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Preface
This book serves as an introduction to data analysis methods and practices from a 
computational and mathematical standpoint. Data is the collection of information 
within a particular domain of knowledge. The language of data analysis is 
mathematics. For the purposes of computation, we will use Haskell, the free,  
general-purpose language. The objective of each chapter is to solve a problem 
related to a common task in the craft of data analysis. The goals for this book are 
two-fold. The first goal is to help the reader gain confidence in working with large 
datasets. The second goal is to help the reader understand the mathematical nature 
of data. We don't just recommend libraries and functions in this book. Sometimes, 
we ignore popular libraries and write functions from scratch in order to demonstrate 
their underlying processes. By the end of this book, you should be able to solve 
seven common problems related to data analysis (one problem per chapter after the 
first chapter). You will also be equipped with a mental flowchart of the craft, from 
understanding and cleaning your dataset to asking testable questions about your 
dataset. We will stick to real-world problems and solutions. This book is your guide 
to your data.

What this book covers
Chapter 1, Tools of the Trade, discusses the software and the essential libraries used 
in the book. We will also solve two simple problems—how to find the median of a 
list of numbers and how to locate the vowels in a word. These problems serve as an 
introduction to working with small datasets. We also suggest two nonessential tools 
to assist you with the projects in this text—Git and Tmux.
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Chapter 2, Getting Our Feet Wet, introduces you to csv files and SQLite3. CSV files are 
human- and machine-readable and are found throughout the Internet as a common 
format to share data. Unfortunately, they are difficult to work with in Haskell. 
We will introduce a module to convert csv files into SQLite3 databases, which are 
comparatively much easier to work with. We will obtain a small csv file from the US 
Geological Survey, convert this dataset to an SQLite3 database, and perform some 
analysis on the earthquake data.

Chapter 3, Cleaning Our Datasets, discusses the oh-so-boring, yet oh-so-necessary 
topic of data cleaning. We shouldn't take clean, polished datasets for granted. Time 
and energy must be spent on creating a metadata document for a dataset. An equal 
amount of time must also be spent cleaning this document. This involves looking for 
blank entries or entries that do not fit the standard that we defined in our metadata 
document. Most of the work in this area is performed with the help of regular 
expressions. Regular expressions are a powerful tool by which we can search and 
manipulate data.

Chapter 4, Plotting, looks at the plotting of data. It's often easier to comprehend a 
dataset visually than through raw numbers. Here, we will download the history of 
the publicly traded companies on the New York Stock Exchange and discuss the 
investment strategy of growth investing. To do this, we will visually compare the 
yearly growth rate of Google, Microsoft, and Apple. These three companies belong to 
a similar industry (technology) but have different growth rates. We will discuss the 
normalization function, which allows us to compare companies with different share 
prices on the same graph.

Chapter 5, Hypothesis Testing, trains us to be skeptical of our own claims so that we 
don't fall for the trap of fooling ourselves. We will give ourselves the challenge of 
detecting an unfair coin. Successive coin flips follow a particular pattern called the 
binomial distribution. We will discuss the mathematics behind detecting whether 
a particular coin is following this distribution or not. We will follow this up with a 
question about baseball—"Is there a benefit if one has home field advantage?"  
To answer this question, we will download baseball data and put this hypothesis  
to the test.

Chapter 6, Correlation and Regression Analysis, discusses regression analysis. 
Regression analysis is a tool by which we can interpolate data where there is none.  
In keeping with the baseball theme, we will try to measure how much benefit there is 
to scoring baseball runs and winning baseball games. We will compute the runs-per-
game and the win percentage of every team in Major League Baseball for the 2014 
season and evaluate who is overperforming and underperforming on the field. This 
technique is simple enough to be used on other sports teams for similar analysis.
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Chapter 7, Naive Bayes Classification of Twitter Data, analyzes the tweets from the 
popular social networking site, Twitter. Twitter has broad international appeal and 
people from around the world use the site. Twitter's API allows us to look at the 
language of each tweet. Using the individual words and the identified language,  
we will build a Naive Bayes classifier to detect the language of the sentences based 
on a database of downloaded tweets.

Chapter 8, Building a Recommendation Engine, continues with the analysis of 
the Twitter data and helps us create our own recommendation engine. This 
recommendation will help users find other users with similar interests based  
on the frequency of the words used in their tweets. There is a lot of data in word 
frequencies and we don't need all of it. So, we will discuss a technique to reduce  
the dimensionality of our data called Principal Component Analysis (PCA). PCA 
engines are used to recommend similar products for you to purchase or watch 
movies on commercial websites. We will cover the math and the implementation  
of a recommendation engine from scratch.

In each chapter we will introduce new functions. These functions will be added to a 
module file titled LearningDataAnalysis0X (where X is the current chapter number). 
We will frequently use functions from the earlier chapters to solve the problem from 
the chapter at hand. It will help you follow the chapters of this book in order so that 
you know when special functions mentioned in this book have been introduced.

Appendix, Regular Expressions in Haskell, focuses on the use of regular expressions in 
Haskell. If you aren't familiar with regular expressions, this will be a short reference 
guide to their usage.

What you need for this book
The software required for this book is the Haskell platform, the cabal tool to install 
libraries (which comes with Haskell), as well as tools such as SQLite3, gnuplot, and 
the LAPACK library for linear algebra. The installation instructions for each piece of 
software are mentioned at the time when the software is needed.

We tried to be cross-platform in this book because Haskell is a cross-platform 
language. SQLite3 and gnuplot are available for the Windows, Mac, and Linux 
operating systems. One problem that we encountered while writing this book  
was the difficulty in installing LAPACK for Windows, which is used in Chapter 8, 
Building a Recommendation Engine. At the time of writing this book, it is possible to  
get LAPACK to run on Windows, but the instructions are not that clear and hence 
it is not recommended. Instead, we recommend Windows users install Debian or 
Ubuntu Linux using VM software (such as Oracle VirtualBox).
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Who this book is for
If you are a developer, an analyst, or a data scientist who wants to learn data analysis 
methods using Haskell and its libraries, then this book is for you. Prior experience 
with Haskell and basic knowledge of data science will be beneficial.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The percentChange function only computes a single percent change at a given 
point in our data."

A block of code is set as follows:

module LearningDataAnalysis04 where
import Data.List
import Database.HDBC.Sqlite3
import Database.HDBC
import Graphics.EasyPlot
import LearningDataAnalysis02

Any command-line input or output is written as follows:

sudo apt-get install gnuplot

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "On the 
Historical Prices page, identify the link that says Download to Spreadsheet."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it  
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the 
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/4707OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or  
added to any list of existing errata under the Errata section of that title.
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To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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Tools of the Trade
Data analysis is the craft of sifting through data for the purpose of learning or 
decision making. To ease the difficulties of sifting through data, we rely on  
databases and our knowledge of programming. For nut-and-bolts coding, this text 
uses Haskell. For storage, plotting, and computations on large datasets, we will use 
SQLite3, gnuplot, and LAPACK respectively. These four pieces of software are a 
powerful combination that allow us to solve some difficult problems. In this chapter, 
we will discuss these tools of the trade and recommend a few more.

