
Practical 
Concurrent 
Haskell

With Big Data Applications
—
Stefania Loredana Nita
Marius Mihailescu

www.allitebooks.com

http://www.allitebooks.org


Practical Concurrent 
Haskell

With Big Data Applications

Stefania Loredana Nita

Marius Mihailescu

www.allitebooks.com

http://www.allitebooks.org


Practical Concurrent Haskell: With Big Data Applications

Stefania Loredana Nita			   Marius Mihailescu
Bucharest, Romania			   Bucharest, Romania

ISBN-13 (pbk): 978-1-4842-2780-0		  ISBN-13 (electronic): 978-1-4842-2781-7
DOI 10.1007/978-1-4842-2781-7

Library of Congress Control Number: 2017953873

Copyright © 2017 by Stefania Loredana Nita and Marius Mihailescu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage 
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or 
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material 
contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Alejandro Serrano Mena
Coordinating Editor: Mark Powers
Copy Editor: Kim Burton-Weisman

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail 
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC 
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). 
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions. 

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and 
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales 
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to 
readers on GitHub via the book's product page, located at www.apress.com/9781484227800. For more 
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484227800
http://www.apress.com/source-code
http://www.allitebooks.org


iii

Contents at a Glance

About the Authors��������������������������������������������������������������������������������������������������� xiii

About the Technical Reviewer����������������������������������������������������������������������������������xv

■■Part I: Haskell Foundations. General Introductory Notions������������������ 1

■■Chapter 1: Introduction������������������������������������������������������������������������������������������ 3

■■Chapter 2: Programming with Haskell����������������������������������������������������������������� 13

■■Chapter 3: Parallelism and Concurrency with Haskell����������������������������������������� 47

■■Chapter 4: Strategies Used in the Evaluation Process����������������������������������������� 67

■■Chapter 5: Exceptions������������������������������������������������������������������������������������������� 77

■■Chapter 6: Cancellation���������������������������������������������������������������������������������������� 87

■■Chapter 7: Transactional Memory Case Studies������������������������������������������������� 101

■■Chapter 8: Debugging Techniques Used in Big Data������������������������������������������� 113

■■Part II: Haskell for Big Data and Cloud Computing�������������������������� 133

■■Chapter 9: Haskell in the Cloud�������������������������������������������������������������������������� 135

■■Chapter 10: Haskell in Big Data�������������������������������������������������������������������������� 165

■■Chapter 11: Concurrency Design Patterns���������������������������������������������������������� 177

■■Chapter 12: Large-Scale Design in Haskell�������������������������������������������������������� 195

■■�Chapter 13: Designing a Shared Memory Approach for Hadoop  
Streaming Performance������������������������������������������������������������������������������������� 205

www.allitebooks.com

http://www.allitebooks.org


■ Contents at a Glance

iv

■■�Chapter 14: Interactive Debugger for Development and Portability  
Applications Based on Big Data������������������������������������������������������������������������� 221

■■Chapter 15: Iterative Data Processing on Big Data�������������������������������������������� 231

■■Chapter 16: MapReduce������������������������������������������������������������������������������������� 237

■■Chapter 17: Big Data and Large Clusters������������������������������������������������������������ 247

■■Bibliography������������������������������������������������������������������������������������������������������� 253

Index���������������������������������������������������������������������������������������������������������������������� 261

www.allitebooks.com

http://www.allitebooks.org


v

Contents

About the Authors��������������������������������������������������������������������������������������������������� xiii

About the Technical Reviewer����������������������������������������������������������������������������������xv

■■Part I: Haskell Foundations. General Introductory Notions������������������ 1

■■Chapter 1: Introduction������������������������������������������������������������������������������������������ 3

What Is Haskell?���������������������������������������������������������������������������������������������������������������� 3

A Little Bit of Haskell History��������������������������������������������������������������������������������������������� 5

The Cloud and Haskell������������������������������������������������������������������������������������������������������� 6

Book Structure������������������������������������������������������������������������������������������������������������������ 9

Summary������������������������������������������������������������������������������������������������������������������������� 11

■■Chapter 2: Programming with Haskell����������������������������������������������������������������� 13

Functional vs. Object-Oriented Programming����������������������������������������������������������������� 13

Language Basics������������������������������������������������������������������������������������������������������������� 14

Arithmetic���������������������������������������������������������������������������������������������������������������������������������������������� 15

Pairs, Triples, and Much More���������������������������������������������������������������������������������������������������������������� 17

Lists������������������������������������������������������������������������������������������������������������������������������������������������������� 18

Source Code Files���������������������������������������������������������������������������������������������������������������������������������� 21

Functions����������������������������������������������������������������������������������������������������������������������������������������������� 21

Types������������������������������������������������������������������������������������������������������������������������������� 23

Simple vs. Polymorphic Types��������������������������������������������������������������������������������������������������������������� 24

Type Classes������������������������������������������������������������������������������������������������������������������������������������������ 24

Function Types��������������������������������������������������������������������������������������������������������������������������������������� 25

Data Types��������������������������������������������������������������������������������������������������������������������������������������������� 25

Input/Output (IO) Mechanisms����������������������������������������������������������������������������������������� 26

www.allitebooks.com

http://www.allitebooks.org


■ Contents

vi

Modules��������������������������������������������������������������������������������������������������������������������������� 30

:load/:reload������������������������������������������������������������������������������������������������������������������������������������������ 31

:module�������������������������������������������������������������������������������������������������������������������������������������������������� 31

:import��������������������������������������������������������������������������������������������������������������������������������������������������� 31

Operators Used as Sections and Infix���������������������������������������������������������������������������������������������������� 32

Local Declarations��������������������������������������������������������������������������������������������������������������������������������� 33

Partial Application���������������������������������������������������������������������������������������������������������������������������������� 33

Pattern Matching����������������������������������������������������������������������������������������������������������������������������������� 34

Guards��������������������������������������������������������������������������������������������������������������������������������������������������� 35

Instance Declarations���������������������������������������������������������������������������������������������������������������������������� 36

Other Lists��������������������������������������������������������������������������������������������������������������������������������������������� 37

Arrays���������������������������������������������������������������������������������������������������������������������������������������������������� 38

Finite Maps�������������������������������������������������������������������������������������������������������������������������������������������� 39

Layout Principles and Rules������������������������������������������������������������������������������������������������������������������ 40

The Final Word on Lists������������������������������������������������������������������������������������������������������������������������� 41

Advanced Types��������������������������������������������������������������������������������������������������������������� 42

Monads���������������������������������������������������������������������������������������������������������������������������� 44

Other Advanced Techniques�������������������������������������������������������������������������������������������� 44

map, filter, takeWhile����������������������������������������������������������������������������������������������������������������������������� 46

Lambdas������������������������������������������������������������������������������������������������������������������������������������������������ 46

Summary������������������������������������������������������������������������������������������������������������������������� 46

■■Chapter 3: Parallelism and Concurrency with Haskell����������������������������������������� 47

Annotating the Code for Parallelism�������������������������������������������������������������������������������� 48

Parallelism for Dataflow�������������������������������������������������������������������������������������������������� 49

Concurrent Servers for a Network���������������������������������������������������������������������������������� 51

Threads for Parallel Programming���������������������������������������������������������������������������������� 53

Threads and MVars��������������������������������������������������������������������������������������������������������� 55

Distributed Programming������������������������������������������������������������������������������������������������ 57

Socket Server���������������������������������������������������������������������������������������������������������������������������������������� 57

System.IO for Sockets��������������������������������������������������������������������������������������������������������������������������� 58

www.allitebooks.com

http://www.allitebooks.org


■ Contents

vii

Concurrency������������������������������������������������������������������������������������������������������������������������������������������ 58

Communication Between Threads��������������������������������������������������������������������������������������������������������� 59

The Final Code��������������������������������������������������������������������������������������������������������������������������������������� 60

Running the Server�������������������������������������������������������������������������������������������������������������������������������� 62

Eval Monad for Parallelism���������������������������������������������������������������������������������������������� 62

Summary������������������������������������������������������������������������������������������������������������������������� 65

■■Chapter 4: Strategies Used in the Evaluation Process����������������������������������������� 67

Redexes and Lazy Evaluation������������������������������������������������������������������������������������������ 67

Parallel Strategies in Haskell������������������������������������������������������������������������������������������ 72

Scan Family������������������������������������������������������������������������������������������������������������������������������������������� 73

Skeletons����������������������������������������������������������������������������������������������������������������������������������������������� 75

Summary������������������������������������������������������������������������������������������������������������������������� 76

■■Chapter 5: Exceptions������������������������������������������������������������������������������������������� 77

Errors������������������������������������������������������������������������������������������������������������������������������� 77

Using the error Function������������������������������������������������������������������������������������������������������������������������ 78

Maybe���������������������������������������������������������������������������������������������������������������������������������������������������� 78

Either����������������������������������������������������������������������������������������������������������������������������������������������������� 81

Exceptions����������������������������������������������������������������������������������������������������������������������� 82

Lazy Evaluation and Exceptions������������������������������������������������������������������������������������������������������������ 82

The handle Function������������������������������������������������������������������������������������������������������������������������������ 83

Input/Output Exceptions������������������������������������������������������������������������������������������������������������������������ 84

The throw Function�������������������������������������������������������������������������������������������������������������������������������� 84

Dynamic Exceptions������������������������������������������������������������������������������������������������������������������������������ 84

Summary������������������������������������������������������������������������������������������������������������������������� 86

■■Chapter 6: Cancellation���������������������������������������������������������������������������������������� 87

Asynchronous Exceptions����������������������������������������������������������������������������������������������� 88

Using Asynchronous Exceptions with mask�������������������������������������������������������������������� 90

Extending the bracket Function�������������������������������������������������������������������������������������� 93

Writing Safe Channels Using Asynchronous Exceptions������������������������������������������������� 93

www.allitebooks.com

http://www.allitebooks.org


■ Contents

viii

timeout Variants�������������������������������������������������������������������������������������������������������������� 96

Catching Asynchronous Exceptions�������������������������������������������������������������������������������� 97

mask and forkIO Operations�������������������������������������������������������������������������������������������� 99

Summary����������������������������������������������������������������������������������������������������������������������� 100

■■Chapter 7: Transactional Memory Case Studies������������������������������������������������� 101

Transactions������������������������������������������������������������������������������������������������������������������ 101

Introducing Transactional Memory������������������������������������������������������������������������������������������������������ 101

Software Transactional Memory���������������������������������������������������������������������������������������������������������� 102

Software Transactional Memory in Haskell������������������������������������������������������������������� 102

A Bank Account Example��������������������������������������������������������������������������������������������������������������������� 105

Summary����������������������������������������������������������������������������������������������������������������������� 112

■■Chapter 8: Debugging Techniques Used in Big Data������������������������������������������� 113

Data Science����������������������������������������������������������������������������������������������������������������� 113

Big Data������������������������������������������������������������������������������������������������������������������������� 114

Characteristics������������������������������������������������������������������������������������������������������������������������������������� 114

Tools���������������������������������������������������������������������������������������������������������������������������������������������������� 115

Haskell vs. Data Science����������������������������������������������������������������������������������������������� 120

Debugging Tehniques���������������������������������������������������������������������������������������������������� 122

Stack Trace������������������������������������������������������������������������������������������������������������������������������������������ 126

Printf and Friends�������������������������������������������������������������������������������������������������������������������������������� 127

The Safe Library���������������������������������������������������������������������������������������������������������������������������������� 128

Offline Analysis of Traces��������������������������������������������������������������������������������������������������������������������� 128

Dynamic Breakpoints in GHCi�������������������������������������������������������������������������������������������������������������� 128

Source-Located Errors������������������������������������������������������������������������������������������������������������������������� 129

Other Tricks������������������������������������������������������������������������������������������������������������������������������������������ 130

Summary����������������������������������������������������������������������������������������������������������������������� 131

www.allitebooks.com

http://www.allitebooks.org


■ Contents

ix

■■Part II: Haskell for Big Data and Cloud Computing�������������������������� 133

■■Chapter 9: Haskell in the Cloud�������������������������������������������������������������������������� 135

Processes and Messages���������������������������������������������������������������������������������������������� 135

Processes�������������������������������������������������������������������������������������������������������������������������������������������� 136

Messages to Processes����������������������������������������������������������������������������������������������������������������������� 138

Serialization����������������������������������������������������������������������������������������������������������������������������������������� 139

Starting and Locating Processes��������������������������������������������������������������������������������������������������������� 140

Fault Tolerance������������������������������������������������������������������������������������������������������������������������������������ 141

Process Lifetime���������������������������������������������������������������������������������������������������������������������������������� 142

Receiving and Matching���������������������������������������������������������������������������������������������������������������������� 143

Monad Transformers Stack������������������������������������������������������������������������������������������������������������������ 146

Generic Processes������������������������������������������������������������������������������������������������������������������������������� 148

Client-Server Example������������������������������������������������������������������������������������������������������������������������� 151

Matching Without Blocking������������������������������������������������������������������������������������������� 156

Unexpected Messages������������������������������������������������������������������������������������������������������������������������� 156

Hiding Implementation Details������������������������������������������������������������������������������������������������������������ 157

Messages Within Channels ������������������������������������������������������������������������������������������ 158

Reply Channels������������������������������������������������������������������������������������������������������������������������������������ 159

Input (Control) Channels���������������������������������������������������������������������������������������������������������������������� 160

Summary����������������������������������������������������������������������������������������������������������������������� 164

■■Chapter 10: Haskell in Big Data�������������������������������������������������������������������������� 165

More About Big Data����������������������������������������������������������������������������������������������������� 165

Data Generation����������������������������������������������������������������������������������������������������������������������������������� 165

Data Collection������������������������������������������������������������������������������������������������������������������������������������ 167

Data Storage���������������������������������������������������������������������������������������������������������������������������������������� 167

MapReduce in Haskell��������������������������������������������������������������������������������������������������� 169

Polymorphic Implementation��������������������������������������������������������������������������������������������������������������� 172

Distributed k-means���������������������������������������������������������������������������������������������������������������������������� 173

Summary����������������������������������������������������������������������������������������������������������������������� 175

www.allitebooks.com

http://www.allitebooks.org


■ Contents

x

■■Chapter 11: Concurrency Design Patterns���������������������������������������������������������� 177

Active Object����������������������������������������������������������������������������������������������������������������� 178

Balking Pattern�������������������������������������������������������������������������������������������������������������� 180

Barrier��������������������������������������������������������������������������������������������������������������������������� 181

Disruptor����������������������������������������������������������������������������������������������������������������������� 183

Double-Checked Locking���������������������������������������������������������������������������������������������� 187

Guarded Suspension����������������������������������������������������������������������������������������������������� 188

Monitor Object��������������������������������������������������������������������������������������������������������������� 189

Reactor Pattern������������������������������������������������������������������������������������������������������������� 190

Scheduler Pattern��������������������������������������������������������������������������������������������������������� 190

Thread Pool Pattern������������������������������������������������������������������������������������������������������� 191

Summary����������������������������������������������������������������������������������������������������������������������� 194

■■Chapter 12: Large-Scale Design in Haskell�������������������������������������������������������� 195

The Type System����������������������������������������������������������������������������������������������������������� 195

Purity����������������������������������������������������������������������������������������������������������������������������� 195

Monads for Structuring������������������������������������������������������������������������������������������������� 195

Type Classes and Existential Types������������������������������������������������������������������������������� 195

Concurrency and Parallelism����������������������������������������������������������������������������������������� 196

Use of FFI���������������������������������������������������������������������������������������������������������������������� 196

The Profiler�������������������������������������������������������������������������������������������������������������������� 196

Time Profiling�������������������������������������������������������������������������������������������������������������������������������������� 196

Space Profiling������������������������������������������������������������������������������������������������������������������������������������ 196

QuickCheck������������������������������������������������������������������������������������������������������������������������������������������ 197

Refactor������������������������������������������������������������������������������������������������������������������������� 201

Summary����������������������������������������������������������������������������������������������������������������������� 203

■■�Chapter 13: Designing a Shared Memory Approach for Hadoop Streaming  
Performance������������������������������������������������������������������������������������������������������� 205

Hadoop�������������������������������������������������������������������������������������������������������������������������� 205

More About MapReduce���������������������������������������������������������������������������������������������������������������������� 206



■ Contents

xi

Hadoop Distributed File System���������������������������������������������������������������������������������������������������������� 206

How Hadoop Works������������������������������������������������������������������������������������������������������������������������������ 207

Hadoop Streaming��������������������������������������������������������������������������������������������������������� 208

An Improved Streaming Model�������������������������������������������������������������������������������������� 208

Hadoop Streaming in Haskell���������������������������������������������������������������������������������������� 211

Haskell-Hadoop Library����������������������������������������������������������������������������������������������������������������������� 211

Hadron������������������������������������������������������������������������������������������������������������������������������������������������� 212

Summary����������������������������������������������������������������������������������������������������������������������� 220

■■�Chapter 14: Interactive Debugger for Development and Portability  
Applications Based on Big Data������������������������������������������������������������������������� 221

Approaches to Run-Time Type Reconstruction������������������������������������������������������������� 222

Run-Time Type Inference����������������������������������������������������������������������������������������������� 222

RTTI and New Types������������������������������������������������������������������������������������������������������ 224

Termination and Efficiency�������������������������������������������������������������������������������������������� 224

Practical Concerns�������������������������������������������������������������������������������������������������������� 225

Implementation in Haskell��������������������������������������������������������������������������������������������� 225

Summary����������������������������������������������������������������������������������������������������������������������� 229

■■Chapter 15: Iterative Data Processing on Big Data�������������������������������������������� 231

Programming Model������������������������������������������������������������������������������������������������������ 231

Loop-Aware Task Scheduling���������������������������������������������������������������������������������������� 234

Inter-Iteration Locality��������������������������������������������������������������������������������������������������� 234

Experimental Tests and Implementation����������������������������������������������������������������������� 235

Summary����������������������������������������������������������������������������������������������������������������������� 235

■■Chapter 16: MapReduce������������������������������������������������������������������������������������� 237

Incremental and Iterative Techniques��������������������������������������������������������������������������� 237

Iterative Computation in MapReduce���������������������������������������������������������������������������� 241

Incremental Iterative Processing on MRBGraph������������������������������������������������������������ 245

Summary����������������������������������������������������������������������������������������������������������������������� 245



■ Contents

xii

■■Chapter 17: Big Data and Large Clusters������������������������������������������������������������ 247

Programming Model������������������������������������������������������������������������������������������������������ 247

Master Data Structures������������������������������������������������������������������������������������������������� 247

Fault Tolerance�������������������������������������������������������������������������������������������������������������� 248

Worker Failures����������������������������������������������������������������������������������������������������������������������������������� 248

Master Failures������������������������������������������������������������������������������������������������������������������������������������ 248

Locality�������������������������������������������������������������������������������������������������������������������������� 248

Task Granularity������������������������������������������������������������������������������������������������������������ 248

Backup Tasks���������������������������������������������������������������������������������������������������������������� 249

Partitioning Function����������������������������������������������������������������������������������������������������� 249

Implementation of Data Processing Techniques����������������������������������������������������������� 249

Summary����������������������������������������������������������������������������������������������������������������������� 252

■■Bibliography������������������������������������������������������������������������������������������������������� 253

Index���������������������������������������������������������������������������������������������������������������������� 261



xiii

About the Authors

Stefania Loredana Nita holds two bachelor of science degrees from the University of Bucharest: one in 
mathematics (2013) and one in computer science (2016). She received her master of science degree in 
software engineering in 2016, also from the University of Bucharest. She has worked as a developer for an 
insurance company (Gothaer Insurance) and as a teacher of mathematics and computer science in private 
education. Currently, she is a computer science PhD student at the University of Bucharest. She is also 
a teaching assistant at the same university. She has been a researcher and developer at the Institute for 
Computers in Bucharest, Romania, since 2015. Her domains of interest are cryptography applied in cloud 
computing and big data, parallel computing and distributed systems, software engineering.

Marius Mihailescu received Bachelor’s degrees in science and information technology (2008) and in 
computer engineering (2009) from the University of Southern Denmark. He holds two master of science 
degrees: one in software engineering (2010) from the University of Bucharest and one in information 
security technology (2011) from the Military Technical Academy. His PhD in computer science (2015) is 
from the University of Bucharest. His thesis was on security of biometrics authentication protocols. From 
2005 to 2011, he worked as a software developer and researcher at several well-known companies (Softwin, 
NetBridge Investments, and Declic) in Bucharest, Romania (in the areas of software and web development, 
business analysis, parallel computing, cryptography researching, distributed systems). From 2012 to 2015, 
he was an assistant in the Informatics Department at University of Titu Maiorescu and in the Computer 
Science Department at the University of Bucharest. He has been a lecturer at the University of South-East 
Lumina since 2015.



xv

About the Technical Reviewer

Alejandro Serrano Mena is working towards his PhD thesis in software 
technology at Utrecht University. He is passionate about functional 
programming: he codes Haskell for personal and professional projects, 
and lectures on functional paradigm at academic and industrial 
conferences. He is the author of Beginning Haskell (Apress, 2014). He 
has taken part in the Google Summer of Code program, enhancing his 
Haskell development experience. His current position involves research 
in improving the way in which developers get feedback and interact with 
strong type systems such as Haskell’s.



PART I

Haskell Foundations. General 
Introductory Notions



3© Stefania Loredana Nita and Marius Mihailescu 2017 
S. L. Nita and M. Mihailescu, Practical Concurrent Haskell, DOI 10.1007/978-1-4842-2781-7_1

CHAPTER 1

Introduction

The general goal of this book, Practical Concurrent Haskell: With Big Data Applications, is to give 
professionals, academics, and students comprehensive tips, hands-on examples, and case studies on the 
Haskell programming language, which is used to develop professional software solutions for business 
environments, such as cloud computing and big data. This book is not an introduction to programming in 
general. You should be familiar with your operating system and have a text editor.

To fully understand Haskell and its applications in modern technologies, such as cloud computing and 
big data, it's important to know where Haskell came from.

When we are discussing Haskell for the cloud, we have to look at it from an Erlang-style point of view. 
Concurrent and distributed programming in Haskell could be a challenging task, but once it has been 
accomplished and well integrated with a cloud environment, you will have a strong, reliable, efficient, 
secure, and portable platform for software applications.

Programming for the cloud with Haskell requires a generic network transportation API, importing and 
using libraries for sending static closure to remote nodes, and the power of API for distributed programming.

Generic network transport back-ends are developed for TCP (Transmission Control Protocol - represents 
one of the most used Internet communication protocols) and message of type in-memory, and several other 
implementations that are available for Windows Azure.

What Is Haskell?
Haskell is a lazy, purely functional programming language. The reason that it is called “lazy” is because only 
the expressions to determine the right answer to a specific problem are used. We can observe by specifying 
that the opposite of lazy is strict, which means that the evaluation strategy and mechanisms describe very 
common programming languages, such as C, C++, and Java.

In general, an evaluation strategy is used for argument(s) evaluation for a call or the invocation of a 
function with any kind of values that pass to the function. Let's take, for example, a call by a value using the 
reference that specifies the function that evaluates the argument before it proceeds to the evaluation of the 
function's body and content. Two capabilities are passed to the function: first, the ability to look up the current 
value of the argument, and, second, the ability to modify it through the assignment statement. A second type of 
strategy, called reduction strategy, is specific for lambda calculus; it is similar to an evaluation strategy.

The goal of a reduction strategy is to show how a complex expression is reduced to a simple expression 
using successive reduction steps. In practice, a reduction strategy is a function that maps a lambda 
calculus term with expressions that will be reduced to one particular reducible expression. For decades, 
mathematical logicians have studied the properties of this system. The shallow similarities between the 
description of evaluation strategies has led programming language researchers to speculate that the two 
strategies are identical—a belief that can be observed in popular books from the early 1980s; but as we 
have stated, they are different concepts. Lambda calculus is not the objective of this book, but lambda 
calculus represents a formal system in mathematical logic used to express computation based on function 
abstractions and applications that use variable binding and substitution.
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In practice, most programming languages use the call-by-value and call-by-reference evaluation 
strategy for function strategies (C# and Java). The C++ programming language, as a lower-level language, 
combines different notions of parameter passing. Haskell, a pure functional language, and non-purely 
functional languages such as R, use call when needed.

To illustrate how the evaluation strategy is working, we have two examples: one in C++ and one in 
Haskell.

Here is the first simple example in C++ that simulates the call by reference, provided by wikipedia 
(https://en.wikipedia.org/wiki/Evaluation_strategy).

void modify(int p, int* q, int* r) {
     p = 27;     // passed by value: only the local parameter is modified
    *q = 27;     // passed by value or reference, check call site to determine which
    *r = 27;     // passed by value or reference, check call site to determine which
}

int main() {
    int a = 1;
    int b = 1;
    int x = 1;
    int* c = &x;
    modify(a, &b, c);    // �a is passed by value, b is passed by reference by creating a 

pointer (call by value),
                         // c is a pointer passed by value
                         // b and x are changed
    return 0;
}

The second example uses Haskell. You can see the evaluation strategy by using call by need, which 
represents a memorized version of call by name, where, if the argument that sends to the function is 
evaluated, that value is stored for different subsequent uses.

cond p x y = if p then x else y
loop n = loop n
z = cond True 42 (loop 0)

Haskell is known as a pure functional language because it does not allow side effects; by working with 
different examples, we can observe that Haskell is using a set as a system of monads to isolate all the impure 
computations from the rest of the program. For more information about monads, please see Chapter 2.

Side effects in Haskell are hidden, such that a generic over any type of monad may or may not  
incur side effects at runtime, depending on the monad that is used. In short, “side effects” mean  
that after every IO operation, the status of the system could be changed. Since a function can  
change the state—for example, change the contents of a variable, we can say that the function has  
side effects.

Haskell is a functional language because the evaluation process of a program is equal to the evaluation 
of a function in the purest and natural mathematical way. This is different from standard languages, such  
as C and Java, in which the evaluation process is taking place as a sequence with statements, one after 
other— known as an imperative language/paradigm. In the last few years, impure and functional languages 
like F# or Swift, have been adopted more and more.

https://en.wikipedia.org/wiki/Evaluation_strategy
http://dx.doi.org/10.1007/978-1-4842-2781-7_2
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When creating applications for cloud computing, it is very important to understand the structure of the 
Haskell program and to follow some basic steps, which are described in Chapter 2. Let’s overview these steps.

•	 At the topmost level, Haskell software is a set of modules. The modules allow 
the possibility to control all the code included and to reuse software in large and 
distributed software in the cloud.

•	 The top level of a model is compounded from a collection of declarations. 
Declarations are used to define things such as ordinary values, data types, type 
classes, and some fixed information.

•	 At a lower level are expressions. The way that expressions are defined in a software 
application written in Haskell is very important. Expressions denote values that have 
a static type. Expressions represent the heart of Haskell programming.

•	 At the last level, there is lexical structure, which captures the concrete representation 
of a software in text files.

A Little Bit of Haskell History
To discuss the full history of Haskell would be a laborious task. The following is from The Haskell 98 Report 
(https://www.haskell.org/onlinereport/).

In September of 1987, a meeting was held at the conference on Functional Programming 
Languages and Computer Architecture (FPCA '87) in Portland, Oregon, to discuss an 
unfortunate situation in the functional programming community: there had come into 
being more than a dozen non-strict, purely functional programming languages, all 
similar in expressive power and semantic underpinnings. There was a strong consensus 
at this meeting that more widespread use of this class of functional languages was being 
hampered by the lack of a common language. It was decided that a committee should be 
formed to design such a language, providing faster communication of new ideas, a stable 
foundation for real applications development, and a vehicle through which others would 
be encouraged to use functional languages. This document describes the result of that 
committee's efforts: a purely functional programming language called Haskell, named 
after the logician Haskell B. Curry whose work provides the logical basis for much of ours.

Because of the huge impact that cloud computing and big data has on developing technologies, Haskell 
continues to evolve every day. The focus is on the following.

•	 Syntactic elements: patterns guards, recursive do notation, lexically scoped type 
variables, metaprogramming facilities

•	 Innovations on type systems: multiparameter type classes, functional dependencies, 
existential types, local universal polymorphism, and arbitrary rank-types

•	 Extensions for control: monadic state, exceptions, and concurrency

As we mentioned, this book is not an introduction to Haskell. We remind you that there are two 
standards: 98 and 2010. The main complier, GHC, extends these languages in different ways. You are 
encouraged to read The Haskell 98 Report and the Haskell 2010 Language Report (https://www.haskell.
org/onlinereport/haskell2010/); both are freely available on the Internet.

http://dx.doi.org/10.1007/978-1-4842-2781-7_2
https://www.haskell.org/onlinereport/
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
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The Cloud and Haskell
This section discusses the problem of designing distributed processes and implementation processes for 
cloud environments. Compared with other initial implementations, the aim isn’t to change the API. The API, 
such as the efforts to combine Erlang-style concurrent and distributed programming in Haskell to provide 
generic network transport API, libraries intended to send static closures to remote nodes, or a very rich API 
for distributed programming API, are and represents couple of examples of what we can use in the process 
of developing applications in Haskell for cloud environments. The real aim is to gain more flexibility in the 
network layer and transport layer, such as shared memory, IP and HPC interconnects, and configuration 
(i.e., neighbor discovery startup and tuning network parameters). When designing and implementing 
software applications with Haskell for the cloud, it’s better to consider both schemes, as shown in Figure 1-1 
and Figure 1-2.

Figure 1-1 points outsome dependencies between different modules for the initial startup 
implementation in Cloud Haskell. The arrows indicate the direction of the dependencies.

Figure 1-1 indicates the initial implementation uses a single specific transport, based on TCP/IP 
(Haskell network (IP) Library).

Figure 1-2 shows the various modules that are provided in the new design. We divided a generic system 
into two layers: the Cloud Haskell layer and the Network Transport layer. Each layer has a back-end package 
that can be used with different transports.

Figure 1-1.  Haskell for cloud module dependencies ( figure from http://haskell-distributed.github.io/
wiki/newdesign.html)

http://haskell-distributed.github.io/wiki/newdesign.html
http://haskell-distributed.github.io/wiki/newdesign.html
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According to the official documentation (http://haskell-distributed.github.io/wiki/newdesign.
html), applications designed and developed with Haskell are encouraged to use the Cloud Haskell Layer.

Complete applications will necessarily depend on a specific Cloud Haskell backend and 
would require (hopefully minor) code changes to switch backend. However, libraries of 
reusable distributed algorithms could be written that depend only on the Cloud Haskell 
package.

Figure 1-2.  Designing the modules (figure from http://haskell-distributed.github.io/wiki/
newdesign.html)

http://haskell-distributed.github.io/wiki/newdesign.html
http://haskell-distributed.github.io/wiki/newdesign.html
http://haskell-distributed.github.io/wiki/newdesign.html
http://haskell-distributed.github.io/wiki/newdesign.html
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The following code example, CountingSomeWords, illustrates how necessary imports are used in a 
distributed programming environment and how to make them to work with MapReduce.

module CountingSomeWords
  ( Document
  , countingWordsLocally
  , countingWordsDistributed
  , __remoteTable
  ) where

import Control.Distributed.Process
import Control.Distributed.Process.Closure
import MapReduce
import MonoDistrMapReduce hiding (__remoteTable)
import Prelude hiding (Word)

type DocumentsWithWords  = String
type SomeWord      = String
type HowOften = Int
type countWords = Int

countingSomeWords :: MapReduce FilePath DocumentsWithWords SomeWord HowOften HowOften
countingSomeWords = MapReduce {
    aMap    = const (map (, 1) . words)
  , aReduce = const sum
  }

countingWordsLocally :: Map FilePath DocumentsWithWords -> Map SomeWord HowOften
countingWordsLocally = localMapReduce countWords

countingSomeWords_ :: () -> MapReduce FilePath DocumentsWithWords SomeWord HowOften HowOften
countingSomeWords_ () = countingSomeWords

remotable ['countWords_]

countingWordsDistributed :: �[NodeId] -> Map FilePath DocumentsWithWords -> Process  
(Map SomeWord HowOften)

countingWordsDistributed = distrMapReduce ($(mkClosure 'countWords_) ())

The next example will show how to use one of the most important characteristic of cloud computing 
within Haskell.

module MapReduce
  ( -- * Map-reduce skeleton and implementation
    MapReduce(..)
  , localMapReduce
    -- * Map-reduce algorithmic components
  , reducePerKey
  , groupByKey
    -- * Re-exports from Data.Map
  , Map
  ) where
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import Data.Typeable (Typeable)
import Data.Map (Map)
import qualified Data.Map as Map (mapWithKey, fromListWith, toList)
import Control.Arrow (second)

-- | MapReduce skeleton
data MapReduce k1 v1 k2 v2 v3 = MapReduce {
    mrMap    :: k1 -> v1 -> [(k2, v2)]
  , mrReduce :: k2 -> [v2] -> v3
  } deriving (Typeable)

-- | Local (non-distributed) implementation of the map-reduce algorithm
--
-- This can be regarded as the specification of map-reduce; see
-- /Google's MapReduce Programming Model---Revisited/ by Ralf Laemmel
-- (<http://userpages.uni-koblenz.de/~laemmel/MapReduce/>).
localMapReduce :: forall k1 k2 v1 v2 v3. Ord k2 =>
                  MapReduce k1 v1 k2 v2 v3
               -> Map k1 v1
               -> Map k2 v3
localMapReduce mr = reducePerKey mr . groupByKey . mapPerKey mr

reducePerKey :: MapReduce k1 v1 k2 v2 v3 -> Map k2 [v2] -> Map k2 v3
reducePerKey mr = Map.mapWithKey (mrReduce mr)

groupByKey :: Ord k2 => [(k2, v2)] -> Map k2 [v2]
groupByKey = Map.fromListWith (++) . map (second return)

mapPerKey :: MapReduce k1 v1 k2 v2 v3 -> Map k1 v1 -> [(k2, v2)]
mapPerKey mr = concatMap (uncurry (mrMap mr)) . Map.toList

Book Structure
This book has two parts.

•	 Part I is covers eight chapters on the basics of Haskell, including what you need know 
to develop and move applications in cloud computing and big data environments.

•	 Chapter 1 outlines the most important goals of this book and it guides you 
through the entire structure of the book.

•	 Chapter 2 presents medium-advanced examples of source code that help you 
understand the difference between creating a software application for local use 
and a software application used for a cloud-computing environment.

•	 Chapter 3 brings all the elements for developing software applications using 
parallelism concurrent techniques. Threads, distributed programming, and 
EVAL monad for parallelism represent the most important topics.

•	 Chapter 4 goes through the different strategies used in the evaluation process 
during code execution. The strategies described in this section provide the most 
important steps needed to integrate within applications.

http://dx.doi.org/10.1007/978-1-4842-2781-7_1
http://dx.doi.org/10.1007/978-1-4842-2781-7_2
http://dx.doi.org/10.1007/978-1-4842-2781-7_3
http://dx.doi.org/10.1007/978-1-4842-2781-7_4
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•	 Chapter 5 focuses on the importance of using exceptions thrown by different 
situations of using a monad in order to integrate I/O operations within a purely 
functional context.

•	 Chapter 6 covers the importance of cancellation conditions as a major 
component for developing an application using parallelism.

•	 Chapter 7 discusses some powerful tools for resolving important issues that 
could appear in the process of developing distributed applications. These 
problems include race conditions due to forgotten locks, deadlocks, corruption, 
and lost wakeups.

•	 Chapter 8 covers debugging, which plays an important role in the process of 
developing and updating software applications. Sometimes the debugging 
process is problematic because Haskell does not have a good debugger for 
advanced software applications. Some modern techniques that could be used 
in debugging process are discussed.

•	 Part 2 is focused on developing advanced software applications using big data and 
cloud computing environments.

•	 Chapter 9 covers the most important methods for processes and messages, 
and techniques used for matching messages. The section will present a 
domain-specific language for developing programs for a distributed computing 
environment.

•	 Chapter 10 covers the most comprehensive techniques and methods for 
calling and using big data in Haskell by providing case studies and examples of 
different tasks.

•	 Chapter 11 goes through concurrency design patterns with the goal to 
understand how to use them for applications based on big data.

•	 Chapter 12 presents the steps necessary for designing large-scale programs 
in such a manner that there are no issues when ported in a big data or cloud 
environment.

•	 Chapter 13 looks at Hadoop algorithms and finds the most suitable 
environment for running different data sets of varying sizes. The experiments in 
this chapter are executed on a multicore shared memory machine.

•	 Chapter 14 covers the necessary tools and methods for obtaining an interactive 
debugger.

•	 Chapter 15 presents MapReduce for cloud computing and big data, together 
with all the elements that can be used for developing professional applications 
based on data sets and for creating an efficient portability environment.

•	 Chapter 16 offers original ideas for serving applications on data mining, 
web ranking, analysis of different graphs, and so on. Elements for improving 
efficiency by creating and developing caching mechanisms are provided.

•	 Chapter 17 presents case studies that demonstrate the running process on 
large clusters. Parallelization of programs are provided and executed on large 
clusters.

http://dx.doi.org/10.1007/978-1-4842-2781-7_5
http://dx.doi.org/10.1007/978-1-4842-2781-7_6
http://dx.doi.org/10.1007/978-1-4842-2781-7_7
http://dx.doi.org/10.1007/978-1-4842-2781-7_8
http://dx.doi.org/10.1007/978-1-4842-2781-7_9
http://dx.doi.org/10.1007/978-1-4842-2781-7_10
http://dx.doi.org/10.1007/978-1-4842-2781-7_11
http://dx.doi.org/10.1007/978-1-4842-2781-7_12
http://dx.doi.org/10.1007/978-1-4842-2781-7_13
http://dx.doi.org/10.1007/978-1-4842-2781-7_14
http://dx.doi.org/10.1007/978-1-4842-2781-7_15
http://dx.doi.org/10.1007/978-1-4842-2781-7_16
http://dx.doi.org/10.1007/978-1-4842-2781-7_17
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Summary
This chapter introduced the main ideas behind cloud for Haskell, such as

•	 the main concepts behind developing Haskell applications for cloud computing 
environments.

•	 dependencies and how they are used to gain the greatest performance.

•	 designing modules and setting the new layers necessary for every application 
developed with Haskell for the cloud.

It also covered the book’s structure and provided an overview.
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CHAPTER 2

Programming with Haskell

Haskell represents a purely functional programming language that provides many advantages and the latest 
innovations in the design of programming languages. The most recent standard of Haskell is Haskell 2010; 
but in May 2016, the Haskell community started working on the next version, Haskell 2020.

The Haskell platform is available for download at https://www.haskell.org/platform/, where there 
are other versions of installers and an installation guide. After downloading of the appropriate version, just 
follow the steps. In this book, we will use version 8.0.1.

This chapter focuses on some of the basic elements that you need to understand before continuing 
to the next chapters. The information is intended for the users and programmers who already have some 
experience in Haskell programming.

Functional vs. Object-Oriented Programming
Before starting programming with Haskell, it is important to understand the principles of functional 
programming (FP), and the similarities and the differences between it and object-oriented programming 
(OOP). We assume that you have (at least) a basic knowledge of object-oriented programming.

The purpose of OOP and FP is to create programs that are easy to understand, flexible, and have no 
bugs; but each paradigm has its own approach.

Broadly, the similarities between the two programming paradigms are in the levels of expressive power 
and the capabilities of encapsulating programs into more compact pieces that could be (re)combined. The 
main difference is the connection between data and the way operations are applied on that data.

The most important principle of OOP is that the data and the operations applied on that data are closely 
linked: an object contains its own data and the specific implementation of the operations on the owned data. 
Thereby, the main model to be abstracted is the data itself. OOP allows you to compose new objects, but also 
to extend the existing classes through the addition of new methods.

Conversely, the main principle of FP is that functions represent the primary model that should be 
abstracted, not the data. The implementations of the functions are also hidden (as in OOP), and the 
abstractions of language are given by the functions and the way they could be combined or expressed. As its 
name suggests, writing new functions represents the main activity of functional programming.

https://www.haskell.org/platform/
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Language Basics
This section discusses Haskell programming basics, but first you need to understand the components of a 
Haskell program.

•	 The most important level of a Haskell program is a set of modules that allow you to 
control namespaces and reuse software in big programs.

•	 At the top of a module, there are the declarations that define different elements  
(for example, values, or data types).

•	 The next level is represented by expressions, which is static and designates a value. 
These are the most important elements of Haskell programming.

•	 The last level is represented by the lexical structure, which catches the concrete 
frame of Haskell programs in the text files.

A value is evaluated by an expression, which has a static type. The type system permits defining new 
data types and more types of polymorphism (parametric or ad hoc).

In Haskell, there are several categories of names.

•	 Values. The names for variables and constructors

•	 Elements associated with the type system. The names for type constructors, type 
variables, and type classes

•	 Modules. The names for modules

You need to pay attention when naming variables and type variables. These names represent identifiers, 
which should start with a lowercase letter or an underscore. Other names should begin with an uppercase 
letter.

As in every programming language, comments are allowed. To comment on a single line, use -- before 
the comment. A multiline comment begins with {- and ends with -}. The following are examples.

-- This is a single line comment.
{- This is
a multi-line commnet. -}

It is recommended that you already have the WinGHCi window open. The following examples can be 
implemented and tested in WinGHCi or by opening the command prompt or terminal, depending on your 
operating system (Windows or Linux). Figure 2-1 and Figure 2-2 show examples of what the windows look 
like when GHCi is launched. When you open the GHCi (or WinGHCi, for Windows users), you can see two 
lines of text, as shown in Figure 2-1. The first line gives the module version of GHCi. In the second line, there 
is Prelude>. What is it about? Prelude represents the standard; it is imported by default in all modules. 
You can stop importing the Prelude module by enabling the NoImplicitPrelude extension, or by writing a 
specific import statement for it. The structure and the internal content of the Prelude module can be found 
at https://www.haskell.org/onlinereport/standard-prelude.html and https://hackage.haskell.
org/package/base-4.9.1.0/docs/Prelude.html.

https://www.haskell.org/onlinereport/standard-prelude.html
https://hackage.haskell.org/package/base-4.9.1.0/docs/Prelude.html
https://hackage.haskell.org/package/base-4.9.1.0/docs/Prelude.html
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Arithmetic
Now that you know a few things about Haskell language programming, let’s do some arithmetic.  
The following are examples of using the arithmetic operators +, -, *, and /.

Prelude> 5 + 3
8
Prelude> 175 - 23
152
Prelude> 55 * 256
14080
Prelude> 351 / 3
117.0
Prelude> 5 + 3
8
Prelude> 175 - 23
152
Prelude> 55 * 256
14080
Prelude> 351 / 3
117.0

Figure 2-1.  WinGHCi window

Figure 2-2.  Launching GHCi from command prompt
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You can combine these operators by using parenthesis. If you want to operate with a negative number, 
you should use the parenthesis—for example 5 * (-3); otherwise, you will get an error message. Also, there 
are mathematical functions such sqrt, abs, min, max, and succ.

Prelude> 133 * 18 + 5
2399
Prelude> 133 * (18 + 5)
3059
Prelude> 374 / (20 - 31)
-34.0
Prelude> 3 + sqrt(9)
6.0
Prelude> abs(25-100)
75

Boolean algebra is permitted. True and False represent the two Boolean values. As in other 
programming languages, && represent the Boolean and, || represents the Boolean or, and the keyword not 
represents negation. Also, you can test equality by using the == (equal) or /= (not equal) operators.

Prelude> True && False
False
Prelude> False || True
True
Prelude> not True
False
Prelude> (True || False) && (not True)
False
Prelude> 100 == 100
True
Prelude> 100 /= 100
False

■■ Note   The True and False values begin with an uppercase letter.

When you use arithmetic operators or Boolean operators, the left side and the right side of the operator 
should have the same type; otherwise, you will get an error message.

Prelude> 2 + 2
4
Prelude> "xy" == "xy"
True
Prelude> 2 + "xyz"
<interactive>:26:1: error:
    • No instance for (Num [Char]) arising from a use of '+'
    • In the expression: 2 + "xyz"
      In an equation for ‘it’: it = 2 + "xyz"
Prelude> True && 5
<interactive>:29:9: error:
    • No instance for (Num Bool) arising from the literal '5'
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    • In the second argument of '(&&)', namely '5'
      In the expression: True && 5
      In an equation for 'it': it = True && 5
Prelude> 3 == "xy"
<interactive>:30:1: error:
    • No instance for (Num [Char]) arising from the literal '3'
    • In the first argument of '(==)', namely '3'
      In the expression: 3 == "xy"
      In an equation for 'it': it = 3 == "xy"

In the preceding example, the + operator also expects a number on the right side, and the && operator 
expects a Boolean value on the right side. The equality can be verified only between two items of the same 
type. The example tests the equality between two strings, which is successful, and between a number and 
a string, which are different types, so there is an error message. Still, there are some exceptions when you 
operate with items of different types. This is when implicit conversion occurs. For example, addition using 
an integer value and a floating-point value is allowed because the integer can be converted to a floating-
point number. The following is an example.

Prelude> 3 + 2.5
5.5

Pairs, Triples, and Much More
If you want to set a specific value or expression to a variable, use the keyword let. You do not need to declare 
the variable before setting a value. In Haskell, once you set a value to a variable, you cannot change that 
value in the same program. It is similar to a problem in mathematics—a variable cannot change its value in 
the same problem. The variables in Haskell are immutable. The following advanced example shows that if 
you set two values to a variable, you will get an error.

Prelude> let x = 4
Prelude> x
4
Prelude> let y = "abc"
Prelude> y
"abc"

Tuples are useful when you know the number of values to be combined. Tuples are marked by 
parenthesis. Its elements are separated by commas; they are not homogenous and they can contain different 
types.

Prelude> let pair = (2, "orange")
Prelude> pair
(2,"orange")

www.allitebooks.com

http://www.allitebooks.org
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As you can see in the preceding example, our tuple is a pair with two elements of different types: 
a number and a string. Tuples are inflexible, because every tuple with its own size and types actually 
represents a type itself. Thus, general functions for tuples cannot be written. For example, if you want to 
add an element to a tuple, you should write a function for a tuple with two elements, a function for a tuple 
with three elements, and so on. You can make comparisons between tuples only if their components can be 
compared.

Prelude> let fstTuple = ("apple", 2, True)
Prelude> let sndTuple = ("orange", 3, True)
Prelude> fstTuple == sndTuple
False
Prelude> let trdTuple = ("green", False)
Prelude> fstTuple == trdTuple
<interactive>:53:13: error:
    • Couldn't match expected type ‘([Char], Integer, Bool)’
                  with actual type ‘([Char], Bool)’
    • In the second argument of ‘(==)’, namely ‘trdTuple’
      In the expression: fstTuple == trdTuple
      In an equation for ‘it’: it = fstTuple == trdTuple

There are two important functions, which are applied on a particular type of tuples, namely the pair: 
fst and snd. Intuitively, fst returns the first element of the pair and snd returns the second element of the 
pair. In Haskell, you call a function by writing its name, followed by parameters divided by spaces.

Prelude> fst trdTuple
"green"
Prelude> snd trdTuple
False
Prelude> fst (5, True)
5

Lists
Lists are similar to tuples. The main difference between them is that the lists are homogenous data 
structures; thus, all elements are of the same type. For example, you can have a list of integers, or a list of 
characters, but you cannot mix them in the same list. Lists are marked by brackets, and the elements are 
separated by commas. The strings are a list of characters, so the "Haskell" string is actually the list ['H', 
'a', 's', 'k', 'e', 'l', 'l']. You can apply different functions on lists. Thus, because strings are lists 
of characters, you can apply many functions on them.

Prelude> [1, 2, 3] ++ [4, 5]
[1,2,3,4,5]
Prelude> "functional" ++ " programming"
"functional programming"
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The ++ represents the concatenation of the left-side list with the right-side list (with elements of the 
same type). When two lists are concatenated, the left-side list is traversed entirely, and the elements of 
the right-side list are added at the end of the first list. This could take a while if the left-side list has many 
elements. Intuitively, adding an element to the beginning of a list is much faster. To add an element at the 
beginning of the list, use the cons operator ( : ).

Prelude> 1:[2,3,4]
[1,2,3,4]
Prelude> 'A':" flower"
"A flower"

■■ Note   In the second example, the character is between single quotes, and the string is between double 
quotes.

If you want to extract an element on a particular index, use !!. Pay attention to the chosen index: if it is 
greater than the number of elements, or if it is negative, you will get an error message. The first index in a list 
is 0. A list can contain other lists, with the following rule: the lists can have different sizes, but they cannot 
contain different types.

Prelude> [2,4,6,8,10] !! 4
10
Prelude> [2,4,6,8,10] !! 6
*** Exception: Prelude.!!: index too large
Prelude> [2,4,6,8,10] !! -5
<interactive>:64:1: error:
    Precedence parsing error
        cannot mix ‘!!’ [infixl 9] and prefix `-' [infixl 6] in the same infix expression
Prelude> [[1,2], [3], [4,5,6]]
[[1,2],[3],[4,5,6]]

Lists can be compared if they contain elements that can be compared. The first element of the left-side 
list is compared with the first element of the right-side list. If they are equal, then the second elements are 
compared, and so on.

Prelude> [1,2,3] < [5,6,7]
True
Prelude> [1,2] < [-1,6,7]
False
Prelude> [1,2,3] < [-1,6,7]
False
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There are many useful functions in lists, such as length, head, tail, init, last, maximum, minimum, sum, 
product, reverse, take, drop, elem, null, and much more. Figure 2-3 is an intuitive representation of the 
results of the functions head, tail, init, and last.

Prelude> length [1,2,3,4,5]
5
Prelude> head [1,2,3,4,5]
1
Prelude> tail [1,2,3,4,5]
[2,3,4,5]
Prelude> init [1,2,3,4,5]
[1,2,3,4]
Prelude> last [1,2,3,4,5]
5
Prelude> minimum [1,2,3,4,5]
1
Prelude> maximum [1,2,3,4,5]
5
Prelude> reverse [1,2,3,4,5]
[5,4,3,2,1]
Prelude> sum [1,2,3,4,5]
15
Prelude> drop 3 [1,2,3,4,5]
[4,5]
Prelude> take 2 [1,2,3,4,5]
[1,2]
Prelude> elem 6 [1,2,3,4,5]
False

■■ Note   The empty list is []. It is widely used in almost all recursive functions that work with lists. Note that 
[] and [[]] are distinct things, because the first is an empty list and the second is a non-empty list with one 
empty list as an element.

init last

head tail

Figure 2-3.  A visual representation of the results of functions head, tail, init and last
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Source Code Files
In practice, source code is not written in GHCi; instead, source code files are used. Haskell source code files 
have the extension .hs. Let’s suppose that you have a file named Main.hs with the following source code.

main = print (fibo 5)

fibo 0 = 1
fibo 1 = 1
fibo n = fibo (n-1) + fibo (n-2)

This source code represents a function that computes the Fibonacci number on a specific index. For the 
moment, take the function as it is; we will explain it in the next subsection. Let’s recall how to compute the 
Fibonacci numbers: F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2), where n > 1.

Now, let’s return to the source code files. The file could be saved anywhere, but if the work directory is 
different from the current directory, you need to change it to that directory in GHCi, using the :cd command, 
as follows.

Prelude> :cd C:\Users

To load a file into GHCi, use the :load command.

Prelude> :load Main

After loading the module, you can observe that the prompt was changed into *Main> to indicate that 
the current context for expression is the Main module. Now, you can write expressions that include functions 
defined in Main.hs.

*Main> fibo 17
2584

When loading a module, GHC discovers the file name, which contains, for example, a module M, 
by looking for the file M.hs or M.lhs. Thus, usually, the name of a module should be the same as the file; 
otherwise, GHCi will not find it. Still, there is an exception: when you use the :load command for loading 
a file, or when it is specified invoking ghci, you can provide the file name instead of a module name. The 
specified file will be loaded if it exists, and it could comprise any number of modules. If you are trying to 
use multiple modules in a single file, you will get errors and consider it a bug. This is good, if there are more 
modules with the same M name, in the same directory; you cannot call them all M.hs.

If you forget the path where you saved a source code file, you can find it, as follows.

ghci -idir1:...:dirn

If you make changes in the current source code file, you need to recompile it. The command for 
recompilation is :reload, followed by the name of the file.

Functions
You have used functions since the beginning of this section; for example, all arithmetic operators are 
functions with two parameters or the functions applied to lists. Now, it’s time to define our functions. Let’s 
take the function from the previous subsection. To run a function, you need to write the function’s name, 
followed by the arguments, which are separated by spaces. Parentheses for arguments are not needed.
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You haven’t used the return keyword. This is because Haskell does not have a return keyword; a 
function represents a single expression, not a succession of statements. The outcome of the function is the 
worth of the expression. Still, Haskell has a function called return, but it has a different meaning than in 
other programming languages.

Let's write a simple function that computes a power.

Prelude> pow a b = a ^ b
Prelude> pow 2 10
1024

A function has a type, which could be discovered using the :type command.

Prelude> :type pow
pow :: (Num a, Integral b) => a -> b -> a

As secondary effect, a dependence on the global state and the comportment of a function is introduced. 
For example, let’s think about a function that works with a global parameter, without changing its value and 
returning it. When a piece of code changes the value of the variable, it affects the function in a particular 
way, which has a secondary effect; although our function does not change the value of the global variable, 
which is treated as a constant. If a variable is mentioned out of scope, the value of the variable is obtained 
when the function is defined.

The secondary effects are usually invisible outcomes for functions. In Haskell, the functions do not have 
secondary effects, because they are depending only on explicit arguments. These functions are called pure.  
A function with side effects is called impure.

Prelude> :type writeFile
writeFile :: FilePath -> String -> IO ()

The Haskell type system does not allow combining pure and impure code.

if-else
As in other programming languages, Haskell also has the if-else statement. Its syntax is very simple. Let’s 
write a function that returns the maximum between two values.

Prelude> maximum a b = if a > b then a else b
maximum :: Ord t => t -> t -> t
Prelude> maximum 5 6
6

An important aspect of Haskell is indentation. You need to pay attention to how you organize your code. 
For example, if you write the maximum function in an .hs file, then it should look like the following.

maximum a b = if a > b
                          then a else b

Now, let’s return to our function. The word maximum represents the name of the function, and a and 
b are the parameters. The = after the parameters suggests that the implementation of the function is next. 
Then, you compare the two parameters and return the greatest of them.
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The if-else statement has three elements:

•	 A predicate, which represents the Bool expression which follows the if keyword

•	 The then keyword, which is followed by an expression, and evaluated if the 
expression that follows the if statement is True

•	 The else keyword, which is followed by another expression, and evaluated if the 
expression that follows the if statement is False

The two expressions that follow then and else are called branches. They should be the same type; 
otherwise, it will be cancelled by the compiler/interpreter. The following example is wrong because 10 and 
abc have different types.

If expression then 10
              Else "abc"

In Haskell, the if-else statement without an else statement is not allowed, because it is a 
programming language based on expressions.

RECURSION

The recursion is very important because many functions are recursive, and it represents a manner in 
which a function is called by itself. Let’s remember a previous example: the function that computes 
Fibonacci numbers. For example, if you call

fibo(4) = fibo(3) + fibo(2) = (fibo(2) + fibo(1)) + (fibo(1) + fibo(0)) = ((fibo(1) + 
fibo(0)) + 1) + (1 + 0) = ((1 + 0) + 1) + 1 = (1 + 1) + 1 = 2 + 1 = 3

As you can see, fibo(4) calls fibo(3) and fibo(2), and so on. The elements of the function that are 
not defined recursively are called edge condition. They are extremely important because they represent 
the conditions needed to escape from recursion.

The recursion represents one of the base elements of Haskell, because it shows us what something is, 
rather than how it is computed. Also, it replaces for and while loops.

Types
Variables represent names for expressions. When a variable is linked to an expression, the expression cannot 
be changed into the current scope, but you are allowed to use the variable, instead of the linked expression. 
In other word, a variable identifies a location of memory, which could have different values at different 
times.
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Simple vs. Polymorphic Types
A simple value is a value that has only one type. This is discussed more about types in the “Data Types” 
section.

A polymorphic value is that value which could have multiple types. It is a very useful and used feature of 
Haskell. There two main types of polymorphism: parametric and ad hoc.

Parametric Polymorphism
Parametric polymorphism occurs if the variable has more than one type, such that the its value could have 
any type resulted from replacing the variable with explicit types. This means that there are no constraints 
regarding type variables. The simplest and the easiest example is the identity function.

Identity :: a -> a

The a can be replaced with any type, whether it is a simple type, such as Int, Double, Char, or a list, for 
example. So, for a, there is no constraint regarding the type.

The value of a parametrically polymorphic type has no knowledge of type variables without constraints, 
so it should act in the same way regardless of its type. This fact is known as parametricity, and it is very 
useful, even if it is limiting.

Ad hoc Polymorphism
Ad hoc polymorphism occurs when a variable chooses its type according to its behavior at a particular 
moment, because it is an implementation for every type. A simple example is the + function. The compiler 
should know if it is used to add integers, or two floating-point numbers.

In Haskell, ambiguity is avoided through the system of type classes or class instances. For example, 
to compare two objects, you need to specify how the == operator behaves. In Haskell, the overloading is 
extended to values; for example, a lowerLimit variable could have different values according to its use. If it 
refers to an Int, its value cloud is –2147483648, and if it refers to Char, its value could be '\NUL'.

Type Classes
In Haskell, you identify the following aspects of type: strong, static, and automatically inferred.

The strong type system of Haskell assures the fact that a program does not contain errors obtained from 
expressions without a meaning for compiler.

When a program is compiled, the compiler knows the value of every type before the code is executed. 
This is assured by the static type system. Also, when you write expressions of different types, you will get an 
error message. By combining the strong type and the static type, the type errors will not occur at runtime.

Prelude> 2 + "5"
<interactive>:28:1: error:
    • No instance for (Num [Char]) arising from a use of '+'
    • In the expression: 2 + "5"
      In an equation for 'it': it = 2 + "5"
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At compilation, each expression’s type is known. If you write an addition symbol between a number and 
a Boolean value, you will get an error message. In Haskell, each thing has a type. A benefit of Haskell is that 
it has the type inference, through which the type is implicitly inferred. So, if you write a number, you do not 
need to specify that it is a number.

Strong and static types bring security, while inference makes Haskell concise, so you have a safe and an 
expressive programming language.

Function Types
In Haskell, the functions have types. When you write functions, you can give them an explicit declaration, a 
fact that is helpful when you deal with complex functions. If you want to declare a function, you proceed as 
follows.

getMax :: [Int] -> Int

The meaning is intuitive. In the preceding example, the getMax function returns the maximum value 
from a list of integers. The :: symbol is followed by the domain of the definition of the function, and the -> 
shows the type of the result.

If you have a function with more parameters, you proceed as follows.

addition :: Int -> Int -> Int

Here, you have the addition function, which computes the sum of the two integers. The first two Ints 
show the type of the parameters, and they are divided by the -> symbol, and the last Int shows the result 
type.

It is recommended that functions be written with the explicit declaration; but if you are not sure about 
that, you can just write the function, and then check its type using the :t or :type commands.

Data Types
The following are some basic data types.

•	 Int: Integer numbers, which are signed and have fixed width. The range of values is 
not actually fixed; it depends on the system (32/64 bits), but Haskell assures that an 
Int is larger than 28 bits.

•	 Integer: Integer numbers with unbounded dimensions. The Integer type consumes 
more space and is less performant than Int, but it brings more dependably correct 
answers. In practice, it is used less than Int.

•	 Double: Floating-point numbers. Usually, the double value is represented in 64 bits, 
using the natural floating-point representation of the system.

•	 Char: Unicode character.

•	 Bool: A value from Boolean algebra. There are only two possible values: True and 
False.

Different from other programming languages, Haskell does not explicitly have the data type string. 
Strings are actually lists of characters.
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If you want to check the type of value or an expression, you simply use the :t command, followed by the 
value or expression, as follows.

Prelude> :t 5.3
5.3 :: Fractional t => t
Prelude> :t "abcd"
"abcd" :: [Char]
Prelude> :t (5 < 2)
(5 < 2) :: Bool

Input/Output (IO) Mechanisms
GHCi accomplishes more things than evaluating straightforward expressions. When an expression has the 
type IO a, for some a, GHCi is executing it like an IO computation. Basically, a value which has type (IO a) 
represents an action that when it is executed, its result has type a.

Prelude> length "Haskell"
7
Prelude> 100/2
50.0

When an expression’s type is general, it is instantiated to IO a.

