using

toRational). Integer is an instance of this class because integral

values can be embedded as fractions with a denominator of 1.

Integral Real Subclass for integer values that support integer division and

integer modulus. Related functions come in triples: quot, rem,

and quotRem compute the division, modulus, or both (truncating

toward 0), whereas div, mod, and divMod do the truncating toward

negative infinity (-∞).

Fractional Num Subclass for fractional values. Supports division (/), taking the

reciprocal (recip) and conversion from a Rational value

(fromRational).

Floating Fractional Subclass for floating-point values. Supports common values such as

pi and e. Allows for square roots (sqrt), natural logarithms (log),

exponentiation (exp for natural base and (**) for general base), and

circular and hyperbolic trigonometric functions.

Chapter 4 Using Containers and Type Classes

142

One of the most interesting parts in Haskell’s treatment of numbers is how it treats

constants. For example, if you try to get the type of 1 in the interpreter, the result may be

puzzling at first.

*Chapter4.TypeClasses> :t 1

1 :: Num a => a

As you can see, the constant itself is polymorphic. It may represent 1 in any type that

instantiates Num. The reason for that is the fromInteger function, which allows you to

extract a value from an integer constant.

As an example, you are going to create a data type for complex numbers and

implement its Num instance.2 You may remember from your algebra class that a complex

number has the form a+bi, where a is the real part and b is the imaginary part. The laws

that govern their operations can be derived from the fact that i 2 = − 1. Finally, each

complex number has the concept of absolute value, |x|, and argument θx, which satisfy

the condition |x|θx = x, which is exactly the one you need for abs and signum in a Num

instance.

data Complex = C Double Double deriving (Show, Eq)

instance Num Complex where

 (C a1 b1) + (C a2 b2) = C (a1 + a2) (b1 + b2)

 (C a1 b1) - (C a2 b2) = C (a1 - a2) (b1 - b2)

 (C a1 b1) * (C a2 b2) = C (a1*a2-b1*b2) (a1*b2+b1*a2)

 negate (C a b) = C (negate a) (negate b)

 fromInteger n = C (fromInteger n) 0

 abs (C a b) = C (sqrt $ a*a+b*b) 0

 signum c@(C a b) = let C n _ = abs c in C (a / n) (b / n)

You have seen that type classes are a powerful tool for abstracting concepts and

patterns. In the previous chapters, you looked at the default values idiom, so you may be

wondering whether there’s a type class for this matter. The answer is found in the Data.

Default module, in the data-default package, which provides a Default class with

2�The Haskell Platform is quite complete, so it also includes a type for complex numbers, which
you can find in the Data.Complex module. This definition will be merely illustrative.

Chapter 4 Using Containers and Type Classes

143

just one member, def, which will return the default value. If you recall the discussion

in Chapter 2 about connection options, a solution using a type class would use the

following, instead of connDefault:

instance Default ConnOptions where

 def = ConnOptions TCP 0 NoProxy False False NoTimeOut

�Binary Trees for the Minimum Price
Until now you have saved all the information about clients in lists for this chapter. Even

though you now know about where to look for already implemented types, this section is

going to step back and look at the design of a custom container type that completely suits

the needs of the application. In particular, the aim is to provide support for the discount

module, which needs access to the cheapest elements in the container. In the process,

you will see how type classes allow for a greater degree of generalization, thus increasing

reusability.

In this section the container will be holding travel guides. A travel guide consists of

a title, a list of authors, and a price. You can model it using a record. As you will see later,

you will need some notion of less and greater than, so you need an Ord instance and with

it an Eq instance.

data TravelGuide = TravelGuide { title :: String

 , authors :: [String]

 , price :: Double }

 deriving (Show, Eq, Ord)

�Step 1: Simple Binary Trees
A first solution is to use bare lists. The greatest problem with them is that querying for

elements in them is costly because the only option you have is to traverse the list element

by element. In the worst case, you may need to traverse the entire list until you find an

answer. A solution for this is to use binary trees, which have a better complexity in this

task (in particular, logarithmic vs. linear).

Chapter 4 Using Containers and Type Classes

144

A binary tree is a data structure made up of nodes. Each node holds a value and two

references to subtrees. To indicate that a node doesn’t have some of the subtrees, you

use a special leaf marker. The special property of binary trees is that any node in the left

subtree will hold only those values smaller than the one in the node, whereas in the right

subtree you will find values that are greater than that in the node itself. This is the reason

why you need to derive Ord for the TravelGuide type. Figure 4-3 shows an example of a

binary tree, with the constraints over the nodes specified in the edges.

Figure 4-3.  Graphical example of binary tree

Now you can create the data structure of travel guide binary trees.

data BinaryTree1 = Node1 TravelGuide BinaryTree1 BinaryTree1

 | Leaf1

 deriving Show

As explained, searching in a binary tree is much faster because by comparing the

element to look for with the node you are currently exploring, you can decide in which

subtree to look, while being sure that it will never be in the other subtree.

treeFind1 :: TravelGuide -> BinaryTree1 -> Maybe TravelGuide

treeFind1 t (Node1 v l r) = case compare t v of

 EQ -> Just v

 LT -> treeFind1 t l

 GT -> treeFind1 t r

treeFind1 _ Leaf1 = Nothing

You also need a way to initially create empty trees and to insert values in a tree while

keeping the invariant. In the latter case, the algorithm is simple; you traverse the tree as

if you were looking for the value to insert. If you reach a Leaf1, it means the value is not

there and that the position for it is in the place of the leaf itself.

Chapter 4 Using Containers and Type Classes

145

treeInsert1 :: TravelGuide -> BinaryTree1 -> BinaryTree1

treeInsert1 t n@(Node1 v l r) = case compare t v of

 EQ -> n

 LT -> Node1 v (treeInsert1 t l) r

 GT -> Node1 v l (treeInsert1 t r)

treeInsert1 t Leaf1 = Node1 t Leaf1 Leaf1

�Step 2: Polymorphic Binary Trees
The basic data structure for binary trees cries out for generalization. You are not using

any information inside TravelGuide for anything other than its order. This means

you should work with Ord instances. The parametric version of the binary tree and its

associated treeFind function now looks like this:

data BinaryTree2 a = Node2 a (BinaryTree2 a) (BinaryTree2 a)

 | Leaf2

 deriving Show

treeFind2 :: Ord a => a -> BinaryTree2 a -> Maybe a

treeFind2 t (Node2 v l r) = case compare t v of

 EQ -> Just v

 LT -> treeFind2 t l

 GT -> treeFind2 t r

treeFind2 _ Leaf2 = Nothing

Note Y ou may wonder whether you can encode the restriction on the class of
elements that the binary tree may hold directly in the declaration of BinaryTree2.
It’s indeed possible, but it’s not recommended. The best way is to encode the
restriction in each of the operations that work on that structure, as has been done
in this example. Be aware that in order to impose this restriction, you must hide the
Node2 and Leaf2 constructors from public consumption.

The treeFind function has been generalized, but you still need to make some

changes to the treeInsert function to make it fully general. Exercise 4-7 dives into this

problem.

Chapter 4 Using Containers and Type Classes

146

EXERCISE 4-7: MORE OPERATIONS ON GENERIC TREES

Make the changes needed in treeInsert to work with the new BinaryTree2.

Also, try to implement concatenation of binary trees by repeatedly inserting all the elements in

one of the binary trees.

At this point, notice that the automatically derived Ord instance for TravelGuides

compares first the title, then the list of authors, and finally the price. But this is not what

you need; the application needs to order the travel guides by price. A first attempt would

be to write a new Ord instance, like so:

instance Ord TravelGuide where

 (TravelGuide t1 a1 p1) <= (TravelGuide t2 a2 p2) =

 p1 < p2 || (p1 == p2 && (t1 < t2 || (t1 == t2 && a1 <= a2)))

Of course, you get an error about duplicate instances, as shown here:

Duplicate instance declarations:

 instance Ord TravelGuide

 -- Defined at MinimumPrice.hs:4:38

 instance Ord TravelGuide

 -- Defined at MinimumPrice.hs:6:10

A first solution is to create a one-field data type to hold travel guides by price and

then create the instance for it.

data TGByPrice = TGByPrice TravelGuide

instance Ord TGByPrice where ...

The problem is that you are creating a new constructor, which at execution time

must be pattern matched and unwrapped, thus taking time and hurting performance.

What you need is just a way to tag values with a new type so that the compiler is able

to distinguish which instance must be applied. But you want to do it without having to

rewrite the initial type or having performance problems. Haskell includes a solution for

this problem: a newtype declaration declares another name for an already existing type.

But, in contrast to type declarations, the new name is not a synonym, but it’s viewed as a

completely unrelated type. The good news is that newtype has no performance overhead

Chapter 4 Using Containers and Type Classes

147

because at compile time the compiler knows that values of that type will always be equal

to a value of the original type, and it can delete all the constructor wrapping and pattern

matching. The following code declares a newtype for TravelGuide and associates with it

a new instance of the Ord type class, but now by comparing by price first:

newtype TGByPrice = TGByPrice TravelGuide deriving Eq

instance Ord TGByPrice where

 (TGByPrice (TravelGuide t1 a1 p1)) <= (TGByPrice (TravelGuide t2 a2 p2)) =

 p1 < p2 || (p1 == p2 && (t1 < t2 || (t1 == t2 && a1 <= a2)))

Let’s assume now that ordering by price is used for the rest of the examples.

�Step 3: Binary Trees with Monoidal Cache
Still, finding the smallest price in the tree takes some time because you have to go into

the left subtree until you reach a leaf. However, in the web page, you need to show that

element often. A solution is to include a cache in every node, which stores the price of

the smallest element in the tree. Let’s create a new version of binary trees, where the

cache type has also been made parametric for greater generality.

data BinaryTree3 v c = Node3 v c (BinaryTree3 v c) (BinaryTree3 v c)

 | Leaf3

 deriving (Show, Eq, Ord)

And here’s the corresponding implementation of treeInsert, where the cache is

updated at every step:

treeInsert3 :: (Ord v, Ord c)

 => v -> c -> BinaryTree3 v c -> BinaryTree3 v c

treeInsert3 v c (Node3 v2 c2 l r)

 = case compare v v2 of

 EQ -> Node3 v2 c2 l r

 LT -> Node3 v2 (min c c2) (treeInsert3 v c l) r

 GT -> Node3 v2 (min c c2) l (treeInsert3 v c r)

treeInsert3 v c Leaf3 = Node3 v c Leaf3 Leaf3

Chapter 4 Using Containers and Type Classes

148

At some point you may be told that in addition to minimum prices, the marketing

team wants to have information about the average price of travel guides to analyze what

percentage of people are buying books under and over the average. To do this, you need

to create a new insertion function, which instead of the minimum computes the sum of

all the prices, so you can later divide by the total number of guides. But altogether, the

structure of the function remains the same.

Let’s try to untangle the structure in both cases. What you are doing is caching some

information that comes from the cached values in the subtrees and the value in the node

itself. In the case of the minimal price, the operation that creates the new cached value

is min, and in the case of sum, it is +. Can the exact requirements for such a function be

made more precise?

•	 For any two elements you need to find another one of the same type.

That is, you need a function f of type c -> c -> c.

•	 Also, depending on the way you have inserted elements in the tree,

the structure may not be the same. But this should not matter for

the final cached value. So, you need to be sure that the parentheses

structure does not matter. In other words, the operation must be

associative.

•	 One last thing comes from the observation that when you

concatenate two binary trees, you should be able to recover the new

cached value for the root from the cached values from the initial

roots. That means an empty tree, which contains no elements, should

be assigned a value e such that f e x = f x e = x.

This structure, an associative binary operation with an element that does not affect

the outcome (called a neutral element), is called a monoid and has its corresponding

class in the module Data.Monoid.

class Monoid a where

 mempty :: a -- neutral element

 mappend :: a -> a -> a -- associative binary operation

 mconcat :: [a] -> a

Since GHC version 8.4, Monoid is a subclass of a more general notion called

Semigroup. A semigroup drops the neutral element requirement and just includes the

associative binary operation.

Chapter 4 Using Containers and Type Classes

149

class Semigroup a where

 (<>) :: a -> a -> a

class Semigroup a => Monoid a where ... -- since GHC 8.4

This means that you usually won’t write mappend; rather, you can use its synonym,

(<>), coming from Semigroup.

Now you can write the most general treeInsert version. Notice how in this general

version you need to apply the (<>) operator both to subtrees and to the information in

each node. In the version computing the minimal elements, you could take advantage

from the fact that values are ordered in the tree, but in general this cannot be used.

treeInsert4 :: (Ord v, Monoid c)

 => v -> c -> BinaryTree3 v c -> BinaryTree3 v c

treeInsert4 v c (Node3 v2 c2 l r)

 = case compare v v2 of

 EQ -> Node3 v2 c2 l r

 LT -> let newLeft = treeInsert4 v c l

 newCache = c2 <> cached newLeft <> cached r

 in Node3 v2 newCache newLeft r

 GT -> let newRight = treeInsert4 v c r

 newCache = c2 <> cached l <> cached newRight

 in Node3 v2 newCache l newRight

treeInsert4 v c Leaf3 = Node3 v c Leaf3 Leaf3

cached :: Monoid c => BinaryTree3 v c -> c

cached (Node3 _ c _ _) = c

cached Leaf3 = mempty

Monoid is one of the type classes that may have multiple implementations for just

one type, which has led to the creation of newtypes for some common types. Some of the

most important ones are All, which implements the monoid structure of Bool under the

operation (&&) with neutral element True; and All, which does the same with (||) and

neutral element False. Numbers also admit two monoidal structures: Sum uses addition

as an operation and 0 as a neutral element, whereas Product uses multiplication and 1.

Chapter 4 Using Containers and Type Classes

150

In fact, another monoidal structure for numbers should be provided if you want

to use this general cache insertion algorithm. The code needed to declare the newtype

along with the new instance follows. Notice how the code uses the infinity element for

floating-point, which can be obtained through 1/0.

newtype Min = Min Double deriving Show

instance Semigroup Min where

 Min x <> Min y = Min $ min x y

instance Monoid Min where

 mempty = Min infinity where infinity = 1/0

 mappend = (<>) -- use the definition from Semigroup

�Container-Related Type Classes
In many cases while developing an application you need to change the container you

are using to handle the values. So, it might be interesting to step back and think about

the commonalities between them because it may be possible to abstract from them and

discover some useful type class.

�Functors
Let’s try to write a function applying a discount to each travel guide in a list.

modifyTravelGuidePrice

 :: Double -> [TravelGuide] -> [TravelGuide]

modifyTravelGuidePrice m = map (\tg -> tg { price = m * price tg })

And if you wanted to do it in a map or a tree, here’s how you would do that:

modifyTravelGuidePriceMap

 :: Double -> M.Map a TravelGuide -> M.Map a TravelGuide

modifyTravelGuidePriceMap m = M.map (\tg -> tg { price = m * price tg })

modifyTravelGuidePriceTree

 :: Double -> T.Tree TravelGuide -> T.Tree TravelGuide

modifyTravelGuidePriceTree m = fmap (\tg -> tg { price = m * price tg })

Chapter 4 Using Containers and Type Classes

151

You should start seeing a pattern here; all these containers allow you to apply a

function inside the data structure.

map :: (a -> b) -> ([a] -> [b])

M.map :: (a -> b) -> (M.Map k a -> M.Map k b)

fmap :: (a -> b) -> (T.Tree a -> T.Tree b) -- version for trees

A data type supporting a function like map is called a functor. The corresponding

class is defined as follows:

class Functor f where

 fmap :: (a -> b) -> f a -> f b

So, now you can write the most general function to modify the price of a travel guide.

modifyTravelGuidePrice'

 :: Functor f => Double -> f TravelGuide -> f TravelGuide

modifyTravelGuidePrice' m = fmap (\tg -> tg { price = m * price tg })

You may notice a strange fact about the Functor class; in the definition of fmap, the

type variable corresponding to the instance is applied to another type variable, instead of

being used raw. This means that those types that are to be functors should take one type

parameter. For example, IntSet, which takes none, cannot have such an instance (even

though conceptually it is a functor).

The way in which the Haskell compiler checks for the correct application of type

parameters is by the kind system. Knowing it may help you make sense of some

error messages. Until now, you know that values, functions, and constructors have

an associated type, but types themselves are also categorized based on the level of

application. To start with, all basic types such as Char or Integer have kind *. Types that

need one parameter to be fully applied, such as Maybe, have kind * -> *. This syntax

resembles the one used for functions on purpose. If you now have Maybe Integer, you

have a type of kind * -> *, which is applied to a type of kind *. So, the final kind for

Maybe Integer is indeed *.

Functor is one of the most ubiquitous type classes in Haskell. Exercise 4-8 guides

you in writing the corresponding instances for one of the basic types in Haskell, Maybe,

and also for the binary trees that have been introduced in the previous section.

Chapter 4 Using Containers and Type Classes

152

EXERCISE 4-8: FUNCTOR FUN!

Write the corresponding Functor instances for both Maybe and the binary trees from the

previous section. The functor instance of Maybe is quite interesting because it allows you to

shorten code that just applies a function when the value is a Just (a pattern matching plus a

creation of the new value is just replaced by a call to map). You will need to create a new type

for Maybe values in order to make the compiler happy.

From all the binary tree types shown so far, choose BinaryTree2 as the type for instantiating

Functor. In this last case, remember that you must respect the order invariant of the tree, so

the best way to write the map function may involve repeatedly calling treeInsert2 on an

empty tree.

Although the concept of functors came via containers, the concept is much broader.

One instance of a functor that doesn’t fit that box is (->) r. The elements of this type are

those functions of the form r -> a, which are functions that take as input a value of a

specific type, r. Haskell syntax doesn’t help too much. In this case, just remember that a

f b can also be written (f) a b if f is completely made of symbols, which is the case for

->. To begin with, let’s try to write the type for the corresponding version of fmap.

fmap :: (a -> b) -> (r -> a) -> (r -> b)

The easiest solution in this case is to apply the first function after the second to get a

result of the desired type.

instance Functor ((->) r) where

 fmap f g = f . g

In this case, the concept behind the type class implementation is that of

computational context. This adds to any expression an extra value of type r that can be

used to control the behavior of such an expression. You will see in Chapter 6 how this

mimics the existence of a constant of type r in your code.

Note  Set cannot be made an instance of Functor. The reason is that the
mapping function for sets has the type Ord b => (a -> b) -> Set a ->
Set b, which is not compatible with that of Functor, which doesn’t have any
restriction. The Haskell language provides enough tools nowadays for creating

Chapter 4 Using Containers and Type Classes

153

another type class for functors that would allow Set inside it. However, this would
make using the Functor type class much more complicated and would break a
lot of already existing code. For that reason, the simpler version of Functor is the
one included in the libraries.

�Foldables
The other basic operation you can do with containers is computing some aggregate

information from all the held elements, that is, a fold. This concept has its corresponding

type class, called Foldable, which can be found in module Data.Foldable. To

differentiate between folds and functors, you can think of folds in two different ways.

•	 Like the list foldr, a fold takes an initial value and a combining

function and starting with the initial value, applies the combining

function to the current value and the next element in the structure.

•	 You can see that a type with a binary function and some special value

matches exactly the definition of a monoid. Furthermore, you have

seen how combining functions in foldr should be associative, just

like (<>) from Monoid is.

These two definitions allow for two different ways of instantiating the Foldable class.

You need to give a definition of either foldr (the version with the combining function) or

foldMap (the version with monoids).

class Foldable t where

 foldMap :: Monoid m => (a -> m) -> t a -> m

 foldr :: (a -> b -> b) -> b -> t a -> b

 fold :: Monoid m => t m -> m

 foldr' :: (a -> b -> b) -> b -> t a -> b

 foldl :: (a -> b -> a) -> a -> t b -> a

 foldl' :: (a -> b -> a) -> a -> t b -> a

 foldr1 :: (a -> a -> a) -> t a -> a

 foldl1 :: (a -> a -> a) -> t a -> a

Chapter 4 Using Containers and Type Classes

154

The rest of the operations correspond to default definitions that could be overridden

for performance reasons. fold is a version of foldMap that just combines a container

full of monoid values without previously applying any function. foldl corresponds to

folding over the elements starting from the “other side” of the structure. You’ve already

seen how the result of foldr and foldl are different if the combining function is not

commutative. The versions ending with prime (') are strict versions of the functions;

they will play a central role in the next chapter.

Foldables are also ubiquitous in Haskell code, like functors. Exercise 4-9 asks you to

provide instances of this class for the same types you did in Exercise 4-8.

EXERCISE 4-9: FOLDABLE FUN!

Maybe and binary trees can also be folded over. Write their corresponding Foldable

instances. The warnings and hints from Exercise 4-8 also apply here.

As you saw in the previous chapter, a lot of different algorithms can be expressed

using folds. The module Data.Foldable includes most of them, such as maximum or elem.

One easy way to make your functions more general is by hiding the functions with names

from the Prelude module and importing the similarly named ones using Foldable.

Note Y ou may wonder why Prelude includes specialized definitions for lists
instead of the most general versions using Functor and Foldable. The reason
is that, for a beginner, having the functions working only on [a] helps you
understand the first error messages that Haskell may encounter because they
don’t involve type classes. But now that you know about them, you should aim for
the largest degree of abstraction that you can achieve.

In this section you wrote instances of Functor and Foldable for various data types.

Because Functor and Foldable are so heavily used, the GHC developers also decided to

include automatic derivation of these type classes. However, since this is not indicated

in the Haskell Report, you need to enable some extensions, namely, DeriveFunctor and

DeriveFoldable, for them to work. Note that if you have a type with several parameters,

the one chosen for mapping or folding over is always the last one in the declaration.

Chapter 4 Using Containers and Type Classes

155

TYPECLASSOPEDIA

Several of the type classes discussed here, such as Monoid, Functor, and Foldable, are

deeply documented in Typeclassopedia, the encyclopedia of Haskell type classes. You can find

it online at wiki.haskell.org/Typeclassopedia. It’s an important source of information

and examples.

�Summary
In this chapter you looked at several features of the Haskell ecosystem.

•	 You learned about how packages are specified as dependencies,

and then used by either Cabal or Stack, allowing the reuse of many

libraries already available in the repositories Hackage and Stackage.

•	 Several new containers were introduced, including maps, sets, trees,

and graphs. The quest for understanding their commonalities led to

the discovery of the concepts of Functor and Foldable.

•	 I covered the reason why (+) could work on several numeric types,

namely, through ad hoc polymorphism and type classes. You learned

both how to declare a new type class describing a shared concept

between types and how to instantiate that class for a specific type.

Furthermore, you saw how both classes and instances can depend on

class constraints on other types or parameters.

•	 You learned about the built-in classes Eq, describing equivalence;

Ord, describing ordering; Num and its derivatives, describing numbers;

and Default, describing default values for a data type.

•	 I covered the design of a special binary tree with a cache, including

how to incrementally improve the design of such a data type. In

particular, you saw how type classes allow you to generalize the

values it can take, looking specifically at the monoidal structure that

is common in Haskell data types.

Chapter 4 Using Containers and Type Classes

http://wiki.haskell.org/Typeclassopedia

157
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_5

CHAPTER 5

Laziness and Infinite
Structures
In previous chapters I introduced several of the pillars of Haskell programming: the pure

functional paradigm and the strongly typed nature of the language, which nevertheless

allows powerful type constructs such as parametric polymorphism and type classes. This

chapter will be devoted to understanding the unique evaluation model of Haskell, based

on laziness, and the consequences of that choice.

In short, lazy evaluation means that only the necessary parts of an expression are

computed, and this is done at the last possible moment. For example, if you have an

expression such as head [2+3, 5*7], the multiplication is never performed at runtime

because that value is irrelevant for the result of the expression. head uses only the first

element in the list. As you may know, this way of performing evaluation is quite different

from other programming languages. That opens the door to some interesting new

idioms, such as working with infinite and cycling structures without caring about their

special nature.

However, as a developer, you also need to be conscious of the trade-offs this model

has, especially in the area of memory usage and performance. You will see the most

typical problems that arise because of the laziness in Haskell code and learn about

Haskell’s strictness to overcome them. Strictness annotations are available in pattern

matching and in data declarations. The time and memory profiler that comes bundled

with GHC will be an incredible tool to spot these problems; in this chapter you will look

at its basic usage.

158

�An Infinite Number of Time Machines
First you are going to see how Haskell can cope with infinite and cyclic structures

without imposing any burden on the developer. In this section, you will look at the

declaration and usage of these kinds of values in an intuitive way. The next section will

discuss how Haskell is able to represent this information so that the code works.

As I have mentioned, some kinds of time machines allow travel to only certain years

in history. But the store is known for always having the time machines to travel to any

particular point in time. The problem here is that the world may never end, so the set of

all time machines is infinite! Let’s declare a small data type for holding time machines,

with the manufacturer and the year to which travel is permitted.

data TimeMachine = TM { manufacturer :: String, year :: Integer }

 deriving (Eq, Show)

You can write a function to return all the time machines from a year n on. Check that

there’s no guard or base case that stops the production of more time machines.

timeMachinesFrom :: String -> Integer -> [TimeMachine]

timeMachinesFrom mf y = TM mf y : timeMachinesFrom mf (y+1)

And from there, here are all the time machines made by Timely Inc. from year 100 on:

timelyIncMachines :: [TimeMachine]

timelyIncMachines = timeMachinesFrom "Timely Inc." 100

If you now load the file in the GHC interpreter, you can get the first elements of the

list, using the built-in take function. The system doesn’t enter into any kind of infinite

loop while evaluating the Timely Inc. machines.

*Chapter5.Infinite> take 3 timelyIncMachines

[TM {manufacturer = "Timely Inc.", year = 100}

,TM {manufacturer = "Timely Inc.", year = 101}

,TM {manufacturer = "Timely Inc.", year = 102}]

You can also try to find the first of those machines that travels after 2018.

*Chapter5.Infinite> import Data.List

*Chapter5.Infinite Data.List> find (\(TM { year = y }) -> y > 2018)

timelyIncMachines

Just (TM {manufacturer = "Timely Inc.", year = 2019})

Chapter 5 Laziness and Infinite Structures

159

But if you try to compute the length of the list or to find an element that does not

exist (in this case, a time machine that travels to year 10), the interpreter will enter into

an infinite computation and will never return. To halt the execution in the console, you

should press Ctrl+C.

*Chapter5.Infinite> length timelyIncMachines

-- Never stops

*Chapter5.Infinite> find (\(TM { year = y }) -> y == 10) timelyIncMachines

-- Never stops

Somehow, Haskell knows how to treat an infinite list, given that you observe only a

finite part of it during runtime. On the other hand, the evaluation of an expression such

as length timelyIncMachines involves traversing the entire list, so it doesn’t end.

Infinite lists are useful in some other situations. For example, in a previous chapter you

wrote a function that, given an input list, returned a new list of tuples where each element

was decorated by its position in the list. For that matter, you used the zip function.

*Chapter5.Infinite> (\list -> zip [1 .. length list] list) "abcd"

[(1,'a'),(2,'b'),(3,'c'),(4,'d')]

But to do so, you had to traverse the list twice, once to get its length and once again

to zip both. A better way to do it is to remember that zip stops when one of the lists ends.

Then, you can use an infinite list of numbers as the first argument to zip. Let’s write a

function that holds the list of all numbers from 1 on.

allNumbers :: [Integer]

allNumbers = allNumbersFrom 1

allNumbersFrom :: Integer -> [Integer]

allNumbersFrom n = n : allNumbersFrom (n+1)

Now you can write the same function easily.

*Chapter5.Infinite> zip allNumbers "abcd"

[(1,'a'),(2,'b'),(3,'c'),(4,'d')]

Or even better, you can use Haskell infinite list ranges. The notation [1 ..]

describes a list starting from 1 until the end of the integer elements (which in this case

does not exist, because integer numbers are infinite).

Chapter 5 Laziness and Infinite Structures

160

*Chapter5.Infinite> zip [1 ..] "abcd"

[(1,'a'),(2,'b'),(3,'c'),(4,'d')]

Note T he notation [e ..] does not necessarily imply that an infinite list is
created but rather that the list will hold all the elements larger than e. For example,
[False ..] is equivalent to writing [False, True] because the ordering in
Bool is False < True and there are no more elements in that type.

There are even more tricks with infinite lists. Let’s look now at an interesting way to

define Fibonacci numbers. If you remember from previous chapters, the nth Fibonacci

number is defined as the sum of the Fibonacci numbers of steps n-1 and n-2. Let’s look

it from a different perspective. Say you already have the list of all the Fibonacci numbers.

The position n in this list holds that Fibonacci number. If you take the tail of that list,

the list is moved one step forward; position n holds the Fibonacci number n+1. And

finally comes the magic: if you sum the elements one by one, you get the Fibonacci

numbers but moved two positions. This is depicted in Figure 5-1.

You can use this remark to define the list of all Fibonacci numbers. The first two

elements will be 0 and 1 (this is fixed by the definition). Then, you obtain the rest of the

list by adding elements one at a time, with the list moved one element forward. This

element-by-element addition is what you get using zipWith (+).

fibonacci :: [Integer]

fibonacci = 0 : 1 : zipWith (+) fibonacci (tail fibonacci)

Figure 5-1.  Properties of the list of Fibonacci numbers, graphically

Chapter 5 Laziness and Infinite Structures

161

Obtaining the nth Fibonacci number is now equivalent to obtaining the element

in position n-1 (like in C or Java, lists are indexed starting with 0). The (!!) function in

Data.List is exactly the function you need.

*Chapter5.Infinite> import Data.List

*Chapter5.Infinite Data.List> fibonacci !! 20

6765

In addition to using list ranges and constructing functions by hand, an approach that

returns infinite lists, the Prelude module includes some built-in functions to generate

the needed results. As a special offer, Timely Inc. supplies an infinite number of time

machines to travel to the year 2021. One way to define this could be as follows:

infinite2020Machines :: [TimeMachine]

infinite2020Machines = TM "Timely Inc." 2020 : infinite2020Machines

But another way to do so would be using the repeat combinator, which just creates

infinite copies of the same value in a list.

*Chapter5.Infinite> take 3 $ repeat $ TM "Timely Inc." 2020

[TM {manufacturer = "Timely Inc.", year = 2020}

,TM {manufacturer = "Timely Inc.", year = 2020}

,TM {manufacturer = "Timely Inc.", year = 2020}]

In addition to one value, you can also repeat a set of values in order. In a special offer,

you may have a set of time machines with a 20 percent discount but with the particular

property so that you have to sell one for 2005, then one for 1994, then one for 908, and

then again from 2005. You declare this infinite list with cycle.

specialOffer :: [TimeMachine]

specialOffer = cycle [TM m 2005, TM m 1994, TM m 908]

 where m = "Timely Inc."

You can see how values are repeated by looking at the first four values.

*Chapter5.Infinite> take 4 specialOffer

[TM {manufacturer = "Timely Inc.", year = 2005}

,TM {manufacturer = "Timely Inc.", year = 1994}

,TM {manufacturer = "Timely Inc.", year = 908}

,TM {manufacturer = "Timely Inc.", year = 2005}]

Chapter 5 Laziness and Infinite Structures

162

Values don’t need to always be equal. The iterate function generates values by

applying a function to a value to get a second, then applying the same function to

this second value to get the third, and so on. You can see the infinite list that will be

generated as follows:

iterate f x = [x, f x, f (f x), f (f (f x)), ...]

This gives you another way to implement Fibonacci. In particular, the fibonacci2 list

will hold pairs of values; for example, in position n, you can find (n Fibonacci number,

n+1 Fibonacci number). From one of these tuples, you can build the next element by

shifting one position to the left and adding the two numbers to get the n+2 Fibonacci

number. In code, this translates to the following:

fibonacci2 :: [Integer]

fibonacci2 = map fst $ iterate (\(n,n1) -> (n1,n+n1)) (0,1)

You can use this new function like you used the previous one.

*Chapter5.Infinite> fibonacci2 !! 20

6765

In Exercise 5-1 you will see how infinite lists can even give you a glimpse into history.

EXERCISE 5-1: THE SIEVE OF ERATOSTHENES

Eratosthenes was a Greek mathematician from the third century bc. One of his most known

inventions is the prime sieve. This sieve gives an algorithm for getting the list of all the primes.

It works in the following way:

•	 Start with a list of all the numbers from 2 on.

•	 Take the first number, in this case 2, and drop from the list of numbers all its

multiples, that is, all numbers n such that the remainder of n and 2 is 0.

•	 Now take the next number (in this case it will be 3) in the filtered list and repeat

the operation: filter out all the multiples of that number.

•	 Repeat the previous step with the first number left in the previous one.

Implement the sieve of Eratosthenes using the techniques outlined in this section. The solution should

take the form of a declaration primes :: [Integer], which contains all the prime numbers.

Chapter 5 Laziness and Infinite Structures

163

�Lazy Evaluation Model
At this point, you should be convinced that Haskell can indeed work with infinite values

(or, at least, with infinite lists). However, it may seem a bit like black magic. Of course,

this is not the case: the ability to work in this way is the result of the strategy that Haskell

follows for evaluating expressions, which departs greatly from other programming

languages. In this section, I will introduce this lazy strategy and point out some of the

most common problems with it.

�Understanding Evaluation in Haskell
Most of the programming languages follow a strict evaluation model. In other words,

whenever a compound expression is found, it’s immediately transformed into a simpler

version (maybe including calls to functions of methods) before the larger expression is

evaluated. Most importantly, arguments to a function are evaluated before the control

flow enters the body of the function. Here’s an example of the steps that would be

followed in this model to evaluate a simple expression:

head [3+2, 7*5] => head [5, 35] -- we evaluate the arguments to head

 => 5 -- and then we execute the function itself

Under this kind of evaluation, an expression like head timelyIncMachines would

cause an infinite loop because there’s no point at which to stop going further and further

in the list. In the following code, I reproduce the first steps of this infinite loop, which will

continue as shown with three dots. Take the time to understand this example until you

are completely sure about why this example loops.

head timelyIncMachines

 => head (timeMachinesFrom "Timely Inc." 100)

 => head (TM "Timely Inc." 100 : timeMachinesFrom "Timely Inc." 101)

 => head (TM "Timely Inc." 100 : TM "Timely Inc." 101 :

 timeMachinesFrom "Timely Inc." 102)

 => head (TM "Timely Inc." 100 : TM "Timely Inc." 101 :

 TM "Timely Inc." 102 : ...)

Chapter 5 Laziness and Infinite Structures

164

In contrast, Haskell tries to evaluate expressions as late as possible. In this example,

it won’t initially evaluate the expressions that make the elements in the list. When it finds

a call to head, it obtains the first element, which will still be an unevaluated expression,

3+2. Since you want to print the result of this expression on the screen, it will continue

only by computing the addition, until it arrives at the same final value, that is, 5. This

kind of evaluation is known as nonstrict or lazy.

I have been intuitively using the idea of “evaluating as late as possible.” But that

approach is not directly applicable to the example of the infinite list because for getting

the head you have to enter the body of timeMachinesFrom, which would then give rise

to a loop. The extra bit of information you need to know is that, by default, Haskell

evaluates an expression only until a constructor is found. The rest of the value will be left

unevaluated. Its spot will be occupied by a placeholder indicating how that specific field

can be computed. This placeholder is called a thunk.

Applying what I’ve just described to the evaluation of the head of the infinite

list, timeMachinesFrom will just produce a (:) constructor with a thunk for the

element and another thunk for the rest of the list. When you apply head to it, you

get back the first of the thunks. If you want to show the value on the screen, the

thunk has to be unwrapped, and the recipe to create the value that is held in the

thunk must be followed. Figure 5-2 shows these steps graphically. The first three

transitions are the actual evaluation of thunks. In the fourth state, you arrive at

a point where you can evaluate the case expression because you can choose a

pattern based on the already evaluated value. The final steps are already plain

evaluation of thunks. The next thunk to be evaluated in each step is shown with a

bolder frame.

Chapter 5 Laziness and Infinite Structures

165

One important feature of lazy evaluation is that once a thunk has been evaluated,

the result is saved, and the thunk is not evaluated again if the result of that

expression is needed elsewhere. This is a great feature because it means you pay only

once for the cost of evaluating each expression in your application. Furthermore,

the pure nature of Haskell also helps in sharing thunks that refer to the same

expressions, which means it can reuse the evaluation in some part of the program in

other places. For example, Figure 5-3 shows how the memory layout changes when

executing (head allNumbers, head (tail allNumbers), tail allNumbers). Since

allNumbers is a list, the Haskell runtime environment keeps a reference to the same

expression from all the appearances of that value. This is shown in Figure 5-3 as

different arrows pointing to the same expression. Exercise 5-2 allows you to try this

sharing.

EXERCISE 5-2: EVALUATING FIBONACCI

Write down the evaluation steps of the expression fibonacci !! 3, where fibonacci is

the infinite list of the Fibonacci numbers, as defined previously in this chapter.

Figure 5-2.  Evaluation of head timelyIncMachines

Chapter 5 Laziness and Infinite Structures

166

Figure 5-3.  (head allNumbers, head (tail allNumbers), tail allNumbers)

Chapter 5 Laziness and Infinite Structures

167

This would be impossible in a language that allows printing while computing a value.

Let’s assume than during its evaluation allNumbers outputs "Natural numbers rule!".

If you share the same value for allNumbers, the string would be printed only once. But in

many languages, including C and Java, what you would expect is to show it three times, one

per reference to allNumbers. You have seen that side effects make it impossible to apply

these sharing optimizations, which are key to good performance in Haskell programs.

It should be noted that only expressions will be shared. This should not be confused

with memorizing a function, that is, caching the results for arguments that have already

been provided. Here’s an example:

(allNumbersFrom 1, allNumbersFrom 2)

Even though allNumbersFrom 1 will call allNumbersFrom 2, the evaluation of

allNumbersFrom 2 in allNumbersFrom 1 and in the previous expression will not be shared.

One final issue that remains to be explained is how cyclic structures are represented.

Haskell maintains a cycle in memory when declarations are the same. For example, for

the case of repeat e, Figure 5-4 shows the evaluation.

EVALUATION STRATEGIES

In this section you saw two examples of evaluation strategies: ways in which the computation

proceeds and the order in which parts of the expressions are evaluated. In addition to those

two, more strategies have been developed.

What I have called strict evaluation is also known as call by value. Sometimes, especially in

object-oriented languages, this is changed to call by reference, where you don’t receive values

as arguments but boxes holding those values.

Lazy evaluation is sometimes referred to as call by need, which is a special case of the more

general strategy of call by name, in which function arguments are not evaluated before the body

of the function but are substituted directly. The difference is that, in general, call by name may

evaluate the same expression more than once, whereas call by need uses thunks to do it only once.

Figure 5-4.  Evaluation of repeat e

Chapter 5 Laziness and Infinite Structures

168

�Problems with Laziness
Laziness is often a blessing, but sometimes it can also be a curse. As usual in computer

science, there’s a trade-off in lazy evaluation. In this case, delaying the evaluation until

needed may result in less computation and also allow some programming idioms

unavailable in other languages. On the other hand, it may create many thunks, causing the

memory to become quite full so that the operating system starts to paginate, which makes

the program slower. Let’s look at this problem with the help of your old friends, the folds.

Let’s build a picture showing how foldr (+) 0 [1,2,3] is evaluated, showing

explicitly the thunks. Each thunk will hold the recipe to convert it into a proper value

inside it. This is depicted in Figure 5-5.

Figure 5-5.  Evaluation of foldr (+) 0 [1,2,3]

Chapter 5 Laziness and Infinite Structures

169

Until the interpreter reaches the final step of foldr, it cannot proceed with the

additions. This means that for each element in the list, a new thunk is created. Now you

understand why, when requested to interpret the following line of code, the computer

starts to sweat and later halts with an error.

*Chapter5.Problems> foldr (+) 0 [1 .. 1000000000]

Depending on your system, you may get one of these two errors:

<interactive>: out of memory (requested 1048576 bytes)

** Exception: stack overflow

Note A t first sight, the culprit could also be the big length of the list. However, if
you perform some other computation over it that doesn’t create thunks in between,
such as length [1 .. 1000000000], you can see that the system responds
correctly (the actual speed will depend on the capacity of your computer to hold
big integers).

The shape of the evaluation using foldr is something like (1 + (2 + (3 + (... +

<thunk>)))), so it cannot continue because at each point during evaluation it knows

about only one argument to (+). So, if you use parentheses in another way, making the

evaluation look like ((((1 + 2) + 3) + ...) + <thunk>), the problem may be gone.

You already know how to do it: using foldl.

*Chapter5.Problems> foldl (+) 0 [1 .. 1000000000]

<interactive>: out of memory (requested 1048576 bytes)

But here you face a similar situation: (+) has at each step all of its arguments, but

since you do not request the result until the end of the list, many thunks have to be

created.

The solution is to force evaluation. Basically, you need to tell Haskell to evaluate

the (n+m) thunks before proceeding with the rest of the computation, overriding the

default lazy behavior. The function seq in the Prelude module allows you to do so. In

the most general form, a force expression is written as a `seq` b. Haskell ensures that

the expression a is evaluated before b. Usually, a is part of the expression b. Let’s write an

addition operation using the force operator that doesn’t suffer from memory problems.

Chapter 5 Laziness and Infinite Structures

170

sumForce :: [Integer] -> Integer

sumForce xs = sumForce' xs 0

 where sumForce' [] z = z

 sumForce' (y:ys) z = let s = z + y in s `seq` sumForce' ys s

When executing sumForce [1 .. 1000000000], the interpreter may take a lot of

time, but no memory problem will arise, and eventually an answer will be given. The

idiom x `seq` f x is so common that there is a special operator, $! (strict application),

to perform this task. So, you can rewrite the bold expression in the previous piece of code

as sumForce' ys $! (z+y).

Note  Once again, you see a familiar foldlike pattern in the previous code.
Prelude includes a foldl' function that forces the accumulated value before
passing it into the next step. To avoid a memory leak you could have written the
previous example as foldl' (+) 0 [1 .. 1000000000].

Once again, I stress that Haskell evaluates something only until a constructor

is found. The fields are left as thunks until some further computation needs the

information enclosed by them. This is true also for seq. If you want to be sure that some

part of a larger value is evaluated before continuing, you should explicitly get that value

and force it (you will see by the end of the chapter that if you don’t want any thunk inside

a value, you can use deep strict evaluation with deepseq). This is enough for this case

because the first constructor that will be encountered will be the integer value coming

from the addition.

Now that you know about forcing evaluation, you should resist the temptation to

use it everywhere you think a memory problem could be found. Forcing expressions

destroys the lazy nature of the language and may also lead to cases where a

previously terminating expression no longer is. Think of the case of taking the head

of an infinite list. If you make Haskell force the entire list, it will never reach the end,

thus entering into an infinite computation chain. If you suspect a memory leak, you

should first use profiling to find the correct spot and then think carefully whether

using seq will not hurt the applicability of your functions to the kind of arguments

that are expected.

Chapter 5 Laziness and Infinite Structures

171

�Pattern Matching and Laziness
As you can see, this interplay of delays using thunks and forcing their evaluation is

important. For that reason, you should have a clear idea of when computation takes

place. In addition to explicit seq or ($!), another place where the compiler or interpreter

needs to evaluate thunks is on pattern matching; it needs to evaluate up to the point that

it knows which of the corresponding branches has to be taken.

There’s a GHC extension to patterns, called BangPatterns, which allows you to force

the evaluation of some parts of the pattern. Concretely, you can write ! before any part

of the pattern, and then when matching is tried against that pattern, the expression in

that point will be evaluated up to a constructor, and then the match will be tried. For

example, you can write a function that adds all the years from a list of time machines,

using the following syntax both to force the addition of each step and to ensure that the

year in each time machine is also evaluated (so the addition does not have a thunk like

the second argument):

{-# LANGUAGE BangPatterns #-}

sumYears :: [TimeMachine] -> Integer

sumYears xs = sumYears' xs 0

 where sumYears' [] z = z

 sumYears' (TM _ !y :ys) z = let !s = z + y in sumYears' ys s

Interesting enough, and because of this evaluation forcing in pattern matching,

Haskell also includes a way to delay evaluation in matching phases. The way to do it

is to use an irrefutable pattern. Matching upon it never fails, but it’s destructured only

when some of its constituent parts are needed. One use case for irrefutable patterns

involves a function that always returns a value given the same input. For example,

you are finding an element in a list, and you have made sure that the element you are

searching for already exists, so find will always return the same result. In that case,

you can delay the computation of find a bit and just evaluate it when you need the

constituent value.

For a more explicit example, suppose you have this function:

lengthyOperation = if lengthyPredicate then Just something else Nothing

Chapter 5 Laziness and Infinite Structures

172

Say you know that the lengthyPredicate will be true in some situation. If you write

a regular matching as follows, then you will force the lengthyOperation to be evaluated

just to choose the branch:

case lengthyOperation of

 Just something -> ...

 Nothing ->

But since you know that the first one will be the selected one, you can delay the

computation a bit more using an irrefutable pattern, like so:

case lengthyOperation of

 ~(Just something) -> ...

Remember that a pattern such as that never fails. So, if you come to a situation where

lengthyOperation returns Nothing and you use something inside the body of the match,

you will get an error.

Prelude> case Nothing of ~(Just e) -> "hello, " ++ e ++ "!"

"hello, *** Exception: Irrefutable pattern failed for pattern (Just e)

Note I rrefutable patterns are rarely used, but in some cases they are the key to
code that performs well. You shouldn’t worry too much about understanding all the
cases where they may be applicable, but knowing of their existence may become
handy, especially if reading the source of some built-in function.

STRICT FUNCTIONS

It won’t be long until you read in the documentation of some package that a function is strict
on one or several of its arguments. At a high level, this means the argument will have to

be evaluated if it is still in thunk form, so you should take care of providing in that place an

expression that won’t lead to nontermination.

Formally, in Haskell there is a canonical value called undefined that represents all those

computations that don’t end. Because undefined never returns, it can be typed as you want,

so you can have undefined :: a. By the way, this typing makes undefined a perfect

placeholder in the place of code you haven’t yet written, such as when you want to check that

your current code passes type checking.

Chapter 5 Laziness and Infinite Structures

173

A function f is then called strict on its argument if f undefined = undefined; that is, if

given a nonterminating argument, the function itself does not terminate. One example of a

strict function is head. But a function defined as g x = 1 isn’t, because, given any argument,

it returns 1.

Intuitively, the notion of being strict on something means that it doesn’t inspect that

something. The way a function is strict may be subtler than in the previous examples.

For example, head undefined is undefined, but head (1 : undefined) isn’t.

�Profiling with GHC
The GHC compiler can be used to generate statistics about runs of your program to get

more insight on where computation effort is spent. In this section you will focus on two

kinds of profiling: time profiling, which gets information about the amount of time spent

in each of the functions in the system, and memory profiling, which allows you to look

at the values holding the larger amount of memory. The profiling output in GHC assigns

time or memory to the so-called cost centers, and the information and summaries are

always related to them. By default, cost centers are assigned to functions, but more can

be added using annotations.

To use profiling, you can no longer build the code as a library. You need to build a

full executable that could be run from the command line. So, let’s first look briefly at the

modifications you need to do in the Cabal file to include an executable.

Each Haskell project may include several executables, identified by a name, and with

a reference to the file that includes the entry point of the application as a function main

of type IO (). For now, it’s only important to know that IO allows you to perform side

effects such as printing onto the screen; you will take a closer look at this type in Chapter 9.

Each of these executables is defined as a new block in the Cabal file. The name is

specified after the executable keyword that heads the block, and the file containing

the entry function is declared inside the main-is property. It’s important to note that

the main-is property needs a reference to the file itself (including the extension), not a

module name like other properties. The auxiliary modules are defined inside the other-

modules property, and dependencies are specified in the build-depends property, as in

library blocks.

Chapter 5 Laziness and Infinite Structures

174

For example, the following declaration includes an executable profiling-example

whose main function is defined in the Main.hs file and that uses the Chapter5.

Annotations module. The only dependency is the base package.

executable profiling-example

 build-depends: base >= 4

 hs-source-dirs: src

 main-is: Main.hs

 other-modules: Chapter5.Annotations

To check that it works, create the Main.hs file. It’s mandatory for the module name

that defines an entry point to be called Main and to contain the main :: IO () function,

so the file should be named accordingly. In this example, the executable just prints

"Hello!" using the putStrLn function.

module Main where

main :: IO ()

main = putStrLn "Hello!"

Then, call cabal new-build or stack build in the project folder. Now you can run

it in the console. Bot tools provide a shortcut for running the executable in the package

being built.

$ cabal new-run profiling-example # for Cabal

$ stack exec profiling-example # for Stack

Hello!

To enable profiling, you must tell the compiler that’s what you want to do. In Cabal

you do so by running cabal new-build --enable-profiling. This creates a new cabal.

project.local file with a single line.

profiling: True

Setting up Stack is quite similar. You need to include the following two lines in the

stack.yaml file which specifies the resolver of the project.

build:

 library-profiling: true

 executable-profiling: true

Chapter 5 Laziness and Infinite Structures

175

Then you need to run cabal new-build or stack build to apply the new

configuration options. Once your executable is compiled with runtime options support,

you specify the runtime options for your program in the command line between +RTS

and -RTS. Time and allocation profiling is specified with -p. Thus, for calling the previous

executable while gathering time information, you need to run the following:

$ cabal new-run profiling-example -- +RTS -p -RTS # for Cabal

$ stack exec profiling-example -- +RTS -p -RTS # for Stack

Hello!

At first sight, nothing has changed in the execution. But if you look carefully at

the project folder, a new file called profiling-example.prof has been created. Since

the running time of the program is near zero, no interesting profiling output will be

generated. Thus, let’s better profile a program that computes the factorial of 100,000 and

outputs it to the screen. You should change Main.hs to read as follows:

module Main where

main :: IO ()

main = putStrLn $ show result

result :: Integer

result = foldr (*) 1 [1 .. 100000]

Now run cabal new-build and the executable in profiling mode. The contents of

profiling-example.prof should be similar to the following:

 total time = 5.68 secs �(5680 ticks @ 1000 us, 1 processor)

 total alloc = 9,981,322,816 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

result Main 94.1 99.7

main Main 5.9 0.3

Chapter 5 Laziness and Infinite Structures

176

 individual inherited

COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 42 0 0.0 0.0 100.0 100.0

 main Main 85 0 1.2 0.0 1.2 0.0

 CAF Main 83 0 0.0 0.0 98.8 100.0

 result Main 86 1 94.1 99.7 94.1 99.7

 main Main 84 1 4.7 0.3 4.7 0.3

 CAF GHC.IO.Encoding 79 0 0.0 0.0 0.0 0.0

 CAF GHC.Conc.Signal 77 0 0.0 0.0 0.0 0.0

 CAF GHC.IO.Handle.FD 71 0 0.0 0.0 0.0 0.0

 CAF GHC.IO.Encoding.Iconv 66 0 0.0 0.0 0.0 0.0

 CAF GHC.Show 63 0 0.0 0.0 0.0 0.0

The information is divided into three parts. The first part is a summary of the total

time and memory used by the program. The second part shows the cost centers (in this

case, functions) that contribute the most to that cost. In this case, it’s obvious that result

takes most of the time and memory, and main uses a smaller part of it. The last part is

a more detailed view that shows the information about time and allocation in a tree. In

this case, a lot of internal functions dealing with file handles and encoding are shown,

but in a larger application fewer of these will be shown because they will be buried in a

larger call stack.

However, the most interesting part is heap profiling, which allows for the production

of a graph stating the consumption of memory throughout the program. The most

important ways to run heap profiling are breaking it down by cost centers, which is

specified using the -h runtime option, and breaking it down by type, whose option is

-hy. Other ways to group consumption, such as by module, by closure, and so on, are

available but not used often. If you run the previous program with any of those options,

a new file is produced, called profiling-example.hp. This file is raw information; to

convert it to a graph, you have to use the hp2ps tool that comes bundled with the Haskell

Platform. Running hp2ps -c profiling-example.hp will produce a (color) PostScript

file that can then be viewed.

Figure 5-6 shows the output of running profiling-example -- +RTS -h -RTS at the

command line and then processing the resulting heap profile.

Chapter 5 Laziness and Infinite Structures

177

You can see here that there is a big increase in memory usage in the first tenths

of a second, shown in orange. This reflects the large creation of thunks I spoke

about in the “Problems with Laziness” section. Then, the memory decreases as

the thunks are evaluated. A second spike, shown at the extreme right edge of the

graph, highlights the increase in memory when the resulting number has to be

converted to a string.

The breakdown by types can illustrate the way memory is used in the system. Now

run the application with the -hy runtime option and produce the graph. The result looks

like Figure 5-7.

Figure 5-6.  Graphical output of heap profiling by cost centers (run with -h)

Figure 5-7.  Graphical output of heap profiling by types (run with -hy)

Chapter 5 Laziness and Infinite Structures

178

As you can see, at the beginning most of the memory belongs to elements of type

Integer, which corresponds to those thunks I talked about. As you go further in the

execution, the ARR_WORDS type uses more memory. This encompasses the memory used

by basic types such as evaluated integers (you see that it grows as the number gets larger)

and strings.

Let’s profile the other versions to see how the profiling output confirms my initial

thoughts on the problem of memory exhaustion. Replace the code using foldl' instead

of foldr.

result :: Integer

result = foldl' (*) 1 [1 .. 100000]

The graph in Figure 5-8, obtained by running this new version through heap profiling

by types, shows that now intermediate thunks are not created because evaluation is

forced at each step, so you don’t see the initial spike of Integer values. Memory is used

only in ARR_WORDS.

As you have seen, profiling is a great tool for spotting problems both in time and

in memory because it allows focusing on those points that are really wasting those

resources, instead of having to guess where the leak comes from. I suggest profiling some

larger programs to get confident with the profiler and its output in order to be productive

with the tool in the near future.

Figure 5-8.  Graphical output of heap profiling by types, foldl' version

Chapter 5 Laziness and Infinite Structures

179

�Strictness Annotations
This section gives more insight into GHC internals. You may safely skip this section in a

first reading, but you should return to it later because you will greatly benefit from this

information. This section will help you understand the memory and time used by your

problem, and it gives you the tools to enhance your application in those aspects.

In general, you can think of a value in Haskell as being represented in memory as

some header stating its type and the constructor used to build it, followed by references

to each of the fields composing that value. Basic types, such as integers or characters,

deviate from this layout and are represented just by the header and the value itself.

One Individual client, as defined in the previous chapters, would then conform to the

representation shown in Figure 5-9.

Remember that before being completely evaluated, expressions in Haskell are

represented by thunks. Figure 5-9 shows the memory representation when an expression

is completely evaluated. If some parts of it were still to be computed, the references will

point to thunks containing the code to be executed.

This representation is flexible but suffers from some performance penalties. First,

you may be creating thunks for values that you know will be used in the future or that

may be needed to ensure good performance for that data type. For example, if you

implement a new kind of list that stores its length, it doesn’t make much sense to not

Figure 5-9.  Representation of Individual 1 (Person "Andrea" "Blacksmith")

Chapter 5 Laziness and Infinite Structures

180

store the length directly and instead evaluate it lazily because at the moment

you need to query it, a long chain of computations will happen and performance

will suffer.

In that case, you want the length to be a strict field. Following the same syntax

of bang patterns in matching, strict fields are declared by writing ! before the type

of the field itself. As a result, every time a new value of that type is created, the

expressions in the strict positions will be forced to evaluate in the same fashion as if

you had included an explicit seq. A possible implementation of your lists with length

could be as follows:

data ListL a = ListL !Integer [a]

The memory representation of values also makes generous use of references to

associate values with field positions. This means every time you want to access a field in

a value, you need to traverse one reference. Once again, this is flexible and allows you to

have potentially extensive structures in memory. However, it can be overkill for accessing

small fields, such as integer ones, whose value could be directly encoded in the space

that is taken by the reference (the size of a pointer in the target architecture). A field in

that situation is said to be unpacked.

Unpacking fields is a special feature of the GHC compiler, and it’s declared via an {-#

UNPACK #-} annotation right before the field declaration. For example, you could decide

to unpack the identifiers of all the constructors of the Client data type to make it more

efficient.

data Client = GovOrg {-# UNPACK #-} !Int String

 | Company {-# UNPACK #-} !Int String Person String

 | Individual {-# UNPACK #-} !Int Person

 deriving Show

Note that not all fields can be unpacked; it depends on the type of field. Basic

types, such as integers or characters, are eligible. Other data types can be used only if

they consist of just one constructor and all their fields are also unpacked. This makes

it possible to unpack a tuple of types that are unpackable themselves but forbids

unpacking a list. Trying to unpack a String field will also produce a warning since it’s

just a list of Char.

Chapter 5 Laziness and Infinite Structures

181

In many cases, you should consider whether for your particular application you

prefer a lazier or a stricter implementation of your data structures. Laziness delays the

moment of evaluation and allows you to compute only what is strictly needed for the

program but has the trade-offs of larger memory consumption and more uncertainty

over when the evaluation will take place.

Some packages, such as containers, provide both lazy and strict implementations

of the data structures. For example, you have both implementations of maps living in

different modules: Data.Map.Lazy and Data.Map.Strict. By default, the module Data.

Map uses the lazy versions. The difference in this case, stated in the documentation, is

that in the strict version both keys and values are forced before being saved in the map,

whereas in the lazy version this is done only for keys.

EVEN DEEPER

In some cases you need to evaluate an expression until no thunks are left. For that matter, the

Haskell Platform provides the deepseq package, which in its module Control.DeepSeq

provides the deepseq and ($!!) functions, similar to seq and ($!), respectively, but that

also takes care of forcing the subexpressions, not stopping at the layer of constructors.

If you want your data types to support deep evaluation with deepseq, you have to make them

instances of the NFData type class. Implementing them is quite easy; you just need to force

all the fields and then return (). Here’s an example, in Client:

import Control.DeepSeq

instance NFData Client where

rnf (GovOrg i n) = i `deepseq` n `deepseq` ()

rnf (Company i n (Person f l) r) = i `deepseq` n `deepseq` f `deepseq` l

`deepseq` r `deepseq` ()

rnf (Individual i (Person f l)) = i `deepseq` f `deepseq` l `deepseq` ()

The same warnings for forcing with seq apply to deepseq, but they are even stronger

because the latter forces even more evaluation to take place.

Chapter 5 Laziness and Infinite Structures

182

�Summary
In this chapter you looked at several ways to use the evaluation model of Haskell, based

on laziness.

•	 You saw how lazy evaluation allows you to work with seemingly

infinite or cyclic structures, making for elegant patterns in the code.

•	 I explained the lazy evaluation model, explaining the special role

of thunks for delaying evaluation until a value is needed and at the

same time increasing sharing of evaluated computations.

•	 You looked at the shortcomings of lazy evaluation, the most

important being increased memory consumption and uncertainty

about the moment in which a thunk will become evaluated.

•	 You learned how to annotate the code using seq, or strictness

annotations in both pattern matching and data types, to work around

these problems.

•	 The GHC profiler is a powerful tool for detecting time and space

leaks. I covered its basic usage and the interpretation of its results in

this chapter.

Chapter 5 Laziness and Infinite Structures

PART II

Data Mining

185
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_6

CHAPTER 6

Knowing Your Clients
Using Monads
Remember that you have been commissioned to build a Time Machine Store. Apart

from a beautiful design and an intuitive user experience, a good web store should adapt

itself to the customers’ likes and needs by keeping track of clients and analyzing their

behavior. With that information, better campaigns, such as discounts or targeted ads,

can be developed, increasing sales. For these tasks, many data-mining algorithms have

been developed. In this chapter you will focus on clustering algorithms, which try to find

groups of related clients. You will use a specific implementation of clustering, called

K-means, using Haskell.

The K-means algorithm is better understood in terms of a set of vectors. Each vector

is an aggregation of numeric variables describing a client, product, or purchase, and

each vector changes in every iteration. In an imperative language, these vectors would

be modeled as a set of variables that are updated in a loop. The solution presented

in this chapter will start with a basic implementation where you will keep track of all

the information. I’ll then introduce lenses, which are used to manipulate and query

data structures in a concise way; you’ll refine the code and split it into a set of basic

combinators that glue together the different parts.

Looking at those combinators and their relation to other data types will lead to the

notion of monad, one of the central idioms (and type classes) in Haskell code. You will

explore its definition and laws and compare it to the other pervasive type class, the

functor. Many instances of the Monad class are available in the Haskell Platform; in this

chapter, I will focus on those related in some way to keeping track of state.

The idea of monad is not complex, but it has enormous ramifications in Haskell.

For that reason, both this chapter and the next one are devoted to understanding

monads in depth.

186

�Data Mining
Data mining is a wide field and comprises many kinds of algorithms that use statistics,

machine learning, and artificial intelligence; data mining is about discovering different

patterns in the data. The following are two concrete tasks that you will consider in this

chapter and the next:

•	 Discovering the different types of clients that use the time

machine store, based on their user information and their purchase

history. Clustering tries to discern groups (or clusters in data

mining jargon) of elements that share common properties. The

hope is that, using this information, the marketing team can better

target their campaigns.

•	 Detecting the purchase habits of each type of client. This will

allow you to tailor the discounts (there will be more discussions

about discounts in the last part of the book). For that matter, the

idea is to learn association rules and later use them to derive

conclusions.

Note  Since the store is selling time machines, you could use the machines to
travel in time and look at trends in the future. However, this is sort of dishonest, so
you should try to use current data and technology to perform better in the market.

�Implementing K-means
K-means is one of the simplest algorithms for performing clustering on a set of data. The

information in this case is represented as a set of points in n-dimensional space, with

each of them representing a different observed fact. The similarity between two facts

corresponds to the proximity of the points. The concrete task of the algorithm will be

dividing the whole set of points into k partitions, such that the aggregated distance of the

points in each partition is minimized.

Chapter 6 Knowing Your Clients Using Monads

187

Note T he number of partitions to create is usually represented as k and
must be explicitly given as input to the algorithm. This need to specify the
number of partitions up front is one of the shortcomings of K-means. Different
methods are proposed in the literature to determine the best value to provide.
The Wikipedia article at http://en.wikipedia.org/wiki/Determining_
the_number_of_clusters_in_a_data_set summarizes the different
approaches.

For example, Figure 6-1 shows a set of 2D points. The K-means algorithm has been

executed over that set of points with k=3. The output of the algorithm (i.e., the three

clusters of points) is distinguished in the figure by a common shape used to draw them.

Cluster 1 is drawn with circles, cluster 2 uses triangles, and cluster 3 uses crosses.

This example shows a main characteristic of K-means: it works only on vectors

for which you can define a notion of distance and proximity. Another approach

would be using a tuple for representing that information, but using a tuple poses the

Figure 6-1.  Clusters obtained for an example data set

Chapter 6 Knowing Your Clients Using Monads

http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set
http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set

188

problem that the number of components of the vectors should be constant among all

the uses of the algorithm. This is not a reasonable assumption because taking

into account some new information (e.g., deciding to cluster also depending on

the age) would require changing all the type definitions. Another possibility would

be to use lists, but then you lose the safety enforced by tuples (because lists can

have different numbers of elements). The best option then is to define a new type

class, Vector, which will have as instances all data types supporting the distance

operation you need.

class Vector v where

 distance :: v -> v -> Double

The following is one possible implementation for numeric pairs using the Euclidean

distance measure:

{-# LANGUAGE FlexibleInstances #-}

instance Vector (Double, Double) where

 distance (a,b) (c,d) = sqrt $ (c-a)*(c-a) + (d-b)*(d-b)

Note T he Haskell Report allows instance declarations only for types whose
shape is a name followed by a list of distinct type variables. The previous definition
doesn’t follow that lead, so the compiler complains. However, GHC supports those
declarations if you enable the FlexibleInstances extension.

Furthermore, you also need to specify how to translate one item in your data into

its corresponding vector. Again, doing so using a type class is the best way to go. But

this time you need to specify two types taking part in the type class: the type of the

items to convert and the type of the vectors in which they are translated. You can do so

by using multiparameter type classes, which follow the same syntax as one-parameter

ones, and by enabling the MultiParamTypeClasses extension. However, the concept of

type classes with two or more parameters departs from being just like an interface in an

object-oriented language and looks more like a contract between two different types.

Working with these type classes can be tricky; you will explore the implications of them

Chapter 6 Knowing Your Clients Using Monads

189

throughout the book. The name given to elements translatable to vectors will be, no

surprise here, Vectorizables. Here’s the definition and a simple instance for performing

the identity conversion between Double pairs:

{-# LANGUAGE MultiParamTypeClasses #-}

class Vector v => Vectorizable e v where

 toVector :: e -> v

instance Vectorizable (Double,Double) (Double,Double) where

 toVector = id

The way in which the K-means algorithm describes a cluster is via one vector for

each, called the centroid of the cluster. Each element in the data set is assigned to the

cluster whose centroid is nearer to the data point. After knowing this fact, you already

have an initial idea of how the type of K-means should look.

kMeans :: (Vector v, Vectorizable e v)

 => Int -- number of centroids

 -> [e] -- the information

 -> [v] -- centroids after convergence

The K-means algorithm is simple. In a first phase it generates k vectors, which

will be used as the initial centroids. Then, each point is assigned to the cluster of

the nearest centroid. In that way, a first partition of the data points is created. After

all points have been assigned, the algorithm computes new centroids. The updated

centroid of each cluster will be the average of all the points in that cluster. These new

centroids will be the input of the new cluster-point assignment and centroid updating

phases, and so on. At some point, the clusters will be stable: the partition and the

clusters won’t change anymore. Thus, the procedure stops and returns the centroids as

the final ones. Figure 6-2 pictures this process as a diagram.

Chapter 6 Knowing Your Clients Using Monads

190

initial assignment

K centroids

assign each element
to a centroid

cluster Assignment Phase

obtain new centroids

NO

new centroids Phase

converges?

yes

stop

Figure 6-2.  K-means algorithm

Let’s work on each of the steps and finally join everything together into a big

algorithm. There are several options for generating the initial vectors. One possibility is

generating random vectors; another one is choosing k of the vectors in the data set (this

is called the Forgy method). The best option is to abstract this choice and include an

extra argument to the kMeans function for the function generating the initial values. The

type of the function in this case would turn into this:

kMeans :: (Vector v, Vectorizable e v)

 => (Int -> [e] -> [v]) -> [e] -> [v]

Chapter 6 Knowing Your Clients Using Monads

191

The cluster assignment phase should receive the current centroids and the

elements of the set and decide which centroid each element corresponds with. This

is done based on the proximity. Since you have a key (cluster) to values (points)

mapping, it makes sense to use a Map to hold the assignments. This implies that you

need to include an extra Ord v constraint in the Vector type class because Map keys

must fulfill that requirement.

This cluster assignment phase can be divided in two different tasks. The first one is

creating the Map with all the keys assigned to empty lists. At this point there’s an implicit

assumption that no two keys will be the same at any point of the algorithm, but in a

more complete implementation this should be taken care of. The second task should go

element by element and find the centroid closer to it and then add the element to the list

of the chosen centroid. Remember that you must first translate the element to a vector

using the toVector function. The following code uses folds both for creating the initial

maps and for updating each element in the data set:

import Data.List

import qualified Data.Map as M

clusterAssignmentPhase :: (Ord v, Vector v, Vectorizable e v)

 => [v] -> [e] -> M.Map v [e]

clusterAssignmentPhase centroids points =

 let initialMap = M.fromList $ zip centroids (repeat [])

 in foldr (\p m -> let chosenC = minimumBy (compareDistance p) centroids

 in M.adjust (p:) chosenC m)

 initialMap points

 where compareDistance p x y = compare (distance x $ toVector p)

 (distance y $ toVector p)

Finally, you have to compute the new centroid of each cluster. To do so, you need to

map from the elements in a cluster to a vector. You can see now that an extra function

was left out in the type class for Vectors: computing the centroid of a set of them. Thus,

let’s augment that type class and implement it for Double pairs. We also add Ord v as a

superclass of Vector, since it is required by the Map operations.

class Ord v => Vector v where

 distance :: v -> v -> Double

 centroid :: [v] -> v

Chapter 6 Knowing Your Clients Using Monads

192

instance Vector (Double, Double) where

 distance (a,b) (c,d) = sqrt $ (c-a)*(c-a) + (d-b)*(d-b)

 centroid lst = let (u,v) = foldr (\(a,b) (c,d) -> (a+c,b+d)) (0,0) lst

 n = fromIntegral $ length lst

 in (u / n, v / n)

With this new function, it’s straightforward to implement the computation of new

centroids. The idea of the code is the following: for each cluster (so you need to use

fmap), convert the list of associated elements to vectors (so inside the function to apply

to each element you need to have a map toVector) and then get the centroid of this set.

Finally, you convert the map into a list of (old,new) elements.

newCentroidPhase :: (Vector v, Vectorizable e v) => M.Map v [e] -> [(v,v)]

newCentroidPhase = M.toList . fmap (centroid . map toVector)

Even though the algorithm is known to converge, you may want to stop iterating

when the amount of change between successive centroids is less than a threshold. For

that reason, the code includes a function that computes the total amount of change and

compares it with a predefined value.

shouldStop :: (Vector v) => [(v,v)] -> Double -> Bool

shouldStop centroids threshold =

 foldr (\(x,y) s -> s + distance x y) 0.0 centroids < threshold

With all this parts, you can finally wrap up the initial code for K-means.

kMeans :: (Vector v, Vectorizable e v)

 => (Int -> [e] -> [v]) -- initialization function

 -> Int -- number of centroids

 -> [e] -- the information

 -> Double -- threshold

 -> [v] -- final centroids

kMeans i k points = kMeans' (i k points) points

kMeans' :: (Vector v, Vectorizable e v)

 => [v] -> [e] -> Double -> [v]

kMeans' centroids points threshold =

 let assignments = clusterAssignmentPhase centroids points

 oldNewCentroids = newCentroidPhase assignments

 newCentroids = map snd oldNewCentroids

Chapter 6 Knowing Your Clients Using Monads

193

 in if shouldStop oldNewCentroids threshold

 then newCentroids

 else kMeans' newCentroids points threshold

To test kMeans, here’s a small function that generates k vectors (i, i), where i goes

from 1 to k:

initializeSimple :: Int -> [e] -> [(Double,Double)]

initializeSimple 0 _ = []

initializeSimple n v = (fromIntegral n, fromIntegral n)

 : initializeSimple (n-1) v

With that piece of code, you can run a first example of K-means in the interpreter.

*Chapter6.KMeans> let info = [(1,1),(1,2),(4,4),(4,5)]::[(Double,Double)]

*Chapter6.KMeans> kMeans initializeSimple 2 info 0.001

[(1.0,1.5),(4.0,4.5)]

To check whether you’ve understood how all the pieces of this initial implementation

of K-means fit together, complete Exercise 6-1, where the code is instrumented to

produce some statistics of a run of the algorithm.

EXERCISE 6-1. COUNTING THE NUMBER OF STEPS

While profiling the performance of iterative algorithms, it’s common to look at the number

of recursive steps that have been done until reaching the threshold. Enhance the previous

implementation of K-means to provide this value as an extra output of the kMeans function.

�Lenses
The K-means algorithm is usually expressed in a more imperative way, in which

the centroids and the error are variables that are updated in each iteration until the

threshold is greater than the error. One of big differences between more usual languages

and Haskell is the query and access to data structures, which should be made using

either pattern matching or records, with the record update syntax or via the helper

functions that are created automatically by the compiler.

Chapter 6 Knowing Your Clients Using Monads

194

Lenses allow you to query and update data structures using syntax much closer to

the typical dot notation found in other languages. However, that notation is defined

completely in a library, not as part of the language. This should give you a taste of the

great power of the Haskell language, which allows you to express the scaffolding of data

access and update the language.

A lens wraps together a getter and a setter for a specific field in a data structure.

In that way, it’s similar to a JavaBean or a C# property. Apart from that, a particular

lens library includes a number of combinators to mix together several lenses (e.g., for

chaining accesses to deeper parts of a structure) and to provide more recognizable

syntax (e.g., using += to update a numeric field by adding some amount).

You may have noticed that in the previous paragraph I used the phrasing a lens

library instead of the lens library. The Haskell community doesn’t have a preferred

or definite library for this task. Some of the lens packages are lens, fclabels, data-

accessor, and data-lens. The most commonly used one is the lens library by Edward

A. Kmett. There’s one problem, though: that library is huge. For that reason, we shall

start with the microlens library, which provides the most common features from lens

in a more digestible fashion. In any case, the main ideas remain the same among all

the packages. They differ in the theoretical basis (how lenses are represented internally

and composed) and in the implementation itself, but not much in the external

interface.

Although I speak of “the microlens library,” there is in fact a constellation of

libraries. The microlens library proper provides just the core abstractions. Instead, I

assume that you have added microlens-platform as a dependency to your project,

or installed the library before starting a GHCi session. That library exposes the most

important functionality from the microlens library under a single Lens.Micro.Platform

module, the one you need to import.

After this introduction, let’s focus on the use of lenses in your own code. The

following are the definitions of Client and Person from Chapter 3:

data Client i = GovOrg i String

 | Company i String Person String

 | Individual i Person

data Person = Person String String

Previously, the definitions used record syntax, but I have included here the raw

ones because once you create lenses for them, the usefulness of using record assessors

disappears.

Chapter 6 Knowing Your Clients Using Monads

195

There are two approaches for generating the lenses for each field. The first approach

involves writing the lenses by hand. Even though it sounds difficult, it’s really simple; you

just need to write the getter and the setter, which you can define via pattern matching.

Let’s do it for the Person data type.

firstName :: Lens' Person String

firstName = lens (\(Person f _) -> f)

 (\(Person _ l) newF -> Person newF l)

lastName :: Lens' Person String

lastName = lens (\(Person _ l) -> l)

 (\(Person f _) newL -> Person f newL)

These are examples of simple lenses, in which the type of the structure does not

change when the value changes. Therefore we use the type Lens' instead of Lens.

However, there are cases when you want the type to change. For example, say you have

a Client Int, and you want to update the identifier to a Double value. Now the client

would have a Client Double type. So, you need full lenses, which take as extra type

variables the different types of the inner values. Here’s an example:

{-# LANGUAGE LambdaCase #-}

identifier :: Lens (Client i) (Client j) i j

identifier = lens (\case (GovOrg i _) -> i

 (Company i _ _ _) -> i

 (Individual i _) -> i)

 (\client newId -> case client of

 GovOrg _ n -> GovOrg newId n

 Company _ n p r -> Company newId n p r

 Individual _ p -> Individual newId p)

The lenses don’t need to reflect only fields in the data definition. Every time

you have a well-defined way to get and return values, you can generate a lens. For

example, assume that names for a Person don’t contain spaces. Then, you can create

a lens for the full name: getting it will concatenate the first and last names with a

space in between, and setting a value would split the name in two parts and assign a

part to each field.

Chapter 6 Knowing Your Clients Using Monads

196

fullName :: Lens' Person String

fullName = lens (\(Person f l) -> f ++ " " ++ l)

 (_ newFullName -> case words newFullName of

 f:l:_ -> Person f l

 _ -> error "Incorrect name")

But most of the time you want to generate the basic lenses that just get and set a field

in a structure, and this task involves a lot of boilerplate code. The Haskell philosophy

wouldn’t allow writing so much repetitive code, so the writer of the library has included

a facility for automatically creating lenses. To use it, you need to write your data

declarations using the record syntax, but use an underscore in the field names. For

example:

data Client i = GovOrg { _identifier :: i, _name :: String }

 | Company { _identifier :: i, _name :: String

 , _person :: Person, _duty :: String }

 | Individual { _identifier :: i, _person :: Person }

 deriving Show

data Person = Person { _firstName :: String, _lastName :: String }

 deriving Show

Now you need to ask the library to create the lenses for you. First, you need to enable

the TemplateHaskell extension, which allows the automatic generation of code. Then,

you need to call makeLenses over each data type. Notice the use of two single quotes

before the type name.

{-# LANGUAGE TemplateHaskell #-}

makeLenses "Client

makeLenses "Person

Et voilà! The code you wanted has been written for you in the background.

Chapter 6 Knowing Your Clients Using Monads

197

TEMPLATE HASKELL

Template Haskell is the name of a metaprogramming facility included in

GHC. Metaprogramming is the name given to those techniques that allow you to modify the

code that will be generated by a compiler, usually generating new code automatically. In the

language Lisp, metaprogramming is a form of compile-time macros.

You saw an example of metaprogramming: the deriving mechanism for built-in type

classes. Template Haskell provides an extensible interface to the GHC compiler and allows

library authors to provide their own code modification facilities, like the microlens

library does. There are many other libraries in Hackage making use of Template Haskell;

for example, derive includes the automatic derivation of many other type classes, such

as NFData.

Template Haskell is not part of the Haskell 2010 Report so, as usual, your code won’t be easily

portable to other Haskell compilers as it stands. However, GHC provides a command-line

argument, -ddump-splices, which outputs the code that Template Haskell generated, and

you can copy it back if you need full compatibility.

Now that you know how to create lenses, it’s time to use them. One of the basic

operations you can do with a lens is query a value. For that, you can use either the view

function or the (^.) operator.

*Chapter6.Lenses> let p = Person "John" "Smith"

*Chapter6.Lenses> (view firstName p, p^.lastName)

("John","Smith")

The best thing about lenses is that they can be composed with the (.) operator (the

same used for function composition) to create new lenses. This in particular gives a very

C-like feeling to field access.

*Chapter6.Lenses> let client = Individual 3 (Person "John" "Smith")

*Chapter6.Lenses> view (person . lastName) client

"Smith"

*Chapter6.Lenses> client^.person.fullName

"John Smith"

Chapter 6 Knowing Your Clients Using Monads

198

Updating is done using the set function or the (.~) operator. As you will notice, the

semantics here are compatible with a pure language like Haskell. A new copy of the data

structure with the field updated is returned; the element is not updated in place.

*Chapter6.Lenses> set identifier 4 client

Individual {_identifier = 4,

 _person = Person {_firstName = "John", _lastName = "Smith"}}

*Chapter6.Lenses> person.lastName .~ "Kox" $ client

Individual {_identifier = 3,

 _person = Person {_firstName = "John", _lastName = "Kox"}}

While it’s useful in terms of composing lens operations, having the structure that

will be updated being the last argument of the function may be a bit difficult to read

sometimes. For that reason, lens includes the (&) operator, which flips the order of the

parameters and allows you to use the value at the beginning.

*Chapter6.Lenses> client & person.fullName .~ "Marianne Kox"

Individual {_identifier = 3,

 _person = Person {_firstName = "Marianne", _lastName = "Kox"}}

The good thing about lens is the inclusion of a lot of combinators that resemble the

typical combined update operators in C or Java (that is, += or *=). They always follow the

same name schema: the name of the operator that will combine the current value and

the new one, followed by a tilde.

*Chapter6.Lenses> client & identifier +~ 2

Individual {_identifier = 5, _person = Person {_firstName = "John",

_lastName = "Smith"}}

All of these operators are specific instances of the more general function over or its

infix form (%~), which takes a function to apply to the field pointed by the lens.

*Chapter6.Lenses> client & over identifier (+2)

Individual {_identifier = 5,

 _person = Person {_firstName = "John", _lastName = "Smith"}}

*Chapter6.Lenses> import Data.Char -- for bringing toUpper into scope

*Chapter6.Lenses> client & person.fullName %~ (map toUpper)

Individual {_identifier = 3,

 _person = Person {_firstName = "JOHN", _lastName = "SMITH"}}

Chapter 6 Knowing Your Clients Using Monads

199

Lenses for many different types are included in the library. For example, there’s a

family of lenses _1 to _9 that go in each component of a tuple, provided it is long enough.

*Chapter6.Lenses> ("a","b") & set _1 "c"

("c","b")

*Chapter6.Lenses> ("a","b") & set _3 "c"

<interactive>:

 No instance for (Field3 ([Char], [Char]) b0 a0 [Char])

 arising from a use of `_3'

 Possible fix:

 add an instance declaration for

 (Field3 ([Char], [Char]) b0 a0 [Char])

 In the first argument of `set', namely `_3'

 In the second argument of `(&)', namely `set _3 "c"'

 In the expression: ("a", "b") & set _3 "c"

Sometimes the value in the mentioned field may not be available. This happens, for

example, in the lenses1 for obtaining the head and tail of a list. In this case, you have two

options: either use the (^?) operator, which returns its value wrapped on Maybe, or use

(^?!), which doesn’t wrap the value but signals an error if the element is not available.

The update is performed using the same operators as before:

*Chapter6.Lenses> "abc"^?_head

Just 'a'

*Chapter6.Lenses> "abc"^?!_tail

"bc"

*Chapter6.Lenses> "abc" & (_head .~ 'd')

"dbc"

*Chapter6.Lenses> "abc" & (_tail %~ map toUpper)

"aBC"

In Haskell the most usual way to split a list is between its head and the rest of the

list (the tail), but you can also split from the end. The lens library provides lenses for

accessing the last element in the list and the list without that last element, namely, _last

and _init.

1�Technically they are not a Lens, but a Traversal.

Chapter 6 Knowing Your Clients Using Monads

200

*Chapter6.Lenses> "abc"^?_init

Just "ab"

*Chapter6.Lenses> "abc" & (_last %~ toUpper)

"abC"

As mentioned, many other lenses are included in the library distribution for lists,

maps, and sets. If you decide to use microlens, don’t forget to check these instances.

Finally, I will discuss the traversed lens. This lens allows you to go inside a list

(or in general any instance of the Traversable type class, which also includes trees

and maps) and update each of the elements using a further lens. For example, if you

have an array of people, you can change all the first names to uppercase by using

that lens.

*Chapter6.Lenses> let people = [Person "Jack" "Smith", Person "Mary" "B."]

*Chapter6.Lenses> people & traversed.firstName %~ map toUpper

[Person {_firstName = "JACK", _lastName = "Smith"}

, Person {_firstName = "MARY", _lastName = "B."}]

Exercise 6-2 applies the information about the microlens library to time machines.

I encourage you to go through that exercise to get a good idea of lenses.

EXERCISE 6-2. TIME MACHINE LENSES

Generate lenses for the TimeMachine data type you created in previous chapters, including

all the information mentioned before and also a price. Using the operators introduced here,

create a function that, given a list of time machines, increases the price by a given percentage.

Let’s use lenses to rewrite the implementation of K-means. Instead of having

different arguments for each piece of information that it needs to hold, let’s create a

data type holding all of them. The lenses will be derived automatically using Template

Haskell.

data KMeansState e v = KMeansState { _centroids :: [v], _points :: [e]

 , _err :: Double, _threshold :: Double

 , _steps :: Int }

makeLenses "KMeansState

Chapter 6 Knowing Your Clients Using Monads

201

Note T he derivation of lenses via Template Haskell must appear before any use
of them in other code. Thus, you must be careful about writing the previous code
before the definition of the new kMeans code.

As you can see, the error will be saved in a field, and also you are saving the number of

steps, something that you were asked to include in a previous exercise. The new algorithm

kMeans' will be seen as a series of changes in that state. It first creates the assignments

and then updates the centroids, the error, and the number of steps. These three last steps

are implemented using lenses. Finally, the algorithm must check the stopping condition

by comparing the error to the threshold, which is also a field in the state data type. The

kMeans function also changes to return only the centroids from the full state.

initializeState :: (Int -> [e] -> [v])

 -> Int -> [e] -> Double -> KMeansState e v

initializeState i n pts t = KMeansState (i n pts) pts (1.0/0.0) t 0

clusterAssignmentPhase :: (Vector v, Vectorizable e v)

 => KMeansState e v -> M.Map v [e]

clusterAssignmentPhase = undefined -- See exercise 6.3

kMeans :: (Vector v, Vectorizable e v)

 => (Int -> [e] -> [v]) -> Int -> [e] -> Double -> [v]

kMeans i n pts t = view centroids $ kMeans' (initializeState i n pts t)

kMeans' :: (Vector v, Vectorizable e v)

 => KMeansState e v -> KMeansState e v

kMeans' state =

 let assignments = clusterAssignmentPhase state

 state1 = state & centroids.traversed

 %~ (\c -> centroid

 $ fmap toVector

 $ M.findWithDefault [] c assignments)

 state2 = state1 & err .~ sum (zipWith distance (state^.centroids)

 (state1^.centroids))

 state3 = state2 & steps +~ 1

 in if state3^.err < state3^.threshold then state3 else kMeans' state3

Chapter 6 Knowing Your Clients Using Monads

202

Notice that the way in which you compute the error has also been changed. Instead

of return pairs of (old centroid, new centroid) when updating the centroids, it takes

the centroids in the current and previous stats and performs the aggregation of their

distance using sum and zipWith. Exercise 6-3 asks you to finish this implementation with

lenses by writing the code of the cluster assignment phase.