In this chapter, we will cover the following:

• Why we should consider Haskell for our next data analysis project
• Installing and configuring Haskell, the GHCi (short for Glasgow Haskell 

Compiler interactive) environment, and cabal
• The software packages needed in addition to Haskell: SQLite3, gnuplot,  

and LAPACK
• The nearly essential software packages that you should consider:  

Git and Tmux
• Our first program: computing the median of a list of values
• An introduction to the command-line environment

Welcome to Haskell and data analysis!
This book is about solving problems related to data. In each chapter, we will present 
a problem or a question that needs answering. The only way to get this answer 
is through an understanding of the data. Data analysis is not only a practice that 
helps us glean insight from information, but also an academic pursuit that combines 
knowledge of the basics of computer programming, statistics, machine learning, and 
linear algebra. The theory behind data analysis comes from statistics. 

                  



Tools of the Trade

[ 2 ]

The concepts of summary statistics, sampling, and empirical testing are gifts from 
the statistical community. Computer science is a craft that helps us convert statistical 
procedures into formal algorithms, which are interpreted by a computer. Rarely will 
our questions about data be an end in themselves. Once the data has been analyzed, 
the analysis should serve as a plan to better decision-making powers. The field 
of machine learning is an attempt to create algorithms that are capable of making 
their own decisions based on the results of the analysis of a dataset. Finally, we will 
sometimes need to use linear algebra for complicated datasets. Linear algebra is the 
study of vector spaces and matrices, which can be understood by the data analyst as 
a multidimensional dataset with rows and columns. However, the most important 
skill of data analysts is their ability to communicate their findings with the help of a 
combination of written descriptions and graphs. Data science is a challenging field 
that requires a blend of computer science, mathematics, and statistics disciplines.

In the first chapter, the real-world problem is with regard to getting our environment 
ready. Many languages are suitable for data analysis, but this book tackles data 
problems using Haskell and assumes that you have a background in the Haskell 
language from Chapter 2, Getting Our Feet Wet onwards. If not, we encourage you to 
pick up a book on Haskell development. You can refer to Learn You a Haskell for Great 
Good: A Beginner's Guide, Miran Lipovaca, No Starch Press, and Real World Haskell, Bryan 
O'Sullivan, John Goerzen, Donald Bruce Stewart, O'Reilly Media, which are excellent texts 
if you want to learn programming in Haskell. Learn You a Haskell for Great Good: A 
Beginner's Guide can be read online at http://learnyouahaskell.com/. Real World 
Haskell can also be read online at http://book.realworldhaskell.org/. The former 
book is an introduction to the language, while the latter is a text on professional 
Haskell programming. Once you wade through these books (as well as Learning Haskell 
Data Analysis), we encourage you to read the book Haskell Data Analysis Cookbook, 
Nishant Shukla, Packt Publishing. This cookbook will provide snippets of code to work 
with a wide variety of data formats, databases, visualization tools, data structures, 
and clustering algorithms. We also recommend Notes on Functional Programming with 
Haskell by Dr. Conrad Cunningham.

Besides Haskell, we will discuss open source data formats, databases, and graphing 
software in the following manner:

• We will limit ourselves to working with two data serialization file formats: 
JSON and CSV. CSV is perhaps the most common data serialization format 
for uncompressed data with the weakness of not being an explicit standard. 
In a later chapter, we will examine data from the Twitter web service, 
which exports data in the JSON format. By limiting ourselves to two data 
formats, we will focus our efforts on problem solving instead of prolonged 
discussions of data formats.
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• We will use SQLite3 for our database backend application. SQLite3 is a 
lightweight database software that can store large amounts of data. Using a 
wrapper module, we can pull data directly from a SQLite3 database into the 
Haskell command line for analysis.

• We will use the EasyPlot Haskell wrapper module for gnuplot, which is a 
popular open source tool that is used to create publication-ready graphics. 
The EasyPlot wrapper provides access to a subset of features in gnuplot, 
but we shall see that this subset is more than sufficient for the creation of 
compelling graphs.

Why Haskell?
Since this is an introductory text to data analysis, we will focus on commonly used 
practices within the context of the Haskell language. Haskell is a general-purpose, 
purely functional programming language with strong static typing. Among the 
many features of Haskell are lazy evaluation, type inference, Lisp-like support  
for lists and tuples, and the Hackage repository. Here are the reasons why  
we like Haskell:

• Haskell has features that are similar to Lisp. These features are used to 
process lists of data (minus the syntax of Lisp). Higher-order functions  
such as map, foldr, foldl, and filter provide us with a standard interface 
to apply functions to lists. In Haskell, all the functions can be used as a 
parameter to the other functions, allowing the programmer to seamlessly 
manipulate data on the fly through anonymous functions known as lambda 
expressions. The map function is frequently used in this book due to the ease 
it provides in converting a list of elements of a data type to another type.

• Haskell is a purely functional programming language, and stateless in 
nature. This means that the only information known to a function is the 
information that is either passed into that function or returned from other 
function calls. The so-called variables are named after their mathematical 
properties and not the conventional computer programming sense of the 
word. Variables are not allowed to change. Instead, they are the bindings to 
expressions. Because of these limitations, functions are easier to test for their 
correctness than stateful languages.
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• Haskell can handle large datasets that have a size that your system  
memory limitations will allow, which should be sufficient to handle most 
medium-sized data problems. Big data can be defined as any dataset that is 
so big that it needs to be broken up into pieces and aggregated in a secondary 
step or sampled prior to the analysis. A step-down of big data is medium 
data, which can be defined as a dataset that can be processed in its entirety 
without you having to break it into parts. There is no set number with regard 
to when a dataset grows in size from medium to big since ever-increasing 
hardware capabilities continuously redefine how much a computer can do. 
An informal definition of small data is a dataset that can be easily grasped in 
its entirety by a human, which can be considered to be a few numbers at best. 
All of the problems considered in this book were tested on a computer with a 
RAM of 2 GB. The smallest dataset examined in this chapter is 16 values and 
the largest dataset is about 7 MB in size. Each of the problems presented in 
this text should scale in size to the definition of medium data.

