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Introduction

Functional programming is gathering momentum. Mainstream languages such as

Java and C# are adopting features from this paradigm; and languages such as Haskell,
Scala, Rust, Clojure, or OCaml, which embody functional programming from the

very beginning, are being used in industry. Haskell is a noise-free, pure functional
language with a long history, having a huge number of library contributors and an active
community. This makes Haskell a great tool for both learning and applying functional
programming.

Why You Should Learn Functional Programming

The rise in functional programming comes from two fronts. Nowadays, most
applications are heavily concurrent or need to be parallelized to perform better. Think of
any web server that needs to handle thousands of connections at the same time. The way
you express the intent of your code using Haskell makes it easier to move from a single-
thread application to a multi-threaded one at a negligible cost.

Apart from becoming more concurrent, applications are becoming much larger.
You would like your development environment to help you catch bugs and ensure
interoperation between all modules of your system. Haskell has a very strong type
system, which means that you can express a wide range of invariants in your code, which
are checked at compile time. Many of the bugs, which previously would be caught using
tests, are now completely forbidden by the compiler. Refactoring becomes easier, as you
can ensure that changes in your code do not affect those invariants.

Learning functional programming will put you in a much better position as
a developer. Functional thinking will continue permeating through mainstream
programming in the near future. You'll be prepared to develop larger and faster
applications that bring satisfaction to your customers.
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INTRODUCTION

Why You Should Read This Book

This book focuses both on the ideas underlying and on the practicalities of Haskell
programming. The chapters show you how to apply functional programming concepts
in real-world scenarios. They also teach you about the tools and libraries that Haskell
provides for each specific task. Newcomers to functional programming will not be the
only ones who will benefit from reading this book. Developers of Scala, Clojure, Lisp, or
ML will be also able to see what sets Haskell apart from other languages.

The book revolves around the project of building a web-based strorefront. In each of
the five parts, the focus is on a subsystem of this store: representing clients and products
in-memory, data mining (including parallelization and concurrency), persistent storage,
discounts and offers, and the general architecture of the application. The topics have
been carefully selected for you to get a glimpse of the whole Haskell ecosystem.

xxii



PART |

First Steps



CHAPTER 1

Going Functional

Welcome to the world of Haskell! Before looking too deeply at the language itself, you
will learn about what makes Haskell different from other languages and what benefits
come with those differences. Haskell belongs to the family of functional languages, a
broad set that includes ML, Lisp, Scala, and Clojure. If you have a background mostly
in imperative or object-oriented languages, such as C, C++, or Java, you will see which
of the ideas present in those languages can be transported into the functional world.
If you already have experience with functional languages, you will see how other
features in Haskell, such as lazy evaluation and type classes, make this language
different from any other.

This book assumes some previous experience with the functional paradigm,
regardless of the language, but not with Haskell. Also, some minimal practice with the
shell or console is required.

After introducing Haskell, I will review how to install Haskell on your system. Finally,
you will take your first steps with the language in the Glasgow Haskell Compiler (GHC)
interpreter, a powerful tool that executes expressions in an interactive way. Throughout
the book you will develop parts of a time machine web store; as with many things in life,
the best way to learn Haskell is by writing Haskell programs!

Why Haskell?

If you are reading this book, it means you are interested in learning Haskell.
But what makes this language special? Its approach to programming can be

summarized as follows:
o Haskell belongs to the family of functional languages.

o Itembodies in its core the concept of purity, separating the code with
side effects from the rest of the application.
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¢ The evaluation model is based on laziness.

o Types are statically checked by the compiler. Also, Haskell features a
type system that is much stronger and expressive than usual.

o Its approach to polymorphism is based on parametricity (similar to
generics in Java and C#) and type classes.

In the rest of this section, you will understand what the terms in this list mean and
their implications when using Haskell. Also, you will get a broad view of the entire Haskell
ecosystem in a typical distribution: the compiler, the libraries, and the available tools.

Why Pure Functional Programming?

Functional programming is one of the styles, or paradigms, of programming.

A programming paradigm is a set of concepts shared by different programming languages.
For example, Pascal and C are part of the imperative paradigm, and Java and C++ mix
the imperative paradigm with the object-oriented one. The fundamental emphasis of
functional programming is the empowerment of functions as first-class citizens. This
means functions can be manipulated like any other type of data in a program. A function
can be passed as an argument to another function, returned as a result, or assigned to
avariable. This ability to treat functions as data allows a higher level of abstraction and
therefore more opportunities for reuse.

For example, consider the task of iterating through a data structure, performing
some action on each element. In an object-oriented language, the implementer of the
structure would have surely followed the iterator pattern, and you as a consumer would
write code similar to the following Java code:

Iterator it = listOfThings.iterator();
while (it.hasNext()) {

Element e = it.next();

action(e); // perform the action

As you can see, there is a lot of boilerplate code in the example. In Haskell, you
would use the map function, which takes as its argument the action to perform on each
element. The corresponding code is as follows:

map action listOfThings

4
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The code now is much more concise, and the actual intention of the programmer
is explicit from the use of the map function. Furthermore, you prevent any possible
issue related to applying the iterator pattern poorly because all the details have been
abstracted in a function. Actually, a function such as map is common in functional code,
which gives you confidence that any bug in its implementation will be found quickly.

Performing the same task in Java (up to version 7) requires, on the provider side,
you to create an interface that contains the function that will perform the operation.
Then, on the user side, you need to implement that interface through a class or use an
anonymous class. This code will be much longer than the one-line version you saw
earlier. In fact, new versions of Java (from version 8 on), C++, and C# (from the release of
.NET Framework 3.5) are embracing functional concepts and will allow you to write code
similar to the previous line.

In Haskell, a piece of code consists of expressions, which are evaluated in a similar
fashion to mathematical expressions. In an imperative language, methods consist of
statements that change a global state. This is an important distinction because in an
imperative program the same piece of code may have different results depending on
the initial state when it is executed. It's important to notice here that elements outside
of the program control (known as side effects), such as input and output, network
communication, and randomness, are also part of this global state that may change
between executions of the same function.

Expressions in Haskell cannot have side effects by default; these expressions are
called pure. A common misunderstanding about functional programming is that it
disallows any kind of change to the outer state. This is not true; side effects are possible
in Haskell, but the language forces the programmer to separate the pure, side-effect-free
parts from the “impure” ones.

The main benefits of purity are the improved ability to reason about the code and an
easier approach for testing the code. You can be sure that the outcome of a pure function
depends only on its parameters and that every run with the same inputs will give the
same result. This property is called referential transparency, and it’s the foundation for
applying formal verification techniques, as you will see in Chapter 15.

Pure functions are easier to compose because no interference comes to life in their
execution. Actually, the evaluation of pure expressions is not dependent on the order
in which it is done, so it opens the door to different execution strategies for the same
piece of code. This is taken advantage of by the Haskell libraries providing parallel and
concurrent execution and has even been used for scheduling code in a GPU in the
Accelerate library.
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By default, Haskell uses an execution strategy called lazy evaluation. Under laziness,
an expression is never evaluated until it is needed for the evaluation of a larger one.
Once it has been evaluated, the result is saved for further computation, or it’s discarded
ifit’s not needed in any other running code. This has an obvious benefit because only the
minimal amount of computation is performed during program execution, but it also has
drawbacks because all the suspended expressions that have not yet been evaluated must
be saved in memory. Lazy evaluation is powerful but can become tricky, as you will see
in Chapter 5.

Why Strong Static Typing?

Type systems come in various formats in almost all programming languages. A type
system is an abstraction that categorizes the values that could appear during execution,
tagging them with a so-called type. These types are normally used to restrict the possible
set of actions that could be applied to a value. For example, it may allow concatenating
two strings but forbid using the division operator between them.

This tagging can be checked, broadly speaking, at two times: at execution time
(dynamic typing), which usually comes in languages with looser typing and allows
implicit conversions between things such as integers and strings, or at the moment of
compilation (static typing), in which case programs must be validated to be completely
well typed in terms of the language rules before generating the target output code
(usually machine code or bytecode) and being allowed to run. Haskell falls into this
second category: all your programs will be type checked before they are executed. Within
statically typed languages, some of them, such as Java or C#, need to perform extra type
checking at runtime. In contrast, once a Haskell program has been compiled, no more
type checks have to be done, so performance is vastly increased.

Haskell’s type system is very strong. Strength here means the number of invariants
that can be caught at compile time before an error materializes while the application is
running. This increases the confidence in code that is type checked, and it’s common
to hear the following in Haskell circles: “Once it compiles, it works.” This strong typing
gives rise to a way of programming dubbed type-oriented programming. Basically,
programmers know the type of the function they are developing and have a broad idea
of the structure of the code. Then, they “fill in the holes” with expressions from the
surrounding environment that fit into it. This approach has actually been formalized,
and there is another language similar to Haskell, called Agda, which comes with an
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interactive programming environment that helps in filling in the holes and even does so
automatically if only one option is available at one place.

In Chapters 13 and 15, I will move a bit from Haskell to Idris, a language with a
similar syntax that features dependent typing. Dependent typing is an even stronger form
of type checking, where you can actually express invariants such as “If I concatenate a
list of n elements to a list with m elements, I get back a list with n+m elements” or “I cannot
get the first element of an empty list” Then, you will see how some of these techniques
can be transferred as patterns into Haskell.

The last difference in Haskell with respect to typing comes from polymorphism.

The problem is twofold. First, you want to write functions on lists without caring about
the type of the elements contained in them. This is known as parametric polymorphism,
and you will explore it in Chapter 3. In other cases, you want to express the fact that some
types allow some specific operations on their values. For example, the idea of applying

a function to all elements in a list, as you did before with map, can be generalized into
the concept of having an operation that applies a function to all elements in some data
structure, such as a tree or a graph. The solution here is called type classes, which groups
different types with a common interface. You will look at it in Chapter 4, where you will
also realize that this concept is a very high-level one that allows for expressing several
abstract ideas (functors, monads) and that gives an interesting flavor to Haskell code.

The Haskell Ecosystem

Until now I have spoken only about Haskell the language. But the benefits of Haskell
come not only from the language but also from the large and growing set of tools and
libraries that can be used with the language.

Several compilers for Haskell are available, which usually take the name of a city:
GHC (from Glasgow), UHC (from Utrecht), and so on. Of those, GHC is usually taken
as the standard, and it’s the one with the largest number of features. At the moment of
writing, only GHC is actively maintained. You will follow this path and will work with
GHC throughout the book.

Like any other popular programming language, Haskell has an online repository of
libraries. It is called Hackage, and it’s available at http://hackage.haskell.org/.
A stable subset of Hackage, known as Stackage, is available at https://www.stackage.org/.
Both repositories integrate seamlessly with Cabal and Stack, the two alternative building
tools for Haskell projects. In Hackage you can find libraries ranging from bioinformatics
to game programming, window managers, and much more.


http://hackage.haskell.org/
https://www.stackage.org/

CHAPTER 1  GOING FUNCTIONAL

Apart from GHC and Cabal, in the book you will look at some tools that aim
to help developers write better code faster. The first one will be the GHC profiler;
you will learn about it in Chapter 5 to detect space and time leaks. You will also
look at Hoogle and Haddock, which are used to browse and create documentation.
In Chapter 14, you will use the UU Attribute Grammar System to help you build
domain-specific languages.

The History of Haskell

Haskell is usually considered the successor of the Miranda programming language,
which was one of the most important lazy functional programming languages in the
1980s. However, at that time, lots of other languages of the same kind existed in the
wild. That made it difficult for researchers to have a common base in which to perform
experiments in this paradigm. So, by the end of that decade, they decided to build a
completely new language that would become the groundwork for that research.

During the 1990s, several versions of the language were produced. During this
time Haskell evolved and incorporated some of the features that give the language its
particular taste, such as type classes and monads for managing input and output. In
1998, a report defined Haskell 98, which was taken as the standard for any compliant
Haskell compiler. This is the version targeted by most library developers.

However, new ideas from researchers and compiler writers were integrated into
Haskell compilers, mostly in GHC. Some of these extensions became widely used, which
made the case for a revised Haskell standard, which came out in 2010. At the time of this
writing, GHC targets this version of the language.

As the language has become more popular, more extensions have been added to
GHC and other compilers, and these features usually can be switched on or off at the
developer’s will. As a result, a more disciplined schedule has been created for issuing
revised Haskell standards on a timely basis.

Your Working Environment

At this point you are probably feeling the need to try Haskell on your own computer.
The first step for this is, of course, to have a working Haskell installation on your system.
Haskell developers worried in the past about how to get people ready fast and easily.
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So, they created the Haskell Platform, a distribution containing the GHC compiler,
the Cabal build and library system, and a comprehensive set of libraries. To get the
Haskell Platform, go to http://www.haskell.org/platform/. Then, follow the steps
corresponding to the operating system you will be using.

Installing on Windows or Mac 0S X

Installing on the Microsoft or Apple operating system is easy because the file you
download is an executable package that will take care of everything.

Installing on Linux

The world of Linux distributions is diverse, so it’s difficult to suggest the best way to get a
working Haskell installation on Linux systems. If you use a distribution supporting some
sort of package management system, it’s better to stick with that system. For example,
Debian-based systems support apt-get. Thus, you can run the following:

$ sudo apt-get install haskell-platform

The best known of Debian derivative, Ubuntu, features a different way to get the
GHC compiler and the Cabal build tool up and running. Herbert V. Riedel, one of the
maintainers of the Platform, provides a specific repository for this system, which you can
get by running

$ sudo add-apt-repository ppa:hvr/ghc
$ sudo apt-get update

Tip If the call to add-apt-repository does not work, ensure that you
have the corresponding package installed. You can get it using sudo apt-get
install software-properties-common.

This repository gives access to every version of GHC since 7.0. To install the latest
GHC and Cabal at the moment of writing, you need to do the following:

$ sudo apt-get install ghc-8.6.3 cabal-install-2.4

In addition, you should also add the folder /opt/ghc/<version>/bin to your PATH.
How to do so depends on the shell you are using, but in the default configuration adding
aline to .bashrc should be enough.
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In Fedora and other Red Hat-based distros, this is the line to run:
$ yum install haskell-platform

You can also check the whole list of distributions that have Haskell Platform out of
the box on the Haskell Platform website.

Installing on Linux from Source

In case you want or need to perform a complete installation from source code, you must
follow these steps:

1. Gotothe GHC compiler web page, http://www.haskell.org/ghc/.
Click the Download link and get the binary package for the latest
stable release.

2. Uncompress the file you just downloaded into the place you want
it to live. It's recommended that you add that folder to your PATH.
You may need to install some libraries, like GMP, to be able to run
this binary. In Debian and derivatives, those dependencies may
be obtained by running sudo apt-get build-dep ghc.

Note You can also build GHC from source. However, this is a tedious and error-
prone process, so using just the binary distribution is recommended. In case you
want to follow that path, the Haskell wiki page has a detailed description of the
process; see http://ghc.haskell.org/trac/ghc/wiki/Building.

3. Return to the Haskell Platform page to download its source.

4. Uncompress, build, and install it, which is usually accomplished
by running this:

$ tar -xzvf haskell-platform-*.tar.gz
$ cd haskell-platform-*

$ ./configure

$ make

$ make install

10
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First Steps with GHCi

It's now time to see whether your Haskell Platform is correctly installed. To do so, open a
console, type ghci -e 5+3, and press Enter. You should see 8 as output. This application
is one instance of a read-eval-print loop (REPL), or, more succinctly, an interpreter.

In GHCi, you input an expression and press Enter. The expression gets evaluated, and
the result is shown on the screen. This allows for a programming methodology where
you navigate into and discover the functionality of a library by issuing commands in the
interpreter and also test your code interactively.

To open an interpreter in a console, just run ghci. A prompt with Prelude> at the
beginning should appear. This line tells you that the interpreter is ready to accept
commands and that the only loaded module at this moment is the Prelude, which
contains the most basic functions and data types in Haskell. As a first approximation,
GHCi can work as a fancy calculator, as shown here:

Prelude> 5 * 3

15

Prelude> 1/2 + 1/3
0.8333333333333333

If you now type s and press the Tab key, you will see a list of all possible functions
beginning with that letter. If you then type q and press Tab again, only one possibility
is left, sqrt, which is automatically written for you. One distinguishing choice made
by Haskell creators was that parentheses are not used when applying a function. This
means that if you want to find the square root of 7, you just write this:

Prelude> sqrt 7
2.6457513110645907

There are many other arithmetic operations you can perform in the interpreter: sin,
cos, log, exp, and so forth. In the next chapter you will learn how to use strings and lists
and how to define functions, which will make your experience with the interpreter much
more rewarding.

11
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GHCi does not by default allow you to input several lines of code. For example, if you
want to break the previous addition of two rational numbers into two lines, you cannot
do it easily. Try entering the expression again, but press Enter after inputting the plus
sign. If you press Enter, this error message will be produced:

Prelude> 1/2 +
<interactive>:2:6:
parse error (possibly incorrect indentation or mismatched brackets)

The solution is to start a multiline block. A multiline block is an expression that is
allowed to span more than one line. To do so, enter : { and then press Enter. The prompt
will change into Prelude |, showing that the input is expected to fill several lines. To end
the block, enter the opposite of the beginning symbol, : }. Here’s an example:

Prelude> :{
Prelude| 1/2 +
Prelude| 1/3
Prelude| :}
0.8333333333333333

Caution To start a multiline block, : { must be the only text entered in the
first line.

All the internal actions of the interpreter (i.e., those that are not functions on any
library) start with a colon. For example, typing : ? and pressing Enter lists all the available
commands. Other possibilities are looking at the language standard version you are
using, in this case Haskell 2010 with some customizations. Here’s an example:

Prelude> :show language

base language is: Haskell2010

with the following modifiers:
-XNoDatatypeContexts
-XNondecreasingIndentation

12
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I stated before that Haskell has a strong static type system. You can check that it
forbids dividing two strings (which are written between double quotes), producing an
error when input in the interpreter, like so:

Prelude> "hello" / "world"

<interactive»:2:9:
No instance for (Fractional [Char]) arising from a use of */'
Possible fix: add an instance declaration for (Fractional [Char])
In the expression: "hello" / "world"
In an equation for "it': it = "hello" / "world"

Fractional is the name of the type class that provides support for the / operator.
The error message is saying that in order to be able to divide two strings, you should tell
the compiler how to do so, by adding a declaration with the code for the Fractional
type class in the case of strings.

To close the interpreter and go back to the console, you can issue the command
:quit or just press the key combination Ctrl+D. In both cases the result is the same.

Prelude> :quit
Leaving GHCi.

Note GHCi is a powerful and customizable tool. You can find lots of tips and tricks
on the Haskell wiki page devoted to the interpreter, https://wiki.haskell.
org/GHC/GHCA.

The Time Machine Store

If you have already taken a look at the table of contents of this book, you will have
noticed that it is divided into four parts. Each part is devoted to a different module of a
small web store.

o In this first part, you will learn how to define the basic blocks of your
application, representing clients, products, and orders, and how to
manage them in-memory.

13
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e InPart 2, you will develop some data-mining algorithms to get a
better knowledge of the clients. In particular, you will develop a
classification algorithm based on K-means and a recommendation
algorithm.

o Part 3 will deal with saving data into a persistent store. For product
data you will use a custom file format, and for clients and orders you
will use a more traditional database solution. With all of this, you will
be able to build the initial application by Chapter 12.

o Finally, in Part 4 you will see how a domain-specific language can
be used to model special offers in the system, such as “20 percent
discount for all clients in Europe younger than 30.

What will you sell in this store? Time machines!

Welcome to the exciting world of time machines! These machines are quite
special, and our clients come from all parts of the universe to get one. We
would like to have a web store to handle all the orders. And we would also
like to be developed in a language as special as our machines, like Haskell.

Sound exciting? Throughout this book you'll be using Haskell to build your very own
store for selling time machines. It’s a fun example, and it should keep the book interesting.

Summary

In this chapter you got familiar with Haskell.

e Youlearned about the distinguishing features of pure functional
programming and how it helps to build code that is more concise,

more maintainable, and less error prone.

e Youlooked at the benefits of having a strong, statically checked type
system, like the one embodied in Haskell, and how dependent typing
makes it possible to express invariants in a powerful way.

o The major tools in the Haskell ecosystem were introduced: the
GHC compiler, the Cabal build tool, the Hackage library repository,
and the GHC interpreter. You also took your first steps with the
interpreter.

14
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You looked at the installation process of the Haskell Platform in the
most common computer environments.

You were presented with the main target in the book (apart
from learning Haskell): building a web store focused on selling
time machines, with modules for simple data mining and offer
descriptions.

15
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Declaring the Data Model

You already know how to get a working installation of the Haskell Platform. The next step
toward your Time Machine Store is to create the initial set of values and functions that
will represent the data in the system: clients, machines, and orders.

This chapter will give you the basic ingredients for creating these values and
functions. In a first approximation, you will create functions operating on basic
types. You already know numbers, and you will add lists and tuples to the mix.
Afterward, you will see how to create your own algebraic data types (ADTs) to better
represent the kind of values you are interested in here. As part of this, you will learn
about pattern matching, a powerful idiom to write concise code that follows closely
the shape of the types.

Sometimes ADTs and pattern matching lead to code that’s not clear enough. Records
introduce some syntactic forms that make values easier to create and modify, and they
are a well-known tool of Haskell programmers. In addition, you will look at two design
patterns that are common in Haskell libraries, namely, smart constructors and default
values.

This chapter will also introduce how to manage projects using Cabal and Stack.

In particular, you will see how to create a new project using both systems, along with
the usual structure in folders, and how to load the code into the GHC interpreter to
interactively test it.

Characters, Numbers, and Lists

Characters and numbers are universally accepted as the most basic kind of values that

a language should provide to programmers. Haskell follows this tradition and offers
dedicated character and number types that will be introduced in this section. Afterward,
you will see how to put together several of these values to create strings or lists of
numbers, as well as the basic operations you can perform on any kind of list.
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Characters

In some programming languages, numbers are also used to represent characters,
usually in some encoding such as ASCII or Unicode. But following its tradition of clearly
separating different concerns of a value, Haskell has a special type called Char for
representing character data. To prevent problems with locales and languages, a Char
value contains one Unicode character. These values can be created in two ways.

o Writing the character itself between single quotes, like 'a".

e Writing the code point, that is, the numeric value which represents
the character as defined in the Unicode standard, in decimal between
"\'and ' or in hexadecimal between '\x and '. For example, the
same 'a’' character can be written as '\97"' or '\x61".

Using GHCi, you can check the actual type of each expression you introduce in the
system. To do so, you use the :t command, followed by the expression. Let’s check that
characters indeed are characters.

Prelude> :t 'a'
'a' :: Char

Let’s now explore some of the functionality that Haskell provides for Chars. Only a
few functions are loaded by default, so let’s import a module with a lot more functions, in
this case Data.Char.

Prelude> import Data.Char
Prelude Data.Char>

The prompt of the interpreter changes to reflect the fact that now two different
modules are loaded. Furthermore, if you now write to and press Tab, you will see a
greater number of functions than before. In Haskell, everything has its own type, so let’s
try to find out toUpper’s type.

Prelude Data.Char> :t toUpper
toUpper :: Char -> Char

The arrow syntax (shown as ->) is used to specify types of functions. In this case,
toUpper is a function taking a character (the Char on the left side) and returning another
one (because of the Char on the right side). Of course, types don’t have to be equal. For
example, chr takes an integer and gives the character corresponding to that code point.
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Prelude Data.Char> chxr 97
Ial
Prelude Data.Char> :t chr

chr :: Int -> Char

For functions with more than one parameter, each argument type is separated from
the next with a single arrow. For example, if you had a min function taking two integers
and returning the smallest one, the type would be as follows:

min :: Integer -> Integer -> Integer

I mentioned in the previous chapter that Haskell is very strict at checking types. You
can indeed verify this: if you try to apply the chr function to a character, the interpreter
refuses to continue.