EXERCISE 6-3. K-MEANS LENSES

The implementation of the algorithm using lenses is not yet complete. The function

clusterAssignments is missing. Starting from the version shown in the previous section,

write these functions (which now operate on full states) using lenses.

�Discovering Monads
One of the pillars of Haskell philosophy is reusability. For that reason, while learning the

language and its libraries, it’s useful from time to time to step back and look at the code

you’ve already written, looking for common patterns that could be abstracted. In this

section you will think about abstractions related to Maybe values and to state handling.

The same kind of structure will appear in both cases, leading you to the notion of a

monad that will be the core of this section.

�Watching Out for Incomplete Data
In the previous section there’s an explicit assumption that you already have all the

information that will be input to the K-means algorithm in a nice way so that the

only transformation you need to do is convert that information to vectors. However,

this is rarely the case with a data set from the real world. Usually you need an initial

preprocessing stage to gather all the information, do some aggregation, and maybe fix

some inconsistences.

Usually, the raw information will come from some sort of database system. You

will see later how to communicate with these systems using the Persistent library; here

only some aspects of its use will be needed. In many cases, a table may contain NULL as

a value for a column, meaning that there’s no information (or it hasn’t been recorded).

Chapter 6 Knowing Your Clients Using Monads

203

The way that the Persistent library represents a nullable column of type T is via a value

of type Maybe T. For example, say you want to compute the average value of all the items

purchased by a given client. The following is a possible way to code that:

meanPurchase :: Integer -- the client identifier

 -> Double -- the mean purchase

meanPurchase clientId = let p = purchasesByClientId clientId

 in foldr (+) 0.0 $ catMaybes $ map purchaseValue p

purchaseValue :: Integer -> Maybe Double

purchaseValue purchaseId =

 case numberItemsByPurchaseId purchaseId of

 Nothing -> Nothing

 Just n -> case productIdByPurchaseId purchaseId of

 Nothing -> Nothing

 Just prId -> case priceByProductId prId of

 Nothing -> Nothing

 Just price -> Just $ (fromInteger n) * price

The previous example used catMaybes from the Data.Maybe module. This function

filters out every Nothing element in the list, and it’s convenient when working with a list

of Maybe values.

Note I n the previous example and in the next examples in this section,
I’ve factored out the code for accessing the database, which is not relevant
to the current discussion. If you want to try the code, just include a simple
return value. For example, purchasesByClientId could return [1,2,3],
and numberItemsByPurchaseId, productIdByPurchaseId, and
priceByProductId could return a constant value.

Clearly, this code is neither elegant nor maintainable. You have to write explicitly a

waterfall of checks for Nothing or Just. Furthermore, in the event you want to add some

new query in between the other ones, you would need to re-indent all the code you had

already written. What you are going to do is to develop a combinator2 that will allow you

to write better, more maintainable code.

2�At this moment, you can think of combinator as just a fancy name for function.

Chapter 6 Knowing Your Clients Using Monads

204

The main idea is that the combinator should take a value wrapped by Maybe. This

value will be taken into consideration only if it’s constructed using Just. In other cases,

you just return Nothing. If you decide to continue, you should apply a function to the

element enclosed in Just, which itself returns another Maybe value. At the end, you

should end in any case with a Maybe value resulting from the application. Once you know

what is wanted, the combinator is straightforward to write.

thenDo :: Maybe a -> (a -> Maybe b) -> Maybe b

thenDo Nothing _ = Nothing

thenDo (Just x) f = f x

Now let’s rewrite the initial purchaseValue using that combinator, which has been

applied infix to increase clarity. Here’s the new solution:

purchaseValue :: Integer -> Maybe Double

purchaseValue purchaseId =

 numberItemsByPurchaseId purchaseId `thenDo` (\n ->

 productIdByPurchaseId purchaseId `thenDo` (\productId ->

 priceByProductId productId `thenDo` (\price ->

 Just $ fromInteger n * price)))

The new code is definitely cleaner and much more maintainable. Furthermore, you

have hidden the low-level operation of unwrapping Maybes into a combinator, leading to

more reusability.

Note T ake some time to parse the previous function. The style of writing the
argument to a function in a different line from the body is called hanging lambdas.
It’s common when using function combinators such as your thenDo.

One fair question is why you need to write a new combinator thenDo. At first, it

seems that the task of that function is similar to the fmap in a functor. Let’s write its type,

specialized for Maybe.

fmap :: (a -> b) -> Maybe a -> Maybe b

Chapter 6 Knowing Your Clients Using Monads

205

The problem here is that the result being Nothing or Just cannot depend on the

function to be applied; it’s completely determined by the input value. If you tried to use a

function with an output type of Maybe b, you would have a specialized type.

fmap :: (a -> Maybe b) -> Maybe a -> Maybe (Maybe b)

And a value wrapped twice in Maybe is not what you want. The opposite case is

possible, though: you can express fmap in terms of your thenDo combinator.

fmap f x = x `thenDo` (\y-> Just $ f y)

Thus, the newly defined combinator is strictly more powerful than fmap. It can

be used to write a version of fmap for Maybe values because fmap cannot express the

behavior of thenDo. The optional Exercise 6-4 asks you to verify that your new definition

of fmap is indeed correct.

EXERCISE 6-4. PROVING THAT YOUR FMAP IS CORRECT

Using the equational reasoning introduced in Chapter 3, prove that this implementation

of fmap is correct. To do so, you should check that fmap as defined in this section works

the same as the instance of Functor for Maybe values, which maps Just x to Just

(f x) and Nothing to Nothing. Hint: Split the solution into cases, depending on the

constructor for the Maybe value. In other words, start by using a case expression in

which you pattern match on the two possible values of an expression of Maybe type,

namely Nothing and Just v.

�Combinators for State
Based on your success of building a combinator for chaining functions that may fail and

return Nothing, you can think of doing the same to refactor a bit of your code for the

K-means algorithm. It would be interesting to hide the management of the states found

in the last version of the code.

Let’s think about how to represent a function that manipulates a state. Each

function will be the real building block that will later be chained using the

combinator that you will develop. The state prior to the execution of the function

could be seen as an extra argument to the function. So, if in general you have a

Chapter 6 Knowing Your Clients Using Monads

206

function of type a -> b, a function that also consumes a state of type s should be

typed as a -> s -> b. This function must also be decorated with the state at the end

of the execution, which could be later passed to the next function expecting a state.

Given that the function returns a value of type b, you can pair it up with a value of

type s. In conclusion, functions that manipulate a state have type a -> s -> (b,s).

Using your previous knowledge of working with Maybe values, you would expect your

combinator to have a type similar to this:

thenDo :: (s -> (a,s)) -> (a -> s -> (b,s)) -> (s -> (b,s))

This seems a bit awkward at first because it seems more natural to choose (a,s)

-> (a -> s -> (b,s)) -> (b,s), that is, to thread the state directly from the initial

computation through the second function. However, the version that generates a

function that still needs an initial state is more useful because it allows you to combine

stateful computation for which the initial state is not yet present, and it will also make

clearer the pattern that will emerge from these examples. Since the code will be using s

-> (a,s) a lot, it makes sense to introduce a type synonym for it.

type State s a = s -> (a, s)

Now the parallelism with the Maybe case is more obvious in the type of the

combinator.

thenDo :: State s a -> (a -> State s b) -> State s b

The implementation of the combinator is simple. You just need to apply the state to

the first function to get a result and a new state, which is passed to the second function. I

have also included the type signature without synonyms in the Haskell code.

 thenDo :: State s a -> (a -> State s b) -> State s b

-- thenDo :: (s -> (a,s)) -> (a -> s -> (b,s)) -> s -> (b,s)

thenDo f g s = let (resultOfF, stateAfterF) = f s

 in g resultOfF stateAfterF

In the version that will be developed from now on, only the information about the

centroids, the error threshold, and the number of steps will be recorded. That way, there

will be two separate sets of information: the state itself, which is threaded by the State

combinators, and the vectors you run the algorithm over, which are explicitly passed

Chapter 6 Knowing Your Clients Using Monads

207

as arguments. Furthermore, I will present the code here without lenses combinators

to focus the discussion on the combinators related to state. The new KMeansState

definition is as follows:

data KMeansState v = KMeansState { centroids :: [v]

 , threshold :: Double

 , steps :: Int }

As for Maybe values, let’s rewrite the code using the thenDo combinator. The main

kMeans function will just call kMeans', which is the one using the combinator with an

initial state. The result of the computation is a pair of the final centroids and the last

state; you need to return only the first one using fst.

newCentroids :: (Vector v, Vectorizable e v) => M.Map v [e] -> [v]

newCentroids = M.elems . fmap (centroid . map toVector)

clusterAssignments :: (Vector v, Vectorizable e v)

 => [v] -> [e] -> M.Map v [e]

clusterAssignments centrs points =

 let initialMap = M.fromList $ zip centrs (repeat [])

 in foldr (\p m -> let chosenC = minimumBy (compareDistance p) centrs

 in M.adjust (p:) chosenC m)

 initialMap points

 where compareDistance p x y = compare (distance x $ toVector p)

 (distance y $ toVector p)

kMeans' :: (Vector v, Vectorizable e v) => [e] -> State (KMeansState v) [v]

kMeans' points =

 (\s -> (centroids s,s)) �thenDo` (\prevCentrs ->

 (\s -> (clusterAssignments prevCentrs points, s)) `thenDo` (\assignments ->

 (\s -> (newCentroids assignments, s)) �thenDo` (\newCentrs ->

 (\s -> ((), s { centroids = newCentrs })) �thenDo` (_ ->

 (\s -> ((), s { steps = steps s + 1 })) �thenDo` (_ ->

 (\s -> (threshold s, s)) �thenDo` (\t ->

 (\s -> (sum $ zipWith distance prevCentrs newCentrs, s)) `thenDo` (\err ->

 if err < t then (\s -> (newCentrs, s)) else (kMeans' points))))))))

Chapter 6 Knowing Your Clients Using Monads

208

initialState :: (Vector v, Vectorizable e v)

 => (Int -> [e] -> [v]) -> Int -> [e] -> Double

 -> KMeansState v

initialState i k pts t = KMeansState (i k pts) t 0

kMeans :: (Vector v, Vectorizable e v)

 => (Int -> [e] -> [v]) -> Int -> [e] -> Double -> [v]

kMeans i k pts t = fst $ kMeans' pts (initialState i k pts t)

Fair enough, it seems that making this change for handling states didn’t give as much

clarity as before; you need to write explicitly the s argument all the time. Let’s try then to

refine your combinators to be more specific to this situation. Notice that you have three

kinds of functions working on the state: those in which the state remains the same, those

that access a particular member of the state and return the result, and those that update

the state. Let’s write a definition for each of them.

remain :: a -> (s -> (a,s))

remain x = \s -> (x,s)

access :: (s -> a) -> (s -> (a,s))

access f = \s -> (f s, s)

modify :: (s -> s) -> (s -> ((), s))

modify f = \s -> ((), f s)

Note I n the previous pieces of code I used the unit type, (). It’s a type that has
only one element, the empty tuple, (). It’s customarily used when you need to
return something in a function but don’t really have a good value for it.

The rewritten version of kMeans' is as follows:

kMeans' :: (Vector v, Vectorizable e v)

 => [e] -> State (KMeansState v) [v]

kMeans' points =

Chapter 6 Knowing Your Clients Using Monads

209

 access centroids `thenDo` (\prevCentrs ->

 remain (clusterAssignments prevCentrs points) `thenDo` (\assignments ->

 remain (newCentroids assignments) `thenDo` (\newCentrs ->

 modify (\s -> s { centroids = newCentrs }) `thenDo` (_ ->

 modify (\s -> s { steps = steps s + 1 }) `thenDo` (_ ->

 access threshold `thenDo` (\t ->

 remain (sum $ zipWith distance prevCentrs newCentrs) `thenDo` (\err ->

 if err < t then remain newCentrs else kMeans' points)))))))

�Dissecting the Combinators
At the beginning of the section, I presented the way to deal with function chains

involving Maybe values, and you learned that developers can benefit from a combinator

called thenDo. You also successfully applied that idea to State values. Following the

same approach used with functors, you should wonder whether this pattern can be

abstracted into a type class.

The answer is affirmative: the thenDo combinator is exactly the (>>=) (pronounced

“bind”) function of the Monad type class. This type class encompasses all those types that

allow you to combine computations of a certain kind between them. You have already

seen two examples.

•	 The Maybe monad combines functions that may fail.

•	 The State s monad combines functions that keep track of an

internal state of type s.

However, the Monad type class includes more functionality than just binding.

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

 f >> g = f >>= (_ -> g)

Chapter 6 Knowing Your Clients Using Monads

210

Caution T he return function in Monad has nothing to do with the return
keyword in C or Java. However, it was an unfortunate choice from the designers of
this type class because it resembles imperative programming. Before continuing,
try to free your mind from this idea. Monads have essentially no relation to
imperative programming, state, or mutability (although specific Monad instances
cover these use cases).

The role of (>>=) has already been explained, so let’s move to return. This function

describes how to wrap a pure value using a monad. Usually, it also describes the simpler

element you can get (just returning a value) for each kind of computation. At first, this

might seem extremely vague, so let’s look at the implementation for your Maybe and

State monads.

The specific type for the return implementation of State s is a -> State s a

or, equivalently, a -> s -> (a,s). This is the only implementation I can think of

that returns the value that was passed, with the internal state unchanged. This is the

same purpose of the remain combinator in the previous section. It also complies

with the idea of being the “simplest” computation with state – one that does not

change the state at all.

For Maybe, the type of return looks like a -> Maybe a. So, you have two alternatives:

either return the value wrapped in Just or return Nothing. In the definition of return,

you already have a value to wrap, so it makes more sense to have return = Just.

Furthermore, if you look at the final example in the section where incomplete data was

discussed, you can see that in the last step you used Just, and now you could change it

to a return.

The next function in the type class is (>>). As you can see from its definition, it

combines two computations such that the second one doesn’t use the return value

of the first one. This may sound strange, but you have already encountered such a

situation. When you modify the state in your State s monad, you don’t use the return

value of this operation (which is always the empty tuple, ()). Like in many other default

implementations, this function is defined here because it’s expected that some instances

could give a much faster definition for (>>) than the default one.

Chapter 6 Knowing Your Clients Using Monads

211

Note  Historically, the Monad type class also contained a fail method. As its
name suggests, it allows you to define special behavior of the monad when some
part of its computation fails. For example, failing into the Maybe monad should
intuitively return Nothing. However, not all monads have sensible definitions for
fail, State being a prime example. For that reason it has been decided to move
this function to its own type class, called MonadFail.

Right now you have enough information for using a monad instead of a custom

combinator in the previous examples. Exercise 6-5 shows you how to do so.

EXERCISE 6-5. MONADS FOR INCOMPLETE DATA AND K-MEANS

All the parts that make up the Monad instance for Maybe have already been discussed. Write

the instance declaration for it. Then, rewrite the purchaseValue function using (>>=) and

return.

Another interesting fact that you discovered in your combinator for Maybe is that by

using it you can write a correct implementation of fmap. Let’s look first at how the type of

fmap specialized for State s looks.

fmap :: (a -> b) -> State s a -> State s b -- with type synonyms

fmap :: (a -> b) -> (s -> (a,s)) -> (s -> (b,s)) -- without type synonyms

The implementation should be clear; just apply the function to the returned value

and leave the state as is.

instance Functor (State s) where

 fmap f gWithState = \s -> let (gResult, gState)

 in g s in (f gResult, gState)

In a previous section you saw that you could also define it for Maybe using the

combinators in that section, which you have seen are functions of the Monad type class.

fmap f g = g >>= (\x -> return $ f x)

Chapter 6 Knowing Your Clients Using Monads

212

Indeed, this definition is equivalent to the previous handwritten definition. The good

news is that this implementation works for any monad; that is, every Monad instance

gives rise to a Functor instance by defining fmap as shown earlier. It’s included in the

Control.Monad module of the base package, under the name liftM.

Note I f any Monad instance is also an instance of Functor, why is this relation
not shown in the declaration of those classes? The truth is that in the library
this relation exists but includes the Applicative type class in between. That
is, Applicative is a superclass of Monad, and Functor is a superclass of
Applicative. Chapter 10 contains a thorough description of the Applicative
type class and its uses.

�do Notation
The monad concept, brought from a branch of mathematics called category theory

into Haskell by Phil Wadler (among others), is ubiquitous in Haskell libraries. Many

computational structures have been found to be instances of Monad. Given its success,

the Haskell designers decided to include special syntax for monads in the language: the

so-called do notation.3

A do block starts with the do keyword and then is followed by a series of

expressions. At compile time, those expressions are translated into regular code

using (>>=), (>>), and fail. So, the best way to understand what this notation

means is by looking at the possible ways you could use monadic functions and see

how do notation approaches it.

The first case has two computations f and g such that the second doesn’t consume

any input from the first. You have already seen that this corresponds to the expression

sequencing those computations f >> g. In do notation, this is written as follows:

do f

 g

3�The inclusion of this special notation is a great incentive for library authors to discover whether
their types form a monad so that their users approach their library with an already-known
syntax.

Chapter 6 Knowing Your Clients Using Monads

213

However, there’s also the possibility that the second function uses the result value of

the first one. For that matter, you have the bind function: f >>= g. Usually, the way you

use bind is not like that, but rather using an anonymous function and giving a name to

the result of f: f >>= (\x -> g x). do notation also introduces a name for the resulting

value but using <-. In particular, the expression f >>= (\x -> g x) is written as follows:

do x <- f

 g x

There’s also support for introducing computations that are not done inside a

monadic context. For example, you may need to call (+) over a number that has been

obtained before. But if you do the following, the compiler will complain because the

addition doesn’t have the required return type, which should be m a, where m is a monad.

do number1 <- obtainNumber1 -- or any Maybe value, such as Just 3

 number2 <- obtainNumber2 -- or any Maybe value, such as Just 5

 sum <- number1 + number2

 return $ sqrt sum

One solution is changing the previous-to-last line to sum <- return $ number1

+ number2, but this introduced an unnecessary burden. The best thing is to use a let

expression.

do number1 <- obtainNumber1

 number2 <- obtainNumber2

 let sum = number1 + number2

 return $ sqrt sum

Notice that you don’t have to write in after this kind of let expression.

Previously I explained that you could use pattern matching directly on let and

where blocks and function declarations. This possibility is also available when using

<- or let in a do block. If you remember, this had the risk of the returning value not

matching the pattern. In those cases, the compiler added automatically a call to error

with the appropriate message. When using do notation, the behavior deviates a bit from

this. Instead of calling error, the compiler will call the fail function of the monad. For

example, the following code:

do True <- willThatHold -- placeholder for a function returning Maybe Bool

 f 5

Chapter 6 Knowing Your Clients Using Monads

214

would be transformed by the compiler to a version with an explicit branch for those

values that are not True, even if that part didn’t appear in the code.

willThatHold >>= \x ->

 case x of

 True -> f 5

 _ -> fail "error"

In turn, this call to fail implies that the type of that piece of code does not only

require a Monad, but the more restrictive MonadFail. Any time that you check the shape of

the return value of a monadic computation, you should expect a MonadFail constraint to

appear.

The great power of do blocks comes from the fact that they are not limited to just two

expressions; the syntax is desugared also for more expressions. For example, if you have

this:

do x <- f

 g

 y <- h x

 return y

The version above is more readable than its corresponding translation, shown here:

f >>= (\x -> g >> (h x -> (\y -> return y)))

The example of Maybe looks much nicer when using do notation.

purchaseValueWithDo :: Integer -> Maybe Double

purchaseValueWithDo purchaseId

 = do n <- numberItemsByPurchaseId purchaseId

 productId <- productIdByPurchaseId purchaseId

 price <- priceByProductId productId

 return $ fromInteger n * price

For the K-means implementation, you can stop using your home-baked data type

and start using the State implementation that you can find in the Control.Monad.State

module of the mtl package. mtl (from Monad Transformers Library) is one of the basic

libraries, along with base or containers, that make up the Haskell Platform. It contains

instances of many different monads and utility functions for all of them.

Chapter 6 Knowing Your Clients Using Monads

215

In particular, it includes equivalents to the access and modify combinators that were

written. Instead of using a function for getting part of the state, this implementation gives

access to the full state via the get function. Using the fact that State is also a functor, you

can write access by lifting the accessor function to the result of get.

access :: (s -> a) -> State s a

access f = fmap f get

Since obtaining only part of the state in that way is used often, mtl includes a gets

function for that task.

This particular implementation also allows you to change completely the internal

state via the put function. There’s also the possibility of using a function to update it via

a function that’s also named modify. With all this information, the implementation of

kMeans' reads as follows:

kMeans' :: (Vector v, Vectorizable e v)

 => [e] -> State (KMeansState v) [v]

kMeans' points = do prevCentrs <- gets centroids

 let assignments = clusterAssignments prevCentrs points

 newCentrs = newCentroids assignments

 modify (\s -> s { centroids = newCentrs })

 modify (\s -> s { steps = steps s + 1 })

 t <- fmap threshold get

 let err = sum $ zipWith distance prevCentrs newCentrs

 if err < t then return newCentrs else kMeans' points

Finally, when using the State data type from mtl, you have several options for giving

an initial state and thus performing the full computation. These can be summarized via

their types; each of them returns a different set of information.

runState :: State s a -> s -> (a,s) -- return value and final state

evalState :: State s a -> s -> a -- return only value

execState :: State s a -> s -> s -- return only final state

For K-means, the interest lies only in the return value, so you need to use the second

alternative.

kMeans :: (Vector v, Vectorizable e v) => Int -> [e] -> Double -> [v]

kMeans n pts t = evalState (kMeans' pts) (initializeState n t)

Chapter 6 Knowing Your Clients Using Monads

216

�Monad Laws
Beware that not all definitions of (>>=) and return will make a true monad. As with

functors, the Monad type class imposes some laws over the behavior of their instances.

These laws are not checked by the compiler but must be satisfied if you don’t want the

user or the compiler to introduce subtle errors in the code. Don’t worry if in a first read

you don’t understand all the details. This information is useful only if designing new

monads, but it’s not needed at all for their usage.

The first two laws relate the bind operation with return.

•	 return a >>= f must be equivalent to f a, or in do notation, do { x

<- return a; f x} must be equivalent to bare do { f a }. That is,

nothing changes if you apply a computation to a value wrapped into

the monad via return, or without it.

•	 x >>= return must be equivalent to x, or in do notation, do { y <-

m; return y } must be equivalent to do { m }. This means that

return just unwraps and wraps again a value when bound from

another computation.

Note T he second law is important for good Haskell coding style. Remember that
computing a value inside a monad to immediately call return is not needed; just
include the value computation as an expression.

The next law tells you about the associativity of the (>>=) operation, although it’s

better stated using the do notation. It specifies that the following code, where one do

block is sequenced after another one:

do x <- m

 do y <- f x

 g y

is equivalent to performing some computation first, nesting the do block, and then doing

the second part, as shown here:

do y <- do x <- m

 f x

 g y

Chapter 6 Knowing Your Clients Using Monads

217

This means you can nest do blocks in any way you like, and the result should be the

same. This resembles the fact that (1 + 2) + 3 is equal to 1 + (2 + 3). This allows you

to write that code as follows:

do x <- m

 y <- f x

 g y

The final law makes explicit that the definition of fmap that was given based on

a monad must indeed be the fmap of its Functor instance. That is, fmap f g must be

equivalent to g >>= (\x -> return $ f x).

MONADS EVERYWHERE

If you look at the available information about Haskell on the Internet, you will notice that there

are a large number of tutorials devoted to monads. This might imply that monads are difficult

to grasp, but they shouldn’t be.

Using monads is much more common than designing monads. You have already looked at

the Maybe and State monads, and you will continue looking at more instances of this type

class throughout the book. If you understand how to use each of them, you’ll be ready for real

Haskell programming and on the path to fully understanding the concept of a monad.

�Different Sorts of State
It’s important to know the most common instances of monads. In this section, you will

look at those monads that have some relation to keeping or using an internal state. Two

of them, Reader and Writer, could be seen as restricted versions of State. However, they

have their own uses, and it’s interesting to know in which scenario you should apply

each of them. Then the discussion will move to the ST monad, which is a special one

that allows you to use mutable references (as variables in a impure language) but in a

controlled way so you don’t surpass the purity of the language.

Chapter 6 Knowing Your Clients Using Monads

218

�State and Lenses
Before going in-depth into the other monads, I will highlight a special feature of the

microlens library, among other lens libraries: its special combinators for using lenses

inside the State monad. Using these combinators, code resembles a more sequential

style of programming but keeps all the purity.

Instead of using get and then applying a lens with view, you can directly access part

of a data structure with the function use. This function already gives the result in the

State monad, so you don’t need to call any extra fmap or return to get the value.

Remember that when you used the update functions for lenses, you always had

to write the structure to be applied by explicitly using either $ or &. But inside a State

monad there’s always a special value to count on: the internal state. For each update

function ending in tilde (such as .~, %~, or +~), we have a corresponding function ending

in an equal sign (.=, %=, or += in the previous cases), which changes the internal state.

If you use a data type with several fields as your state and have lenses for it, you can

use syntax close to the C one to change the state. For example, in K-means you need the

following state to keep track of the centroids, the threshold, and the number of steps:

data KMeansState v = KMeansState { _centroids :: [v]

 , _threshold :: Double

 , _steps :: Int }

makeLenses "KMeansState

The following code shows how to rewrite the implementation of kMeans' via the use

function to get information or temporarily save it and shows how to rewrite the (.=) and

(+=) functions to update centroids and steps in each iteration.

kMeans' :: (Vector v, Vectorizable e v)

 => [e] -> State (KMeansState v) [v]

kMeans' points = do prevCentrs <- use centroids

 let assignments = clusterAssignments prevCentrs points

 newCentrs = newCentroids assignments

 centroids .= newCentrs

 steps += 1

 let err = sum $ zipWith distance prevCentrs newCentrs

 t <- use threshold

 if err < t then return newCentrs else kMeans' points

Chapter 6 Knowing Your Clients Using Monads

219

Now that you know about State, you can also stop a bit on the zooming functionality

of lens. Zooming takes a lens as an input and a computation that now uses as internal

state the information contained in that lens. In some sense, it’s like focusing your

attention on a small part of the structure for some time. Suppose you have a simple

function that will increment all the identifiers of a list of Clients by some number and

update its names to uppercase. Given the following state declaration:

data ExampleSt = ExampleSt { _increment :: Int

 , _clients :: [Client Int] }

 deriving Show

makeLenses "ExampleSt

The following function implements the mentioned functionality, zooming in on each

of the clients:

zoomCl :: State ExampleSt ()

zoomCl = do n <- use increment

 zoom (clients.traversed) $ do

 identifier += n

 person.fullName %= map toUpper

Here’s an example of using the function over a list of clients in the interpreter:

*Chapter6.StateLenses> :{

*Chapter6.StateLenses| let client1 = Individual 4 (Person "John" "Smith")

*Chapter6.StateLenses| client2 = Individual 3 (Person "Albert" "Einstein")

*Chapter6.StateLenses| in execState zoomCl (ExampleSt 2 [client1, client2])

*Chapter6.StateLenses| :}

ExampleSt { _increment = 2, _clients = [

 Individual { _identifier = 6

 , _person = Person { _firstName = "JOHN"

 , _lastName = "SMITH"}}

 , Individual { _identifier = 5

 , _person = Person { _firstName = "ALBERT"

 , _lastName = "EINSTEIN"}}]}

Chapter 6 Knowing Your Clients Using Monads

220

�Reader, Writer, and RWS
In many cases the global state does not change through the execution of the code but

contains a bunch of values that are taken as constants. For example, in the K-means

algorithm, the number of clusters to make, the information in which the algorithm is

executed, or the error threshold can be seen as constant for a concrete run. Thus, it

makes sense to treat them differently than the rest of the state. You aren’t going to change

it, so let’s ask the Haskell compiler to ensure that absence of modification for you.

If you recall, Chapter 4 introduced (->) r as a functor. If you look at context as an extra,

hidden argument to functions, you can also see it as a monad, representing exactly those

computations that take an extra context that cannot change. Let’s try to write its Monad

instance to get some practice and focus on the monadic structure. The simplest function is

return, which should have type a -> (r -> a). Thus, you have only one option for it.

return x = \r -> x

The types can also help you write the implementation of (>>=) for this monad.

(>>=) :: (r -> a) -> (a -> r -> b) -> (r -> b)

You know that the result of (>>=) is a function that takes the context. Using this

context, you can use the first function to retrieve a value of type a. Then, you can just

pass it to the second function, along with the context, to get the final result of type b.

f >>= g = \r -> g (f r) r

Now you have all the code needed to get the Monad instance you were looking for,

and you can put it together in an instance declaration.

instance Monad ((->) r) where

 f >>= g = \r -> g (f r) r

 return x = \r -> x

As in the case of State, this monad is already packaged in the mtl library. It’s known

under the name Reader because the context can be read only, not written. But apart from

the monad structure, you also need a way to retrieve the context. The library provides

two different functions.

•	 ask retrieves the complete context, similarly to the get function for

mtl’s State.

Chapter 6 Knowing Your Clients Using Monads

221

•	 asks applies a function to the context and returns the result. This

function is similar to the access function you developed for your

handwritten State monad and to the gets function in mtl, and it’s

useful for querying a specific field in a structure.

A typical example of Reader usage is handling the settings of an application. Usually

these settings are read at the beginning of the application from some configuration file,

but through the lifetime of the application, it doesn’t change. It would be really annoying

to include an explicit Settings parameter in every single function of the application, so

wrapping it on the Reader monad is an elegant solution.

data Settings e v = Settings { i :: Int -> [e] -> [v], k :: Int

 , th :: Double, user :: Person }

kMeansMain :: (Vector v, Vectorizable e v)

 => [e] -> Reader (Settings e v) [v]

kMeansMain points = do i' <- asks i

 k' <- asks k

 t' <- asks th

 return $ kMeans i' k' points t'

As happened with State, you also need a function to execute the monad, to which

you give the context. In this case, it is called runReader and just takes as an argument the

initial unchangeable state.

Even though the main idea of Reader is to describe some immutable context, the mtl

implementation also provides the option of executing a piece of code with a context only

for that subcomputation. To do so, use the local function, providing it with the function

to modify the current state and the computation to perform. Inside the inner block,

calls to ask or asks refer to the modified context, which will return to the original once

the call to local has ended. For example, you may want to compare the run of K-means

when you increase the number of clusters by 1. If you want to use the previous Settings

context, you need change it for the enlarged cluster set.

compareClusters :: (Vector v, Vectorizable e v)

 => [e] -> Reader (Settings e v) ([v], [v])

compareClusters points = do c1 <- kMeansMain points

 c2 <- local (\s -> s { k = k s + 1 })

 (kMeansMain points)

 return (c1, c2)

Chapter 6 Knowing Your Clients Using Monads

222

You have just seen functions that consume a state but don’t modify it. The other side

of the coin comprises those functions that generate some state but never look back at it.

This is the case of a logging library. You are always adding messages to the log, but you

never look at the previous messages; you are interested only in increasing the log. For

that you should use the Writer monad, as usually available in mtl.

The key design decision that was made for this particular implementation of the

Writer monad is that every time you want to add some new value to the output state, the

way it is combined with the previous state is specified by an instance of Monoid. Here are

two examples that can help you understand better this fact:

	 1.	 If you are building a log composed of strings, the monoid structure

is that of the list type. The neutral element is the empty list, and

the operation to combine two strings is their concatenation. So, if

you want to build a log, you should use String as type parameter

to Writer.

	 2.	 Another place where some information can be seen as an output

parameter is in the case of counting the number of iterations for

the K-means algorithm. In that case, every time you perform some

number of iterations, you want it to be added to the current value.

So, the monoid structure is that of the integer with sum. Remember

that since numbers have usually two monoidal structures (one for

addition and another one for product), you need to wrap the values

inside the Sum newtype to use addition as an operation.

The way in which you modify the output state with a new value (which will get

combined with the previous value) is by using the tell function with that new value as

an argument.

accessDatabase :: Writer String ()

accessDatabase = do tell "Start database access"

 info <- readInformation

 computeValue info

 tell "Finish database access"

Since the initial value for the output information must be taken as the neutral

element of the corresponding monoid, you don’t need any extra argument to run a

Writer monad value using runWriter, which returns a tuple with both the return value

of the computation and the output information.

Chapter 6 Knowing Your Clients Using Monads

223

Writer is an example of a monad whose instance declaration is still accessible while

learning. Exercise 6-6 asks you to do so, taking care of some tricks needed to write the

correct types.

EXERCISE 6-6. INTERNALS OF THE WRITER MONAD

The Writer monad is simply the one corresponding to the type (a,m) for any Monoid

instance m. However, you cannot write directly instance Monoid m => Monad (a,m)

because the type parameter a must not be written in the declaration, or the kind won’t fit.

Thus, you need to use a newtype for the declaration.

newtype MyWriter m a = MyWriter (a,m)

Now you can write the declaration starting with instance Monoid m => MyWriter m.

Also, provide a definition for the tell function. Remember to first write down the specific

types of the return and (>>=) functions; it will make things a lot easier.

Haskell tries to carefully delimit how much power should be given to each function,

making the compiler able to detect more kinds of errors than in other languages. This

philosophy can be transported to the context or state of a particular function. You should

give only read access to the information that should be seen as constant, write-only

for output that won’t be queried, and read and write to the internal state that will be

manipulated. It seems that in many cases what you need is a combination of the Reader,

Writer, and State monads.

How monads can be combined is a topic for the next chapter, but for this specific

case the mtl developers have designed the RWS monad (the acronym comes from the

initial letter of each functionality it includes), which you can find in the Control.Monad.

RWS module. A specific value of this monad takes three type parameters: one for the read-

only context, one for the write-only output, and one for the mutable state. The operators

needed to access each component remain the same: ask and asks get the Reader value,

tell includes a new value in the Writer monad, and get, put, and modify are used to

query and update the State value.

Chapter 6 Knowing Your Clients Using Monads

224

Using RWS you can create your final version of K-means, which keeps the threshold

as the context, retains the number of iterations using the Writer monad, and uses the

centroids as the internal state to update. Notice how you need to wrap the integer values

into the Sum newtype to tell the compiler which monoid structure for integers you want

to use.

import Control.Monad (unless)

import Data.Monoid (Sum(..))

kMeans' :: (Vector v, Vectorizable e v)

 => [e] -> RWS Double (Sum Int) [v] ()

kMeans' points = do prevCentrs <- get

 let assignments = clusterAssignments prevCentrs points

 newCentrs = newCentroids assignments

 put newCentrs

 tell (Sum 1)

 t <- ask

 let err = sum $ zipWith distance prevCentrs newCentrs

 unless (err < t) $ kMeans' points

kMeans :: (Vector v, Vectorizable e v)

 => (Int -> [e] -> [v]) -> Int -> [e] -> Double -> ([v], Sum Int)

kMeans i n pts t = execRWS (kMeans' pts) t (i n pts)

As you can see, RWS provides an elegant way to design your functions, separating

explicitly the purpose of each piece of information. This monad is especially useful when

porting algorithms that have been developed before in an imperative language without

losing any purity in the process.

�Mutable References with ST
You have seen how a clever combination of extra arguments to functions and

combinators allows for easier descriptions of computations with state. Furthermore,

these abstractions can be turned into monads, which enable you to use the do notation,

making the code more amenable to reading. But apart from this, Haskell also provides

true mutable variables, in the same sense of C or Java, using the ST monad.

Chapter 6 Knowing Your Clients Using Monads

225

Caution T here’s a chance that after reading this section you will start using
the ST monad everywhere in your code. It’s interesting to know how this
monad works, because it can lead to more efficient implementations of some
algorithms and because it gives a glimpse of the full range of possibilities of
the Haskell Platform.

One question that may come to mind is, does the use of ST destroy the purity of the

language? The answer is that it does not. The reason is that the way ST is implemented

restricts the mutable variables from escaping to the outside world. That is, when you use

ST at a particular point, you can create new mutable variables and change them as much

as you want. But at the end of that computation, all the mutable variables are destroyed,

and the only thing that matters is the return value. Thus, for the outside world there’s no

mutability involved. Furthermore, the Haskell runtime separates the mutable variables

from different ST instances, so there’s a guarantee that mutable variables from different

realms won’t influence each other.

Let’s present the actors in the ST play. The first one is, of course, the ST monad from

the Control.Monad.ST module, which takes two type parameters, but only the second is

important for practical use. It’s the type of the return value of the computation (following

the same pattern as other state monads). The first argument is used internally by the

compiler to assign a unique identifier that will prevent different ST computations from

interfering. Once the computation is declared, it’s run simply by using it as an argument

to the runST function.

Inside ST computations, you can create mutable variables, which have the type STRef

a, from the Data.STRef module, where a is the type of the values that will be held in the

cell. All the definitions and functions related to STRefs live in the Data.STRef module

of the base package. Each new variable must be created with a call to newSTRef, which

consumes the initial value for the variable (uninitialized variables are not supported).

The result value is the identifier for that specific mutable variable, which will be used

later to access and modify its contents.

The value of a variable can be queried using readSTRef, which just needs the

variable identifier to perform its task. For updating a variable, as in the case of State, you

have two different means. You can either specify the new value using the writeSTRef

function; or you can specify a function that will mutate the current value of the STRef cell

into a new value. For that matter, you can use modifySTRef. However, since modifySTRef

Chapter 6 Knowing Your Clients Using Monads

226

is lazy on its application, there’s a strong recommendation against its use, because it

may lead to memory leaks similar to the ones shown in the previous chapter. Use instead

modifySTRef', which is strict.

For example, the following code computes the length of a list using ST. It starts

by creating a new mutable variable initialized to the value 0. Then, it traverses the

list, updating the value by 1 in each iteration. Notice that the code passes the specific

identifier for the mutable variable to be accessible in the traverseList function that you

defined.

listLength :: [a] -> Integer

listLength list = runST $ do l <- newSTRef 0

 traverseList list l

 readSTRef l

 where traverseList [] _ = return ()

 traverseList (_:xs) l = do modifySTRef' l (+1)

 traverseList xs l

Note  You cannot use map of fold directly on the list because you are in a
monadic context, and the types of those functions do not allow this. In the next
chapter, you will see how monadic counterparts to these exist, such as mapM,
foldM, and forM.

EXERCISE 6-7. K-MEANS USING ST

Implement the K-means algorithm using the ST monad. In particular, you must create one

STRef for holding the centroids that will be updated and another one for the number of

iterations.

Chapter 6 Knowing Your Clients Using Monads

227

�Summary
In this chapter, you finally got in touch with the notion of a monad.

•	 Several implementations of the K-means clustering algorithm were

presented, starting with a handwritten one, then refining it using

your own combinators, and finally creating versions using the State

and RWS monads.

•	 The chapter defined combinators for working with Maybe values in an

easier way.

•	 The chapter explained the monad, which is a way to combine

computations with some special characteristic, such as being able to

fail or having an internal state.

•	 Monads are one of the most important constructions in Haskell and

come with a custom syntax, called do notation, which you studied

in depth in this chapter. This is the most used style of writing

monadic code.

•	 You saw several other monads: Reader, which holds a read-only

context; Writer, which outputs a write-only value that is combined

using a monoid structure; RWS, which combines the three Reader,

Writer, and State monads; and ST, which implements controlled

mutable variables.

•	 Apart from monads, in this chapter lenses were introduced as a way to

query and update data structures in a common and powerful way.

Chapter 6 Knowing Your Clients Using Monads

229
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_7

CHAPTER 7

More Monads: Now for
Recommendations
The previous chapter introduced monads. In particular, the tasks of handling errors

using Maybe, constants using Reader, logging using Writer, and state were presented

through the same point of view, making clear how monad functions form the scaffolding

that combines code for all of them.

The list monad can also represent multiple outcomes of a function. This is useful

for modeling paths between years in time machines. However, you must be careful to

ensure that the code does not enter an infinite loop. You can avoid that problem by using

the Logic monad. As you can see, lists are important in Haskell programming; many

ideas and algorithms depend on their special structure. This chapter will also clarify the

interactions between lists and other monads.

Data mining is going to be an integral part of this chapter too. You will implement

the Apriori algorithm, which learns association rules from a data set. In short,

association rules express relations between variables, such as “most of the people who

buy a time machine also buy a travel guide.” Expressing the Apriori algorithm using the

list monad will unveil a new type class, called MonadPlus, which introduces choice to

the mix.

You have so far been looking at examples that use one monad at a time. And that

is generally what you’ll encounter as you program in Haskell. However, more complex

applications sometimes require the power of several monads, such as Maybe for handling

errors and Writer for logging information about the process. The most common way to

combine multiple monads is by using monad transformers, and that will be one of the

topics in this chapter.

230

�Returning More Than One Value
In the previous chapter you saw how the Maybe monad models functions that may fail.

Their monad functions allow you to thread successful values and stop as soon as the

first failure has been detected. If you look at lists with the same ideas, it can be said that

a function returning a list is really returning several possible values for the same input

arguments; an empty list will model failure, a singleton list will model a deterministic

computation that returns just a value, and a longer list will model many possible outputs or

paths of execution, usually expressed by saying that it models nondeterministic behavior.

Caution  The term nondeterministic is used differently when speaking about lists
in Haskell than when speaking about other kind of systems in computer science.
The term was chosen because when simulating a nondeterministic computation,
several outputs are possible, and this can be represented using a list. However, the
computation in a list monad is completely deterministic and pure, and it doesn’t
add any uncertainty in the way results are computed or ordered.

�The List Monad
Maybe forms a monad, so a fair question is whether lists also form one. One way to check

is by opening GHCi and calling return, a function that you know must be implemented

by any monadic type, and ask it to return a list. If the expression runs successfully, it

means that the type [] (remember, this is the name of the type of lists) is a monad. Let’s

do it with an easy example.

Prelude> return 1 :: [Integer]

[1]

You can see from the output not only that lists form a monad but also that the

Monad instance for lists is compatible with the previous discussion; a deterministic

computation with just one value is modeled as a singleton list. The second function

found in all monad instances is (>>=), the bind operator. Let’s first look at the bind

operator’s type when instantiated for this case.

(>>=) :: [a] -> (a -> [b]) -> [b]

Chapter 7 More Monads: Now for Recommendations

231

To check the bind operator’s behavior, let’s apply to a simple number list a

function that, given a number, will produce the double and the triple of that number

in a list.

Prelude> [1,2,3] >>= \x -> [2*x,3*x]

[2,3,4,6,6,9]

As you can see, the function is applied to each element of the list, and all the results

are gathered again into a new list. You have already seen a function with this “application

plus gathering” behavior. It is the composition of mapping over a list, which would

return a list of lists, and then flattening the result using concat.

Prelude> map (\x -> [2*x,3*x]) [1,2,3]

[[2,3],[4,6],[6,9]]

Prelude> concat $ map (\x -> [2*x,3*x]) [1,2,3]

[2,3,4,6,6,9]

However, the best way to understand why it’s said that the list monad models

nondeterminism is using some code with do notation. For example, the following piece

of code takes values from two lists and then computes the product of each pair. Check

the result carefully.

Prelude> :{

Prelude| do x <- [1,2,3]

Prelude| y <- [7,8,9]

Prelude| return $ x * y

Prelude| :}

[7,8,9,14,16,18,21,24,27]

The code has taken all possible values from the first list and all possible values

from the second list and has returned the application of the product function to

each pair. This example shows how the monadic notation may hide some surprises.

You may not expect from the <- syntax to take each of the values in the list in

order. Exercise 7-1 will help you fully grasp the behavior by explaining broken time

machines.

Chapter 7 More Monads: Now for Recommendations

232

EXERCISE 7-1. BROKEN TIME MACHINES

More often than should happen, time machines break. Imagine, for example, that you have a

time machine that jumps randomly between the previous year, three years into the future, and

five years into the future. Consider that to move four years into the future, you would need to

make a five-year leap followed by a one-year jump into the past.

Imagine that you have such a machine like this. Write a function named brokenThreeJumps

that, starting for a year, returns all possible years in which you can arrive after three jumps in

time with your broken time machine. Use the list monad and do notation.

Afterward, design a function called brokenJumps that generalizes the former and returns the

possible years after a specified number of jumps.

�A New View Over Monads
From the previous discussion, you can easily get the declaration of the monad instance

for lists. If you remember, a monad is composed of a return function, which wraps a

single value, and a bind function (>>=), which threads several computations in the

monad. The corresponding instance for list reads as follows:

instance Monad [] where

 return a = [a]

 x >>= f = concat $ map f x

However, there’s another possible way to define a monad, and lists are the perfect

example of this different view. Instead of (>>=), you define fmap and additionally a join

function, which should have the type m (m a) -> m a for each monad m. In the case of

lists, join boils down to having the type [[a]] -> [a]. And there you can find again our

old friend concat, which flattens lists.

Defining a monad in terms of these functions is equivalent to declaring it using

return and bind. In particular, every monad has a sensible definition for fmap and

join. You already know the definition of fmap for Maybe. Here’s the corresponding code

implementing join:

join :: Maybe (Maybe a) -> Maybe a

join Nothing = Nothing

Chapter 7 More Monads: Now for Recommendations

233

join (Just Nothing) = Nothing

join (Just (Just x)) = Just x

Since I’m talking about the equivalent of definitions, I should tell you how to define

(>>=) in terms of fmap and join, and vice versa. Let’s start with the bind operator. This is

the definition that I’m giving:

x >>= f = join $ fmap f x

As an exercise to build confidence in the validity of this rule, you can apply the left

side to the list monad and check whether the result is the same as the definition of (>>=).

The equational reasoning looks like the following example for the list case:

join $ fmap f x = concat $ map f x = x >>= f

So, at least for the list case, the equivalence holds. Now, let’s go for the converse

equivalences.

fmap f x = x >>= (\y -> return $ f y)

join x = x >>= id -- id is the identity function, id x = x

A good exercise to refresh your knowledge about equational reasoning is checking

that the converse definitions hold for the list monad, as I just did in the preceding code.

Note  You have just seen another way in which you can get a definition of fmap
using the monad functions, apart from using liftM as explained in the previous
chapter. Every type that belongs to the Monad type class can also be made an
inhabitant of the Functor type class in a uniform way. As I have already explained,
this is reflected in the actual definition of the Monad type class, but for the time
being we look at those two classes in isolation.

�Failures and Alternatives
Some monads implement a concept of failure, which is supported by the fail function

in the MonadFail type class. But in some cases, apart from failure, you have the concept

of multiple successes, as happens with []. For them, the standard library includes the

Chapter 7 More Monads: Now for Recommendations

234

MonadPlus type class, which extends Monad with two operations. This type class is found

in the Control.Monad module, which also includes a lot of utility functions that will be

discussed later. The full declaration of the type class is shown here for reference:

class Monad m => MonadPlus m where

 mzero :: m a

 mplus :: m a -> m a -> m a

The mzero function is the one supporting failure. Note that this function returns a

value that is parametric on every possible element wrapped by the monad, without any

input from outside. In the case of lists, this means that only one kind of value can be

returned, the empty list, because it is the one that you can build in such a way. You can

verify the empty list by using the interpreter as follows:

*Chapter7.MonadPlus> import Control.Monad

*Chapter7.MonadPlus Control.Monad> mzero :: [Integer]

[]

Successes from multiple branches of execution can be joined together using the

other operation, mplus. Since lists model the multiple success values as their elements,

joining several paths should be like concatenating both lists. For example, let’s define

two different ways in which a time machine could be broken: one traveling randomly

between the previous year and the next year and another traveling randomly between

the year 1024 and two years into the future.

broken1 :: Integer -> [Integer]

broken1 n = [n-1, n+1]

broken2 :: Integer -> [Integer]

broken2 n = [1024, n+2]

You might have a time machine and not know how it is broken. Thus, it makes sense

to put together all possible years to which such a machine may travel, either as broken1

or as broken2. This disjunctive behavior is exactly what is captured by the mplus function

in MonadPlus.

*Chapter7.MonadPlus Control.Monad> broken1 73 `mplus` broken2 73

[72,74,1024,75]

Chapter 7 More Monads: Now for Recommendations

235

The most important function using the failure behavior of a monad is guard. You

will see examples of its use in the implementation of the Apriori algorithm. But first, let’s

introduce its type and definition, which is quite small but has big implications on the

way you use it.

guard :: MonadPlus m => Bool -> m () -- for list, Bool -> [()]

guard True = return () -- for list, [()]

guard False = mzero -- for list, []

Notice that the function returns some value, but there’s no interesting value saved

within as it is an empty tuple. Thus, in practice guard is never used in conjunction with

<- to get its value. To understand the function’s behavior, let’s focus on the following

piece of code:

do guard condition

 return 1

This code will be translated by the compiler into a form without do notation, as

shown in the previous chapter.

guard condition >>= (_ -> return 1)

Going a step further and replacing the monad functions by the specific definitions

for lists, the code reads as follows:

concat $ map (_ -> [1]) (guard condition)

The first possible case is that the condition is satisfied. Then, guard condition is

equivalent to [()]. The evaluation steps in that case are as follows:

concat $ map (_ -> [1]) [()] = concat [[1]] = [1]

However, when the condition is False, then the guard condition is equivalent to an

empty list. This means that when performing the map operation, the resulting list will

also be empty. In this way, the guard ensures that when the condition is not fulfilled, no

values are returned.

Creating a new type class, MonadPlus, and including it in the basic distribution

wouldn’t make sense if lists are the only type for which an instance exists. But this is not

the case because an instance for Maybe is also included, and it’s convenient to use. Until

now, you have learned how a do block with a bunch of Maybes returns a Just only if all its

Chapter 7 More Monads: Now for Recommendations

236

intermediate computations have also returned a Just value. This was useful for writing

code that accesses a database and tries to get a final result by joining different pieces of

information; if any of it fails, the whole process should be considered as failed. In the

previous chapter, you saw the following code:

do n <- numberItemsByPurchaseId purchaseId

 productId <- productIdByPurchaseId purchaseId

 price <- priceByProductId productId

 return $ fromInteger n * price

Sometimes the behavior you want to obtain is not a series of accesses, all of which

should be done correctly. Instead, you might want one main way to get the information

along with a fallback case. Only if both fail would the entire process fail. Once again, this

possibility of falling back when one Maybe operation fails is an example of a disjunctive

behavior captured by the MonadPlus type class. For example, let’s see what the

interpreter gives back when you model the first computation as failed using Nothing.

*Chapter7.MonadPlus Control.Monad> Nothing `mplus` Just 5

Just 5

The code falls back to the second option, which is the one returned. In the case that

both computations are correct, the Monad instance for Maybe gives priority to the leftmost

one, as shown in this example:

*Chapter7.MonadPlus Control.Monad> Just "first" `mplus` Just "second"

Just "first"

While reading the previous presentation of MonadPlus, another type class may come to

your mind: Monoid. In some sense, mzero is a bit like mempty on monoids, and mplus is a bit

like mappend. However, these two type classes should not be confused. mplus one works over

a specific data type, whereas mzero is to be applied over data types that admit a type variable.

That means [Integer], a specific data type with no type variables, can be made a Monoid

but not a MonadPlus. On the other hand, a polymorphic type such as [a] can be made a

MonadPlus but never a Monoid. In the language of kinds, you would say that the Monoid type

class applies to types of kind *, whereas MonadPlus applies to types of kind * -> *.

In the same line of this relation, Control.Monad features a couple of functions similar

to monoidal ones. msum is one of those, which corresponds to the mconcat in the Monoid

case, and which folds over a list of values using the combination operation (mappend for

Chapter 7 More Monads: Now for Recommendations

237

monoids, or mplus for MonadPlus). Once again, the difference in kinds can be observed

in the types of these functions. mconcat has type Monoid m => [m] -> m, and msum is

typed as MonadPlus m => [m a] -> m a. You can find two examples of its use here.

Think carefully about the results.

*Chapter7.MonadPlus Control.Monad> msum [[1],[2,3],[],[1,2]]

[1,2,3,1,2]

*Chapter7.MonadPlus Control.Monad> msum [Nothing, Just 1, Just 2, Nothing]

Just 1

The other specific function for MonadPlus is mfilter. In this case, the function being

generalized is filter. The function mfilter returns all the values satisfying a condition

but joined using the mplus operation of MonadPlus. Exercise 7-2 shows how you can use

the msum function to implement a related functionality: searching for an element in a list.

EXERCISE 7-2. SEARCHING WITH MONADPLUS

Write a find_ function with type (a -> Bool) -> [a] -> Maybe a that returns the first

element in the list that fulfills the given condition. Do so using the function msum introduced in

this section and the behavior of the MonadPlus instance of Maybe.

�Association Rules Learning
In the previous chapter, the focus was on discovering similar kinds of clients in order to

create better advertising campaigns targeting one or more of these groups. Now, the aim

is to perform data mining over the data set in order to be able to suggest new products

to buyers while they are surfing the web store. To do so, one simple option is to use

association rules.

In association rule learning, you assume that your data is composed of a series of

transactions, each of them being a set of items. You can think of each transaction as

coming from a row or set of associated rows in a regular database. For example, you can

begin from the following piece of information:

The company Wormhole Inc. bought the travel guide with product
identifier 3.

Chapter 7 More Monads: Now for Recommendations

238

From this bit of information, you can derive the following transaction:

 { company, name "Wormhole Inc.",

 purchased travel guide,

 purchased product 3 }

These items are generated from a set of possible ones. Since information is usually

represented in Haskell as a tree of values, you will first need to implement a way to

translate those values into a flat representation made of transactions.

From those transactions, your aim is to create association rules. These rules

are formed by two sets of items, the antecedent A and the consequent C, and are

represented by A => C. The meaning of such a rule is that, often, when a transaction

contains the items in A, it also contains the items in C. An example may be {

individual, purchased time machine } => { purchased travel guide }, telling

that usually when an individual has bought a time machine, it will also buy a travel

guide, so you can do better by suggesting the available guides.

To finish this overview, I need to introduce two measures associated with sets of items

and rules. The support of a set of items is defined as the ratio of transactions that contain

the mentioned set of items. For example, if your transactions are [{a, b}, {a, c}, {b,

c}], the support of {b} is computed by dividing the number of transactions that contain b

(in this case 2) by the total amount of transactions (here, 3). So, support({b}) = 2/3 = 0.66.

The confidence of a rule A => C is defined as support(A and C) / support(A). This

measure quantifies how many transactions support the rule by looking at the ratio

of those transactions that fulfill the entire rule and those transactions that fulfill the

antecedent.

�Flattening Values into Transactions
As explained earlier, the process of learning the association rules works over flat sets of

items instead of composite values. In this section I will introduce those functions that

will turn composite values into flat sets of items. As a reminder, here is the description of

clients and the data types for products:

-- Clients

data Client = GovOrg { clientName :: String }

 | Company { clientName :: String

 , person :: Person, duty :: String }

Chapter 7 More Monads: Now for Recommendations

239

 | Individual { person :: Person }

 deriving (Show, Eq, Ord)

data ClientKind = KindGovOrg | KindCompany | KindIndividual

 deriving (Show, Eq, Ord)

data Person = Person { firstName :: String, lastName :: String

 , gender :: Gender }

 deriving (Show, Eq, Ord)

data Gender = Male | Female | UnknownGender deriving (Show, Eq, Ord)

-- Products

data Product = Product { productId :: Integer, productType :: ProductType }

 deriving (Show, Eq, Ord)

data ProductType = TimeMachine | TravelGuide | Tool | Trip

 deriving (Show, Eq, Ord)

A purchase in the database is then just the aggregation of a client and a set of

products.

data Purchase = Purchase { client :: Client, products :: [Product] }

 deriving (Show, Eq, Ord)

The items in a transaction will reflect useful information about a purchase, such

as the kind and identifier of purchased product and the kind of client (government

organization, company, or individual). In the case of companies, there’s also interest

in knowing the role of the person responsible for the purchase and, in the case of

individuals, of knowing the gender if that information is available.

data PurchaseInfo = InfoClientKind ClientKind

 | InfoClientDuty String

 | InfoClientGender Gender

 | InfoPurchasedProduct Integer

 | InfoPurchasedProductType ProductType

 deriving (Show, Eq, Ord)

Chapter 7 More Monads: Now for Recommendations

240

To make the code clearer and type safer, let’s create a newtype to tag those sets used

as transactions.

import Data.Set (Set)

import qualified Data.Set as S

newtype Transaction = Transaction (Set PurchaseInfo)

 deriving (Eq, Ord)

As an example, here is the code that converts the information in a product/

purchase into a real transaction. Check that most of the work is just transposing

some fields into values of the PurchaseInfo type. In Exercise 7-3, you will be asked

to write the clientToPurchaseInfo function that is missing in the declaration of

purchaseToTransaction.

productsToPurchaseInfo :: [Product] -> Set PurchaseInfo

productsToPurchaseInfo = foldr

 (\(Product i t) pinfos -> S.insert (InfoPurchasedProduct i) $

 S.insert (InfoPurchasedProductType t) pinfos)

 S.empty

purchaseToTransaction :: Purchase -> Transaction

purchaseToTransaction (Purchase c p) =

 Transaction $ clientToPurchaseInfo c `S.union` productsToPurchaseInfo p

EXERCISE 7-3. CLIENTS INTO ITEMS

Write the missing clientToPurchaseInfo function. It should have type Client -> Set

PurchaseInfo and should satisfy the requirements for obtaining items from clients that I

explained while defining the PurchaseInfo data type. Here’s an example showing the return

value for a test:

*> clientToPurchaseInfo (Company "1984 Inc." (Person "George" "Orwell" Male)

"Director")

fromList [InfoClientKind KindCompany,InfoClientDuty "Director"]

As you can see, from a simple Client you get a whole set of items.

Chapter 7 More Monads: Now for Recommendations

241

�The Apriori Algorithm
One of the simplest algorithms for mining association rules is Apriori, introduced in

1994 by Agrawal and Srikant. The Apriori algorithm works in two phases.

•	 First, it generates sets of items that fulfill the condition of minimum

support, called frequent sets.

•	 Then, from those sets, it derives association rules with a minimum

confidence.

The result is a set of association rules known to satisfy some minimum value for

both measures. By changing those values, you can experiment by creating more or fewer

rules. Creating many rules has the problem of overfitting; the rules are true in the specific

data set you are using, but they cannot be generalized and applicable to new scenarios.

Thus, creating fewer rules increases the confidence in the further applicability of them.

The main flow of the Apriori algorithm is pictured in Figure 7-1, along with the types

involved in each step.

Chapter 7 More Monads: Now for Recommendations

242

[Transaction]

[FrequentSet]

for each frequent set

generate frequent
sets of size 1

generate L1

partition

grow frequent sets

generate Next LK

generate assoc rule

generate Assoc Rules

> min confidence?

yes

keep

[Assoc Rule]

Figure 7-1.  Apriori algorithm

Chapter 7 More Monads: Now for Recommendations

243

The way in which the first phase works is derived from an observation: if you have a

set of items I with a support s, any subset of I will have a support equal or greater than s

(because all the transactions that made I have such support, thus it will also be counted

for any of its subsets). This means you can reuse the sets with n items to create larger

sets of n+1 items by taking those that have an intersection of n-1 items, joining them,

and then looking to see whether they fulfill the required support. From what I have just

explained, it does not make sense to join sets of items that have a support below the

minimum because the join will never satisfy the condition.

Note  The actual algorithm performs some nice tricks at this point in order to
generate a smaller number of item sets from the previous ones and thus have to
do fewer checks.

Let’s introduce the data type for association rules and sets of items in this phase.

Remember, they are called frequent sets. Here is the code to review:

newtype FrequentSet = FrequentSet (Set PurchaseInfo)

 deriving (Eq, Ord)

data AssocRule = AssocRule (Set PurchaseInfo) (Set PurchaseInfo)

 deriving (Eq, Ord)

instance Show AssocRule where

 show (AssocRule a b) = show a ++ " => " ++ show b

Along with the data type definitions, you will need helper functions for computing

the confidence and support measures for frequent sets and association rules,

respectively. As you can see, this code is not tuned for performance because it calls

length repeatedly on lists. Thinking about how to increase the speed of the following

code is a good exercise.

setSupport :: [Transaction] -> FrequentSet -> Double

setSupport trans (FrequentSet sElts) =

 let total = length trans

 f (Transaction tElts) = sElts `S.isSubsetOf` tElts

 supp = length (filter f trans)

 in fromIntegral supp / fromIntegral total

Chapter 7 More Monads: Now for Recommendations

244

ruleConfidence :: [Transaction] -> AssocRule -> Double

ruleConfidence trans (AssocRule a b) =

 setSupport trans (FrequentSet $ a `S.union` b)

 / setSupport trans (FrequentSet a)

The first thing to do is to generate the initial sets of one element that are frequent.

In the following code, instead of using list functions or comprehensions, I’m using list

as a monad. Don’t get confused by the conversions from set to list via S.toList. Also,

do not be confused by the wrapping of the singleton set into a FrequentSet. That is just

boilerplate and not the real point of this code.

import Control.Monad

generateL1 :: Double -> [Transaction] -> [FrequentSet]

generateL1 minSupport transactions =

 noDups $ do Transaction t <- transactions

 e <- S.toList t

 let fs = FrequentSet $ S.singleton e

 guard $ setSupport transactions fs > minSupport

 return fs

-- noDups removes duplicates in a list

noDups :: Ord a => [a] -> [a]

noDups = S.toList . S.fromList

The relevant parts are how the code uses <- from the do notation to resemble the

list comprehension syntax (as you will see later, this is not by chance) and the guard

function that was introduced in the previous section.

The previous code also uses a special definition of a function that removes

duplicates, namely, noDups. In Chapter 4, I discussed how the basic function in the

Prelude for this task, named nub, but is quite slow. Converting to a set and from it back

to a list is a more performant way to accomplish this same task.

The next step in the algorithm is how to generate the frequent sets of level k+1 from

the frequent sets of level k. As I discussed earlier, this can be done in two steps. First

check whether each pair of sets of level k share k-1 elements and then check whether

the combined set fulfills the minimum support condition. Before looking at the code,

let’s see briefly what it’s going to be doing with this function. You need to create more

Chapter 7 More Monads: Now for Recommendations

245

and more levels from the previous ones until you find an empty frequent set. You

already know this pattern of generating elements until some condition is reached; it’s

an “unfold.”

Since you already know that you want to use the unfoldr function to generate the

list, it’s time to plug in the information specific to this case. As you know, unfoldr uses a

seed value that is changed and threaded while creating new elements. Which pieces of

information will be held in this value? You need at least the frequent sets of the previous

level. But, to be able to know whether two frequent sets share k-1 elements, it’s also

useful to thread the level you are working with at that moment (in other cases you would

have to recompute it from the number of elements in the sets). So, the seed value will

have type (Int, [FrequentSet]).

In each level, the algorithm will produce a list of frequent sets, so the element type

in unfoldr needs to be [FrequentSet]. This poses a problem: the result of unfolding

will have type [[FrequentSet]] instead of a plain list called [FrequentSet]. The easiest

way to solve this problem is by including a call to concat, which flattens the list. In

conclusion, a new function generateNextLk is defined next. Check how guard is used to

cut from the list of frequent sets all those that don’t fulfill the conditions.

generateNextLk :: Double -> [Transaction] -> (Int, [FrequentSet])

 -> Maybe ([FrequentSet], (Int, [FrequentSet]))

generateNextLk _ _ (_, []) = Nothing

generateNextLk minSupport transactions (k, lk) =

 let lk1 = noDups $ do FrequentSet a <- lk

 FrequentSet b <- lk

 guard $ S.size (a `S.intersection` b) == k - 1

 let fs = FrequentSet $ a `S.union` b

 guard $ setSupport transactions fs > minSupport

 return fs

 in Just (lk1, (k+1, lk1))

At this point you have all the ingredients for generating the frequent sets of all levels. You

only need to have repeated calls to generateNextLk, threading the previous frequent sets

and the level number. This is a perfect job for unfoldr. Thus, a possible way to generate the

frequent sets, given l1 as the initial frequent set returned by generateL1, is the expression

shown next. This expression will be part of the whole implementation of the Apriori algorithm.

concat $ unfoldr (generateNextLk minSupport transactions) (1, l1)

Chapter 7 More Monads: Now for Recommendations

246

The final step is to generate association rules with a minimum confidence. The

way in which the Apriori algorithm works at this point is as follows: take a frequent

set I from the previous steps. Then, partition the set into two disjointed sets A and

B such that A is not empty. Each partition will give rise to a rule A => B, which

should be checked for minimum confidence. This should be done for each possible

partition of each frequent set, which would be obtained by the powerset function.

This is a perfect job for the list monad. The Haskell code is a straightforward

translation of this description:

generateAssocRules :: Double -> [Transaction] -> [FrequentSet]

 -> [AssocRule]

generateAssocRules minConfidence transactions sets =

 do FrequentSet fs <- sets

 subset@(_:_) <- powerset $ S.toList fs

 let ssubset = S.fromList subset

 rule = AssocRule ssubset (fs `S.difference` ssubset)

 guard $ ruleConfidence transactions rule > minConfidence

 return rule

powerset :: [a] -> [[a]]

powerset [] = [[]]

powerset (x:xs) = powerset xs ++ map (x:) (powerset xs)

The only thing left is gluing all these functions into an actual apriori function,

which should take the data set along with the minimum support and confidence values

and should return the association rules that fulfill those requirements. I have chosen to

use a direct style, passing the result of each function to the next one, but it could also be

written using lets for each step or in a point-free form.

import Data.List (unfoldr)

apriori :: Double -> Double -> [Transaction] -> [AssocRule]

apriori minSupport minConfidence transactions =

 generateAssocRules minConfidence transactions

 $ concat $ unfoldr (generateNextLk minSupport transactions)

 (1, generateL1 minSupport transactions)

Chapter 7 More Monads: Now for Recommendations

247

�Search Problems
Many problems in computer science can be better solved when looking at them as

search problems. In a search problem you don’t know how to come to an answer

directly, but you have a way to explore the space of possible solutions, and you

can do so until you find the correct answer. Usually, the way to explore the space

resembled the shape of a tree. From a possible solution you can create a set of other

possible solutions to check. In this way, looking for the wanted value is pretty similar

to traversing the tree.

�Paths in a Graph
Graphs are a good source of problems that can be solved using this approach. In this

section you will look at one instance of it. Previous chapters introduced the idea of

time machines that can travel only to specific points in time. The problem you need

to solve now is finding all possible journeys between two years. As in the previous

examples, the model will be a graph given by a list of edges, (start, end). Assume

also that there are no self-loops in it (i.e., there are no edges (y,y) with the same year y

in both components). Let’s think about the function signature. You are looking for a list

of paths, each of them represented as a list of years, between the node start and the

node end. Thus, you need the graph and two nodes, and the results will be a list of a list

of nodes.

paths :: [(Int,Int)] -> Int -> Int -> [[Int]]

paths edges start end = undefined -- code here

Remember that in real life, you would use instead the much more performant Data.

Graph module that was introduced in Chapter 4. However, for ease of exposition, in this

section I’m using a bare list of pairs to model the graph.

Note  The Prelude function undefined is customarily used as a placeholder
for code that hasn’t been written yet. Trying to execute this function will result in
an error, but it’s handy for designing the overall structure of the code, marking with
undefined those holes that will be filled later.

Chapter 7 More Monads: Now for Recommendations

248

As in any search algorithm, there are several cases to tackle. In the general case, you

must take all the nodes (o,t) whose origin is start (i.e., o coincides with the parameter

start) and find those paths between the target of that edge and the year you want to end

in. This logic can be coded easily with a combination of the list monad and the guard

function. As you can see, the following code is almost a transliteration of the logic that

has just been described:

import Control.Monad

paths :: [(Int,Int)] -> Int -> Int -> [[Int]]

paths edges start end =

 do (e_start, e_end) <- edges

 guard $ e_start == start

 subpath <- paths edges e_end end

 return $ start:subpath

However, this code is not yet right because you need to manage the case in which

you have reached the target year of your journey. In that case, you need to add to those

paths an extra one consisting of just one year, the one that is at the same time start and

end. To do so, you can use the (:) constructor to append the element at the beginning of

e_paths. However, in the following code I’ve rather chosen return and mplus in order to

show how MonadPlus functions can be used in this scenario.

paths :: [(Int,Int)] -> Int -> Int -> [[Int]]

paths edges start end =

 let e_paths = do (e_start, e_end) <- edges

 guard $ e_start == start

 subpath <- paths edges e_end end

 return $ start:subpath

 in if start == end

 then return [end] `mplus` e_paths

 else e_paths

If you take a graph like the following:

graph1 :: [(Int, Int)]

graph1 = [(2013,501),(2013,1004),(501,2558),(1004,2558)]

Chapter 7 More Monads: Now for Recommendations

249

you can easily get all paths from year 2013 to 2558 in GHCi.

*Chapter7.Graph> paths graph1 2013 2558

[[2013,501,2558],[2013,1004,2558]]

�The Logic Monad
However, loops can create problems when the search space is explored in a naïve way.

For example, take this other graph, where there’s a cycle between years 501 and 1004:

graph2 :: [(Int, Int)]

graph2 = [(2013,501),(501,2558),(501,1004),(1004,501),(2013,2558)]

The list of paths between years 2013 and 2558 is infinite (you can always loop once

more between years 501 and 1004). But you can still get a finite set of those paths, as this

example shows:

*Chapter7.Graph> take 3 $ paths graph2 2013 2558

[[2013,501,2558],[2013,501,1004,501,2558],

 [2013,501,1004,501,1004,501,2558]]

The problem you have here is that the path [2013,2558] will never be found because

the search strategy embodied in the list monad will first need to find all subpaths that

go through year 501 (because it was found earlier, while exploring the list of edges).

This is due to the fact that every time the list is traversed it is done in the order in which

they appear. However, the list of those subpaths is infinite, so the computation never

reaches the point at which the (2013,2558) edges are considered. In this case writing

(2013,2558) before (2013,501) would solve the problem, but we do not want to depend

on those details in general.

To get much better control over how the search proceeds, I will introduce the Logic

monad, which can be found in the Control.Monad.Logic module of the logict package

from Hackage (remember that you can install it using cabal install or adding it as a

dependency of a project). By default, this monad behaves as the list one, so almost all the

code from the previous example is valid now just by changing the type signature of the

function.

import Control.Monad.Logic

Chapter 7 More Monads: Now for Recommendations

250

pathsL :: [(Int,Int)] -> Int -> Int -> Logic [Int]

pathsL edges start end =

 let e_paths = do (e_start, e_end) <- choices edges

 guard $ e_start == start

 subpath <- pathsL edges e_end end

 return $ start:subpath

 in if start == end then return [end] `mplus` e_paths else e_paths

choices :: [a] -> Logic a

choices = msum . map return

The only important addition is the call to a newly defined choices1 function. This

function allows you to turn a list into a set of successes in your Logic computation. This

is done by returning each of the elements in the list (via map return) and then joining

these successes together with msum.

At this stage, the definition using the Logic monad suffers from the same problem

of the one implemented using lists. If you take the first three solutions, using the

observeMany function from the Control.Monad.List module, you can observe the same

behavior of traversing first all paths that go through year 501.

*Chapter7.Graph> import Control.Monad.Logic

*Chapter7.Graph Control.Monad.Logic> observeMany 3 (pathsL graph2 2013 2558)

[[2013,501,2558],[2013,501,1004,501,2558],

 [2013,501,1004,501,1004,501,2558]]

To solve this problem, Logic introduces a set of operators that are fair, that is, a set

of operators that do not give priority to any of the possible branches in the computation.

You can see the difference between mplus, the usual function for joining results that first

takes all those from the first argument and then those of the second; and interleave,

which takes one from each time it needs a further element.

*Chapter7.Graph Control.Monad.Logic> [1,2] `mplus` [3,4]

[1,2,3,4]

*Chapter7.Graph Control.Monad.Logic> [1,2] `interleave` [3,4]

[1,3,2,4]

1�The definition of choices is taken from the article “Adventures in Three Monads” by Edward
Z. Yang.

Chapter 7 More Monads: Now for Recommendations

251

There’s also a fair replacement of (>>=), called (>>-). However, since the bind

operator is different, you can no longer use do notation. Thus, you need to desugar the

pathsL function and write it using the monad primitives, as Exercise 7-4 asks.

EXERCISE 7-4. DESUGARING MONAD NOTATION

Using the rules explained in Chapter 6, rewrite the pathsL function using (>>=) and return

instead of the do notation. Remember that guard is a normal function, not special syntax, so

you don’t need to do anything differently than when using any other function.

The replacement of (>>=) by (>>-) gives the next iteration of the paths algorithm.

pathsLFair :: [(Int,Int)] -> Int -> Int -> Logic [Int]

pathsLFair edges start end =

 let e_paths = choices edges >>- \(e_start, e_end) ->

 guard (e_start == start) >>

 pathsLFair edges e_end end >>- \subpath ->

 return $ start:subpath

 in if start == end then return [end] `interleave` e_paths else e_paths

And now the problem is gone. Edges are visited in a different order, which gives fair

priority to all the elements, and you get the [2013,2558] path.

*Chapter7.Graph Control.Monad.Logic>

 observeMany 3 $ pathsLFair graph2 2013 2558

[[2013,501,2558],[2013,2558],[2013,501,1004,501,2558]]

This example has given just a shallow exposition of the features in logict. This

package provides many more combinators that allow the programmer to program

in a logical programming style, with backtracking, cuts, conditionals, and so on, so I

encourage you to look at its documentation if you need to implement solutions to other

search problems. Logic is also a sample of how monads can be used to embed other

paradigms of computation inside Haskell, without losing the native taste.

Chapter 7 More Monads: Now for Recommendations

252

�Monads and Lists Redux
Up to this point, you have seen examples of lists considered as monads being used in a

model that returns multiple values. In this section you will learn about two other ways in

which monads can relate to lists: first, functions performing operations like the usual list

ones (e.g., maps and folds) but that work in a monadic environment; then, how the list

comprehension syntax can be extended to work under any monad.

�Combining Values Under a Monad
In some cases, you want to execute a computation over all elements of a list but this

computation happens inside a monad, instead of being a pure function. For those cases,

the Control.Monad module contains a bunch of functions ending in M, which provide

similar functionality to usual list functions. In this section you will get a high-level

overview of them and see examples of where to apply them.

The first of these functions is mapM, and the type is Monad m => (a -> m b) ->

[a] -> m [b]. The mapM function applies a monadic function to each element of the

list, chaining the execution of each element inside the monad you are working on. For

example, say you have a simple function that prepends one string to another. But instead

of using an extra parameter, you want to use some global context modeled with the

Reader monad.

import Control.Monad.Reader

addPrefix :: String -> Reader String String

addPrefix s = ask >>= \p -> return $ p ++ s

If you now have a list of strings to which you want to prefix with that first string, your

intuition may be to use map. However, map wouldn’t be a solution. Let’s try to spot the

reason by looking at the type of the expression you want to execute.

*Chapter7.UnderAMonad> :t map addPrefix

map addPrefix :: [String] -> [Reader String String]

What you get using map is not a function that prefixes all the strings in the list. Rather,

the return value is a list of computations, with each of them needing a context in which

Chapter 7 More Monads: Now for Recommendations

253

to perform its actions. If you use mapM, all those computations would go under the same

Reader monad and thus share a context. That, it turns out, is exactly what you need.

addPrefixL :: [String] -> Reader String [String]

addPrefixL = mapM addPrefix

You can check that the function works as expected by testing it in the interpreter.

*Chapter7.UnderAMonad> runReader (addPrefixL ["one","two"]) "**-"

["**-one","**-two"]

In some cases, you are not interested in the results of the computations but just

in the other effects the functions have on the elements of a list. For example, say you

want to log a series of data using the Writer monad. You don’t really care in this case

about what to return, just about the fact that the strings are appended in the log of the

computation. For these cases, there is a version of mapM called mapM_ that doesn’t return

such values. Here’s how the log function would look using it:

import Control.Monad.Writer

logInformation :: [String] -> Writer String ()

logInformation = mapM_ (\s -> tell (s ++ "\n"))

And again you can use the interpreter to check that the function is working as

expected.

*Chapter7.UnderAMonad> runWriter $ logInformation ["one","two"]

((),"one\ntwo\n")

The Control.Monad module also provides functions forM and forM_, which are

simply mapM and mapM_ with their arguments reversed. That is, the list goes first and then

the function. Using forM, you can write code that looks a lot like a for-each loop in Java

or C#. The previous function can be rewritten as follows:

logInformation infos = forM_ infos $ \s -> tell (s ++ "\n")

mapM and forM are really specializations of the more general sequence function,

which executes all actions of a set of monad values under the same monad context. The

type of sequence is Monad m => [m a] -> m [a]. Exercise 7-5 provides hints for you to

write a definition of sequence and mapM.

Chapter 7 More Monads: Now for Recommendations

254

EXERCISE 7-5. A DEFINITION FOR SEQUENCE AND MAPM

Try to write the definition of sequence. Do it using do notation and pattern matching. Like

with any other list function, you should consider the cases of the empty list and the list with

some head and tail. Remember that x <- v “extracts” the value wrapped in a monad from v

:: m a into a binding x :: a.

For the mapM function, the hint is to write it as a composition of two other functions. The ones

you should use have already been showcased in the example of prefixing a list of strings with

a common prefix from a shared context.

Be aware that the behavior of sequence (and hence mapM and forM) is determined

mostly by the monad in which computation will happen. For example, if what you are

sequencing is a list of Maybe values, the behavior is to return Just only if all the elements

in the list are Just values and to return Nothing if any of the elements in the list is a

Nothing. This is derived from the way (>>=) works for Maybe.

The same way the module provides “upgraded” maps, it also provides folds that

work under a monad umbrella. The function that performs the task is foldM :: Monad

m => (a -> b -> m a) -> a -> [b] -> m a. Notice that there are no right and left

fold versions: foldM always performs a left fold (if you need to perform it rightward, just

reverse the list before applying the function). Once again, a logging facility provides you

with an example in which you would use this function. In this case, I’m going to present

you with a version of factorial that, in addition to calculating the result, takes care of the

number of folding steps needed for evaluation. The code uses (>>) instead of the do

notation because in this case it leads to much more concise code.

factorialSteps :: Integer -> Writer (Sum Integer) Integer

factorialSteps n = foldM (\f x -> tell (Sum 1) >> return (f*x)) 1 [1 .. n]

The last function in the walk-through is filterM, which filters some values on

the list based on a monadic predicate. It’s folklore in the Haskell community to use

filterM and the list monad to provide a concise definition of a function returning the

powerset of a list.

powerset :: [a] -> [[a]]

powerset = filterM (_ -> [False,True])

Chapter 7 More Monads: Now for Recommendations

255

This function works by using at its core the nondeterministic nature of computations

under the list monad. Instead of returning merely True or False as whether to include

an element in the filtered list, the powerset function uses an expression that returns both

choices (these can be seen more clearly if you rewrite [False,True] to return False

`mplus` return True). All the possible choices for each of the elements will create a set

of possible states: one per each subset of the original list.

In addition to mapM, forM, sequence, foldM, and filterM, there are other functions

such as zipWithM and replicateM that behave as counterparts of list functions and that

can be useful in a wide variety of situations. I encourage you to read their documentation

in Hackage.

LIFTM AND AP

In the previous chapter you saw how every monad admits a function called liftM of type

Monad m => (a -> b) -> m a -> m b. This function allows you to convert any pure

function into a function working on a monad (usually called lifting). As you already saw, this

makes every Monad a Functor. This goes on until you find a function with more than one

parameter that you want to be lifted. For that case, the Control.Monad module provides the

functions liftM2, liftM3, and so on, which convert into monadic form functions with two,

three, or more arguments.

However, it seems that the need of a family of functions, one per each number of arguments,

is not very coherent with the elegance that Haskell code usually has. One would expect a

solution that works for every number of arguments.

This solution exists, and it’s called ap. This function has type Monad m => m (a -> b) ->

m a -> m b. This small change in signature allows you to chain several of these functions

together. For example, say you want to lift the compare function. First you wrap the entire

function into a monad to satisfy the type of the first argument. You do so via the following:

Prelude> :t return compare

return compare :: (Monad m, Ord a) => m (a -> a -> Ordering)

Next you use ap to feed the first argument. Then, you get back another function that expects

one parameter less. You can think of ap as a replacement of ($) when using monads. So,

assuming x has type m a, then you get this:

return compare `ap` x :: (Monad m, Ord a) => m (a -> Ordering)

Chapter 7 More Monads: Now for Recommendations

256

Finally, you can use ap again to feed the last argument and get the final result.

As a rule of thumb, you can replace any call of the form liftMn f x1 x2 ... xn by

returning f `ap` x1 `ap` x2 `ap` ... `ap` xn. The ability to do so will play

an important role in another important Haskell type class, Applicative, which will be

introduced in Chapter 10.

�Monad Comprehensions
The similarity between list comprehension syntax and do notation is not a coincidence.

Indeed, in the olden days of Haskell, back in 1992, Philip Wadler proposed a general

syntax that worked for any monad. However, it was decided to keep the do notation

for arbitrary monads separate and to use comprehension syntax only for lists. In 2011,

redesigned monad comprehensions were introduced in the GHC compiler, which can be

enabled using the MonadComprehensions extension.

The best way to understand the monad comprehension syntax is by comparing it to

the do notation, which should be familiar to you at this point. The first translation rule says

that generators in a syntax comprehension correspond to bindings in do notation. Or more

easily, e <- m is kept as is between both syntaxes. The expression at the beginning of the

comprehension is translated into a call to return in do notation. With these two rules, you

can translate the example with Maybe in the previous chapter, which read as follows:

purchaseValueWithDo :: Integer -> Maybe Double

purchaseValueWithDo purchaseId

 = do n <- numberItemsByPurchaseId purchaseId

 productId <- productIdByPurchaseId purchaseId

 price <- priceByProductId productId

 return $ fromInteger n * price

into comprehension syntax as follows:

{-# LANGUAGE MonadComprehensions #-}

Chapter 7 More Monads: Now for Recommendations

257

purchaseValueWithDo :: Integer -> Maybe Double

purchaseValueWithDo purchaseId =

 [fromInteger n * price

 | n <- numberItemsByPurchaseId purchaseId

 , productId <- productIdByPurchaseId purchaseId

 , price <- priceByProductId productId]

On the other hand, you have seen that comprehensions allow for a much richer

syntax than merely generators. Monad comprehensions can also be used with that

other syntax, but in many cases doing so requires the monad to implement a type class

stronger that a mere Monad. Guards are an example and are translated into calls to the

guard function, so the expression must be wrapped in a MonadPlus instance. Here’s an

example:

[price | price <- priceByProductId productId, price > 5.0]

The previous code would be translated into the following:

do price <- priceByProductId productId

 guard price > 5.0

 return price

Grouping and parallel comprehensions also require a monad that instantiates

the MonadGroup (providing mgroupWith) and MonadZip (providing mzip) type classes,

respectively. However, these instances are provided in the Haskell Platform only for the

list monad, and third-party packages implement only those type classes for data types

that resemble that structure (such as database tables), so I won’t delve into more detail

at this point.

Transformations are a bit tricky to understand with list comprehensions. In general,

an expression such as [g x1 ... xn | x1 <- m1, ..., xn <- mn, then f by e] is

translated into the following:

do (x1, ..., xn) <- f (\(x1, ..., xn) -> e)

 (do x1 <- m1

 ...

 xn <- mn

 return (x1, ..., xn))

 return g x1 ... xn

Chapter 7 More Monads: Now for Recommendations

258

This code is quite complex, but it can help you to understand why a complex

expression works. For example, in Chapter 3 you can find the following expression: [x*y

| x <- [-1,1,-2], y <- [1,2,3], then sortWith by x]. Using the translation rules,

this expression is equivalent to the following:

do (x, y) <- sortWith (\(x, y) -> x)

 (do x <- [-1,1,2], y <- [1,2,3], return (x,y))

 return $ x*y

These translations (even when in appearance they are just different ways to tell the

same thing and thus repetitive) can help by shedding light on what monads really are

and on their relation to other computational structures. For example, if you know Scala,

you may be aware that an expression such as the following:

for (x <- List(-1,1,2) ; y <- List(1,2,3) if x < y) yield x*y

is translated by the compiler as follows. Consider that Scala uses object-oriented

notation, so map and flatMap are written as methods of the lists, and anonymous

functions are introduced with => instead of ->.

List(-1,1,2).flatMap(x => List(1,2,3).withFilter(y => x < y).map(y => x*y))

What you can see here is that the idea is the same as monad comprehensions in

Haskell. The main difference between both languages is that Scala decided to model

monad-like structures using flatMap, which is equivalent to the join combinator

introduced at the beginning of the chapter. But, as you saw earlier, both definitions are

equivalent.