• Haskell enforces lazy evaluation. Lazy evaluation allows Haskell to delay the 
execution of a procedure until it is actually needed, for example, throughout 
this book, we will be setting up calculations over the course of several 
steps. In most strict languages, once these calculations are encountered by 
the language, they are immediately executed and the results are stored in 
memory. In lazy languages, commands are compiled and the system stores 
the instructions. If a calculation step is never used, it never gets evaluated, 
thus saving execution time. Once the calculation is required (for example, 
when we need to see the results displayed on the screen), only then will a 
lazy language evaluate the steps of our algorithm.

• Haskell supports type inference. Type inference allows Haskell to be strictly 
typed without having to declare the need for types as the code is being 
written, for example, consider the following myFunc function annotation:
myFunc :: a -> a -> Integer

This function requires two parameters, and it returns an Integer. The type 
is left ambiguous, and it will be inferred when the function is used. Because 
both the types are a, Haskell will use static type checking to ensure that 
the data type of the first parameter matches the data type of the second 
parameter. If we wish for the possibility of the first parameter to have a type 
that is different from the second, we can create a second inferred type named 
b. (Specific types begin with an uppercase letter and generic types must 
begin with a lowercase letter.)
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• Using the cabal tool, a Haskell programmer has several thousands of  
libraries that can be quickly downloaded to a system. These libraries provide 
analysts with most of the common data analysis procedures. While many 
libraries exist within the cabal repository, sometimes we may opt not to 
use them in favor of an explicit description of the math and code behind a 
particular algorithm.

Getting ready
You will need to install the Haskell platform, which is available on all three major 
operating systems: Windows, Mac, and Linux. I primarily work with Debian Linux. 
Linux has the benefit of being equipped with a versatile command line, which can 
facilitate almost everything that is essential to the data analysis process. From the 
command line, we can download software, install Haskell libraries, download 
datasets, write files, and view raw datasets. An essential activity that the command 
line cannot do for us is the rendering of graphics that can be provided with sufficient 
detail to inspect rendered charts of our analyses.

Installing the Haskell platform on Linux
On Ubuntu- and Debian-based systems, you can install the Haskell platform using 
apt-get, as follows:

$ sudo apt-get install haskell-platform 

This single command will install everything that is needed to get started, including 
the compiler (ghc), interactive command line (ghci), and the library install tool 
(cabal). Take a moment to test the following commands:

$ ghc --version 

The Glorious Glasgow Haskell Compilation System, version 7.4.1 

$ ghci --version 

The Glorious Glasgow Haskell Compilation System, version 7.4.1 

If you get back the version numbers for the Haskell compiler and the Haskell 
interactive prompt, you should be all set. However, we do need to perform some 
housekeeping with regards to cabal. We will use cabal throughout this book, and it 
will require an update immediately. We updated the cabal tool through cabal itself.

First, we will update the Haskell package list from Hackage using the update 
directive by using the following command:

$ cabal update
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Next, we will download cabal using the cabal-install command. This command 
will not overwrite the existing cabal program. Instead, it will download an updated 
cabal to your home folder, which can be found at ~/.cabal/bin/cabal.

$ cabal install cabal-install

Your system has two versions of cabal on it. We created an alias command to 
make sure that we only use the updated version of cabal. This is a temporary alias 
command. You should add the following line to one of your configuration files in 
your home directory. (We added ours to ~/.bash_aliases and reloaded aliases 
with source ~/.bash_aliases.)

$ alias cabal='~/.cabal/bin/cabal'

If all goes according to plan, you will have an updated version of cabal on your 
system. Here is the version of cabal used at the time of writing this book:

$ cabal --version

cabal-install version 1.22.0.0

using version 1.22.0.0 of the Cabal library

If you use cabal long enough, you may run into problems. Rather than going into a 
prolonged discussion on how to manage Haskell packages, it is easier to start over 
with a clean slate. Your packages are downloaded to a folder under ~/.cabal, and 
they are registered with the Haskell environment under the ~/.ghc/ directory. 
If you find that a package has not been installed due to a conflicted dependency, 
you can spend an evening reading the package documentation to figure out which 
packages need to be removed or installed. Alternatively, you can use the following 
command and wipe the slate clean:

$ rm -rf ~/.ghc

The preceding command wipes out all your installed Haskell packages. We can 
promise that you will not have conflicting packages if you have no packages. We 
call this the Break Glass In Case of Emergency solution. This is obviously is not the best 
solution, but it is a solution that gets your necessary packages installed. You have 
more important things to do than wrestle with cabal. While it may take about an 
hour or so to download and install packages with this approach, this approach is  
less stressful than the process of going through package version numbers.
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The software used in addition to Haskell
There are three open source software packages used in this book that work 
alongside the Haskell platform. If you are using Debian or Ubuntu, you will be able 
to download each of these packages using the apt-get command-line tool. The 
instructions on how to download and install these packages will be introduced when 
the software is needed. If you are using Windows or Mac, you will have to consult 
the documentation for these software packages for an installation on your system.

SQLite3
SQLite3 (for more information refer to: https://sqlite.org/) is a standalone 
Structured Query Language (SQL) database engine. We use SQLite3 to filter 
and organize large amounts of data. It requires no configuration, does not use 
a background server process, and each database is self-contained in a single file 
ending with the .sql extension. The software is portable, has many features from 
the features found in sever-based SQL database engines, and can support large 
databases. We will introduce SQLite3 in Chapter 2, Getting Our Feet Wet and use it 
extensively in the rest of the book.

Gnuplot
Gnuplot (for more information refer to: http://www.gnuplot.info/) is a command-
line tool that can be used to create charts and graphs for academic publications. It 
supports many features related to 2D and 3D plotting as well as a number of output 
and interactive formats. We will use gnuplot in conjunction with the EasyPlot 
Haskell wrapper module. EasyPlot gives us access to a subset of the features of 
gnuplot (which means that even though our charts are being piped through gnuplot, 
we will not be able to utilize the full power of gnuplot from within this library). 
Every chart presented in this book was created using EasyPlot and gnuplot.  
We will introduce EasyPlot and gnuplot in Chapter 4, Plotting.

                  



Tools of the Trade

[ 8 ]

LAPACK
LAPACK (short for Linear Algebra PACKage) (for more information refer to: 
http://www.netlib.org/lapack/) has been constantly developed since the 
early 1990s. To this day, this library is written in FORTRAN. Since it is so vital 
to science, it is funded through the United States National Science Foundation 
(NSF). This library supports routines related to systems of equations such as matrix 
multiplication, matrix inversion, and eigenvalue decomposition. We will use the 
hmatrix wrapper for LAPACK in Chapter 8, Building a Recommendation Engine to write 
our own Principal Component Analysis (PCA) function to create a recommendation 
engine. We will also use LAPACK to avoid the messiness that comes when trying to 
write an eigensolver ourselves.

Nearly essential tools of the trade
This section is about the tools used in the preparation of this book. They aren't 
essential to Haskell or data analysis, but they deserve a mention.