Prelude> return True
True

The result of an expression’s evaluation is printed if

•	 It represents an instance of Show

•	 Its type is not ()

In order to understand the following example, it is necessary to understand do notation. By using do, the 
notation (instruction) represents an alternative to the monad syntax.

The following example implies IO and you refer to the computation’s values as actions. It’s important to 
mention that do is applied with success with any monad.

The >> operator works in the same way as in do notation. Let’s consider the following example, which is 
formed from a chain of different actions.

putStr "How" >>
putStr " " >>
putStr "is with programming in Haskell?" >>
putStr "\n"

The following example can be rewritten using do notation.

do putStr "How"
        putStr " "
        putStr "is with programming in Haskell?"
        putStr "\n"
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As you can see, the sequence of instructions almost matches in any imperative language. In Haskell, 
you can connect any actions if all of them are in the same monad. In the context of the IO monad, the actions 
that you are implementing could include writing to a file, opening a network connection, and so forth.

The following is a step-by-step translation in Haskell code.

do action1
        action 2
        action 3

becomes

action1 >>
do action2
        action3

and so on, until the do block is empty.
Besides expressions, GHCi takes also statements, but they must be in the IO monad. Thus, a name could 

be bounded to values or a function for further use in different expressions or statements. The syntax of a 
statement is the same as the syntax of do expressions.

Prelude> x <- return "abc"
Prelude> print x
"abc"

The preceding statement, x<-return "abc" could be “translated,” so execute return “abc” and link the 
outcome to variable x. Later, the variable could be used in other statements; for example, for printing.

When -fprint-bind-result is enabled, the outcome of a statement is typed if

•	 the statement does not represent a binding, or it is a binding to a single variable  
(v <- e).

•	 the type of the variable does not represent polymorphism, or (), but it represents a 
Show instance.

The binding could also be done using the let statement.

Prelude> let y = 10
Prelude> y
10

A characteristic of the monadic bind is that it is strict; namely, the expression e is evaluated. When 
using let, the expression is not instantly evaluated.

Prelude> let z = error "This is an error message."
Prelude> print z
*** Exception: This is an error message.
CallStack (from HasCallStack):
  error, called at <interactive>:18:9 in interactive:Ghci8

Another important thing is that you can write functions directly at the prompt.

Prelude> f x a b = a*x + b
Prelude> f 3 5 2
17
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Nevertheless, this will be a little awkward when you are dealing with complex functions, because the 
implementation of the function should be on a single line.

Prelude> f a | a == 0 = 0 | a < 0 = - a | a > 0 = a
Prelude> f 100
100
Prelude> f (-324)
324
Prelude> f 0
0

But Haskell comes with a solution. The implementation could be divided into multiple lines, using the 
:{ and :} commands.

Prelude> :{
Prelude| f a
Prelude| | a == 0 = 0
Prelude| | a < 0 = -a
Prelude| | a > 0 = a
Prelude| :}

If an exception occurs while evaluating or executing statements, they are caught and their message is 
typed, as you have seen in previous examples.

The temporary binds can be used the next time you load or reload a file, because they will be missed 
after (re)loading, but can be used after the :module: command (discussed in the next section) when it goes 
to another location. If you need to know all of the binds, you can use the following command.

Prelude> :show bindings
x :: [Char] = "abc"
y :: Num t => t = _
it :: Num t => t = _
z :: a = _

If +t is enabled, you can find every variable’s type.

Prelude> :set +t
Prelude> let (x:xs) = [1..]
x :: Integer
xs :: [Integer]

There is another possibility that GHCi identifies when a statement is not terminated, and permits 
writing on multiple lines. It is enabled by the :set +m command. The last line is empty to mark the end of 
multiple line statement.

Prelude> :set +m
Prelude> let a = 100
Prelude|
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If you want to bind values to more variables in the same let command, you should proceed as follows:

Prelude> :set +m
Prelude> let a = 154887
Prelude|     b = 547
Prelude|

For multiple line statements, you can use do. The individual statements are separated by semicolons. 
The right brace marks the end of the multiline statement.

Prelude> do {
Prelude| print b
Prelude| ;print b^ 2
Prelude| }
547
299209
Prelude>

The multiple-line statements could be interrupted as follows.

Prelude> do
Prelude| print a
Prelude| ^C
Prelude>

Haskell has a special variable, called it, which receives the value of an expression typed in GHCi (of 
course, the expression should not be a binding statement).

Prelude> 2*3
6
Prelude> it+5
11

You need to remember that an expression must have a type, instantiated from Show; otherwise, you will 
get an error message.

Prelude> head

<interactive>:14:1: error:
    • No instance for (Show ([a0] -> a0)) arising from a use of 'print'
        (maybe you haven't applied a function to enough arguments?)
    • In a stmt of an interactive GHCi command: print it

Note that the it variable changes its value every time a new expression evaluation occurs, and the 
previous value is missed.
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Haskell permits the use of command-line arguments through the getArgs function, which is passed to 
the main using the :main command.

Prelude> main = System.Environment.getArgs >>= print
Prelude> :main abc xyz
["abc","xyz"]

Prelude> :main abc "xyz pq"
["abc","xyz pq"]
Prelude> :main ["abc", " xyz pq "]
["abc","xyz pq"]

Any function could be called using -main-is or the :run commands.

Prelude> abc = putStrLn "abc" >> System.Environment.getArgs >>= print
Prelude> xyc = putStrLn "xyz" >> System.Environment.getArgs >>= print
Prelude> :set -main-is abc
Prelude> :main abc "xyz pq"
abc
["abc","xyz pq"]
Prelude> :run xyz ["abc","xyz pq"]
xyz
["abc","xyz pq"]

Modules
This section introduces the notations and information necessary for understanding the rest of the book.

It’s important to acknowledge the fact that a module in Haskell serve in two directions with a specific 
purpose: controlling namespaces and creating abstract data types. This aspect is very important in 
understanding complex applications that are developed in a cloud and big data environment.

If you are looking at a module from a technical perspective, a module is a very big declaration that starts 
with module keyword. Consider the following example, which presents a module called Tree.

module Tree (Tree(Leaf, Branch), fringe) where

data Tree a                       = Leaf a | Branch (Tree a) (Tree a)

fringe :: Tree a -> [a]
fringe (Leaf x)    = [x]
fringe (Branch left right) = fringe left ++ fringe right

The following example is presented from official documentation available at https://www.haskell.
org/tutorial/modules.html, which has the best explanation. It can be used as a prototype for different 
tasks that can be implemented into a distributed environment. An important operation in the preceding 
example is the ++ infix operator, which concatenate the two lists, left and right. In order for the Tree module 
to be imported into another module, follow this code snippet.

module Main (main) where
import Tree (Tree((Leaf, Branch), fringe)

main = print(fringe(Branch(Leaf 1)(Leaf 2)))

https://downloads.haskell.org/~ghc/8.0.1-rc4/docs/html/users_guide/ghci.html#ghci-cmd-:run
https://www.haskell.org/tutorial/modules.html
https://www.haskell.org/tutorial/modules.html


Chapter 2 ■ Programming with Haskell

31

The various items that are imported into and exported outside of the module are called entities. Observe 
the explicit import list in the declaration of the import. If you omit this, it would cause all the entities that are 
exported from Tree to be imported.

:load/:reload
As you already know, the default module of Haskell is Prelude. You can change it by importing another 
module using the :load command. When it is appended, it automatically imports into the scope 
corresponding to the last loaded module. To be certain that GHCi imports the interpreted version of a 
module, you can add an asterisk when you load it, such as :load *modulename.

Prelude> :load Main.hs
Compiling Main             ( Main.hs, interpreted )
*Main>

Now, you can use expressions that involve elements from the loaded module. The star that 
accompanies the name of the module shows that the module represents the full top-level scope of the 
expressions from the prompt. In the absence of the asterisk, only the module’s exports are observable.

:module
The :module command also permits scope manipulation. If the module keyword is accompanied by +, then 
the modules are added; if it is accompanied by -, then the modules are removed. If there is no + or -, the 
actual scope is substituted by the modules after the :module command.

The use of module brings more benefits than using the import command. The main facilities are

•	 the full top-level of a scope is opened through the * operator.

•	 the unneeded modules can be removed.

:import
The :import command is used to add modules.

Prelude> import Data.Char
Prelude> toUpper 'a'
'A'

To see all imported modules, use the :show imports command.

Prelude> import System.IO
Prelude> :show imports
import Prelude -- implicit
import Data.Char
import System.IO

As you can see, Prelude is imported implicitly, but it could be replaced with the explicit Prelude import.
When there are more modules in the scope, it name conflicts could rise. In this case, Haskell will alert you.
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As you have seen, there are two ways to get a module in the scope: by using :module/import or by using 
:load/:reload. Still, there are significant differences between the two approaches in the collection of the 
modules.

•	 The collection of modules that are loaded. changed using :load/:reload and viewed 
using :show modules.

•	 The collection of modules in the scope at the prompt. changed using :module/import, 
and instantaneous after :load/:reload, and viewed using :show imports.

A module can be added into the scope (through :module/import) if

•	 the module is loaded.

•	 the module belongs to a package known by GHCi.

In any other cases, it will be an error message.

Operators Used as Sections and Infix
In Haskell, there are two types of notations used for function calling: prefix notation and infix notation. 
Usually, prefix notation is used: the name of the function, followed by the arguments. The infix notation 
is where the name of the function stands between its arguments. Note that the infix notation can be used 
for functions with two parameters. If the function has more than two parameters, then the infix notation 
becomes inconvenient and difficult to follow.

The best-known infix functions are operators. As you well know, the arithmetic operators take two 
arguments, so they are by default infix. However, if you begin the line with an arithmetic operator in 
parenthesis, followed by the two arguments, then it becomes a prefix function.

Prelude> (+) 4 5
9
Prelude> (*) 10 10
100

Anyway, there is a way to use infix notation for an ordinary function. This is done by putting the name of 
the function between the ` symbol, as follows.

Prelude> let concatPrint x y = putStrLn $ (++) x y
 Prelude> concatPrint "a" "b"
 ab
 Prelude> "a" `concatPrint` "b"
 ab

There is a particular language structure for an incomplete application on infix operators. Broadly, when 
you use an operator, it behaves like a function that receives one of the arguments, and the other is put in the 
place of the misplaced side of the operator.

•	 (4^): the left side is the same to (^) 4, or more formal \a -> 4 ^ a

•	 (^4): the right side is the same to flip (^) 4, or more formal \a -> a ^ 4
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Sectioning a function is very useful because it allows you to write a function, without giving a particular 
name to that function; for example:

•	 (1+): the function which increments by one a value

•	 (2*): the function which doubles a value

•	 ('\t':): the “tab” function

The minus operator cannot make a right section, since it would be deciphered as unary invalidation in 
the Haskell language. The Prelude capacity “subtract” is accommodated this reason.

Local Declarations
In Haskell, local declarations can be used. This is done by using the let keyword, which binds a particular 
value to a variable; for example:

Prelude> let a = -5 + 1 in a + 10
6

This is equivalent to

{
 int a = -5 + 1;
 ... a + 10 ... ;
 }

In Haskell, the variable receives a value that cannot be changed.

Partial Application
When a function is called with some arguments missing, you actually obtain another function. This can be 
seen as something like “underloading,” but the specific term is partial application. For example, let’s think 
about the power function. It takes two arguments: namely, the base and the exponent. If you have a program 
in which only the irrational number e is used as a base, you could define a new function that takes one 
argument— namely, the exponent, as follows.

Prelude> powE x = (exp 1) ^ x
powE :: (Integral b, Floating a) => b -> a
Prelude> powE 5
148.41315910257657

This is very useful when you have complex functions with many parameters, but most of the time, you 
do not use all parameters.

You need to pay attention to an important aspect: the functions are not partial; you only partially apply 
a function.
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Pattern Matching
In pattern matching, you need to specify patterns in which the data could fit, then check which patterns fit, 
and then manipulate the data as the pattern indicates. A function could have many implementations for 
various patterns, an approach that leads to organized, clean, and easy-to-read code. Pattern matching could 
be used with any data type. The following is an example of a function that tests if a number is zero (it was 
written in a file called Main.hs).

main = testInteger 5

testInteger 0 = print "zero"
testInteger x = print "not zero"

And in GHCi, after changing the work directory.

Prelude> :load Main
[1 of 1] Compiling Main             ( Main.hs, interpreted )
Ok, modules loaded: Main.
Prelude> testInteger 0
"zero"
Prelude> testInteger 6
"not zero"

When a function contains patterns, they are checked from top to bottom. When a match is found, the 
corresponding implementation is chosen. The “-5” argument fits in the second pattern, so a corresponding 
message is printed. You could use the if-else statement, but let’s think about how a function would look if 
it contains a branched if-else. Let’s say that you write a function that prints the name of a color according 
to a number as an argument, as shown in the following. If you did not use patterns, the branched if-else 
would become difficult to follow.

color 1 = print "green"
color 2 = print "blue"
color 3 = print "red"
color 4 = print "orange"
color x = print "any color"

Here are some arguments.

Prelude> color 1
"green"
Prelude> color 5
"any color"
Prelude> color (-100)
"any color"

You need to pay attention to the order of patterns. If you put the last pattern on the first place, then, 
always would be typed “any color”, because any number would fit in x.
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If the function does not contain a general pattern, and you call it with an argument that does not fit in 
any pattern, then you will get an error message (after removing the last line of the function).

Prelude> color (-100)
*** Exception: Main.hs:(3,1)-(6,24): Non-exhaustive patterns in function color

You can use patterns in function that have tuples as parameters; for example, you have two points in the 
xOy axis system and you want to compute the distance between them. First, let’s remember the formula for 
the Euclidean distance: given two points, A(x

1
,  y

1
),  B(x

2
,  y

2
), the distance AB is given by the formula 

AB x x y y= −( ) + −( )1 2

2

1 2

2 . You would do it like this:

distance x y = sqrt((fst x - fst y)^2 + (snd x - snd y)^2)

Or, if involving patterns, it would be

distance2 (x1,y1) (x2, y2) = sqrt((x1 - x2)^2 + (y1 - y2)^2)

In Haskell, there are already defined functions that return the first or the second component of a pair. 
But what if you would work with triples? You can write your own functions.

firstElement :: (a, b, c) -> a
firstElement (x, _, _) = x
secondElement :: (a, b, c) -> b
secondElement (_, y, _) = y
thirdElement :: (a, b, c) -> c
thirdElement (_, _, z) = z

The underscore ( _ ) means that you can put anything on that index.

Guards
You use guards when you want to test if a property for one or more values is true or false. Of course, you 
could use the if statement, which is similar to guards, but guards are easy to read and they fit well with 
patterns. The following is an example in which the name of the weekday is typed according to a number as 
parameter.

dayOfWeek day
 | day == 1 = print "Monday"
 | day == 2 = print "Tuesday"
 | day == 3 = print "Wednesday"
 | day == 4 = print "Thurday"
 | day == 5 = print "Friday"
 | day == 6 = print "Saturday"
 | day == 7 = print "Sunday"
 | otherwise = print "The week has only 7 days. Please, choose an integer between [1, 7]."

The guard is represented by the pipes symbol (|). In essence, it is a Boolean expression. The expressions 
are evaluated one at a time, in order of appearance. If the result is True, then the corresponding instructions 
are used; else, the next expression follows, until it finds the expression whose result is True. For example, if 
you call the preceding function with 3, first, it is evaluated as day == 1 (which is False); then, day == 2 (also 
False); then, day == 3 (which is True), so the corresponding instruction is used.
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The guards are useful when there is a long-branched if-else statement. Imagine how the code would 
look if you used if-else. Usually, the end guard is otherwise, which covers all the possibilities that are not 
found explicitly in the previous guard. For example, what if you gave the number 8 as a parameter to our 
function? Of course, an eighth day of the week does not exist, so the result is "The week has only 7 days. 
Please choose an integer between [1, 7]." What about 100 as an argument? Or 0? Or –5? Of course, 
they are included in the last guard. If all guards are evaluated as False (this is the case when you do not 
include otherwise), then you will get an error message (after removing the last line).

Prelude> dayOfWeek 10
*** Exception: Main.hs:(7,1)-(14,28): Non-exhaustive patterns in function dayOfWeek

The guard could be written on the same line, but it would be difficult to follow. Also, a function that uses 
a guard could have as many parameters as you want.

Instance Declarations
A declaration of an instance has the following form.

instance (asserion_1, ..., assertion_n) => class type_1 ... type_m where ...

An instance declaration has two parts.

•	 context: the left side of =>

•	 head: the right side of =>

When GHCi resolves a constraint, each instance declaration tries to be matched with the constraint 
through initialization of the head of instance declaration. Let’s say you have the following statements:

instance ctx1 => C Int a     where ...
instance ctx2 => C a   Bool  where ...

Implicitly, GHCi knows that exactly one instance should fit the constraint on which it tries to resolve.

Rules for the Head
There are rules for the head of an instance.

•	 First rule. -XTypeSynonymInstances, which defines an instance of a type class for the 
type synonyms

•	 Second rule. -XFlexibleInstances, which permits to define an instance of a type 
class with arbitrary encapsulated types from the head of the instance

The rules become less restrictive when used.
With -XTypeSynonymInstances, the heads of the instance could use type synonyms. The following code 

is correct.

Type Pt x = (x, x)
Instance C (Pt x) where ...

With -XFlexibleInstances, the head could mention arbitrary imbricated types. This flag implies the 
previous flag.

https://downloads.haskell.org/~ghc/8.0.1/docs/html/users_guide/glasgow_exts.html#ghc-flag--XTypeSynonymInstances
https://downloads.haskell.org/~ghc/8.0.1/docs/html/users_guide/glasgow_exts.html#ghc-flag--XFlexibleInstances
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Rules for the Context
The -XFlexibleContexts moderates a rule according to the context of an instance declaration, which 
should have the C a format (a is a type variable that occurs in the head). More specifically, this flag permits 
constraints over a class that has the format (C t1 … tn) in the context of an instance declaration, but it does 
not interfere with the restrictions over equality.

The declaration of an instance should respect the rules for instance termination.

Rules for Instance Termination
-XUndecidableInstances defines instances that could result in type-checker non-termination.

These are the rules.

•	 For every class restriction from the context

a.	 A type variable should not have more appearances in the restriction than in 
the head.

b.	 The constructors and the variable for the restrictions are fewer.

c.	 The constraints do not mention type functions.

•	 For any functional dependency of the class, each type variable from the right should 
appear in the left of the substitution mapping.

These conditions assure that the termination of the resolution occurs. In every level of reduction, the 
problem shrinks with at least one constructor.

Other Lists
In the previous section, you used only finite lists, but in Haskell, lists can be infinite because of the lazy 
evaluation property. The following list represents an infinite list of integer numbers, which starts with 10.

[10..]

■■ Note   The evaluation could be interrupted with CTRL+C command.

If you want a list of the first 50 integers, you would not write all of them; you would do like this:

Prelude> [1..50]

This approach is called ranges, which enumerates the elements of a list (it has an enumeration rule!) in 
a compact manner.

Prelude> ['a'..'e']
"abcde"
Prelude> [5,10..50]
5,10,15,20,15,30,35,40,45,50

www.allitebooks.com

https://downloads.haskell.org/~ghc/8.0.1/docs/html/users_guide/glasgow_exts.html#ghc-flag--XFlexibleContexts
http://www.allitebooks.org
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Still, the enumeration rule should be intuitive. You cannot write [1,3,9,27..50] to get all powers of 3 less 
than 50. In order for elements to be in decreasing order, it is not enough to write [50..1]; you should write 
[50,49..1].

Haskell allows ranges in floating-point numbers, but it is imprecise; often the results are not the 
expected ones.

In the next example, you write two ways to retrieve the first five multiples of 2.

Prelude> [2,4..5*2]
2,4,6,8,10
Prelude> take 5 [2,4..]

Three functions create infinite lists: cycle, repeat, and replicate.

Prelude> take 4 (cycle [1, 2])
[1,2,1,2]
Prelude> take 2 (cycle "Haskell")
"HaskellHaskell"
Prelude> take 5 (repeat 2)
2,2,2,2,2
Prelude> replicate 5 2
2,2,2,2,2

You know that in mathematics, the sets could be defined using predicates. A simple example is 
A x x N x= ∈ <{ }3 7| , . For this set, 3x is called the output; x represents the variable; N represents the positive 

numbers set; and x < 7 represents the predicate. A simple way to get this set is to write take 7 [0,3..], but 
you could also proceed as follows.

Prelude> [3*x | x <- [0..6]]
0,3,6,9,12,15,18

This representation of lists is known as list comprehension.
Now, let’s use more predicates. If you want numbers that are multiples of 5, in the range 100 to 150, you 

would proceed as follows.

Prelude> [x| x <- [100, 150], x `mod` 5 == 0]
100,105,110,115,120,125,130,135,140,145,150

Arrays
Haskell permits the use of an array, which has only one constructor, Array. As any data structure, they are 
immutable, so they cannot change the value. Still, it exists to “modify” an array, but this means that it created 
a new array with extra features, without altering the original array.

Immutable Arrays
The immutable arrays belong to the Data.Array.IArray module. The operations applied on them are the 
same as those applied on Array.
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Mutable Arrays
Mutable arrays belong to the Data.Array.IO module. They permit operations through elements that are 
updated in-place. The create, update, and query functions for arrays that pertain to the IO monad.

import Data.Array.IO
main = do myArray <- newArray (1,5) 20 :: IO (IOArray Int Int)
           a <- readArray myArray 1
           writeArray myArray 1 25
           b <- readArray myArray 1
           print (a,b)

The preceding code builds an array with five elements, all of them having the value 20. Next, it reads 
the element from the first index and changes it, and then reads it again. In the last step, it prints the pair that 
contains the initial value and the new value.

Another mutable array belongs to the Data.Array.ST module, which permits the use of mutable array 
from the ST monad.

import Control.Monad.ST
import Data.Array.ST

 oldNewValue = do myArray <- newArray (1,5) 20 :: ST s (STArray s Int Int)
                a <- readArray myArray 1
                writeArray myArray 1 25
                b <- readArray myArray 1
                return (a,b)

 main = print $ runST oldNewValue

The preceding code essentially does the same thing as the previous example, but it uses a different 
approach.

In addition to these two types of arrays, there are other types that belong to the following modules: 
Data.Array.Diff, Data.Array.Unboxed, and Data.Array.Storable.

Finite Maps
Finite maps (or simple, maps) represent lookup tables for functional programming. In imperative 
programming, hash tables are equivalent to maps in Haskell. There are a couple of forms (key and value). 
When you work with maps, you need to import the Data.Map module.

import Data.Map
daysOfWeek = fromList
        [ ("M",  "Monday")
        , ("T",  "Tuesday")
        , ("W",  "Wednesday")
        , ("Th",  "Thursday")
        , ("F",  "Friday")
        , ("S",  "Saturday")
        , ("Su",  "Sunday") ]
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A map could be converted to a list by using toList.

 Prelude> toList daysOfWeek
    [("F","Friday"),("M","Monday"),("S","Saturday")
    ,("Su","Sunday"),("Th","Thursday"),("T","Tuesday")
    ,("Wed","Wednesday")]

As you can see, the order is not kept.
If you need only the keys, then use the keys command; if you need only the elements, then use the 

elems command.

Prelude> keys daysOfWeek
    ["F","M","S","Su","Th","T","W"]
*Main> elems daysOfWeek
    ["Friday","Monday","Saturday","Sunday","Thursday","Tuesday","Wednesday"]

You could also search a value in the map by using the lookup function, as follows.

 Prelude> Data.Map.lookup "W" daysOfWeek
    "Wednesday"

You use the long version of the lookup function because there also exists a lookup function in Prelude, 
and you need to disambiguate so that GHCi knows what function to use.

Layout Principles and Rules
This section briefly talks about xmonad and wxHaskell.

xmonad
The following appears on the Haskell community’s official site (http://xmonad.org/about.html):

xmonad is a tiling window manager for the X Window system, implemented, configured, 
and dynamically extensible in Haskell. This demonstration presents the case that software 
dominated by side effects can be developed with the precision and efficiency you expect 
from Haskell by utilizing purely functional data structures, an expressive type system, 
extended static checking and property-based testing. In addition, you describe the use of 
Haskell as an application configuration and extension language.

As mentioned, xmonad is a dynamic window manager for Windows. Written in Haskell, it automatically 
presents windows and permits any number of workspaces and floating windows. Additionally, it supports 
many screens, each with its own workspace. Most elements can be customized.

xmonad can be installed in one of the following packages.

•	 xmonad: the standard package

•	 xmonda-contrib: uses different algorithms, settings, and so forth, from third parties

•	 xmonad-git or xmonad-contrib-git: the package for developers (includes additional 
dependencies)

http://xmonad.org/about.html
https://en.wikipedia.org/wiki/Type_system#Type system
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xmonad is very powerful. It has an application in cloud computing, too, because it can act as a window 
manager for big data engineering.

wxHaskell
wxHaskell is a compact and native graphical user interface (GUI) for Haskell (written in C++), on which 
developers create a GUI with a functional language. There are many applications developed using 
wxHaskell, including Dazzle, hsReversi, GeBoP, Proxima, Functional Forms, HCPN, and HpView.

The following is samples code that creates a frame and a menu in the frame.

fr <- frame [text := "Main Window", clientSize := sz 600 600]
pnl <- panel f []

mainMenu <- menuPane [text := "File"]
openItem <- menuItem timerMenu [text :="Open..."]
saveItem <- menuQuit timerMenu [help := “Save"]

The Final Word on Lists
Pattern matching is a very important aspect of lists.

Prelude> let xs = [(-1, 0), (54,-23), (2,1), (15,-8), (5,12), (0,1)]
xs :: (Num t1, Num t) => [(t, t1)]
Prelude> [x+y | (x,y) <- xs]
[-1,31,3,7,17,1]

If pattern matching breaks down, then it moves to the next component.
The list itself could be utilized in pattern matching. Something could be matched with the empty list [], 

or whatever pattern that includes []. The [1,2,3] is actually a representation for 1:2:3:[], because you first 
add 3 to the empty list, and then 2, and then 1, obtaining [1,2,3], so you have used the former pattern. This 
represents the pattern x:xs, which adds the x element as the head of the xs list. The x:xs pattern is widely 
utilized, especially in the recursive functions. Note that when you use the : symbob in patterns, it is applied 
to lists that have at least one element.

If you want to link, for example, the first two components to variables and the remaining elements 
to another variable, you can use x:y:ys. The matching will be applied only to lists with at least two 
components.

Let’s implement our own function that retrieves the head of a list.

headFunction :: [x] -> x
headFunction [] = error "The list in empty."
headFunction (a:_) = aChecking if it works:

And some arguments.

Prelude> headFunction [1,2,3,4]
1
Prelude> headFunction ['a', 'b']
'a'
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Let’s look at our example. It uses the function error, which has a parameter and a string. When this error 
arises, the program crashes and the message is the string given as a parameter.

Now, let’s display the first two elements of a list.

elements :: (Show a) => [a] -> String
elements [] = "The list has no elements."
elements (a:[]) = "The only element of the list is " ++ show a
elements (a:b:[]) = "The only two elements of the list are " ++ show a ++ " and " ++ show b
elements (a:b:_) = "The list has more than 2 elements, but the first are " ++ show a ++ " 
and " ++ show b

The function covers all cases: an empty list and a list with one or more elements. Remember that a:[] is 
equivalent to [a], and a:b:[] is equivalent to [a,b], but you cannot write a:b:_ with squared braces.

Now let’s write our length function, using patterns and recursion.

lengthFunction [] = 0
lengthFunction (_:xs) = 1 + lengthFunction xs

Let’s test the function.

Prelude> lengthFunction []
0
Prelude> lengthFunction [1,2,3]
3
Prelude> lengthFunction "abc"
3

A special pattern is as pattern. It represents a way to split an element according to a pattern, and links 
it to names, but it is retained as a reference to the whole element. This is done using an @ in front of the 
pattern; for example, ys@(y:z:zs). This matches the same element that y:z:zs matches, but the entire  
list ys could be obtained.

Advanced Types
Until now, you have used many data types, such as Bool, Int, and Char, but Haskell allows us to define our 
data types. This is done by using the data keyword.

Prelude> data BoolValue = False | True
data BoolValue = False | True

Let’s say that you want to represent a triangle by giving the values of the sides: (15, 5.3, 12.7), but this 
triple could represent anything. But what if you would have a square? This is defined by the length of the 
side. So, you need a more general type, such as Figure.

Data Figure = Triangle Float Float Float | Square Float
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The value constructor of the Triangle has three elements of type Float. Also, a Figure could be Square, 
defined only by a variable whose type is Float.

Prelude> data Figure = Triangle Float Float Float | Square Float
data Figure = Triangle Float Float Float | Square Float
Prelude> :t Triangle
Triangle :: Float -> Float -> Float -> Figure
Prelude> :t Square
Square :: Float -> Figure

Next, let’s compute the perimeters of the two figures.

perimeter :: Figure -> Float
perimeter (Triangle a b c) = a + b + c
perimeter (Square a) = 4 * a

Let’s observe that the type of the perimeter is Figure. You have chosen Figure because it is a type; 
unlike Triangle or Square. Now, let’s compute the perimeter for a triangle, and then for a square.

Prelude> perimeter $ Triangle 5 6 7
18.0
Prelude> perimeter $ Square 12.5
50.0

You tell Haskell which figure should have computed the perimeter by using the $ symbol. If you want 
that our data type to be derived from the Show type class, you proceed like this:

data Figure = Triangle Float Float Float | Square Float deriving (Show)

Now, you can write this in GHCi.

Prelude> Square 5
Square 5.0

You can use a previously defined data type to define a new data type. Let’s say you have a data type 
called Data, which takes three Ints for the year, the day, and the month. Now, you want to define a new data 
type called User, which takes two elements: an Int for the id and Data for the birthdate.

Prelude> data Data = Int Int Int deriving (Show)
data Data = Int Int Int
Prelude> data Person = Int Data
data Person = Int Data

Our defined data types could be exported into modules, including the functions.

module Figures
( Figure(..)
, perimeter
) where
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Through Figure(..), you have put the value constructors for Figure in the module, so when this 
module is imported, it could use anything with Triangle and Square.

Monads
It is a little difficult to define a monad. In a few words, a monad provides a manner through which operations 
are chained together. In principle, all you do is write execution levels, and then link them together using a 
bind function (called >>=). The calls could be written to the bind operator, or it could be used as a syntax 
such that the compiler is forced to call that function. The purpose of a bind function is to pass the result of 
the current step to the next step. This is called the identity monad. But the other monads must do something 
in addition to be considered good. In fact, every monad implements the bind function in its own manner, 
and you could write a function that does a particular thing between execution steps. The following are some 
examples of monads.

•	 Failure monad. If every step is marked as succeed/failed, you can bind to execute 
the following step just as if the last one succeed; thus, if the result of a step failed, the 
entire sequence is automatically cancelled without any additional test.

•	 Error or exception monad. Allow us to implement our own exceptions.

•	 List monad. Every step has multiple results, and the bind function is applied over 
them, passing every result to the next step. This writes loops in every place that has 
multiple results.

Other useful monads are the Maybe monad, the Failure monad, the Reader/Writer monad, and the 
State monad.

A monad has three important components:

•	 The type constructor m

•	 The function return

•	 The bind operator >=

The following shows how to use the Maybe monad.

return :: x -> Maybe x
    return a  = Just a

    (>>=)  :: Maybe x -> (x -> Maybe y) -> Maybe y
    m >>= g = case m of
                 Nothing -> Nothing
                 Just a  -> g a

Maybe represents the monad. The value is brought by the return through Just. If a value exists for m, then 
it applies g on it, and then the value is returned to the Maybe monad.

The monads fit very well with cloud computing.

Other Advanced Techniques
This section discusses higher order functions. In Haskell, a function could have another function as a 
parameter, or it could have another function as a result. These kinds of functions are called higher order 
functions. They are powerful when it comes to solving problems or issues with programs.
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Every function in Haskell takes one parameter. How come? Let’s say that you want to obtain the 
minimum value between 2 and 3, by applying the min function. This function takes 2 as a parameter, and 
returns a value; then, the obtained value is compared (also applying min function) with 3. The following are 
the same.

Prelude> min 2 3
2
Prelude> (min 2) 3
2

If a function is called with too few parameters, then it becomes partially applied.
Now let’s write a function that has another function as a parameter. You write a function that returns the 

minimum value between 10 and another value.

Prelude> minTen x = min 10 x
Prelude> minTen 5
5

The infix functions could be partly applied when using sectioning. You do that using parenthesis.

Prelude> multiplyTwo = (*2)
Prelude> multiplyTwo 3
6

If you call multiplyTwo, then it is the same as 3*2, or (*2) 3.
In the following statement, you present a way in which a function is taken as a parameter and applied 

twice.

fTwo f x = f (f x)

The preceding example uses parenthesis because they are essential. First, f is applied on x, and then f 
is again applied, but the result is f x.

The following calls the fTwo function.

Prelude> fTwo (*2) 3
12

In the previous example, you see that functions of higher order are very useful in complex applications. 
Next, let’s write a function that adjoins to lists and then applies a function on all elements.

joinAndFunction _ [] _ = []
joinAndFunction  _ _ [] = []
joinAndFunction  f (a:as) (b:bs) = f a b : joinAndFunction  f as bs
Prelude> joinAndFunction (*) [1,2,3] [1,2,3]
[1, 4, 9]

In this manner, a single higher order function is used in many ways, bringing many benefits.
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map, filter, takeWhile
The map function has a function and a list as parameters. It applies the function over each element of the list.

map _ [] = []
map f (x:xs) = f x : map f xs
Prelude> map snd [('a', 'b'), ('c', 'd')]
"bd"

Another useful function is filter. It has functions as parameters, which return a Boolean value (i.e., a 
predicate), and a list. It returns the elements that are satisfying the conditions of the predicate.

filter _ [] = []
filter p (x:xs)
| p x       = x : filter p xs
| otherwise = filter p xs

The map and filter functions could be replaced by list comprehension.
The takeWhile function has a predicate and a list as parameters. It returns the elements while the 

predicate stays True. It stops at the first element where the predicate becomes False.

Prelude> sum (takeWhile (<5000) [n^3 | n <- [1..], even (n^3)])

The preceding code computes the sum of even cubes smaller than 5000.

Lambdas
In essence, lambdas are unnamed functions, created to be used once. In general, they are used in functions 
of higher order, and they stay between parentheses. Also, you can use pattern matching inside of them. The 
distinction is that one parameter cannot have more than one pattern.

The following is an example.

Prelude> addNo a b c = a + b + c
Prelude> addNo 3 4 5
12

Summary
This chapter covered the main foundations for the user and programmer to understand the remainder of the 
book. It included the following topics.

•	 A quick overview of the main advantages and disadvantages of object-oriented 
programming and functional programming

•	 The basic elements used in Haskell and functional programming

•	 Arithmetic operations

•	 An introduction to pairs, triples, lists, monads, and more

•	 Advanced techniques in higher order functions
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CHAPTER 3

Parallelism and Concurrency  
with Haskell

Haskell offers important implementations that support developing concurrent and parallel programming. 
To move forward, you need to understand a little bit of the terminology.

•	 Parallelism consists of running a Haskell program on multiple processors. Its goal 
is to improve performance. The most normal way of doing this is to stay invisible 
without bringing any semantic changes.

•	 Concurrency consists implementing a Haskell program using multiple I/O threads. 
The primary goal of using concurrency is not based on improving performance, but 
in creating simple and reliable source code. Regarding the semantics of the program, 
this is absolutely and necessarily non-deterministic.

Concurrent Haskell does not require a new set of language constructs for the programmer to use. 
Everything is about concurrency; it appears as a simple library, Control.Concurrent. The following are the 
functions within this library.

•	 Forking threads

•	 Killing threads

•	 Sleeping

•	 Synchronized mutable variables, known as MVars

•	 Bound threads

GHC Haskell, with the help of software transactional memory (STM), coordinates the activities 
regarding Concurrent Haskell threads. The STM library must be used for concurrent functionalities.  
The following are the main functionalities supported by this library.

•	 Atomic blocks

•	 Transactional variables

•	 Operations for composing transactions: retry and orElse

•	 Data invariants
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GHC Haskell includes all the support necessary to run programs in parallel on a symmetric,  
shared-memory multiprocessor (SMP). In default mode, GHC Haskell runs the programs on one processor. 
For running the programs on multiple processors and in parallel, you have to link your program with the 
-threaded, and run it with the TS -N option. The run-time mode plans the running threads within Haskell 
among the available OS threads; it runs as many as possible in parallel as specified with the -N RTS option.

GHC Haskell supports parallelism on a multiprocessor that has the process of shared-memory  
as a destination. Glasgow Parallel Haskell (GPH) supports running Parallel Haskell programs using clusters 
of machines and single multiprocessors. GPH is developed independently and is distributed as an extension 
to GHC.

In this chapter we provide some examples (Implement a chat server, Simple servers and Haskell for 
multi-core) from Haskell documentation, at https://wiki.haskell.org.

Annotating the Code for Parallelism
From the beginning, you have to understand that ordinary single-threaded programs written in Haskell do 
not have the benefit of enabling SMP parallelism alone. The parallelisms have to be exposed to the compiler. 
This is done by using forking threads with Concurrent Haskell. There is a simple method for creating 
parallelism from pure code by using the par combinator, which is related to seq. Both of these are available 
and may be used from the parallel library in the following way.

infixr 0 `par`
infixr 1 `pseq`

par  :: variable_A -> variable_B -> variable_B
pseq :: variable_A -> variable_B -> variable_B

The expression (x 'par' y) sparks the evaluation of x (to weak head normal form) and returns y. 
Sparks are queues used to execute in FIFO order, but they are not executed immediately. If there is any idle 
state in the CPU detected at run-time, a spark is converted into a real thread. The new thread is run on the 
idle state of the CPU. Doing this allows the available parallelism to be spread among the real CPUs.

Let’s consider the following example, which actually represents a parallel version of an old example of 
computing the Fibonacci numbers (to run the Fibonacci example, you need to install parallel package).

import Control.Parallel

countFibonnaciNumber :: Int -> Int
countFibonnaciNumber number | number <= 1 = 1
       | otherwise = par number1 (pseq number2 (number1 + number2 + 1))
                     where number1 = countFibonnaciNumber (number-1)
                           number2 = countFibonnaciNumber (number-2)

If value n is greater than 1, then par is used for forcing the thread to evaluate countFibonnaciNumber 
(number-1), pseq is used to force the parent thread to evaluate countFibonnaciNumber (number-2) before 
going on to add these two subexpressions. Using divide and conquer technique, just a new thread is sparked 
for one branch, while the parent thread evaluate the other branch. The pseq function is used because it 
assures that number2 is evaluated before number1 in the expression (number1 + number2 + 1). Reordering 
the expression as (number1 + number2 + 1) is not enough, because the compiler could generate a situation 
in which evaluation is not done from left to right.

As a remark, pseq is used often than seq. They are very similar, but the difference is at run-time. The 
arguments of seq function are evaluated in any order, but pseq function evaluates firstly its first argument, 
then the second one. This behavior helps to control the order of evaluation.

https://wiki.haskell.org
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When par is used, the sparked computation is needed in a further time and it should not be small. If it is 
too small, then the program loses its efficiency.

There is the posibility to collect information from the run-time statistics about how well par is working.
More sophisticated combinators for expressing parallelism are available from the Control.Parallel.

Strategies module in the parallel package. This module builds functionality around par, expressing 
elaborate patterns of parallel computation, such as a parallel map.

Parallelism for Dataflow
The Eval monad and Strategies, which are working in conjunction with sluggish assessment, are used to 
express parallelism. A Strategy expends a language identification of information structure and assesses 
parts of it in parallel. This model has a few advantages: it permits the decoupling of the computation from 
the parallelism, and it permits parallel assessment methodologies to be manufactured compositionally. As 
it is, Strategies and Eval are not generally the most helpful or viable approach to express parallelism. We 
might not have any desire to fabricate a language identification information structure, for instance.

In this section, we’ll investigate another parallel programming model, the Par monad, with an alternate 
arrangement of trade-offs. The objective of the Par monad is to be more unequivocal about granularity and 
information conditions, and to maintain a strategic distance from the dependence on apathetic assessment. 
In this programming model, the developer needs to give more detail about how to acquire control. The Par 
monad has some other intriguing advantages; for instance, it is actualized as a Haskell library and the usage 
can be promptly changed to oblige elective booking techniques.

The interface is based on calling the Par monad.

newtype Par object_A
instance Applicative Par
instance Monad Par

runningPar :: Par object_A -> object_A

The Par computation is passed as an argument to fork the “child,” which is executed in parallel with the 
invoker of fork (the “parent”). As you can see, nothing is returned by fork to the parent. In this situation, a 
question is rising: how is the result get back when a parallel computation begins with fork? It is known that 
Ivar type and its operations is used to pass values between par computations.

data IVar object_A

new :: Par (IVar object_A)
put :: NFData object_A => IVar object_A -> object_A -> Par ()
get :: IVar object_A -> Par object_A

Think of an IVar as beginning with void. The put operation stores a quality in this case, and get is the 
value. On the off chance that the get operation finds the void container, then it holds up until the case is 
filled by a put. So an IVar gives you the chance to impart values between parallel Par calculations, since you 
can put a worth in the container in one place and get it in another.

Once filled, the box stays full. As you can see from the preceding code, the get operation will not remove 
the value from the box. We will obtain an error if we have to call put more than once on the same IVar.

You have to see the IVar type as related to the MVar type, which you shall see later in the “Threads and 
MVars” section. The principal difference in IVar is that can be written only once. Consider that an IVar is 
like the future or a promise, some important concepts that you may find familiar and similar to other parallel 
or concurrent languages.

http://hackage.haskell.org/package/parallel#_top
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■■ Note   Although there are not constraints which prevents to return an IVar from runPar and pass it to 
another runPar, you should not do this. This warning becomes from the fact that Par monad presumes that 
Ivar values are created and utilized in the same runPar. If this assumption is violated, then run-time errors, 
deadlock or something worse could occur. Still, this situation could be prevented by using qualified types similar 
with ST monad.

Figure 3-1 makes it clear that we are making a dataflow diagram: that is, a diagram in which the hubs 
(fib n, etc.) contain the calculation and information streams down the edges (i and j). To be concrete, 
every fork in the system makes a hub, each new hub makes an edge, and get and put interface the edges to 
the hubs.

Figure 3-1 shows that the two hubs containing fib n and fib m are autonomous of each other, and that 
is the reason that they can be processed in parallel, which is precisely what the monad-standard library will 
do. Notwithstanding, the dataflow chart doesn’t exist in any unequivocal structure at run-time; the library 
works by monitoring every one of the calculations that can be played out (a work pool), and partitioning 
those among the accessible processors utilizing a proper planning procedure. The dataflow chart is only an 
approach to imagine and comprehend the structure of the parallelism. Lamentably, at this moment, there’s 
no real way to produce a visual representation of the dataflow chart from some Par monad code; yet ideally, 
somebody will eventually compose an apparatus.

Utilizing dataflow to express parallelism is a significantly old thought; there were individuals exploring 
different avenues for custom equipment structures composed around dataflow back in the 1970s and 1980s. 
As opposed to those plans that were centered around misusing fine-grained parallelism naturally, here we 
are utilizing dataflow as an express parallel programming model. Yet, we are utilizing dataflow here for the 
same reasons that it was appealing in those days: rather than saying what could possibly be done parallel, 
we just depict the information conditions along these lines, uncovering all the verifiable parallelism to be 
misused.

The Par monad is very suited for communicating dataflow systems; it can likewise express other regular 
examples. For instance, we can produce something like the parMap combinator. To make it less demanding 
to characterize parMap, let’s first form a basic deliberation for a parallel calculation that profits an outcome.

spawn :: NFData object_A => Par object_A -> Par (IVar object_A)
spawn varP = do
  varI <- new
  fork (do varX <- varP; put varI varX)
  return varI

fib n

fib m

a+b

i

j

Figure 3-1.  Flow diagram for Fibonacci numbers
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The preceding is an example in which the spawn function forks the computation in parallel and returns 
an object of type IVar that can be used in to wait for the result. spawn is found within Control.Monad.Par.

A parallel map is formed on calling spawn to invoke and apply the function for all the elements of the 
queue, and then waiting for the response with all the results.

parMapM :: NFData object_B => (object_A -> Par object_B) -> [object_A] -> Par [object_B]
parMapM varF as = do
  varIBS <- mapM (spawn.varF) as
  mapM get varIBS

(parMapM is also provided by Control.Monad.Par, even if in a more generalized form than the version 
shown here.)

Note that the capacity connotation, f, gives back its outcome in the Par monad; this implies f itself 
can make further parallelism by utilizing fork and the other Par operations. At the point when the capacity 
contention of a guide is monadic, the tradition is to add the M postfix to the capacity name— consequently, 
parMapM.

It is very direct to set and define a variant of parMapM that will take a non-monadic function by inserting 
a return.

parMap :: NFData object_B => (object_A -> object_B) -> [object_A] -> Par [object_B]
parMap varF as = do
  varIBS <- mapM (spawn.return.varF) as
  mapM get varIBS

One other thing to consider is that unlike parMap, parMapM and parMap wait for the outputs before 
returning. Depending on the context, this may or may not be the most useful behavior. If you don’t want to 
wait for the results, then you could always use mapM (spawn.f), which returns a list of IVars.

So far, what we have discussed represents all the necessary elements that need to be fulfilled and 
understood by a programmer in order to start creating software that is eligible to be ported in a cloud-
computing environment.

Concurrent Servers for a Network
Concurrent network servers are implemented simultaneously with the String IO. Here on each acknowledge 
from the fundamental string, we make another Handle, and forkIO a lightweight Haskell string to compose 
a string back to the client. Depends on the run-time scheduler to awaken the primary string in an opportune 
manner (i.e., by means of the current “select” instrument).

import Network
import Control.Concurrent
import System.IO

main = withSocketsDo $ do
    socket <- listenOn $ PortNumber 5002
    loop socket

loop socket = do
   (something,_,_) <- accept socket
   forkIO $ body something
   loop socket
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  where body something = do
       hPutStr something message
       hFlush something
       hClose something

message = "HTTP/localhost 200 OK\r\nContents-Dimension: 5\r\n\r\nsomething\r\n"

Next, by using a byte string, IO means that we allocate nothing in the body, and avoid a couple of copies 
to do the IO.

{-# LANGUAGE OverloadedStrings #-}
import Data.ByteString.Char8

import Network hiding (accept)
import Network.Socket
import Network.Socket.ByteString (sendAll)
import Control.Concurrent

main = withSocketsDo $ do
    socket <- listenOn $ PortNumber 5002
    loop socket

loop socket = do
   (connection, _) <- accept socket
   forkIO $ body connection
   loop socket
  where body x = do sendAll x message
               Network.Socket.sClose x

message = "HTTP/localhost 200 OK\r\nContents-Dimension: 5\r\n\r\nsomething\r\n"

The next step is quite critical: instead of using the RTS select mechanism to wake up threads, we use a 
custom epoll handler. Based on epoll event handling and the IO byte string, in our case, the epoll replaces 
GHC’s select model as quickly as possible. The designing method here shows that the concurrent primitives 
could be implemented in terms of epoll (please note the following code uses Unix—System.Event, System.
Posix—and it could not be complied in Windows).

import Network hiding (accept)
import Network.Socket (fdSocket, accept)
import Network.Socket.ByteString
import Data.ByteString.Char8
import System.Event
import System.Posix
import System.Posix.IO

main = withSocketsDo $ do
    sock <- listenOn $ PortNumber 5002
    let fd = fromIntegral (fdSocket sock)
    mgr <- new
    registerFd mgr (client sock) fd evtRead
    loop mgr
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client sock _ _ = do
    (c,_) <- accept sock
    sendAll c msg
    sClose c

This is significantly better. By the way, under the same conditions, this Python epoll version achieves 
10K req/sec.

Moving forward, we can observe traditional invokes to accept and sendAll using Haskell’s concurrent 
IO layer, which is having some redundant threading calls. Simon Marlow, the co-developer of GHC, provides 
additional explanations for threads (https://wiki.haskell.org/Simple_Servers):

The Haskell program as it stands won’t scale up on a multicore because it only has a 
single accept loop, and the subtasks are too small. The cost of migrating a thread for load-
balancing is too high compared to the cost of completing the request, so it’s impossible to 
get a speedup this way. If you create one accept loop per CPU then in principle it ought to 
scale, but in practice it won’t at the moment because there is only one IO manager thread 
calling select(). Hopefully this will be fixed as part of the ongoing epoll() work that was 
mentioned earlier.

Regarding the slowdown you see with -threaded, this is most likely because you’re running 
the accept loop in the main thread. The main thread is special – it is a “bound thread”, 
which means it is effectively a fully-fledged OS thread rather than a lightweight thread, 
and hence communication with the main thread is very expensive. Fork a subthread for 
the accept loop, and you should see a speedup with -threaded.

—Simon Marlow

Threads for Parallel Programming
Haskell development and invokers have an easy and flexible thread system that plans the logical threads 
on the free and available threads in operating systems. These light and cheap threads can be created with 
forkIO. (We won’t discuss full OS threads that are created via forkOS, as they have significantly higher 
overhead and are only useful in a few situations).

forkIO :: IO () -> IO ThreadId

Let’s consider the following simple example for a Haskell application. It creates a hash for two files 
and shows the result as an output in the console (to run the following code, you need to install the pureMD5 
package first).

import Data.Digest.Pure.MD5 (md5)
import qualified Data.ByteString.Lazy as L
import System.Environment (getArgs)

main = do
    [fileA, fileB] <- getArgs
    hashAndPrint fileA
    hashAndPrint fileB

hashAndPrint f = L.readFile f >>= return . md5 >>= \h -> putStrLn (f ++ ": " ++ show h)

http://www.codexon.com/posts/debunking-the-erlang-and-haskell-hype-for-servers
https://wiki.haskell.org/Simple_Servers
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The preceding example represents a straight solution that creates a hash for the two files one at a 
time, showing the result as an output on the console. How do we proceed if we want to use more than one 
processor to create that hash for those files in parallel?

A simple solution is to turn on a new thread that creates the hash in parallel and displays the answers as 
they are computed.

import Control.Concurrent (forkIO)
import Data.Digest.Pure.MD5 (md5)
import qualified Data.ByteString.Lazy as L
import System.Environment (getArgs)

main = do
    [fileA,fileB] <- getArgs
    forkIO $ hashAndPrint fileA
    hashAndPrint fileB

hashAndPrint f = L.readFile f >>= return . md5 >>= \h -> putStrLn (f ++ ": " ++ show h)

Now, we have a rough program with great performance boost.
You will probably have some bugs. The first one represents the finishing process of the main thread, 

which has as a goal the finishing of the hashing process for the fileB, after the process is done. The program 
quits before the child thread finishes with fileA. The second bug is potentially garbled output due to  
two threads writing to stdout. Both of these problems can be solved using interthread communication  
(we’ll pick up this example in the MVar section).

Working with mutable variables (MVars) that can be locked has a huge impact on communicating data, 
such as obtaining a string for a function to print, but it is also common for developers to lock their features as 
a signaling mechanism.

The mutable variables MVars are known and represented as a polymorphic mutable variable which 
might or not, to contain a value at any given time. The most usual functions include:

newMVar :: a -> IO (MVar a)
newEmptyMVar :: IO (MVar a)
takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()
isEmptyMVar :: MVar a -> IO Bool

Although they are generally self-explanatory, note that takeMVar will block until the MVar is filled, and 
putMVar will obstruct until the current MVar is void. Taking a MVar will leave the MVar void while giving back 
the worth. In the forkIO illustration, we built up a system to hash two records in parallel and finished with 
two little bugs in light of the fact that the project ended rashly (the primary string would leave when done).  
A second issue is that strings can struggle with each other’s utilization of stdout. Now let’s sum up the 
case to work on any number of documents, piece until the hashing is finished, and print every one of the 
outcomes from only one string so that no stdout confusion happens.

{-# LANGUAGE BangPatterns #-}
import Data.Digest.Pure.MD5
import qualified Data.ByteString.Lazy as L
import System.Environment
import Control.Concurrent
import Control.Monad (replicateM_)
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main = do
    files <- getArgs
    str <- newEmptyMVar
    mapM_ (forkIO . hashAndPrint str) files
    printNrResults (length files) str

printNrResults i var = replicateM_ i (takeMVar var >>= putStrLn)

hashAndPrint str f = do
    bs <- L.readFile f
    let !h = show $ md5 bs
    putMVar str (f ++ ": " ++ h)

We characterize another variable, str, as a vacant MVar. After the hashing, the outcome is accounted for 
with putMVar -. Recall that this capacity squares when the MVar is full, so no hashes are dropped by virtue of 
the variable memory. printNrResults utilizes the takeMVar capacity, which hinders until the MVar is full, or 
once the following document is done being hashed for this situation. Take note of how the worth is assessed 
before the putMVar call. In the event that the contention is an evaluated chunk, then printNrResults 
will need to assess the thunks before it prints the outcome—and our endeavors will have been useless. 
Knowing the str MVar is filled “length of the records” times, we can give the principle string a chance to exit 
subsequent to printing the given number of results; along these lines, ending the system.

$ ghc exMVar.hs -o exMVar-threaded --make -O2 -threaded
$ time ./exMVar-threaded +RTS -N2 -RTS 2GB 2GB 2GB 2GB
  2GB: b8f1f1faa6dda5426abffb3a7811c1fb
  2GB: b8f1f1faa6dda5426abffb3a7811c1fb
  2GB: b8f1f1faa6dda5426abffb3a7811c1fb
  2GB: b8f1f1faa6dda5426abffb3a7811c1fb

  real    0m40.524s

$ time ./exMVar-threaded +RTS -N1 -RTS 2GB 2GB 2GB 2GB
  2GB: b8f1f1faa6dda5426abffb3a7811c1fb
  2GB: b8f1f1faa6dda5426abffb3a7811c1fb
  2GB: b8f1f1faa6dda5426abffb3a7811c1fb
  2GB: b8f1f1faa6dda5426abffb3a7811c1fb

  real    1m8.170s

Threads and MVars
An MVar t represents a mutable location that has two types of values: empty and contains a value of type t.  
It is designed to have two main operations.

•	 putMVar fills the mutable variable if it does not have anything, and if it has a value it, 
will block it.

•	 takeMVar creates an empty mutable variable if it is full; if it has a value, it will block it.

https://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Concurrent-MVar.html#t:MVar
https://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Concurrent-MVar.html#v:putMVar
https://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Concurrent-MVar.html#v:takeMVar
https://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Concurrent-MVar.html#t:MVar
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The ways that they are used are different, as described in the following.

•	 Mutable variables can be synchronized.

•	 Within some channels, takeMVar is responsible for receiving and putMVar is 
responsible for sending.

•	 A mutable variable could be seen as a semaphore. takeMVar is responsible for 
waiting on the state of the signal and putMVar is in accordance with the signal.

Mutable variables were introduced in the paper “Concurrent Haskell” by Simon Peyton Jones, 
Andrew Gordon, and Sigbjorn Finne (https://www.microsoft.com/en-us/research/wp-content/
uploads/1996/01/concurrent-haskell.pdf). Since then, some of the details regarding the implementation 
process have been changed, such as the put method of a mutable variable was used to indicate an error, but 
now this method is used to identify blocks.

Mutable variables (MVars) offer a lot of flexibility in cooperation with IORefs. Compared to STM, there is 
less flexibility. One of their primary goals is to be more appropriate for building synchronization primitives 
and realizing internal threads communication. When we discuss the race process between threads, we 
have to state that they are very susceptible to those conditions, with deadlocks or exceptions that cannot be 
caught. If there are complex atomic operations (e.g., reading within multiple variables), it is recommended 
to avoid them and to use STM.

The larger functions from this module are represented by the composition between takeMVar and 
putMVar, followed by exceptions management. This mechanism and composition guarantee the atomicity 
if all the rest of the threads perform takeMVar and putMVar. If this does not happen, we assist to a block 
process of the threads.

Let’s take a skip channel as an example, presented as a data structure adapted from the original 
“Concurrent Haskell” article by Simon Peyton Jones et al. It is a very interesting example of concurrent data 
structure. This kind of channel can be used to write on without blocking, and the return process from the 
channel returns the most appropriate value, or it is blocked if there are no new values. The dupSkipChan 
operation supports different readers.

A pair of mutable variables form a skip channel. The first mutable variable contains the current value 
together with a queue of semaphores that are notified when there are changes. The second mutable variable 
is represented by a semaphore for a particular reader and it is occupied if there is a value within the channel, 
a value that the reader is unable to read, and without any value, in the second case.

data SkipChan a = SkipChan (MVar (a, [MVar ()])) (MVar ())

newSkipChannel :: IO (SkipChan a)
newSkipChannel = do
    semaphore <- newEmptyMVar
    main <- newMVar (undefined, [semaphore])
    return (SkipChan main semaphore)

putSkipChan :: SkipChan a-> a-> IO ()
putSkipChan (SkipChan main _) v = do
    (_, semaphores) <- takeMVar main
    putMVar main (v, [])
    mapM_ (semaphore -> putMVar semaphore ()) semaphores

getSkipChan :: SkipChan a -> IO a
getSkipChan (SkipChan main semaphore) = do
    takeMVar semaphore

https://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Concurrent-MVar.html#v:takeMVar
https://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Concurrent-MVar.html#v:putMVar
https://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Concurrent-MVar.html#v:takeMVar
https://hackage.haskell.org/package/base-4.9.0.0/docs/Control-Concurrent-MVar.html#v:putMVar
http://research.microsoft.com/~simonpj/papers/concurrent-haskell.ps.gz
https://www.microsoft.com/en-us/research/wp-content/uploads/1996/01/concurrent-haskell.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/1996/01/concurrent-haskell.pdf


Chapter 3 ■ Parallelism and Concurrency with Haskell 

57

    (v, semaphores) <- takeMVar main
    putMVar main (v, semaphore:semaphores)
    return v

dupSkipChan :: SkipChan a -> IO (SkipChan a)
dupSkipChan (SkipChan main _) = do
    semaphore <- newEmptyMVar
    (v, semaphores) <- takeMVar main
    putMVar main (v, semaphore:semaphores)
    return (SkipChan main semaphore)

Distributed Programming
In order to prove how the transmission works and what the most important concepts about distributed 
programming are, we will implement a server for chat in the following section.

We will show how to emerge an easy example of chat server that could be bounded to telnet for the 
primary operation for a chat application. It is expected that the server allows many users to be connected. 
When a message arrives to the server, it is transmitted to all users that have established a connection to the 
server at that time. In our model, we will utilize the Network.Socket library that permits low-level links to 
the C-socket API.

The cabal file should contain the following code.

executable chat-server-exe
   hs-source-dirs:       app
   main-is:                   Main.hs
   ghc-options:           -threaded -rtsopts -with-rtsopts=-N
   build-depends:        base, network
   default-language:    Haskell2010

Socket Server
Let’s begin with an easy-to-implement server. Observe that the server’s code starts with a main function that 
generates a reutilizable socket. Next, a TCP connection is opened, using port 4242, which permits at most 
two queued connections.

-- in Main.hs
module Main where

import Network.Socket

main :: IO ()
main = do
    mySocket <- socket AF_INET Stream 0  -- A socket is creted
    setSocketOption mySocket ReuseAddr 1   -- The socket immediately reusable - eases debugging.
    bind mySocket (SockAddrInet 4242 iNADDR_ANY)   -- Listen on TCP port 4242.
    listen mySocket 2                              -- Set a max of 2 queued connections
    mainLoop mySocket -- Will be implemented
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The mainLoop function builds a socket-server example equivalent to the classical “Hello World!” When 
there is a certain socket, do the following: accept the connection, receive and pass an easy “Hello World!”, 
close the open connection, and reutilize the genuine socket.

-- in Main.hs

mainLoop :: Socket -> IO ()
mainLoop mySocket = do
    connection <- accept mySocket -- accept a connection and handle it
    runconnection connection -- run our server's logic
    mainLoop mySocket -- repeat

runconnection:: (Socket, SockAddr) -> IO ()
runconnection (mySocket, _) = do
    send mySocket "Hello!\n"
    close mySocket

When a socked is accepted, it returns the pair with the type (Socket, SockAddr), which represents a 
new socket object that could be utilized for sending and receiving information on an arbitrary connection. 
When the runconnection function ends, the socket object shuts down. In this simple example, SockAddr is 
the primary socket address for port 4242.