You can find monad ideas in other, unexpected places. For example, recent versions

of C# introduce a SQL-like syntax. In the language reference, you’ll find a translation

from this syntax to standard function calls. One of the important methods involved in

such translation is SelectMany, whose signature is as follows:

public static IEnumerable<TResult> SelectMany<TSource, TResult>

 (this IEnumerable<TSource> source

 , Func<TSource, IEnumerable<TResult>> selector)

The syntax is a bit verbose, but it can be easily understood. The type parameters

to parametric types are given between < and >. Furthermore, all type parameters in a

method signature must be given explicitly (that’s why you have <TSource, TResult>

Chapter 7 More Monads: Now for Recommendations

259

after the method name). There’s no special syntax for the function type; it’s just called

Func. So, if I had to translate this signature into Haskell, it would read as follows:

selectMany :: IEnumerable TSource

 -> (TSource -> IEnumerable TResult)

 -> IEnumerable TResult

But this is just the type signature of the (>>=) monad function! This shows you can

also come to monads starting with basic SQL syntax. Indeed, this SQL-like syntax is now

used in ways that were not expected at the beginning, such as for managing tasks, but

that makes sense when you consider their relation to monads.

My hope with these last examples in other languages is that you relate one of the core

concepts in Haskell, the monad, to what you may already know from your programming

experience in other languages.

�Combining Monads
In this chapter and the previous one I’ve been careful about selecting examples that use

only one monad (even RWS, which works as a union of Reader, Writer, and State, is just

one single monad). It’s clear, though, that in some cases you will need the combination

of several monads to architect your code. There are many algorithms that are better

explained as a combination of State for keeping some internal data and the possibility

of failure that Maybe gives you. In this section you will see how monads can be combined,

with a special focus on monad transformers.

In some cases, you could roll your own monad combination. Let’s take as an example

a function that will get all possible paths between two points in a graph (like the paths

function introduced earlier) but will manage the path as the output of a Writer monad.

import Control.Monad

import Control.Monad.Writer

pathsWriter :: [(Int,Int)] -> Int -> Int -> [[Int]]

pathsWriter edges start end = map execWriter (pathsWriter' edges start end)

pathsWriter' :: [(Int,Int)] -> Int -> Int -> [Writer [Int] ()]

pathsWriter' edges start end =

Chapter 7 More Monads: Now for Recommendations

260

 let e_paths = do (e_start, e_end) <- edges

 guard $ e_start == start

 subpath <- pathsWriter' edges e_end end

 return $ do tell [start]

 subpath

 in if start == end then tell [start] : e_paths else e_paths

Notice two things in this code. First, it uses the Monoid instance of lists and uses it

in the Writer. Second, you must explicitly manage the change in monad. You can see

that clearly in this code because there is a nested do block. In this case, this block is

just creating a new Writer computation by telling the start year before executing the

Writer computation for a subpath. Finally, you also need to manually consider how to

execute the computations that were created; in this case, the solution has been to map

execWriter over every element returned by pathsWriter'.

In this case, the code is still quite readable, and the places where you use each

monad are clearly delimited (the first part of the do block uses the list monad

to span several possible paths, and the Writer part is confined to the nested

block). However, if the code turns more complex, you may need to manually

call execWriter in the middle of the code and feed the resulting state from that

computation into the next Writer block. Clearly, a better solution is needed for

monad composition.

�Monad Transformers
Monad transformers are the preferred way in Haskell to combine the effect of several

monads into a new one. Other approaches to combining computational effects (failure,

state, etc.) have been (and continue to be) proposed, but transformers continue to

be the most used option. The transformers and mtl packages (short for Monad

Transformer Library) have hundreds of packages depending on them. In short, a monad

transformer takes some base monad and transforms it into a new monad with some extra

computational effects. For example, in the previous code I used the type [Writer [Int]

()], which can be seen as the list monad [()] (which adds nondeterminism) being

transformed to add extra output (in the form of the Writer [Int] monad). Formally, a

monad transformer is a data type with the following structure:

MonadT e1 ... en m a

Chapter 7 More Monads: Now for Recommendations

261

Let’s go element by element through the general transformer type to understand the

common structure.

•	 MonadT is the name of the monad transformer. It usually coincides

with the name of the monad whose effects the transformer adds. For

example, StateT adds state functionality to other monad, ListT adds

nondeterminism, ReaderT adds a read-only context, and so on.

•	 e1 ... en represent any extra type variables that the monad

transformer may need. In most cases it is none, like MaybeT or ListT,

or just one, like the transformers for state that need the type of the

internal state; but in some cases, like the RWST transformer, it needs

more (RWST needs one for read-only context, one for write-only

output, and one for state).

•	 Then the monad to be transformed or wrapped (both terms are used

interchangeably) comes in the position of the m type variable.

•	 The result of MonadT e1 ... en m must be a monad itself, so it takes

an extra parameter a to make it of kind * -> *, as expected.

As a result of this structure, a monad obtained by transformation looks a lot like an

onion, with an inner monad in its heart and several layers adding extra functionality to

this base monad. The downside of this is that computations in an inner layer must be

“brought up” until you reach the outermost layer. This functionality is provided by the

only function of the MonadTrans type class, which the class of all monad transformers,

named lift.

class MonadTrans t where

 lift :: Monad m => m a -> t m a

For example, if you want to translate the previous code into using monad

transformers, you must include a lift in the access to the edges argument in order to

use the do notation. With that extra call, the type changes into the monad used in the

example.

lift edges :: WriterT [Int] [] ()

This way you can rewrite the example using monad transformers. Check how the

nested do block has disappeared. As explained earlier, a lift on edges was needed;

but notice how it is not needed when using tell because this is functionality in the

Chapter 7 More Monads: Now for Recommendations

262

outermost layer of the monad. Also, the code was changed to use the MonadPlus function

mplus instead of the more concrete (:) list constructor.

import Control.Monad.Writer

pathsWriterT' :: [(Int,Int)] -> Int -> Int -> WriterT [Int] [] ()

pathsWriterT' edges start end =

 let e_paths = do (e_start, e_end) <- lift edges

 guard $ e_start == start

 tell [start]

 pathsWriterT' edges e_end end

 in if start == end then tell [start] `mplus` e_paths else e_paths

Like with other monads, each monad transformer has a corresponding function for

running the computation given the extra information that such a monad would need.

In this example, instead of execWriter, the code uses execWriterT, which returns the

write-only output wrapped in the inner monad, in this case, a list.

pathsWriterT :: [(Int,Int)] -> Int -> Int -> [[Int]]

pathsWriterT edges start end = execWriterT (pathsWriterT' edges start end)

One important thing to remember is that monad transformers are not

conmutative. That is, the computational effect of the resulting monad depends on

the other transformations. For example, the monad StateT s [] can represent those

nondeterministic computations where each of the paths has a different result and a

different internal state. But ListT (State s) represents those computations where

several results can be returned, but the state is shared among all the branches.

One rule of thumb is that effects are stacked intuitively in reverse order in which

they appear in the transformer onion. This coincides to the previous description:

StateT s [] first adds state to the mix and then the results with state are wrapped into

nondeterminism, whereas ListT (State s) first adds nondeterminism to the result and

then a state to the whole.

Consider the following example that combines Reader and Writer, the former being

the outer layer (and thus requiring a lift for using tell, which works on the Writer

layer):

import Control.Monad.Reader

Chapter 7 More Monads: Now for Recommendations

263

readerWriterExample :: ReaderT Int (Writer String) Int

readerWriterExample = do x <- ask

 lift . tell $ show x

 return $ x + 1

The aforementioned fact that effects are stacked in reverse order can be seen when

you execute the function. The outer call corresponds to runWriter (which is the inner

monad), and the inner call is for runReaderT (which “peels” one layer).

*Chapter7.CombiningMonads> runWriter (runReaderT readerWriterExample 3)

(4,"3")

Exercise 7-6 helps you understand how lifting works in an example case that uses a

complex monad stack and learn more about the order in which effects are stacked.

EXERCISE 7-6. TWO STATES AT A TIME

Write a function that computes the factorial of a number. But instead of the usual

implementation, use one based on two states: one for keeping a decreasing counter and

another one for keeping the factorial. One approach is to keep the state as a tuple, but

for this exercise I want you to implement the state using a StateT Integer (State

Integer) monad. Thus, you must use lift to access one of the internal states. The

final code to run the monad computation should be similar to execState (execStateT

factorial x) 1.

Table 7-1 shows the way each of the most common monads is represented internally

and how the monad transformer changes a base monad m. This information will be the

key to understanding the previous example with list and state.

Chapter 7 More Monads: Now for Recommendations

264

Table 7-1.  Commonly Used Monads and Their Associated Transformers

Monad Transformer Internal Repr. Transformation Description

Identity IdentityT A m a Represents no transformation.

[] ListT [a] m [a] Represents nondeterminism.

As mentioned, for more control

over the search strategy, use

Logic and LogicT from

package logict.

Maybe MaybeT Maybe a m (Maybe a) Represents computations that

may fail. This transformer

is not found in mtl but in a

separate package MaybeT.

Reader r ReaderT r r -> a r -> m a A read-only context of type r

is available.

Writer w WriterT w (a, w) m (a, w) Computation outputs a write-

only value of type w, where w

must be a Monoid.

State s StateT s s -> (a, s) s -> m (a, s) An internal state of type s is

kept internally.

To use this table, take the monad onion you want to describe. Apply the rules

recursively, replacing the type variable m in each case with the inner monad. For

example, let’s do it to describe the differences between StateT s Maybe and MaybeT

(State s).

•	 StateT s Maybe a = s -> Maybe (a, s), so the failure affects both

the result and the state. The entire computation fails or not.

•	 MaybeT (State s) a = (State s) (Maybe a) = s -> (Maybe a, s),

where the failure affects only the result, not the internal state being kept.

You have surely noticed the inclusion of a monad called Identity (which is

available in module Control.Monad.Identity) that I hadn’t introduced previously.

This monad adds no effect to the computation. return is the identity, and binding is

Chapter 7 More Monads: Now for Recommendations

265

mere function application. The purpose of this monad is to serve as the innermost

monad of the onion, which allows you to build the entire stack of monads using only

monad transformers. For example, in the mtl package, Reader r is actually defined as

ReaderT r Identity.

�Monad Classes
Up to this point, the transformers functionality is available in both the transformers

and mtl packages. But the mtl package is built in a clever way and includes a type

class hierarchy to eliminate the need of most calls to lift. In that way, working with

transformers is no more difficult than using monads built from scratch.

As an example, take the Reader monad. The basic operations with this monad are

ask, local, and reader, which are the functions to be generalized (others, such as asks

can be written using them). In the Control.Monad.Reader, you can find the MonadReader

type class, which consists of those functions.

class Monad m => MonadReader r m | m -> r where

 ask :: m r

 local :: (r -> r) -> m a -> m a

 reader :: (r -> a) -> m a

Note I n the type class declaration, you can see an extra bit of information: m -> r.
This is called a functional dependency and will be discussed in detail in Chapter 13.

Then, mtl defines instances of MonadReader for every combination of monad

transformers, which include ReaderT as a layer. Using them, you don’t need to write

explicit lift for using ask, local, and the rest of context handling functions. The same

combination of a type class and several instances is defined for the rest of monad

transformers: MonadWriter, MonadState, and MonadLogic (MonadLogic lives in the

logict package). The type class corresponding to the functionality in lists and Maybe is

obtained through MonadPlus.

Chapter 7 More Monads: Now for Recommendations

266

For example, if you work with transformers using the mtl package, you can rewrite the

previous example without the explicit call to lift for accessing the Writer layer, as follows:

readerWriterExample :: ReaderT Int (Writer String) Int

readerWriterExample = do x <- ask

 tell $ show x

 return $ x + 1

But those type classes help not only by lowering the need of calls to lift but also by

enabling you to give type signatures that cover a certain structure of monad layers as well as

any of them that supports some amount of functionality. Here’s an example. Say you want

to include the previous readerWriterExample function in your utilities library, and you do

so using the type signature given previously. What you would get is a function with an over-

concrete example. You will be able to run the function using only the exact combination of

monads stated in the signature. But the code you’ve written supports being run in any “onion”

given that it includes the functionality of ReaderT and WriterT. Thus, you should strive for

generality, something you can gain by using monad classes instead of an explicit stack.

readerWriterExample :: (MonadReader Int m, MonadWriter String m) => m Int

readerWriterExample = do x <- ask

 tell $ show x

 return $ x + 1

Note  The code above needs the FlexibleContexts extension to be enabled.
Otherwise you get an error Non type-variable argument in the
constraint: MonadReader Int m. The reason is that the Haskell standard
does not admit a ground type like Int to appear in a constraint; the aforementioned
extension drops this restriction.

The important part is the one shown in bold. The information about monadic

functionality used inside the function is encoded in the type class constraints. In the

example, m represents a monad, which supports both Reader and Writer functionality.

To show that this code is indeed general, the following interpreter session runs the

same monadic function using both the ReaderT Int (Writer String) and the RWS Int

String Int monad (here the state part is not used, but it’s still a monad that supports

the operations from MonadReader and MonadWriter):

Chapter 7 More Monads: Now for Recommendations

267

*Chapter7.CombiningMonads> runWriter (runReaderT readerWriterExample 3)

(4,"3")

*Chapter7.CombiningMonads> runRWS readerWriterExample 3 0

(4,0,"3")

Thus, if you need to expose a function that produces a monadic value, instead of

using an explicit monad (such as Reader, Writer, etc.), it is better to program against

the corresponding type class. In that way, you get much better reusability because the

users of your library can use any transformed monad they want whenever it has the

corresponding functionality embedded.

TRANSFORMERS VS. MTL

As stated at the beginning of the section, there are two different packages in the Haskell

Platform that support monad transformers. The transformers package is the core one;

it provides all the monad transformers and the MonadTrans type class. The mtl package

includes that functionality, plus the monad classes. If you are exporting functions whose type

includes monads, you should try using the monad classes and thus mtl.

The examples in this section are to be used with mtl. If you want to use transformers

instead, you need to change the imports from Control.Monad.Something to Control.

Monad.Trans.Something.

In Exercise 7-7 you’ll create a function paths that uses several monad

transformers. Remember to program it using the corresponding type classes like I have

just explained.

EXERCISE 7-7. PATHS ON MONAD TRANSFORMERS

Write a new version of pathsWriter that holds the graph in a read-only context. This

means you need to use functionality from both MonadReader (for handling the graph) and

MonadWriter (for handling the paths) wrapping the base list monad. To check that the

function is general, use two different monads to provide the requested functionality: ReaderT

r (WriterT w []) a and RWST r w s a.

Chapter 7 More Monads: Now for Recommendations

268

I want to stress the importance of monad transformers for the Haskell programmer.

It’s common to design a monad stack for your application and add or remove layers

during the development process. However, this doesn’t mean your code should become

tangled spaghetti where every function calls any monad functionality. The mtl solution

for abstraction using type classes allows you to explicitly tell which monad layers are

used in each function, leading to better composability and higher reusability.

�Summary
This chapter went deeper into the notion of monad, which was introduced in the

previous chapter.

•	 The chapter explained the list monad, which models

nondeterministic computations that may return more than one

value. You saw how this monad can be used to implement search

problems.

•	 In cases where the list monad doesn’t give enough control over

the search, the Logic monad can implement fair conjunction and

disjunction.

•	 You learned about an important extension of Monad, called

MonadPlus, which allows you to model failure and choice. Using its

functions mzero and mplus, you now know how to implement the

Apriori rule-learning algorithm.

•	 The chapter covered a high-level view of monad utility functions,

such as sequence, mapM, and so on.

•	 You learned how the comprehension syntax can be generalized to

work on any monad with the MonadComprehensions GHC extension.

This enabled you to relate Haskell monads with other notions in Scala

and C#.

•	 Finally, you learned how to combine monads using monad

transformers.

Chapter 7 More Monads: Now for Recommendations

269
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_8

CHAPTER 8

Working in Several Cores
One of the main advantages of the purity that Haskell embodies is the ability to run

code in parallel easily. The absence of side effects means that all data dependencies are

explicit in the code. Thus, the compiler (and you) can schedule different tasks with no

dependencies between them to be performed in parallel.

The Par monad enables you to make explicit which parts of your code would benefit

from being run in parallel. The model supported by Par allows you to write code using

both the futures model and the dataflow parallelism approach. Then, a scheduler takes

care of running your code using parallel threads. Par is a powerful abstraction because

you don’t need to take care of managing the creation and destruction of threads; just let

the library do what it does.

In some cases, though, several parallel tasks need to share resources in a way not

expressible using Par. In the Time Machine Store, for example, several clients may be

buying some items, which implies that several database updates will be happening at the

same time. In those scenarios, ensuring that the resources are accessed concurrently in

the right way is essential. Haskell features Software Transactional Memory as the way to

control this behavior, using the idea of transactions brought from database systems.

Finally, you may want to split the computation between several nodes that are

distributed across a network. One of the many ways to communicate those nodes is to

use a message queue. In this chapter we look at how to use AMQP, a message queuing

protocol, to exchange simple messages.

�Parallelism, Concurrency, and Distribution
There’s always some confusion between the terms parallel programming, concurrent

programming, and distributed programming. Concurrency is a programming model

where the computation is designed as several, mostly independent, threads of control.

The system may either interweave the computations or run them in parallel, but in

270

any case the illusion is that all of them work asynchronously. One archetypal example

of a concurrent application is a web server. Many clients request services at the same

time, and from programmers’ point of view, each of these requests is independent and

happens asynchronously.

In most cases, those threads need access to some shared resource. At this point, you

must ensure that concurrent access does not leave the system in an inconsistent way.

For that purpose, many programming techniques have been developed, including locks,

semaphores, and channels. In the case of Haskell, a model called Software Transactional

Memory (STM) brings the concept of atomic transactions from databases into your code

to enable optimistic concurrency with rollback.

Parallelism refers to a way of executing code in more than one computer core at

once. Concurrent tasks are often run in parallel to achieve much better performance.

This increment in speed can also be applied to tasks that were not thought of as

concurrent but whose data dependencies enable running parts of the algorithm

independently of each other. Think of the QuickSort algorithm for sorting: at each step

the list is divided in two parts, and each of them is sorted separately. In this case, the

subsequent sorting of the two lists can be made in parallel.

For this second case, Haskell is the perfect field. Pure computations can’t interfere with

each other, and their data dependencies are completely explicit. The Par monad, which

will be introduced later, follows this line of thought and enables parallelism for tasks.

In many cases, the confusion between parallelism and concurrency comes from

languages with side effects. In languages such as Java or C, any piece of code can

access and change global state. For that reason, any amount of parallelism must also

take care of the access to those shared resources and thus is required for concurrent

programming. You cannot really separate both in that context.

Parallel programming is usually associated with running tasks in different cores

(microprocessors or GPUs) on the same computer system. But the work can also be

split between different computers that communicate across a network. That’s where

distributed programming comes into play. Since each of the actors in the system is

independent from any other, the coordination of tasks must happen in a different

way from one-system parallel programming. Furthermore, communication through

a network imposes constraints in case of failure or big latency. For all these reasons,

distributed programming needs other techniques.

One of the biggest challenges is to ensure reliable communication: in a network

messages may be lost, duplicated, or come out of order. In some cases, routing messages

to different actors, or choosing an actor among an available pool is required to perform

Chapter 8 Working in Several Cores

271

efficiently. A standard approach to this problem is to introduce an intermediate message

broker. AMQP is a common protocol for dealing with message queues. There are several

implementations; RabbitMQ is a widely used one. The amqp-worker package provides a

simple interface for exchanging messages via this protocol and leverages several Haskell-

specific techniques.

Tip  “Concurrency is about dealing with lots of things at once. Parallelism is about
doing a lot of things at once.” – Rob Pike

The fields of parallel, concurrent, and distributed programming in Haskell are

much wider than what will be shown in this chapter. The libraries explained here can

be used in many other ways, and many other packages are available in Hackage. For

parallel programming you have the parallel package, which features the strategies

approach. Parallelism is not only available for processors. Accelerate builds code to be

run in a GPU. Haskell’s base package features low-level functionality for concurrency

in the Control.Concurrent module, including mutable memory locations (MVars) and

semaphores. The distributed-process set of packages introduces Erlang-style actors

which can share both code and data. The book Parallel and Concurrent Programming

in Haskell by Simon Marlow describes several of these techniques in much more depth

than this chapter.

�The Par Monad
This section will focus on the parallel programming package called monad-par. The

functions in that library revolve around the Par monad and the use of IVars for

communication results. As you will see, computation can be modeled in two ways with

this package: as futures or as dataflow programs.

�Futures
Let’s start with a simple task that aims to produce the factorization into primes of

several numbers. The algorithm for factorizing one number is simple. You try to divide

by increasing natural numbers. If at some point the division has zero remainder, that

number is a prime factor. Thus, the original number can be divided by that prime factor,

Chapter 8 Working in Several Cores

272

and the process can start over again. If at some point you reach the same number you

started with, that means you’ve reached the last prime factor. In Haskell the code for that

approach reads as follows:

findFactors :: Integer -> [Integer]

findFactors 1 = [1]

findFactors n = let oneFactor = findFactor n 2

 in oneFactor : (findFactors $ n `div` oneFactor)

findFactor :: Integer -> Integer -> Integer

findFactor n m | n == m = n

 | n `mod` m == 0 = m

 | otherwise = findFactor n (m + 1)

At some point in the program, you’ll be asked to factorize two different numbers. The

code for such a function is straightforward to write.

findTwoFactors :: Integer -> Integer -> ([Integer],[Integer])

findTwoFactors x y = (findFactors x, findFactors y)

However, the efficiency of this function won’t be very high. Even in the case where

more than one processor is available, the computation of the prime factors of x and of y

will be done sequentially (assuming that they will be fully evaluated at the same time).

You would aim for computing findFactors x at the same time as findFactors y, as

Figure 8-1 shows.

Figure 8-1.  Parallel computation of two prime factorizations

Chapter 8 Working in Several Cores

273

You can easily tell the system to run both findFactors calls in parallel by using the

monad-par package. In Control.Monad.Par, there’s a function called spawnP. Let’s look

closely at its type.

spawnP :: NFData a => a -> Par (IVar a)

The purpose of spawnP is just running a computation in parallel with the rest of

the program. However, there are three things to notice from that signature. First, it

requires the computation to be run to have a type supporting the NFData type class.

If you remember, this is a type found in the deepseq package, which ensures that the

computation is fully evaluated. spawnP imposes this constraint because it’s the only

way to ensure that the code will actually run in parallel. If that constraint wasn’t there,

the lazy evaluation model may make it run at any other time, losing the benefit of

parallelism. Since the use of spawnP fully determines when some computation will be

executed, the parallel model of monad-par is called deterministic.

The second thing you may notice is that the result is wrapped inside Par. This type

is the monad in which parallelism is run. Finally, instead of just a value, the result of

spawnP is an IVar. An IVar is a future, a promise that the result of the computation will

be available when requested. To get the result of the computation inside an IVar, you

must call the get function. This function returns immediately if the computation has

finished or blocks execution until the result is available. This is the same model used in

Scala or in the Task Parallel Library in C#.

You can call spawnP and get only inside the Par monad. To run all the tasks, you call

runPar with the whole trace of parallelism. A version of findTwoFactors that spawns

a parallel task for computing the factors of x while keeping the factorization of y in the

current thread would read as such:

import Control.DeepSeq

import Control.Monad.Par

findTwoFactors :: Integer -> Integer -> ([Integer],[Integer])

findTwoFactors x y = runPar $ do

 factorsXVar <- spawnP $ findFactors x

 let factorsY = findFactors y

 _ = rnf factorsY

 factorsX <- get factorsXVar

 return (factorsX, factorsY)

Chapter 8 Working in Several Cores

274

Notice the call to rnf from the deepseq library to fully evaluate the factorization of y.

Following these steps does not immediately result in parallel tasks being created; you

need to follow two extra steps. First, you must compile your program with the threaded

runtime, which enabled GHC to create code with uses several threads. To do so, add the

–threaded options in the Cabal file.

executable chapter8

 hs-source-dirs: src

 main-is: Main.hs

 build-depends: base >= 4, monad-par, deepseq

 ghc-options: -Wall -threaded

In addition, you have to pass options to your program for using several cores.

Remember that when using cabal or stack you need to write add two dashes before the

options that are passed to the executable.

$ cabal run -- +RTS -N2

The +RTS option indicates the start of the options given to the Haskell runtime.

In particular, -N2 indicates that two processors should be used. You can indicate at

most the number of processors in your system. If you like, you can specify –N by itself,

without a number, and allow the Haskell runtime to make the decision on the number of

processors to use.

�Dataflow Parallelism with IVars
The monad-par package not only provides futures but also a wider model of declaring

parallel computations. Instead of just spawning parallel computations, you specify

several steps of computation, which share intermediate results via IVars. These variables

are created via new. Tasks can write to an IVar via the put function and obtain a result via

get. Notice that an IVar is a write-once variable.

Let’s consider the example of building a letter for a client with their bill of a product.

There will be four different tasks. One will search the client information in the database,

and another one will do the same for a product. Each of these tasks will communicate

with the other tasks using corresponding IVars. The other two tasks will take that

information and generate the text of the letter and the text of the envelope. Figure 8-2

shows the graph.

Chapter 8 Working in Several Cores

275

Computations built in this way always follow the shape of a graph of tasks joined by

IVars to communicate. For that reason, the model is called dataflow programming. The

main benefit of this approach is that all data dependencies are explicit; they are exactly

those specified by the IVars. The monad-par library takes advantage of that information

for scheduling the tasks in a parallel way.

The following code implements the dataflow graph of Figure 8-2. Notice that

when using this model and IVars, instead of spawnP, one uses fork, which expects a

computation of type Par ().

printTicket :: Int -> Int -> [(Int,String)] -> [(Int,String)] -> String

printTicket idC idP clients products = runPar $ do

 clientV <- new

 productV <- new

 fork $ lookupPar clientV idC clients

 fork $ lookupPar productV idP products

 envV <- new

 letterV <- new

 fork $ printEnvelope clientV envV

 fork $ printLetter clientV productV letterV

 envS <- get envV

 letterS <- get letterV

 return $ envS ++ "\n\n" ++ letterS

Figure 8-2.  Dataflow graph of letter building

Chapter 8 Working in Several Cores

276

lookupPar :: (Eq a, NFData b) => IVar (Maybe b) -> a -> [(a,b)] -> Par ()

lookupPar i _ [] = put i Nothing

lookupPar i x ((k,v):r) | x == k = put i $ Just v

 | otherwise = lookupPar i x r

printEnvelope :: IVar (Maybe String) -> IVar String -> Par ()

printEnvelope clientV envV = do

 clientName <- get clientV

 case clientName of

 Nothing -> put envV "Unknown"

 Just n -> put envV $ "To: " ++ n

printLetter :: IVar (Maybe String) -> IVar (Maybe String)

 -> IVar String -> Par ()

printLetter clientV productV letterV = do

 clientName <- get clientV

 productName <- get productV

 case (clientName, productName) of

 (Nothing, Nothing) -> put letterV "Unknown"

 (Just n, Nothing) -> put letterV $ n ++ " bought something"

 (Nothing, Just p) -> put letterV $ "Someone bought " ++ p

 (Just n, Just p) -> put letterV $ n ++ " bought " ++ p

One interesting benefit of separating the dataflow dependencies from the

actual parallel execution is that several strategies for scheduling the tasks can be

used. By default, monad-par uses the so-called Direct scheduler. Two others are

available; just import Control.Monad.Par.Scheds.Spark or Control.Monad.Par.

Scheds.Trace instead of Control.Monad.Par, and the corresponding scheduler

will be used.

�Parallelizing the Apriori Algorithm
Let’s finish this section by looking at how the Apriori algorithm could be enhanced to

perform in parallel. The code will be based on the implementation in Chapter 7.

If you’re working with lists, the monad-par package includes a parMap function.

The purpose of this function is executing a function over each element of the list,

parallelizing each of the applications. Spawning a task for each element may seem

Chapter 8 Working in Several Cores

277

overkill, but the scheduler will take into account the number of cores available in the

system. To apply this parMap function, let’s first rewrite generateL1 from the monadic

style to explicit calls to map and concatMap. The following code is completely equivalent

to that in Chapter 7:

generateL1 minSupp transactions =

 let c1 = noDups $

 concatMap (\(Transaction t) ->

 map (FrequentSet . S.singleton) $ S.toList t)

 transactions

 l1NotFiltered

 = map (\fs -> (fs, setSupport transactions fs > minSupp)) c1

 in concatMap (\(fs,b) -> if b then [fs] else []) l1NotFiltered

Since most of the time in the algorithm is spent in calculating supports, this is the

part that has been chosen for parallel execution. Beforehand, calculating supports was

done inside filter, which both computed the support and decided whether to keep

a transaction in the list. Now those two tasks are split: set supports are computed at

l1NotFiltered, and then deciding whether to include an element is done in the final

concatMap. Afterward, you need only to change map to parMap and wrap the entire

computation with runPar to take advantage of dataflow parallelism in the Apriori

algorithm. The result in this case is as follows:

generateL1 minSupp transactions = runPar $ do

 let c1 = noDups $

 concatMap (\(Transaction t) ->

 map (FrequentSet . S.singleton) $ S.toList t)

 transactions

 l1NotFiltered

 <- parMap (\fs -> (fs, setSupport transactions fs > minSupp)) c1

 return $ concatMap (\(fs,b) -> if b then [fs] else []) l1NotFiltered

Note R emember that to use monad-par, your data types must instantiate
NFData.

Chapter 8 Working in Several Cores

278

In some cases this may not be the best strategy for creating parallel tasks. Instead

of parMap, you can divide the list in halves until you reach some minimal length.

Once the list is small enough, it’s better to execute the mapping in a sequential way

because creating parallel tasks has some overhead. This is done in a new version of the

generateNextLk function.

generateNextLk :: Double -> [Transaction] -> (Int, [FrequentSet])

 -> Maybe ([FrequentSet], (Int, [FrequentSet]))

generateNextLk _ _ (_, []) = Nothing

generateNextLk minSupp transactions (k, lk) =

 let ck1 = noDups $ [FrequentSet $ a `S.union` b

 | FrequentSet a <- lk, FrequentSet b <- lk

 , S.size (a `S.intersection` b) == k - 1]

 lk1 = runPar $ filterLk minSupp transactions ck1

 in Just (lk1, (k+1, lk1))

filterLk :: Double -> [Transaction] -> [FrequentSet] -> Par [FrequentSet]

filterLk minSupp transactions ck =

 let lengthCk = length ck

 in if lengthCk <= 5

 then return $ filter (\fs -> setSupport transactions fs > minSup) ck

 else let (l,r) = splitAt (lengthCk `div` 2) ck

 in do lVar <- spawn $ filterLk minSupp transactions l

 lFiltered <- get lVar

 rVar <- spawn $ filterLk minSupp transactions r

 rFiltered <- get rVar

 return $ lFiltered ++ rFiltered

As you can see, the monad-par library makes it easy to add parallelism to your current

code. The focus of this library is futures and dataflow programming. There are other

approaches, though. The parallel library, for example, uses another monad called Eval

that helps to define how a specific data structure can be traversed in parallel. You can

find more information about this and other packages on the Haskell wiki.1

1�See for example wiki.haskell.org/Applications_and_libraries/Concurrency_and_parallelism.

Chapter 8 Working in Several Cores

http://wiki.haskell.org/Applications_and_libraries/Concurrency_and_parallelism

279

PARALLELIZING TASKS WITH SIDE EFFECTS

Computation with arbitrary side effects hasn’t been introduced yet. However, as a reference,

it’s interesting to know that the monad-par package provides another monad for parallelism,

called ParIO and available in the Control.Monad.Par.IO module, in which side effects

are allowed. The interface is the same as pure Par, except for running the computation, which

is achieved via the runParIO function.

Note that the implementation does not guarantee any ordering on the execution of the tasks,

and thus the outcome will show nondeterministic ordering of the side effects.

Many algorithms that work on lists or have a divide-and-conquer skeleton can be

easily turned into parallel algorithms via the monad-par library. In Exercise 8-1 you’re

asked to do this with the other data-mining algorithm introduced in this book: K-means.

EXERCISE 8-1. PARALLEL K-MEANS

Write a parallel version of the K-means algorithm developed in Chapter 6. To make the task

a bit easier, you may look at the first implementation, which didn’t use monads. Remember,

when using functions such as parMap, think about when the overhead of creating parallel

tasks will exceed the benefits.

�Software Transactional Memory
In this section you will look at problems where several threads of execution interact with

each other and share resources; that is, concurrency comes into play. Haskell allows you

to design concurrent tools in the classical way, using locks, semaphores, and so on, but

in this section you will see how the functional style of programming enables you to use a

much more powerful abstraction called Software Transactional Memory.

Before starting, you should be aware that code using concurrency is considered side-

effect code. When several threads are executing asynchronously and sharing resources,

the order in which they do this affects the observable outcome. In contrast, in pure code

the order in which functions are evaluated is irrelevant because the result will be the same.

Chapter 8 Working in Several Cores

280

You will learn more about how to deal with arbitrary side effects in the next chapter.

For the time being, you just need to know that Haskell uses a special monad called IO,

in which you can use side effects. In the code, the only difference you will see between

programming with and without side effects is that do notation is used.

�Concurrent Use of Resources
Let’s begin the journey through concurrent programming in Haskell with a simple

example: a simulation of several clients buying products from the store. In the first

approximation, only the change in the money that the Time Machine Store has earned

will be considered. The code to create these three threads is as follows:

import Control.Concurrent

main :: IO ()

main = do v <- newMVar 10000

 forkIO $ updateMoney v

 forkIO $ updateMoney v

 forkIO $ updateMoney v

 _ <- getLine

 return ()

updateMoney :: MVar Integer -> IO ()

updateMoney v = do m <- takeMVar v

 putStrLn $ "Updating value, which is " ++ show m

 putMVar v (m + 500) -- suppose a constant price

The first thing you need to know is how to create a new thread of execution.

You achieve this via the forkIO function in the Control.Concurrent module. This

function takes as an argument an action of type IO () and starts executing that code

in parallel.

Note  forkIO returns a thread identifier that allows you to pause and stop
the thread that was just created. However, the functionality of the Control.
Concurrent module won’t be covered in this book.

Chapter 8 Working in Several Cores

281

As you can see, the main function creates three threads running the same code. The

next question is how to make those threads cooperate and share resources because by

default they cannot communicate between them. The answer is via an MVar, a box that

can hold a mutable variable, which can be read or updated. One of those boxes is created

before forking the threads using the newMVar function and is given as an argument

to each of them. Thus, the threads have access to a shared resource in the form of a

mutable variable.

Each thread can read the value of the MVar using takeMVar and to write a new one

using putMVar. What makes this type useful for concurrency is the special behavior that

it shows in the presence of multiple threads. You should think of an MVar as a box that

either is holding some element or is empty. When you use takeMVar, you either read the

value being held and make the box empty or block until some element is put in there.

Conversely, putMVar either writes a new value if the box is empty or waits. Furthermore,

those functions guarantee that only one thread will be woken up if it is blocked and

that threads will be served in a first-in, first-out order, which means that no thread can

swallow the events of all the rest.

Notice that the code includes a call to getLine at the end. The purpose of this

function is to wait for some user input. The reason you need it is because when the main

thread ends its computation, any other thread created by forkIO dies with it. Thus, if

you want to see the effect of the other threads, you need to add a way to make the main

thread continue execution. Waiting for user input is one way to do this.

To add some different actions, let’s add a new kind of thread that will just

read the current money value and print it on the screen. Since you don’t need to

perform any computation, you can use the readMVar function, which is equivalent to

readMVar followed by putMVar with that same value. Then, it would read as follows:

readMoney :: MVar Integer -> IO ()

readMoney v = do m <- readMVar v

 putStrLn $ "The current value is " ++ show m

To make things even more interesting, let’s add some random delay between

3 and 15 seconds. The following function just computes that random number (more

on random numbers will be presented in the next chapter) using randomRIO and

then calls threadDelay, which pauses a thread for a number of microseconds. Be

aware that when using the randomRIO function, you need to add a dependency on

the random package.

Chapter 8 Working in Several Cores

282

import System.Random

randomDelay :: IO ()

randomDelay = do r <- randomRIO (3, 15)

 threadDelay (r * 1000000)

Finally, you can write a forkDelay function that spawns n threads with a random

waiting time before.

import Control.Monad

forkDelay :: Int -> IO () -> IO ()

forkDelay n f = replicateM_ n $ forkIO (randomDelay >> f)

Creating five new updaters and five readers will then be implemented in the

following way:

main :: IO ()

main = do v <- newMVar 10000

 forkDelay 5 $ updateMoney v

 forkDelay 5 $ readMoney v

 _ <- getLine

 return ()

Note N one of the MVar-related functions forces the evaluation of the data
inserted in them. This may cause problems because the price of executing
some code may be paid much later, in the context of another computation. You
may want to look at the strict-concurrency package to obtain a strict
version of MVar.

�Atomic Transactions
Let’s move on to a more complex example. The main idea continues to be a client who

is buying a particular product, but in this case more than one resource will be involved.

The first one will be the money the Store has earned, as before, and the second one will

Chapter 8 Working in Several Cores

283

be current stock of the Store, which should be updated to reflect that one item has been

sold. As in the previous case, some extra threads reading the money and the stock will be

added:

main :: IO ()

main = do v <- newMVar 10000

 s <- newMVar [("a",7)]

 forkDelay 5 $ updateMoneyAndStock "a" 1000 v s

 forkDelay 5 $ printMoneyAndStock v s

 _ <- getLine -- to wait for completion

 return ()

updateMoneyAndStock :: Eq a => a -> Integer

 -> MVar Integer -> MVar [(a,Integer)] -> IO ()

updateMoneyAndStock product price money stock =

 do s <- takeMVar stock

 let Just productNo = lookup product s

 if productNo > 0

 then do m <- takeMVar money

 let newS = map (\(k,v) -> if k == product

 then (k,v-1)

 else (k,v)) s

 putMVar money (m + price) >> putMVar stock newS

 else putMVar stock s

printMoneyAndStock :: Show a => MVar Integer -> MVar [(a,Integer)] -> IO ()

printMoneyAndStock money stock = do m <- readMVar money

 s <- readMVar stock

 putStrLn $ show m ++ "\n" ++ show s

Your first impression may be that the code is quite complex. However, you want

to update the stock and the price only when there are enough items to sell. And if you

cannot perform the purchase, you wouldn’t want to block the access to the money shared

variable. Thus, you need to plan for both possibilities and restore the initial stock if the

transaction is not successful.

Chapter 8 Working in Several Cores

284

Apart from its apparent complexity, there are other problems in the code related to

several concurrent scenarios. It may be the case that one of the updateMoneyAndStock

threads takes the stock variable and then printMoneyAndStock threads get access to the

money variable. At this point, the whole execution is blocked; the updater thread must

be blocked because it cannot get the ownership of the money variable, and the printer

thread cannot continue because of denial of access to stock. This is an archetypical

instance of deadlocking. Figure 8-3 depicts this situation: each vertical line represents

the execution of one thread.

Another problem may occur in the following case of two updater threads, U1 and U2,

and one reader thread that I’ll call R. It is possible that U1 updates the money variable and

immediately afterward R reads that variable, obtaining the money after selling the item

in U1. However, afterwards U1 can proceed, and the whole U2 is executed as well. By

that time, the stock variable will contain the changes of both U1 and U2, and R will get

stock information that is not consistent with the value it got from money. In this case, the

problem is that a thread can get an inconsistent view of the world.

Update Money
And Stock

take MVar stock
locks stock

take MVar money
blocked

dead lock!

read MVar stock
blocked

print Money
and Stock

read MVar money
locks on money

Figure 8-3.  Example of deadlock

Chapter 8 Working in Several Cores

285

Both problems are common in systems where many agents update and query some

data in a concurrent way. The best example of this pertains to database systems. The

solution comes in the form of transactions. A transaction is a computation guaranteed to

be run reliably independent from other transactions, and it always has a coherent view of

the data. Transactions provide the illusion that a whole computation runs as an atomic

block inside the database and ensure that data maintains its integrity.2

The stm package brings this idea into the realm of Haskell programming. Using this

library, you can define blocks of code that will be run as an atomic unit by the system. In

the code, each transaction is translated into a computation inside the STM monad. This

name is an acronym for Software Transactional Memory, which is the implementation of

transactions that the library uses. As an example, here’s a version of the updater thread

but using STM instead of MVars:

import Control.Concurrent.STM

updateMoneyAndStockStm :: Eq a => a -> Integer

 -> TVar Integer -> TVar [(a,Integer)] -> STM ()

updateMoneyAndStockStm product price money stock =

 do s <- readTVar stock

 let Just productNo = lookup product s

 if productNo > 0

 then do m <- readTVar money

 let newS = map (\(k,v) -> if k == product

 then (k,v-1)

 else (k,v)) s

 writeTVar money (m + price) >> writeTVar stock newS

 else return ()

When using stm, instead of MVars you should use TVars. In contrast to the former,

TVars can be read and written as many times as you want. Thus, you don’t need to write

back the stock if the purchase could not be done.

2�Here I am talking about ACID transactions, which ensure atomicity and consistency after each
transaction. Most SQL databases follow the ACID model. Other database systems follow the
BASE paradigm, which guarantees eventual consistency instead.

Chapter 8 Working in Several Cores

286

Computations in the STM monad are not directly executable. Instead, you must call

the atomically function, which moves the transaction to the IO monad instead. For

example, to execute the updater transaction five times, with delay, you would change the

main function to read as follows:

main :: IO ()

main = do v <- newTVarIO 10000

 s <- newTVarIO [("a",7)]

 forkDelay 5 $ atomically $ updateMoneyAndStockStm "a" 1000 v s

 _ <- getLine -- to wait for completion

 return ()

The great advantage of having a function such as atomically is that you can delimit

which parts of your code need to be run as a transaction and which don’t. This is

important for performance. Keeping the guarantees of transactionality is expensive, and

you should make minimal use of it.

�Rolling Back Transactions
When working with databases, you often find scenarios in which your current transaction

cannot be performed. Usually, this comes into play when considering the constraints that

your data should maintain. For example, selling an item from the Store stock can be done

only when the corresponding number of items of that product is larger than zero. When

you abort a transaction, you want the state of the world to return to the previous moment

in time, as if no computation has happened at all. This operation is called a rollback.

The stm package not only brings the atomicity guarantees of transactions to the

Haskell world but also offers the ability to roll back some piece of code. To signal that

a transaction cannot continue, you need to use the retry function. For example, let’s

consider the scenario where a client wants to pay by card. First you need to check that

the card system is working. In the negative case, you cannot continue.

payByCard :: Eq a => a -> Integer

 -> TVar Integer -> TVar [(a,Integer)] -> STM ()

payByCard product price money stock =

 do working <- isCardSystemWorking

 if not working

 then retry

 else updateMoneyAndStockStm product price money stock

Chapter 8 Working in Several Cores

287

isCardSystemWorking :: STM Bool

isCardSystemWorking = ... -- code to check card system status omitted

Code using retry has special behavior. As a first description, the transaction is

executed repeatedly until it finally finds a scenario in which it succeeds. Of course, such

an approach would be overkill. Internally, stm keeps track of which TVars influence

the transaction and executes the code again only if any of them change. Not having

to implement that functionality by hand makes your code much more modular and

maintainable.

Another feature that the previous example demonstrates is the compositionality of

transactions. Since a transaction is just a value of the STM monad, you can put several

of them together to create a larger transaction. In the example, the check for the card

system and the money and stock update are defined separately and then joined to make

the larger payByCard transaction.

While retry is a powerful tool, in some cases you may want to follow a path different

from waiting until the variables change and the invariants are satisfied. For those

occasions, stm provides the orElse combinatory. In general, t1 `orElse` t2 behaves as

t1. However, in the case in which t1 calls retry, the effects of t1 are rolled back, and t2

is run. If t2 ends successfully, no more work is done. If t2 also calls retry, the whole t1

`orElse` t2 transaction is restarted.

The following example uses orElse to implement the behavior of trying first to pay

by card and, when that doesn’t work, then starting a cash-based transaction:

pay :: Eq a => a -> Integer

 -> TVar Integer -> TVar [(a,Integer)] -> STM ()

pay product price money stock

 = payByCard product price money stock `orElse`

 payByCash product price money stock

payByCash :: Eq a => a -> Integer

 -> TVar Integer -> TVar [(a,Integer)] -> STM ()

payByCash = ... -- code that asks for cash omitted

In Exercise 8-2 you can use your knowledge of transactions to build a Time Machine

system.

Chapter 8 Working in Several Cores

288

EXERCISE 8-2. TRAVELING THROUGH TIME

The Time Machine Store also provides the service of time traveling. However, there are some

restrictions that customers must abide by: at most n people can be traveling at the same

moment (because the company owns only n time machines), and by no means should two

people be on the same year at the same time.

Develop a small application where customers are simulated by different threads and the

restrictions are always satisfied via a careful use of the stm library. Hint: use a shared TVar

for saving the years that people are traveling to, and use retry to block customers from

traveling without satisfying the rules.

�Producer-Consumer Queues
Up to this point, the focus has been on threads that communicate using shared variables.

But in the world of concurrency, there are many other ways in which two threads can

share some data. Even more, data can be shared not only among threads, but also across

different processes or different parts of the network. In this section you’ll see how to use

a queue to implement a producer-consumer model.

One way to architect the Store, for example, is to have multiple front-end

threads or processes and just one back end. The front ends are responsible for

asking all the information that may be needed to perform a transaction. However,

they are not responsible for processing the orders. That responsibility belongs to

the back end.

�Single-Process Queues
If you want to keep all your computation within a single process, you may think of using

STM to handle concurrent access to the data. If you could use only TVars to implement

this solution, you would have a tough time. You would need a concrete amount of

possible front ends that may communicate, and the back end should always be on

the lookout to see whether some of those variables have new information. The better

solution is to stop using a TVar and instead use a queue.

Chapter 8 Working in Several Cores

289

The stm package provides several kinds of queues. The easiest one is called TQueue.

You can put a new element on the queue using writeTQueue. This queue does not

impose any limit on the number of elements that may be waiting in the queue (apart

from the obvious constraints on memory available in the system), so the writeTQueue

function will never block a thread. The converse operation, getting the first element from

the queue, is done via readTQueue. If the queue is empty, the thread will be blocked.

In this model, the front end behaves as a producer; it creates new elements for the

queue, whereas the back end is the consumer that takes information from the queue. The

implementation of the full orchestration using queues can be done as follows:

import Control.Monad

main = do q <- newTQueueIO

 forkIO $ backend q -- create one backend

 replicateM_ 10 $ forkIO (frontend q) -- create 10 frontends

 _ <- getLine

 return ()

backend :: TQueue (String,Integer) -> IO ()

backend q = do

 m <- newTVarIO 10000

 s <- newTVarIO [("a",7)]

 forever $ atomically $ do (product,price) <- readTQueue q

 pay product price m s

frontend :: TQueue (String,Integer) -> IO ()

frontend q = do (product,price) <- ... -- get purchase info from client

 atomically $ writeTQueue q (product,price)

Other kinds of queues can be classified into two axes. Table 8-1 shows the name of

each of the four possibilities. The table also gives the package where each queue can be

found. The two dimensions are as follows:

•	 Whether a queue has a bounded size or is unbounded. In the case of

bounded queues, the creation of such a queue needs the maximum

number of elements as a parameter. When calling the corresponding

write function, if the queue is full, the thread is blocked until more

space becomes available.

Chapter 8 Working in Several Cores

290

•	 Whether a queue is closable. A queue that is closed cannot receive

any more items. When this happens, every call to the write function

is effectively discarded, and every read returns Nothing. Note that the

behavior when the queue is closed and when it’s empty is completely

different.

These two dimensions can be combined in the four ways in Table 8-1.

Using queues can help in the design of the system from Exercise 8-2. Indeed,

Exercise 8-3 asks you to use queues to make the management of clients in the store fairer.

EXERCISE 8-3. QUEUING TRAVELERS

In the previous exercise, all customers were trying to access the finite number of time

machines at the same time. This may pose a problem of fairness because stm does not

guarantee which thread will be woken up from retry if several are waiting.

An alternative solution involves using a queue where customers put their requests and where

a master thread assigns time machines when they are free. Implement this solution using

TBQueue.

�Message Queues Using AMQP
The main caveat of the previous solution is that the queue can only be used by threads

coming from the same process. But in many cases, you would like the front end and

the back end to be different, isolated programs, maybe even running on different

machines in the network. The main problem in that case is communication and sharing

of resources: how to ensure that messages are transported correctly between processes,

and how to ensure that all of them have a consistent view of the message queue.

Table 8-1.  Types of STM Queues

Unbounded Bounded

Not closable TQueue (package stm) TBQueue (package stm)

Closable TMQueue (package stm-chans) TBMQueue (package stm-chans)

Chapter 8 Working in Several Cores

291

There are many libraries available in Haskell to communicate through the network,

starting with the network package. Alas, rolling your own messaging protocol does not

seem like a good idea. Communication is known to be a tricky area of computer science,

since many things can go wrong: messages can be lost, duplicated, or arrive out of order

or simply very late. Fortunately, we do not need to write any of that code if we introduce

a message broker to the mix.

A message broker is simply a program whose only role is to manage communication

between nodes and processes. Their most basic functionality is to connect endpoints,

sometimes by forwarding a message to more than one recipient. Many brokers also

introduce a notion of message queue, where messages are saved until they are handled

somehow. Most deployed message brokers with support for queues use the Advanced

Message Queuing Protocol, or AMQP, which is the focus of this section.

INSTALLING RABBITMQ

In order to run the code in this section, you need to have an AMQP-compatible broker in your

machine. My suggestion is to use RabbitMQ, available at https://www.rabbitmq.com. The

server runs in Linux, Windows, and MacOS X, and you can also get it as a Docker image. In

the code below, I assume that you have RabbitMQ running in the default port, 5672, with the

default security configuration, so we can access it as guests.

The simplest messaging model of AMQP involves four elements, all of them shown

in Figure 8-4. The first one is queues, which store a sequence of messages. Each queue

is identified by a name. Then we have producers and consumers, which write and read

messages to a particular queue. Note that the distinction is not clear cut, since the same

program may send and receive messages from the same queue. These three elements are

obviously involved whenever we talk about queuing.

Chapter 8 Working in Several Cores

https://www.rabbitmq.com

292

On top of those, AMQP defines the concept of exchange. An exchange is an

intermediary between producers and queues. In this messaging model, producers never

write directly to queues. Instead, each message is sent to an exchange which decides in

which queue or queues the message should be delivered. Take for example a logging

message: different processes may want to listen to only specific severity levels. We can

model each of them as a queue. The exchange in this case distributes the messages

according to our specific logging policy.

AMQP handles many more communication needs. For example, you can use a

message queue as a work queue: in that case many processes may consume messages,

but each message should only be consumed once. As a result, consumers must

acknowledge that they have handled a message to get it removed from the work queue.

The notion of exchange is also greatly generalized: you can have queues with different

topics, to which consumers may subscribe. If you are interested on the possibilities,

I strongly suggest looking at RabbitMQ tutorials.

exchange
delivers

messages

queues

consumer consumer

read messages from queues

producers send messages

Figure 8-4.  High-level view of the AMQP messaging model

Chapter 8 Working in Several Cores

293

�AMQP in Haskell
There are several libraries in Hackage for communication using AMQP. The amqp

package gives access to the full set of features of the protocol, at the expense of a

more complicated interface. On top of this we have amqp-conduit, which exposes the

messages queues as streams (the conduit streaming library is discussed in the next

chapter). In this section we look at amqp-worker, which exposes a simple functional

interface.

One of the main characteristics of amqp-worker is its use of type-level mechanisms

to ensure that access to queues is done in the right way. In particular, messages are not

seen as a mere sequence of bytes, but as a representation of a concrete Haskell type. To

achieve its goal, amqp-worker requires you to declare queues before using them. You do

so by creating a value of the Queue type.

{-# LANGUAGE OverloadedStrings #-}

import Network.AMQP.Worker

import Control.Exception -- needed later

type Order = (String, Integer)

ordersQueue :: Queue Direct Order

ordersQueue = let testExchange = exchange "test"

 in queue testExchange "orders"

The queue function receives two arguments. The second one is the name of the

message queue to connect to, which will be created if it does not exist yet. As we have

discussed above, each queue is associated with an exchange, so we also need to declare

it beforehand by giving it a name. Any client connecting to the same exchange and

the same queue will be able to send and receive messages. Something which is only

explicit in the type signature is that ordersQueue deals with messages of type Order. In

this case our data is expressed using a simple tuple, but amqp-worker can deal also with

programmer-defined types.

Chapter 8 Working in Several Cores

294

OVERLOADEDSTRINGS

You may have noticed that we need to enable the OverloadedString extension to compile

this code. This is required because the literals "test" and "orders" are not of type

String (the default in Haskell) but of type Text (a different representation often used when

interoperating with other languages). We discuss the differences between the two and how to

convert between them in Chapter 10.

The next step is to initialize the connection. The simplest way is to use a big string

containing all the connection data (although you should not use this in real production

environments, since the password is visible in the code). Once the connection is created,

we need to initialize the exchange and the queue we want to use, just writing the code

defining them is not enough. The result of this process is a connection identifier which

we use afterwards to communicate with the RabbitMQ server.

initialize :: IO Connection

initialize = do

 conn <- connect (fromURI "amqp://guest:guest@localhost:5672")

 initQueue conn ordersQueue

 return conn

The simplest operation to perform over a queue is to send a message. In our case,

this is what the front end does. Once you have the data, you just need to call publish.

The compiler ensures that the type of the message you want to send matches the one

declared for the queue.

frontend :: Connection -> IO ()

frontend conn = do (product, price) <- ... -- get info

 publish conn ordersQueue (product, price)

 putStrLn "Message sent"

The other side of the coin is the back end. In this case the code is slightly longer. Let

me show it and then discuss it step by step:

import Control.Concurrent.STM

Chapter 8 Working in Several Cores

295

backend :: Connection -> IO ()

backend conn = do

 m <- newTVarIO 1000

 s <- newTVarIO [("a", 7)]

 putStrLn "Starting backend..."

 worker def conn ordersQueue onBackendError (onBackendMessage m s)

onBackendMessage :: TVar Integer -> TVar [(String, Integer)]

 -> Message Order -> IO ()

onBackendMessage m s Message { value = (product, price) }

 = do putStrLn $ "Received order " ++ show (product, price)

 atomically $ pay product price m s

onBackendError :: WorkerException SomeException -> IO ()

onBackendError e = putStrLn $ "ERROR: " ++ show e

Building on the code we had before, we are still using two TVars to handle the state of

the program. The money is represented by the m variable, and the current stock by the s

variable. This is a very common pattern in Haskell programs: whenever you need to keep

some mutable state, throw a transactional variable to ensure that your program is free

from deadlocks and any kind of data race.

The novelty from amqp-worker comes from the call to worker. This function receives

the connection and the queue to listen to. Additional options may be provided, but

in this example are set to the default by using def. Every time a message arrives to the

queue, two events may be raised:

•	 There might be some error when dealing with the message. Then the

error handler is called, in this case onBackendError. The function is

called with the description of the problem so that if can be further

inspected, although in the code above we just print it.

•	 If the message arrives successfully, the other handler is called. In

the code above is called onBackendMessage. The information, of

type Order in this case, is wrapped in a Message type which includes

additional information about the delivery. If we are not interested in

that extra information, we can just get the inner message as the value

field. Note that the actual work of calling pay remains equal to our

older version using TQueues.

Chapter 8 Working in Several Cores

296

To finish our program, we need put all these parts together. To ease our testing, we

are going to have one single executable which works as back end or front end depending

on how it is called from the command line. In Haskell, command line arguments are

available by calling the getArgs function from System.Environment. Do not worry if you

do not fully understand our use of monadic notation here; the next chapter is devoted to

input and output with the IO monad.

import System.Environment

main :: IO ()

main = do conn <- initialize

 args <- getArgs

 case args of

 "backend" : _ -> backend conn

 "frontend" : _ -> do frontend conn

 _ <- getLine

 return ()

Note T he extra getLine after calling frontend is required to give some time
for amqp-worker to send the message before exiting. If the process ends right
after the call to publish, the message may not be correctly delivered.

Scaling this simple example to a real network requires a bit more work in order to

configure RabbitMQ correctly. If your communication patterns are simple, the amqp-

worker library may cover your needs quite well. The only caveat of this library is that it

fixes a simple messaging pattern; if you need something more complex you can switch to

the broader amqp.

�Summary
In this chapter you learned about some parallelism, concurrency, and distribution

packages from the Haskell ecosystem.

•	 The Par monad provides simple parallelism via futures, which are

computations started in parallel that you can ask for the result of at

some later point.

Chapter 8 Working in Several Cores

297

•	 You saw how monad allows spawning parallel computations around

the concept of a dataflow graph, where dependencies are defined via

IVars.

•	 Basic concurrency can be achieved in GHC via forkIO for creating

new threads and via MVars for sharing information.

•	 In some cases you need to perform longer access to shared resources

as an atomic operation. In that case you can use transactions via the

stm library.

•	 In addition to simple TVar variables, the stm library provides

abstractions over several types of queues. The examples have focused

on TQueue, the nonbounded nonclosable one.

•	 Finally, you learned the basics of communication using message

queues using the amqp-worker package.

Chapter 8 Working in Several Cores

PART III

Resource Handling

301
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_9

CHAPTER 9

Dealing with Files: IO
and Conduit
In Parts 1 and 2 you learned the basics of pure evaluation and how it helps in

parallelizing and distributing code. However, sometimes you need to step out to the wild

world of side effects. You’ll start by looking at simple input and output in Haskell. At the

beginning, the information will be input in the console, and the output will be printed

on the screen. Afterward, you’ll learn how to use a permanent means of storing data and

reading and writing from files in disk.

Computations with side effects may turn out wrong in many ways; maybe the data is

corrupted, or perhaps the network connection goes down. Haskell includes an exception

mechanism that signals these conditions and allows you to react. In pure computations

you’ve been handling erroneous scenarios using Maybe and MonadPlus. The relation

between the different ways of handling errors in Haskell will be clear by the end of this

chapter.

One problem with Haskell’s lazy evaluation model is that it brings some

unpredictability to input and output. The Haskell community has come up with

several streaming data libraries to solve this problem. This chapter discusses

conduit, as well as some applications of this library to deal with file handling and

networking. After learning all this information, you’ll be ready to save the client and

product data on disk using a binary serialization format. For that matter, the binary

library will also be presented.

302

�Basic Input and Output
To begin the journey through side effects in Haskell programs, let’s create some simple

interactions with the console. These small examples will help you to discover the

concepts involved. The first bit of code to look at is an executable program that just

prints “Hello Beginning Haskell!” at the console.

module Main where

main :: IO()

main = putStrLn "Hello Beginning Haskell!"

A second example is a bit more involved. In this case, the program asks for a place

and decides which point in time you should travel to, based on the given name. The

algorithm is fairly easy; the important part of this code is how the information is taken

from the user and threaded through the program.

main = do putStrLn "Where do you want to travel?"

 place <- getLine

 let year = (length place) * 10

 putStrLn $ "You should travel to year " ++ show year

If you run the program, the output will be like the following. (As usual, bold denotes

those parts that are to be input, while the program font is used for output from the program.)

Where do you want to travel?

India

You should travel to year 50

BUFFERING

In some systems, especially in Windows, you may find that there’s no output at all upon

executing a program. This issue is related to buffering. To gain efficiency, the information

you send to a file (or to the console) is not directly written (or shown) but instead is buffered

until a certain amount of data is gathered. You can change the way in which each handle uses

buffering via hSetBuffering. The most common use of this function, making the system

flush the contents after each newline character, is coded as follows:

import System.IO

Chapter 9 Dealing with Files: IO and Conduit

303

main = do hSetBuffering stdout LineBuffering -- enable line buffering

 -- continue with the rest

There’s another possible value for hSetBuffering, namely, NoBuffering, that makes the

system use no buffering at all. However, you should be wary. Problems can result from using

NoBuffering in combination with console functions in Windows.

It’s interesting to look at the signature of the functions that have been used in

the examples. The easiest way to get the signature is to ask the interpreter with its :t

command.

*Chapter9.BasicInputOutput> :t putStrLn

putStrLn :: String -> IO ()

*Chapter9.BasicInputOutput> :t getLine

getLine :: IO String

The do notation that has been used and the data types wrapped inside another type

(in this case, IO) should give you a clue that you’re indeed working inside a monad. In

the previous chapters, you saw that State represents computations that carry a state,

Maybe computations that may fail, and so on. IO brings to a certain bit of code the

ability to perform side effects. In the previous examples, it was used to print to and get

information from the console.

There’s one important difference between IO and the rest of the monads that have

been considered up to this point. For the other monads, there was some way to inspect

the resulting value (e.g., using pattern matching with Maybe) or run the monad (with

functions similar to runState). In that way, you could get back to a context without the

corresponding monad.

By contrast, IO has no escape hatch. There’s no operation that converts an IO t value

into a plain t value.1 This is how Haskell imposes a barrier between the computations

that involve side effects and must work inside the IO monad, as well as the rest. You

want to be sure that a function without IO in its signature is pure, free of side effects, and

referentially transparent. Furthermore, every call to IO in a certain application must span

from the initial main function, which has IO () type.

1�This assertion is not completely true. There are ways you can perform such a conversion.
However, it’s considered extremely unsafe because it may break several of the invariants that
Haskell code counts on. The main use of this unsafe conversion is interoperation with languages
that don’t make a distinction between pure and side-effectful functions.

Chapter 9 Dealing with Files: IO and Conduit

304

Note  For the Haskell compiler, an expression that is pure must be treated
differently than an expression involving side effects and that lives in IO. However,
from a programmer’s point of view, IO is no different from any another monad. It
just happens to introduce side effects into computations.

Haskell’s Prelude module offers several functions for interacting with the console.

In addition to the aforementioned putStrLn, which prints a line of text and then

starts a new line, you have at your disposal putStr, a variant of printing a string but

without any final newline character, and putChar, which prints just one character on

the screen. For the common case where the data to print is not yet a string but can be

converted into one by the show function, you can use print. Here’s a brief example

where the user is requested to input a first name and a last name, and the system

shows a value of the type Person :

main = do putStrLn "First name?"

 fName <- getLine

 putStrLn "Last name?"

 lName <- getLine

 putChar '>' >> putChar ' '

 print $ Person fName lName

For the record, the Person and Client data types were declared as follows in

Chapter 4:

data Person = Person { firstName :: String, lastName :: String }

 deriving (Show, Eq, Ord)

data Client i = GovOrg { clientId :: i, clientName :: String }

 | Company { clientId :: i, clientName :: String

 , person :: Person, duty :: String }

 | Individual { clientId :: i, person :: Person }

 deriving (Show, Eq, Ord)

All these output functions have IO () as the return type. Remember, () is the unit

type and there’s only one value of that type, which is confusingly also named (). It’s

customarily used in Haskell programming to identify those monadic computations that

don’t have a value to return but that has effects on the context that you’re interested in.

Chapter 9 Dealing with Files: IO and Conduit

305

In addition to putStr and friends, other functions that use () in their return types are

tell (from the Writer monad) and put (from the State monad).

The counterparts to the previous functions are the ones that receive information

from the user. The most common one is getLine; its task is to gather all the input up to

the moment in which the user presses Enter. You may be interested, however, in getting

the input character by character, which you can do using getChar. Finally, in some

cases you want to get all input up to an end-of-file marker. This is common when piping

data between processes in a Unix-like shell. The getContents function provides this

functionality.

HASKELINE

If you’re planning to create a command-line application, the simple functions that Prelude

includes won’t offer the best experience to the end user. In particular, you may want to provide

command history or autocompletion.

The haskeline library is specifically designed for this task. The core of the library is the

InputT monad transformer, which provides those features. The previous example asking for a

person could be rewritten as follows:

import System.Console.Haskeline

main = runInputT defaultSettings $ do

 fName <- getInputLine "First name? "

 lName <- getInputLine "Last name? "

 case (fName, lName) of

 (Just f, Just l) -> outputStrLn $ show (Person f l)

 (_ , _) -> outputStrLn "I cannot identify you"

One difference with standard Prelude is that input functions return their value wrapped on a

Maybe, anticipating the case in which the input may stop earlier than expected.

Since IO is a monad, you can use the enormous set of functions that were presented

in Chapters 6 and 7. As you may remember, any monad is a functor, so you can use fmap

directly on IO. For example, you may refactor the following use of variable s since it’s

used only to thread the information to upperS:

import Data.Char

Chapter 9 Dealing with Files: IO and Conduit

306

main = do s <- getLine

 let upperS = map toUpper s

 putStrLn upperS >> putStrLn upperS

into a more concise form which directly generates upperS:

main = do upperS <- fmap (map toUpper) getLine

 putStrLn upperS >> putStrLn upperS

Another possibility is accumulating some information using foldM. The following

code goes through a whole list of clients, and for each of them it asks the user whether

they should be included in a special VIP list:

import Control.Monad (foldM)

createVIPList :: Show a => [Client a] -> IO [Client a]

createVIPList = foldM (\lst c -> do

 putStrLn $ "\nShould " ++ show c

 ++ "be included as VIP? "

 answer <- getLine

 case answer of

 'Y':_ -> return $ c:lst

 _ -> return lst) []

It’s interesting to consider what happens when IO values are inside a certain

container. For example, you may want to create a list of actions and, based on some user

input, execute one of them. This is exactly what is done in the following piece of code:

main = do actionName <- getLine

 case lookup actionName listOfActions of

 Just action -> action -- execute action

 Nothing -> putStrLn "Unknown action"

listOfActions :: [(String, IO ())]

listOfActions = [

 ("greet", do name <- getLine

 putStrLn $ "Hello " ++ name),

 ("sum" , do putStrLn "First number:"

 n1 <- fmap read getLine

 putStrLn "Second number:"

 n2 <- fmap read getLine

Chapter 9 Dealing with Files: IO and Conduit

307

 putStrLn $ show n1 ++ "+" ++ show n2

 ++ "=" ++ show (n1+n2))]

It’s important to think for a moment how the execution of such code differs from

what you may expect. In most programming languages, the call to lookup would have

triggered the evaluation of listOfActions. Then, all the calls to getLine or putStrLn

would have been executed since they appear in the body of listOfActions. However,

in the Haskell code the side effects aren’t executed until you’ve unwrapped the action

to be of type IO t for some t and asked for its execution, which happens in the line in

bold with the “execute action” comment. One important implication is that IO values are

first-class citizens of Haskell, like functions are, and can be combined, can be passed as

arguments, and can be returned as any other value.

�Randomness
Let’s take a break from input and output and consider the issue of randomness in

Haskell. For that purpose, I present a simulation of a time machine breaking in the

middle of a journey. When this breakdown happens, the time traveler is involved in a

disturbing experience: ending in a random place, at a random point in time, with no clue

of what is outside the machine.

The following code uses the randomRIO function from the System.Random module in

the random package to simulate a random walk from an initial point, that is, a series of

random jumps in time made by a broken time machine. The randomRIO function needs

upper and lower bounds for the value to obtain, which in this case have been set to 0 and

3000. Since the walk may be infinite, the code just prints the ten initial hops.

{-# LANGUAGE ScopedTypeVariables #-}

import Control.Monad.Loops

import System.Random

main = do (initial :: Int) <- fmap read getLine

 jumps <- unfoldrM (_ -> do next <- randomRIO (0, 3000)

 if next == initial

 then return Nothing

 else return $ Just (next, next))

 initial

 print $ take 10 jumps

Chapter 9 Dealing with Files: IO and Conduit

308

Note  In the preceding code I’m using the monadic counterpart of unfolding,
namely, unfoldrM. However, you won’t find it in the usual Control.Monad
module. Instead, you need to import Control.Monad.Loop from the monad-
loops package. This is an interesting module, which you should add to your list of
tools for monadic programming.

Since you know how to read and write from the console and how to generate random

values, you can now develop small console games. Exercise 9-1 asks you to do this.

EXERCISE 9-1. WIN A TIME TRAVEL TRIP

Develop a small game in which you can win a time travel trip in one of the machines in the

store. The game should generate a random number between 3 and 17. Then, the user has

five possibilities of guessing the number. If the user guesses correctly, the program will

show a message congratulating them. In case of failure, the program will show a message

encouraging the user to try again.

While developing the game, try to think about how to modularize and abstract the code; the

range of numbers or the number of guesses can be turned into parameters.

The previous code did its job in the main function, which has the IO () type. The call

to randomRIO is not made on a let block, which points out that this function works also

in IO contexts. You can see that this is the case by asking the interpreter its type.

*Chapter9.Randomness> import System.Random

*Chapter9.Randomness System.Random> :t randomRIO

randomRIO :: Random a => (a, a) -> IO a

Let’s think for a moment why randomness needs an IO context to work. The main

reason is that randomRIO breaks the referential transparency property found in pure

Haskell code; not every call to randomRIO will return the same result. That fact implies

that the compiler may not be able to perform certain optimizations. For example, in pure

Chapter 9 Dealing with Files: IO and Conduit

309

code if you have a piece of code like g (f x) (f x), it may be rewritten to let h = f x

in g h h, which involves one call less to f and thus less work to be done. But if instead

you write this:

do x <- randomRIO (0, 10)

 y <- randomRIO (0, 10)

 return g x y

this cannot be rewritten to the following:

do z <- randomRIO (0, 10)

 return g z z

The code cannot be rewritten because the two calls to randomRIO may return a

different random value. Many other good properties of Haskell code break in the

presence of side effects, and thus you cannot use tools such as equational reasoning.

This is another reason, in addition to maintainability, for keeping pure and IO code

apart.

Furthermore, any call to that function must update the global random generator,

which is kept in memory by the system. This is an important side effect. If you don’t want

to use that global variable and being forced to use IO, you can create pure functions that

involve random values given that you provide the initial random generator, which is a

value of type StdGen. The corresponding pure functions return both a random value

and the generator for the next value. For example, the previous code can be “purified” to

work on StdGen values as follows:

import Data.List

getJumps :: StdGen -> Int -> [Int]

getJumps gen initial = unfoldr (\g -> let (next, nextG) = randomR (0, 3000) g

 in if next == initial

 then Nothing

 else Just (next, nextG))

 gen

Chapter 9 Dealing with Files: IO and Conduit

310

You can either create a StdGen value with a fixed seed via mkStdGen or obtain the

global one via getStdGen. Thus, the initial random code, which also outputs the result,

can be written as follows:

main = do (initial :: Int) <- fmap read getLine

 gen <- getStdGen

 print $ take 10 $ getJumps gen initial

This example holds a valuable lesson; in many cases, you can split your functions

with side effects in several pure functions. There is also a driver function that operates

in IO and takes care of threading the information between the others. In that way, your

code will be easier to maintain.

�Working with Files
The next step after knowing how to deal with side effects and how to communicate with

the console is to read and write on a durable location. In other words, you will learn

how to read and write files on the system. At some point, the files turn into objects that

can perform certain operations, such as moving files from one location to another or

deleting one file from disk. This section will delve into the functions that provide this

functionality in the Haskell Platform.

�Reading and Writing
The Prelude provides functions for bulk operations on files, either writing from or

reading an entire string into a file. The involved functions are writeFile or appendFile

for output and readFile for input. One possibility is reading a list of clients and, for each

of them, deciding whether they’ve won a time travel to a point in time (for this second

part, the code uses randomRIO). The main assumption is that each line of the file will

contain a client, so you can use the lines function in Data.String, which separates a

string between newline boundaries.

{-# LANGUAGE ScopedTypeVariables #-}

import Data.String

import System.Random

Chapter 9 Dealing with Files: IO and Conduit

311

main = do clients <- fmap lines $ readFile "clients.db"

 clientsAndWinners

 <- mapM (\c -> do (winner :: Bool) <- randomIO

 (year :: Int) <- randomRIO (0, 3000)

 return (c, winner, year))

 clients

 writeFile "clientsWinners.db" $ concatMap show clientsAndWinners

However, working only with these operations has a severe performance impact: the

information read from the file is kept entirely in memory, and the data to write to the file

must be assembled into a string before writing it. In many cases, you will want further

control. For example, you will want to read just a line or a file or write information to the

disk as you go, instead of waiting for the entire process to finish. The module you should

look at is System.IO.

Like in most programming languages, the flow of work with a file involves first

opening a handle to it, then performing any operation that you need on the file, and

finally closing the access to the file. The handle keeps track of all internal information

that the system may need to work on the file.

The first step is handled by the openFile operation. The arguments for this

function are the path to the file (the documentation shows that the type of this

argument is FilePath, but it’s just a synonym for String) and the opening mode,

which can be for reading, writing (or both), or appending. The result will be a file

handle. In addition to opening your own files, you can use any of the predefined

handles, such as stdin, stdout, or stderr, which map to standard input, output, and

error, usually from the console.

The inverse operation, closing a file, is done via the hClose functions. As in any

other programming language, it’s important that you close the file after you’ve finished

working with it because an open handle consumes resources from the machine.

To read or write, you can use the generalizations of the previous console functions,

which work on any file handle. These are all prefixed by h, and thus you get hGetChar,

hGetLine, hGetContents, hPutChar, hPutStr, and hPutStrLn. Additionally, you can

query the system as to whether you’ve finished reading the file with hIsEOF. Armed with

these weapons, you can write a more efficient version of the previous example, which

reads one line from the file at a time.

import System.Environment

Chapter 9 Dealing with Files: IO and Conduit

312

import System.IO

main = do (inFile:outFile:_) <- getArgs

 inHandle <- openFile inFile ReadMode

 outHandle <- openFile outFile WriteMode

 loop inHandle outHandle

 hClose inHandle

 hClose outHandle

 where loop inHandle outHandle = do

 isEof <- hIsEOF inHandle

 if not isEof

 then do client <- hGetLine inHandle

 (winner :: Bool) <- randomIO

 (year :: Int) <- randomRIO (0, 3000)

 hPutStrLn outHandle $ show (client, winner, year)

 loop inHandle outHandle

 else return ()

You may have noticed that instead of hard-coding the input and output file names,

the code obtains them via the getArgs function. This function, found in System.

Environment, returns a list of all the command-line parameters that have been given to

the executable command.

Since opening a file, working with it, and closing the handle afterward are common

tasks, the Haskell Platform includes a special withFile function that takes care of the file

and expects only the action to perform. For example, the previous code could have been

written as follows:

main = do (inFile:outFile:_) <- getArgs

 withFile inFile ReadMode $ \inHandle ->

 withFile outFile WriteMode $ \outHandle ->

 loop inHandle outHandle

 where loop inHandle outHandle = do ...

Additionally, withFile will protect against possible errors while processing the file,

ensuring that the file handle is always closed. In the next section, you will learn how to

treat possible errors that may occur while working with files (e.g., data corruption, files

that do not comply a certain schema, etc.).

Chapter 9 Dealing with Files: IO and Conduit

313

Knowing how to read and write information from files, in addition to marshaling to

and from strings with show and read, provides a way to save information about clients

and products on disk. In Exercise 9-2 you are asked to classify clients in several files

based on their category.

EXERCISE 9-2. CLIENT CLASSIFICATION

Remember that clients in the time machine store can be individuals, companies, or

government organizations. Right now, the store keeps the records for all clients in a single file.

Each line contains a client, and it’s encoded by using the show function on them.

In this exercise, write a small executable that reads the information of those clients and

generates another three files. Each of these files should contain all the clients of one of the

three possible categories.

Up to this point, the code has just read the data in every file as a string. But in reality,

two different scenarios may occur. The first one is that the file contains text, the other is

that the information in the file is raw binary data. Furthermore, in the first case different

encodings may have been used to translate from text data into a sequence of bytes. The

hSetEncoding function is used to change the current encoding of a handle. The System.

IO module includes many encoders, including latin1, utf8, utf16, and utf32, as well as

its big-endian and little-endian versions. If you want to be sure that the contents of the

output file for winners are written in UTF-8, you ought to change the code before going

into the loop.

withFile outFile WriteMode $ \outHandle -> do

 hSetEncoding outHandle utf8

 loop inHandle outHandle

Anyway, in the next chapter you’ll see that using Strings is rarely the best option

when dealing with files. Instead, you should use ByteString and Text values. In that

case, the encoding problem comes first, and you always need to specify how to convert

from sequences of bytes to text values.

Chapter 9 Dealing with Files: IO and Conduit

314

�Handling Files
Let’s move now to another range of operations you can do with files. Moving, copying,

and deleting don’t involve the data stored in files but rather the files themselves. For

these operations, the Haskell Platform includes the directory package, which is quite

straightforward to use.

The functions renameFile, copyFile, and removeFile, from the System.Directory

module, take care of moving, copying, and deleting files from the system, respectively.

It’s important to note here that none of these operations supports working on directories,

only on files.

Because of the inability of the previous functions to work on folders, directory

provides a different set of functions for them. The following list enumerates the most

important ones:

•	 getDirectoryContents returns a list of all the elements

inside the folder.

•	 createDirectory makes a new folder on the system. However, it may

fail if the directory already exists or if some of the parent directories

are not present. createDirectoryIfMissing takes care of those two

conditions.

•	 renameDirectory allows you to move a folder in the system. Notice

that errors may happen if the path where you want to move already

exists.

•	 removeDirectory deletes a folder from the system.

Usually, the directory cannot be removed if it’s not empty.

removeDirectoryRecursive, on the other hand, deletes every

element inside the folder and then the folder itself.

In addition to encoding, the other big issue when handling files is the format of the

file paths, which changes depending on the underlying operating system. For example,

Windows uses drive letters to prefix the paths and allows both \ and / to separate parts,

whereas Unix and Mac OS X systems allow only / as a separator. Since the Haskell

community considers interoperability between systems an important issue, a library

has been included in the Haskell Platform that abstracts from these issues; its name is

filepath.

Chapter 9 Dealing with Files: IO and Conduit

315

The most important function in this library is (</>), which combines two

path segments into a larger one. For example, if you want to read some database

configuration found in the database.settings file in the config folder, the most correct

way to do so is as follows:

withFile ("config" </> "database.settings") ReadMode $ \handle -> ...

Conversely, you may want to split a certain file path in the directory between where

the file resides and the file name. You can do this with splitFileName. As an example,

here’s some code that gets an input file name from command-line arguments and writes

into a file named example within the same folder:

import System.FilePath

main = do (file:_) <- getArgs

 let (folder, _) = splitFileName file

 withFile (folder </> "example") WriteMode $ \handle -> ...

In some cases, it may be interesting not to split only between the folder and

the file name but rather get a list of all the path segments. In that case, you can use

splitDirectories instead.

Finally, filepath includes functions for dealing with extensions. You can use

(<.>) to add an extension to an existing file path. The other way around, you can

use splitExtensions to generate a tuple of the file name and all the extensions

attached to it. The package includes many other little utilities, such as replacing an

extension, dropping just the last extension, and so on. It’s useful to look at the filepath

documentation when you need to handle file paths in your application.

Note A gain, never roll your own ways to combine extensions, add extensions,
or do any other task involving file paths. Instead, use the filepath package to
ensure that your code is correct and interoperable.

Chapter 9 Dealing with Files: IO and Conduit

316

�Error Handling
When dealing with input and output or many other kinds of side effects such as printing

or communicating through a network, many kinds of errors can occur. In all the previous

examples, the program would just crash when trying to open a file that doesn’t exist on

the system. It’s important to know how to detect and recover from those error conditions.

But before proceeding with handling errors in IO contexts, I’m going to discuss how

errors are handled in pure code, a topic you’ve already heard about previously in this

book. In that way, you’ll notice the differences between pure errors and exceptions. The

latter is the mechanism for signaling anomalous conditions in IO.

�Pure Errors
Until now, when an operation could not be performed, the most common way to cope

with it was to return a Maybe value. This happened, for example, when a function was

not applicable to some of the constructors of the value, such as head to empty lists, [],

or getting the company name of an Individual client. In that way, the calling function

would get Nothing as a result if any problem happened.

Unfortunately, Maybe is not a precise way to specify what error has occurred. You can

declare that the operation was not successful but cannot specify the reason. And in many

cases, that information is relevant; it’s not the same failure that happens on a database

transaction because the connection is not available as the failure that happens because

some constraint has been violated. A useful type for these scenarios is Either, which is

declared simply as follows:

data Either a b = Left a | Right b

For example, if x :: Either Int String, x can contain either an integer value,

in which case the Left constructor would have been used, or a string value, which is

wrapped on the Right constructor.

Conventionally, using Either for errors uses Right when the computation is

successful and Left for failing scenarios. Thus, if r is the type of correct results and e is

the type you would use for specifying the possible errors, Either e r is the customary

type to use in functions. As an example, let’s define a version of companyName that tells

you the specific error why it couldn’t retrieve the name of a company client.

data CompanyNameError = GovOrgArgument | IndividualArgument

Chapter 9 Dealing with Files: IO and Conduit

317

companyName :: Client i -> Either CompanyNameError String

companyName Company { clientName = n } = Right n

companyName GovOrg { } = Left GovOrgArgument

companyName Individual { } = Left IndividualArgument

A user of this function can now pattern match on the result and find the type of error

in case it’s needed.

printCompanyName :: Client i-> IO ()

printCompanyName c = case companyName c of

 Right n -> putStrLn n

 Left GovOrgArgument-> putStrLn "A government organization was given"

 Left IndividualArgument -> putStrLn "An individual was given"

The dichotomy between using Maybe or Either for specifying when an operation

was not successful is usually a source of headaches. This becomes especially painful

when you’re using a library that uses a different style of error specification than the

one you’ve decided to use in your application. Thankfully, the errors package, in its

Control.Error.Util module, contains helpful functions to convert between styles. The

signatures of those functions involved in the conversion are as follows:

hush :: Either a b -> Maybe b

note :: a -> Maybe b -> Either a b

Essentially, you use hush to forget about any concrete error in an Either value and

just return Nothing if the computation fails. In the other direction, you need to tell which

error value to return in case the Maybe value turns out to be Nothing. The name of the

function is a reminder of its usage; you need to “add a note” to the possible error value.

Since deciding whether to use Maybe or Either is difficult but also may have

ramifications throughout your application, so you may think about abstracting over the

way errors are handled. Haskell type classes are the tool you need here.

In Chapter 7 you learned how to use MonadPlus to return values that declared an

erroneous condition and its mplus operation to combine several of those values and

returned the ones that were not errors. If you use MonadPlus, you can use Maybe or lists,

signaling errors with Nothing and empty lists, respectively. Unfortunately, Either cannot

be made an instance of MonadPlus. The problem is that the mempty operation in that type

class must not have any parameter. Thus, you cannot specify which value to wrap in the

Left constructor if an error should be returned.

Chapter 9 Dealing with Files: IO and Conduit

318

The mtl package includes a generalization of MonadPlus to which both Maybe and

Either can be given instances; its name is MonadError. Any type that supports this type

class must provide two different operations, as its declaration needs.

class Monad m => MonadError e m | m -> e where

 throwError :: e -> m a

 catchError :: m a -> (e -> m a) -> m a

The first operation is the one responsible for signaling failure. As you can see, it

satisfies the requirement that mempty didn’t; it takes an extra parameter that is the error

value to return. For example, the companyName function could be generalized to work on

both Maybe and Either as follows:

{-# LANGUAGE FlexibleContexts #-}

import Control.Monad.Except

companyName :: MonadError CompanyNameError m => Client i -> m String

companyName Company { clientName = n } = return n

companyName GovOrg { } = throwError GovOrgArgument

companyName Individual { } = throwError IndividualArgument

In the case of MonadPlus, the mplus function serves well for recovering from an error.

Essentially, x `mplus` y was described in this context as returning the value of x if it

represents success, or otherwise returning y if x represents failure.2 This operation has

also been generalized: catchError has the same task but has access to the error value of

the corresponding throwError if the operation fails. For example, let’s create a function

that calls companyName and in case of failure returns a predefined empty value using

MonadError.

companyNameDef :: MonadError CompanyNameError m => Client i -> m String

companyNameDef c = companyName c `catchError` (_ -> return "")

Along with the MonadError type class, mtl and transformers include an ExceptT

monad transformer you can add to your stack. The best way to understand its task is by

thinking of the MaybeT transformer, in other words, of computations that may fail, with

2�This analogy doesn’t apply as much in the case of lists, where a `mplus` b is the concatenation
of both lists and thus returns all the successful values from both branches.

Chapter 9 Dealing with Files: IO and Conduit

319

the addition of a tag specifying the error in the appropriate case. The errors package

also encourages the use of ExceptT and provides conversion functions between stacks

using MaybeT and ExceptT.

hushT :: Monad m => ExceptT a m b -> MaybeT m b

noteT :: Monad m => a -> MaybeT m b -> ExceptT a m b

Note  There is a historical reason for the breakage of the naming convention in
the case of Either, MonadError, and ExceptT. Older versions of transformers
contained an ErrorT monad transformer, along with the MonadError class. This
type has been deprecated, because it imposed unnecessary constraints in the type
of errors, and has been replaced by ExceptT.