Version control software – Git
If you have ever been in a situation where you needed to update an old file while 
keeping that old file, you may have been tempted to name the files MyFileVersion1 
and MyFileVersion2. In this instance, you used manual version control. Instead, 
you should use version control software.

Git is a distributed version control software that allows teams of programmers 
to work on a single project, track their changes, branch a project, merge project 
branches, and roll back mistakes if necessary. Git will scale from a team of 1 to 
hundreds of members.

If you already have a favorite software package for version control, we encourage 
you to use it while working through the examples in this book. If not, we will quickly 
demonstrate how to use Git.

First, you need to install Git by using the following code:

$ sudo apt-get install git

Git requires you to set up a repository in your working directory. Navigate to your 
folder for your Haskell project and create a repository:

$ git init
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Once your repository is created, add the files that you've created in this chapter  
to the repository. Create a file called LearningDataAnalysis01.hs. At this point,  
the file should be blank. Let's add the blank file to our repository:

$ git add LearningDataAnalysis01.hs

Now, we'll commit the change:

$ git commit -m 'Add chapter 1 file'

Take a moment to revisit the LearningDataAnalysis01.hs file and make a change 
to damage the file. We can do this via the following command line:

$ echo "It was a mistake to add this line." >> LearningDataAnalysis01.hs

An addition to this line represents work that you contributed to a file but later 
realized was a mistake. This program will no longer compile with these changes. 
You may wish that you could remember the contents of the original file. You are 
in luck. Everything that you have committed to the version control is stored in the 
repository. Rename your damaged file to LearningDataAnalysis01Damaged.hs. 
We will fix our file back to the last commit:

$ git checkout -- LearningDataAnalysis01.hs

The LearningDataAnalysis01.hs blank file will be added back to your folder. 
When you inspect your file, you will see that the changes are gone and the file is 
restored. Hurray!

If you have a project consisting of at least one file, you should use version control. 
Here is the general workflow for branchless version control:

1. Think.
2. Write some code.
3. Test that code.
4. Commit that code.
5. Go to step 1.

It doesn't take long to see the benefits of version control. Mistakes happen and 
version control is there to save you. This version control workflow will be sufficient 
for small projects. Though we will not remind you that you should use version 
control, you should make a practice of committing your code after each chapter 
(which is done probably more frequently than this).
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Tmux
Tmux is an application that is used to run multiple terminals within a single 
terminal. A collection of terminals can be detached and reattached to other terminal 
connections, programs can be kept running in the background to monitor the 
progress, and the user can be allowed to jump back and forth between terminals,  
for example, while writing this book, we typically kept tmux running with the 
following terminals:

• A terminal for the interactive Haskell command line
• A terminal running our favorite text editor while working on the code  

for a chapter
• A terminal running a text editor with mental notes to ourselves and snippets 

of code
• A terminal running a text editor containing the text of the chapter we were 

currently writing
• A terminal running the terminal web browser elinks in order to read the 

Haskell documentation

The prized feature (in our opinion) of tmux is its ability to detach from a terminal 
(even the one that has lost connection) and reattach itself to the currently connected 
terminal. Our work environment is a remote virtual private server running Debian 
Linux. With tmux, we can log in to our server from any computer with an Internet 
connection and an ssh client, reattach the current tmux session, and return to the 
testing and writing of the code.

We will begin by installing tmux:

$ sudo apt-get install tmux

Now, let's start tmux:

$ tmux

You will see the screen refresh with a new terminal. You are now inside a 
pseudoterminal. While in this terminal, start the interactive Haskell compiler (ghci). 
At the prompt, perform a calculation. Let's add 2 and 2 by using the prefix manner 
rather than the typical infix manner (all operators in Haskell are functions that allow 
for infix evaluation. Here, we call addition as a function):

$ ghci

GHCi, version 7.4.1: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.
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Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

> (+) 2 2

4

The interactive Haskell compiler runs continuously. On your keyboard, type  
Ctrl + B, followed by C (for create). This command creates a new terminal.  
You can cycle forward through the chain of open terminals by using the Ctrl + B 
command, followed by N (for next). You now have two terminals running on the 
same connection.

Imagine that this is being viewed on a remove server. On your keyboard, type Ctrl + 
B followed by D. The screen will return just prior to you calling tmux. The [detached] 
word will now be seen on the screen. You no longer will be able to see the interactive 
Haskell compiler, but it will still run in the background of your computer. You can 
reattach the session to this terminal window by using the following command:

$ tmux attach -d

Your windows will be restored with all of your applications running and the content 
on the screen the same as it was when you left it. Cycle through the terminals until 
you find the Haskell interactive command line (Ctrl + B followed by P, cycles to the 
previous terminal). The application never stopped running. Once you are finished 
with your multiplexed session, close the command line in the manner that you 
normally would (either by using Ctrl + D, or by typing exit). Every terminal that is 
closed will return you to another open terminal. The tmux service will stop once the 
last terminal opened within the tmux command is closed.

Our first Haskell program
Though this is a book about data analysis using Haskell, it isn't meant to teach 
you the syntax or features of the Haskell language. What we would like to do for 
the remainder of the chapter is to get you (the reader) familiar with some of the 
repeatedly used language features if you aren't familiar with the language.  
Consider this a crash course in the Haskell language.

The median of a dataset is the value that is present in the middle of the dataset 
when the dataset is sorted. If there are an even number of elements, the median is 
the average of the two values closest to the middle of the sorted dataset. Based on 
this, we can plan an algorithm to compute a median. First, we will sort the numbers. 
Second, we will determine whether there are an even number of elements or an odd 
number. Finally, we will return the appropriate middle value.
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Create a new folder on your computer where your Haskell files will be 
stored. You should put all your files in a directory called ~/projects/
LearningHaskellDataAnalysis. Inside this directory, using an editor of your 
choice, create a file called LearningDataAnalysis01.hs (hopefully, you created 
this file earlier in our demonstration of Git). We will create a module file to store our 
algorithm to compute the median of a dataset. It will begin with the following lines:

module LearningDataAnalysis01 where
import Data.List

The first line tells Haskell that this is a module file that contains functions for general 
usage. The second line tells Haskell that we need the Data.List library, which is a 
part of the Haskell platform. This library contains several versatile functions that are 
required to use lists, and we will take full advantage of this library.