System.IO for Sockets
To avoid bugs, you should not use the send and recv functions, because Network.Socket does not correctly 
represent the binary data in these functions. When implementing with Network.Socket, utilizing the 
functions that are used in the ByteString module is recommended. To avoid complicating the example, use 
System.IO for incomes and outcomes. Note the fact that System.IO is not using ByteString, but is using a 
plain String. The following code shows how to import the new module and how to turn Socket into Handle.

-- in the imports our Main.hs add:
import System.IO

-- and we'll change our `runConn` function to look like:
runconnection:: (Socket, SockAddr) -> IO ()
runconnection (mySocket, _) = do
    myHandle <- socketToHandle mySocket ReadWriteMode
    hSetBuffering myHandle NoBuffering
    hPutStrLn myHandle "Hello!"
    hClose myHandle

Concurrency
Until now, the server permitted just one connection at a time. If it is limited to only read the flow of 
the messages, then that is sufficient; but in practice, it is more complicated because the server should 
manipulate the chat.

Prelude provides a library called Control.Concurency, which creates threads and switches the context. 
The hackage page is very useful in this example, and we recommend accessing it.
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forkIO manages every client of the chat, and creates threads for every connection. The following is the 
signature of forkIO.

forkIO :: IO () -> IO ThreadId

The output is ignored because we do not need the thread’s identifier.

-- add to our imports:
import Control.Concurrent

-- and in our mainLoop function...
mainLoop mySocket = do
    connection <- accept mySocket
    forkIO (runconnection connection)   -- split off each connection into its own thread
    mainLoop mySocket

Communication Between Threads
We should make the connections to communicate with each other. At first look, this task is difficult to 
accomplish because we are required to administrate the event handlers/pub-sub implementations, which 
means we should learn about MVar, TVar, TMVar, and when to use each. We do not cover these topics,  
but we encourage you to read about them. Still, we need to accomplish the described task, but we will use 
Control.Concurrent.Chan, which assures boundless FIFO channels that permit one write operation and 
many read end operations. This module is quite simple, and the fact that Chan data type is abstract is an 
advantage. The Chan data type contains *->*. To make it complete, we should choose a message type that 
is serializable. Because we want a simple application, let’s choose String and alias Msg, to make it more 
semantically understandable.

-- in Main.hs
type Message = String

In the first step, the required module is imported.

import Control.Concurrent.Chan   -- at the top of Main.hs with the others

Main assures the creation of socket connections and passes them to mainLoop, which shows that the 
socket connections are working in the same channel. The mainLoop function opens the channel to every 
thread in runConnection. The code is presented here.

main = do
    -- [...]
    channel <- newChan            -- notice that newChan :: IO (Chan a)
    mainLoop mySocket channel     -- pass it into the loop

-- later, in mainLoop:

mainLoop :: Socket -> Chan Message -> IO ()    -- See how Chan now uses Message.
mainLoop mySocket channel = do
    connection <- accept mySocket
    forkIO (runconnection connection channel)  -- pass the channel to runconnection
    mainLoop mySocket channel
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Now we need runconnection to make a duplicate of the channel communicating with it. To do this, 
some helpers are needed—liftM and fix. liftM permits the lifting of an arbitrary function on a particular 
data structure, and fix permits defining a monadic fixed point.

-- at the top of Main.hs
import Control.Monad (liftM)
import Control.Monad.Fix (fix)

Next, let’s utilize some functions that belong to Control.Concurrent.Chan: writeChan, readChan, and 
dupChan. Their names are intuitive, so we will not insist over them. The dupChan function creates a novel 
channel by duplicating a Chan, so that more than one thread can read from it. This channel is empty at its 
creation and it does not have any written data. This permits broadcasting.

runconnection:: (Socket, SockAddr) -> Chan Msg -> IO ()
runconnection (mySocket, _) channel = do
    let broadcast message = writeChan channel message
    myHandle <- socketToHandle mySocket ReadWriteMode
    hSetBuffering myHandle NoBuffering
    commLine <- dupChan channel

    -- fork off a thread for reading from the duplicated channel
    forkIO $ fix $ \loop -> do
        line <- readChan commLine
        hPutStrLn myHandle line
        loop

    -- read lines from the socket and echo them back to the user
    fix $ \loop -> do
        line <- liftM init (hGetLine myHandle)
        broadcast line
        loop

Let’s observe that runconnection runs on a different thread, and splits another worker thread to send 
messages to the user that has established a connection.

The Final Code
We are almost done. We need to resolve two problems in our code. The primary problem is that the genuine 
channel is never read, which represents a major leakage in our code. To resolve it, we just need to create an 
additional thread that assures access to it.

The last problem is that the connection is not closed properly. To do that, we need an exception 
handling for the case of extension, and the additional amendments.

•	 The messages should be resounded to the sender.

•	 Make an association between a connection and a name.

•	 Message should be changed to alias (Int, String).
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To use exception handlers, we need to import Control.Exception. The whole code is shown here.

module Main where

import Network.Socket
import System.IO
import Control.Exception
import Control.Concurrent
import Control.Concurrent.Chan
import Control.Monad (liftM, when)
import Control.Monad.Fix (fix)

main :: IO ()
main = do
  mySocket <- socket AF_INET Stream 0
  setSocketOption mySocket ReuseAddr 1
  bind mySocket (SockAddrInet 4242 iNADDR_ANY)
  listen mySocket 2
  channel <- newChan
  forkIO $ fix $ \loop -> do
    (_, message) <- readChan channel
    loop
  mainLoop mySocket channel 0

-- Message is changed to alias (Int, String)
type Message = (Int, String)

mainLoop :: Socket -> Chan Message -> Int -> IO ()
mainLoop mySocket channel messageNum = do
  connection <- accept mySocket -- Association between a connection and a name
  forkIO (runconnection connection channel messageNum)
  mainLoop mySocket channel $! messageNum + 1

-- Messages are sent to the user.
runconnection :: (Socket, SockAddr) -> Chan Message -> Int -> IO ()
runconnection (mySocket, _) channel messageNum = do
    let broadcast message = writeChan channel (messageNum, message)
    myHandle <- socketToHandle mySocket ReadWriteMode
    hSetBuffering myHandle NoBuffering

    hPutStrLn myHandle "Welcome to the chat. Please choose a username: "
    userName <- liftM init (hGetLine myHandle)
    broadcast ("--> " ++ userName ++ " in now online.")
    hPutStrLn myHandle ("Hello, " ++ userName ++ "!")

    commLine <- dupChan channel

    -- Fork a thread which will read messages of the duplicated channel.
    readerFromDuplicateChan <- forkIO $ fix $ \loop -> do
        (nextNum, line) <- readChan commLine
        when (messageNum /= nextNum) $ hPutStrLn myHandle line
        loop
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    handle (\(SomeException _) -> return ()) $ fix $ \loop -> do
        line <- liftM init (hGetLine myHandle)
        case line of
             -- When an exception occurs, a message is sent and the loop is broken.
             "quit" -> hPutStrLn myHandle "Bye!"
             -- If there is no exception, then continue looping.
             _      -> broadcast (userName ++ ": " ++ line) >> loop

    killThread readerFromDuplicateChan                      -- Kill after the loop ends
    �broadcast ("<-- " ++ userName ++ " is now offline.") -- Send a last broadcast hClose 

myHandle

Running the Server
The preceding code provides a functioning server. After we build the executable and fire up the server, we 
can use our chat. Run the server and then establish a connection to it using telnet, as follows.

$ telnet localhost 4242

Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Welcome to the chat. Please choose a username:

Eval Monad for Parallelism
Haskell is a lazy language. Due to laziness, expressions are evaluated just when they are required, and 
are not evaluated if they are not required. The way how laziness works, should not worry us, but there 
are situations in which we tell the compiler how a program should be run. These are situations in which 
parallelism is used. Before knowing how parallelism works, we should know firstly how lazy evaluation 
works. so this section explores the basic concepts, and use GHCi as a playground.

Let’s start with something very simple.

Prelude> let x = 1 + 2 :: Int

The above line of code creates a binding between variable x and the expression 1 + 2. For simplicity,  
let’s suppose the type is Int. We know that 1 + 2 = 3, so we could instead just write let x = 3 :: Int.  
But when we work with parallel code, there is a huge difference between this two approaches, because 1 + 2 
represents an expression which was not evaluated yet, which could be computed in parallel with something 
else. Anyway, this is a didactical example, because in practice something as trivial as 1 + 2 is not computed  
in parallel.

Returning to example, at this moment x is not evaluated. Usually, in Haskell, we can’t tell that x is 
unevaluated, but GHCi provides commands that allow us to inspect the structures of expression, without 
influencing the expression in any way. For example, :sprint command is used to display the value of an 
expression without being evaluated.

Prelude> :sprint x
x = _
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The special symbol _ indicates unevaluated. Another term for an unevaluted expression is thunk, 
which is the object in memory representing the unevaluated computation 1 + 2. In this case, the thunk looks 
something like what’s shown in Figure 3-2.

+

I 1 I 2

x

Figure 3-2.  Representation of 1+2

Here, x is a pointer to an object in memory representing the function + applied to the integers 1 and 2.
The thunk representing x is evaluated whenever its value is required. A simple situation which 

determine evaluation is printing the value. So, just type x into Prelude.

Prelude> x
3

Now if we use :sprint to check the value of x, we get 3, which means x was evaluated.

Prelude> :sprint x
x = 3

In terms of the objects in memory, the thunk representing 1 + 2 is actually overwritten by the (boxed) 
integer 3. So any future demand for the value of x gets the answer immediately; this is how lazy  
evaluation works.

That was a simple example. Below it is a more complex example.

Prelude> let x = 1 + 2 :: Int
Prelude> let y = x + 1
Prelude> :sprint x
x = _
Prelude> :sprint y
y = _

Again, x is bound to 1 + 2, but now we have also bound y to x + 1, and :sprint shows that both are 
unevaluated as expected.

To create parallelism in Haskell, the Control.Parallel.Strategies module is used. The general form 
of the used elements is

data Eval a
instance Monad Eval

runEval :: Eval a -> a

rpar :: a -> Eval a
rseq :: a -> Eval a
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The main element is the Eval monad, which has the following two functions: rpar and rseq. Eval 
represents the identity monad, where rpar and rseq are equivalent to par and pseq, respectively, and it 
produces successions of parallel calculations used to evaluate lazy data structures in parallel. The result is 
extracted using the runEval function, which is totally pure. The rpar function is used to create parallelism, 
whereas the rseq function is used to force sequential evaluation. Note that the parameter for rpar must be 
an unevaluated calculation—namely, a thunk; otherwise, nothing will happen because there is nothing to 
evaluate or to produce the parallelism. Let’s look at an example.

runEval $ do
   p <- rpar (fct a)
   q <- rpar (fct b)
   return (p,q)

In the preceding example, the arbitrary fct function is applied on a and on b, and the results are 
computed in parallel. Let’s say that fct a takes longer than fct b. After using rpar, we return the results 
as a pair. From an execution point of view, fct a and fct b begin at the same time, in parallel; whereas the 
return occurs straightaway, not waiting for the two appliances of the function to terminate. The remaining 
program continues the execution, whereas the two calls are evaluated in parallel.

The following is another example, this time using both rpar and rseq.

runEval $ do
     p <- rpar (fct a)
     q <- rseq (fct b)
     return (p,q)

In the preceding example, fct a and fct b are evaluated in parallel also, but return does not wait until 
fct b is finished, thanks to the rseq function, which holds on until its argument is evaluated. If we add rseq 
to waiting fct a, then the program waits for fct a and fct b to complete.

runEval $ do
   p <- rpar (fct a)
   q <- rseq (fct b)
   rseq p
   return (p,q)

The preceding examples represent patterns for parallel computing in Haskell. We use them as follows.

•	 rpar – rseq are not very useful, because usually we do not know which of the two 
calls of the arbitrary function is waiting longer.

•	 It depends on the particular case in which we need to use rpar – rpar or rpar – 
rseq – rseq. If we want more parallelism and we are not focused on the results, we 
should use rpar – rpar because the result is obtained straightaway. If we cannot 
“add” more parallelism, or if one of the results is needed in order to continue, then 
we should use rpar – rseq – rseq.
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The following is another pattern.

runEval $ do
   p <- rpar (fct a)
   q <- rpar (fct b)
   rseq p
   rseq q
   return (p,q)

This works similarly to rpar – rseq – rseq. It is the most complicated example, but it could be the 
most used because of its symmetry.

Summary
This chapter discussed the most important characteristics and elements of parallelism and concurrence  
in Haskell. It covered the most important issues and their advantages and disadvantages, making a  
workflow for those who want to learn how to develop applications in Haskell in a distributed environment, 
such as the cloud.

As a quick overview, the following topics were covered.

•	 The parallelism and dataflow in Haskell with examples

•	 Concurrent servers working within a network

•	 Implementing threads within a parallel programming concept

•	 The difference between threads and MVars, and the advantages and disadvantages

•	 Creating a server in Haskell as an example of distributed programming, pointing 
out the necessary steps for developing an application that needs a distributed 
environment

•	 Creating a discussion for the Eval monad, which can be used for parallelism with 
examples and case studies
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CHAPTER 4

Strategies Used in the  
Evaluation Process

In programming languages, evaluation strategies represent a collection of rules that are used when 
expressions are evaluated or computed. The way in which arguments are passed to functions represents a 
particular case for evaluation strategies.

There are two main approaches in evaluation strategies:

•	 Strict strategies, in which the arguments are calculated before they are applied

•	 Non-strict strategies, in which the arguments are calculated only when they are 
needed, or on demand.

The second category is also known as lazy evaluation, which is mainly used in functional programming, 
and in particular, by the Haskell programming language.

The first section of the chapter presents a simple example of how lazy evaluation uses redexes. The next 
section discusses the Strategies library used in deterministic parallelism in Haskell, and which introduces 
scan family functions and skeletons.

Redexes and Lazy Evaluation
One of the most important techniques used to execute Haskell program code is lazy evaluation. It has many 
benefits, but it could present a problem with memory terms, if it is not used properly.

In Haskell, a program is performed through expression evaluation. A technique called graph reduction 
is used in evaluation. It prevents duplicate steps in the process of expression evaluation. Let’s look at an 
example.

upSquare c = c*c

The preceding function could be called with an argument such as 2+3.

upSquare (2+3)

The evaluation works as follows: from the definition of function, c becomes c = 2+3:

upSquare (2+3)
=> (2+3)*(2+3)
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Then, the + and * operators are evaluated.

(2+3)*(2+3)
=>5*(2+3)
=>5*5
=>25

In the preceding example, the same steps are performed many times; namely, 2+3 is evaluated twice, 
even if it is the same. To avoid these useless evaluations, so you apply a technique called graph reduction. 
This means that the expressions could be represented as graphs, as shown in Figure 4-1.

upSquare

+

2 3

Figure 4-1.  Expression as graph

upSquare

x x

Figure 4-2.  Rule for reduction

The circle with label x is replacing a subgraph. For the * operator function, there is a single subgraph, 
because the arguments have the same value. If you commonly use this kind of subgraph, you can prevent 
useless operations.

A reducible expression (redex) represents a subgraph that fits with a rule. A redex can be reduced; 
namely, the focused pair is updated in accordance with the rule. The redexes shown in Figure 4-3 are in the 
upSquare example: upSquare could be reduced or the + operator function could be reduced.

In Figure 4-1, the blue section (on the left) represents the function, and the green section (on the right) 
represents the arguments for that function. In a similar way, the expressions are represented in the memory, 
with the help of pointers. All defined functions are linked to a reduction rule. For our example, the rule is 
shown in Figure 4-2.
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In the first step, let’s apply the reduction for the upSquare function, and then, we evaluate the redex for +,  
obtaining the sequence shown in Figure 4-4.

upSquare

+

2 3

Figure 4-3.  Redexes for upSquare

upSquare

2 3
2 3

25

+

* *

+ 5

Figure 4-4.  Reduction process for upSquare

It updated the colored redex at each stage. In the second-to-last graph, we introduced a novel redex, 
corresponding to the multiplication rule. The result is 25.

If there is no expression in the graph that can be reduced, then the process of reduction is finished and 
we obtain the result. The last form of expression is called normal form, which represents the result of an 
evaluation process. In our example, Figure 4-5 shows the result.

25

Figure 4-5.  The result of upSquare(2+3)
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A graph is in the normal form if it is finite and has no cycles. The cycles or infinity could occur because 
of the recursion.

In Haskell, the evaluation does not always end when the expression reaches the normal form. There is 
a particular type of normal form called weak head normal form (WHNF) . If the topmost node of a graph is a 
constructor, then the graph is in WHNF. For example, the expression (2+3) : [] in Figure 4-7 is stated in the 
WHNF form because its root is an instance of the constructor (:) of the list, and it is not in the normal form 
because the first parameter has a redex.

:

9 :

10

11 [ ]

:

Figure 4-6.  Steps for obtainig the list [9,10,11]

For every expression, there is a graph. For example, the list obtained through the operations 9:10:11:[] 
(which is in the normal form, because there is nothing else to reduce) has the graph shown in Figure 4-6 
associated with it.

:

+ [ ]

2 3

Figure 4-7.  Example of WHNF form

A graph that is not in the WHNF is called an unevaluated expression, or thunk. Even if an expression 
is in WHNF, the parameters for the constructor could be unevaluated expressions. A good example is the 
following piece of code.

Prelude> onesList = 1 : onesList
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The onesList is a list obtained by adding the digit 1 to itself (so, it becomes infinite). Even the 
associated graph has a topmost constructor, its argument is an unevaluated expression.

Usually, expressions contain more redexes. From this fact rises a natural question: In what order are 
they reduced?

Many programming languages are based on eager evaluation, which means the arguments of a function 
are first reduced to normal form, and then the function itself is reduced. This technique is not adopted by 
Haskell, however. In Haskell, the evaluation technique is lazy evaluation, which means that the topmost 
function is evaluated first. If necessary, it evaluates some arguments of the function. Let’s consider the 
logicalAnd function, which implements logicalAnd.

logicalAnd :: Bool -> Bool -> Bool
logicalAnd True x = x
logicalAnd False x = False

This function works with two reduction rules: one for True as the first argument, and one for False as 
the first argument, as shown in Figure 4-8.

f

== ==

‘x’ ‘y’ ‘a’ ‘b’

Figure 4-9.  Evaluation of logicalAnd ('x' == 'y') ('a' == 'b')

The logicalAnd ('x' == 'y') ('a' == 'b') expression is represented in Figure 4-9.

f

f

x

x

x

False

False

True

Figure 4-8.  Reduction rules for logicalAnd function
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The parameters of the function are redexes. The first parameter of the function verifies if the first 
argument fits the True constructor. So, the next step in lazy evaluation is to reduce the first parameter, as 
shown in Figure 4-10.

f

==False

‘a’ ‘b’

Figure 4-10.  Lazy evaluation and reducing rules

The last argument is no longer verified, because we already achieved a redex. Lazy evaluation always 
tries to reduce the topmost node; so, using the definition of logicalAnd, we obtain False, as shown in 
Figure 4-11.

False

Figure 4-11.  The final result for logicalAnd ('x' == 'y') ('a' == 'b')

This is in normal form, so the reduction process stops, and the result is obtained.

■■ Note   The result obtained by applying lazy evaluation is never different from the result obtained by applying 
eager evaluation, if the expression is terminating; otherwise, eager evaluation may diverge, but lazy evaluation 
could still return some partial information.

In Haskell, the process of evaluation does not draw graphs “behind the scenes,” but uses a model called STG 
(spineless, tagless, G-machine) to reduce graphs.

Parallel Strategies in Haskell
In Haskell, there are many techniques for deterministic parallelism. The Strategies library supplies 
methods for controlling granularity through chunking, assessment control, and sparking.

The spark represents the smallest unity of work in the Haskell runtime system. It binds to a thunk that 
can be evaluated. The runtime system procedure choses sparks from a circular buffer, called a spark pool, 
when runnable threads do not exist. Even if the sparks are not evaluated, the computation will not become 
stuck. The normal schedule flow does not wait for a spark that remained unevaluated, because its evaluation 
is ongoing. Because Haskell uses lazy evaluation, operations on lists do not require that to evaluate the 
whole list. The Strategies library allows you to indicate the level of evaluation expected for the input.
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It is not necessary to compile programs with the -threaded flag. The GHC runtime system could 
provide data about logging details of inner events. This could be combined with a good profiling tool, such 
as ThreadedScope. Let’s compile a program using these options:

ghc --make -threaded -eventlog -rtsopts -O2 myprogram.hs

eventlog is used for profiling events and rtsopts sets runtime options.
Let’s take the Fibonacci example and write it in three different ways.

nfibo :: Integer -> Integer
nfibo n | n < 2 = 1
nfibo n = nfibo (n-1) + nfibo (n-2)

-- The version using Eval monad
efibo :: Integer -> Integer
efibo n | n < 2 = 1
efibo n = runEval $ do
        nf1 <- rpar (efibo(n-1))
        nf2 <- rpar (efibo(n-2))
        return (nf1 + nf2)

-- The version using Strategy
sfibo :: Integer -> Integer
sfibo n | n < 2 = 1
sfibo n = withStrategy strat nf1 + nf2
        where nf1 = nfibo(n-1)
                   nf2 = nfibo(n-2)
                   strat v = do rpar nf1; rse1 nf2; return v

The Eval monad and Strategies are very close. Strategies performs a more powerful abstraction for 
easing the issues that come from regulating granularity. It forces the evaluation to be made by the user.

type Strategy a = a -> Eval a

using :: a -> Strategy a -> a
x `using` s = runEval (s x)
withStrategy :: Strategy a -> a -> a ->a
withStrategy s x = runEval (s x)

In the preceding code, using and withStrategies are logically the same. They provide syntactic sugar. 
The Strategies library could be considered an extension of the Eval monad, which has syntactic sugar and 
control over evaluation orderliness.

In the preceding Fibonacci function implementation, it is difficult to determine how sfib will be executed, 
because the rpar strategy does not provide any guarantee for the evaluation process; it is used to alert the 
runtime system to first deal with the thunks if runnable threads that need to be scheduled do not exist.

Scan Family
An important family of functions, called scan, allows itself to be parallelized. Let’s look at an implementation 
that uses Strategies, from A tutorial on Parallel Strategies in Haskell by Oscar Andersson and Yanling Jin.
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scanP :: (Num a, NFData a) => Int -> (a -> a -> a) -> [a] -> [a]
scanP d f list = concat reducedList
        where
             scanList = map (scanl1 f) (chunk d list) `using` parList rdeepseq
             reducedList = reduce f scanList
             strat v = do rpar reducedList; return v

reduce :: (a-> a -> a) -> [[a]] -> [[a]]
reduce f [ ] = [ ]
reduce f x:[ ] = [x]
reduce f x:y:xs= x : reduce f (map (f $ last x) y : xs)

chunk :: Int -> [a] -> [[a]]
chunk _ [ ] = [ ]
chunk n xs = as : chunk n bs where (as, bs) = splitAt n xs

The following is the foremost building block of Strategies, in which the `using` function evaluates an 
expression utilizing a strategy.

x `using` s = runEval ( s x)
parList :: Strategy a -> Strategy [a]

The parList is one of the simplest strategies of the library, because every item on the list is evaluated by 
parList in parallelism, being sparks, as stated by a particular strategy. In our example, the control is retained 
in the reduce stage, so the granularity constructed into Strategies is not utilized. Let’s continue by using 
chunking built-in to Strategies.

scanList = map (scanl1 f) (chunk d list) `using` parListChunk 4 rdeepseq

Another important strategy is rdeepseq. First, let’s take a look at a special type class called NFData. 
It adds a restriction such that every argument of type a should be assessed to normal form, so it cannot 
be applied to other reductions on the expression. Broadly, thunks that are not evaluated do not remain, 
because the expression is assessed when it is in normal form.

The rdeepseq is a function that forces the evaluation to a normal form, making Haskell a stricter 
programming language. As you have seen, rpar strategy leaves the evaluation for the spark tool, while rseq 
evaluates only the expressions that are in WHNF.

The rdeepseq function could also be used in sequential approach.

evalList :: Strategy a -> Strategy [a]

evalList represents the analogs of parList in the sequential approach.
These techniques can provide powerful algorithms if they are used properly.
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Skeletons
Another use of strategies is in defining skeletons, because they supply a high level of abstraction in 
distributed computation patterns. The following is a standard example of divide and conquer from original 
article Architecture aware parallel programming in Glasgow Parallel Haskell by Mustafa Kh Aswad, where 
the strategies are used to separate algorithms from parallelism.

divConq :: (a -> b)
        -> a
        -> (a -> Bool)
        -> (b -> b -> b)
        -> (a -> Maybe (a,a))
        -> b
divConq f arg threshold combine divide = go arg
        where
                go arg =
                        case (divide arg) of
                           Nothing -> f arg
                           Just (l0, r0) -> combine l1 r1 `using` strat
                                where l1 = go l0
                                           r1 = go r0
                                     strat x = do r l1; r r1; return x
                                     r | threshold arg = rseq
                                               | otherwise = rpar

The DivConq function splits the main problem (which is not trivial) into subproblems of the same type, 
and then it applies the f schema to every subproblem. Next, the results of the subproblems are combined 
to obtain the final result. The sparks of sub-parts l1 and r1 are encoded by strat, and threshold manages 
the degree of parallelism. The degree of parallelism is returned based on the argument. It returns False if no 
further division is done.

Next, mergesort shows how the divide-and-conquer skeleton works. The sort function merges two lists 
and then does the sorting, utilizing the classical Haskell function.

sort :: Ord a => [a] -> [a] -> [a]
sort [ ] yl = yl
sort xl [ ] = xl
sort xl@(x:xs) yl@(y:ys)
        | x <= y = x : sort xs yl
        | x > y = y : sort xl ys

mergeSort :: Ord a => [a] -> [a]
mergeSort [ ] = [ ]
mergeSort [x] = [x]
mergeSort xs = sort (mergeSort xs1) (mergeSort xs2)
        where (xs1, xs2) = splitAt (length xs `div` 2) xs

The next code represents the implementation of mergesort in parallel, using the preceding skeleton.

mergeSort_dc :: Ord a => Int -> [a] -> [a]
mergeSort_dc thres xs = divConq f xs threshold combine divide
        where
            f :: Ord a => [a] -> [a]
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            f x = x
            threshold :: [a] -> Bool
            threshold x = length x < thres
            combine x1 x2 = sort x1 x2
            divide :: [a] -> Maybe ([a], [a])
            divide x = case (splitAt (length x `div` 2) x) of
                        ([ ], x2) -> Nothing
                        (x1, [ ]) -> Nothing
                        res -> Just res

Summary
This chapter covered the main strategies used in the evaluation process, including the following topics:

•	 Redexes and lazy evaluation

•	 The smaller units at work during the Haskell runtime system

•	 Scan functions

•	 Skeletons for the high level of abstraction in distributed computation patterns
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CHAPTER 5

Exceptions

In any programming language, error handling is an important task. In general, when we talk about an 
unexpected behavior in our program, we refer to two terms: errors and exceptions. We need to distinguish 
between them to make the appropriate decision for our program.

The term exception is newer to programming than the error. An exception represents an anticipated, 
but improper case at runtime; whereas an error represents an inaccuracy, which can only be solved by 
changing the program.

The following are types of errors:

•	 Syntax error. Occurs because there is a “spelling” mistake in the  
programming language

•	 Semantic error. Occurs because the statements are used incorrectly

•	 Logical error. Occurs because some specifications are not respected

The following are time errors:

•	 Compile-time errors. Syntax errors and static semantic errors that are identified  
by the compiler

•	 Runtime errors. Dynamic semantic errors and logical errors that are not identified  
by the compiler

Errors
The following are the error and exception functions in Haskell programming:

•	 Errors. error, assert, Control.Exception. catch, Debug.Trace.trace

•	 Exceptions. Prelude.catch, Control.Exception.catch, Control.Exception.try, 
IOError, Control.Monad.Error

Observe that the keyword catch belongs in both categories. But take a deeper look: they are different 
because Prelude.catch manages only exceptions; whereas Control.Exception.catch is used to catch types 
of unspecified values (such as undefined, error, and many other things).
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Using the error Function
The error function, which belongs to Prelude, stops the execution of a program and returns an error 
message with custom text. undefined is a particular type of error with standard text. In Haskell, there is no 
difference between an undefined value and an infinite loop, in practice. Broadly, error and undefined are 
the same.

let a = a + 2 in a :: Int

The simplest ways to throw, generate, or indicate an error condition is with the error function.  
The following is a function that computes the nth number of the Fibonacci series.

fibo 0 = 1
fibo 1 = 1
fibo n = fibo(n-1) + fibo(n-2)

Prelude> fibo 3
3

What happens if the input is less than zero?

Prelude> fibo (-1)

*** Exception: <interactive>: Non-exhaustive patterns in function fibo

To avoid this case, we could complete our function as follows.

  fibo n | n < 0 = error "The argument should be positive!"
  fibo 0 = 1
  fibo 1 = 1
  fibo n = fibo(n-1) + fibo(n-2)

In practice, the error function is not used in error handling; instead, Maybe or Either are used, as 
presented in the next two sections.

Maybe
Let’s start with a simple example. We have a list of integers and we want to divide each by a number.

Prelude> divide x = map (x `div`)
divide :: Integral b => b -> [b] -> [b]
Prelude> divide 100 [2, 10, 20, 50]
[50,10,5,2]

The preceding function worked as we wanted. We can test it on an infinite list; the result is as follows.

Prelude> take 10 (divide 100 [1..])
[100,50,33,25,20,16,14,12,11,10]
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But the division has a special case: division with a zero. Let’s see what happens.

Prelude> take 10 (divide 100 [0..])
[*** Exception: divide by zero
Prelude> divide 100 [2, 10, 0, 20, 50]
[50,10,Prelude> *** Exception: divide by zero

In the first example, we get the divide by zero error because our list begins with a zero. In the second 
example, you can see how lazy initialization is applied: the allowed divisions are computed, and when 0 
becomes the nominator, we get the divide by zero error, and the program stops.

How do we avoid situations like the preceding?
Let’s use Maybe, Nothing, or Just.

divide :: Integral x => x -> [x] -> Maybe [x]
divide _ [] = Just []
divide _ (0:_) = Nothing
divide a (b:ys) =
    case divide a ys of
      Nothing -> Nothing
      Just res -> Just ((a `div` b) : res)

The use of Maybe is the most common method to show that an error occurred. Another way is to return 
Nothing, if the zero element belongs to the list. There is also Just if 0 is not an element of the list.

Prelude> divide 100 [2, 10, 0, 20, 50]
Nothing
Prelude> divide 100 [2, 10, 20, 50]
Just [50,10,5,2]
Prelude> divide 100 [1..]
*** Exception: stack overflow

The first two examples work perfectly, but we get an error if the list is infinite. This is due to the use of 
Maybe. Because the result is Maybe [x], the whole list is traversed to determine if it contains the 0 element. 
Also, before compute the current outcome, in every stage of divide, the former outcomes need to be known. 
Therefore, an infinite list is not accepted as input in the error-handling version of the divide function.

In most programs, we know the special cases in which it would crash. Let’s think about two simple 
functions in lists: head and tail. If the input list is empty list, then we will get errors in both cases.

Prelude> head []
*** Exception: Prelude.head: empty list
Prelude> tail []
*** Exception: Prelude.tail: empty list

Let’s write our own head and tail functions, in which we handle the empty list case. Let’s begin with the 
function for tail.

tailEmptyHandling :: [x] -> Maybe [x]
tailEmptyHandling [] = Nothing
tailEmptyHandling (_:ys) = Just ys



Chapter 5 ■ Exceptions

80

When we use our function, we get the following.

Prelude> tailEmptyHandling []
Nothing
Prelude> tailEmptyHandling [1,2,3]
Just [2,3]

If we want the tail of an infinite list, we could proceed as follows, where we actually get only the first 10 
elements of an infinite list.

Prelude> case tailEmptyHandling [1..] of {Nothing -> Nothing; Just a -> Just (take 10 a)}
Just [2,3,4,5,6,7,8,9,10,11]

Next, let’s see what the function for head looks like.

headEmptyHandling :: [x] -> Maybe x
headEmptyHandling [] = Nothing
headEmptyHandling (y:_) = Just y

These are the results.

Prelude> headEmptyHandling []
Nothing
Prelude> headEmptyHandling [1,2,3]
Just 1

So, you have seen how to handle an empty list or an infinite list for a head and tail function. Now, let’s 
return to our previous example and remember that, if the list contains a 0 value, no matter the index, the 
result will always be Nothing. But we want Nothing to be returned only for the 0 values, and the result of the 
division to be returned for the rest of the elements. We could proceed as follows.

divide :: Integral x => x -> [x] -> [Maybe x]
divide divident divisor =
    map ok divisor
    where ok 0 = Nothing
          ok x = Just (divident `div` x)

The following are the results.

Prelude> divide 100 [2, 10, 20, 50]
[Just 50,Just 10,Just 5,Just 2]
Prelude> divide 100 [2, 10, 20, 0, 50]
[Just 50,Just 10,Just 5,Nothing,Just 2]

The fact that we used divide :: Integral x => x -> [x] -> [Maybe x], instead of divide :: 
Integral x => x -> [x] -> Maybe [x] helps to maintain the laziness. An important benefit is that you 
can see exactly where the special case of division occurred.
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A useful library is safe, that could be found at this web page. It is useful because it works on Data.List 
and throws exceptions in different situations. For every unsafe function, there are more versions of it. For 
example, tail has the following versions.

•	 tail :: [a] -> [a]: The error occur on tail []

•	 tailMay :: [a] -> Maybe [a]: Transforms errors in Nothing

•	 tailDef :: [a] -> [a] -> [a]: Default to return on errors

•	 tailNote :: String -> [a] -> [a]: Could be used for a particular error message

•	 tailSafe :: [a] -> [a]: Returns a sensible default if possible; [] in the case of tail

Either
The use of Either is similar to the use of Maybe, but there is an important difference: Either can bind 
connected information for both a failure and a success. A function that returns Either has two sides: 
the right/correct value is returned with Right, and the wrong/incorrect value is returned with Left. The 
association between Right/Left and success/failure is not restricted. You can reversely bind them, but the 
convention is that the Right side is linked to success and the Left side is linked to failure.

The following shows the divide function written using Either.

divide :: Integral x => x -> [x] -> Either String [x]
divide _ [] = Right []
divide _ (0:_) = Left "divide: found 0"
divide divident (divisor:ys) =
    case divide divident ys of
      Left y -> Left y
      Right outputs -> Right ((divident `div` divisor) : outputs)

These are the results.

Prelude> divide 100 [2, 10, 20, 50]
Right [50,10,5,2]
Prelude> divide 100 [2, 10, 0, 20, 50]
Left "divide: found 0"

The implementation of Either is similar to the implementation of Maybe. Here, Right is corresponding 
to Just, and Left is corresponding to Nothing. An important feature of Either is that you can write your own 
failure message. The following example is modified so that there are restrictions on dividing by 2.

data DivisionError x = DivisionZero
                 | IllegalDivisor x
                   deriving (Eq, Read, Show)

divide :: Integral x => x -> [x] -> Either (DivisionError x) [x]
divide _ [] = Right []
divide _ (0:_) = Left DivisionZero
divide _ (2:_) = Left (IllegalDivisor 2)
divide divident (divisor:ys) =
    case divide divident ys of
      Left y -> Left y
      Right outcomes -> Right ((divident `div` divisor) : outcomes)
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The following shows the results of calling our function.

Prelude> divide 100 [2, 10, 0, 20, 50]
Left (IllegalDivisor 2)
Prelude> divide 100 [12, 10, 0, 20, 50]
Left DivisionZero
Prelude> divide 100 [12, 10, 20, 50]
Right [8,10,5,2]

Exceptions
As in many programming languages, Haskell allows you to handle exceptions. Only in the IO monad 
does Haskell catch exceptions, because the order of the evaluation is not specified. A special syntax is not 
necessary because the techniques through which exceptions are caught are mostly functions.

Control.Exception is an important module that works with exceptions. In this module, different 
functions exist. Many types are defined to handle exceptions. Every exception that occurs has the Exception 
type, because it is the main type.

try is a common function that handles exceptions. It has two sides: Left – returns an exception, and 
Right – returns the output, if the program was run successfully. Let’s look at the following example.

Prelude> :m Control.Exception
Prelude > let a = 2 `div` 2
Prelude > let b = 2 `div` 0
Prelude > print a
1
Prelude > print b
*** Exception: divide by zero
Prelude > try (print a) :: IO (Either SomeException ())
1
Right ()
Prelude > try (print b)
Left divide by zero

First, we just call the print function without handling a possible exception, but then we use the try 
function to catch possible exceptions that occur in calling print. The exception was thrown when we called 
the print function, not when we defined b. When an expected situation occurs—namely, printing a valid 
result, two lines are displayed: the first is caused by print, which provides result 1, and the second is caused 
by GHCI, which says that the function was called successfully, without exceptions.

Lazy Evaluation and Exceptions
Let’s run the following program.

Prelude> let c = undefined
Prelude > try (print c)
Left Prelude.undefined
Prelude > outcome <- try (return c)
Right *** Exception: Prelude.undefined
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As, you can see it is not a problem to assign the undefined value to c, but an exception occurs if you 
try to print it. But, why is there Right *** Exception: Prelude.undefined, if there is an exception? This 
is because Right comes from assignation, which works fine, but when it tries to print undefined, it gets an 
exception.

To avoid this kind of situations, use evaluate.

Prelude > let c = undefined
Prelude > outcome <- try (evaluate c)
Left Prelude.undefined
Prelude > outcome <- try (evaluate b)
Left divide by zero

evaluate is similar to return, but the system is forced to analyze the input.

The handle Function
Most times, we want our program to work in the case of success. But other times, we want it to work in case 
of failure; for example, we want to display a message. For that, we use the handle function, which has two 
sides: the second side is the function we want to call, and the first side is called in case of failure.

Prelude> :m Control.Exception
Prelude > let a = 2 `div` 2
Prelude > let b = 2 `div` 0
Prelude > handle (\_ -> putStrLn " Divide by zero ") (print a)
1
Prelude > handle (\_ -> putStrLn "Divide by zero") (print b)
Divide by zero

In the preceding example, we used a kind of brute force, because for any exception that arises, the 
message will be the same. Instead, you could use handleJust, which permits you to use particular types of 
exceptions, when the elements are described by a single type exception. For other types of exceptions, like 
arithmetic exceptions, I/O exceptions, custom exception, and so forth, a more powerful mechanism, such as 
Catch, is needed.

import Control.Exception

exeptionCatch:: Exception -> Maybe ()
exeptionCatch (ArithException IllegalDivision) = Just ()
exeptionCatch _ = Nothing

handle :: () -> IO ()
handle _ = putStrLn "We have an illegal operation: 0 as divisor."

myPrint :: Integer -> IO ()
myPrint a = handleJust exceptionCatch handle (print a)
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exceptionCatch represents a function that is establish if the targeted exception occurs, returning 
Just(), which goes to the handle function, or otherwise, Nothing.

Prelude> let a = 2 `div` 2
Prelude > let b = 2 `div` 0
Prelude > myPrint a
1
Prelude > myPrint b
We have an illegal operation: 0 as divisor.

Input/Output Exceptions
In most cases, exceptions occur because of the input/output. For that, Haskell has a special module called 
System.IO.Error, which defines the main functions try and catch. If the exceptions that occur do not have 
an IOError type, then they will not be captured.

■■ Note  System.IO.Error and Control.Exception have the same functions, but they act differently. You 
need to import these modules carefully. If both of them are imported, then there is an error when you use their 
functions, because the callings are ambiguous. So, you need to import them qualified, or conceal the symbols 
of one from the other. Another important aspect to remember is that the default catch used by Prelude is the 
System.IO.Error version.

The throw Function
Another aspect of exception handling is throw. In the earlier examples in this chapter, the exceptions were 
thrown by the system, but we can throw them on our own. The most used functions for this purpose are 
throw, throwIO, and ioError:

•	 throw belongs to Control.Exception and it could generate any Exception

•	 throwIO belongs to Control.Exception, but it generates exceptions  
(of type Exception) just for IO monad

•	 ioError belongs to Control.Exception and System.Error.IO, and it is used to 
engender exceptions associated with I/O

Dynamic Exceptions
Data.Dynamic and Data.Typeable modules are used for dynamic exceptions. They are very useful, especially 
when working with databases, because they return the errors from SQL queries. Usually, SQL exceptions 
have three elements: a number representing the error code, a state, and a message. In this section, we will 
implement a function that simulates SQL errors.

{-# LANGUAGE DeriveDataTypeable #-}
import Data.Dynamic
import Control.Exception
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data SqlException = SqlException {state :: String,
                          exceptionCode :: Int,
                          exceptionMessage :: String}
                deriving (Eq, Show, Read, Typeable)

In the last line of code, the data type becomes accessible for dynamic type, derived from Typeable.  
The first line is used to engender an object of type Typeable.

The following defines functions that implement catch and handle SQL errors. Observe that Haskell’s 
catch and handle are not able to figure out the error, because it does not fall under the Exception type class.

{- | It is executed the specified IO command.
When the SqlException occurs, it is executed the given
handler which returns its result. When our exception does
not occur, operate normally.-}
catchSqlEception :: IO x -> (SqlException -> IO x) -> IO x
catchSqlEception =  catchDyn

{- | This is the same as catchSql, but the arguments are reverted. -}
handleSqlException :: (SqlError -> IO x) -> IO x -> IO x
handleSqlException = flip catchSql

catchDyn is restricted to catch only SqlException.
If the program throws an exception, but it is not caught by any function, it will display a common error 

message; but when it comes to dynamic exceptions, which are unknown to the system, the message will not 
be clear. Instead, we could add a feature to our program so that all exceptions can be caught.

{- | There are caught SqlException and, then they are re-raised
Like IO errors and with failure. -}
featureHandleSqlException :: IO x -> IO x
featureHandleSqlException activity =
    catchSql activity myHandler
    where myHandler ex = fail ("Sql exception occured " ++ show ex)

The following throws a SqlException exception.

throwSqlException :: String -> Int -> String -> a
throwSqlException state exceptionCode exceptionMessage =
    throwDyn(SqlException state exceptionCode exceptionMessage)

throwSqlExceptionIO :: String -> Int -> String -> IO x
throwSqlExceptionIO state exceptionCode exceptionMessage =
    evaluate (throwSqlException state exceptionCode exceptionMessage)

Let’s see how it worked.

ghci> throwSqlExceptionIO "state" -100 "exception message"
*** Exception: (unknown)
ghci> featureHandleSqlException $ throwSqlException "state" -100 "exception message"
*** �Exception: user error (SQL error: SqlError {state = "state", exceptionCode = -100, 

exceptionMessage = "exception message"})
ghci> featureHandleSqlException $ fail "non-Sql exception"
*** Exception: user error (non-Sql exception)
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Summary
In this chapter, you learned

•	 how errors can be used in Haskell.

•	 the differences in using Maybe and Either.

•	 Exceptions in Haskell.

•	 the way lazy evaluation handles exceptions.

•	 the exceptions for input and output.

•	 the way the handle and the throw functions work.

•	 about dynamic exceptions.
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CHAPTER 6

Cancellation

When working with interactive applications, a thread may need to break another thread execution in a 
particular situation. The following are some general examples.

•	 In web applications, the client presses an Abort button. In this case, some activities 
need to be aborted; for example, a thread downloads something, or a thread runs 
script, or a thread renders a page.

•	 An application with a thread that runs an interface, and another thread that does 
intense computations, needs to abort the computation thread if the client is 
changing the parameter from the user interface.

•	 Usually, in server-based applications, the client has time to emit a demand before 
closing the connection. This approach prevents any remaining hanging connections 
that use many resources.

It is very important to decide if the targeted thread has the property to accept the cancellation, or if it is 
instantly closes when a particular situation occurs. This represents a compromise.

•	 When a thread can choose, it raises a risk because the thread may not respond for 
a short time, or even worse, it could become permanently unresponsive. When 
threads are not responding, it could lead to hangings or deadlock, which is very bad 
from the client’s point of view.

•	 When the cancellation is asynchronous, pieces of the program that change state 
must be kept safe from cancellation; otherwise, an update could be interrupted at an 
inappropriate time and could leave pieces of information in an improper state.

In reality, we have to choose between only implementing the first option and implementing both 
options. If the second option is preselected, protection of a crucial part leads to changing the choosing 
behavior during the crucial part.

In almost all imperative languages, the second option is not set as the default behavior because there 
are many parts where states are changed in a program. One major benefit of Haskell is that most code is 
functional, thus a condition could abort or safely suspend a thread, and then reload the thread without 
effect. In addition, specific to Haskell in a purely functional program, threads cannot ask for the cancellation 
conditions (due to the definition of a functional program itself), thus it cancels implicitly.

Hence, fully asynchronous cancellation represents the sensible implicit choice in Haskell. The only 
projection problem is to decide the way that cancellation is controlled by the program in the IO monad.

In this chapter, we talk mainly about asynchronous cancellation for threads, which is a sensible 
subject because it could occur at crucial moments in a program’s execution. The way that asynchronous 
cancellation is used in a program should be determined in the code in the IO monad.
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Asynchronous Exceptions
A very useful function in exception handling is bracket from Control.Exception.

bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c

This function allows the programmer setting up exception handling to deallocate some resources or to 
apply tidy-up operations. If we call bracket a b c, then a represents the operation that assigns the resource, 
b represents the operation that frees the resource, and c represents the actual operation that works. The 
following is the definition of bracket.

bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c
bracket ahead after current = do
  a <- ahead
  c <- current a `onException` after a
  after a
  return c

You already know that exceptions are a useful part of the IO monad, and the best practice in writing 
code with the IO monad is to make use of bracket, and then to gain and issue resources in a proper way. 
An important fact is that bracket should continue its job even if a thread is aborted. Thus, in this case, the 
cancellation should act as an exception. There is a huge distinction between exceptions and cancellation. 
For example, one is a situation in which an exception occurs when the user tries to open a file that does not 
exist anymore and an exception occurs when the user clicks an Abort button. In a second example, it is an 
asynchronous exception, because interruption was unexpected. The exceptions that occur when throw and 
throwIO are used are called synchronous exceptions.

If we want to use asynchronous exceptions, Haskell delivers a powerful primitive called throwTo that is 
throws exceptions from one thread to another thread.

throwTo :: Exception e => ThreadId -> e -> IO ()

Identical to synchronized exceptions, the argument for throwTo must be of type Exception. ThreadId 
is the output of a prior running of forkIO. It could represent a thread that is running, is blocked, or has 
ended. To show how to utilize throwTo, we will create a little program in which we will use the new Async 
type (defined next) to handle errors. In this program, the user is downloading web pages concurrently, and 
can quit the downloading pressing the Q key. The following is the code with explanations.

data Async a = Async (MVar (Either SomeException a)) -- 1

async :: IO a -> IO (Async a)
async something = do
  variable <- newEmptyMVar
  forkIO (do r <- try something; putMVar variable r) -- 2
  return (Async variable)

waitCatch :: Async a -> IO (Either SomeException a)  -- 3
waitCatch (Async var) = readMVar variable

wait :: Async a -> IO a                              -- 4
wait a = do
  x <- waitCatch a

www.allitebooks.com

http://www.allitebooks.org
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  case x of
    Left b  -> throwIO b
    Right a -> return a

•	 When MVar has Right a, the computation has successfully completed and returns 
the value a; when it has Left e, the computation throws exception e.

•	 The action is included in try that outputs Either SomeException a —the necessary 
type for MVar.

•	 There are two ways in which the result of Async could be waiting. First, waitCatch is 
returning Either SomeException a, which means the handling could be done right 
up. The second approach is to use wait, whose type is below. When wait is finding 
that in Async occurs an exception, it will throw again that exception.

wait :: Async a -> IO a

The preceding example is extended to permit cancellation. The following cancel operation is added.

cancel :: Async a -> IO ()

This function aborts an existing Async. If the operation is yet ended, then the function cancel has not 
any impact.

The implementation of cancel requires the ThreadId from the thread that runs the Async; thus, it needs 
to register it into Async type, together with MVar, which keeps the output. So, the Async type has the following 
definition.

data Async a = Async ThreadId (MVar (Either SomeException a))

Implement cancel as follows.

cancel :: Async a -> IO ()
cancel (Async t var) = throwTo t ThreadKilled

ThreadKilled belongs to Control.Exception. It is an exception that is thrown by cancel when a thread 
is called, even if it is already cancelled.

We now need to implement an async operation that will keep the output of the forkIO function from 
the Async constructor; namely, ThreadID.

async :: IO a -> IO (Async a)
async something = do
   mVar <- newEmptyMVar
   tVar <- forkIO (do r <- try something; putMVar mVar r)
   return (Async tVar mVar)

The following is an example (from Simon Marlow’s talk Parallel and Concurrent Haskell, also available 
here https://github.com/simonmar/parconcexamples/blob/master/geturlscancel.hs) in which web 
pages are downloaded, but we want to also have the option to cancel the download.

sites = ["http://www.google.com",
         "http://www.bing.com",
         "http://www.yahoo.com",

https://github.com/simonmar/parconcexamples/blob/master/geturlscancel.hs
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         "http://www.wikipedia.com/wiki/Spade",
         "http://www.wikipedia.com/wiki/Shovel"]

main = do
  as <- mapM (async . timeDownload) sites                     -- 1

  forkIO $ do                                                 -- 2
     hSetBuffering stdin NoBuffering
     forever $ do
        c <- getChar
        when (c == 'q') $ mapM_ cancel as

  rs <- mapM waitCatch as                                     -- 3
  printf "%d/%d succeeded\n" (length (rights rs)) (length rs) -- 4

Let’s take a look at the code.

	 1.	 Begin the download like in the initial example.

	 2.	 Branch a thread that reads characters through standard input until it meets the  
Q character, in which case the cancel function is called for Asyncs.

	 3.	 Expect the state of the output (completed or aborted).

	 4.	 Display a report that mentions the number of successful operations. If the 
program is started and you press Q very quickly, the output should look like the 
following.

downloaded: http://www.google.com (14538 bytes, 0.17s)
downloaded: http://www.bing.com (24740 bytes, 0.22s)
q2/5 finished

The program uses a long and complex HTTP library that does not supply assistance for cancellation 
and asynchronous I/O; Haskell provides modular cancellation assistance. A significant piece of code is not 
necessary for supporting it, even if some specifications should be taken into consideration when working 
with states.

Using Asynchronous Exceptions with mask
At the beginning of the previous section, we mentioned that a damaging cancellation could occur in the 
middle of an important action. For example, when an update process is suddenly interrupted, the data is left 
in an uncertain state, maybe forever. This is why you should supervise the way the asynchronous exceptions 
occur while running crucial sections. A solution could be the ability to postpone the asynchronous exception 
until the execution of crucial sections has finished; but this approach is not what we actually need.

Let’s imagine the following scenario: the takeMVar is called by a thread, which uses the value of MVar to 
make a computation, and then the output is stored by MVar. The implementation should allow asynchronous 
exceptions, but at the same time, it should be secure. For example, if an asynchronous exception occurs in 
the middle of a computation, then the value of MVar would be left empty. But this is not what should happen; 
instead, the initial value should be put back into MVar.

The following is a piece of code that illustrates that scenario. The function situation has two arguments: 
an m variable whose type is MVar, and an f function that makes a computation over the value of m in the IO 
monad.
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situation :: MVar a -> (a -> IO a) -> IO ()
situation m f = do
  a <- takeMVar mVar                                 -- 1
  rVar <- f a `catch` \e -> do putMVar mVar a; throw e  -- 2
  putMVar mVar rVar                                     -- 3

There are two places where MVar will be left without a value: from 1 to 2, and from 2 to 3. Actually, 
we could not intervene directly to be sure that the MVar value is not empty. But Haskell contains a great 
combinator called mask.

mask :: ((IO a -> IO a) -> IO b) -> IO b

The benefit of mask is that it delays the asynchronous exception so that its parameter has enough time 
to execute successfully. It is a little difficult, but the following is an example that shows how the combinator 
operates.

situation :: MVar a -> (a -> IO a) -> IO ()
situation mVar f = mask $ \restore -> do
  a <- takeMVar mVar
  rVar <- restore (f a) `catch` \e -> do putMVar mVar a; throw e
  putMVar mVar rVar

The argument of mask is a function, which has the restore function as a parameter that brings an 
asynchronous exception to its actual state while the argument of mask is executing.

This described approach is useful because it brings a solution to our problem: exceptions can be raised 
only while (f a) is running, and there is a handler to catch every exception that occurs.

But we have not solved all of our problems, because the following is exposed: takeMVar is blocked for 
too much time and it is an inner mask combinator, thus the thread will not respond. Moreover, there is no 
relevant cause to hide exceptions while takeMVar is executing, rather the exception could occur almost until 
the stage in which takeMVar is returning.

On the other hand, in Haskell, by definition, the takeMVar should behave as described. Only a few 
operations would be interrupted while executing, including takeMVar, because takeMVar could block for an 
unknown time, and every operation that could block for an unknown time is designated as interruptible. 
These special types of operations could be interrupted by asynchronous exceptions, even if they are within a 
mask combinator.

Within mask, asynchronous exceptions are no longer asynchronous, but they could be activated by 
computations. Thus, asynchronous exceptions become synchronous exceptions inner mask combinator. 
The operations that could be interrupted are operations that could block for an undefined time. This is the 
expected behavior in almost all cases, as in our example.

Let’s return to the situation function. putMVar could be blocked for an undefined time, so it becomes 
interruptible, which leads us to the conclusion that problem is not safe yet, since an asynchronous exception 
could occur by blocking putMVar.

The property to be interrupted is very rigorously defined, so the situation function is OK. This is 
because an operation could be interrupted only if it really blocks; but this is not the case for putMVar because 
when it is called, the value of MVar is absolutely empty, so it will not be interrupted.

Are we sure that the MVar is really empty? Actually, we are not precisely sure, because another thread 
could call the putMvar function, applied on the same MVar after takeMVar from the problem function is 
performed. Still, we know that MVar is performed in a consistent manner, such that every call of takeMVar is 
succeeded by a putMvar. This represents a usual approach for a large number of MVar operations—a certain 
usage of MVar brings a protocol, in which operations should succeed or else there is the risk of deadlock.
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Ultimately, there is a solution that permits a function to not be interrupted, and an asynchronous 
exception not to occur. The solution is uninterruptibleMask.

uninterruptibleMask :: ((IO a -> IO a) -> IO b) -> IO b

This is the same as mask, but it does not allow asynchronous exceptions to interrupt the interruptible 
functions. You need to pay attention to uninterruptibleMask, because the wrong use of it could produce 
significant damage, such that the application would no longer respond.

For debugging purposes, in the Control.Exception library there is a great function that allows us to 
verify if a current thread stands in the mask state or not.

getMaskingState :: IO MaskingState

data MaskingState
  = Unmasked
  | MaskedInterruptible
  | MaskedUninterruptible

As you can see, there are three constructors that could be returned by getMaskingState, one at a time, 
which are quite intuitive.

•	 Unmasked. The targeted thread is not an inner mask or uninterruptibleMask.

•	 MaskedInterruptible. The targeted thread is an inner mask.

•	 MaskedUninterruptible. The targeted thread is an inner uninterruptibleMask.

There are higher-level combinators that exempt programmers from the necessity to use the mask 
combinator. As an example, the problem function from earlier is provided by the Control.Concurrent.MVar 
library, and its name is modifyMVar, because it is applicable when operating with MVars.

modifyMVar_ :: MVar a -> (a -> IO a) -> IO ()

Another variation of modifyMVar permits a different outcome among the novel content of the MVar.

modifyMVar :: MVar a -> (a -> IO (a, b)) -> IO b

The following is a simple example that implements the well-known compare-and-switch (CAS) operation.

compareAndSwitchMVar :: Eq a => MVar a -> a -> a -> IO Bool
compareAndSwitchMVar m oldValue newValue =
  modifyMVar m $ \cur ->
    if cur == oldValue
       then return (newValue,True)
       else return (cur,False)

The parameters for compareAndSwitchMVar function are an MVar, a check valuable, and a new valuable. 
It works as follows: if the value of MVar is the same as the check value, then it changes with the new value and 
also returns True; else, the value of MVar is not changed and returns False.
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If we want to work with more MVars, we should fit more calls of modifyMVar. The following modified the 
values of the two MVars in a safe way.

modifyTwoValues :: MVar a -> MVar b -> (a -> b -> IO (a,b)) -> IO ()
modifyTwoValues maValue mbValue f =
  modifyMVar_ mbValue $ \b ->
    modifyMVar maValue $ \a -> f a b

When it is blocked inside modifyMVar, and an exception occurs, the content of MVar is restored to the 
initial value, with the help of an outside modifyMVar_.

Be careful with the order in which two or more values are taken. It should be the same order 
everywhere; otherwise, the program will have deadlock.

Extending the bracket Function
Let’s write a bracket function using mask, such that the function is safe if asynchronous exceptions occur.

bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c
bracket ahead after something =
  mask $ \restore -> do
    a <- ahead
    rVar <- restore (something a) `onException` after a
    _ <- after a
    return rVar

The IO actions are executed inside of mask, such as ahead and after. The bracket function assures that 
when ahead is returning, after is executed at a later time. The fact that ahead has a blocking process is legal. 
For example, if an exception occurs when ahead blocks, there is no damage. However, ahead could execute 
just a single blocking process. If a second blocking process raises an exception, it will not result in after 
being executed. If more blocking operations are necessary, then you should fit calls to bracket, as in the 
modifyMVar example.

Another thing to pay attention to is the use of blocking operations in after. If this is really necessary,  
be sure that the blocking operation can be interrupted and accept an asynchronous exception.

Writing Safe Channels Using Asynchronous Exceptions
Channels represent models for communications between processes, and synchronization between them 
through message passing (a method that invokes comportment on a computer, in which the programs are not 
called by names as in the classical method, but use object models to differentiate the general function from the 
particular implementations). Channels are useful because they facilitate the access of threads to the messages. 
Threads or processes can access a message that is sent through a channel if it has a reference to that channel.

In Haskell, channels belong to Control.Concurrent.Chan. The first step is to declare a channel, then to 
send data between threads using pipes, and then to extract data for different readers.

The following is a simple example in which file names are hashed and then printed using channels  
(see https://wiki.haskell.org/Haskell_for_multicores#Message_passing_channels).

{-# LANGUAGE BangPatterns #-}
import Data.Digest.Pure.MD5
import qualified Data.ByteString.Lazy as L
import System.Environment

https://wiki.haskell.org/Haskell_for_multicores#Message_passing_channels
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import Control.Concurrent
import Control.Concurrent.Chan
import Control.Monad (forever, forM_, replicateM_)

nrWorkers = 2

main = do
    files <- getArgs
    str <- newChan
    fileChan <- newChan
    forM_ [1..nrWorkers] (\_ -> forkIO $ worker str fileChan)
    forM_ files (writeChan fileChan)
    printNrResults (length files) str

printNrResults i var = replicateM_ i (readChan var >>= putStrLn)

worker :: Chan String -> Chan String -> IO ()
worker str fileChan = forever (readChan fileChan >>= hashAndPrint str)

hashAndPrint str f = do
        bs <- L.readFile f
        let !h = show $ md5 bs
        writeChan str (f ++ ": " ++ h)

In the remaing c ontent of section, there are examples that belong to Simon Marlow, from his 
talk “Parallel & Concurrent Haskell 3: Concurrent Haskell”, available at http://community.haskell.
org/~simonmar/slides/cadarache2012/3%20-%20concurrent%20haskell.pdf. When working with MVars, 
we can make the code safer against asynchronous exception if we replace the use of takeMVar and putMVar 
with modifyMVar_. For example, the following function reads from a buffered channel, which is not safe 
when it deals with asynchronous exceptions.

readChan :: Chan a -> IO a
readChan (Chan readVar _) = do
  stream <- takeMVar readVar
  Item val new <- readMVar stream
  putMVar readVar new
  return val

When the execution of the primal takeMVar raises an asynchronous exception, the readMVar remains free, 
which leads to deadlock because of further read operations over Chan. modifyMVar helps achieve safer code.

readChan :: Chan a -> IO a
readChan (Chan readVar _) = do
  modifyMVar readVar $ \stream -> do
    Item val tail <- readMVar stream
    return (tail, val)

The preceding modification is not sufficient. Do not forget that readMVar has the following definition.

readMVar :: MVar a -> IO a
readMVar m = do
  a <- takeMVar m

http://community.haskell.org/~simonmar/slides/cadarache2012/3%20-%20concurrent%20haskell.pdf
http://community.haskell.org/~simonmar/slides/cadarache2012/3%20-%20concurrent%20haskell.pdf
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  putMVar m a
  return a

Looking at the readMVar definition, notice that when an exception occurs after the execution of 
takeMVar, but before the execution of readMVar, the content of the MVar is empty; therefore, it is necessary 
to assure the safety here, also. To do that, more options exist. One option is to utilize modifyMVar to reinstate 
the initial value. Another option is to utilize an extent of modifyMVar.

withMVar :: MVar a -> (a -> IO b) -> IO b

withMVar is similar with modifyMVar, but it does not modify the value of the MVar; thus, it is better for the 
goal of readMVar.