SAFE FUNCTIONS

Because of the historical development of the Haskell libraries, some of the functions in the

Prelude module don’t have a pure-friendly way to cope with errors. An archetypical example

is head. In the case of applying it to [], this function raises an exception (which can be

caught only inside the IO monad, as you will see in the next section) instead of returning some

representation of the error.

To alleviate this problem, the safe package provides a lot of versions of common functions

that fail in a more pleasant way. For example, head has a version called headMay, which

returns the value wrapped in a Maybe, and thus allows you to return Nothing for empty lists;

and headDef, which takes an extra argument with a default value to return in the case of an

empty list.

�Catching Exceptions
I’ve already discussed how dealing with the outer world opens the door to a whole new

category of errors, such as nonexistent files or lost connections. For that kind of events,

Haskell provides an exception mechanism. There are two main differences between

exceptions and the pure errors discussed.

Chapter 9 Dealing with Files: IO and Conduit

320

•	 Pure errors can be thrown and caught in any place, usually by simply

pattern matching on the final value of the computation. In contrast,

exceptions can be handled only inside an IO context (but still be

thrown from any place).

•	 When using Either, you need to specify in advance every possible error

that may happen in the execution of some code. On the other hand,

Haskell’s exception mechanism is extensible. This decision allows new

side effects to fail in new ways but hurts the analysis of the code because

you cannot tell in advance which exception may be thrown.

The entry point of any work with exceptions is the Control.Exception module. The

code examples in the rest of the section will assume that this module is included in the

imports list. In many cases you need to specify exception types inside function bodies

and let declarations; the ScopedTypeVariables GHC extension will be assumed to be

enabled in all the samples.

Let’s start with an example that adds exception handling to the initial function that

wrote a list of winners from the database of clients by using readFile and writeFile.

import Control.Exception

import System.IO.Error

import System.Random

main = do clients <- fmap lines $ readFile "clients.db"

 clientsAndWinners

 <- mapM (\c -> do (winner :: Bool) <- randomIO

 (year :: Int) <- randomRIO (0, 3000)

 return (c, winner, year))

 clients

 writeFile "clientsWinners.db" $ concatMap show clientsAndWinners

 `catch` (\(e :: IOException) -> if isDoesNotExistError e

 then putStrLn "File does not exist"

 �else putStrLn $ "Other error: " ++

show e)

The first thing to notice is the use of the catch function. The idea is simple; you

declare the main code to run and then a handler for a specific class of exceptions. The

second thing to notice is that the code explicitly mentions the type of exceptions to be

handled using that code.

Chapter 9 Dealing with Files: IO and Conduit

321

In this particular case, the type you’re interested in is IOException, which

describes those exceptions that have something to do with input and output.

A value of type IOException encodes extra information about the kind of problem

that occurred. You can query it via a set of functions in the System.IO.Error

module. In the example, our interest is nonexistent files and checks via the

isDoesNotExistError function.

The fact that the Haskell exception mechanism is dynamic and extensible makes the

type specification an important part of handling erroneous scenarios. The predefined

set of exceptions that is raised by functions in the Haskell Platform is also included in

the Control.Exception module. This set includes, among others, ArithException,

which signals that a numerical error such as underflow or division by zero has occurred;

ErrorCall, which allows handling calls to error; and PatternMatchFail, which is

thrown when no pattern matches a specific value.

The following code asks the user for two integer numbers and shows the

quotient of the two. Two kinds of exceptions may be raised. First, the user may input

something that is not a number, which will cause a call to error inside read. Second,

the other possible problem is division by zero. As you can see, each exception has its

own handler.

main = do (n1 :: Int) <- fmap read getLine

 (n2 :: Int) <- fmap read getLine

 putStrLn $ show n1 ++ " / " ++ show n2

 ++ " = " ++ show (n1 `div` n2)

 `catch` (\(_ :: ErrorCall) -> putStrLn "Error reading number")

 `catch` (\(e :: ArithException) -> case e of

 DivideByZero -> putStrLn "Division by zero"

 _ -> putStrLn $ "Other error: " ++ show e)

These exception types are different from IOException in one sense. Whereas an

IOException value needs to be queried through special-purpose functions about the

kind of problem that happened, these types are defined as simple ADTs, and thus you

can use pattern matching to discover the source of problems.

The Control.Exception module includes many other variations of catch for

handling exceptions. One of them is catches, which receives a list of handlers for

different exceptions. For example, the previous code could have been written without

several calls to catch using that function.

Chapter 9 Dealing with Files: IO and Conduit

322

main = do ...

 `catches`

 [Handler (\(_ :: ErrorCall) -> putStrLn "Error reading number")

 , Handler (\(e :: ArithException) -> case e of ...)]

Another possibility is using handle, which is just catch with reversed arguments. It’s

common to use it when the code to execute is long but the code to handle the errors is

short because it makes the exception handling apparent up front. The following is a third

way to write the same quotient code:

main = handle (\(_ :: ErrorCall) -> ...) $

 handle (\(e :: ArithException) -> ...) $

 do (n1 :: Int) <- fmap read getLine

 ...

In some cases, you want to treat an exception in a similar way to an error in a pure

computation. This may lead to code that is easier to read if other sources of errors are

pure. Think of a scenario when you’re validating some values from a database. In that

case, exceptions can be raised in the database connection code, but validation will use

Maybe or Either. The way to bridge both worlds is via the try function, which returns an

Either value that may contain a result in its Right or a thrown exception in its Left.

For every exception handling function there’s a corresponding one ending in Just:

catchJust, handleJust, and tryJust. Those functions take as an extra parameter an

exception filter, which decides whether a particular exception should be caught by that

handler or rethrown. These filters take the exception value as a parameter and must

return a Maybe value. If it’s Nothing, the exception should be rethrown; if the result is

Just e, the exception is handled by the code corresponding to that catch. You’ve already

found a case where this is interesting to do. From all the possible ArithException values,

the real interest lies only in DivisionByZero. Thus, you can use catchJust to ensure that

any other exception is correctly rethrown.

main = catchJust (\e -> if e == DivideByZero then Just e else Nothing)

 (do (n1 :: Int) <- fmap read getLine

 (n2 :: Int) <- fmap read getLine

 putStrLn $ show n1 ++ " / " ++ show n2

 ++ " = " ++ show (n1 `div` n2)

 `catch` (\(_ :: ErrorCall) -> putStrLn "Error reading number"))

 (_ -> putStrLn "Division by zero")

Chapter 9 Dealing with Files: IO and Conduit

323

Note A s you can see, the exception mechanism in Haskell is much more
powerful than those in other languages. In addition to defining handlers by type,
functions such as catchJust allow you to perform a dynamic check on whether
to catch a particular exception. Using catchJust and similar functions ensures
that you handle only the exceptions you know how to deal with, and the rest are
properly rethrown to subsequent handlers.

Combinators such as catchJust enable you to be specific about which exception

each handler should catch. In some cases, a handler has the opposite intention, though:

catching every exception that might have been thrown in the code. The solution

comes after looking closely at how different types of exceptions relate to each other.

In particular, Haskell exceptions form a hierarchy. Each exception type E has a parent

exception type P, describing the fact that E exceptions are a subset of P exceptions. At the

root of this hierarchy you find the SomeException type. In conclusion, if you want to add

a handler that catches all possible exceptions that may arise in your application, your

code should look like this:

main = do ...

 `catch` (\(e :: SomeException) -> ...) -- uncaught exceptions

Most programming languages that use exceptions as their error mechanism include,

in addition to ways of throwing and catching them, a way to ensure that a certain piece

of code runs even in the case of an exception. The usual purpose is to include some

cleanup code or release some resource. For example, if you open a file handle, you

want to ensure that it’s closed even if some exception arose in its processing. In Haskell,

this functionality is provided via the finally function. It can be used to create a more

resilient version of the code that writes the winner clients in a file.

main = do (inFile:outFile:_) <- getArgs

 inHandle <- openFile inFile ReadMode

 outHandle <- openFile outFile WriteMode

 (loop inHandle outHandle

 `finally` (do hClose inHandle

 hClose outHandle))

 where loop inHandle outHandle = ...

Chapter 9 Dealing with Files: IO and Conduit

324

However, this code is not completely correct. In particular, it may be the case that an

exception is thrown while opening any of the files. In that case, you cannot use finally

because the call to hClose without opening the handle is incorrect. A three-stage flow

is usual when dealing with resources: you acquire the resource, you perform some

operation, and you release it. Even in the case of an exception during processing, you

want to release the resource, but you don’t want to run that code if the acquisition failed.

This pattern is made explicit in Haskell by the bracket function. The most correct way to

write the previous code is as follows:

main = do (inFile:outFile:_) <- getArgs

 bracket (openFile inFile ReadMode) -- acquisition of inHandle

 hClose -- release of inHandle

 (\inHandle -> bracket (openFile outFile WriteMode)

 hClose

 (\outHandle -> loop inHandle outHandle))

 where loop inHandle outHandle = ...

In Exercise 9-3 you can apply your new knowledge about exceptions by taking

Exercise 9-2 and improving on it.

EXERCISE 9-3. BETTER CLIENT CLASSIFICATION

Add exception handling to the code you wrote for Exercise 9-2.

�Throwing Exceptions
Now that you’ve seen how to catch exceptions, it’s time to learn how to throw them. If

you want to reuse any of the predefined exception types in Control.Exception, you

just need to call throwIO if you are within the IO monad, or you can call throw if you

want to throw an exception from pure code (but remember that the handler still needs

to be inside the IO monad). This simple example does so by reusing the NoMethodError

exception type.

Chapter 9 Dealing with Files: IO and Conduit

325

main = do throw $ NoMethodError "I don't know what to do"

 `catch` (\(e :: SomeException) ->

 do putStr "An exception was thrown: "

 putStrLn $ show e)

Usually you will want to raise an exception of a new custom type, which describes

those exceptions that may happen in your code. To use a type as an exception, you need

to create instances for it of the Show, Typeable, and Exception type classes. Thankfully,

Haskell’s deriving mechanism saves you from writing all the boilerplate code. The

following code declares a type of exceptions in an authentication system:

{-# LANGUAGE ScopedTypeVariables, DeriveDataTypeable #-}

import Data.Typeable

data AuthenticationException = UnknownUserName String

 | PasswordMismatch String

 | NotEnoughRights String

 deriving (Show, Typeable)

instance Exception AuthenticationException

Now you can use your new exception type as any built-in one.

main = do throw $ UnknownUserName "Alejandro"

 `catch` (\(e :: AuthenticationException) -> ...)

THE TYPEABLE TYPE CLASS

Haskell’s exception mechanism makes heavy use of the Typeable type class. This class

allows you to get information about the type of a value at runtime (because usually Haskell

erases all type information after compiling in order to increase performance). Typeable can

also be used, in the Data.Dynamic module, to create an interface for dynamic values, which

you can cast at runtime to other types.

Like on other occasions, having the exception functionality wrapped in a type class

makes it easier to write code so that it’s reusable among several monad stacks and users

of your library. In most cases, the MonadError type class introduced before should be

Chapter 9 Dealing with Files: IO and Conduit

326

enough to cover stacks with exceptions. If you want a real generalization of the Control.

Exception functions and interface, I recommend the MonadCatch type class from the

exceptions package.

Caution  Throwing exceptions in pure code is not recommended at all. Instead,
you should strive to use other kinds of error propagation mechanisms, such
as Maybe or Either. Inside IO code, exceptions may result code that is more
concise and clearer (such as having a last-chance exception handler that logs all
critical errors) but still shouldn’t be overused.

�Streaming Data with Conduit
The input/output framework that has been shown in the previous sections is usually

known as classic I/O or lazy I/O. It has been included in Haskell since the first versions.

However, the way it works does not interact well with the laziness inherent to the

Haskell language, giving rise to the so-called streaming data problem. For that reason,

several stream libraries have been developed, which solve the problems related to this

interaction in an elegant and efficient way.

�Problems with Lazy Input/Output
Let’s consider the following simple piece of code. You open a file, get its contents, close

the file, and then work with the information you’ve just obtained. At first sight, this

should be OK: hGetContents reads all the information, and you ensure that the handle is

closed with hClose.

main = do h <- openFile "/some/text/file" ReadMode

 s <- hGetContents h

 hClose h

 print s

However, if you run this code, you’ll either get an empty string on the screen or an

error message.

$ cabal run chapter9-stream

file: hGetContents: illegal operation (delayed read on closed handle)

Chapter 9 Dealing with Files: IO and Conduit

327

But if you exchange the order of the printing and closing operations, everything

works fine. That a simple change in order makes the difference pinpoints a problem in

the interaction between input/output operations and the time at which each element

in the program is evaluated. Because of the lazy nature of Haskell, the s value won’t be

evaluated until it’s needed, something that happens in the call to print. But at that point,

the handle has already been closed, so hGetContents is not able to bring any kind of

information from the file. In this case, the behavior of your program doesn’t match your

expectations.

One possible solution is to force the evaluation of s using seq or deepseq. While this

is a working solution, it has two problems. The first one is efficiency: forcing the entire

string brings it into memory, consuming scarce system resources. If you want to be

clever and force only the string you need, you run into problems of maintenance and

composability. For example, which function should be responsible for bringing into

memory a determinate value? How can you know up front which of the values will be

needed in the entire application?

An even worse solution is keeping the file handle open through the life of the

application. But this would have the obvious problem of acquiring resources without

releasing them. Files may be cheap resources, but when speaking about network or

database connections, this becomes an impossible way to go.

Laziness and IO may bring even more surprises. Suppose that during the execution

of hGetContents in the previous code, an exception is thrown. This exception won’t be

seen by the block of code that generated the string but rather where the value is being

used. That means in the middle of some pure computation that uses s, an exception may

get in the way, and there’s no way to handle it without resorting to IO. Furthermore, your

code loses its predictability because you can’t always be sure whether using some value

would entail running some IO computation.

As you can see, using the simple model of handles that System.IO exposes brings

unpredictability to when resources may be released and when exceptions could be

thrown. The possible solutions such as forcing evaluation or keeping handles open are

definitely inefficient. This is called the streaming data problem.

The Haskell community has come up with some solutions to this problem in the

form of stream libraries. These libraries usually provide an abstraction of data that comes

from a resource in the form of a stream. Furthermore, the way in which the resource that

generates the data is acquired and released is made much more predictable. In many

cases, stream libraries also introduce a boost in performance because they can ensure

that only the necessary data for performing an operation is brought into memory.

Chapter 9 Dealing with Files: IO and Conduit

328

Several libraries in Hackage are built around this idea. An initial approach,

developed by Oleg Kiselyov, is shown in the iteratee and enumerator packages.

Afterward, other libraries provided a more convenient and easy-to-use interface,

including pipes, io-streams, and conduit. All those three libraries are used in the wild.

I will now focus on the conduit library because it’s been used in other libraries that

will be presented later, such as Persistent for database connections. In addition to the

core library, there are many other libraries connecting conduit to different sources of

data. In any case, the notions that appear in the conduit library are similar to those in

any other libraries.

�Introducing Conduits
conduit is based on streams of data that are produced, modified, and consumed

by different actors. For example, if the “winner clients” example was modeled using

conduit, there would be an actor providing a stream of strings from a file, another actor

modifying that stream to add the information about whether each client has won or not,

and finally another actor converting that stream into a new file in the system.

There are three kinds of actors which take part in processing data. Sources provide

streams of values to be consumed. Examples of sources are obtaining text data from a file in

disk, reading from a network connection, and obtaining each of the elements in a list. The

converse behavior, consuming a stream of values and not producing any further stream

(but maybe some final value), is modelled by sinks, for example, writing data into disk or

sending it via a network connection. Summing a list could also be seen as a sink, since

it turns a list of values into a single one. Finally, we have stream transformers (originally

known as conduits) that consume an input stream and produce an output stream.

One important feature is that each actor can take care of acquiring and releasing its

resources in a safe and predictable way. For example, a “write to file” sink may open a

handle when the stream of data starts and can safely close the handle when the input

stream is finished. Furthermore, data is only requested when the next parts of the stream

need them, which enables better performance.

The separation between sources, sinks, and conduits used to be part of the public

interface of the conduit package, but it is no more. In its current incarnation, the

library uses a single type ConduitT i o m r. The first argument i represents the type of

values in the input stream, the second argument o represents that of the output stream.

The third argument m should be a monad which defines which side effects may occur

Chapter 9 Dealing with Files: IO and Conduit

329

while processing the stream (in fact, ConduitT is a monad transformer). For example,

a source that reads data from a file would have the m parameter equal to IO. Finally, the

r argument defines the type of the final result. The trick to only need one type is to set

an argument to Void when no output is generated, or to () if no input is required or no

interesting result is produced.

A complete flow of data is established via the (.|) connect or fuse operator. Of

course, you can only combine two ConduitTs if the output type of one matches the input

type of the next one. Finally, to run the operations in a stream you call runConduit, or

runConduitPure if no side effects are involved.

Let’s look at some examples involving the simplest kind of stream: a list. All the

functions related to using lists in this way are found in the Data.Conduit.List module.

The sourceList function produces a stream that gives each of the elements in the list in

order. The fold function consumes the list and produces the result of folding a specific

function over all the elements. Let’s look at an example in the interpreter.

*Chapter9.Stream> import Data.Conduit

*Chapter9.Stream Data.Conduit> import qualified Data.Conduit.List as L

*Chapter9.Stream Data.Conduit L> let c = L.sourceList [1 .. 5] .| L.fold (+) 0

*Chapter9.Stream Data.Conduit L> runConduitPure c

15

The Data.Conduit.List includes many other actors over streams that have a similar

interface to list functions. A useful one is map, which applies a function to each element

in the stream, producing a new stream with the result of each application. You also can

use filter on a stream to eliminate those values that are not interesting. As an example,

let’s compute the sum of the squares of all odd numbers from 1 to 20.

> :{

| runConduitPure $ L.sourceList [1 .. 20] .| L.filter odd

| .| L.map (\x -> x*x) .| L.fold (+) 0

| :}

1330

As in the case of lists, unfolding is another way to generate streams, provided in this

case by the unfold function. In the next example you’ll see how it is used to generate an

infinite stream of natural numbers, from which it takes only the first ten via isolate. The

example also showcases the use of consume, which converts a stream to a simple list.

Chapter 9 Dealing with Files: IO and Conduit

330

> :{

| runConduitPure $ L.unfold (\x -> Just (x,x+1)) 1

| .| L.isolate 10 .| L.consume

| :}

[1,2,3,4,5,6,7,8,9,10]

The operations that are similar to lists give you lots of possibilities, but it’s interesting

to know how to create your own conduits. Inside a ConduitT context, you gain access to

four functionalities that are used to build streams.

•	 await tries to take the next element in the input stream. If it is

successful, it’s returned wrapped in Just. If the stream doesn’t have

any more elements, it returns Nothing.

•	 Input streams can be manipulated also inside a ConduitM. leftover

allows you to put back some value on the input stream. At this point,

the documentation discourages you from putting back elements that

haven’t been obtained from a call to await.

•	 yield is the function used to send values to the output stream.

•	 The return value of the ConduitT you’re coding is stated simply as

using the return method of monads.

As an example, let’s create a simple conduit that takes a stream of Clients and

returns every person, whether an individual or part of a company, which appears in that

stream.

people :: Monad m => ConduitT (Client i) Person m ()

people = do client <- await

 case client of

 Nothing -> return ()

 Just c -> do case c of

 Company { person = p } -> yield p

 Individual { person = p } -> yield p

 _ -> return ()

 people

Chapter 9 Dealing with Files: IO and Conduit

331

Notice that the code doesn’t have to return one element in the output stream per

element in the input stream; government organizations are not yielded. In that way, you

can implement filters. You can check that this can be used as a normal Conduit in the

interpreter.

> :{

| runConduitPure $

| L.sourceList [GovOrg 1 "NASA", Individual 2 (Person "A" "S")]

| .| people .| L.consume

| :}

[Person {firstName = "A", lastName = "S"}]

It’s important to notice that if you wrap some monad m in ConduitT, the result of

streaming data will live inside such monad m. Say that you want to count the number

of government organizations that are clients. You can build this with a simple counter,

but for illustration purposes let’s do so using State. Since ConduitT is a monad

transformer, you need to insert calls to lift before the State actions. Also, this

conduit does not produce any output stream, so we set the second type argument to

Void to indicate this fact.

import Control.Monad.State

countGovOrgs :: MonadState Int m => ConduitT (Client i) Void m Int

countGovOrgs = do client <- await

 case client of

 Nothing -> do n <- lift $ get

 return n

 Just c -> do case c of

 GovOrg { } -> lift $ modify (+1)

 _ -> return ()

 countGovOrgs

Once you connect countGovOrgs to a source and execute it using runConduit (not

runConduitPure since we use the effects of a monad), what you get still needs to be

executed on a monad supporting MonadState. In this case, you’re interested only in the

state, so execState is the function you need to get the result.

Chapter 9 Dealing with Files: IO and Conduit

332

main = let clients = [GovOrg 1 "Zas"

 , Individual 2 (Person "Alejandro" "Serrano")]

 conduitGovOrgs = L.sourceList clients .| countGovOrgs

 in print $ execState (runConduit conduitGovOrgs) 0

As an extra example of conduit in which you take advantage of the ability to use other

monads underneath, let’s implement the “winner clients” intermediate step in this framework.

In the same way that the code uses randomRIO, you can use print or any other IO action.

import Control.Monad.Trans

import System.Random

winners :: ConduitT (Client i) (Client i, Bool, Int) IO ()

winners = do client <- await

 case client of

 Nothing -> return ()

 Just c -> do (w :: Bool) <- lift $ randomIO

 (y :: Int) <- lift $ randomRIO (0, 3000)

 yield (c, w, y)

 winners

Exercise 9-4 should help you get fluent with conduit idioms.

EXERCISE 9-4. CONDUIT UTILITIES

Port the list functions that were presented in Chapter 3 to work with streams. In particular,

write the definitions of unfold, which should generate a stream of values based on a

generator, map that applies a function to all elements of a stream, filter for dropping some

of them, and fold that computes a fold of a binary operation over a whole stream.

�Accessing Files via Conduit
The problem that pushed you to consider conduit was not about lists but about

accessing files better, getting improved performance, and gaining much more

predictability. It’s time to consider the functions that the conduit ecosystem provides

for these tasks, which are available in the Data.Conduit.Binary module of the conduit-

extra package.

Chapter 9 Dealing with Files: IO and Conduit

333

The interface is simple: the functions sourceFile and sourceHandle generate a

stream from a file, whereas sinkFile and sinkHandle consume a stream, writing it into

a file. The difference between the two kinds of functions is that those ending in File

take care of opening and closing the handle to the corresponding file, whereas the ones

ending in Handle must be provided with an already open handle and do not close the

file at the end. The first ones provide all the features of conduit, whereas the second set

enables easy interoperation.

One small tidbit is that those streams do not provide String values but rather

ByteString values. This latter type is a more efficient way to treat bytes of data. The

next chapter includes a complete treatment of ByteString, which is defined in the

bytestring package, along with ways to convert it from and to String. But for the

simple example of “winner clients” where each line must be enlarged with some extra

information, the only thing you need to know is that pack converts a String into a

ByteString. Here’s the corresponding code:

import qualified Data.ByteString.Char8 as BS

import qualified Data.Conduit.Binary as B

import Data.Monoid

winnersFile :: (Monad m, MonadIO m)

 => ConduitT BS.ByteString BS.ByteString m ()

winnersFile = do

 client <- await

 case client of

 Nothing -> return ()

 Just c -> do (w :: Bool) <- liftIO $ randomIO

 (y :: Int) <- liftIO $ randomRIO (0, 3000)

 yield $ c <> BS.pack (" " ++ show w ++ " " ++ show y)

 winnersFile

As you may notice, the winnersFile code does not refer directly to the IO monad but

rather to a type class called MonadIO. This is the class of all monad stacks that support

calling IO actions inside its body. The particular feature that the MonadIO type class adds

is lifting computations via liftIO.

Chapter 9 Dealing with Files: IO and Conduit

334

With the information you have, putting all the actors to work reading and writing

the file should be as simple as the following code. Notice the lines function, which

separates a file into parts delimited by newlines.

main = runConduit $

 B.sourceFile "clients.db" .| B.lines .| winnersFile

 .| B.sinkFile "clientsWinners.db"

But the compiler will refuse such code. At this point, you need the extra generality

introduced earlier via the MonadIO constraint. The operations that create sources or sinks

in the Data.Conduit.Binary module use an extra facility from the conduit package (or

to be more precise, from the resource package), to handle the opening and closing of

resources in a safe fashion. The only difference is that you need to use runConduitRes

instead of runConduit:

main = runConduitRes $

 B.sourceFile "clients.db" .| B.lines .| winnersFile

 .| B.sinkFile "clientsWinners.db"

Now you are sure that your files will be opened and closed when required.

THE RESOURCET PACKAGE

In the previous example, you saw how conduit uses ResourceT to manage the allocation

and release of resources. This monad transformer, which lives in the resourcet package, is

a generalization of the bracket function in Control.Exception. In particular, you can use

its allocate function to acquire a resource along with a release action that is ensured to be

called when the control exists from ResourceT block.

If only that functionality is provided, you will gain nothing from using ResourceT instead

of bracket. But the former also allows you to release resources explicitly by calling the

release function along with an identifier that allocate returns.

This package is useful for implementing managers of scarce resources. If your intention is

to use a pool of resources for sharing them, you should also look at the resource-pool

package, which can be easily combined with resourcet.

Chapter 9 Dealing with Files: IO and Conduit

335

�Looking Further Than Text Files
At the beginning of the chapter I mentioned that IO allows you to access a large variety

of resources and perform many kinds of side effects. However, the only focus until now

has been interacting with the console and accessing text files in the disk. This section

presents two examples of work inside conduit but that relate to networking and binary

serialization of Haskell data.

�Basic Networking
The conduit-extra package does not only provide a conduit-based interface to the file

system. Its Data.Conduit.Network module provides ready-to-use sources and sinks for

network programming. There is one simplification though; when using this interface

an actor in the network is either a server, which listens for incoming connections, or a

client, which connects to a server, but not both. Furthermore, the connection always

runs through TCP. The network interface provided by lower-level packages allows a

much wider range of behavior, but in practice these two modes are enough for most

applications.

In both the server and the client, the module expects a value of type AppData -> IO

r, where the result r differs in server and client, in addition to the connection parameters.

That value of type AppData is used to retrieve the source and sink in which you can read

and write the connection, respectively. There are also generalized versions which use

AppData -> m r, where m supports IO operations, but I do not consider them here.

The network application to develop will be yet another way to look at the “winner

clients.” In this case, the client will send its name, obtained from the console, and the

server will return information about whether the client has won. The main Conduit in

the server is like previous exercises. The only addition is a call to putStrLn to print the

name of the user on the screen.

{-# LANGUAGE ScopedTypeVariables #-}

import Control.Monad.Trans

import qualified Data.ByteString.Char8 as BS

import Data.Conduit

import Data.Monoid

import System.Random

Chapter 9 Dealing with Files: IO and Conduit

336

isWinner :: ConduitT BS.ByteString BS.ByteString IO ()

isWinner = do client <- await

 case client of

 Nothing -> return ()

 Just c -> do

 lift $ BS.putStrLn c

 (w :: Bool) <- liftIO $ randomIO

 (y :: Int) <- liftIO $ randomRIO (0, 3000)

 yield $ c <> BS.pack (" " ++ show w ++ " " ++ show y)

 isWinner

The next step is to create the conduit which will tie together the input flow of data to

the server and the output to each client. For that matter, you can access the source and

sink representing the connection via the appSource and appSink functions.

import Data.Conduit.Network

serverApp :: AppData -> IO ()

serverApp d = runConduit $ appSource d .| isWinner .| appSink d

The last step is to start the server in the entry point. runTCPServer is the one with

that task and needs as parameters both the port in which it will keep listening and the

kind of connections to accept. You can restrict connections through IPv4 or IPv6 or from

a specific address. In this case, any client is welcome.

{-# LANGUAGE OverloadedStrings #-}

import Network.Socket

main :: IO ()

main = withSocketsDo $ runTCPServer (serverSettings 8900 "*") serverApp

Note  On Windows systems, you need to initialize the networking subsystem
before doing any communication over that channel. You can achieve this by
wrapping your main code with a call to withSocketsDo from the Network.
Socket module in the network package, as done earlier. The function itself has
no effect on other operating systems, so you should always include it to retain
maximum compatibility between platforms.

Chapter 9 Dealing with Files: IO and Conduit

337

The other side of the coin, the client, is much simpler. After the connection is created

by the runTCPClient function, it must write the name given by the command line to

the appSink, which will send that information to the server. Once some information is

returned, it just prints it to the screen. In total, the code looks like this:

{-# LANGUAGE OverloadedStrings #-}

import Network.Socket

import System.Environment

main :: IO ()

main = withSocketsDo $ do

 (name:_) <- getArgs

 runTCPClient (clientSettings 8900 "127.0.0.1") (clientApp name)

clientApp :: String -> AppData -> IO ()

clientApp name d = do runConduit $ (yield $ BS.pack name) .| appSink d

 runConduit $ appSource d .| (do Just w <- await

 lift $ BS.putStrLn w)

As you can see, conduit allows you to treat both files in disk and network

connections with the same abstractions. This makes it easy to reuse data transformation

functions between different resources, as this example has done with isWinner.

Note  The network package provides an interface to networking using the more
conventional approach of sockets. You can create the sockets using that package
and still access the data using the sourceSocket and sinkSocket functions.

�Binary Serialization
In the Haskell ecosystem, there are two main libraries to automatically serialize Haskell

values into binary data. That is, it converts some value to a stream of bytes that can later

be read to reconstruct such value. This data can be sent through a network, written to

disk, or in general used as any other byte-encoded information.

These libraries are binary and cereal. Both provide almost the same interface. The

only difference is that when using binary, you reference the Binary type class from the

Data.Binary module; and when using cereal, you should use the Serialize type class

Chapter 9 Dealing with Files: IO and Conduit

338

in the Data.Serialize module. There are also corresponding packages to perform the

serialization via streams: binary-conduit and cereal-conduit. The difference, which is

important in terms of laziness and performance, is that cereal is strict, whereas binary

is lazy. This implies, for example, that binary can cope with infinite streams of data (e.g.,

provided through a network connection), whereas cereal cannot. On the other hand,

the lazy behavior of binary may give surprising results in some cases.

Since both are so similar, in this section the focus will be just on binary and binary-

conduit. The first thing you must do to be able to serialize your own data types is

instantiate the Binary type class. Prior to GHC 7.2.1, you had to write the code for the

instance by hand, but since that version, the compiler can write the instance for you.

Thus, I won’t delve into the details of Binary instances.

Let’s say you want to serialize values of the Person data type introduced in

Chapters 2 and 3 using the automatic derivation of Binary. First, you need to enable

the DeriveGeneric extension to GHC. Then, you can include Generic in the deriving

clause of the data type. An instance of Generic contains information about the

constructors and arguments that a specific data type declares. Using that information,

binary can build a whole Binary instance, so you need only to declare it, but you need

to do this without providing any implementation of the functions. For Person, the

whole code reads as follows:

{-# LANGUAGE DeriveGeneric #-}

import Data.Binary (Binary)

import GHC.Generics (Generic)

data Person = Person { firstName :: String, lastName :: String }

 deriving (Show, Read, Generic)

instance Binary Person

Another alternative is to enable a small GHC extension which allows us to indicate

that we want to derive Binary directly in the data definition.

{-# LANGUAGE DeriveAnyClass #-}

data Person = Person { firstName :: String, lastName :: String }

 deriving (Show, Read, Generic, Binary)

Chapter 9 Dealing with Files: IO and Conduit

339

Once you have a Binary instance, you get access to the functions decode and encode,

which convert from and to ByteStrings to the corresponding values, respectively. The

binary-conduit package wraps those functions, allowing you to provide a stream of

values from encode, or to consume a stream of values, serializing each of them in turn,

from decode. The following example serializes a list of people to disk. The specific code

that brings binary into the game is shown in bold.

import Data.Conduit

import qualified Data.Conduit.List as L

import qualified Data.Conduit.Binary as B

import qualified Data.Conduit.Serialization.Binary as S

main = runConduitRes $

 L.sourceList clients.| S.conduitEncode .| B.sinkFile "people.db"

 where clients = [Person "Alejandro" "Serrano", Person " Doctor" "Who?"]

Doing the converse is also simple. The only difference is using conduitDecode

instead of conduitEncode. The following example gets a stream of Person elements and

outputs them to the screen:

import Control.Monad.Trans

main = runConduitRes $

 B.sourceFile "people.db"

 .| S.conduitDecode

 .| L.mapM_ (\(p :: Person) -> lift $ putStrLn $ show p)

It’s important that binary knows which kind of value it’s deserializing, either from

using other functions on them or by explicitly writing a signature (like in the example). In

the version of binary used when writing this book, if you change Person to String, the

code still works OK but generates a stream of four strings instead of two Persons.

�Comma-Separated Values
Another simple format to save or transmit data is comma-separated values, usually

shortened to CSV. Turning Haskell values into this format is as simple as doing binary

serialization as described above, thanks to the cassava package and the cassava-

conduit bridge to encoding and decoding.

Chapter 9 Dealing with Files: IO and Conduit

340

In fact, the only difference is that instead of Binary, you have to write instances

for ToRecord and FromRecord. As in the previous case, all these instances can be

automatically generated. Remember that you need to choose only one of the options

below: either independent instance declarations or using the DeriveAnyClass extension

and adding FromRecord and ToRecord to the deriving clause. If you add the code as it is,

GHC complains about duplicate instances.

import Data.Csv (FromRecord, ToRecord)

-- option 1: using a separate instance

instance FromRecord Person

instance ToRecord Person

-- option 2: using DeriveAnyClass

data Person = Person { firstName :: String, lastName :: String }

 deriving (Show, Read, Generic, FromRecord, ToRecord)

Encoding to CSV instead of a binary format translates to replacing the

conduitEncode function from the latter with toCsv of the former. Decoding takes slightly

more work, as shown in the following code:

import qualified Data.Csv as Csv

import qualified Data.Csv.Conduit as Csv

import System.IO.Error

main = runConduitRes $

 B.sourceFile "people.db"

 .| Csv.fromCsvLiftError (userError . show)

 Csv.defaultDecodeOptions Csv.NoHeader

 .| L.mapM_ (\(p :: Person) -> lift $ putStrLn $ show p)

When decoding from CSV, problems may arise. The number or format of the data in

the file may not be as required to create a value of the corresponding type. As with other

parts of the Haskell ecosystem, cassava-conduit forces you to decide what to do with

those errors. The simplest strategy is to map the errors from CSV decoding into those

understood by the monad in which the conduit runs. In the code above, that monad is

IO, and its error type is IOException. We use the simplest mechanism: turn the error

into a string using show and then throw the exception with that string, without further

inspection.

Chapter 9 Dealing with Files: IO and Conduit

341

In addition to this error mapping, the decoder also needs to know several options,

including how values are separated, and whether the file contains a first row with

headers or not. In the example above, we use the default, which means that values are

separated by commas.

BETTER SERIALIZATION

None of the serialization mechanisms presented in this chapter is very efficient when you

need to query and transform a lot of data because the full set of data must be brought into

memory and decoded. A better solution is to use a database management system for storing

the information. Chapter 12 is devoted to connecting to databases in Haskell and storing

and querying the data saved in them. In Chapter 11, I consider another common interchange

format: JSON.

�Summary
This chapter covered how to interface with the “outer world” and explained how to deal

with side effects.

•	 The IO monad was presented as the one that gives context for side

effects in computations. Furthermore, we looked at the way in which

Haskell separates pure computations from those with side effects.

•	 You learned how to read and write from the console and from files in

the disk using the “classic I/O” approach.

•	 Another source of side effects is randomness, which is provided by

the random package.

•	 The chapter covered the way in which errors are handled in pure

code. In particular, I talked about the Either type.

•	 Side-effects computations open the door to exceptions, an extensible

but impure way to treat erroneous scenarios inside IO.

Chapter 9 Dealing with Files: IO and Conduit

342

•	 The “classic I/O” exhibit has several deficiencies in its interaction

with laziness. The conduit library is a solution for those problems

based on the stream abstraction.

•	 Finally, you learned how to use conduit in several scenarios, such

as reading and writing to files, communicating through the network,

and serializing Haskell values to various formats.

Chapter 9 Dealing with Files: IO and Conduit

343
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_10

CHAPTER 10

Building and Parsing Text
The previous chapter opened the door to side effects, including among others saving

data from your Haskell application on disk or sending it through the network. However,

the only true serialization mechanism that was introduced was the binary one, through

the binary package.

In many cases, a textual representation of data is preferable to a binary one. Even

though it is usually much larger, data encoded in text is more readable for a human

consumer, making your programs much easier to inspect and debug. Furthermore, many

interchange formats such as XML or JSON encode the data in text, adding to the plain

information tags to structure it.

Haskell has great features for working with text, which are the focus of this chapter.

As you will see, the built-in String data type is not the best option in many cases and

should be replaced by much more efficient alternatives such as ByteString and Text.

You shouldn’t use plain concatenation to build output text either; your programs should

use builders.

The converse operation, decoding some information from a textual representation,

is called parsing. Haskell offers an approach to parsing that uses combinators, which

is exemplified by the attoparsec library. Interestingly, parsing introduces new type

classes, the most important one being Applicative.

�The Five Textual Data Types
Treating text correctly is a difficult task in almost any programming language. Behind

the simple concept of textual data there are always subtle issues related to encoding

and representation in memory. This section discusses how to deal with text in the most

correct and efficient way in your Haskell code.

344

Until now, you’ve worked with text values represented within the String data

type, which is just a synonym for [Char], a list of characters. The main benefit of

String is the simple model that allows any function working on lists to work also on

text. Since lists are an integral part of Haskell, this is an important feature. Another

good quality of String is its support for Unicode. You may not have tried it, but any

of the code you’ve written with String would work perfectly with Chinese, Greek, or

Cyrillic characters.

The downside is that this ease of use comes at the expense of performance. Even

though GHC performs extensive optimizations on Strings, there’s some overhead both

in time and in memory compared to the raw representation as used in other languages.

When you are dealing with large quantities of text (e.g., generating output for a web

application), you need the best performance possible.

At this point, two functionalities collide, and you need to balance them.

•	 You want to see the string as a bare stream of bytes. If you don’t confer

any extra meaning to the raw bytes, you can substantially increase the

performance because operating systems usually provide specialized

operations for moving bulk blocks of bytes quickly both on memory

and to disk.

•	 Those bytes have an intended meaning. To recover the meaning,

you need to consider the encoding the data uses. The same bytes

may mean different things when interpreted as a set of Latin-only

characters or when using UTF-8 to decode them. Thus, if you care

about the actual characters encoded in the string, you have to be

careful when performing operations on them. The aim should

be to have a data type that is as performant as possible while still

maintaining correctness.

In the case of Haskell, the Haskell Platform splits the String data type in two other

different types. When you need a fast implementation but are looking only at the text as

raw bytes, you should choose the ByteString type from the bytestring package. The

Text type, bundled in the text package, focuses on describing Unicode strings while

keeping up good performance.

Chapter 10 Building and Parsing Text

345

Note  String is good for experimentation and for the prototyping phases of
development because Haskell makes the String easy to use. However, when
writing actual code, you should use ByteString or Text. Furthermore, making
this choice will make you consider other important issues such as encoding.

In addition to this distinction in focus, the two libraries provide both strict and lazy

versions of their corresponding data types. Remember the subtle balance that strictness

and laziness expose. Using a strict ByteString or Text means that you might end up

evaluating chunks of text that are larger than expected. On the other hand, laziness may

bring back some of the problems that were discussed in the previous chapter.

Table 10-1 shows the two dimensions and the module you should import to get

each set of features. Notice that for lazy Unicode data you can use both lazy Text and

built-in [Char].

Table 10-1.  Haskell Platform Modules for Textual Data

Strict Lazy

Raw stream of bytes Data.ByteString Data.ByteString.Lazy

Unicode data Data.Text Data.Text.Lazy or [Char]

As important as deciding which type to use is knowing how to convert between those

different representations. For example, you may need to insert some String obtained

by calling getLine inside a Text value. Another common scenario is getting some input

from a file or from a network as a stream of bytes, which is described as a ByteString

value, and decoding it to a Text value. Figure 10-1 summarizes all possible paths

between the types.

Chapter 10 Building and Parsing Text

346

There are two points to be made about Figure 10-1. The first one is that conversion

between strict and lazy types can be done via toStrict and fromStrict, but also

via toChunks and fromChunks. All these functions are available in the modules

corresponding to lazy versions, that is, Data.Text.Lazy or Data.ByteString.Lazy. The

difference is that the functions ending in Strict consume or produce strict versions,

whereas the Chunks functions consume or produce lists of strict values. Here are two of

these signatures:

toStrict :: Data.ByteString.Lazy.ByteString -> Data.ByteString.ByteString

toChunks :: Data.ByteString.Lazy.ByteString -> [Data.ByteString.ByteString]

This small distinction allows you to retain some degree of laziness even with strict

versions because the elements in the list will be evaluated only when needed.

There’s no single conversion between Text and ByteString but rather a family of

them, found in the Data.Text.Encoding and Data.Text.Lazy.Encoding modules. Each

of the functions includes in its name the encoding that should be used to give meaning

to the raw stream of bytes. For example, encodeUtf8 converts some text to the byte

representation using UTF-8; decodeLatin1 does the converse operation but with Latin-1

encoded text.

Figure 10-1.  Conversions between textual data types

Chapter 10 Building and Parsing Text

347

Note T here are direct conversions from String to ByteString defined
in the modules Data.ByteString.Char8 and Data.ByteString.Lazy.
Char8. However, they treat each character as an 8-bit value, dropping any extra
information (most characters need more than one byte to be encoded). Thus, using
the functions in those modules may result in a loss of information, so they should
be used with care.

In addition to conversions between them, the external interface to ByteString and

Text is almost the same. For that reason, it’s common to import the corresponding

modules in qualified form. Functions are also rather similar to the list-based functions

that you would use for String. The main difference with them is that Text and

ByteString values do not define constructors, so you need to substitute the use of (:) to

add one character with cons and the use of pattern matching with head and tail. On the

other hand, usual functions such as map, reverse, foldr, or foldl maintain their names,

as this example shows:

*Chapter10.Text> import qualified Data.Text as T

*Chapter10.Text T> :t T.pack "Hello Text type"

T.pack "Hello Text type" :: T.Text

*Chapter10.Text T> import Data.Char

*Chapter10.Text T Data.Char> T.map toUpper (T.pack "Hello Text type")

"HELLO TEXT TYPE"

*...> T.intercalate (T.pack ",") (map T.pack ["apples","oranges"])

"apples,oranges"

*Chapter10.Text T Data.Char> T.length (T.pack "A Text example")

14

Both Text and ByteString are instances of the Monoid type class. This is quite useful

because the (<>) operator is equivalent to concatenation, a quite common operation to

do on these types.

*...> (T.pack "Hello ") <> (T.pack "Beginning Haskell")

"Hello Beginning Haskell"

There’s still one drawback to using Text or ByteString instead of String: the code

becomes full of calls to T.pack to convert from literals. Because of the popularity of these

packages, the GHC developers have introduced an extension that allows you to write

Chapter 10 Building and Parsing Text

348

constant values directly as string literals, making the compiler responsible for inserting

the corresponding calls to pack (in many cases the call to pack is further optimized and

the literal is compiled directly to its Text or ByteString representation). This extension

is called OverloadedStrings. The following example enables such an extension in GHCi

and uses it to construct directly a Text value:

*Chapter10.Text T Data.Char Data.Monoid> :set -XOverloadedStrings

*Chapter10.Text T Data.Char Data.Monoid> T.map toUpper "Hello Text type"

"HELLO TEXT TYPE"

Be aware that in some cases you may need to introduce an explicit type signature

in order to fix the type of text value you’re creating. But in most cases, Haskell type

inference will be able to make the decision.

In the previous chapter, I introduced the functions in Data.Conduit.Binary that

work with files on the disk, as well as Data.Conduit.Network that does the same but

with a network connection. In that case, the type of input and output streams was

ByteString, which is compatible with the treatment of raw bytes, which was discussed

here. If you want to treat Text data, you need to convert it via an encoding, using the

Conduits in Data.Conduit.Text. The functions in that module take a codec, like utf8, as

a parameter. This is the final version of the “winner clients” application using conduit:

{-# LANGUAGE OverloadedStrings #-}

import Control.Monad.Trans

import Data.Conduit

import qualified Data.Conduit.Binary as B

import qualified Data.Conduit.List as L

import qualified Data.Conduit.Text as T

import Data.Text

main :: IO()

main = runConduitRes $

 B.sourceFile "clients.db" .| T.decode T.utf8 .|

 T.lines .| winnersFile .| L.concatMap (\x -> [x, "\n"]) .|

 T.encode T.utf8 .| B.sinkFile "clientsWinners.db"

winnersFile :: (Monad m, MonadIO m) => ConduitT Text Text m ()

winnersFile = ... -- same as previous chapter, but using Text

Chapter 10 Building and Parsing Text

349

Note I n addition to using conduit, you can also access files directly as Text or
ByteString using the “classical I/O” approach. Those functions live in the Data.
Text.IO and Data.ByteString.IO packages and have the same name as their
String counterparts.

�Building as Fast as the Wind
Until now, the examples have shown how to deal with chunks of text data in several

ways, but no complete example has been shown that stores the list of clients on disk. But

this shouldn’t be complicated; one way to do it is just to generate a big Text value and

then save it using conduit.

Since the purpose of the data is to be read back by other applications, you should

impose some structure to the representation. In particular, the encoding that I’ve chosen

for Client is the following:

•	 Each client is written as its own line. So, the file has a list of clients

delimited by newline characters. This allows faster reading via lines

afterward.

•	 Each client’s data starts with client, and the fields composing

the information will be written between parentheses and as a list

separated by commas.

•	 The first field in each line specifies the kind of client. gov, com, or ind

will be used in each case.

•	 Since newline, comma, and parenthesis characters are used for

special purposes, these will be replaced by \n, \,, \(, and \) inside

each representation.

•	 The rules for the embedded Person data type are the same, but with

the information prepended by person instead of client.

Chapter 10 Building and Parsing Text

350

The implementation using Text is straightforward.

{-# LANGUAGE OverloadedStrings #-}

import Data.Conduit

import qualified Data.Conduit.Binary as B

import qualified Data.Conduit.List as L

import qualified Data.Conduit.Text as T

import Data.Monoid

import Data.Text

saveClients :: FilePath -> [Client Int] -> IO ()

saveClients fpath clients = runConduitRes $

 L.sourceList clients .| L.map clientToText

 .| L.concatMap (\x -> [x, "\n"]) -- write '\n' between clients

 .| T.encode T.utf8 .| B.sinkFile fpath

clientToText :: Client Int -> Text

clientToText (GovOrg i n) =

 "client(gov," <> escapeString (show i) <> "," <> escapeString n <> ")"

clientToText (Company i n p d) =

 "client(com," <> escapeString (show i) <> "," <> escapeString n <> ","

 <> personToText p <> "," <> escapeString d <> ")"

clientToText (Individual i p) =

 "client(ind," <> escapeString (show i) <> "," <> personToText p <> ")"

personToText :: Person -> Text

personToText (Person f l) = �"person(" <> escapeString f <> "," <>

escapeString l <> ")"

escapeString :: String -> Text

escapeString = replace "\n" "\\n" . replace "," "\\," .

 replace "(" "\\(" . replace ")" "\\(" . pack

However, while its simplicity cannot be denied, this code is highly inefficient. Every

time two elements are concatenated, a new Text value has to be created, and this comes

with some overhead to allocate memory, to copy data, and also to keep track of the value

and release it when it’s no longer needed. Furthermore, the conversion of integer values

to Text entails an intermediate conversion to String via the show function.

Chapter 10 Building and Parsing Text

351

Both the text and bytestring packages provide a Builder data type that can be

used to efficiently generate large text values. The trick is that a Builder is not itself a

value but instead encodes how to build the large text value from its constituent parts.

Then, you execute the Builder, which finally generates the string you were looking

for. In this last step of executions, many optimizations can be done. For example, the

Builder knows how long the final result will be, so it can allocate the whole memory it

needs just once.

Builders are built from three basic blocks. You can build one out of a single

character using the singleton function or build it from a larger string value using one of

fromString, fromText, or fromLazyText. The following code, however, takes advantage

of the OverloadedStrings extension, which allows you to create a Builder from a literal

string. Finally, Builders are concatenated via the Monoid (<>), like Text values are. The

following code is a complete replacement of the previous one, where Builders are used

instead of Text:

import qualified Data.Text.Lazy.Builder as B

import qualified Data.Text.Lazy.Builder.Int as B

clientToText :: Client Int -> B.Builder

clientToText (GovOrg i n) =

 "client(gov," <> B.decimal i <> B.singleton ','

 <> B.fromText (escapeString n) <> B.singleton ')'

clientToText (Company i n p d) =

 "client(com," <> B.decimal i <> B.singleton ','

 <> B.fromText (escapeString n) <> B.singleton ','

 <> personToText p <> B.singleton ','

 <> B.fromText (escapeString d) <> B.singleton ')'

clientToText (Individual i p) =

 "client(ind," <> B.decimal i <> B.singleton ','

 <> personToText p <> B.singleton ')'

personToText :: Person -> B.Builder

personToText (Person f l) =

 "person(" <> B.fromText (escapeString f) <> B.singleton ','

 <> B.fromText (escapeString l) <> B.singleton ')'

Chapter 10 Building and Parsing Text

352

You may have noticed that the Data.Text.Lazy.Builder.Int has also been

imported into the code. This module gives you access to the decimal combinator, which

is a fast Builder for converting integer values into text. If you prefer to use base 16, you

may use hexadecimal instead.

To get the final Text value, you just need to call toLazyText on the Builder. As the

name suggests, you won’t get a strict Text value but rather a lazy one. Remember that

in any case you have the toStrict function to convert that value to a strict one when

needed. Let’s see an example of building a client description in GHCi.

> let co = (Company 1 "Black Hole" (Person "John" "Smith") "Traveller")

> B.toLazyText $ clientToText co

"client(com,1,Black Hole,person(John,Smith),Traveller)"

Since conduit uses strict ByteStrings instead of lazy ones, the new version of

saveClients using Builders must call toStrict at some point. The implementation

shows that fact.

import qualified Data.Text.Lazy as LT

saveClients fpath clients = runConduitRes $

 L.sourceList clients .| L.map clientToText

 .| L.map (LT.toStrict . B.toLazyText)

 .| L.concatMap (\x -> [x, "\n"]) -- write '\n' between clients

 .| T.encode T.utf8 .| B.sinkFile fpath

The bytestring library provides Builders for both strict and lazy ByteStrings in the

Data.ByteString.Builder and Data.ByteString.Lazy.Builder modules, respectively.

Note that the purpose of ByteString Builder is not to produce some text content but

rather a stream of raw bytes. Thus, you can use it to create your own binary format

via new combinators. For example, the library provides functions such as in16LE and

word64BE, which directly include some value of a specific number of bits (8, 16, 32, or 64)

with big-endian or little-endian formats directly as raw data.

Note R emember, use Builders when you want to generate a large Text
value or a big stream of bytes. They provide much more efficiency than bare
concatenation of strings, without any loss in expressiveness.

Chapter 10 Building and Parsing Text

353

You can use the same techniques shown here to allow clients to write

information about products and purchases in disk. Exercise 10-1 guides you in the

process of doing so.

EXERCISE 10-1. BUILDING PRODUCTS AND PURCHASES

Write Builders for the following data types that encode products and purchases in the Time

Machine Store:

data Product = Product { id :: Int, name :: String, price :: Double

 , description :: String }

data Purchase = Purchase { client :: Client Int, products :: [Product] }

You can use any representation you want. However, make sure to escape characters correctly

so that later other applications can read the file.

�Parsing with attoparsec
While generating output efficiently is useful, it’s often necessary to read back those

values in your application. You can use a textual format to interchange information

between applications, such as a web front end, an accounting program, an inventory

application, and so on.

The most efficient way to deal with the problem of recognizing patterns is using a

parser. Often, you create a description of the grammar (in other words, of the structure

that strings will follow) in a file separate from your source code. Then, a parser generator

converts the description into executable code written in a specific programming

language. The best-known examples of these parser generators are bison or yacc for C,

ANTLR and JavaCC for Java, and Happy for Haskell.

The focus in this section won’t be on these parser generators but rather on the

attoparsec package that you can find in Hackage. When using attoparsec, you describe

your grammar using a set of combinators within your Haskell code. The benefit of this

approach is that you can take advantage of the modularization and reuse features of the

Haskell programming language when writing your parser. For example, you may declare

a function that takes as a parameter a parser and generates another one that is the same

one given as an argument but run twice.

Chapter 10 Building and Parsing Text

354

Note I n the following examples, the code will use the Data.Attoparsec.Text
module, which creates parsers that work on Text values. If you’re interesting in
parsing ByteStrings instead, you should use the Data.Attoparsec module.

The simplest example of a parser is one that needs to match an exact string to

succeed. The corresponding combinator is called, quite naturally, string and takes as

a parameter the string to match. In the interpreter let’s try to run a parser that succeeds

only with hello on some different strings.1

*Chapter10.Parsing> :set -XOverloadedStrings

*Chapter10.Parsing> import Data.Attoparsec.Text

*Chapter10.Parsing Data.Attoparsec.Text> parse (string "hello") "hello"

Done "" "hello"

*Chapter10.Parsing ...> parse (string "hello") "hello world"

Done " world" "hello"

*Chapter10.Parsing ...> parse (string "hello") "bye bye"

Fail "bye bye" [] "string"

*Chapter10.Parsing ...> parse (string "hello") "he"

Partial _

*Chapter10.Parsing ...> feed (parse (string "hello") "he") "llo"

Done "" "hello"

As you can see, the function that ultimately executes a parser is called parse. It takes

as a first argument the description of the format to decode and as a second argument the

string that should be matched. However, the results from parsing may be a bit surprising.

•	 Execution of the parser consumes only part of the string; the

remainder is left for further work. The Done constructor for results

wraps both that part that hasn’t been used in the parsing process,

along with the string that successfully matched. In the example,

parsing "hello" returns no leftover strings, whereas doing so on

"hello world" makes " world" still available.

•	 In some cases, the execution of the parser just fails; this is described

by the Fail constructor of the result.

1�The messages in the case of failure may differ depending on your version of attoparsec.

Chapter 10 Building and Parsing Text

355

•	 A third possibility to be returned is Partial. This highlights one

important feature of attoparsec: it parses strings incrementally. In

this example, when you provide "he", attoparsec does not have

enough data to finish running the parser, so it gives you a callback

you can use to provide more input. This is done via feed. In this

example, if you provide "llo", you get a successful parse.

attoparsec includes some built-in parsers for different kinds of numbers, such as

decimal, hexadecimal, or signed for integer values; rational for exact fractions; and

double for floating-point values. Let’s try to use one of them.

*Chapter10.Parsing Data.Attoparsec.Text> parse decimal "78 cents"

Done " cents" 78

As you can see, the returned value is not a string but rather the actual integer value

that could be parsed from the start of the string. This is another important characteristic

of attoparsec: the parsers you create build Haskell values as they go. The type of the

result is encoded in the type variable of the Parser type, which represents the basic

attoparsec blocks. For example, the type of decimal is Integral a => Parser a.

The string and numeric parsers are basic blocks you can use to build larger ones.

For that, you need combinators that combine parsers in certain ways. The first one is

(<|>), which represents the disjunction of two parsers. If the first one doesn’t succeed

on some input, the second one is tried. Let’s say you want to match either hello or bye.

The following GHCi output shows how to do that. Notice that the (<|>) combinator lives

in the Control.Applicative module (you’ll soon learn why) and that the code is using

a variant of parse named parseOnly, which returns the success or failure of the parser

using Either.

*> import Control.Applicative

*> parseOnly (string "hello" <|> string "bye") "hello"

Right "hello"

*> parseOnly (string "hello" <|> string "bye") "bye!"

Right "bye"

*> parseOnly (string "hello" <|> string "bye") "aloha" -- should fail

Left "string"

Note T he result types of the parsers being conjoined must coincide.

Chapter 10 Building and Parsing Text

356

The next step is to combine several parsers in sequence. There’s one small tidbit:

since each parser returns a result, you need to tell attoparsec how to combine those

results. This is done via the (<$>) and (<*>) combinators. The first one is used just after

the function, which should combine the results, and the second one is used to thread

each of the arguments, in case the function has more than one. To make things clear, let’s

define a parser that accepts hello or bye followed by a number and builds a value of type

GreetingYear.

{-# LANGUAGE OverloadedStrings #-}

import Control.Applicative

import Data.Text

import Data.Attoparsec.Text

data GreetingYear = GreetingYear Text Int

greetingYearParser :: Parser GreetingYear

greetingYearParser = GreetingYear <$> (string "hello" <|> string "bye")

 <*> decimal

The code without any parsing involved could be written using the ($) application

function instead of (<$>) and simply a space instead of (<*>). As you can see, the

interface of parser combinators resembles regular Haskell code, which makes it easy to

use. With (<$>) and (<*>) you lift your normal functions to work on values wrapped in

Parser. Let’s look at the types of those two operations.

(<$>) :: (a -> b) -> Parser a -> Parser b

(<*>) :: Parser (a -> b) -> Parser a -> Parser b

The first one is essentially your old friend fmap, which makes a pure function work

on elements of a functor. Parser is an instance of Functor. In the previous example, you

have the following:

GreetingYear :: Text -> (Int -> GreetingYear)

(string "hello" <|> string "bye") :: Parser Text

GreetingYear <$> (string "hello" <|> string "bye")

 :: Parser (Int -> GreetingYear)

Chapter 10 Building and Parsing Text

357

The (<*>) function is the one helping you supply more arguments to the function.

Or, from another point of view, (<*>) unwraps the function inside a Parser and applies

one argument.

GreetingYear <$> (string "hello" <|> string "bye")

 :: Parser (Int -> GreetingYear)

decimal :: Parser Int

GreetingYear <$> (string "hello" <|> string "bye") <*> decimal

 :: Parser GreetingYear

Thanks to curried functions, you can iterate (<*>) to apply each of the arguments of

a multiparameter function.

Sometimes working with (<$>) and (<*>) alone is not enough for creating a

maintainable Parser. For example, say you want to recognize the same pattern as shown

earlier but with a space between the greeting and the number. You have almost all the

building blocks to do so, but how do you recognize a single character? This is achieved

via the char function. Now, you could write code similar to the following:

greetingYearParserS :: Parser GreetingYear

greetingYearParserS = (\g _ y -> GreetingYear g y)

 <$> (string "hello" <|> string "bye")

 <*> char ' ' <*> decimal

Notice how the better-looking application of GreetingYear has been replaced with

an abstraction whose only matter is dropping some of its arguments. If you were to

change this parser (e.g., requiring an extra ! character after the greeting), you would

need to assemble a new abstraction and take care that you drop the new unnecessary

data. Clearly, this is not maintainable. The Control.Applicative module offers a

version or (<*>), namely (<*), which describes the case where some input should be

parsed but won’t be used to build any larger structure. Using it, the previous becomes

the following:

greetingYearParserS :: Parser GreetingYear

greetingYearParserS = GreetingYear

 <$> (string "hello" <|> string "bye")

 <* char ' ' <*> decimal

Chapter 10 Building and Parsing Text

358

It’s time to start building the parser for the Client output generated in the

previous section. The first thing you need is some way to parse names, taking into

account the rules of escaping that were outlined (remember, the characters , \n ()

were replaced by a backslash and the character itself). Let’s create a parser that

returns a single character, the satisfy combinator, that matches any character that

satisfies a particular predicate; the notInClass function, which returns True only

when an element is not in some set, will become handy. Also, when \, and similar

combinations are found, you want to return the corresponding single character, for

which the const function is used.

aChar :: Parser Char

aChar = (const ',') <$> (string "\\,")

 <|> (const '\n') <$> (string "\\n")

 <|> (const '(') <$> (string "\\(")

 <|> (const ')') <$> (string "\\)")

 <|> satisfy (notInClass ",\n()")

The idea is to call this parser repeatedly until some nonmatching input is found. One

way to do this would be to create a new Parser that calls itself recursively. In each step it

prepends a character to the String value to be returned later. But you also need a base

case, which will be applied when a nonmatching character is found. The way to create

a Parser that returns some value, without consuming any input, is via pure :: a ->

Parser a. With all these ingredients, the code reads as follows:

aString :: Parser String

aString = ((:) <$> aChar <*> aString) <|> (pure "")

This pattern is common in parsers (if you know some grammar theory, the operation

is called Kleene star, and it’s one of the basics in that theory), so Control.Applicative

offers a many function that just iterates a parser until no matching input is found. The

result is a list of the type of inner parsers, in this case [Char].

aString = many aChar

Once you know how to parse the escaped strings and integer numbers, you can

create a parser for Person and Client. The following code is straightforward; the only

new function introduced is (<$), which is the application function that drops its first

argument. The purpose is similar to (<*).

Chapter 10 Building and Parsing Text

359

aPerson :: Parser Person

aPerson = Person <$ string "person(" <*> aString

 <* char ',' <*> aString <* char ')'

aClient :: Parser (Client Int)

aClient = GovOrg <$ string "client(gov," <*> decimal

 <* char ',' <*> aString <* char ')'

 <|> Company <$ string "client(com," <*> decimal

 <* char ',' <*> aString <* char ','

 <*> aPerson <* char ',' <*> aString <* char ')'

 <|> Individual <$ string "client(ind," <*> decimal

 <* char ',' <*> aPerson <* char ')'

You can check that the parser works on the builder output using the interpreter.

*> let co = Company 1 "Black Hole Inc." (Person "John" "Smith") "Traveller"

*> let b = clientToText co

*> let c = Data.Text.Lazy.toStrict $ Data.Text.Lazy.Builder.toLazyText b

*> parseOnly aClient c

Right (Company {clientId = 1, clientName = "Black Hole Inc.",

 person = Person {firstName = "John", lastName = "Smith"},

 duty = "Traveller"})

To finish this brief introduction to attoparsec, I’ll introduce the Data.Attoparsec.

Combinator module. In that module you can find parser combinators that match many

other typical patterns. For example, you have option, which helps you build parsers

with optional input. A call to option has two parameters. The second one is the parser

that is tried for matching on the input; if the matching is unsuccessful, the call to option

returns the value given as the first parameter.

Many other combinators help in matching lists of elements in many different ways.

For example, sepBy parses a list with some separator between them. This is the case

of the list of clients; a Parser for it would call aClient repeatedly, but it would expect

newline characters between them.

parseClients :: Parser [Client Int]

parseClients = sepBy aClient (char '\n')

Chapter 10 Building and Parsing Text

360

That module also features functions for parsing lists that end in 1, such as many1,

sepBy1, and so on. In that case, the lists must contain at least one element to be

successful.

Exercise 10-2 asks you to parse the products and purchases in Exercise 10-1. You can

use this task to master the attoparsec interface and the many combinators it provides.

EXERCISE 10-2. PARSING PRODUCTS AND PURCHASES

Create parsers for the output that could be generated by the functions you wrote for Exercise

10-1. You might want to read the attoparsec documentation in Hackage beforehand to have

a better idea of the built-in parsers that it provides.

In the same way that a Builder could work with conduit, a Parser can be used to

produce a stream of values from the textual input. In this case, it may become either a

sink, returning the values themselves, or provide the information for further processing.

This functionality is provided in the Data.Conduit.Attoparsec module of the conduit-

extra package.

Using this package, building a function that loads all the clients in a file generated by

the Builder in the previous section becomes just a simple concatenation of three actors:

first we read a file as a ByteString, then decode it into Text values, and finally parse that

information.

loadClients :: FilePath -> IO [Client Int]

loadClients fPath = runConduitRes $

 B.sourceFile fPath .| T.decode T.utf8 .| sinkParser parseClients

�Introducing New Type Classes
The fact that (<$>) and (<*>) do not live in some attoparsec-specific module but rather

in their own Control.Applicative offers a hint about those combinators being useful in

other scenarios. It would be interesting to study how the lifting works with other types. For

example, suppose they would also work on Maybe values. Then the types would be as follows:

(<$>) :: (a -> b) -> Maybe a -> Maybe b

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b

Chapter 10 Building and Parsing Text

361

In combination, these functions provide a way to lift a function on possibly empty

values, returning Nothing when some of the arguments are left and returning Just

if every argument is available. Let’s confirm this by running some examples in the

interpreter.

*Chapter10.TypeClasses> import Control.Applicative

Chapter10.TypeClasses Control.Applicative> (+) <$> Just 2 <> Just 3

Just 5

Chapter10.TypeClasses Control.Applicative> (+) <$> Just 2 <> Nothing

Nothing

If both Parser and Maybe can be used with the same functions, it indicates you’re in

the presence of a new type class, namely, Applicative. In this section, you’ll get a look at

Applicative and several other related type classes. I already spoke about how (<$>) is

quite like fmap, which opens the door to discussing the relation to the Functor type class,

and you saw how Maybe an instance of Applicative is too, so maybe there’s also some

relation with Monad.

�Applicative
I will now introduce the basic Applicative type class. The (<*) and (*>) functions are

also part of the type class, but they have default definitions and will be treated later. The

basic functions in the type class are defined as follows:

class Functor f => Applicative f where

 pure :: a -> f a

 (<*>) :: f (a -> b) -> f a -> f b

You already have some intuition about (<*>); it allows you to extract some function

that is inside a context of type f and applying one argument to it. This is the main

strength of the Applicative type class: being able to compute when everything you have

is inside the same context. In the following examples, both functions and arguments are

wrapped inside Maybe, and (<*>) allows you to perform the application.

Chapter10.TypeClasses ...> Just (+) <> Just 2 <*> Just 3

Just 5

Chapter10.TypeClasses ...> Just (+) <> Just 2 <*> Nothing

Nothing

Chapter 10 Building and Parsing Text

362

Chapter10.TypeClasses ...> Nothing <> Just 2 <*> Just 3

Nothing

As you can see in the third example, both the function to be applied and the

arguments can be Just or Nothing. Intuitively, when you have no function to apply, you

cannot return any result, as shown earlier.

The second function in the type class is pure. Looking at its type, a -> f a, you

can guess what the function does; it wraps some pure value inside the context f. For

example, when using Maybe, pure is equivalent to Just. Thus, you may write the first two

examples in the previous code as follows:

Chapter10.TypeClasses ...> (pure (+) <> pure 2 <*> pure 3) :: Maybe Int

Just 5

Chapter10.TypeClasses ...> pure (+) <> Just 2 <*> Nothing

Nothing

The combination of wrapping some pure function and then applying it to several

arguments is common when using Applicative. For that reason, the (<$>) was created

with that simple definition.

(<$>) :: (a -> b) -> f a -> f b

f <$> x = pure f <*> x

APPLICATIVE LAWS

As is the case with Monoid, Functor, Monad, and many other type classes, Applicative

not only mandates some functions but also has some laws that must be fulfilled. In this case,

the laws are as follows:

pure id <*> x = x, or id <$> x = x

(.) <$> x <*> y <*> z = x <*> (y <*> z)

f <*> pure x = pure ($ x) <*> f

f <$> pure x = pure f <*> pure x = pure (f x)

The first three rules make Applicatives work nicely with regular functions. The identity

function is still identity inside f, and function composition and application are also reflected

inside Applicative. The last law is telling that pure computations do not change whether

they are performed outside and then lifted or lifted in parts.

Chapter 10 Building and Parsing Text

363

Up to now, you’ve seen that Parser and Maybe are instances of Applicative. Your

old friend [] is also part of that group. As in Chapter 7, lists can be used to model

nondeterminism, and this is exactly what its Applicative instance does. For example,

if you have a set of functions that may be applied and a set of data that could be used as

arguments, (<*>) returns a list with all pairwise applications.

*> import Data.Char

> �[("Hello, " ++), \x -> "HEY, " ++ map toUpper x] <> ["Alex", "John",

"Paul"]

["Hello, Alex","Hello, John","Hello, Paul","HEY, ALEX","HEY, JOHN","HEY,

PAUL"]

The (<$>) function is useful to describe computations where a fixed function may be

given several different arguments. For example, let’s create several greetings for several

people.

> (++) <$> ["Hello, ", "Good bye, "] <> ["Alex", "John", "Paul"]

["Hello, Alex","Hello, John","Hello, Paul","Good bye, Alex","Good bye,

John","Good bye, Paul"]

�Functors, Applicatives, and Monads
There are some interesting things going on with the use of (<$>) in the preceding

section. The signature of (<$>) is equal to that of fmap of a Functor.

(<$>) :: Applicative f => (a -> b) -> f a -> f b

fmap :: Functor f => (a -> b) -> f a -> f b

Also, (<*>) looks close to the (=<<) function (which is just (>>=) but with arguments

reversed) in a Monad.

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(=<<) :: Monad f => (a -> f b) -> f a -> f b

And indeed, you’ve seen that Maybe and [], which are both monads, are instances of

Applicative. In this section I’ll shed some light on the relation of these important type

classes.

Chapter 10 Building and Parsing Text

364

First, the Applicative type class mandates that every Applicative also be a

Functor. Furthermore, the laws of the first type class imply that the definition of

fmap must be exactly equal to (<$>). However, as discussed in the context of parsers,

Applicative is stronger than Functor. This is because with Functor you can move

functions with only one parameter inside the appropriate context. If you want to apply a

function f with two parameters instead, applying fmap once to get rid of one parameter

gives you the following type:

fmap :: (a -> b -> c) -> f a -> f (b -> c)

fmap f :: f a -> f (b –> c)

fmap f x :: f (b -> c)

You cannot do anything more with only Functor because it’s not able to get the

function within the f context. But if f were Applicative, you could use (<*>) to

continue supplying parameters. The extension from Functor to Applicative gives you

the power of using functions with any number of arguments.

The Monad and Applicative type classes are also related in a direct way. In short,

every Monad is also an Applicative, which means that every monad that has been

presented until now can be used also with the Applicative interface. You can verify this

by remembering the function ap that was introduced in Chapter 7 as a way to generalize

liftM to any number of parameters.

ap :: Monad m => m (a -> b) -> m a -> m b

This is exactly the signature of (<*>) in Applicative, and it works the same. In

Chapter 7, I also discussed how liftMn f x1 ... xn could be changed into the more

extensible version shown here:

return f `ap` x1 `ap` ... `ap` xn

This follows the same pattern that you use in the definition of (<$>) in terms of pure

and (<*>). In particular, it shows that if a type is an instance of Monad, you can define the

pure function in its Applicative instance by making it equal to return.

Of course, since Applicative and Monad are not equal and Applicative is higher in

the hierarchy of classes, there must be something you can do with Monads that cannot

be done using only Applicatives. The answer to that question comes by looking at the

different signatures of (<*>) and (=<<) that were introduced earlier in the section. There

you can spot the difference; the function provided as the first argument to (<*>) must be

of type f (a -> b), whereas in (=<<) this type is a -> f b.

Chapter 10 Building and Parsing Text

365

The implication here is that using monads as an argument to a function can change

the function to be executed in the next step (because you return f b), whereas in

Applicatives an argument to a function may affect the current step to be executed but

not the remaining ones. To make it clear, consider the following case, where you want

to use the following function that, depending on whether the first parameter is 1 or not,

would result in adding one or doubling one number:

\x -> if x == 1 then Just (+ 1) else Just (* 2)

If you apply one parameter using (<*>), you get the following type:

(\x -> if x == 1 then pure (+ 1) else pure (* 2)) <$> Just 1

 :: (Num a) => Maybe (Maybe (a -> a))

And at this point the Applicative type class is of no help; there’s no way you can

unwrap those two layers of Maybe using either (<$>) or (<*>). However, in Chapter 7, a

join function on monads was introduced, with exactly the signature that you need: Monad

m => m (m a) -> m a. So, if you’re using a monad, you can “fuse” the two layers into

one and continue execution.

This doesn’t necessarily mean that a monadic interface is always better than an

Applicative one. The fact that when using monads you can influence the flow of

execution via the values that are computed at runtime makes it much harder to analyze

what’s going on inside. But in a parsing library you are willing to inspect the structure

of the computation, and in doing so you may apply many optimizations that make the

parsing process much more efficient. For that reason, the Applicative interface was

chosen for attoparsec.

WRITING MORE READABLE MONADIC CODE

In this chapter and Chapter 7, you’ve seen many different ways to express the same concepts

in Functor, Applicative, and Monad.

fmap f x = f <$> x = do y <- x; return (f x) = liftM f x

f <$> x <*> y = return f `ap` x `ap` y

pure x = return x

Chapter 10 Building and Parsing Text

366

These equalities can help you write more readable code, especially when using monads. For

example, consider the following code:

do name <- getLine

 let upperName = map toUpper name

 putStrLn upperName

In previous chapters I advocated for removing the intermediate let step with fmap, but it can

be written even more closely to a regular function application with (<$>).

do upperName <- map toUpper <$> getLine

 putStrLn upperName

Or it can even be much shorter using the Monad functions.

putStrLn =<< (map toUpper <$> getLine)

Finding the best way to write the code, balancing both readability and conciseness, is always

important.

�Alternative
I have already discussed the (<$>) and (<*>) functions, but while using Parsers you

saw another important function: (<|>). It is part of the Alternative type class, which is

reproduced here:

class Applicative f => Alternative f where

 empty :: f a

 (<|>) :: f a -> f a -> f a

 some :: f a -> f [a]

 some v = (:) <$> v <*> many v

 many :: f a -> f [a]

 many v = some v <|> pure []

As you can see, the Alternative type class resembles MonadPlus a lot. It gives you

the possibility of failure via empty and a choice via (<|>), much like mempty and mplus

worked. For example, you can use it to return one of several Maybe possibilities, namely,

the first, which is Just.

Chapter 10 Building and Parsing Text

367

*Chapter10.TypeClasses> import Control.Applicative

*Chapter10.TypeClasses Control.Applicative> Nothing <|> Just 2 <|> Just 3

Just 2

Note I ndeed, anything that is MonadPlus is both Monad and Alternative.

The some and many functions are intended to be used in parser-like environments.

If you have a computation v that holds or returns elements of type t, you can use many

and some to run it repeatedly and get a list of elements of type t instead. The difference is

that with many you may get an empty list, whereas some enforces that at least one element

is returned. These functions are not used outside of parsers because in many cases the

recursive definition does not allow them to terminate.

�Traversable
Now that many new type classes have been introduced, it is a good time to look at the

last of the “structural” type classes of which containers and context are examples. The

name is Traversable, and here’s the definition:

class (Functor t, Foldable t) => Traversable t where

 traverse :: Applicative f => (a -> f b) -> t a -> f (t b)

 traverse f = sequenceA . fmap f

 sequenceA :: Applicative f => t (f a) -> f (t a)

 sequenceA = traverse id

 mapM :: Monad m => (a -> m b) -> t a -> m (t b)

 mapM f = unwrapMonad . traverse (WrapMonad . f)

 sequence :: Monad m => t (m a) -> m (t a)

 sequence = mapM id

It looks scary, so let’s first make some simplifications. If you look closely, the

Traversable type class defines two sets of functions, one for Applicative (containing

traverse and sequenceA) and another one for Monad (with mapM and sequence), with the

same signature in addition to the type class constraints. Thus, you need to learn about

only one of the two sets.

Chapter 10 Building and Parsing Text

368

One example of Traversable is []. The types of sequence and sequenceA for that

case are as follows:

sequenceA :: Applicative f => [f a] -> f [a]

sequence :: Monad m => [m a] -> m [a]

The functions are telling you how to go from a list of computations of type f a to a

single computation with a list in its core. Say you want to make f or m equal to Maybe,

which is both Applicative and Monad. Then the specific type in that case is as follows:

sequenceA, sequence :: [Maybe a] -> Maybe [a]

If you look at Maybe as having some effect, what both sequence and sequenceA are

doing is bringing all those effects “out of the list.” Since the effect Maybe entails is the

possibility of failure, you would expect that running any of those functions will succeed

only when every element in the list is a Just; otherwise, it needs to bring the failure “out

of the list,” which can be done only by returning Nothing altogether. You can check that

this is indeed the case in the interpreter.

*Chapter10.TypeClasses> import Data.Traversable

*Chapter10.TypeClasses Data.Traversable> sequenceA [Just 2, Just 3, Just 4]

Just [2,3,4]

*Chapter10.TypeClasses Data.Traversable> sequenceA [Just 2, Nothing, Just 4]

Nothing

A more specific version of sequence in Control.Monad (only for lists) was already

used in Chapter 7 for this same purpose: executing all the actions in a list of monadic

values and returning the results of those actions.

The sequence and sequenceA functions are often described also as “commuting two

functors.” If you look at their type, you can see that you start with t (f a) and end up

with f (t a). The order of t and f has been reversed; this is what commuting means.

Furthermore, since t is Traversable, it ought to be a Functor, and since f is Applicative,

it needs to be a Functor as well. This means there are some kinds of structures (such as

lists and Maybes) that are able to go “inside” every possible effect in a normal way.

Let’s look at the other set of functions: traverse and mapM. In this case, it might be

important for you to recall the usage of the mapM function in Control.Monad. Usually the

way to look at these functions is thinking of “fmap with extra effects.” The first argument

is a function that returns some value and along the way has some extra computational

Chapter 10 Building and Parsing Text

369

effects. This function is applied in every element contained in the Traversable value,

and the effects are all joined and taken outside the returned structure.

Once again, let’s look at the special case of the Traversable t being [] and the

Applicative f being Maybe. The specific signature for traverse and mapM becomes the

following:

traverse, mapM :: (a -> Maybe b) -> [a] -> Maybe [b]

In this case the first argument is applied to every element of the list. Alas, since you

need to return a Maybe value at the end, the only thing you can do is return Just only if

every application of that first argument returned Just.

One important characteristic of all these functions is that they respect the structure

of the Traversable being worked on. For example, if traverse is applied to a list with

five elements, the resulting list will also have five elements, plus any extra effect. This is

important because it means that the functions may change only the values contained

but not the pattern they follow. This brings it closer to fmap and spans a variety of

applications. For example, in Chapter 6 I spoke about the traversed lens that allowed

you to go inside a container and retrieve or update the value of each of its elements.

Now you can see the reason behind the name and why Traversable is exactly the type

class you need.

The documentation of Traversable also specifies that the structures are traversed

from left to right. This small detail was not important for Functor (because no extra

effect was produced) or for Foldable (because the monoid you use underneath is

associative). But in the case of Traversable, it may not be the same to execute the

actions in one or another order. Think of the case of Applicative f or Monad m being the

IO monad or the Writer monad.

Implementing Traversable for a specific container seems like a complex task, but

it’s easy in practice. Take as an example the BinaryTree2 type, which was introduced in

Chapter 4.

data BinaryTree2 a = Node2 a (BinaryTree2 a) (BinaryTree2 a)

 | Leaf2

 deriving Show

In Exercises 4-8 and 4-9, you were asked to implement its Functor and Foldable

instances. Functor instances usually follow the pattern of applying the corresponding

function to each value in the structure and then calling fmap recursively on each

Chapter 10 Building and Parsing Text

370

substructure. Foldable instances do a similar job, but they apply the monoid operations

in between. Thus, the instances looked like this:

instance Functor BinaryTree2 where

 fmap f (Node2 x l r) = Node2 (f x) (fmap f l) (fmap f r)

 fmap _ Leaf2 = Leaf2

instance Foldable BinaryTree2 where

 foldMap f (Node2 x l r) = (f x) <> (foldMap f l) <> (foldMap f r)

 foldMap _ Leaf2 = mempty

The best way to write the Traversable instance is via traverse, which makes itself

a minimal complete definition. The function traverse was introduced before as “fmap

with effects.” The only thing you need to do is follow the same structure as fmap but

ensure that Applicative is used along the way.

instance Traversable BinaryTree2 where

 traverse f (Node2 x l r) = Node2 <$> f x

 <*> traverse f l

 <*> traverse f r

 traverse _ Leaf2 = pure Leaf2

Since these instances always follow the same structure, GHC is able to automatically

derive it. You do this by enabling a bunch of extensions in your source file.

{-# LANGUAGE DeriveFunctor, DeriveFoldable, DeriveTraversable #-}

Then you change the deriving part of the BinaryTree2 definition.

deriving (Show, Functor, Foldable, Traversable)

�Don’t Overengineer: Just Use JSON
The focus of this chapter has been building and parsing text, which are usually tedious

and error-prone activities. Every time you want to add some new data, you have to

change both parts and keep them synced so that the output generated by the Builder

can be consumed by the Parser.

Instead, it would be nice to use a library that helps to interchange information

in a textual way. If possible, it would be nice to use a format that is common to many

languages and platforms because future interoperation between tools may be a

Chapter 10 Building and Parsing Text

371

requirement. The JSON format provides all those features. It has almost universal

support between languages and platforms, and it uses a simple textual representation

that makes it easy for both humans and computers to process it. Furthermore, JSON

is the de facto standard for data interchange in the Web, so using it opens the door to

creating web applications in Haskell.

A Client can be represented in JSON in the following way:

{ "type": "company", "id": 1, "name": "Black Hole Inc."

, "person": { "first": "John", "last": "Smith" }, "duty": "Traveller" }

In this brief example, you can see almost every possible way to build a JSON

value. First, you have basic types, such as numbers, Booleans, and strings, which are

represented by their literals. From these basic values, you can build either arrays

(not shown here, but written using the same syntax as Haskell lists), or objects,

which are key-value maps. In addition, you also have the null special value. In this

case, the full value is an object with four keys and values, of which the person key

contains a nested object.

The good news is that the Haskell community has come up with a simple yet efficient

library for reading and writing JSON values. Its name is aeson, and its use revolves

around a small data type.

data Value = Object Object

 | Array Array

 | String Text

 | Number Number

 | Bool Bool

 | Null

Each of the constructors corresponds to a type of value you can find in JSON, as

explained earlier.

Let’s start by writing functions for converting JSON representations and

Client values. Most of the conversion to a JSON value entails wrapping data in the

corresponding constructor. In the case of creating Objects, the easiest way to do this is

via the object function, which takes a list of pairs as an argument. Each of these pairs is

defined as key .= value. The conversion to JSON then reads as follows:

{-# LANGUAGE OverloadedStrings #-}

import Data.Aeson

import Data.Text

Chapter 10 Building and Parsing Text

372

clientToJSON :: Client Integer -> Value

clientToJSON (GovOrg i n) =

 object ["type" .= String "govorg"

 , "id" .= Number (fromInteger i)

 , "name" .= String (pack n)]

clientToJSON (Company i n p d) =

 object ["type" .= String "company"

 , "id" .= Number (fromInteger i)

 , "name" .= String (pack n)

 , "person" .= personToJSON p

 , "duty" .= String (pack d)]

clientToJSON (Individual i p) =

 object ["type" .= String "individual"

 , "id" .= Number (fromInteger i)

 , "person" .= personToJSON p]

personToJSON :: Person -> Value

personToJSON (Person f l) = object ["first" .= String (pack f)

 , "last" .= String (pack l)]

If you now want to recreate a Person from a JSON value, you need to check that every

key is present. You can do this via the HashMap functions (similar to those in Map) that

aeson Value uses. Since HashMap is defined in the unordered-containers package, you

need to include it in your project for this example to work.

import qualified Data.HashMap.Strict as M

jsonToPerson :: Value -> Maybe Person

jsonToPerson (Object o) = do String f <- M.lookup "first" o

 String l <- M.lookup "last" o

 return $ Person (unpack f) (unpack l)

jsonToPerson _ = Nothing

There’s more than one approach to accessing the fields in the JSON value. As you saw

in Chapter 6, lenses are useful for this kind of navigation inside an object. The lens-aeson

package provides a set of functions that aim to make the work with aeson Values easier.

Chapter 10 Building and Parsing Text

373

In this particular case, you can use key, which provides access to a named field in the

object. Since the key may be unavailable, you do not use (^.) but its counterpart (^?),

which may return Nothing. The previous code can be rewritten as follows:

import Control.Lens ((^?))

import Data.Lens.Aeson

jsonToPerson :: Value -> Maybe Person

jsonToPerson j = do String f <- j ^? key "first"

 String l <- j ^? key "last"

 return $ Person (unpack f) (unpack l)

Another interesting member of the Data.Lens.Aeson module is nth, which given an

index obtains the element in that position if the JSON value being considered is an array.

For the rest of the primitive JSON types, lens-aeson provides the combinators _Number

(with its two variants _Double and _Integer for automatically converting into one

specific numeric type), _String, and _Bool.