We will begin by crafting the header of our function:

median :: [Double] -> Double

The preceding statement states that we have a function named median that  
requires a parameter consisting of a list of floating-point values. It will return  
a single floating-point value. Now, consider the following code snippet of the  
median function:

median :: [Double] -> Double 
median [] = 0 
median xs = if oddInLength then 
              middleValue 
            else 
              (middleValue + beforeMiddleValue) / 2 
  where
    sortedList = sort xs 
    oddInLength = 1 == mod (genericLength xs) 2 
    middle = floor $ (genericLength xs) / 2 
    middleValue = genericIndex sortedList middle 
    beforeMiddleValue = genericIndex sortedList (middle-1)

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books you 
have purchased. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files 
e-mailed directly to you.
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Haskell interprets our arguments with the help of pattern matching. The first two 
calls under the function header are called patterns. Haskell will compare our data to 
each of these patterns. The first pattern is [] (which is an empty list). If our input list 
to this function is empty, we will return the 0 value. The second pattern is xs, which 
matches a nonempty list. Now, we will evaluate to check whether this list has an odd 
number of elements or an even number and return the correct value.

The bulk of the work of this function happens under the where clause. It is a mistake 
to think of these statements as a sequential program. These expressions are executed 
as they are needed to complete the task of the main function. Under the where 
clause, we have five expressions that perform an operation and store a result.  
We will go over each of them. Consider the first clause:

sortedList = sort xs

The first clause sorts our list of values and returns the result to sortedList. Here, we 
utilize the sort function, which is found in Data.List. Consider the second clause:

oddInLength = 1 == mod (genericLength xs) 2

The second clause determines whether a list has an odd number of elements. We 
will do this by computing the modulus (using mod) of the length of the list (using 
genericLength) and the number 2. We will compare this result to the number 1, 
which must be either true or false. Consider the third clause:

middle = floor $ (genericLength xs) / 2

The third clause takes the length of the list, divides it by 2, and then computes the 
mathematical floor of the result. See the $ operator? This operator tells Haskell that 
everything on the rest of the line should be treated as a single expression. We could 
have written this line as middle = floor ((genericLength xs) / 2) and it 
would be valid. This saves us from having to look at an extra set of parentheses. We 
can take this a step further and use middle = floor $ genericLength xs / 2 
with no parentheses. Readability takes priority over character counting. Consider  
the fourth and fifth clause:

middleValue = genericIndex sortedList middle 
beforeMiddleValue = genericIndex sortedList (middle-1) 

The fourth and fifth clauses use genericIndex to pull a specific value from the 
sortedList variable (the first one pulls the value from the computed middle and 
the second pulls it from the element that is immediately before the middle). The fifth 
clause has a potential problem—on a list with one element, the middle element is 0 
and the element before the middle element is -1.
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If you recall our discussion earlier on lazy evaluation, none of these statements 
are called unless needed. Back in the main portion of the function, you can see the 
description of median. The same can be seen in the following:

median xs = if oddInLength then 
              middleValue 
            else
              (middleValue + beforeMiddleValue) / 2

Consider an example of a list with one element. The first expression that is 
encountered in our list of where clauses will be oddInLength (since this is evaluated 
in the if statement). The oddInLength expression should evaluate to true. Thus, we 
execute the true branch of the conditional expression. The middleValue expression 
requires you to call genericIndex function on sortedList (which executes the two 
remaining where clauses). In this example, beforeMiddleValue will not be executed.

We will build a wrapper program that utilizes our median function call. Create a 
second file called median.hs, which will serve as our wrapper to the module:

import System.Environment (getArgs) 
import LearningDataAnalysis01 
main :: IO () 
main = do 
  values <- getArgs 
  print . median $ map read values 

You can see that the last line of the file states—take all the values from the command 
line, read them as Double values, pass them to the median, and print the result. You might 
ask yourself how Haskell knows how to read these values as Double values and 
not anything else. This is where the magic of type inference happens. Because our 
median function specified that it requires a list of Double values, this information is 
passed on to read to make sure that the information is interpreted as a Double type. 
The map function makes sure that read is applied to every element in values. Finally, 
the print function prints the result.

Let's compile your new program from the command line. We are ready to test:

$ ghc median.hs -o median 

Great. We will have a new executable in our directory called median. From the 
command line, test a few values:

$ ./median 
0.0 
$ ./median 1 
1.0 
$ ./median 1 2 
1.5 
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$ ./median 2 1 
1.5 
$ ./median 1 2 3 
2.0 
$ ./median 2 3 1 
2.0 
$ ./median 3 4 5 1 2 
3.0 

From this small sample of input, we believe that our function is working correctly. 
We can use this function on later datasets to find the median of samples.

Interactive Haskell
This section will be used to familiarize you with the Haskell interactive command 
line. Before we introduce you to the interactive command line, we will introduce  
the optional configuration file that you can create in ~/.ghci in your home folder. 
We have configured ours with the following code:

:set prompt "> "

The preceding code tells the interactive command line to display a single > as the 
prompt. You can start the interactive command line using the ghci command.  
Here is what you will see when the command line is started:

$ ghci

GHCi, version 7.4.1: http://www.haskell.org/ghc/  :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

> 

You can execute simple equations using either the familiar infix notation, or the 
functional notation:

> 2 + 2

4

> (+) 2 2

4

> 2 + 4 * 5

22

> (+) 2 $ (*) 4 5

22
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Note that we need to use $ here in order to tell Haskell that the (*) 4 5 
multiplication portion is an argument to the (+) 2 addition portion.

An introductory problem
This introductory problem will serve as a way of explaining the features of the 
Haskell language that are used repeatedly in this book. The problem is that we wish 
to know the location of the vowel characters of a given word, for example, in the 
word apple, there are two vowels (the first and fifth letters). Given a string apple, 
we should return a list of [1, 5]. We will go through the thought process of solving 
this problem and turn our solution into a function. You can use the elemIndices 
function that can be found in the Data.List module, but we will chose not to do so 
for teaching purposes.

First, we will declare a variable to store our word. In this example, we will use the 
word apple:

> let word = "apple"

We will assign a number to each letter in our word using zip and an infinite list of 
numbers. The zip function will perform a pair-wise merge of two lists to create a list 
of tuples. A tuple is a type of list structure that can store types in a heterogeneous 
manner. In the following code, we will combine the integer and character types:

> zip [1..] word
[(1,'a'),(2,'p'),(3,'p'),(4,'l'),(5,'e')]

The expression [1..] is an infinite list of numbers. If you type this in the interactive 
command line, numbers will appear until you decide to stop it. By using it in 
conjunction with zip, we only take what we need. There are five letters in apple. 
So, we only take five elements from our infinite list. This is an example of lazy 
evaluation at work.