Prelude Data.Char> chr 'a'
<interactive>:7:5:
Couldn't match expected type "Int' with actual type “Char'
In the first argument of “chr', namely 'a’
In the expression: chr 'a’
In an equation for "it': it = chr 'a’

Numbers

In Chapter 1 you may have noticed that several kinds of numeric constants were used.
Like most programming languages, Haskell supports a great variety of number types,
depending on the width, precision, and support for decimal parts.

o Intisthe bounded integer type. It supports values between at least
+536870911, which corresponds to 2?°-1 (even though GHC uses a
much wider range). Usually, values of the Int type have the native
width of the architecture, which makes them the fastest.

o Integeris an unbounded integral type. It can represent any value
without a decimal part without underflow or overflow. This property
makes it useful for writing code without caring about bounds, but it
comes at the price of speed.
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o The Haskell base library also bundles exact rational numbers using
the Ratio type. Rational values are created usingn % m.

e Float and Double are floating-point types of single and double
precision, respectively.

Haskell is strict with the types. If you need to convert between different numeric
representations, the functions fromInteger, toInteger, fromRational, and toRational
will help you deal with conversions. For example, you can switch between rational and
floating-point representations of values. The toRational function tries to create a Ratio
not far from the original value (this depends on its width), and you can move from
rational to floating-point by dividing the numerator by the denominator of the ratio. Be
aware that many of these functions are found in the Data.Ratio module, so you should
import it first.

Prelude> import Data.Ratio

Prelude Data.Ratio> 1 %2 +1 % 3

5%6

Prelude Data.Ratio> toRational 1.3

5854679515581645 % 4503599627370496

Prelude Data.Ratio> toRational (fromRational (13 % 10))
5854679515581645 % 4503599627370496

As you can see from the examples, perfect round-tripping between rational and
floating-point values is not always possible. You may also get a puzzling result if you try
to find the type of numeric constants.

Prelude> :t 5

5 :: Numa => a

Prelude> :t 3.4

3.4 :: Fractional a => a

Instead of making a numeric constant of a specific type, Haskell has a clever solution
for supporting constants for different types: they are called polymorphic. For example,
5 is a constant that can be used for creating values of every type supporting the Num type
class (which includes all types introduced before). On the other hand, 3.4 can be used
for creating values of any type that is Fractional (which includes Float and Double but
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not Int or Integer). You will read in detail about type classes in Chapter 4, but right
now you can think of a type class as a way to group sets of types that support the same
operations. They share many commonalities with interfaces commonly found in object-
oriented languages, and are close relatives of Scala’s traits and Swift’s protocols.

Caution Since Haskell doesn’t use parentheses in function invocations, that is,
you write ¥ a b instead of f(a,b), you must be a bit more careful than usual
when using negative numbers. For example, if you write atan -4 in GHCi, you will
get an error indicating

Non type-variable argument in the constraint (Num (a -> a))

This means it has interpreted that you are trying to compute the subtraction of
atan and 4. To get the arctangent of -4, you should instead write atan (-4).

Strings

After playing for some time with characters, you may wonder whether you can have a
bunch of them together, forming what is commonly known as a string. The syntax for
strings in Haskell is similar to C: you wrap letters in double quotes. The following code
creates a string. If you ask the interpreter its type, what do you expect to get back?

Prelude Data.Char> :t "Hello woxld!"
"Hello world!" :: [Char]

Instead of some new type, like String, you see your old friend Char but wrapped
in square brackets. Those brackets indicate that "Hello world!" is not a character
but a list of characters. In general, given a type T, the notation [ T] refers to the type
of all lists whose elements are of that type T. Lists are the most used data structure in
functional programming. The fact that a type like a list depends on other types is known
as parametric polymorphism, and you will delve into the details of it in the next chapter.
Right now, let’s focus on the practical side.
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Lists

List literals (i.e., lists whose values are explicitly set into the program code) are written
with commas separating each of the elements, while wrapping everything between
square brackets. As I have said, there’s also special string syntax for a list of characters.
Let’s look at the types of some of these literals and the functions reverse, which gives a
list in reverse order, and (++), which concatenates two lists.

Prelude> st [1,2,3]

[1, 2, 3] :: Num t => [t]
Prelude> :t reverse
reverse :: [a] -> [a]
Prelude> st (++)

(++) :: [a] -> [a] -> [a]
Prelude> reverse [1,2,3]
[3,2,1]

Prelude> reverse "abc"
"cba
Prelude> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]

Notice from this example that there are functions, such as reverse and (++), that
can operate on any kind of list. This means once you know them, you can apply your
knowledge of them to any list (including strings of characters). To tell this fact, these
functions show in its type a type variable. It is a variable because it can be replaced by
any type because regular variables can take different values. Type variables must be
written in code starting with lowercase letters, and they consist usually of one or two
letters. Here, the type variable is shown as a.

Note Functions whose names are built entirely by symbols, like ++, must be
called using the so-called infix syntax. That is, they should be written between
the arguments instead of in front of them. So, you write a ++ b, not ++ a b.
In the case where you want to use the function in the normal fashion, you must
use parentheses around its name. So, you can write (++) a b, meaning the
same asa ++ b.
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Lists in Haskell are homogeneous: each list can handle elements of only a single type.
Because of that, you are forbidden to create a list containing integers and characters and
also to concatenate two lists with different kinds of elements.

Prelude> [1,2,3,'a','b","'c"]
<interactive>:13:2:
No instance for (Num Char) arising from the literal "1’
Prelude> "abc" ++ [1,2,3]
<interactive>:11:11:
No instance for (Num Char) arising from the literal "1’

Like in most functional languages, lists in Haskell are linked lists. Such lists are
composed of a series of cells that hold the values in a list and a reference to the next cell
and a special marker for the end of the list. The basic operations to construct lists are [ ]
(pronounced “nil”) to create an empty list and (:) (pronounced “cons”) to append an
element to an already existing list. That is, elt:1st is the list resulting from putting the
value elt in front of the list 1st. So, list literals can also be written as follows:

Prelude> 1 ¢ 2 : 3 : []
[1,2,3]

Prelude> 'a' ¢ 'b" ¢ 'c¢' : []
"abc

Note how GHCi writes back the lists using the most common representation using
brackets. In the case of lists of characters, it uses string notation.

The functions that get information about the shape and the contents of the list are
null, to check whether a list is empty; head, to get the first element; and tail, to get the
list without that first element, also known as the rest of the list. Here are some examples
of applying these functions:

Prelude> null [1,2,3]
False

Prelude> null []

True

Prelude> head [1,2,3]
1
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Prelude> tail [1,2,3]

[2,3]

Prelude> head []

*** Exception: Prelude.head: empty list

Figure 2-1 shows a graphical representation of the operators and functions on lists
I have talked about. The (:) operator is used to bind together an element with the rest
of the list, and you can split those elements apart again using head and tail. You can
also see how a list is a series of cons operations that always end with the empty list

e e )

head tail

Figure 2-1. Graphical representation of list constructors and destructors

constructor, [ ].

Ifyou try to get the head or the tail of an empty list, you get an error, as you may
expect. Be aware that exceptions are not the preferred way to handle errors in Haskell
(you will see why in more detail in subsequent chapters) and by default make the entire
program crash when found. To prevent errors from operations on empty lists, just be
sure to check for nonemptiness before applying functions such as head and tail (or
even better, use pattern matching, which will be introduced shortly).

In fact, looking at the output of null, you may have noticed two new values I
talked about before: True and False. These are the only two elements of the Bool
type, which represent Boolean values. Several standard functions for combining
these two values (and (88), or (| |) and not) are provided in the Prelude. Most
programming languages originating from C, such as C++ and Java, inherit from
the former two kinds of Boolean operators. You'll find long-circuiting (& and |)
operators, which always evaluate both sides of the expression, and short-circuiting
(&& and | |) operators, which may stop after evaluating only one side. In Haskell,
because of its lazy evaluation model, these operators always perform their job in the
short-circuiting manner. Apart from that, there exist and and or functions that take a
list of Booleans and perform the operations.
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Prelude> (True &k False) || (False && not False)

False

Prelude> or [True, False, and [False, True, True]]
True

Prelude> (2 == 2.1) || (2 < 2.1) || (2 » 2.1)
True

Caution The usual warnings about comparing floating-point values apply here.
Computers are not able to represent with exact precision all the values, so you
may find that equalities that you expect not to hold actually do. For example,

in my system the expression (4.00000000000000003 - 4) == 0 evaluates
to True.

Along with these functions, another important construction related to Booleans is
if-then-else. An expression with the form if b then t else f evaluates to t if the value
of bis True, and it evaluates to f otherwise. This structure looks similar to the one found
in imperative languages but has these important differences:

o Both then and else branches must be present along with the if. If
this were not the case, then the expression wouldn’t be evaluable for
some of the values of b. Other languages opt to return a default value
for the nonexistent else, but Haskell makes no commitment.

o The entire expression must have a defined type. The way Haskell
manages to ensure that is by forcing both t and f expressions to have
the same type. Thus, an expression such as if True then 1 else
"hello" won't be accepted by either the compiler or the interpreter.

To make real use of if expressions, you need functions that return type Bool. This
includes the comparison functions between numbers: == (equality), /= (inequality, but
be aware that this function has a different name than in C and Java, where it’s called !=),
>= (greater than or equal to), > (greater than), <= (less than or equal to), and < (less than).
The following is an example of an if expression:

Prelude> if 3 < 4.5 then "3 is less than 4.5" else "3 is not less than 4.5"
"3 is less than 4.5"
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Let’s make the interpreter return the head of a list of strings if it is not empty or return
"empty" otherwise.

Prelude> :{

Prelude| if not (null ["hello","hola"])

Prelude| then (head ["hello","hola"]) else "empty"
Prelude| :}

"hello"

Prelude> if not (null []) then (head []) else "empty"
"empty"

Lists can contain other lists as elements (or to any level of nesting). As [T] are lists
of type T, lists of lists would be [[T]]. The inner lists inside the outer lists need not be
of the same length (so they are not equivalent to arrays of multiple dimensions). One
important thing to remember is that an empty list can be a member of a larger list of lists,
so [] and [[]] are not equivalent. The first is a completely empty list of lists, whereas the
second is a list that contains only one element, which is an empty list.

Prelude> st [['a','b','c'],['d","e"]]
["abc","de"] :: [[Char]]

Prelude> head [['a','b"','c'],['d","e"']]
"abc
Prelude> head (head [['a','b','c'],['d",'e']])

a
Prelude> head [[]]

[]

For sure you have become bored while typing more than once the same constant
list in the interpreter. To overcome this, you will learn about the essential ways to
reuse functionality across all programming languages: defining functions that work
on different input values and creating temporal bindings. But before that, Exercise 2-1
includes some tasks to see whether you have understood the concepts up to this
point.
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EXERCISE 2-1. LISTS OF LISTS

| have covered a lot of material about the most basic types and expressions in Haskell.
The following tasks exercise the knowledge you have gained so far. In all cases, the solutions
are expressions that can be typed in the interpreter to check whether they work.

o Rewrite the previous list literals using only (:) and the empty list constructor, [ ].

° Write an expression that checks whether a list is empty, [ ], or its first element is
empty, like [[],["a", 'b"]].

° Write an expression that checks whether a list has only one element. It should
return True for ['a'] and Falsefor[Jor['a",'b"].

° Write an expression that concatenates two lists given inside another list. For
example, it should return "abcde" for [ "abc","de"].

Use GHCi to check that those expressions work as required.

Creating a New Project

You can create a new project through Cabal and Stack, the main tools for packaging

and building systems for Haskell projects. The advantage of using those tools is that

they have been especially tailored for Haskell and its package repository, Hackage. In
addition, the Cabal description file saves interesting metadata about the project, such

as its name, maintainer, and license. In this section you will see how to use both Cabal
and Stack from the command line. Feel free to change between them because the project
structures are fully compatible.

Creating a Project with Cabal

If you want to create a project using the command line, the first thing to do is to create
the folder where the files will reside, usually named the same as the package name. Then
move inside the folder in the shell (usually by issuing a series of cd commands) and run
cabal init.You will need to answer some questions, as shown here:

$ cd path/to/my/haskell/projects
$ mkdir chapter2
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$ cd chapter2

$ cabal init

Package name? [default: chapter2]

Package version? [default: 0.1.0.0] 0.0.1
Please choose a license:

Your choice? [default: (none)]
Author name? Alejandro Serrano
Maintainer email? my@email-address.com

Project homepage URL? http://my-web-page.com
Project synopsis? Project example for Chapter 2
Project category:

* 1) (none)

Your choice? [default: (none)]
What does the package build:
1) Library
2) Executable
3) Library and Executable
Your choice? 1
Source directory:
* 1) (none)
2) src
3) Other (specify)
Your choice? [default: (none)] 2
. -- More not very interesting questions
Include documentation on what each field means (y/n)? [default: n]

Note You might receive a warning about cabal update. Don’t worry, we will
download a list of packages shortly, after | introduce how to add dependencies to a
Cabal project.

The most important answers to give are the package name and whether you want to
create a library or an executable, because what you create affects the name and structure
of the project file. The essential difference between a library and an executable project
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is whether a final program will be produced (in the latter case) or the code is just for
consuming other libraries or executables. Right now, it does not matter which one you
choose because you will be testing the code using the GHC interpreter. Furthermore, you
can refine the project later to add more library or executable descriptions.

Because having all the files in the root of the project makes them difficult to manage,
it’s customary to create a folder to hold all the source files of a project, as it is done in
other build tools such as Maven for Java. I strongly recommend placing your files in a src
folder, as shown in the project initialization above.

Creating a Project with Stack

The creation of a new project in Stack follows a very similar structure. In contrast to
Cabal, you do not have to create the project folder before issuing the corresponding
command, and instead of init you use new:

$ cd path/to/my/haskell/projects

$ stack new chapter2

Downloading template "new-template" to create project "chapter2" in
chapter2...

Downloaded 1ts-12.18 build plan

Updating package index Hackage

Update complete

Populated index cache.

Matches 1ts-12.18

Selected resolver: 1ts-12.18

Initialising configuration using resolver: 1lts-12.18
Total number of user packages considered: 1

Writing configuration to file: chapter2\stack.yaml
All done.

Stack asks much fewer questions. It is your further responsibility to change the
author name, maintainer e-mail, and subsequent fields to the correct value.
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There is another possibility to initialize a project using Stack. If you already have a
Cabal file, maybe because you have created it previously, you can accommodate it for
using Stack by running the command stack init. The only visible difference is the
creation of a stack.yaml file in the root of the project.

EXERCISE 2-2. YOUR FIRST PROJECT

Create a new library project called chaptexr2 using either of the methods explained so far

When doing Exercise 2-2, a pair of files named Setup.hs and chapter2.cabal will
be created in the folder. The file Setup.hs is not useful, so you will focus on the .cabal
file you have just created. The name of this file always coincides with the name of the
package you are developing.

A Cabal project file is composed of a series of package properties followed by
several blocks of code, called stanzas in Cabal terminology, that define the components
(libraries and executables) to be built, the source files making each of them, and the
options for compilation (such as flags or enabled extensions). If you are familiar with the
JSON format or with Python code, you will find Cabal syntax comfortable to read and
interpret. The following are the two important rules of interpretation:

o Each property is given a value in the form name: value. The name is
case-insensitive (it doesn’t matter whether you write name, Name, or
nAmE), and the value is written without any kind of quotes or marks.
If the value is a list, the elements are separated by commas.

o Stanzas begin with a header, usually 1ibrary or executable, followed
by an application name. Be aware that there is no colon (:) after the
header. All properties within the stanza must be indented an equal
number of spaces or tabs.

For example, here is an extract of a possible Cabal file created after initializing a
project as required by Exercise 2-2:

name: chapter2
version: 0.1
cabal-version: »>=1.2
build-type: Simple
author: John Doe
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library
hs-source-dirs: src
build-depends: base >= 4
ghc-options: -Wall

Understanding Modules

You build Haskell projects by writing what are termed modules. Each module contains a
set of definitions, such as functions and data types, and groups them under a common
umbrella. The names of modules are nested in a hierarchical fashion. For example,
inside Data there are a bunch of different modules, like Data.Bool, Data.Ratio, and so
forth. This nesting makes modules similar to packages in Java or to namespaces in C#.

You define each module in its own file. The file name should be equal to the last
component of the module name (the part after the last dot) and must be nested in
folders named like the rest of the components. For example, you would create a module
named Chapter2.Section2.Example in the path Chapter2/Section2/Example.hs. At
the source directory of your project (which is src is you have followed the instructions
above), create a folder named Chapter2. Inside it, create another folder named
Section2. Finally, inside Section2 create the Example.hs file.

CHANGING THE SOURCE DIRECTORY

You can always choose another source directory by adding a property

library
hs-source-dirs: src

to each of the stanzas in the Cabal file. In fact, you can use different source folder for each
stanza, which helps us keeping files from libraries, executables, and tests apart.

Always begin a module file with a module declaration giving its name. For example,
you would begin the Example.hs module just mentioned by writing the following line:

module Chapter2.Section2.Example where

Then, you can start writing the definitions for that module.
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To tell Cabal to compile a module file, you must include that module in some stanza.
To do so, include a new property under the stanza adding the module either to the
exposed-modules property or to the other-modules property (the difference is that when
using your library from another project, only exposed modules will be available; the
others remain as internal). Here’s an example:

library
exposed-modules: Chapter2.Section2.Example
-- or
other-modules: Chapter2.Section2.Example

If you are using the command line, you can now compile the project by running
cabal new-configure and then cabal new-build, or stack setupand then stack
build, depending on your choice of tool. At this point you shouldn’t encounter any

compiling errors.

NEW- COMMANDS IN CABAL

At the moment of writing, Cabal is undergoing an internal reorganization. For that reason, it
keeps two sets of commands: those starting with the new- prefix (like new-build), and the
older ones which do not start like that (e.g., build). Whenever possible, use the former set of
commands, because it provides several benefits such as automatic sandboxing of projects.

In summary, to add a new module to your project, you follow these steps:
1. Choose a name for the module, for example A.B.C.

2. Create a folder for each component of its name but the last one, in
this case a folder A inside a folder B.

3. Create a file with the same name of the last component ending in
.hs (here C.hs) and write the module declaration you saw earlier.

4. Tell Cabal to include the file in your project.

Note From now on, create a new project for each chapter in the book. Create a
new module or set of modules for each section. This convention will help keep your
work organized.

32



CHAPTER 2  DECLARING THE DATA MODEL

Cabal and Stack

The Haskell ecosystem has not one but two tools for building projects and managing
their dependencies. A fair question to ask is what the differences between them are.

In general, Stack is focused on having reproducible builds, whereas Cabal encompasses
many more usage scenarios.

The first point of divergence between the two tools is that Stack manages your
Haskell installation (including the compiler), whereas Cabal does not. Each Stack project
comes with a stack.yaml file in addition to the . cabal one which declares which version
of the compiler is targeted. If that specific version is not present in the system, Stack
would download and install it in a local directory.

The other main difference is the source of the dependencies declared by each project.
Cabal by default uses Hackage, the community-maintained repository of packages. This
provides access to every single package in the Haskell ecosystem, but there is no guarantee
that a specific combination of packages will work (or even compile) together.

Stack, on the other hand, targets Stackage by default. In Stackage, packages are
grouped as resolvers, which specify not only an available set of packages, but also their
specific versions. Each of those sets is known to compile together in a specific version of
the compiler. Thus, by declaring that your project uses a certain resolver, you are fixing
the version of every tool and package, leading to reproducible builds. The downside is
that Stackage provides a smaller set of packages than Hackage, although there are ways
to declare that some dependency ought to be obtained from the bigger brother.

If you are in doubt of which tool to use, don’t worry and start with any. As I discussed
above, both share the same package description format, so changing from one to the
other is fairly easy.

Defining Simple Functions

Now you are going to start creating functions in a module file. Function declarations
include the following:

e A name, which in Haskell always starts with a lowercase letter

o Thelist of parameters, each of which must also begin with a
lowercase letter, separated from the rest by spaces (not by commas,
like in most languages) and not surrounded by parentheses

e An=sign and the body of the function
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Creating a Simple Function

Let’s try to abstract the last function created in the earlier section “List operations.” Given
a list of strings, that function returns either the first string in the list or the string "empty"
if there is nothing in the list. You can reuse most of the expression, replacing the constant
lists by the parameter name.

firstOrEmpty 1st = if not (null 1st) then head 1lst else "empty"

To test the function, first create a new module Chapter2.SimpleFunctions for
holding it. Then, load the file in the interpreter by issuing the command :1 followed by
the entire path to the file. Afterward, you can call firstOrEmpty directly.

Prelude> :1 src/Chapter2/SimpleFunctions.hs
[1 of 1] Compiling Chapter2.SimpleFunctions ( src/Chapter2/SimpleFunctions.
hs, interpreted )
Warning: Top-level binding with no type signature:
firstOrEmpty :: [[Char]] -> [Char]
Ok, modules loaded: Chapter2.SimpleFunctions.
*Chapter2.SimpleFunctions> firstOrEmpty []
"empty"
*Chapter2.SimpleFunctions> firstOrEmpty ["hello","hola"]
"hello"

You surely have noticed that loading the file has resulted in a warning. This warning
tells you that you have given no type signature, that is, that you haven'’t specified the type
of the function.

Specifying the Function’s Type

I emphasized in Chapter 1 that Haskell is a strong, statically typed language, and now
you are writing functions without any kind of type annotation. How is this possible?
The answer is in the same warning message: you didn’t tell anything to Haskell,

and it inferred the correct type for the function. Type inference (i.e., the automatic
determination of the type of each expression based on the functions and syntax
construct being used) is a key point that makes a strong type system such as Haskell’s
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still manageable to developers. This is a big contrast with other programming languages,
such as Java and C#, which until their last revisions asked developers to write the types of
all variables in the code.

However, it’s not considered good practice to leave a function definition without
an annotation about its type. That’s the reason why a warning shows up even when the
interpreter was able to realize the type of the function. The way to solve this is by adding
a type signature: the name of the function being defined followed by : : and its type.
Type signatures are conventionally added just before the definition of the element being
typed. Being reminded that function types are written using ->, you can see that the type
signature for firstOrEmpty is as follows:

firstOrEmpty :: [[Char]] -» [Char]
firstOrEmpty 1st = if not (null 1st) then head 1lst else "empty"

Developing a Robust Example

Now you'll try to define your own functions for concatenating and reversing a list, which
you will call (+++) and reverse2, respectively. A general way to define functions over
lists (and most of the other data structures) in Haskell is by using recursion. In this case,
defining a function by recursion boils down to considering these two general cases:

e What to do when the list is empty
¢« What to do when the list has some initial element and some tail

The basic skeleton is the same in both cases:

if null list
then <case for empty list>
else <do something with (head list) and (tail list)>

Let’s start with the concatenation function. First, because of its symbolic name of
(+++), you have to write the name infix. So, in the definition, you will write the following:

Ist1 +++ 1st2

Remember the two general cases from the earlier list. Now that you are
implementing a specific function, those cases can be stated in more specific terms.

e When concatenating an empty list with any other list, just return the
second list because the first one adds no elements.
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e When having a nonempty list and appending it to a second list, you
have to think about what to do with the head and tail of the first list.
Using recursion, you can call (+++) to append the tail of the first list
and the second one. The return value from this call will be the list you
need, but without the first element. To solve this problem, you can
just plug the head of the first list using the (:) operator.

When this definition is translated into code, the result is as follows:

1st1 +++ 1st2 = if null 1st1 {- check emptyness -}
then 1lst2 -- base case
else (head 1st1) : (tail lst1 +++ 1lst2)

This example also showcases for the first time the use of comments in Haskell
code. Comments can include any kind of text and are completely ignored by both
the interpreter and the compiler (although some tools like Haddock get information
from the comments). As in many programming languages, there are two kinds of
comments in Haskell. The first one is a multiline comment, which spans from { - to
the nearest - }. Multiline comments are not affected by carriage returns like single-
line comments are. Single-line comments span from -- to the first newline symbol
found in the source code.