Anyway, directly matching on a Value is not the suggested way to decode

information from JSON in aeson. Instead, you should use a JSON parser. The interface to

that Parser is similar to the one in attoparsec; in particular, it also uses the Applicative

functions. The main difference is the set of basic blocks for parsers. In aeson you use

(.:), which extracts a value with a given key. The most common way to convert from

JSON to Person is as follows:

import Data.Aeson.Types

import Control.Applicative

jsonToPerson :: Value -> Parser Person

jsonToPerson (Object o) = Person <$> o .: "first" <*> o .: "last"

jsonToPerson _ = Control.Applicative.empty

The functions for converting JSON back and forth are not usually defined alone but

rather as part of the ToJSON and FromJSON type classes that aeson provides. Let’s add

them to the code for the Person type.

instance ToJSON Person where

 toJSON = personToJSON

instance FromJSON Person where

 parseJSON = jsonToPerson

Chapter 10 Building and Parsing Text

374

The great benefit of using ToJSON and FromJSON is that aeson includes a bunch of

predefined instances for many types. For example, once you write it for Person, you

can also serialize into JSON lists of people, objects containing Persons, and so on. In

particular, let’s use the just-defined instance for defining the parser for Client and the

corresponding instances of ToJSON and FromJSON. Notice that FromJSON allows you to be

more general in the types you accept as identifiers.

{-# LANGUAGE FlexibleInstances #-}

jsonToClient :: FromJSON i => Value -> Parser (Client i)

jsonToClient (Object o) =

 case M.lookup "type" o of

 Just (String "govorg") -> GovOrg <$> o .: "id" <*> o .: "name"

 Just (String "company") -> Company <$> o .: "id" <*> o .: "name"

 <*> o .: "person"

 <*> o .: "duty"

 Just (String "individual") -> Individual <$> o .: "id"

 <*> o .: "person"

 _ -> Control.Applicative.empty

jsonToClient _ = Control.Applicative.empty

instance ToJSON (Client Integer) where

 toJSON = clientToJSON

instance FromJSON i => FromJSON (Client i) where

 parseJSON = jsonToClient

Using the interpreter, you can see how the conversion to JSON works correctly.2

*> :{

*| toJSON $ Company (1 :: Integer) "Black Hole Inc."

*| (Person "John" "Smith") "Traveller"

*| :}

Object fromList [("name",String "Black Hole Inc.")

 ,("duty",String "Traveller")

 ,("person",Object fromList [("last",String "Smith")

 ,("first",String "John")])

 ,("id",Number 1.0),("type",String "company")]

2�The order of the fields in the object may differ. The order of keys is irrelevant for JSON.

Chapter 10 Building and Parsing Text

375

To make the converse operation, you need to call fromJSON, which runs the Parser

with a given Value and produces a Result that may be either Success or Error. Notice

that the code uses an explicit signature to tell the interpreter which FromJSON instance it

needs to use.

*> :{

*| fromJSON $ toJSON $

*| Company (1 :: Integer) "Black Hole Inc."

*| (Person "John" "Smith") "Traveller" :: Result (Client Integer)

*| :}

Success (Company { clientId = 1, clientName = "Black Hole Inc."

 , person = Person {firstName = "John", lastName = "Smith"}

 , duty = "Traveller" })

Once you know how to convert from and to aeson Value, the next step is to convert

those Values into actual textual representations. For generating the text, you just need

to use encode, which returns a ByteString. In the case of moving from text to JSON, you

have several possibilities.

•	 decode takes a ByteString, parses the text to produce an aeson

Value, and then converts that Value into some other type using

FromJSON. The result is wrapped on a Maybe to signal failure.

•	 eitherDecode performs the same task, but in the case of failure, the

error message is returned in the Left constructor of an Either.

•	 You can perform the two steps separately. First, aeson provides json,

an attoparsec Parser from ByteString into Value. Then, you can

call fromJSON to generate the final value.

One small tidbit is that encoding and decoding in aeson work on lazy ByteStrings.

We have seen that other libraries, such as conduit, use strict ByteStrings instead. In

those cases, you need to perform a conversion, as shown in the following code:

import Data.Conduit

import qualified Data.Conduit.Binary as B

import qualified Data.Conduit.List as L

import qualified Data.ByteString.Lazy as LB

Chapter 10 Building and Parsing Text

376

saveClients :: FilePath -> [Client Integer] -> IO ()

saveClients fPath clients = runConduitRes $

 yield (toJSON clients) .| L.map (LB.toStrict . encode)

 .| B.sinkFile fPath

Exercise 10-3 asks you to use JSON to save and load products and purchases in a file.

EXERCISE 10-3. JSON FOR PRODUCTS AND PURCHASES

Write ToJSON and FromJSON instances of the Product and Purchase data types that were

introduced in Exercise 10-1. Then, using aeson and conduit, create an application that

reads a list of Products represented in JSON and shows the average price.

ToJSON and FromJSON instances always follow the same pattern: ToJSON writes each

of the fields of a constructor in key-value pairs in JSON, with an additional field for

knowing the constructor if the data type has more than one (like type in the Client

example). FromJSON just tries to read each of these keys. Haskell tries to avoid boilerplate

code as much as possible, and this is a clear case of it. In case you don’t need any special

behavior, aeson can write the instances for you.

To do so, you need to enable the DeriveGeneric extension in GHC and add Generic

to the list of instances in the deriving clause, as we have done in the previous chapter for

Binary and CSV. A Generic instance contains information about the constructors and fields

in a data type. Then, you just need to write empty instances of ToJSON and FromJSON, and

using that Generic information, aeson will do the rest. Here’s the code for the Client version:

{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics

data Client i = ... deriving (Show, Generic)

data Person = ... deriving (Show, Read, Generic)

instance ToJSON i => ToJSON (Client i)

instance FromJSON i => FromJSON (Client i)

instance ToJSON Person

instance FromJSON Person

Chapter 10 Building and Parsing Text

377

These automatically derived instances will use as keys the name of the fields

declared in the constructors. For that reason, it works only on data declarations using

record syntax. If your type has more than one constructor, the key that will be used to

distinguish them is called tag.

PARSING COMMAND-LINE ARGUMENTS

Every time you find some operation that involves parsing in some way or another, you will

most likely find an Applicative interface to it. In addition to JSON decoding via aeson, one

other useful package is optparse-applicative, which helps describe and organize the set

of command-line arguments to an application.

For example, this is how you would define the arguments to an application that expects one

file name containing a list of clients and another argument specifying whether the information

is kept in JSON format or not:

import Options.Applicative

data Args = Args String Bool -- data type holding the arguments

args :: Parser Args -- read the arguments

args = Args <$> strOption (long "file" <> help "Database of clients to load")

 <*> switch (long "json" <> help "Whether the database uses JSON")

argsInfo :: ParserInfo Args -- define arguments + help text

argsInfo = info args fullDesc

main :: IO ()

main = do Args fPath json <- execParser argsInfo

 ...

The great benefit of Applicative is that it provides a common interface to tasks that are not

necessarily related at first sight. It’s becoming widely used, and nowadays Applicative is

seen as a fundamental type class in Haskell, like Functor and Monad.

Chapter 10 Building and Parsing Text

378

�Summary
In this chapter, you learned how to deal with text in a variety of situations in Haskell.

•	 You saw the differences between the String, ByteString, and Text

types, as well as the purpose of each of them.

•	 Both text and bytestring provide Builder types that allow you to

efficiently generate textual data.

•	 You were introduced to the converse operation, parsing, via the

attoparsec package. That library uses the combinators approach to

generate modular and easy-to-read parsers.

•	 You were introduced to the Applicative type class, which lies

between Functor and Monad in strength. You also learned about the

Alternative and Traversable type classes.

•	 Finally, I discussed the conversion of JSON back and forth using the

aeson library.

Chapter 10 Building and Parsing Text

379
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_11

CHAPTER 11

Safe Database Access
In the previous two chapters, you saw how to access the file system to read and save

information in a durable way. You’ve been given all the tools for dealing with either a

custom file format or a treelike information representation such as JSON.

However, in most production system applications, you aren’t working with files.

Instead, a database management system (DBMS) is used to store the application’s

information and keep it safe. Furthermore, most DBMSs provide functionalities

such as transactions, logging, and recovery and replication, which are quite useful

for maintenance, protection against errors, and scalability. This chapter will

provide you a bird’s-eye view of the many possibilities of database access in the

Haskell ecosystem, in particular those that enable you to access relational DBMSs

based on SQL.

In this chapter, I cover two specific libraries: Persistent and Esqueleto. These libraries

are not tied to any specific DBMS but provide an abstraction layer over whatever

DBMS you might choose to use. The main advantage of using Persistent is that it allows

interaction with the database using user-defined Haskell abstract data types, which

are converted from and to database format without further intervention (similar to

object-relational mappers in the object-oriented world). This ensures a high degree of

type safety when working with database code. Esqueleto is the companion library to

Persistent, which focuses on specifics for SQL-based DBMSs.

�Database Access Landscape
You can see that Haskell has a strong ecosystem of database access libraries just by going

to the Hackage web site and seeing the number of libraries listed under the “Database”

tag (more than 400 at the moment of writing). Broadly speaking, those libraries can be

categorized in three groups.

380

	 1.	 Native implementations of a database in Haskell. The main

example of this group is acid-state, which allows you to save

Haskell data types directly on disk. The main downside of this

approach is that interoperability with other systems and languages

is harmed.

	 2.	 Libraries for accessing a particular DBMS, such as sqlite-

simple, mysql-simple, pgsql-simple (for some of the best-

known relational ones), or MongoDB. These libraries are easy to

understand for users of the corresponding DBMS but are also tied

to a specific choice of system, making it difficult to migrate.

	 3.	 Abstraction layers over several DBMSs, which provide a common

interface for several systems (usually along with specific

connectors for each of them). The range of DBMSs covered by

each library is different; some focus only on the relational,

SQL-based one, while others try to include nonrelational ones.

The main advantage of these libraries is that the choice of DBMS

can be reviewed while keeping intact almost all the database

access code in the application. This goes well with Haskell’s

philosophy of reusability.

�Abstracting Over Several DBMSs
In Hackage, you will find a group of packages that focus on the SQL world, which

is the biggest one among database users. From these, HDBC (from Haskell Database

Connectivity) and hsql hide the specific details of each DBMS but otherwise expose the

SQL model (tables, rows, and columns) as is, without any further abstraction. You just

need to plug in the package corresponding to the specific DBMS you want to use (such

as hsql-mysql or HDBC-postgresql). This gives you as the developer the full power of

those systems, allowing the use of prepared statements or controlling the transaction

boundaries. However, when using any of these libraries, you need to write the SQL

statements by hand, which is usually a source of errors, and you need to marshal the

results afterwards (which are given using a specific data type for SQL values) into your

own data type. Because of these problems, these packages are not often used directly but

rather as a dependent of a higher-level one.

Chapter 11 Safe Database Access

381

Tip T he libraries that provide a common layer over different database systems
are the most interesting to study. By learning just one, you get access to a big
range of databases.

On that higher level, you will find HaskellDB. The idea from its developers was to

expose the abstraction that the SQL databases are built upon: the relational algebra.

Thus, you work with basic operations such as projection or restriction that can

describe all the queries you can pose to the database. Furthermore, the schema for the

tables is also embedded in the Haskell code, so you can guarantee the safety of all your

queries (you won’t be accessing a nonexistent column, and you won’t be comparing

columns of different types). The main drawback of HaskellDB is that it exposes an

abstraction that is not as well known as SQL queries, so to use it you have to relearn

how to express some concepts.

�Introducing Persistent and Esqueleto
Persistent, available in Hackage and Stackage under the package name persistent,

supports both relational and nonrelational DBMSs, which eases the transition

between those two worlds in case it’s needed for enhancing the scalability of the

application. When using Persistent, you still use your Haskell data types (i.e., you don’t

need to marshal from and to your Client type), and the library generates all the glue

code automatically (by using a Template Haskell). This gives you real type checking of

your database statements, preventing a great range of application errors coming from

this fact.

If you’re from an object-oriented programming background, you may recognize

in this description the concept of an object-relational mapping (ORM), which also

takes care of gluing a class with a specific table in a database. However, because

it’s implemented in a functional language that embodies purity, Persistent doesn’t

save automatically any change you do to the value holding the information about

one of your rows. Rather, you need to explicitly ask for insertions, updates, and

deletions.

One disadvantage of Persistent is that it supports only those operations common

to every database it allows you to connect to. Since this includes both relational and

nonrelational DBMSs, the common ground is sometimes limited. For example, you

Chapter 11 Safe Database Access

382

cannot easily express a join of two tables (in the SQL sense), since DBMSs such as

MongoDB don’t have this concept. For that matter, some libraries have been developed

that extend Persistent in one direction while restricting the applicable databases. This

is the case of Esqueleto, a domain-specific language for expressing SQL queries inside

Haskell using Persistent models.

Persistent itself encompasses a lot of related functionality in three areas: describing

the schema of a database in such a way that can be used to work with usual Haskell data

types, creating and adapting the schema of an existing database into a new one and

adding or deleting columns (this is called the migration functionality), and performing

actual work with the information in the database (insertions, updates, deletions, and

queries).

�Connection
The DBMS is the software performing the actual work of storing and retrieving

information from a database. The flow of work is quite simple: you send a statement

to the DBMS, and it does some work, returning some values or information about the

success of the operation. But before sending statements, you need to know how to

establish the initial connection to the DBMS.

If you look around, you will see that along with the basic persistent package, there

are many others with a name that comes from joining persistent- with the name of

a DBMS (e.g., persistent-sqlite). Each of these packages provides a back end for a

specific system, that is, the code that is needed to communicate with it and make sense

of the results it returns.

Caution  In Hackage there are other packages starting with persistent- (like
persistent-map). Usually only those with the “Database” tag are related to
Persistent.

Each back end provides two ways to communicate with the corresponding system:

via a single connection or by creating a pool of connections (a set of open connections

that are reused by different operations to increase the ability to share resources and thus

enhance performance). For the first case, each back end has a withDBMSConn function

Chapter 11 Safe Database Access

383

that generates a connection given the parameters needed for each specific system. This

connection can be used then as a parameter to the runSqlPersistM function, which

executes a set of database actions. For example, here’s the code needed to insert a

Client (which holds a first name, a last name, an address, a country, and an age) inside

an SQLite database saved in the example.db file. Notice that at this point the code won’t

compile because you haven’t provided the definitions for the entities in the database yet.

You’ll learn how to do so in the next pages.

{-# LANGUAGE OverloadedStrings, TypeApplications #-}

import Database.Persist.Sqlite

import Control.Monad.Logger

exampleConn = runNoLoggingT $

 withSqliteConn @(NoLoggingT IO) @SqlBackend "example.db" $ \conn ->

 liftIO $ flip runSqlPersistM conn $ do

 spain <- insert $ Country "Spain"

 _client1 <- insert $ Client "Alejandro" "Serrano"

 "Home Town, 1" spain 30

 return ()

The code above uses some fancy GHC extensions. First, the withSqliteConn

function expects a Text value with the path to the database. So, I’ve used the

OverloadedStrings GHC extension in order to write that value in the code using

string literal syntax. Another extension, TypeApplications, is needed to specify the

withSqliteConn in which monad we are operating. In older versions of GHC you would

use type annotations, but in modern ones types can be specified directly using the @T

syntax. In this case, we choose an IO monad wrapper with a dummy logging interface,

namely NoLoggingT. That logging interface comes from the monad-logger package,

which is heavily used by persistent.

Since opening a connection and running some action in the database is so common,

many of the back ends provide a special runDBMS convenience function for those simple

cases. For example, the previous code can be written more concisely using runSqlite.

Doing so frees you from passing the conn value yourself through several functions, as

you can see in the following example. Also, the dummy logging interface is selected, so

you don’t need a call to runNoLoggingT. In every other aspect, the two pieces of code are

interchangeable.

Chapter 11 Safe Database Access

384

exampleConn = runSqlite @IO @SqlBackend "example.db" $ do

 spain <- insert $ Country "Spain"

 _client1 <- insert $ Client "Alejandro" "Serrano"

 "Home Town, 1" spain 30

 return ()

Creating a pool is usually as easy as creating a single connection. Instead of

withDBMSConn, you use the corresponding withDBMSPool function, which takes as input

the information to contact the database and the maximum number of connections to

keep open. Then, you use the runSqlPersistMPool function with the actions to execute.

Here’s the same example for SQLite but using a pool of ten connections (it doesn’t

make much sense to use a pool in this little example; rather, you would share the pool

between different actions). Notice how similar the code is to the example with a single

connection.

examplePool = runNoLoggingT $

 withSqlitePool @(NoLoggingT IO) @SqlBackend "example.db" 10 $ \pool ->

 liftIO $ flip runSqlPersistMPool pool $ do

 spain <- insert $ Country "Spain"

 _client1 <- insert $ Client "Alejandro" "Serrano"

 "Home Town, 1" spain 30

 return ()

There is a large disparity of connection methods between DBMSs. Table 11-1 includes

a brief explanation of the parameters for each of the more commonly encountered

systems.

Chapter 11 Safe Database Access

385

Table 11-1.  Connection Parameters for Persistent Back Ends

DBMS Single Connection Connection Pool Parameters

Sqlite withSqliteConn withSqlitePool Just the path to the file, or

":memory:" to create a

temporary in-memory database.

PostgreSQL withPostgresqlConn withPostgreSqlPool A connection string of the form

"host=h port=p user=u

password=p dbname=db".

MySQL withMySQLConn withMySQLPool A value of the type

ConnectionInfo.

A defaultConnectionInfo

value is provided, which connects

to database test in localhost,

whose fields connectHost,

connectUser, and so on, can be

then modified to your needs.

MongoDB withMongoDBConn withMongoDBPool A set of different parameters for

the database including host, port,

authentication, and idle time.

Note: the pooled version

needs two extra parameters

for the number of stripes and

connections per stripe.

�Schemas and Migrations
As mentioned in the introduction, Persistent needs a description of the database schema

you will be working with to ensure type safety. In addition, it also needs information

about the mapping between this schema and the actual Haskell data types you will use

to represent the data. To bring all of this together, Persistent uses quite complex types to

encode all the invariants and relations. Right now in the book, many of the techniques

used in those types haven’t been introduced yet. Chapter 13 will be providing all that

information.

Chapter 11 Safe Database Access

386

The good news is that you don’t have to care about all of this because Persistent

comes with a package, persistent-template, which is able to generate all the

necessary code (Haskell data types, instances for some type classes, glue code for the

marshaling) from a single description of the database schema. For the rest of the chapter,

I assume that your project has both persistent and persistent-template listed as

dependencies, in addition to the SQLite back end.

Note  persistent-template uses Template Haskell to generate all its code.
You were introduced to Template Haskell in Chapter 6. As a small reminder,
Template Haskell is the metaprogramming facility of GHC, which means that at
compile time a function can generate new or manipulate existing code.

�Describing the Entities
I’ll start with a simple example for the time machine store: describing a database for

holding the information of the clients. To make things easier, let’s assume that the

clients are always individuals, whose information is composed by first and last names,

an address, and an age. The following code defines a database entity for holding this

information. This definition will be used later to communicate with the correct tables or

documents in the database.

{-# LANGUAGE TemplateHaskell, QuasiQuotes, TypeFamilies, EmptyDataDecls,

 MultiParamTypeClasses, FlexibleContexts, GADTs,

 GeneralizedNewtypeDeriving, OverloadedStrings #-}

import Database.Persist.TH

mkPersist sqlSettings [persistLowerCase|

Client

 firstName String

 lastName String

 address String

 age Int

 deriving Show

|]

Chapter 11 Safe Database Access

387

After several language extensions that you need to enable, which are listed

inside the {-# LANGUAGE #-} pragma, there’s a call to mkPersist. This function

needs settings for generating the code and the description of the database. In this

case, the code is telling the code generation to follow SQL standard conventions

by giving sqlSettings as first parameter.1 The latter parameter is not given using

usual Haskell syntax but rather using quasiquotation: the code between [, |, and |]

won’t be parsed by the Haskell compiler but rather by a custom reader (in this case,

persistLowerCase). Thus, the important thing to know is how to express the database

schema for this quasiquoter.

Caution B e aware that inside a quasiquoter you’re no longer writing Haskell
code but some custom Persistent syntax. The need to learn an additional (albeit
small) language is seen by some people as a drawback of the persistent-
template library.

As you can see, there’s a block per each kind of entity you want to store. In this case,

you have only one, namely, Client. Then, you can find all the fields that make that

entity, first the name and then the type. Finally, you can include a deriving clause like

you would do with the definition of any other Haskell data type. These are the most basic

constructs; you will see more as the chapter progresses.

Tip  If you write json next to the entity name in the quasiquotation (for
example, Client json), Persistent will derive instances of aeson’s ToJSON and
FromJSON automatically. This will be handy in the next chapter, where you’ll learn
how to create a web application using Haskell.

Since the code uses persistLowerCase as a quasiquoter, each entity will be mapped

to a table and each field to a column, whose name will consist of converting from camel

case (each word in an identifier starts with capital letter) to underscore case (different

words in an identifier are separated by underscores). In this example, the data will be

saved in a client table with the columns first_name, last_name, address, and age.

1�This does not imply that you cannot use this definition in nonrelational DBMSs. It’s just that the
choices that will be made for representing the information (such as using integers for holding
primary keys) are more suited to a SQL database than others.

Chapter 11 Safe Database Access

388

If you want to retain the names using camel case, you need to use persistUpperCase

instead of persistLowerCase.

In addition to the glue code for contacting the database, mkPersist will also

generate data type constructors representing each of the fields in the entity. These

constructors’ names are created by juxtaposing the name of the entity with the name

of each of the fields, in camel case. In this case, you would obtain ClientFirstName,

ClientLastName, and so on. In particular, this means you can use the same field name

in different entities (e.g., using a field name for both individual and company entities)

since the prefix will take them apart. This is different from Haskell records, which

cannot share field names.

You may have noticed that so far there hasn’t been any description of an identifier,

that is, no indication of what the table’s primary key might be. The primary key is a piece

of information that uniquely determines a row in a table, and it’s commonly used in SQL

environments. Persistent developers found this idea of an identifier interesting too, and

that’s why a schema always defines an implicit id field for each entity. In conclusion, in

addition to all the explicitly declared fields, you have a ClientId field representing the

unique identifier of each row.

This identifier field is used, in addition to performance considerations, to refer to

an entity from another or to embed an entity inside another. For example, let’s add

information about the country of residence of each client. A simple solution would be

to add another String field for the country name. However, as database theory shows,

this is not a good idea because you waste a lot of space with repeated information, and

even worse, you may have problems when the same country is not written the same

everywhere (e.g., "United States" vs. "US" vs. "USA"). The correct solution is to create

a new entity that will hold information about countries and refer to it in Client (this is

called normalization in database jargon). This is perfect for an identifier field. The new

schema declaration looks like this:

mkPersist sqlSettings [persistLowerCase|

Country

 name String

 deriving Show

Client

 firstName String

 lastName String

 address String

Chapter 11 Safe Database Access

389

 country CountryId

 age Int

 deriving Show

|]

With this schema definition, the insertions shown in the previous section are correct

Haskell code. Notice that Persistent has created a data type for each entity. This data

type can be thought of as being defined as a record whose only constructor shares its

name with the entity being defined. Thus, in the example, the constructors Country and

Client have been generated. Another remark is that insert returns the identifier of the

new entity in the database, and the code uses that for referring to the country "Spain" in

the client.

IDENTIFIERS ARE SPECIAL

In most databases, the identifier column is just another column, with the special qualities of

being unique among the rows and usually being autoincremental. However, you have seen that

Persistent treats those fields in a special way. Why is that the case?

The main reason is that by having special data types for each identifier of each entity, it’s not

possible to mix identifiers of different entities. In this example, ClientId will be a different

type from CountryId, so you cannot pass a value of the latter when an element of the former

is requested.

A second reason is that by hiding the details of how the identifier is represented, Persistent

goes further into supporting different databases; it can choose the representation depending

on the final DBMS. For example, MongoDB has a special type called ObjectId that is

developed specifically for identifying an object. This is different from the path taken by SQL

databases.

I have discussed how Persistent always generates a special identifier field per entity.

However, in other cases, there are other uniqueness constraints, which are a set of fields

that uniquely identifies a value in the database. Since the combined value of those fields

must appear only once in the database, it must be protected by the DBMS for duplicates.

In that way, the database can protect data for a whole class of incorrect values.

Furthermore, the extra work in inserting and updating is often surpassed by the increase

in performance that can be achieved when the uniqueness is guaranteed.

Chapter 11 Safe Database Access

390

A uniqueness constraint is declared inside the entity it refers to by giving it a name,

which must start with a capital letter (in the following examples all the constraints are

prefixed with Unique, but this is not a requirement), and then listing the fields that are

included in the constraint. For example, you can consider that the combination of first

and last names, an address, and a country uniquely identifies a client in a database,

so it makes sense to add a uniqueness constraint to it. Furthermore, countries are also

uniquely identified by their name (no two countries share a name). The following is the

code for doing this, where some other entities and fields have been omitted:

mkPersist sqlSettings [persistLowerCase|

Country

 ...

 UniqueCountryName name

 deriving Show

Client

 ...

 UniqueClient firstName lastName address country

 deriving Show

|]

For data mining purposes, it’s helpful to save the age of each client. However, not all

clients would be happy giving that piece of information, so it’s better to make it optional.

This corresponds to the notion of a nullable column in SQL and of a value wrapped on

Maybe in Haskell. Indeed, that last word is the one chosen by Persistent to indicate that a

field is optional for a value. If you want to make age optional, change its declaration from

age Int to age Int Maybe.

In addition to the age, it’s also useful to save information about the gender of the

clients. Near the beginning of the book, I discussed how using a Boolean value is not

the right choice for representing the gender in Haskell. Rather, you should use a data

type specific to that task. This increases type safety and removes the errors because of

inconsistent mappings (is True equal to male or female?).

The same arguments are relevant to Persistent. When you want to save a value in a

field from a set of them, don’t use a Boolean or an integer. You have already seen how

to overcome this problem when the set of values is big and can change with time (as

countries do). For a small fixed list of values, the best option is to use an enumeration

written in Haskell and use its type inside the declaration of the entity (in this example,

creating a Gender data type and including a gender Gender field declaration in the

Chapter 11 Safe Database Access

391

Client entity). The only stone in the path is that you need to include some extra code

to make a new data type available to Persistent, and because of limitations in Template

Haskell, you must do so in a separate file. In this case, start by writing this code in a new

Chapter11.Gender module:

{-# LANGUAGE TemplateHaskell #-}

module Chapter11.Gender where

import Database.Persist.TH

data Gender = Male | Female

 deriving (Show, Read, Eq)

derivePersistField "Gender"

The important part is the call to derivePersistField. Now, in the file with the

schema declaration, import this new module and add a gender Gender Maybe line to

it (making the gender information optional is also a good choice). Now a Client value

looks like this:

Client "Alejandro" "Serrano" "Home Town, 1" spain (Just 25) (Just Male)

The previous information makes up the basics of the schema language, but many

more features are available. For that reason, I strongly recommend you survey the

Persistent documentation2 or the Book of Yesod3 before declaring your entities.

�Creating the Database
Let’s now look at the converse scenario. Say you try to run some code similar to the code

in the chapter introduction for adding a country and a client to a completely empty

database. Here’s an example:

runSqlite @IO @SqlBackend "example.db" $ do

 spain <- insert $ Country "Spain"

 _client1 <- insert $ Client "Alejandro" "Serrano"

 "Home Town, 1" spain

 (Just 30) (Just Male)

 return ()

2�Available at https://github.com/yesodweb/persistent/tree/master/docs.
3�Available at www.yesodweb.com/book/persistent.

Chapter 11 Safe Database Access

https://github.com/yesodweb/persistent/tree/master/docs
http://www.yesodweb.com/book/persistent

392

When you execute this, either via an executable or via GHCi, you will receive an error

message like this:

chapter11: user error (SQLite3 returned ErrorError while attempting to

perform prepare "INSERT INTO \"country\"(\"name\") VALUES(?)": no such

table: country)

The source of this error is simple. You have declared how to map entities to a

database, but none of the tables referenced in that code exists yet. The good news is

that, as I mentioned in the introduction of this chapter, Persistent includes functionality

to automatically create or adapt a database to the format expected by a schema. This

adaptation process is called the migration of the database.

Performing a migration in Persistent consists of two steps. First, you need to tell

Persistent to generate the code that will migrate the database. For that task, the library uses

Template Haskell once again, and you would need to add the schema declaration all over

again. Since using the same schema for creating the mappings and the migration is common,

you can use the convenience function share to pass the quasiquoted code to both functions.

In concrete words, this means you only need to change the call to mkPersist to read instead.

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|

The second step is to execute the migration by calling runMigration with a single

argument that is the name given to mkMigrate. For example, you can generate the tables

in a Sqlite database using this:

runSqlite @IO @SqlBackend "example.db" $ runMigration migrateAll

If you include that line of code before the two insertions in the database, you will

see a log of the migration being output to your screen. That log should be similar to the

following. You can see in the output how all the fields and constraints in the entities are

translated quite naturally in tables in the SQL world.

Migrating: CREATE TABLE "country"("id" INTEGER PRIMARY KEY,"name" VARCHAR

NOT NULL,CONSTRAINT "unique_country_name" UNIQUE ("name"))

Migrating: CREATE TABLE "client"("id" INTEGER PRIMARY KEY,"first_name"

VARCHAR NOT NULL,"last_name" VARCHAR NOT NULL,"address" VARCHAR NOT

NULL,"country" INTEGER NOT NULL REFERENCES "country","age" INTEGER

NULL,"gender" VARCHAR NULL,CONSTRAINT "unique_client" UNIQUE ("first_

name","last_name","address","country"))

Chapter 11 Safe Database Access

393

It’s important to notice that migrations can only add and delete columns; there’s

no way for the code to know when a field name has been changed into another one.

However, the simple case of adding a new field poses a question: which value should be

written for those rows that were already there? The solution comes in the form of a new

attribute that can be added to a field, namely, default, which defines this value to write

in the case of a migration.

Caution T he default attribute applies only to migrations. It doesn’t have any
effect on your actual Haskell code, and it doesn’t allow you to leave the value of
that field undefined.

As an example, let’s add a canWeSend field to the Country entity expressing whether

the time machines and accessories can be shipped to that specific country. Since you

have already created the tables and added some values, the migration procedure needs

information of the values to write in that field. If you consider that the best choice is True

(shipments can be made to all countries already in the database), the schema definition

must be changed to read as follows:

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|

Country

 name String

 canWeSend Bool default=True

 UniqueCountryName name

 deriving Show

Client

 ...

|]

The sidebar “Using An Existing Database” shows how to deal with legacy databases

having table names and column names not matching your entities and fields. Then,

Exercise 11-1 guides you in defining the entity that will be used throughout this chapter

for products.

Chapter 11 Safe Database Access

394

USING AN EXISTING DATABASE

You’ve seen how to use migration to create or adapt an existing database to the table schema

that Persistent expects. However, a quite common scenario involves an already existing

database that you want to access.

In those cases, you can specify sql attributes to change the names of the tables that entities

and fields are mapped to. Furthermore, you can specify the id attribute on an entity to declare

the column in the table containing the identifier. The following is an example for Country:

Country sql=my_country_table id=the_country_identifier

 name String

 canWeSend Bool default=True sql=send_there_is_possible

 UniqueCountryName name

 deriving Show

The table name will be my_country_table. The column named the_country_

identifier will be treated as the ID column.

EXERCISE 11-1. DEFINING PRODUCTS

Add the definition of a Product entity to the database. That entity must include the name and

description of each product, its price as a Double value, and the number of elements in stock.

Be aware that Persistent does not allow using Integer values in fields. Rather, you should

use Int64, which represents those integer values that fit in 64 bits.

Finally, let’s add a simple definition for purchases in the store. A purchase will be a

collection of a client, a single product for which the client may have ordered more than

one unit, and the total amount that was paid (there’s an implicit assumption that each

purchase contains only one type of product). The entity Purchase in this case will relate

a Client and a Product, so you need to use their identifiers, as the following code shows:

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|

...

Client

 ...

Chapter 11 Safe Database Access

395

Product

 ...

Purchase

 client ClientId

 product ProductId

 number Int

 amount Double

 deriving Show

|]

�Queries
Querying is one of the most basic operations you can perform with a database. A good

knowledge of the different options for selecting data from your sources is instrumental

for obtaining the performance that applications require. As you will see in this section,

Persistent provides several ways to query for data, and Esqueleto extends that feature

even more with SQL-only operators such as joins.

Note  In the rest of examples in the chapter, I will show only the statements.
If you want to execute any of those statements, wrap them inside a runSqlite
call (or the corresponding version for other database), as done in the migration
examples. The code won’t show all signature, because some of them contain type
system features that will be introduced later (in Chapter 13). GHC correctly infers
the signatures in the missing cases, so you can still copy and paste the examples
as they appear in the book.

�Queries by Identifier or Uniqueness
Since every entity in the database is embellished by Persistent with a unique identifier,

the simplest way to query a database is indeed to ask for a value with a given identifier.

This is done using the function get, which returns its value wrapped in a Maybe. It may

be the case that for a given identifier there’s no associated value. For example, you have

Chapter 11 Safe Database Access

396

defined the client field in the Purchase entity to hold a ClientId; that identifier can

be used afterward to retrieve all the information about a client. The following code

performs that task:

import Database.Persist.Sql

getPurchaseClient p = get (purchaseClient p) -- returns Maybe Client

If you have the identifier but have not obtained it from a previous query and thus it

is wrapped in the appropriate constructor for identifier, you can still look for the object

using the Key corresponding to that type. Although better to be avoided, this option

may be needed, for example, if you are obtaining the identifier from the route in a web

application (the URL looks like /clients/5, where 5 is the client identifier). For example,

the code for asking for a Client by identifier is as follows:

getClientById n = get $ ClientKey (SqlBackendKey $ fromIntegral n)

Another way of identifying a value was discussed before: uniqueness constraints.

For each of these constraints, Persistent generates a constructor that takes as parameters

a value for all the fields in its definition. Then, you can use the getBy function to query

the database using that combination of data. For example, you defined previously a

UniqueClient constraint on the entity Client, so you can query with one of them as

follows:

getClientByInfo :: MonadIO m

 => String -> String -> String -> String

 -> SqlPersistT m (Maybe Client)

getClientByInfo fName lName addr cnName = do

 cn <- getBy $ UniqueCountryName cnName

 case cn of

 Just (Entity cId _) ->

 do cl <- getBy $ UniqueClient fName lName addr cId

 case cl of

 Just (Entity _ client) -> return $ Just client

 Nothing -> return Nothing

 Nothing -> return Nothing

Chapter 11 Safe Database Access

397

It’s important to notice that the result of getBy is not just the value you asked for

but rather a combination of the identifier associated with the value and the value itself,

provided inside the Entity data type. In the previous example you can find two different

usages of getBy: one for finding the identifier of the country given its name (check how

in the Entity pattern matching only the identifier is actually bound to a variable) and

another one for finding a client with given personal attributes and belonging to that

country.

�Selecting Several Entities
The full power of a database is unleashed when you perform queries not only via

identifiers but also based on other fields within entities. Furthermore, the languages

in which queries are posed are usually quite expressive. For example, you could be

asking for all those clients coming from the United States who have bought at least

two products in the last few years to create a better campaign for clients in that part

of the world.

Those queries are usually not guaranteed to return only one or no results but

can produce a set of values that fulfill the requirements of the query. You can ask

Persistent to represent that set using two different approaches: either as a Source

from the conduit library or as a plain list. You can also choose to just return the first

value of the set wrapped on a Maybe. You may then get Nothing back if the query

selects an empty set.

On an orthogonal axis, you can ask Persistent to show the entire set of fields of each

value matched by the query (i.e., all the fields belonging to the entities) or just return

their identifiers. In the first case, the information from the fields is wrapped inside

an Entity constructor (as done with getBy), which contains both the entity and its

identifier. Five out of the six possible combinations have a corresponding function in

Persistent, as Table 11-2 shows.

Table 11-2.  Query Functions in Persistent

As a Source As a List Only First Result in a Maybe

Identifier and value selectSource selectList selectFirst

Only identifier selectKeys selectKeysList Not available

Chapter 11 Safe Database Access

398

All the functions listed in Table 11-2 have the same parameters and are used in the

same way, so in the examples I’ll use selectList because it’s the one that shows output

simply while still letting you form an idea about what’s going on in the database.

The first of the two parameters is a list of filters. Each filter constrains the value of one

or more fields to satisfy a specified condition. For example, you might require the age of

a Client to be greater than 18. The way in which you write those filters is by using one of

the constructors that Persistent has created for each of the fields in an entity and a set of

built-in operators. The age filter, for example, is represented as ClientAge >=. Just 18

(you need to include Just because age was an optional field, so its values are wrapped in

Maybe).

In addition to the simple equality and ordering operators (==.) and (!=.) – notice

that “not equals” is written using C-like syntax, not as (/=.)4 – (>.), (>=.), (<.), and

(<=.) – Persistent supports an operator for a field having a value from a set of wanted

ones, namely, (<-.) and read as “in” and its negation (/<-.) “not in.” In the following

example, I ask for all those Clients coming from Spain or Germany older than 18, using

that operator. Notice how I need to get the identifiers of those countries prior to creating

the actual query.

getAdultsOfSpainAndGermany :: MonadIO m => SqlPersistT m [Entity Client]

getAdultsOfSpainAndGermany = do

 es <- getBy $ UniqueCountryName "Spain"

 de <- getBy $ UniqueCountryName "Germany"

 let countries = map entityKey (catMaybes [es, de])

 selectList [ClientCountry <-.countries, ClientAge >=. Just 18] []

In case you want to know only the number of clients that fulfill those conditions,

you may be tempted to just apply length to the resulting list. However, this is not

very efficient since you’ll be bringing a lot of data from the database only to discard it

afterward. Instead, you should use the count function, which just returns the numbers of

values satisfying the query. Here’s an example:

countAdultsOfSpainAndGermany :: MonadIO m => SqlPersistT m Int

countAdultsOfSpainAndGermany = do

 sp <- getBy $ UniqueCountryName "Spain"

 de <- getBy $ UniqueCountryName "Germany"

4�(/=.) is used on update queries, as shown in the next section.

Chapter 11 Safe Database Access

399

 let countries = map entityKey (catMaybes [sp, de])

 count [ClientCountry <-. countries, ClientAge >=. Just 18]

Sometimes the operators introduced up to this point are not enough or are not

convenient for expressing disjunctive queries. In those cases, you can use the “or”

operator, (||.), for merging two lists of filters into a single query. For example, say you

want to obtain the clients from Spain and the United States who are at or above the

legal age at which alcohol may be purchased. However, that age is not the same in both

countries. In Spain it’s 18, whereas in the United States it is 21. Thus, the query must

reflect that fact: get clients from Spain older than 18 or from the United States older than

21, as the code shows:

getAdultsOfSpainAndUS :: MonadIO m => SqlPersistT m [Entity Client]

getAdultsOfSpainAndUS = do

 Just (Entity spId _) <- getBy $ UniqueCountryName "Spain"

 Just (Entity usId _) <- getBy $ UniqueCountryName

 "United States of America"

 selectList ([ClientCountry ==. spId, ClientAge >=. Just 18]

 ||. [ClientCountry ==. usId, ClientAge >=. Just 21])

 []

I’ve been silently adding an empty list as a second parameter to . selectList. That

list represents the options to the query, which do not affect the results themselves but

rather the way the results are presented. One typical option involves sorting by one or

more fields. In the previous example, if you want to return the clients from the oldest to

the youngest one, you must change the list of options to [Desc ClientAge]. As you

can see, the way to indicate the ordering is by using one of the constructors Asc or Desc

and the constructor corresponding to the field.

Other options are used to extract just one subset of the results. If you think of the

entire set of results as an ordered list, OffsetBy allows you to discard some elements

at the beginning and return only those from one point to the end, and LimitTo limits

the number of returned values to those smaller than a certain amount, ignoring the

elements past that amount. Those options are useful to paginate information in a web

application. For example, in the store you may decide to show the products in pages of 10.

Chapter 11 Safe Database Access

400

Therefore, page n (starting at 1) would show ten products starting from the element

(n-1)*10 (the results from Persistent are zero-indexed). The corresponding query to

obtain those products follows:

getProductsPage n -- returns [Entity Product]

 = selectList [] [Asc ProductPrice, LimitTo 10, OffsetBy ((n-1)*10)]

�SQL Queries with Esqueleto
Using only get, getBy, selectList, and count (a version not previously introduced

that returns only the number of results), let’s try to obtain the countries of all those

clients that bought more than three products. The following implementation does

it in several steps. It first gets all the possible buyers, then counts the number of

purchases of each of them, filters those with more than three, and finally gets all the

countries that are left. Notice how the code is quite intricate and performs several

round-trips to the database.

getCountriesWithBigBuyers :: MonadIO m => SqlPersistT m [Country]

getCountriesWithBigBuyers = do

 buyers <- selectKeysList [] []

 buyersPurchases <- mapM (\b -> count [PurchaseClient ==. b]

 >>= \c -> return (b,c)) buyers

 let buyersPurchases' = filter (\(_,c) -> c > 3) buyersPurchases

 mapM (\(b,_) -> do Just cl <- get b

 Just cn <- get $ clientCountry cl

 return cn)

 buyersPurchases'

If you are used to relational databases, there’s a feature from its queries that would

come to your mind to solve this problem: joins. However, Persistent aims to support also

nonrelational databases, making the ability to join unavailable to you.

Note T o be completely honest, there’s support in Persistent for sending a raw
query to the database. But that means that there’s no type checking and automatic
marshaling, so you’ve lost all the benefits of using the library.

Chapter 11 Safe Database Access

401

As I have already introduced, the solution to this problem is using another library,

namely, Esqueleto. The esqueleto package provides support for writing SQL queries

that are type checked. Furthermore, it reuses the schema definitions from Persistent,

making the former a great companion to the latter.

As in the previous case, you can return the results in two different data structures.

The select function shows the queried values as a list, whereas selectSource wraps

them into a Conduit source. Both take as an argument a SqlQuery, so you need to focus

on how to construct values of that type.

The first thing to do is to select which entities you’ll query. To do that, you use

from. This is quite an interesting piece of the library because it takes a function as an

argument, and depending on the type of the function, a certain subset of entities is

queried. For example, if you want to query for clients, you must pass a function whose

unique argument is of type Client. In most of the cases, that type is inferred by the

compiler because of further filters (e.g., if you filter ClientAge, the compiler would

infer that you’re querying Client), but in some cases you may need extra annotations.

If you want to perform a query that involves more than one entity, you must pass them

on a tuple.

The body of the function passed to from must be of a certain monadic type, so

it’s fairly common to use a do block at that point. Inside that monad, several special

functions can be called to specify a query. The simplest one is where_ (notice the

final _, which prevents collision with the where keyword), which includes a set of

restrictions over the fields of the entities, inside an expression that may contain the

following:

•	 Access to a field of an entity using (^.).

•	 Constant values wrapped using val, or lists of them wrapped using

valList.

•	 Comparisons with (==.), (!=.), and the rest of operators used in

Persistent, remarking that (<-.) takes the name in_ and (/<-.) is

called notIn.

•	 Grouping of several constraints with (&&.) (for “and”) and (||.) (for

“or”). Notice that this is different from plain Persistent because in that

case there is no conjunctive operator; the set of filters in the list is

implicitly conjoined.

Chapter 11 Safe Database Access

402

Another possible function is orderBy, which takes a list of expressions of the form

asc (entity ^. field) or desc (entity ^. field), representing ascending and

descending order over those fields. As a simple example, let’s just return all the clients

older than 25 years, ordered by last and first names. Note that we have imported

Database.Esqueleto qualified, since several names conflict with Persistent. However, in

most cases you replace the latter entirely by the former, so there is no conflict.

import Database.Esqueleto ((^.))

import qualified Database.Esqueleto as E

getPeopleOver25 :: MonadIO m => SqlPersistT m [Entity Client]

getPeopleOver25 =

 E.select $

 E.from $ \client -> do

 E.where_ (client ^. ClientAge E.>. E.just (E.val 25))

 E.orderBy [E.asc (client ^. ClientLastName)

 , E.asc (client ^. ClientFirstName)]

 return client

The code makes explicit that ClientAge has a Maybe value. The constant value the

field is compared to must be wrapped first with val and then with just.

The return value of the monad may not be all the entities that are queried; only

a subset of the information may be relevant to the next steps, and the rest could be

discarded. For example, let’s try to get the information about all the clients from Spain

or Germany older than 25. As you can see in the following code, I select both Client

and Country as entities to query, make sure that both entities are linked correctly (the

Country in Client is the same as the Country identifier), and perform restrictions over

the country name and the client age. Finally, I just return the client information, not the

country name.

getPeopleOver25FromSpainOrGermany

 :: MonadIO m => SqlPersistT m [Entity Client]

getPeopleOver25FromSpainOrGermany =

 E.select $

 E.from $ \(client, country) -> do

 E.where_ (client ^. ClientAge E.>. E.just (E.val 25)

 E.&&. country ^. CountryName `E.in_`

 E.valList ["Spain", "Germany"]

Chapter 11 Safe Database Access

403

 E.&&. client ^. ClientCountry E.==. country ^. CountryId)

 E.orderBy [E.asc (client ^. ClientLastName)

 , E.asc (client ^. ClientFirstName)]

 return client

Here you’ve actually seen an example of a join that was implicit in the link

between the country from a client and the entity representing the country itself.

Esqueleto allows you to be a bit more explicit, using the InnerJoin constructor in

the argument instead of a bare tuple. Then, with the “on” function in the monad you

specify the conditions for the join of the entities. The previous example could be

rephrased as follows:

getPeopleOver25FromSpainOrGermanyJoin

 :: MonadIO m => SqlPersistT m [Entity Client]

getPeopleOver25FromSpainOrGermanyJoin =

 E.select $

 E.from $ \(client `E.InnerJoin` country) -> do

 E.on (client ^. ClientCountry E.==. country ^. CountryId)

 E.where_ (client ^. ClientAge E.>. E.just (E.val 25)

 E.&&. country ^. CountryName `E.in_`

 E.valList ["Spain", "Germany"])

 E.orderBy [E.asc (client ^. ClientLastName)

 , E.asc (client ^. ClientFirstName)]

 return client

In addition to inner joins, Esqueleto supports speaking about outer joins, which are

useful in many situations.

To wrap up this fast introduction to Esqueleto, now you need to learn a bit about

expressing grouping like you do in SQL. The grouping itself is done via the groupBy

function, which takes as an argument a field to make the grouping. Then, you can use

aggregation operators such as sum_, min_, max_, avg_, or countRows over other fields

to perform that operation over all values of each group. Explaining in detail how these

operations work would take a long time, and that is a task better suited to a book on SQL,

from which Esqueleto takes its concepts.

As an example of grouping, let’s try to compute the amount of money spent by each

client in their purchases. To do so, the idea is to group the information of all Purchase

entities by the Client identifier and then use the sum_ aggregator. Notice how a left

Chapter 11 Safe Database Access

404

outer join is needed to aggregate also over those clients that haven’t yet purchased any

product.

getMoneyByClient

 :: MonadIO m => SqlPersistT m [(Entity Client, E.Value (Maybe Double))]

getMoneyByClient =

 E.select $

 E.from $ \(client `E.LeftOuterJoin` purchase) -> do

 E.on (client ^. ClientId E.==. purchase ^. PurchaseClient)

 E.groupBy (client ^. ClientId)

 let s = E.sum_ (purchase ^. PurchaseAmount)

 return (client, s)

The language supported by Esqueleto is indeed expressive and allows you to

express queries far beyond what has been explained here. My recommendation for

those moments when you need to perform powerful queries against a relational

database is to read its documentation in more detail to discover the full generality of

its constructions.

�Insertions, Updates, and Deletions
At the beginning of the chapter, you were introduced to the way of inserting new values

in the database, via insert. That function returns the identifier that was assigned to the

new value that was saved on the database, which comes in handy when referring to it on

other database values. However, in some cases the value won’t be inserted because of

collisions on the uniqueness constraints. If this happens, it’s recommended that you use

instead insertUnique, which returns a Maybe value, which will be Nothing if the value

could not be inserted.

I mentioned that Persistent embraces the pure functional paradigm, so all changes

made to a database value must be explicit. The easiest way to modify a value is by using

replace. That function takes an identifier and a value of one of your entities and replaces

whatever value was saved before in the database with the mentioned identifier with the

new value. For example, a quite slow but simple way to make sure that all the names in

the database start with a capital letter would be as follows:

Chapter 11 Safe Database Access

405

import Data.Char

capitalizeNamesSlow :: MonadIO m => SqlPersistT m ()

capitalizeNamesSlow = do

 clients <- selectList [] []

 mapM_ (\(Entity ident client) ->

 let c:rest = clientFirstName client

 in replace ident

 $ client { clientFirstName = (toUpper c):rest })

 clients

This solution is slow because it needs to bring all the data from the database to the

program and then send back all the information for each client. In simple cases, the

same task can be performed right on the database side, without any information being

sent back and forth. Persistent includes support for doing such an in-place update when

the operation either is assignment to a constant or involves only numerical data present

in the value. The function that performs such an operation is updateWhere; all it takes as

a parameter are a list of filters to specify which elements in the database will be affected

by the changes and a list of in-place updates. Each update is represented using a field

name, one of the update operators ((=.) for direct assignment and -, (+=.), (-=.),

(*=.), or (/=.) for applying a numerical operation), and a constant value that is the

argument in the update.

For example, let’s decide to provide a 10 percent discount. However, you don’t

want to provide such a big discount to all the products because in the case of expensive

ones, that discount is too high. The solution is to provide only a 3 percent discount on

all products whose price is higher than 10,000. The following code uses 10,000 as the

dividing line and applies either a 3 percent or a 10 percent discount as appropriate:

discount :: MonadIO m => SqlPersistT m ()

discount = do

 updateWhere [ProductPrice <=. 10000] [ProductPrice *=. 0.9]

 updateWhere [ProductPrice >. 10000] [ProductPrice *=. 0.97]

As with the queries, Persistent is not powerful enough to represent some of the

conditions for updating in just one expression. Thus, you have to resort either to multiple

queries and updates or to using a more powerful language such as Esqueleto. In the

second instance, you need to change the call to select and from into a call to update.

Once again, that function takes as a parameter another function, whose type will inform

Chapter 11 Safe Database Access

406

Esqueleto about which entities are affected by the change. However, that update does

not allow tuples or joins because the changes must affect only one kind of entity.

To perform queries inside an update block, you can use sub_select, which works in

a similar way to select but it’s allowed to return only one result.

When using update instead of select, you are allowed to use one extra function

inside the monad: set. This function is the one describing the changes to perform in

the database. It takes as a first argument the value to modify and then a list of in-place

updates as in Persistent. As an example, let’s say you decide to use a better policy for

discounts. You apply them only to those products that don’t sell well. The way you define

a low amount of sales is via the total amount of purchases being less than 10. You can

perform the query and the update at once with the following code:

betterDiscount :: MonadIO m => SqlPersistT m ()

betterDiscount = E.update $ \product -> do

 let totalAmount = E.sub_select $

 E.from $ \purchase -> do

 E.where_ $ product ^. ProductId

 E.==. purchase ^. PurchaseProduct

 E.groupBy (purchase ^. PurchaseProduct)

 return $ E.sum_ (purchase ^. PurchaseAmount)

 E.where_ $ E.isNothing totalAmount E.||. totalAmount E.<. E.just (E.val 10)

 E.set product [ProductPrice E.*=. E.val 0.9]

And now you come to the most difficult point for any database. After some time,

it may be necessary to delete some of the information that you stored for either space

or efficiency reasons. Doing so is easy if you know a way to uniquely identify the value

to delete in the database, either via its identifier or via a set of fields with a uniqueness

constraint. In the first case, you can use the delete function, and for the second case, the

deleteBy function is provided.

However, there are cases where you want to delete a set of values that satisfy

certain conditions. Using the functions you already know, that would mean

obtaining the value identifiers, maybe via selectKeysList, and then mapping

over all of them with delete. But considering everything you’ve learned in this

chapter, you may be expecting a function that performs this task without any round-

trip of data between the database and your application. And it exists: it’s called

deleteWhere (similarly to updateWhere).

Chapter 11 Safe Database Access

407

For example, as a way to clean the database, you may want to delete all the products

in the database that are no longer in stock. The corresponding Persistent call is as

follows, assuming that the stock never gets to negative values:

cleanProductStock :: MonadIO m => SqlPersistT m ()

cleanProductStock = deleteWhere [ProductInStock ==. 0]

However, after careful thought, you can find that this code, even completely correct,

would be dangerous to your database. If a client purchased one of the products that was

no longer in stock, that line would make the reference to the product identifier incorrect

because the product would no longer be in the database. A possible way to correct this

problem is to create a better query that checks that there’s no Purchase entity with that

product. Once again, Persistent itself doesn’t allow you to express that code; you need to

use Esqueleto and its delete function, which works like select and update but deletes

the resulting values. Notice in the following code how the notExists function performs

the check for a corresponding purchase:

cleanProductStock' :: MonadIO m => SqlPersistT m ()

cleanProductStock' = E.delete $

 E.from $ \product -> do

 E.where_ $ product ^. ProductInStock E.==. E.val 0

 E.&&. (E.notExists $

 E.from $ \purchase ->

 E.where_ (purchase ^. PurchaseProduct

 E.==. product ^. ProductId))

As you can see, performing updates and deletions in database values is easy using

both Persistent and Esqueleto. The bulk of the learning process is to understand how

to create good constraints for the values that will be affected by those operations. This

shows one advantage of using high-level programming languages such as Haskell; you

can express the concepts of your domain in a simple way and concentrate on the rules of

your application.

Chapter 11 Safe Database Access

408

�Summary
In this chapter you learned how Haskell allows you to interface with a DBMS in a type-

safe manner.

•	 You saw the landscape of database access libraries in Hackage, and

the focus moved to those that provide abstractions over several

databases.

•	 In particular, the choice of libraries was Persistent and Esqueleto,

which allow you to access both relational and nonrelational

databases and to work with them in a type-safe way, making it harder

to write illegal queries, something that is easy when working with raw

database statements.

•	 You learned how to connect to databases both with and without a

pool of connections.

•	 You were exposed to the language for specifying the database

schema, with the idea that using that information combined with

Template Haskell will create a bunch of data types and glue code for

talking with the DBMS and will migrate the database.

•	 Much of the chapter was devoted to queries, either via identifiers,

by a set of fields uniquely constrained, or in general by any field. For

those cases where Persistent was not enough (like joins), Esqueleto

was introduced.

•	 Finally, you read about performing insertions, updates, and deletions

with those libraries.

Chapter 11 Safe Database Access

409
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_12

CHAPTER 12

Web Applications
Throughout the book, you’ve been preparing for this moment: you know how to save

information about clients and products, and you know a couple of algorithms to mine

that data for interesting patterns. Now it’s time to create an interface for clients to make

purchases. This data will be the input to K-means and Apriori.

The most interoperable and arguably the most widely used way to create an interface for

such an application is to write a web application. Your clients will be expecting to just enter a

web address in the browser and get the list of products, put them in a virtual cart, and pay at

the end. For that reason, this chapter will focus on building web applications using Haskell.

The development of such an application is divided into two parts. In the first part

is the back end, which includes a server that will listen for HTTP requests and return

and update information about clients, products, and purchases. For this task, you will

reuse much of the knowledge from previous chapters and also learn about Spock,

a minimalistic web framework for Haskell, and digestive-functors, a library for

handling forms using applicative style.

Then, the focus will turn to the front end, that is, the code that ultimately runs in the

browsers of your clients, making the correct requests to the back end. Usually this part

would be written in JavaScript; but, as you will see, it’s possible to reuse most of your

Haskell knowledge if you use a language such as Elm. This will lead to consider how to

manage a graphical stateful application in functional style.

�Haskell Web Ecosystem
Web applications are becoming the standard way to interact with users. The benefits of

this approach are many; you don’t have to create a different executable for each system

from which your client may access your application (although you still need to consider

interoperability issues between browsers), and you don’t need users to download or

execute any binary code. Everything runs smoothly inside the browser.

410

If you look at Hackage, you can see an increasing number of packages that deal with

web applications. These packages range from being traditional, using patterns similar to

frameworks in other languages, to experimental ways of composing an application (in

this last group, Functional Reactive Programming [FRP] libraries are becoming popular).

Given the number of possibilities, I will give you an overview of the most important

libraries you can use for developing a web application, as I did for accessing a database

management system. Of course, this chapter cannot possibly cover everything related

to web applications in Haskell. It will focus on a handful of libraries: Spock, blaze-html,

Hamlet, and digestive-functors are the chosen ones for the back end. For the front

end, I’ll introduce a language different from Haskell but based on it: Elm.

�Web Frameworks
A web framework is a library or set of libraries intended to be used when developing a

web application, covering all possible technological requirements. These requirements

usually include a routing system (for linking a URL to a specific piece of code to be

executed when this URL is to be served), a templating system (for generating the final

HTML output), several kinds of caches, database access, and authentication through

different protocols.

In other languages, a web framework is usually a monolithic library that provides

everything in one place. However, Haskell developers usually strive for more modularity,

and the most common pattern in Hackage is a set of packages that are developed

together that share part of their name (e.g., all the packages starting with yesod) but do

not require each other in order to be fully functional. This means you can build your

web application by pulling different pieces from different projects. Even though using a

single framework gives you the most comfortable experience, using several of them does

not imply that the resulting code will be messy at all. Indeed, the Time Machine Store

presented in this chapter will use routing, templating, and form-handling libraries from

different projects all at once.

Happstack is one of the most veteran frameworks in the wild. One of the most

prominent uses of Happstack is clckwrks, a content management system. The main

package, happstack-server, provides access to almost all the information about HTTP

requests and responses, including compression, cookies, or authentication. On top of

that, a Happstack user would usually add happstack-foundation as a dependency,

which adds a lot of packages that work together well in a Happstack environment.

Chapter 12 Web Applications

411

Most often data gets handled via the acid-state package, routing is done with the

web-routes package, and form handling takes place via reform. There’s no preferred

templating engine although HSP (Haskell Server Pages), Heist, and Hamlet are listed in

the documentation. web-routes and reform are based on the same principles that will

be discussed in relation to Spock. The ideas behind HSP are similar to other templating

languages such as JavaServer Pages (JSP): you write the HTML you want to be generated,

decorated with small chunks of code written in Haskell.

Most of the other frameworks do not include their own server. They are built upon

a generic interface called Web Application Interface (WAI). In principle, you could use

any server that understands this interface to run your code (as you can use many servlet

engines to run Java web applications). But in practice, only the Warp server is used

in production. For that reason, most of the other frameworks provide direct access to

running a web application using Warp.

Snap is the name of one of those libraries built upon WAI. There are two main

features in the design of Snap. The first one is the focus on giving the developers tools

for writing modular components that are later composed (called snaplets), instead of

aiming for monolithic applications. The second one is the use of Heist as their choice of

templating library, which uses plain HTML in combination with special tags to request

information from other layers of the application.

A third choice is Yesod. The main goal of Yesod developers is to make everything as

type-safe as possible. The Persistent library that has already been discussed is developed

as part of this framework. If you remember, Persistent schemas were described using

a small language that was parsed using quasiquotation and Template Haskell. Yesod

brings the same ideas to other parts of the web application; routing and templating are

specified using those blocks. For templating, the Shakespeare library can output each

common language on the Web with the use of several quasiquoters: Hamlet for HTML

documents (which will be discussed in this chapter), Cassius and Lucius for style sheets,

and Julius for JavaScript code.

Servant is younger than the other frameworks but has a lot of potential. Its goal

is also to make Haskell type-safety guarantees work for us. However, the approach is

completely different to Yesod’s. Most parts of the application are described using a type,

and this type is later used to automatically generate routing, templating, or marshaling to

JSON. Due to the more complex nature of the type-level part of a Servant application, to

use it proficiently you need to master the techniques described in the next chapter.

Chapter 12 Web Applications

412

The focus in this chapter for routing and general application scaffolding will be

Spock,1 a minimalistic web framework with focus on strong types. You can think of it as

the Haskell version of Ruby’s Sinatra or Python’s Flask. The main feature it provides is

an easy description of routes and an easy way to plug in templating libraries (you will

see how to use both blaze-html and Hamlet with it). Being so minimalistic, it doesn’t

require many different concepts to be understood in order to start using it. This makes

it a perfect point to start looking at Haskell web libraries and later move into more

complete ones when you require their extra functionality.

One of the points where Spock is weaker is when handling the information that

clients give through forms. The library digestive-functors is one of the most popular

libraries to bridge this gap (it’s even the preferred way to do so in Snap) and the

choice for this chapter. Remember about the aeson library for handling JSON that was

introduced in Chapter 10. digestive-functors also builds upon the applicative style to

define forms and validation.

For the previously mentioned packages, there is a lot of documentation, even in

the form of tutorials and books, so I suggest you look at them to see the differences for

yourself. For an updated list of Haskell web frameworks (including the ones mentioned

above and many others) and pointers to their web sites, you can check out the Haskell

wiki at wiki.haskell.org/Web/Frameworks.

�Compilation to JavaScript
Up to now, the frameworks I have discussed deal with the back end (also known as the

server side) of the application. They allow you to generate HTML pages that will be the

part that the user will ultimately see. Unfortunately, HTML itself is not able to describe

all kinds of behaviors that are expected in a dynamic web page, and developers need to

resort to JavaScript. Every modern browser includes a JavaScript interpreter that exposes

an enormous amount of functionality to the user and allows for creating sophisticated

applications (think of the various web pages that show interactive maps).

The problem is that you may not want to code your entire front end (or client side)

in JavaScript. JavaScript is a mixed imperative and prototype-oriented language. Even

though it integrates some features from the functional paradigm, its syntax and, more

1�In the previous edition of this book, the Scotty framework was introduced instead of Spock.
Whereas they are both very similar in nature and usage, Spock uses stronger types and thus can
detect more errors at compile-time. This highlights better the benefit of using Haskell.

Chapter 12 Web Applications

http://wiki.haskell.org/Web/Frameworks

413

importantly, its concepts are very different from Haskell’s. Using the same language for

both the back end and the front end reduces the mental effort you need to make when

working on both parts at the same time, and it increases the possibilities of sharing code

between the parts.

However, making the browsers support a new language is just an illusion. JavaScript

is the language where all the efforts are focused. For that reason, many compilers have

included the option to generate JavaScript as output apart from binary code. Then, you

can use your preferred programming language to write dynamic web pages and still

retain the ubiquity of support that JavaScript has on browsers. Furthermore, these days,

the speed and quality of JavaScript implementations are quite impressive. The functional

community as a whole has worked in that direction, and there are several Haskell-

inspired languages that can be compiled into JavaScript.

Some projects such as GHCJS, WebGHC, and Haste modify the GHC compiler itself to

output this alternative representation. These projects have different areas of focus, from

allowing seamless execution of any application that can be compiled by GHC into a web

environment, replicating the entire runtime, to trying to balance full compatibility with

GHC and better interoperability with other JavaScript codes. Unfortunately, it seems that

these projects have not caught upon Haskell practitioners, and at the moment of writing

using and developing with them is not as simple as using GHC.

An alternative approach is to create a completely new language, but strongly

based on the syntax and concepts of Haskell. There are two main projects in this area.

PureScript is the closest language to Haskell, and shares with it a powerful type system.

The main difference is that code is not executed lazily, it uses the most common

execution model inherited from JavaScript instead. The other side of the spectrum

is covered by Elm, which removes some Haskell’s features (like type classes) in order

to provide a simpler language. But we still have higher-order functions, pattern

matching, and many of the defining features of Haskell. Elm is the focus of our section

about front end.

Like in the case of web frameworks, many other languages and packages provide

support for compiling into JavaScript. You can get an up-to-date list with pointers on

documentation at wiki.haskell.org/The_JavaScript_Problem.

Chapter 12 Web Applications

http://wiki.haskell.org/The_JavaScript_Problem

414

�RESTful Structure
Before starting with the coding, I will introduce some of the general patterns in the

design of the application, which are based on the Representational State Transfer (REST)

principles. Many of these concepts are directly encoded by the combinators that Spock

provides and are visible in many other web frameworks, both inside and outside the

Haskell world.

The core idea is that the web application provides access to a set of resources, which

can be queried or modified. The information of a client or a product is an example of

resources in the Time Machine Store. Each of these resources is accessed through a

unique identifier, which in a web application is a URL. For example, /clients could be

the identifier of the list of all clients, and /product/3 may identify the information of the

product whose identifier in the database is the number 3.

Given that URLs are central to knowing which data must be queried or affected by a

request, the web framework of choice should include good support for specifying URL

patterns and point to the right code to execute. Each of these patterns is called a route.

For example, in Spock you can describe the route for products as /product/<var>,

meaning that when any URL starting with /product/ is found, that code is executed, and

the rest of the URL is captured in a variable.

For each resource, an application can have several request methods, each of them

being a particular action over the resource. For web applications, which are the focus of

this chapter, the most used request methods are GET, which retrieves a particular object

or lists the elements in a collection; POST, which is used to create a new element inside

a specific resource; PUT, which replaces the information of an entire resource with new

information coming with the request; and DELETE, which erases the resource from the

system. The REST architecture style imposes several constraints on how each method

should behave (e.g., GET should not modify the resource at all). You can read about it in

many books about this topic, so I won’t delve into details here.

Finally, for each supported combination of resource identifier and request method,

the application should give a response using standard formats. When using REST over

HTTP, this means using HTTP status codes (e.g., returning a 404 error when some

resource is not found) and encoding the queried information using HTML, XML, or

JSON. Furthermore, the consumer can specify a list of supported response types, and the

server should try to satisfy that requirement.

Chapter 12 Web Applications

415

�Back End with Spock
In this section, you will develop the back end of the Time Machine Store. Because of

space constraints, I will focus primarily on querying and updating information about

products. Support for clients and purchases is left as a good exercise to put together

much of the knowledge you’ve acquired up to this point.

�Simple Skeleton
The first thing to do is to set up a project with an executable stanza that will start the

server, adding Spock as a dependency.2 You’ve already gone through these steps in the

first four chapters. Now repeat them in Exercise 12-1 to create the basis for the store.

Remember that exercise solutions are included with this book’s example download from

the Apress.com catalog page.

EXERCISE 12-1. SETTING UP THE PROJECT

Create a new Cabal package, either using Cabal or Stack, named chapter12. This package

should contain a stanza that will generate the time-machine-store executable. Add Spock

as a dependency of the executable.

Now you’re ready to start building your web application. The following shows a

simple application that just responds to the URL /about:

{-# LANGUAGE OverloadedStrings #-}

import Web.Spock

import Web.Spock.Config

main :: IO ()

main = do

 cfg <- defaultSpockCfg () PCNoDatabase ()

 runSpock 3000 (spock cfg app)

2�At the moment of writing, there is an issue which makes it hard to install Spock. In case you
get an error message about STMContainers, add as an additional dependency stm-containers
< 0.3 to your Cabal file. One of the cons of the strongly typed approach to software taken by
Haskell is that changes in dependencies may break a previously working package.

Chapter 12 Web Applications

http://apress.com

416

app :: SpockM () () () ()

app = do

 get "about" $

 html $ mconcat ["<html><body>"

 , " <h1>Hello Practical Haskell!</h1>"

 , "</body></html>"]

The entry point of the application, the main function, starts your Spock application

at port 3000. In addition to the port number, the runSpock function needs some

configuration parameters, and more importantly, a description of your routes, which in

this case we define in app. Right now, there’s only a route, /about, which can be accessed

through the GET request method. This route is defined using the name of the method in

lowercase letters (get), a pattern which the URL must follow, and finally the handler,

which is the code to be executed.

Note R outes are defined via a value of type Text. The previous code uses the
OverloadedStrings extension to write them as string literals.

The result of a request in Spock can be any Text value, which is the data that will be

sent over the wire. However, if the data you are returning must be processed as HTML,

it’s customary to define the value of some of the response headers. But instead of

defining it by hand, Spock provides the html helper function, which sets those headers to

the appropriate values and then returns the content.

You can check that your web application works by building the package at the

command line and calling it. Then point your browser to http://localhost:3000/about

to run the corresponding handler and show the result on your screen.

However, if you surf to another URL on this same server, you will find a prototypical

error page. As a small improvement for this simple application, let’s include a custom

“not found” page by adding a new route to the do block. In this case, the URL pattern is

hookAnyAll, which matches any possible route, and gives it back to the handler as an

argument.

import Network.HTTP.Types

app :: SpockM () () () ()

app = do

 get "about" $...

Chapter 12 Web Applications

417

 hookAnyAll $ _route -> do

 setStatus notFound404

 html "<h1>Not found :(</h1>"

One of the most important things to notice is that when the URL is not found, you

should set the response status to the corresponding number (in this case, the well-

known 404). This is done by calling setStatus, which takes as a parameter one of the

codes defined in the Network.HTTP.Types module (this module is not defined inside the

package Spock but on http-types, which you should include as an extra dependency).

Caution S pock checks which route to apply in the same order as they appear
in the code. A hookAnyAll route handles every possible URL. Any route after
that one will never be executed. For that reason, you must always write the
hookAnyAll route as the last one in the description of your application.

�Showing Products from the Database
Now let’s move on to the main task in this section: showing information about products.

The access to that data will be via the Persistent library (thus, you should include

persistent, persistent-template, and persistent-sqlite as dependencies) using the

same schema from Chapter 11. In the examples, I will assume that the database schema

is described in the module Chapter12.Database.

There are two changes to be done to the main function to make the database

available to the handlers. First, you should make sure the schema described via

Persistent coincides with the actual database schema. As you know, this is achieved via a

migration, which should be the first thing to appear in main.

Each handler wanting to access the database could, in principle, start a new

connection using runSqlite and execute the actions there; any Spock action can run any

IO action. However, it’s more performant to create a pool of connections. Spock contains

native support for this scenario, it only requires changing a little the way we start the

application.

import qualified Database.Persist.Sqlite as Db

import Control.Monad.Logger

import Control.Monad.Trans

Chapter 12 Web Applications

418

main :: IO ()

main = do

 Db.runSqlite "example.db" $ Db.runMigration migrateAll

 runNoLoggingT $

 Db.withSqlitePool "example.db" 10 $ \pool -> liftIO $ do

 cfg <- defaultSpockCfg () (PCPool pool) ()

 runSpock 3000 (spock cfg app)

app :: SpockM Db.SqlBackend () () ()

app = ...

The creation of the connection pool is done with the usual withSqlitePool function.

Note that we do not use the pool yet, instead we initialize the configuration with it by

using PCPool, in contrast to our previous use of PCNoDatabase. The type of app also

needs to change to reflect that the routes may access a database of type SqlBackend. At

any point in the handler you can request a connection via the runQuery method; Spock

manages the pool for you.

Coming back to our products, each product will be available through a URL such as

/product/n, where n is the unique identifier given by the DBMS to that product.

In Spock, having different parts of the route separated by / is described using the (<//>)

function. Up to now you have only seen one form those parts can take, namely constant

strings like about. Another possibility is to have parameters, which are declared by using

var. For each parameter in the route the handler receives a value. You can also restrict

the domain of values a parameter can take by assigning it a type. This is usually done

with a local type signature, which are available if you enable the ScopedTypeVariables

extension.

{-# LANGUAGE ScopedTypeVariables, RecordWildCards #-}

import Data.Text as T

app :: SpockM Db.SqlBackend () () ()

app = do

 get ("product" <//> var) $ \(productId :: Integer) -> do

 product <- runQuery $ \conn ->

 flip Db.runSqlPersistM conn $

 Db.get $ ProductKey (Db.SqlBackendKey $ fromIntegral productId)

Chapter 12 Web Applications

419

 case product of

 Just (Product { .. }) ->

 html $ mconcat ["<html><body>"

 , "<h1>"

 , T.pack productName

 , "</h1>"

 , "<p>"

 , T.pack productDescription

 , "</p>"

 , "</body></html>"]

 Nothing -> do setStatus notFound404

 html "<h1>Not found :(</h1>"

The rest of the code is a straightforward access to the database as explained in

Chapter 11 for accessing a value via its identifier and composing the returned HTML

value. The code uses record wildcards to bind variables from the Product record easily.

When a product identifier is not found, the status code of the response is set to 404 using

the same approach as for “not found” routes in the previous section.

The code shown previously is quite short and simple, except for one part: the

construction of the resulting HTML page, which is done via simple string concatenation.

After seeing how many checks a Haskell compiler can do for you in so many realms, you

should ask whether there’s some tool for helping writing HTML code, making sure you

close all tags, using indentation to discern the document structure, and so on. The answer is

positive: I’m going to show you two different libraries that take different paths for this task.

The first option is the blaze-html package. The idea is that each HTML element

is represented by a function whose final parameter is a monadic value representing

all those tags nested inside. This way, you can write nested do blocks to simulate the

document structure in your Haskell code. The other main combinator is (!), which

allows you to include HTML attributes for each element.

Since there are several versions of the (X)HTML standard, blaze-html provides

different packages defining the accepted tags and attributes for each. In the following

code, I’ve rewritten the handler for products to use blaze-html instead of string

concatenation. Notice how you need to call toHtml to convert a string into a value that

can be consumed by blaze-html and to convert from a blaze-html value into Text that

can be returned as part of the handler via a combination of renderHtml and toStrict

(because blaze-html uses lazy Text values, but Spock requires strict ones).

Chapter 12 Web Applications

420

import qualified Text.Blaze.Html5 as H

import qualified Text.Blaze.Html5.Attributes as A

import Data.Text.Lazy (toStrict)

import Text.Blaze.Html.Renderer.Text (renderHtml)

app = do

 get ("product" <//> var) $ \(productId :: Integer) -> do

 ...

 case product of

 Just (Product { .. }) ->

 html $ toStrict $ renderHtml $

 H.html $ do

 H.head $

 H.title "Time Machine Store"

 H.body $ do

 H.h1 $ H.toHtml productName

 H.p H.! A.id "descr" $ H.toHtml productDescription

 Nothing -> ...

A second choice for embedding HTML values in a type-safe way is to use the

templating system called Shakespeare. The distinctive characteristic of this package is its

use of quasiquotation to provide different syntax modes closer to the ones used on the

web. The one we shall explore here is Hamlet, which returns well-formatted HTML.

{-# LANGUAGE QuasiQuotes, TemplateHaskell #-}

import Text.Hamlet

app = do

 get ("product" <//> var) $ \(productId :: Integer) -> do

 ...

 case product of

 Just (Product { .. }) ->

 html $ toStrict $ renderHtml [shamlet|

 <html>

 <head>

 <title>Time Machine Store

Chapter 12 Web Applications

421

 <body>

 <h1>#{productName}

 <p id=descr>#{productDescription}

 |]

 Nothing -> ...

Hamlet templates use opening tags in the same way as HTML. However, indentation

is the syntactic element marking the nesting structure, so closing tags are not needed,

as you can see in the previous example. At any moment you can “escape” to the Haskell

world via #{ }, and the result of the expression inside the brackets will be printed safely

at that point.

In this simple web application, the shamlet function is used for parsing the HTML

block. This is a simple function that just returns an Html value, which can be rendered

using renderHtml (the same as was presented for blaze-html). But Shakespeare

provides other quasiquoters that are much more powerful than this.

•	 The hamlet function allows you to use type-safe URLs. The idea is to

define all possible routes in your web application using an ADT. Each

of the constructors will describe a URL pattern along with the set of

parameters. Then, instead of building your HTML links by hand, you

specify one of these constructors every time you need a link. The

web-routes generates most of the boilerplate code needed to use this

feature.

•	 The ihamlet function adds internationalization support to the mix.

You can create a general document structure for your templates and

then include different messages for each language that your web

application supports.

Finally, for each of these functions, Hamlet provides a corresponding function

ending in File (shamletFile, hamletFile, ihamletFile) that reads the template for

an external file. In that way, you can separate the view of your data from the logic in the

server.

Chapter 12 Web Applications

422

Hamlet includes not only tags and brackets for variables but also control structures

for simple cases that are common when building an HTML page. For example, the

following code uses $forall to iterate through all the products in the database, writing a

row in a table for each of them:

app = do

 ...

 get "products" $ do

 (products :: [Db.Entity Product]) <- runQuery $ \conn ->

 flip Db.runSqlPersistM conn $

 Db.selectList [] []

 html $ toStrict $ renderHtml [shamlet|

 <html>

 <body>

 <h1>Products

 <table>

 <tr>

 <th>Name

 <th>Description

 $forall Db.Entity _ p <- products

 <tr>

 <td>#{productName p}

 <td>#{productDescription p}

 |]

As a final touch, you may want to provide not only HTML output but also JSON

output for those consumers of your web application that are not end users but rather

other developers interacting with your store. The good news if you are using the aeson

library is that Spock provides a helpful json function that takes care of converting a value

into the corresponding text format, and it sets the correct headers. For example, a new

route for getting back information about a product in JSON format is simple to add:

app = do

 ...

 get ("json" <//> "product" <//> var) $ \(productId :: Integer) -> do

 product <- runQuery $ \conn ->

 flip Db.runSqlPersistM conn $

Chapter 12 Web Applications

423

 Db.get $ ProductKey (Db.SqlBackendKey $ fromIntegral productId)

 case product of

 Just p -> json p

 Nothing -> setStatus notFound404

Exercise 12-2 asks you to implement the same functionality as you’ve done for

products, but now you can do this for clients of the Time Machine Store.

EXERCISE 12-2. QUERYING ABOUT CLIENTS

Include the new routes /clients, /client/:clientId, and /json/client/:clientId

that return information about all clients and a particular client in HTML and JSON formats. Use

any of the presented templating systems for generating the HTML output.

�Inserting New Products Using Forms
Right now, you have tools only for writing routes that use information from the URL to

respond. But when a user is expected to give some data interactively, the interface should

present a form, and the web application should take as input the information from that form.

How to do this in an elegant and composable way will be the main topic of this section.

Before continuing, it should be noted that Spock provides a set of param* functions

to get the value of fields in a form. By default, param looks in both the POST and GET

variables, but more concrete versions are provided. The problem with using param the

entire time is that the parsing and visualization of forms becomes stripped between

different handlers. Furthermore, you need to manually convert from Text to the required

format, and deal with erroneous input. You should aim instead to have a centralized

description of each form in your web application that can be reused between different

handlers (e.g., your product form may be used both for creating a new one and for

updating the information of an existing one).

The package you will use in this web application for form handling is called

digestive-functors. One interesting feature of this library is its use of the applicative

style, which gives forms the same flavor as JSON handling with aeson, which has been

already discussed in this book. The digestive-functors package also separates the

description of the data and validation for building a value from the way in which that

form should be visualized, giving a modular approach to form handling.

Chapter 12 Web Applications

424

Each form you build with this library must build a value of a specific type, which would

usually be one of the types you use in your database schema. In addition, the Form type

(the one describing each form in the page) needs a type variable describing the format in

which errors will be presented. For each argument in the constructor of that type, you must

specify which field in your form will handle its value, one of the basic kinds of fields you

can have in an HTML form, the initial value for an empty form, and any extra validation

required. For example, this is a form for the Country type, which needs a string and a

Boolean value and shows the errors as strings. Notice how the field is specified using the

string or bool function, and the initial value is specified wrapped in Maybe.

import Text.Digestive

countryForm :: Monad m => Form String m Country

countryForm = Country <$> "name" .: string Nothing

 <*> "send" .: bool (Just True)

Caution B oth aeson and digestive-functors contain a function called
(.:). Be aware of this fact; you will need to qualify at least one of them if you’re
using the two modules in the same source file.

For further validation, you must wrap one of those simple specifications inside

validate or check. The difference between them is that validate may also parse the

value into a new one (maybe of another type), whereas check is only a Boolean predicate

that leaves the value as is. Both functions need as extra input the error message that

should be provided to the user when the value does not fulfill the requirements. The

following code implements a form for Product values; it uses validate to convert from

strings to numbers and uses check to constrain the possible items in stock to be larger or

equal to zero:

import Text.Digestive.Util

productForm :: Monad m => Form String m Product

productForm

 = Product <$> "name" .: string Nothing

 <*> "description" .: string Nothing

 <*> "price" .: validate isANumber (string Nothing)

Chapter 12 Web Applications

425

 <*> "inStock" .: check "Must be >= 0" (>= 0)

 (validate isANumber (string Nothing))

isANumber :: (Num a, Read a) => String -> Result String a

isANumber = maybe (Error "Not a number") Success . readMaybe

Once you have the description of your form, it’s time to define how it will be seen by

the user. The code you need to create should take a view of the form (in other words, a

definition of the form plus values for each of the fields) and return the HTML output.

There are packages for integrating forms with almost any of the templating systems I

introduced at the beginning of the chapter. In this section, I will use blaze-html as an

example, so you need to add digestive-functors-blaze as a dependency.

The module Text.Digestive.Blaze.Html5 includes functions for all the types of

inputs that the HTML standard supports. Each of the functions takes as parameters

at least the name of the field it refers to and the view it handles. In addition to input

controls, this package can also generate code for input labels and for the errors that

concern each field. As an example, here’s a possible way to show the information of a

form for a product. Notice the inclusion of inputSubmit for creating a Submit button.

import qualified Text.Blaze.Html5 as H -- from previous examples

import Text.Digestive.Blaze.Html5

productView :: View H.Html -> H.Html

productView view = do

 form view "/new-product" $ do

 label "name" view "Name:"

 inputText "name" view

 H.br

 inputTextArea Nothing Nothing "description" view

 H.br

 label "price" view "Price:"

 inputText "price" view

 errorList "price" view

 label "inStock" view "# in Stock:"

 inputText "inStock" view

 errorList "inStock" view

 H.br

 inputSubmit "Submit"

Chapter 12 Web Applications

426

Now let’s create the form that will be shown when the user of the web application

wants to add a new product. Since there’s no information about that new product, you

should show the form with the initial data defined in productForm. This is done by

creating an empty view using getForm. You can integrate that view’s form in a larger web

page by invoking productView, as the following code shows:

app = do

 ...

 get "new-product" $ do

 view <- getForm "product" productForm

 let view' = fmap H.toHtml view

 html $ toStrict $ renderHtml $

 H.html $ do

 H.head $ H.title "Time Machine Store"

 H.body $ productView view'

Note  getForm returns a View String value (since the definition of
productForm had type Form String m Product), whereas productView
needs a View H.Html value. You can move from the former to the latter by
mapping H.toHtml on every field, as the previous code does. The idea behind this
conversion is that you should map the errors in the form from the String type to
an HTML representation.

When the form is sent by the browser back to the web application, the POST request

method is used instead of GET. Thus, in that case you have to read the values sent by the

user and then either write the new product on the database if the values are correct or

return the same form with error messages. The key point is the change from getForm to

runForm, which doesn’t use the initial data but rather a dictionary of fields and values

from the request. Except for this change, the code for this request is straightforward. If

the input data is valid (runForm returns a Just value), contact the database and redirect

to the page for the product; in the other case, return the same form (the productView

function will take care of showing the errors). Note that the runForm function lives in a

different package, namely Spock-digestive, which you should include as dependency.

Chapter 12 Web Applications

427

import Web.Spock.Digestive

app = do

 ...

 post "new-product" $ do

 (view,product) <- runForm "product" productForm

 case product of

 Just p -> do

 ProductKey (Db.SqlBackendKey newId) <- runQuery $ \conn ->

 flip Db.runSqlPersistM conn $ Db.insert p

 redirect $ mconcat ["/product/", T.pack $ show newId]

 Nothing -> do

 let view' = fmap H.toHtml view

 html $ toStrict $ renderHtml $

 H.html $ do

 H.head $ H.title "Time Machine Store"

 H.body $ productView view'

This section serves as a good introduction to building REST web applications in

Haskell, in particular using Spock. To fix the concepts in your mind, you should try to

complete the back end of the application as Exercise 12-3 suggests. Afterward, if you are

interested in web applications in Haskell, you can dive more deeply into Spock (e.g., how

to deal with sessions or cookies) or learn about any of the other frameworks that were

mentioned earlier in the section “Web Frameworks.”

EXERCISE 12-3. REGISTERING CLIENTS

Create a new handler for registering clients at route /register. As in the case of products,

you need to add handlers for both the GET and POST request methods.

Hint: You may want to read the documentation of the choice combinator in digestive-

functors to learn how to build a drop-down list with possible countries in your HTML form.

Chapter 12 Web Applications

428

�Front End with Elm
This section is devoted to creating a rich front end for the Time Machine Store web

application using Elm. As in the previous section, space constraints limit the discussion

to a shallow introduction to the Elm ecosystem and its use to show some products using

the back end described above.

GETTING ELM IN YOUR SYSTEM

Elm website, located at elm-lang.org, has at the moment of writing a big Install button in

its main page. In Windows and Mac it is recommended to use the installer, which also set ups

the correct paths in the system; in Linux this set up needs to be done manually.