Next, we will filter our list to remove anything that is not a vowel character. We will 
do this with the help of the filter function, which requires us to pass a lambda 
function with the rule that defines what is allowed in the list of values:

> filter (\(_, letter) -> elem letter "aeiouAEIOU") $ zip [1..] word
[(1,'a'),(5,'e')]

Let's take a closer look at the lambda expression that is within the parentheses that 
begin with (\ and end with ). Using the :t option, we can inspect how Haskell 
interprets this function:

> :t \(_, letter) -> elem letter "aeiouAEIOU"
\(_, letter) -> elem letter "aeiouAEIOU" :: (t, Char) -> Bool
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The function requires a pair of values. The first value in the pair is identified with 
_, which indicates that this is a wild card type. You can see that Haskell identifies it 
with the t generic type. The second value in the pair is identified by letter, which 
represents a character in our string. We never defined that letter was a Char type, but 
Haskell was able to use type inference to realize that we were using the value in a list 
to search for the value among a list of characters and thus, this must be a character. 
This lambda expression calls the elem function, which is a part of the Data.List 
module. The elem function returns a Bool type. So, the return type of Bool is also 
inferred. The elem function returns true if a value exists in a list. Otherwise, it 
returns false.

We need to remove the letters from our list of values and return a list of only  
the numbers:

> map fst . filter (\(_, letter) -> elem letter "aeiouAEIOU") $ zip [1..] 
word

[1,5]

The map function, like the filter, requires a function and a list. Here, the function is 
fst and the list is provided by the value returned by the call to the filter. Typically, 
tuples consist of two values (but this is not always the case). The fst and snd 
functions will extract the first and second values of a tuple, as follows:

> :t fst

fst :: (a, b) -> a

> :t snd

snd :: (a, b) -> b

> fst (1, 'a')

1

> snd (1, 'a')

'a'

We will add our newly crafted expression to the LearningDataAnalysis01 module. 
Now, open the file and add the new function towards the end of this file using the 
following code:

-- Finds the indices of every vowel in a word.
vowelIndices :: String -> [Integer]
vowelIndices word = 
  map fst $ filter (\(_, letter) -> elem letter "aeiouAEIOU") $  
  zip [1..] word
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Then, return to the Haskell command line and load the module using :l:

> :l LearningDataAnalysis01
[1 of 1] Compiling LearningDataAnalysis01 ( LearningDataAnalysis01.hs, 
interpreted )
Ok, modules loaded: LearningDataAnalysis01.

In the next few chapters, we will clip the output of the load command.  
Your functions are now loaded and ready for use on the command line:

> vowelIndices "apple"
[1,5]
> vowelIndices "orange"
[1,3,6]
> vowelIndices "grapes"
[3,5]
> vowelIndices "supercalifragilisticexpialidocious"
[2,4,7,9,12,14,16,19,21,24,25,27,29,31,32,33]
> vowelIndices "why"
[]

You can also use the median function that we used earlier. In the following code,  
we will pass every integer returned by vowelIndices through fromIntegral to 
convert it to a Double type:

> median . map fromIntegral $ vowelIndices 
"supercalifragilisticexpialidocious"
20.0

If you make changes to your module, you can quickly reload the module in the 
interactive command line by using :r. This advice comes with a warning—every 
time you load or reload a library in Haskell, the entire environment (and all your 
delicately typed expressions) will be reset. You will lose everything on doing this. This is 
typically countered by having a separate text editor open where you can type out all 
your Haskell commands and paste them in the GHCi interpreter.

Summary
This chapter looked at Haskell from the perspective of a data analyst. We looked at 
Haskell's feature set (functional, type-inferred, and lazy). We saw how each of these 
features benefit a data analyst. We also spent some time getting acquainted with 
our environment, which includes the setting up of Haskell, cabal, Git, and tmux. 
We ended the chapter with a simple program that computes the median of a list of 
values and creates a function to find the vowels in a string.
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Getting Our Feet Wet
This chapter looks at Haskell's type system by examining where it works in your favor 
as well as the common obstacles that you may be face when trying to understand it. 
We will also work with csv files, a common format that is used to store datasets.  
The csv file type is cumbersome to work with. So, we will spend the remainder  
of this chapter in learning how to convert csv files into SQLite3 databases.

In this chapter, we will cover the following:

• Type is king—the implications of strict types in Haskell
• Working with csv files
• Converting csv files to the SQLite3 format

Type is king – the implications of strict 
types in Haskell
Haskell is a language that prides itself with regard to the correctness and conciseness 
of the language, and the robust collection of libraries via which you can explore 
more while maintaining the purity of a purely functional programming language. 
For those who are new to Haskell, there are a number of innovative features. Those 
coming from the world of C-style programming languages will admire Haskell's 
type inference capabilities. A language that's both strongly typed and type-inferred 
during compile time is a welcome change. A variable can be assigned a type once 
and passed through a variety of functions without you ever having to be reminded 
of the type. Should the analyst use the variable in a context that is inappropriate for 
the assigned type, it can be flagged accordingly during compile time rather than run 
time. This is a blessing for data analysts. The analyst gets the benefits of a statically 
typed language without having to constantly remind the compiler of the types that 
are currently in play. Once the variable types are set, they are never going to change. 
Haskell will only change the structure of a variable with your permission.
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The flip side of our strictly typed code is quickly encountered in the study of data 
analysis. Several popular languages will convert an integer to a rational number if 
the two are used in an expression together. Languages typically do this because we, 
as humans, typically think of numbers as just numbers, and if an expression works 
mathematically, it should work in an expression in a programming language. This is 
not always the case in Haskell. Some types (as we will see in the following section) 
must be explicitly converted if an analyst wants them to be used in a context that 
Haskell deems potentially unsafe.

Computing the mean of a list
Allow us to demonstrate this problem with an example, which also serves as our first 
step into the world of data analysis problems. The mean (or the average) of a list of 
values is considered a summary statistic. This means that it allows us to express lots 
of information with a single value. Because of the ease with which the mean can be 
calculated, it is one of the most frequently used (and misused) summary statistics. 
According to the United States Census Bureau, the average sale price of a new home 
in the United States in 2010 was $272,900. If you are familiar with home values in 
the United States, this value might seem high to you. The mean of a dataset is easily 
skewed by outlier information. In the context of home prices, there are a few, rare 
new homes that were sold that were worth more than $125 million. This high home 
price will shift the mean away from the middle concept that is generally believed  
to be represented by the mean. Let us begin by computing the mean of a list in 
Haskell. The mean of a list of numbers is computed by finding the summation of this 
list and dividing this sum by the number of elements in the list. The data presented 
here represents the final score made by the Atlanta Falcons in each of their games 
during the 2013 NFL football season. Not a football fan? Don't worry. Focus only  
on the numbers. The purpose of this example is to make you work on a small,  
real-world dataset. There are 16 games in this dataset, and we can present them  
all in a single line, as follows:

> let falconsScores = [17,31,23,23,28,31,13,10,10,28,13,34,21,27,24,20]

Computing the sum of a list
At this point, falconsScores is just a list of numbers. We will compute the sum of 
these values. The Prelude package consists of a handful of functions that are ready 
for use in the GHC environment. There is no need to import this library. These 
functions work right out of the box (so to speak). Two of these functions are sum  
and length:

> let sumOfFalconsScores = sum falconsScores
> sumOfFalconsScores
353
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The sum function in the Prelude package does what you may expect; (from the 
Haskell documentation), the sum function computes the sum of a finite list  
of numbers.