If you have problems understanding this recursive definition, I encourage you to try
applying it to some small lists. For example, the following are the steps when evaluating
[1, 2] +++ [3, 4]:

o The initial expression comesinas [1,2] +++ [3,4].
o Itevaluatesrecursivelyto 1: ([2] +++ [3,4]).
o That evaluates recursively to 1: (2: ([] +++ [3,4])).

o The first list is now empty, so the recursion ends by returning 1st2
with 1:(2:[3,4]).

o The colon operators simply append list items. Thus, 2:[3,4]
evaluates to [2,3,4], and so forth.

e Thefinalresultis [1,2,3,4].
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From now on, you will go through traces of execution often. To make the examples
more concise, the book will use the convention of showing the steps separated by the =>
symbol. Here’s what that looks like for the previous example:

[1,2] +++ [3,4] => 1:([2] +++ [3,4]) => 1:(2:([] +++ [3,4]))
=> 1:(2:[3,4]) = [1,2,3,4]

Now let’s move on to the reverse2 function. Once again you will follow the
methodology of separating the work by the possible cases of a list to be passed as input.
Reversing an empty list is quite easy: you simply return an empty list. To reverse a list
with some number of elements, you could take the following approach:

1. Reverse the tail of the list.
2. Concatenate the head of the list to the end of the reversed tail.

The recursion occurs in step 1. Reversing the tail of a list means to reverse a list that
is shorter by one element than the original input list. That shorter-by-one list is passed
to the reversal function, creating yet another list, shorter by one more element. This
process continues until the tail becomes empty.

Since you have no direct way to add elements at the end of a list, you will use the
(+++) function just defined to concatenate a list with a single element. The result in this
case is as follows:

reverse2 list = if null list
then []
else reverse2 (tail list) +++ [head list]

I mentioned in Chapter 1 that a useful feature of the Haskell ecosystem is the ability
to interactively test functions. Exercise 2-3 describes the steps you should follow for the

functions in this section.

EXERCISE 2-3. TESTING FUNCTIONS

Load the file where you defined the functions into GHCi and call them with different arguments
to test them. Based on the warnings that appear, add type signatures to your code.
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Returning More Than One Value

You are moving toward defining larger functions. The next one will compute the
maximum and minimum of a list of numbers. The first question you may have is, how
can I return more than one value in a function? In other programming languages,
doing so would require defining some kind of structure or data type to hold the result.
Doing this is a valid approach in Haskell, but for easy cases like this one you can use a
built-in type called the tuple. A tuple is just a type with a fixed number of components,
each of them holding a value, not necessarily of the same type. Tuple values are written
between parentheses and separated by commas, and the same notation is used for
tuple types. For example, the following code creates a tuple with two elements; the first
one is just the string "hello", and the second one is the result of evaluating a numeric
condition:

Prelude> :t ("hello", True, if 2 » 3 then 'a’' else 'b')
("hello", True, if 2 > 3 then 'a' else 'b') :: ([Char], Bool, Char)

Warning Tuple types of different lengths are completely different types.
For example, a function working on tuples in the form (a,b) cannot be applied
to tuples such as (a, b, c) that have some other number of values.

Right now you will work only with pairs, that is, tuples of two components. For those
tuples, there are two destructor functions: fst gives the first component, and snd gives
the second one. Now you have all the ingredients to create a function computing both
a maximum and a minimum of a list. If you forget for now the case of empty lists that
don’t have a well-defined maximum or minimum, you can proceed again by cases. The
first case is the list with a single element, and that element should be returned as both
the maximum and the minimum and thus in both components of the tuple. If the list
has more than one element, you can get the maximum and minimum of the tail of the
list and then compare those values with the head. Thus, the recursive solution looks as
follows:

maxmin list = if null (tail list)
then (head list, head list)
else ( if (head list) > fst (maxmin (tail list))
then head list
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else fst (maxmin (tail list))

, if (head list) < snd (maxmin (tail list))
then head list
else snd (maxmin (tail list))

)

Wow! Somehow a function for such an easy task has become completely
incomprehensible and unmaintainable: the code is full of repetition, and even worse,
maxmin (tail list) is recomputed four times per recursive call, which is not very
performant. The solution is to use a local binding, which gives a name to an expression
to be used in a larger one. There are two kinds of binding constructs in Haskell: let and
where. In both cases, a binding is introduced by name = expression. The difference
lies in the position over the main expression: let introduces bindings before the main
expression and must end with the in keyword. On the other hand, where does so after
the expression. The following code rewrites the previous code by using local bindings to
refer to the head of the list and the return values of the recursive case:

maxmin list = let h = head list
in if null (tail list)
then (h, h)
else ( if h > t_max then h else t max
, if h < t_min then h else t min )
where t = maxmin (tail list)
t max = fst t
t min = snd t

The special position of the code in all of these examples is not random or just
aesthetic, as you have noticed if you've tried to copy the code by hand into an editor.
A first guess about the reason may lead you to think about indentation-sensitive languages
such as Python. However, Haskell uses a different solution, called layout. In a layout-
based syntax, how a line is indented isn’t as important as the fact that all elements in the

same block start in the same column. Here’s an example:

e Inan if block, the lines for then and else must be indented the
same way.

e Inalet orawhere block, all local bindings must start in the same
position.
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Note When reading Haskell code, you will notice that Haskellers also tend

to align other symbols, like the = signs in a local bindings block. The layout

rule applies only to the beginning of expressions, so alignment is not enforced.
However, it’s a common convention that you should follow or at least get used to.

As a final remark, Haskell also allows you to group blocks with { and } and separate
expressions with ;. For example, you can rewrite the last where clause in the example as
follows:

where { t = maxmin (tail list) ; t max = fst t ; t min = snd t }

Be aware that this kind of syntax is highly discouraged when writing new code (it
is typically used in cases where Haskell code is produced automatically by some other
program).

Working with Data Types

Haskell provides tuples to group a fixed number of components of different types and
lists to contain an unlimited number of elements of a homogeneous type. It seems that
this is enough to start modeling the data for the web application. For example, a client
named Paul, age 25 and buyer of two time machines, could be represented as follows:

("Paul", 25, ["Super Time Machine 2013", "Medieval Machine"])

There are two problems with using this approach. First, code is difficult to read
because of nested calls to fst, snd, and head. Second, it defies strong typing because the
compiler cannot distinguish a client from, say, the description of a fish with its common
name, its length, and a list of seas where it is found. The solution is to introduce a new
data type specific for representing clients. The most basic kind of data type that you
can create in Haskell is called an algebraic data type (ADT) and will be the focus of this
section. An ADT is defined by two pieces of data.

¢ A name for the type that will be used to represent its values.

o Asetof constructors that will be used to create new values. These
constructors may have arguments that hold values of the specified

types.
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In many languages, different constructors can be defined for a data type (or a class,
if you are working on an object-oriented language). However, these constructors are
somehow linked and tend to be more like shortcuts for default values. In most functional
languages, such as Haskell, different constructors are used to represent completely
different alternatives to construct values.

To make these ideas clear, let’s begin modeling clients. There are three kinds of
clients, listed here:

1. Government organizations, which are known by their name

2. Companies, for which you need to record a name, an
identification number, a contact person, and that person’s
position within the company hierarchy

3. Individual clients, known by their name, surname, and whether
they want to receive further information about offers and
discounts

The way to represent these three client types in Haskell is as follows:

data Client = GovOrg String
| Company String Integer String String
| Individual String String Bool

Asyou can see, the syntax for declaring data types starts with the data keyword,
followed by the type name. After that, constructors are listed, separated by |. Each of them
starts with a constructor name and then the types of the arguments to that constructor.

CAPITALIZATION IN HASKELL

One of the special characteristics of Haskell syntax is that names given by the user must
follow some capitalization rules. Here is a brief summary of the conventions:

° Functions, parameters, and bindings must start with a lowercase letter.
In the case of an operator name, it must not start with :.

° Types, constructors, type classes, and kinds must start with an uppercase letter.
If using an operator name, it must start with the : symbol.

These rules make it easier to determine the kind of element you are looking at.
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Using constructors, you can create values of type Client by just writing the
constructor name and the value for each of the parameters in the order in which they
appear in the declaration.

*Chapter2.DataTypes> :t GovOrg "Nasa"

GovOrg "Nasa" :: Client

*Chapter2.DataTypes> :t Company "Pear Inc." 342 "Mr. Sparrow" "CEO"
Company "Pear Inc." 342 "Mr. Sparrow" "CEO" :: Client

But when you try to print the values, something goes wrong.

*Chapter2.DataTypes> Individual "Jack" "Smith" True
No instance for (Show Client) arising from a use of “print'
Possible fix: add an instance declaration for (Show Client)
In a stmt of an interactive GHCi command: print it

To show the values on the screen, the interpreter internally calls a print function
over them. However, you haven’t written the corresponding code for this data type, so
an error arises. To fix this problem, you can use a facility in Haskell called automatic
deriving that allows you to add some functionality to an ADT without writing any code.
In this case, you want to be able to get a string representation of the values, so you need
to derive Show. Show is a type class: implementing it means that there’s a way to get a
string out of any value of this type. You can write the code yourself, or you can allow
Haskell to write it for you. The following example specifies deriving Show, causing
Haskell to generate it automatically:

data Client = GovOrg String
| Company String Integer String String
| Individual String String Bool
deriving Show

Now the interpreter can display the values on the screen.

*Chapter2.DataTypes> Individual "Jack" "Smith" True
Individual "Jack" "Smith" True

There’s no impediment when using one ADT that you define inside another one.
For example, in the previous code, there are some divergent options for representing
a person as a member of a company and as an individual. One path you can take is to
define a completely new data type called Person and use it inside Client.
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data Client = GovOrg String

| Company String Integer Person String
| Individual Person Bool
deriving Show

data Person = Person String String

deriving Show

Here are some key points regarding this refactoring:

Sometimes you are just interested in the alternatives themselves, without saving
any extra information apart from the constructors. For example, you could add gender
information for people. Instead of using a raw Boolean value, for which you can forget

Ifyou tried to create a completely new ADT, for example, named
Client2, but you used the same constructor names, you would get
a build error. This is because inside a module all constructors must
have different names. If you think about it, it’s sensible to ask for
that condition because otherwise the compiler wouldn'’t be able to
distinguish which type you are trying to create.

Data types and constructor names live in different worlds. That
means it is possible to create a constructor with the same name as
a data type. Indeed, it's a common convention for one-alternative
types, such as Person, to have two names that coincide.

To be able to use the default deriving functionality, all types used
inside another one must be showable. For example, if you didn’t
include deriving Show in Person, a compilation error would be

signaled.

which value corresponds to men and which to women, you can create a new Gender data

type. This kind of data type with empty alternatives is similar to enumerations in other

languages.

data Gender = Male | Female | Unknown

Exercise 2-4 provides a step-by-step recipe on how to integrate this new Gender data
type in the existing code base and how to modify the existing functionality for covering it.
In the following sections I assume that the Gender type has been defined.
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EXERCISE 2-4. MORE TYPES OF VALUES

You have just defined a new Gender data type. The reason you defined it was to include such
information in a Person record, so you should add a new field in Person.

° Add a Gender argument to Person and make it Showable.

° Create new values of the new Client data type with the enhanced definition
you worked with throughout this section.

You have learned how to define new data types, so it’s time to look at other types that could
be useful for the Time Machine Store. Time machines are defined by their manufacturer, their
model (which is an integer), their name, whether they can travel to the past and to the future,
and a price (which can be represented as a floating-point number). Define a TimeMachine
data type holding that information. Try to use more than one ADT to structure the values.

Pattern Matching

Now it’s time to define functions over your shiny new data types. The bad news is that

I haven’t taught you how to extract the information from the constructors because you
have been taught to use head and tail for lists and to use fst and snd for tuples. The
general solution for this task is pattern matching. Matching a value against a pattern
allows you to discern the structure of the value, including the constructor that was used
to create the value, and to create bindings to the values encoded inside it. When entering
the body of the match, the pattern variables will hold the actual inner values, and you
can work with them.

Simple Patterns

To see a first example, let’s create a function giving the name of a client. In the case of
a company or a government organization, the client name will be the first component
of the constructor. In the case of an individual, you will have to look inside Person and
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concatenate the first and last names. As you can see, the patterns in this case look exactly
like the ADT constructors but with the parameters replaced by bindings:

clientName :: Client -> String
clientName client = case client of

GovOrg name =» name
Company name id person resp =-» name
Individual person ads ->

case person of
Person fNm INm gender -> fNm ++

++ INm

Let’s see how the execution of a call to clientName (Individual [Person "Jack"
"Smith" Male]) False proceeds. First the system finds a case expression. So, it tries
to match with the first and second patterns, but in both cases the constructor is not
the same as the value. In the third case, the system finds the same constructor, and it
binds the values: person now holds Person "Jack" "Smith" Male, and ads holds the
value False. In the body of the match, there’s again a case expression, from which a
match is done to the Person constructor, binding fNmto "Jack", INmto "Smith", and
gender to Male. Finally, the system proceeds into the innermost body and executes the
concatenation, giving “Jack Smith” as the result.

Note When loading this definition into the interpreter, you will receive a collection
of warnings that look like:

Defined but not used: “id'

This tells you that you created a binding that was not used in the body of the
match. The solution for this warning is telling the compiler that you won’t use

that binding in your code, and this is done by replacing its binding variable by a
single underscore, _. For example, the nonwarning pattern for Company name id
person resp would have been Company name _  because you are using
only the first pattern variable in the subsequent matching code.
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For this example, [ have used the simplest kind of match, which just looks at the
constructors and binds the values of the parameters. But you can specify more complex
patterns, in which some inner parts of the value will have to match also against other
patterns. Using this approach, you can rewrite the match in clientName to be shorter, as
shown here:

clientName :: Client -> String
clientName client = case client of
GovOrg name -> name
Company name _ _ _ -> name
Individual (Person fNm INm _) _ -> fNm ++ " " ++ INm

One important question that arises here is, what happens if no pattern matches the
value that is given? The best way to find this out is by an easy example. Let’s consider a
companyName function, shown here:

companyName :: Client -> String
companyName client = case client of
Company name _ _ _ -> name

The interpreter already warns about the pattern not covering all the cases, that is, not
being exhaustive.

Warning: Pattern match(es) are non-exhaustive
In a case alternative:
Patterns not matched:
GovOrg
Individual _ _

Applying the function to a value that is not expected yields an exception. This is
similar to what happens if you try to get the head of an empty list.

*Chapter2.DataTypes> companyName (GovOrg "NATO")
"F*k* Exception: Non-exhaustive patterns in case

The functions that are not defined over the complete domain of their arguments are
called partial (the other side of the coin are the total functions). In some cases, a default
value can be returned when you don’t get an applicable value (for example, returning
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"unknown" in companyName if the input is not a Company). However, this problem is so
common in practice that the Haskell Platform already bundles a special data type for this
matter: Maybe T. As lists and tuples, the Maybe type is parameterized by the type of value
it holds, so you have Maybe Integer, Maybe String, Maybe [Integer], and so on. There
are only two kinds of values that this type can have: Nothing, with no arguments, usually
signaling that the function doesn’t have nothing sensible to return for that specific

value; and Just v, which holds a single value v of the corresponding type. Let’s rewrite
companyName.

companyName :: Client -> Maybe String
companyName client = case client of

Company name _ -> Just name
-> Nothing

One interesting fact is that you can pattern match directly on let and where
bindings. In that case, you can handle only one pattern, but it is useful when you know
that only one kind of value can happen in a specific place. Let’s say you are sure at some
point that the client you are working with is a company. Instead of this not very clear
code:

let name = case companyName client of
Just n ->n

You can write the following much more concise version:
let Just name = companyName client

Constants are also patterns, which match the exact values written. Let’s focus
on an archetypical example for teaching programming languages: the Fibonacci
numbers. The nth Fibonacci number, F(n), is defined as F(0) = 0, F(1) = 1, and
F(n) = F(n-1) + F(n-2) for alarger value of n. This is easily expressed in terms of
patterns and recursion.

fibonacci :: Integer -> Integer
fibonacci n = case n of
0->0
1->1
_ -> fibonacci (n-1) + fibonacci (n-2)
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In this case, you have implicitly used the fact that patterns are checked in the
same order they appear in the code. This order-dependent behavior can lead to
subtle bugs and sometimes even to programs that don’t terminate or run out of
resources. As an exercise, rewrite the fibonacci function putting the last pattern in
the first position. Now try to test the function in the interpreter. You will see that it
never terminates.

Also, once a pattern has matched, it completely stops trying other alternatives,
even if a further match raises an error. For example, the following two functions are not
equivalent:

f :: Client -> String
f client = case client of
Company _ _ (Person name _ ) "Boss" -> name ++ " is the boss"
-> "There is no boss"

g :: Client -> String
g client = case client of
Company _ _ (Person name _ ) pos ->
is the boss"
-> "There is no boss"

case pos of "Boss" -> name ++

*Chapter2.DataTypes> ¥ (Company "A" 5 (Person "John" "Do" Male) "Director")
"There is no boss"

*Chapter2.DataTypes> g (Company "A" 5 (Person "John" "Do" Male) "Director")
"F*¥* Exception: Non-exhaustive patterns in case

When the value is given to f, the first pattern does not match because "Director”
is not equal to "Boss" . So, the system goes into the second black-hole match and sees
that there is no boss. However, on g it first matches into being a Company, which the
value satisfies, and in this point it enters the body of the match and forgets about other
alternatives. Then, the inner match fails, raising the exception.

Note | strongly emphasize the fact that pattern matching does not backtrack
when something goes wrong in the body of a match. This is important to
remember, especially if you are coming from a logic programming background in
which unification with backtracking is the norm.
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You may have noticed that most of the case expressions just pattern match on some
parameter to a function. For these cases, Haskell allows you to encode the pattern
directly in the definition. You include several lines for the function, each defining it for
a pattern. This approach creates code that is similar to the way you write mathematical
functions. For example, new versions of clientName and fibonacci look like this:

clientName (GovOrg name) = name

clientName (Company name ) = name

clientName (Individual (Person fNm INm ) ) = fNm ++ " " ++ 1Nm
fibonacci 0 = 0

fibonacci 1 =1

fibonacci n = fibonacci (n-1) + fibonacci (n-2)

Try to use this new syntax when writing the solution for Exercise 2-5, which provides
a set of tasks to practice pattern matching on different kind of values, both clients and
time machines.

EXERCISE 2-5. THE PERFECT MATCH FOR YOUR TIME MACHINES

These exercises focus on pattern matching on data types defined by you. For working with
lists, follow the pattern of having different branches for the empty and general case. Also, think
carefully about the order of the patterns. Afterward, test the functions in the interpreter.

For statistical purposes, write a function that returns the number of clients of each gender. You
may need to define an auxiliary data type to hold the results of this function.

Every year a time comes when time machines are sold with a big discount to encourage
potential buyers. Write a function that, given a list of time machines, decreases their price by
some percentage. Use the TimeMachine data type you defined in Exercise 2-4.

Lists and Tuples

One question that may have naturally arisen while doing the previous exercises is
whether it’s also possible to use pattern matching on lists and tuples because it seems that
doing so will lead to more concise code. It’s indeed possible because lists and tuples are
no more special than any other user-defined data type. Lists constructors are [ ] and (:),
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and those are the ones you can use to pattern match. Furthermore, using pattern
matching in lists allows you to get rid of all the null checks and calls to head and tail.
For example, the function (+++) defined earlier could be rewritten as follows:

(+++) :: [a] -> [a] -> [a&]
lista +++ list2 = case list1 of
[1 -» list2
X:xs -» X:(xs +++ list2)

Or directly matching in the function declaration would look like this:

[] +++ list2 = list2
(x:xs) +++ list2

x:(xs +++ list2)

Note It's customary in Haskell to write pattern matching on lists using a letter or
a small word followed by the same identifier in plural, like x: xs.

The Prelude function’s null, head, and tail have no special magic inside them; they
can be defined easily using pattern matching. Are you able to do s0?

Sometimes you need to match on lists of more than one element. A possible function
where you would need these is one that checks whether a list of integers is sorted. To
check for sorted data, three cases need to be considered. The first two are the empty or
singleton cases, and those are always sorted. But if more than one element is contained
in a list, you need to compare the first with the second and then see whether the list
comprised of the second and subsequent elements is sorted. That check on the second
and subsequent elements is done recursively. The implementation of such a sorted
function is as follows:

sorted :: [Integer] -> Bool
sorted [] True
sorted [ ] = True

sorted (x:y:zs) = x < y 8& sorted (y:zs)

There is still some repetition in this code; you are matching on y: zs just to later
reconstruct it. This sequence of checking whether some value conforms to some pattern
but later to use the value as a whole and not its components is quite common in Haskell
code. For that reason, Haskell introduces a syntactic form referred to by the term as
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pattern. As pattern allows you to bind some value in the match, while at the same time
allowing you to match on inner components of that value. To use it, you have to wrap
into parentheses the whole pattern you want to give a name to and prepend it by the
variable that will be used to refer to the whole pattern and the @ symbol. A new definition
of sorted that uses as patterns for y: zs looks like this:

sorted [] = True
sorted [ ]
sorted (x : r@(y: ))

True
X <y &% sorted r

One last remark about matching on lists: In many cases you have a function that
at first sight makes sense only on a nonempty list, such as when computing the sum of
all elements in a list. In most cases, this function can be extended in a sensible way to
empty lists. For example, you can assign the value 0 to the sum of an empty list because
if you add that value to any number, it does not change. Values such as 0, which can be
safely applied with respect to an operation, such as sum, are called the neutral elements
of that operation. I will cover such neutral elements in more detail in Chapter 3 when
discussing folds and again in Chapter 4 when discussing monoids.

Matching on tuples is also easy. Just use the syntax of a comma-separated list of
components between parentheses. Rewriting the maxmin example from the previous
section in this style makes the algorithm much more apparent to the reader or
maintainer of that code.

(x,%)
( if x > xs_max then x else xs_max

maxmin [x]

maxmin (x:xs)
, 1f x < xs_min then x else xs_min
) where (xs_max, xs_min) = maxmin xs

Guards

A guard is part of the pattern-matching syntax that allows you to refine a pattern using
Boolean conditions that must be fulfilled by the bound values after a successful match.
Guards are useful for writing clearer code and avoiding certain problems, helping you to
obtain the full power of pattern matching.

Two examples can help make the need for guards clear. The first is an extension
of the Fibonacci function to any integer value. You will wrap the value on a Just
if you are asked to get the Fibonacci number of a nonnegative number and return
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Nothing otherwise. With the syntax introduced up to this point, you could write the
following code:

ifibonacci :: Integer -> Maybe Integer
ifibonacci n = if n < 0
then Nothing
else case n of
0 ->Justo
1 ->Just1
n' -> let Just f1 = ifibonacci (n'-1)
Just f2 = ifibonacci (n'-2)
in Just (f1 + f2)

At this time, your developing sense of clear code signals you that the initial check for
negativeness hides part of the algorithm, which is mostly expressed in a pattern match.
And that is true. Apart from that, notice that the case statement has used a bindingn".
You could have reused n, but the interpreter would complain about shadowing a
previous definition. Even though the interpreter knows completely well which n the
code refers to, the fact you have used the same name twice may create confusion for
another developer. It's customary in Haskell code to use the same identifier, but with '
(pronounced prime) afterward, to refer to a highly related binding.