The easiest option is to only keep readMVar safe by using a mask. This approach is also adopted by the 
Control.Concurrent.MVar library.

readMVar :: MVar a -> IO a
readMVar m =
  mask_ $ do
    a <- takeMVar m
    putMVar m a
    return a

In the preceding implementation, mask_ is similar to mask; still, it does not have a restore function as 
a parameter. This implementation is enough because takeMVar and putMVar do not exist in any operation; 
thus, it is not needed in the exception handler.

The writeChan is a little more difficult. The initial definition is

writeChan :: Chan a -> a -> IO ()
writeChan (Chan _ writeVar) val = do
  newHole <- newEmptyMVar
  oldHole <- takeMVar writeVar
  putMVar oldHole (Item val newHole)
  putMVar writeVar newHole

To protect our code against exception, one idea is the following implementation.

wrongWriteChan :: Chan a -> a -> IO ()
wrongWriteChan (Chan _ writeVar) val = do
  newHole <- newEmptyMVar
  modifyMVar_ writeVar $ \oldHole -> do
    putMVar oldHole (Item val newHole)  -- 1
    return newHole                      -- 2

Still, it is not safe, because in lines 1 and 2, an asynchronous exception could occur, which will let  
old_hole full and writeVarbounding to old_hole, which breaks the invariants of the data structure.

To resolve this last issue, all we need to do is apply mask_ over the entire sequence.

writeChan :: Chan a -> a -> IO ()
writeChan (Chan _ writeVar) val = do
  newHole <- newEmptyMVar
  mask_ $ do
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    oldHole <- takeMVar writeVar
    putMVar oldHole (Item val newHole)
    putMVar writeVar newHole

Observe that both putMVars are ensured against blocking; thus, they cannot be interrupted.

timeout Variants
A function that limits the amount of time for an action to work is a popular approach in concurrent 
programming when using asynchronous exceptions. For this purpose in Haskell, there is timeout from the 
System.Timeout module wrapper. Its type is

timeout :: Int -> IO a -> IO (Maybe a)

timeout t m acts as follows.

•	 Similar to fmap Just m, m returns an outcome or leads to an exception (inclusive to 
the asynchronous one) in t microseconds.

•	 In other cases, it raises an exception in the format Timeout u. Timeout represents 
a novel data type, and u represents a single valuable whose type is Unique, so this 
specific instance of timeout is distinguished from any others. In this case, calling 
timeout gets Nothing.

In reality, the necessary t microsecond is approximated by timeout. In the first case, it is necessary 
that the execution of m be done under the conditions of the current thread, as m could need myThredId. It is 
also expected that m be interrupted by a thread that throws an exception to the current one, using throwTo. 
Having this anticipated behavior, nesting timeouts would help.

The following implementation for timeout is from the System.Timeout library (with some minor 
changes). It is a little complicated, but we will explain it. The main point is to branch a thread, which is 
waiting for t microseconds, until it calls throwTo for throwing the Timeout exception; thus, it is necessary 
that timeout terminate the thread until it returns.

timeout t m
    | t <  0    = fmap Just m                           -- 1
    | t == 0    = return Nothing                        -- 2
    | otherwise = do
        pid <- myThreadId                               -- 3
        u <- newUnique                                  -- 4
        let ex = Timeout u                              -- 5
        handleJust                                      -- 6
           (\e -> if e == ex then Just () else Nothing) -- 7
           (\_ -> return Nothing)                       -- 8
           (bracket (forkIO $ do threadDelay t          -- 9
                                 throwTo pid ex)
                    (\tid -> throwTo tid ThreadKilled)  -- 10
                    (\_ -> fmap Just m))                -- 11

Here are a few explanations.

•	 Lines 1 and 2: Treat the simple cases of timeout being less or equal to zero.

•	 Line 3: Get the ThreadId that belongs to the current thread.
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•	 Lines 4 and 5: newUnique generates a novel value, which creates a novel Timeout 
exception.

•	 Line 6: handleJust handles exceptions and has the type

handleJust :: Exception e
           => (e -> Maybe b) -> (b -> IO a) -> IO a
           -> IO a

•	 Line 7: The first parameter of handleJust says which exceptions are caught. For this 
example, we need to catch an exception of Timeout type that contains the unique 
valuable generated.

•	 Line 8: The secondary parameter of handleJust handles the exceptions. In our case, 
it is returning Nothing because timeout takes place.

•	 Line 9: This operation is running in handleJust. In this part, the novel thread 
is forked, making use of bracket, which assures that the novel thread is always 
terminated until the timeout function outputs. In the novel thread, threadDelay has 
a delay of t microseconds, and throwTo throws an exception whose type is Timeout 
to the initial thread.

•	 Line 10: Terminates the youngest thread every time.

•	 Line 11: The computation m (the secondary parameter of bracket) is running inside 
bracket, which will lead to the outcome Just.

We could check the correctness of the program in three cases.

•	 m finishes and outputs a value.

•	 The second thread (the new one) throws an exception; whereas m is still doing its 
tasks.

•	 Both threads call throwTo at the same time.

The first two cases could be easily verified by running the program with specific arguments. The third 
case in the list is a little difficult. What happens in this case? It is actually conditioned by the implementation 
of throwTo. When bracket is called, it should not be allowed to output; whereas a Timeout exception could yet 
arise; this is necessary for timeout to work correctly. Therefore, when throwTo terminates the second thread, 
its call should be synchronous. In the event that it outputs, the second thread will not be able to throw an 
exception. This behavior is assured by the implementation of throwTo, which returns immediately after the 
exception occurs in the desired thread. As a consequence, throwTo could still be blocking when the second 
thread runs mask with asynchronous exceptions, which could be interrupted and get asynchronous exceptions.

For the third case, throwTo is called from both threads, which represents the expected and correct 
behavior.

Catching Asynchronous Exceptions
The behavior of an asynchronous exception is the same as a synchronous exception. It can be caught with 
catch or another function that catches exceptions from Control.Exception. Let’s say it was caught an 
asynchronous exception. We need to make some computations, but other asynchronous exception have 
occurred in the actual thread, which interrupts the initial function that handles exceptions. This behavior 
is not what we expect, because it could cause damage; the exception handlers could be interrupted by 
asynchronous exceptions.
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The preceding behaviors can be avoided using mask and restore, as follows.

  mask $ \restore ->
    restore action `catch` handler

We have already used this approach in some examples. The expected behavior is that asynchronous 
exceptions from mask stand inside the exception handler. Haskell brings a great benefit by doing this 
automatically, so there is no need to use mask explicitly. When returned from the handling exception, they 
are outside of mask again.

You need to pay attention and not remain in the default mask. The following is an example that shows 
this situation. The program inputs are file names by command line, and the output is represented by the 
number of lines for each file. If the file with a given name does not exist, then it is ignored.

main = do
  fs <- getArgs
  let
     loop !n [] = return n
     loop !n (f:fs)
        = handle (\e -> if isDoesNotExistError e
                           then loop n fs
                           else throwIO e) $
            do
               getMaskingState >>= print
               h <- openFile f ReadMode
               s <- hGetContents h
               loop (n + length (lines s)) fs

  n <- loop 0 fs
  print n

The names of the files are read in the recursive loop function, where it tries opening and reading the 
content of each file, and saves the number of lines in the n variable. For every file, handle is called to assure 
exception handling. If isDoesNotExistError from System.IO.Error occurs, showing that the specified file 
does not exist, the exception handling is calling the recursive loop function to do the same operations over 
the remaining file names.

At first look, the program is working, but a problem could occur when getMaskingState is called.  
Next, the program runs with more file names that could not be found.

$ ./catch-mask xxx yyy
Unmasked
MaskedInterruptible
0

In the first iteration of the loop function, the state is Unmasked, which is good; but in the next iteration, it 
is reported that the current state is MaskedInterruptible, which is bad, because the synchronous exception 
should not be masked starting at the secondary iteration.

This situation has occurred because the loop function was called recursively by the exception handler, 
which means that the calling is done in the default mask from handle.
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The following is the improved program.

main = do
  fs <- getArgs
  let
     loop !n [] = return n
     loop !n (f:fs) = do
        getMaskingState >>= print
        r <- Control.Exception.try (openFile f ReadMode)
        case r of
          Left e | isDoesNotExistError e -> loop n fs
                 | otherwise             -> throwIO e
          Right h -> do
            s <- hGetContents h
            loop (n + length (lines s)) fs

  n <- loop 0 fs
  print n

The loop function is not called any more recursively inside a mask. In addition, we have limited the 
purpose of the exception handler to only openFile, which is better than in the previous version.

You need to pay attention to this approach. In situations where handling asynchronous exceptions is 
needed, it is best that the exception handling is done within mask, so that current work is not interrupted by 
other asynchronous exception until it ends the first exception. This is why catch or handle are more suitable.

mask and forkIO Operations
Now, let’s return to the async function from the previous sections.

async :: IO a -> IO (Async a)
async action = do
   m <- newEmptyMVar
   t <- forkIO (do r <- try action; putMVar m r)
   return (Async t m)

This implementation is actually a mistake. When the Async is aborted, an exception is raised 
immediately after try; at putMVar, the thread terminates, but the content of MVar remains empty. The 
program experiences deadlock if it is waiting for the outcome of Async.

The code could be put inside a mask, but this will not help because, if an exception occurs before 
try, then the behavior will be similar. It follows a natural question: Which is the way in that asynchronous 
exceptions are put inside mask, in the place between creation of the thread and execution of try? Calling mask 
function within forkIO is not sufficient, because throw could be applied on an exception before calling mask.

This is why forkIO creates a thread that receives the state of mask as it is in the parent thread. So, it 
could create a thread that occurs in the masked state by encapsulating the forkIO call within the mask.

async :: IO a -> IO (Async a)
async action = do
   m <- newEmptyMVar
   t <- mask $ \restore ->
          forkIO (do r <- try (restore action); putMVar m r)
   return (Async t m)
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Another variation of forkIO is shown next. It allows you to take some action after a thread is completed.

forkFinally :: IO a -> (Either SomeException a -> IO ()) -> IO ThreadId
forkFinally action fun =
  mask $ \restore ->
    forkIO (do r <- try (restore action); fun r)

Here is the improved version if the async function.

async :: IO a -> IO (Async a)
async action = do
   m <- newEmptyMVar
   t <- forkFinally action (putMVar m)
   return (Async t m)

Finally, the program is safe now.

Summary
In this chapter, you saw how asynchronous cancellation works for threads, and how to proceed when a 
thread can accept the cancellation, or is instantly aborted if a certain situation occurs. You also used useful 
operations such as bracket, timeout, mask, and forkIo. You were introduced to channels and you learned 
how to make them safe using asynchronous exceptions.
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CHAPTER 7

Transactional Memory Case 
Studies

Safety and ease in programming are two advantages of transactional memory. If the transactions are used 
correctly, then it is almost impossible for problems to occur in parallel code (for example, deadlocks). 
The programmer mostly needs to assign transactions (and maybe some transaction variables). It is not 
necessary to identify the locks or their correct order to prevent deadlocks or other problems. How do you use 
transactions correctly? All shared data is passed through transaction variables to threads. Transactional data 
is accessed only through transactions; and in transactions, there are no operations that can be rolled back.

This chapter explains what transactional memory is and how it works in Haskell.

Transactions
A transaction consists of grouped activities that are not individually visible by an external observer.  
The results of the combined activities are seen by the external observer. A database transaction has several 
properties: atomicity, consistency, isolation, and durability—known as ACID properties.

•	 Atomicity means that all actions that compound a transaction must terminate 
successfully; but if an action fails, then the transaction has not finished successfully. 
When a transaction is successful, then it commits; otherwise, it aborts.

•	 Consistency depends on the application, but generally, it represents a selection of 
states for data. This means a new state of data is created by a transaction; but if a 
failure occurs, then the data is returned to its state prior to the transaction.

•	 Isolation means that transactions run separately. They do not interact with each 
other, even if they are executed in parallel.

•	 Durability means that once a transaction successfully completes and commits, the 
result is irreversible and available for further transactions.

Introducing Transactional Memory
Transactions seem to be a good technique for programming languages. It assures consistency in the 
information used by other processes.

The basic concept is easy to understand. In a system based on concurrency or parallelism, the read 
and write operations are coordinated properly, applying abstraction provided by the characteristics of the 
transactions. Nowadays, programmers coordinate read and write operations using basic techniques, such as 
locks or mutexes, to avoid interaction between concurrent threads.
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Because of their properties, transactions can be used in concurrency such that a program encapsulates 
a task in a transaction. The successful execution is assured by atomicity; then, the outcome is committed, 
or the task is aborted if there is a failure. Isolation assures that the result is always the same, whether the 
transaction is executed alone or there are concurrent transactions.

For transaction memory, atomicity becomes failure atomicity, assuring consistency. For example, 
if a transaction is not completed successfully, then some pieces of information could remain in an 
uncertain state and affect other transactions. To control concurrency, it is necessary to have a technique for 
implementing failure atomicity, so that the data can be reverted to a previous state in the event of failure.

Software Transactional Memory
Read logs and write logs supply software transactional memory (STM) systems the information needed 
for conflict detection and solution. Read logs have a version number that provides useful information to 
a thread (because when an object update occurs, its version number is increased). The thread checks if a 
concurrent thread has changed an object that it uses for reading. If a conflict occurs, then the thread will use 
undo logs to cancel a transaction.

There are many characteristics that differentiate STM systems. This is usually based on the purpose of 
the system. The following are a few examples.

•	 Low sequential overhead. In these systems, the transaction instructions run as 
quickly as allowed.

•	 Good scalability. A parallel amount of work utilizing transactions can enhance 
execution as processors are included. This is very useful in cloud computing systems.

•	 Strong progress guarantees. For example, blocking is avoided. Another criteria is the 
programming semantics provided by the STM systems.

The evaluation of the transactional memory systems is influenced by the way that systems with multiple 
processors work. From a computational point of view, choosing a more expensive method leads to lower 
synchronization or cache movement. Hardware dissimilarities could sway the capabilities of STM systems; 
for example, the STM system model for memory vs. classical memory accessions.

Software Transactional Memory in Haskell
STM supplies compounding atomic transactions, which allow you to combine read and write operations, 
or other types of memory operations, into one atomic operation. As you have seen, the transactions could 
abort or retry.

The STM transactions are found in the STM monad.

data STM a
instance Monad STM

Transactions are executed using a special function called atomically, which is covered in a later in 
this chapter.

atomically :: STM a -> IO a

A very important and useful primitive is represented by retry, a function that cancels the actual 
transaction and reloads it in case any dependencies are modified during transactions in different threads.

retry :: STM a
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The STM package supplies the essential transactional variables, but there are other complicated 
structures that are delivered by other packages. The following are a few structures from stm:Control.
Concurrent.STM.

•	 TVar: A localization of memory that is imparted; a correspondent of IORef, but its 
type is transactional.

•	 TMVar: A changeable variant correspondent to IORef.

•	 TChan: Channels corresponding to Chan from the base.

•	 TQueue: A channel with high speed, but does not support channel replication.

•	 TBQueue: Limited and non-replicable channels.

•	 TArray: The corresponding transactional arrays from the array package.

The stm-containers and stm-chans packages also supply transactional structures.
As technology becomes more complex, processors contain more cores, and software products become 

more elaborated, there is an increasing need for transactional memory. Mainly, the software transactional 
memory represents the act of synchronizing common memory and avoiding deadlock.

GHC is one of the best compilers. It supplies very good assistance to STM systems. To work with STM, 
Haskell makes use of monads.

The following are simple examples that implement typical concurrent programming models.

module STM where
import Random
import Control.Monad
import Control.Concurrent
import Control.Concurrent.STM

The first example implements the semaphores, or locks, as they are also named. In the snipped code, 
we use traditional obtain and release to achieve and issue the semaphore.

type Semaphore = TVar Bool
newSem :: Bool -> IO Semaphore
newSem available = newTVarIO available
 obtain :: Semaphore -> STM ()
 obtain sem = do b <- readTVar sem
            if b
               then writeTVar sem False
               else retry
 release :: Semaphore -> STM ()
 release sem = writeTVar sem True

One of the powerful characteristic of STM’s implementation in GHC is the retry combinator, because 
it manipulates conditional synchronization. When a state is not accomplished, it is called retry. At the right 
moment, the process is awoken by the runtime system.

Next is an example of an unlimited buffer, in which processes can add or retrieve information. In the 
following piece of code, we do not concentrate on efficiency, but on clarity of implementation.

type Buffer a = TVar [a]
newBuffer :: IO (Buffer a)
newBuffer = newTVarIO []
put :: Buffer a -> a -> STM ()
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put buffer item = do ls <- readTVar buffer
                      writeTVar buffer (ls ++ [item])
get :: Buffer a -> STM a
get buffer = do ls <- readTVar buffer
                 case ls of
                   [] -> retry
                   (item:rest) -> do writeTVar buffer rest
                                     return item

In the preceding example, the main operation is writing. When there is only one process that writes on 
the buffer, it can be read an arbitrary number of times. If there are many processes, just one of them could 
access the buffer at a certain time, because the semaphore implementation gives a reciprocal exclusion. 
The first process that made a request is first served.

An easy but important pattern is resource allocation. In the following, we use a relaxed variant of 
resource allocation, in which a counter is used to keep the quantity of disposable resources. When a process 
requests a certain quantity of resources, and it is not disposable, then it blocks.

type Resource = TVar Int
acquire :: Resource -> Int -> STM ()
acquire res nr = do n <- readTVar res
                     if n < nr
                        then retry
                        else writeTVar res (n - nr)

release :: Resource -> Int -> STM ()
release res nr = do n <- readTVar res
                     writeTVar res (n + nr)

The next example is the dining philosophers, a representative problem for concurrent programming, 
and a good example of STM use. To check if the simulation works right, we need to display what the 
philosophers are doing. To do that, we need to pay attention to how we print output in standard out, because 
the classical I/O primitives in Haskell are thread unsafe. We have a buffer where the processes write, and 
a thread that reads from the buffer and prints the output. This is useful because only one process gives the 
output, so it will not be an unexpected output. The forks are implemented as binary semaphores, as before.

simulation n = do forks <- replicateM n (newSem True)
                   outputBuffer <- newBuffer
                   for [0..n-1] $ \i ->
                     forkIO (philosopher i outputBuffer
                             (forks!!i)
                             (forks!!((i+1)`mod`n)))
                   output outputBuffer
 output buffer =
     do str <- atomically $ get buffer
        putStrLn str
        output buffer
for = flip mapM_
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In the first line of code, the system is prepared for simulation, such that simulation is a function with 
just one argument; namely, the number of philosophers. The next step is to create the number of forks and 
the buffer, and then generate the philosopher processes that receive their corresponding forks. In the last 
step, the principal thread enters a loop that reads the output from the buffer and then displays the read 
messages.

philosopher :: Int -> Buffer String -> Semaphore -> Semaphore -> IO ()
philosopher n out fork1 fork2 =
     do atomically $ put out ("Philosopher " ++ show n ++ " is thinking.")
        randomDelay
        atomically $ do
          p fork1
          p fork2
        atomically $ put out ("Philosopher " ++ show n ++ " is eating.")
        randomDelay
        atomically $ do
          v fork1
          v fork2
        philosopher n out fork1 fork2
randomDelay = do r <- randomRIO (100000,500000)
                  threadDelay r

As you can see, the preceding code is quite simple, but its strength is that it is able to sequentially 
create transactions and then atomically execute them. Let’s observe that the philosopher processes run in 
the IO monad and access the transactional memory when they synchronize. This is a classic example of 
transactional memory use.

When a philosopher starves, randomDelay occurs, which calls threadDelay at a certain time.

A Bank Account Example
The following is a function that transfers an amount of money.

sendAmount :: Account -> Account -> Int -> IO ()
-- Send 'amount' from account 'from' to account 'to'
sendAmount fromAccount toAccount moneyAmount
  = atomically (do deposit toAccount moneyAmount
                    withdrawAmount fromAccount moneyAmount)

The inside do block is quite simple: deposit is called to put an amount in a repository, and 
withdrawAmount is called to retrieve an amount. We will implement these functions later in this chapter. 
First, let’s observe the atomically function. The parameter is an action that is executed atomically. So, there 
are two important characteristics of a transaction to observe:

•	 Atomicity. The repercussions of atomic transactions are obvious to other threads at 
the same time. In our example, this means that an estate in which the amount was 
stored, but not withdrawn, could not be identified by another threads.

•	 Isolation. When atomic transactions are performed, the action is not affected by 
other threads.
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Let’s imagine a basic running model for atomicity: it is only one global lock. The atomically act gets 
the lock, runs the action, and discharges the lock. This usage guarantees that two atomic pieces will not be 
executed at the same time, and so the atomicity is guaranteed.

This model sounds very simple, but it still has disadvantages. First, isolation is not ensured because 
there is no condition that stops a thread to write the same IORef outright (namely, outside atomically, 
without keeping the general lock); whereas a certain thread is approaching an IORef inside an atomic piece 
(which holds the general lock). Another disadvantage is low performance, because each atomic sequence 
will be serialized, although interference is impossible. This problem is discussed later. For the moment, let’s 
review the atomically function.

atomically :: STM a -> IO a

As you can see, the parameter of the atomically function is an action that has STM a. An STM action 
is similar to an IO action in regards to side effects, but those of the STM actions are much lower. The most 
important operations done in an STM action are reading and writing transactional variables, which have TVar 
a type; like IORefs, it could be read or written in an IO action.

readTVar  :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

Like IO actions, the STM actions can be formed with the same do notation, because it has an 
implementation for every type. The following code presents the withdraw function.

type Account = TVar Int

withdrawAmount :: Account -> Int -> STM ()
withdrawAmount account amount = do
    bal <- readTVar account
    writeTVar account (bal - amount)

The Account type is has one variable, whose type is Int to represent the repository balance. The 
withdrawAmount function subtracts the desired amount from the total amount of the account, an operation 
that is implemented as an STM action.

The following is the entire sendAmount function.

depositAccount :: Account -> Int -> STM ()
depositAcoount account amount = withdraw account (- amount)

import System.IO
import Control.Concurrent.STM

type Account = TVar Int

withdrawAmount :: Account -> Int -> STM ()
withdrawAmount account amount = do
    bal <- readTVar account
    writeTVar account (bal - amount)

depositAccount :: Account -> Int -> STM ()
depositAccount account amount = withdrawAmount account (- amount)
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sendAmount :: Account -> Account -> Int -> IO ()
-- Transfer 'amount' from account 'from' to account 'to'
sendAmount fromAccount toAccount moneyAmount
    = atomically (do depositAccount toAccount moneyAmount
                     withdrawAmount fromAccount moneyAmount)

displayAccount :: Account -> IO Int
displayAccount account = atomically (readTVar account)

main = do
    fromAccount <- atomically (newTVar 200)
    toAccount <- atomically (newTVar 100)
    sendAmount fromAccount toAccount 50
    v1 <- displayAccount fromAccount
    v2 <- displayAccount toAccount
    putStrLn $ (show v1) ++ ", " ++ (show v2)

newTVar represents two accounts: the sender and the beneficiary.
Observe that the sendAmount function realizes four read and write actions: reading and writing to 

the sender account, and reading and writing to the beneficiary account. The readings and writings run 
atomically, and satisfy the requirements described in the beginning of this chapter.

Read and write operations outside a TVar transaction are prevented by the type system. Let’s do the 
following.

wrong :: Account -> IO ()
wrong account = do
    hPutStr stdout "Withdrawing..."
    withdrawAmount account 10
This program won't compile:
import System.IO
import Control.Concurrent.STM

type Account = TVar Int

withdrawAmount :: Account -> Int -> STM ()
withdrawAmount account moneyAmount = do
    bal <- readTVar acc
    writeTVar account (bal - moneyAmount)

wrong :: Account -> IO ()
wrong account = do
    hPutStr stdout "Withdrawing..."
    withdrawAmount account 10

main = do
    account <- atomically (newTVar 200)
    wrong account
    hPutStr stdout "\nDone!\n"
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The program will be cancelled because the hPutStr and withdraw actions have different types, IO and 
STM, respectively, so they cannot be put in the same single block.

The following is the error message.

Couldn't match type 'STM' with 'IO' 
       Expected type: IO () 
         Actual type: STM ()

If we make the withdrawAmount action an argument for an atomically function, then it will work fine.

right :: Account -> IO ()
right account = do
    hPutStr stdout "Withdrawing..."
    atomically (withdrawAmount account 10)

The program is compiled and could be executed as follows.

import System.IO
import Control.Concurrent.STM

type Account = TVar Int

withdrawAmount :: Account -> Int -> STM ()
withdrawAmount account moneyAmount = do
    bal <- readTVar account
    writeTVar account (bal - moneyAmount)

right :: Account -> IO ()
right account = do
    hPutStr stdout "Withdrawing..."
    {-hi-}atomically{-/hi-} (withdrawAmount account 10)

main = do
    account <- atomically (newTVar 200)
    right account
    hPutStr stdout "\nDone!\n"

Transactional Memory Version
Isolation and atomicity should be enough for STM use. But it is also important to keep a clean 
implementation of a model to understand every step. One advantage of STMs is that it has a clean and  
easy-to-use interface that can be implemented in different ways.

An example of implementation called optimistic execution is in the database area. An empty thread 
is assigned for many local transactions whenever an atomically act occurs; after that, the locks are not 
taken during an act action. Every time an act is running, there is a log in which writeTVar it is writing 
the address of TVar in that log, but not the value of TVar. The writeTVar writes every time it is called. 
Similarly, when readTVar is called, the address corresponding to TVar is searched into the log (only 
if writeTVar was previously called). If there is no TVar address value in the log, then it reads the TVar 
value, which is saved in the log. Of course, at the same time, there could be more threads that read and 
write values and TVar addresses.

https://www.schoolofhaskell.com/school/advanced-haskell/beautiful-concurrency/3-software-transactional-memory#3-3-implementing-transactional-memory
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When the act is performed, the log is verified, and if the result is success, then the log is committed.  
To validate a log, every record of TVar in the log is verified such that the value in the log must match the 
actual TVar value. If there is a match, the verification has succeeded, and then in the commit, every record 
from write in the log is written in the real TVars.

The presented steps are dependent one of each other, such that, the implementation does not allow the 
interrupts, utilizes locks or instructions for example, make a comparison and then exchange. All these are 
needed for ensuring that the verification and commit are not seen by another threads. These steps are part 
of the implementation; the programmer is unaware of them.

Earlier, we presented a successful case. When it fails, however, the transaction’s view of memory is 
wrong. Thus, the transaction is aborted, the log is reinitialized, and the act is executed again, this procedure 
is named re-execution. This is possible, because the writes have not been registered into the memory. It is 
very important that act contains only read and write operations so as not to influence other threads. Let’s 
examine the following piece of code.

atomically (do x <- readTVar xv
               y <- readTVar yv
               if x>y then launchRockets
                      else return () )

launchRockets :: IO () has secondary effects over other threads. Locks are not taken when the 
atomic pieces are executed, so when a concurrent thread changes the values of xv and yv, an inconsistent 
view of memory will occur. If this happens, then the run of launchMissiles is at fault; it will be discovered 
later that the verification has failed, and the transaction should run again. But in Haskell, we have type 
system, which impedes executing IO actions inside STM actions, thus, the previous piece of code will be 
cancelled by the type checker. This is another benefit of differentiation between IO and STM actions.

import System.IO
import Control.Concurrent.STM

launchRockets :: IO ()
launchRockets = hPutStr stdout "Zzzing!"

main = do
    xv <- atomically (newTVar 2)
    yv <- atomically (newTVar 1)
    atomically (do x <- readTVar xv
                   y <- readTVar yv
                   if x > y then launchRockets
                            else return () )

Blocking and Choice
Atomic blocks (or pieces) are inappropriate for coordination of concurrent programs. They dismiss two 
important characteristics: blocking and choice. In this section, you will see how to elaborate a base STM 
interface, so that blocking and choice are included in a modular approach.

Let’s consider the situation when a user tries to withdraw an amount greater than what is available; in 
this case, a thread should prevent this action. These situations occur often in concurrent programming. Other 
examples are when a thread tries to read from an empty buffer, or it is waiting for an occurrence; in these cases, 
the thread should block. To make this happen in STM, all we need to do is add the retry function, whose type is

retry :: STM a

https://www.schoolofhaskell.com/school/advanced-haskell/beautiful-concurrency/3-software-transactional-memory#3-4-blocking-and-choice
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The following is an improved withdraw function that aborts if the desired amount is greater than the 
available amount.

limitWithdrawAmount :: Account -> Int -> STM ()
limitWithdrawAmount account moneyAmount = do
    bal <- readTVar account
    if moneyAmount > 0 && moneyAmount > bal
    then retry
    else writeTVar account (bal - moneyAmount)
import System.IO
import Control.Concurrent.STM
import Control.Concurrent

type Account = TVar Int

limitWithdrawAmount :: Account -> Int -> STM ()
limitWithdrawAmount account moneyAmount = do
    bal <- readTVar account
    if moneyAmount > 0 && moneyAmount > bal
    then retry
    else writeTVar account (bal - moneyAmount)

delayDepo account moneyAmount = do
    hPutStr stdout "Waiting for deposit \n"
    threadDelay 3000000
    hPutStr stdout "OK! Depositing now!\n"
    atomically ( do bal <- readTVar account
                    writeTVar account (bal + moneyAmount) )

main = do
    account <- atomically (newTVar 100)
    forkIO (delayDepo account 1)
    hPutStr stdout "Withdrawing...\n"
    atomically (limitedWithdrawAmount account 101)
    hPutStr stdout "Success!\n"

The preceding code is branched a thread that calls delayDeposit; this function waits 3 seconds to 
deposit the sum. Meantime, the limitedWithdrawAmount function aborts because the available sum is too 
low; limitedWithdrawAmount is successful after a thread successfully completes the deposit.

The retry function is very easy: when a retry action occurs, the actual transaction is abandoned and 
reloaded at a future time. The theoretical correct procedure is that transaction to be retried instantly, but 
this is also not efficient, because the available amount is probably the same, in which case the transaction is 
retried. An efficient way is to stop the thread until another thread writes to the account. This approach raises 
a question: Is the implementation able to await the account? Yes, it is, because the account is read by the 
transaction as a retry function; this deed is registered in the transaction log.

The limitedWithdrawAmount condition has a communal model: it verifies that a Boolean statement 
is pleased. If it is not, the retry occurs. We have globalized all that we have explained in the following 
check function.

checkAcc :: Bool -> STM ()
checkAcc True = return ()
checkAcc False = retry
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The following is another version of limitedWithdrawAmount.

limitedWithdrawAmount :: Account -> Int -> STM ()
limitedWithdrawAmount account moneyAmount = do
    bal <- readTVar account
    checkAcc (moneyAmount <= 0 || moneyAmount <= bal)
    writeTVar account (bal - moneyAmount)

Here is the code in which we added the check function.

import System.IO
import Control.Concurrent.STM
import Control.Concurrent

type Account = TVar Int

limitedWithdrawAmount :: Account -> Int -> STM ()
limitedWithdrawAmount account moneyAmount = do
    bal <- readTVar account
    checkAcc (moneyAmount <= 0 || moneyAmount <= bal)
    writeTVar account (bal - moneyAmount)

delayDepo account moneyAmount = do
    threadDelay 3000000
    hPutStr stdout "Depositing...\n"
    atomically ( do bal <- readTVar account
                    writeTVar account (bal + moneyAmount) )

main = do
    account <- atomically (newTVar 100)
    forkIO (delayDepo account 1)
    hPutStr stdout "Withdrawing...\n"
    atomically (limitedWithdrawAmount account 101)
    hPutStr stdout "Oh, phew!\n"

Now, let the user to make a choice: if the initial account does not have enough funds, then the user 
could choose to withdraw the amount from another account.

For that, we need the ability to choose an alternative action if the first one retries. To support choice, 
STM Haskell has a primitive action called orElse, whose type is

orElse :: STM a -> STM a -> STM a

Like atomically, orElse takes actions as its arguments, and glues them together to make a bigger 
action. Here are its semantics: The action (orElse a1 a2) first performs a1; if a1 retries (i.e., calls retry), it 
tries a2 instead; if a2 also retries, the whole action retries. It may be easier to see how orElse is used.

limitedWithdrawAmount2 :: Account -> Account -> Int -> STM ()
-- (limitedWithdrawAmount2 acc1 acc2 amt) withdraws amt from acc1,
-- if acc1 has enough money, otherwise from acc2.
-- If neither has enough, it retries.
limitedWithdrawAmount2 account1 account2 amount
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  = orElse (limitedWithdrawAmount account1 amount) (limitedWithdrawAmount account2 amount)
import System.IO
import Control.Concurrent.STM
import Control.Concurrent

type Account = TVar Int

limitedWithdrawAmount :: Account -> Int -> STM ()
limitedWithdrawAmount account moneyAmount = do
    bal <- readTVar account
    checkAcc (moneyAmount <= 0 || moneyAmount <= bal)
    writeTVar account (bal - moneyAmount)

displayAccount name account = do
    bal <- atomically (readTVar account)
    hPutStr stdout (name ++ ": $")
    hPutStr stdout (show bal ++ "\n")

limitedWithdrawAmount2 :: Account -> Account -> Int -> STM ()
-- (limitedWithdrawAmount2 acc1 acc2 amt) withdraws amt from acc1,
-- if acc1 has enough money, otherwise from acc2.
-- If neither has enough, it retries.
limitedWithdrawAccount2 account1 account2 amount
  = orElse (limitedWithdrawAcount account1 amount) (limitedWithdrawAccount account2 amount)

delayDepo name account moneyAmount = do
    threadDelay 3000000
    hPutStr stdout ("Depositing $" ++ show moneyAmount++ " into " ++ name ++ "\n")
    atomically ( do bal <- readTVar account
                    writeTVar account (bal + moneyAmount) )

main = do
    account1 <- atomically (newTVar 100)
    account2 <- atomically (newTVar 100)
    displayAccount "Left pocket" account1
    displayAccount "Right pocket" account2
    forkIO (delayDepo "Right pocket" account2 1)
    hPutStr stdout "Withdrawing $101 from either pocket...\n"
    atomically (limitedWithdrawAmount2 account1 account2 101)
    hPutStr stdout "Successful!\n"
    displayAccount "Left pocket" account1
    displayAccount "Right pocket" account2

We use a showAcc helper function to display the content of an account before and after the withdrawal. 
We have two accounts, account1 and account2, both with insufficient funds for the limitedWithdrawAmount2 
to succeed immediately. However, when the background thread deposits $1 into account2, the call succeeds.

Since the result of orElse is an STM action, you can feed it to another call to orElse and so choose 
among an arbitrary number of alternatives.

Summary
This chapter discussed how software transactional memory (STM) works in Haskell, and covered the most 
important operations that can be applied.
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CHAPTER 8

Debugging Techniques Used in  
Big Data

In this chapter, you learn what big data means and how Haskell can be integrated with big data. You also see 
some debugging techniques.

Data Science
There is critical and developing interest in data science by the data-savvy experts at organizations, open 
offices, and charities. The supply of experts who can work successfully with information at scale is limited, 
however, which is reflected by the quickly rising salaries of information engineers, information researchers, 
analysts, and information investigators.

In a recent review by the McKinsey Global Institute, an expert remarked: “A shortage of the analytical 
and managerial talent necessary to make the most of big data is a significant and pressing challenge (for the 
United States).”

The report states that by 2018 there will be 4 to 5 million jobs in the United States that require data 
analysis aptitude. An extensive number of positions may be filled through preparing or retraining. There will 
be a need for 1.5 million managers and examiners with investigative and specialized abilities “who can ask 
the right questions and consume the results of analysis of big data effectively.”

Information becomes inexpensive and omnipresent. We are currently digitizing easy content that was 
made over hundreds of years, and gathering new sorts of information from web logs, cell phones, sensors, 
instruments, and exchanges. The measure of computerized information that exists is developing at a 
tremendous rate—doubling every two years, and changing the way we live. International Business Machines 
(IBM) estimates that 2.5 billion gigabytes (GB) of information was produced each day in 2012, which 
represents 90% of all available data from all of history. An article in Forbes states that data is coming more 
quickly than at any other time, and by the year 2020, around 1.7 megabytes of new data will be made each 
second—for each person on the planet.

Meanwhile, new technologies are developed in order to understand and to use this avalanche of 
unstructured data gathered from many fields of activity. These provides a way to recognize patterns in all 
available information, which contains data of different types, helping to propel grant, enhance the human 
condition, and make business and social to grow. The ascent of big data can develop our comprehension of 
aspects ranging from physical and natural frameworks to human social and monetary behavior.

Essentially, each area of the economy now has access to a larger amount of information than would 
have been possible even 10 years ago. Organizations today are amassing new information at a rate that 
surpasses their ability to get value from it. The question confronting each organization is how to adequately 
utilize the information—not only their own information, but also the greater part of all of the information 
that is accessible and important.
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Our capacity to infer social and financial value from this recently accessible information is constrained 
by the absence of expertise. Working with this information requires particular new aptitudes and 
instruments. The information is often excessively voluminous, making it impossible to fit on one PC, to be 
controlled with conventional databases, or to use with standard design programming. The information is 
likewise more heterogeneous than the curated information of the past. Digitized, audio, visual, sensor, and 
blog content are often muddled, deficient, and unstructured. These types of information typically have 
unverifiable provenance and quality, and much of the time, they must be joined with other information to be 
helpful. Working with client-created information additionally raises protection, security, and moral issues.

Data science is rising with the convergence of the fields of sociology and software engineering. It is 
dealing with unorganized and organized information, and represents a field that involves everything that 
identifies with data cleansing, readiness, and investigation. Data science is the unification of mathematics, 
statistics, programming, and critical thinking. It requires the capacity to find and observe information in 
clever new ways, and to purge, prepare, and adjust this information. Basically, it is the umbrella of the 
systems utilized when attempting to understand information from data.

Data science has applications in a lot of fields, including Internet search, digital advertising, health care, 
travel, gaming, and energy management, among many others.

Big Data
Big data is a term for data sets that are so extensive or complex that conventional information handling 
applications are lacking to manage them. Its origin dates back to 1990. To understand this technology, this 
section offers a comprehensive description of big data.

Characteristics
Until now, there was no standard definition for big data. There are three commonly agreed upon 
characteristics of big data within the scientific community.

•	 Volume. In 2012, about 2.5 exabytes (2.5 billion gigabytes) of information were created 
every day. It continues at a rate that doubles approximately every 2 years. Today, a 
greater amount of information crosses the Web each second than was placed on the 
entire Web 20 years ago. This gives organizations a chance to work with numerous 
petabytes of information in just one data set—and not only from the web. For 
example, it is estimated that Walmart gathers more than 2.5 petabytes of information 
from its client exchanges. A petabyte is one quadrillion bytes, or around 20 million file 
organizers of content. An exabyte is 1,000 times that sum, or 1 billion gigabytes.

•	 Velocity. For some applications, the speed of data creation is considerably more 
imperative than the volume. Real-time or almost real-time data makes it workable 
for an organization to be significantly more coordinated than its rivals. Retrieving 
fast and useful information is a big advantage for a company.

•	 Variety. Big data is collected from messages, updates, and pictures appearing 
on social media; data sent from sensors; data collected from GPS; and many 
other sources. A number of the most critical origins of enormous information are 
moderately new. The immense measures of data from social media, for instance, 
are just as old as the systems themselves. For example, Facebook was inaugurated 
in 2004; Twitter in 2006. Cell phones are similar; they now have gigantic amounts 
of information attached to individuals, activities, and places. Accordingly, the 
organized databases of corporate data are currently ill suited for handling massive 
amounts of information. In the meantime, the declining costs of the stocking, 
memory, handling, transmission capacity, and so forth, imply that the existing costly 
information gathering methodologies are rapidly becoming distinctly conservative.
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The preceding characteristics are known as the 3Vs, defined by analyst Doug Laney of the META Group 
(now Gartner) in 2001. Even if these 3Vs are widely accepted by the community, in some reports, big data is 
seen as 5Vs. The other 2Vs come from the following.

•	 Veracity. This alludes to the untidiness of or the trust we have in the information. 
With many types of big data, quality and precision are less controllable (consider 
Twitter posts with hash tags, grammatical mistakes, and casual discourse, and also 
questionable dependability and accuracy); however, big data and examination 
innovations now permit us to work with this sort of information. The volume of this 
information regularly compensates for the absence of value or accuracy.

•	 Value. It is fine to have access to enormous amounts of information; however, unless 
we can transform it into something of value, it is useless. So, this last V can be seen as 
the most critical V in big data. It is imperative that organizations put forth a business 
defense for any endeavor to gather and influence massive amounts of information. 
It is so natural to fall into the buzz trap and gather enormous information activities 
without a reasonable comprehension of the expenses and the advantages.

Figure 8-1 illustrates a synthesizing of big data characteristics.

Volume
Terabytes
Record/Arch
Transactions
Tables, Files

Velocity
Batch
Real-time
Processes
Streams

Big Data
Variety
Structured
Unstructured
Multi-factor
Probabilistic

Veracity
Trustworthiness
Authenticity
Origin
Availability
Accountability

Value
Statistical
Events
Correlations
Hypothetical

Figure 8-1.  Big data represented as 5Vs

Tools
When we are working with data, there are more stages through which data passes until useful information is 
extracted. Let’s look at the stages involved in the process of extracting information from big data, as well as 
some of the tools used in every category.
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Storage and Management
Classical database systems cannot handle large amounts of data, so new systems for storage and 
management have been developed.

•	 Hadoop. Hadoop has become synonymous with big data. It’s an open source 
programming structure for distributed systems of huge data sets on computer 
clusters. This means that data can be scaled up and down without hardware damage. 
Hadoop provides gigantic measures of capacity for any sort of data, tremendous 
preparing power, and the space to handle tasks or jobs without limit.

•	 Cloudera. Basically, it is a Hadoop brand name for with additional administration. 
It helps businesses construct an information center point that permits employees 
better access to information. Since it contains an open source component, Cloudera 
helps organizations manage their Hadoop system. They likewise convey a specific 
measure of information security, which is very important with sensitive or personal 
information.

•	 MongoDB. Consider it a replacement option for relational databases. It is very good 
for data that changes rapidly, or unstructured or semi-structured data. Regular 
uses include stocking data for portable applications, item inventories, real-time 
personalization, content administration, and applications conveying a solitary view 
over numerous frameworks.

•	 Talend. This is a company that provides open source technologies. One of their 
best products is Master Data Management, which combines real-time information, 
applications, and process incorporation assuring data quality.

Cleaning
It is a powerful thing to own data, but more important is to extract knowledge from that data. It is a little 
complicated to obtain information from data sets as they are, because in many cases, they are unstructured. 
The following products clean data sets and bring them to a usable form.

•	 OpenRefine is a free tool for cleaning data. Data sets can be explored quickly and 
without complication, even if the data is unstructured.

•	 DataCleaner is a that tool converts semistructured data sets into cleansed data sets 
that can be read without effort.

Data Mining
Data mining means finding knowledge inside a database rather than separating information from site pages 
into databases. The focus of data mining is to obtain predictions, which helps with decision making.  
The following are most commonly used tools for data mining.

•	 RapidMiner is a device for predictive examination. It is strong, simple to use, and has 
an open source group behind it. You can even add your own particular techniques 
into RapidMiner by using its dedicated APIs.

•	 IBM SPSS Modeler contains an entire suite of techniques used in data mining.  
It incorporates text examination, element analytics, and decision administration and 
improvement.
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Other data-mining products include Oracle Data Mining (ODM), TeraData, FrameData, and Kagle.

Languages
Some languages provide great support for big data. The following are the most popular.

•	 R is a language for statistical and graphical usage.

•	 Python has become one of the most commonly used programming languages.  
It is flexible, free, and contains many libraries for data management and analysis.  
It is also used in web applications that need great scalability.

Haskell for Big Data
Of course, one of the most important languages used in big data is Haskell. The following are some of the 
tools that Haskell provides for working with large data set.

•	 hspark

•	 Hadron

•	 Cloud Haskell

•	 ZeroMQ

•	 Krapsh library

Next, we briefly describe these Haskell tools.

hspark

A new library inspired by Apache Spark, it is useful in distributed, in-memory computations. It performs 
simple Map-Reduce jobs over nodes from networks.

hspark implements an easy and extendible Digital Subscriber Line (DSL) for specifying a job.  
A configuration of a cluster is taken as input and the jobs are translated into a set of distributed jobs, 
making use of the distributed-process Cloud Haskell library.

The following are components of hspark.

•	 Context. Provides information about the cluster.

•	 Resilient Distributed Dataset (RDD) DSL. Expresses hspark jobs.

•	 Execution. Executes RDD and its dependencies.

Let’s look at Alp Mestanogullari’s and Mathieu Boespflug’s “Hello World!” example using hspark 
(http://www.tweag.io/posts/2016-02-25-hello-sparkle.html). It is on an Amazon cluster.

# Build it
$ stack build hello
# Package it
$ mvn package -f sparkle -Dsparkle.app=sparkle-example-hello
# Run it
$ spark-submit --master 'spark://IP:PORT' sparkle/target/sparkle-0.1.jar

http://www.tweag.io/posts/2016-02-25-hello-sparkle.html
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The following code counts the number of lines from the input file that contains at least one “a” 
character.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE StaticPointers #-}

import Control.Distributed.Spark as RDD
import Data.Text (isInfixOf)

main :: IO ()
main = do
    conf <- newSparkConf "Hello sparkle!"
    sc <- newSparkContext conf
    rdd <- textFile sc "s3://some-bucket/some-file.txt"
    as <- RDD.filter (static (\line -> "a" `isInfixOf` line)) rdd
    numAs <- RDD.count as
    putStrLn $ show numAs ++ " lines with the letter 'a'."

Hadron

The purpose of the Hadron library is to use type-safety in the complex and sensitive world of Hadoop 
Streaming MapReduce. It will be presented in more detail in Chapter 13.

The following are its main characteristics.

•	 Binds into Hadoop using the Streaming interface.

•	 Operates Hadoop jobs in many steps, so programmers do not need to call Hadoop 
manually.

•	 Allows the user to interact with input/output data from the Hadoop Distributed File 
System (HDSF), Amazon S3, or other systems that Hadoop supports.

•	 Makes a set of long and complicated jobs easier to design and maintain.

•	 Provides built-in support for map-side joins.

•	 Provides many combinators from the Controller module, which covers  
simple tasks.

It provides three modules.

•	 Hadron.Basic: Constructs one MapReduce step, but it is not recommended for  
direct usage.

•	 Hadron.Controller: Automates instrumentation of map-reduce jobs with  
multiple stages.

•	 Hadron.Protocol: Describes data encode/decode strategies according to  
Protocol type.

Cloud Haskell

Cloud Haskell is a library used in distributed concurrency. It is covered in Chapter 9. The aim of this 
library is to provide support in writing programs for clusters. The supplied model is message-passing 
communication, which is very similar to Erlang.

http://dx.doi.org/10.1007/978-1-4842-2781-7_13
http://dx.doi.org/10.1007/978-1-4842-2781-7_9
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It is available as a distributed process. The following are some of its characteristics.

•	 Builds concurrent programs making use of asynchronous message passing.

•	 Builds distributed computing programs.

•	 Builds fault tolerance systems.

•	 Runs on different network transport implementations.

•	 Supports static values (necessary for remote communication).

An important purpose of Cloud Haskell is the separation between transport and process layers, so that 
the transport back-end does not depend on anything. Novel connections can be created using Control.
Distributed.Process.

ZeroMQ

The ZeroMQ library is an extension of a classical socket interface, adding characteristics that are usually 
supplied by specific messaging middleware products. Its sockets deliver an abstractization of asynchronous 
message queues, manifold messaging models, messages filtration, and so forth.

The zeromq4-haskell package is used to bind to the ZeroMQ library. The following is an example of 
ZeroMQ usage in displaying the input for a socket (https://gitlab.com/twittner/zeromq-haskell).

{-# LANGUAGE OverloadedStrings #-}
import Control.Monad
import System.Exit
import System.IO
import System.Environment
import System.ZMQ4.Monadic
import qualified Data.ByteString.Char8 as CS

main :: IO ()
main = do
    args <- getArgs
    when (length args < 1) $ do
        hPutStrLn stderr "usage: display <address> [<address>, ...]"
        exitFailure
    runZMQ $ do
        sub <- socket Sub
        subscribe sub ""
        mapM_ (connect sub) args
        forever $ do
            receive sub >>= liftIO . CS.putStrLn
            liftIO $ hFlush stdout

The preceding code defines a socket and then prints the data it receives.

The Krapsh Library

This project explores an alternative API to run complex workflows on top of Apache Spark. It is available at 
https://github.com/krapsh/kraps-haskell.

https://gitlab.com/twittner/zeromq-haskell
https://github.com/krapsh/kraps-haskell
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The Developer’s Perspective
Through this API, complex transforms can be applied on top of Spark, making use of different programming 
languages. The advantage is that there is no need to communicate with Java objects. Every programming 
language only needs to implement an interface that does not rely on features specific to Java virtual 
machines, and that can be implemented using standard REST technologies.

A set of bindings is being developed in the Haskell programming language. It is used as the reference 
implementation. Despite its limited usage in data science, it is a useful tool to design strongly principled 
APIs that work across various programming languages.

The User’s Perspective
Citing Readme file from github page of Krapsh library, the following are some features of the Krapsh library.

•	 Lazy computations. No call to Spark is issued until a result is required. Unlike 
standard Spark interfaces, even aggregation operations such as collect() or sum() 
are lazy. This allows Krapsh to perform whole-program analyses of the computation 
and to make optimizations that are currently beyond the reach of Spark.

•	 Strong checks. Thanks to lazy evaluation, a complete data science pipeline can 
be checked for correctness before it is evaluated. This is useful when composing 
multiple notebooks or commands. For example, a lot of interesting operations in 
Spark, such as machine learning algorithms, involve an aggregation step. In Spark, 
such a step would break the analysis of the program and prevent the Spark analyzer 
from checking further transforms. Krapsh does not suffer from such limitations and 
checks the entire pipeline at once.

•	 Automatic resource management. Because Krapsh has a global view of the pipeline,  
it can check when data needs to be cached or uncached. It is able to schedule 
caching and uncaching operations automatically, and it refuses to run a program 
that may be incorrect with respect to caching (for example, when uncaching 
happens before the data is accessed again).

•	 Complex nested pipelines. Computations can be arbitrarily nested and composed.  
It allows the conceptual condensing of complex sequences in operations into 
a single high-level operation. This is useful for debugging and understanding a 
pipeline at a high level without being distracted by the implementation details in 
each step. This follows the same approach as TensorFlow.

•	 Stable format and language agnostic. A complex pipeline may be stored as a JSON 
file in one programming language and read/restored in a different programming 
language. If this program is run on the same session, that other language can access 
the cached data.

Haskell vs. Data Science
As a programming language, Haskell offers a few engaging components. Specifically, it’s one of only a few 
current languages that are not strict, which means expressions can have a value regardless of the possibility 
that their subexpressions do not; this keeps it from requiring everything to be assessed. The code can be 
cleaner because capacities do not need everything fixed to work.

It is especially valuable when working with functions that may be required later: rather than assessing 
everything now, only use them if and when important (recursions are particularly great).
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While the non-strictness identifies what Haskell computes, the how is also significant—lazy evaluation. 
This influences the reduction order by attempting to reduce the highest function in the program, which 
means the parameters of the function are evaluated only if it is necessary. While this implies the lazy 
evaluation has a tendency to get the same or better complexity like eager evaluation, it could make the code 
to lead to space leaks. So, as a conclusion, lazy evaluation has better time performance, but may lead to 
space leaks.

Therefore, thanks to Haskell’s non-strictness and lazy evaluation, it could be used functions like “bind” 
(>>=) which are useful when a value could not be obtained yet, and the bind chooses when to call the 
function. Basically, the control is taken by the bind function. Moreover, you can label values that outcome 
from impure calculation, and control the assessment order.

Haskell is used in many areas, including financial services and bioinformatics. Bank of America Merrill 
Lynch, BAE Systems, Capital IQ, Ericsson AB, Facebook, Google, Glyde, Intel, IVU Traffic Technologies AG, 
Microsoft, and NVIDIA are on the impressive list of companies that use Haskell.

Haskell has a solid base of financial code that is normally inaccessible to the public, yet it is the subject 
of a considerable number of blog articles and analysis on how you can construct exceptionally proficient, 
capable spilling frameworks that interact with Excel. 

Haskell has a tendency to be a memory hog. Memory leaks can occur without careful attention to avoid 
them. This weakens its use for extensive data sets, but it is easy to prevent these issues. This means, it needs 
to know anytime where new laziness is created and deciding whether that is right or not. The data types that 
are strict and belong to UNPACK pragma remove space utilization and leakage.

For strict data types, there are two pragmas: Strict and StrictData (a subset of Strict). Using Strict, 
the fields of the constructor and the bindings (like let, where, case function arguments) are made strict. 
StrictData is almost the same, but it is applied only on constructor fields by using strict annotation (i.e., !).

data T = T !Int !Int

In the preceding definition, none of the constructor fields lead to space leak because they are fully 
evaluated to Ints when the constructor is called. (For more about Strict and StrictData pragmas, visit 
https://wiki.haskell.org/Performance/Data_types or http://blog.johantibell.com/2015/11/the-
design-of-strict-haskell-pragma.html).

The UNPACK pragma tells the compiler that the content of a field from a constructor needs to be 
unpacked into the constructor itself; thus, it removes a level of indirection. The following example is from 
the official documentation (https://downloads.haskell.org/~ghc/8.0.2/docs/html/users_guide/ 
glasgow_exts.html#unpack-pragma). It generates a constructor, T, that has two unboxed floats.

data T = T {-# UNPACK #-} !Float
           {-# UNPACK #-} !Float

Note that this approach could not be an optimization if it used incorrectly for example, when the T 
constructor is examined and the floats are sent to a function that is non-strict, it needs to be boxed again 
(automatically)—a process that needs additional computations. To have an effect, the UNPACK pragma 
should be used with the –o option (through which unboxing is avoided).

Haskell provides a very useful library called vector, which is used very often in data science. Other 
useful libraries include ad, linear, vector-space, statistics, compensated, and log-domain. They are not 
the same. We will let you further explore these libraries.

Haskell’s best dense matrix library, hmatrix, is good and falls under General Public License (GPL). A 
disadvantage of these libraries is that they do not work as smoothly as the vector library. The Repa library 
is another good one; it is optimized for images and parallel matrix operations, such as as Discrete Fourier 
Transform (DFT).

http://www.baml.com/
http://www.baml.com/
http://www.ivu.de/uk/products/public-transport/
https://wiki.haskell.org/Performance/Data_types
http://blog.johantibell.com/2015/11/the-design-of-strict-haskell-pragma.html
http://blog.johantibell.com/2015/11/the-design-of-strict-haskell-pragma.html
https://downloads.haskell.org/~ghc/8.0.2/docs/html/users_guide/
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If it is necessary that a graphics processing unit (GPU) be spared, then this is very easy when using the 
algorithms provided by the Accelerate library.

The following are the main reasons why Haskell is very good with data science.

•	 Type system doubles as a design language, crystallizes thoughts

•	 Catches errors early, refactors aggressively (in comparision to Ruby or Python)

•	 Purity of functions in Haskell is a huge win for long-term solutions/applications

•	 Stays at a very high level, yet still gets solid performance

•	 QuickCheck is very good, testing is better

•	 Simple multicore concurrency

•	 Promising future for parallel algorithms

Debugging Tehniques
The dubugging techniques for big data are the same as classical debugging techniques from Haskell. For 
example, Microsoft Azure provides support for Haskell. Additional information about the Microsoft Azure 
Cloud platfomr is at https://docs.microsoft.com/en-us/azure.

In this section, we present a simple example of how to use Azure and Haskell. It is from Phil Freeman’s 
short blog tutorial “Haskell on Azure” (http://blog.functorial.com/posts/2012-04-29-Haskell-On-
Azure.html). It uses the azure-servicebus package.

Microsoft Azure supplies storage services (table, queue, and blob storage services) revealing REST APIs. 
In the following, there is a union between the Happstack web server and blaze-html for building a simple 
web application that takes notes. It is easy to change in with a specific web server.

module Main where

import Data.Maybe
import Control.Monad
import Control.Monad.Trans
import System.Time
import System.Directory
import Happstack.Server
import qualified Text.Blaze.Html4.Strict as H
import qualified Text.Blaze.Html4.Strict.Attributes as A
import Network.TableStorage
import Text.Blaze ((!), toValue)

The next stept defines the account that will be used. it contains a service endpoint, a user name, and the 
secret key.

This example uses the development account, which means the Windows Azure storage emulator should 
exist and run on the computer on which the example is implemented.

account :: Account
account = developmentAccount

When deploying an account to staging or production, the developmentAccount could be replaced with a 
call to defaultAccount, having the account information extracted from the Azure management portal.

https://docs.microsoft.com/en-us/azure
http://blog.functorial.com/posts/2012-04-29-Haskell-On-Azure.html
http://blog.functorial.com/posts/2012-04-29-Haskell-On-Azure.html
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The application is very simple. It has three parts: many notebooks will exist, it will be possible to view 
the latest note in a notebook, and it will be possible to add a new note in a specific notebook. The notes can 
be fragmented, if necessary, according to the notebook’s capacities. In the table storage model, this means 
that the notebook being used is determined by the note entities’ partition key.

We should allow the generation of a new key. We will sort the note ids after the date of insertion so that 
the more recent notes are displayed first. We will generate a key based on the current time, subtracting the 
seconds component of time from the large value to reverse the order of the generated keys.

newId :: IO String
newId = do
  (TOD seconds picos) <- getClockTime
  return $ show (9999999999 - seconds) ++ show picos

With the preceding piece of code, now we can implement the method through which a new note is 
added. This will be a POST method that receives the arguments as form-encoded data in the request body.

After the generation of the key, it is uses the insertEntity IO action for adding the just-produced note 
object to the table notes. The elements of the note are the author and text properties, which are string 
columns.

If the adding procedure is successfully completed, then the redirect and get actions are performed 
to display the newly added note; otherwise, an error message is displayed—namely, 500 - Internal 
Server Error.

postNote :: ServerPartT IO Response
postNote = do
  methodM POST
  tmp <- liftIO getTemporaryDirectory
  decodeBody $ defaultBodyPolicy tmp 0 1000 1000
  text <- look "text"
  author <- look "author"
  partition <- look "partition"
  result <- liftIO $ do
    id <- newId
    let entity = Entity { entityKey = EntityKey { ekPartitionKey = partition,
                                                  ekRowKey = id },
                          entityColumns = [ ("text", EdmString $ Just text),
                                            ("author", EdmString $ Just author)] }
    insertEntity account "notes" entity
  case result of
    Left err -> internalServerError $ toResponse err
    Right _ -> seeOther ("?partition=" ++ partition) $ toResponse ()

When a notebook is chosen, the last 10 notes are displayed. This is done using the queryEntity 
function, which retrieves the notes from the table, and filters them after the partition key.

getNotes :: ServerPartT IO Response
getNotes = do
  methodM GET
  partition <- look "partition" `mplus` return "default"
  let query = defaultEntityQuery { eqPageSize = Just 10,
                                   �eqFilter = Just $ CompareString "PartitionKey"  

Equal partition }
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  result <- liftIO $ queryEntities account "notes" query
  case result of
    Left err -> internalServerError $ toResponse err
    Right notes -> ok $ setHeader "Content-Type" "text/html" $ toResponse $ root partition 
notes

The preceding implementation uses a very simple query, but there is a package called tablestorage 
that allows difficult queries, including many filters at once.