Computing the length of a list
So far, so good. Next, we need the length of the list. We will find it out with the help 
of the following code:

> let numberOfFalconsGames = length falconsScores

> numberOfFalconsGames

16

The length function also does what you may expect. It returns the length of a finite 
list as an Int.

Attempting to compute the mean results in  
an error
In order to compute the mean score of the 2013 season of the Atlanta Falcons, we will 
divide the sum of the scores by the number of scores, as follows:

> let meanScoreofFalcons = sumOfFalconsScores / numberOfFalconsGames

<interactive>:82:61:

    Couldn't match expected type 'Integer' with actual type 'Int'

    In the second argument of '(/)', namely 'numberOfFalconsGames'

    In the expression: sumOfFalconsScores / numberOfFalconsGames

    In an equation for 'meanScoreofFalcons':

        meanScoreofFalcons = sumOfFalconsScores / numberOfFalconsGames

Oh dear. What is this? I assure you that Haskell can handle simple division.

Introducing the Fractional class
Since mathematical division involves fractions of numbers, Haskell requires us to  
use a Fractional type when dividing numbers. We will inspect our data types,  
as follows:

> :t sumOfFalconsScores
sumOfFalconsScores :: Integer
> :t numberOfFalconsGames
numberOfFalconsGames :: Int
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The sum function returned an integer based on the data (some versions of Haskell 
will return the more generic Num class in this instance). Integer in Haskell is an 
arbitrary precision data type. We never specified a data type. So, Haskell inferred  
the Integer type based on the data. The length function returns data as an Int 
type. Not to be confused with Integer, Int is a bounded type with a maximum  
and minimum bound to the values of this type. Despite the similar use of both types,  
they have some important differences (Integer is unbounded, Int is bounded).
Using Integer and Int together has a potential to fail at runtime. Instead of  
failing at runtime, the compiler notices this potential to fail and flags it during  
the compile time.

The fromIntegral and realToFrac functions
The fromIntegral function is our primary tool for converting integral data to 
the more generic Num class. Since our second operand (numberOfFalconsGames) 
is of the Int type, we can use fromIntegral to convert this from Int to Num. Our 
first operand is of Integer type and the fromIntegral function will work in this 
circumstance as well, but we should avoid that temptation (if this list consisted of 
floating-point numbers, fromIntegral would not work). Instead, we should use the 
realToFrac function, which converts (as the name implies) any numerical class that 
extends the Real type to a Fractional type on which the division operator depends 
and can hold an unbounded integer:

> let meanFalconsScore = (realToFrac sumOfFalconsScores) / (fromIntegral 
numberOfFalconsGames)

> meanFalconsScore

22.0625

> :t meanFalconsScore

meanFalconsScore :: Double

Creating our average function
Now that we have enjoyed exploring the Haskell type system, we should probably 
build an average function. We see that the type system automatically recognizes the 
types in our function and that we are converting a list of Real types to Fractional. 
Here is our average function:

> let average xs = realToFrac (sum xs) / fromIntegral (length xs)

> :t average :: (Fractional a, Real a1) => [a1] -> a
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We see from the type description that type a is a Fractional type (our output) 
and that type a1 is a Real type (our input). This function should support integers, 
floating-point values, and mixtures of integer and floating point values. Haskell isn't 
being creative with automatically generated type names such as a and a1, but they 
will do. As always, we should test:

> average [1, 2, 3]

2.0

> average [1, 2, 3.5]

2.1666666666666665

> average [1.5, 2.5, 3.5]

2.5

> let a = [1, 2, 3]

> average a

2.0

> average []

NaN

The final test in this list reports that the average empty list is NaN (short for  
Not A Number).

The genericLength function
Things appear to be in working order. There is an additional way of finding 
the length of the list that is found in the Data.List package and is called 
genericLength. The genericLength function does the same as the length function, 
but with the added effect that the return value is Num and will happily work with the 
division operator without converting the value. Testing to see if this new version of 
average is working will be left as an exercise to the reader:

> import Data.List

> let average xs = realToFrac(sum xs) / genericLength xs

> :t average

average :: (Fractional a, Real b) => [b] -> a
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We should add our new function to average a list of numbers to the 
LearningDataAnalysis02.hs module:

module LearningDataAnalysis02 where
-- Compute the average of a list of values
average :: (Real a, Fractional b) => [a] -> b
average xs = realToFrac(sum xs) / fromIntegral(length xs)

As a data analyst, you will be working with various forms of quantitative and 
qualitative data. It is essential that you understand how the typing system in Haskell 
reacts to data. You will be responsible for explicitly saying that a data type needs to 
change should the context of your analysis change.

Metadata is just as important as data
Data comes in all sizes, from the small sets that are typed on a command line to the 
large sets that require data warehouses. Data will also come in a variety of formats: 
spreadsheets, unstructured text files, structured text files, databases, and more. 
Should you be working for an organization and responsible for analyzing data, 
datasets will come to you from your management. Your first task will be to figure 
out the format of the data (and the necessary software required to interact with that 
data), an overview of that data, and how quickly the dataset becomes outdated. 
One of my first data projects was to manage a database of United States Civil War 
soldier death records. This is an example of a dataset that is useful to historians and 
the families of those who served in this war, but also one that is not growing. Your 
author believes that the most interesting datasets are the ones that are continually 
growing and changing. A helpful metadata document that accompanies the dataset 
will answer these questions for you. These documents do not always exist. So pull 
your manager over and get him or her to answer all of these questions and create the 
first metadata document of this dataset.
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Working with csv files
A common format to exchange data externally between an organization and the 
outside world is the CSV (short for Comma Separated Values) format. Files of this 
format have the .csv extension. Most spreadsheet software packages will be able to 
import and export csv files. Also, many database software packages will have the 
ability to export tables to csv files. The format of a csv file is relatively simple. A csv file 
is a plain text document containing multiple records, and each record begins on a new 
line (but it will not necessarily end on the same line). The first line of the document is 
not a record, but it contains a description of each column in the dataset. Each record 
will consist of values (or fields), each separated by a delimiter character (usually a 
comma). A field that is wrapped in double quotes may contain delimiter characters 
and newline characters. There is no documented standard that defines a proper csv 
file. The first line in the document might be the first record of the data. A record can 
span multiple lines. Some people like using tabs as their delimiter. Despite being such 
a deceptively simple file format, there is plenty of ambiguity. It is good practice to 
avoid writing your own csv library and to instead use a trusted library.