Another mathematical function I will cover is the binomial coefficient of n and k,

n
usually written el This coefficient gives the number of ways in which you can get k

balls from a bag of n without repetition. Using the famous Pascal’s triangle, you can give
a closed definition of this coefficient as follows:

1, k=0Vn=k
n
=5(n-1 n-1 .
k + , otherwise
k-1 k

Your task is translating this mathematical definition into Haskell code. A first
approximation could be as follows:

binom 0 =1
binom x x = 1
binom n k = (binom (n-1) (k-1)) + (binom (n-1) k)

52



CHAPTER 2  DECLARING THE DATA MODEL

But sadly this approach doesn’t make the interpreter happy, which shows the error
Conflicting definitions for “x'.This error is because of the restriction imposed on
patterns in which a variable can appear only once in each of them. A possible solution is
to change the entire shape of the function. Once again, it seems that pattern matching is
not giving you all the power you are asking from it.

The solution to the problems found in both functions is to use guards. A guard is
itself part of a pattern, so it allows backtracking (choosing other alternative) if it fails,
in contrast to matching a pattern and later checking for a condition. The Boolean
conditions in a guard are separated by a | sign from the rest of the pattern and allow the
use of the variables bound during the match. The following is how you would rewrite the
Fibonacci and binomial functions using guards:

ifibonaccin | n< 0 = Nothing

ifibonacci 0 = Just 0

ifibonacci 1 = Just 1

ifibonacci n | otherwise = let Just f1 = ifibonacci (n-1)
Just f2 = ifibonacci (n-2)

in Just (f1 + f2)
binom _ 0 =1
1
(binom (n-1) (k-1)) + (binom (n-1) k)

binom x y | x ==y
binom n k

Apart from the use of guards, you should notice another tidbit in the previous code. The
use of otherwise in the last pattern when using guards is a common convention in Haskell.
While using otherwise doesn’t add anything to the code (using no guard is equivalent), it
signals clearly that the remaining pattern takes care of all the cases not handled by other cases.

Any expression returning a Boolean value can be used in a guard. This means you
can also call a function that you have defined. For example, the following code returns
special strings when a number is a multiple of 2, 3, or 5, and a default string otherwise:

multipleOf :: Integer -> Integer -> Bool
multipleOf x y = (mod x y) ==

specialMultiples :: Integer -> String

specialMultiples n | multipleOf n 2 = show n ++ " is multiple of 2"
specialMultiples n | multipleOf n 3 = show n ++ " is multiple of 3"
specialMultiples n | multipleOf n 5 = show n ++ " is multiple of 5"
specialMultiples n | otherwise = show n ++ " is a beautiful number"
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For this example where you are checking several conditions on the same
argument, Haskell allows an even more compact declaration. You don’t need to write
specialMultiples neverytime

specialMultiples n

| multipleOf n 2 = show n ++ " is multiple of 2"
| multipleOf n 3 = show n ++ " is multiple of 3"
| multipleOf n 5 = show n ++ " is multiple of 5"
| otherwise = show n ++ " is a beautiful number"

Up to this point, I have introduced matching on user defined data types, on lists, and

on tuples and guards. The tasks in Exercise 2-6 will help ensure that you understand
these concepts.

EXERCISE 2-6. MORE MATCHES AND GUARDS

Up to this point | have introduced matching on lists and tuples and guards. The following tasks
will help you ensure that you understand these concepts:
Define the famous Ackermann function. Try using guards:

n+l1l, m=0
A(m,n)= A(m-1,1), m>0,n=0
A(m—l,A(m,n—l)), m>0,n>0

Define the unzip function, which takes a list of tuples and returns two lists, one with
all the first components and other one with the seconds. Here’s an example: unzip

[(1:2))(3;4)] = ([1)3]:[2:4])-

View Patterns

Sometimes you want to look for patterns in a value, but in some way they are not directly

encoded. So, you need to preprocess the value before matching. For those cases, you
can use view patterns. These patterns extend all of those previously seen with a new
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syntax element, (function -> pattern), which applies function to the value and then
matches the result with the pattern. For example, remember the clientName function
from the beginning of the chapter, and let’s add a responsibility one:

responsibility :: Client -> String
responsibility (Company = 1) =71
responsibility = "Unknown"

Now you can create a function returning whether a given client is special. Let’s
consider a client special if the client is the director of a company or the client’s name is
"Mr. Alejandro".View patterns allow very clear code.

specialClient :: Client -> Bool

specialClient (clientName -» "Mr. Alejandro") = True
specialClient (responsibility -» "Director") = True
specialClient _ = False

Oops! It seems that you rushed into making some sort of mistake. Notice the
following interpreter error:

Illegal view pattern: clientName -> "Mr. Alejandro"”
Use -XViewPatterns to enable view patterns

This problem arises because view patterns are not part of the Haskell 2010
specification but rather an extension made by GHC developers. For that reason, you are
asked to explicitly enable compatibility with this extension. You can do so adding special
options to the compiler or interpreter, but the suggested approach is to add a pragma
to the file. A pragma is a special comment that is interpreted by the compiler and that is
used to enable or disable some flags. In this case, you need to include the following at
the beginning of the source:

{-# LANGUAGE ViewPatterns #-}

If you are working in the interpreter, you need to execute a : set command to enable
an extension. Notice that the extension name must be prefixed by -X.

Prelude> :set -XViewPatterns

In the rest of the book, I shall remark that an extension needs to be enabled for a
specific piece of code by including the corresponding pragma as you would do in the
beginning of a source file.
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Note GHC includes a great many extensions (more than 30 at the moment

of writing). They range from simple extensions to the syntax (like the view
patterns discussed earlier) for complete overhauls of the type system. Being so
different in power, some of them are accepted by the community while others are
controversial. All the GHC extensions that will be introduced in this book belong
to the first set: they are seen as beneficial because they make code more elegant
and easier to understand, without running into any problems. The main con of
extensions, even with not-controversial ones, is that they are not part of the
Haskell 2010 Report, so in theory they could make your code less interoperable
between different Haskell compilers. However, this interoperability is almost never
a problem.

Records

In most programming languages you can find the idea of a field as something that holds
avalue in a larger structure. Furthermore, fields can be accessed or changed easily (e.g.,
in C or Java using structure.field). From what you have learned so far, you can see that
pattern matching on big structures may get unwieldy quickly, because it forces to write
long matches to retrieve just a single value and to re-create entire data structures merely
to change just a single field.

Creation and Use

The concept of a data structure with fields that can be accessed by name does exist
in Haskell. Records make accessing or updating part of a structure much easier than
otherwise. Records are defined using data declarations, but instead of just using a type
for each parameter, you write parameter name :: parameter type.These declarations
are the only exception to the layout rule. You always need to write the set of fields
between { and } and to separate them by commas.

Let’s write the Client and Person definitions but now using record syntax. To leave
all the previous functions from this chapter unchanged, you are going to encode the new
records in new ClientR and PersonR types. Remember, constructor names should not
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clash; that’s why you need to use new names for the record types. But field names can,
so you are allowed to use clientRName for fields in different alternatives, given that they
have the same type. Here are the new record definitions:

data ClientR = GovOrgR { clientRName :: String }
| CompanyR { clientRName :: String
, companyld :: Integer
, person :: PersonR
, duty :: String }
| IndividualR { person :: PersonR }
deriving Show

data PersonR = PersonR { firstName :: String
, lastName :: String
} deriving Show

You can create values from these types using the same constructor syntax that you've
been using. However, if the data is declared as a record, you can also use the constructor
name followed by a list of each field name, followed by an = sign and the corresponding
value. There are two benefits for doing this. First, constructing the new value this way
results in better documentation because you can see directly to which field each value
corresponds. Also, this syntax allows you to write the field names in any order, giving you

more freedom. Here’s an example showing this named notation:

*Chapter2.DataTypes> IndividualR { person = PersonR { lastName = "Smith",
firstName = "John" } }

IndividualR {person = PersonR {firstName = "John", lastName = "Smith"}}
*Chapter2.DataTypes> GovOrgR "NATO"

GovOrgR {clientRName = "NATO"}

Field names are also used to create special functions that access those particular
fields. Here’s an example:

*Chapter2.DataTypes> clientRName (GovOrgR "NATO")
"NATO"

*Chapter2.DataTypes> :t duty

duty :: ClientR -> String
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Because these functions will be automatically created, Haskell enforces two extra
restrictions on field names.

e They must not clash with any other field or function name.

e AsImentioned earlier, you are allowed to use the same field name
in more than one alternative of your data type. However, if you do so,
all those fields must have the same type. If such is not the case, no
correct type can be given to the corresponding function.

Records are useful when pattern matching. For a traditional constructor, you need to
write a binding or another pattern for each field in it. Thus, in many cases the code ends
up with a collection of _ bindings, which are difficult to maintain. With a record, you can
use a new pattern that resembles the building one: the constructor, plus a list of field
name = pattern elements enclosed in brackets. You don’t need to include all the fields,
just those for which you want to bind or match. You are even allowed to write an empty
list of fields, as this example highlights:

greet :: ClientR -> String
greet IndividualR { person = PersonR { firstName = fn } } = "Hi, " ++ fn

greet CompanyR { clientRName = c } = "Hi, " ++ c
greet GovOrgR {1}

"Welcome"

There are two interesting additions in GHC to record matching that encode very
usual patterns, allowing for a lesser amount of boilerplate code. The first addition is
record puns, which are enabled by the pragma NamedFieldPuns. When using record
puns, you can replace all field patterns of the form field name = field name, which
creates a binding for the corresponding field available with the same name in the body
of the match, with a single field name. You can interleave this kind of matching with the

more usual one. Here’s an example:
{-# LANGUAGE NamedFieldPuns #-}
greet IndividualR { person = PersonR { firstName } } = "Hi, " ++ firstName

greet CompanyR { clientRName } = "Hi, " ++ clientRName
greet GovOrgR {1} "Welcome"

Another common idiom is making some field obey a pattern and binding the rest
of the fields to use them in the body of the match. Even with record puns, doing so can
take a large amount of code. But GHC can take advantage of its knowledge of the field
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names and automatically generate all that code for you. In particular, the extension
RecordWildCards allows the use of . . (two dots) to automatically create bindings for
all variables that haven’t been mentioned in the pattern up to that point. The previous

example could get a minimal form such as follows:

{-# LANGUAGE RecordwildCards #-}
greet IndividualR { person = PersonR { .. } }

greet CompanyR { e }
greet GovOrgR {1}

"Hi, " ++ firstName

"Hi, " ++ clientRName
"Welcome"

Note Remember that to use these extensions, you need to include the {-#
LANGUAGE Extension #-} declaration at the beginning of your source code.

I'have spoken about facilities for record building and matching. The last step is using
record syntax for updating a record. If r is a binding containing a value of a record type,
youcanuser { field name = new value } to create an exact copy of r where the
corresponding field has been changed. For example, here is a function that ensures that
PersonR’s first name always starts with a capital letter:

nameInCapitals :: PersonR -> PersonR

nameInCapitals p@(PersonR { firstName = initial:rest }) =
let newName = (toUpper initial):rest
in p { firstName = newName }

nameInCapitals p@(PersonR { firstName = "" }) = p

Take the time to understand this last example because it shows a lot of features from
this chapter. Record syntax is used to pattern match on PersonR. Inside it, x : xs is used
to match a list. As you later want to refer to the entire value to update it, an as pattern is
used to bind it to p. Finally, the new name is computed inside a let expression, which is
used to update p using record-updating syntax.

As you have done for clients, you can also benefit from record syntax when
describing time machines. That is the purpose of Exercise 2-7.
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EXERCISE 2-7. TIME MACHINE RECORDS

Rewrite the TimeMachine data type defined earlier using records. You should find that
updating the prices of time machines is now much more concise.

The Default Values Idiom

We are going to end this chapter by showing a particularly helpful convention the
Haskell community has come up with to support a common use case. You will look at
functions that can take a long list of parameters, but most of the time those parameters
take on default values. Take as an example a network library. For creating a connection,
you need information about the following:

o URLto connect to

o Connection type: TCP or UDP
e Connection speed

o Whether to use a proxy

e Whether to use caching

e Whether to use keep-alive

¢ Time-outlapse

These elements can be encoded as follows:

data ConnType = TCP | UDP
data UseProxy = NoProxy | Proxy String
data TimeOut = NoTimeOut | TimeOut Integer

data Connection = ... -- Definition omitted

connect :: String -> ConnType -> Integer -> UseProxy
-> Bool -> Bool -> TimeOut -> Connection
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Of course, most people simply want to connect to a target URL using TCP at the
highest speed, with some sensible defaults for proxying, caching, keep-alive, and time-
out lapse. A first solution is to create a special function for that case.

connectUrl :: String -> Connection
connectUrl u = connect u TCP 0 NoProxy False False NoTimeOut

This solution makes it easy to connect in the simple case but poses two problems.

1. Maintainability is harmed. If at some point you need to add a new
connection parameter, all users of the function need to change
their calls to connect. Or if the default value changes, all the uses
must be reconsidered and rewritten.

2. Using the library is easy only for the simplest case. If you want to
connect to a URL using a proxy, you need to step back and use the
full connect function, passing all the parameters. In some cases,
knowing which the sensible defaults are may be difficult.

Records come to the rescue. Instead of passing parameters one by one, you can
group all or most of them into a record and use the record as a parameter. Here’s how
that would look for the connection example:

data ConnOptions = ConnOptions { connType :: ConnType
, connSpeed :: Integer
, connProxy :: UseProxy
, connCaching  :: Bool
, connKeepAlive :: Bool
, connTimeOut  :: TimeOut
connect' :: String -> ConnOptions -> Connection

connect' url options = ...
The second step is to create a constant, which encodes sensible defaults.

connDefault :: ConnOptions
connDefault = ConnOptions TCP 0 NoProxy False False NoTimeOut
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Now creating a connection with the default parameters takes just a tad more code,
but you gain in return the ability to change just one parameter (like the type to UDP)
without having to write all the default values. The following examples show the simplest
case and also the case of specifying UDP as the connection type:

*Chapter2.DefaultValues> connect' "https://apress.com” connDefault
*Chapter2.DefaultValues> :{

*Chapter2.DefaultValues> connect' "https://apress.com”
*Chapter2.DefaultValues> connDefault { connType = UDP }
*Chapter2.DefaultValues> :}

There is only one problem left. If you add a new option and the developer has made
direct use of the constructor for the record type, that use must be changed. The solution
is to forbid calling the constructor directly, forcing the use of connDefault in some way
or another. This can be done by not exporting the constructor. You will see how to do this
in the next chapter, where you will also learn about smart constructors.

Summary

In this chapter you learned the basics of first-order Haskell programming.

o Basic data types were introduced: characters, Booleans, lists, and
tuples.

¢ Youlearned how to define new functions and how to use let and
where to create temporary bindings that allow reusing expressions
and thus writing better code. Afterward, you learned how to define a
function by cases.

e You defined your first data types, learned about ADTs and
constructors, and played with creating new values in the interpreter.

o Pattern matching is a fundamental tool for Haskell programming,
which I touched upon in this chapter. You saw how to match both
primitive and user-defined types and how guards, as patterns and
view patterns, make matching more concise.

e Records were introduced as a better syntax for building, accessing,
and updating fields in a Haskell value. You saw the default values
design pattern, which uses records at its core.
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Increasing Code Reuse

Chapter 1 explained that a functional language like Haskell is characterized by its
profuse use of functions as parameters or return values. However, Chapter 2 didn’t
mention anything about this topic. I'll rectify that here. In this chapter, you will focus on
not one but three ways in which Haskell allows for a great amount of reuse.

One of the ways in which Haskell shines in the area of reusability is through the
creation of functions that can work over values of any type that respects a certain form,
or design. List functions such as head can operate on any type of the form [T], whatever
type T is. This concept is also applicable to data types that can store values on any
possible type, which is known as parametric polymorphism.

Another way in which Haskell allows for reuse is this ability of using functions as any
other value of the language. Functions that manipulate other functions are called higher-
order functions. In contrast, the concepts in the previous chapter belong to first-order
Haskell.

The third way in which code can be reused (and shared) is by taking functions
or data types from one module and applying them in another. You will learn how to
do that from both sides: exporting definitions to make them available and importing
them later.

Most of the examples in this chapter focus on lists and the functions in the module
Data.List. The intention is twofold: lists illustrate the new concepts to be introduced,
and at the same time they are practical tools in daily programming with Haskell. As proof
of their importance, the language includes special syntax to create and manage them,
namely, the syntax of comprehensions. I'll explain how to use the syntax before moving to
the last stop of the list train: how to fold and unfold lists properly.
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Parametric Polymorphism

You may have noticed that in previous chapters all the functions defined operated on
some particular data type. However, some built-in functions such as head or empty
seem to be able to operate on any kind of list: [ Integer], [Client], and so forth.
A fair question is, are list functions somehow treated differently by the compiler and
interpreter, or do I also have the power to create such functions that can operate on
any type? The correct answer is the latter: you could have defined the list functions by
yourself with no problem. You do have the power.

Let’s look at the type of a function such as head:

*Chapter3.ParamPoly> st head
head :: [a] -> a

In the previous chapter you learned that type names must start with an uppercase
letter. However, you can see a lowercase identifier in this particular signature. If you
remember the conventions, you know lowercase identifiers are reserved for function
definitions, bindings, and parameters. Indeed, that identifier refers to a type variable that
can be bound to different types depending on each use.

For example, consider the application of head to the string "Hello". The type of
the string is [ Char ]. At the moment of application, you need to find the value for the
type parameter a in the type of head. The solution in this case isa = Char. So, the type
that head gets when applied to "Hello" is [Char] -> Char (once a type parameter gets
assigned to a value, it must be replaced throughout the type in its entirety). Figure 3-1
illustrates the logic I've just described, where a type variable and a concrete type are
unified to be the same one.

head :: [a] -> a
1l

"Hello" :: [Char]

head "Hello" :: Char

Figure 3-1. Inferring the type of head "Hello"
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Functions such as head are said to work for any value of the type parameter a: they
don’t care about the shape of the inner elements. This is parametric polymorphism,
and it allows multiple (“poly”) types (pop@f| - morphé is Ancient Greek for “shape”)
as parameters. The etymology for the concept is actually a bit misleading because a
polymorphic function must work for all types, not just for some. Haskell also allows
functions to be applicable for just a subset of all types. That is referred to as ad hoc
polymorphism and will be presented in the next chapter.

Note Parametric polymorphism is available in many programming languages
under different names; for example, templates in C++ and generics in Java or C#
provide similar functionality.

Note that a function may have more than one type parameter, and each of them will
take its value independently from the others. One example of this kind of function is fst,
which gives the first component of a tuple of two elements.

*Chapter3.ParamPoly> st fst
fst :: (a, b) -> a

When you supply a concrete tuple to fst, the type of (a, b) is inferred from the
types within that tuple. For example, you can supply the tuple ([3,8], "Hello"), and
the type (a, b) becomes ([Integer], [Char]).

There is no special syntax, apart from type parameters, for writing polymorphic
functions. When you do not use a value in a way in which its type plays a role (e.g.,
pattern matching on its possible constructors), Haskell will infer a parametric type.
For example, let’s write a function that returns a different string depending on a
Maybe value.

"Just"
"Nothing"

maybeString (Just )
maybeString Nothing

If you now load this function into the interpreter, and ask for its type, you will get the
one inferred by GHC:

*Chapter3.ParamPoly> :t maybeString
maybeString :: Maybe a -> [Char]
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Polymorphism is available not only in functions but also in data types. This
assumption was implicit when you wrote [ T] to refer to a list of any possible type T.
As you can see from the examples, a polymorphic type is written with its name along with
alist of all its type parameters, like Maybe Integer. The definition of polymorphic types
is similar to that of basic types, but after the name of the type, you write the names of the
type parameters for that declaration. Later, you can use those names in the constructors
in the position of any other type. For example, you may decide to give a unique identifier
to each client in your program, but it does not matter which kind of identifier you are
using (integers or strings are usual choices) because you never manipulate the identifier
directly.

The following is a good example of polymorphism:

data Client i = GovOrg { clientId :: i, clientName :: String }
| Company { clientId :: i, clientName :: String
, person :: Person, duty :: String }
| Individual { clientId :: i, person :: Person }
deriving (Show, Eq, Ord)
-- Eq and Ord will be introduced in Chapter 4

data Person = Person { firstName :: String, lastName :: String }
deriving (Show, Eq, Ord)

When you create a value, the type parameter will be instantiated to a specific type, in
this case Char.

*Chapter3.ParamPoly> :t GowOrg 'n' "NTTF" -- National Time Travel Fund
GovOrg 'n' "NTTF" :: Client Char

More than one type variable can be used in a data type. This is the case for tuples.
For example, those with three components have type (a,b,c). If you were to define
triples by yourself, the data declaration would look like this:

data Triple a b ¢ = Triple a b ¢

Note that you can use the same type variable multiple times in the definition of your
ADT. But that doesn’t mean the values on the fields must be the same, just that they
must have the same type. This is a typical source of confusion when learning Haskell,
but a counterexample is easy to build: ('a’, 'b") has type (Char,Char), with both type
variables holding the same type Char, but the value 'a’ is different from the value 'b".
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Another tidbit to remember is that even though a type parameter may appear several
times in a constructor, it is a single type variable. For example, let’s declare a type for a pair
of elements, with each element being of the same type. Here’s how you would do that:

data SamePair a = SamePair a a

Avalue like SamePair 1 2 will have type SamePair Integer, not SamePair Integer
Integer. Admittedly, the fact that the same identifier is usually reused for both the type
name and its constructor adds more confusion to the mix, but it’s something you must
get used to. Exercise 3-1 will help you.

EXERCISE 3-1. A NEW LIFE AS TYPE CHECKER

Try to understand what the following functions do and which type will be inferred by the
interpreter. Give the most polymorphic answer from all possible ones.

swapTriple (x,y,z) = (y,Z,x)
duplicate x = (x,x)
nothing _ = Nothing

[]
[(0,x)]
let indexed@((n, ): ) = index xs

in  (n+1,x):indexed

index []

index [x]

index (x:xs)

maybeA [] = 'a

Remember that you can use GHCi to check your answers. Refer to Chapter 2 if you need a
reminder on how to do that.

Functions As Parameters

This is finally the point where we explain how to treat functions as any other value in
Haskell. You may already be familiar with this idea, as the concept of “function

as parameter” has permeated to many other languages, not necessarily functional.
For example, Java or C# includes them as a language feature.
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As mentioned at the beginning of the chapter, most of the examples relate to lists.
Lists are one of the basic data structures in functional programming, especially while
learning. Many more complex concepts, such as functor or fold, are generalizations of
patterns that can be found when working with lists.

Higher-Order Functions

The first, most basic, function you will look at is map, which applies another function
throughout an entire list. Consider the function succ, which adds 1 to a number.

*Chapter3.FnsParams> succ 1
2

Caution It may be the case that the interpreter shows warning messages about
Defaulting the following constraint(s) to type “Integer'.

| mentioned in the previous chapter that a constant like 1 is polymorphic on the
number type, so the interpreter makes a choice in order to run the code. The
warning is telling you that Integer is its default choice. You can safely ignore
these warnings, or you can disable them by running the interpreter using ghci
-fno-warn-type-defaults. In the rest of the book, | will omit this kind of
warning in the output.

You can now add 1 to all members of the list [1,2,3] using map in combination with
the function succ:

*Chapter3.FnsParams> map succ [1,2,3]
[2,3,4]

How does it work? First let’s look at the type.

*Chapter3.FnsParams> st map
map :: (a -> b) -> [a] -> [b]

You can see the notation for functions, a -> b, but now in the position of a
parameter. This type signature encodes the fact that map takes a function from a to b and
alist of a’s, and it returns a list of b’s. Functions such as map, which take other functions
as parameters, are known as higher-order functions.
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In the declaration of functions, other functions given as parameters follow the same
naming conventions as any other argument to a function. You don’t need any special
marker to distinguish a parameter for having a functional type. But being a function, you
can apply the parameter to any other parameter or value as if it were defined elsewhere.
For example, the definition of map looks like this:

[]
(f x) : (map f xs)

map _ []
map f (x:xs)

This is also an example of parametric polymorphism. However, polymorphism and
higher-order functions are completely separate concepts. You could define a function
that applies another function but to an integer two units higher and then multiplies it
by 3, that is, 3f(x + 2). In this case, reasonable fs should take and return a number, so
the function should have an Integer -> Integer type.

apply3f2 :: (Integer -> Integer) -> Integer -> Integer
apply3f2 f x = 3 * f (x + 2)

Let’s follow the steps for a call to this function using succ as a value for f.
apply3f2 succ 7 => 3 * succ (7 + 2) => 3 * succ 9
=>3*(9+1)=>3%10=>30

Now that you're in touch with higher-order functions, it’s time to introduce a popular
idiom in Haskell code. The idiom works around the ($) function, which performs
function application.