If the call of the function completes successfully, then it returns an HTML page, created using  
blaze-html; otherwise, a 500 error code is displayed. The root function performs these actions.

root :: String -> [Entity] -> H.Html
root partition notes = H.html $ do
  H.head $
    H.title $ H.toHtml "Notes"
  H.body $ do
    H.h1 $ H.toHtml "Add Note"
    H.form ! A.method (toValue "POST") $ do
      �H.input ! A.type_ (toValue "hidden") ! A.name (toValue "partition") ! A.value  

(toValue partition)
      H.div $ do
        H.label ! A.for (toValue "text") $ H.toHtml "Text: "
        H.input ! A.type_ (toValue "text") ! A.name (toValue "text")
      H.div $ do
        H.label ! A.for (toValue "author") $ H.toHtml "Author: "
        H.input ! A.type_ (toValue "text") ! A.name (toValue "author")
      H.div $
        H.input ! A.type_ (toValue "submit") ! A.value (toValue "Add Note")
    H.h1 $ H.toHtml "Recent Notes"
    H.ul $ void $ mapM displayNote notes

The page has a form, where the user could submit a new note, with text areas for the text and the author 
arguments. The partition key is given as an unseen field, but the user can modify it by changing the query 
string.

Next is a form that lists the latest notes from the current notebook (partition key). These recent notes are 
displayed with the help of the displayNote function.

displayNote :: Entity -> H.Html
displayNote note = fromMaybe (return ()) $ do
  text <- edmString "text" note
  author <- edmString "author" note
  return $ H.li $ do
    H.toHtml "'"
    H.toHtml text
    H.toHtml "'"
    H.i $ do
      H.toHtml " says "
      H.toHtml author

The edmString helper function is used for extracting a column whose type is string from the available 
columns retrieved through the query.
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The Maybe-valued function returns Just as a string when the column’s name has string values, and 
Nothing is returned if there is no column or the type of column in not string. Functions for different column 
types could be found in the tablestorage package.

We use two routes—getNotes and postNotes—for creating the web application.

routes :: [ServerPartT IO Response]
routes = [ getNotes, postNote ]

The main function defines the constraints to create the notes table, if it does not exist. Using the 
createTableIfNecessary function checks this.

main :: IO ()
main = do
  result <- createTableIfNecessary account "notes"
  case result of
    Left err -> putStrLn err
    Right _ -> simpleHTTP nullConf $ msum routes

In order to deploy the application, cspack and csrun command-line utilities are used.
Some basic configuration files are needed. The web server will run as a worker, fact that needs to be set 

up in the ServiceDefinition.csdef file. We need to add a worker role definition, like in the following.

-- <ServiceDefinition name="Notes" xmlns="http://schemas.microsoft.com/
ServiceHosting/2008/10/ServiceDefinition">
--   <WorkerRole name="WebServer" vmsize="Small">
--     <Runtime>
--       <EntryPoint>
--         <ProgramEntryPoint commandLine="Main.exe" setReadyOnProcessStart="true" />
--       </EntryPoint>
--     </Runtime>
--     <Endpoints>
--       <InputEndpoint name="happstackEndpoint" protocol="tcp" port="80" />
--     </Endpoints>
--   </WorkerRole>
-- </ServiceDefinition>

The ServiceConfiguration.*.cfg files should contain a role section with the same worker role name.

-- <Role name="WebServer">
--   <ConfigurationSettings />
--   <Instances count="1" />
-- </Role>

After building the application, an executable Main.exe is obtained, which needs to be put under 
WebServer role subdirectory. The command used build for deployment is:

-- cspack /copyOnly ServiceDefinition.csdef

The package can then be deployed locally using

-- csrun Notes.csx ServiceConfiguration.Local.cscfg
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At this step the operations which are available are: add a note, display the content of a note and move 
into another notebook by simply editing the query string.

To deploy the application in Azure, a cspkg file needs to be built, using the following command  
(note that credentials for development account needs to be replaced in code by credentials for management 
portal):

-- cspack ServiceDefinition.csdef

Next, we present some debugging methods that can be applied to big data.

Stack Trace
Late forms of GHC permit a dump of a stack follow (of cost focuses) when an error is raised. Keeping in 
mind the end goal to empower this, compile with -prof and run with +RTS - xc. (Since just the cost focus 
stack will be printed, you might need to include - fprof-auto - fprof-cafs to the aggregation venture to 
incorporate all definitions in the following.) Since GHC version 7.8, the errorWithStackTrace function can 
be used to automatically dump the stack follow.

The following is a simple example.

  crash = sum [1,2,3,undefined,5,6,7,8]
  main  = print crash

 > ghc-7.6.3 test.hs -prof -fprof-auto -fprof-cafs && ./test +RTS -xc
 *** Exception (reporting due to +RTS -xc): (THUNK_2_0), stack trace:
   GHC.Err.CAF
   --> evaluated by: Main.crash,
   called from Main.CAF:crash_reH
 test: Prelude.undefined

A CAF (constant applicative form) is a super combinatory that isn’t a lambda abstraction. Constant 
expressions and partial functions are included. A CAF does not contain free variables because it is super 
combinatory; but actually, it does not contain any variables because they are not lambda abstractions. Still, 
it could have identifiers that refer to another CAF.

x 3 where x = (*) 2

A CAF can be placed on the top level of a program. It can be compiled in a piece of graph shared with 
all users, or from shared code that overwrites itself when it is first inspected with a graph. The following CAF 
could go to the top of a program without bounds, but it could also be accessed within the code from one or 
more functions. Garbage collectors can reclaim these kinds of structures if each function has an associated 
list of CAFs to which it is making a reference. When a function is targeted by a garbage collector, then its 
associated CAFs are collected.

ints = from 1 where from n = n : from (n+1)

The following is an example of errorWithStackTrace.

import GHC.Stack

main = putStrLn $! (show $! fact  7)

fact :: Int -> Int
fact 0 = 1
fact 1 =1
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fact 3 = errorWithStackTrace "error"
fact n | n > 0 = n * fact (n-1)
  | otherwise = errorWithStackTrace "wrong"

~/D/r/testTraceing $ ghc -prof -fprof-auto main.hs
[1 of 1] Compiling Main             ( main.hs, main.o )
Linking main ...
~/D/r/testTraceing $ ./main
main: error
Stack trace:
  Main.fact (main.hs:(6,1)-(10,74))
  Main.main (main.hs:3:1-36)
  Main.CAF (<entire-module>)

Printf and Friends
Printf debugging is a technique through which the flow of an execution is traced, and targeted values are 
printed. The easiest method to print a message on screen is to make use of Debug.Trace.trace.

trace :: String -> a -> a

According to its library, when called, trace outputs the string in its first argument, before returning the 
second argument as its result.

The following is the usual context in which trace is used.

myfun a b | trace ("myfun " ++ show a ++ " " ++ show b) False = undefined
myfun a b = ...

A benefit is that the enable and disable actions of trace are in a single line of comment.
You should remember that because of lazy evaluation, traces print if the value that they wrap is ever 

requested.
The trace function is situated in the base package. The htrace package characterizes a trace function 

like the one in the base; however, it has a space for better visual impact. Different tools can be found in the 
debug class on the Hackage page.

A more capable option for this method is Hood, which works well with the current ghc conveyance. Hugs 
has it effectively incorporated. Include an import Observe and begin embedding observations in the code. 
Note that because Hugs is no longer under development, it is only for readers who want to experiment or to 
explore the system; for example:

import Hugs.Observe
f'  = observe "Informative name for f" f
f x = if odd x then x*2 else 0
And then in hugs:
Main> map f' [1..5]
[2,0,6,0,10]

>>>>>>> Observations <<<<<<
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Informative name for f
  { \ 5  -> 10
  , \ 4  -> 0
  , \ 3  -> 6
  , \ 2  -> 0
  , \ 1  -> 2
  }

The preceding code results a report of all calls of f and the result for every call. The GHood library 
appends a graphical support for Hood.

The Safe Library
The safe library of functions belongs to Prelude, which can crash. In the event that you get an error message 
(for example, pattern match failure, head []), you can then utilize headNote (“extra infomation”) to 
get a more detailed error message for that specific call to head. The safe library likewise has functions that 
contains default values and wrap their calculations in Maybe as needed.

Offline Analysis of Traces
The most evaluated troubleshooting methods are situated in offline investigation of traces. The following 
tools are used in academic research. It is possible to work with older versions of Haskell.

Haskell Tracer HAT
Hat is perhaps the most evaluated source-level tracer. It is a large suite of tools.

The impediment of conventional Haskell tracers is that they could change the entire program or require 
a particular run-time framework. They are not generally best suited with the most recent libraries, but you 
can put them to use every now and again.

Hoed: The Lightweight Haskell Tracer and Debugger
Hoed is a tracer and/or debugger that brings many techniques from HAT. It can be used in untransformed 
libraries. It is used for debugging more programs than the traditional tracer.

To localize a fail, you need to do an annotation of the suspected function, and then follow the 
compilation as usual. When the program runs, it retrieves data about the targeted function. The last stept is 
connecting to a debugging session on a web browser.

Dynamic Breakpoints in GHCi
Active breakpoints and intermediary valuables observation are enabled by the GHCi debugger.

The breakpoints can be established directly in the code from the GHCi command prompt, as shown in 
the following example.

*main:Main> :break Main 2
Breakpoint set at (2,15)
*main:Main> qsort [10,9..1]

http://projects.haskell.org/hat/
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Local bindings in scope.

  x :: a, xs :: [a], left :: [a], right :: [a]

qsort2.hs:2:15-46> :sprint x
x = _
qsort2.hs:2:15-46> x

The preceding is a computation without type and without being evaluated. seq is used for forcing the 
evaluation. :print is used for recovering its type.

qsort2.hs:2:15-46> seq x ()
()
qsort2.hs:2:15-46> :p x
x - 10

When a breakpoint is reached, the bindings are explored in the scope, and the evaluation of an 
expression is enabled, like in the GHCi prompt. The laziness could be explored in the :print instruction. 
A comprehensive description of how to use breakpoints in Haskell is at https://downloads.haskell.
org/~ghc/7.4.1/docs/html/users_guide/ghci-debugger.html.

Source-Located Errors
The LocH library gives wrappers over assert to generate exceptions for source-located errors. The following 
exemple located fromJust.

import Debug.Trace.Location
import qualified Data.Map as M
import Data.Maybe

main = do print f

f = let m = M.fromList
                [(1,"1")
                ,(2,"2")
                ,(3,"3")]
        s = M.lookup 4 m
    in fromJustSafe assert s

fromJustSafe a s = check a (fromJust s)
This will result in:
$ ./a.out
a.out: A.hs:12:20-25: Maybe.fromJust: Nothing

This could be done automatically, making use of the LocH preprocessor. For example, a program that 
fails, as follows…

$ ghc A.hs --make -no-recomp
[1 of 1] Compiling Main             ( A.hs, A.o )
Linking A ...
$ ./A
A: Maybe.fromJust: Nothing

https://downloads.haskell.org/~ghc/7.4.1/docs/html/users_guide/ghci-debugger.html
https://downloads.haskell.org/~ghc/7.4.1/docs/html/users_guide/ghci-debugger.html
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This could be converted into src-located through addition of the following line.

import Debug.Trace.Location

The last step is to recompile.

$ ghc A.hs --make -pgmF loch -F -no-recomp
[1 of 1] Compiling Main             ( A.hs, A.o )
Linking A ...
$ ./A
A: A.hs:14:14-19: Maybe.fromJust: Nothing

Other Tricks
When GHC is utilized, a program will show a stack trace in the console if there is an error condition.

Locating a Failure in a Library Function
The easiest way to locate a mismatch run-time error in the program, error that raises from libraries that 
provide the functions head, tail, fromJust or another similar, is to avoid using these functions; as a 
alternative, use explicit matching.

The following is an example.

g x = h $ fromJust $ f x,

The references to the g, f, and h functions are lost. An error occurs when f returns Nothing. Instead, 
consider the following.

g x = let Just y = f x in h y,

GHC displays

Main: M1.hs:9:11-22:
Irrefutable pattern failed for pattern Data.Maybe.Just y

It has indicated the source of the error.

Mysterious Parse Errors
GHC supplies -ferror-spans to indicate the beginning and the end of a wrong expression (for example, 
\x:xs->x instead of \(x:xs)->x).

Infinite Loops
To avoid infinite loops, let’s consider the loop function called with one parameter.

	 1.	 Activate the -fbreak-on-error (:set -fbreak-on-error in GHCi).

	 2.	 Call the statement with :trace (:trace loop 'a').
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	 3.	 Press Ctrl+C when the program is blocked in the loop, such that the debugger 
breaks that loop.

	 4.	 Utilize the :history and :back commands for localization of the loop.

Summary
In this chapter, you saw

•	 what big data means and the phases through which it passes to obtain relevant 
information.

•	 how Haskell can be integrated with big data and the tools that do this.

•	 techniques for debugging.



PART II
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CHAPTER 9

Haskell in the Cloud

This chapter talks about programming in Cloud Haskell, a domain-specific language to develop programs in 
a distributed computing environment in Haskell. The chapter focuses on presenting the processes, messages 
between processes, how to use channels and ports, and closures.

The following are the main characteristics of the Cloud Haskell programming model.

•	 Explicit concurrency

•	 Lightweight processes

•	 Processes do not share the states

•	 Message passing is realized asynchronously, which is also known as an actor model 
and is also used by other languages, like Erlang

The packages that belong to Cloud Haskell are

•	 distributed-process: the core of CH package

•	 distributed-process-simplelocalnet: an easy back end for local networks

•	 network-transport: the Transport implementation

•	 network-transport-tcp: an instance of Network.Transport

•	 distributed-process-azure: Azure back end

All examples in this chapter belong to Cloud Haskell’s creators at http://haskell-distributed.
github.io/.

Processes and Messages
In parallel programming, processes and messages have crucial roles. In this section, you see how processes 
and messages are used in Cloud Haskell.

Before beginning, let’s look at some introductory information about Cloud Haskell. It has a generic 
network-transport API (http://hackage.haskell.org/package/network-transport) and uses primitives 
from the distributed-process package (https://github.com/haskell-distributed/distributed-process) 
that provides primitives such as nodes and processes.

Network.Transport provides the following concepts.

•	 EndPoints in a network are actually nodes that represent a meaningful element.

•	 Every EndPoint is characterized by EndPointAddress.

•	 EndPointAddress creates a connection between EndPoint.

http://haskell-distributed.github.io/
http://haskell-distributed.github.io/
http://hackage.haskell.org/package/network-transport
https://github.com/haskell-distributed/distributed-process
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•	 EndPointAddress can be serialized, but an EndPoints connection cannot be 
serialized.

•	 A connection between two EndPoints is unidirectional and trivial.

•	 The Connection object sends outgoing messages. It is the sending end of the 
connection.

•	 Incoming messages are gathered from all incoming connections of an EndPoint into a 
special queue for receiving messages that it shares between all incoming connections.

•	 EndPoint receives notifications about other events that could occur, such as a new 
connection or a lost connection.

Processes
In addition to Haskell, this chapter requires that stack is installed (https://github.com/
commercialhaskell/stack/wiki/Downloads). It also uses the distributed-process and network-
transport-tcp libraries. All you need to do to create a new project in stack is type the following line into a 
new directory.

$ stack new

A folder will be created for some files. Also, you need to add distributed-process and network-
transport-tcp to the build-depends section.

Create the First Node
You have seen that Cloud Haskell contains lightweight processes that are contained by a node. The initial 
state of the node should contain a network transport implementation and also a remote table, which is 
needed to store the components of the system such that physically unrelated nodes know from what node(s) 
they receive messages. For the moment, let’s just create a table. In the app/Main.hs file, let’s add the imports.

import Network.Transport.TCP (createTransport, defaultTCPParameters)
import Control.Distributed.Process
import Control.Distributed.Process.Node

Also, a socket is needed for the TCP network transport, so let’s use the IP and the port as follows.

main :: IO ()
main = do
  Right t <- createTransport "127.0.0.1" "10501" defaultTCPParameters
  node <- newLocalNode t initRemoteTable
  ....

With this piece of code, we have created a running node.

Topologies 
The topology is chosen by the user from the Cloud Haskell back end. The simplelocalnet back end is the main 
topology that comes with Cloud Haskell. It contains a grid of fully connected nodes with an optionally configured 
master-slave topology. The nodes discover each other through a User Datagram Protocol (UDP) multicast.

Other back ends may have various types of nodes or discover nodes in a different way.

https://github.com/commercialhaskell/stack/wiki/Downloads
https://github.com/commercialhaskell/stack/wiki/Downloads
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The simplelocalnet Topology

The following presents a program that uses simplelocalnet, which looks for a list of pair nodes and transmits 
messages to a recorded (named) process, which is a process registered with the local registry.

import System.Environment (getArgs)
import Control.Distributed.Process
import Control.Distributed.Process.Node (initRemoteTable, runProcess)
import Control.Distributed.Process.Backend.SimpleLocalnet
import Control.Monad (forever, forM_)

main = do
  [host, port] <- getArgs
  
  backend <- initializeBackend host port initRemoteTable
  node    <- newLocalNode backend
  peers   <- findPeers backend 1000000
  runProcess node $ forM_ peers $ \peer -> nsendRemote peer "echo-server" "hello!"

The preceding program is not very practical, but we want to underline two important functions.

•	 initializeBackend connects to an existing communication infrastructure.

•	 findPeers can be evaluated every time we need to get a list of existing nodes that 
marked their presence through a broadcast.

Master-Slave Configuration

Let’s improve the preceding example by adding a non-operational slave process and a master process that 
lists its slaves and displays a message for each slave. The first one that needs to be started is a master.

main :: IO ()
main = do
  args <- getArgs

  case args of
    ["master", host, port] -> do
      backend <- initializeBackend host port initRemoteTable
      startMaster backend (master backend)
    ["slave", host, port] -> do
      backend <- initializeBackend host port initRemoteTable
      startSlave backend

The following is the code for a master node.

master :: Backend -> [NodeId] -> Process ()
master backend slaves = do
  -- Do something interesting with the slaves
  liftIO . putStrLn $ "Slaves: " ++ show slaves
  -- Terminate the slaves when the master terminates (this is optional)
  terminateAllSlaves backend
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Obtaining Information About Processes
If we want to obtain information about a certain Cloud Haskell process that is running, we can use the 
getProcessInfo function, whose ProcessInfo type has the id of the local process and a comprehensive list 
of the recorded names, monitors, and bindings to process. If the process we want is not running, then the 
result will be Nothing.

Messages to Processes
Next, we use runProcess, whose arguments are a node and a Process action, and the result will be a Process 
monad. We need to remark that each process has its own identifier that is utilized for sending messages to 
processes that are already running. Another important component is the mailbox, where the messages from 
other processes are stored and organized as a queue in order of arrival.

-- in main
  _ <- runProcess node $ do
    -- get our own process id
    self <- getSelfPid
    send self "hello"
    hello <- expect :: Process String
    liftIO $ putStrLn hello
  return ()

Deadlock will not occur in the preceding example when the thread sends and receives messages, 
because the messages are sent asynchronously. Moreover, if the receiver’s mailbox does not exist, it will not 
raise an error and the evaluation of send will not obstruct the sender, even if it sends messages to itself. The 
expect function or the receive* functions could be used by a process to send a message from its mailbox. 
When a process expects a certain type of message (in this case, it is “selected” via the type annotation 
"Process String"; in other cases, the type of message might be inferred) and it is not in the mailbox, the 
process is blocked until it receives the expected message.

Next, we create two processes that are in the same node and make them communicate reciprocally.

import Control.Concurrent (threadDelay)
import Control.Monad (forever)
import Control.Distributed.Process
import Control.Distributed.Process.Node
import Network.Transport.TCP (createTransport, defaultTCPParameters)

replyBack :: (ProcessId, String) -> Process ()
replyBack (sender, msg) = send sender msg

logMessage :: String -> Process ()
logMessage msg = say $ "handling " ++ msg

main :: IO ()
main = do
  Right t <- createTransport "127.0.0.1" "10501" defaultTCPParameters
  node <- newLocalNode t initRemoteTable
  runProcess node $ do



Chapter 9 ■ Haskell in the Cloud

139

    -- Spawn another worker on the local node
    echoPid <- spawnLocal $ forever $ do
      -- Test our matches in order against each message in the queue
      receiveWait [match logMessage, match replyBack]

    -- The `say` function sends a message to a process registered as "logger".
    -- By default, this process simply loops through its mailbox and sends
    -- any received log message strings it finds to stderr.

    say "send some messages!"
    send echoPid "hello"
    self <- getSelfPid
    send echoPid (self, "hello")

    -- `expectTimeout` waits for a message or times out after "delay"
    m <- expectTimeout 1000000
    case m of
      -- Die immediately - throws a ProcessExitException with the given reason.
      Nothing  -> die "nothing came back!"
      Just s -> say $ "got " ++ s ++ " back!"

    �-- Without the following delay, the process sometimes exits before the messages are 
exchanged.

    liftIO $ threadDelay 2000000

The example uses receiveWait to obtain a message. This is an interesting function that could be used 
with the Match data type to provide more complex message processing power. The following shows general 
use of receiveWait and match, where p and q are patterns that match with different types of messages.

receiveWait
  [ match $ \p -> do ...
  , match $ \q -> do ...
  ]

If we want to create a possible message handler, then we use the match primitive. Similar to the expect 
function, if there is no message that can be matched, then the process is blocked until it receives the needed 
message.

The echo server displays what the string receives. If the first message has no type String, then the 
evaluation is applied on the second match. So, if we have a t :: (ProcessId, String) pair, then the String 
constituent is sent backward to the sender. If there is no matching, then the echo server locks before another 
String comes, and performs another trial.

Serialization
A process can transmit data while it is implemented by the Serializable typeclass, whose definition is

class (Binary a, Typeable a) => Serializable a
instance (Binary a, Typeable a) => Serializable a



Chapter 9 ■ Haskell in the Cloud

140

This definition says that Binary and Typeable can be used, because almost all of the main (primitives) 
data types are included here. For a custom data type, Typeable could be used, and Binary could be 
autogenerated.

{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}

data T = T Int Char deriving (Generic

instance Binary T

Starting and Locating Processes
To send actions, they need to be static and configured in a remote table.

The actions in the Process monad cause the behavior of a process. Unfortunately, Process and IO 
monad actions cannot be serialized. So, how are processes spawned in remote nodes?

The answer could be static actions and compositions. A closed expression, which is an expression that 
is evaluated at compiling because it does not depend on run-time parameters, is used for defining a static 
action whose type is Closure (Process a). A closure value is a combination of symbolic pointers and 
serializable values, thus it could be serialized. For example, actions whose type is Process () could not be 
sent, but instead we could send a value that contains a symbolic name for that action and has type Closure 
(Process ()). It is important that the remote node understands the same signification of the symbolic 
name. So, the remote spawn needs a static action that will be sent through the wire to a remote node.

Traditionally, static actions are difficult to create, but Cloud Haskell improves this issue with Template 
Haskell, as such as when we have a monomorphic function f::T1 -> T2 then $(mkClosure 'f) :: T1 -> 
Closure T2, provided that T2 is serializable.

mkClosure is a useful function that can make every top-level unary function in a Closure. In the case 
of curried functions, we need to make them uncurry (makes a tuple with its arguments). We mentioned 
the remote table, which stores the association between a value and the symbolic name of the function that 
generates it. This is used for assuring that all remote parts can interpret the obtained Closure. We know that 
spawning is successful when all remote nodes have the same remote table as the one from the local node.

The remote table should be configured by the library, which produces some code.

sampleTask :: (TimeInterval, String) -> Process ()
sampleTask (t, s) = sleep t >> say s

remotable ['sampleTask]

The end line represents a top-level Template Haskell . In the place where the spawn is called, a Closure 
could be created that is correlated with an implementation of sampleTask.

($(mkClosure 'sampleTask) (seconds 2, "foobar"))

Calling remoteTable automatically generates a remote table based on the insertion of a top-level 
definition in the module.

__remoteTable :: RemoteTable -> RemoteTable
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This is used with other remote tables to obtain a final remote table for all the modules of the following 
program.

{-# LANGUAGE TemplateHaskell #-}

import Control.Concurrent (threadDelay)
import Control.Monad (forever)
import Control.Distributed.Process
import Control.Distributed.Process.Closure
import Control.Distributed.Process.Node
import Network.Transport.TCP (createTransport, defaultTCPParameters)

sampleTask :: (Int, String) -> Process ()
sampleTask (t, s) = liftIO (threadDelay (t * 1000000)) >> say s

remotable ['sampleTask]

myRemoteTable :: RemoteTable
myRemoteTable = Main.__remoteTable initRemoteTable

main :: IO ()
main = do
  Right transport <- createTransport "127.0.0.1" "10501" defaultTCPParameters
  node <- newLocalNode transport myRemoteTable
  runProcess node $ do
    us <- getSelfNode
    _ <- spawnLocal $ sampleTask (1 :: Int, "using spawnLocal")
    pid <- spawn us $ $(mkClosure 'sampleTask) (1 :: Int, "using spawn")
    liftIO $ threadDelay 2000000

In the previous example, sampleTask is spawned on the us node using two different methods.

•	 spawn needs a node identifier for spawning a process having Closure.

•	 spawnLocal is a particular type of spawn that is used when the node identifier is 
referring to the actual node (i.e., us).

Fault Tolerance
Processes can be linked to one another or to nodes or channels. The idea of linked processes came from the 
Actor model, where linked processes monitor each other.

A link is unidirectional. When a process wants to link to another, it should be sure that the other end 
exists. A handy method is to send a child process to the desired end, link it, and terminate. In the following 
example, two child processes are linked. They terminate after they receive a key message. If the subprocesses 
terminates OK, then the parent process terminates.

demo = do
  pid <- spawnLocal $ receive >>= return
  link pid
  send pid ()
  () <- receive
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The preceding are also asynchronous exceptions. Note that we should not put the base on this fact, and 
the fact that the execution type is not sent further. We cannot directly catch the exit signals for links, but if we 
wanted to do that, we would use a monitor.

The link function aborts the link no matter the reason for exiting, but linkOnFailure (provided by 
distributed-process-extras) throws ProcessLinkException if the linked ends die unexpectedly (because 
of DiedReason or DiedNormal).

In general, monitors do not determine the processes that are listening to exit, only if the mailbox of the 
process receives ProcessMonitorNotification. The signal and the components are analyzed for deciding 
the action that needs to be taken by the receiver as a response for the termination of the monitored process. 
In the following, we use a monitor to find when and how a process terminates using linkOnFailure (from 
distributed-process-extras).

linkOnFailure them = do
  us <- getSelfPid
  tid <- liftIO $ myThreadId
  void $ spawnLocal $ do
    callerRef <- P.monitor us
    calleeRef <- P.monitor them
    reason <- receiveWait [
             matchIf (\(ProcessMonitorNotification mRef _ _) ->
                       mRef == callerRef) -- nothing left to do
                     (\_ -> return DiedNormal)
           , matchIf (\(ProcessMonitorNotification mRef' _ _) ->
                       mRef' == calleeRef)
                     (\(ProcessMonitorNotification _ _ r') -> return r')
         ]
    case reason of
      DiedNormal -> return ()
      _ -> liftIO $ throwTo tid (ProcessLinkException us reason)

In the example, monitors were used for observing the ends (processes) of the link, because a monitor 
uses a third spawned process. This approach is used to cover cases in which handling code is from the 
Node Controller. The route of the two matches is as follows: it goes to receiveWait, where it handles a 
ProcessMonitorNoritification, and the result is sent to matchIf. All of this is done to find out if the 
received notification should go to process that called, or to the other end of the link. When the former 
expires, there is nothing more to do because the links are in one direction. When it dies, we should check 
DiedReason and ProcessMonitorNotification to learn if the process expires in normal parameters (with 
DiedNormal). If the result is not DiedNormal, it throws a ProcessLinkException for the genuine caller.

Links and monitors are ways to supervise when working with a process that has many subprocesses.
As you have seen, exit signals from Cloud Haskell are different from asynchronous exceptions used in 

Haskell in other situation. Because the Process monad is a particular case of MonadIO, a process could use 
asynchronous exceptions. Links and exits could be used with asynchronous exceptions (like in the preceding 
example), but in this case, when a message is followed by an exit signal, we are sure that the message arrive 
first. As a good practice, we should avoid situations in which we use our own exceptions, but they terminate 
using exit, kill, or die.

Process Lifetime
A process executes while it evaluates something, or it is aborted, a crash occurs (which has not handled 
an exception), or it has instruction to terminate. When a process is programmed to stop, it used 
ProcessExitException or ProcessKillEception, which are usually sent asynchronously. Also, the exit 
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and kill functions from distributed-process could be used to assure that remote processes are easily 
manipulated. Additionally, when a message is sent followed by an escape label, the message will be provided 
to the receiver until the exception is thrown. This behavior does not guarantee that the receiver could do 
something to the message until it terminates.

The ProcessExitException propagates to all processes, telling if the destination process should terminate. 
The processes could decide if it exits. For that die function it is used, which is a little different from exit, because 
exit needs that an inner signal to be sent inside into the local node controller. However, we need to pay attention 
that the node controller would process some other events, so it is possible to delay a little the exit signal for exit 
function. Still, in the thread that calls die if it throws the ProcessExitException by die itself, so actually there is 
no delay.

In reality, the two functions act a little differently at run-time.

-- this will never print anything...
demo1 = die "Boom" >> expect >>= say

-- this /might/ print something before it exits
demo2 = do
  self <- getSelfPid
  exit self "Boom"
  expect >>= say

In ProcessExitException, there is a field called reason, but it is serialized in the form of a raw Message. 
Because there is an export of this exception type, the exit signals can be caught and then handle them. Some 
primitives from distributed-process catch exit signals.

ProcessKillException is a signal that usually is not trapped; thus, the type is not sent further, so it 
could be handled just when whole exceptions are caught; but this is a bad habit.

Further, kill is used for terminating overseen processes that haven’t terminated when they were asked, 
or shut down the processes that do not need particular cleanup code for running when exiting. Note that 
kill acts a little like exit when Node Controller is implied.

Receiving and Matching
The previous examples use the send function, which sends messages between processes. Let’s summarize 
the use of send.

•	 It is asynchronous (i.e., the caller is not blocked).

•	 It never fails.

•	 When a message is sent, the time that it will be received is unknown.

•	 Nothing guarantees that the message will actually be received.

Asynchronous approach brings some advantages, because it is not really good that a process to be 
blocked or waiting for some data, or implementation of error handling to be done every time a message is 
sent. As an example, let’s suppose that a pair of processes are communicating and the stream was a, b, c, 
and we can read c, then we know for sure that a and b were already seen.

In cloud Haskell is it guaranteed that the messages are sent in First in First out (FIFO) order between 
two concurrent processes, but this is not always true between an arbitrary numbers of processes.

When it uses expect for a message, then we actually ignore the order of messages because we need a 
message with content that is decoded into a certain type. If we want that message processing to be done in 
arriving order, we should delay the type check that leads to a mailbox traverse, and we need to get the raw 
message ourselves. For this, the functions that could be used are receive and matchAny, about we will talk later.
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Next, let’s talk about the expect and receive family of functions. They are used by the processes for 
unqueueing a message from its mailbox. After an optional timeout, they allow the expression to evaluate 
Nothing if there is no matching input.

The process is blocked by expect before a message that matches the awaited type of expression is 
discovered in the mailbox. When the mailbox is scanned and a match is found, the message is removed from 
the queue and returned. If there is no match, the process/thread that called is locked before a message with 
the expected type arrives. The following is an example.

demo :: Process ()
demo = do
    listener <- spawnLocal listen
    send listener "hello"
    getSelfPid >>= send listener
    () <- expect
  where
    listen = do
      third <- expect :: Process ProcessId
      first <- expect :: Process String
      second <- expectTimeout 100000 :: Process String
      mapM_ (say . show) [first, second, third]
      send third ()

After running the program, it displays hello, Nothing, and pid://.... In appearance order, the first expect 
(which has the label third because it comes third in the mailbox) is successful, because the parent transmits the 
string “hello” and its ProcessId, so the listener is locked before it removes ProcessId from the queue ahead of the 
string. Also, the next expect (labeled first) will be successful, which shows that the type of messages was more 
important for removing than the order in which they came. The evaluation of the last expect is Nothing because 
only one string is delivered to the listener, and the message at the last expect evaluation is yet removed from the 
mailbox. If the preceding program has not removed the messages, it will be blocked or will never complete.

The receive primitives has a list that contains Match objects as input, obtained through the evaluation of 
a match-style primitive. Matching messages is useful because the types of messages that can be handled are 
separated from the types of evaluations that receive an expression. Let’s look at the following piece of code.

usingReceive = do
  () <- receiveWait [
      match (\(s :: String) -> say s)
    , match (\(i :: Int)    -> say $ show i)
    ]

The header of receiveWait :: [Match b] -> Process b says that all matches from the list should 
evaluate the same type.

There is another version called receiveTimeout that locks for a certain amount of time and then returns 
Nothing if there is no match during that time.

There are situations in which we need to get a message without explicitly specifying the type. It is a 
helpful characteristic, especially because it is the one method for processing messages in their order of 
arrival. Next, we use the relay function to show how it works. This primitive initiates a process that removes 
every message from the queue that arrives, and sends them to another process. For removing messages from 
the queue no matter the type, we use the matchAny function.

matchAny :: forall b. (Message -> Process b) -> Match b
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The main approach in Cloud Haskell is to send messages in their raw form (i.e., they are not decoded 
before). For that, there is another useful function.

forward :: Message -> ProcessId -> Process ()

If we want to combine matchAny and forward, we should flip forward and apply the ProcessId, or use a 
lambda, like in the following.

relay :: ProcessId -> Process ()
relay !pid = forever' $ receiveWait [ matchAny (\m -> forward m pid) ]

This approach is helpful, but still there is a limit to what the operation can do with received messages, 
because matchAny works on the unprocessed Message type. If we want to examine the inside of the message, 
we need to know the message type.

When an expression works on a certain type, we could try decoding the message of that type and 
check the outcome to see if the decoding worked or not. To do this, we can use one of the primitives, 
unwrapMessage or handleMessage, which have the types.

unwrapMessage :: forall m a. (Monad m, Serializable a) => Message -> m (Maybe a)
handleMessage :: forall m a b. (Monad m, Serializable a) => Message -> (a -> m b) -> m 
(Maybe b)

The unwrapMessage primitive is easier and its input is an unprocessed Message. It evaluates Maybe a 
until it returns the result to the m monad. If it obtains the expected type, then the outcome will be Just a, 
else, it will be Nothing.

The other primitive, handleMessage, is less restrictive and takes a function like a-> m b. The result is 
Just b if the targeted message has type a, and Nothing if the type of the message is not compatible with the 
handler.

The following shows how handleMessage works. In the previous examples, we used the relay function, 
but now we will use a similar function called proxy. If it has a parameter as a predicate, then it is evaluating 
an input with type a, and the result is Process Bool. This allows running arbitrary Process code for deciding 
if a is suitable to be sent to process with ProcessId. The proxy has the following type.

proxy :: Serializable a => ProcessId -> (a -> Process Bool) -> Process ()

matchAny and handleMessage could be compounded for making a proxy server, because matchAny 
works on (Message -> Process b) and handleMessage works on a -> Process b. The messages whose 
predicate returns Just False or cannot evaluate because of type should not be sent. So, proxy is defined.

proxy pid proc = do
  receiveWait [
      matchAny (\m -> do
                   next <- handleMessage m proc
                   case next of
                     Just True  -> forward m pid
                     Just False -> return ()  -- explicitly ignored
                     Nothing    -> return ()) -- un-routable / cannot decode
    ]
  proxy pid proc
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Monad Transformers Stack
Sometimes, an application may need a customized monad transformer stack with the Process monad as a 
base. As an example, the application could make requests to a network database. The solution for this could 
be creating a data access section with some configuration for connecting to a database server. The tool for an 
automatic configuration could be ReaderT.

The following uses the fetchUser function run in the AppProcess monad for configuring the 
connection to a database.

import Data.ByteString (ByteString)
import Control.Monad.Reader

-- imagine we have some database library
import Database.Imaginary as DB

data AppConfig = AppConfig {dbHost :: String, dbUser :: String}

type AppProcess = ReaderT AppConfig Process

data User = User {userEmail :: String}

-- Perform a user lookup using our custom app context
fetchUser :: String -> AppProcess (Maybe User)
fetchUser email = do
  db <- openDB
  user <- liftIO $ DB.query db email
  closeDB db
  return user

openDB :: AppProcess DB.Connection
openDB = do
  AppConfig host user <- ask
  liftIO $ DB.connect host user

closeDB :: DB.Connection -> AppProcess ()
closeDB db = liftIO (DB.close db)

Mainly, these are the things we need to do, but it is a little incomplete. When an exception occurs due 
to a query function, the database handle could remain open. For this, we use the bracket function from 
Control.Exception, defined as

bracket :: IO a        --^ computation to run first ("acquire resource")
        -> (a -> IO b) --^ computation to run last ("release resource")
        -> (a -> IO c) --^ computation to run in-between
        -> IO c

Using an IO action, it is acquired a resource, which is sent further using a bracket to a function that 
gets the resource and then runs another action. Moreover, provides a release function that assures that the 
bracket runs, even though an exception occurred in the initial action.
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Still, the function bracket could not be used in fetchUser, because openBD is running in the 
AppProcess monad. Fortunately, distributed-process provides another implementation for the bracket.

-- | Lift 'Control.Exception.bracket'
bracket :: Process a -> (a -> Process b) -> (a -> Process c) -> Process c
bracket before after thing =
  mask $ \restore -> do
    a <- before
    r <- restore (thing a) `onException` after a
    _ <- after a
    return r

mask :: ((forall a. Process a -> Process a) -> Process b) -> Process b
mask p = do
    lproc <- ask
    liftIO $ Ex.mask $ \restore ->
      runLocalProcess lproc (p (liftRestore restore))
  where
    liftRestore :: (forall a. IO a -> IO a)
                -> (forall a. Process a -> Process a)
    liftRestore restoreIO = \p2 -> do
      ourLocalProc <- ask
      liftIO $ restoreIO $ runLocalProcess ourLocalProc p2

-- | Lift 'Control.Exception.onException'
onException :: Process a -> Process b -> Process a
onException p what = p `catch` \e -> do _ <- what
                                        liftIO $ throwIO (e :: SomeException)

This is done by distributed-process to avoid many dependencies, but it is a little difficult to write all 
the preceding code every time it uses a transformer stack in the application. But monad-control and lifted-
base free us from this inconvenience.

monad-control provides some type classes and helper functions that help generalize the (un)wrapping 
necessary for keeping transformer effects hidden while some actions are running in the base monad. 
MonadBase and MonadBaseControl are a concern for the end user. If you are not familiar with the monad-
control package, please visit https://hackage.haskell.org/package/monad-control.

The lifted-base brings improved versions of functions from Haskell base libraries using these type 
classes. The following is the definition of bracket from Control.Exception.Lifted.

bracket :: MonadBaseControl IO m
        => m a         --^ computation to run first ("acquire resource")
        -> (a -> m b)  --^ computation to run last ("release resource")
        -> (a -> m c)  --^ computation to run in-between
        -> m c

Mainly, it is the same as the classic bracket function, but adds the capability to operate with actions 
that work with MonadBaseControl.IO. Even if monad-control creates instances for classical transformers, the 
instances still need the original monad to have an instance from that class.

https://hackage.haskell.org/package/monad-control
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distributed-process-monad-control delivers instances of Process without any dependencies 
for MonadBaseIO and also MonadBaseControlIO. We will improve the preceding code by importing these 
libraries and using a bracket (from lifted-base) instead of fetchUser.

-- ...
import Control.Distributed.Process.MonadBaseControl ()
import Control.Exception.Lifted as Lifted

-- ...

fetchUser :: String -> AppProcess (Maybe User)
fetchUser email =
  Lifted.bracket openDB
                 closeDB
                 $ \db -> liftIO $ DB.query db email

lifted-base brings other benefits, like MVar, or other concurrent functions that work with MonadBaseIO. 
An advantage is that the code does not contain liftIO; however, MonadBaseControlIO does things, like lift 
withMVar.

Pay attention to the fact that these instances could allow the utilization of functions like forkIO, which 
would endanger the invariants from the Process monad, thus causing confusion or issues. In Cloud Haskell, 
it is recommended to use functions like spawnLocal.

Generic Processes
Sometimes there are situations in which bugs could occur when send and receive are directly evaluated. 
For example, when the destination is not monitored, when it expects a reply, in instances where binary was 
incorrectly created, or crashes from other reasons.

The /Managed Process/API deals with messages that are sent and received from the server process, and 
the code shows how the server process works when it gets a message written by the programmer. In the API 
there are some predefined actions with good semantics and failure approaches.

Managed processes are defined using record syntax, providing lists of Dispatcher objects describing 
how the server handles particular kinds of client interaction for specific input types. The ProcessDefinition 
record also provides hooks for error handling (in case of server code crashing or exit signals dispatched to 
the server process from elsewhere) and cleanup code to be run on termination/shutdown.

myServer :: ProcessDefinition MyStateType
myServer =
  ProcessDefinition {
      -- handle messages sent to us via the call/cast API functions
      apiHandlers = [
        -- a list of Dispatchers, derived by calling on of the various
        -- handle<X> functions with a suitable thunk, e.g.,
        handleCast myFunctionThatDoesNotReply
      , handleCall myFunctionThatDoesReply
      , handleRpcChan myFunctionThatRepliesViaTypedChannels
      ]

      -- handle messages that can only be sent directly to our mailbox
      -- (i.e., without going through the call/casts APIs), such as
      -- `ProcessMonitorNotification`
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    , infoHandlers = [
        -- a list of DeferredDispatcher, derived from calling
        -- handleInfo or handleRaw with a suitable function, e.g.,
        handleInfo myFunctionThatHandlesOneSpecificNonCastNonCallMessageType
      , handleRaw  myFunctionThatHandlesRawMessages
      ]

      -- what should we do about exit signals?
    , exitHandlers = [
        -- a list of ExitSignalDispatcher, derived from calling
        -- handleExit with a suitable function, e.g.,
        handleExit myExitHandlingFunction
      ]

      -- what should I do just before stopping?
    , shutdownHandler = myShutdownFunction

      -- what should I do about messages that cannot be handled?
    , unhandledMessagePolicy = Drop -- Terminate | (DeadLetter ProcessId)
    }

When it is defined as a client-server protocol, usually it specifies that some types are handled by the 
server, and maybe correspond to those that will be sent to the receiver. The following presents such an 
example. It is about a math server application, in which the client sends a triplet with a form (ProcessId, 
Double, Double), and the server sends back the sum of the two doubles. When the client waits for the result, 
but the process server was killed, then deadlock occurs on the client side. To avoid this problem, the client 
side should have a monitor that is waiting for a reply or for a monitor signal. Still, other problems could arise. 
For example, the facility expects the incorrect type. For this, there should be a typed channel, but a channel 
is unidirectional, so the client will receive messages, but not the server. It is a little unhandy to create more 
typed channels (for every type of message that is expected) to distribute to the clients. We will use call and 
cast, which helps us in this problem—for both client and server, providing a uniform API for the client.

module MathServer
  ( -- client facing API
    add
    -- starting/spawning the server process
  , launchMathServer
  ) where

import .... -- elided

-- We keep this data-type hidden from the outside world, and we ignore
-- messages sent to us that we do not recognise, so misbehaving clients
-- (who do not use our API) are basically ignored.
data Add = Add Double Double
  deriving (Typeable, Generic)
instance Binary Add where

-- client facing API

-- This is the only way clients can get a message through to us that
-- we will respond to, and since we control the type(s), there is no
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-- risk of decoding errors on the server. The /call/ API ensures that
-- if the server does fail for some other reason however (such as being
-- killed by another process), the client will get an exit signal also.
--
add :: ProcessId -> Double -> Double -> Process Double
add sid = call sid . Add

-- server side code

launchMathServer :: Process ProcessId
launchMathServer =
  let server = statelessProcess {
      apiHandlers = [ handleCall_ (\(Add x y) -> return (x + y)) ]
    , unhandledMessagePolicy = Drop
    }
  in spawnLocal $ start () (statelessInit Infinity) server >> return ()

This approach is easy if in your previous applications you used send for clients and receive[match…] 
for the server. We have a great facility here, because we can implement the math server under a new type 
and avoid having messages sent to ProcessId in their entirely.

Even still, data type mismatches could occur because call and send have generic serializable data 
(for example, ErrorOnCodingFailure, IgnoreCodingFailure) when handling illegal sequences and 
constructing text encodings. The first error occurs when an illegal sequence appears, and the second 
function is used when we want to ignore an occurrence of an illegal sequence ). This could be solved if we 
send a typed channel and reply directly to the server code. The code will not look very good, but at least it 
solved some run-time errors.

-- This is the only way clients can get a message through to us that
-- we will respond to, and since we control the type(s), there is no
-- risk of decoding errors on the server. The /call/ API ensures that
-- if the server does fail for some other reason however (such as being
-- killed by another process), the client will get an exit signal also.
--
add :: ProcessId -> Double -> Double -> Process Double
add sid = syncCallChan sid . Add

launchMathServer :: Process ProcessId
launchMathServer =
  let server = statelessProcess {
      apiHandlers = [ handleRpcChan_ (\chan (Add x y) -> sendChan chan (x + y)) ]
    , unhandledMessagePolicy = Drop
    }
  in spawnLocal $ start () (statelessInit Infinity) server >> return ()

It is not difficult to assure that the server receives only allowed types, because the client call is not 
directly used and the wrapper functions are written by us.

The cast function from the client-server protocol is not expecting a response, in contrast with the 
synchronous version of cast. It is more similar to send, but has the same supplementary type information, 
like call, and has a route to Dispatcher from apiHandlers filed from the process defining.
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In the examples, cast is used with type Add for implementing a function that needs an add/request and 
displays the output, rather than returning it. We use this approach instead of a call function because in a 
call function there is nothing that distinguishes between the two Add instances, so the server would pick the 
first one as valid. Also, if the function is called in a test application, then the main thread should be blocked 
for some time from waiting for the server to get the message and display the result, because the client side is 
not waiting for a response.

printSum :: ProcessId -> Double -> Double -> Process ()
printSum sid = cast sid . Add

launchMathServer :: Process ProcessId
launchMathServer =
  let server = statelessProcess {
      apiHandlers = [ handleRpcChan_ (\chan (Add x y) -> sendChan chan (x + y) >> continue_)
                    �, handleCast_ (\(Add x y) -> liftIO $ putStrLn $ show (x + y) >> 

continue_) ]
    , unhandledMessagePolicy = Drop
    }
  in spawnLocal $ start () (statelessInit Infinity) server >> return ()

Client-Server Example
This section uses a type named BlockingQueue from the distributed-process-task library.

The tasks are executed on a generic node, and the caller is blocked while the remote job is executed.  
In addition, we need a maximum number of tasks that are concurrent, on which the server will accept.

ManagedProcess is used for implementing an arbitrary task server as described earlier. When the 
maximum number of tasks is achieved, the other tasks are organized in a queue to wait to be executed. Also, 
the asynchronous cast API is a good choice, because the client is blocked while the server is performing the 
tasks, or we could use callChan for typed channels.

First, we need to know the types from the client-server application (i.e., the tasks that will be 
performed). When a task is given, it submits an action to the process monad, encapsulated in a Closure. The 
Addressable type class will be used, which permits the clients to define the server location. So, the task has 
type Closure (Process a), and the server has two sides of returning: Left String (in case of failure) and Right 
(in case of success).

-- enqueues the task in the pool and blocks
-- the caller until the task is complete
executeTask :: forall s a . (Addressable s, Serializable a)
            => s
            -> Closure (Process a)
            -> Process (Either String a)
executeTask sid t = call sid t

Do not forget that in Cloud Haskell, communication with a process is done through its mailbox and typed 
channels, and it has two sides: synchronous from the receiver’s side and asynchronous from the server’s side.

On the server side, every request receives a response, but when call is handled, the replies could 
be different from those in an upper stage. While the server is working, the client is blocked, waiting for a 
response. Using call, there is no interference from other processes to the message sent by the server, because 
a call attaches a tag to the message and expects a particular response from the server with the same tag. This 
is useful because messages with type Either String could come in the mailbox, while the client is receiving. 
The tags used by the call are distinct for nodes, because  MonitorRef's tag is an Identifier ProcessId and 
a local node’s tag is the monitor reference counter for that node. 
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On the client side, there are no arbitrary messages with type signatures that arrive in the mailbox. If the 
call function crashes, then a ProcessExitException occurs.

On the server side, there are some internal states that need to be handled. Because the maximum 
numbers of tasks is known, the running tasks need to be tracked. As we said, every task will be registered 
as Closure (Process a), and asynchronously spawned. The output will be handled and the response will 
be sent to the initial sender. We need to specify what types of results are accepted by closures, so the state 
type is

data BlockingQueue a = BlockingQueue

Every task will be executed asynchronously using Control.Distributed.Process.Async, which 
also helps to give meaning to the result. If we want to use Async, we will need to use a reference. We need 
a manner in which the submitter is associated to the handle, so we have two fields: one for active tasks 
and one for the inactive tasks that are waiting in the queue to be resolved. Running tasks will be stored in 
MonitorRef, a reference of the sender and the handle async itself. The states will use a list of associations.

If the task cannot be executed right away, then holds the reference of the client and the closure, but 
does not hold the monitor reference. The data structure that is used in the example works on the FIFO 
principle.

data BlockingQueue a = BlockingQueue {
    poolSize :: SizeLimit
  , active   :: [(MonitorRef, CallRef (Either ExitReason a), Async a)]
  , accepted :: Seq (CallRef (Either ExitReason a), Closure (Process a))
  }

We make it act like a queue using Data.Sequence.

enqueue :: Seq a -> a -> Seq a
enqueue s a = a <| s

dequeue :: Seq a -> Maybe (a, Seq a)
dequeue s = maybe Nothing (\(s' :> a) -> Just (a, s')) $ getR s

getR :: Seq a -> Maybe (ViewR a)
getR s =
  case (viewr s) of
    EmptyR -> Nothing
    a      -> Just a

Closure is transformed into a evaluable thunk using the unClosure function. Next, the thunk is sent to 
async, and then to the handle, whose result is shown on the monitor.

proc <- unClosure task'
asyncHandle <- async proc
ref <- monitorAsync asyncHandle

The acceptTask function could be implemented, on which the server will use to deal with the registered 
tasks. The header of the function should fit with the API that handles the messages from ManagedProcess 
(i.e., handleCallFrom). This particular version of handleCall is used when it is more likely that the server 
will postpone the response than respond immediately. The arguments for this function is an expression that 
works with the state of the server—a CallRef that detects the sender and is used to respond, and a Closure 
(Process a).
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storeTask :: Serializable a
          => BlockingQueue a
          -> CallRef (Either ExitReason a)
          -> Closure (Process a)
          -> Process (ProcessReply (Either ExitReason a) (BlockingQueue a))
storeTask s r c = acceptTask s r c >>= noReply_

acceptTask :: Serializable a
           => BlockingQueue a
           -> CallRef (Either ExitReason a)
           -> Closure (Process a)
           -> Process (BlockingQueue a)
acceptTask s@(BlockingQueue sz' runQueue taskQueue) from task' =
  let currentSz = length runQueue
  in case currentSz >= sz' of
    True  -> do
      return $ s { accepted = enqueue taskQueue (from, task') }
    False -> do
      proc <- unClosure task'
      asyncHandle <- async proc
      ref <- monitorAsync asyncHandle
      let taskEntry = (ref, from, asyncHandle)
      return s { active = (taskEntry:runQueue) }

In the function, a task is added to the accepted queue when the number of maximum running tasks is 
reached, or the task is started and monitored with async. The monitor reference, caller reference, and the 
async handle are in the active component.

A function that deals with the responses of the closures is needed. So, we have to do the following.

	 1.	 Discover the async handle for the monitor reference.

	 2.	 Get the result utilizing handle.

	 3.	 Transmit the result to the client.

	 4.	 Take the next task from the queue.

	 5.	 Continue the preceding steps.

The preceding mechanism can be summarized as wait >>= respond >> bump-next-task >>= 
continue.

To transmit the result to the client, we need a special API from ManagedProcess called replyTo because 
it sends a specific message to the client and responds to a specific call function.

The header of the function is similar to storeTask in the preceding, but the returned type is 
ProcessAction. It is not bound to a call or cast, because the monitor signal is sent by the node controller 
straight to the targeted mailbox. This approach is called an info call in the managed process API, and, 
because a response is not expected, it is returned as a ProcessAction, which tells the server the following 
step to be performed (i.e., continue to read from the mailbox).

taskComplete :: forall a . Serializable a
             => BlockingQueue a
             -> ProcessMonitorNotification
             -> Process (ProcessAction (BlockingQueue a))
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taskComplete s@(BlockingQueue _ runQ _)
             (ProcessMonitorNotification ref _ _) =
  let worker = findWorker ref runQ in
  case worker of
    Just t@(_, c, h) -> wait h >>= respond c >> bump s t >>= continue
    Nothing          -> continue s

  where
    respond :: CallRef (Either ExitReason a)
            -> AsyncResult a
            -> Process ()
    respond c (AsyncDone       r) = replyTo c ((Right r) :: (Either ExitReason a))
    �respond c (AsyncFailed     d) = �replyTo c ((Left (ExitOther $ show d))  ::  

(Either ExitReason a))
    �respond c (AsyncLinkFailed d) = �replyTo c ((Left (ExitOther $ show d))  ::  

(Either ExitReason a))
    respond _ _                   = die $ ExitOther "IllegalState"

    bump :: BlockingQueue a
         -> (MonitorRef, CallRef (Either ExitReason a), Async a)
         -> Process (BlockingQueue a)
    bump st@(BlockingQueue _ runQueue acc) worker =
      let runQ2 = deleteFromRunQueue worker runQueue
          accQ  = dequeue acc in
      case accQ of
        Nothing            -> return st { active = runQ2 }
        Just ((tr,tc), ts) -> acceptTask (st { accepted = ts, active = runQ2 }) tr tc

findWorker :: MonitorRef
           -> [(MonitorRef, CallRef (Either ExitReason a), Async a)]
           -> Maybe (MonitorRef, CallRef (Either ExitReason a), Async a)
findWorker key = find (\(ref,_,_) -> ref == key)

deleteFromRunQueue :: (MonitorRef, CallRef (Either ExitReason a), Async a)
                   -> [(MonitorRef, CallRef (Either ExitReason a), Async a)]
                   -> [(MonitorRef, CallRef (Either ExitReason a), Async a)]
deleteFromRunQueue c@(p, _, _) runQ = deleteBy (\_ (b, _, _) -> b == p) c runQ

The apiHandler (from ProcessDefinition) contains the call and cast handler, whose type is 
Dispatcher s, where s is the type of the state for the process. We cannot create Dispatchers, but there are 
some functions in the ManagedProcess.Server that transforms functions similar to those written by us to the 
right type.

In order for the compiler to recognize it, a type signature needs to be placed at the location where 
storeTask is called.

handleCallFrom (\s f (p :: Closure (Process a)) -> storeTask s f p)
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We do not need to do this for taskComplete in this case because there is no ambiguous type.  
The definition of the process becomes

defaultProcess {
    apiHandlers = [
            handleCallFrom (\s f (p :: Closure (Process a)) -> storeTask s f p)
          , handleCall poolStatsRequest
    ]
  , infoHandlers = [ handleInfo taskComplete ]
  }

It takes some work to start the server. ManagedProcess offers some functions for helping the spawned 
and running processes. The argument for the serve function is an initializer thunk, whose type is 
InitHandler, and its task is to engender the initial state and establish the receive timeout of the server, and 
then call the process definition from earlier.

run :: forall a . (Serializable a)
         => Process (InitResult (BlockingQueue a))
         -> Process ()
run init' = ManagedProcess.serve () (\() -> init') poolServer
  where poolServer =
          defaultProcess {
              apiHandlers = [
                 handleCallFrom (\s f (p :: Closure (Process a)) -> storeTask s f p)
               , handleCall poolStatsRequest
               ]
            , infoHandlers = [ handleInfo taskComplete ]
            } :: ProcessDefinition (BlockingQueue a)

pool :: forall a . Serializable a
     => SizeLimit
     -> Process (InitResult (BlockingQueue a))
pool sz' = return $ InitOk (BlockingQueue sz' [] Seq.empty) Infinity

To make the tasks remote-worthy, we proceed as follows.

sampleTask :: (TimeInterval, String) -> Process String
sampleTask (t, s) = sleep t >> return s

$(remotable ['sampleTask])

And to execute tasks, we do this.

tsk <- return $ ($(mkClosure 'sampleTask) (seconds 2, "foobar"))
executeTask taskQueuePid tsk

When a server starts locally or starts a local/remote node, we need to combine spawn or spawnLocal 
with start. If we want to add some security, we could use a nontransparent handle for communicating with 
the server. A consequence is that the client could send a Closure, whose return type is distinct from the one 
expected by the server. And, in this case, the server will respond with unhandeldMessagePolicy and will 
crash.
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When it returns a handle to the server with parametrized type, just closures with a fitting type are 
delivered. Thus, a phantom type is used to hide the actual ProcessId into the new type. Further, an instance 
of Resolvable is defined, so that the handle is sent to the managed process call. Resolvable creates an 
instance of Routable, which is all that call needs.

newtype TaskQueue a = TaskQueue { unQueue :: ProcessId }

instance Resolvable (TaskQueue a) where
  resolve = return . unQueue

The last step is to write a start function that returns the handle and modifies the header of 
executeTask so that they match.

start :: forall a . (Serializable a)
      => SizeLimit
      -> Process (TaskQueue a)
start lim = spawnLocal (start $ pool lim) >>= return . TaskQueue

-- .......

executeTask :: (Serializable a)
            => TaskQueue a
            -> Closure (Process a)
            -> Process (Either ExitReason a)
executeTask sid t = call sid t

Matching Without Blocking
In practice, there are situations in which a function terminates until an expected message arrives at a 
particular process. This section shows you how this can be avoided.

Unexpected Messages
Using UnhandledMessagePolicy, the processes can handle unexpected messages, which is an important 
feature, because there could be many situations in which the mailbox of a process arrives unexpected 
messages, or messages that are not fitting in expected types of the server, or messages that do not respect 
some conditions of the message body.

There are methods to assure that some types of messages arrive in the process, but only by using 
monitors or other management systems, and only when node controller delivers the messages to the 
mailboxes. These methods are used with session types that belong to Cloud Haskell routes, but disconnect 
in managed processes.

Log writes an informational message in SystemLog about unforeseen messages. In production, we 
could choose between Drop or Terminate policies. Due to the nature of Cloud Haskell, unexpected messages 
could arrive, and the servers must have methods to handle them. Be careful when unexpected messages are 
received, particularly when using Drop policy, because it is possible for the server to reject messages unless 
the clients are notified, so deadlocks can occur.
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Hiding Implementation Details
In real life, clients can send messages to a managed process, but this could be avoided if, for example, the 
id of the process was hidden. The server should be sure that the suitable client-server protocol is used. So, 
mainly, we need to compile to be sure that the communication between client and server is a classical one. 
Let’s look to a previous example of the server.

module MathServer
  ( -- client facing API
    MathServer()
  , add
    -- starting/spawning the server process
  , launchMathServer
  ) where

import .... -- elided

newtype MathServer = MathServer { mathServerPid :: ProcessId }
  deriving (Typeable)

-- other types/details elided

add :: MathServer -> Double -> Double -> Process Double
add MathServer{..} = call mathServerPid . Add

launchMathServer :: Process MathServer
launchMathServer = launch >>= return . MathServer
  where launch =
    let server = statelessProcess {
      apiHandlers = [ handleCall_ (\(Add x y) -> return (x + y)) ]
    , unhandledMessagePolicy = Drop
    }
    in spawnLocal $ start () (statelessInit Infinity) server >> return ()

From the previous example, the ProcessId is hidden, using another type and determining the client 
code to utilize the MathServer handler for calling the API functions. The new type MathServer, constructed 
around ProcessId, could be serialized and delivered to remote clients when it is necessary. Even if we 
changed the approach, we are not totally sure that informative messages will not arrive in the mailbox, 
because it is not 100% certain that the ProcessId is hidden because of APIs for managing or tracing from 
distributed-process. Also, the servers should be configured to accept monitor signals that come as 
informative messages.