If you have npm (Node.JS Package Manager) already in your system, you can just run npm

install elm --global to get the binaries in the right place. npm is quite popular in the

JavaScript world.

In this section, we are going to use one of Elm’s facilities for rapid application

development: elm reactor. Usually, in order to use one of these JavaScript-based

languages, you need to create an accompanying web page, compile the code to

JavaScript, and then call if from the page. Each step is easy, but it creates quite some

overhead for a few simple examples. In contrast, using reactor you just need to initialize

a folder as a project, and then point your browser directly to an Elm source file. The code

is then compiled and executed, without any further configuration.

As I have just mentioned, the first step is setting up a folder as a project. To do so,

simply move to that folder in a command line and run elm init. A new elm.json file

and a src folder should have been created. The former file describes where is the code

located and which are the packages the project depends on:

{

 "type": "application",

 "source-directories": ["src"],

 "elm-version": "0.19.0",

 "dependencies": {

Chapter 12 Web Applications

http://elm-lang.org

429

 "direct": { ... },

 "indirect": { ... }

 },

 ...

}

Let us begin with a very simple Elm application, which just greets a person. The

name of that person will not be subject to change, you just can change it by setting the

right variable in the code. Nevertheless, this small application already contains most

components of the so-called Elm Architecture.

import Browser

import Html exposing (..)

main = Browser.sandbox { init = init

 , update = _ model -> model

 , view = view }

type alias Model = { currentName : String }

init : Model

init = { currentName = "Alejandro" }

view : Model -> Html ()

view model = div [] [text "Hello, ", text model.currentName, text "!"]

Before explaining how the application works, let me point out how to use elm

reactor to run the application. In the same terminal in which you created the project,

run elm reactor.

$ elm reactor

Go to <http://localhost:8000> to see your project dashboard.

Now open a browser and go to the specified website. You will see a list of files.

Navigate to the src folder, in which source files should reside, and then click on the

file corresponding to your application. If everything has gone well, you should see a

big “Hello, Alejandro!” in your screen. Otherwise, the output of the compiler is shown

directly in the browser window, which is a very helpful way to diagnose why your

application does not work.

Chapter 12 Web Applications

430

•	 The simplest version of the Elm Architecture, depicted in Figure 12-1,

requires us to provide three components: the model, that is, which is

the data our application saves; the update function, which describes

how the model is update in response to event such as user input;

and the view, which specifies how to render the data in the model

as HTML. In turn, the model is defined in two parts: first of all you

need to declare a data type which defines all the possible states of the

application, and in addition you have to specify the initial state.

initial

update

raises

message

transformed
into

event

generates
at the beginning

model

HTML
elements

view

Figure 12-1.  Simple Elm Architecture

In this case, the model is simply a string. In the code, though, we use a kind of

types which is not available in Haskell’s type system, namely records or row. Our Model

type is made up of one single piece of data, which is available under the identifier

currentName. If you look closely at the view function below, you can see that we use

model.currentName to access the information. These types, inherited from JavaScript,

provide a simple way to gather information without the overhead of using constructors

everywhere. The init function specifies the initial value for this field; feel free to use

your own name there.

Chapter 12 Web Applications

431

The view function describes how to turn a value of the Model type into an HTML

document. There is nothing surprising: Elm’s approach to markup follows similar ideas

as the blaze-html package we have discussed above.

Using Browser.sandbox we put together the initial state of the model and the view.

This function also requires an update function, but for now this function never changes

the model. It is not very important here, though, because we have not set up in moment

in the application in which an event is raised, and thus the update function shall be

called. Let us look at a new version of the application in which you can change the

person to be greeted:

import Browser

import Html exposing (..)

import Html.Attributes exposing (..)

import Html.Events exposing (onInput, onClick)

main = Browser.sandbox { init = init, update = update, view = view }

type alias Model = { currentName : String, textboxName : String }

init : Model

init = { currentName = "Alejandro", textboxName = "Alejandro" }

type Msg = TextboxChanged String

 | MakeCurrent

update : Msg -> Model -> Model

update msg model = case msg of

 TextboxChanged nm -> { model | textboxName = nm }

 MakeCurrent -> { model | currentName = model.textboxName }

view : Model -> Html Msg

view model

 = div []

 [div [] [text "Hello, ", text model.currentName, text "!"]

 , input [placeholder "Write your name here"

 , value model.textboxName

 , onInput TextboxChanged] []

 , button [onClick MakeCurrent] [text "Greet me!"]

]

Chapter 12 Web Applications

432

The first thing I have done is enlarging the model to incorporate both the current

name and the information which is currently saved in a textbox. One possibility would

have been to keep the greeting completely in sync with the value of the textbox, but in

this example, the user must click a Greet me! button explicitly. This way we look at a bit

more complex workflow.

The next place to look at is the definition of view. In addition to the previous line

of text, we now have an input element (corresponding to the textbox) and a button

element. In both cases, we set up handlers for possible events: in the case of the textbox

when the text changes, and in the case of the button whenever it is clicked. In contrast

to many graphical interface toolkits, these handlers do not specify functions to run, but

rather messages to be sent.

This leads us to the definition of the Msg type, which declares all possible messages

that the application can handle. In our case, they correspond closely to the user interface

elements, but in general, they might describe any possible event in the application, like

a change in the data. The update function is responsible for taking each of the messages

and specifying how they affect the underlying model of the application. In this case,

the TextboxChanged messages updated the corresponding field in the model, and the

MakeCurrent message moves the name from the temporary to definite storage. In turn,

this causes the view function to run, leading to visible output for the user.

The right way to think about the Elm Architecture is like a state machine. Each

constructor in the Model type defines one state in the application, along with any

additional data that it might need. Messages move the application to different states.

Apart from this core, we need a way to reflect the changes in the data to the outside; this

is the role of the view function. This architecture is a very common way to define user

interfaces in the functional world,3 and it has been slowly gaining traction out of this

niche. Popular projects like React use very similar ideas.

�Retrieving Products
The architecture formed by a model, an update function, and a view works well if

your application is self-sufficient. That is, if all the data is contained in the initial state

or a product of the user input. But this is not true for many (or even almost all) web

3�The gloss library uses the same concepts but oriented to 2-D games in Haskell.

Chapter 12 Web Applications

433

applications: the data is not present at the beginning of the application but obtained

later by making calls to remote servers (usually your application back end). This

behavior requires an extension to the Elm Architecture.

The core idea to model operations which are out of the control of the application,

and might be asynchronous, is to use commands. A command represents any operation

that we want to request from the outside world – what exactly depends on the library you

are using. Once the command finishes working, and has a final value, a message is sent

to the application. This message is handled in the same fashion that any user input: by

calling the update function which performs any required changes to the model, and then

updating the view.

In the following example, we are going to contact the back end we have developed

to show the description of a product given its identifier. In particular, we are going to

request the information in JSON format, which is the easiest one to parse in Elm. For

both tasks we need to add a couple of dependencies to our project. Instead of changing

the elm.json file by hand, Elm provides built-in commands to request them:

$ elm install elm/json

I found it in your elm.json file, but in the "indirect" dependencies.

Should I move it into "direct" dependencies for more general use? [Y/n]: y

Dependencies loaded from local cache.

Dependencies ready!

$ elm install elm/http

Here is my plan:

...

Dependencies ready!

Before I dive in the application itself, let us have a look at the way in which Elm

handles JSON decoding. As we discussed above, Elm does not feature type classes

nor automatic derivation via Generic, so we need to write them by hand. However,

these decoders look very similar to the hand-written FromJSON instances you wrote

in Chapter 10. The (.:) function, which looked for a named field in an object, is now

simply called field; and the decoding of basic types is performed by a set of basic

decoders such as string or int.

Chapter 12 Web Applications

434

import Json.Decode exposing (Decoder, map2, field, string)

type alias Product = { name : String, description : String }

productDecoder : Decoder Product

productDecoder = map2 Product (field "name" string)

 (field "description" string)

Our model becomes more complex with the introduction of the HTTP call. As in the

case of the greeter, we need a piece of data to hold the current input in the textbox, which

we can later query. The rest of our Model describes the status of the HTTP call: no request

may have been issued yet (because the application JustStarted), the request may be in

progress (LoadingProduct), or it might have been either with an error or successfully. In

the latter case, we also save the result of the request as a Product.

type alias Model = { productId : String, productStatus : ProductStatus }

type ProductStatus = JustStarted

 | LoadingProduct

 | Error

 | ProductData Product

The set of messages we handle is also quite like our previous application. We have

messages coming from changes in the textbox input and clicking the button. To those

we add a third one which represents that the HTTP call has finished, so we can look at

the result.

import Http

type Msg = TextboxChanged String | Load

 | ReceivedInfo (Result Http.Error Product)

This means that there is one more case to handle in the update function:

import Browser

update : Msg -> Model -> (Model, Cmd Msg)

update msg model = case msg of

 TextboxChanged pid -> ({ model | productId = pid }, Cmd.none)

Chapter 12 Web Applications

435

 Load -> ({ model | productStatus = LoadingProduct }

 , Http.get

 { url = "http://practical.haskell/product/" ++ model.productId

 , expect = Http.expectJson ReceivedInfo productDecoder

 })

 ReceivedInfo result -> case result of

 Ok p -> ({ model | productStatus = ProductData p }, Cmd.none)

 Err _ -> ({ model | productStatus = Error }, Cmd.none)

This is not the only change to the function. In this revised version of the Architecture,

updates may also issue the commands we have been talking about previously. As a result,

the function returns a pair of the model and the list of commands to request. In this case,

most updates do not issue a command, which is represented by Cmd.none. In the case

of a Load message, we want to make an HTTP call, and if the request is successful, apply

the productDecoder and then send the ReceivedInfo message. The init function is also

allowed to issue some commands at the beginning of the web application.

init : () -> (Model, Cmd Msg)

init _ = ({ productId = "", productStatus = JustStarted } , Cmd.none)

We still need to put these pieces together. The aforementioned Browser.sandbox

is no longer enough when we introduce commands, so we need to change to the more

powerful Browser.element.

main = Browser.element { init = init

 , update = update

 , subscriptions = _ -> Sub.none

 , view = view

 }

In the code above you can see that Browser.element requires subscriptions in

addition to the three components I have been discussed throughout this chapter. By

subscribing you can get a stream of events in your application; in contrast to a command,

which gives you back only one message. The archetypal example of a subscription is time:

you can request to get a tick every n seconds, and the system sends the corresponding

Chapter 12 Web Applications

436

message every time the wait is over. In this example, we do not want to subscribe to

anything, so we initialize the corresponding field to a function which always returns

Sub.none, in the same way that our initial style requests no command using Cmd.none.

The missing piece is the view function to turn the model into HTML elements.

Exercise 12-4 asks you to implement this function.

EXERCISE 12-4. A VIEW FOR PRODUCTS

Implement the missing view function in the application above. Remember that you need to

have at least one textbox whose changes lead to TextboxChanged messages, and a button

that raises a Load message when clicked.

Elm is a very productive language, even though some Haskell features are missing

from the language. In fact, its designers argue that a simpler language makes it easier

to introduce functional programming in an area of programming – web applications –

where only JavaScript has been traditionally used.

SAME ORIGIN POLICY

If you’re executing all these examples in a local environment, your web page may not work

at all. In that case, you’ll have been surely bitten by the Same Origin Policy. This policy,

implemented in every browser in the wild, forbids a page in a domain to obtain information

from other domains. In this case, a local page may not send information to a web application

in localhost:3000, which we have used for our Spock back end.

The easiest solution is to add a header to allow communication from any domain in the Scotty

code. This is done by calling setHeader "Access-Control-Allow-Origin" "*" in the

handler of the JSON route. In this way, you notify your browser that the server admits calls

from everywhere.

Having said that, it’s obvious that you shouldn’t add that header in every web application you

create because you may be exposing information to other domains. The best solution is to

sever both the back end and front end from the same domain. Alternatively, you can include a

restrictive list of allowed clients in the Access-Control-Allow-Origin header.

Chapter 12 Web Applications

437

�Summary
This chapter served as an introduction to web application building in Haskell.

•	 You learned about the many libraries that the Haskell ecosystem

provides for each feature required in a web application: routing,

templating, form handling, and so on.

•	 The chapter focused on the development of the Time Machine Store

following the principles of the REST architectural style.

•	 Spock was introduced as a minimalistic web framework, and you saw

how to create handlers for different routes and request methods.

•	 Two templating systems were discussed: blaze-html, which provide

a set of combinators for composing HTML documents, and Hamlet,

which uses quasiquotation to embed a markup language inside

Haskell code.

•	 For handling input from the user, you learned about the digestive-

functors library.

•	 Finally, Elm was introduced as a way to program rich front-end web

pages using a Haskell-inspired language, and you saw a small demo

for obtaining remote information.

Chapter 12 Web Applications

PART IV

Domain Specific
Languages

441
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_13

CHAPTER 13

Strong Types for
Describing Offers
You’ve already finished two of the main tasks in this book: implementing some data-

mining algorithms for analyzing clients and their purchases and looking at several ways

to save the information about purchases in a durable container. This chapter is the

starting point of the last task: creating a domain-specific language (DSL) for expressing

offers to be applied in the Time Machine Store. You will provide a set of combinators to

create the offers, which are initially basic offers.

Not all offers expressible in this language will be valid. The interesting part is that

you can use the type system to help avoid many of the wrong offers, and this chapter will

teach you the features needed to do that.

I will introduce you first to generalized algebraic data types (GADTs), which are a

way to create more concrete constructors for your data types. Then, you will see how to

encode other invariants using different techniques. In particular, this chapter discusses

both functional dependencies (FDs) and type families (TFs), along with singletons.

Once you’ve read this chapter, you’ll have a thorough grasp of the complete Haskell

type system. You will be able to understand code that uses the advanced features

described here, and you also will be able to use them in your own code.

�Domain-Specific Languages
A domain-specific language (DSL) refers usually to a language not intended for

expressing any computer program but rather data or computations about a specific

problem space. For example, SQL can be seen as a DSL for expressing database queries.

Haskell is not a DSL, but rather a general-purpose language, because it’s not tied to any

particular application domain.

442

The existence of DSLs is not new in computer science. Many of the programs you

use contain one or several DSLs at their core. For example, CSS is a DSL for expressing

presentation attributes of markup elements, regular expressions are a DSL for expressing

patterns over a string, hardware designers use specific languages for designing circuits,

and so on.

Again, a DSL is not intended to express just any domain but rather a specific one.

This means a DSL is tightly linked to the things you intend to express, allowing you to

communicate those concepts using exactly the abstractions you need for that domain.

This gives you two advantages.

•	 You no longer need developers to write the business rules in your

program. If your DSL really expresses the rules using the usual

abstractions for the intended domain, the experts on that specific

domain can be the ones writing the rules. This decreases the

mismatch between domain experts and programmers.

•	 You need to implement only a core DSL, which is usually quite small,

and then use the new abstractions to build the rest of the system. This

makes the programs easier to write, easier to understand, and easier

to maintain because the abstraction of the domain is not scattered

between different moving parts.

These advantages are important in the software engineering process. As a result, the

concept of DSLs has risen in importance, and many problems are now tackled by means

of a custom language for a domain. In fact, many tools are geared toward designing

DSLs, and this chapter will make the case that Haskell is one of best in this field.

�Embedding Your Language in Haskell
Any DSL you design will ultimately be integrated inside a larger application. That

larger application will be written in a general-purpose language, like Haskell. Thus, it’s

important to consider the ways in which the DSL can hook into that other language,

usually called the host.

One possibility is to make the DSL completely independent of the host language.

In that case, you need to develop a full set of tools for this language. At the very least,

you need to write a parser for the language. Thus, you get a lot of freedom in the design,

Chapter 13 Strong Types for Describing Offers

443

but you need to put a lot of effort into its implementation. This way of integrating your

language, called external or stand-alone, is useful when the DSL forms the core of your

application and you want to provide extra tools (such as debuggers and IDE integration).

Think of HTML as a perfect example of this kind of DSL.

In contrast, you can also develop an embedded or internal DSL, where your language

is expressed using some of the constructs of the host language. The main advantage of

this approach is that you don’t need to write as many of the tools, and the host language

can help you in designing the DSL in such a way that you don’t need extra passes to

detect those values of your DSL that are illegal. Furthermore, you are not tied to using

only one DSL at once; you can embed several of them in your application. The main

disadvantage is that you’re limited by the host language. In particular, the internals of

your DSL may be exposed in the case of an error. Haskell has several features that make it

a good host language for embedded DSLs.

•	 Its powerful type system allows you to express invariants that valid

values in your DSL must satisfy. This means the extra safety Haskell

provides is also in your language.

•	 Haskell syntax is terse, so it doesn’t introduce many strange symbols

in your DSL. Using operators and the mixfix application, you can

make the values in your new language resemble a natural language

description.

•	 Type classes, especially applicatives, monads, and do notation,

provide a convenient framework for expressing the abstractions that

are part of a DSL. This means Haskell developers can use a well-

known notation for many concepts.

Many of the libraries I’ve talked about in this book are actually embedded DSLs:

parser combinators like attoparsec for describing grammars only need to use special

functions, a query language such as Esqueleto uses a combination of type classes and

custom data types, and digestive-functors expresses forms using applicative style and

a set of basic ways to treat a form value. As you can see, the features of Haskell are used

differently by each DSL, depending on how convenient the features are.

Chapter 13 Strong Types for Describing Offers

444

There are two main trends in how embedded DSLs express their behavior in Haskell.

A shallow embedding encodes the values in your language directly by their meaning

inside Haskell (this meaning is called the language’s interpretation). For example, say

you create a DSL for stack operations; its shallow embedding would represent each

operation with a Haskell function, as this code shows:

pop :: [a] -> [a]

pop (x:xs) = xs

pop _ = error "empty stack"

push :: a -> [a] -> [a]

push x xs = x:xs

-- A value in our language: its interpretation directly works on a stack

v :: [Int] -> [Int]

v = push 1 . pop . pop . push 2

A deep embedding separates the use of the language into two parts. First, you create

a representation of the value in your language as a syntax tree, using Haskell data types.

The previous example would be deeply embedded as follows:

data StackOps a = Pop (StackOps a) | Push a (StackOps a) | End

-- The same value represented as a syntax tree

v :: StackOps Int

v = Push 1 $ Pop $ Pop $ Push 2 $ End

Next, you give an interpretation of the syntax tree that converts it to its meaning

inside Haskell. The advantage is that now you can add some extra optimizations as you

go; for example, Pop after Push is like performing no operation at all.

interpret :: StackOps a -> [a] -> [a]

interpret (Pop (Push _ ops)) stack = interpret ops stack

interpret (Pop ops) stack = tail $ interpret ops stack

interpret (Push e ops) stack = e : interpret ops stack

interpret End stack = stack

You’ve seen the two advantages of using deep instead of shallow embedding. First,

you can give more than one interpretation; that is, you can treat the values of your

embedded DSL in different ways depending on the situation. Additionally, you can

Chapter 13 Strong Types for Describing Offers

445

inspect the syntax tree before creating the meaning and implementing optimizations or

statistics about your value.

In this chapter, I will show how to design a deep embedding of the offers language

inside Haskell. The next chapter will explain a conceptual tool, attribute grammars, and

a concrete implementation of those ideas, UUAGC, which help you express the behavior

of one of the offers applied to a basket of products.

�The Offers Language
Let’s create a DSL for expressing the offers in the Time Machine Store. In addition to

empowering managers to directly encode the offers for your application (so you don’t

need to manually implement them each time), implementing the language will be a

good way to learn more Haskell. You don’t need a big language for the second objective,

so I will keep the core DSL small. As a general guide, you should always try to make

your DSL as small as possible because it is easier to work with a small core. For complex

needs, you can write functions that generate compound expressions out of the simple

language you have created.

The first things the Offers language needs to provide are the basic offers that the

Store may use. In this case, you have three of them: giving something as a present,

discounting some percentage of the price, and discounting some absolute value from

the price. From these basic offers you will be able to generate values in the DSL by

combining offers and extra pieces of data. In this case, the combinations can be split into

three groups.

	 1.	 The language may restrict the offer to be valid only on a set of

products.

	 2.	 By default, all the offers are valid for an indefinite period of time.

The language will provide ways to constrain the starting and

ending dates of the offer to extend the offer for a longer time.

	 3.	 The language will allow you to make an offer be the union of

two offers (e.g., give a free balloon and a 10 percent discount),

be just the best out of two (e.g., either give a 10 percent or give

a $5 discount), or be conditional upon satisfying some property

in the purchase (such as applying an offer only when the client

purchases more than $100 worth of products).

Chapter 13 Strong Types for Describing Offers

446

From this description, the data declaration for the syntax tree is straightforward to

obtain.

data Offer a = Present a

 | PercentDiscount Float

 | AbsoluteDiscount Float

 | Restrict [a] (Offer a)

 -- product restriction (1)

 | From Integer (Offer a)

 -- time restriction (2)

 | Until Integer (Offer a)

 | Extend Integer (Offer a)

 | Both (Offer a) (Offer a)

 -- offer combinators (3)

 | BetterOf (Offer a) (Offer a)

 | If (Expr a) (Offer a) (Offer a)

 deriving Show

In some cases when using conditional expressions, you may need to express that

no offer is given if some condition is not satisfied. For those cases, you would need a

“no offer” value. One approach would be to include an extra constructor in the data type.

However, you can see that an absolute discount of $0 is equivalent to no offer. Thus,

you can keep the core as is and define this offer in terms of the others.

noOffer :: Offer a

noOffer = AbsoluteDiscount 0

The missing part from the code of that the Offer type is the declaration of the

Expr data type that will encode the expressions that may appear as conditions over

the purchase. This should include the amount and prices of several of the items in the

shopping basket, comparisons between those quantities, and Boolean combinations

of conditions (and, or, and not). Notice in the following code how you need to lift basic

integer and floating-point values into the language via the IVal and FVal constructors:

Chapter 13 Strong Types for Describing Offers

447

data Expr a

 = AmountOf a | PriceOf a

 -- information about the cart

 | TotalNumberProducts | TotalPrice

 -- lifting numerical values

 | IVal Integer | FVal Float

 -- arithmetic

 | (Expr a) :+: (Expr a) | (Expr a) :*: (Expr a)

 -- comparison

 | (Expr a) :<: (Expr a) | (Expr a) :<=: (Expr a)

 | (Expr a) :>: (Expr a) | (Expr a) :>=: (Expr a)

 -- boolean operations

 | (Expr a) :&&: (Expr a) | (Expr a) :||: (Expr a) | Not (Expr a)

 deriving Show

For example, let’s express the offer “for the next 30 days, you will get the best of these

two details: either getting a discount of $10 off your final bill and getting a balloon as a

present or, if you buy more than $100 of products, a 5 percent discount.” The value for

this offer is as follows:

v :: Offer String

v = Until 30 $ BetterOf (AbsoluteDiscount 10.0)

 (Both (Present "balloon")

 (If (TotalPrice :>: IVal 100)

 (PercentDiscount 5.0)

 noOffer))

These data types are the core of our DSL. But as Exercise 13-1 shows, you can

add some helper functions to make it easier to describe offers that follow the same

pattern often.

Chapter 13 Strong Types for Describing Offers

448

EXERCISE 13-1. OFFER PATTERNS

You’ve seen how noOffer could be defined in terms of more basic constructors, keeping the

core language simple. Following the same idea, write definitions for the following patterns of

offers:

•	 period f d o will constrain the offer o for the following d days starting from

day f. Remember that From and Until have as arguments specific points in

time, not lengths.

•	 allOf os should be the conjunction with all the offers in the list os.

Then, express the following offer: “From the third day and for five days hence, you will get a

free balloon, a free chocolate muffin, and a 10 percent discount in the Time Machine Store.”

Check whether your expression corresponds to the correct offer expressed using the core DSL.

In addition to constraining the kind of basic offers that you can express, there are two

further requirements that all values in your DSL must satisfy. The first one is the Presents

Rule: at some time during the year, the number of presents that will be given for free with

a purchase is limited. Thus, the system should check that constraint. The second one is

the Duration Rule: you don’t want to allow offers if they violate a time restriction. You’ll

learn how to enforce these two rules in the language later in this chapter.

�Adding Safety to the Expression Language
I emphasized in the introduction to the chapter that Haskell’s strong type system

helps you to forbid incorrect values in your DSL. In the first implementation I showed

previously, you can create such incorrect values without much problem. Take the

following example, which creates an Expr value by taking the disjunction of the price

and some other expression. But a price alone is not a Boolean value, so you wouldn’t be

able to give any meaning to it.

incorrectExpression :: Expr Char

incorrectExpression = TotalPrice :||: (TotalNumberProducts :<: PriceOf 'a')

The remedy, which is common to all the examples, is to add a tag to the types

involved in the DSL and constrain the ways in which the values of different types can be

combined between them.

Chapter 13 Strong Types for Describing Offers

449

•	 Amounts, prices of items, and constant values (those created through

the FVal or IVal constructors) should be tagged as numbers.

•	 Comparisons will take as arguments only values tagged as numbers

and will produce a value tagged as a Boolean.

•	 Boolean operators will combine only those expressions tagged as

Booleans.

•	 The final expression in an offer must be tagged as a Boolean.

The perfect way to add this tag to expressions is by adding a new type parameter to

the Expr data type. In that case, Expr a t will be an expression over products of type a

tagged with type t. Now, if each combinator that makes up an expression is a regular

function instead of a constructor, you could enforce the constraints by restricting the

signature of the function. Here’s an example, but You would have a similar function for

each combinator:

(:||:) :: Expr a Bool -> Expr a Bool -> Expr a Bool

The problem is that plain data declarations do not allow you to return different types

depending on the constructor of a value. All constructors uniformly construct values of

the type expressed after the data keyword. Generalized algebraic data types (GADTs) lift

that restriction; now each of the constructors of the data type can return a different set of

type parameters to the type being defined. That is, in the definition of Expr a t, you can

return Expr a Bool, Expr Int Int, and so on, but not Offer Char.

The syntax starts with the same keyword, data, followed by the name and type

variables of the type to define. But instead of equal signs, you need to write where and list

the constructors via its signatures. Your expression data type written as a GADT becomes

the following:

{-# LANGUAGE GADTs #-}

data Expr a r where

 AmountOf :: a -> Expr a Integer

 PriceOf :: a -> Expr a Float

 TotalNumberProducts :: Expr a Integer

 TotalPrice :: Expr a Float

 IVal :: Integer -> Expr a Integer

 FVal :: Float -> Expr a Float

Chapter 13 Strong Types for Describing Offers

450

 (:+:) :: Num n => Expr a n -> Expr a n -> Expr a n

 (:*:) :: Num n => Expr a n -> Expr a n -> Expr a n

 (:<:) :: Num n => Expr a n -> Expr a n -> Expr a Bool

 (:<=:) :: Num n => Expr a n -> Expr a n -> Expr a Bool

 (:>:) :: Num n => Expr a n -> Expr a n -> Expr a Bool

 (:>=:) :: Num n => Expr a n -> Expr a n -> Expr a Bool

 (:&&:) :: Expr a Bool -> Expr a Bool -> Expr a Bool

 (:||:) :: Expr a Bool -> Expr a Bool -> Expr a Bool

 Not :: Expr a Bool -> Expr a Bool

Since the arithmetic and comparison operators need to work on both Integer and

Float values, we cannot use a type there directly. Instead, we use a Num constraint, since

both types are instances of that type class.

Now if you try to build some code with the incorrect expression that started this

section, you will get a compile error because the expression will not type check. This is

the first example of using the strong type system to constrain the kind of values that the

DSL can express.

GADTs solve another problem that will appear in one way or another later.

Suppose you want to interpret one expression using the original Expr data type. This

interpretation will be a function that, given a list of products as (name, price) pairs,

returns the result of applying the expression to it. Since the result of the expression can

be either an Integer, a Float, or a Bool, you need a sum type as a return value. Here’s a

small excerpt of the interpretation for the (:||:) case; notice how you need to take care

of type mismatches explicitly in the code:

data ExprR = EInt Integer | EFloat Float | EBool Bool

interpretExpr :: Expr a -> [(a,Float)] -> ExprR

interpretExpr (e1 :||: e2) list =

 case (interpretExpr e1 list, interpretExpr e2 list) of

 (EBool b1, EBool b2) -> EBool (b1 || b2)

 _ -> error "type error"

interpretExpr ... = ...

But if you use your GADT, you no longer need to create a special data type for the

return value of the expression because the resulting value can depend on the tag in

the Expr type. This gives you a new way of achieving polymorphism. Before, you could

Chapter 13 Strong Types for Describing Offers

451

return a value of a subpart of your input type, and now, thanks to GADTs, that type

doesn’t have to be uniform over all constructors, thus making the function return values

from different types. Check how this is the case in the interpretation function for the

(:||:) and (:+:) cases, as shown here:

interpretExpr :: Eq a => Expr a t -> [(a,Float)] -> t

interpretExpr (e1 :+: e2) list

 = interpretExpr e1 list + interpretExpr e2 list

interpretExpr (e1 :||: e2) list

 = interpretExpr e1 list || interpretExpr e2 list

interpretExpr ... = ...

This interpretation function still needs some love. Exercise 13-2 asks you to complete

the work.

EXERCISE 13-2. COMPLETE INTERPRETATION FOR EXPRESSIONS

Write the missing code of the interpretExpr function for the cases of Expr being defined

by a regular ADT and by a GADT. In the case of PriceOf, you should take into account that

the same product may appear more than once in the purchase list.

Even though here you’re tagging types using built-in types from the Prelude module,

nothing stops you from using any other type here. Actually, it may be the case that you

create new data types only for tagging other types. In that case, you don’t even need any

constructors in the declaration since you will never use them. You can create empty data

declarations if you enable the EmptyDataDecls extension.

I’ll show an example of how this could be useful. In the Time Machine Store there

will be many users. But not all of them will have the same role in the store; some will be

administrators or store managers (who are able to change everything), some will be store

people (who are allowed only to update products in the database), and some will be

regular users (who are the ones making the purchases). You can tag the level of access to

the store using a set of empty data types.

{-# LANGUAGE EmptyDataDecls, GADTs #-}

data AllowEverything

data AllowProducts

Chapter 13 Strong Types for Describing Offers

452

data AllowPurchases

data Person = Person :: { firstName :: String, lastName :: String }

data User r where

 Admin :: Person -> User AllowEverything

 StoreManager :: Person -> User AllowEverything

 StorePerson :: Person -> User AllowProducts

 Client :: Person -> User AllowPurchases

Now a function that should be called only by people with access to everything can be

defined to require the value tagged with the correct type.

changePurchaseFinalPrice

 :: User AllowEverything -> Purchase -> Float -> Purchase

changePurchaseFinalPrice = ...

Time traveling is a tiresome task, so users of your time machines need to eat snacks

from time to time. However, people have constraints on the food they can take, such

as vegetarian, no pork, low salt, and so on. Exercise 13-3 asks you to build a GADT that

represents those snacks tagged with constraints.

EXERCISE 13-3. SNACKS FOR TIME TRAVELLERS

Create a GADT representing a set of possible snacks for the Time Machine Store. The snacks

must be tagged with a type defining whether it’s OK for vegetarians and whether it contains

pork. Use empty data types as shown in this section.

�Type-Level Programming
It seems that this idea of tagging types with extra information is quite successful, at least

for expressions. However, the way in which you can do it is quite limited because you can

use only other types and only as constants or variables that you don’t inspect.

One way to have a more powerful type system is by allowing values, in addition to

types, to take part in other types. For example, you might be interested in tagging lists

with their length and expressing things such as “the length of append l1 l2 is the sum

of the lengths of l1 and l2.” As you can see, in this case, the tag is not another type, but

Chapter 13 Strong Types for Describing Offers

453

rather a number (or a value in the world of Haskell). Dependent type systems open the

last barrier that Haskell imposes between values and types and allow you to create types

depending on values, as the list tagged with its length that was being discussed.

Haskell is not a dependently typed language, though; it imposes a clear separation

between the world of terms or expressions and the world of types. In Haskell, values

are only allowed to depend on other values (via regular function parameters) or on

types (via parametric or ad hoc polymorphism), whereas types are allowed to depend

only on other types (via type variables). On the other hand, it’s forbidden to use terms

as parameters to types. When working with GADTs, you used some empty data types

as tags. This approach mimics partly dependent typing but allows tagging only with

constant values, not performing any operation on the types. The rest of the chapter is

devoted to showing different ways in which you could describe operations that work on

types. All these methods are known collectively as type-level programming techniques.

DEPENDENTLY TYPED LANGUAGES

Dependent typing is an extensive area of knowledge. It is expected that Haskell gets more

and more of these features as time progresses. If you want to learn more about dependent

types, you can read Type-Drive Development in Idris, Programming in Idris: A Tutorial both by

Edwin Brady,1 “Dependently Typed Programming in Agda” by Ulf Norell and James Chapman,2

Certified Programming with Dependent Types by Adam Chlipala,3 or Software Foundations by

Benjamin C. Pierce et al.4 (the latter two using Coq).

The programming techniques that will be presented in the rest of the chapter

are usually categorized as advanced Haskell features. You don’t need to understand

every detail of functional dependencies and type families to be a proficient Haskell

1�Available at the Idris web site, www.idris-lang.org/documentation/.
2�Available at the Agda web site, http://wiki.portal.chalmers.se/agda/.
3�Available at http://adam.chlipala.net/cpdt/.
4�Available at www.cis.upenn.edu/~bcpierce/sf/.

Chapter 13 Strong Types for Describing Offers

http://www.idris-lang.org/documentation/
http://wiki.portal.chalmers.se/agda/
http://adam.chlipala.net/cpdt/
http://www.cis.upenn.edu/~bcpierce/sf/

454

programmer. Indeed, these features are recent additions to the Haskell language, so their

use is not widespread yet.

However, type-level programming is becoming an increasingly important technique.

More recent libraries, such as Persistent and Yesod, make heavy use of them. Even

though you may skip some of this material in a first reading, you should come back

to it in the future. It will help you understand many of the error messages and design

decisions of those libraries, and it will also help you build better applications.

�Two Styles of Programming
Type-level programming in Haskell generates many of its ideas from enhancements in

ad hoc polymorphism. There are two different ways you can simulate parts of dependent

typing in Haskell.

•	 Functional dependencies (FDs) allow you to constrain the parameters

of type classes. Given the correct constraints, the Haskell compiler

can infer a unique type, which can be seen as the result of a type-level

function.

•	 Type families (TFs) let you create functions that assign a type given a

set of other types. Recent versions of GHC include two kinds of type

families. Closed type families are the closest to the intuitive notion of

type function, and open type families are like type classes in the sense

that you may add a new rule to an open type family at any point, like

you may add an instance to a type class.

Both ways are equally powerful, so in principle it doesn’t matter which one you

choose to encode your invariants. However, in some cases it’s easier to use FDs and in

other cases it’s better to use TFs. As a rule of thumb, start using TFs (because the type-

level concepts they expose are closer to the simple Haskell level) and use FDs if you need

more expressiveness in the relations between types.

Chapter 13 Strong Types for Describing Offers

455

Caution A lthough they have the same power, mixing FDs and TFs in the same
code can become challenging. Thus, if you depend on a library that exposes FDs or
TFs, you should use the same technique to avoid further problems. The situation,
however, may improve in newer versions of the GHC compiler.

�Representing Natural Numbers
Since the tags that will be used to check the Presents Rule are natural numbers, you must

know how they are encoded as values previous to using FDs or TFs to represent them

at the type level. This section tries to give a fast-paced introduction to natural numbers.

Feel free to skip it if you already know the standard data type for natural numbers and

how addition, maximum, and minimum are coded using them.

The most common way to represent natural numbers as a data type is based on the

axioms stated by the 19th-century mathematician Giuseppe Peano. In particular, he gave

two rules for constructing numbers.

•	 Zero is a natural number.

•	 For every natural number n, there exists a successor of n, which is also

a natural number.

You can encode those axioms in a Haskell data declaration like so:

data Number = Zero | Succ Number deriving Show

The number 1, for example, is the successor of 0; the number 2 is the successor of 1;

and so on.

one :: Number

one = Succ Zero

two :: Number

two = Succ one -- Succ (Succ Zero)

Chapter 13 Strong Types for Describing Offers

456

Note Y ou can think of this encoding of natural numbers as lists in which you
don’t care about elements. Then, addition would be concatenation of lists, taking
the minimum would be returning the list with the smallest number of elements,
and so on.

Now let’s move to the operations. The first one you will need to use is addition. Like

with most Haskell data types, the best way to design a function over Number is to handle

each constructor and use recursion for nested values. In this case, you have two different

constructors.

•	 If you add 0 to any natural number y, the result is y.

•	 If you add the successor of x to y, this is equal to the successor of the

addition of x and y. Since the successor is equivalent to (+1), you can

see this as encoding the algebraic law that reads (x + 1) + y = (x + y) + 1.

In Haskell syntax, the branches of the plus' function are written as follows:

plus' :: Number -> Number -> Number

plus' Zero y = y

plus' (Succ x) y = Succ (plus' x y)

You can test whether the function works correctly by summing up 1 and 2, for

example.

*Chapter13.Numbers> plus' one two

Succ (Succ (Succ Zero))

The result is the number 3 represented in this way, as you can see in the output.

For the maximum, there are also two cases to consider. First, any of the numbers can

be 0, in which case you know for sure that the other number is greater or equal than 0.

The other case is when both numbers are successors, for example, x + 1 and y + 1. In this

case, the maximum can be computed by recursively computing the maximum of x and y

and then adding 1.

max' :: Number -> Number -> Number

max' Zero y = y

max' x Zero = x

max' (Succ x) (Succ y) = Succ (max' x y)

Chapter 13 Strong Types for Describing Offers

457

The minimum function has a similar skeleton. Exercise 13-4 asks you to write the full

code.

EXERCISE 13-4. MINIMUM OF NATURAL NUMBERS

Write a function min' of type Number -> Number -> Number that computes the minimum

value of the two natural numbers given as arguments.

�Functional Dependencies
As stated in the previous section, functional dependencies represent one of the ways in

which you can encode type-level operations in Haskell. However, the original intention

of FDs was to enhance the type class mechanism by constraining the set of types that can

be related via a multiparameter type class. In this section, I’ll start looking at this original

aim and then move on to encoding the Presents Rule via FDs.

�Categories of Products with FDs
Let’s diverge for a moment from the offers language and focus on a completely different

problem. Until now, all the products in the Time Machine Store were represented using

the same data type, Product. However, the information for describing a time machine is

not the same as that needed to describe a book or a costume. Thus, it may be interesting

to make Product a type class and make data types represent different categories of

products.

In addition to different fields to describe them, you use different products in different

ways. For example, you travel with a time machine, but you read a book. It would be

interesting to specify, for each category of products, which operations are available to

perform upon them. Then, you could include specific instructions on how to perform

each operation and a specification of which operation should be used to test the

product.

Chapter 13 Strong Types for Describing Offers

458

From this discussion, the task is to create a Product type class with two parameters,

one defining the category of products and the other one the operations that the category

supports. The following code includes as operations the price of a product and the

operation functions discussed earlier:

class Product p op where

 price :: p -> Float

 perform :: p -> op -> String

 testOperation :: p -> op

Note R emember that you need to enable the MultiParamTypeClasses
extension for GHC to accept this code.

Given a simple data type for representing time machines and their operations,

writing its instance declaration is straightforward. The following code shows a possible

way in which you could do this:

data TimeMachine = TimeMachine { model :: String }

 deriving Show

data TimeMachineOps = Travel Integer | Park deriving Show

instance Product TimeMachine TimeMachineOps where

 price _ = 1000.0

 perform (TimeMachine m) (Travel y)

 = "Travelling to " ++ show y ++ " with " ++ m

 perform (TimeMachine m) Park

 = "Parking time machine " ++ m

 testOperation _ = Travel 0

Of course, the main aim for creating a type class is to write a function that works on

any kind of Product. For example, a function could get the total price of a list of products

of the same category, and another one performs the test operation on a concrete

product. The definitions are as follows:

totalAmount :: Product p op => [p] -> Float

totalAmount = foldr (+) 0.0 . map price

Chapter 13 Strong Types for Describing Offers

459

performTest :: Product p op => p -> String

performTest p = perform p $ testOperation p

The problem is that this code will not compile. Instead, you will get several errors

similar to the following:

src/Chapter13/CategoriesFnDeps.hs:

 Could not deduce (Product p op0) arising from a use of `price'

 from the context (Product p op)

 bound by the type signature for

 totalAmount :: Product p op => [p] -> Float

 at src/Chapter13/CategoriesFnDeps.hs:

 The type variable `op0' is ambiguous

 Possible fix: add a type signature that fixes these type variable(s)

 Note: there is a potential instance available:

 instance Product TimeMachine TimeMachineOps

 -- Defined at src/Chapter13/CategoriesFnDeps.hs:18:10

The error message tells you that there’s not enough information to infer which

operation type corresponds to each product category. But the intent of the code is clear.

For TimeMachine, the corresponding operation type is TimeMachineOps, and only that

one. Somehow, the compiler should infer that when you’re using a TimeMachine, the

operations will always belong to TimeMachineOps.

The problem is that the type class declaration, as it stands, does not declare this

intention in any way. Any two types p and op could be related via Product. For example,

you can add an instance that uses TimeMachine as the category, but book operations are

as follows:

data Book = Book { title :: String, author :: String, rating :: Integer }

 deriving Show

data BookOps = Read | Highlight | WriteCritique deriving Show

instance Product TimeMachine BookOps where

 price _ = 500.0

 perform _ _ = "What?!"

 testOperation _ = Read -- ??

Chapter 13 Strong Types for Describing Offers

460

The compiler won’t complain because the code is perfectly fine. But now you can

see why the definitions of totalAmount or testOperation were ambiguous. Potentially

there is another instance where a declaration different from Product TimeMachine

TimeMachineOps may be applicable.

The solution is to add a constraint to the type class declaration that exactly expresses

that given a specific category of products, only one possibility is available for the set of

operations. This is done via a functional dependency, a concept from database theory

that describes exactly these scenarios. Functional dependencies are written in the head

of the class declaration, separated from the name and type variables by the | sign, and

with commas between each of them. Each functional dependency, in turn, follows the

same schema, x1 ... xn -> y1 ... ym, expressing that for each unique substitution of the

types x1 to xn, there’s only one possible compound value of y1 to ym. Note that you need

to enable the FunctionalDependencies extension to use this syntax in your own type

classes.

In this case, categories constrain the operations, so the functional dependency to

add is p -> op. The refined head of the definition of the type class should be changed to

the following:

class Product p op | p -> op where

Once you do this, the compiler will complain about two different Product instances

given for a TimeMachine.

src/Chapter13/CategoriesFnDeps.hs:

 Functional dependencies conflict between instance declarations:

 instance Product TimeMachine TimeMachineOps

 -- Defined at src/Chapter13/CategoriesFnDeps.hs

 instance Product TimeMachine BookOps

 -- Defined at src/Chapter13/CategoriesFnDeps.hs

Now the compiler allows the definition of totalPrice and performTest because

it knows that given a category for products, only one possible set of operations will be

available, so it can select them.

Functional dependencies are helpful once you understand when they are needed

in a type class declaration. The “Functional Dependencies in Monad Classes” sidebar

describes their use in monad classes. Then Exercise 13-5 proposes a task for helping you

understand these ideas.

Chapter 13 Strong Types for Describing Offers

461

FUNCTIONAL DEPENDENCIES IN MONAD CLASSES

When the type classes supporting the lifting of the basic operation in each monad transformer

(MonadState, MonadReader, MonadWriter, etc.) were discussed in Chapter 7, functional

dependencies appeared in the class declarations but weren’t explained.

The crux of a type class such as MonadState is that it declares both the monad that performs

the operations and the type of elements saved in the state because they are both needed in

the signatures of some operations. The functional dependency states that given a specific

monad, the type of the state values is automatically known. Think of the State Int monad,

for example. From its signature you already know that only Int can be the type of elements

saved in the state.

EXERCISE 13-5. PRODUCTS AND BAGS

In the store two kinds of bags are available: big and small. Create new data types called

BigBag and SmallBag for representing each kind of bag. Then, add a new parameter to the

Product type class for stating which bag you should use for each category of products. In

principle, time machines should go on big bags, whereas books need only small ones. Think

carefully about extra functional dependencies.

�Vectors Using FDs
At first sight, it seems that functional dependencies have nothing to do with type-level

operations in Haskell. However, a second look will show how you can encode type-level

functions in this way.

To begin with, let’s create the representation of natural numbers at type level. Once

again, the best way is to use empty data types. For each constructor in the original

declaration, an empty data type is needed. In the case of numbers, two of them will be

used: one for representing the zero tag and one for successors.

{-# LANGUAGE EmptyDataDecls #-}

data Zero

data Succ n

Chapter 13 Strong Types for Describing Offers

462

Caution N otice that in almost every example in this section the code will
use more and more GHC extensions. These will be shown using the LANGUAGE
pragma. Most of the extensions are needed only for enabling certain syntactic
constructs, and the compiler will tell you to enable them if you forget, so you don’t
need to worry too much about them.

With only the data types just given, you can represent lists tagged with their length.

Following the usual convention in dependently typed languages, lists tagged with

numbers will be called Vects.

{-# LANGUAGE GADTs #-}

data Vect n a where

 VNil :: Vect Zero a

 VCons :: a -> Vect n a -> Vect (Succ n) a

To check that our vectors record their length correctly, let’s ask the interpreter for the

type of a list having three elements:

*Chapter12.VecFnDeps> :t VCons 'a' (VCons 'b' (VCons 'c' VNil))

VCons 'a' (VCons 'b' (VCons 'c' VNil))

 :: Vect (Succ (Succ (Succ Zero))) Char

You can see that the first argument of Vect is the representation of the number 3

using the Peano encoding. An immediate use for this additional information is to create

a completely type-safe head which only works with vectors of at least one element:

headVect :: Vect (Succ n) a -> a

headVect (VCons x _) = x

In fact, if you try to pattern match with VNil, the compiler rejects such declaration,

because an empty vector cannot have a length of the form (Succ n).

Now it’s time to use the type class system in your favor. Each type-level operation

will be encoded as a type class that will have as variables the input arguments to the

type-level operation and an extra one that represents the result of the operation. For

example, class Plus x y z represents “the result of the addition of x and y is z,” or in

other terms x + y = z. But in order to be a function, you must explicitly say that for any

pair of values x and y there’s only one possible result z. Specifying that is a perfect job

Chapter 13 Strong Types for Describing Offers

463

for a functional dependency. Thus, the entire type class declaration representing type-

level addition is as follows:

{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies #-}

class Plus x y z | x y -> z

Note  Since the Plus type class is used only for its results at type level, it’s not
necessary to include any function in its body. In that case, Haskell allows you to
omit the where keyword from the declaration.

The type class declaration is just describing the number of arguments to the type-

level function. For expressing the rules that make the operation, you need to write

different instances. Usually these instances correspond to each of the cases in a

function definition. Let’s see how they look for addition.

{-# LANGUAGE FlexibleInstances, UndecidableInstances #-}

instance Plus Zero x x

instance Plus x y z => Plus (Succ x) y (Succ z)

This is expressing the same logic for Peano addition but in a backward style of

reasoning. The first instance encodes the rule of adding 0 to a number, whose result is

the same as the second argument. The second rule is a bit subtler; it’s expressing that if

you know that x + y = z, you can infer the addition (x + 1) + y, which will be exactly

z + 1. In some sense, the declaration is reversing the way in which you write the pattern

matching on the arguments and handling the recursion via a call to a smaller instance.

To understand how this encoding works, Exercise 13-6 asks you to define binary tree

tagged with height, in a similar fashion to vectors.

EXERCISE 13-6. BINARY TREES TAGGED WITH HEIGHT

Create a BinaryTree data type with two constructors: Leafs, which contain only one

element, and Nodes, which contain an element and two subtrees. The type must be tagged

with the height of the tree. Hint: implement the max' function for Peano numbers using a type

class Max and functional dependencies.

Chapter 13 Strong Types for Describing Offers

464

�Enforcing the Presents Rule with FDs
The next step is to use these new data types and type class inside the declaration

of Offer. The first step is adding a variable to the type. We shall use this additional

argument to tag the offer with the maximum number of presents inside it.

data Offer a p where

The basic constructor Present should reflect that one present is given with it. On the

other hand, neither a percentage discount nor an absolute discount adds any present to

the offer, so their tags should be zero. Remember that instead of plain numbers you need

to use Peano numerals.

 Present :: a -> Offer a (Succ Zero)

 PercentDiscount :: Float -> Offer a Zero

 AbsoluteDiscount :: Float -> Offer a Zero

The combination of several offers is straightforward: when two offers are applied at

the same time, you get the presents of both.

 Both :: Plus p q r => Offer a p -> Offer a q -> Offer a r

As you can see, the code includes a context with the Plus type class. This is

expressing that if p + q = r, then the union of an offer with p presents and another one

with q presents is an offer with r presents. If you check in the interpreter for the type of a

test present, the compiler will follow the rules for the Plus type class to get a final type.

Here’s one example of its output:

*> :t let p = Present 'a' in Both p (BetterOf p (Both p p))

let p = Present 'a' in Both p (BetterOf p (Both p p))

 :: Offer Char (Succ (Succ (Succ (Succ Zero))))

The other combinator for offers is BetterOf. Since you don’t know in advance which

of the branches will be taken, you cannot compute the exact amount of presents for that

offer. But you can still get some bounds: you always get at most the larger amount from

any of the two suboffers. Here we use the Max type class you have been asked to define in

Exercise 13-6.

BetterOf :: Max p q r => Offer a p -> Offer a q -> Offer a r

Chapter 13 Strong Types for Describing Offers

465

Another interesting constructor is the restriction one, which should take the

minimum between the number of elements in a list and the number of presents. Let’s

again follow the same steps to use functional dependencies for encoding this type-level

operation. Declare the type class with an extra argument for the result and specify that

the last argument functionally depends on all the rest.

class Min x y z | x y -> z

For each rule in the function definition, you must include an instance declaration.

Remember that the style of programming must be backward; in other words, you must

specify the recurring conditions before the full result.

instance Min Zero y Zero

instance Min (Succ x) Zero Zero

instance Min x y z => Min (Succ x) (Succ y) (Succ z)

The final part is to use the type class in the declaration of the constructor. Since we

need to know the number of elements in the list, we change from using a simple list [a]

to a list tagged with its length Vect n a. Furthermore, we restrict ourselves to nonempty

lists.

{-# LANGUAGE FlexibleContexts #-}

 Restrict :: Min (Succ n) p r => Vect (Succ n) a -> Offer a p -> Offer a r

There are still some constructors left for the full offers language. Exercise 13-7 asks

you to write the rest of them, encoding the type-level functions needed as functional

dependencies.

EXERCISE 13-7. OFFERS WITH FUNCTIONAL DEPENDENCIES

Include the constructors for the remaining offers language: From, Until, Extend, and If.

Write them following the same technique from this section. In the case of conditionals, the

same considerations as BetterOf should be taken: you cannot always compute the exact

value, but you can approximate it.

Chapter 13 Strong Types for Describing Offers

466

A LOGIC TYPE-LEVEL LANGUAGE

If you’ve ever used a logic programming language, such as Prolog or Datalog, you may

find some resemblance between the way you encode type-level functions using instance

declarations and the way you write predicates on these languages. This relation is indeed true:

programming with functional dependencies exposes a logic programming style in a Haskell

type system.

This extra paradigm brought into Haskell is the main criticism with functional dependencies.

The programmer should not change programming styles when moving from term-level to

type-level coding. Type families, as you will see later, have a more functional style in their

declaration.

�Type Families
You’ve already seen how functional dependencies can empower you to construct

a stronger type system. This section will show you how to express the same kind of

invariants but using the language of type families (TFs). In short, a type family is a

function at the type level. It gives you a type given some other types as parameters, but in

an ad hoc way and in contrast to parametric polymorphism. The type family may appear

in the top level of your module or inside a type class. You will see the purpose of each of

them in this section.

�Vectors Using TFs
The definition of a type family is usually quite simple given a corresponding definition at

the term level. In the example you’ve been dealing with, the first type-level function that

you need is addition, so I will show you that one first. The same data types that were used

for encoding natural numbers earlier with FDs will be used with type families.

{-# LANGUAGE EmptyDataDecls #-}

data Zero

data Succ n

Chapter 13 Strong Types for Describing Offers

467

The Vect data type will also be reused.

{-# LANGUAGE GADTs #-}

data Vect n a where

 VNil :: Vect Zero a

 VCons :: a -> Vect n a -> Vect (Succ n) a

A TF starts with the type family keywords, followed by the declaration of its name

and arguments and the where keyword. This first line defines the signature of the type-

level function. After the signature, the type family is defined using pattern matching

on its arguments. There are two small syntactic differences between TFs and regular

functions. Whereas term-level functions must start with a lowercase letter, type family

names must start with an uppercase one. In this case, the code will refer to addition

at the type level with the name Plus. The other difference is that all the rules for a TF

must be indented, in contrast to regular functions where rules appeared at the same

indentation level of signatures. This is the definition of addition using TFs:

{-# LANGUAGE TypeFamilies #-}

type family Plus x y where

 Plus Zero x = x

 Plus (Succ x) y = Succ (Plus x y)

As you can see, the type instances completely mimic the definition of the (+)

function on regular, term-level, natural numbers. This similarity makes it easier to port

code from term level to type level if you use type families.

One function which can be defined using Plus is the append of two vectors. If you

have a vector of length n and another of length m, the resulting vector has length n+m.

The compiler is able to check that fact in the following code:

append :: Vect x a -> Vect y a -> Vect (Plus x y) a

append VNil ys = ys

append (VCons x xs) ys = VCons x (append xs ys)

Caution T he previous code uses closed TFs, an extension available only since
version 7.8.1 of the GHC compiler. You can always use open TFs for maximum
backwards compatibility, which are described in the next section.

Chapter 13 Strong Types for Describing Offers

468

�Enforcing the Presents Rule with TFs
The next step is to use Plus inside the definition of the Offer data type. As in the case

of FDs, the basic constructors use the representation of the numbers 0 and 1 using the

Peano data type.

data Offer a p where

 Present :: a -> Offer a (Succ Zero)

 PercentDiscount :: Float -> Offer a Zero

 AbsoluteDiscount :: Float -> Offer a Zero

The place where the Plus TF is expected to be used is in the Both constructor. When

using TFs, you don’t need to use the type context part of the signature; you can just use

an applied TF in the place where a type is expected. For example, in this constructor

Plus p q is used in lieu of a type:

 Both :: Offer a p -> Offer a q -> Offer a (Plus p q)

To reinforce the steps you need to follow to use a TF for encoding a type-level

function, let’s use the same process for restriction. Looking at the previous sections,

you can see that in that case you need to define a type-level minimum function. The

following code does so with a TF Min:

type family Min x y where

 Min Zero y = Zero

 Min x Zero = Zero

 Min (Succ x) (Succ y) = Succ (Min x y)

The corresponding Restrict constructor is easily updated from FDs to TFs:

 Restrict :: Vect (Succ n) a -> Offer a p -> Offer a (Min (Succ n) p)

As in the previous case, it’s your task (in Exercise 13-8) to write the rest of the cases of

the data type.

Chapter 13 Strong Types for Describing Offers

469

EXERCISE 13-8. OFFERS WITH TYPE FAMILIES

Include the constructors for the rest of the offers language: From, Until, Extend, BetterOf,

and If. At this point, you’ll know that you’ll need a type-level function that encodes the

maximum of two natural numbers in the last two cases. Define it using type families.

�Categories of Products with TFs
The introduction to type-level programming in Haskell stated that functional

dependencies and type families had the same power of expressiveness. You’ve already

seen how both can encode type-level functions, but there’s still the question of how to

use type families to solve the problem with categories of products.

One possibility is to define a TF that assigns the type of operations to each type of

product. Following the instructions from the previous section, an Operation function

would resemble the following:

type family Operation x where

 Operation TimeMachine = TimeMachineOps

 Operation Book = BookOps

This is not a satisfactory solution, though. When you used a type class along with

an FD, you had the option of adding a new product along with its sets of operations at

any moment, via a new instance declaration. However, if you follow the approach I’ve

just shown, with the previous definition of a TF, you need to add both an instance to the

Product type class and a new equation to the Operation type family. This makes the type

class and the type family tightly coupled and thus less maintainable.

The problem in this case does not lie in the use of type families but rather in the fact

that the type family is defined as a closed one. GHC supports two kinds of type families.

The closed ones, which I’ve already introduced, cannot be enlarged with more rules after

its definition. In contrast, open type families define a partial function that can be refined

or enlarged in other parts of the code.

To define a type family as open, drop the final where keyword from its declaration.

type family Operation x

Chapter 13 Strong Types for Describing Offers

470

Each time you want to add a new rule to the type family, you have to include it after

the type instance keywords. For example, the previous two relations between products

and operations would read as follows:

type instance Operation TimeMachine = TimeMachineOps

type instance Operation Book = BookOps

Notice that in this case the instance declarations appear at the same level of the

signature, since they may be defined in completely different modules.

TYPE INSTANCES MUST NOT OVERLAP

There’s an important difference between closed and open type families. Closed type families follow

the usual evaluation model. The first rule is tried; if it doesn’t match, the second rule is tried, and so

on, until a match is ultimately found. This can be done because rules from a closed type family have

a defined order. However, rules from an open type family come from different, unrelated places and

have no order. If the compiler found that two patterns match, it wouldn’t be able to know which

choice to take. Thus, GHC forces type instance declarations to not overlap.

Take as an example the definition of the Min TF shown earlier. If the compiler had to compute

the result of Min Zero Zero, both the first and second rules would match. It knows that it

should use the first one because the TF is closed. But if you were to define Min as an open

TF (e.g., because your version of GHC is earlier than 7.8.1), you would need to refine the

declaration to make type instances not overlap. You could achieve it by making the second

rule fire only when the first argument is larger than zero.

 type instance Min Zero y = Zero

 type instance Min (Succ x) Zero = Zero

 type instance Min (Succ x) (Succ y) = Succ (Min x y)

Now each application of the open TF Min has one and only one rule to apply.

In many of the cases where functional dependencies are used, you want to create a

type-level function but also enforce each implementer of the type class to add a new rule

to that type-level function. Or from another point of view, you want to add a type-level

function inside the type class. When you enable the TypeFamilies extension, type class

declarations are allowed to contain both term-level and type-level function signatures,

as desired. The type-level signatures inside a type class are known as associated types.

Chapter 13 Strong Types for Describing Offers

471

Note R emember that types have a simple kind system (the only possible kinds
are * and function-like kinds such as * -> *) that checks whether the application
of type constructors is correct. If you don’t remember all the details, you can refer
to Part I of the book, where I introduced the kind system.

Let’s see how you would rework5 the Product type class to use associated types

instead of functional dependencies. If you remember the original definition, there was

a p variable representing the category of products and an op variable for the operations

for that category. The latter was functionally dependent on the former, so it’s a perfect

candidate for being changed into an associated type. Thus, the new code drops the op

parameter and adds a type-level function called Operation, as follows:

class Product p where

 type Operation p :: *

 price :: p -> Float

 perform :: p -> Operation p -> String

 testOperation :: p -> Operation p

As you can see, any appearance of op in the old declaration is now replaced

with Operation p, which gives back the type corresponding to the operations. An

implementation of Operation must also appear in every instantiation of the Product

type class, like the following one for TimeMachine:

instance Product TimeMachine where

 type Operation TimeMachine = TimeMachineOps

 price _ = 1000.0

 perform (TimeMachine m) (Travel y)

 = "Travelling to " ++ show y ++ " with " ++ m

 perform (TimeMachine m) Park

 = "Parking time machine " ++ m

 testOperation _ = Travel 0

5�The following code works on a different module from the Operation type family introduced
earlier. If you try to define Operation inside a type class at the same time of the Operation type
family, there will be a name collision, and the compiler won’t be able to continue.

Chapter 13 Strong Types for Describing Offers

472

Like in the previous section, the type of bag that each category of products needs

should be encoded at the type level. Exercise 13-9 asks you to do so, now using

associated types.

EXERCISE 13-9. PRODUCTS AND BAGS, REDUX

Using the previously defined data types BigBag and SmallBag, represent the kind of bag

each category of product needs. To do this, add a new associated type to the Product type

class. Finally, include the instances that express that time machines should go on big bags,

whereas books need only small ones.

For the simple scenario of one of the types being completely dependent on the rest of

the variables in the type class (like operations and bags in this section), associated types

usually make more explicit that only one possibility can be chosen in each instance.

However, functional dependencies shouldn’t be overlooked, because they allow richer

expression of dependence.

There’s one last addition to the type system brought by type families. Consider

the following function, performTestFromOther, which executes the test operation of a

product on a completely different product:

performTestFromOther p q = perform p $ testOperation q

The task now is to give a type signature that is as abstract as possible to allow the function

to be used in the largest variety of situations. A first approximation is to require p and q to be

of the same type, which should implement the Product type class. Indeed, if you try to add

the following type signature to the function, the compiler will accept the definition:

performTestFromOther :: Product p => p -> p -> String

But this signature is overly restrictive. You don’t need both arguments to have the

same type. The only thing you need is for them to support the same operations, that is,

for their Operation associated type to coincide. This kind of requisite can be expressed

in Haskell using an equality constraint x ~ y, which states that x and y must be

syntactically equal after all type families have been resolved. The most general constraint

for this case is then as follows:

performTestFromOther :: (Product p, Product q, Operation p ~ Operation q)

 => p -> q -> String

Chapter 13 Strong Types for Describing Offers

473

Actually, if you try to compile the code without giving an explicit type signature, GHC

will give you this more general type as a hint. You could directly copy that signature in

your code, removing the initial forall part that is implicit for every free variable in the

signature. Here’s an example:

Warning: Top-level binding with no type signature:

 performTestFromOther

 :: forall p p1.

 (Product p, Product p1, Operation p ~ Operation p1) =>

 p -> p1 -> String

Equality constraints are not often seen in handwritten code, but they are essential to

understanding GHC error messages. In most of the instances where the type families do

not coincide, the compiler will warn you about an equality constraint (one with ~) not

being respected.

DATA FAMILIES

Being completely correct, the previous sections didn’t introduce type families but a subclass

of them called type synonym families. When using this subclass, you need to use it in both

parameters and return expressions types that were already defined elsewhere.

There is another kind of TF, called a data family, where you directly list the constructors for

each instance of the family instead of using another type. For example, the Product type

class and its TimeMachine instance could also be defined as follows:

class Product p where

 data Operation p

 price :: p -> Float

 perform :: p -> Operation2 p -> String

 testOperation :: p -> Operation2 p

instance Product TimeMachine where

 data Operation TimeMachine = Travel Integer | Park

 price _ = 1000.0

Chapter 13 Strong Types for Describing Offers

474

 �perform (TimeMachine m) (Travel y) = "Travelling to " ++ show y ++

" with " ++ m

 perform (TimeMachine m) Park = "Parking time machine " ++ m

 testOperation _ = Travel 0

Type synonym and data families are not interchangeable, though, because they have different

properties (e.g., data families can be partially applied, while type synonym families can’t).

Many of the techniques in this chapter are applied in libraries in Hackage to make

stronger guarantees about the code that is executed. You’ve already used associated

types, although you didn’t know it back then, when writing the schema description in

Persistent.6 Another interesting package that uses type-level programming is HList,

which allows you to create lists whose elements have different types.

�Data Type Promotion and Singletons
From version 7.4.1 on, GHC includes an extension called data type promotion. When

enabled, for each data type at the term level, a new set of types is created at the type level

(the type is promoted). Furthermore, a new kind is associated to each of these promoted

data types, leading to safer type-level programming. In this section, you’ll see how to

take advantage of this feature and how to promote functions in addition to data types

using the singletons package.

�A Further Refinement to the Presents Rule
Let’s start from scratch with the implementation of the Presents Rule (if you’re writing

the code as you read, start a new empty module). But now instead of creating empty

data types for representing 0 and successors, the code will use a regular data declaration

and turn on the DataKinds extension – which enables data type promotion. The code is

similar to the following:

{-# LANGUAGE DataKinds #-}

data Nat = Zero | Succ Nat

6�You can check the definitions that are created by running GHC with the -ddump-splices option.

Chapter 13 Strong Types for Describing Offers

475

If on the same file you include the declaration of lists tagged with their length from

the section on functional dependencies, the code will compile just fine. As a reminder,

here’s the definition of the Vect data type:

{-# LANGUAGE GADTs #-}

data Vect n a where

 VNil :: Vect Zero a

 VCons :: a -> Vect n a -> Vect (Succ n) a

It seems that you’ve used the data type from the term level inside a type, as

you would do in a dependently typed language! However, this would defy the strict

separation between types and terms in the Haskell language. The truth is that when the

DataKinds extension is enabled, the compiler creates a copy of the data type in the type

level. Conceptually and for now, you can think of the source file with DataKinds as being

equivalent to the following:

data Nat = Zero | Succ Nat

data Zero

data Succ nat

The compiler can distinguish between constructors and type names because they

live in separate worlds. In the rare event in which the compiler could not make that

distinction, you can use the syntax 'Identifier to refer explicitly to the Identifier at

the type level. For example, you may write the definition of Vect as more explicit about

Zero and Succ being promoted types.

data Vect n a where

 VNil :: Vect 'Zero a

 VCons :: a -> Vect n a -> Vect ('Succ n) a

The next step for porting the code to this new file is to declare a type family Plus,

which will encode addition. You can copy the code from the previous section (including

the TypeFamilies pragma). If you now ask for the kind of Plus, you get:

*> :kind Plus

Plus :: Nat -> Nat -> Nat

Chapter 13 Strong Types for Describing Offers

476

The compiler has inferred the right kinds.7 Following the same idea of being explicit

as adding type signatures to every definition, we can add kind annotations to our Plus

type family to indicate the kind of arguments and the result kind:

type family Plus (x :: Nat) (y :: Nat) :: Nat where

Note R emember that kinds are used to categorize types, like types do for values.
In Haskell, without data type promotion, all the fully applied data types have kind
*. However, this extension opens the door to user-defined kinds, as the example
shows.

The next step is to use this new approach to your advantage. For example, right now

I haven’t explicitly forbidden writing a type such as Vect Int Char. But this makes no

sense. The only possible values for the first variable in Vect should be those from the

kind Nat (which are the one representing numbers). You can write it explicitly in the type

declaration.

data Vect (n :: Nat) a where

Note I n this case, the annotation is not needed because the compiler is able to
infer that the kind of n must be Nat. But it’s still interesting to make it explicit, at
least for documentation purposes and to ensure that a change in your code doesn’t
make the compiler infer a different type.

This same idea should be applied to Offer, which has a type parameter that should

take values only from type-level natural numbers. The corresponding refinement of this

data type should be declared as follows:

data Offer a (p :: Nat) where

As you can see, the DataKinds extension brings to type-level programming most

of the safety that types give to the Haskell programs at the term level. Furthermore,

the automatic promotion makes it easier to declare the types that will be used for

7�In older versions of GHC kinds always defaulted to * and you had to be more explicit.

Chapter 13 Strong Types for Describing Offers

477

programming at the type level. However, the kind system is not as powerful as the type

system (e.g., you don’t have anything like kind classes), but for most of the type-level

programming this extension should be more than enough.

�Cooking with Singletons
The DataKinds extension is really useful, but it doesn’t give you the full package. Your

data types can be promoted to the type level seamlessly, but you still need to define

your type-level functions using either FDs or TFs. If you are using some functionality

that was already available at the term level, this means that you need to duplicate

code and to do so in different styles of programming, hurting the readability and

maintainability of the code.

The singletons package provides a pragmatic solution to this problem. Using the

metaprogramming facilities of Template Haskell, it creates type-level versions of the

term-level functions you ask for. Although the two worlds are still separated, this library

creates the illusion that the same constructors and functions are used in both levels

seamlessly.

To start using the package, you must add it as a dependency of your project and

import the Data.Singletons.TH module in your source file. The expansion of Template

Haskell blocks user type families and data type promotion, so in addition to the

metaprogramming extensions, you need to enable them in your source file, or the code

will refuse to compile.

The module provides a lot of functionality, but the most interesting one for your

needs here is promote. Using it, you can create type-level versions of both data types

and functions. The functions will be encoded at the type level using TFs, with a name

resulting in changing the first letter of the function name into uppercase. For example,

here’s how you could promote natural number operations that have been guiding you in

the chapter:

{-# LANGUAGE GADTs, DataKinds, TypeFamilies, UndecidableInstances #-}

{-# LANGUAGE TemplateHaskell #-}

import Data.Singletons.TH hiding (Min)

$(promote [d|

 data Nat = Zero | Succ Nat

 deriving (Show, Eq)

Chapter 13 Strong Types for Describing Offers

478

 plus :: Nat -> Nat -> Nat

 plus Zero y = y

 plus (Succ x) y = Succ (plus x y)

 min :: Nat -> Nat -> Nat

 min Zero _ = Zero

 min _ Zero = Zero

 min (Succ x) (Succ y) = Succ (min x y)

 |])

Caution T he code inside the block starting from [d| to |] must be indented to
work correctly. Double-check this fact when working with singletons.

THE SINGLETONS PRELUDE

In this section we are defining our own version of promoted natural numbers, and several

operations over them. This is not needed, though, since the singletons package contains

a quite complete copy of Haskell’s Prelude in the type level. You can find it in the Data.

Singletons.Prelude module.

�Enforcing the Duration Rule
Since now you’re able to reuse most of your regular Haskell knowledge in the type

level via promotion, you may think about encoding a more complicated invariant: the

Duration Rule. To do so, let’s create a data type for ranges of time. Three cases must be

handled: a range that is open only at the end, which means that the offer is applicable

from a specific point in time (e.g., an infinite range would be an open range starting

at 0); a closed range with start and end points; and an empty range, which is the one

to be forbidden. As a further example, let’s define a type-level Infinite range using

promotion. This code uses the promoted Nat functionality from the previous section:

Chapter 13 Strong Types for Describing Offers

479

$(promote [d|

 data Range = Empty | Open Nat | Closed Nat Nat

 infinite :: Range

 infinite = Open Zero

 |])

Now let’s create the TFs that will be ultimately called when applying the From

and Until constructors of the Offer data type. For the first case, the function will be

restrictFrom and should take as arguments the range of days that the offer is available

for before the restriction and the new point in time for the initial day of the offer. The

code is a bit long but should be straightforward to understand.

$(promote [d|

 data Comparison = Less' | Equal' | Greater'

 compare' :: Nat -> Nat -> Comparison

 compare' Zero Zero = Equal'

 compare' Zero (Succ _) = Less'

 compare' (Succ _) Zero = Greater'

 compare' (Succ x) (Succ y) = compare' x y

 restrictFrom :: Nat -> Range -> Range

 restrictFrom _ Empty = Empty

 restrictFrom n (Open f)

 = restrictFrom1 n f (compare' n f)

 restrictFrom n (Closed f t)

 = restrictFrom2 n f t (compare' n f) (compare' n t)

 restrictFrom1 :: Nat -> Nat -> Comparison -> Range

 restrictFrom1 n _ Greater' = Open n

 restrictFrom1 _ f Equal' = Open f

 restrictFrom1 _ f Less' = Open f

 restrictFrom2 :: Nat -> Nat -> Nat -> Comparison -> Comparison -> Range

 restrictFrom2 _ _ _ Greater' Greater' = Empty

 restrictFrom2 _ _ _ Greater' Equal' = Empty

Chapter 13 Strong Types for Describing Offers

480

 restrictFrom2 n _ t Greater' Less' = Closed n t

 restrictFrom2 _ f t Equal' _ = Closed f t

 restrictFrom2 _ f t Less' _ = Closed f t

 |])

Caution I am adding ticks to the end of some names to disambiguate them from
the ones in the singletons’ Prelude.

Almost any use of singletons leads to the UndecidableInstances extension. This

is because the compiler cannot prove that the TFs you’ve created will always terminate

their execution when you have nested TFs. This nesting appears in the promoted TFs

because of the call to compare inside restrictFrom. However, if you know that the

function you wrote will terminate, it’s safe to unveil that restriction and tell the compiler

to accept that function without further termination checks.

The first step for tagging your offers with duration information is to enlarge the initial

type with a new type variable of kind Range, which was promoted previously. To keep the

examples concise, I will use the original Offer data type, instead of the one tagged with a

number of presents. The declaration of the GADT reads as follows:

data Offer a (r :: Range) where

The basic combinators for offers (presents and discounts) have an infinite duration

by default. To write them down, you can use the Infinite TF that was created in the

previous promotion.

 Present :: a -> Offer a Infinite

 PercentDiscount :: Float -> Offer a Infinite

 AbsoluteDiscount :: Float -> Offer a Infinite

As a first approximation, you could write the time restriction From as follows:

 From :: (n :: Nat) -> Offer a d -> Offer a (RestrictFrom n d)

Chapter 13 Strong Types for Describing Offers

481

However, this will make the compiler quite unhappy and will make it show the

following type error:

src/Chapter13/CheckDurationPromotion.hs:

 Expected a type, but `(n :: Nat)' has kind `Nat'

 In the type `(n :: Nat)'

 In the definition of data constructor `From'

 In the data declaration for `Offer'

The problem is that you cannot use promoted kinds in a constructor; only types of

kind * are allowed. In particular, using Nat is forbidden.

Fortunately, there’s a construction that helps you overcome this difficulty. The idea

is to create a regular data type that carries as a tag the type-level number you need. In

that way, you have a value that you can use at runtime and the tag gives the type-level

information. This data type will have only one possible value for each possible tag. For

that reason, they are called singleton data types. For example, a singleton type SNat

corresponding to the Nat promoted kind would read as follows:

data SNat (n :: Nat) where

 SZero :: SNat Zero

 SSucc :: SNat n -> SNat (Succ n)

By the way in which this type is constructed, given a type of kind Nat, only one value

of SNat is possible. For example, the only inhabitant of SNat (Succ (Succ Zero)) is

SSucc (SSucc SZero). So, you’ve reflected the type corresponding to 2 as a runtime

value, as desired. If you look at the output from GHCi, you can spot the explicit reference

to promoted constructors, which are shown with the ' sign in front of them.

*Chapter13.CheckDurationPromotion> :t SSucc (SSucc SZero)

SSucc (SSucc SZero)

 :: SNat ('Succ ('Succ 'Zero))

The next step is to use this singleton type in the constructor From that uses as

runtime arguments only values of kind *. Notice how you have access to the type-level

number n from the argument to SNat.

 From :: SNat n -> Offer a d -> Offer a (RestrictFrom n d)

Chapter 13 Strong Types for Describing Offers

482

Another easy construction involves moving from the SNat singleton data type back

to the initial Nat data type before its promotion. Once the conversion is done, you have a

runtime value that you may use in regular functions. The following piece of code defines

that conversion and uses it to print an offer restriction:

toNat :: SNat n -> Nat

toNat SZero = Zero

toNat (SSucc n) = Succ (toNat n)

printDateRestriction :: Offer a r -> String

printDateRestriction (From n _) = "From " ++ show (toNat n)

printDateRestriction (Until n _) = "Until" ++ show (toNat n)

printDateRestriction _ = "No date restriction"

Once again, the creation of a singleton type given a data type that is promoted is

just boilerplate. The singletons library includes another function of singletons that

supersedes promote and that generates singleton types along with promoting data types

and functions. For example, if you want to generate SNat automatically, you can include

in your source file the following:

{-# LANGUAGE ScopedTypeVariables #-}

{-# LANGUAGE EmptyCase #-}

{-# LANGUAGE InstanceSigs #-}

$(singletons [d|

 data Nat = Zero | Succ Nat

 deriving (Show, Eq)

 |])

In addition, the singletons library includes a SingI type class with only one

function, sing. The purpose of this function is to create the unique value of a singleton

type given its corresponding promoted data type. In this way, you don’t have to write the

constructors as you did before with SNat. For example, the inhabitants corresponding to

the first four natural numbers at the type level can be written like so:

Chapter 13 Strong Types for Describing Offers

483

zero :: SNat Zero

zero = sing -- results in SZero

one :: SNat (Succ Zero)

one = sing -- results in SSucc SZero

two :: SNat (Succ (Succ Zero))

two = sing -- results in SSucc (SSucc SZero)

three :: SNat (Succ (Succ (Succ Zero)))

three = sing -- results in SSucc (SSucc (SSucc SZero))

The singletons package also provides a type class for converting from a singleton

type to the regular data type. It’s called SingE and has a single function fromSing. Instead

of the homemade toNat function, you could use that function to turn the singleton three

into a term-level Nat.

*Chapter13.CheckDurationPromotion> fromSing three

Succ (Succ (Succ Zero))

There are some constructors left for the full Offer data type. Exercise 13-10 asks you

to finish the job.

EXERCISE 13-10. OFFERS WITH SINGLETONS

Add the rest of constructors to the Offer GADT: Restrict should keep its duration; Until

should change the duration in a similar way to From; Both, BetterOf, and If must compute

the smallest duration range that includes those of both arguments (i.e., the intersection). At

this point, you can use Offer to build a complete offer and compute its range.

*> let one = SSucc SZero -- build the singleton 1

*> let three = SSucc (SSucc (SSucc SZero)) -- build the singleton 3

*> :t let p = Present 'a' in Both (From one p) (BetterOf p (Until three p))

let p = Present 'a' in Both (From one p) (BetterOf p (Until three p))

 :: Offer Char ('Closed ('Succ 'Zero) ('Succ ('Succ ('Succ 'Zero))))

Chapter 13 Strong Types for Describing Offers

484

TYPE-LEVEL LITERALS

GHC provides extra features for tagging types with either natural numbers or strings. If you

enable the TypeOperators extension and import the GHC.TypeLits module, you can use

numbers and string literals at those places where you need a type of kind Nat (for natural

numbers) or Symbol (for strings).

Using these literals, the Vect data type could have been declared as follows:

data Vect n a where

 VNil :: Vect 0 a

 VCons :: a -> Vect n a -> Vect (n + 1) a

Note that this module provides only a small set of operations on natural numbers, namely,

addition, product, and exponentiation, as well as a type class that encodes whether two type-

level numbers are related as being less or equal.

Singleton types put an end to the bird’s-eye view on type-level programming in

Haskell. The relation between term-level data types and functions, their corresponding

promoted types and kinds, and the singleton types is subtle, but each one serves a

purpose.

•	 data and function declarations express how to create values that

Haskell can use to compute at runtime.

•	 Promoted data types and kinds and type-level functions expressed as

either FDs or TFs are evaluated at compile time and allow you to tag

values with stronger types that introduce extra invariants.

•	 Singleton types are the bridge between the worlds. When you need a

type-level value that should also be reflected at runtime, you should

use them.

Exercise 13-11 provides an exercise on a different domain to help you better

understand these relations.

Chapter 13 Strong Types for Describing Offers

485

EXERCISE 13-11. RECTANGLES AND BOUNDING BOXES

For this exercise you will use the following data type, which represents images built from

rectangles. The Rect constructor represents a single rectangle, and then you can combine

images (with Union), take just the common part (with Intersection), or put together

several copies in a row (using Replicate).

data Rectangle = R { topLeft :: (Nat, Nat), bottomRight :: (Nat, Nat) }

data Image = Rect Rectangle

 | Union Image Image

 | Intersection Image Image

 | Replicate Nat Image

You must tag images with their bounding box, that is, the smallest rectangle that contains the

whole of the image. For example, if you have the union of the rectangles from (1,0) to (5,4) and

from (0,1) to (3, 2), the bounding box is (0,0) to (5,4). You can draw them on paper to convince

yourself about that.

The type-level calculations should be developed using the techniques from the singletons

package. Think carefully about which places need singleton types.

�Summary
In this chapter you explored many of the advanced features of the Haskell type system

while designing a domain-specific language for expressing offers for the Time Machine

Store.

•	 This chapter introduced the concepts of external/stand-alone and

internal/embedded domain-specific languages and the difference

between deep and shallow embedding.

•	 Generalized algebraic data types allow constructors of a data type to

build values with different types; you used that extra functionality to

create type-safe expressions.

•	 You were introduced to the idea of tagging a type with some extra

information, which allows you to check stronger invariants at

compile time.

Chapter 13 Strong Types for Describing Offers

486

•	 You explored several possibilities for doing type-level programming

in Haskell, including functional dependencies, type families, and data

type promotion. The main characteristic of Haskell in this aspect is

the separation between the term and type worlds.

•	 Functional dependencies and associated types refine the type class

mechanism in Haskell and were covered in this chapter.

•	 Data type promotion and the singletons library make it possible

for you to move declarations from the term level to the type level.

Furthermore, it extends the kind system to provide safer type-level

programming in Haskell.

Chapter 13 Strong Types for Describing Offers

487
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_14

CHAPTER 14

Interpreting Offers
with Attributes
This chapter continues the work of the previous one in creating a DSL for expressing

offers for the Time Machine Store. As you may remember, deep embedding was chosen

as the way to model the offers language in Haskell. A deeply embedded language is

divided between its syntax, expressed as a set of Haskell data types, and its interpretation,

which is responsible for assigning a meaning to each value in the language. In this

example, the interpretation of an offer could be a function that, given a list of products

and prices, applies the offers and discounts and returns the new price.

In principle, the interpretations could be defined as plain Haskell functions over the

DSL values. However, almost every interpretation you can give follows a set of patterns.

Thus, it’s interesting to consider those patterns and build a conceptual model that

better defines the interpretations. This is what attribute grammars do for you. Then, you

can use a tool to generate the Haskell code that corresponds to an attribute grammar,

saving you from having to write a lot of boilerplate code. In particular, this chapter will

devote most of its time to the topic of programming with the Utrecht University Attribute

Grammar Compiler (UUAGC).

In addition to plain programming, in this chapter you will also consider the

relations between attribute grammars and other Haskell concepts, such as monads. You

will revisit the ideas of origami programming from Chapter 3 and will apply them to

general data types (not only lists). Finally, I shall introduce the idea of data type-generic

programming, which allows us to create algorithms which work on many different data

types in a uniform manner.

488

�Interpretations and Attribute Grammars
In this section, you’ll learn about attribute grammars. To help, a simple language is given

an interpretation in Haskell. That language is then reworked using attributes.

�A Simple Interpretation
Let’s consider a simple language that contains only three combinators for building its

expressions. Say you have a basic AmountOf with a character as a parameter and then the

addition and product of two expressions. Let’s express the language in a simple Haskell

data type.

data Expr = Plus Expr Expr

 | Times Expr Expr

 | AmountOf Char

The desired interpretation of this data type is parameterized by a string and gives a

number as a result. When AmountOf is found, the number of characters of a given type

is counted. The other two combinators just perform the sum or multiplication of the

numbers in their subexpressions. The corresponding Haskell code for this interpretation

is straightforward to write.

meaning :: Expr -> [Char] -> Int

meaning (Plus l r) p = meaning l p + meaning r p

meaning (Times l r) p = meaning l p * meaning r p

meaning (AmountOf c) p = length $ filter (== c) p

�Introducing Attribute Grammars
The previous section’s interpretation is quite simple. Still, it contains a lot of boilerplate

code. The recursive nature of this definition is explicit by calling meaning on the

subexpressions, and the p list must be explicitly threaded throughout the entire function.

Attribute grammars provide a higher-level model for writing interpretations (and, as

you will see later, many other kinds of functions), focusing on the data being used and

produced, saving you from thinking about all the small details related to information

flow. As a result, your code becomes much more maintainable.

Chapter 14 Interpreting Offers with Attributes

489

In addition, attribute grammars contribute to the modularity of the code. You can

separate your interpretation into several parts (and even in several files) and then ask the

attribute grammar system to join them together to compute all the information you need

from your data type in the smallest number of passes.

The main disadvantage of attribute grammars is that they have a different

computational model than plain Haskell, even though the integration is tight. As you will

see in this chapter, it’s easy to understand attribute grammars in Haskell terms, so this

disadvantage shouldn’t block you from using them.

Let’s return to the expression example. If instead of plain Haskell you were using

attribute grammars, you would be thinking about this interpretation in different terms.

From the attribute grammar point of view, your data type is a tree whose nodes keep

some attributes within them. In this example, the attributes would be the string that

you’re exploring and the result of the interpretation.

When looking closer, you can see that those pieces of information are different.

On one hand, the string to explore is passed from each expression to its subexpressions

as a parameter. You say that this attribute is flowing top-down from the expression.

On the other hand, the numeric results at each point in the expression are built considering

the results of its subexpressions and combining them in some way. Thus, the flow is

bottom-up in this case. Figure 14-1 shows the flow of information.