($) :: (@a->b) >a->b
f$a="a

Why is this ($) function useful at all? At first glance, it seems like a rather
cumbersome way to apply a function to some arguments, given that this is the main
use of functions. But apart from this definition, Haskell gives a very low precedence to
($), so both sides of this operator will be evaluated before f is applied to a. Therefore,
you can omit a lot of parentheses when using ($). Doing this is common in Haskell. For
example, the following:

maximum (map succ [1, 2, 3])
would usually be written like so:
maximum $ map succ [1, 2, 3]
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Anonymous Functions

Until now, you have always used as parameters other functions that were defined
elsewhere. However, it may be the case that you want to create a small function just to

be applied via map to a list. It wouldn’t make sense to add an entire new declaration,
polluting your module. You already know a solution, which is to define the function
inside a let or where block. The following example demonstrates this solution by adding
2 to every number in a list:

*Chapter3.FnsParams> :{
*Chapter3.FnsParams| let f x = x + 2
*Chapter3.FnsParams| in map ¥ [1,2,3]
*Chapter3.FnsParams| :}

[3,4,5]

This solution is not completely satisfactory: Haskell encourages passing and
returning functions, so with this design, the code would be full of 1et blocks. Instead,
Haskell includes anonymous functions. These are function bodies that are not given a
name and that can be written anywhere in the code where a function is expected. The
function body syntax is as follows:

\paraml param2 ... -> body
The previous map operation can then be written as follows:

map (\x -» x + 2) [1,2,3]

Note The notation\... -> ... comes from a mathematical theory of
computation called /ambda calculus. In that formalism, an expression like \x ->

X + 2 is called an abstraction and is written Ax. x + 2 (Haskell designers chose
the symbol \ because it resembles A but it’s easier to type). Because of these
historical roots, anonymous functions are sometimes called /ambda abstractions,
or simply abstractions.
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In anonymous functions, as in any other function, you can pattern match directly
on the parameters. For example, you can build a function checking whether pairs of
integers are equal.

equalTuples :: [(Integer,Integer)] -> [Bool]
equalTuples t = map (\(x,y) =» x ==y) t

However, not all forms of regular function declarations are allowed when used
anonymously. Anonymous functions don’t have a name, so they cannot call themselves,
thus forbidding recursion. Furthermore, only one pattern can be matched. So, if you
want to match several patterns, you must resort to a case statement.

sayHello :: [String] -> [String]
sayHello names = map (\name -> case name of
"Alejandro" -> "Hello, writer"

-> "Welcome, " ++ name

) names

This last restriction is lifted if you are using GHC and enable the LambdaCase
extension. Then, you can use the special syntax \case to create an anonymous function
with only one parameter to match on. Here’s an example:

{-# LANGUAGE LambdaCase #-}

sayHello names = map (\case "Alejandro" -> "Hello, writer"

name -> "Welcome, " ++ name
) names

Abstractions are also useful for returning functional values. For example, say you
want to define a function that takes a number n and returns another function that
multiplies by n.

multiplyByN :: Integer -> (Integer -> Integer)
multiplyByN n = \x -> n*x

You can now use that returned function in places that take one, such as map.

*Chapter3.FnsParams> map (multiplyByN 5) [1,2,3]
[5,10,15]
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Asyou can see, the function multiplyByN 5 “remembers” the value given to n
when it is applied. You say that the function encloses the values from the surrounding
environment (in this case, only n) along with the body. For that reason, these functions
are usually known as closures in almost all languages supporting functional features.
filter is another function operating on lists. In this case, filter takes a function
of type a -> Bool (i.e., a function returning a Boolean value) and applies it to each
element, returning just those that fulfill the condition. For example, you can filter a list of
numbers and keep only the even ones using the aforementioned function and giving as
an argument the even function from the standard libraries.

*Chapter3.FnsParams> filter even [1,2,3,4,5]
[2,4]

EXERCISE 3-2. WORKING WITH FILTERS

Using the function filter as the basis for your solution, write the following functions:
° filterOnes, which returns only the elements equal to the constant 1.

° filterANumber, which returns only the elements equal to some number that is
given via a parameter.

° filterNot, which performs the reverse duty of filter. It returns only those
elements of the list that do not fulfill the condition.

° filterGovOrgs, which takes a list of Clients (as defined before) and returns
only those that are government organizations. Write it using both an auxiliary
function isGovOrg and a \case expression.

Hint: search for documentation of the function not :: Bool -> Bool.

IThe easiest way is to point your browser to waww. haskell.org/ghc/docs/latest/html/
libraries/base/Prelude.html#v:not.
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Partial Application of a Function

Let’s get back to map. You already know two ways to write a function that doubles all

elements in a list.

double list = map (\x -> x * 2) list
double = \list -> map (\x -> x * 2) list

Haskell allows a third approach. The keyword 1ist is at the end of both parameter
lists, so you can just omit it.

double =map (\x -> x * 2)

To better understand the reason why omitting 1ist makes sense, let’s look at the
process in which the compiler infers the type of the double function. First, start with map
:: (a -> b) -> [a] -> [b].The function (\x -> x * 2) takes and returns a number;
for example, it can be typed as Integer -> Integer. Now, if you apply the numeric
function to map, you are first matchinga = b = Integer and then removing the first
parameter in the type because you already have provided a value for it. The result is the
following:

map (\x -> x * 2) :: [Integer] -» [Integer]

That is, if given a list of integers, it will return a new list of integers.

Following this path of partial application, you can apply it also for the \x -> x * 2
anonymous function. There is just one syntactic remark to be made: when the function
has an operator name (only with symbols, like *), you cannot just use its name and
arguments; you need to use a section. A section is just a specification of the operation to
be done, enclosed in parentheses. The syntax resembles the application of the operator
where the parameters have been wiped out. In this case, the new definition for double is
as follows:

double = map (*2)

Caution The usual warnings about commutatively of operations apply here. You
must be careful about where you are omitting the parameter because it may make
a huge difference in the result.
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Look carefully, for example, at the difference in the result from the following two
examples:

*Chapter3.FnsParams> map (/2) [1,2,3]
[0.5,1.0,1.5]

*Chapter3.FnsParams> map (2/) [1,2,3]
[2.0,1.0,0.6666666666666666]

It should be noted that type constructors also behave as functions in any possible
sense except for the distinction in capitalization (remember that function names must
start with a lowercase letter and type constructors must start with an uppercase one).
You can ask the type of a constructor or partially apply it as usual.

*Chapter3.FnsParams> st Just
Just :: a -> Maybe a
*Chapter3.FnsParams> st ('a' @)
(‘a' :) :: [Char] -> [Char]

Once you know about the possibility of partially applying functions, it’s time to
look more deeply into the meaning of the function types as they are written. First,
the -> symbol binds to the right. That is, the typea -> b -> ¢ -> disa prettier, but
equivalent, versionofa -> (b -> (c -> d)). So, atits core, every function with more
than one parameter is just a function that takes one parameter and returns a closure with
one parameter less, which may indeed consume another parameter, and so on, until you
reach a nonfunction type. At that moment, all the information to apply the function is
there, and its body can be evaluated. So, now you have at least four interchangeable ways
to declare the same two-argument function.

fxy-=...

fx =\y->...

f =\xy->...

f =\x ->\y -> ...

Let’s look at map with these new glasses. Previously, I spoke about map as taking a
function and a list and applying the function to the list. But, if now the type is written
as(a -> b) -> ([a] -> [b]), there’s a new view: map takes a function and returns a
version of that function that works over a list!
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Partial application encourages a programming style where functions are combined
without ever mentioning their parameters. This is called point-free style (because in
mathematics, parameters to functions are called points). Without any doubt, the most
important of these combinators is the period? (. ), which composes two functions. By
composes, I mean that the period applies one function after the other. For example, the
following is how to write function f applied to the output from g:

f.g=\x->7F(gx)

As areminder, functions are written backward in comparison to other notations: you
write first the outermost function that will be applied to the result of the innermost. This
comes again from the roots of the language in lambda calculus and mathematics, where
composition is denoted this way.

For example, say you want to write a function that duplicates all the odd numbers in
a list. The most natural way seems to be as follows:

duplicateOdds list = map (*2) $ filter odd list

Here you want to first apply filter odd, which takes out the even numbers, and
then double each of the elements of the resulting list usingmap (*2). This is exactly the
composition of the two functions, so you can write the following in point-free style:

duplicateOdds = map (*2) . filter odd

In many cases an expression can be written in point-free style as a sequence of
transformations over some data, rendering the code clear once you become accustomed
to the notation.

In the rest of the section I'll introduce additional functions that create a point-
free style. Since these functions have the task of combining other functions, they are
sometimes called combinators. The two next combinators are used to convert multi-
argument functions to single-argument functions which take a tuple of values.

uncurry :: (a -> b -> c¢) -> (a,b) -> c
uncurry f = \(x,y) -> f xy

curry :: ((a,b) ->c) ->a ->b ->c
curry f = \x y -> f (x,y)

2Since (.) could also be called a point, there’s some risk of confusion about the name point-free.
The point-free style encourages the use of (. ) and discourages explicit parameters.
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Functions that take a sequence of arguments are called the curried versions of those
that take a tuple. I'll stress the subtle difference: the not-curried version of a function
takes only one argument, but it is a tuple, so in one value it holds more than one piece
of information. For example, the max function, returning the maximum of two numbers,
takes two arguments.

*Chapter3.FnsParams> max 3 2
3

Butif you curry it, you must call it with only one argument, which is a tuple.

*Chapter3.FnsParams> (uncurry max) (3,2)
3

Usually you will prefer these curried versions, because you can partially apply them.
But sometimes an uncurried version is also interesting to consider. For example, say you
are given a list of pairs of numbers, and you want to get the list of the maximums of pairs.
You cannot directly use map max because max requires two arguments. The solution is to
curry the function before application.

*Chapter3.FnsParams> map (uncurry max) [(1,2),(2,1),(3,4)]
[2,2,4]

You may need to define an extra combinator to reverse the order of parameters
in a function. The most usual name for this combinator is flip, with the following

type:

flip :: (@ ->b ->c) -> (b ->a -> )
flip f = \xy -> fy x

Note Both the language Haskell and the term curried function take their names
from the American logician Haskell Brooks Curry (1900-1982), who studied a field
called combinatory logic that provided the groundwork for later developments in
functional programming.
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More on Modules

In the previous chapter you learned how to create modules to organize your functions
and data types. The next logical step is being able to get the definitions in one module
to be used in another. This is called importing a module, and it’s similar to importing
packages in Java or namespaces in C#.

Module Imports

Module imports are listed after the module declaration but before any other definition.
There are different ways to import a module. The most basic approach brings into scope
all the functions from the module and makes them available for use as if they were
defined in the importing module. In this chapter you are learning about list functions,
so you can import Data.List and use the permutations function, such as the function
permutationsStartingWith, which returns all the permutations of a string that start
with a specific letter.

module Chapter3.MoreModules
import Data.List

permutationsStartingWith :: Char -> String -> [String]
permutationsStartingWith letter
= filter (\1 -> head 1 == letter) . permutations

Note Even though Haskell modules have a hierarchical structure, importing
a module does not bring into scope any child modules. For example, importing
Data won’t provide any access to Data.List.permutations because
permutations lives in module Data.List, and Data.List was not
imported.

In some cases, names found in different modules clash. That is, you import
definitions from two modules, and both include the same function or type, so the
compiler doesn’t know which one to use. The better solution is to control exactly which
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definitions to import. To do so, you must include a list of desired elements in a list
surrounded by parentheses. For example, you can specify that you want to import only
the permutations and subsequence functions, like so:

import Data.lList (permutations, subsequence)

Sometimes the case is just the opposite: you want to import an entire module except
some specific elements (usually, those whose names clash). This usually happens when
some names conflict between the imported module and the one being developed. For
those cases, Haskell provides hiding imports. The declarations you don’t want to bring
into scope are written again as a list but preceded by the keyword hiding. For example,
to import all but the head and tail functions, you use this:

import Data.List hiding (head, tail)

Data types need some extra syntax for being selected for import or hiding. This need
comes from the fact that an ADT really encompasses two pieces of information: the
type itself and its constructors. The Haskell committee decided to use Type(List of
Constructors) for this matter. Here are several ways in which you can import the Client
data type from the first section:

import Chapter3.ParamPoly (Client()) -- only type, no constructors
import Chapter3.ParamPoly (Client(GovOrg,Individual))

-- a subset of constructors
import Chapter3.ParamPoly (Client(..)) -- .. imports all constructors

Until now I have spoken about how to import modules without qualification. Once
declarations are imported, you don’t need any further syntax to use them. Qualified
imports are the other side of the coin. A qualified import requires you to prefix a function
with the name of the module it came from. In that way, you can use functions or types
with the same name but from different modules without any problem. For example, you
can import filter and permutations as qualified imports.

import qualified Data.lList (filter, permutations)
permutationsStartingWith :: Char -> String -> [String]

permutationsStartingWith letter
= Data.List.filter (\1 -> head 1 == letter) . Data.List.permutations
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As you can see, you can combine the selection of a subset of functions with the
qualification of the module. Indeed, those concepts are orthogonal, and you can
combine them freely.

In some cases, the name of a module is too long to be used as a prefix. To save
endless typing, you can rename the module using an as clause. Afterward you prefix the
declarations with the new name.

import qualified Data.list as L
permutationsStartingWith :: Char -> String -> [String]

permutationsStartingWith letter
= L.filter (\1 -> head 1 == letter) . L.permutations

As in the previous case, you can mix qualified imports with renaming and explicit
import lists. The module import that just includes permutations and subsequences is as
follows:

import qualified Data.lList as L(permutations, subsequences)

THE PRELUDE

By default, any Haskell module always imports without qualification the module named
Prelude. This module contains the most basic and used functions in the Haskell Platform,
such as (+) or head. This automatic import is essential to your being able to write Haskell
code without worrying about importing every single function you invoke. You have actually
been benefiting from Prelude throughout all the examples so far in this book.

In rare cases you may need to disable this automatic import. You can do so in GHC by enabling
the language extension NoImplicitPrelude. Remember that, in this case, if you need to
use any function in Prelude, you need to import it explicitly.

Smart Constructors and Views

You not only can control imported declaration from a module but also can control which
of the declarations in your own modules you want to make public for consumption
elsewhere. That is, you can control which declarations you want to export. By default,
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every single declaration in a module is exported. To restrict the availability of your
functions and data types, you need to build an explicit export list in which all the public
declarations are written and write that list just after the module name. For example, the
following module exports only the function f:

module M (f) where

f=...

Of course, you can also control which data types and type constructors will be
exported. As with importing lists, you have several options for exporting a data type:
merely exporting the type but no constructor (thus disallowing the creation of values
by directly calling the constructors), exporting just some subset of constructors, or
exporting all of them.

Remember that in the previous chapter I talked about the default values design
pattern but also stated that it was not completely finished because there was no way to
restrict the creation of ConnOptions values. Now you have what is needed to finish the
pattern. You can export only the ConnOptions data type, without any of its constructors,
and also the connDefault constant that is refined by changes to the default values. Here’s
an example:

module Chapter2.DataTypes (ConnOptions(), connDefault) where

This idea of hiding the constructors of a given data type opens the door to a new
design pattern, usually called smart constructors. The use case is as follows: sometimes
not all the values that can be obtained using a constructor are correct values for the
concept you are modeling. In those cases, you want to make sure that the developer can
only construct values in the correct space.

For example, you may need to represent a closed integer range, that is, the set of
values between some integers a (the lower bound) and b (the upper bound). A sensible
invariant is that a < b in all cases. But the definition of the Range ADT looks like this:

data Range = Range Integer Integer deriving Show

This definition does not prevent incorrect values. Instead, the idea is to provide a
function range that performs the check. If everything is OK and the check is passed,
the function range proceeds with the construction. Otherwise, the function throws

an error.
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range :: Integer -> Integer -> Range
range a b = if a <= b then Range a b else error "a must be <= b"

Note error is a built-in function that can be used anywhere to signal a point at
which the program cannot continue and should be halted, showing the specified
error message. This is one of several possibilities for dealing with errors in Haskell.
You will explore other ways to signal errors throughout the book.

This range function is called a smart constructor. It works basically like a regular
constructor but performs some extra checking on its parameters. You can enforce the
use of this constructor in all cases by not exporting the Range constructor, but only the
type. Here’s an example:

module Chapter3.Ranges (Range(), range) where

But there is a problem! Since you have hidden the constructor, any pattern match of
the following form outside the private code of the module won’t even compile.

case ... of Range xy -> ...

Code in this form won’t compile because the constructor is not available. The
solution is to create a new data type that encodes the observed values of that type and
then uses views when pattern matching. Of course, this doesn’t stop users from creating
wrong RangeObs values, but in case all functions work with Range and not RangeObs,
there will be no choice but to use it correctly. In this case, the observation data type and
the conversion function can be as follows:

data RangeObs = R Integer Integer deriving Show
xr :: Range -> RangeObs
r (Range ab) =R ab

If you export the RangeObs constructor, you can now pattern match using a view.
Remember to include the ViewPatterns extension in your source file.

{-# LANGUAGE ViewPatterns #-}
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prettyRange :: Range -> String
prettyRange rng = case rng of
(r->Rab) ->"[" ++ show a ++ "," ++ show b ++ "]"

You can go one step further and create a pattern synonym which packages this
specific form of building and deconstructing Range values. By doing so, the user of
your type does not have to be aware of the implementation using several types. In this
case, we need to use a bidirectional pattern, because we require different behavior for
matching and constructing.

{-# LANGUAGE PatternSynonyms #-}
pattern R :: Integer -> Integer -> Range
pattern R a b <- Range a b

where R a b = range a b

The syntax is a big cumbersome, though. A bidirectional pattern synonym is
composed of three parts. The first one is a type signature, which coincides with the Range
constructor. In general, the arguments refer to each of the positions in the pattern. The
next element is the matcher: in this case, I declare that matching over R a b is equivalent
to writing a pattern match of the form Range a b. The trick comes in the final element,
after the where keyword, which declares that usingR x y in a building position is
equivalent to calling the range function. Note that this is not Range, the constructor, but
the smart constructor which checks the invariant.

Finally, this is a solution to the problem of not exposing constructors for creating
values, while at the same time not harming the ability to use pattern matching for
working on it.

Diving into Lists

You have already learned about two of the most common list functions, namely, map and
filter. In this section, you will see more examples of higher-order functions on lists
and discover some patterns such as folds that are useful in Haskell code. Most of these
functions live in the Prelude module, so you don’t need to explicitly import them. The
rest of them live in the Data.List module.
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DIVING INTO LISTS CODE

While reading this section, try to write the definition of each list function once its description
has been introduced. Doing so is a good exercise to cement the concepts of parametric
polymorphism and higher-order functions in your mind. You can start by writing the filter
function.

Folds

The first function you will look at is foldr, which introduces you to the world of folds.
A fold over a data structure such as a list is a function that aggregates or combines all the
values contained in that structure to produce a single result. Folds are an expressive and
powerful tool, often underestimated. Examples of folds are summing all integers in a list
and finding the maximum of the values in the nodes of a tree (I will speak more about
trees later).

The definition of foldr includes three arguments: a binary function f that is used to
combine elements step-by-step, the initial value for starting aggregation, and finally
the list itself.

foldr :: (a ->b ->b) ->b ->[a] ->b
foldr f initial [] = initial
foldr f initial (x:xs) = f x (foldr f initial xs)

This initial value plus binary operation is a common pattern in Haskell code. Usually,
the initial value is chosen in such a way that using it as an argument in the binary
operation doesn’t change the result. We call such a value a neutral or identity element
of the operation. Take, for example, the task of summing all the elements in a list.

The chosen operation should intuitively be addition, (+). Then, the initial value should
be chosen so as not to affect that operation, and you should now ideally be thinking in
terms of the value 0. Let’s follow the evaluation of a call to foldr that exactly performs
that task of summing all the elements in a list.

foldr (+) 0 [1,2,3] => 1 + foldr (+) 0 [2,3]
=> 1 + (2 + foldr (+) [3])
=> 1+ (2 + (3 + foldr (+) 0 []))

83



CHAPTER 3  INCREASING CODE REUSE

=>1+ 2+ (3+0))
=>1+(2+3)=>1+5=>6

As you can see, Tfoldr traverses the list element by element until it reaches
the end. At that moment, foldr uses the initial value to start evaluating the
whole call stack that has been created, from the end up to the first application of
the corresponding combining function, in this case (+). If you look at a list as a
combination of (:) and [ ] constructors, you can rephrase the algorithm as follows:
foldr replaces all instances of (:) by f and all occurrences of [ ] by the initial value.
Figure 3-2 illustrates this thinking.

~ T~ foldr fi
a P > a f

Figure 3-2. Visual description of foldr

Another example of fold is maximum, which finds the largest value from a list. In
this case, the initial value is a bit more elusive because you must consider what the
maximum of an empty list is. To help in answering that question, you need to recall the
other property that is wanted for the initial value: it should not change the outcome
of the binary operation, which in this case is max. This means you have to find a value
zsuch thatmax(z,x) = max(x,z) = xany value x. You can check that the value that
satisfies that property is negative infinity (-oco).

By default, Haskell integers don’t allow representing infinite values, so you need to
define a custom data type for this matter. After some thought, you find that the concept
of adding infinity values is not unique to integers. The concept also applies to ratios,
floating-point values, and so forth. To make the new type more useful, you can define the
InfNumber data type as being polymorphic.

data InfNumber a = MinusInfinity
| Number a
| PlusInfinity
deriving Show
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By making the type polymorphic, you allow for the possibility of using the type for
more than just integers. The immediate problem requires just infinite integer values, but
future problems might require, say, infinite floating-point values. Polymorphism here is
an investment in the future.

The next step is defining a new binary operation, infMax, to combine two of these
numbers.

infMax MinusInfinity x = X
infMax x MinusInfinity = X
infMax PlusInfinity _ = PlusInfinity
infMax _ PlusInfinity = PlusInfinity

infMax (Number a) (Number b) = Number (max a b)

Let’s try to write the fold.

*Chapter3.Lists> foldr infMax MinusInfinity [1,2,3]
No instance for (Ord t0) arising from a use of “infMax'

Clearly, it's not done yet. You are getting an error because the expression that has
been written doesn’t pass the type checker. The operation infMax combines elements
of type InfNumber, but [1,2,3] is a list of integers. A first solution is to convert the list to
InfNumbers by mapping the Number constructor over the list.

*Chapter3.Lists> foldr infMax MinusInfinity $ map Number [1,2,3]
Number 3

However, if you look carefully at the type of foldr, you will see that there’s no need
for the combining function (the f argument in foldr) to take values of the same type
because it’snotoftypea -> a -> a.Rather, the typeisa -> b -> b, which means
that f should take as the first parameter a value of the type contained in the list, and the
second should be the one of the type you are accumulating, which coincides with the
type of the initial value (called initial in the definition of foldr shown here). In this
case, this means the aggregation function should have type Integer -> InfNumber
Integer -> InfNumber Integer since the initial value is MinusInfinity :: InfNumber
Integer. You already know how to convert existing numbers into InfNumbers, which is
the only special thing you need in the fold.