The preceding approach (the server handles as an alternative to a native ProcessId) is also useful 
because the compatibility of the client-server is assured. Further, we will use Registry module, which is 
useful as general key/value store. Every Registry server has particular types of keys and values. We really 
need to avoid letting clients provide or get instructions for a registry server when we don’t know exactly 
the types that were spawned to be handled by the server. This problem is avoided if we use phantom type 
parameters and store the correct ProcessId for communication with the server.

data Registry k v = Registry { registryPid :: ProcessId }
  deriving (Typeable, Generic, Show, Eq)
instance (Keyable k, Serializable v) => Binary (Registry k v) where
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To start the registry, we need to know the k and v types, but not necessarily their values.

start :: forall k v. (Keyable k, Serializable v) => Process (Registry k v)
start = return . Registry =<< spawnLocal (run (undefined :: Registry k v))

run :: forall k v. (Keyable k, Serializable v) => Registry k v -> Process ()
run _ =
  MP.pserve () (const $ return $ InitOk initState Infinity) serverDefinition
  -- etc....

Because ProcessId is incorporated by the new type, it is assured that the types with which the server 
was started are taken into consideration by clients. In the examples, the client is forced to work with the 
server (it does not just use the protocol), and needs to send the right types, such as a valid handle form.

addProperty :: (Keyable k, Serializable v)
            => Registry k v -> k -> v -> Process RegisterKeyReply
addProperty reg k v = ....

When we compel the user to communicate with the process through a nontransparent handle, it is a 
good thing, because ProcessId is hidden every time it is possible, so it would not send unexpected messages 
to the server. But sometimes ProcessId is needed, especially for monitoring, name registration, or other 
methods that work directly with ProcessId, or when informational messages are sent.

In such cases, Resolvable or Routable help. Using Resolvable, the ProcessId is seen only by those 
components that need them, which is handled in the client code.

instance Resolvable (Registry k v) where
  resolve = return . Just . registryPid

Further, Routable supplies a way to send messages in absence of knowing the implementation details. 
By default, every Resolvable instance contains an instance of Routable, which works pretty well. The 
explicit implementation for the Registry is presented next.

instance Routable (Registry k v) where
  sendTo       reg msg = send (registryPid reg) msg
  unsafeSendTo reg msg = unsafeSend (registryPid reg) msg

We can create type classes, for example, for kill or link, in the absence of ProcessId.

class Linkable a where
  -- | Create a /link/ with the supplied object.
  linkTo :: a -> Process ()

class Killable a where
  killProc :: a -> String -> Process ()
  exitProc :: (Serializable m) => a -> m -> Process ()

Messages Within Channels 
Using Serializable is a very useful feature, but the correct interpretation of the types at run-time is the 
task of the programmer. Also, we need to pay attention to run-time overheads. Luckily, there are alternate 
variants for using send and receive, known as typed channels. We can interact with processes dissociated 
from the mailbox through a type-secure interface provided by abstraction resulted from using SendPort a 
(Serializable) and ReceivePort a (not Serializable) with different ends.
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We use newChan :: Process (SendPort a, ReceivePort a) for creating channels, and sendChan 
:: SendPort a -> a -> Process() for sending messages. ReceivePort is used in receiveChan or with a 
receive (Wait, Timeout) that calls the matchChan function in combined mailbox scans with channel reads.

There are two different ways in which typed channels can be used: like an input for the server or like a 
reply channel for RPC-type interactions.

Reply Channels
When call is used in an application, it is possible that the server responds with data that does not have the 
expected type, which leads to deadlock or a timeout. This could be prevented by programmers because they 
write the code for both the server and the client, and should be careful of matching types.

Reply channels work in a simple manner: a new channel for a reply is created, and the SendPort 
with the input message is sent to the server. Then, the server should send to the SendPort its suitable 
ReceivePort. If there is no such correspondence, a reply will not exist, and it is possible that the server will 
collapse.

Typed channels are more suitable with client-server RCP calls than inter-process messaging. The 
basis for a call API is Async. The fail happens when AsyncFailed occurs, because of a certain ExitReason. 
On the other hand, if callTimeout is used leading to the time for message being overtaken, and another 
listening for getting the message is not working, then the client side should handle unexpected replies using 
flushPendingCalls. When typed channels are used for the reply, the preceding issues could be avoided 
after the RPC is started.

When it is necessary to wait for a reply after blocking, two block operations are used; one of them will 
return ExitReason in case it fails. This is the right thing to do when a call blocking runs, so the server is 
observed for a possible exit signal, which is done with awaitResponse from the Primitive module.

syncSafeCallChan server msg = do
  rp <- callChan server msg
  awaitResponse server [ matchChan rp (return . Right) ]

This is a nice advance related to the call/handleCall approach, because the programmer assures that 
there is always matching type. Using handleRcpChan functions is more restrictive than handleCall. In the 
following, we present how reply channels work.

-- two versions of the same handler, one for calls, one for typed (reply) channels

data State
data Input
data Output

-- typeable and binary instances ommitted for brevity

-- client code

callDemo :: ProcessId -> Process Output
callDemo server = call server Input

chanDemo :: ProcessId -> Process Output
chanDemo server = syncCallChan server Input

-- server code (process definition ommitted for brevity)



Chapter 9 ■ Haskell in the Cloud

160

callHandler :: Dispatcher State
callHandler = handleCall $ \state Input -> reply Output state

chanHandler :: Dispatcher State
chanHandler = handleRpcChan $ \state port Input -> replyChan port Output >> continue state

Input (Control) Channels
For managing process servers, control channels are a good choice, having good influence over call, cast, 
and reply channels. It is based on efficiency and security, and the server can decide the priority of the 
received data.

Using typed channels is the best manner for enabling client-server communication, because internally, 
they use STM, so they supply another way to handle process definitions with high priority, determined by 
the apiHandlers list ahead of other senders. The messages that are sent using that channel will have a higher 
priority than others. This approach has the highest grade of efficiency, being very helpful when control 
messages need a higher priority than other data.

When a typed channel represents the input plane, it should communicate the SendPort to the clients in 
some way. A method implies the send function, which sends when it is requested. It is simpler to initialize 
a handler having all the necessary send ports and returning this data to a spawning process through a 
particular channel, MVar or STM. It is easy to forward them because SendPort is Serializable.

Because typed channels are unidirectional, there is no direct API assistance for RPC calls in situations 
in which they are used for sending data to the server. What we have to do is easy: codify a reply channel in 
the order/demand data, such that the server understands where to respond and with what type.

Next, we examine an example with only one control channel using the chanServe API. This approach, 
avoids the details of sending a control channel back to the initial process. We will use the Mailbox module 
because it provides a fire-and forget control channel with a nontransparent server handle.

-- our handle is fairly simple
data Mailbox = Mailbox { pid   :: !ProcessId
                       , cchan :: !(ControlPort ControlMessage)
                       } deriving (Typeable, Generic, Eq)
instance Binary Mailbox where

instance Linkable Mailbox where
  linkTo = link . pid

instance Resolvable Mailbox where
  resolve = return . Just . pid

-- lots of details elided....

-- Starting the mailbox involves both spawning, and passing back the process id,
-- plus we need to get our hands on a control port for the control channel!

doStartMailbox :: Maybe SupervisorPid
               -> ProcessId
               -> BufferType
               -> Limit
               -> Process Mailbox
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doStartMailbox mSp p b l = do
  bchan <- liftIO $ newBroadcastTChanIO
  rchan <- liftIO $ atomically $ dupTChan bchan
  spawnLocal (maybeLink mSp >> runMailbox bchan p b l) >>= \pid -> do
    cc <- liftIO $ atomically $ readTChan rchan
    return $ Mailbox pid cc  -- return our opaque handle!
  where
    maybeLink Nothing   = return ()
    maybeLink (Just p') = link p'

runMailbox :: TChan (ControlPort ControlMessage)
           -> ProcessId
           -> BufferType
           -> Limit
           -> Process ()
runMailbox tc pid buffT maxSz = do
  link pid
  tc' <- liftIO $ atomically $ dupTChan tc
  MP.chanServe (pid, buffT, maxSz) (mboxInit tc') (processDefinition pid tc)

mboxInit :: TChan (ControlPort ControlMessage)
         -> InitHandler (ProcessId, BufferType, Limit) State
mboxInit tc (pid, buffT, maxSz) = do
  cc <- liftIO $ atomically $ readTChan tc
  return $ InitOk (State Seq.empty $ defaultState buffT maxSz pid cc) Infinity

processDefinition :: ProcessId
                  -> TChan (ControlPort ControlMessage)
                  -> ControlChannel ControlMessage
                  -> Process (ProcessDefinition State)
processDefinition pid tc cc = do
  liftIO $ atomically $ writeTChan tc $ channelControlPort cc
  return $ defaultProcess { apiHandlers = [
                               handleControlChan     cc handleControlMessages
                             , Restricted.handleCall handleGetStats
                             ]
                          , infoHandlers = [ handleInfo handlePost
                                           , handleRaw  handleRawInputs ]
                          , unhandledMessagePolicy = DeadLetter pid
                          } :: Process (ProcessDefinition State)

For the moment, we will not talk about mailbox initialization because it is a little complicated. What is 
important in the preceding code is the way chanServe is used and the needs for thunk in the initialization 
of ProcessDefinition. In the preceding code, the control port is sent through thunk to chanServe to the 
spawning process and init function, where we can see how broadcasting TChan is used for sharing some 
structures while initializing.

Next, we present another example with more typed control channels. It shows how control channels are 
created explicitly, how ControlPort is obtained for everyone (a method of sending them back to the process 
spawning the server), and how to use these features in the client code with typed reply channels. chanServe 
is not used because it works only with one control channel; instead, we use recvLoop. The main parts of the 
code are highlighted.



Chapter 9 ■ Haskell in the Cloud

162

type NumRequests = Int

data EchoServer = EchoServer { echoRequests :: ControlPort String
                             , statRequests :: ControlPort NumRequests
                             , serverPid    :: ProcessId
                             }
  deriving (Typeable, Generic)
instance Binary EchoServer where
instance NFData EchoServer where

instance Resolvable EchoServer where
  resolve = return . Just . serverPid

instance Linkable EchoServer where
  linkTo = link . serverPid

-- The server takes a String and returns it verbatim

data EchoRequest = EchoReq !String !(SendPort String)
  deriving (Typeable, Generic)
instance Binary EchoRequest where
instance NFData EchoRequest where

data StatsRequest = StatsReq !(SendPort Int)
  deriving (Typeable, Generic)
instance Binary StatsRequest where
instance NFData StatsRequest where

-- client code

echo :: EchoServer -> String -> Process String
echo h s = do
  (sp, rp) <- newChan
  let req = EchoReq s sp
  sendControlMessage (echoRequests h) req
  receiveWait [ matchChan rp return ]

stats :: EchoServer -> Process NumRequests
stats h = do
  (sp, rp) <- newChan
  let req = StatsReq sp
  sendControlMessage (statRequests h) req
  receiveWait [ matchChan rp return ]

demo :: Process ()
demo = do
  server <- spawnEchoServer
  foobar <- echo server "foobar"
  foobar `shouldBe` equalTo "foobar"

  baz <- echo server "baz"
  baz `shouldBe` equalTo baz
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  count <- stats server
  count `shouldBe` equalTo (2 :: NumRequests)

-- server code

spawnEchoServer :: Process EchoServer
spawnEchoServer = do
  (sp, rp) <- newChan
  pid <- spawnLocal $ runEchoServer sp
  (echoPort, statsPort) <- receiveChan rp
  return $ EchoServer echoPort statsPort pid

runEchoServer :: SendPort (ControlPort EchoRequest, ControlPort StatsRequest)
              -> Process ()
runEchoServer portsChan = do
  echoChan <- newControlChan
  echoPort <- channelControlPort echoChan
  statChan <- newControlChan
  statPort <- channelControlPort statChan
  sendChan portsChan (echoPort, statPort)
  runProcess (recvLoop $ echoServerDefinition echoChan statChan ) echoServerInit

echoServerInit :: InitHandler () NumRequests
echoServerInit = return $ InitOk (0 :: Int) Infinity

echoServerDefinition :: ControlChannel EchoRequest
                     -> ControlChannel StatsRequest
                     -> ProcessDefinition NumRequests
echoServerDefinition echoChan statChan =
  defaultProcess {
      apiHandlers = [ handleControlChan echoChan handleEcho
                    , handleControlChan statChan handleStats
                    ]
    }

handleEcho :: NumRequests -> EchoRequest -> Process (ProcessAction State)
handleEcho count (EchoReq req replyTo) = do
  replyChan replyTo req  -- echo back the string
  continue $ count + 1

handleStats :: NumRequests -> StatsRequest -> Process (ProcessAction State)
handleStats count (StatsReq replyTo) = do
  replyChan replyTo count
  continue count

The preceding code is a didactic example. The client side works with ControlPort, not with 
ControlChannel, and the server is liable to reply to the client making use of the send ports given in the 
requested data.
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Summary
Throughout the chapter, you saw that there are many ways for message matching.

•	 match :: forall a b. Serializable a => (a -> Process b) -> Match b : 
Matches with any message that has the type from the right.

•	 matchIf :: forall a b. Serializable a => (a -> Bool) -> (a -> Process b) 
-> Match b : Matches with any message that has the type from the right and meets 
the condition of the predicate.

•	 matchUnknown :: Process b -> Match b : Removes all messages from the queue.

•	 matchAny :: forall b. (Message -> Process b) -> Match b : Matches with 
an arbitrary message. It eliminates the first message that is available on the process 
mailbox.

•	 matchAnyIf :: forall a b. Serializable a => (a -> Bool) -> (Message -> 
Process b) -> Match b : Matches with an arbitrary message. A message is removed 
from the mailbox if it meets the supplied condition.

Also, you saw how processes and messages work in Cloud Haskell, how unexpected messages are 
handled, and how channels communicate.
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CHAPTER 10

Haskell in Big Data

We have already discussed big data in Chapter 8. In this chapter, we provide a deeper overview of big data 
and its challenges. This chapter covers how data is generated, and presents some of the tools and methods 
used in big data. It also presents an example of MapReduce in Haskell.

More About Big Data
Usually, when we work with data, we need to accomplish mainly four steps: generation, collection, storage, 
and analysis of data (the latter is covered in the “MapReduce in Haskell” section).

Data Generation
The first stage in big data is the generation of data. The Internet is full of data. We can see it everywhere: 
searches, posts on different forums, registers of conversations, and much more. By analyzing data available 
on the Internet, we can learn much. Taken individually, we can discover the habits of a user, but taken as 
a whole, we can discover different trends, habits, or even emotional facts through sentiment analysis. The 
data is complex and diverse because it is obtained from different locations around the world and the sources 
are distributed. At this moment, the main origins of big data are operations and commercial data from 
companies, logistic and sensors data from the Internet of Things (IoT), social platforms, and data from the 
research fields, among others. This amount of data cannot be handled by traditional IT architectures and 
infrastructures. Moreover, it cannot be analyzed using traditional systems.

Data from Companies
In 2013, IBM published an analysis, called “The Applications of Big Data to the Real World,” which 
concluded that an important source of big data is represented by companies, whose data refer to 
commercial or analysis data. Most of it is static and represents historical data, structured and handled by 
relational database management systems (RDBMS). An important quantity of it is internal data constituted 
by production, inventory, sales, and financial data.

A large amount of data has been generated in the last few years. It is predicted that the data generated 
by businesses doubles every 1.2 years, so there is a need for systems that performs data in real time, so that 
this data is valuable. A good example is Amazon, which performs a large number of terminal operations 
(millions of orders) and more than 500,000 queries daily. Other examples are Walmart or Akamai.

http://dx.doi.org/10.1007/978-1-4842-2781-7_8
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IoT Data
The IoT is another important generator of data. The use of sensors has increased in the last few years.  
They generate a lot of data, provided by smart cities, in areas like industrial enterprises, agriculture, medical 
records, and so forth. Data generated by the IoT have the following characteristics.

•	 Large scale. The distributed deployment is used to handle large amounts of data.

•	 Variated. Data is collected from different devices (PCs, laptops, tablets, smartphones, 
etc.), so it is naturally diverse.

•	 Time-space correlated. Data generated by sensors can be geographically located and 
attaches the time it is generated. This is useful in statistics and analysis, and may 
provide accurate information about specific geographical areas.

Biomedical Data
Biological processes could be better understood by creating smart, effective, and precise models and 
theoretical environments. This data is very useful because it can be used for predictions, for determining 
the states of systems, or even decision making. Big data has many applications in the biomedical field; for 
example, in the Human Genome Project, where data generated by sequencing genes are exposed to special 
analysis, depending on the application requirements (the combination of different chemical products, 
diagnosis, individual treatment, etc.). The total amount of rough data collected from the sequencing of a 
human gene could reach 100,600 gigabytes.

Data Generation from Other Fields
Research areas have undergone many improvements through the development of techniques and 
technologies to acquire data that can be easily analyzed. The following are examples of science fields 
collecting large amounts of data.

•	 Biology. The GenBank database contains nucleotide sequences. New data is released 
every two months. According to the GenBank website (https://www.ncbi.nlm.
nih.gov/genbank): “GenBank release 218.0 (2/13/2017) has 199,341,377 traditional 
records containing 228,719,437,638 base pairs of sequence data. In addition, there 
are 409,490,397 WGS records containing 1,892,966,308,635 base pairs of sequence 
data, 151,431,485 TSA records containing 133,517,212,104 base pairs of sequence 
data, as well as 1,438,349 TLS records containing 636,923,295 base pairs of sequence 
data. … uncompressed GenBank Release 216.0 flat files require approximately 818 
GB (sequence files only).”

•	 Astronomy. The Sloan Digital Sky Survey (SDSS), the biggest project in astronomy, 
has generated 25 TB (1 TB = 1 000 000 000 000 bytes) of data since 2008; but with 
improvements in the image quality of its telescope, it is expected that the amount of 
data collected every night to be greater than 20 TB.

•	 Physics. The Large Hadron Collider (2008 Atlas project) generated 2 PB (1 PB = 1 000 
000 000 000 000 bytes) of data per second; in a year, it collected 10 TB of operated 
data.

https://www.ncbi.nlm.nih.gov/genbank
https://www.ncbi.nlm.nih.gov/genbank
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Data Collection
After data is generated, the next step is to collect it from different sources. The following are data collection 
approaches.

•	 Log files. The system that represents the origin of data generates automatic log files 
at a certain time. Usually, the log files contain information about activities on that 
system. For example, web servers usually have three types of log files that contain 
information about users’ behaviors: public format (NCSA), expanded format (W3C), 
and IIS format (Microsoft)—all in ASCII format. Sometimes, log information is stored 
in databases because the queries are more efficient. Also, log information could be 
financial data, or traffic from a network.

•	 Detection. Sensors are used to detect a certain type of data and to transmit it through 
a channel to a collecting site.

•	 Techniques for collecting data. Includes web crawlers (used in search systems when 
web pages are downloaded and stored), systems for word segmentation, tasks, and 
index systems.

We will not continue to talk about how data is transmitted to storage systems. Next, we discuss some of 
the tools for big data storage.

Data Storage
In big data, the main approach of data storage is distributed storage systems, which make use of more 
servers for data storage and copies of data. Commonly, data is fragmented into lower pieces that are stored 
on different servers. The storage systems need to have at least the following characteristics.

•	 Consistency. This ensures that all copies of the same original data are the same.

•	 Availability. This ensures that data is available anytime, even in the event of a server 
or virtual machine failure. This is the reason why data is fragmented and copies of 
the same data are stored at different locations.

•	 Fault tolerance. This ensures that the data is available and can be managed even if 
there is a network failure.

Big data storage systems have three levels on the top of the architecture.

•	 File systems represent the way in which files on a storage systems are named, the 
logical place of their storage, how they could be retrieved, and so on. Examples of 
file systems include GFS (Google File System) and Colossus from Google. HDFS 
(Hadoop Data File System) and Kosmosfs are open source and derived from GFS, 
Cosmos from Microsoft, Haystack from Facebook, and so forth.

•	 Traditional databases are collections of data organized (generally they are stored 
into tables) to be easily manipulated. In the last few years, however, NoSQL  
(Not Only SQL) databases, which are not relational, are being used more and more. 
Their targets are large sets of distributed data. You will see some examples of NoSQL 
databases in the next subsection.

•	 Programming models represent sets of concepts used for creating software 
applications. MapReduce is a well-known example of this programming model.
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Database Technology
Because traditional database systems cannot handle big data, NoSQL database systems were developed to 
do it and they become the central part of big data. There are three categories of NoSQL databases.

•	 Key-valued databases are a basic data model, in which data is stored with 
corresponding keys. These keys are distinct and queries are based on their values. 
Examples of such databases include Dynamo, used by Amazon, and Voldemort, used 
by LinkedIn.

•	 Column-oriented databases are similar to traditional databases, but their focus 
is on queries of columns, rather than rows. Examples are BigTable from Google; 
Cassandra, initially developed by Facebook, now open source; and HBase and 
HyperTable, which are open source versions of BigTable. The HBase programming 
language is Java, and it represents a component of Apache Hadoop.

•	 Document-oriented databases allow you to store complex data, but also provide the 
facility to store keys for data. Examples include MongoDB, which stores data in the 
form of Binary JSON (BSON); SimpleDB; and Apache CouchDB written in Erlang.

Models and Tools
As you have seen, big data represents large volumes of complex data, stored in a distributed manner. The 
classical parallel models (Message Passing Interface (MPI), Open Multi-Processing (OpenMP)) cannot 
handle big data very well, so the development of another model was needed. The following are the most 
used models and systems in big data.

•	 MapReduce. This programming model is very simple, but also very useful in 
large-scale computing with many clusters of PCs. MapReduce has only two main 
functions: map and reduce, which need to be written by a programmer. The input for 
the map function is a list of pairs of key-value form, and the output is an intermediary 
list of such pairs. The next step is a combination of the values that have the same key, 
and transmitting to the reduce function, whose task is to reduce the dimension of 
the input, which results in a smaller list.

•	 Dryad. The main structure is a directional acyclic graph, with vertexes representing 
programs and edges representing channels. The operations are executed on nodes, 
and data is sent through channels.

•	 All-Pairs. This was developed especially for biometrics, bioinformatics, and 
datamining. In a few words, the main approach is to compare pair elements from 
different data sets according to a given function.

•	 Pregel. This was developed by Google with the purpose to process graphs with a 
high size. There are other differences between Dryad and Pregel, but the difference 
regarding parallelism is that in Pregel, the functions of users are executed 
concurrently over vertices within a super step; whereas in Dryad, vertices are 
executed concurrently over a stage.
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MapReduce in Haskell
The examples in this section belong to authors of http://www.well-typed.com/blog. As you have seen, 
MapReduce works with pairs of key-value forms, which result after applying a compressed list of such pairs 
on both functions. In Haskell, the type of algorithm is

-- The type of Map-Reduce skeletons (provided by the user)
data MapReduce k1 v1 k2 v2 v3 = MapReduce {
    mrMap    :: k1 -> v1 -> [(k2, v2)]
  , mrReduce :: k2 -> [v2] -> v3
  }

-- A Map-Reduce skeleton by the driver
localMapReduce :: Ord k2 => MapReduce k1 v1 k2 v2 v3 -> Map k1 v1 -> Map k2 v3

In the beginning, a map is as key-value, where the keys have type k1 and the values have type v1. Using 
“Map” (i.e., mrMap), the pairs are transformed into a list of pairs, where keys have type k2 and values have 
type v2. An important observation is that the resulting list could contain more pairs with the same keys, 
which is very possible in practice. The MapReduce driver brings together all values for the same key, and 
then, “Reduce” (mrReduce) reduces the list of values whose type is v2 to a single value, whose type is v3.

Let’s suppose that we want to count the number of words in more documents; that is, we want to turn 
the MapReduce FilePath Document into Word Frequency. Let’s use the following.

{-# LANGUAGE TupleSections #-}
countWords :: MapReduce FilePath Document Word Frequency Frequency
countWords = MapReduce {
    mrMap    = const (map (, 1) . words)
  , mrReduce = const sum  
  }

Next, we use a master-slave approach of Cloud Haskell, in which slaves nodes handle Map, and the 
tasks are distributed through work stealing. Reduce is performed only on a single machine, so it will not be 
distributed. In the following example of counting words, the implementation of MapReduce is monomorphic. 
So, the slave nodes require tasks that are executed using mrMap from the MapReduce skeleton.

mapperProcess :: (ProcessId, ProcessId, Closure (MapReduce String String String Int Int))
              -> Process ()
mapperProcess (master, workQueue, mrClosure) = do
    us <- getSelfPid
    mr <- unClosure mrClosure
    go us mr
  where
    go us mr = do
      -- Ask the queue for work
      send workQueue us

      -- Wait for a reply; if there is work, do it and repeat; otherwise, exit
      receiveWait
        [ match $ \(key, val) -> send master (mrMap mr key val) >> go us mr
        , match $ \()         -> return ()
        ]

remotable ['mapperProcess]

http://www.well-typed.com/blog
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Let’s observe that slaves need a Closure of MapReduce skeleton, which is not serializable because it  
has functions.

The following is the implementation for the master.

distrMapReduce :: Closure (MapReduce String String String Int Int)
               -> [NodeId]
               -> Map String String
               -> Process (Map String Int)
distrMapReduce mrClosure mappers input = do
  mr     <- unClosure mrClosure
  master <- getSelfPid

  workQueue <- spawnLocal $ do
    -- Return the next bit of work to be done
    forM_ (Map.toList input) $ \(key, val) -> do
      them <- expect
      send them (key, val)

    -- Once all the work is done tell the mappers to terminate
    replicateM_ (length mappers) $ do
      them <- expect
      send them ()

  -- Start the mappers
  �forM_ mappers $ \nid -> spawn nid ($(mkClosure 'mapperProcess) (master, workQueue, 
mrClosure))

  -- Wait for the partial results
  partials <- replicateM (Map.size input) expect

  -- We reduce on this node
  return (reducePerKey mr . groupByKey . concat $ partials)

The following is the rest of the implementation, in which the words are counted.

countWords_ ::  MapReduce FilePath Document Word Frequency Frequency
countWords_  = countWords

remotable ['countWords_]

distrCountWords :: [NodeId] -> Map FilePath Document -> Process (Map Word Frequency)
distrCountWords = distrMapReduce ($(mkClosure 'countWords_) ())

Next, we present another example, which implements the k-means algorithm in a MapReduce 
approach. The k-means algorithm classifies a set of elements into n classes. It performs the steps a chosen 
number of times or until it converges.

•	 The algorithm has n cluster centers. Every point in the set choses a center to which 
the distance between the current point and the center is minimum.

•	 For every new cluster, compute the new center.
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The initial centers could be randomly chosen.
Of course, the choice of initial centers has an impact on the results. Figure 10-3 applies the same 

k-means and over the same points, but with another initial center.
MapReduce is used for one iteration of k-means. The task for every node in the map is the first step of 

k-means. In the reduce step, the new centers of the clusters are implemented.

type Point    = (Double, Double)
type Cluster  = (Double, Double)

average :: Fractional a => [a] -> a
average xs = sum xs / fromIntegral (length xs)

distanceSq :: Point -> Point -> Double
distanceSq (x1, y1) (x2, y2) = a * a + b * b
  where
    a = x2 - x1
    b = y2 - y1

nearest :: Point -> [Cluster] -> Cluster
nearest p = minimumBy (compare `on` distanceSq p)

center :: [Point] -> Point
center ps = let (xs, ys) = unzip ps in (average xs, average ys)

kmeans :: Array Int Point -> MapReduce (Int, Int) [Cluster] Cluster Point ([Point], Point)
kmeans points = MapReduce {
    mrMap    = \(lo, hi) cs -> [ let p = points ! i in (nearest p cs, p)
                               | i <- [lo .. hi]
                               ]
  , mrReduce = \_ ps -> (ps, center ps)
  }

The beginning is Map (Int, Int) [Cluster]. The input set contains the segmentation, which has 
corresponding keys in this map. For example, the key (20, 39) shows that clusters should be computed for 
[20..39] by the mapper. The current centers are just the values from this map.

Next, a list of type [(Cluster, Point)] that contains the association between points and clusters is 
obtained. In the reduce step, Map Cluster ([Point], Point) is created. It provides a set of points and the 
center for every cluster.

This implementation allows only a single iteration of k-means, but in reality, we need to iterate more 
than once. The following is a version in that allows more iterations.

localKMeans :: Array Int Point
            -> [Cluster]
            -> Int
            -> Map Cluster ([Point], Point)
localKMeans points cs iterations = go (iterations - 1)
  where
    mr :: [Cluster] -> Map Cluster ([Point], Point)
    mr = localMapReduce (kmeans points) . trivialSegmentation
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    go :: Int -> Map Cluster ([Point], Point)
    go 0 = mr cs
    go n =  mr $ snd <$> (Map.elems $ go (n-1))

    trivialSegmentation :: [Cluster] -> Map (Int, Int) [Cluster]
    trivialSegmentation cs' = Map.fromList [(bounds points, cs')]

You have observed that the set of points remains the same in every iteration; but it should be spread out 
by map nodes. The following are the jobs of the master process in the example.

•	 Initialization of mappers

•	 Managing the MapReduce process

•	 Termination of mappers

The type of distrMapReduce is changed to

distrMapReduce :: Closure (MapReduce (Point, Point) [Cluster] Cluster
                                     Point ([Point], Point))
               -> [NodeId]
               -> ((Map (Point, Point) [Cluster] ->
                   Process (Map Cluster ([Point], Point))) -> Process a)
               -> Process a

In this piece of code, distrMapReduce mrClosure mappers p, the process p is used to manage  
map-reduce tasks.

This modification is useful, but the whole set of point is transmitted to all nodes, even when the nodes 
operates only on a subset. As a hint, the MapReduce driver needs generalization.

Polymorphic Implementation
Previously, we changed the type of distrMapReduce, because it was necessary that the type of the MapReduce 
skeleton be matched in the word-counting example. The type could be changed without changing the 
implementation. The following is the polymorphic version of distrMapreduce.

distrMapReduce :: (Serializable k1, Serializable v1, Serializable k2,
                   Serializable v2, Serializable v3, Ord k2)
               => Closure (MapReduce k1 v1 k2 v2 v3)
               -> [NodeId]
               -> ((Map k1 v1 -> Process (Map k2 v3)) -> Process a)
               -> Process a

Anyway, there is a little problem with the generalization. Let’s think about mappers in the general form. 
What do they need to do? Well, at first sight, it should expect a message that has a specific type. For type 
matching, it should know something about the type (k1, v1). The next step is to send a list whose type is 
[(k2, v2)] to the master when a message comes. This is possible only when the map knows the way it could 
serialize the values with type [(k2, v2)].

distrMapReduce obtains this information from the Serializable type class’s constraints. Unfortunately, 
in Haskell there is no explicit way such that the arguments to be handled, even more providing a way for 
serializing them for being shipped to the mapper nodes. We can define a type class constraint as an explicit 
dictionary, however.
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data SerializableDict a where
    SerializableDict :: Serializable a => SerializableDict a

The objects whose type is SerializableDict cannot be directly serialized, but static SerializableDicts 
can. So, definition of serializing become:

distrMapReduce :: forall k1 k2 v1 v2 v3 a.
                  (Serializable k1, Serializable v1, Serializable k2,
                   Serializable v2, Serializable v3, Ord k2)
               => Static (SerializableDict (k1, v1))
               -> Static (SerializableDict [(k2, v2)])
               -> Closure (MapReduce k1 v1 k2 v2 v3)
               -> [NodeId]
               -> ((Map k1 v1 -> Process (Map k2 v3)) -> Process a)
               -> Process a

Maybe it is a little complicated, but the change is requiring static type information to ship this type of 
information to the mappers. We omitted the implementation. It could be found in distributed-process-
demos package; the basic principles are explained in the documentation of the distributed-static 
package.

The polymorphic version of distrMapReduce has the same difficulty as monomorphic version; for 
example, “distributed word counting” can be implemented as follows.

dictIn :: SerializableDict (FilePath, Document)
dictIn = SerializableDict

dictOut :: SerializableDict [(Word, Frequency)]
dictOut = SerializableDict

countWords_ :: () -> MapReduce FilePath Document Word Frequency Frequency
countWords_ () = countWords

remotable ['dictIn, 'dictOut, 'countWords_]

distrCountWords :: [NodeId] -> Map FilePath Document -> Process (Map Word Frequency)
distrCountWords mappers input =
  distrMapReduce $(mkStatic 'dictIn)
                 $(mkStatic 'dictOut)
                 ($(mkClosure 'countWords_) ())
                 mappers
                 (\iteration -> iteration input)

Creating the necessary SerializableDicts is easy (there is only one constructor for SerializableDict, 
and it doesn’t take any arguments!). Note that the word counter only calls the iteration function once; this 
will not be true for distributed k-means.

Distributed k-means
The following presents the distributed version of k-means. There are not very many modifications to the 
initial (local) implementation: go is added, and the rest (segments, dividePoints, pointsPerMapper, and 
numPoints) show where every segment needs to go to the corresponding node from map.
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dictIn :: SerializableDict ((Int, Int), [Cluster])
dictIn = SerializableDict

dictOut :: SerializableDict [(Cluster, Point)]
dictOut = SerializableDict

remotable ['kmeans, 'dictIn, 'dictOut]

distrKMeans :: Array Int Point
            -> [Cluster]
            -> [NodeId]
            -> Int
            -> Process (Map Cluster ([Point], Point))
distrKMeans points cs mappers iterations =
    distrMapReduce $(mkStatic 'dictIn)
                   $(mkStatic 'dictOut)
                   ($(mkClosure 'kmeans) points)
                   mappers
                   (go (iterations - 1))
  where
    go :: Int
       -> (Map (Int, Int) [Cluster] -> Process (Map Cluster ([Point], Point)))
       -> Process (Map Cluster ([Point], Point))
    go 0 iteration = do
      iteration (Map.fromList $ map (, cs) segments)
    go n iteration = do
      clusters <- go (n - 1) iteration
      let centers = map snd $ Map.elems clusters
      iteration (Map.fromList $ map (, centers) segments)

    segments :: [(Int, Int)]
    segments = let (lo, _) = bounds points in dividePoints numPoints lo

    dividePoints :: Int -> Int -> [(Int, Int)]
    dividePoints pointsLeft offset
      | pointsLeft <= pointsPerMapper = [(offset, offset + pointsLeft - 1)]
      | otherwise = let offset' = offset + pointsPerMapper in
                    (offset, offset' - 1)
                  : dividePoints (pointsLeft - pointsPerMapper) offset'

    pointsPerMapper :: Int
    pointsPerMapper =
      ceiling (toRational numPoints / toRational (length mappers))

    numPoints :: Int
    numPoints = let (lo, hi) = bounds points in hi - lo + 1
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Summary
In this chapter, you saw

•	 the stages through which data (from structured and unstructured data sets) needs to 
pass to retrieve relevant information.

•	 two examples of the MapReduce programming model used in Haskell.
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CHAPTER 11

Concurrency Design Patterns

In this chapter, we have chosen to present the most common problems that could occur in big data 
applications. One of best solutions to these problems is to use design patterns. Research contributions in 
functional programming continue to be made in this area, including attempts to make functional versions 
of OOP design patterns. Haskell is a very good programming language for big data, but some of patterns 
have implementations only in object-oriented programing languages. This is not an impediment for using 
both Haskell and design patterns, however, because they could be easily made interoperable, as you will 
see in this chapter. A good design pattern reference is Design Patterns: Elements of Reusable Object-Oriented 
Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (also known as the Gang of 
Four) (Addison-Wesley Professional, 1994).

The least difficult approach to portraying a pattern is to give a demonstrated solution for a typical 
issue separately archived in a reliable configuration and as a feature of a bigger collection. Patterns are 
now considered a principal part of daily existence. Without always recognizing it, we actually utilize design 
patterns to take care of basic problems every day.

Design pattern are very useful because they

•	 solve ordinary design issues.

•	 create projections based on standards and using intuitive formats.

•	 are used in designing applications by many IT professionals.

•	 assure consistency in systems.

•	 can be used as fundamentals for design standards.

•	 can be adapted in particular situations.

•	 can be used in collaboration with other design patterns in the same application.

Besides, because solutions are tested and their performance is demonstrated, their reliable application 
has a tendency to actually enhance the nature of framework outlines.

Despite the fact that design patterns give demonstrated solutions, this does not ensure that outline 
issues will always be resolved. There are many reasons to utilize design patterns, including constraints 
forced by the implementation platform, the competency of the specialists, wandering business necessities, 
and so forth. These aspects influence the degree to which the pattern is effectively used.

A pattern language is a suite of related patterns that go about creating blocks that can be used in at least 
one example application where every subsequent pattern expands upon the former. The thought of a pattern 
language began in building engineering as the expression “pattern sequence.”

Big data design patterns are an open-ended, master pattern language. The degree to which diverse 
patterns are connected can change, yet are general enough to share a target, and interminable example 
successions can be investigated. This chapter provides implementation for patterns in Haskell, Java, and 
C++. Java or C++ code can be easily implemented in Haskell. This mechanism of integrating code written 

https://en.wikipedia.org/wiki/Erich_Gamma#Erich Gamma
https://en.wikipedia.org/wiki/Ralph_Johnson_(computer_scientist)#Ralph Johnson (computer scientist)
https://en.wikipedia.org/wiki/John_Vlissides#John Vlissides
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in another programming language than the base programming language used to develop an application, is 
called Foreign Function Interface (FFI).

Java code could be integrated using the inline-java package. The following is a short piece of code in 
which the message “Hello World!” is displayed in a message dialog control. For a comprehensive tutorial, 
please visit https://github.com/tweag/inline-java/.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Main where

import Data.Int
import Language.Java
import Language.Java.Inline

main :: IO Int32
main = withJVM [] $ do
    message <- reflect "Hello World!"
    [java| { javax.swing.JOptionPane.showMessageDialog(null, $message);
             return 0; } |]

The CPlusPlus library is used for integrating C++ in Haskell. For a comprehensive description, please 
visit https://wiki.haskell.org/CPlusPlus_from_Haskell.

Active Object
The active object design pattern separates a method execution from its invocation of the object, such that 
both invocation and execution have its own thread of control. The purpose is to use concurrency. This is 
done utilizing an asynchronous method invocation and a program to handle solicitations. The following lists 
the components of this pattern.

•	 The proxy (resource) that supplies an interface for users with public methods

•	 The client interface that establishes the method request applied over an active object

•	 The list (message queue) that contains awaiting requests from users

•	 The scheduler (program) that choses the next request that should be executed

•	 The implementation (method representation) of the active object method

•	 The variable used for the user to get the result

Now let’s see what an active object is. We say that objects are active if their states depend on a clock.  
The state of an object is updated by a task encapsulated by that object. To avoid the corruption of the object’s 
state, the methods should be synchronized with the task that updates the state.

The following is an implementation of active object pattern in Haskell.

data Set a = Empty | Add a (Set a)

pat Add' x _ =
  Add y s => if x==y then Add y s
             else let Add' x t = s
                  in Add x (Add y t)

https://github.com/tweag/inline-java/
https://wiki.haskell.org/CPlusPlus_from_Haskell
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delete x (Add' x s) = s
delete x s          = s

Next, we present an example that implements an active integrator object. It has an input that is set using 
the Input method, a function of time. The output is obtained by calling the Output method. As an example, if 
the input is K(t) and the output is S, the object state S is modified in S + (K(t1) + K(t0)) × (t1 – t0) ÷ 2; that is, it 
integrates K using the trapeze method. Initially, K is constant 0 and S is 0.

We will test the object as follows.

	 1.	 The input is sin (2π f t), with the frequency f = 0.5 Hz. The phase could  
be anything.

	 2.	 Wait for two seconds.

	 3.	 Reset the input to 0.

	 4.	 Wait for 0.5 seconds.

Now check if the output of the object is 0. Of course, the accuracy is dependent on the scheduler time 
of the operating system and the accuracy of the clock. The following is the implementation (also available at 
https://rosettacode.org/wiki/Active_object#Haskell).

module Integrator (newIntegrator, input, output, stop, Time, timeInterval)
 where
import Control.Concurrent (forkIO, threadDelay)
import Control.Concurrent.MVar (MVar, newMVar, modifyMVar_, modifyMVar, readMVar)
import Control.Exception (evaluate)
import Data.Time (UTCTime)
import Data.Time.Clock (getCurrentTime, diffUTCTime)

-- RC task
main = do let f = 0.5 {- Hz -}
          t0 <- getCurrentTime
          i <- newIntegrator
          input i (\t -> sin(2*pi * f * timeInterval t0 t)) -- task step 1
          threadDelay 2000000 {- μs -}                      -- task step 2
          input i (const 0)                                 -- task step 3
          threadDelay 500000 {- μs -}                       -- task step 4
          result <- output i
          stop i
          print result

---- Implementation ------------------------------------------------------

-- Utilities for working with the time type
type Time = UTCTime
type Func a = Time -> a
timeInterval t0 t1 = realToFrac $ diffUTCTime t1 t0

-- Type signatures of the module's interface
newIntegrator :: Fractional a => IO (Integrator a) -- Create an integrator
input  :: Integrator a -> Func a -> IO ()          -- Set the input function
output :: Integrator a           -> IO a           -- Get the current value
stop   :: Integrator a           -> IO ()          -- Stop integration, don't waste CPU

https://rosettacode.org/wiki/Active_object#Haskell
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-- Data structures
data Integrator a = Integrator (MVar (IntState a)) -- MVar is a thread-safe mutable cell
  deriving Eq
data IntState a = IntState { func  :: Func a,      -- The current function
                             run   :: Bool,        -- Whether to keep going
                             value :: a,           -- The current accumulated value
                             time  :: Time }       -- The time of the previous update

newIntegrator = do
  now <- getCurrentTime
  state <- newMVar $ IntState { func  = const 0,
                                run   = True,
                                value = 0,
                                time  = now }
  thread <- forkIO (intThread state)  -- The state variable is shared between the thread
  return (Integrator state)           --   and the client interface object.     

input  (Integrator stv) f = modifyMVar_ stv (\st -> return st { func = f })
output (Integrator stv)   = fmap value $ readMVar stv
stop   (Integrator stv)   = modifyMVar_ stv (\st -> return st { run = False })
  -- modifyMVar_ takes an MVar and replaces its contents according to the provided function.
  -- a { b = c } is record-update syntax: "the record a, except with field b changed to c"

-- Integration thread
intThread :: Fractional a => MVar (IntState a) -> IO ()
intThread stv = whileM $ modifyMVar stv updateAndCheckRun
  -- modifyMVar is like modifyMVar_ but the function returns a tuple of the new value
  -- and an arbitrary extra value, which in this case ends up telling whileM whether
  -- to keep looping.
  where updateAndCheckRun st = do
          now <- getCurrentTime
          let value' = integrate (func st) (value st) (time st) now
          evaluate value'                             -- avoid undesired laziness
          return (st { value = value', time  = now }, -- updated state
                  run st)                             -- whether to continue

integrate :: Fractional a => Func a -> a -> Time -> Time -> a
integrate f value t0 t1 = value + (f t0 + f t1)/2 * dt
  where dt = timeInterval t0 t1

-- Execute 'action' until it returns false.
whileM action = do b <- action; if b then whileM action else return ()

Balking Pattern
A balking pattern is used when we need to call a method of an object only when the object is in a particular 
state. This pattern is typically used on objects that could balk temporarily, but the time of balking is not 
known.

In most applications, a balking pattern is used with a single-threaded execution pattern. It is useful in 
helping coordinate an object’s changes in a certain state. (A single-threaded execution pattern is used when 
many readers and many writers operate on a single resource).
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The following is a general implementation (see https://en.wikipedia.org/wiki/Balking_pattern).

public class Example {
    private boolean jobInProgress = false;

    public void job() {
        synchronized(this) {
           if (jobInProgress) {
               return;
           }
           jobInProgress = true;
        }
        // Code to execute job goes here
        // ...
    }

    void jobCompleted() {
        synchronized(this) {
            jobInProgress = false;
        }
    }
}

If the jobInProgress variable has a false value, then no command is executed. job() simply returns, 
so the state of the object does not change. On the other hand, when jobInProgress has a true value, the 
Example object has the right state and it is able for executing the code from job().

This pattern is very useful when working with big data—namely, a large amount of data—because it can 
tell us if a job was correctly executed or not at certain time intervals. For example, a search for particular data 
in terabytes within an application would be useful to know if jobs were executed at certain intervals of time. 
Still, it should be used when the balking time is unknown. In situations where the time is known, a better 
choice would be a guarded suspension pattern.

Barrier
Concurrent and parallel programming could be very useful in many applications. You can do a lot with only 
a little number of threads, but what about if you increase the number of threads?

Well, this could lead to a disaster, because the performance could be dramatically decreased.  
The following could happen when there are too many threads: opening and closing threads could become 
more expensive than actually worthwhile, if the amount of work is relatively small; or, an overhead could 
occur when are shared fixed hardware resources.

Another type of overhead is virtual memory. Many systems have virtual memory, in which the 
processors contain an address space larger than the actual available memory. It lives on the disk and is used 
similarly to caches. Threads need virtual memory for the stack and private data structures. When there are a 
large number of threads, they “fight” for the actual memory, which decreases performance.

Another problem could occur when access to the shred memory is not synchronized, so the threads are 
in a continuous race, which leads to a deadlock.

In some applications, there are threads that need to have a higher priority than others. When memory 
is insufficient to run all threads, the threads with higher priorities get preference. Prioritizing threads could 
be useful, but you need to pay attention to a potential situation in which a thread with low priority blocks a 
thread with high priority.

https://en.wikipedia.org/wiki/Balking_pattern
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A barriers is a solution to (some of) these problems. A barrier is a synchronization mechanism that lets 
you “corral” several cooperating threads (e.g., in a matrix computation), forcing them to wait at a specific 
point. All must finish before any one thread can continue.

The following is an example in which barriers are used to implement a matrix multiplication. 
implemented by Aliaksey Artamonau, also available at https://github.com/aartamonau/haskell-
barrier/blob/master/examples/MatrixMultiplication.hs. 

{-# LANGUAGE TupleSections #-}

import Control.Concurrent ( forkIO )
import Control.Monad ( mapM, mapM_, forM_ )
import Data.Array.IO ( IOUArray )
import Data.Array.MArray ( MArray (getBounds, newArray_),
                           readArray, writeArray, newListArray )

import Text.Printf ( printf )

--| This is from concurrent-barrier package
import Control.Concurrent.Barrier ( Barrier )
import qualified Control.Concurrent.Barrier as Barrier

-- | Matrix is just an unboxed mutable array of doubles.
type Matrix = IOUArray (Int, Int) Double

-- | Multiplies two matrixes. Spawns bunch of threads. Each thread computes one
-- element of a resulting matrix.
multiply :: Matrix -> Matrix -> IO Matrix
multiply a b = do
  (_, (ah, aw)) <- getBounds a
  (_, (bh, bw)) <- getBounds b

  result  <- newArray_ ((1, 1), (ah, bw)) 
  barrier <- Barrier.new (ah * bw + 1)

  let worker row col = do
        rs <- mapM (readArray a) (map (row,) [1 .. aw])
        cs <- mapM (readArray b) (map (,col) [1 .. bh])

        writeArray result (row, col) (sum $ zipWith (*) rs cs)

        Barrier.wait barrier

  mapM_ forkIO $ map (uncurry worker) [(i, j) | i <- [1 .. ah], j <- [1 .. bw]]

  Barrier.wait barrier

  return result

-- | Builds a matrix from list of lists.
matrix :: [[Double]] -> IO Matrix
matrix a = newListArray ((1, 1), (m, n)) (concat a)

https://github.com/aartamonau/haskell-barrier/blob/master/examples/MatrixMultiplication.hs
https://github.com/aartamonau/haskell-barrier/blob/master/examples/MatrixMultiplication.hs
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  where m = length a
        n = length $ head a

-- | Dumps matrix to stdout.
dump :: String -> Matrix -> IO ()
dump heading a = do
  (_, (m, n)) <- getBounds a

  printf "%s:\n" heading

  forM_ [1 .. m] $ \i -> do
    forM_ [1 .. n] $ \j -> do
      v <- readArray a (i, j)

      printf "%10.2f " v
    printf "\n"

main :: IO ()
main = do
  a <- matrix [[1, 2, 3, 4, 5],
               [6, 7, 8, 9, 10]]
  b <- matrix [[1, 2],
               [3, 4],
               [5, 6],
               [7, 8],
               [9, 10]]

  dump "A" a
  dump "B" b

  r <- multiply a b

dump "Result" r

Disruptor
The disruptor pattern was developed by LMAX, a UK-based multilateral trading facility. It acts as a foreign 
exchange aggregator for trading. The LMAX team’s studies shown that the classical approach of concurrent 
and parallel programming leads to a high level of latency in “Disruptor: High Performance Alternative to 
Bounded Queues for Exchanging Data Between Concurrent Threads” by Martin Thompson et al. (https://
lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf). This happens because many software 
applications require data from queues that need to be exchanged in different levels of processing. The 
more queues in the process, the more global latency is increased by hundreds of microseconds. Tests have 
shown that the latency is three times less in a pipeline with three stages using the disruptor pattern than the 
classical approach. Also, the throughput is eight times greater on the same configuration.

The concurrency is about running tasks in parallel, but also that tasks have access to the same 
resources. You have seen that it is characterized by reciprocal exclusion and the visibility of modifications, 
which include read/write operations. Of course, the write operation is the most expensive, and managing 
more threads that write on the same resource is very complex and costly. The traditional approach in this 
case is to use a lock.

https://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf
https://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf
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The disruptor pattern is projected so that it maximizes the performance of memory allocation, and 
works in a cache-friendly way. The main component of the disruptor is a ring buffer that is a pre-allocated 
linked data structure. One or many producers add the data into the ring, and it is processed by one or many 
consumers. The concurrency in a disruptor pattern is handled through sequencing.

First, it creates a dependency graph. Then, through ProducerBarrier, the producers ask for entries 
in sequence. Next, the modifications are written in the asked entries, and the changes are saved through 
ProducerBarrier, available to all. The consumer just needs to implement BatchHandler, in which callbacks 
are received if a novel entry is disposable. The RingBuffer is the main component; it provides resources 
when data is exchanged without contention. ProducerBarrier is developed to handle concurrency when 
slots of ring buffers are asked; it prevents ring buffer congestion. The consumers, which belong to a graph of 
dependencies, are notified by ConsumerBarrier if a new entry is disposable. The original implementation is 
in Java.

The disruptor pattern was proven faster than traditional approaches. The original version of  
the disruptor pattern is written in Java. The following is an implementation from the original article 
(https://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf).

// Callback handler which can be implemented by consumers
final BatchHandler<ValueEntry> batchHandler = new BatchHandler<ValueEntry>()
{
      public void onAvailable(final ValueEntry entry) throws Exception
      {
           // process a new entry as it becomes available.
      }
      public void onEndOfBatch() throws Exception
      {
          // useful for flushing results to an IO device if necessary.
     }
     public void onCompletion()
     {
         // do any necessary clean up before shutdown
      }
};
RingBuffer<ValueEntry> ringBuffer = new RingBuffer<ValueEntry>(ValueEntry.ENTRY_FACTORY, SIZE,
                                                      ClaimStrategy.Option.SINGLE_THREADED,
                                                              WaitStrategy.Option.YIELDING);
ConsumerBarrier<ValueEntry> consumerBarrier = ringBuffer.createConsumerBarrier();
BatchConsumer<ValueEntry> batchConsumer = new BatchConsumer<ValueEntry>(consumerBarrier,
                                          batchHandler);
ProducerBarrier<ValueEntry> producerBarrier = ringBuffer.createProducerBarrier(batchConsumer);
// Each consumer can run on a separate thread
EXECUTOR.submit(batchConsumer);
// Producers claim entries in sequence
ValueEntry entry = producerBarrier.nextEntry();
// copy data into the entry container
// make the entry available to consumers
producerBarrier.commit(entry);

The following is Kim Altintop’s implementation of RingBuffer in Haskell (for the complete project, 
please visit https://github.com/kim/data-ringbuffer).

https://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf
https://github.com/kim/data-ringbuffer
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{-# LANGUAGE RecordWildCards #-}

module Data.RingBuffer
    ( newMultiProducerRingBuffer
    , newSingleProducerRingBuffer
    , consumeWith
    , andAlso
    , andThen
    , start
    , stop
    , publish
    , publishMany
    )
where

import           Control.Concurrent
import           Control.Monad                   (forM_, liftM, when)
import           Control.Monad.Catch             (finally)
import           Data.IORef
import           Data.RingBuffer.RingBuffer      (RingBuffer, elemAt,
                                                  mkRingBuffer)
import qualified Data.RingBuffer.RingBuffer      as RB
import           Data.RingBuffer.Sequence
import           Data.RingBuffer.SequenceBarrier
import           Data.RingBuffer.Sequencer       ( SingleProducer
                                                 , MultiProducer
                                                 , mkMultiProducerSequencer
                                                 , mkSingleProducerSequencer
                                                 )

data Consumer m a s
    = Consumer (a -> IO ())
               -- ^ event processing action
               !Sequence
               -- ^ tracks which events were consumed by this 'Consumer'
               !(SequenceBarrier s)
               -- ^ barrier tracking producers and/or prerequisite handlers

data ConsumerGroup m a s = ConsumerGroup
    { rb :: RingBuffer a s
    , pr :: Maybe (ConsumerGroup m a s)
    , hs :: [Consumer m a s]
    }

data Disruptor a s = Disruptor (RingBuffer a s) [ThreadId] (IORef Bool)

newMultiProducerRingBuffer :: Int -> IO a -> IO (RingBuffer a MultiProducer)
newMultiProducerRingBuffer siz fill = do
    sqr <- mkMultiProducerSequencer siz []
    mkRingBuffer sqr fill
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newSingleProducerRingBuffer :: Int -> IO a -> IO (RingBuffer a SingleProducer)
newSingleProducerRingBuffer siz fill = do
    sqr <- mkSingleProducerSequencer siz []
    mkRingBuffer sqr fill

consumeWith :: (a -> IO ()) -> RingBuffer a s -> IO (ConsumerGroup m a s)
consumeWith f b = do
    h <- mkConsumer b f []
    return $ ConsumerGroup b Nothing [h]

andAlso :: (a -> IO ()) -> ConsumerGroup m a s -> IO (ConsumerGroup m a s)
andAlso f cg@ConsumerGroup{..} = do
    h <- mkConsumer rb f []
    return cg { hs = h : hs }

andThen :: (a -> IO ()) -> ConsumerGroup m a s -> IO (ConsumerGroup m a s)
andThen f cg@ConsumerGroup{..} = do
    h <- mkConsumer rb f (map consumerSequence hs)
    return cg { hs = [h], pr = Just cg }

start :: ConsumerGroup m a s -> IO (Disruptor a s)
start cg@ConsumerGroup{..} = do
    let rb' = RB.addGates rb (map consumerSequence hs)
    tids    <- startConsumers cg { rb = rb' }
    running <- newIORef True
    return $ Disruptor rb' tids running
  where
    startConsumers (ConsumerGroup rb' Nothing     cs) = mapM (run rb') cs
    startConsumers (ConsumerGroup rb' (Just prev) cs) = do
        t1 <- startConsumers prev { rb = rb' }
        t2 <- startConsumers $ ConsumerGroup  rb' Nothing cs
        return $ t1 ++ t2

stop :: Disruptor a s -> IO ()
stop (Disruptor _ tids ref) = do
    running <- atomicModifyIORef ref ((,) False)
    when running $
        mapM_ killThread tids

publish :: Disruptor a s -> (a -> IO ()) -> IO ()
publish (Disruptor rb _ _) = RB.publish rb

publishMany :: Disruptor a s -> Int -> (a -> IO ()) -> IO ()
publishMany (Disruptor rb _ _) = RB.publishMany rb

--------------------------------------------------------------------------------
-- internal
--------------------------------------------------------------------------------

mkConsumer :: RingBuffer a s -> (a -> IO ()) -> [Sequence] -> IO (Consumer m a s)
mkConsumer b f deps = do
    sq <- mkSequence
    return $ Consumer f sq (SequenceBarrier (RB.sequencer b) deps)
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consumerSequence :: Consumer m a s -> Sequence
consumerSequence (Consumer _ s _) = s

run :: RingBuffer a s -> Consumer m a s -> IO ThreadId
run buf (Consumer f sq bar) = forkIO loop
  where
    loop = do
        next  <- (+1) `liftM` readSequence sq
        avail <- waitFor bar next

        forM_ [next .. avail] (f . (buf `elemAt`))
            `finally` writeSequence sq avail
loop

Double-Checked Locking
In some cases, the patterns used in concurrent software applications can be changed due to modifications  
in fundamental elements. There are situations in which certain tasks have a higher priority over the  
rest of the tasks, in which ordinary tasks are blocked to let those with higher priority be executed.  
Double-checked patterns (a.k.a. lock hint patterns) help with this. Is it used to optimize (reducing discord 
and synchronization costs if some sections of code is necessary to obtain locks one time), but it also should 
be thread-safe (thread-safe code works correctly when more threads execute in the same time) when they 
obtain locks. It is usually used with the singleton pattern.

The following are the elements of a double-checked locking pattern.

•	 Only one critical section. The code from here needs to be executed only one time  
(for example, the initialization of singleton, which occurs just one time).

•	 Mutex. A lock in which the access to the critical code is serialized.

•	 Flag. Shows if the critical section was executed.

•	 Application thread. The part in which the critical section is performed.

The following is the implementation in C++, from the original article Double-Checked Locking by 
Douglas C. Schmidt and Tim Harrison. The regular Singleton class is as follows.

class Singleton
{
public:
static Singleton *instance (void)
{
// Constructor of guard acquires
// lock_ automatically.
Guard<Mutex> guard (lock_);
// Only one thread in the
// critical section at a time.
if (instance_ == 0)
instance_ = new Singleton;
return instance_;
// Destructor of guard releases
// lock_ automatically.
}
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private:
static Mutex lock_;
static Singleton *instance_;
};

Using a double-checked locking pattern, the singleton would be as follows.

class Singleton
{
public:
static Singleton *instance (void)
{
// First check
if (instance_ == 0)
{
// Ensure serialization (guard
// constructor acquires lock_).
Guard<Mutex> guard (lock_);
// Double check.
if (instance_ == 0)
instance_ = new Singleton;
}
return instance_;
// guard destructor releases lock_.
}
private:
static Mutex lock_;
static Singleton *instance_;
};

Guarded Suspension
The guarded suspension pattern is similar to the balking pattern. It administrates operations that need to 
acquire a lock, but a precondition needs to be met until the operation is executed. Its flow is simple: the 
method call and the calling thread are suspended before the precondition is accomplished. Usually, the time 
in which the precondition is accomplished is known.

This pattern uses try/catch blocks because an InterruptedException could occur when wait() is 
called. The rule is that wait() is called if the precondition is not satisfied. The notify() and notifyAll() 
are called for updating one thread or all threads, respectively, about what happened to the object. Usually, 
they notify that the state of the object was changed.

Let’s look at the following code, from Drew Goldberg’s Executive Summary: Balking Design Patterns.

public void guardedJoy() {
// Simple loop guard. Wastes
// processor time. Don't do this!
while(!joy) {}
System.out.println("Joy has been achieved!");
}
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This code is actually wrong! Let’s take an example where the guardedJoy() method should not continue 
before a common joy variable is established by another thread. A method like this would loop before the 
condition is met, a fact that will lose many CPU cycles.

public synchronized guardedJoy() {
   while(!joy) {
try {
wait();
} catch (InterruptedException e) {}
}
System.out.println("Joy and efficiency have been achieved!");
}
public synchronized notifyJoy() {
joy = true;
notifyAll();
}

Monitor Object
Some applications need an object to be accessed in a concurrent manner by more threads. In order for that 
application to work precisely, the threads need to be synchronized and scheduled for when they can access 
the object. Further, the following criteria should be accomplished.

•	 Synchronization limits need to correlate with the object methods.

•	 The synchronization should be done by objects.

•	 The schedule for the methods should be accomplished by the objects.

The solution for these inconveniences is the monitor object, in which the threads examine the defined 
services through synchronized methods.

The following are the elements of this pattern.

•	 Monitor object. It defines the methods that could be used by the clients, preventing 
the internal state of the object from being changed by unauthorized access. The 
methods are executed in client threads.

•	 Synchronized methods. These are used for implementing the thread-safe services on 
which the monitor object exports. Just one synchronized method should execute at 
a certain time in the monitor, no matter how many threads ask for the object’s sync 
methods.