Figure 14-1.  Tree and attributes for AmountOf 'a' `Plus` (AmountOf 'b'
`Times` AmountOf 'c')

In the attribute grammar jargon, the numeric result is a synthesized attribute,

whereas the string to explore is an inherited attribute. The names roughly reflect the

different flow direction, which is the important difference between both. To define this

Chapter 14 Interpreting Offers with Attributes

490

interpretation as an attribute grammar, you would need the following three pieces of

information, as the example shows:

	 1.	 Which are the possible nodes in your tree. This is done via

the definition of a set of data types in which every constructor

represents a kind of node.

	 2.	 The attributes to be computed and whether they are inherited or

synthesized.

	 3.	 How to pass the information from parent to children nodes in the

case of the inherited attributes and how to compute the value of a

synthesized attributes from their children.

The purpose of an attribute grammar system is to take all that information and

generate the necessary code for computing the final value of the attributes at each node.

Here you can see the main advantage of using an attribute grammar vs. writing the

interpretation directly in Haskell, because the attribute grammar system would take care

of the following automatically:

•	 When an attribute needs to be transported in a more complex fashion

than just top-down or bottom-up (e.g., between sibling nodes),

the Haskell code can become quite complex. But with an attribute

grammar, this behavior is expressed declaratively, and the system

takes care of keeping track of it.

•	 Sometimes the value of an attribute depends on another one.

This means attributes must be ordered in some way for the whole

computation to proceed, maybe doing more than one traversal of

the same tree. Attribute grammar systems perform this ordering

automatically (and in many cases, in an optimal way), so you don’t

need to think about it.

Hackage includes several implementations of attribute grammars in its package

repository. One option is to use Happy, the parser generator included in the Haskell

Platform and that has support for attributes in its grammars. Happy is an external tool

that preprocesses a grammar description and generates the Haskell code needed for

parsing it.

Chapter 14 Interpreting Offers with Attributes

491

AspectAG is a library for embedding attribute grammars inside Haskell. So, you don’t

need an extra step of building prior to compilation. It’s an interesting option for working

with attribute grammars inside Haskell but has the downside of needing a lot of type-

level programming to make it work.

The tool that will be presented in this chapter is the Utrecht University Attribute

Grammar Compiler (UUAGC). Like with Happy, it’s a preprocessor that generates

Haskell code from the description of the grammar. In contrast to Happy, UUAGC is

focused specifically on defining attribute grammars. Thus, the connection between

the attribute grammar formalism and UUAGC code is much more explicit in this case,

making it a better choice for learning about these grammars.

INSTALLING UUAGC

UUAGC is available in Hackage, so you just need to execute the usual command to get it on

your system.

$ cabal install uuagc

By following these instructions, you also install integration with Cabal, which is found in the

uuagc-cabal package. You’ll be using uuagc-cabal to build the attribute grammars in the

upcoming sections.

�Your First Attribute Grammar
Now let’s create the attribute grammar corresponding to the simple numeric expressions

introduced in the previous section. For the source file, you have two conventions to

follow: UUAGC source files end with .ag, and files must be found inside a folder structure

that follows the module name. The conventions follow Haskell’s. In this case, the module

will be Chapter14.Simple, so the file should be found in src/Chapter14/Simple.ag.

�Synthesizing the Result
In the previous section, the three pieces of information required to define an attribute

grammar were presented. When programming with UUAGC, each of these pieces is

declared separately. The first one is the declaration of the data type that attributes will

refer to. The syntax is quite similar to Haskell’s data, but it has two differences.

Chapter 14 Interpreting Offers with Attributes

492

	 1.	 No equal sign should appear after the name of the data type.

Instead, each constructor declaration must begin with a vertical

bar: |.

	 2.	 All the arguments to a constructor must be named, as happens

with records in Haskell. However, no brackets should be used

around the fields.

Furthermore, when using type variables or compound types, they must be placed

inside { and }. This tells UUAGC to parse the content of the brackets as regular Haskell

code instead of as an attribute grammar. Taking into account all these differences, the

data type for expressions looks like the following:

data Expr

 | Plus left :: Expr right :: Expr

 | Times left :: Expr right :: Expr

 | AmountOf c :: Char

Note UUAG C supports two kinds of syntax. The one used in the examples of this
chapter is dubbed “Haskell syntax” because of its resemblance to that language.
The “classical syntax” is quite different from Haskell’s; you can spot it in UUAGC
code because all the keywords are written in capitals.

The next step is to declare the attributes that each node will have. In UUAGC, all

nodes representing constructors of the same data type contain the same attributes.

The syntax for specifying this is the attr keyword, followed by the names of the data

types you want to add the attributes to. Then, you must include a line per attribute,

which starts with inh or syn, depending on whether you want to create an inherited or

synthesized attribute, respectively, the name of the attribute and its type. The attributes

in this example have a String flowing top-down and a numeric result being synthesized:

attr Expr

 inh string :: String

 syn result :: Int

Chapter 14 Interpreting Offers with Attributes

493

Finally, you need to specify the way attributes are computed based on other

attributes and on the parameters inside the constructors. This is called the semantics of

the attributes and is specified via a sem block in the UUAGC source file. This block starts

with the name of the data type and then a block per constructor to be described. Each

of those blocks contains the code related to defining each of the attributes of that node.

The right side for each constructor follows plain Haskell syntax, with three syntactical

modifications.

	 1.	 The value of an attribute at a child node is accessed via the syntax

node.attribute. The special name lhs is reserved for referring to

the parent of the current node. The idea of a parent is not found

in Haskell code, so let’s clarify it using an example. Say you have

a value of the following form Plus (AmountOf 'a') (AmountOf

'b') , that is, a parent Plus node with two AmountOf children

nodes. At each node both a string and a result attribute will be

handled. From the point of view of AmountOf 'a', lhs.string

refers to the attribute in the parent node, that is, the value of the

string attribute in the Plus node.

	 2.	 At the right side of the declaration of each attribute, the references

to other attributes or parameters of the constructor must be

preceded by the @ sign.

	 3.	 UUAGC uses indentation to delimit blocks. However, you can ask

the preprocessor to keep a piece of code exactly as it appears in

the source file, wrapping it between { and }.

In particular, this convention implies that the declaration of a synthesized attribute

must be similar to lhs.attribute = ... because you’re defining the value of such an

attribute in the parent node. In this case, the meaning function can be translated into the

following sem block:

sem Expr

 | Plus lhs.result = @left.result + @right.result

 | Times lhs.result = @left.result * @right.result

 | AmountOf lhs.result = { length $ filter (== @c) @lhs.string }

Chapter 14 Interpreting Offers with Attributes

494

�Executing the Attribute Grammar
Of course, writing and compiling the attribute grammar isn’t useful at all if you cannot

call it in your own Haskell code. Depending on the options given to UUAGC,1 the

preprocessor generates several functions and data types that you should use when taking

advantage of attribute grammars.

•	 The data declaration in a grammar is transformed to a data

declaration in Haskell, but with the constructors prefixed with the

name of the data type, in this case Expr. If you want constructors to

appear as written in the grammar, don’t use the rename option in

UUAGC. However, in that case, you have to take care that constructor

names do not collide.

•	 The data types Inh_Expr and Syn_Expr represent the inherited and

synthesized attributes at each node of the Expr data type. Both are

declared as records, with the field names including also the names of

the attributes and the type of record they are in. In this example, the

names boil down to string_Inh_Expr and result_Syn_Expr.

•	 A function sem_Expr converts a value of the data type into a function

that takes as parameters the initial inherited attributes and returns

a tuple of synthesized attributes. However, the function that you get

may have the attributes in any order, so it’s customary to use the

wrap_Expr function, which takes attribute records as parameters.

For example, a function that would execute the computational actions of the attribute

grammar to get the synthesized values in the root of the tree for the Expr data type would

read as follows. Note that this function should be found in a different file from the attribute

grammar definition itself, so you need to import the module generated by UUAGC.

import Chapter14.Simple

executeExpr :: Expr -> String -> Int

executeExpr e s =

 let syn = wrap_Expr (sem_Expr e) (Inh_Expr s) -- returns Syn_Expr

 in result_Syn_Expr syn

1�You will learn how to specify those options in the next section.

Chapter 14 Interpreting Offers with Attributes

495

And now you can use that function to test your attribute grammar.

*Chapter14.Simple> :{

*Chapter14.Simple| let e = Expr_Times (Expr_AmountOf 'e')

*Chapter14.Simple| (Expr_Plus (Expr_AmountOf 'a')

*Chapter14.Simple| (Expr_AmountOf 'o'))

*Chapter14.Simple| in executeExpr e "hello"

*Chapter14.Simple| :}

1

�Integrating UUAGC in Your Package
As mentioned earlier, UUAGC is not a library but a preprocessor for Haskell code.

This means the attribute grammars you write cannot be directly compiled by GHC

or any other Haskell compiler; rather, they need to be converted into Haskell source

by UUAGC. You can do the translation yourself each time your attribute grammar

changes, but it’s better to tell Cabal that you’re using UUAGC and let the tool take care

of preprocessing files that have changes while it takes care of which files need to be

recompiled.

To start, create a new package with an executable stanza. Following the convention

in the previous chapters, I’ll call the package chapter14, and the executable will be

named uuagc-examples. The Cabal stanza corresponding to that executable reads as

follows:

executable uuagc-examples

 hs-source-dirs: src

 build-depends: base >= 4

 ghc-options: -Wall

 other-modules: Chapter14.Simple

 main-is: Main.hs

 default-language: Haskell2010

Chapter 14 Interpreting Offers with Attributes

496

The next step is to tell Cabal to call the preprocessor before compilation. This is done

by customizing the build script that Cabal follows to get the files compiled. This script is

found in the Setup.hs file and should be changed to read as follows:

import Distribution.Simple

import Distribution.Simple.UUAGC (uuagcLibUserHook)

import UU.UUAGC (uuagc)

main = defaultMainWithHooks (uuagcLibUserHook uuagc)

Caution  Cabal does not support build dependencies, only package
dependencies. In other words, Cabal is not aware that you need UUAGC to build the
package; you need to ensure it beforehand. If you get an error about UU.UUAGC in
Setup, double check that the tool has been correctly installed.

But this is not enough. You also have to change the field build-type in the Cabal file

to instruct the build process to use your new Setup.hs file instead of the regular one.

Open the chapter14.cabal file and change the line to the following:

build-type: Custom

The final step is to tell UUAGC which files must be handled by it and which

compilation options it should apply. To do this, create a uuagc_options file in the root of

your project (next to the .cabal and Setup.hs files) with the following contents:

file : "src/Chapter14/Simple.ag"

options : data, semfuns, catas, pretty, wrappers, rename,

 module "Chapter14.Simple", haskellsyntax, signatures

Notice that you need to include both the path to the attribute grammar (in the file

field) and the name of the module that will be created (in this case Chapter14.Simple).

Furthermore, if you want to use “Haskell syntax” as presented in the examples of this

chapter, you should remember to always include the haskellsyntax option.

Chapter 14 Interpreting Offers with Attributes

497

After all this preparation, you can run Cabal to build your project. The output will

be a bit different than usual because you’re using a custom setup script and UUAGC

is preprocessing your files. The following is a sample of the output, but it may be a bit

different on your system depending on the versions installed:

$ cabal configure

Resolving dependencies...

[1 of 1] Compiling Main (Setup.hs, dist/setup/Main.o)

Linking ./dist/setup/setup ...

Configuring chapter14-0.1...

$ cabal build

Building chapter14-0.1...

Preprocessing executable 'uuagc-examples' for chapter14-0.1...

Building executable 'uuagc-examples' for chapter14-0.1...

...

Linking dist/build/uuagc-examples/uuagc-examples ...

For each new attribute grammar that you need to compile, you must include a new

pair of lines defining it in the uuagc_options file. The advantage of this methodology is

that Cabal takes care of rebuilding only the parts that have changed and doesn’t call the

preprocessor if it’s not strictly needed.

UUAGC CODE GENERATION

By default, UUAGC takes advantage of lazy evaluation for executing attribute grammars. But

you can also instruct it to optimize the code. In that case, a specific sequence of visits through

the tree will be scheduled, resulting in stricter code.

This chapter focuses on the use of UUAGC with Haskell. But the preprocessor can generate

code for other functional languages, including OCaml and Clean. In those cases, the right sides

should be written in the corresponding back-end language instead of in Haskell.

Chapter 14 Interpreting Offers with Attributes

498

�Expressions Interpretation
Let’s move now to a larger attribute grammar. In this case, the focus would be

conditional expressions inside an offer. The aim is to obtain a function that, given an

expression and a list of products, returns the result of applying the expression to that list.

�Using an Attribute Grammar
You’ve seen in the example for simple numeric expressions how UUAGC separates the

three pieces of information needed to define a whole attribute grammar. The first block

defines the base data type into which attributes will be computed. The following code

is a straightforward translation of the Expr data type found in the previous chapter.

Notice that in order to keep the code a bit shorter, only one kind of Boolean comparison

between numbers is included.

data Expr a

 | AmountOf product :: {a}

 | PriceOf product :: {a}

 | TotalNumberOfProducts

 | TotalPrice

 | IVal val :: Int

 | FVal val :: Float

 | Plus right :: (Expr {a}) left :: (Expr {a})

 | Times right :: (Expr {a}) left :: (Expr {a})

 | LessThan right :: (Expr {a}) left :: (Expr {a})

 | Or right :: (Expr {a}) left :: (Expr {a})

 | And right :: (Expr {a}) left :: (Expr {a})

 | Not inner :: (Expr {a})

Note T o compile this attribute grammar, you need to enable the
ScopedTypeVariables extension for GHC. The easiest way to do this is to add a
line similar to extensions: ScopedTypeVariables to the Cabal stanza.

In this case, I’ll return to the simple modeling of expressions results. Three different

attributes will hold the result of the expression as integer, float, or Boolean. At any

point, only one of the components will hold a Just value, whereas the others will be

Chapter 14 Interpreting Offers with Attributes

499

Nothing. As you know from the previous chapter, you could refine the definition of Expr

using GADTs to make this tupling unnecessary. However, the focus in this chapter is on

attribute grammars, so let’s try to keep the types as simple as possible. The result of an

expression depends on the subexpressions, so this attribute should be a synthesized one.

In addition to computing the result, you need to thread the list of products among

subexpressions because the constructors AmountOf, PriceOf, TotalAmountOfProduct,

and TotalPrice need that information. In an attribute grammar setting, that information

would be represented via an inherited attribute. The declaration of the set of attributes

for Expr is as follows:

attr Expr

 inh products :: {[(a, Float)]}

 syn intValue :: {Maybe Int}

 syn fltValue :: {Maybe Float}

 syn boolValue :: {Maybe Bool}

Note R emember that compound types such as [(a, Float)] or Maybe Bool
must be written inside brackets to stop UUAGC from parsing them as special
attribute grammar syntax.

Following the example in this section, let’s write the sem block for Expr. The initial

declaration is a bit more complex in this case because you need to declare that the

elements in the expression are instances of the Eq type class to be able to define the

operations. Thus, the declaration reads as follows:

sem Eq {a} => Expr

One simple constructor is the TotalNumberOfProducts. In this case, the only attribute

with a concrete value should be the integer one; the rest should be given a Nothing value.

Since nodes of that kind don’t have any children, you don’t need to include any code for

the inherited products attribute. The full code in this case is as follows:

 | TotalNumberOfProducts lhs.intValue = Just $ length @lhs.products

 lhs.fltValue = Nothing

 lhs.boolValue = Nothing

Chapter 14 Interpreting Offers with Attributes

500

A more complex example is the Plus one. In this case, the integer and floating

values should be updated, but each of them should take a Just value only if both

subexpressions also take this value. You can achieve this concisely using the

Applicative instance of Maybe. The following code defines the synthesized attributes

of the Plus constructor. The code for inherited ones is also straightforward because it

copies only the value of products from the node to their children.

 | Plus lhs.intValue = {(+) <$> @right.intValue <*> @left.intValue }

 lhs.fltValue = {(+) <$> @right.fltValue <*> @left.fltValue }

 lhs.boolValue = Nothing

 right.products = @lhs.products

 left.products = @lhs.products

Given these examples, the rest of the cases should be easy to write. Exercise 14-1 asks

you to do so.

EXERCISE 14-1. FULL EXPRESSION ATTRIBUTE GRAMMAR

Complete the remaining cases of the sem block of Expr. Hint: use the previous examples

as templates, either performing some computation over the products list or combining the

value of subexpressions using Applicative syntax.

For example, a function that would execute the computational actions of the

attribute grammar to get the synthesized values in the root of the tree for the Expr data

type would read as follows:

executeExpr :: Ord a => Expr a -> [(a,Float)]

 -> (Maybe Int, Maybe Float, Maybe Bool)

executeExpr e products =

 let syn = wrap_Expr (sem_Expr e) (Inh_Expr products) -- returns Syn_Expr

 in (intValue_Syn_Expr syn

 , fltValue_Syn_Expr syn

 , boolValue_Syn_Expr syn)

Chapter 14 Interpreting Offers with Attributes

501

And you can use that function to test your attribute grammar.

*Chapter14.Expr> :{

*Chapter14.Expr| let e = Expr_And

*Chapter14.Expr| (Expr_AmountOf 'a' `Expr_LessThan` Expr_IVal 2)

*Chapter14.Expr| �(Expr_FVal 300.0 `Expr_LessThan` Expr_

TotalPrice)

*Chapter14.Expr| p = [('a',15.0), ('b',400.0)]

*Chapter14.Expr| in executeExpr e p

*Chapter14.Expr| :}

(Nothing,Nothing,Just True)

�Precomputing Some Values
The attribute grammar for Expr works fine but could be enhanced in terms of

performance. In the code above, each time a TotalNumberOfProducts or TotalPrice

constructor is found, the full product list has to be traversed. Since it’s quite common

to find those basic combinators in the expressions, it’s useful to cache the results to

be reused each time they are needed. Let’s see how to implement that caching in the

attribute grammar.

The most common way to cope with this situation is by adding a new data type with

only one constructor that wraps the entire expression tree. This data type is usually

called Root. The following is its definition plus an indication to derive a Show type class

instance, since it will be interesting to inspect those trees:

data Root a

 | Root expr :: (Expr {a})

deriving Root Expr : Show

Note A dding an extra Root data type is merely a convention used for initializing
inherited attributes. In many cases it’s not needed, and of course, you can use a
name different from Root.

Chapter 14 Interpreting Offers with Attributes

502

The precomputed values will be stored in the numberOfProducts and totalPrice

attributes. Those attributes must be passed top-down from the root of the tree. Thus, they

must be inherited attributes of the Expr data type. Furthermore, if you want to get back the

result of the computation from Root, you have to include the same synthesized attributes

that Expr had. The attr part of the grammar should be changed to the following:

attr Root Expr

 inh products :: {[(a, Float)]}

 syn intValue :: {Maybe Int}

 syn fltValue :: {Maybe Float}

 syn boolValue :: {Maybe Bool}

attr Expr

 inh numberOfProducts :: Int

 inh totalPrice :: Float

Notice how UUAGC allows you to include in the same declaration several data

types that share attributes. To use that functionality, just include all the data types after

the attr keyword. In this example, the products, intValue, fltValue, and boolValue

attributes are declared for both the Root and Expr data types.

Finally, you need to add the computation rules. The ones for computing the new

inherited attributes of an Expr from a Root are straightforward given the grammar of the

previous section.

sem Eq {a} => Root

 | Root expr.numberOfProducts = length @lhs.products

 expr.totalPrice = foldr (\(_,p) x -> p + x) 0.0 @lhs.products

Now you might expect extra declarations for threading the new inherited attributes

inside Expr and taking the synthesized attributes from Expr to save it into Root. The

good news is that they are not needed at all. UUAGC has some built-in rules that fire

in case you haven’t specified how to compute some attribute. For inherited attributes,

the computation proceeds by copying the value from the parent to its children. For

synthesized attributes, the result is taken from a child. (If you need to combine information

from several children, there are other kinds of rules; you’ll get in touch with them in the

next section.) These rules are collectively known as copy rules because they take care of the

simple case of attributes being copied. The flow of the inherited products attribute in the

previous grammar didn’t have to be specified; this rule would take care of it.

Chapter 14 Interpreting Offers with Attributes

503

One thing that should be changed is the computation of the synthesized attributes

in those constructors that were to be enhanced. Instead of computing the result

each time, they should use the precomputed values from the Root. For example,

TotalNumberOfProducts should be changed to the following:

 | TotalNumberOfProducts lhs.intValue = Just @lhs.numberOfProducts

 lhs.fltValue = Nothing

 lhs.boolValue = Nothing

The core of the idea is that each time you need to initialize some values for the rest

of the computation of the attributes, it’s useful to wrap the entire tree inside a data type

with only one constructor, which includes that initialization in its sem block.

�A Different (Monadic) View
When learning about a new concept, it’s useful to relate it to concepts you’re already

familiar with. You’ve already seen how attribute grammars come into existence when

trying to declaratively define the flow of information. In the first simple interpretation,

the parameters to functions became inherited attributes, and the tuple of results

correspond to the synthesized attributes. In Chapters 6 and 7, another different concept

was used to thread information in that way: the Reader and Writer monads. Indeed,

you can express the attribute grammar developed in this section using the monadic

setting. I’ll show how to do that. Note that the code from this section is independent of

the attribute grammar and should be written in a different file, which should contain the

definition of the Expr data type from the previous chapter.

First, you need to overcome a little technicality: the type used in the Writer must be

a monoid. However, the interest here lies only in the last value output by the function, so

you can “fake” this behavior by providing a Monoid instance that does this, shown here:

import Data.Monoid

newtype Result = Result (Maybe Int, Maybe Float, Maybe Bool) deriving Show

instance Semigroup Result where

 _ <> r2 = r2

instance Monoid Result where

 _ `mappend` r2 = r2

 mempty = Result (Nothing, Nothing, Nothing)

Chapter 14 Interpreting Offers with Attributes

504

The Semigroup instance is only required in GHC version 8.4 or newer. The
reason is that from that version on, Semigroup is a superclass of Monoid, and thus any
instance of the latter must also be an instance of the former.

Caution A lthough type correct, this instance doesn’t express a true monoid.
The problem is that x `mappend` mempty = mempty, which is not what is
necessary. A correct solution for this problem would be to save a list of output
results and get the last one at the end of the attribute computation.

As mentioned, the behavior of inherited attributes can be seen as wrapped in a

Reader monad and the synthesized attributes can be seen as wrapped in a Writer one.

Thus, the type signature of the function to write is as follows:

sem :: Eq a => Expr a -> ReaderT [(a,Float)] (Writer Result) ()

The corresponding code that calls the function passing the initial values would

be as follows:

import Control.Monad.Reader

import Control.Monad.Writer

executeExpr :: Eq a => Expr a -> [(a, Float)] -> Result

executeExpr e p = execWriter (runReaderT (sem e) p)

Let’s see how the computation of two of the constructors is expressed in this setting.

First, you have TotalNumberProducts, which takes the inherited attribute (which is now

the information in the Reader monad) and produces a new synthesized attribute with

the length of the list.

sem TotalNumberProducts = do products <- ask

 tell $ Result (Just (length products)

 , Nothing, Nothing)

A second combinator to look at is the addition of two numbers. In this case, you need

to compute the synthesized attributes locally and get those results to create the new

synthesized attributes. The first part can be achieved using listen, the counterpart of

Reader’s function local for the Writer monad.

Chapter 14 Interpreting Offers with Attributes

505

sem (e1 :+: e2) = do (_, Result (i1, f1, _)) <- listen (sem e1)

 (_, Result (i2, f2, _)) <- listen (sem e2)

 tell $ Result ((+) <$> i1 <*> i2

 , (+) <$> f1 <*> f2, Nothing)

As you can see, attribute grammars express the concepts behind the Reader and

Writer monads in a new setting. The main advantage is that you can refer to attributes

by name, instead of stacking several monad transformers and having to access each of

them by a different amount of lift. The intuitive idea that Reader and Writer monads

can be combined easily and in any order to yield a new monad is made explicit by the

fact that you can combine attribute grammars just by merging their attributes.

�Offer Interpretations
It’s time to move forward from conditional expressions to full values of type Offer, which

represent the possible discounts in the Time Machine Store. As in the previous section,

the examples will revolve around the initial definition of this data type, prior to adding

extra type safety, in order to keep the code clean and concise.

�Checking the Presents Rule
You’ve already seen several ways in which the Presents Rule of the offers (remember, the

number of free presents in an offer may be limited) can be checked. Using strong typing,

you looked at a way to count the maximum number of presents, but the implementation

gives no clue about what presents are inside. The task in this section is to create a

small attribute grammar that computes the largest possible set of presents that a single

customer can get for free.

As in the previous section, the main data type is a straightforward translation from

Haskell into the UUAGC syntax. The data declaration that will be used, and that contains

the names given to the fields of each constructor, reads as follows:

data Offer a

 | Present present :: {a}

 | PercentDiscount discount :: Float

 | AbsoluteDiscount discount :: Float

 | Restrict products :: {[a]} inner :: (Offer {a})

 | From from :: Int inner :: (Offer {a})

Chapter 14 Interpreting Offers with Attributes

506

 | Until until :: Int inner :: (Offer {a})

 | Extend times :: Int inner :: (Offer {a})

 | Both left :: (Offer {a}) right :: (Offer {a})

 | BetterOf left :: (Offer {a}) right :: (Offer {a})

 | If cond :: (Root {a}) then :: (Offer {a}) else :: (Offer {a})

deriving Offer : Show

The list of presents is something that is computed bottom-up, so it should be a

synthesized attribute. In the code example, the attribute will be called presents. Here’s

the attr part of the grammar:

attr Offer

 syn presents :: {[a]}

The next step is to write the sem block that tells the preprocessor how to compute the

value of that attribute. In most cases of the data type, presents are just accumulated from

all the suboffers. However, there are two special cases to consider.

	 1.	 When you find a Present constructor, you know that the number

of presents returned by that offer is a singleton list including the

value in its parameter.

	 2.	 When a Restrict constructor is found, you must delete from the

present list all those products that are not inside the restriction list.

In terms of code, this corresponds to the following sem block. Remember that any

code written inside brackets will be copied unchanged into the generated Haskell code.

The case of imports is treated specially by UUAGC; you should write imports before the

block to ensure that the imports are treated according to Haskell rules. In this example,

we bring the module Data.List into scope.

imports

{

import Data.List

}

sem Eq {a} => Offer

 | Present lhs.presents = [@present]

 | Restrict lhs.presents = { @products `intersect` @inner.presents }

Chapter 14 Interpreting Offers with Attributes

507

Now it is time to write the computation for the rest of the cases, which is the

concatenation of the lists for those constructors with suboffers and the empty list for

other basic combinators such as discounts. Luckily, UUAGC acknowledges that this

is a common pattern and provides special syntax for that case, extending the built-in

copy rule mechanism for synthesized attributes. With this syntax, you need to provide a

function that merges the attribute from the children and a base case for those nodes with

no children at all. In this case, the attr part of the grammar can be decorated with (++)

as the function to merge and [] as the initial value, so it reads as follows:

attr Offer

 syn presents use {++} {[]} :: {[a]}

If you don’t specify how to compute the value of the presents attribute, the rule that

just copies it will no longer be applied. Instead, the preprocessor will use the operations

in the use declaration.

If you look a bit closer at the operations specified, you’ll notice that they are indeed

the Monoid instance for lists. Remember the previous discussion about the relation

between attribute grammars and monads? When using a synthesized attribute with use,

you can see it being a Writer, where the Monoid instance of the attribute type is exactly

defined by the operations in use (instead of the operation that just forgets about the first

argument of mappend).

The Duration Rule could also be checked using an attribute grammar. Exercise 14-2

asks you to do so.

EXERCISE 14-2. THE DURATION RULE

Compute the maximum duration of an offer using an attribute grammar. The rules for doing

so should be the same as in Chapter 13. Decorate your attributes with use, as shown in this

section, to specify the common behavior of joining offers.

�Showing an HTML Description
The last example for attribute grammars will show a description of an offer as HTML.

This is an interesting example of how a grammar can be used not only to consume

information but also to show that information in a new way. Furthermore, this grammar

will show some subtleties related to attribute handling.

Chapter 14 Interpreting Offers with Attributes

508

The generated HTML should have three parts:

	 1.	 A list of all the presents that you may get via the offer. This is done

by reusing the presents attribute from the previous section.

	 2.	 A small table of contents that should show a small description of

the first and second levels of the offer tree, in which item is a link

to the full description.

	 3.	 Finally, the full description of the offer as a series of nested lists.

The markup for the full description will be stored in an html attribute and will be

encoded using the blaze-html library presented in Chapter 12. Thus, to follow this

section, you need to add blaze-html as a dependency. To obtain the final markup that

comprises the three parts, the code will use the trick of adding an extra root data type,

which will be called HtmlRoot. In the following code block, the imports related

to blaze-html are gathered here:

imports

{

import Data.List

import Data.String

import qualified Text.Blaze.Html5 as H

import qualified Text.Blaze.Html5.Attributes as A

}

data HtmlRoot a

 | HtmlRoot root :: (Offer {a})

In addition, each node will keep its title and the list of titles of the children

immediately below. In that way, the uppermost node will have the information needed

for the table of contents. The main issue with building the table is generating links to the

full description. For that, you need to assign a unique identifier to each node. However,

this identifier behaves both as an inherited attribute and a synthesized attribute. This

has the effect of threading the attribute among siblings of the same node in addition

to going up and down. Figure 14-2 shows the flow of information of such an identifier

through a basic offer.

Chapter 14 Interpreting Offers with Attributes

509

These kinds of attributes that are both inherited and synthesized are known in the

field of attribute grammars as chained. If you want to relate the behavior of chained

attributes to a monad, it would be the State one in this case. The attribute can be seen as

a value that changes throughout the exploration of the whole tree.

The declaration of such an attribute inside an UUAGC source file can be done by

writing the same attribute named both as inh and syn. But to stress that an attribute is

chained, UUAGC uses chn as its identifier. Following the general pattern in computer

science for naming a source of unique numbers, this attribute will be called counter.

The definition of all these attributes reads as follows:

attr Offer

 chn counter :: Int

 syn title :: String

 syn subtitles :: {[(String,Int)]}

 syn presents use {++} {[]} :: {[a]} -- from previous section

attr HtmlRoot Offer

 syn html :: {H.Html}

Obviously, now the attribute grammar should be executed starting on an HtmlRoot

value. The corresponding describeOffer function reads as follows:

describeOffer :: (Eq a, Show a) => Offer a -> H.Html

describeOffer o

 = html_Syn_HtmlRoot $ wrap_HtmlRoot (sem_HtmlRoot $ HtmlRoot_HtmlRoot o)

 Inh_HtmlRoot

Let’s first consider the computation of the counter attribute. At each node, the final

value should be different from all their children and the value from its parent. You can

Figure 14-2.  Attribute c threaded through siblings of an And node

Chapter 14 Interpreting Offers with Attributes

510

achieve this by adding 1 to the value of the last child. For example, the value for basic

combinators is just the one from the parent plus 1 and is expressed as follows:

sem Eq {a}, Show {a} => Offer

 | Present PercentDiscount AbsoluteDiscount -- applies to all these

 lhs.counter = @lhs.counter + 1

Since counter is both an inherited attribute and a synthesized attribute, lhs.

counter is referring to different attributes on each side. On the right side, @lhs.counter

is the value that comes from the parent. On the left side, lhs.counter is the value that

will be given back as an identifier for this node.

This code is not completely correct, though. If inside another attribute (e.g., when

creating the HTML markup for that node) you refer to lhs.counter, you’ll be referring

to the value from the parent. But this is not what you need. Two children of the same

parent would get the same counter value since they share the same parent. The solution

is to save the new value in a local attribute, which works as a local variable inside a node.

In that way, each node would retain its ident value, notwithstanding any change in its

parent. You don’t need to declare local attributes; use them only in a node, prefixing

them by the loc keyword. In the example, I’m using a local attribute called ident to

thread the value of the counter to other nodes while making a unique identifier available

for other attributes:

 | Present PercentDiscount AbsoluteDiscount

 loc.ident = @lhs.counter + 1

 lhs.counter = @loc.ident

For a constructor with more than one child, you should thread the attribute from one

to the other. In this example, the Both and BetterOf constructors do so through their

left and right children.

 | Both BetterOf

 left.counter = @lhs.counter

 right.counter = @left.counter

 loc.ident = @right.counter + 1

 lhs.counter = @loc.ident

Chapter 14 Interpreting Offers with Attributes

511

Think carefully about the rest of the threading for Exercise 14-3.

EXERCISE 14-3. THREADING THE COUNTER

Complete the computation of the counter and ident attributes for the Restrict, From,

Until, Extend, and If constructors.

Using local attributes can help you write more concise code for computing the

HTML markup. For example, you can divide the markup of each node into two parts: the

HTML corresponding to the description of the constructor (htmlText) and the HTML

corresponding to their children (htmlChild). Then, both attributes are joined in a single

Html value, as shown here:

 | Present PercentDiscount AbsoluteDiscount Restrict

 From Until Extend Both BetterOf If

 lhs.html = { do H.a H.! A.name

 (fromString ("elt" ++ show @loc.ident))

 $ H.toHtml @loc.htmlText

 @loc.htmlChild }

Note  You can write all the rules as they are shown, one below the other. UUAGC
will take care of merging all the attribute computations for each constructor.

Now each of the constructors must give the value of those local attributes to build

their HTML markup. This code is quite straightforward. As an example, the code that

does so for the PercentDiscount and BetterOf constructors follows:

 | PercentDiscount

 loc.htmlText = show @discount ++ "% discount"

 loc.htmlChild = H.toHtml ""

 | BetterOf

 loc.htmlText = "Better of"

 loc.htmlChild = { H.ul $ do H.li @left.html

 H.li @right.html }

Chapter 14 Interpreting Offers with Attributes

512

I mentioned that each of the nodes should save the title and subtitle attributes

for the final table of contents. The first one will be a simple String value, whereas the

other should collect the titles and identifiers of each of the immediate children. For the

constructors that are being tackled, it reads as follows:

 | PercentDiscount

 lhs.title = { "DISCOUNT: " ++ show @discount ++ "%" }

 lhs.subtitles = []

 | BetterOf

 lhs.title = { "BETTER OF" }

 lhs.subtitles = [(@left.title, @left.counter)

 , (@right.title, @right.counter)]

The rest of the constructors are left as an exercise to the reader, specifically as

Exercise 14-4.

EXERCISE 14-4. BUILDING DESCRIPTIONS

Complete the computation of the htmlText, htmlChild, title, and subtitle attributes

for the Present, AbsoluteDiscount, Restrict, From, Until, Extend, Both, and If

constructors.

The final touch is to take all that information and build the whole Html value

representing the description. The following code takes advantage of the encoding as a

monad of blaze-html, using mapM_ to generate lists of elements. For the rest, the code is

just generating the markup from the inner elements.

sem Eq {a}, Show {a} => HtmlRoot

 | HtmlRoot root.counter = 1

 lhs.html = {

 do H.h1 $ H.toHtml "Description of an offer"

 H.h2 $ H.toHtml "Possible presents:"

 H.ul $ mapM_ (\e -> H.li $ H.toHtml (show e)) @root.presents

 H.h2 $ H.toHtml "Main offer"

 H.a H.! A.href (fromString ("#elt" ++ show @root.counter))

 $ H.toHtml @root.title

Chapter 14 Interpreting Offers with Attributes

513

 H.ul $ mapM_ (\(s, e) -> H.li $ H.a H.! A.href

 �(fromString ("#elt" ++

show e))

 $ H.toHtml st)

 @root.subtitles

 H.h2 $ H.toHtml "Complete offer"

 @root.html }

One important advantage of describing the generation of the markup as an attribute

grammar is that you didn’t have to take care of ordering the computation. UUAGC is able

to find a sorting of the attributes, in the way that each of them needs only the previous

ones to be computed. If this cannot be done, the preprocessor will emit a warning telling

you that your attribute grammar is circular.

�Programming with Data Types
Attribute grammars provide us a common language to describe operations performed

over any data type. Any Haskell value can be seen as a tree and can be decorated using

attributes which flow either top-down or bottom-up. But this is not the only way to look

at data types in a uniform manner: folds provide a similar generalization. In fact, Haskell

has powerful features to describe operations based on the shape of a data type; this is

what we call data type-generic programming.

�Origami Programming Over Any Data Type
In Chapter 3 you saw how folds can be a powerful tool for understanding code on lists.

The basic idea of a fold was to replace the (:) constructor with some function f and []

with some initial value i, as Figure 14-3 shows.

Figure 14-3.  Reminder of the behavior of foldr

Chapter 14 Interpreting Offers with Attributes

514

Interestingly, the notion of a fold can be defined for every Haskell data type. For each

constructor you supply a function that will “replace” it and then evaluate the resulting

tree. In addition, the fold should call itself recursively in those places where the definition

of the data type is also recursive. These generalized folds are also called catamorphisms.

For example, consider the simple language in the first section of this chapter, where

the hard-coded Char parameter to AmountOf has been generalized to a type variable in

the Expr type.

data Expr a = Plus (Expr a) (Expr a)

 | Times (Expr a) (Expr a)

 | AmountOf a

In this case, a fold would have as parameters a function for Plus, other for Times, and

finally another for AmountOf. As I stated before, the implementation should call each of

those functions depending on the constructor of the value and have recursive calls in the

places where the definition of Expr has Expr again as argument. With those ideas, the full

code reads as follows:

foldExpr plusFn timesFn amountFn e =

 let f = foldExpr plusFn timesFn amountFn

 in case e of

 Plus e1 e2 -> plusFn (f e1) (f e2)

 Times e1 e2 -> timesFn (f e1) (f e2)

 AmountOf x -> amountFn x

The interpretation shown in the first section can now be reworked as a fold like in the

following code:

meaning :: Eq a => [a] -> Expr a -> Int

meaning s = foldExpr (+) (*) (\x -> length $ filter (==x) s)

The types of the parameters can be recovered from the data type definition.

A specific fold will produce an element of some type b for each value. Thus, for each

place where you may get a value from a recursive place, b must appear in its type.

You have also additional parameters for the information encoded in each constructor.

With these guidelines, these types read as follows:

plusFn :: b -> b -> b

timesFn :: b -> b -> b

amountFn :: a -> b

Chapter 14 Interpreting Offers with Attributes

515

When reading about folds or catamorphisms, you’ll sometimes find the term algebra.

A D-algebra for a data type D is just a tuple that contains all the functions required to

perform a fold over that data structure. You can create a newtype for an algebra for Expr.

newtype ExprAlgebra a b = ExprAlgebra (b -> b -> b, b -> b -> b, a -> b)

Thus, a fold over a data type D can be seen as a function taking a D-algebra and a

value of D and returning the appropriate value. Let’s express the fold over Expr using

algebra terms.

foldExpr' :: ExprAlgebra a b -> Expr a -> b

foldExpr' a@(ExprAlgebra (plusFn,timesFn,amountFn)) e =

 case e of

 Plus e1 e2 -> plusFn (foldExpr' a e1) (foldExpr' a e2)

 Times e1 e2 -> timesFn (foldExpr' a e1) (foldExpr' a e2)

 AmountOf x -> amountFn x

You can practice those ideas by adding new constructors in Exercise 14-5.

EXERCISE 14-5. LARGER EXPRESSIONS

Extend the Expr data type with the constructors Minus and DividedBy and complete the

corresponding fold functions for those new constructors.

Folds are closely related to attribute grammars. What you’re doing with an attribute

grammar is defining a specific algebra for your data type, an algebra that computes the

value of the attributes. If you look at the generated Haskell code by UUAGC, you’ll notice

that there are some parts labeled as cata. These are the functions starting with sem_ that

you used previously. What this function does is fold over the structure while expecting

the initial inherited values you give with the function starting with wrap_.

Once you feel comfortable with these ideas, you can dive into other ways data

types can be constructed and consumed in a generic fashion. For example, the notion

of unfold (also called anamorphism) can also be generalized, and combinations

of folds and unfold give rise to other interesting functions. A good library to look at is

recursion-schemes by Edward A. Kmett. Knowing these patterns will help you when

reusing a lot of code that is already written and that follows the same structure on

different data types.

Chapter 14 Interpreting Offers with Attributes

516

In addition to libraries, there’s also a lot of information about how you can use this

idea of folding over any data type to create more elegant code. “Origami programming”

by Jeremy Gibbons was already mentioned in Chapter 3. “Functional Programming with

Bananas, Lenses, Envelopes and Barbed Wire” by Erik Meijer, Maarten Fokkinga, and

Ross Paterson discusses all these generalizations of folds and unfolds and shows how to

use equational reasoning as you saw in Chapter 3 for lists, but over any data type.

�Data Type-Generic Programming
You’ve already seen two kinds of polymorphism in Haskell. Parametric polymorphism

treats values as black boxes, with no inspection of the content. Ad hoc polymorphism, on

the other hand, allows you to treat each case separately.

But there’s a third kind of polymorphism available in GHC, namely, data type-generic

programming (or simply generics). In this setting, your functions must work for any data

type, but you may depend on the structure of your data declaration. There are several

libraries of doing this kind of programming available in Hackage. GHC integrates its own

in the compiler in the GHC.Generics module, and this is the one I am going to discuss.

Data type-generic programming works in Haskell because data types are only made

of three different building blocks:

•	 Fields, which contain one value of a certain type.

•	 Products, which put together several fields into a constructor. We use

the symbol (:*:) to express products.

•	 Choice of constructors, for those data types which have more than

one. In this case, we use the symbol (:+:).

Besides those, we need a way to describe constructors which have no data associated

with them. One example of such a constructor is the empty list []. In fact, let’s look at the

description of the type of lists of Booleans:

*> import GHC.Generics

* GHC.Generics> :kind! Rep [Bool]

Rep [Bool] :: * -> *

= D1 ('MetaData "[]" "GHC.Types" "ghc-prim" 'False)

 (C1 ('MetaCons "[]" 'PrefixI 'False) U1

Chapter 14 Interpreting Offers with Attributes

517

 :+: C1 ('MetaCons ":" ('InfixI 'LeftAssociative 9) 'False)

 (S1 ('MetaSel 'Nothing ...) (Rec0 Bool)

 :*: S1 ('MetaSel 'Nothing ...) (Rec0 [Bool])))

Apart from the building blocks mentioned above, this description – which has

been automatically generated by GHC – also mentions metadata, like the name of the

constructors. Those are visible with names D1, C1, and S1. If we strip those out, we obtain

the core of the description of a list of Booleans, namely:

U1 :+: (Rec0 Bool) :*: (Rec0 [Bool])

You should read this as “you have two constructors, one with no fields, and one with

two fields, the first one of type Bool and the second one of type [Bool]”. For most data

type-generic programming tasks, the name of the data type and the constructors is not

used at all.

In order to work with the generic version of a data type, you need to convert it to its

description, which is nothing else that the Rep t type family discussed above. There is

one type class, Generic, which takes care of this:

instance Generic [a] where

 type Rep [a] = -- shown above

 from [] = L1 U1

 from (x:xs) = R1 (K1 x :*: K1 xs)

 to (L1 U1) = []

 to (R1 (K1 x :*: K1 xs)) = x:xs

Note that the appearance of a choice of constructors results in the use of L1 and R1

to choose which constructor to take. The rest of the building blocks, (:*:), U1, and Rec0,

have only one constructor, whose name coincides with that of the type, except for Rec0

which uses K1.

The question is: how can we define a generic operation by taking advantage of this

uniform description of data types? The procedure is always similar: we have to define

two type classes. The first one represents the operation itself, whereas the second one is

used to disassemble the building blocks and derive the implementation. Furthermore,

in the first type class we specify how to derive a function automatically using the

second one.

Chapter 14 Interpreting Offers with Attributes

518

Because code is worth thousand words, let’s define one operation in a generic

fashion. A call to getall with a given type should return the values of all the fields of that

type in the data structure. For example:

* GHC.Generics> getall (Proxy :: Proxy Int) (Maybe 3 :: Maybe Int)

[3]

Note A proxy is a dummy value whose only purpose is to fix a type for the
compiler. They are defined in the Data.Proxy module.

The first step, as discussed above, is to introduce a type class for the operation and

another for the building blocks:

{-# LANGUAGE KindSignatures #-}

{-# LANGUAGE MultiParamTypeClasses #-}

class GetAll t a where

 getall :: Proxy t -> a -> [t]

class GGetAll t (f :: * -> *) where

 ggetall :: Proxy t -> f x -> [t]

As you can see, they look fairly similar, except for the kind of the second argument.

In the GHC.Generics module all the building blocks have a kind * -> *. As a result, the

second argument to ggetall must be given an additional type argument, so it reads f x

instead of simply f.

Now next step is to define how the ggetall function is implemented for each of the

building blocks of a data type. In most cases, these instances call each other recursively,

until they get to U1 or Rec0, where we need to do the real work. In our case, choice of

constructors simply recurs to the chosen branch, products concatenate the values from

their components, and field-less constructors U1 add no values to the mix.

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE TypeOperators #-}

instance (GGetAll t f, GGetAll t g) => GGetAll t (f :+: g) where

 ggetall p (L1 x) = ggetall p x

 ggetall p (R1 y) = ggetall p y

Chapter 14 Interpreting Offers with Attributes

519

instance (GGetAll t f, GGetAll t g) => GGetAll t (f :*: g) where

 ggetall p (x :*: y) = ggetall p x ++ ggetall p y

instance GGetAll t U1 where

 ggetall p U1 = []

The case of fields follows a similar pattern in all data type-generic constructors.

We always call the nongeneric version of the type class, GetAll in this case, from the

generic version applied to Rec0. This is not enough in this case, because without further

information we would never reach any real field. For that reason, we add two instances

for the nongeneric type class. The first one says that each type t contains exactly one

value of type t. The other one says that if the types are different, by default there are no

values of the chosen type. This instance is marked as overlappable, because it just works

as a catch-all instance; in some cases like obtaining the Ints from a [Int], we shall

override that default.

instance (GetAll t s) => GGetAll t (Rec0 s) where

 ggetall p (K1 x) = getall p x

instance {-# OVERLAPS #-} GetAll t t where

 getall p x = [x]

instance {-# OVERLAPPABLE #-} GetAll t s where

 getall p x = []

Since the representations also contain metadata about the names of the data type,

constructors, and fields, we have one last case to handle. Metadata is represented

uniformly via the M1 building block; we do not need three different instances. It is quite

common to not do anything interesting in these instances, apart from calling the generic

operation recursively.

instance (GGetAll t f) => GGetAll t (M1 v i f) where

 ggetall p (M1 x) = ggetall p x

The last step is to declare how to obtain the implementation of the nongeneric type

class from the building blocks of the generic one. This is done via a default signature.

These are like default implementations, but with a constraint over the way in which the

code can be derived. The pattern is once again very similar for every generic operation:

you always require a Generic instance, and an instance of the generic type class for the

description of the type.

Chapter 14 Interpreting Offers with Attributes

520

{-# LANGUAGE DefaultSignatures #-}

class GetAll t a where

 getall :: Proxy t -> a -> [t]

 default getall :: (Generic a, GGetAll t (Rep a)) => Proxy t -> a -> [t]

 getall p = ggetall p . from

If you have a type for which you want to implement getall, you don’t need to write

the code any more. Just derive its Generic instance, which is done automatically by the

compiler, and ask it to implement the GetAll type class:

{-# LANGUAGE DeriveGeneric #-}

data Tree a = Node a | Branch (Tree a) (Tree a)

 deriving (Show, Eq, Generic)

instance GetAll a (Tree a) -- look ma, no code!

This was a very fast-paced introduction to data type-generic programming, with

the aim for you to taste its flavor. If you want to dive into it, I recommend looking at

the lecture notes called “Applying Type-Level andGeneric Programming in Haskell” by

Andres Löh.

�Summary
This chapter introduced attribute grammars as a way to give interpretations to a DSL

encoded as a Haskell data type.

•	 You delved into the general idea of attributing a tree whose nodes are

the constructors of a specific Haskell data type.

•	 Three kinds of attributes were distinguished: synthesized (bottom-

up), inherited (top-down), and chained (threaded among siblings).

•	 Monads are related to attribute grammars: Reader corresponds to

inherited attributes, Writer to synthesized attributes, and State to

chained attributes.

•	 You learned how to configure and use the Utrecht University Attribute

Grammar Compiler to preprocess your attribute grammars into

Haskell code.

Chapter 14 Interpreting Offers with Attributes

521

•	 UUAGC provides many facilities for writing concise attribute

grammars. In this chapter, you became familiar with use declarations

and local attributes.

•	 The idea of fold (or catamorphism) was generalized from lists to any

possible Haskell data type.

•	 Finally, you have seen how to define operations which depend on the

structure of the data type using GHC.Generics.

Chapter 14 Interpreting Offers with Attributes

PART V

Engineering the Store

525
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_15

CHAPTER 15

Documenting, Testing,
and Verifying
At this point you know many of the features and intricacies of the Haskell language

and many of its libraries. This chapter won’t teach you any more about the language

but rather will focus on some tools that help you in the process of coding libraries and

applications. These tools support good engineering practices within Haskell.

An important and often overlooked practice as you program is to write good

documentation for the source. Even though Haskell is a high-level language, there’s

always room for documenting the purpose of each data type and function in your

modules. Haddock is bundled with the Haskell Platform, and it creates beautiful

documentation pages from special comments in your code.

The main set of tools I will cover is related to testing. Automatically testing your code

ensures that any change in the code does not affect the behavior that it should have.

Programmers today see unit testing as an essential activity, and you will learn how to

create unit tests in Haskell with HUnit.

Haskell was the first language to support randomized testing in addition to unit

testing, with its QuickCheck library. This form of testing generates random calls to your

functions and ensures that certain properties of the output are satisfied, freeing the tester

from the task of writing hundreds of test cases. Another tool called SmallCheck builds on

this idea but performs exhaustive testing. This means a certain piece of code is called not

with random inputs but with all possible inputs up to a size limit.

Testing can show that a bug exists in your implementation but testing along does not

give you complete assurance of their absence. The next step is to formally verify that the

implementation satisfies the properties that are requested. You’ll get a glimpse of how

this can be done using LiquidHaskell, an extension of Haskell with refinement types.

526

�Documenting Binary Trees with Haddock
Binary trees, like those in Chapter 4, are going to be the working example throughout this

chapter. As a reminder, the following is the definition of the BinaryTree data type. The

constructors refer either to a leaf or to a node that handles some inner information on it.

In addition, there are a couple of tree functions.

data BinaryTree a = Leaf

 | Node a (BinaryTree a) (BinaryTree a)

 deriving (Show, Eq)

treeInsert :: Ord a => a -> BinaryTree a -> BinaryTree a

treeInsert x Leaf = Node x Leaf Leaf

treeInsert x (Node y l r) | x <= y = Node y (treeInsert x l) r

 | otherwise = Node y l (treeInsert x r)

treeMerge :: Ord a => BinaryTree a -> BinaryTree a -> BinaryTree a

treeMerge t Leaf = t

treeMerge t (Node x l r) = treeInsert x $ treeMerge (treeMerge t l) r

Even without any extra comments, you can generate a summary of the modules in

the package by running cabal haddock or stack haddock in the root of your project.

A set of HTML pages will be created in the dist/doc/html folder in your package if

using Cabal, or .stack-work/install if using Stack. If you open them, you’ll see the

documentation in the same format in which the documentation from Hackage is

presented. However, the information there is rough: only a list of modules and, inside

each module, a list of all the definitions. It would be nice to incorporate comments and

examples into each of the functions, data types, and type classes.

The way you can convey extra information to be included in those HTML pages is via

documentation comments. Documentation comments are written in the same file where

the code is written, which helps you keep both code and documentation in sync. They

follow the same syntax as regular comments, but they start with a special marker. This

idea is found in other documentation systems such as Javadoc and Doxygen.

The marker in the comment changes depending on whether you want to include

the documentation of an element before or after the declaration. If you want to write

the documentation and then the element, you will mark that documentation with |; if

instead you want to include the documentation after the element, start your comment

with ^. Comments beginning with | are used normally for documenting data types,

Chapter 15 Documenting, Testing, and Verifying

527

functions, and type classes, whereas ^ is more often found while discussing constructors

and function arguments. As an example, you can document the BinaryTree type as

follows:

-- | A typical binary tree

data BinaryTree a = Node a (BinaryTree a) (BinaryTree a) -- ^Inner nodes

 | Leaf -- ^Leaves

 deriving (Eq, Show)

The upcoming Figure 15-1 shows how the comments here manifest themselves in

the HTML page created by the Haddock tool.

Figure 15-1.  BinaryTree documentation generated by Haddock

Chapter 15 Documenting, Testing, and Verifying

528

Caution H askell single-line comments start with -- followed by a space. You
should respect this syntax in documentation comments and use a space between
-- and either | or ^, as the example shows.

Haddock has a rich syntax for writing the documentation.

•	 If you refer to other declarations by writing it in single quotes,

Haddock will generate a link to that place. This functionality is also

available for linking to modules; in that case, you need to write its

name in double quotes.

•	 Unnumbered lists are declared by prefixing each of the items by *.

In the case of numbered lists, you can choose between writing

n. or (n) for the nth element. Be aware that each item should be

surrounded by blank lines.

•	 You can introduce pieces of code by prefixing each line with >.

Additionally, Haddock supports the declaration of properties, which

are prefixed by prop> and of interpreter examples, in which the input

is written after >>> and the output immediately after.

Here you can see an example of documentation for the treeInsert function. Notice

that the comments are written in multiple-line style. Again, you can see the effect of

these comments in Figure 15-1.

{-|

Inserts an element into a 'BinaryTree'

 * If it finds a leaf, insert there

 * If smaller than the item in the node, insert in the left

 * If larger than the item in the node, insert in the right

>>> treeInsert 1 Leaf

Node 1 Leaf Leaf

-}

Chapter 15 Documenting, Testing, and Verifying

529

treeInsert :: Ord a => a -> BinaryTree a -> BinaryTree a

treeInsert x Leaf = Node x Leaf Leaf

treeInsert x (Node y l r) | x <= y = Node y (treeInsert x l) r

 | otherwise = Node y l (treeInsert x r)

Another interesting feature of Haddock is the ability to organize the declarations in

your code and to show its documentation divided into sections. The only requirement

is that you must use an explicit export list. This is a good programming practice anyway,

so it shouldn’t put any extra burden on you. In the list of exports, you can include a

documentation comment starting with * to indicate that a new section starts at that

point, or you can use ** for a subsection. Here’s a possible declaration list for a full-

blown binary trees implementation:

-- | Simple implementation of binary trees

module Chapter15.BinaryTree (

 -- * The main data type

 BinaryTree(..),

 -- * Operations

 -- ** Insertion

 treeInsert, treeMerge,

 -- ** Lookup

 treeFind, treeFindMin,

 -- ** Removal

 treeDelete

) where

If you look carefully at Figure 15-1, you will notice some hyperlinks labeled as

Source. The target of each of those links is the definition of that element in a colored

version of your source. You can get them in your own documentation by running cabal

haddock --hyperlink-source instead of plain cabal haddock. Notice that you need to

have the package hscolour in your system for this feature to work.

Chapter 15 Documenting, Testing, and Verifying

530

HLINT

A Haskell compiler checks whether your source code complies with the syntax and semantics

of the language. However, there are cases where your code is correct but it’s not easy to read

or contains some fragment that is usually seen as confusing and may lead to errors in the

future. HLint is a tool that suggests changes to Haskell source in order to make the code

much clearer.

You can get HLint onto your system by the usual procedure of running cabal install

hlint on the command line. Then you can run hlint <source file> and get a list of

suggestions. For example, say you change the third line of treeInsert to read as follows:

treeInsert x (Node y l r) | (x <= y) = Node y (treeInsert x l) r

If you run HLint, the following change will be suggested:

src/Chapter15/BinaryTree.hs:39:29: Warning: Redundant bracket

Found:

 (x <= y)

Why not:

 x <= y

HLint covers many style issues in code. HLint is also aware of laziness, so it ensures that

your code never evaluates more – which could have a negative performance impact – when

suggesting a change. Furthermore, HLint can apply the suggestions directly to your code.

�Unit Testing with HUnit
Unit testing is a methodology for checking that your functions perform their work as

intended. Following these methods, the programmer writes a set of test cases, with each

of them executing a piece of code and describing the expected result. These tests can be

run at the developer’s discretion or can be used to check automatically that code that

was working fine doesn’t break after changes (this is called regression testing).

To provide a unified interface to the various testing methods available, the Haskell

community has created several test frameworks. In this section I’ll introduce the Tasty

library, but many others are available. HTF, test-framework, and HSpec are other

interesting options. The good news is that any of these test frameworks can be integrated

into your Cabal project and run through the same command-line option.

Chapter 15 Documenting, Testing, and Verifying

531

�Declaring Tests in Cabal
In principle, you could create the application that runs your tests as a mere executable in

your package. However, Cabal embodies the idea of tests in its core and has special support

for them. In this section you’ll learn how to add a test executable to your Cabal project.

Inside a Cabal file, a test is defined in its own stanza, like library and executable

parts were. Thus, the declaration of a test inside the project file is headed by test-suite

followed by the name of the test suite. The key field to include in that stanza is the type

one. Cabal has extensible support for different kinds of test providers that can run the

tests in the project in different ways.

The focus in this section will be on type being equal to exitcode-stdio-1.0, which

is the best-supported option at the moment of writing. By specifying that test provider,

you declare to Cabal that your tests should be compiled as an executable file. The file will

run to execute the tests and will tell Cabal whether the tests were successful via its exit

code. The good news is that all the test frameworks in Hackage are knowledgeable about

this way of running them and make it easy to integrate them as a Cabal test.

The rest of the test-suite stanza, when type is exitcode-stdio-1.0, is equal to the

definition of a regular executable. As an example, here’s the stanza corresponding to the

tests of the current chapter, which has the Tasty framework as a dependency, along with

the packages needed to run tests from HUnit, QuickCheck, and SmallCheck within Tasty:

test-suite Tasty

 type: exitcode-stdio-1.0

 build-depends: base >= 4, tasty, tasty-hunit,

 tasty-quickcheck, tasty-smallcheck

 hs-source-dirs: test

 main-is: Tasty.hs

 default-language: Haskell2010

Notice that I’ve declared that the source files for my tests will reside in the test

directory. It’s a good practice to keep source code and tests in different folders to make it

easier to find the place where you include new functionality or new checks of behavior.

There’s one final quirk to consider. Often you’ll need to access the functions declared

in your library stanza inside a test-suite one. One possibility is to reference the source

folder also in your test-suite stanza. However, this causes double compiles (the same

file has to be compiled in both the library and test-suite stanzas) and doesn’t delimit

the responsibility of this stanza. Instead, Cabal supports having a test suite or executable

Chapter 15 Documenting, Testing, and Verifying

532

in a Cabal project depend on its library part. To declare this dependency, just add the

name of the package in the corresponding build-depends list. For example, in the

previous case you’ll get the following:

 build-depends: base >= 4, tasty, tasty-hunit,

 tasty-quickcheck, tasty-smallcheck,

 chapter15

Now you’re ready to run the tests that you’ll declare in the next section through

the cabal or stack command-line tools. This functionality is quite useful because it

centralizes all the project information in a single place.

�Writing Unit Tests
First you need to create the test/Tasty.hs file that the stanza specifies as the main file.

This file should contain a module named Main. The main executable file of a stanza is

the only exception to the rule of naming both the file and the module with the same

identifier, making it easier to create projects with more than one executable or test. The

examples will use the Tasty test framework and the HUnit tool, so you should import the

corresponding modules. The following skeleton will be the base for the rest of the section:

module Main where

import Test.Tasty

import Test.Tasty.HUnit as HU

A test suite in Tasty is composed of basic test cases that you can later group to get

a hierarchical organization. Test cases are different depending on the testing tool you

would like to use (HUnit, QuickCheck, or SmallCheck). In the case of HUnit, a test case

is defined by the testCase function, which takes as arguments a name and an assertion,

which encodes the specific functionality to be checked. For example, the following test

case checks that the result equality of inserting 1 into an empty tree is the expected one

using the HUnit combinatory assertEqual.

import Chapter15.BinaryTree

hunitTestInsertOnLeaf :: TestTree

hunitTestInsertOnLeaf = HU.testCase "Insert 'a' on empty tree" $

 assertEqual "Insertion is wrong"

 (treeInsert 'a' Leaf) (Node 'a' Leaf Leaf)

Chapter 15 Documenting, Testing, and Verifying

533

Note  TestTree is one of the types used in the Tasty framework. It’s not related
to the binary trees you’ve been using as examples throughout the chapter.

As discussed, Tasty allows a hierarchical organization of the test cases into test

groups. A test group is defined via the testGroup function, which needs to be given a

name for the group and a list of elements. Those elements can be nested groups or basic

test cases. Here’s an example of an organization of tests:

allTests :: TestTree

allTests = testGroup "Tasty Tests" [

 testGroup "HUnit Tests" [hunitTestInsertOnLeaf]

]

In this case there’s a top-level group called “Tasty Tests” that has another group

called “HUnit Tests” inside. This nested group is where the code puts the test case

defined previously.

There’s one last step before being able to run the tests. Since you declared that an

executable will be responsible for automatically executing them, you need to provide

a main entry point. The good news is that Tasty includes a simple function for this task,

which you can include in all your tests. You just need to specify the test case or test group

that will be run to defaultMain, as follows:

main :: IO ()

main = defaultMain allTests

It’s time to execute this first test. It is as easy as running cabal test or stack test,

depending on your choice of build tool. In either case the test suite will be executed, and

the main results are shown on the screen.

$ cabal test

Running 1 test suites...

Test suite Tasty: RUNNING...

Test suite Tasty: PASS

Test suite logged to: dist/test/chapter15-0.1-Tasty.log

1 of 1 test suites (1 of 1 test cases) passed.

Chapter 15 Documenting, Testing, and Verifying

534

If you now go to the log file shown in the message, you can see a more detailed

explanation of the test suite run.

Tasty Tests

 HUnit Tests

 Insert 1 on empty tree: OK

As you can see, the file shows the hierarchical structure declared in the source file.

In addition to “long” combinators such as assertEqual, HUnit includes infix

combinators that allow a more concise expression of expected equality. These are (@?=)

and (@=?). Both operators check whether the elements at each side are equal. The

difference is in where one writes the value to check and where the value is known to be

correct. The rule of thumb is that the former should be written next to the ? sign, and

the latter (the expected value) should be written next to the = sign. Thus, the previous

example could have also been written in the following two forms. Remember that the

expression with treeInsert is the one to check, so it should be near the ? sign.

hunitTestInsertOnLeaf' = HU.testCase "Insert 'a' on empty tree" $

 treeInsert 'a' Leaf HU.@?= Node 'a' Leaf Leaf

hunitTestInsertOnLeaf" = HU.testCase "Insert 'a' on empty tree" $

 Node 'a' Leaf Leaf HU.@=? treeInsert 'a' Leaf

Equality is the most common check in unit tests, but HUnit also allows you to check

a Boolean property on the result. For example, you could check that after inserting an

item in the tree, that item can be found. In this case, let’s create a template for several

unit tests by creating a function that returns a test case given an original tree and the

item to insert.

import Data.Maybe

hunitTestInsertFind :: Ord a => a -> BinaryTree a -> TestTree

hunitTestInsertFind e t = HU.testCase "Insert can be found" $

 assertBool "Cannot find element" (isJust $ treeFind e $ treeInsert e t)

As in the previous case, HUnit has a more concise version of the assertBool

combinator, namely, (@?).

hunitTestInsertFind' e t = HU.testCase "Insert can be found" $

 (isJust $ treeFind e $ treeInsert e t) HU.@? "Cannot find element"

Chapter 15 Documenting, Testing, and Verifying

535

Now you can add several unit tests to your list by providing different parameters to

this template.

allTests = testGroup "Tasty Tests" [

 testGroup "HUnit Tests" [

 hunitTestInsertOnLeaf

 , hunitTestInsertFind 'b' Leaf

 , hunitTestInsertFind 'c' (Node 'd' Leaf Leaf)

]

]

HUnit is a small library, but it embodies the most common uses of unit testing. In

Exercise 15-1, you will write some extra tests to check the implementation of binary

trees. Following the exercise, you will learn a little about a framework named HSpec.

EXERCISE 15-1.UNIT TESTING BINARY TREES

Write test cases to check that once you add an element to a binary tree, the size (the number

of internal nodes) is increased by 1. Additionally, write test cases to check that deleting an

element indeed removes it from the binary tree.

HSPEC

In this chapter, the test framework used to integrate all the tests is Tasty. However, as

mentioned earlier, several other test frameworks are available in Hackage. Hspec is one of

them and is targeted at teams that use the Behavior-Driven Development (BDD) methodology.

Here’s an example of the usage:

import Data.Maybe

import Test.Hspec

import Test.HUnit

main = hspec $ do

 describe "Insertion in binary tree" $ do

 it "Inserts correctly 1 in empty tree" $

 treeInsert 1 Leaf @?= Node 1 Leaf Leaf

Chapter 15 Documenting, Testing, and Verifying

536

 it "Finds 1 after inserting it on a tree" $

 isJust $ treeFind 1 $ treeInsert 1 (Node 2 Leaf Leaf)

 it "Gets the minimum correctly" $

 pendingWith "Needs to be implemented"

As you can see, Hspec embodies a more textual style for describing tests. The aim is to be

closer to the language used in the specification phase, making it easier to write the tests that

check that a further implementation is correct.

�Randomized Testing with QuickCheck
Unit testing is the most common approach to checking that your implementation

satisfies the requirements. However, unit testing imposes quite a big load of work. For

each requirement, you need to create several test cases, which you must ensure cover a

big enough number of possible scenarios. Typically, you include test cases for extreme

values, empty collections, invalid data, and so on.

Instead of having to think about all this by yourself, it would be great if you could

express your specifications at a higher level and then test whether those properties hold

for your program. Haskell’s usage of higher-order functions makes it easy to express

those properties. For example, the property “reversing a list twice is the same as leaving

it as is” can be written as reverse . reverse = id. The bad news is that doing so

automatically is a task that’s impossible to achieve for every single property in the wild

(but you’ll see in the next section how formal verification can help you in those cases

where an entire proof of correctness is possible).

QuickCheck tries to bring these two worlds together. Using this library, you express

how your program should behave in the form of high-level properties. Then, the tool

creates a lot of random values that your program is tested against. If you use a sufficiently

large set of tests (hundreds or thousands), your confidence in that property holding is

increased. Furthermore, QuickCheck includes a shrinking component that is used when

a value that doesn’t satisfy your specification is found. Its task is trying to make that value

as small as possible, helping you in reproducing and tracking the source of the bug.

Chapter 15 Documenting, Testing, and Verifying

537

�Testing List Properties
Let’s start by testing some simple properties of list functions. In particular, let’s

focus on the reverse function, which builds a list in the opposite order. The initial

implementation will include a small error so you can see how Tasty shows the problems

of a failing QuickCheck test.

reverse' :: [a] -> [a]

reverse' [] = []

reverse' [x] = [x, x]

reverse' (x:xs) = reverse' xs ++ [x]

For the first property, you may want to check that the length of a list is respected by

reversing it (of course, this is false in this example). Here’s the corresponding definition

for that QuickCheck property:

{-# LANGUAGE ScopedTypeVariables #-}

import Test.Tasty.QuickCheck as QC

reverseTests :: TestTree

reverseTests = testGroup "Tests over reverse"

 [QC.testProperty "reverse respects length" $

 \(lst :: [Integer]) -> length (reverse' lst) == length lst]

As you can see, the definition starts similarly to an HUnit test. You call the

testProperty function and give a name to the property. Then, you define the body of

the property as a function, which should hold for every possible value of the arguments

of that function. In other words, you can think of the property as having “for all” before

each of the arguments to the body function.

Note I n some cases you will need to restrict the types of the arguments to
QuickCheck properties. The reason is that it’s not possible to create random
values for every possible type in Haskell. For example, you cannot generate a list
of functions. Thus, in the example, the code works only for lists of integers, even
though the reverse' function is applicable to any kind of list.

Chapter 15 Documenting, Testing, and Verifying

538

If you add reverseTest to the list of Tasty tests that was called allTests and then

build and run the new set of tests, you should get an error message.

Test suite Tasty: RUNNING...

Tasty Tests

 Tests over reverse

 reverse respects length: FAIL

 *** Failed! Falsifiable (after 3 tests and 3 shrinks):

 [0]

The message is telling you that after trying three times, it was able to find an example

where the property does not hold (although given that QuickCheck tests in a random

fashion, the number in the counterexample may be different in your case). Then, it

shrank the list until it made the example small. Indeed, a singleton list is the smallest

example where the reverse' function fails.

Test your understanding of QuickCheck by doing Exercise 15-2.

EXERCISE 15-2. QUICKCHECKING REVERSE

Add more QuickCheck properties on the reverse' function that was defined at the beginning

of the section. For example, applying it twice returns the original result (reverse' .

reverse' == id), or the head of the list is the last element of the reversed list.

After checking that the properties do not hold for the initial implementation, change the code

to be correct. Does the new version pass all the tests?

�Testing Binary Tree Properties
Testing lists is interesting, but in most of the cases you are going to be creating tests of

your own data types. To create such tests on a given type, you must provide QuickCheck

with a generator of random values of that type. You do so by creating an instance of the

Gen type class, which you do by implementing the arbitrary function. You can use

several tools to generate random values of binary trees.

•	 You can generate values of other data types by calling their

corresponding Gen instance. In the case of binary trees, this should be

done for the elements in the nodes.

Chapter 15 Documenting, Testing, and Verifying

539

•	 You can make a random choice between several generators via the

oneof function, which takes a list of them and at runtime gives back

one of the specified generators. A more refined version of oneof is

frequency, which in addition to the possible outcomes includes a

relative frequency in which each generator should appear. You’ll see

how to use this latter function to decide at each point whether to

generate a node or a leaf of the tree.

•	 If you need your values to satisfy a certain condition, you can add a

call to suchThat. This function will make sure that the given predicate

holds for the random values.

One of the most important properties of a random generator is that it should stop and

produce a value at some point. QuickCheck refines that idea and asks the generators to

give back values of a certain maximum size. Think of the size as some intrinsic measure of

“how big” a value is. The length of a list, the number of leaves in a tree, and the absolute

value of an integer are some examples of these sizes. If your data type admits this idea,

you can get the information of the wanted size via the sized QuickCheck function.

For the working example, the idea of size makes sense: it’s the maximum number

of levels that the tree may have. The strategy for generating random trees to satisfy this

property is to choose between creating a leaf or a node with a decreasing probability for

the second of those choices. If the generation reaches the point in which the size of the

tree must be 0, it just returns a Leaf. Here’s the translation of this idea into code:

instance Arbitrary a => Arbitrary (BinaryTree a) where

 arbitrary = sized $ \n ->

 if (n == 0)

 then return Leaf

 else frequency [(1, return Leaf),

 (n, resize (n-1) arbitrary)]

If you look at the Gen type class, you’ll notice another function, which has the

responsibility of shrinking a value into smaller parts. For a given value, shrink should

return the list of those smaller pieces that should be checked. In the case of binary trees,

the natural choices are the subtrees of a given tree, as this code shows:

 shrink Leaf = []

 shrink (Node _ l r) = [l, r]

Chapter 15 Documenting, Testing, and Verifying

540

Armed with this instance, you can test properties of binary trees. After inserting an item,

let’s check that it can be found in the tree. The declaration of that test is the following:

qcTestInsert :: TestTree

qcTestInsert = QC.testProperty "insert => you will find it" $

 \(n :: Int) t -> treeFind n (treeInsert n t) == Just n

Another possible test is checking that if you insert and delete an element from a tree,

you can no longer find that element. Here it is in QuickCheck terms:

qcTestDelete = QC.testProperty "delete => not find it" $

 \(n :: Int) t -> (treeFind n $ treeDelete n $ treeInsert n t) == Nothing

However, if you think about it, this is not a correct property to check. It may be the

case that the tree t did have a copy of the element n, so inserting and deleting the item

will leave that initial copy. Thus, the result of treeFind will not be Nothing, but Just n.

The solution is telling QuickCheck that the random items to test need to fulfill some

precondition (in this case, that it doesn’t contain the number n initially). This is done via

the (==>) combinator, which takes as arguments the Boolean condition to satisfy and the

actual property body. Here’s an example:

qcTestDelete = QC.testProperty "delete => not find it" $

 \(n :: Int) t ->

 (treeFind n t == Nothing) QC.==>

 (treeFind n $ treeDelete n $ treeInsert n t) == Nothing

These examples show how QuickCheck allows you to get a higher-level view on the

tests. Instead of focusing on single test cases, you declare properties, which are closer to

the original specification.

SMALLCHECK

QuickCheck uses random data to test properties of your code. SmallCheck follows a similar

spirit, but instead of creating random values, it tests properties with every possible value from

a set. For example, you could check the reverse . reverse == id property on every list

up to a certain length.

The public interface of SmallCheck is almost the same as that of QuickCheck. It’s also

integrated in almost every Haskell test framework, including Tasty and Hspec

Chapter 15 Documenting, Testing, and Verifying

541

�Formal Verification with LiquidHaskell
Testing is a very useful tool to gain confidence about your code performing correctly.

But even when using randomized testing, your code only runs on a subset of all possible

inputs. There are other techniques which give you full guarantees over your code, these

are collectively known as formal verification. Although these techniques differ in many

conceptual and technical aspects, in all cases the workflow consists on describing the

intention of your code in some formal language, and the running some tool (maybe

completely automatic, maybe with some human intervention) to verify that the code

complies with that specification.

The type system in Haskell can be seen as a form of formal verification, in which

types are the formal language and the compiler automatically checks for compliance.

Stronger type systems, like dependent types, allow for more invariants to be express and

checked. In this section we are going to introduce LiquidHaskell, which extends regular

Haskell with refinement types. In a nutshell, a refinement type is the combination of a

type (in the usual sense) with a predicate over the values. For example, “integers with

are greater than 0” combines the type “integer” with the predicate “greater than 0”.

The main selling point of LiquidHaskell is that you do not need to learn other language

to implement your code, only a refined version of types to describe your specification.

INSTALLING LIQUIDHASKELL

Obtaining LiquidHaskell is as simple as running cabal install liquidhaskell in the

command line. Unfortunately, a successful installation does not mean that everything is in place

to verify your programs. In addition you need Z3, a so-called SMT solver, which is used internally

by LiquidHaskell to verify the assertions. At the moment of writing you can get binaries for Z3 at

https://github.com/Z3Prover/z3/releases. Regardless of the operating system, both

liquid – LiquidHaskell’s main executable – and z3 need to the on your PATH.

At the moment of writing, LiquidHaskell is not compatible with the latest version of GHC, only

with the 8.4 series. If you are using a newer version of the compiler, my suggestion is to follow

the instructions in LiquidHaskell’s repository1 and install LiquidHaskell using Stack.

1�At https://github.com/ucsd-progsys/liquidhaskell/blob/develop/INSTALL.md.

Chapter 15 Documenting, Testing, and Verifying

https://github.com/Z3Prover/z3/releases
https://github.com/ucsd-progsys/liquidhaskell/blob/develop/INSTALL.md

542

As an example of usage of LiquidHaskell, we are going to verify some properties

of the BinaryTree type introduced in the Haddock section (which I assume you have

imported or copied verbatim from that section). Let’s start with a simple treeSize

function, which gives you the number of nodes in the tree. The code is straightforward;

the interesting part is the annotations between {-@ and @-}. Those annotations, in

addition to your code, are the input to LiquidHaskell. The most important one is the

second one, which refines the type signature of treeSize. In particular, it states that the

output of the function is not any integer, but an integer greater or equal to 0. The refined

type Nat is defined in LiquidHaskell’s standard library.

{-@ LIQUID "--no-termination" @-}

{-@ treeSize :: Tree a -> Nat @-}

treeSize :: Tree a -> Int

treeSize Leaf = 0

treeSize (Node _ l r) = 1 + treeSize l + treeSize r

You can verify that the function obeys its specification by running liquid File.hs in

the command line. If everything is fine the text SAFE appears in your screen. You can try

to break this invariant and see how LiquidHaskell no longer accepts the code.

Note T he other annotation instructs LiquidHaskell for not checking whether your
functions terminate for all inputs. This is another of the interesting features of
LiquidHaskell (in fact, very few of your functions should loop indefinitely) but we
shall not focus on it.

Now that treeSize has been accepted by LiquidHaskell, we can use it to describe a

certain property of binary trees, namely, their size. To instruct the verifier to do so, we

need to declare it as a measure. Not every function can be used as a measure, but when

that is possible the workflow becomes easier. For the rest of the cases LiquidHaskell

supports reflection of functions.

{-@ measure treeSize @-}

Chapter 15 Documenting, Testing, and Verifying

543

Going back to our example in the Haddock section, here is an annotation for the

treeInsert function we defined back there, along with an incorrect implementation.

The annotation declares that if you insert a value x on a binary tree v, the size of the

resulting tree w is one more than that of v. As you can see here, the general syntax of a

refinement type is {name: Type | predicate}.

{-@ treeInsert :: x: a -> v: BinaryTree a

 -> {w: BinaryTree a | treeSize w = treeSize v + 1} @-}

treeInsert :: Ord a => a -> BinaryTree a -> BinaryTree a

treeInsert x Leaf = Node x Leaf Leaf

treeInsert x (Node y l r) | x <= y = Node y l r

 | otherwise = Node y l (treeInsert y r)

If you run LiquidHaskell over this code, you get the following error message:

LiquidHaskell.hs:24:17-26: Error: Liquid Type Mismatch

24 | | x <= y = Node y l r

 ^^^^^^^^^^

 Inferred type

 VV : {v : (BinaryTree a) | treeSize v == (1 + treeSize l) + treeSize r

 && treeSize v >= 0}

 not a subtype of Required type

 VV : {VV : (BinaryTree a) | treeSize VV == treeSize ?a + 1}

This error message tells you that the second branch of the function does not obey its

specification. Indeed, the size of the tree is not increased in that case.

Caution O ne of the weak points of LiquidHaskell is the poor explanations given
whenever the specification is not followed. In most cases you just get a pair of
expected versus actual refinement types, but no indication of why the latter is not
good enough.

That bug is not the only one present in the code (can you find it before I tell you

where it is?). However, the second bug does not relate to the size of the binary trees, but

about the elements which are present. To keep track of that property, we define a new

function treeElements and declare it as an additional measure.

Chapter 15 Documenting, Testing, and Verifying

544

import Data.Set

{-@ measure treeElements @-}

treeElements :: (Ord a) => Tree a -> Set a

treeElements Empty = empty

treeElements (Node x l r) = singleton x `union`

 treeElements l `union` treeElements r

The second step is to refine the signature to introduce a new property that the

function must obey. If you insert a value x in the tree v, regardless of what happens, the

value x should be present in the output tree w.

{-@ treeInsert :: x: a -> v: BinaryTree a

 -> {w: BinaryTree a | treeSize w = treeSize v + 1

 && member x (treeElements w) } @-}

The error message has been left out for conciseness, but it points directly towards the

third equation in treeInsert. Indeed, it your read instead Node y l (treeInsert x r),

in the original version the value x is lost if it is greater than y.

�Describing Binary Search Trees
In the previous section we have been treating binary trees as binary search trees in an

implicit way. By using treeInsert you always get a tree in which all values at the left of

a node are less or equal than the value in that node, and conversely the ones in the right

subtree are greater than the value. This invariant is not present in the Haskell definition

of SearchTree (which is just a copy of BinaryTree with renamed constructors), but we

can make LiquidHaskell aware of it using an annotation.

data SearchTree a = EmptyS | NodeS a (SearchTree a) (SearchTree a)

 deriving (Show, Eq, Ord)

{-@ data SearchTree a = EmptyS

 | NodeS { x:: a

 , left :: SearchTree {v: a | v <= x}

 , right :: SearchTree {v: a | v > x} }

@-}

Chapter 15 Documenting, Testing, and Verifying

545

To understand the annotation, it is important to realize that by writing SearchTree

{v: a | predicate} we are refining the elements of that search tree, not the structure of

the search tree itself. Here is an example of a function which does not obey the invariant:

we create a node without checking that the elements in t1 are smaller than the value x,

not t2 greater than x.

wrong :: a -> SearchTree a -> SearchTree a -> SearchTree a

wrong x t1 t2 = NodeS x t1 t2

LiquidHaskell.hs:69:17-26: Error: Liquid Type Mismatch

 69 | wrong x t1 t2 = NodeS x t1 t2

 ^^^^^^^^^^

 Inferred type

 VV : a

 not a subtype of Required type

 VV : {VV : a | VV <= x}

 In Context

 x : a

As a final example, we can copy treeInsert and make it work on our new

SearchTree type. The previous properties based on size and element were enough to

detect some errors, but not to find this bug in which x and y are mixed:

treeInsertS :: Ord a => a -> SearchTree a -> SearchTree a

treeInsertS x EmptyS = NodeS x EmptyS EmptyS

treeInsertS x (NodeS y l r)

 | x <= y = NodeS x (treeInsertS y l) r

 | otherwise = NodeS y l (treeInsertS x r)

To check that you understand how LiquidHaskell works, Exercise 15-3 asks you to

implement some more functions over trees.

Chapter 15 Documenting, Testing, and Verifying

546

EXERCISE 15-3. VERIFYING BINARY TREES

Try to write a merge function, on both binary trees and search trees. The signature for this

function should be:

mergeTree :: Tree a -> Tree a -> Tree a

This function should combine both trees into a single one with all the elements. Think about

properties such as: how does the elements and size look like?

This was just a brief introduction to LiquidHaskell. Some details we have left without

treatment are LiquidHaskell’s ability to check termination (you never go into an infinite

loop) and totality (you cover all possible cases) of your functions. Also, the properties

we checked upon trees where quite simple, but there is much more you can do. One

important subset is dependent properties, in which the refinement of an argument

depends on the value of the previous one. Finally, LiquidHaskell gives you the power to

not only automatically check for compliance with respect to a specification, but also to

prove manually properties about your program in an equational reasoning style.

�Summary
The focus of this chapter was on tools that help with the testing and maintainability of

Haskell code bases.

•	 Haddock is the preferred tool for associating pieces of documentation

to Haskell declarations and creating beautiful visualizations for it.

•	 Cabal has support for including tests in packages. You learned how to

declare a test-suite stanza and got familiar with several Haskell test

frameworks: Tasty and Hspec.

•	 The HUnit library for unit testing was introduced.

•	 You read about the benefits of randomized testing and learned how to

create these kinds of tests using the QuickCheck library.

•	 As a final touch, you saw examples of how to formally verify your

code by annotating it and running it through LiquidHaskell.

Chapter 15 Documenting, Testing, and Verifying

547
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_16

CHAPTER 16

Architecting Your
Application
In a programming book you usually learn a new language via brief examples. Alas, real

applications are usually much bigger than ten or twenty lines and need further work in

designing, maintaining, and refactoring their code. This chapter tries to bridge the gap

between those two worlds by offering a set of guidelines. Of course, this advice is not

carved in stone, but it can give you a good idea of how to use functional programming.

I’ve introduced many different tools for Haskell programming throughout the book:

test frameworks, profiling tools, and so on. In this chapter you’ll see a summary of all

of them and get some suggestions concerning other good programs that couldn’t be

covered in depth here.

Then I’ll compare how design patterns are applied in object-oriented programming

and how you can use them in the functional realm. As you’ll see, the gap is not so wide,

and many of the concepts translate into functional equivalents but with a different

implementation.

One concept which is very specific of Haskell is that of monad. Although you can

define them in any language, Haskell gives you libraries and notation to use them more

succinctly. At the end of the chapter I’ll describe some design patterns related to monads

and review the most commonly found ones.

�Tools
During the course of this book I have presented many tools. In this section, I will recap

all of them and introduce some others. Because of a lack of space, I am not able to cover

every possible tool, but all of them have good and complete documentation on the

Internet.

548

�Project and Dependency Management
Cabal and Stack are the tools for managing projects in the Haskell world. As you have

seen throughout the book, they share a declarative way to specify which kind of software

artifacts should be built, the dependencies you need, and options for compilation. Each

artifact is defined in a so-called stanza.

Most of the power of Haskell comes from the great repository of libraries called

Hackage. This repository is managed by the Haskell community, which uploads its

latest work to make it available to the outer world. Using the cabal install command,

you can automatically get a copy of a package and compile it. For those cases in which

stability is preferred over novelty, Stackage provides a curated subset of Hackage which

is known to compile together.

Note  Pay attention to licensing when using code from repositories such as
Hackage. Each Cabal file should list the license, so it’s easy to check that a specific
package license is suitable for your use case.

�Code Style
You need to write code that satisfies the constraints of the compiler to produce some

library or executable. However, code that is accepted may not necessarily be easily

maintainable, or it may follow a pattern whose behavior is usually confusing for later

readers.