*Chapter3.Lists> foldr (\x y -» infMax (Number x) y) MinusInfinity [1,2,3]
Number 3
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The name foldr is a reminder of the algorithm the function implements. It is a fold
that associates to the right. That is, the innermost parenthesis will be found on the right
side of the expression. Similarly, you can build a fold that associates to the left, which is
included in the Haskell Platform as foldl.

foldl :: (a -> b ->a) ->a ->[b] -> a
foldl initial [] = initial
foldl f initial (x:xs) = foldl f (f initial x) xs

The innermost parentheses are now at the left, as this evaluation trace shows:

foldl (+) 0 [1,2,3] => foldl (+) (0 + 1) [2,3]
=> foldl (+) ((0 + 1) + 2) [3]
=> foldl (+) (((0 + 1) + 2) + 3) []
=> ((0+1) +2) +3
=> (1+2)+3
=>3+3=>6

The result value of the fold in the examples so far does not depend on whether it is
performed to the right or to the left. But for this to hold, the aggregation operator that is
chosen must be commutative. In other words, the following must hold true: f(x,y) =
f(y,x)f(x,y) = f(y,x). So long as the order in which parameters are input does not matter,
you can make it so that folding left or right also does not matter.

Some operations cannot be made commutative. Subtraction, for example, is not
commutative, so the result changes between folds.

*Chapter3.Lists> foldr (-) o [1,2,3]
2

*Chapter3.Lists> foldl (-) o [1,2,3]
-6

One last version of folds is the one composed of those that do not take an initial
value, namely, foldr1 and foldl1. In those, the starting value is the last element (in
foldr1) or the first element (in fold1l1) of the list. If you know any language derived from
Lisp, such as Common Lisp, Racket, or Clojure, you will know this folding operation as
reduce. It is not used much in Haskell, but it may come in handy in cases where handling
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the empty list case is guaranteed not to happen and where handling it tangles the code.
As an example, the previously defined maximum function is much easier using foldr1.

maximum' :: [Integer] -> Integer
maximum' = foldri max

EXERCISE 3-3. YOUR FIRST FOLDS

Consider the functions product, minimumClient, and all. The product function
computes the product of a list of integers. The minimumClient function computes the
Client with the shortest name. Finally, the a1l function computes the conjunction (&&) of a
list of Boolean values. Given these functions, do the following:

° Write the functions using pattern matching, without resorting to any higher-order
function.

° Write the functions as folds. In each case, first try to find the aggregation
operation and from that derive a sensible initial value.

Can you find the structure that all these functions share when written in the first style? In
which cases is it true that using foldr and foldl give the same results?

Extra: Try to write @a minimumBy function such that the order is taken by first applying a
function g on the result. For example, minimumBy (\x -> -x) [1,2,3] should return 3.

Lists and Predicates

Another big family of list functions comprise those that take Boolean predicates, that is,
functions with the typea -> Bool. The filter function I've already talked about is a
representative of this family. I have already asked you to write the dual version of filter,
which only takes elements from a list that doesn’t fulfill a condition. One often needs to
group the members of a list depending on whether they satisfy a condition. A naive way
to do this would be as follows:

bothFilters :: (a -» Bool) -> [a] -> ([a],[a])
bothFilters p list = (filter p list, filter (not . p) list)
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This definition is correct but has a problem: it will traverse the whole list twice.
Intuitively, just one pass should suffice. Haskell defines a function partition inside the
Data.List module just for that matter: splitting a list in just one go.

*Chapter3.Lists> import Data.List
*Chapter3.Lists Data.List> partition (» 0) [1,2,-3,4,-5,-6]
([1:2)4]’['3:'5:'6])

If you want to get only the first element in the list that satisfies the condition, you
should use find instead of filter. There’s the chance that the list contains no such
element. For that reason, find returns a Maybe value.

*Chapter3.Lists Data.List> find (» o) [1,2,-3,4,-5,-6]
Just 1

*Chapter3.Lists Data.List> find (» 7) [1,2,-3,4,-5,-6]
Nothing

Let’s now move to the following use case: you have a processing system for the shop,
with a queue for the clients, which is itself represented as a list where the head is the
next client to be served. At high load times, you want to impose the following policy: skip
all the clients that are not government organizations. The Data.List module provides
a dropWhile function that returns some list from the point in which some predicate
becomes false.

skipUntilGov :: [Client a] -> [Client a]
skipUntilGov = dropWhile (\case { GovOrg {} -> False ; _ -> True })

Note Remember you need to enable the LambdaCase extension for the previous
code to be accepted by GHC.

Its counterpart is takeWhile, which takes the initial elements until the predicate
becomes false. You can use takelWhile to get a list of all the commands in a list until one
equals "stop", at which point you quit processing. Here’s the code to do that:

*Chapter3.Lists Data.List> let 1st = ["hello", "send", "stop", "receive"]
*Chapter3.Lists Data.List> takeWhile (/= "stop") 1st
["hello","send"]
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The takeWhile and dropWhile functions are the two components of the function
span, which returns both the taken list and the dropped list:

*Chapter3.Lists Data.List> span (/= "stop") 1st
(["hello","send"],["stop","receive"])

A related function is break, which does the same work as span but negates the
predicate before. Actually, break could be defined as span (not . p).

The last couple of functions that take unary predicates are any and all. As their
names suggest, they check whether at least one or all the elements of the list, respectively,
fulfill some condition. They are similar to the logical quantifiers “exists” (3) and
“for all” (V). For example, in the monthly analytics you may want to be sure you have
an individual registered in the web shop and that you have at least a company or
government organization in the system, that is, some Client that is not an Individual.
You may define an isIndividual function to start.

isIndividual :: Client a -> Bool
isIndividual (Individual {}) = True
isIndividual _ = False

checkAnalytics :: [Client a] -> (Bool, Bool)
checkAnalytics cs = (any isIndividual cs, not $ all isIndividual cs)

Now let’s move to another kind of predicate: binary ones. These are functions that
take two arguments and return some Boolean value by comparing them somehow.
The first kind of comparison you can do is whether two elements are equivalent (or
not): (==) and (/=) belong to that family. And those are the kind of predicates that the
function nubBy expects: it takes out elements such that no two elements in the returned
list are equivalent. In this example, you get only one representative of each parity.

*Chapter3.Lists Data.List> let p x y = (even x && even y)||(odd x && odd y)
*Chapter3.Lists Data.List> nubBy p [1,2,3,4,5]

[1,2]
If you use (==) in nubBy, you are essentially removing duplicates in the list.

*Chapter3.Lists Data.List> nubBy (==) [1,2,1,1,3,2,4,1]
[1,2,3,4]
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In many cases, types come equipped with a default comparison. You will see how
to add that default comparison to your own types in the next chapter, when I talk about
type classes. If the values support it, like those of the Integer type, you can just use nub
and drop the equivalence function.

*Chapter3.Lists Data.List> nub [1,2,1,1,3,2,4,1]
[1,2,3,4]

Note nub and nubBy are not very performant functions because they must
check for equality between all possible pairs of elements. This means the order of
the function is quadratic. In the next chapter, you will learn a faster way to remove
duplicates from a list.

Equality checks, or more broadly equivalence checks, can be used to maintain lists
as sets: holding only a copy of each value. The main functions are union(By), which
returns a new set with all the elements from the initial ones; intersect(By), which
returns a set holding only the elements in both sets; insert(By), which adds only one
element to a set; and (\\), which performs the difference between sets: x1 \\ x2
contains all elements in x1 that are not in x2. In each case, the version ending in By takes
a parameter telling how to check elements for equivalence, whereas the other versions
use the default comparison.

*Chapter3.Lists Data.List> :{

*Chapter3.Lists Data.List | let x1 = [1,2,3,4]

*Chapter3.Lists Data.lList | x2 = [2,3,5]

*Chapter3.Lists Data.List | in (x1 “union™ x2, x1 “intersect™ x2, x1 \\ x2)
*Chapter3.Lists Data.List | :}

([1,2,3,4,51,[2,31,[1,4])

This example also shows an interesting feature of Haskell syntax: infix notation.
Each time you have a two-argument function that doesn’t have a name made only of
symbols (such as union or intersect), you can write the name between the arguments
surrounding it by back quotes, " .
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Finally, elem just points out whether an element is a member of a list.

*Chapter3.Lists Data.List> 2 “elem” [1,2,3]
True
*Chapter3.Lists Data.lList> 4 “elem” [1,2,3]
False

Mini-exercise Write elem using find and pattern matching.

The other usual meaning for binary predicates is ordering: p x y means thatin
some way x precedes y. However, for both clarity and performance reasons, ordering in
Haskell is not defined by returning a Bool but by returning an Ordering value, which can
be LT (less than), EQ (equal), or GT (greater than). For example, you can define a function
representing that companies and government organizations go first in an ordering of
clients and individuals are next. In each level, draws are decided by the names of the
clients. The following is the code to implement that function, and it is written knowing
that the built-in compare function defines an Ordering for strings:

compareClient :: Client a -> Client a -> Ordering

compareClient (Individual{person = p1}) (Individual{person = p2})

compare (firstName p1) (firstName p2)
GT

LT

compare (clientName c1) (clientName c2)

compareClient (Individual {}) _
compareClient _ (Individual {})
compareClient c1 c2

In the following examples, the code will use part of my list of clients. As you may
suspect, many of the popular scientists, writers, and adventurers of the time buy or read
books in the store.

listOfClients
= [ Individual 2 (Person "H. G." "Wells")
, GovOrg 3 "NTTF" -- National Time Travel Foundation
, Company 4 "Wormhole Inc." (Person "Karl" "Schwarzschild") "Physicist"
, Individual 5 (Person "Doctor™ "")
, Individual 6 (Person "Sarah" "Jane")
]

91



CHAPTER 3  INCREASING CODE REUSE

Using the auxiliary function named compareClient, you can sort a whole list of
Clients using sortBy.

*Chapter3.Lists Data.List> sortBy compareClient listOfClients
[ GovOrg { clientIld = 3, clientName = "NTTF" }
, Company { clientId = 4, clientName = "Wormhole Inc."
, person = Person { firstName = "Karl"
, lastName = "Schwarzschild" }
, duty = "Physicist"}

, Individual { clientId = 5, person = Person { firstName = "Doctor"

, lastName = "" }}

, Individual { clientId = 2, person = Person { firstName = "H. G."
, lastName = "Wells" }}
, Individual { clientId = 6, person = Person { firstName = "Sarah"

, lastName = "Jane" }} ]

Some types already come defined with a default way in which to order values.
Numbers and characters are examples of such types, which are readily compared.
In those cases, you can invoke the function sort, which doesn’t need a comparison

function. Here’s an example:

*Chapter3.Lists Data.List> sort [1,4,2,-3]
['3:1)2’4]

It’s interesting to see that orders are also defined for tuples and lists if their contained
elements have a default comparison. In both cases, this order is lexicographic: values
are compared element by element. Lexicographic comparison means that if the first
component of the tuples is different, then the ordering of those two values decides the
ordering of the tuple. If the leading values match, the second elements are compared,
and so on. The same approach is taken for lists as with tuples. Also, for lists, a smaller
list is considered previous in order to a longer list that contains the shorter list as a
prefix. Let’s look at same examples of comparison that clearly show this lexicographic
comparison. In the first and third cases, tuples or lists are equal up to some point,
whereas in the second case the first list is shorter than the second one.

*Chapter3.Lists> compare (1,2) (1,1)
GT
*Chapter3.Lists> compare "Hello" "Hello world
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LT
*Chapter3.Lists> compare "This" "That"
GT

When a compare function is defined, Haskell also provides implementations of the
(>), (<), (>=), and (<=) operators. These operators usually help clarify the code that
you write because you don’t need to call compare and then pattern match on the output.
Furthermore, these operators are more familiar. The previous example could have been
expressed also using (<=), as follows. Notice that this operator returns a simple Boolean
instead of a value of the Ordering type.

*Chapter3.Lists> (1,2) <= (1,1)

False

*Chapter3.Lists> "Hello" <= "Hello world"
True

*Chapter3.Lists> "This" <= "That"

False

It may become handy when performing analytics to group clients depending on
some characteristic. The function groupBy, with type (a -> a -> Bool) -> [a] ->
[[a]], putsin a single list all those elements for which the equivalence predicate returns
True; that is, they must be in the same group.

For example, you would like to find out which company duties are the most common
in the database (which right now is just a list). To find this out, you can first filter out
those elements that are not companies, using filter. Then, you can group the clients
depending on their duty (the comparison function to groupBy). A third step would be
sorting the lists depending on their length. While sorting, keep in mind that if you want
to have the most common duty first, you need to sort the list lengths in reverse order;
you need the longest list first. Finally, you retrieve the duty from each list by accessing
the head element. You can do so safely because all lists will be nonempty. You also know
that all elements in a given list will share the same duty, so any element that you access is
as good as any other. The resulting function to do all this would be as follows:

companyDutiesAnalytics :: [Client a] -> [String]

companyDutiesAnalytics = map (duty . head) .
sortBy (\x y -> compare (length y) (length x)) .
groupBy (\x y -> duty x == duty y) .
filter isCompany
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True
False

where isCompany (Company {})
isCompany

There’s a more elegant way to write this function. As you can see, there’s a pattern
in which two elements are compared but only after applying some operation to the
values. The higher-order function on, in the module Data.Function, allows composing
the comparison and the value-extracting functions as you want, as the following code
illustrates. To reverse the ordering for list lengths, a useful trick is calling the comparison
function with the arguments in the reverse order. There’s a combinator specifically
designed for calling a two-parameter function with the arguments reversed, which is
called flip :: (a -> b -> c) -> (b -> a -> c). The following code is a point-free
version of the previous one:

companyDutiesAnalytics :: [Client a] -> [String]
companyDutiesAnalytics = map (duty . head) .
sortBy (flip (compare “on™ length)) .
groupBy ((==) “on™ duty) .
filter isCompany

where isCompany (Company {}) = True

False

isCompany _

HASKELL IS DECLARATIVE

You may wonder why Haskell provides so many different functions on lists, whereas other
programming languages do fine with constructs such as iterators or for loops. The idea is
that instead of explicitly transforming a list element by element, you declare transformations
at a higher level of abstraction. Languages supporting this idea, such as Haskell, are called
declarative.

A classical fear when programming in Haskell is that this higher level of abstraction hurts
performance. However, compilers of declarative languages are able to apply a wider range of
optimizations because they can change the code in many more ways while retaining the same
behavior. A typical example takes the formmap f . map g. This code performs multiple
passes over the data but can safely be converted by the compiler tomap (f . g), which
performs the same duty in just one pass over the data.
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Lists Containing Tuples

Another family of list functions is the one that considers lists that have tuples inside.
These list types will all ultimately be founded on some instance of the type [ (a,b)].
I've already mentioned that default comparisons work on tuples lexicographically. Set
functions such as nub and sorting functions such as sort work in that same way.

Previously in the book you wrote a function converting two lists into a list of tuples.
This function is known as zip because it interleaves elements like a zipper does. One use
of zip is to include the position of each element next to the element itself. For example,
applying zipto['a', 'b', 'c']would giveyou[(1,"'a"),(2,'b"),(3,"'c")]. This
involves zipping the original list with a list from the number 1 to the length of the list
itself. Picture two sides of a zipper, one corresponding to the list of numbers and the
second to the list of characters. As you pull up the fastener, each number is associated to
a character, one by one.

As an example, let’s define a function enum that generates a list of numbers.

enum :: Int -> Int -> [Int]
enumab | a>b =]
enum a b a : enum (a+1) b

The length function in Prelude returns the number of elements contained in a list.
With these two ingredients, you can build the function you want.

withPositions :: [a] -> [(Int,a)]
withPositions list = zip (enum 1 $ length list) list

There is a special way to construct lists for types that have a default ordering, such as
integers or characters. This is called a range and has the syntax [ a .. b ] to geta list
with all elements in between and including a and b. For example, you can substitute the
function enum as shown here:

withPositions list = zip [1 .. length list] list
There is an unzip function that does the reverse of zip and gets two lists back from a

list of tuples. For example, let’s split countries and their capitals from a list of pairs.

*Chapter3.Lists> unzip [("France","Paris"),("Spain","Madrid"),("Portugal”,"
Lisbon")]
(["France","Spain","Portugal”], ["Paris", "Madrid","Lisbon"])
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This last example shows one possible use of a list of tuples: to implement a mapping
between keys and values. A list of such characteristics is called an association list and is
a well-known structure in functional programming. The function named lookup enables
searching for the value associated with a particular key. Once again, the possibility of not
finding the key implies that the returned value is wrapped on a Maybe.?

*Chapter3.Lists> lookup "Spain" [("France","Paris"),("Spain","Madrid"),
("Portugal”,"Lisbon")]

Just "Madrid"

*Chapter3.Lists> lookup "UK" [("France","Paris"),("Spain","Madrid"),
("Portugal”,"Lisbon")]

Nothing

Caution You have seen how a list can be used to represent sets and maps.
However, those implementations are inefficient because they require traversing a
list for most operations. In the next chapter, you will look at other containers such
as those found in the modules Data. Set and Data.Map. These other containers
are especially suited for their particular uses and have highly performant
implementations.

List Comprehensions

The fact that so many list functions are included in the standard library, and most of
them even in Prelude (and hence available by default in any Haskell source), highlights
the importance of lists in functional programming. You have seen how function
composition allows for a very declarative programming style, where transformations are
defined by steps. Remember the function duplicate0Odds for computing the double of all
odd numbers in 1ist is written as follows:

duplicateOdds :: [Integer] -> [Integer]
duplicateOdds list = map (*2) $ filter odd list

SThe expression “wrapped on Maybe” means that rather than a value of type T, you use Maybe T.
In addition, it implies that in the regular case, the function will return a value constructed with
Just.
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However, if you remember your algebra classes, mathematicians have a terse but
intuitive language for manipulating sets. The previous example can be written in set
notation as {2x| x € list. odd(x)}. The Haskell designers also like this syntax, so they
included list comprehensions to mimic it. The example becomes the following:

duplicateOdds list = [ 2 * x | x <- list, odd x ]

List comprehensions have two parts, separated by | and wrapped by square brackets.
The first part is the expression, which defines a transformation to apply to all the
elements that will be returned. The second part consists a list of qualifiers and specifies
from whence the elements will come and the constraints upon them.

The first kind of qualifiers are generators, which take the form e <- list. Generators
indicate that elements from 1ist will be acted upon, and each of the elements will be
referred as e in the rest of the comprehension. Optionally, the e part can be a pattern,
stating that only values matching it will be included. For example, you can get the client
names of all government organizations using this:

*Chapter3.Compr> [ clientName x | x@(GovOrg _ _) <- listOfClients ]
["NTTF"]

A list comprehension may have multiple generators. The simplest way to implement
multiple generators is to iterate in two different lists without any relationship between
them and get all possible combinations of elements coming from each list. This
result of all possible combinations is called the product of those lists. As an example,
the following code applies the product of two lists to the problem of generating the
multiplication tables from 1 to 4:

*Chapter3.Compr> [(x,y,x*y) | x <- [1 .. 4], y <- [1 .. 10]]
[(1,1,1),(2,2,2),(1,3,3),(1,4,4),(2,5,5),(1,6,6),(1,7,7),(1,8,8),(1,9,9),
(1,10,10),(2,1,2),(2,2,4),(2,3,6),(2,4,8),(2,5,10),(2,6,12),(2,7,14),
(2,8,16),(2,9,18),(2,10,20),(3,1,3),(3,2,6),(3,3,9),(3,4,12),(3,5,15),
(3,6,18),(3,7,21),(3,8,24),(3,9,27),(3,10,30),(4,1,4),(4,2,8),(4,3,12),
(4,4,16),(4,5,20),(4,6,24),(4,7,28),(4,8,32),(4,9,36),(4,10,40)]

97



CHAPTER 3  INCREASING CODE REUSE

But a generator may also depend on other values in the comprehension, in particular
on an element from another generator. For example, you may want to enumerate all
possible dominoes. But you know that once you have (1,6), the piece (6,1) is exactly
the same, so you shouldn’t show that one. A way to get the correct result is, for each
first component in the list of dominoes, get only values equal or greater than that in the
second component. Thus, a result of (6,1) is excluded, because 1 is less than 6. Here’s
some code to implement that approach:

*Chapter3.Compr> [(x,y) | x <- [0 .. 6], y <- [x .. 6]] [(0,0),(0,1),(0,2),
(0,3),(0,4),(0,5),(0,6), (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,2),(2,3),(2,4),(2,5),(2,6),

(3,3),(3,4),(3,5),(3,6),

(414))(435)1 (416))

(5,5),(5,6),

(6,6)]

Finally, an element in a list may itself be a list, which allows it to appear on the
right side of the generator. Given a list of words (remember that a string is itself a list of
characters), you can concatenate all of them and show them in uppercase by iterating
twice.

*Chapter3.Compr> import Data.Char
*Chapter3.Compr Data.Char> [ toUpper c | s <- "A","list"], c <- ' ":s ]
" A LIST"

Sometimes you want to introduce local bindings inside a comprehension, usually
to enhance the readability of the code. This second form of qualifiers has a syntax that
is similar to that in expressions, and the form is let b = expression. For example, you
may be interested in computing the norms of a list of vectors represented as tuples.*

*Chapter3.Compr> [ sqrt v | (x,y) <- [(1,2),(3,8)], let v = x*x+y*y ]
[2.23606797749979,8.54400374531753]

“The norm of a vector (x,y) is the quantity \/x* +y” .
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Finally, list comprehensions allow filtering out some elements using a guard. Guards
are the third form of qualifiers and are syntactically just a call to a predicate. Only those
elements satisfying the guard will go in the returned list. Guards allow expressing the

invariant for dominoes in a different way.

*Chapter3.Compr> [(x,y) | x <- [1 .. 6], y <- [1 .. 6], x <= y]
[(1,1),(1,2),(1,3),(1,4),(1,5),(2,6),(2,2),(2,3),(2,4),(2,5),(2,6),
(3,3),(3,4),(3,5),(3,6),(4,4),(4,5),(4,6),(5,5),(5,6),(6,6)]

Note If you know Scala, list comprehensions in Haskell will be familiar to you.
The changes are merely syntactic: [ e | q ] becomes for (q) yield e;,
and the generators are written the same. Local bindings are introduced without
any keyword, whereas guards must be preceded by if.

You have looked at comprehensions as coming from mathematical notation for sets.
But if you look closer, they also look a bit like SQL. The notation [ x | x <- list, b x ]
can be seen in SQL as select x from list where b=x. However, if you want to have a
full-fledged query language, you need also grouping and sorting. The great news is that
GHC already provides those operations; you need only to enable the TransformListComp
extension.

The first qualifier that is provided by the TransformListComp extension is then.

A qualifier then f transforms the input list by applying the function f to the result of
the comprehension up to that point. The constraint is that f should have type [a] ->
[a], so its applicability is a bit limited. Nevertheless, you can use it to reverse a list at
the end.

*Chapter3.Compr> :set -XTransformListComp
*Chapter3.Compr> [x*y | x <- [-1,1,-2], y <- [1,2,3], then reverse]
['61'4)'2)3)2)11'3)'2)'1]

A more powerful enhancement is then f by e, which must transform the list
depending on some expression. The most common use is to sort a list. To do so, you
first need to import the module GHC. Exts, which contains the function sortWith. Now,
include the qualifier then sortWith by v to sort depending on the values in v. You may
decide to return the previous list but now ordered by the values of x.
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*Chapter3.Compr> import GHC.Exts

*Chapter3.Compr GHC.Exts> :{

*Chapter3.Compr GHC.Exts| [x*y | x <- [-1,1,-2], y <- [1,2,3]
*Chapter3.Compr GHC.Exts| » then sortWith by x]
*Chapter3.Compr GHC.Exts]|
[-2,-4,-6,-1,-2,-3,1,2,3]

(1]
—~

The final extension concerns grouping. The syntax is then group by e using
f, where f is a function of the type (a -> b) -> [a] -> [[a]]. In the most
common case, you use as groupWith, also in GHC. Exts, which computes e for
each element in the list and groups together those values for which e returns the
same result. After a grouping qualifier, all the previous bindings are considered
to be lists made up of the previous elements. This is important because all the
transformations to the grouped elements should be done prior to that point. In
many cases, all grouped elements will be equal, so GHC provides a the function
that takes just one element from the list.