•	 Monitor lock. It is found in every monitor object, and it is used by synchronized 
methods to serialize method calls on a per-object basis. The rule is that when 
a method goes in or goes out, the monitor lock should be acquired or released, 
respectively.

•	 Monitor condition. The methods that are synchronized, but running on different 
threads, need to collaborate for scheduling their accession to the monitor. This is 
done by using notifications through conditions attached to the monitor object.
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Reactor Pattern
The reactor pattern is used to manipulate the services requests, which are sent in a concurrent way to an 
application from multiple client threads. Services could have more methods and handled by a different 
event handler, whose task is to dispatch requests for a specific service. In this case, the server that hosts the 
application should perform demultiplexing, and then send every request that comes to the corresponding 
service provider. A performant server that accomplishes these mechanisms should have the following 
characteristics: availability, efficiency, programming simplicity, adaptability, and portability.

The following are the components of a reactor pattern.

•	 Handles. Recognizes resources that are overseen by an operating system.  
These resources regularly incorporate system associations, open documents, clocks, 
synchronization objects, and so forth. Logging servers use Handles for identifying 
socket endpoints such that the synchronous event demultiplexer expects the events 
that take place.

•	 Synchronous event demultiplexer. Blocks the events that wait for a suite of handles.  
It returns if a handles operation could be initiated without blocking.

•	 Initiation dispatcher. Describes an interface that is able to register, remove, and 
dispatch event handlers.

•	 Event handler. Describes an interface that contains a hook method for representing 
the dispatching operation for the events of a specific service.

•	 Concrete event handler. Implements the method from the event handler.

Scheduler Pattern
There are situations in which parallel implementation is not as efficient as we expect, but it could be made 
efficient under parallel composition. For this, work-stealing schedulers are used, which allows many parallel 
subprograms to run without oversubscription. Still, there are problems due to resources or the complexity of 
schedulers. A solution to this is a meta-scheduler based on the Par monad. It performs the following tasks.

•	 Creates worker threads, having work-stealing deque

•	 Detects nested runPar calls and prevents oversubscription

•	 Provides Par and IVar types that are used by all Par meta-schedulers and repacking

•	 Provides Par monad the GET operation

Resource could add data structures for storing work and operations similar to fork.
The following is a scheduler that combines two resources. It uses the meta-par package.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Control.Monad.Par.Meta.SMPGPU (Par, runPar) where
...
resource = SMP.mkResource 'mappend' GPU.mkResource

newtype Par a = Par (Meta.Par a)
            deriving (Monad, ParFuture Meta.IVar, ParIVar Meta.IVar, ParGPU Meta.IVar, ...)
runPar :: Par a -> a
runPar (Par work) = Meta.runMetaPar resource work
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Thread Pool Pattern
A thread pool is a group of pre-instantiated, idle threads that stand ready to be given work. These are 
preferred over instantiating new threads for each task when there is a large number of short tasks to be done 
rather than a small number of long ones. This prevents having to incur the overhead of creating a thread a 
large number of times.

In Haskell, there is a specific library called Control.ThreadPool, whose functions work with Control.
Concurrent.Chan. The thread pool library has only two functions.

•	 threadPool :: Int -> (a -> b) -> IO (Chan a, Chan b). A trivial thread pool 
for pure functions (mappings). Simply specify the number of threads desired and a 
mutator function.

•	 threadPoolIO :: Int -> (a -> IO b) -> IO (Chan a, Chan b). A trivial thread 
pool that allows IO mutator functions. Evaluation of output is not strict—force 
evaluation if desired!

An interesting example is Nicolas Tramgez’s implementation of a worker threadpool using STM 
(https://gist.github.com/NicolasT/4163407).

{-# LANGUAGE CPP, FlexibleContexts, BangPatterns #-}

module Control.Concurrent.ThreadPool (
      createPool
    , destroyPool
    , withPool

    , pushWork
    , popResult
    , popResult'

    , hasPendingWork
    ) where

import Control.Applicative

import Control.Exception.Base (SomeException)
import Control.Exception.Lifted (bracket, try)

import Control.Monad (replicateM, replicateM_)
import Control.Monad.IO.Class (MonadIO, liftIO)
import Control.Monad.Trans.Control (MonadBaseControl)

import Control.Concurrent.Lifted
import Control.Concurrent.STM

#ifdef DEBUG
import System.IO (hPutStrLn, stderr)
#endif

type ThreadCount = Int
type QueueSize = Maybe Int

https://gist.github.com/NicolasT/4163407
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data Command c i = Execute !c !i
                 | Stop
type Result c o = (c, Either SomeException o)

type CommandQueue c i = Queue (Command c i)
type ReplyQueue c o = Queue (Result c o)

type Processor i m o = i -> m o

data ThreadPool c i o = ThreadPool { tpPending :: TVar Int
                                   , tpThreads :: [ThreadId]
                                   , tpChanIn :: CommandQueue c i
                                   , tpChanOut :: ReplyQueue c o
                                   }

data Queue a = Bounded (TBQueue a)
             | Unbounded (TQueue a)

newQueueIO :: QueueSize -> IO (Queue a)
newQueueIO l = case l of
    Nothing -> Unbounded <$> newTQueueIO
    Just l' -> Bounded <$> newTBQueueIO l'
{-# INLINE newQueueIO #-}

writeQueue :: Queue a -> a -> STM ()
writeQueue q = case q of
    Bounded q' -> writeTBQueue q'
    Unbounded q' -> writeTQueue q'
{-# INLINE writeQueue #-}

readQueue :: Queue a -> STM a
readQueue q = case q of
    Bounded q' -> readTBQueue q'
    Unbounded q' -> readTQueue q'
{-# INLINE readQueue #-}

tryReadQueue :: Queue a -> STM (Maybe a)
tryReadQueue q = case q of
    Bounded q' -> tryReadTBQueue q'
    Unbounded q' -> tryReadTQueue q'
{-# INLINE tryReadQueue #-}

createPool :: (MonadIO m, MonadBaseControl IO m) => ThreadCount
                                                 -> QueueSize
                                                 -> QueueSize
                                                 -> Processor i m o
                                                 -> m (ThreadPool c i o)
createPool count commandQueueSize replyQueueSize handler = do
    pending <- liftIO $ newTVarIO 0
    chanIn <- liftIO $ newQueueIO commandQueueSize
    chanOut <- liftIO $ newQueueIO replyQueueSize
    threads <- replicateM count $ fork $ worker handler chanIn chanOut pending
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    return ThreadPool { tpPending = pending
                      , tpThreads = threads
                      , tpChanIn = chanIn
                      , tpChanOut = chanOut
                      }
{-# SPECIALIZE createPool :: ThreadCount
                          -> QueueSize
                          -> QueueSize
                          -> Processor i IO o
                          -> IO (ThreadPool c i o) #-}

atomically' :: MonadIO m => STM a -> m a
atomically' = liftIO . atomically
{-# INLINE atomically' #-}

destroyPool :: MonadIO m => ThreadPool c i o -> m ()
destroyPool pool =
    atomically' $ replicateM_ (length $ tpThreads pool) $ writeQueue (tpChanIn pool) Stop
{-# SPECIALIZE destroyPool :: ThreadPool c i o -> IO () #-}

pushWork :: MonadIO m => ThreadPool c i o -> c -> i -> m ()
pushWork pool !c !i = atomically' $ do
    writeQueue (tpChanIn pool) (Execute c i)
    modifyTVar' (tpPending pool) succ
{-# SPECIALIZE pushWork :: ThreadPool c i o -> c -> i -> IO () #-}

popResult :: MonadIO m => ThreadPool c i o -> m (Result c o)
popResult pool = atomically' $ readQueue (tpChanOut pool)
{-# SPECIALIZE popResult :: ThreadPool c i o -> IO (Result c o) #-}
popResult' :: MonadIO m => ThreadPool c i o -> m (Maybe (Result c o))
popResult' pool = atomically' $ tryReadQueue (tpChanOut pool)
{-# SPECIALIZE popResult' :: ThreadPool c i o -> IO (Maybe (Result c o)) #-}

-- This is... no good (for now)
hasPendingWork :: MonadIO m => ThreadPool c i o -> m Bool
hasPendingWork pool = atomically' $ (/= 0) <$> readTVar (tpPending pool)

worker :: (MonadIO m, MonadBaseControl IO m) => Processor i m o
                                             -> CommandQueue c i
                                             -> ReplyQueue c o
                                             -> TVar Int
                                             -> m ()
worker handler chanIn chanOut pending = loop
  where
    loop = do
        debug "Awaiting work"
        req <- atomically' $ readQueue chanIn
        case req of
            Execute c i -> do
                debug "Executing command"
                r <- try $! do
                    res <- handler i
                    return $! res
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                atomically' $ do
                    writeQueue chanOut (c, r)
                    modifyTVar' pending pred
                loop
            Stop -> do
                debug "Shutdown"
                return ()
{-# SPECIALIZE worker :: Processor i IO o -> CommandQueue c i -> ReplyQueue c o -> TVar Int 
-> IO () #-}

withPool :: (MonadIO m, MonadBaseControl IO m) => ThreadCount
                                               -> QueueSize
                                               -> QueueSize
                                               -> Processor i m o
                                               -> (ThreadPool c i o -> m a)
                                               -> m a
withPool count commandQueueSize replyQueueSize handler =
    bracket
        (createPool count commandQueueSize replyQueueSize handler)
        destroyPool
{-# SPECIALIZE withPool :: ThreadCount
                        -> QueueSize
                        -> QueueSize
                        -> Processor i IO o
                        -> (ThreadPool c i o -> IO a)
                        -> IO a #-}

debug :: MonadIO m => String -> m ()
#ifndef DEBUG
debug _ = return ()
#else
debug s = liftIO $ do
    tid <- myThreadId
    hPutStrLn stderr $ "[" ++ show tid ++ "] " ++ s
#endif
{-# INLINE debug #-}

Summary
In this chapter, you saw

•	 the most common problems that could occur in big data applications.

•	 design patterns and examples of design patterns that can be used in big data.
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CHAPTER 12

Large-Scale Design in Haskell

There are approaches to manage the complexity of computations. We talked about some of them in previous 
chapters; here we will explain why they are used in large-scale design. We will also discuss new approaches 
and provide some examples.

The Type System
The type system is used to enforce abstractions and to simplify the interactions between the programmer 
and the environment. It imposes key invariants through types and ensures safety through checked 
exceptions (using Maybe/Either monads). The data types or data structures are not combined (Word, Int, 
Address). There are many useful data structures (as zippers).

Purity
The complexity of a program decreases if the state is removed. An advantage of pure functional code is 
scalability, due to its compositionality. Frege’s principle states that the result of a complex expression is 
given by the results of expressions that constitute it and the rules that are applied to combine them. Another 
definition of complexity is “the meaning of a (syntactically complex) whole is a function only of the meanings 
of its (syntactic) parts together with the manner in which these parts were combined”, provided by Francis 
Jeffry Pelletier in The Principle of Semantic Compositionality (available: https://link.springer.com/
article/10.1007/BF00763644). A good practice is the model-view-controller programming style, which works 
in functional programming as follows: data is parsed externally in functional data structures that are pure, 
operations are made over the functional data structures, and in the last step, the data is rendered, flushed, or 
serialized. This way, the code remains as pure as possible. We discussed pure functions in Chapter 2.

Monads for Structuring
The key architectural designs are captured by monads and made into types, such that one part of the code  
is for accessing hardware, another part of the code is used for a session with a single user, and so on.  
We discussed monads in Chapter 2.

Type Classes and Existential Types
Type classes are used for abstraction. They hide the implementation behind a polymorphic interface.  
We discussed types in Chapter 2.

https://link.springer.com/article/10.1007/BF00763644
https://link.springer.com/article/10.1007/BF00763644
http://dx.doi.org/10.1007/978-1-4842-2781-7_2
http://dx.doi.org/10.1007/978-1-4842-2781-7_2
http://dx.doi.org/10.1007/978-1-4842-2781-7_2
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Concurrency and Parallelism
Concurrency and parallelism are useful because they allow more tasks to run at the same time, which 
decreases the time to obtain a result. We also discuss concurrency and parallelism in other chapters.

Use of FFI
The Foreign Function Interface (FFI) works with code from other programming languages. It is very 
important to be careful with data that is returned by foreign code. We discussed FFIs in Chapter 11.

The Profiler
Profiling is a technique that analyzes other elements: the space complexity and time complexity, the use of 
specific instructions, and the rate and duration of function calls. Program heaps and time profiles can be 
tracked by a profiler. It is good practice to profile the heaps to make sure that memory is used as it is needed. 
GHC has its own tools for profiling. We can set the option so that a program is compiled with profiling 
by default. Profiling has three stages: compile the program to be profiled, run the program with specific 
profiling modes enabled, and check the resulting statistics.

Time Profiling
First, let’s talk about time profiling. Consider an example in which we compute the mean of values from a 
list. To compile the program using profiling, we add the -prof flag. In addition, the profiling code needs to 
know which function we want to profile. This is done by adding cost centers that represent the code in our 
program that we want statistical information on. Some code is generated by GHC, which computes the cost 
of evaluation of the expression in every place. To add a cost center, use SCC pragma.

mean :: [Double] -> Double
mean xs = {-# SCC "mean" #-} sum xs / fromIntegral (length xs)

Another option for cost centers is letting the compiler add them on all functions at top levels. This could 
be done by compiling with the -auto-all option.

An important aspect of profiling in lazy languages is paying attention to values with no arguments, 
which should be computed once and their result is used later. Actually, the evaluation of these values is not 
made to every call, but we also need to know how expensive they are. They are called constant applicative 
forms (CAFs) and could be included in profiling using the -caf-all option.

Thus, the example is compiled as (-fforce-recomp option is used to forcing full recompilation).

$ ghc -O2 --make mean.hs -prof -auto-all -caf-all -fforce-recomp
[1 of 1] Compiling Main             ( mean.hs, mean.o )
Linking A ...

Space Profiling
Next, we will examine the example from a space profiling view, in which GHC generates graphs about 
memory usage during the program’s lifetime. This is useful for discovering the locations in which memory 
is wrongly used leading to a heavy garbage collector. This is similar to time proofing (i.e., when we compile, 
we add -prof -auto-all -caf-all), but at execution time, the runtime system should collect some 

http://dx.doi.org/10.1007/978-1-4842-2781-7_11
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detailed statistics about heap use. This information could be broken down in many ways: through a cost 
center, through a module, through a constructor, or through a data type. The Haskell .hs file is profiled into 
an .hp file that contains raw data that is examined by the hp2ps tool, which finally generates a graphical 
visualization of the heap in time. In order to obtain a heap profile, we add the -hc option.

$ time ./mean 1e6 +RTS -hc -p -K100M

Different samples are retrieved at a regular time when the program is running. If we want to decrease 
the time between two samplings, we use -iN, where N represents the number of seconds. The more often 
samples are taken, the more accurate the result, but the program will be slower. Now let’s take a look at the 
graph, as shown in Figure 12-1.

$ hp2ps -e8in -c mean.hp

We can learn some things from the graph. The execution of the program has two stages: in the first, an 
increasingly large amount of memory is used for computing the sum of the values, and in the second, the 
values are cleaned.

QuickCheck
QuickCheck (https://hackage.haskell.org/package/QuickCheck) represents a library that can easily 
test our programs. In unit testing, particular cases are tested; while in property testing (the type of testing 
provided by QuickCheck), properties are tested. All we need to do is to write specifications for the code that 
describe invariant properties. QuickCheck generates random samples of data with which it will test if the 
properties that we defined are satisfied.
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Figure 12-1.  The result of space profiling testing

https://hackage.haskell.org/package/QuickCheck
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For the next example (from jasani.org, Testing Haskell with QuickCheck), we need to import  
some libraries.

> import Control.Monad ( liftM )
> import Data.List ( intersperse )
> import Test.QuickCheck.Gen
> import Test.QuickCheck.Arbitrary
> import Test.QuickCheck.Property
> import Test.QuickCheck.Test

Next, we write two simple functions that work with file names. The first is splitFN, in which the file 
name is separated into the name and the extension, and joinFN, in which a name and an extension are 
concatenated to obtain the file name.

> splitFN_0 :: String -> (String, String)
> splitFN_0 fn =
>   let fn' = span (/= '.') . reverse $ fn
>   in case (length (fst fn') == length fn) of
>        True  -> (fn, "")
>        False -> (reverse . drop 1 $ snd fn', ('.':) . reverse . fst $ fn')
>
> joinFN_0 :: (String, String) -> String
> joinFN_0 (name, ext) = name ++ ext

A property of the two functions is roundtripping (which we named prop_filenames_are_roundtrippable), 
because filename = joinFN(splitFN(filename)). Next, we want to generate file names, so we created a new 
type and an Arbitrary instance.

> newtype Filename = FN { unFN :: String } deriving Show
>
> instance Arbitrary Filename where
>   arbitrary = do name <- elements ["foo", "bar", "baz"]
>                  ext <- listOf $ elements ['a'..'z']
>                  return (FN (name ++ "." ++ ext))
>
> prop_filenames_are_roundtrippable_0 :: Filename -> Property
> prop_filenames_are_roundtrippable_0 fnStr =
>   property $ joinFN_0 (splitFN_0 fn) == fn
>   where fn = unFN fnStr

If we execute the code, we obtain

*Main> quickCheck prop_filenames_are_roundtrippable_0
+++ OK, passed 100 tests.
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The test passed and the file names were successfully created, but we don’t know how they look. If we 
want to see some samples, we can do the following.

*Main> sample' arbitrary :: IO [Filename]

[ FN {unFN = "baz.x"}, FN {unFN = "bar.v"}, FN {unFN = "foo.k"}, FN {unFN = "foo.s"},  
FN {unFN = "baz.esra"}, FN {unFN = "baz.vkgg"}, FN {unFN = "bar.uln"}, FN {unFN = "bar.k"}, 
FN {unFN = "baz.crynhi"}, FN {unFN = "baz.ys"} ]

We can combine the property that we defined with collect to show the data that is used.

> prop_filenames_are_roundtrippable_1 :: Filename -> Property
> prop_filenames_are_roundtrippable_1 fnStr =
>   collect fn $
>   joinFN_0 (splitFN_0 fn) == fn
>   where fn = unFN fnStr

The following are some of the results.

*Main> quickCheck prop_filenames_are_roundtrippable_1

 1% "bar.tbgufhjxeqtfpn"
 1% "bar.rymnlegngyuzvl"
 1% "bar.ryddfkncgxdopxihkmb"
 1% "bar.rafel"
 1% "bar.qbrftss"
 1% "bar.pxwpbfovejqwiqslnrdboaluihlkjifawfiyerwwtdyuepynoejx"
 1% "bar.p"
 1% "bar.nyciiyidegiwpsxta"
 1% "bar.mtidqpnitvrseakbkppkjmqtlutkqtfuirlsmkrnsmxsvwhzhwfut"
 1% "bar.mogmmzl"

An alternative to the collect function is to classify the data.

> prop_filenames_are_roundtrippable_2 :: Filename -> Property
> prop_filenames_are_roundtrippable_2 fnStr =
>   classify (length ext == 0) "no ext" $
>   classify (length ext > 0 && length ext < 5) "normal ext" $
>   classify (length ext >= 5) "long ext" $
>   joinFN_0 (splitFN_0 fn) == fn
>   where fn = unFN fnStr
>         (name,ext) = splitFN_0 fn

*Main> quickCheck prop_filenames_are_roundtrippable_2
+++ OK, passed 100 tests:
72% long ext
21% normal ext
 7% no ext
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We have seen the data that is generated, but we have not taken into consideration names like README, 
or foo.txt.old, or .emacs. Therefore, we will change the approach a little, writing a test generator for the 
property we defined.

> filenames :: Gen String
> filenames = do
>   name <- opt identifier
>   dot  <- opt (return ".")
>   ext  <- opt identifier
>   exts <- listOf identifier
>   oneof [ return $ name ++ dot ++ ext
>         , return $ name ++ "." ++ (concat . intersperse "." $ exts)]

> prop_filenames_are_roundtrippable_3 :: Property
> prop_filenames_are_roundtrippable_3 =
>   forAll filenames $ \fn ->
>   joinFN_0 (splitFN_0 fn) == fn

If we ask for some sample data, we note that they are diverse.

*Main> sample' filenames

[ ".K3", ".O.Va1", "1LAi.k", "rz.t", "41R8x.", ".wu.mi1kqh8.Y7PKH6.p86.O", "", ".", 
"P214MM71fu.k4Ayqns0f", ".k.k9.0o2e81n.d71ijpm7gh.XMNt" ]

*Main> quickCheck prop_filenames_are_roundtrippable_3
+++ OK, passed 100 tests.

Well, the results look better. But we haven’t finish yet because we have a little problem with the file 
names that have no extension, such as README and .emacs. We will consider a particular generator for these 
types of files by adding a new property called prop_names_equal_filenames.

> noExtFilenames :: Gen String
> noExtFilenames = do
>   name <- identifier
>   dot  <- opt (return ".")
>   return ( dot ++ name )

> prop_names_equal_filenames_0 :: Property
> prop_names_equal_filenames_0 =
>   forAll noExtFilenames $ \fn ->
>   let (name,ext) = splitFN_0 fn
>   in name == fn

Now if we run the test for the new property, we get the following.

*Main> quickCheck prop_names_equal_filenames_0
*** Failed! Falsifiable (after 3 tests):
".i1"

*Main> splitFN_0 ".i1"
("",".i1")
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We need to reconsider the split function. Then, let’s put them in a library.

> splitFN_1 :: String -> (String, String)
> splitFN_1 fn =
>   let fn' = span (/= '.') . reverse $ fn
>   in case (length (fst fn') == length fn) of
>        True  -> (fn, "")
>        False | length (fst fn') == length fn - 1 -> (fn, "")
>              | otherwise -> (reverse . drop 1 $ snd fn'
>                             , ('.':) . reverse . fst $ fn')

> prop_names_equal_filenames_1 :: Property
> prop_names_equal_filenames_1 =
>   forAll noExtFilenames $ \fn ->
>   let (name,ext) = splitFN_1 fn
>   in name == fn

> prop_filenames_are_roundtrippable_4 :: Property
> prop_filenames_are_roundtrippable_4 =
>   forAll filenames $ \fn ->
>   joinFN_0 (splitFN_1 fn) == fn

> ----------------------------
> -- library functions

> iden0 :: Gen Char
> iden0 = oneof [ elements ['a'..'z'], elements ['A'..'Z']
>               , elements ['0'..'9'] ]
> idenN :: Gen String
> idenN = listOf iden0

> opt :: Gen String -> Gen String
> opt g = oneof [ g, return "" ]

> identifier :: Gen String
> identifier = iden0 >>= \i0 -> idenN >>= return . (i0:)

Finally, we see how QuickCheck works. It also helps us to keep the APIs clean for our modules. An 
intuitive conclusion is that if the properties of the code are complicated to state, a solution is to refactor it 
until we get clean code.

Refactor
Refactor can be used many times in Haskell, ensuring that large-scale changes are made safety, if the types 
are suitable. This is proper for code-base scale. You need to pay attention to type errors: they should not 
happen until refactoring is complete.
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The following is a little tutorial from www.schoolofhaskell.com in which we compute the sum of the 
even numbers from a list. This is a first version of the solution.

evenSum :: [Integer] -> Integer

evenSum l = accumSum 0 l

accumSum n l = if l == []
                  then n
                  else let x = head l
                           xs = tail l
                       in if even x
                              then accumSum (n+x) xs
                              else accumSum n xs
-- The trace of the execution
*Main> evenSum [1..5]
accumSum 0 [1,2,3,4,5]
1 is odd
accumSum 0 [2,3,4,5]
2 is even
accumSum (0+2) [3,4,5]
3 is odd
accumSum (0+2) [4,5]
2 is even
accumSum (0+2+4) [5]
5 is odd
accumSum (0+2+4) []
l == []
0+2+4
0+6
6

This code can be improved. We could generalize the type as follows.

evenSum :: Integral a => [a] -> a

Next, we can use functions like where and let.

-- Version 2
evenSum :: Integral a => [a] -> a

evenSum l = accumSum 0 l
    where accumSum n l =
            if l == []
                then n
                else let x = head l
                         xs = tail l
                     in if even x
                            then accumSum (n+x) xs
                            else accumSum n xs

www.schoolofhaskell.com
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Another improvement uses pattern matching and guards.

-- Version 3
evenSum l = accumSum 0 l
    where
        accumSum n [] = n
        accumSum n (x:xs) =
        | even x = accumSum(n+x)xs
        | otherwise = accumSum n xs

As you know, in Haskell, the definition of the functions could be eta-reduced by dropping arguments 
that appear at the end of both sides. So, the following could be a final improvement.

-- Version 4
evenSum :: Integral a => [a] -> a

evenSum = accumSum 0
    where
        accumSum n [] = n
        accumSum n (x:xs) =
             if even x
                then accumSum (n+x) xs
                else accumSum n xs

Haskell-tools is an automatic tool for refactoring in Haskell (www.haskelltools.org). It supports 
rename, generate type signature, generate exports, organize exports, extract binding, and inline binding. 
There is a simple demo on the official site.

Summary
In this chapter, you saw

•	 large-scale design techniques in Haskell.

•	 how time and space are profiled in Haskell.

•	 an example QuickCheck test.

•	 an easy example of refactoring in Haskell.

http://www.haskelltools.org/
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CHAPTER 13

Designing a Shared Memory 
Approach for Hadoop Streaming 
Performance

This chapter discusses Hadoop and Hadoop Streaming. It presents an improved model for streaming and 
examples of Hadoop Streaming.

Hadoop
Hadoop is an open source framework written in Java that implements simple programming models. It is 
used to process significant data sets over clusters in a distributed way. A Hadoop application is based on 
shared storage and computations on clusters. The Hadoop design allows you to scale up from one server to 
thousands, with every machine having its own local storage and computations.

The Hadoop architecture (see Figure 13-1) has the following components.

•	 Hadoop Common: Java libraries and tools necessary for other Hadoop modules. 
Also, the files that start Hadoop.

•	 Hadoop YARN: This framework schedules jobs and manages resources from  
the cluster.

•	 Hadoop Distributed File System (HDFS): This file system allows high throughput 
access to the application data.

•	 Hadoop MapReduce: This is the system based on YARN, which processes the data 
sets in parallel.
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More About MapReduce
Hadoop MapReduce is a part of the Hadoop software product, which allows you to write applications that 
process big data in parallel over extensive clusters with thousands of nodes. We already talked a little about 
MapReduce. There are only two programs that need to be performed.

•	 Map task, which converts the input into a set of (key, value) pairs.

•	 Reduce task, which has as input the output of a map task, and reduces the initial set of 
pairs into a smaller set of pairs.

You need to remember that map is always the first task, followed by reduce. Usually, the input and 
output are stocked in a file system. The framework schedules and monitors tasks, and when tasks fail, they 
are executed again.

In the MapReduce framework, there is one master, JobTracker, and one slave, TaskTracker, in every 
node of a cluster. JobTracker manages the resources, and schedules and monitors the job tasks of slaves. 
The slaves perform the tasks received from the master and send statuses of the tasks to the master at certain 
times. The JobTracker is the sensible point of MapReduce, because if it fails, its corresponding jobs are 
broken off.

Hadoop Distributed File System
Hadoop can work directly with many distributed file systems, but its specific file system is the Hadoop 
Distributed File System (HDSF). The base of HDFS is the Google File System (GFS). It is specifically created 
to run on clusters with thousands of nodes.

MapReduce
(Distributed Computation)

(Distributed Storage)
HDFS

YARN Framework Common Utilities

Figure 13-1.  Hadoop architecture ( figure from http://hadoop.apache.org)

https://github.com/paulgb/haskell_hadoop
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The architecture of HDFS is based on the master-slave model, in which the master has just one NameNode 
whose task is to manage the metadata of file system; but there is one or more slave DataNodes, where the data 
is actually stored. In HDFS, a file is broken into blocks that are stocked in more DataNodes. The NameNode 
establishes the spread of blocks to the DataNodes. It also sends instructions to DataNodes to create, delete, or 
replicate blocks. DataNodes read and write operations in the file system, and also create, delete, and replicate 
blocks based on the instructions it receives. If the option to have a SecondaryNameNode on a machine other 
than NameNode is not set, the file system goes offline; but DataNode is replicated on multiple servers. It is not 
recommended to host DataNode, JobTracker, and TaskTracker on the same system.

Like other file systems, HDFS provides a shell and commands through which the interaction between 
the user and HDFS is established. The following is an example in which a new directory is created, using the 
mkdir command.

•	 The following is a complete definition of mkdir, where -p option tells that the 
directory is a parent directory along the path.

hadoop fs -mkdir46.8 pt [-p] <paths>

•	 The following are some examples (from official documentation).

hadoop fs -mkdir /user/hadoop/dir1 /user/hadoop/dir2
hadoop fs -mkdir hdfs://nn1.example.com/user/hadoop/dir  
hdfs://nn2.example.com/user/hadoop/dir

A complete list of shell commands is at https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/ 
hadoop-common/FileSystemShell.html.

How Hadoop Works
Hadoop works in three stages, as follows.

Stage 1
A Hadoop job client is submitted to Hadoop by a user or an application for a specific process, providing the 
following information.

•	 The location where input and output file are stored in HDFS.

•	 The Java classes that need to be provided in JAR format, where the map and reduce 
functions are implemented.

•	 The job configuration, which is obtained when different parameters for a specific job 
are set.

Stage 2
The job is submitted by the Hadoop job client. The job client provides the configuration for JobTracker, 
which works as described in the “More About MapReduce” section. JobTracker sends status and diagnostic 
information to the job client at certain intervals of time.

Stage 3
The tasks are executed by TaskTrackers as per MapReduce implementation. The output of reduce is stored in 
the output file on the file system.

https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/FileSystemShell.html
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Hadoop Streaming
Hadoop Streaming represents a collection of additional tools provided by Hadoop to develop applications in 
languages other than Java. Briefly, a MapReduce job is created by the utility, which is submitted to a suitable 
cluster. The utility also observes the evolution of the job, and while it runs, until it is completed. There is 
a streaming JAR (Java Archive) that acts as a bridge between code (from languages other than Java) and 
translates the scripts in MapReduce jobs.

Hadoop Streaming for mappers works as follows: the mappers receive a script, and then when every 
mapper is initialized, the script starts as a different process. When a mapper task is running, the inputs 
are converted into lines and then sent to the standard input (STDIN) of the process. At the same time, the 
line-oriented outputs are collected from the standard output (STDOUT). The collected lines are converted 
in a specific pair of map/reduce (key/value) and represent the output of the mapper. The convention is that, 
by default, the characters between the first character and the first tab represent the key, and the remaining 
characters of the line represent the value (the tab character is excluded). The special case in which there is 
no tab character means that there is no value, so the entire line is the key and the value is null. There is the 
option to customize this setting.

The reduce part of Hadoop Streaming works as follows: the reducers receive a script, then every reducer 
starts the script as a different process; after that, the reducer is initialized. The process is somewhat reversed: 
the pairs key/value are converted into lines and sent to the STDIN of the process, and at the same time, the 
line-oriented outputs of STDOUT are collected. The collected lines are converted into key/value pairs, which 
represent the output of the reducer. The default setting for mappers is as follows: the characters between 
the first character and the first tab represent the key, and the remaining characters represent the value. This 
could be customized.

In the process for the mappers, the jobs are launched and the communication is done from outside 
through pipes. clientIn and clientOut are used to accept or send data from/to external processes. The map 
function from Hadoop is called by PipperMapper from the Hadoop Streaming interface. The map works as 
we have explained. The scheme for reduce is very similar to the map scheme.

Hadoop Streaming is very useful, but its performance is not so good. A research paper stated that the 
poor performance is due to the pipe technique. It was discovered that while the size of input increases, the 
performance dramatically decreases.

The work of Hadoop is very intensive. For example, in one streaming job, the system needs to make 
calls of read and write to pipes in a number proportional to the number of key/value pairs. So, the number of 
reads and write is very high, which leads to decreasing performance.

An Improved Streaming Model
There is an improved model streaming called ShmStreaming, proposed and implemented by Longbin Lai 
et al. in “ShmStreaming: A Shared Memory Approach for Improving Hadoop Streaming Performance” 
a paper from the 2013 IEEE 27th International Conference on Advanced Information Networking and 
Applications (AINA).

For the ShmStreaming, the source code of Hadoop is minimally changed, such that bugs and 
unexpected behavior are avoided. Also, the changes in the external programs are minimal.

When you use ShmStreaming, all you need to do is to change the configuration file a little by setting 
stream.map(reduce).input=shm, and stream.map(reduce).output=shm.

The difference between the traditional approach and ShmStreaming is that the programs create a 
SMStream object, using it for read and write, instead of using stdin and stdout. The following is an example 
of SMStream.
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1: class SMStream {
2: public :
3: //Initialize shared memory with buffer size
4: SMStream(intbufSize =4096) ;
5: ˜ SMStream () ;
6: //write buffer shared memory
7: int write (char_buf, int size);
8: // read data from shared memory into a buffer
9: int read (char_buf, int size);
10: };

In the preceding piece of code, SMStream is a class, which has all public elements (they could be 
accessed by anybody). On fourth line there is the constructor of the class, which is called anytime that 
STMSTream is instantiated (i.e., an object is created), while on fifth line there is the destructor of the class, 
which is called anytime an SMStream object is no longer used, to release the resources allocated for the 
object. Next, there is the write function, which writes a particular number of elements on the shared 
memory buffer, and then, its opposite read function, which reads a particular number of elements from the 
buffer.

Access to the shared memory needs to be synchronized, and usually there are used locks, using 
semaphores that need system calls and switches of context. This approach is more expensive than pipe 
implementation, because every time the memory is accessed, there are two necessary operations: lock and 
unlock. Remember that every time the memory is accessed, only one read or write of one key/value pair 
is done. Because the streaming communication follows a single read—the single write (SRSW) model. A 
natural choice for the queue is FIFO (First In, First Out) for storing the positions of reader and writer. When a 
writer pushes n bytes of data into the FIFO, the pointer goes forward with n. This is similar to reader: when it 
finishes reading, the other pointer is moving. There is no need for locks here. The following is the proposed 
algorithm, in which read and write are implemented using busy wait. readFIFO and writeFIFO try to read/
write certain bytes from/on FIFO and return actual completed bytes.

function READ(buf, n)
       while n > 0 do
read =  readFIFO(buf, n)
n =  n − read;
       end while
end function

function WRITE(buf, n)
      while n > 0 do
written =  writeFIFO(buf, n)
n =  n − written;
      end while
end function

Using FIFO, the locks are avoided, but synchronization is still necessary. The busy wait approach 
could also lead to decreased performance, because the reader cannot read data when the buffer is not 
empty. Similarly, the writer cannot write if the buffer is full. For Hadoop, this means that mappers are used 
many times for writing, and reducers wait for reads. So, it is a necessary technique that blocks and resumes 
execution at a later time. When there is no data for reading, the reader is blocked while the writer pushes 
data in the FIFO. Alternatively, the writer is blocked when the buffer is full, and in this time, the reader reads 
data from the FIFO, and the writer can resume its work. To do this, a semaphore is used. The following is the 
pseudo-code of this approach.
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// Global variables
int batch_size = CONSTANT
semaphore sem_full(0), sem_empty(0)
// flag of FIFO’s status
bool empty = 1, full = 0
// # of FIFO’s is full/empty
int times_full = 0, times_empty = 0
// functions testing whether the FIFO is empty or full
is empty(), is full()

function READ_WAIT(buf, n)
        if not compare_and_swap(empty, 0, is empty()) then
               if compare_and_swap(full, 1, 0) then
                        times_full = 0
                        sem_post(sem_full) // wake up writer
               end if
               sem_wait(sem_empty) // wait for writer
end if
READ(buf, n)
  if full then
         times_full = times_full + 1
         if times_full > batch_size then
                times_full = 0
                sem_post(sem_full)
         end if
  end if
end function

function WRITE_WAIT(buf, n)
        if not compare_and_swap(full, 0, is full()) then
            if compare_and_swap(empty, 1, 0) then
                     times_empty = 0
                     sem_post(sem_empty) // wake up reader
             end if
             sem_wait(sem_full) // wait for reader
end if
WRITE(buf, n)
         if empty then
               times_empty = times_empty + 1
               if times_empty > batch_size then
                      times_empty = 0
                      sem_post(sem_empty)
                end if
           end if
end function
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Hadoop Streaming in Haskell
This section presents some tools that could be used in Haskell to integrate with Hadoop Streaming.

Haskell-Hadoop Library
There are several ways in which Hadoop Streaming can be accomplished in Haskell. One method is to use 
Haskell-Hadoop, a Haskell interface proposed by Paul Butler for Hadoop Streaming jobs (https://github.
com/paulgb/haskell_hadoop). It is easy to install. All you need to do is run the cabal install command in 
the command prompt window. It is imported as Hadoop.MapReduce.

Of course, the programmer needs to write map and reduce functions, whose signatures are as follows.

type Map = String -> [String]
type Reduce = String -> [String] -> [String]

As you can see, the input and the output are strings, so the programmer needs to do some parsing.
When we run the program with Hadoop, the streaming JAR should be used, as well as the program that 

has been compiled with options -m and -r for mappers and reducers.

/path-to-hadoop/bin/hadoop
    jar /path-to-hadoop/contrib/streaming/hadoop-[version]-streaming.jar
    -input /path-to-input/
    -output /path-to-output/
    -mapper "/path-to-mapreduce/mapreduce-program -m"
    -reducer "/path-to-mapreduce/mapreduce-program -r"

You have seen how Hadoop works and you know that you need to provide the files for input and output.
The author of the library remarks that the tab character separates the key from its value and the newline 

character separates records.
The following is a very simple example of the author of the Haskell-Hadoop library.

module Main where

import Hadoop.MapReduce (mrMain, Map, Reduce)

wfMap :: Map
wfMap = words

wfReduce :: Reduce
wfReduce key values =
    return $ key ++ " " ++ (show $ length values)

main = mrMain wfMap wfReduce

In the example, the frequencies of the words from a document are counted. The words are all non-
spaces characters separated by a space character. The output contains a list of pairs, one per line, in which 
there is a word followed by the number of times it occurs in the document.

https://github.com/paulgb/haskell_hadoop
https://github.com/paulgb/haskell_hadoop
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Hadron
Another Haskell approach to Hadoop Streaming is a project called Hadron (https://github.com/
Soostone/hadron), which was proposed by researchers from Soostone. It is more complex than  
Haskell-Hadoop, but at the same time, it is easier to use. This section presents examples provided by Ozgun 
Ataman in his talk “Conquering Hadoop with Haskell” (https://vimeo.com/90189610).

The following are some of Hadron’s characteristics.

•	 It bounds Haskell to Hadoop through the Streaming interface.

•	 It orchestrates Hadoop jobs in multiple steps, so the programmer does not need to 
call Hadoop manually.

•	 The programmer can interact with input or output on every system that Hadoop supports.

•	 MapReduce steps are fully typed.

•	 It contains combinators for different tasks in the Controller module.

•	 It has built-in support for different types of joins.

It has three modules: Hadron.Basic (one-step MapReduce), Hadron.Controller (MapReduce jobs with 
multiple stages), and Hadron.Protocol (defines strategies for encoding and decoding of data through the 
Protocol type).

Now let’s talk a little about some of Hadron’s elements.
Lenses are very important to Hadron developing. They are available on the lens package and can be 

imported as Data.Lens. A comprehensive description of lenses is in Simon Peyton Jones’ talk, “Lenses: 
Compositional Data Access And Manipulation,” and Alejandro Serrano Mena’s book Beginning Haskell:  
A Project-Based Approach (Apress, 2014). In short, lenses represent functional references that allow you to 
look at, construct, and use functions over complex data types. As a simple definition, a lens is a value that 
represents a mapping between a complex type and one of the components. As an analogy to object-oriented 
programming, they can be seen as the getters and setters of Haskell, but much more powerful. They are 
important because they let the programmer focus deeply into a complex data structure. They are grouped 
into a combinator library that is sensible. And they have general behavior regarding composition, failure, 
multiplicity, transformation, and representation. A very simple example of lens is _1, which works only with 
the first element of a pair.

When we have a lens, we can do the following things: view the subpart, change the whole through 
changing the subpart, and combine the lens with another lens for looking in more depth. A good example  
of the use of lenses in a large-scale application is lens-aeson, which is used for querying and modifying  
JSON data.

Before continuing with Hadron, let’s look at some of the operations using lenses.
Let’s define the following types by using an employee as an example.

data ShortAddress = ShortAddress {
  _nameOfStreet :: String,
  _no :: Int
} deriving (Eq, Show)

data Employee = Employee {
  _nameOfEmp :: String,
  _salaryOfEmp :: Int,
  _addressOfEmp :: ShortAddress
} deriving (Eq, Show)

employee = Employee "Alice" 1000 (ShortAddress "Broadway" 10)

https://github.com/Soostone/hadron
https://github.com/Soostone/hadron
https://vimeo.com/90189610
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If we want to focus on a field of a structure, we need two functions: one to get/return the value of a field, 
and another one to update the focused field. The following function takes as an argument a structure and a 
focused field, and makes two operations of the focused field.

data LensRecord structure field = LensRecord {
  viewField :: structure -> field,
  setField :: field -> structure -> structure
}

Let’s define a lens that focuses on the name of an employee.

nameOfEmployee :: LensRecord Employee String
nameOfEmployee = LensRecord {
  viewField = nameOfEmp,
  setField = \a s -> s {nameOfEmp = a}
}

Now we use it.

setField nameOfEmployee "Bob" employee

Now, let’s focus on the street field and the short address of the employee.

street :: LensRecord ShortAddress String
street = LensRecord {
  viewField = nameOfStreet,
  setField = \a s -> s { nameOfStreet = a}
}

addressOfEmployee :: LensRecord Employee ShortAddress
addressOfEmployee = LensRecord {
  viewField = _addressOfEmp,
  setField = \a s -> s { addressOfEmp = a}
}

Next, let’s look at how to compose lenses. Let’s say we want to change the street of the employee.

composeRecords :: LensRecord s1 s2 -> LensRecord s2 a -> LensRecord s1 a
composeRecords (LensRecord v1 s1) (LensRecord v2 s2) = LensRecord {
  viewField = v2 . v1,
  setField = \a s -> s1 (s2 a (v1 s)) s
}

Here are some examples.

viewField (composeRecords addressOfEmployee street) employee
"Broadway"

setField (composeRecords addressOfEmployee street) "Fifth Avenue" employee
Employee {_nameOfEmp = "Bob", _salaryOfEmp = 1000, _addressOfEmp = ShortAddress 
{nameOfStreet = "Fourth Avenue", _no = 120}}
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Now let’s take a look at Hadron.Basic, which takes just one MapReduce step. The types are

type Mapper a k b = Conduit a IO (k, b)
type Reducer k a r = Conduit (k, a) IO r

The idea is as follows: As the input comes in, we want to be able to take it row by row, and then resolve 
the write to collect a few of those until we want to meet a key/value pair. We might take a row or 10 rows, 
or 15, so we need flexibility with each input to meet a certain key/value pair. This is the reason for which 
Conduit is used. If they are changed, the authors prevents the program from having unexpected behaviors 
during the time its running.

Conduit (https://hackage.haskell.org/package/conduit) takes input items of type a until it meets a 
key/value pair, with the key k and the value b. The reducer takes key type k and the input with type a, which 
results in type of r.

This does not happen on the same physical nodes. It could be thousands of nodes, on which mappers 
are running and giving results that will be processed further by reducers on other nodes from the cluster.

There are a few MapReduce options for communicating with Hadoop.

-- | Options for a single-step MR job.
data MROptions = MROptions {
_mroPart :: PartitionStrategy
-- ^ Number of segments to expect in
incoming keys.
, _mroComparator :: Comparator
, _mroNumMap :: Maybe Int
-- ^ Number of map tasks;
, _mroNumReduce :: Maybe Int
-- ^ Number of reduce tasks;
, _mroCompress :: Maybe String
-- ^ Whether to use compression
, _mroOutSep :: Maybe Char
-- ^ Output separator
}

At the very lowest level is the mapReduce combinatory which takes a Prism (a serialization of the 
lens library, which basically translates the incoming into a ByteString a, and then goes back from a to a 
ByteString; essentially it is an encoder coupled with a decoder). The input of type a from Haskell is encoded 
into a ByteString, which is shuffled through the nodes. The final result is transformed from ByteString 
back to type a. Besides Prism, the other parameters are a map function, a reduce function, and two IO 
functions.

mapReduce
:: MROptions
-> Prism' B.ByteString a
-- ^ Serialization for data between map and reduce stages
-> Mapper B.ByteString CompositeKey a
-> Reducer CompositeKey a B.ByteString
-> (IO (), IO ())
mapReduce mro mrInPrism f g = (mp, rd)
where
  mp = mapperWith mrInPrism f
  rd = reducerMain mro mrInPrism g

https://hackage.haskell.org/package/conduit
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All of this is for a single step of MapReduce. As you can see, there is no type safety here, because we 
mostly work with ByteString. The next step is to resolve the input/output type safety problem. The answer 
to this problem is the Protocol type, which basically is a record that knows how to transform type a into type 
b and vice versa. The conduits operate over IO, so it can do arbitrary conversion, and even handle binary files.

data Protocol b a = Protocol {
protoEnc :: Conduit a IO b
, protoDec :: Conduit b IO a
}
type Protocol' a = Protocol B.ByteString a
instance Category Protocol

The following are some of the out-of-the-box protocols.

•	 idProtocol is the id of the protocol

idProtocol :: Protocol' B.ByteString
idProtocol = id

•	 linesProtocols parses lines

linesProtocol :: Protocol' B.ByteString

•	 base64SerProtocol: takes a Haskell object, it serializes it (with cereal library), 
encodes it in base 64, and change line protocol in order to become a ByteString blob.

base64SerProtocol :: Ser.Serialize a => Protocol' a

•	 protocols for archives or CSV files:

gzipProtocol :: Protocol B.ByteString B.ByteString
csvProtocol :: (CSV b a) => CSVSettings -> Protocol b a

A little more about Protocol…

•	 Through a serialization, a protocol knows to read/write from/into a destination.

•	 prismToProtocol makes the conversion from a lens’ prisms.

•	 They can be extended to different proprietary data formats when the data does not 
contain a newline character.

Next, the distinct primitive operations that the interface is allowed to do should be defined. The operations 
will be presented as data type (i.e., using a generalized algebraic data types approach). A data declaration is a 
method through which a type constructor and data constructors are both declared. Let’s take an example.

data Either a b = Left a | Right b

The preceding is declared an Either type constructor and two data constructors, Left and Right.  
In Haskell, classical functions use data constructors.

isLeft (Left a) = True
isLeft (Right b) = False



Chapter 13 ■ Designing a Shared Memory Approach for Hadoop Streaming Performance

216

This is the same as

type X a = Either a a

An a type function called X is declared; it has a parameter called a that needs to be of some type, and X 
returns some type. The function is not used on data values, but it could be used on type values. A mix between 
using type constructors declared as “data” and functions declared as “type” is very good for defining complex 
types. In this approach, the type constructors are like basic values, and type functions are ways in which they 
are processed. For more information, please visit https://wiki.haskell.org/GADTs_for_dummies.

The interface defined by the ConI type takes a MapReduce program, and connects it with input and output 
files, using Connect. It is then given a Protocol, resulting in a new Tap, which means that temporary files are 
created using MakeTap. Next, the main purpose of BynaryDirTap is to clear damaged files. It takes a file path 
and a filter function, does some intelligent work, and results in a clean Tap that could be read by other nodes. 
SetVal and GetVal are quite simple—a master node could set a value that could be read by the other nodes.

data ConI a where
Connect :: forall i o. MapReduce i o
-> [Tap i] -> Tap o
-> Maybe String
-> ConI ()
MakeTap :: Protocol' a -> ConI (Tap a)
BinaryDirTap :: FilePath -> (FilePath -> Bool) -> ConI (Tap B.ByteString)
ConIO :: IO a -> ConI a
SetVal :: String -> B.ByteString -> ConI ()
GetVal :: String -> ConI (Maybe B.ByteString)

newtype Controller a = Controller { unController :: Program ConI a }

In the preceding, Program belongs to the operational package, and allows programs as sequences of 
primitive instructions.

We mentioned Tap, but let’s discuss what it is. A Tap is a protocol with a file location that allows 
operations on a file from a specific path, using a specified protocol.

data Tap a = Tap
{ location :: [FilePath]
, proto :: Protocol' a
}

These are the underlying types.

data MapReduce a b = forall k v. MRKey k => MapReduce {
_mrOptions :: MROptions
-- ^ Hadoop and MapReduce options affecting only this job.
, _mrInPrism :: Prism' B.ByteString v
-- ^ A serialization for values between the map-reduce steps.
, _mrMapper :: Mapper a k v
, _mrReducer :: Reducer k v b
}

https://wiki.haskell.org/GADTs_for_dummies
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The preceding code uses the forall keyword, which explicitly brings new type variables into scope. 
Let’s take a look at the following example.

data Toy a = forall x. Toy x (x -> a)

example1, example2 :: Toy Int
example1 = Toy "Hello world!" length
example2 = Toy 5 (+1)

In example1, String is an instance of x, but in example2, Int is an instance of x. Still, example1 and 
example2 have the same type—namely Toy Int—because x is not a parameter of Toy. Existentials permit 
defining a unitary type that has values with heterogeneous-type components.

Thus, MapReduce is encapsulated as a data record; all operations that put together MapReduce 
programs are captured, and data endpoints are captured as “Taps.”

The following connects MapReduce programs.

— | Connect a MapReduce program with observable input and output (and give it a name)
connect
:: MapReduce a b -> [Tap a] -> Tap b -> Maybe String -> Controller ()

— | Connect a MapReduce program with input and write into a temporary output Tap
connect
' :: MapReduce a b -> [Tap a] -> Protocol' b -> Maybe String -> Controller (Tap b)

— | Create a tap on the fly (randomly named)
makeTap
:: Protocol' a -> Controller (Tap a)

— | Set a value to run-local storage (but all nodes will be able to access this state)
setVal
:: String -> B.ByteString -> Controller ()

— | Read a value from run-local storage (even during run inside of a remote node)
getVal
:: String -> Controller (Maybe B.ByteString)

— | Perform IO (Caveat: Only for side effects)
io:: IO a -> Controller a

A controller application could be interpreted in many ways: orchestrate the MapReduce chain or just 
perform the computations.

Orchestrate :: (MonadIO m) => Controller a -> HadoopEnv -> RerunStrategy -> ContState -> m ()

This runs on the central command-line node and initiates the MapReduce program on Hadoop, starting 
the CLI commands. It also handles everything about Hadoop Streaming execution. Importantly, it retains 
the local state in every step of execution and makes it available to all nodes, ensuring that they access the 
same state while the relevant MapReduce step is running.

runMR :: (MonadIO m) => Controller a -> HadoopEnv -> RerunStrategy -> m ()
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The alternate code-path is interpreted just by the remote nodes, which executes the MapReduce job. 
The same executable automatically detects if it is running on a map node or on a reduce node.

Briefly stated, this is how Hadron works. To compile and run the program, all we need to use are the 
following commands, where cabal-meta is a wrapper for cabal with more facilities (for more information, 
please visit https://hackage.haskell.org/package/cabal-meta).

cd emr-bundle
cabal-meta install
~/emr-bundle$ hadron-demo

Now, let’s look at an example of MapReduce using Hadron from the official examples available on the 
Hadron GitHub web page. The following example is a local counting frequency of words in a document.

{-# LANGUAGE BangPatterns              #-}
{-# LANGUAGE FlexibleContexts          #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
{-# LANGUAGE OverloadedStrings         #-}
{-# LANGUAGE TupleSections             #-}

module Main where

-------------------------------------------------------------------------------
import           Control.Category
import           Control.Lens
import qualified Data.ByteString.Char8 as B
import qualified Data.Conduit          as C
import qualified Data.Conduit.List     as C
import           Data.CSV.Conduit
import           Data.Default
import           Prelude               hiding (id, (.))
-------------------------------------------------------------------------------
import           Hadron.Controller
-------------------------------------------------------------------------------

main :: IO ()
main = hadoopMain [("app", app)] (LocalRun def) RSReRun

-- notice how path is a file
source :: CSV B.ByteString a => Tap a
source = tap "data/sample.csv" (csvProtocol def)

-- notice how path is a folder
target :: CSV B.ByteString a => Tap a
target = tap "data/wordFrequency" (csvProtocol def)

truncated :: CSV B.ByteString a => Tap a
truncated = tap "data/truncated.csv" (csvProtocol def)

-- notice how output is a file
wordCountTarget :: CSV B.ByteString a => Tap a
wordCountTarget = tap "data/wordCount.csv" (csvProtocol def)

https://hackage.haskell.org/package/cabal-meta
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mr1 :: MapReduce (Row B.ByteString) (Row B.ByteString)
mr1 = MapReduce def pSerialize mapper' Nothing (Left reducer')

-------------------------------------------------------------------------------
mapper':: Mapper (Row B.ByteString) B.ByteString Int
mapper' = C.concatMap (map (\w -> (w, 1 :: Int)) . concatMap B.words)

reducer' :: Reducer B.ByteString Int (Row B.ByteString)
reducer'  = do
  (!w, !cnt) <- C.fold (\ (_, !cnt) (k, !x) -> (k, cnt + x)) ("", 0)
  C.yield [w, B.pack . show $ cnt]

-------------------------------------------------------------------------------
-- | Count the number of words in mr1 output
mr2 :: MapReduce (Row B.ByteString) (Row B.ByteString)
mr2 = MapReduce def pSerialize mapper Nothing (Left r)
    where
      mapper :: Mapper (Row B.ByteString) String Int
      mapper = C.map (const $ ("count", 1))

      r :: Reducer (String) Int (Row B.ByteString)
      r = do
          cnt <- C.fold (\ !m (_, !i) -> m + i) 0
          C.yield ["Total Count", (B.pack . show) cnt]

mr3 :: MapReduce (Row B.ByteString) (Row B.ByteString)
mr3 = MapReduce opts pSerialize mapper Nothing r
  where
    opts = def & mroNumReduce .~ Just 0

    mapper = C.map (\ v -> ((), map (B.take 5) v) )

    r = Right (C.map id)

app :: Controller ()
app = do
    let src = source
    connect mr1 [src] target (Just "Counting word frequency")
    connect mr2 [target] wordCountTarget (Just "Counting words")
connect mr3 [target] truncated (Just "Truncating all fields")

The next example does the same thing as the previous, but uses Cloudera services.

{-# LANGUAGE BangPatterns              #-}
{-# LANGUAGE FlexibleContexts          #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
{-# LANGUAGE OverloadedStrings         #-}
{-# LANGUAGE TupleSections             #-}
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module Main where

-------------------------------------------------------------------------------
import qualified Data.ByteString.Char8       as B
import           Data.Conduit ((=$=), yield)
import qualified Data.Conduit.List           as C
import           Data.CSV.Conduit
import           Data.Default
-------------------------------------------------------------------------------
import           Hadron.Controller
-------------------------------------------------------------------------------

main :: IO ()
main = hadoopMain [("count", app)] (HadoopRun clouderaDemo def) RSReRun

source :: Tap B.ByteString
source = tap "hdfs://localhost/user/cloudera/full_meta_4.csv.gz" idProtocol

target :: CSV B.ByteString a => Tap a
target = tap "hdfs://localhost/user/cloudera/wcOut1" (csvProtocol def)

mr1 :: MapReduce B.ByteString (Row B.ByteString)
mr1 = MapReduce def pSerialize mapper' Nothing (Left reducer')

mapper' :: Mapper B.ByteString CompositeKey Int
mapper' = intoCSV def =$= C.concatMap f
    where
      f :: [B.ByteString] -> [([B.ByteString], Int)]
      f ln = concatMap (map (\w -> ([w], 1 :: Int)) . B.words) ln

reducer' :: Reducer CompositeKey Int (Row B.ByteString)
reducer' = do
  (!w, !cnt) <- C.fold (\ (_, !cnt) ([k], !x) -> (k, cnt + x)) ("", 0)
  yield $ [w, B.pack . show $ cnt]

app :: Controller ()
app = connect mr1 [source] target (Just "Counting words")

Summary
In this chapter, you saw

•	 Hadoop’s architecture and how it works.

•	 examples of Hadoop Streaming in Haskell.
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CHAPTER 14

Interactive Debugger for 
Development and Portability 
Applications Based on Big Data

In computer programming and engineering, debugging represents a process with multiple steps through 
which a problem is identified, and the source of the problem is isolated and it is corrected. In the last step of 
debugging, the programmer needs to test the modification to make sure that it works as expected.

In software development, debugging means that code errors from a computer program are located and 
corrected. It also represents a part of a testing process; an integrated part of the whole software development 
life cycle. The programmer could begin to debug as she writes code and the process is kept in gradual stages 
of developing software product. If the program is complex, the code could be more easily debugged through 
unit testing (in the first part of debugging), code reviewers, pair programming, or other types of testing.

When an unexpected behavior is discovered, the programmer has to identify the code that generated 
this error. In this step, it could be useful to inspect the logs of the code and to use a debugger tool or the 
default debugging component of the IDE.

A common approach is to set a breakpoint in the code that is suspected to generate the error, and to 
run the code line by line in debugging mode. The debugger of an IDE usually lets the programmer examine 
the memory and variables, running the program to the next breakpoint or to the next line. Some debuggers 
provide the capability to change a variable’s values while the program is in debugging mode, or even to 
change a line of code.

As a funny fact, the term debugging is actually named after a moth. In 1940, while Admiral Grace 
Hopper was working a Mark II Computer at Harvard University, she found a moth stuck in a relay, so she 
said that she and her team were “debugging” the system.

As you saw in previous chapters, big data applications can be integrated into Haskell; so for the 
moment, it is not necessary to create a dedicated debugger for big data application written in Haskell. In 
this chapter, we present a debugger incorporated into GHCi, proposed and implemented by Simon Marlow 
et al. in “A Lightweight Interactive Debugger for Haskell” (https://pdfs.semanticscholar.org/f718/
caebfb4b70212b8553ae0d865a9e6702f041.pdf).

https://pdfs.semanticscholar.org/f718/caebfb4b70212b8553ae0d865a9e6702f041.pdf
https://pdfs.semanticscholar.org/f718/caebfb4b70212b8553ae0d865a9e6702f041.pdf
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Approaches to Run-Time Type Reconstruction
Type reconstruction means that the data type of an expression is determined automatically. It is also known 
as type inference. For debuggers for functional programming like Haskell, there are two fundamental ways to 
do run-time type reconstruction.

•	 Backward traversal of the call stack. All typed values that are polymorphic are generated 
in calls to polymorphic functions, but in the call place, the arguments are actually 
monomorphic. Let’s take an example: c = map ord [1, 2, 3]. Inside the definition 
of map, there is no information about the type of the elements. When a map function 
is called inside the body of c, the type of elements is determined, so an x element has 
type Integer. This manner becomes the default approach for all cases. The debugger 
needs to have access to the function call stack and to the chain with binding-time calls 
for every variable of scope. The type of the function could also inform the arguments, 
like having f :: (Int -> Int) -> Int and calling f (\x -> x). The x needs to be 
type Int.

•	 Decoding the types. This is done through inspection of heap representations. In this 
approach, information should be added to the code, such as specific type tags; but it 
is less portable than the first one.

Run-Time Type Inference
To evaluate arbitrary expressions, a run-time type inference could be invoked at any point, started by  
the programmer when it is needed, upon an established run-time term t. Run-time type inference occurs in 
two phases.

First, a type T for t is deduced, where the term represents a structure that contains only constructor 
applications.

In this definition, □ means that the expressions and functions were not evaluated in the run-time term.
Before continuing, note that in computer science, unification represents an algorithm through which 

an equation between symbolic expressions is solved. In the second phase, T and T' are unified, where T' 
represents the type of t determined at compile time. Note that T' could require type variables. A refined 
type for t is achieved through substitution obtained from unification between T and T' applied on T'. This 
process is applied to all types in other run-time terms. If type variables still exist after the two stages, the 
substitution is corresponding to an unknown run-time type.

There is a difference between a run-time type inference and a compile time inference. In a standard 
type inference, a more specific type should be deduced (instead of the main type) because the program will 
work fine, although it is possible for a type check failure to occur. In run-time, it is usually not safe to assume 
a type that is not the most general. In a run-time type inference, the type variables need to be considered 
from an existential point of view, not a universal point of view, because they are actually a specific type.