One piece of advice I strongly suggest you follow is to always enable the -Wall flag

of the compiler. Setting this flag causes the compiler not only to look for errors but also

to issue warnings for your code. The HLint tool is also useful in generating warnings,

helping you find poorly written sections of code that may prove troublesome later.

In many cases, you also want your code to follow some style guidelines, that is, a set

of recommendations on indentation, newlines, whether to use anonymous functions

or define them in let blocks, and so on. Stylish Haskell is a tool that can help you with

guidelines. It reads your code and produces a new version following some configurable

options. Furthermore, it’s possible to integrate it into Visual Studio Code, Emacs, vi, and

many other editors, so you can make it part of your daily development experience.

Chapter 16 Architecting Your Application

549

�Documentation
In the previous chapter I discussed the importance of good and up-to-date

documentation. As you now know, Haddock is the recommended tool for maintaining

that documentation. The main benefit of using Haddock is that the information about

an element appears near the element itself. Haddock is also the tool used to produce the

massive amount of help documents in Hackage. Finally, Haddock’s output shows the

documentation coverage, so you can quickly see whether you’ve forgotten to document

any of the functions within your code.

Searching a large number of packages for functions and data types can be a time-

consuming task. Hoogle was introduced earlier in the book as a way to search Haskell

declarations not only by name or description but also by taking into account the types

that are involved in a function’s signature.

�Test and Verification
One big part of Chapter 15 has been devoted to testing using HUnit, QuickCheck, and

SmallCheck. I can’t stress enough how important testing is for a successful development

project. The great benefit of property-based testing tools, such as QuickCheck or

SmallCheck, is that you indicate how your program should behave at a higher level.

Then, it generates small unit tests for a variety of scenarios. In that way, the coverage is

much higher than using traditional tools.

Type-level programming in Haskell opens the door to formally verifying some

properties of your data types and algorithms directly inside the language. If this is

not enough, you can complement strong types with refinement types as targeted by

LiquidHaskell. While formal verification consumes more time than basic testing, it’s the

only technique that can guarantee a complete absence of bugs.

�Benchmarking
Functional correctness is an important consideration for a piece of code. In many cases,

though, an application should run with a certain performance. The Criterion tool helps

you define test cases and get statistics on the time of execution. The tool runs the test

enough times to make the computed time statistically significant and evaluates the result

completely (in other cases, some part of the computation wouldn’t be measured because

of laziness).

Chapter 16 Architecting Your Application

550

�Profiling
Chapter 5 introduced the GHC profiler, which allows you to gather information about

the time and memory consumption of your applications. Because of the lazy nature of

Haskell, memory profiling becomes much more important than in other languages. Used

wisely, it can shorten the investigation process for performance problems and guide you

toward those places you should spend more time optimizing.

The main disadvantage of the profiler is that it’s not designed for applications with

several threads, such as those you can write with the libraries presented in Chapter 8. For

those cases it’s interesting to consider ThreadScope, a graphic tool for reading GHC event

logs. These event logs include information about when different threads are created and

terminated, along with the activity of each of them.

�Coverage
When you design tests, it’s important to ensure that every possible path of execution is

covered. That is, make sure that you’ve covered all possible branches of conditionals, all

possible patterns for a data type and match, and so on. The hpc tool, included with GHC,

gathers important statistics about the code used in a certain execution. This information

can be used to produce a report with the different kinds of coverage and the achieved

percentage.

�Remote Monitoring
In many cases, applications are not processes with a limited life but are server-like in

nature. One example of this kind is web applications. The ekg package enables you to get

statistics of the performance and behavior of an application while executing. In addition,

it does so via a web interface, so its management is quite simple. When using ekg, you’re

not restricted to the information it gives by default; you can include your own counters.

For example, for a web application you might be interested in knowing how many pages

are served by the minute or how many database connections are kept open through

time.

Chapter 16 Architecting Your Application

551

�Design Patterns and Functional Programming
You may have heard that functional programming makes design patterns completely

irrelevant. This is quite a strong statement. Of course, many of the object-oriented

design patterns won’t be directly applicable, because you’re working in a different

programming paradigm. But this doesn’t mean that a software project developed

using Haskell wouldn’t need a careful analysis and design prior to the start of coding.

Furthermore, common and reusable ways of solving problems (called patterns) also

appear in functional code.

In many cases, the statement about design patterns being irrelevant refers to those

design patterns I call code templates. Think of the Singleton1 design pattern for keeping

just one instance of a specific class in memory. When you need to apply it, you know

exactly what to write, and it always looks the same. The code is just boilerplate; that’s the

reason why languages like Scala offer specific syntax just for this case. In those scenarios,

a Haskell solution would usually abstract the pattern at a high level, usually in a type

class or in a higher-order function.

In some other cases, the language features allow a specific pattern to integrate

seamlessly into the language. One example is the Strategy design pattern. It’s used to

define a computation with some moving parts that depend on later considerations, such

as changing the code that shows the total amount, depending on the currency you’re

using. In an object-oriented setting, you would define an abstract class or interface,

and derived classes would have the code for each currency. Within Haskell, you would

instead use a higher-order function, which takes as parameters all those parts of the

computation that may change.

From a conceptual point of view, some patterns are still there. In any software

system, whether it’s developed in procedural, object-oriented, or functional style,

you have the problem of incompatible interfaces between components. In the object-

oriented world, you would define a common interface and create wrapper classes to

access the functionality of each component (this is known as the Adapter pattern).

In Haskell, you would use type classes instead and make each component an instance

of that class. In that way, you have a common method to communicate with all of them.

In this case, the problem (communicating with incompatible systems) and the idea of the

1�In the following pages, I’ll refer to several object-oriented design patterns covered in the book
Design Patterns: Elements of Reusable Object-Oriented Software.

Chapter 16 Architecting Your Application

552

solution (defining a common protocol and making the systems adapt to it) remain; the

change is just in the implementation.

Inside the base libraries you can find functors, foldables, applicatives, monads,

and many other type classes, which are at a high level of abstraction. In those cases,

applying a design pattern is equivalent to instantiating a type class. Some of these type

classes actually make the pattern more general. An iterator in object-oriented languages

only allows operating on values from the beginning to the end of a collection. But in

Haskell you have a whole range of operations of collections: applying a function inside a

container via Functor, applying a function repeatedly to obtain a result via Foldable, or

iterating while maintaining the structure via Traversable.

You’ve seen that some patterns are subsumed by language features or higher-level

abstraction. Of course, many others remain in their original incarnation. One example

is the Pool design pattern, which provides a way to efficiently manage a set of resources.

You can find many packages that use this pattern. One example is how the Persistent

database access layer uses a pool to manage database connections.

Of course, some Haskell features, such as immutability of values, higher-order

functions, and laziness, affect the way in which you design your application. Think of

concurrency: in an imperative setting, you have to use locks, semaphores, or rendezvous

mechanisms to control access to shared resources. In many cases, the reason why

you need those low-level operations is the possibility of side effects in any part of the

code. Haskell, on the other hand, provides clear separation between pure code and the

possible side effects. Thus, you can use a more elegant solution to that problem. When

dealing with concurrency in Haskell, you use Software Transactional Memory, which

embodies the concept of transactions.

Finally, I would like to point out that the Haskell philosophy and features get

on well with the iterative and agile development methodologies. Being able to test

functions directly in the interpreter helps you to test your code as you write it. And with

QuickCheck, you can generate many more tests than you would if you had to write all

of them by hand. In addition to that, Haskell is amenable to refactoring. Higher-order

functions allow you to get the skeleton of an algorithm and then obtain variants by

function application, and strong types guarantee that your code doesn’t change in

unexpected ways.

Many other benefits of a language like Haskell, such as strong typing or strict

separation between pure code and code with side effects, were already discussed in

Chapter 1. In general, Haskell gives you another perspective on your software design,

which will greatly benefit your daily programming.

Chapter 16 Architecting Your Application

553

�Medium-Level Guidelines
In this section I’m not going to mention micro-optimizations or code templates for

Haskell code. Instead, I will introduce some general guidelines that will make your code

much more readable and maintainable.

�Use Higher-Order Combinators
Using functions such as map, filter, and fold will make the purpose of your code more

apparent to a future reader of it. You saw in Chapters 3 and 14 how recursion over a data

type can usually be turned into a series of calls to these functions, so you should keep its

use to a minimum.

�Refactor
In the previous section I discussed how Haskell goes quite well with agile programming

methodologies. The ability to pass functions as parameters can help you to build

functions that encapsulate the common parts of many algorithms. Many classes of

problems can be divided in a general skeleton and then instantiated to each case by

introducing the small parts that are missing.

The benefits of higher-order refactoring are twofold. First, you reduce the amount

of code you have to maintain, and thus you have fewer possibilities of introducing new

bugs because your code will have been much better tested. Furthermore, when you

abstract a common pattern in your code, the correctness or the corner cases of your

approach become more obvious.

�Use Type Classes Wisely
Type classes are a powerful tool for abstracting the common idioms of several data types.

The Haskell libraries are full of type classes, and almost every important programming

concept is implemented as a type class. Try to follow the steps of those libraries and

implement your concepts as type classes.

At this point, I’ll give you one word of warning: sometimes type classes are overused,

and the code becomes much more difficult to read. The resolution mechanism of type

class instances happens in the compiler, and the specific instance being chosen may not

Chapter 16 Architecting Your Application

554

be directly apparent. Thus, a more direct approach like abstract data types or higher-

order functions may be desirable. In particular, be aware of these two scenarios:

	 1.	 If all your type classes have only one instance, it may be the case

that you don’t really need to abstract those specific concepts.

	 2.	 Don’t directly map object-oriented classes or interfaces to type

classes.

�Enforce Invariants via the Type System
Chapter 13 discussed many ways in which you can enforce invariants in your values

via strong types. Using those techniques in your code will benefit you in the short term

because more errors will be caught by the compiler; you will also benefit in the long term

because modifications that would break your invariants will be denied.

The type system can help you catch many errors even if you don’t follow all

these techniques. One good example is newtype. You can separate different concepts

(such as money, a record identifier, or distance) even if they have the same computer

representation (which in that case would be an integer).

�Stay (As) Pure and Polymorphic (As Possible)
If you write your functions by separating side effects from the rest of your computation,

you’ll have a much easier time testing your code. One useful pattern is to create a core

of pure functions that work on your core data types, apply a lot of QuickCheck tests and

even formal verification, and build from there.

In case you need to work with monadic contexts, try to use monad classes (such

as MonadState, MonadError, etc.) to specify exactly what functionality you need from a

monad stack. The solution of specifying the complete monad stack you’re using from

the beginning is not maintainable because usually you need to add layers for extra

functionality. Furthermore, keeping your code polymorphic will enable you to use it in

different ways. For example, you may be interested in testing your Persistent code against

a list instead of a database, something that would be possible if instead of SqlPersistT

(the actual transformer) you specify PersistQuery (the monad class) in your signature.

The essence of this advice is that polymorphism opens the door to reusability.

If instead of a function using a list of integers you write a function that works on

Chapter 16 Architecting Your Application

555

any Traversable whose elements are Nums, you will be able to change both the

representation of the container (tree instead of lists) and the type of number (Integers

instead of Ints) without any further change.

Tip  You can find many more guidelines in the “Hoogle Overview” article by
Neil Mitchell in issue 12 of The Monad.Reader (the community-managed Haskell
magazine), as well as several talks and StackOverflow answers by Don Stewart.

�Patterns with Monads
Almost any developer which comes to hear about Haskell also hears about monads.

Although monads are a very general concept, which underlies ideas present in other

languages such as list comprehensions, promises, or continue-if-not-null operators,

Haskell is one of the few languages which makes this concept so central. In this last

section of the book we review and introduce many of the most common monads and

discuss two design patterns related to them.

�Summary of Monads
Table 16-1 shows the most important monad classes and which monads (shown in

italics) or monad transformers (shown in regular face) are instances of each class, along

with the most important operations that each class embodies. There are more monads

explained in this table than there are throughout the entire book. In particular, two kinds

of additions are found.

•	 In some cases, the specific monad has been introduced, but not the

monad class that abstracts the pattern. This is the case of the Par

monad, which implements the ParFuture and ParIVar type classes,

or the MonadRandom class.

•	 Other monads are completely new, but I think they deserve to be

listed. MonadSupply, which is used to having a source of new values

(which you can use as unique identifiers, for example), fits in this case.

Chapter 16 Architecting Your Application

556

Ta
bl

e
16

-1
. 

C
om

m
on

 a
n

d
U

se
fu

l M
on

ad
 C

la
ss

es

Cl
as

s
Av

ai
la

bl
e

Pa
ck

ag
e

De
sc

rip
tio

n
Op

er
at

io
ns

Id
en
ti
ty
T

mt
l

Fu
nc

tio
n

ap
pl

ic
at

io
n:

no
 e

xt
ra

 e
ffe

ct

No
ne

Mo
na
dP
lu
s

Ma
yb
eT

mt
l

Ch
oi

ce
 a

nd
 fa

ilu
re

mz
er
o:

 re
pr

es
en

ts
 fa

ilu
re

mp
lu
s:

 o
ffe

rs
 c

ho
ic

e
be

tw
ee

n
tw

o
re

su
lts

gu
ar
d:

 c
he

ck
s

a
Bo

ol
ea

n
co

nd
iti

on
Li
st
T

mt
l

Mo
na
dL
og
ic

Lo
gi
cT

lo
gi
ct

Ba
ck

tra
ck

in
g

an
d

fa
ir

in
te

rle
av

in
g

in
te
rl
ea
ve

: f
ai

r d
is

ju
nc

tio
n

(>
>-
):

 fa
ir

co
nj

un
ct

io
n

if
te

: c
on

di
tio

na
l c

he
ck

 w
ith

 c
ut

on
ce

: c
om

m
its

 to
 fi

rs
t a

ns
w

er
 a

nd
 p

ru
ne

s

Mo
na
dZ
ip

Li
st
T

mt
l

Pa
ra

lle
l c

om
pr

eh
en

si
on

mz
ip

: c
on

ve
rts

 tw
o

lis
ts

 in
to

 a
 li

st
 o

f p
ai

rs

mu
nz
ip

: c
on

ve
rts

 a
 li

st
 o

f p
ai

rs
 in

to
 tw

o
lis

ts

Mo
na
dR
ea
de

r
Re
ad
er
T
r

mt
l

Ad
ds

 a
 c

on
te

xt
 w

ith
 a

re
ad

-o
nl

y
va

lu
e

as
k:

 g
et

s
th

e
va

lu
e

fro
m

 th
e

co
nt

ex
t

lo
ca
l:

 e
xe

cu
te

s
so

m
e

co
m

pu
ta

tio
n

w
ith

 a

ne
w

 c
on

te
xt

Mo
no
id
 w
 =
>

RW
ST
 r
 w
 s

mt
l

Mo
na
dW
ri
te
r

Mo
no
id
 w
 =
>

Wr
it
er
T
w

mt
l

Pr
od

uc
es

 a
 w

rit
e-

on
ly

ou
tp

ut
 b

y
ap

pe
nd

in
g

se
ve

ra
l v

al
ue

s

te
ll

: a
pp

en
ds

 a
 n

ew
 v

al
ue

li
st
en

: o
bt

ai
ns

 th
e

ou
tp

ut
 o

f a

su
bc

om
pu

ta
tio

n
Mo
no
id
 w
 =
>

RW
ST
 r
 w
 s

mt
l

Chapter 16 Architecting Your Application

557

Mo
na
dS
ta
te

St
at
eT
 s

mt
l

Ke
ep

s
an

 in
te

rn
al

 s
ta

te
 th

at

ca
n

be
 b

ot
h

re
ad

 a
nd

m
od

ifi
ed

ge
t:

 o
bt

ai
ns

 th
e

cu
rr

en
t v

al
ue

 o
f s

ta
te

pu
t:

 g
iv

es
 a

 n
ew

 v
al

ue
 to

 th
e

st
at

e

mo
di
fy

: a
pp

lie
s

a
fu

nc
tio

n
to

 th
e

st
at

e
Mo
no
id
 w
 =
>

RW
ST
 r
 w
 s

mt
l

ST
ba
se

Re
st

ric
te

d
m

ut
ab

le
 v

ar
ia

bl
es

Cr
ea

tio
n

an
d

m
od

ifi
ca

tio
n

of
 I
OR
ef

 v
al

ue
s

Mo
na
dS
up
pl

y
Mo
no
id
 s
 =
>

Su
pp
ly
T
s

mo
na
d-

su
pp
ly

Co
ns

um
es

 v
al

ue
s

fro
m

 a

su
pp

ly

su
pp
ly

: g
et

s
th

e
ne

xt
 v

al
ue

Mo
na
dE
rr
or

IO
ba
se

Fa
ilu

re
 w

ith
 s

om
e

ex
tra

in
fo

rm
at

io
n:

 d
ep

en
di

ng
 o

n

th
e

m
on

ad
, t

he
 fa

ilu
re

 is

re
pr

es
en

te
d

as
 p

ur
e

er
ro

rs
 o

r

as
 e

xt
en

si
bl

e
ex

ce
pt

io
ns

th
ro
wE
rr
or

: s
ig

na
ls

 fa
ilu

re

ca
tc
hE
rr
or

: r
ec

ov
er

s
fro

m
 e

rr
or

Ma
yb
eT

mt
l

Ex
ce
pT
 e

mt
l

Mo
na
dC
at
ch

IO
ba
se

Th
ro

w
in

g
an

d
ca

tc
hi

ng

ex
te

ns
ib

le
 e

xc
ep

tio
ns

th
ro
wM

: t
hr

ow
s

an
 e

xc
ep

tio
n

ca
tc
h,

 h
an
dl
e:

 re
co

ve
r f

ro
m

 o
ne

 e
xc

ep
tio

n

ty
pe

ca
tc
he
s,

 h
an
dl
es

: r
ec

ov
er

 fr
om

 s
ev

er
al

ex
ce

pt
io

n
ty

pe
s

br
ac
ke
t:

 re
so

ur
ce

 a
cq

ui
si

tio
n

an
d

di
sp

os
al

Ca
tc
hT
 =
=

Ex
ce
pt
T

So
me
Ex
ce
pt
io
n

ex
ce

pt
io
ns

Mo
na
dI
O

IO
ba
se

Pe
rfo

rm
s

un
re

st
ric

te
d

si
de

ef
fe

ct
s,

 s
uc

h
as

 re
ad

in
g

an
d

w
rit

in
g

fil
es

 o
r c

om
m

un
ic

at
in

g

th
ro

ug
h

ne
tw

or
k

li
ft
IO

: m
ov

es
 a

 c
om

pu
ta

tio
n

in
 th

e
IO

m
on

ad
 in

to
 th

e
cu

rr
en

t m
on

ad
 s

ta
ck

Pa
rI
O

mo
na
d-
pa
r

(c
on

ti
n

u
ed

)

Chapter 16 Architecting Your Application

558

Cl
as

s
Av

ai
la

bl
e

Pa
ck

ag
e

De
sc

rip
tio

n
Op

er
at

io
ns

Mo
na
dR
an
do
m

IO
ba
se

Ge
ne

ra
te

s
ra

nd
om

 v
al

ue
s

ge
tR
an
do
m,

 r
an
do
mI
O:

 g
et

 u
nb

ou
nd

ed

ra
nd

om
 v

al
ue

ge
tR
an
do
mR

, r
an
do
mR
IO

: r
an

do
m

 v
al

ue

w
ith

in
 b

ou
nd

s

Ra
nd
T

Mo
na
dR
an
do
m

Pa
rF
ut
ur
e

Pa
r

Pa
rI
O

mo
na
d-
pa
r

Pa
ra

lle
lis

m
 b

as
ed

 o
n

pr
om

is
es

sp
aw
n,

 s
pa
wn
P:

 a
sy

nc
hr

on
ou

sl
y

ex
ec

ut
e

a

fu
nc

tio
n

an
d

re
tu

rn
 a

n
IV
ar

 th
at

 w
ill

 g
iv

e
its

re
su

lt

ge
t:

 o
bt

ai
ns

 th
e

re
su

lt
in

si
de

 a
n
IV
ar

,

bl
oc

ki
ng

 if
 n

ee
de

d

Pa
rI
Va
r

Pa
r

Pa
rI
O

mo
na
d-
pa
r

Da
ta

flo
w

 p
ar

al
le

lis
m

, w
he

re

de
pe

nd
en

ci
es

 a
re

 g
iv

en
 v

ia

IV
ar

s

fo
rk

: s
ta

rts
 a

 c
om

pu
ta

tio
n

in
 p

ar
al

le
l

ne
w:

 c
re

at
es

 a
 n

ew
 I
Va
r

fo
r h

ol
di

ng
 a

 v
al

ue

pu
t:

 w
rit

es
 a

 v
al

ue
 in

si
de

 a
n
IV
ar

Ev
al

pa
ra
ll
el

De
te

rm
in

is
tic

 p
ar

al
le

lis
m

ba
se

d
on

 s
tra

te
gi

es
 fo

r

ev
al

ua
tin

g
la

zy
 ty

pe
s

rs
eq

, r
de
ep
se
q:

 e
va

lu
at

e
its

 a
rg

um
en

t

se
qu

en
tia

lly

rp
ar

: e
va

lu
at

es
 it

s
ar

gu
m

en
t i

n
pa

ra
lle

l

Ta
bl

e
16

-1
. 

(c
on

ti
n

u
ed

)
Chapter 16 Architecting Your Application

559

ST
M

st
m

At
om

ic
 tr

an
sa

ct
io

ns
at
om
ic
al
ly

: e
xe

cu
te

s
a

tra
ns

ac
tio

n
in

 a
n

at
om

ic
 w

ay

re
tr
y:

 ro
lls

 b
ac

k
th

e
cu

rr
en

t t
ra

ns
ac

tio
n

an
d

tri
es

 to
 e

xe
cu

te
 it

 a
ga

in
 w

he
n

th
e

ci
rc

um
st

an
ce

s
ha

d
ch

an
ge

d

or
El
se

: e
xe

cu
te

s
a

tra
ns

ac
tio

n
in

 s
om

e
ot

he
r

fa
ils

Cr
ea

tio
n

an
d

m
od

ifi
ca

tio
n

of
 T
Va
rs

, T
Qu
eu
es

,

an
d

ot
he

rs

Mo
na
dR
es
ou
rc
e

Re
so
ur
ce
T

re
so

ur
ce
t

Sa
fe

 a
llo

ca
tio

n
an

d
re

le
as

e
of

re
so

ur
ce

s

al
lo
ca
te

: p
er

fo
rm

s
so

m
e

re
so

ur
ce

ac
qu

is
iti

on
 a

nd
 re

gi
st

er
s

th
e

ac
tio

n
ne

ed
ed

 fo
r

re
le

as
in

g
at

 th
e

en
d

re
le
as
e:

 d
ea

llo
ca

te
s

a
re

so
ur

ce
 p

re
m

at
ur

el
y

Co
nd
ui
tT
 i
 o

co
nd
ui
t

St
re

am
in

g
da

ta
aw
ai
t:

 c
on

su
m

es
 th

e
ne

xt
 e

le
m

en
t f

ro
m

 th
e

in
pu

t s
tre

am

le
ft
ov
er

: p
ut

s
ba

ck
 a

n
el

em
en

t i
n

th
e

in
pu

t

st
re

am

yi
el
d:

 g
en

er
at

es
 a

n
el

em
en

t i
n

th
e

ou
tp

ut

st
re

am

Pa
rs
er

at
to
pa
rs
ec

M
at

ch
es

 a
 li

st
 o

f c
ha

ra
ct

er
s

ag
ai

ns
t a

 p
re

de
fin

ed
 p

at
te

rn

Pa
rs
er

 m
or

e
of

te
n

us
ed

 v
ia

 it
s
Ap
pl
ic
at
iv
e

in
te

rfa
ce

(c
on

ti
n

u
ed

)

Chapter 16 Architecting Your Application

560

Cl
as

s
Av

ai
la

bl
e

Pa
ck

ag
e

De
sc

rip
tio

n
Op

er
at

io
ns

Pe
rs
is
tS
to
re

Sq
lP
er
si
st
T

pe
rs
is
te
nt

Ob
ta

in
s

an
d

m
an

ag
es

 re
co

rd
s

in
 a

 d
at

ab
as

e
us

in
g

its
 k

ey

ge
t:

 o
bt

ai
ns

 th
e

re
co

rd
 w

ith
 a

 g
iv

en
 k

ey

in
se
rt

: c
re

at
es

 a
 n

ew
 re

co
rd

 in
 th

e
da

ta
ba

se

re
ps
er
t:

 re
pl

ac
es

 a
 re

co
rd

 w
ith

 n
ew

 in
fo

rm
at

io
n

or
 c

re
at

es
 a

 n
ew

 o
ne

 if
 th

at
 k

ey
 d

id
n’

t e
xis

t

de
le
te

: d
el

et
es

 a
 re

co
rd

 w
ith

 a
 g

iv
en

 k
ey

Pe
rs
is
tU
ni

qu
e

Ob
ta

in
s

an
d

m
an

ag
es

re
co

rd
s

in
 a

 d
at

ab
as

e
us

in
g

un
iq

ue
 c

on
st

ra
in

ts

ge
tB
y:

 o
bt

ai
ns

 th
e

re
co

rd
 w

ith
 a

 g
iv

en
 u

ni
qu

e

co
ns

tra
in

t

in
se
rt
Un
iq
ue

: i
ns

er
ts

 c
he

ck
in

g
un

iq
ue

ne
ss

co
ns

tra
in

ts

de
le
te
By

: d
el

et
es

 th
e

re
co

rd
 w

ith
 a

 g
iv

en

co
ns

tra
in

t

Pe
rs
is
tQ
ue
ry

Ob
ta

in
s

an
d

m
an

ag
es

re
co

rd
s

in
 a

 d
at

ab
as

e
vi

a

qu
er

ie
s

se
le
ct
So
ur
ce

, s
el
ec
tL
is
t:

 o
bt

ai
n

th
e

re
co

rd
 th

at
 s

at
is

fie
s

a
gi

ve
n

se
t o

f c
on

di
tio

ns

up
da
te

: m
od

ifi
es

 in
fo

rm
at

io
n

of
 a

 g
iv

en
 re

co
rd

up
da
te
Wh
er
e:

 m
od

ifi
es

 a
ll

re
co

rd
s

fro
m

 a

qu
er

y

de
le
te
Wh
er
e:

 d
el

et
ed

 a
ll

re
co

rd
s

fro
m

 a
 q

ue
ry

Mo
na
dC
on
t

Co
nt
T

mt
l

Co
m

pu
ta

tio
ns

 th
at

 c
an

 b
e

in
te

rr
up

te
d

an
d

re
su

m
ed

ca
ll
CC

: c
al

ls
 a

 fu
nc

tio
n

w
ith

 it
s

cu
rr

en
t

co
nt

in
ua

tio
n

Mo
na
dF
re
e

Fr
ee
T
f

fr
ee

Fr
ee

 m
on

ad
 o

ve
r a

 fu
nc

to
r

Mo
na
dT
ra
ns

Al
l m

on
ad

tra
ns

fo
rm

er
s

mt
l

Ty
pe

 c
la

ss
 th

at
 a

ll
m

on
ad

tra
ns

fo
rm

er
s

in
st

an
tia

te

li
ft

: m
ov

es
 a

 c
om

pu
ta

tio
n

on
e

la
ye

r u
p

in
 th

e

st
ac

k

Ta
bl

e
16

-1
. 

(c
on

ti
n

u
ed

)
Chapter 16 Architecting Your Application

561

�Restrictive Monad Classes
Looking at the previous table you may notice that some monads provide a very restricted

set of operations – for example, ReaderT just offers the ability to obtain a single value –

while others open the door to many different effects – think of IO or the monads from the

persistent package. The latter case goes at odds with Haskell’s philosophy of making

types describe your functions: if your signature mentions IO, nothing really could be

said about its behavior. Here I describe a small pattern to restrict the operations while

keeping a good performance.

To understand this pattern, we need to look back at the monad classes introduced

in Chapter 7. At that point the problem was different: we had just introduced monad

transformers, and we wanted to have a common interface for any stack which contained

a given layer, regardless of where that layer was found. That is, we wanted to keep using

the ask function for any stack which contained a ReaderT transformer.

Imagine now that we want to use file operations in a function. If we throw an IO

monad in the signature, we could also do network operations or create threads. Or even

worse, if we want to write a combinator – a function which takes another as parameter –

and we allow IO there, we can never be sure about what that function will do. This is the

perfect scenario to restrict the set of operations allowed by IO to the file system subset.

The solution is to introduce a new monad class with only the desired set of

operations. In this case, let’s call that monad MonadFS, to follow the convention from the

mtl package:

class Monad m => MonadFS m where

 readFile :: FilePath -> m ByteString

 writeFile :: FilePath -> ByteString -> m ()

Now you can guarantee that a function only uses those operations, and not any from

IO, by requiring a MonadFS constructor. For example:

copyFile :: MonadFS m => FilePath -> FilePath -> m ()

copyFile inFile outFile = do contents <- readFile inFile

 writeFile outFile contents

Being able to specify very tightly the requirements of copyFile is great, but quite

useless if you cannot execute the code. The trick is to create an instance of the restrictive

Chapter 16 Architecting Your Application

562

monad class for the monad you wanted to restrict. In this case, this boils down to a

MonadFS instance for IO:

instance MonadFS IO where ...

The consequence is that now you can use copyFile anywhere a function which

operates on IO is expected. Furthermore, the cost of this abstraction is almost

negligible, since GHC specializes functions like copyFile when they are used with a

single type class.

�Roll Your Own Monad
Monads appear everywhere in Haskell code. The special do notation provides a

convenient syntax for sequencing and composing actions, and there are many libraries

and functions operating on monadic code. Thus, writing a monad appears as an obvious

choice for developing a domain-specific language for your actions.

In Hackage there are several packages that ease the creation of those monads, like

operational or free. The latter will be focused on in this section. In any case, all these

packages encompass a similar abstraction, which is the “sequence of actions”: each

monadic value is a list of primitive operations. To create the full monad, you need to

provide two sets of data.

	 1.	 The primitive operations that you may take and the building

blocks of your monad

	 2.	 How each operation affects the related context and which value

provides to the next computation in the list

As a running example, let’s consider a small DSL that allows you to manage a

database of clients. The basic operations will be adding a new client, querying the client

by its identifier, and replacing the information about a client. So, in some sense it’s a

restricted version of Persistent. The data types used to define Clients are as follows:

newtype ClientId = ClientId Integer deriving Show

data Client = Client { clientName :: String } deriving Show

When using the free package, each operation is encoded as a constructor in a

regular data type. This is called the syntax of the monad. For each operation you need to

first write the parameters to the operation in question. For example, writing a new client

Chapter 16 Architecting Your Application

563

in the database takes that client as the parameter. Then, you need to define how the

result of the operation gets threaded to the next step in the computation. This is done by

requiring a function from the result type to a yet-unknown data type that will refer to a

list of computations. In the example of new clients, the result is a ClientId, which must

be threaded to the next computation, r. The code for all operations reads as follows:

data AdminOp r = GetClient ClientId (Client -> r)

 | SaveClient ClientId Client r

 | NewClient Client (ClientId -> r)

Notice that the SaveClient operation doesn’t return any value, so the next operation

doesn’t take any parameter. Thus, you only need to specify r in the data constructor.

The free package mandates that every operation data type follows this schema and

that the type is an instance of Functor. The good news is that once again you can use

the deriving functionality in GHC and automatically generate such an instance. It now

reads as follows:

{-# LANGUAGE DeriveFunctor #-}

data AdminOp r = ...

 deriving Functor

Your monad will now be the free monad over that Functor in question. You could

refer each time to the Free type parametrized by your operations, but usually you define

a type synonym, as follows:

import Control.Monad.Free

type Admin = Free AdminOp

Still, you cannot use your data type directly inside a do block. You first need to lift

your operations to the free monad. For this matter, you should use the liftF function

from Control.Monad.Free. The only item left is what to provide as the last parameter in

each operation. As rule of thumb, you should provide id if the next list of operation must

be given a parameter and provide () elsewhere. In this case, it means the following:

getClient :: ClientId -> Admin Client

getClient i = liftF $ GetClient i id

Chapter 16 Architecting Your Application

564

saveClient :: ClientId -> Client -> Admin ()

saveClient i c = liftF $ SaveClient i c ()

newClient :: Client -> Admin ClientId

newClient c = liftF $ NewClient c id

Finally, you have a monad! It can even be used within the do notation.

import Data.Char

exampleAdmin :: String -> Admin String

exampleAdmin s = do i <- newClient $ Client s

 n <- fmap clientName $ getClient i

 return $ map toUpper n

However, exampleAdmin won’t have any effect by itself. At this point, this is only a

description of the computation that should happen. The free package represents the list

of operations using two constructors: one operation followed by a list of other operations

uses Free, whereas the end of a computation is marked using Pure. This means that the

previous example is equivalent to writing this:

Free (NewClient (Client s) (\i ->

 Free (fmap clientName (GetClient i (\n ->

 Pure $ map toUpper n)))))

The final step is giving an interpretation of each operation. The following example

interprets the operations as working on an association list of identifiers and clients.

As you can see, the interface is like other run functions on other monads.

import Data.List

runAdmin :: Admin a -> ([(Integer,Client)],a)

runAdmin m = runAdmin' m []

 where runAdmin' (Free (GetClient (ClientId i) n)) l =

 let Just c = lookup i l in runAdmin' (n c) l

 runAdmin' (Free (SaveClient (ClientId i) c n)) l =

 let l' = deleteBy (\(j,_) (k,_) -> j == k) (i, c) l

 in runAdmin' n $ (i,c):l'

 runAdmin' (Free (NewClient c n)) [] =

Chapter 16 Architecting Your Application

565

 runAdmin' (n $ ClientId 1) [(1,c)]

 runAdmin' (Free (NewClient c n)) l =

 let (i',_) = maximumBy (\(j,_) (k,_) -> compare j k) l

 in runAdmin' (n $ ClientId (i' + 1)) $ (i' + 1,c):l

 runAdmin' (Pure c) l = (l, c)

In this case, this interpretation could be used for testing purposes, and another

interpretation would provide real access to a database. You may check that your monad

indeed works on the interpreter.

*Chapter16.FreeMonads> runAdmin $ exampleAdmin "Alejandro"

([(1,Client {clientName = "Alejandro"})], "ALEJANDRO")

The free package provides many more features for rolling your own monads. For

example, you may decide to create a monad transformer instead of a plain monad, just

by using FreeT instead of Free. If your application will revolve around a custom monad,

it’s useful to read the documentation of the Control.Monad.Free.Church module, which

can enhance the performance in the long term. Finally, free provides not only free

monads but also free Applicatives, Alternatives, and MonadPlus.

�Summary
In this chapter you got a bird’s-eye view of design using Haskell and functional patterns.

•	 I walked you through many of the tools that the Haskell Platform and

Hackage provide for documentation, testing, profiling, and project

management.

•	 I discussed the relation between functional design and more

traditional object-oriented patterns. Some patterns are kept, others

change the way in which they are implemented, and still others are

not needed anymore.

•	 I explained some specific design patterns related to monads. You can

find a summary of useful monad classes in Table 16-1. Furthermore,

you have learned how to restrict monads using type classes and how

to roll your own monad.

Chapter 16 Architecting Your Application

567
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7_17

CHAPTER 17

Looking Further
Congratulations for arriving at this point. Thus far in the book you’ve learned many

of the features that Haskell provides in terms of language and libraries. The notions of

functor, monad, and GADT should not be alien to you anymore. You’ve also seen how to

design large applications in Haskell and how to manage databases and web applications.

And above all, you’ve seen how a strong type system encourages a more systematic way

of writing software and helps in reducing time spent in coding and maintenance.

As with any other language, a book cannot contain every single use of Haskell.

Hackage and Stackage provide an enormous amount of functionality already packaged

and should be your entry point for discovering the vast field of Haskell libraries. The

book has just skimmed the surface of parallel and concurrent code libraries or web

frameworks, to mention two examples of places where you may deepen your knowledge.

The Haskell language also has more surprises built into its compiler. In the previous

chapter, I mentioned data type generic programming, and along with type-level

programming, it can reduce even more boilerplate code for validation while increasing

safety. The metaprogramming facility Template Haskell has been used extensively in the

book, but how to create your own quasiquoters is beyond the scope of the book. Another

place where you may expect new techniques to appear is in kind-level programming.

In conclusion, I hope this book doesn’t put an end to your journey in Haskell and

functional programming but encourages you to use this language in your daily or hobby

projects and to look at many of the available resources that are online. Thanks for reading!

�Projects
In the previous chapter I have discussed application and library design in Haskell. In this

section I’ll describe some projects to put that advice in practice, along with the design

considerations you might look at. From those considerations, you can infer patterns to

apply in your own designs.

568

In addition, you can see these projects as extra, more comprehensive exercises for

practicing your Haskell skills. In each of these cases, the solution is more open-ended

than for the tasks suggested in the rest of the book. One hint for all the cases is to search

libraries in Hackage or Stackage that may help solving the problem at hand.

�Data Mining Library
Part 2 of the book was devoted to developing two data-mining algorithms: K-means for

clustering and Apriori for association rules learning. This first project entails turning the

code you already have into a full-fledged data mining library, with support for different

algorithms for each problem.

Even if you consider only one problem, such as clustering, it’s interesting to look at

the commonalities of each algorithm solving that task. For example, data can come from

different sources (a list, a conduit source, a database query), but you should provide a

common interface to all of them to make the algorithms independent of that choice.

In Haskell, this level of abstraction is obtained via type classes. Here, you may create a

ClusteringDataSource one.

A good library includes not only data types, functions, and type classes but also an

exploration of the laws and properties that the user should count on. For data types, it’s

useful to consider whether a given type is an instance of one of the common abstractions

in the Haskell Platform. Here are some examples:

•	 Many data types are composed in a way that allows you to generate

a new value from the other two. The Monoid type class handles

this case. Making your type a monoid can guide you into thinking

whether a neutral element would be useful in your case.

•	 Other types fit more into the container-like intuition. In those cases,

try to instantiate the Functor, Foldable, and Traversable type

classes.

•	 Those data types that entail some kind of computational context, or

in some way a description of a set of actions to take, fit well into the

Applicative and Monad abstractions. Additionally, if your type allows

choice, Alternative and MonadPlus may help.

Chapter 17 Looking Further

569

Figure 17-1 shows most of these type classes, along with their parent-child relation.

Alternative is not nominally a superclass of MonadPlus (it does not appear in its

declaration), but this is more an historical accident that an explicit design choice in the

base libraries.

When writing instances of these well-known abstractions, you should abide by the

rules they come with, even though those rules are not checked by the compiler. Users of

your library would be surprised to find an instance of Functor that doesn’t satisfy that

fmap id = id, for example. The general guideline is the no-surprises rule, sometimes

referred to as the principle of least astonishment: make your library do what users expect

from it or otherwise document the behavior prominently. For help in ensuring that rules

are always kept correct, you may use formal verification or QuickCheck.

One extra consideration you should make is for performance. Be aware that your

previous ideas about code optimization may not be useful in Haskell, where code is

evaluated lazily. I’ve already discussed the GHC profiler and the Criterion package,

which are valuable in spotting performance deficiencies and finding the cause. If you’re

interested in complexity analysis of Haskell code, you should read the book Purely

Functional Data Structures by Chris Okasaki (Cambridge University Press, 1999).

Foldable Functor

Traversable Applicative

Alternative Monad

MonadPlus Other
Monad
classes

Figure 17-1.  Important type classes in the Haskell Platform

Chapter 17 Looking Further

570

WRITE APPLICATIONS AS LIBRARIES

Your software design can greatly benefit from thinking of your application as a core library

that is later consumed by a front-end application. Cabal embodies this strategy by allowing a

stanza for the library part and referring to it in an executable.

The reason for this advice is this: knowing that another developer may consume your code,

one is usually more careful when refining the abstractions that will be exposed. Also, it makes

it easier to refactor and reuse the core parts of your project, instead of entangling them with

the interaction-specific code.

�Store Network Client
In the Store internal network, you need to create a server and clients that can be used

by workers. This kind of application uses a variety of functionality: keeping an internal

consistent state, communicating through a network, logging problematic scenarios, and

so on. As you saw in Chapter 7, such functionality is a perfect task for a monad stack,

which brings together the features you need from different pieces. In this case, a possible

choice of monad transformers may be as follows:

•	 IO and ConduitM for managing the network connections, or Process

if you prefer to use the actor model.

•	 SqlPersistT for database access, via the Persistent network.

•	 STM can be used to keep the internal state consistent against

concurrent modifications. If you follow the actor model, a simpler

StateT transformer can keep the state.

•	 ReaderT could keep track of different configuration options, like the

port you’re using for communication or the database connection

options.

•	 The logging functionality can be implemented via WriterT.

However, you shouldn’t just create a big monad stack and pass it everywhere. As

discussed earlier, you should try to keep your code as polymorphic as possible. If instead

of ReaderT r (SqlPersistT IO) you program against MonadReader, you can grow or

shrink your monad stack at will during the development of your application. It is not

Chapter 17 Looking Further

571

uncommon for you decide to add a new layer during the development of the application.

One function that queries the database and logs some information should have a

signature like this:

getClientInformation :: (PersistQuery m, MonadWriter String m)

 => ClientId -> m [Client]

instead of the more specific one shown here:

getClientInformation :: ClientId -> WriterT String (SqlPersistM [Client])

Developing against monad classes also helps in separating the different concerns of

your application. In this sense, monad classes resemble aspect-oriented programming,

where you define each part of your application dealing with some different feature

separately and then mix them together. The signature, via the list of monad classes

needed to implement some function, defines exactly which functionality is needed from

the context. Giving a specific incarnation via a monad stack is the equivalent of choosing

the implementation.

�Administration Interface and Tetris
An administration interface for the Store is a way to manage products and stock in the

system and to modify and decline purchases from clients. Tetris, on the other hand, is

the perfect game for entertaining time travelers while the time machines operate their

magic. What those two applications have in common is that the set of actions you can

perform on them are limited. In the administration interface, you can access only certain

functionality depending on your security level; in Tetris, you can move the current piece

in only three directions or rotate it.

In different parts of the book I have discussed how a domain-specific language (DSL)

can help you constrain the value that can be represented by a data type. In that case, the

aim was to restrict the data that can be expressed and processed by the application. But

you can follow the same idea and create a domain-specific language for the actions that

your application is able to take. There are several examples of this pattern: Esqueleto

embodies a SQL-like language for expressing database queries, attoparsec has a

Chapter 17 Looking Further

572

language based on the Applicative interface for describing parsers, and Spock uses its

own DSL to specify routes in your web application. The DSL approach has two main

advantages:

	 1.	 It restricts what you can do in a certain context. It’s not the same

to have a signature using the IO type, which may use unrestricted

side effects, as it is to have a specific monad for your application

that allows only network and database connections. The type

system can be used to ensure many more invariants.

	 2.	 If you use a deep embedding for your actions, you can provide

several interpretations for the same DSL. This can be useful

in testing. For example, if your DSL is used for network

communication, you can provide an interpretation that fakes a

network conversation between two peers.

Within Haskell libraries and applications, you can find two different ways in which

domain-specific languages for actions are implemented. You have seen examples of both

throughout the book.

	 1.	 One possibility is developing a combinator library. In this case,

you specify a set of basic constructs and a series of functions that

combines those basic blocks. This is the approach taken by the

attoparsec library for building parsers.

	 2.	 The other option is rolling your own monad, as described in the

previous chapter. A successful example of building an application

around a monad is XMonad, a window manager written in

Haskell; but you can also find this pattern in Spock, which defines

the ActionT monad transformer, and Esqueleto, where queries are

expressed as values of the SqlQuery monad.

One important consideration is whether you need to inspect the structure of your

computation before executing it. For example, you might want to perform optimizations

in the monadic code. In that case, rolling your own monad in the form of a free or

operational monad usually gives you more hooks to perform that work, in comparison to

combinator libraries.

Chapter 17 Looking Further

573

�Additional Haskell Resources
Haskell has an active community on Internet, as the enormous database of packages and

the level of activity in forums and mailing lists acknowledges. The places where you can

look for more information include the following:

•	 Haskell’s main page, at www.haskell.org, contains pointers to many

tutorials and resources. It’s built as a wiki, and its users are always

adding new information that may be interesting for Haskell developers.

•	 The Monad Reader was a regular magazine with articles practical

or enlightening to developers. Unfortunately, there are no new

issues since 2015, but you can still check all the published issues at

themonadreader.wordpress.com.

•	 If you want to look at examples of elegant and instructive functional

code, you should look at the “Functional Pearls” section on Haskell’s

wiki, at wiki.haskell.org/ Research_papers/Functional_pearls.

•	 To stay tuned with the latest news of Haskell, GHC, and Hackage,

you can subscribe to the Planet Haskell feed aggregator at planet.

haskell.org. You’ll see that there are quite a number of bloggers

speaking about Haskell.

•	 Another way to keep yourself updated is the Haskell subreddit at

www.reddit.com/r/haskell/. Reddit allows you to comment about

articles; many interesting discussions start in this way.

•	 The Haskell community maintains a mailing list called Café, at mail.

haskell.org/mailman/listinfo/haskell-cafe, which is a space

where many discussions about the language and libraries take place.

If you look at the archives, you’ll notice that the list welcomes both

newcomers and experienced developers. If you have a question, just

ask, and you’ll get a gentle response.

•	 There is another mailing list more focused on beginners

at mail.haskell.org/mailman/listinfo/beginners.

•	 If you prefer more direct communication, you can use IRC. The

#haskell channel at irc.freenode.net is usually filled with people

talking about the language.

Chapter 17 Looking Further

http://www.haskell.org
http://themonadreader.wordpress.com
http://wiki.haskell.org
http://planet.haskell.org
http://planet.haskell.org
http://www.reddit.com/r/haskell/
http://mail.haskell.org/mailman/listinfo/haskell-cafe
http://mail.haskell.org/mailman/listinfo/haskell-cafe
http://mail.haskell.org/mailman/listinfo/beginners
http://irc.freenode.net

574

�Other Functional Languages
Most of the concepts and ideas in this book are applicable to many other programming

languages. One of the closest set of languages is the ML family, which includes OCaml

and F# (this language integrates into Microsoft’s .NET Framework, allowing easy

interoperability with software written in C#). The main difference with Haskell is the use

of strictness instead of laziness. Languages from the Lisp family, like Racket or Clojure,

also embody functional concepts. Some languages mix functional concepts with other

paradigms. One interesting example is Scala, which puts under the same umbrella

functional and object-oriented programming inside the Java platform. Newer languages,

such as Swift (for the iOS platform) and Kotlin (for the Java platform) also embody many

functional ideas.

In this book I’ve mentioned several places where Haskell abstractions are directly

applicable in other languages. The monad concept lies behind the LINQ libraries in

C#, the for expressions in Scala, and the computation expressions in F#. Libraries

for Software Transactional Memory have been put into many other languages. Parser

combinators are becoming increasingly used for treating text data. As you can see, the

intuition gained from working on Haskell can be reused in many other scenarios.

FUNCTIONAL LIBRARIES IN OTHER LANGUAGES

Not many languages are so focused on functional programming as Haskell is. For that reason,

their base libraries may lack some types and functions that you take for granted in Haskell.

Fortunately, there are many open source libraries filling those gaps:

•	 Scalaz and Cats (typelevel.org) are two ecosystems for functional and

category-theory-oriented programming in Scala. Both define monoids, functors,

monads, and many other type classes (traits in Scala’s lingo).

•	 Arrow (arrow-kt.io) describes itself as a “functional companion to Kotlin’s

standard library.” Bow (bow-swift.io) is a similar library but for Swift.

Chapter 17 Looking Further

http://typelevel.org

575
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7

APPENDIX

�Time Travelling with Haskell
Now that you’ve come to this point, it’s time to tell you one secret that only Haskellers

are allowed to know: our code can travel in time! To do so, you need to kindly ask the

Doctor1 for his Tardis Time Machine. Gratefully, the machine has a Haskell form: it can

be converted into a monad.

The Tardis monad is provided by the tardis package in Hackage. The interface is

similar to a State monad, but you can work with state that travels in the normal way,

from the current step of execution forward in time, and with state that works backward in

time. For each of those states you have a pair of functions.

•	 You move the state forward in time by updating it using sendFuture,

and you are able to get it at other point in the execution via getPast.

•	 The state that travels backward is updated via sendPast and obtained

via getFuture.

In both cases, it’s important to understand that you can obtain only the last version

of each state. For example, if you call sendFuture twice, any call to getPast will retrieve

the second version of sendFuture.

It’s time to play the trick. Let’s code a function that, given a list of numbers, builds

a new list of tuples, with each tuple showing the current sum up to that point from the

beginning of the list, and the same but from the end of the list. You can see the result

as two states traveling in opposite directions in time: the sum from the beginning goes

forward, and the sum from the end travels backward. Figure A-1 shows this graphically.

1�The Doctor is the name of the main character of the BBC series Doctor Who, a Time Lord who
travels space and time in his Time And Relative Dimension In Space (TARDIS) machine.

https://doi.org/10.1007/978-1-4842-4480-7

576

The corresponding Haskell code follows:

{-# LANGUAGE RecursiveDo #-}

import Control.Monad.Tardis

sumListTardis :: [Int] -> [(Int,Int)]

sumListTardis lst = evalTardis (sumListTardis' lst) (0, 0)

sumListTardis' :: [Int] -> Tardis Int Int [(Int,Int)]

sumListTardis' (x:xs) = do

 sumFw <- getPast

 let newFw = sumFw + x

 sendFuture $ newFw

 rec let newBw = sumBw + x

 sendPast $ newBw

 sumBw <- getFuture

 rest <- sumListTardis' xs

 return $ (newFw, newBw):rest

sumListTardis' [] = return []

The forward state handling is straightforward. At each step, you just take the previous

state from the past and send to the future a new value that sums the current number to

the forward state.

The backward state is much more mysterious. As you can see, the information is sent

to the past and then brought from the future. This way of working is needed because

if you first send to the past and then try to bring from the future, you would try to get

the value of the last call to getPast, which is the present moment. This is impossible

because the state would depend on itself in a direct way. Instead, the code asks to create

a recursive do block, which starts with the rec keyword and allows you to refer to a later

value.

Figure A-1.  Forward and backward states in Tardis

Appendix Time Travelling with Haskell

577

Note N ot all monads support the rec keyword. To use it, the monad you’re
working on must be an instance of the MonadFix type class.

You can run the Tardis over some list and check that everything works:

*> sumListTardis [1,2,3,4]

[(1,10),(3,9),(6,7),(10,4)]

While Tardis seems like very weird stuff, with no real applications, there are cases in

real life where a computation receives feedback from itself. The archetypical example

is in circuits, where an output cable may be connected to an input port again. As in the

previous case, in circuits you need to be careful not to create a dependence of a value

on itself; you usually add some delay to make the input depend on the output in some

previous moment. Another example is bowling, where the points scored after a strike or

spare depends on the score in later rounds.2

If only you had known that you could travel into the future! Instead of moving step-

by-step through examples and exercises, you could have traveled and asked your future

self to give you all your Haskell knowledge. But such is the mystery of laziness, of type

classes, and of higher-order functions. It’s now time to have fun and explore the rest of

the Haskell universe!

2�You can read more about bowling and Tardis in an article by Dan Burton, available at
http://unknownparallel.wordpress.com/2012/11/05/bowling-on-a-tardis/.

Appendix Time Travelling with Haskell

http://unknownparallel.wordpress.com/2012/11/05/bowling-on-a-tardis/

579
© Alejandro Serrano Mena 2019
A. Serrano Mena, Practical Haskell, https://doi.org/10.1007/978-1-4842-4480-7

Index

A
Ad-hoc polymorphism, See also

Type classes, 65, 109, 132
Algebraic data types (ADTs), 17, 40
Alternative (type class), 366
Anamorphism, 515
Anonymous functions, 70
Applicative (type class), 361–362
Apriori algorithm, 241
Arrow syntax, 18
Association list, 96
Association rule learning, 237

Apriori algorithm
confidence, 241
frequent sets, 241, 243
minimum confidence, 246

flattening values, 238
support, 238
transactions, 237

attoparsec package, 358
(<$>) and (<*>) combinators, 356
Control.Applicative module, 355, 357
Data.Attoparsec.Combinator module,

359
disjunction, 355
functor, 356
interpreter, 359
notInClass function, 358
sequence, 356
string, 354

Attribute grammars, 488
advantage, 490, 494
AspectAG, 491
attr block, 492
block, 498
boilerplate code, 488
chained, 509
data type declaration, 491
disadvantage, 489
execution, 491
Hackage, 490
higher-level model, 488
inherited, 489–490
integrating UUAGC and Cabal, 495
local, 510–511
modifications, 493
purpose of, 490
root node, 494, 496, 500–502, 508–509
semantics

copy rule, 502
sem block, 493

system, UUAGC, 491, 495
synthesized attribute, 489–490
top-down and bottom-up flow, 489
tree, 489
UUAGC

build-type, 496
Cabal stanza, 495
code, 491
compilation, 496

https://doi.org/10.1007/978-1-4842-4480-7

580

haskellsyntax, 496
installation, 491

wrap_Expr function, 494

B
Benchmarking, 549
Binary tree documentation, 526

haddock, 527
feature, 529
syntax, 528
treeInsert function, 528

HLint, 530
Javadoc and Doxygen, 526

Binary trees, 143–144
graphical representation, 144
leaf marker, 144
monoidal cache, 147–148

Data.Monoid, 148
floating point, 150
type classes, 149

Ord instances, 145
Ord type class, 147
TravelGuide, 146
treeFind

function, 145
TravelGuide type, 144

Blaze-html package, 419–420
Boolean operators, 24–25, 43, 53
Building text, 349

builder data type, 351
ByteString library, 352
client representation, 349
OverloadedStrings, 350
singleton function, 351
toStrict function, 352

C
Cabal (build tool), 548

build, 113–114
execute with profiling, 174
project creation, 27, 29

Category theory, 212
Characters, Char, 18–19
Combinator library, 572
Concurrency, 269

forkIO, 280
MVar, 281
STM (see Software Transactional

Memory (STM))
Conditional, if-then-else, 38
Conduit, 326

access files, 332
allocate function, 334
await, 330
binary serialization, 337
bracket function, 334
ConduitM context, 330–331
(.|) connect or fuse

operator, 329
Data.Conduit.List module, 329
definition, 328
feature, 328
fold function, 329
lazy input/output

hGetContents, 326
iteratee and enumerator

packages, 328
seq/deepseq, 327

MonadIO, 333
networking

putStrLn, 335
runTCPClient, 337
runTCPServer, 336

Attribute grammars (cont.)

INDEX

581

randomRIO function, 332
runConduit, 329
streaming data problem, 326–327
unfold function, 329
yield, 330

Containers, 109
graphs, 118, 129

stronglyConnComp, 132
time machines, 131
topological sort, 130

Haskell browser, 118
maps, 118–119

built-in Prelude
module, 119

clients classification, 126
Data.Map module, 121
delete function, 122
findWithDefault, 122
HashMap, 125
Haskell, 120
IntMap, 125

patterns, 109
sets, 118, 124

Data.Set module, 124–125
fromList function, 124
HashSet, 125
IntSet, 125

trees, 118, 126
Boolean value, 127
breadth-first fashions, 127
Data.Tree, 126
forest, 126
post-order traversal, 127
pre-order traversal, 127–128

Coverage, 550
Criterion (benchmarking

tool), 549

D
Database access

connection, 382
deletions, 406
insertions, 404
landscape

abstraction, 380
libraries, 379–380
Persistent and Esqueleto, 381

libraries, 379
queries, 395

aggregation operators, 403
count function, 398
entities selection, 397
expression, 401–402
filters, 398
identifier/uniqueness, 395
joins, 400
select function, 401
selectList, 399

schemas and migrations (see Schemas
and migrations)

updates, 405
Database library, 392
Data.Graph module, 247
Data mining, 185–186

association rules, 186
Apriori algorithm, 241, 243–246
frequent set, 241, 243–246

clustering algorithms, 186
K-means algorithm, 186–193

centroid cluster, 189
cluster assignment phase, 191
clusters data set, 187
initial centroid, 189
kMeans function, 190

INDEX

582

multiparameter type classes, 188
partition creation, 186
testing, 193
tuple algorithm, 187
Vectorizables and Double pairs, 189

lenses, 193–202
boilerplate code, 196
Client Double type, 195
Client Int type, 195
data structure, 194
kMeans function, 201
lens library, 194
(^?) operator, 197, 199
(^.) operator, 197
(.~) operator, 198
(&) operator, 198
Person data type, 195
template Haskell, 196–197, 201
traversable type class, 200

Data model declaration
ADTs, 17
characters, 18
data types (see Data types)
functions (see Function declarations)
lists

Boolean operators, 24
cons, 23, 24
constructors and destructors, 24
homogeneous, 23
if expression, 25
literals, 22
nil [] operator, 23
type variable, 22

numeric constants, 19
pattern matching (see Pattern

matching)
records (see Records)

smart constructors and default values, 17
strings, 21

Data type generic programming, 516
field, Rec0, 516–518
generic (type class), 517
product, (*), 516
sum, (+), 516

Data types
ADTs, 40
algebra (see Fold)
automatic deriving, 42
capitalization rules, 41
clients, 41
constructors, 41, 80
declaration, 41
default deriving, 42
Gender, 43
generic programming (see Data type

generic programming)
parametric, 63
Person, 43
promotion, DataKinds, 474–476
singleton, 474
smart constructor, 80
strictness annotation, 157, 179–181
strong typing, 40

Dependent typing, 7
Design patterns, 551

adapter pattern, 551
code templates, 551
concurrency, 552
Haskell benefits, 552
higher-level abstraction, 552
monadic, 552

Digestive-functors (package)
form description, 423–424
Spock, runForm, 426–427
view, getForm, 426–427

Data mining (cont.)

INDEX

583

Distributed programming, 270
Documentation, see Haddock (tool)
Domain specific language (DSL), 441, 571

advantages, 442
dependent type systems, 452
expression language, 448

EmptyDataDecls extension, 451
GADTs, 449
interpretation function, 451
time traveling, 452
types, 448

external, stand-alone, 443, 485
internal, embedded

deep embedding, 444
interpretation, 444
shallow embedding, 444, 485

FDs (see Functional dependencies
(FDs))

Haskell, 442
advantages, 444
attoparsec, 443
deep embedding, 444
embedded/internal DSL, 443
external/stand alone, 443
host language, 442
language interpretation, 444

offers language, 445
data declaration, 446
duration rule, 448
groups, 445
presents rule, 448

patterns, 448
promotion and singletons, 474

advantage, 476
DataKinds extension, 474, 477
duration rule, 478
Haskell programs, 476
metaprogramming facilities, 477

purpose, 484
TFs, 477
type-level literals, 484

SQL, 441
TFs (see Type families (TFs))
type-level programming

(see Type-level programming)

E
Either (type, monad)

Except (type, monad), 318–319
Elm (language)

Elm architecture
Browser.element, 435
Browser.sandbox, 429, 431
commands, 433, 435
model-update-view, 430–432,

434–435
JSON decoder, 433, 435

Eq (type class), 137–140
Error handling

catching exceptions, 319
ArithException, 321–322
Control.Exception

module, 320–321
exception filter, 322
finally function, 323
handle, 322
IOException, 321
vs. pure errors, 319

pure errors, 316
left/right constructor, 316
Maybe/Either, 317
MonadPlus, 317
mtl package, 318
safe package, 319
throwError, 318

INDEX

584

throwing exceptions, 324
Typeable type class, 325

Esqueleto (package)
aggregation, 403
query, 400–404
set, 406

Exception
bracket, 324
catch, 319–324
throw, 324–325

F
First-class citizen, 4
Floating-point numbers

double precision, Double, 20
single precision, Float, 20

Fold
algebra, 515
left fold, foldr, 86
over any data type, 83, 513–515
right fold, foldr, 86
unfold, 104

Foldable (type class), 153–154
Formal verification

Binary search tree, 544–546
data type refinement, 541
measure, 542–543
refinement types

(see LiquidHaskell (tool))
Free monad, 560
Function

anonymous, 70–72
declaration, 33
operator

section, 73

partial application, 73–76
predicate, 87–89

Functional dependencies (FDs), 441
ambiguity problem, 460
categories, 457
class declaration, 460
declaration, 459–461, 463, 465
definitions, 458
logic programming language, 466
monad classes, 461
offers, 465
presents rule enforcement, 461, 463

function definition, 465
empty data type, 461
Plus type class, 464
type-level operation, 462

Product type class, 458
representing addition, 457
TimeMachineOps, 459
unique substitution, 460

Functional languages, 574
Functional pearls, 573
Function declarations, 33

comments, 36
concatenation, 35
layout, 39
local binding, 39
recursion, 35
reverse2 function, 37
test functions, 37
tuple types, 38
type inference, 34
type signature, 35

Function operator, 24
Functor (type class)

(<$>) combinator, 356
fmap, 151

Error handling (cont.)

INDEX

585

G
Generalized algebraic data

type (GADT), 441
definition, 449
type safety, 448–452

GHC profiling, 550
cost centers, 173
heap profiling, 176

run with-h, 177
run with-hy, 177–178

Main.hs file, 174
memory profiling, 173
putStrLn function, 174
time profiling, 173

Glasgow Haskell Compiler (GHC), 3
Graph, 119, 129–132, 155

paths, 247–248

H
Hackage, 548, 567
Haddock (tool), 549

documentation comment, 526–527
section, 529
syntax, 528, 530

Hamlet package, 420
aeson library, 422
internationalization, 421
type-safe URLs, 421

Hanging lambdas, 204
Haskell platform, 567

browser containers, 118
data model declaration (see Data

model declaration)
ecosystem, 7
history, 8
installation, 9–11

language, 475
OCaml and F#, 574
Origami, 102
programming approach, 3
TARDIS Time Machine, 575
resources, 573

Haskell programming, 547
design patterns (see Design patterns)
guidelines

enforce invariants, 554
higher-order combinators, 553
pure and polymorphic, 554
refactor, 553
type classes, 553

projects
administration interface

and Tetris, 571
data mining library, 568
monads, 562
store network client, 570

tools
benchmarking, 549
code style, 548
coverage, 550
documentation, 549
profiling, 550
project and dependency

management, 548
remote monitoring, 550
test and verification, 549

Haskell web ecosystem, 409
JavaScript compilation, 412
web framework, 410

Happstack, 410
HTTP requests and

responses, 410
snap, 411
WAI, 411

INDEX

586

Higher-order function, 68
filter, 72
fold (see Fold)
map, 68

HLint style tool, 548
Hoogle, 549
HUnit, 549

I
Infinite structures, 158

time machines
data type declaration, 158
Fibonacci numbers, 160–161
GHC interpreter, 158
infinite lists, 161
iterate function, 162
timelyIncMachines, 159

Input/Output files
directory package, 314
do notation, 303
error handling (see Error handling)
filepath package, 315
fmap, 305
foldM code, 306
haskeline library, 305
Haskell’s prelude module, 304
hSetBuffering, 302
listOfActions, 307
no escape hatch, 303
program implementation, 302
randomness

global random generator, 309
randomRIO function, 307–308

reading and writing
Data.String, 310
getArgs function, 312
hClose functions, 311

hSetEncoding function, 313
openFile operation, 311
withFile function, 312

runState function, 303
splitExtensions, 315

Integral numbers
bounded, Int, 19
unbounded, Integer, 19

Internal state, monads, 217
Reader monad, 221
RWS monad, 223
state and lenses

lens library, 218
State monad, 218
zooming function, 219

ST monad, 224
Control.Monad.ST module, 225
Data.STRef module, 225
modifySTRef function, 225
readSTRef function, 225
traverseList function, 226
writeSTRef function, 225

Writer monad, 222
Interpretation, 488, 498

attribute grammar, (See also Attribute
grammars), 498–501

computation rules, 502
copy rules, 502
describeOffer function, 509
Expr data type, 502
HTML description, 507

advantages, 512
Blaze-html library, 508
chained, 509
counter attribute, 509
@lhs.counter, 510
local variable, 510
ordering, 513

INDEX

587

PercentDiscount/BetterOf
constructors, 511

siblings, 509
string value, 512
threading, 508

monadic view, 503
origami programming, 513

anamorphism, 515
catamorphisms, 514
D-algebra, 515
using Expr, 515
guidelines, 514
recursive, 514

presents rule, 505
copy rule, 507
Monoid instance, 507
present constructor, 506
restrict constructor, 506

Root data type, 501
Interpreter, GHCi

type of an expression, 11
IO (monad)

console I/O
getLine, 307
Haskeline, 305
putStrLn, 307

file I/O
bracket, 324, 334
lazy (problems with), 326–328
System file path, 315
System.IO, 311, 313, 327
withFile, 312

randomness, 308

J
JSON

aeson (package), 371, 373, 375–376
DeriveGeneric extension, 376

HashMap, 372
lazy ByteStrings, 375
lens-aeson package, 372
object function, 371
optparse-applicative, 377
ToJSON and FromJSON

function, 374, 376

K
K-means algorithm, 185

L
Lambda calculus, 70
Laziness, 157

evaluation, 163
constructor, 164
in Haskell programs, 167
head allNumbers, 166
non-strict/lazy, 164
repeat e, 167
tail allNumbers, 166
thunk, 164
timelyIncMachines, 163, 165

pattern matching
BangPatterns, 171
irrefutable

pattern, 171–172
lengthyOperation, 172

problems, 168
foldr evaluation, 168

Laziness (evaluation model)
BangPatterns, 171
Forcing, 169–171
problems, 168–170
thunk, 164

Lazy evaluation, 6

INDEX

588

Lens
microlens (library), 194, 197, 200
over, (%~), 198, 219
set, (.~), 198, 200
view, (^.), 197, 218
with State, 218–219

LiquidHaskell (tool)
data type refinement, 541
measure, 542
refinement type, 541

Lists
anonymous functions, 70
comprehension

parallel, 101
transformation, 97

exporting and importing, 63
expression comprehension, 96
filter functions, 72
fold (see Fold)
foldr, 83
guard comprehensions, 99
Haskell Origami, 101

unfolds, 105
higher-order functions, 63, 68
infinite

iterate, 162
repeat, 161

module imports, 77
hiding imports, 78
permutations function, 77
Prelude, 79
qualified imports, 78
rename, 79
without qualification, 78

monad, 230–232
monadic functions

mapM, 252–253, 255
sequence, 253–255

parallel comprehension, 101
parametric polymorphism, 64

data declaration, 66
etymology, 65
fst function, 65
head function, 64
type parameters, 66

partial application, 73
combinators, 75
curried versions, 76
list keyword, 73
point-free style, 75
section, 73
two-argument function, 74

predicates
compareClient function, 92
compare function, 93
declarative, 94
dropWhile function, 88
filter function, 87
infix notation, 90
isIndividual function, 89
lexicographic comparison, 92

qualifiers comprehension, 97
smart constructors and views, 80
takeWhile function, 89
tuples, 95–96
unfolds, 63, 106

Local bindings
let, 39
where, 39

Logic (type, monad), 249–251

M
Maps, 4, 119–124
Maybe (type, monad), 211, 216–217

error handling, 301

INDEX

589

Migration, 392
Module, 31–32

declaration, 31
exposed-modules of a library, 32
import

qualified, 78
hiding, 78

MonadPlus (type class)
guard, 235, 244–245, 248, 257

Monads, 202
association rules, 229
association rules learning, 237
bind, (>>=), 209, 213, 216, 233
classes, 265
combinators, 205
comprehensions, 256–259
Control.Monad module, 253
dissecting combinators, 209

Control.Monad module, 212
Maybe monad, 209–210
Monad type class, 211
State s monad, 209–210
thenDo combinator, 209

do notation, 212
access combinators, 215
compiler, 213
Control.Monad.State module, 214
modify combinators, 215
recursive do, 576

failure concept, 233
guard condition, 235
mfilter function, 237
MonadPlus type class, 236
mplus operation, 234
mzero function, 234

filterM function, 254
fmap and join function, 232
foldM function, 254

forM function, 253
free, 560, 562–563
incomplete data, 202

Data.Maybe module, 203
NULL value, 202

interpretation, 564–565
internal state, 217

Reader monad, 220–224
RWS monad, 220–224
state and lenses, 218
ST monad, 224, 226
Writer monad, 220–224

join, 232–233
laws, 216–217
liftM and ap function, 255
list monad, 229–230
mapM function, 252
monad transformers, 229
nondeterministic behavior, 230
restrictive, 561–562
return, 216
roll your own (see Free monad)
search problems, 247
sequence, definition, 254
summary, 555
syntax, 562
transformer (see Monad transformer)

Monad transformer
lift, 261, 263
monad classes

mtl (package), 260, 265–267
MonadTrans, 261, 267
transformers (package), 260–261, 265

Monoid
Semigroup, 148–149

Mutable reference
ST monad, 224–226
STRef, 225–226

INDEX

590

N
Networking

using Conduit, 335
Num (type class), 141–142

O
OCaml and F#, 574
Ord (type class), 137, 139–140

P
Packages

build (see Cabal (build tool))
Cabal

data structures, 110
Hackage package database, 110
Versioning policy, 112

definition, 110
dependencies, 109–117, 155
Hackage, 109–110, 112–113,

117–118, 155
Stackage, 109–110, 117–118, 155
stanza

executable, 111
library, 111
test-suite, 531

Parallelism, 270
Par (see Par (monad))
parallel Apriori, 276, 278–279

Parametric polymorphism, 7, 63–64
IVar, 274–276

Par (monad), 269–276
apriori algorithm, 276

generateNextLk function, 278
parMap function, 277

dataflow parallelism, 275
direct scheduler, 276

graph, 275
IVars, 274–276
Par () function, 275

definition, 271
deterministic, 273
futures, 271–274
parallel Apriori, 276–279
runtime thread, 274

Parsing text, 343
attoparsec package, 353

(<$>) and (<*>) combinators, 356
consumes part, 354
Control.Applicative module, 357
Data.Attoparsec.Combinator

module, 359
disjunction, 355
functor parser, 356
interpreter, 359
many function, 358
notInClass function, 358
partial, 355
sequence, 356
string, 354

JSON (see JSON)
new type classes

Alternative, 366
Applicative, 361, 364–365
Functor, 363
Maybe, 360
Monad, 364–366
traversable, 367

textual data types, 343
ByteString values, 344, 345, 347
conduit, 348
Data.Text.Lazy/Data.ByteString.

Lazy, 346
encodeUtf8, 344, 346
(< >) operator, 347

INDEX

591

OverloadedStrings, 348
strict and lazy version, 345
String, 344

Pattern matching
case-of, 45, 49
clientName, 45
companyName function, 46
data types, 49
exhaustive, 46
guards, 51

Ackermann function, 54
Fibonacci and binomial

functions, 53
unzip function, 54

lists and tuples, 50
neutral elements, 51
n-th Fibonacci number, 47
partial arguments, 46
pragma, 55
variables, 44
view patterns, 54

Patterns, 551
Peano numerals

addition, 463
successor, 464

Persistent (package)
connection

pool, 384–385
deletion, 406
insertion, 404
query

get, 395, 400
getBy, 396, 400
selectList, 399–400

schema
entity description, 386–389, 391
migration, 392

uniqueness constraint, 390
update, 405

Point-free style, 75
Polymorphism

ad-hoc (see Type classes)
parametric, 63

Preprocessor, 494
Profiling

heap, 176
hp2ps, 176
ThreadScope, 550
time, 173

Project creation, Cabal
command line, 27
interpretation rules, 30
modules, 31

Pure expression, 5

Q
Queries, 395

count function, 398
entities selection, 397
Esqueleto

aggregation operators, 403
expression, 401–402
get, getBy, selectList and count, 400
joins, 400
select function, 401

filters, 398
identifier/uniqueness, 395
selectList, 399

Queue
message broker

AMQP, 291
using STM, 290

QuickCheck, 549

INDEX

592

R
Randomized testing

binary tree properties
(==>) combinator, 540
Gen instance, 538
oneof function, 539
shrink, 539
suchThat function, 539

properties, 537
QuickCheck, 536

Rational numbers, Ratio, 20
Reader (type, monad), 220–221
Read-eval-print loop (REPL), 11
Read (type class), 136–137, 139
Records, 56–59

Client and Person definitions, 56
data declarations, 56
field names, 57
library and maintainability

problem, 61
pattern matching, 58
puns, 58
TimeMachine data types, 60

Referential transparency, 5
Regression testing, 530
Remote monitoring, 550
Representational State

Transfer (REST), 414
RESTful structure, 414
RWS (type, monad), 220–222, 224

S
Schemas and migrations, 385

database creation, 391
entities description

definition, 386
identifier, 388–389

limitation, 391
nullable, 390
quasiquotation, 387
uniqueness constraints, 389–390

migration, 392
Scotty, backend application

blaze-html package, 419
hamlet package, 420
product insertion, forms, 423

digestive-functors, 423
POST request method, 426

products, 417
simple skeleton, 415

Search problems, 247
graphs, paths in, 247–249
logic monad, 249

Serialization
binary, 337–339
comma-separated values, 339–341
JSON (see JSON)

Sets, 124–126
Shakespeare (package), 420–421
Show (type class), 136–137, 139
SmallCheck, 549
Smart constructors, 80
Snaplets, 411
Software transactional memory (STM),

269–270, 279
atomic transactions, 283

deadlocking, 284
main function, 286
money variable, 284
stm package, 285
stock variable, 284

concurrent programming
forkDelay function, 282
forkIO function, 280
IO () function, 280

INDEX

593

newMVar function, 281
putMVar function, 281
randomRIO function, 281
readMVar function, 281
threads, 280

producer-consumer queues, 288–289
queue, 290
rollback

cash-based transaction, 287
definition, 286
retry function, 286
stm monad, 287

STM (monad), 286–287
TVar, 285, 287

Spock (web framework)
database connection, 417
form (see Digestive-functors

(package))
route definition

database connection, 418
hookAnyAll, 416–417
variable, 418–419

Stack (build tool)
build, 115–117
execute with profiling, 175
new project, 29–31

Stanzas, 30, 548
State (type, monad), 209–210
Strict evaluation model, 163
Strictness, 157, 179

memory representation, 179
strict field, 180
unpacked fields, 180

Strings
builder, 351
ByteString, 344–345, 347
conversion, 346–347, 350
Hello world, 21

OverloadedStrings, 348
text, 344, 347

Stylish Haskell, 548

T
TARDIS time machine, 575

forward and backward state, 575
rec keyword, 576

Testing
exhaustive testing

SmallCheck, 525, 531, 540
HSpec, 535
randomized testing

arbitrary (type class), 538–539
generator, 538–539
properties, 537–538
QuickCheck, 536, 540

Tasty, 532–534
test-suite stanza (see Packages)
unit testing

HSpec, 536
HUnit, 530

The Monad Reader (magazine), 573
ThreadScope, 550
Time machine store, 13–14
Traversable (type class)

sequence, 367
traverse, 367, 369–370

Trees
binary

monoidal cache, 147–150
forest, 126
traversal, 127–128

Tuples, 17, 38, 40, 44, 47, 49, 51, 54
Type classes, 7, 132–133, 150

associated type (see Type family (TFs))
declaration, 133–137

INDEX

594

Haskell, 134
instance type, 134
Nameable, 133
variable, 133

default signature, 519–520
foldables, 153
functors, 150–151
generic programming, 136
Haskell, 137
instance, 133–137
multi-parameter, 188

functional dependency (see
Functional dependencies (FDs))

number-related type classes, 141
Ord and Eq classes, 137

data declaration, 140
default definitions, 137
ease of instantiation, 138
Haskell, 140
Haskell’s type class, 138
minimal complete definition, 138
performance, 138

overlap, 519
Type families (TFs)

associated types, 470
categories

BigBag and SmallBag, 472
closed and open type

families, 470
data families, 473
equality constraint, 472
functional dependencies, 471
GHC, 473
HList, 474
Min Zero Zero, 470
modules, 470

operation function, 469
partial function, 469
performTestFromOther, 472
term-level function, 470
type level function, 470

data families, 473
declaration

closed type families, 470
open type families, 470

offers, 469
presents rule enforcement, 466

term-level functions, 467
type-level function, 468

representing addition, 467
Type-level programming, 549

dependent type, 453
features, 453
functional dependencies, 454
natural numbers representation, 455

cases, 456
rules, 455

type families, 454
type-level literals, 484

Type-oriented programming, 6
Type signature, 35

U, V
Unit testing

assertBool, 534
assertion, 532
cabal file

exitcode-stdio-1.0, 531
test-suite stanza, 531

cabal test, 533
definition, 530
frameworks, 530

Type classes (cont.)

INDEX

595

Hspec, 535
HUnit tool, 532
testGroup function, 533

Utrecht University Attribute Grammar
Compiler (UUAGC), 487

UUAGC
build-type, 496
Cabal, 495
code generation, 497
compilation, 496
haskellsyntax, 496
installation, 491

W, X, Y, Z
Web application interface (WAI), 411
Web applications

Fay, frontend application, 428

Haskell web ecosystem (see Haskell
web ecosystem)

RESTful structure, 414
Scotty, backend

application
blaze-html package, 419
hamlet package, 420
local type signature, 418
product insertion,

forms, 423
products, 417
simple skeleton, 415

Web framework
REST

request method, 414
route, 414

Spock (see Spock (web framework))
Writer (type, monad), 220–224

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: First Steps
	Chapter 1: Going Functional
	Why Haskell?
	Why Pure Functional Programming?
	Why Strong Static Typing?
	The Haskell Ecosystem

	The History of Haskell
	Your Working Environment
	Installing on Windows or Mac OS X
	Installing on Linux
	Installing on Linux from Source

	First Steps with GHCi
	The Time Machine Store
	Summary

	Chapter 2: Declaring the Data Model
	Characters, Numbers, and Lists
	Characters
	Numbers
	Strings
	Lists

	Creating a New Project
	Creating a Project with Cabal
	Creating a Project with Stack
	Understanding Modules
	Cabal and Stack

	Defining Simple Functions
	Creating a Simple Function
	Specifying the Function’s Type
	Developing a Robust Example
	Returning More Than One Value

	Working with Data Types
	Pattern Matching
	Simple Patterns
	Lists and Tuples
	Guards
	View Patterns

	Records
	Creation and Use
	The Default Values Idiom

	Summary

	Chapter 3: Increasing Code Reuse
	Parametric Polymorphism
	Functions As Parameters
	Higher-Order Functions
	Anonymous Functions
	Partial Application of a Function

	More on Modules
	Module Imports
	Smart Constructors and Views

	Diving into Lists
	Folds
	Lists and Predicates
	Lists Containing Tuples
	List Comprehensions

	Haskell Origami
	Summary

	Chapter 4: Using Containers and Type Classes
	Using Packages
	Managing Dependencies
	Building Packages
	Building Packages with Cabal
	Building Packages with Stack

	Obtaining Help

	Containers: Maps, Sets, Trees, Graphs
	Maps
	Sets
	Trees
	Graphs

	Ad Hoc Polymorphism: Type Classes
	Declaring Classes and Instances
	Built-in Type Classes

	Binary Trees for the Minimum Price
	Step 1: Simple Binary Trees
	Step 2: Polymorphic Binary Trees
	Step 3: Binary Trees with Monoidal Cache

	Container-Related Type Classes
	Functors
	Foldables

	Summary

	Chapter 5: Laziness and Infinite Structures
	An Infinite Number of Time Machines
	Lazy Evaluation Model
	Understanding Evaluation in Haskell
	Problems with Laziness
	Pattern Matching and Laziness
	Profiling with GHC

	Strictness Annotations
	Summary

	Part II: Data Mining
	Chapter 6: Knowing Your Clients Using Monads
	Data Mining
	Implementing K-means
	Lenses

	Discovering Monads
	Watching Out for Incomplete Data
	Combinators for State
	Dissecting the Combinators
	do Notation
	Monad Laws

	Different Sorts of State
	State and Lenses
	Reader, Writer, and RWS
	Mutable References with ST

	Summary

	Chapter 7: More Monads: Now for Recommendations
	Returning More Than One Value
	The List Monad
	A New View Over Monads
	Failures and Alternatives

	Association Rules Learning
	Flattening Values into Transactions
	The Apriori Algorithm

	Search Problems
	Paths in a Graph
	The Logic Monad

	Monads and Lists Redux
	Combining Values Under a Monad
	Monad Comprehensions

	Combining Monads
	Monad Transformers
	Monad Classes

	Summary

	Chapter 8: Working in Several Cores
	Parallelism, Concurrency, and Distribution
	The Par Monad
	Futures
	Dataflow Parallelism with IVars
	Parallelizing the Apriori Algorithm

	Software Transactional Memory
	Concurrent Use of Resources
	Atomic Transactions
	Rolling Back Transactions

	Producer-Consumer Queues
	Single-Process Queues
	Message Queues Using AMQP
	AMQP in Haskell

	Summary

	Part III: Resource Handling
	Chapter 9: Dealing with Files: IO and Conduit
	Basic Input and Output
	Randomness
	Working with Files
	Reading and Writing
	Handling Files

	Error Handling
	Pure Errors
	Catching Exceptions
	Throwing Exceptions

	Streaming Data with Conduit
	Problems with Lazy Input/Output
	Introducing Conduits
	Accessing Files via Conduit

	Looking Further Than Text Files
	Basic Networking
	Binary Serialization
	Comma-Separated Values

	Summary

	Chapter 10: Building and Parsing Text
	The Five Textual Data Types
	Building as Fast as the Wind
	Parsing with attoparsec
	Introducing New Type Classes
	Applicative
	Functors, Applicatives, and Monads
	Alternative
	Traversable

	Don’t Overengineer: Just Use JSON
	Summary

	Chapter 11: Safe Database Access
	Database Access Landscape
	Abstracting Over Several DBMSs
	Introducing Persistent and Esqueleto

	Connection
	Schemas and Migrations
	Describing the Entities
	Creating the Database

	Queries
	Queries by Identifier or Uniqueness
	Selecting Several Entities
	SQL Queries with Esqueleto

	Insertions, Updates, and Deletions
	Summary

	Chapter 12: Web Applications
	Haskell Web Ecosystem
	Web Frameworks
	Compilation to JavaScript

	RESTful Structure
	Back End with Spock
	Simple Skeleton
	Showing Products from the Database
	Inserting New Products Using Forms

	Front End with Elm
	Retrieving Products

	Summary

	Part IV: Domain Specific Languages
	Chapter 13: Strong Types for Describing Offers
	Domain-Specific Languages
	Embedding Your Language in Haskell

	The Offers Language
	Adding Safety to the Expression Language

	Type-Level Programming
	Two Styles of Programming
	Representing Natural Numbers

	Functional Dependencies
	Categories of Products with FDs
	Vectors Using FDs
	Enforcing the Presents Rule with FDs

	Type Families
	Vectors Using TFs
	Enforcing the Presents Rule with TFs
	Categories of Products with TFs

	Data Type Promotion and Singletons
	A Further Refinement to the Presents Rule
	Cooking with Singletons
	Enforcing the Duration Rule

	Summary

	Chapter 14: Interpreting Offers with Attributes
	Interpretations and Attribute Grammars
	A Simple Interpretation
	Introducing Attribute Grammars

	Your First Attribute Grammar
	Synthesizing the Result
	Executing the Attribute Grammar
	Integrating UUAGC in Your Package

	Expressions Interpretation
	Using an Attribute Grammar
	Precomputing Some Values
	A Different (Monadic) View

	Offer Interpretations
	Checking the Presents Rule
	Showing an HTML Description

	Programming with Data Types
	Origami Programming Over Any Data Type
	Data Type-Generic Programming

	Summary

	Part V: Engineering the Store
	Chapter 15: Documenting, Testing, and Verifying
	Documenting Binary Trees with Haddock
	Unit Testing with HUnit
	Declaring Tests in Cabal
	Writing Unit Tests

	Randomized Testing with QuickCheck
	Testing List Properties
	Testing Binary Tree Properties

	Formal Verification with LiquidHaskell
	Describing Binary Search Trees

	Summary

	Chapter 16: Architecting Your Application
	Tools
	Project and Dependency Management
	Code Style
	Documentation
	Test and Verification
	Benchmarking
	Profiling
	Coverage
	Remote Monitoring

	Design Patterns and Functional Programming
	Medium-Level Guidelines
	Use Higher-Order Combinators
	Refactor
	Use Type Classes Wisely
	Enforce Invariants via the Type System
	Stay (As) Pure and Polymorphic (As Possible)

	Patterns with Monads
	Summary of Monads
	Restrictive Monad Classes
	Roll Your Own Monad

	Summary

	Chapter 17: Looking Further
	Projects
	Data Mining Library
	Store Network Client
	Administration Interface and Tetris

	Additional Haskell Resources
	Other Functional Languages

	Appendix: Time Travelling with Haskell
	Index