For example, you can group the numbers from the previous example according to
whether they are positive.

*Chapter3.Compr GHC.Exts> :{

*Chapter3.Compr GHC.Exts| [ (the p, m) | x <- [-1,1,-2]

*Chapter3.Compr GHC.Exts| > ¥ <~ [1,2,3]

*Chapter3.Compr GHC.Exts| » let m = x*y

*Chapter3.Compr GHC.Exts| sletp=m>o

*Chapter3.Compr GHC.Exts| » then group by p using groupWith ]
*Chapter3.Compr GHC.Exts| :}

[(False,[-1,-2,-3,-2,-4,-6]),(True,[1,2,3])]

Notice how this code computes the product of the items before the grouping using
let m = x*y. Then you group according to the valuem > 0, and at this point you have
the list [ ([False,False,False,False,False,False],[-1,-2,-3,-2,-4,-6]),([True,
True,True],[1,2,3])]. Finally, you apply the to conflate the first components to a
single element.

To help you understand these ideas about list comprehensions, let’s try to build a
comprehension to analyze your enterprise clients. As you may remember, you can have
more than one person from each company in the database. The idea is to group all the
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records belonging to the same company sorted by duty and then to sort the companies
by the number of records. The following code accomplishes those goals:

companyAnalytics :: [Client a] -> [(String, [(Person, String)])]
companyAnalytics clients = [ (the clientName, zip person duty)
| client@(Company { .. }) <- clients
, then sortWith by duty
, then group by clientName using groupWith
, then sortWith by length client

]

Note These comprehensions resemble the query expressions introduced in the
C# language in version 3.0.

GHC supports another extension, parallel comprehension, which performs a duty
that is not found in SQL queries: traversing several lists at the same time. The extension
is enabled via the ParallellListComp pragma. Using this functionality, more than one
branch of qualifiers can be stated in the comprehension, each of them separated by |.
Instead of performing nested iterations, the result of all the branches will be zipped and
available for the expression. Here’s an example where you perform the multiplication
of pairs of numbers, each component being given in a different list. Compare the result
when using traditional nesting and when zipping.

*Chapter3.Compr> :set -XParallellListComp

*Chapter3.Compr> [ x*y | x <- [1,2,3], y <- [1,2,3] ] -- nesting
[112)3)2’4J6J316)9]

*Chapter3.Compr> [ x*y | x <- [1,2,3] | y <- [1,2,3] ] -- zipping
[1,4,9]

Haskell Origami

Origami is the Japanese art of folding and unfolding paper in order to create beautiful
pieces of art. You have already looked at list folds. In this section you will look at them
and meet their colleagues, the unfolds. The goal is gaining some deeper understanding
of the structure of list functions and how this huge set of functions I have described can
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be fit into a small family of schemas. Since these schemas are based on fold and unfold
functions, they are known as Haskell origami. This section contains some optional and
more advanced material. Don’t worry if you don’t understand this upon first read; just
come try it again after some time.>

Let’s start with an observation: folds are much more powerful than you imagine.
You can write almost all list functions using foldr. For example, you can write filter as
a fold by accumulating values on a list.

filterAsFold :: (a -> Bool) -> [a] -> [a]
filterAsFold p = foldr (\x 1 -> if p x then x : 1 else 1) []

But, how to ensure that the definition of filter using regular pattern matching
and recursion on lists and this definition using a fold are equivalent? The answer lies
in induction and equational reasoning, a technique for formally verifying code that
manipulates equations between functions. In this particular case, you need to prove that
both ways to define filtering work in the same way for the empty list (this is called the
base case) and that by assuming that they are equal for a list xs you can prove that they
are equal for a longer list x: xs (this is called the inductive step).

Remapping our landscape, we want to prove that filter p xs isequal to
filterAsFold p xs for any list xs. We start by considering the base case, in which we
make xs = []. By the definition of the function, filter p [] = []. For the other side,
we can write the following set of equalities:

filterAsFold p [] = foldr (\x 1 -> if p x then x : 1 else 1) [] []

[1 -- we get back the initial value

Since both expressions give us the same result, they must be equal among
themselves. Now for the inductive step, we need to consider a list of the form x:xs.

filter p (x:xs) = if p x
then x : filter p xs
else filter p xs

*Most of these ideas are taken from the papers “A tutorial on the universality and expressiveness
of fold” by Graham Hutton and “Origami programming” by Jeremy Gibbons.
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filterAsFold p (x:xs) = foldr (\x 1 -> if p x then x : 1 else 1) [] (x:xs)
(\x 1 -> if p x then x : 1 else 1)

x (foldr (\x 1 -> if p x then x : 1 else 1) [] xs)

= if p x
then x : (foldr (\x 1 -> if p x then x : 1 else 1)
[1 xs)
else (foldr (\x 1 -> if p x then x : 1 else 1)
[1 xs)

We can see that the structure of the code is the same. Remember that we are allowed
to assume that the equality foldr p xs = filterAsFold p xs holds, let us call this
common expression ys. Thus both expressions can be rewritten to:

if p x then x : ys else ys

By induction, the equality between both ways to write the function is now proven, in
the mathematical sense of the word.
You can also define map in terms of foldr. Exercise 3-4 asks you to prove that both

definitions are equivalent:

mapAsFold :: (a -> b) -> [a] -> [b]
mapAsFold f = foldr (\x 1 -> f x : 1) []

EXERCISE 3-4. PROOF FOR MAP

Using the same techniques as we used for filter, prove that the usual map definition and
the one given in terms of foldr are equal.

The techniques of induction and equational reasoning are not limited to prove
equivalence between different function definitions. We can also state laws which
combine several operations. One such law is:

foldr f v . map g = foldr (\x xs -> f (g x) xs) v

In that form, this law relates two functions. However, in order to prove their equality,
we need to introduce explicit arguments. That is, what we want to hold is that for any
input list is,

foldr f v (map g is) = foldr (\x xs -> f (g x) xs) v is
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At this point, we can start using our techniques. First, we have to prove that the
equality holds for the case in which is is the empty list.

foldr f v (map g []) = foldr f v []
foldr (\x xs -> f (g x) xs) v is

Since both expressions rewrite to the initial value v, the base case is proven.
The inductive step leads us to consider the case in which the list has the form i:1is.

foldr f v (g i : map g is)
f (g 1) (foldr f v (map g is))

foldr f v (map g (i:is))

foldr (\x xs -> f (g x) xs) v (i:is)
= (\x xs -> f (g x) xs) i (foldr (\x xs -> f (g x) xs) v is)
= f (g i) (foldr (\x xs -> f (g x) xs) v is)

As in the case of filter, we see that the final expressions have the same structure.
Remember that we can assume that the equality already holds for is while proving the
inductive step. If we call such common expression js, in both cases we obtain f (g i)
js. The proof is finished.

If you don’t feel completely confident about how I reasoned, try to go step-by-
step with pencil and paper. Pay close attention in each step to how you apply the
rules of the game. Once you are sure about the details, try to prove the so-called
fusion law for maps:

map f . map g =map (f . g).

Note Knowing these laws may seem like just a theoretical exercise. However,
they have important applications for Haskell programs because the compiler uses
them to transform the code into a more efficient one, while ensuring the same
behavior. For example, map (f . g) traverses a list only once, whereas

map f . map g does it twice and needs an intermediate data structure in memory.
So, the compiler aims to replace each instance of the latter with the former.

Up to now I have talked about folds, which consume lists to provide a single
value. However, there’s a corresponding concept, unfolds, which create lists out of
some seed. Like with folds, there are both right and left unfolds. Here, the focus will
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be on the right unfold function unfoldr, which is available in Data.List. Let’s begin
looking at its type.

*Chapter3.Origami Data.lList> st unfoldr
unfoldr :: (b -> Maybe (a, b)) -> b -> [a]

The algorithm for unfolding is the following: start with a seed of type b. Apply the
function given as the first argument. You can get two kinds of output: Nothing signals
that unfoldr should stop producing elements, whereas Just (x, s) attaches x to
the new list and continues the process with a new seed, s. For example, let’s create
a list from n to m. The function should produce a number in each step and increase
it for the next iteration, and it should stop when the seed is larger than m. Here’s the
code to do this:

enumUnfold :: Int -> Int -> [Int]
enumUnfold n m = unfoldr (\x -> if x > m then Nothing else Just (x, x+1)) n

Figure 3-3 illustrates the step-by-step execution of this code.

seeds: 1 > 2 > 3 >
J' 1> 3? l 2> 32 J‘ 3> 3? l 4> 3?
produced list: 1 2 3 stop

Figure 3-3. Evaluation steps for enumUnfold 1 3

Another algorithm that can be expressed as an unfold is minimum sort for lists.
In minimum sort, you make a series of steps, and in each one you find the minimum
element in the input list, take it out of this input list, and add it to the output list,
which will end sorted. To implement it as an unfold, you will use a list as the seed,
containing the elements that are yet to be ordered. In each step, take the minimum
element from the list, making the new seed the previous list without that element.
When you have an empty list as a seed, you should stop generating new elements.
Here it is in Haskell code:

minSort :: [Integer] -> [Integer]
minSort = unfoldr (\case [] -> Nothing
xs -> Just (m, delete m xs) where m = minimum xs)
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WHY ARE FOLDS AND UNFOLDS DUALS?

The two concepts of folding and unfolding are dual, but how do | back up that claim? The key
point is that unfoldr returns eithers Nothing for stopping or Just for continuing, whereas
foldr takes different arguments for the empty and general cases. You can group the initial
value and combination function into a single function of type Maybe (a,b) -> b, which will
return the initial value if given nothing or apply the combination for Just.

{-# LANGUAGE LambdaCase #-}

foldr2 :: (Maybe (a,b) -> b) -> [a] -> b
foldr2 f [] = f Nothing
foldr2 f (x:xs) = f $ Just (x, foldr2 f xs)

mapAsFold2 :: (a -> b) -> [a] -> [b]
mapAsFold2 f = foldr2 (\case Nothing -> []
Just (x,xs) -> f x : xs)

Now you can see how the two functions have reflected types.

foldr2 :: (Maybe (a,b) -> b) -> [a] -> b
unfoldr :: (b -> (Maybe (a,b)) -> b -> [a]

[ find this duality elegant and an example of how higher-order functions allow you to find
relations between different abstractions.

Summary

The chapter covered many concepts related to reusability and lists. It finished with a look
at list origami.

e You got in touch with the idea of parametric polymorphism, which
allows you to define functions operating on several types and also
write data types that may contain values of different types.

e Youlearned how to use functions as parameters or return values,
giving rise to higher-order functions, which greatly enhance the
reusability of your code.
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Anonymous functions were introduced as a way to write some code
directly in place instead of having to define a new function each time
you want to pass it as an argument.

You saw how the idea of functions returning functions permeates the
Haskell language and saw the syntax for partially applying them.

You looked at the point-free programming style, which encourages
the use of combinators between functions to write more concise

code. In particular, the focus was on the (.) composition operator.

The chapter covered the import and export of definitions in other
modules in a project. In particular, you saw how hiding definitions
allows for the smart constructors pattern.

You walked through the most important functions in the Data.List
module, introducing the important concept of a fold.

In many cases, list comprehensions provide an intuitive syntax
for list transformations. You delved into its basic characteristics
and the particular GHC extensions providing sorting and
grouping a la SQL.

Finally, you saw how fold and unfolds are at the core of most list
functions, and you learned how to use them and reason with them.
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Using Containers and
Type Classes

You have seen how parametric polymorphism and higher-order functions help in the
process of abstraction. In this chapter, I'll introduce a new kind of polymorphism that
sits in between parametric and the absence of polymorphism: ad hoc polymorphism.
Using this feature, you can express that certain types exhibit a common behavior.
Incidentally, you will also learn how Haskell makes it possible to use addition, (+), on
different numeric types like Integer and Float while maintaining a strong type system.

Containers will be used in the examples throughout this chapter. A container is any
data structure whose purpose is to hold elements of other types in it, such as lists or
trees. In addition to writing your own implementation of binary trees with a caching
mechanism, you will look at implementations that are available in Hackage and
Stackage, the Haskell community’s package repositories. This will lead you deeper into
the features of Cabal and how you can use it to manage not only projects but also their
dependencies. In addition to repositories or libraries, the Haskell community provides
a lot of ways to search for code and documentation; I'll introduce the Hoogle tool in this
chapter.

While using and implementing these containers, a lot of patterns will emerge. This
will be the dominant situation from now on; after looking at some useful types, you will
look at their commonalities. In particular, this chapter will introduce functors, foldables,
and monoids.
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Using Packages

Until this point you have been using functions and data types from the base package.
However, a lot of functionality is available in other packages. In this section you will first
learn how to manage packages, and add them as dependencies to your projects.

A package is the distribution unit of code understood by Cabal and Stack, the tools I
have already introduced for building projects. Each package is identified by a name and
aversion number and includes a set of modules. Optionally, the package can include
some metadata such as a description or how to contact the maintainer. In fact, the
projects you created previously are all packages.

You can manipulate packages by hand, but there’s an easier way to obtain and install
them in your system: to make your own projects depend on them. If Cabal finds out
that a package is not available in your system, it contacts the Hackage package database
(which lives at http://hackage.haskell.org) and downloads, compiles, and installs
the corresponding package. Hackage started as a mere repository for hosting packages,
but now it provides some extra features such as the ability to generate documentation.
Anyone with an account is allowed to upload new packages to Hackage. This ability,
combined with the active Haskell community, means a wide range of libraries are
available.

When your use Stack to build your projects, Hackage is not consulted by default.
Instead, packages are looked for in Stackage (which lives at https://www.stackage.
org). Stackage provides snapshots of Hackage (called resolvers) in which all packages are
known to work well together. This provides a huge gain for reproducibility at the expense
of not always containing the bleeding-edge version of the packages.

Tip Go to the Hackage web page and click the Packages link. Take some time to
browse the different categories and the packages available in each of them. Then,
find the containers package in the Data Structures category and click it. Now
go the Stackage web page and click the link of the latest LTS corresponding to
your version of GHC. Try to find containers in the list of packages. Compare the
version of this package to the latest one available in Hackage.

In both cases, you will see the list of modules that are exported, along with its
documentation. It’s important that you become comfortable with these sites
because they are the main entrance to the world of Haskell libraries.
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Managing Dependencies

The most common way of getting a package is not by manually downloading it but rather
by adding it as a dependency of another package. You just need to add it to the property
build-depends of the corresponding stanza in your .cabal file. You can add a package
dependency both in the library or in executable stanzas. For example, let’s create a new
project for this chapter and add the containers package as a dependency because you
will use it throughout this chapter. The relevant parts of the package description file will
look like this:

name: chapters
version: 0.1
library

hs-source-dirs: src
build-depends: base >= 4, containers

Dependencies may also specify constraints over the versions that are required.
Versions are of the form a.b.c.d, with each of them being a number. The order is
lexicographical; to compare two versions, the first component, a, is checked, and only
if they are equal is the second is checked. If that also coincides, further components are
checked in the same way. You can use any comparison operator (==, >=, >, <=, and <)
and also combine them using && for conjunction and | | for alternative constraints. Even
though the constraint system is powerful, you should follow this rule of thumb: add a
constraint requiring the minimum version where you know that your package compiles
and runs (usually the version installed in your system), and another constraint to limit
future versions to the next major one, that is, the next a.b in the lexicographical order.
For example, at the moment of writing, the current containers version is 0.6.0.1, so
the next major version would be 0.7. The suggested dependency declaration is thus as
follows:

containers »= 0.6.0.1 && < 0.7

111



CHAPTER 4  USING CONTAINERS AND TYPE CLASSES

PACKAGE VERSIONING POLICY

The meaning of the version numbers for Haskell packages has been in flux for a long time.
That made it difficult to decide the range to express for a particular dependency. In Hackage,
package authors are expected to adhere to the following policy:'

° If any function, data type, type class, or instance has been changed or its type
or behavior removed, the major version (i.e., the first two components) must be
increased.

° Otherwise, if only additions have been done, you can just increase the remaining
components. This also holds for new modules, except in the case of a likely
conflict with a module in another package.

In addition to these recommendations for package writers, the previously explained rule for
specifying dependencies was introduced.

Note however that this versioning policy is a controversial issue within the Haskell community.
You might find fierce arguments by defendants and opponents. But in practice, as a user of
Haskell, tools work well enough even when not all packages in the repositories adhere to this
practice.

As you can see, the package name and version are important parts of the project
Cabal file. Furthermore, if your package is intended to be published in Hackage or
publicly available in any other way, it’s important to include precise metadata. The
metadata is specified by top-level properties in the package description file. The only
required ones are name and version, but it’s also common to include the license, the
author, the current maintainer, a small synopsis, and a larger description, the project
home page, and a list of categories in which Hackage will include the package. For the
chapter4 package, it might look like this:

name: chapter4
version: 0.1
cabal-version: »>=1.2
build-type: Simple

You can read the full Package Versioning Policy at pvp.haskell.org.
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author: Alejandro Serrano

synopsis: Package for chapter 4
maintainer: Alejandro Serrano <my@email.com>
homepage: http://haskell.great.is

Note You may see some extra properties, such as cabal-version and build-
type. Those are meant to be used when the developer needs to tweak the building
system or maintain compatibility with older versions of Cabal. My suggestion is to
leave those properties as they are initially created.

Building Packages

In Chapter 2 we looked very briefly at the steps required to build a package with either of
the build tools of the Haskell ecosystem, namely Cabal and Stack. In this section we look
at them in more detail and describe the underlying notions in their package systems.

Building Packages with Cabal

Cabal used to be one of the very few sources of mutability in a Haskell system. All
packages, including dependencies, were installed in a global location. This made
the state of a Haskell installation quite brittle, especially when different packages
required different versions of the same package. Fortunately, this landscape changes
with the introduction of sandboxes, which isolated the dependencies of each package
being developed. For a long time, sandboxes have been opt-in, and global installation
remained the default method. Not any more: if you use the Cabal commands starting
with new-, you use an enhanced form of sandboxes. This is now the recommended way
of dealing with Haskell packaging, and it’s the one we shall describe in this section.
Since the new- commands try to isolate the package being developed from the rest
of the system state, they must be run in a folder in which a . cabal file exists. This is in
contrast to the previous mode of operation, in which commands could be run anywhere
since they affected the global environment.
As we have discussed above, Cabal uses Hackage by default as source for our
dependencies. However, the Hackage index is not consulted every time you build
a package. Instead, your local Cabal installation maintains a list of all the available
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packages in the remote Hackage repository. Alas, this mirror of the package list is not
updated automatically. You must explicitly ask Cabal to download the new version,
something you should do from time to time. When using the command line, you do this
by executing the cabal new-update command, as shown here:

$ cabal new-update
Downloading the latest package list from hackage.haskell.org

Now you are ready to build a package along with its dependencies. You do so by
simply running cabal new-build,

$ cabal new-build

Build profile: -w ghc-8.4.3 -01

In order, the following will be built (use -v for more details):
- exceptions-0.10.0 (lib) (requires build)

Downloading exceptions-0.10.0...

Configuring exceptions-0.10.0 (lib)...

Configuring exceptions-0.10.0 (lib)...

Configuring library for chapter4-o0.1...
Preprocessing library for chapter4-o0.1..
Building library for chapters-o.1..

If you get any error in this step, double check that the src folder exists.

In a first step, all the dependencies (in this example output, package exceptions
version 0.10.0) are downloaded and built. Then, the package itself (in this case,
chapter4) is configured and built. Of course, dependencies are only compiled in the first
run, or whenever they change.

A very common scenario when developing Haskell projects is to have several
packages you are developing together. Cabal can help you in that situation; the only
requirement is to put all the packages in a common folder. Then create a cabal.project
file with the following line:

packages: chapter4 wonderful

Then you can build one specific package by issuing the new-build command
followed by the name of the package. The great benefit of using a cabal.project file
is that if one of the packages depends on any other, Cabal knows where to find it. This
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solves one of the problems of the older behavior of Cabal, in which global mutation of the
environment was the only way to develop several interdependent packages in parallel.

Building Packages with Stack

In my initial description of building packages with Stack, I hinted to the idea of resolvers.
This is in fact a central idea for Stack: a resolver describes a set of packages with a
specific version, and a specific compiler environment in which they work. In other
words, a resolver is defined by giving a version of GHC and a version of all the packages
belonging to that resolver. There are two types of resolvers: nightlies, which include
newer versions but are less stable, and LTSs, which are guaranteed to work correctly.

I recommend to always use an LTS for production environments.

In order to start using Stack with a Cabal project, you need to create a stack.yaml
file. The main goal of that file is to specify which resolver to use. From that point on,
Stack creates an isolated environment for your project, including a local version of GHC
as specified by the resolver.

You don’t need to create that file by hand, though. By running stack init Stack
infers which resolver to use from the current set of dependencies in your package. In
particular, it tries to use the most recent LTS resolver in which all dependencies can be
satisfied. Here’s the output for the chapter4 project; note how the 1ts-13.7 resolver is
chosen.

$ stack init
Looking for .cabal or package.yaml files to use to init the project.

Selecting the best among 14 snapshots...
* Matches 1ts-13.7
Selected resolver: 1lts-13.7

Afterwards, you need to run stack setup. This downloads the corresponding
version of GHC, if needed.

$ stack setup

Writing implicit global project config file to: ...\stack.yaml
Note: You can change the snapshot via the resolver field there.
Using latest snapshot resolver: 1lts-13.7

Downloaded 1ts-13.7 build plan.
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Preparing to install GHC to an isolated location.
This will not interfere with any system-level installation.
- downloads and installs compilers and utilities

What a waste of space, I hear you muttering. GHC is not light, indeed, and having
one copy per project would result in thousands of duplicated files. Fortunately, Stack
tries to share as many compilation artifacts as possible, so the same compiler is used for
all the packages using the same major LTS version.

Building a package is quite similar to Cabal. Just run stack build. The main
difference is that Stack takes care of updating the information about its repositories
before downloading any dependencies. Then the packages are built, starting with the
dependencies and ending with the package being developed.

$ stack build

exceptions-0.10.0: download
exceptions-0.10.0: configure
exceptions-0.10.0: build
exceptions-0.10.0: copy/register
chapter4-0.1.0.0: configure (1ib)
Configuring chapter4-0.1.0.0...
chapter4-0.1.0.0: build (lib)
Preprocessing library for chapter4-0.1.0.0..
Building library for chapter4-0.1.0.0..
chapter4-0.1.0.0: copy/register
Installing library in <somewhere>
Registering library for chapter4-0.1.0.0..

Let’s have a look at the contents of the stack.yaml file. In your system you might find
many additional comments, which are lines starting with the # symbol.

resolver: lts-13.7
packages:

# extra-deps: []

The first line specifies the resolver. The packages section defines which are the
folders containing the packages. By default, this section points to the folder in which
the stack.yaml file resides. You can use this option to create a project with more than

116



CHAPTER 4  USING CONTAINERS AND TYPE CLASSES

one package, in the same fashion as I described for Cabal. For example, you can move
the file one folder up and then indicate that your folder contains both a chapter4 and a
wonderful package using

packages:
- chapters
- wonderful

The last section specifies extra dependencies, which are packages which are not
available in Stackage, but are available in Hackage. Remember that Stackage provides a
snapshot of Hackage, so this is a common scenario. You need to declare both the name
of the package and the version. For example:

extra-deps:
- wonderful-0.2.1.0

The reason for mandating a version with every package is to keep the reproducibility
guarantees of the Stack tool. Another nice ability of Stack is to point not to a package, but
to a Git repository:

extra-deps:
- git: my.server/my.repo.git
commit: a67bc8...

With all this information, you are ready to create the package for the store. Follow
Exercise 4-1, and try looking carefully at all the steps needed to bring a new package to
life.