The debugger proposed by Simon Marlow et al. combines these two types of type inference to obtain as 
much as possible data about types, but assuring the safety.

A difficult operation is when the user creates its own type (with newtype), because at run-time, they 
could not be deduced. Let’s take the following example: newtype T = T Int. If we declare a variable 
with type T Int, it could not be differentiated by a variable of type Int. This problem arises because GHC 
represents both types in the same way under the hood, and that no type tags are kept at run-time (in contrast 
to JVM or .NET run-times).
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The debugger that Simon Marlow et al. created improved the type for these: a source term that 
corresponds to the run-time term, which is displayed to the user. The source term could have gaps in the 
sense that there are expressions that could not be evaluated, but the user will not see the gaps; instead, they 
are allocated new variable names, which is useful because it could be used in further expressions.

As an example, the following term is partially evaluated at run-time.

t=Just □:(Just (1:  □) : □)

In Figure 14-1, the term t is shown in the heap, in which the dark rectangle means that the expression is 
not evaluated. Let’s assume that we obtain that term t is of partial type [a].

t
t2 t5

t1

t3

t4

t6

t7

t8

(:) (:)

(:)

Just Just

Int 1

Figure 14-1.  Heap representation for the example

In the run-time type inference, a constraint is generated for every closure in which the convention 
is that the data constructor type is placed on the right side, and the left side is constructed based on the 
subterms’ types of the heap. The constructors have the following signatures.

(:) :: a -> [a] -> [a]
[] :: [a]
Just :: a -> Maybe a

All subterms are visited, generating the constraints in Figure 14-1.

t = [a1]
t1 -> t2 -> t = a2 -> [a2] -> [a2]
t3 -> t1 = a3 -> Maybe a3
t4 -> t5 -> t2 = a4 -> [a4] -> [a4]
t6 -> t4 = a5 -> Maybe a5
t7 -> t8 -> t6 = a6 -> [a6] -> [a6]
t7 = Int

The primal equation is obtained from information about the type at compiling time. The equations 
are solved using a classical technique of unification and, as whole result, is obtained a substitution for the 
solution, where are included the types for every closure, inclusive t :: [Maybe [Int]]. What it is obtained, 
it is unified with the type of t :: [a] from compilation time, and finally, the result is the substitution a -> 
Maybe [Int] that will be applied in the runtime environment for refining the types for what is inner it.
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RTTI and New Types
RTTI is the abbreviation for Runtime Type Information. After the compiler checks the types, it eliminates the 
new types. New types constructors are not tracked in the heap, but they still shown up on the right side of 
constraints and in the signature of type at compile time. In this case, more implicit equations are needed to 
solve the constraints. When a new type is declared as newtype Set a = Set [a], it leads to the equation Set 
a = [a].

Reconsider the previous example with a minor modification, such that t :: Set a represents 
the information about the type of t from compile time. The constraints for types are obtained through 
inspecting the heap. The term t has the same representation in the heap.

t = [a1]
t1 -> t2 -> t = a2 -> [a2] -> [a2]
t3 -> t1 = a3 -> Maybe a3
t4 -> t5 -> t2 = a4 -> [a4] -> [a4]
t6 -> t4 = a5 -> Maybe a5
t7 -> t8 -> t6 = a6 -> [a6] -> [a6]
t7 = Int

In this case, the unification could not be made because in one equation for t is type Set α1, and in the 
other, it is [α1], even though there is isomorphism between them.

New type equations should be applied, if needed, to make a successful unification between static and 
run-time types in as few places as possible. The algorithm for the proposed debugger does the following: the 
constraints generated through inference attempt to be unified; if they cannot be unified, then there new type 
equivalencies for the terms that failed in unification are applied. This approach is a little difficult, but the 
heuristic works fine on classical examples.

Termination and Efficiency
The number of closures that are processed are proportional to the number of constraints generated by the 
RTTI algorithm; it is finite, so the unification applied on a suite of closures will terminate. The constraints 
are generated at the same time as the unification, but it is possible that the process through which they are 
generated will not terminate if it is applied on cyclic data structures. A solution to this could be keeping a log 
for the nodes that were visited to recover the termination.

For this debugger, the creators have talked about two improvements that are based on availability for an 
entire re-created type.

The constraints are solved in a breadth manner first, and unification is realized in a series of stages. 
When a full type is met, the process stops and returns it. Even if this solution is strange, we need to 
remember that this it is not the same thing as a type inference problem. In this case, we need to concentrate 
only on the term from the top level in the context in which many engendered constraints are used in typing 
subterms. This approach also improves termination that works on cyclic data structures. Some exceptions 
are cases in which cyclic structures have a fully unrolled spine and suspended contents.

The second approach focuses on situations in which the type for each subterm needs to be recovered, 
and it is based on walking in depth-first through all tree subterms. When the fully homomorphic type is 
retrieved, it is spread through the tree and the unification is replaced by matching. This process needs 
attention, because there is the possibility that the type variables will appear deep in the tree.
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Practical Concerns
In the previous sections, you saw how a partial type is reconstructed. In practice, there are some issues. 
One of them is the inspection of a structure from a run-time term that is not totally evaluated in a Haskell 
program and obtaining the type signatures for constructors utilized in the term.

The system supplies an operation called unpackClosure# whose purpose is to inspect closures. 
Essentially, a closure has two components: an info pointer (used to point to a structure) and an info table that

•	 depicts the closure’s layout and the code that should inspect it.

•	 contains payload where the fields of the closure are stored.

The data constructor that is corresponding to a closure is determined by looking in the information 
table, and then the type signature needs to be retrieved. At this step, the information from the table 
is completed with a special field that contains the fully qualified name of the constructor. Due to the 
uniqueness of the name of a program, the information about data constructor from internal GHC data 
structures could be easily retrieved.

The authors made this change to the technique of compiling GHC to allow debugging. The space 
complexity is small because there are only some data constructors.

In some situations, the fields from a heap data structure do not match the data constructors in the 
source code.

•	 Additional type-class dictionaries could be stored in the constructor due to 
existential quantification (called existential dictionaries).

•	 It is possible that strict fields are not unpacked. As an example, a strict field with type 
(a, b) is seen as two fields with types a and b, instead of as a single field.

In GHC, every constructor is managed as a record that contains the types of fields from the source code 
representation of the constructor. When types are reconstructed, it should be used last to match types to 
type values.

Implementation in Haskell
The debugger should consume as few resources as possible, and it needs to be integrated with GHCi for  
two reasons.

•	 The connection between the representation of the source code for a data constructor 
and the representation in the heap could be complicated while heap is traversed. 
To know how to represent in run-time, it is necessary to know how GHC makes the 
derivation of the representation.

•	 A fully interactive Haskell evaluation is necessary when the debug is done.

Accessibility is a characteristic of the debugger. It needs to operate with everything and to be accessible 
all the time. Profiling libraries are included in the debugger, which includes cost-center stacks that are very 
useful to a debugger.

The implementation of the debugger does not depend on the user interface being available through 
GHC API. The compiling and dynamic evaluation of GHC uses a programmatic interface from the GHC 
API. The GHCi interface is based on text, and it is created on the peak of the GHC API. GHC API is useful 
in the interoperability of product systems, in which different programming languages could be combined. 
This is the case with big data, where different tools are used for every stage through which data passes until 
becoming relevant knowledge. If Haskell is one of the programming languages used in one of these stages, 
then the GHC API could be called to build the Haskell code.
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A light version of the API for debugging is shown here.

runStmt :: Session -> String -> IO RunResult
resume :: Session -> IO RunResult
data RunResult
= RunOk
| RunFailed
| RunException Exception
| RunBreak BreakInfo
getResumeContext :: Session -> IO [Resume]
data Resume
resumeStmt :: Resume -> String
resumeBreakInfo :: Resume -> BreakInfo
abandon :: Session -> IO ()

An interactive statement is started by calling runStmt by the client of GHC API. The result returned 
by the runStmt could be RunBreak, which means that a breakpoint has stopped the execution. Next, the 
client could request getResumeContext (using the :show context command) for finding the place where the 
breakpoint was. The getResumeContext function returns a list of Resume, because it is possible that a list 
of breakpoints actually exists; when the program is in a breakpoint, it could run a statement that leads to 
another breakpoint, and so on.

For every Resume, information about breakpoints could be requested through resumeBreakInfo, which 
returns a value whose type is BreakInfo, which stores information about the module or the placement of the 
source code with a breakpoint.

An execution could be resumed with the resume command or with the abandon command, which 
exits the execution. There are more options regarding breakpoint: list, enable/disable, single-step (:step 
command), trace (:trace command) and history (:history, :back, :forward).

A common challenge for every debugger is the way compiled code and source code are related. 
Intuitively, it is needed to manage a relation between the original source code and the compiled one in every 
step of compiling. The good news is that the problem is already solved by the Haskell Program Coverage tool 
(https://wiki.haskell.org/Haskell_program_coverage). To determine coverage, you need to find out if 
the expression was introduced at run-time for every targeted place in the initial source code. If an expression 
that is introduced at run-time has a secondary impact, this should be mentioned in a table that contains 
information about coverage in the current run. When coverage information about an expression E from the 
source code needs to be retrieved, it is replaced by a tick with some parameters. In this step, a tick is just an 
annotation, and the corresponding source code is easy to find, based on a list of mapping ticks.

Breakpoints are similar to coverage ticks. A tick technique is used for annotating the program with 
breakpoint sites. Still, there are differences between ticks used for breakpoint and those used for coverage.

•	 The way in which locations of ticks are discovered is different.

•	 Breakpoint places are annotated using a set of free variables, but this information is 
not needed with coverage.

When a breakpoint is found while evaluating, the debugger should do the following.

•	 The interpreter verifies if the place of breakpoint is empowered by :break or if it is in 
a single step execution. If none of this happens, then the execution goes on normally.

•	 If one of these happens, then GHCi takes control, but it permits the computation to 
be done later and the values of the free variables can be accessed.

https://wiki.haskell.org/Haskell_program_coverage
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Remember that runStm starts executing a new statement, which fails (RunFailed), successfully 
completes (RunOk), throws an exception (RunException), or meets a breakpoint (RunBreak). resume retakes 
the newest computation in the breakpoint. The following is the implementation of runStmt.

runStmt stmt = do
status_mvar <- newEmptyMVar
break_mvar  <- newEmptyMVar
let  on_break info = do
putMVar status_mvar (Break info)
takeMVar break_mvar
forkIO $ withBreakAction on_break $ do
result <- try stmt
putMVar status_mvar (Complete result)
result <- takeMVar status_mvar
case result of
Complete (Left ex) -> return (RunException ex)
Complete (Right r) -> return RunOk
Break info -> do
setResume session (break_mvar, status_mvar)
return (RunBreak info)

Threads and MVars are used in implementing breakpoints. A new thread is used to run the computation, 
and the result is stored in status_mvar. The on_break action could be invoked when a breakpoint occurs, 
depending on the result of the withBreakAction function. The status_mvar is used by the thread to store the 
result. When a breakpoint is met, on_break is run by the interpreter, which communicates through status_
mvar to the principal thread that a breakpoint has occurred and is waiting for break_mvar. The principal 
thread retains the necessary data for resuming the actual computation in Session when it receives Break 
and the thread returns RunBreak to the caller.

If an exception occurs, the debugger could stop the execution, no matter if it arises in the compiled code 
(for example, an evaluation of head [] will throw an exception at compiling time). This is a natural choice, 
because exceptions could be thrown by a primitive of the compiler (raise#), in whose implementation 
the breakpoint handler is invoked if it is set. The breakpoint handler represents IO actions sent to 
withBreakAction. The behavior is the same as when a breakpoint occurs, except that a location for the 
breakpoint does not exist. There is an issue when the user hits the Ctrl+C keyboard combination, because it 
raises an asynchronous exception that does not work with #raise. A solution is to catch this exception and 
throw it again as a synchronous exception.

The following briefly shows how the debugger works, implementing a simple example of Data.List.lines.

lines    :: String -> [String]
lines "" =  []
lines s  =  let (l, s') = break (=='\n') s
in  l : case s' of
[]      -> []
(_:s'') -> lines s''

To compile a program, just load it as normal. Let’s look at how lines behave for leading and trailing 
newline.

*Main> lines "\na"
["","a"]
*Main> lines "a\n"
["a"]
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We can place a breakpoint somewhere in the program. This represents a place where the execution 
will be interrupted, such that it is allowed to check the values of the local variables. The breakpoint could be 
placed on a line with an expression, or on the top-level function.

*Main> :break lines
Breakpoint 1 activated at lines.hs:(4,0)-(8,24)

Execution is interrupted when the breakpoint is met in lines.

*Main> lines "a\n"
Stopped at lines.hs:(4,0)-(8,24)
_result :: [String]
[lines.hs:(4,0)-(8,24)] *Main>

The user is notified that a breakpoint has occurred and the prompt is changed to show the actual 
source location. The _result variable is linked with the value of the expression from the breakpoint, which 
permits the user to work with it. The parameters can be checked only if pattern matching occurs. The :step 
command is used to debug step by step.

[lines.hs:(4,0)-(8,24)] *Main> :step
Stopped at lines.hs:(6,10)-(8,24)
_result :: [String]
s’ :: [Char]
l :: [Char]
[lines.hs:(6,10)-(8,24)] *Main>

The execution is interrupted in the second equation in the program, at the extreme expression in the 
body of let. Using the :list command, the source code around the actual breakpoint is shown with the 
actual expression highlighted. The values for s' and l could be checked, bounded in let expression:

[lines.hs:(6,9)-(8,23)] *Main> (l,s')
("a","\n")

The lines were divided as expected. If a step-by-step approach is further used, the next piece of code 
will be executed.

[lines.hs:(6,13)-(8,23)] *Main> :step
Stopped at lines.hs:8:15-23
_result :: [String]
s" :: [Char]

We can show the value of s".

[lines.hs:8:15-23] *Main> s"
""

Clearly, the recursive call will now enter the base case of lines, returning the empty list. This explains 
why lines drop a trailing newline from the input.

In Haskell, programs run using the laziness strategy. Laziness is useful, but in many cases, it decreases 
performance because it adds overhead to everything. To avoid the issue of laziness, Haskell uses strict 
analysis, which tries to identify arguments of the function that are always evaluated, and thus they could be 
evaluated by the caller instead. This approach could bring big improvements.
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In Haskell, type inference occurs at compile time, when all the types are checked. Implementations may 
erase types at run-time, as they have compile-time proof of type safety.

Summary
This chapter provided a short description how GHC works. Due to its modularity and compositionality, it is 
more suitable to big data than other programming languages. When large volumes of data are involved, it is 
useful that a program system’s tools are able to automatically support modularity of the interactions between 
components. Haskell has the capability to manage software complexity very well.

As Don Stewart claims in its presentation “Haskell in the Large” for Google Tech Talk, Haskell is also 
useful in big data applications because

•	 the errors are caught earlier.

•	 accidental interactions between components is limited

•	 pieces in isolation could be easily changed.

•	 it provides strong and expressive types that lead to machine-checkable and modular 
software.

•	 it is impossible that values be combined in nonsenses ways.

•	 phantom types could be used. Augments types with origin/security/other metadata 
makes it possible to prove security properties, information flow properties, very 
lightweight, but high power/expressiveness, and first steps down the road to GADTs 
and type level programs.

•	 algebraic data types could be used. For example, we need to create only JSON 
(JavaScript Object Notation) data. For this, we define JSON grammar as a (recursive) 
data type.

data JSValue
= JSNULL
| JSDouble Double
| JSString String
| JSRecord [(String, JSValue)]
            | JSArray [JSValue]

•	 Abstract data types could contain primitives as new variants. For example, a key 
value store.

data Query
= MetadataKey Is Key
| MetadataValue Is Value
| Size Is Integer [Integer]
| SizeRange Is Integer Integer
| IngestTime Is Datetime
| Custom Is String

data Is = Is | IsNot
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•	 Interfaces between Haskell and extern systems are done by interpreters and 
compilers. For example, we want to compile a Query:

compile :: [Query] -> QueryString
compile [] = "*:*"
compile qs = String.intercalate " " (map compileQuery qs)

compileQuery :: Query -> String
compileQuery (MetadataKey is k) =
      �implode [compileIs is, "(", "customMetadataContent:" , "\"k.",  

escape k , "\"", ")"]
compileQuery(MetadataValue is v) =
      �implode [compileIs is, "(", "customMetadataContent:" , "\"v.",  

escape v , "\"", ")"]C
compileQuery (Size is s ss) =
      implode [compileIs is, "(", "size:" , "("
          , String.intercalate " " (map compileInteger (s:ss)) , ")" , ")"
]
...
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CHAPTER 15

Iterative Data Processing on  
Big Data

We know that a computer application/product is scalable if it works as expected, even when its size or 
volume (or the size or volume of its environment) regarding data and computations has changed to improve 
the user’s computation necessities. In most situations, rescaling means increasing the volume or size of 
the computation capabilities. This is an important characteristic of cloud computing, which for big data in 
particular, helps because large amounts of data need to be manipulated, processed, cleaned, and analyzed; 
in many situations, increased computation capabilities are needed. Also, it is very important that the system 
run normally, even when, for example, a cluster node is down.

MapReduce is very powerful when the platform that implements it is part of a large scalable cluster. 
As you saw in previous chapters, in algorithms such as PageRank, data processing is done iteratively and 
the computations do not meet a specific stopping rule. This is not the case with MapReduce, which does 
not directly support iterative steps. But programmers could manually use this approach by emitting more 
MapReduce jobs and manipulating the executions through a driver program.

This chapter presents a nice solution to this Hadoop issue, proposed and implemented by Yingyi Bu 
et al in the original article HaLoop: Efficient iterative data processing on large clusters. It is called HaLoop.

Programming Model
Even if an iterative approach could be used in MapReduce, there are two impediments: the same data could 
be processed on more iterations (because data remains unchanged) and the stopping condition that checks 
whether a fixed point occurred (namely, to check if the same data is processed on two successive iterations).

The main architecture and functionalities of Hadoop are kept in HaLoop, which works as follows: 
the input and the output of the jobs are stored in HDFS. There is a master node that coordinates the slave 
nodes. When the client sends its jobs, the master node allocates a particular number of parallel tasks that 
need running over the slave nodes. In each slave node, a tracker monitors the execution of the jobs and 
communicates with the master node. There could be a map task or a reduce task. Figure 15-1 illustrates the 
similarities and differences between Hadoop and HaLoop.
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MapReduce programs are optimized by HaLoop through catching the intermediary results between 
MapReduce jobs. This ends if a fixed point is achieved (i.e., two consecutive iterations have the same result).

In HaLoop it is possible to have an approximate fixed point in which the difference between the outputs 
of two successive iterations is less than a value given by the user, or the maximum number of iterations is 
achieved. The two types of approximate fixed points are useful in machine learning applications.

In HaLoop programs, the work of the programmer is to specify the loop body (i.e., one or more  
map-reduce steps). Specifying the termination rule and the data invariant for the loop is optional. The map 
and reduce functions are similar to those of standard MapReduce. In a HaLoop program, the following 
functions should be used.

•	 The map function takes as input a pair (key, value) and outputs an intermediate 
pair (in_key, in_value);

•	 The reduce function takes as input the intermediate pair (in_key, in_value) and 
outputs the final pair (out_key, out_value). There is a new parameter used for 
cached invariant values corresponding to in_key.

•	 AddMap and AddReduce contain a loop body in which there are multiple map-reduce 
steps. Every map/reduce function has a corresponding integer that shows the order of 
the step associated with AddMap/AddReduce.

Master Slaves

Job 1 Job 2 Job 3

Task11 Task12 Task13

Task21 Task22 Task23

Task31 Task32 Task33

Application

Task
queue

Task scheduler Task tracker

Catching Indexing

Framework

File systemDistributed file system

Local file system

Loop control

Local communication Remote communication

Identical Modified New from Hadoop

Figure 15-1.  Hadoop vs. HaLoop
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HaLoop’s default state is dedicated to testing if the current iteration is equal with the previous iteration. 
In this way it is determined when the computation should be terminated. To specify a specific point as a 
condition, the programmer should use these functions.

•	 The SetFixedPointThreshold function fixes a bound on the distance that is situated 
between the current iteration and the next iteration. The computation continues 
while the threshold is not excedeed and the fix point is not reached.

•	 The ResultDistance function computes the distance between out_values sets 
that share the same out_key. v

i
 is an out_value set from the reducer output of the 

current iteration. v
i-1

 an out_value set from the previous iteration’s reducer output. 
The distance between the reducer outputs of the current iteration, I, and the last 
iteration, i-1, represents the sum of ResultDistance for each of the keys.

•	 The SetMaxNumOfIterations function provides further control of the loop 
termination condition. HaLoop terminates the job if the maximum number of 
iteration has been executed, taking into consideration the current and previous 
iteration’s outputs. SetMaxNumOfIterations acts as guidance to implement a simple 
for-loop.

To specify the control inputs, the programmer has to acknowledge the following:

•	 The SetIterationInput function associates an input source with a specific iteration, 
since the input files to different iterations may be different. Figure 15-2 illustrates that 
at each iteration, i+1, R Li   is the input.

•	 The AddStepInput function associates an additional input source with an 
intermediate map-reduce pair situated in the body of the loop. The output resulted 
from the preceding map-reduce pair is always in the input of the next map-reduce pair.

•	 The AddInvariantTable function specifies an input a table (under the form of HDFS 
file) that is loop-invariant. After the code executes, HaLoop caches this table on 
cluster nodes.

Figure 15-2.  The boundary between an iterative application and the framework illustrated in Figure 15-1. 
HaLoop knows and controls the loop, while Hadoop only knows jobs with one map-reduce pair.
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The current programming interface is sufficient to express a variety of iterative applications.  
Figure 15-2 depicts the main difference between HaLoop and Hadoop, from the application’s point of view. 
With HaLoop, the user of the application specifies the loop settings and the framework that controls the loop 
execution; but in Hadoop, it is the application’s responsibility to control the loops.

Loop-Aware Task Scheduling
From this point, we focus on the HaLoop task scheduler. The scheduler provides potentially better schedules 
for iterative programs, which Hadoop’s scheduler is not capable of offering.

Inter-Iteration Locality
The high-level goal of HaLoop’s scheduler is to place the maps and to reduce the tasks that can occur on the 
same physical machines in different iterations, but access the same data. Using this approach, data can be 
more easily cached and reused between the respective iterations.

The scheduling of iteration 1 is no different than it is in Hadoop. In the join step of the first iteration, the 
input tables are L and R

0
. Three map tasks are executed, each of which loads a part of one or the other input 

data file (e.g., file split). As in Hadoop, the mapper output key is hashed to reduce the task to which it should 
be assigned. After this, three reduce tasks are executed, each of which loads a partition of the collective 
mapper output. In Figure 15-3, the reducer denoted with R

00
 processed the mapper output keys whose hash 

value is 0. The R
10

 reducer processes the keys with hash value 1, and the R
20

 reducer will process the keys 
with hash value 2.

Figure 15-3.  A schedule exhibiting inter-iteration locality. Tasks processing the same inputs on consecutive 
iterations are scheduled to the same physical nodes.

The scheduling of the join step of iteration 2 has the advantage of inter-iteration locality, which means 
that the task (either a mapper or a reducer) that processes specific data partition D is scheduled on the 
physical node that D is processed in iteration 1.

The schedule in Figure 15-5 provides the feasibility to reuse loop-invariant data from past iterations. 
Because L is loop invariant, mappers M

01
 and M

11
 would compute identical results to M

00
 and M

10
. There is 

no need to recompute these mapper outputs or to communicate them to the reducers. In iteration 1,  
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if reducer input partitions 0, 1, and 2 are stored on nodes n3, n1, and n2, respectively, then in iteration 2,  
L need not be loaded, processed, or shuffled again. In that case, in iteration 2, only one mapper M

21
 for  

R
1
-split 0 needs to be launched, and thus the three reducers will only copy intermediate data from M

21
.  

With this strategy, the reducer input is no different, but it now comes from two sources: the output of the 
mappers (as usual) and the local disk.

We refer to the property of the schedule in Figure 15-3 as the inter-iteration locality. Let d be a file split 
(mapper input partition) or a reducer input partition. Let T

d
i be a task consuming d in iteration i. Then we 

say that a schedule exhibits inter-iteration locality if for all i > 1, and T
d

i and Td
i−1  are assigned to the same 

physical node if Td
i−1  exists. The goal of task scheduling in HaLoop is to achieve inter-iteration locality.  

To achieve this goal, the only restriction is that HaLoop requires that the number of reduce tasks should be 
invariant across iterations, so that the hash function assigning mapper outputs to reducer nodes remains 
unchanged.

Experimental Tests and Implementation
HaLoop supports iterative and recursive data analysis tasks as mainly recursive joins. These joins could be 
map joins (for example, they are used in a k-means algorithm) or reduce joins (for example, they are used 
in a PageRank algorithm). The key to HaLoop is caching loop-invariant data to slave nodes, and reutilizing 
them between iterations.

HaLoop is available at http://haloop.googlecode.com/svn/trunk/haloop.
To configure a cluster in HaLoop, we take the same steps as in Hadoop. The difference between clusters 

in Hadoop and HaLoop is that local mode and the pseudo-distributed mode are not supported by HaLoop, 
but it is supports real distributed mode.

To run the examples, first compile them.

% ant -Dcompile.hs=yes examples

And then copy the binaries to dfs.

% bin/hadoop fs -put examples

Create an input directory with text files.

% bin/hadoop fs -put my-data in-dir

Now, as practice, modify the word count examples in Chapter 13 (see the “Hadron” section), adding 
AddMap and AddReduce as described earlier, and run the word-count example as follows.

% bin/hadoop pipes -conf pathfile/word.hs \ -input in-dir -output out-dir

Summary
This chapter presented HaLoop, an improvement for Hadoop proposed and implemented by Yingyi Bu et al. 
It supports iterative and recursive data analysis tasks, which brings

•	 a loop-aware task scheduler

•	 loop-invariant data caching

•	 caching for efficient fixpoint verification

http://haloop.googlecode.com/svn/trunk/haloop
http://dx.doi.org/10.1007/978-1-4842-2781-7_13
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CHAPTER 16

MapReduce

This chapter’s goal is to present the importance of using techniques for incremental and iterative processes 
applied in development applications for the cloud. Intelligent applications such as PageRank perform 
iterative computations on data sets that are constantly changing. We will point out that iterative computation 
are too expensive in order to realize an entirely new large-scale MapReduce iterative job which will make the 
desired changes on the datasets. 

We present the main elements that characterize the changes in data sets by implementing solutions 
based on incremental and iterative computation. You will see how these changes are impacting only a very 
small fraction of data sets.

Incremental and Iterative Techniques
Iterative computations are important elements in cloud applications used in many areas. A good example 
is the PageRank algorithm in search engines on the Web. Gradient descent for optimization is another 
example. These algorithms are intensely used, especially in recommendation systems or link predictions. 
Searching data within large amounts of data (which could be unstructured) is a great challenge because it 
could take hours, or even days, to get results. Data is also very dynamic, and it could change every minute, 
so fast results are needed so that we can say what we obtained is accurate. If algorithms run on data that 
isn’t up-to-date, it is very possible that the outcomes are too old or inaccurate. Frequent refresh of iterative 
computations of data is very important in receiving accurate results. Unfortunately, this is very expensive, so 
the capability of performing incremental processing over unstructured data is needed. As we discussed in 
previous chapters, MapReduce is the most used platform in data analysis in a cloud environment.

An algorithm that is iterative makes the same computations to a given data set in each iteration,  
which always leads to improved results. The algorithm stops when the difference between the results from 
two successive iterations is sufficiently small. There are two types of data involved here: the static data  
(i.e., the input data set) and dynamic data (i.e., the output of every iteration).

The result of the current iteration is just a little different from the result of the previous iteration.  
The outputs of two consecutive iterations rarely depend on one another. An element that is updated in its 
current iteration will influence just a small number of elements from the next iterations, so there are parts 
that converge faster than the others do. These techniques have applications in graph theory, especially in 
cases in which changes from a vertex (node) affects its neighbors. For some algorithms, the update could be 
done asynchronously, which eliminates the barriers between iterations.

Due to slow converging, many iterative algorithms are not suitable for current systems. The iterative 
algorithms presented and developed in the last few years—such as HaLoop, Twister (proposed by J. Ekanayake, 
H. Li, B. Zhang, T. Gunarathne, S. H. Bac, J. Qiu, and G. Fox in article titled Twister: a runtime for iterative 
mapreduce), Stateful Bulk Processing (proposed by D. Logothetis, C. Olston, B. Reed, K. C. Webb, and 
K. Yocum in article titled Stateful bulk processing for incremental analytics), Naiad, and Incoop—are 
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developed to further support incremental and iterative techniques, but not all of the are reliable. All of these 
algorithms are very lightweight when they are implemented. The efficiency of iterative computations will 
be improved if we focus on the task scheduler loop and consider caching mechanisms. The system will also 
need other specific analysis and transformation tasks. For large data sets, the processing will be realized on 
many systems that need to manage their work through workflow frameworks. In MapReduce (but also in 
other models where large data sets are trained), it is necessary to monitor the data flow that pre-processes 
the data, to have a specific system for a training algorithm, and to have a specific system for post-processing.

There are some reasons for which iterations should be integrated with data flow, instead of creating 
specialized systems for different jobs.

•	 The managing frameworks will not be needed anymore, because integrating 
iterations directly in data flow allows analytical pipelines to be viewed as a unique 
element.

•	 Data flows can be easy optimized.

•	 Data flows are suitable for distributed algorithms and become widely used in 
machine learning.

Some algorithms are asynchronous iterative computations, especially machine learning and  
data-mining algorithms that update large sets of parameters. Synchronous algorithms are based on graphs; 
updates depend on the values of parameters. For example, in the working paper “i2 MapReduce: Incremental 
Iterative MapReduce,” the authors, Yanfeng Zhang and Shimin Chen, propose and implement a model 
called Map-Reduce Bipartite Graph (MRBGraph) to illustrate iterative and incremental computations, 
which contain a loop between mappers and reducers. In synchronous approaches, all parameters are 
updated in parallel at the same time and the input is from the parameter values from the previous iteration. 
In an asynchronous approach, parameters are updated based on the most recent value of parameter input. 
Studies show that many times an asynchronous approach is more efficient than a synchronous approach.

Iterative algorithms are mainly based on update functions. An update function represents a procedure 
without a state that changes the data within the scope of a vertex V (i.e., data stocked in the V and into all 
neighbor vertices and corresponding edges) and sets up the subsequent executions of the update function 
on another vertex.

Make sure that the scope of update functions that are running concurrently are not overlapping. 
This leads to fully consistent models based on iterative algorithms. This is a good thing, but it has its 
inconveniences: parallelism is limited because update functions need to run with a difference of at least 
two vertices. In most cases, the update function does not use all the data from a scope. A benefit of edge 
consistency is that access to the update function’s vertex and adjacent edges is represented by read and write 
operations; but for adjacent vertices, the access is read-only. This increases the parallelism because one 
update function will have a little overlapping of scopes to safely run in parallel. It also permits all functions 
to run in parallel, so maximum parallelism will be achieved.

We mentioned the PageRank algorithm many times in this section. Behind this algorithm, there are 
concepts based on probability theory and linear algebra. It is used by Google to display relevant links 
regarding some keywords introduced by the user. The following is a Haskell implementation of this 
algorithm. It is available for download at https://github.com/derekchiang/Haskell-Page-Rank/blob/
master/pagerank.hs. The solution and idea are proposed and implemented by Derek Chiang.

import           Data.Map    (Map, empty, insert, insertWith, lookup,
                              mapWithKey, member, size)
import           Data.Maybe  (fromJust)
import           Debug.Trace (trace)
import           Prelude     hiding (lookup)
import           Text.Printf (printf)

https://github.com/derekchiang/Haskell-Page-Rank/blob/master/pagerank.hs
https://github.com/derekchiang/Haskell-Page-Rank/blob/master/pagerank.hs
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type Node = Int
type PRValue = Double
type PageRank = Map Node PRValue
type InboundEdges = Map Node [Node]
type OutboundEdges = InboundEdges

parseLine :: �(InboundEdges, OutboundEdges, Node) -> String -> (InboundEdges, OutboundEdges, 
Node)

parseLine (iEdges, oEdges, maxNode) line =
    let ws = words line
        (from, to) = (read $ ws !! 0, read $ ws !! 1)
        in (insertWith ++ plusNode to [from] iEdges,
            insertWith ++ plusNode from [to] oEdges,
            max to (max maxNode from))
    where
        plusNode :: [Node] -> [Node] -> [Node]
        plusNode new_node old_node =
            new_node ++ old_node

newPageRank :: Int -> PageRank
newPageRank n =
    let v :: Double = 1 / fromIntegral n
        in go n v empty
    where
        go :: Int -> Double -> PageRank -> PageRank
        go 0 _ pr = pr

        go n v pr =
            go (n-1) v $ insert (n-1) v pr

-- The goal of postProcess is to deal with the nodes that have no outbound
-- edges, in which case they should be treated like they have outbound edges
-- to every other node.
postProcess :: (InboundEdges, OutboundEdges, Node) -> (InboundEdges, OutboundEdges)
postProcess (iEdges, oEdges, maxNode) =
    let numNodes = maxNode + 1
        newIEdges = addAllNodes (numNodes-1) iEdges
        in loop (numNodes-1) newIEdges oEdges

    where
        loop :: Int -> InboundEdges -> OutboundEdges -> (InboundEdges, OutboundEdges)
        loop n iEdges oEdges
            | n < 0 = (iEdges, oEdges)
            | otherwise =
                if member n oEdges then
                    loop (n-1) iEdges oEdges
                else
                    let numNodes = maxNode + 1
                        newOEdges = insert n (filter (/= n) [0..maxNode]) oEdges
                        newIEdges = mapWithKey (\k v -> if k /= n then v ++ [n] else v) iEdges
                        in loop (n-1) newIEdges newOEdges
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        -- This function makes sure that every node is a key in the InboundEdges map
        addAllNodes :: Int -> InboundEdges -> InboundEdges
        addAllNodes n iEdges
            | n < 0 = iEdges
            | otherwise =
                addAllNodes (n-1) $ insertWith (\new old -> new ++ old) n [] iEdges

parseGraph :: String -> (InboundEdges, OutboundEdges, PageRank)
parseGraph input =
    let ls = lines input
        (iEdges, oEdges) = postProcess $ foldl parseLine (empty, empty, 0) ls
        numNodes = size iEdges
        in (iEdges, oEdges, newPageRank numNodes)

loopProcess :: Int -> Double -> InboundEdges -> OutboundEdges -> PageRank -> PageRank
loopProcess 0 _ _ _ pageRank = pageRank
loopProcess n dampingFactor iEdges oEdges pageRank =
    let newPageRank = loop' ((size pageRank) - 1) empty
        in loopProcess (n-1) dampingFactor iEdges oEdges newPageRank

    where
        loop' :: Int -> PageRank -> PageRank
        loop' n pr
            | n < 0 = pr
            | otherwise =
                let inbounds = fromJust $ lookup n iEdges
                    newPrValue = (+)
                        ((1 - dampingFactor) / (fromIntegral $ size iEdges))
                        (dampingFactor * (foldl calc 0 inbounds))
                    in loop' (n-1) $ insert n newPrValue pr

                where
                    calc acc node =
                        let outbounds = fromJust $ lookup node oEdges
                            prValue = fromJust $ lookup node pageRank
                            in acc + prValue / (fromIntegral $ length outbounds)

process :: String -> Int -> Double -> PageRank
process input numIters dampingFactor =
    let (iEdges, oEdges, pageRank) = parseGraph input
        in loopProcess numIters dampingFactor iEdges oEdges pageRank

main :: IO ()
main = do
    putStrLn "How many iters?"
    numIters <- getLine
    f <- readFile "input.txt"
    -- damping factor defaults to 0.85
writeFile "output.txt" $ show $ process f (read numIters :: Int) 0.85



Chapter 16 ■ MapReduce

241

This shows how an iterative algorithm works. Haskell also provides an implemented version of 
PageRank that can be used by importing the Data.Graph.PageRank module, which is in the graph-utils 
package. You can use

pageRanks :: Graph gr => gr a b -> Double -> Double -> RankDic

to compute a rank for every page of Graph, where the following is stored PageRank data.

type RankDic = Map Node Double

Iterative Computation in MapReduce
Now, let’s look at how iterative computation works in MapReduce.

A user sends a set of MapReduce jobs to the iterative algorithm. An iteration must have at least one 
job. In every iteration, the map function is processing the result from the previous iterations and the initial 
data input (i.e., both static and dynamic data), and the reduce function is combining the intermediary data 
to output the dynamic data of the current iteration. With distributed environments, this is stocked in the 
distributed file system, and it is the input for the next iteration. Usually, every iteration is done through a 
job. This is the reason why iterative computation is not very efficient in native MapReduce. MapReduce 
extensions improve its efficiency in iterative computation. Mainly, there are two directions.

•	 Direction is based on creating an intern data flow on a single MapReduce job, where 
all computations are done. For this approach, the result of the reduce function is sent 
directly to the map function. This leads to a lower start-up cost (because, dynamic 
data does not need to be read from a file system).

•	 Caching iteration-invariant data, namely input data, leads to one read of the input 
data in the first iteration.

An interesting application of iterative techniques in MapReduce is an extension of the GraphLab 
framework for distributed computing proposed by Yucheng Low et al. The data from the graph is in the 
first step over partitioned through domain specific knowledge or through a distributed graph partitioning 
heuristic. The number of elements (an element is called an atom) of partition is k, which is much larger than 
the number of machines. Every atom is stored in a distinct file in the form of a binary compressed list of 
graph generation commands (for example, AddVertex or AddEdge). In every atom, there is information about 
vertices and edges adjacent to the partition frontiers. An atom index file contains the connections between 
vertices and the locations for the other atom files. The information in this index file could be considered as a 
metagraph in which the vertices are the k atoms and the edges are the connections between the atoms.

The user constructs the atom graph on a distributed file system. Hashed partitioning is the technique 
suitable for MapReduce. The construction of the graph needs to perform a map function on every vertex and 
edge, and every reduce function collects an atom file. The benefit of atom files is that modifications can be 
done without retaking the whole process from the beginning.

Data Parallel Haskell (DPH) is a good Haskell example of iterative computation (examples in this 
section could also be found at https://wiki.haskell.org/GHC/Data_Parallel_Haskell). It is an extension 
of GHC that contains libraries for nested data parallelism (i.e., applying a function in parallel on every 
item of a set and nesting parallel calls), using CPUs with multiple cores. Currently, DPH is not maintained 
by the community. The last update was in 2012. The current version offers the main benefits of creating 
applications based on iterative computation.

DPH is an add-on. Its focus is on vectorization and parallel execution on systems with multiple cores. 
Vectorization is characterized by applying an elaborate transformation to the DPH code, which turns the 
nested into flat data parallelism. This transformation is very useful for the code that is executed in parallel, 

https://wiki.haskell.org/GHC/Data_Parallel_Haskell
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and for dramatically simplifying load balancing. The degree of nesting is fixed and the user cannot create its 
own data types. The main approach is irregular parallelism. If you want to get this library, run the following 
commands in a command prompt window.

$ cabal update
$ cabal install dph-examples

Among the packages, there are also some examples installed.
DPH introduces a new data type in Haskell—namely parallel arrays, and also the operations on the 

arrays. If you want to define a parallel array, use [: and :] instead of [ and ].

•	 [:e:] represents the type of parallel array, containing elements with type e.

•	 [: x,y,z:] represent a parallel array with three elements: x,y,z.

•	 [:x+1 | x <- xs :] represents an array comprehension.

The following are differences between lists and parallel arrays.

•	 Parallel arrays have a strict data structure, in the sense that if one element is used, 
then all the others elements are required. From here, the elements are processed in 
parallel.

•	 Parallel arrays could not be inductively defined. To assure the parallelism, they are 
seen in entirety. This is the reason why they cannot be defined inductively.

•	 Parallel arrays are always finite. They have the foldP function, which is undirected 
and needs that the input function to be associative. Some aggregate functions  
(e.g., permuteP) are not implemented in the standard library.

The following is an example in which the dot product of two parallel arrays is implemented. The parallel 
list array comprehension is used.

dotp :: Num a => [:a:] -> [:a:] -> a
dotp xs ys = sumP [:x * y | x <- xs | y <- ys:]

This is another version of implementation.

[:x * y | (x, y) <- zipP xs ys:]

The preceding version of dotP is very simple, but it cannot be compiled and run in this version right 
now, so we need to change it. GHC needs to apply some transformations through a technique called 
vectorization over DPH in order to transform it from nested to flat data parallelism.

Because type classes are not available, we should not use overloaded operations in parallel code. Due to 
this restriction, dotP is implemented only on Double.

dotp_double :: [:Double:] -> [:Double:] -> Double
dotp_double xs ys = sumP [:x * y | x <- xs | y <- ys:]

Because there are data type limitations, vectorization cannot be applied on certain language constructs, 
so Prelude cannot be used in its entirety. But DPH contains a limited version of Prelude available on 
Data.Array.Parallel.Prelude, and additional modules for these numeric types: Data.Array.Parallel.
Prelude.Int, Data.Array.Parallel.Prelude.Double, Data.Array.Parallel.Prelude.Float, Data.
Array.Parallel.Prelude.Word8, and Data.Array.Parallel.Prelude.Bool. Actually, the modules contain 
the same operations, but they are implemented specifically for one data type. To use the same operation 
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on arrays that have different types of elements, all the corresponding modules need to be imported. If the 
programmer needs a function that is not contained in these modules, then he needs to implement and 
vectorize them.

In order to compile and run dotp_double, we need to add the following qualified imports.

import qualified Prelude
import Data.Array.Parallel
import Data.Array.Parallel.Prelude
import Data.Array.Parallel.Prelude.Double

We need to pay attention to the interaction with vectorized and non-vectorized code. Simple types can 
be used in both of them and passed through them. Parallel arrays could not be passed, but the PArray type 
could be passed, on which a special Prelude will export with fromPArrayP, which is a conversion function 
specific to the type of elements in a parallel array. Next, we need to create a wrapper for our product, which 
will be exported and used in non-vectorized code.

 dotp_wrapper :: PArray Double -> PArray Double -> Double
{-# NOINLINE dotp_wrapper #-}
dotp_wrapper v w = dotp_double (fromPArrayP v) (fromPArrayP w)

The wrapper should be NOINLINE, because it should not be inlined in the non-vectorized code.
To use the syntax of parallel arrays, we need to enable it with ParallelArrays. We should tell the 

compiler that we will vectorize a module by adding the -fvectorise option. Either the code will be 
vectorized into one module, or it will not be vectorized at all, so it is highly recommended that vectorized 
and non-vectorized code be kept in separate modules. So, for dotP example, we get the following.

{-# LANGUAGE ParallelArrays #-}
{-# OPTIONS_GHC -fvectorise #-}

module DotP (dotp_wrapper)
where

import qualified Prelude
import Data.Array.Parallel
import Data.Array.Parallel.Prelude
import Data.Array.Parallel.Prelude.Double

dotp_double :: [:Double:] -> [:Double:] -> Double
dotp_double xs ys = sumP [:x * y | x <- xs | y <- ys:]

dotp_wrapper :: PArray Double -> PArray Double -> Double

{-# NOINLINE dotp_wrapper #-}

dotp_wrapper v w = dotp_double (fromPArrayP v) (fromPArrayP w)

This code is stored in a file called DotP.hs. It is compiled as shown in the following, using -Odph, which 
enables some optimizations for DPH, and -fdph-par, which picks the standard DPH back-end library.

ghc -c -Odph -fdph-par DotP.hs
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The last step is to create a main module in which the vectorized code is called. This module is not 
vectorized, which allows inputs and outputs. Further, two lists are converted into parallel arrays, and then 
their dot product is computed, and finally, the result is displayed.

import Data.Array.Parallel
import Data.Array.Parallel.PArray (PArray, fromList)

import DotP (dotp_wrapper)  -- import vectorised code

main :: IO ()
main
  = let v      = fromList [1..10]    -- convert lists...
        w      = fromList [1,2..20]  -- ...to parallel arrays
        result = dotp_wrapper v w    -- invoke vectorised code
    in
    print result                     -- print the result

The module is compiled as you saw previously.

ghc -c -Odph -fdph-par Main.hs

Then the two modules are linked into an executable called dotp.

ghc -o dotp -threaded -fdph-par -rtsopts DotP.o Main.o

The -threaded option links with GHC run-time based on multithreading. -fdph-par links to the DPH 
back-end. -rtsopts determines the number of threads involved in code execution.

Parallel execution is very efficient on very large data sets, and the benefits are easily seen. We can 
generate a larger input data, as follows.

import System.Random (newStdGen)
import Data.Array.Parallel
import Data.Array.Parallel.PArray (PArray, randomRs)

import DotP (dotp_wrapper)  -- import vectorised code

main :: IO ()
main
  = do
      gen1 <- newStdGen
      gen2 <- newStdGen
      let v = randomRs n range gen1
          w = randomRs n range gen2
      print $ dotp_wrapper v w   -- invoke vectorized code and print the result
  where
    n     = 10000        -- vector length
    range = (-100, 100)  -- range of vector elements

To use the data that we have generated, we just need to follow the preceding steps.
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Incremental Iterative Processing on MRBGraph
You have seen that sending the result of a reduce function directly to a map function improves performance. 
This loop will be modeled as MapReduce Bipartite Graph (MRBGraph). The map function works with a 
state data record and a structure data record. The reduce function works with intermediary data leading to 
another state data record that will be sent to a corresponding mapper. In this type of graph, we find two types 
of nodes: mapper nodes and reducer nodes. The shuffled intermediary data is represented by edges from 
mappers to reducers (MR-Edge), and the iterated state data is represented by reducers to mappers edges 
(RM-Edge). The state of the MRBGraph is improved with every iteration, and the algorithm stops only when 
the state of the MRBGraph is stable (converged state).

Incremental iterative processing on MRBGraph consists of using the last converged state data. The 
performance in incremental iterative performance will increase. Starting with a converged state, the data 
resulted from the first iteration is different from the input data just with a small degree ΔD. The changes in ΔD 
could be insertion, alteration, or removal from initial data D. So, in MR-Edge, states are affected because only 
mappers make these operations over data.

Only D(0) and D(2) are influenced by ΔD, so only mapper0 and mapper2 should be performed. Their 
performance is followed by reducers at the end of MR-Edge mapper0 and mapper2. The reducers that are 
running combine the last converged MR-Edge state of the MR-Edges corresponding to reducers that are not 
running with the up-to-date MR-Edge state. When the reducers send results to corresponding mappers, the 
first iteration is completed. As expected, some parts of dynamic state data from RM-Edges could be modified 
according to the previous iteration; therefore, only the mappers that correspond with modified RM-Edges 
need to run. Until the last iteration, there will be a certain number of RM- and MR-Edges that will change, 
which will lead to another MRBGraph state.

The purpose of this approach is to avoid computations that are not needed. The map function is running 
only when the input state or the data structure is changed from the previous iteration, and the reduce 
function is running only when the state of a corresponding MR-Edge is changed.

To implement MRBGraph, the reducers’ outputs are sent back to the right mappers. According to 
Zhang and Chen, the behavior is modeled as a MRBGraph. From a theoretical point of view, the mapper 
will take action on the state data record rk(i) and a structure data record S(i). The reducer takes action on the 
intermediate data and it produces an update on the state of the data records rk+1(i), which is sent back to the 
right mappers and replicated on several mappers for the next iteration.

You have to consider that in MRBGraph, there are two types of vertices: the mapper vertices and the 
reducer vertices.

Summary
This chapter discussed the following aspects of and techniques for incremental and iterative strategies.

•	 The importance of using MapReduce in the application, including the main 
advantages and disadvantages

•	 The incremental and iterative techniques and how integrate in the process of 
development

•	 Incremental iterative processing using MRBGraph

•	 Iterative computation in MapReduce

•	 Data Parallel Haskell (DPH), which focuses on nested data parallelism
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CHAPTER 17

Big Data and Large Clusters

MapReduce represents a simple programming model, used in applications that generate and process large 
sets of data. All what the programmer needs to do is to implement the map and the reduce functions, as 
follows: map function processes a (key, value) pair, resulting an intermediary list of (key, value) pairs, and 
the reduce function takes as parameter the list resulted from map and merges all intermediary values that 
correspond to the same intermediary key.

Programs that adopt this programming model, are by default implemented in parallel and cloud 
be run on a large cluster of nodes. The way in which data is partitioned, the schedule of the program’s 
execution in the cluster, handled failures, and communications between nodes of the cluster are managed 
by the runtime system.

In this way, the resources provided by a distributed system could be used by any programmer, 
even if there is no experience in parallel and distributed programming. Adopting MapReduce model, 
the application is scalable, because terabytes of data are processed on a large number of nodes. By its 
appearance, thousands of MapReduce jobs are implemented and executed in Google’s clusters every day.

For a better understanding of MapReduce, this chapter includes some technical details from the 
original implementation proposed by Jeffrey Dean, et al., in a working paper available at https://static.
googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf.

Programming Model
As mentioned in the other chapters that worked with MapReduce, the input is represented by a list of pairs 
(key/value), and the output is another set of such pairs. The programmer needs to implement only the map 
and reduce functions. As a reminder, a map function takes as input the initial set of the pairs, and outputs 
an intermediary list of such pairs in which the values that have the same keys are grouped, which become 
the input for the reduce function that outputs the final set of pairs. A reduce function calling usually outputs 
one value or no value. It receives intermediary values through an iterator, which is useful when working with 
large data lists that cannot fit into memory.

Master Data Structures
The master stores just a few data structures: for every map step and every reduce step, the state of the task is 
retained (which has one of the following types: idle, in progress, completed) and an id for worker machines 
if they are not in the idle state. Also, the master manages the paths of intermediary files and makes them 
available for map or reduce tasks. If a completed map task outputs R intermediary file paths, the master 
stores the location and the size of each file. They are updated just when map tasks are completed, and 
notifications are sent incrementally to reduce tasks that are in progress.

https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
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Fault Tolerance
Due to the large amount of data that needs to be processed, MapReduce ensures that the work will not be 
affected in the event of failures.

Worker Failures
Every worker is checked from time to time by the master. If it is not responding on time, the worker is 
marked as failed. When a task is completed by a worker, its state becomes idle, which means that it could be 
scheduled to another worker. When a task is running, but the worker has failed, it is reset to an idle state and 
becomes available to other workers. When a worker fails, the completed map task is run again, because their 
output is stored locally on the worker, and thus, in the event of a failure, the output is not be accessible; but

Reduce tasks do not need re-executing because their results are stored globally. When a map task is 
re-executed because of a failure, all reducers tasks that are running are notified about this situation, and they 
begin reading data from the new worker on which the map task is currently running (if they haven’t already 
read from the worker that failed).

Master Failures
The master occasionally writes about its state in the master data structure, registering checked points. If a 
master task is down, then a copy of it is started, retaking the work beginning at the last registered checked 
points. If there is just one master task available, then the entire MapReduce process is cancelled. The user 
can check if this has happened; there is the possibility to restart the MapReduce process.

Locality
Network bandwidth does not influence the computing environment much. Network bandwidth is preserved 
through the fact that input data is stored on local workers. Every file is divided into blocks of size 64MB by 
the Google file system. More copies (typically three) are stored on different machines for every block.  
The data is transferred on demand. All locations are made known to the master, which plans a map task 
(to run on a worker) that contains a copy of the all input data. If this worker fails, the task is run by a close 
worker (for example, a worker in the same network as the one that failed). Usually, the input data for more 
map tasks is read locally, so bandwidth is not used.

Task Granularity
The map is divided into M components. The reduce part is divided into R components. M and R are larger 
than the number of workers. Load balancing is improved by the fact that a worker executes several tasks at 
the same time.

The speed of recovery in the event of failure is increased: if a worker fails, its tasks are distributed 
across other workers. The performance of the system is described as follows: the master takes a number of 
scheduling operations proportional to M+R and keeps the MR states in the memory. (The space complexity 
is small, because O(MR) piece of states contains about 1 byte of data for every map task and reduce task.)

Moreover, usually the user constrains R, because every reduce task “writes” its result in a different 
output file. In practice, M is chosen such that every single task has approximately 16 – 64 MB of input data 
(this leads to the conclusion that local optimizations has a greater effect). R is a small multiple of the number 
of worker machines that we expect to use. MapReduce computations are often performed as M = 200000 and  
R = 5000, using 2,000 worker machines.
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Backup Tasks
The reason behind the total time extended for a MapReduce action is a “struggler” machine consuming a 
significant amount of time to reduce the final tasks in the computation.

On the cluster system, you can schedule different tasks, which could result in a slow execution of 
MapReduce code due to the CPU, memory, local disk, or worse, network bandwidth. There could also be 
bugs such as in the machine initialization code, bug that disables the processor cache.

There is a general mechanism to reduce stragglers. When a MapReduce operation is at a state of 
completion, the execution of master schedules backs up the remaining tasks in progress. When the primary 
or backup execution is completed, the task is marked as finished. You can refine the mechanism in such way 
that it will typically increase the resources used in the computational process used by the operation. This 
stratetgy reduces the time to complete big operations based on MapReduce.

Partitioning Function
As a initial setup, the user choses a number of reduce tasks and output files that need to be achieved (R). 
Data is partitioned across these tasks by applying a partitioning function that uses hashes to intermediate 
key (for example, “hash (key) mod R”). This seems to be well partitioned. Of course, there are situations in 
which data is partitioned using another functions of the key. For such special situations, MapReduce library 
contains special partitioning functions. An example is when the outputs are URLs and the user wants that all 
inputs for the same host to be in the same file. For this, “hash (Hostname(urlkey)) mod R” could be used to 
partition data such that all output URLs for the same host to be in the same file.

Implementation of Data Processing Techniques
This section presents the implementation of a MapReduce monad for Haskell. It is also available at  
https://git://github.com/Julianporter/Haskell-MapReduce.git. The following example implements 
the MapReduce in memory, taking into consideration and applying the best solution to distribute the tasks 
and to serve them in the shortest time possible using advanced threads and traditional mappers at the end.

-- | Module that defines the 'MapReduce' monad and exports the necessary functions.
--
--   Mapper / reducers are generalised to functions of type
--   @a -> ([(s,a)] -> [(s',b)])@ which are combined using the monad's bind
--   operation.  The resulting monad is executed on initial data by invoking
--   'runMapReduce'.
--
--   For programmers only wishing to write conventional map / reduce algorithms,
--   which use functions of type @([s] -> [(s',b)])@ a wrapper function
--   'liftMR' is provided, which converts such a function into the
--   appropriate monadic function.
module Parallel.MapReduce.Simple (
-- * Types
        MapReduce,
-- * Functions
--
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-- ** Monadic operations
        return, (>>=),
-- ** Helper functions
        run, distribute, lift) where

import Data.List (nub)
import Control.Applicative ((<$>))
import Control.Monad (liftM)
import Control.DeepSeq (NFData)
import System.IO
import Prelude hiding (return,(>>=))
import Data.Digest.Pure.MD5
import Data.Binary
import qualified Data.ByteString.Lazy as B
import Control.Parallel.Strategies (parMap, rdeepseq)

-- | The parallel map function; it must be functionally identical to 'map',
--   distributing the computation across all available nodes in some way.
pMap :: (NFData b) => (a -> b)                  -- ^ The function to apply
        -> [a]                                  -- ^ Input
        -> [b]                                  -- ^ output
pMap = parMap rdeepseq

-- | Generalised version of 'Monad' which depends on a pair of 'Tuple's, both
--   of which change when '>>=' is applied.
class MonadG m where
        return :: a                             -- ^ value.
                -> m s x s a                    -- ^ transformation that inserts the value
                                                --   by replacing all
                                                --   the key values with the specified
                                                --   value, leaving the data unchanged.

        (>>=)  :: (Eq b,NFData s'',NFData c) =>
                m s a s' b                      -- ^ Initial processing chain
                -> ( b -> m s' b s'' c )        -- ^ Transformation to append to it
                -> m s a s'' c                  -- ^ Extended processing chain

-- | The basic type that provides the MapReduce monad (strictly a generalised monad).
-- In the definition
-- @(s,a)@ is the type of the entries in the list of input data and @(s',b)@
-- that of the entries in the list of output data, where @s@ and @s'@ are data
-- and @a@ and @b@ are keys.
--
-- 'MapReduce' represents the transformation applied to data by one or more
--  MapReduce staged.  Input data has type @[(s,a)]@ and output data has type
--  @[(s',b)]@ where @s@ and @s'@ are data types and @a@, @b@ are key types.
--
--  Its structure is intentionally opaque to application programmers.
newtype MapReduce s a s' b = MR { runMR :: [(s,a)] -> [(s',b)] }
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-- | Make MapReduce into a 'MonadG' instance
instance MonadG MapReduce where
        return = ret
        (>>=)  = bind

-- | Insert a value into 'MapReduce' by replacing all the key values with the
--   specified value, leaving the data unchanged.
ret :: a                                        -- ^ value
        -> MapReduce s x s a                    -- ^ transformation that inserts the value
                                                --   into 'MapReduce' by replacing all
                                                --   the key values with the specified
                                                --   value, leaving the data unchanged.
ret k = MR (\ss -> [(s,k) | s <- fst <$> ss])

-- ^ Apply a generalised mapper / reducer to the end of a chain of processing
--   operations to extend the chain.
bind :: (Eq b,NFData s'',NFData c) =>
                MapReduce s a s' b              -- ^ Initial state of the monad
        -> (b -> MapReduce s' b s'' c)          -- ^ Transformation to append to it
        -> MapReduce s a s'' c                  -- ^ Extended transformation chain
bind f g = MR (\s ->
        let
                fs = runMR f s
                gs = map g $ nub $ snd <$> fs
        in
        concat $ pMap (`runMR` fs) gs)

-- | Execute a MapReduce MonadG given specified initial data.  Therefore, given
--   a 'MapReduce' @m@ and initial data @xs@ we apply the processing represented
--   by @m@ to @xs@ by executing
--
--   @run m xs@
run :: MapReduce s () s' b                      -- ^ 'MapReduce' representing the required 
processing
                -> [s]                          -- ^ Initial data
                -> [(s',b)]                     -- ^ �Result of applying the processing to 

the data
run m ss = runMR m [(s,()) | s <- ss]

-- | The hash function.  Computes the MD5 hash of any 'Hashable' type
hash :: (Binary s) => s                         -- ^ The value to hash
        -> Int                                  -- ^ its hash
hash s = sum $ map fromIntegral (B.unpack h)
        where
        h = encode (md5 $ encode s)

-- | Function used at the start of processing to determine how many threads of processing
--   to use.  Should be used as the starting point for building a 'MapReduce'.
--   Therefore a generic 'MapReduce' should look like
--
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--   @'distribute' '>>=' f1 '>>=' . . . '>>=' fn@
distribute :: (Binary s) => Int                 -- ^ �Number of threads across which to 

distribute initial data
                -> MapReduce s () s Int         -- ^ The 'MapReduce' required to do this
distribute n = MR (\ss -> [(s,hash s `mod` n) | s <- fst <$> ss])

-- | The wrapper function that lifts mappers / reducers into the 'MapReduce'
--   monad.  Application programmers can use this to apply MapReduce transparently
--   to their mappers / reducers without needing to know any details of the implementation
--   of MapReduce.
--
--   Therefore the generic 'MapReduce' using only traditional mappers and
--   reducers should look like
--
--   @'distribute' '>>=' 'lift' f1 '>>=' . . . '>>=' 'lift' fn@
lift :: (Eq a) => ([s] -> [(s',b)])             -- traditional mapper / reducer of signature
                                                --  @([s] -> [(s',b)]@
        -> a                                    -- the input key
        -> MapReduce s a s' b                   -- �the mapper / reducer wrapped as an 

instance
                                                -- of 'MapReduce'
lift f k = MR (\ss -> f $ fst <$> filter (\s -> k == snd s) ss)

Summary
This chapter presented a MapReduce solution that can be used in large clusters and big data environments. 
We discussed specific ideas that need to be taken into consideration when developing solutions for 
environments, such as

•	 Creating a conceptual programming model

•	 Advanced master data structures

•	 Fault tolerance

•	 Locality and where workers are stored

•	 Task granularity

•	 Backup tasks

•	 Partitioning techniques

•	 Impementing data processing techniques
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