EXERCISE 4-1: TIME MACHINE STORE PACKAGE

Create a new package that will be the origin of Time Machine Store, using either Cabal or
Stack. Since it will become a web application, make it an executable. Add containers and
persistent as dependencies (remember to use the version rule) and then configure and
build the project. Experiment with the different metadata fields.

In addition, create both a cabal.project and a stack.yaml file. Ensure that your package
builds with both tools.
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Obtaining Help

I already mentioned that the Hackage and Stackage websites contains documentation
about all the packages available in their databases, including module, function, type,
and class descriptions. It’s a great source of information for both when you want to find
information about some specific function and when you want to get a broad overview of
a module. Furthermore, all the packages in the Haskell Platform come with high-quality
explanations and examples.

One really cool tool that helps in daily Haskell programming is Hoogle, available at
www.haskell.org/hoogle/. The powerful Hoogle search engine allows you to search by
name but also by type. Furthermore, it understands Haskell idioms. For example, if you
look for a function with a specific type, it may find a more general function using a type
class that the types in the signature implement, or the order of the arguments may be
swapped in the found version. This tool is available also as the command-line program
hoogle, which you can obtain by running cabal install hoogle in the command
line. Note that this will take some time, since it needs to download and compile all
dependencies in addition to the executable. Before being able to issue any query, you
must run hoogle generate at the console.

Here is an example of the outcome of Hoogle for a map-like function:

$ hoogle '(a -» b) -» ([a] -» [b])’

Prelude map :: (a -> b) -> [a] -> [b]

Data.List map :: (a -> b) -> [a] -> [b]

Control.Parallel.Strategies parMap :: Strategy b -> (a -> b) -> [a] -> [b]
Control.Applicative liftA :: Applicative f => (a -> b) -> fa -> fb
Data.Traversable fmapDefault :: Traversable t => (a -> b) ->ta ->thbh
Prelude fmap :: Functor f => (a -> b) -> fa ->fb

Data.Functor fmap :: Functor f => (a -> b) -> fa -> fb

# and it continues to 80 results

Containers: Maps, Sets, Trees, Graphs

In this section you will look at some container types that are common in programming.
AsIintroduced earlier, a container is a data type whose main purpose is to hold any
number of elements of a homogeneous type. In particular, you will look at maps, trees,
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graphs, and sets. All these structures could be implemented by using lists and tuples
(e.g., you have already seen how association lists can be used to represent maps). But
using specialized data types has two advantages.

o They are much faster because they were specially developed for a
particular pattern. For example, looking for the value associated to
a keyin a list involves searching the entire list, whereas in a map the
time is almost constant.

o Libraries implementing these structures provide functions that were
created for the specific use cases of each of them. For example, you
have functions for visiting nodes or getting the strongly connected
components of a graph. These functions could be implemented if
using lists but are not already available in the Haskell Platform.

All the containers I will talk about are provided by the containers package, so to try the
examples, you need to include that package as a dependency, as in the previous section.

Maps

Let’s start with maps, which allow you to associate values with keys efficiently. No
duplicate keys are allowed, so if you want to alter the value for a specific key, the new
one will override the previous one. In contrast, with association lists, by implementing
mappings as a list of tuples, you were responsible for maintaining such an invariant.
You'll find the implementation of maps in the Data.Map module. However, many
functions in that module collide with names from the built-in Prelude module. For
that reason, you will need to qualify the module when you import it. Here you'll qualify
Data.Map by the name M, so you'll prefix any declaration from the module with M instead
of Data.Map. It's common practice to abbreviate the qualification to a small one-letter
name to write less code. In the following examples I'll assume that the module has been
imported with this line:

import qualified Data.Map as M

The type itselfisMap k a. It takes as parameters the type k of the keys that will index
values of type a. For example, a mapping between clients and the list of products that
each client has bought will have type Map Client [Product].In the examples you will
work with simpler maps from strings to integers, which are much more concise.
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In the previous chapters, I introduced the special syntax for creating lists: either
using the constructor [ ] for an empty list or listing the elements between square
brackets. Haskell has no special syntax for maps or for exporting any of its data
constructors. Rather, you must create new maps either by using empty to create a map
with no pairs or by using singleton, which takes a key and a value and generates a map
with that single element.

*Chapter4.Containers M> M.empty

fromList []

*Chapter4.Containers M> M.singleton "hello" 3
fromList [("hello",3)]

Maps are by default shown as a list of pairs. You can convert between that style of
lists and real maps by using the fromList function. If two pairs have the same key, only
the last value is retained.

*Chapter4.Containers M> M.fromList [("hello",1),("bye",2),("hello",3)]
fromList [("bye",2),("hello",3)]

When inserting new values, you must remember that only one value can be
associated with a specific key. This leads to two different ways in which you can proceed
if a value is already associated with a key.

e You can completely ignore that old value and just replace it with the
new one. This is achieved via the insert function, which takes just
the new key and value, and the map where the association must be
changed, in that order.

¢ You can combine the old value with the new one. To do so, use
insertWith, of the following type:

(a->a->a) >k ->a->Map k a->Mpk a

The first parameter is the combining function that will be called
with the old and new values whenever the corresponding key is
already present. In some cases, you will also want to have the key
as a parameter of the combining function; in that case, you should
use insertWithKey, whose first parameter is of type k -> a ->

a -> a.Thisis an instance of a common pattern in the Data.Map
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module; each time that a function will be called with a value of the
map, there’s an alternative function ending in WithKey that also
gives the key to the function.

Here’s an example of several chained insertions:

*Chapter4.Containers M> :{

*Chapter4.Containers M| let mi1 = M.singleton "hello" 3
*Chapter4.Containers M| m2 = M.insert "bye" 2 m1
*Chapter4.Containers M| m3 = M.insert "hello" 5 m2
*Chapter4.Containers M| m4 = M.insertWith (+) "hello" 7 m3
*Chapter4.Containers M| in (m1,m2,m3,m4)
*Chapter4.Containers M| :}

( fromList [("hello",3)]

, fromList [("bye",2),("hello",3)]

, fromList [("bye",2),("hello",5)]

, fromList [("bye",2),("hello",12)] )

Notice how in the last step the pair ("hello",5) lived in the map and ("hello",7)
was going to be inserted. You specified addition as the combinator, so you get
("hello",12) in the final map.

Note If you come from an imperative language such as C or Java, you will be
used to functions directly changing the contents of a container. By contrast, Haskell
is pure, so all these functions return a new map with the corresponding change
applied. However, the underlying implementation does not create a whole new
copy of the data structure every time it’s changed, due to laziness (which will be
explained in the next chapter). That way, performance is not compromised.

In addition to holding elements, maps are used to query by key. The null function
allows you to check whether the map is empty, whereas member tells whether a specific
key is available in the map. To get the associated value of a key, you can either use
lookup, which returns Just value if available, or use Nothing if the key is not present.
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Alternatively, findWithDefault takes a value to return if the key that you query is
not present. In the following interpreter session, you can see examples of what these
functions do in a range of cases:

*Chapter4.Containers M> M.null M.empty

True

*Chapter4.Containers M> let m = M.fromList [("hello",3),("bye",4)]
*Chapter4.Containers M> M.null m

False

*Chapter4.Containers M> M.member “"hello" m

True

*Chapter4.Containers M> M.lookup "hello" m

Just 3

*Chapter4.Containers M> M.lookup "welcome" m

Nothing

*Chapter4.Containers M> M.findWithDefault 0 "welcome" m
0

You can also delete pairs from the map, using the delete function, as shown here:

*Chapter4.Containers M> M.delete "hello" m
fromList [("bye",4)]

In addition to inserting or deleting, you can also change the value of a specific key via
adjust. It takes the function that will be applied to the old value to get the new value. If
the key is not present, the map is not modified.

*Chapter4.Containers M> M.adjust (+7) "hello" m
fromList [("bye",4),("hello",10)]

insert, delete, and adjust are all instances of a general function called alter that
subsumes all of them. The first argument is a function of type Maybe a -> Maybe a.
The input will be Nothing if the key is not already present, or it will be the previous
value wrapped in a Just. What to do with that key is specified by the return value of that
function. If it is Nothing, the key will be dropped, and if it is Just v, that would be the
new value for the key. The following code does the same work of the previous example:

*Chapter4.Containers M> M.alter (\(Just v) -» Just (v+7)) "hello" m
fromList [("bye",4),("hello",10)]
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Exercise 4-2 asks you to check whether alter is a general form of the functions that
were introduced earlier.

EXERCISE 4-2: ALTERING YOUR MAPS

It's common for Haskell libraries to contain a fully general function such as alter, which is
later made more concrete in other functions. This makes it easier to work with the library.
Put yourself for a moment in the place of a library designer and write the functions insert,
delete, and adjust using alter.

You can also combine entire maps using union, intersection, and difference,
which will produce a new map key from both maps (even if they appear in only one of
them), appearing in both maps or in the first map but not the second, respectively. In
the case of a key with different associated values in each map, the first map will take
precedence, and its value will be used. You can have finer control by using unionWith,
intersectionWith, and differencelWith, which take an extra argument that is the
function that combines the elements with the same key.

*Chapter4.Containers M> :{

*Chapter4.Containers M| let mi1 = M.fromList [("hello",3),("bye",4)]
*Chapter4.Containers M| m2 = M.fromList [("hello",5),("welcome",6)]
*Chapter4.Containers M| in (m1 “M.union™ m2, M.intersectionWith (-) m1 m2)
*Chapter4.Containers M| :}

( fromList [("bye",4),("hello",3),("welcome",6)]

, fromList [("hello",-2)] )

Once you know how to operate on lists, you can usually transfer that knowledge to
other data structures. In the case of maps, there are functions map, foldr, foldl, filter,
and partition, among others, that have the same behavior as they have for lists but
return a map. Again, for each function there’s a corresponding one suffixed by WithKey
whose parameter functions also take the key that you are modifying, folding upon, or
filtering. Let’s duplicate all the values in a map and then return its sum.

*Chapter4.Containers M> (M.map (*2) m, M.foldr (+) 0 m)
( fromList [("bye",8),("hello",6)], 7 )
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I have already talked about converting from a list of tuples into a map using
fromList. You can do the inverse transformation using assocs. You may have noticed
that maps are always shown with their keys ordered. The map itself maintains that
invariant, so it can easily access the maximal and minimal elements in the map. Indeed,
functions such as findMin/findMax, deleteMin/deleteMax, and updateMin/updateMax
take advantage of this fact and allow for fast retrieving, deleting, or updating of the values
associated to those keys.

Sets

Sets are found in the Data. Set module. They behave essentially like lists but do not allow
duplicates. The set of functions for this data type is virtually identical to that of maps, but
only taking the value as a parameter (elements in a set don’t have a key). In the following
examples, the module Data.Set will be imported qualified as S:

Prelude> import qualified Data.Set as S

You create sets with empty and singleton, much like their map counterparts. empty
creates a set with no elements, and singleton creates a set with a single element. Later,
you can add new elements via the insert function. The following example showcases a
way to create a set with the elements "welcome" and "hello":

Prelude S> S.insert "welcome" $ S.singleton "hello"
fromList ["hello","welcome"]

Alternatively, you can create a set directly from a list of their elements using the
fromList function. Duplicate elements in the list will be taken to just one, since sets can
contain a sole appearance of each element.

Prelude S> S.fromList ["hello","bye","hello"]
fromList ["bye","hello"]

Similarly, there’s a toList function to convert a set to a list of its elements. The
behavior of these two functions provides a way to implement the functionality of
removing duplicates from a list (and also sort it in ascending order), which is actually
much more performant than the nub function.

Prelude S> S.toList $ S.fromList ["duplicate"”,"boom","duplicate"]

["boom","duplicate"]
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As mentioned, the interface for Data. Set is similar to that of Data.Map. The following
code shows an example of using set operations (in this case, intersection, but also
union and difference are available). You can see how to check for membership with
the member function. Finally, like with lists and maps, you can apply a function to each
element in the set using map (but be careful because duplicate results will be compressed
into just one element, and order may not be respected).

Prelude S> :{

Prelude S| let seti = S.insert "welcome" $ S.singleton "hello"

Prelude S| set2 = S.fromList ["hello","bye"]
Prelude S| in ( set1 ~S.intersection™ set2
Prelude S| s "welcome" “S.member® set1
Prelude S| s Se.map length set2 )

Prelude S| :}
(fromList ["hello"], True, fromList [3,5])

INTMAP, INTSET, HASHMAP, AND HASHSET

Maps can be made much more efficient if you use only integers as keys. The same happens
for sets holding only integer values. For that reason, the containexrs library provides specific
data types for that purpose, namely, IntMap and IntSet.

Alternatively, the keys on a map or the values on a set might not be integers but could be
mapped almost uniquely to one integer. This mapping is called a hash of the original value.
The types HashMap and HashSet in the unordered-containers package provide
implementations of maps and sets whose keys and elements, respectively, can be hashed; this
is much more efficient than the Map and Set types discussed in this section, if the type can to
be hashed.

Like with any other value, the following containers can be nested one inside another:
lists of sets, maps with string keys and values that are lists of numbers, and so on. In
Exercise 4-3 you will use a map with sets as values to classify a list of clients in the store.
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EXERCISE 4-3: CLASSIFYING CLIENTS

For analysis purposes, it interesting to classify clients according to their type such as
government organization, company, or individual. First, create a new data type to represent
these kinds of clients:

data ClientKind = GovOrgKind | CompanyKind | IndividualKind

Now, create a function called classifyClients that traverses a list of clients (of type
[Client Integer],with Client defined as in the previous chapter) and generates a value
of type Map ClientKind (Set (Client Integer)).You should create two different
implementations.

° The first should traverse the list element by element and perform on each
element the classification, decide which map item to modify, and then add itself
to the set.

° The second should first create lists corresponding to the three different kinds
and at the end convert those lists to sets and generate the mentioned map from
them.

You can create a large client list and run the two implementations to compare which one
behaves better in speed.

Trees

Trees are composed of nodes, which hold a value and may have other trees as children.
In the Data.Tree module, those children are represented as a bare list of trees,
sometimes called a forest. Be aware that this representation is not specialized for any
particular purpose. For some algorithms, you may want to use another kind of tree, such
as AVL or red-black trees. For those cases, we have specialized packages supporting
these data types, such as TreeStructures, AvlTree, and RBTree. Here’s the code defining
Data.Tree.Tree:

data Tree a = Node { rootlLabel :: a, subForest :: Forest a }

type Forest a = [Tree a]
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The type keyword, which I haven’t yet introduced, is used to create type synonyms,
that is, to give an alternative name to a type. Usually, it’s used to call a large type by
a smaller or more expressive name. For example, you can introduce the following
synonym for those functions returning a Boolean value:

type Predicate a = a -> Bool

The type synonym and its expansion are interchangeable in all circumstances.
That is, you can also write the type of filter as Predicate a -> [a] -> [a], and the
compiler would be fine with it. In contrast, the other way to define alternative names,
using newtype, doesn’t make the types equivalent. When should you use this second
option will be covered later in the chapter.

As you may already know, there are several ways to visit a tree (such as traversing all
of their elements), which are broadly divided in two families: depth-first traversal and
breadth-first traversal. In depth-first traversal, each node of the tree recursively visits
its subtrees. There’s still a choice of when to visit the value in the node itself: before any
subtree (pre-order) or after all subtrees are visited (post-order). Figure 4-1 illustrates
both ways of traversing a tree’s elements.

1t | 1° 1
> 2% 6° 2% 6° 2 6
~33 .4 -5 35> 4-—>5 3 4 5
Pre-order Post-order Breadth-first

[1125314:536] [35415:2:611] [13216;31415]

Figure 4-1. Traversing in pre-order, post-order, and breadth-first fashions

Let’s try to implement a function that traverses the tree in pre-order, applying a
function to each value and returning the result in a list.

import Data.Tree

preOrder :: (a -> b) -> Tree a -> [b]
preOrder f (Node v subtrees)
= let subtreesTraversed = concat $ map (preOrder f) subtrees
in f v : subtreesTraversed
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Notice how the code uses the map function to run the partially evaluated preOrder f
on each of the subtrees. Thus, you will obtain a list of elements for each subtree, and
map will return a list of lists. So, you need to flatten it to get just a single list, which is
achieved using concat. Indeed, this pattern of mapping against a list and then flattening
the resulting list is so common that the Prelude includes a function concatMap f, which
is exactly defined as concat . map f.You can check that the function works on the tree
shown in Figure 4-1.

pictureTree :: Tree Int
pictureTree = Node 1 [ Node 2 [ Node 3

[]
, Node 4 []
[]
[]

-- In GHCi
*Chapter4.Containers> preOrder show pictureTree
[lllll)IIZII’Il3ll,ll4ll)ll5ll’ll6ll]

This pre-order traversal can be achieved using the flatten function defined in the
Data.Tree module. However, it does not apply any operation of the nodes values; it just
returns them as they are. The breadth-first traversal is available via the levels function,
where also each level is returned as a list.

*Chapter4.Containers> flatten pictureTree
[1,2,3,4,5,6]

*Chapter4.Containers> levels pictureTree
[[1],[2,6],(3,4,5]]

Like any other container, trees in Haskell support mapping and folding over them.
However, instead of functions in the same module, these operations are available
through the functions fmap in Prelude and foldr in Data.Foldable. In the rest of the
chapter, I will discuss why this is the case.

*Chapter4.Containers> fmap (*2) pictureTree
Node { rootLabel = 2

, SubForest = [ Node { rootLabel

, SubForest

4
[ Node { rootlLabel
, SubForest

1l
(o))

]
—
[—"
—
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, Node { rootLabel = 8
, SubForest = [] }
, Node { rootlLabel = 10
, subForest = [] } ] }

, Node { rootlLabel = 12, subForest = [] } ] }

*Chapter4.Containers> Data.Foldable.foldr (+) 0 pictureTree

21

Graphs

Trees are just an instance of a more general data structure called a graph. A graph is

composed of a set of vertices, joined via a set of edges. In the implementation in Data.

Graph, nodes are always identified by an integer, and edges are directed (an edge from a

to b does not imply an edge from b to a) and without weights.

There are two ways to create a graph.

You use graphFromEdges when you have a list of nodes; each of
them is identified by a key and holds a value, and for each node

you also have its list of neighbors - that is, the list of any other
nodes that receive an edge from the former. In such a case, you call
graphFromEdges, which takes a list of triples, (value, key, [key]),
the latest component being the aforementioned list of neighbors. In
return, you get a graph but also two functions. The first one of type
Vertex -> (node, key, [key]) maps a vertex identifier from the
graph to the corresponding information of the node, whereas the
second one, with type key -> Maybe Vertex, implements the inverse
mapping: from keys to vertex identifiers.

If you already have your graph in a form where you have integer
identifiers, you can use buildG instead. This function takes as
parameters a tuple with the minimal and maximum identifiers (its
bounds) and a list of tuples corresponding to each directed edge in
the graph.
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There is a large set of functions for inspecting the graph itself, like vertices and
edges, returning the sets corresponding to their names. However, the great power of this
module is the complete set of functions for walking through the elements in graphs and
working with them, which are usually quite tricky to implement by hand. For example,
let’s say you have a list of things to do for building a time machine. However, these tasks
have some relative order. To create the door of the time machine, you first need to buy
the aluminum from which it is made. This ordering can be represented using a graph,
where there’s an edge from a to b if a must precede b. The following code generates the
first graph in Figure 4-2:

import Data.Graph

timeMachineGraph :: [(String, String, [String])]
timeMachineGraph =
[("wood","wood",["walls"]), ("plastic","plastic",["walls","wheels"])

, ("aluminum","aluminum", [ "wheels","door"]), ("walls","walls",["done"])
, ("wheels", "wheels",["done"]), ("door","door",["done"]), ("done", "done",[])]

timeMachinePrecedence
:: (Graph, Vertex -> (String,String,[String]), String -> Maybe Vertex)
timeMachinePrecedence = graphFromEdges timeMachineGraph

You can build a plan for constructing the time machine by asking for a fopological
sort of the elements. In this sort scheme, each node n is always before any other node
that receives an edge from n. Notice how in the example the mapping between vertices
and keys has been used to write the results using the string representations, not the
internal integer identifiers.

*Chapter4.Containers> s{

*Chapter4.Containers> let (g,v,_) = timeMachinePrecedence
*Chapter4.Containers> in map (\x -» let (k,_,_) = v x in k) $ topSort g
*Chapter4.Containers> s}

["wood","plastic","walls","aluminum","door","wheels","done"]

One detail that most of the people don’t know about time machines is that you
cannot travel to any point in time with a machine. Instead, each machine has some
points where you can travel, and it may be the case that you can travel to one point in
only one direction. So, when performing time travel, you should be sure you are able
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get to the time where you want to go or that you can go back to the initial point. You can
model these constraints as a graph. From each year you will have edges to each year to
which you can arrive. The following code translates this idea applied to the second graph
in Figure 4-2 to code:

timeMachineTravel :: Graph

timeMachineTravel = buildG (103,2013)
[(1302,1614),(1614,1302),(1302,2013),(2013,1302),(1614,2013)
,(2013,1408), (1408,1993), (1408,917),(1993,917),(917,103),(103,917) ]

wood  plastic aluminum 1302 <—> 1614 103
walls  wheels door > 2013 —> 1408 —> 917
done 1993

Figure 4-2. Graphs about time machines

You may ask whether you can travel from 1302 to 917; the path function will give the
answer. Indeed, if you want to know every vertex that can be reached from that year, you
can use reachable to find them. Let’s look at some examples starting from 1302:

*Chapter4.Containers> path timeMachineTravel 1302 917
True

*Chapter4.Containers> reachable timeMachineTravel 1302
[1302,2013,1408,917,103,1993,1614]

How can you partition the vertices such that you can always travel between all years
in each set? Each component of this partition is called a strongly connected component.
You can get it using scc, which will return a set of trees, each of them specifying one of
those components. But if you run this function directly, you will get some enormous
output. This is because when creating a graph using buildg, the library creates vertices
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for all identifiers in between. For that reason, you are going to filter the trees with only
one node. This filtering will eliminate those vertices that were not in the initial list but
also the connected components with only one element. Here'’s the filtering code:

*Chapter4.Containers> filter (\(Node { subForest =s }) -» s /= []) $ scc
timeMachineTravel
[Node { rootLabel = 103
, SubForest = [
Node { rootLabel
, Node { rootLabel = 2013
, SubForest = [
Node { rootLabel = 1302
, SubForest = [
Node { rootLabel
, SubForest

917, subForest = []}]}

1614
(13131} ]

The previous output is definitely not very manageable. If instead of using buildG

your graph is represented as with graphFromEdges, the output is much better. You
need only to use stronglyConnComp. A special type SCC is used for representing each
component. You need to run flattenSCC to obtain a printable version, as shown in the
following example:

*Chapter4.Containers> map flattenSCC $ stronglyConnComp timeMachineGraph
[["done"],["door"],["walls"],["wood"], [ "wheels"],["plastic"],["aluminum"]]

Ad Hoc Polymorphism: Type Classes

Up to this point in the book you have seen the types of several functions in the Haskell
Platform. However, if you look at some functions in the Data.Map or Data.Set module,
you will find something that hasn’t yet been explained.

*Chapter4.Containers> :t M.insert
M.insert :: Ord k =» k -> a -> M.Map k a -> M.Map k a

Notice how Ord k is separated from the rest of the type by => (not to be confused by
the arrow -> used in the type of functions). The purpose of Ord k is to constrain the set
of possible types that the k type variable can take. This is different from the parametric
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polymorphism of the list functions in the previous chapters. Here you ask the type to

be accompanied by some functions. This kind of polymorphism is known as ad hoc
polymorphism. In this case, the Ord type class is saying that the type must provide
implementations of comparison operators such as < or ==. Thus, it formalizes the notion
of default order that I talked about previously.

Declaring Classes and Instances

A type class (usually abbrevi