Preparing our environment
Using the cabal tool, we need to download the Text.CSV library. From the command 
line, type the following:

cabal install csv

We wish to use the Text.CSV library to parse our csv file. It will be helpful to learn 
a little more about this library. There are three Haskell types that are found in Text.
CSV. The first type is CSV, which is our representation of a csv file. A CSV is composed 
of a list of the Record type (the second type). Each Record is a list of the Field type 
(the third type). Each Field is a String. Internally, a csv file is represented using 
these types, but you can think of a csv file as an expression of the [[String]] type.

Throughout our discussion on csv files, I will refer to the csv file format as csv and 
the Haskell CSV expression type as CSV.

Before we continue any further, we will perform some housekeeping on our 
LearningDataAnalysis02.hs file. These import statements will be necessary for our 
work in the following example. Any time we mention an import statement, add it to 
the beginning of the file after the module line:

import Data.List
import Data.Either
import Text.CSV
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Describing our needs
Having addressed the ambiguity of csv files, when csv files are addressed in this 
book, we will assume the following:

• The first line in the file contains a description of each column
• Each line after the first line contains exactly one record
• Each record field is separated by a comma character
• The datasets may have quoted strings, which will not contain  

newline characters

We should get some practice with regard to performing simple data analysis-related 
work on a csv file. The United States Geological Survey (USGS) presents a variety 
of data to the general public, including recent data on worldwide earthquakes. By 
visiting the following site, you can download earthquake-related data that spans the 
past hour, day, seven days, and 30 days:

http://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php

From this site, you will see that the format of the data is in csv, the columns are 
clearly defined on the first line of every csv file, and the data is updated every  
five minutes.

I downloaded the csv file representing all the earthquakes in the past week. When 
the file was downloaded, the file size was just over 220 KB in size and contained 
1,412 records of earthquakes. Based on our discussion in the previous section, 
we will attempt to answer the question—What was the average magnitude of every 
earthquake in the past week?

Crafting our solution
Before we consider an answer to our question, we must consider how we are going 
to access the data. Our data is buried in a file and we need to extract this information. 
We will craft a function that applies a desired operation (which will be supplied by 
the user) to every value in a single column of a csv file. We will make this function 
generic with regard to a desired operation because we wish to make it possible for 
users to pass it in their own functions (not just the function used in this example). 
Our goal is to craft a function that accepts the following input parameters:

• A function that will perform our desired operation (in this case, the desired 
operation will be the average function written earlier)

• A filename representing a csv file (a FilePath)
• A column within our csv file on which the desired operation will be applied 

(a String)
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In addition, our function should return a value, and the type of this value type will 
be determined by the desired operation's function (which will require a polymorphic 
type—more on this will be discussed later). Because each field in our file is a string, 
the input type of the passed function must also be a String. Also, we need some 
mechanism to handle the errors that might arise while performing our work. For 
this, we will return our values wrapped in the Either type, which is commonly  
used to pass error messages. Finally, since this is going to involve file I/O,  
we need to wrap the Either type in the IO monad.

Having taken all this into consideration, we will now present the signature of  
this function:

applyToColumnInCSVFile :: ([String] -> b) -> FilePath -> String -> IO  
  (Either String b)

This is a lot to take in and we should not expect those new to data analysis in  
Haskell to think of all these considerations immediately. We are going to put this 
aside and come back to it later. There are two design considerations that will go into 
this function:

• Finding the column index of the specified column that interacts with the csv 
file itself

• In typical Haskell fashion, these concepts will be demonstrated with their 
own functions

Finding the column index of the specified column
We will start with the easier of the two design considerations—finding the column 
index of the specified column. This function will accept a CSV value and a column 
name as input, and it should return either the integer of the column or an error 
message. To handle the returning of the two possible types, we will use the  
Data.Either library. Since this function will take a CSV value (rather than  
a CSV filename), we do not have to concern ourselves with the wrapping  
of the returned value in the IO monad. Here is our function:

getColumnInCSV :: CSV -> String -> Either String Integer
getColumnInCSV csv columnName =
  case lookupResponse of
    Nothing -> Left
      "The column does not exist in this CSV file."
    Just x -> Right (fromIntegral x)
  where
  -- This line looks to see if column is in our CSV
  lookupResponse = findIndex (== columnName) (head csv)
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The heart of this function is the very last line, in which we called the findIndex 
function using the column name and the first line of the csv file as the input. 
The findIndex function is found in Data.List, and it will return a Maybe Int 
type constructor. Maybe is one of the basic Haskell types consisting of two type 
constructors—Just and Nothing. On finding the column, findIndex will return a 
Just type, but if the column is not found, then Nothing is returned. We will perform 
pattern matching on the returned Maybe type to convert this to an Either type. On 
finding Nothing, we will convert this pattern into an error message that explicitly 
states that The column does not exist in this csv file. On finding the specific index of  
the column, we will return that column index and convert it into an Integer in  
the process.

We will perform some demonstrations of our function. For this demonstration,  
we will use the earthquake csv file. Our precondition for this test is that the csv file 
exists and is properly formatted. What we do not assume is that the desired column 
will exist in the csv file. In this example, we know there exists a column called mag. 
Our function resides in a module file called LearningDataAnalysis02.hs. We will 
load this module in the interactive interpreter using the : l (for load) command,  
as follows:

> :l LearningDataAnalysis02.hs

> csv <- parseCSVFromFile "all_week.csv"

> either (\error -> Left "Problem Reading File") (\csv -> getColumnInCSV 
csv "mag") csv

Right 4

Good. Note that the column exists on index 4. (Haskell, like C, C++, and Java, begins 
list indices with 0) The Right wrapper identifies that the function correctly identified 
the column and this column is 4. We will test for something that fails, as follows:

> either (\error -> Left "Problem Reading File") (\csv -> getColumnInCSV 
csv "not a column") csv

> Left "The column does not exist in this CSV file."

There is no column named not a column in this file and our function correctly 
reports this using the Left wrapper. In line with  the typical use of Either, Right  
is used for the successful execution and Left is to report error messages.
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The Maybe and Either monads
If you are new to Haskell, you might ask yourself, "What are Maybe, Just, and 
Nothing?" Maybe is a data type with two constructors—Just and Nothing. The 
Just constructor takes one value and Nothing takes no values. Maybe is also an 
instance of a general and powerful abstraction called a monad. In order to explain 
the importance of Maybe, I'm going to describe the features from other programming 
languages. Imagine the int data type found in the C language. C's int and Haskell's 
Int share a few things in common. Both are bounded types with a maximum and 
minimum value and are only allowed to hold the integer data, and both must always 
have a value associated with the variable of this type. In C, if a variable of the int 
type isn't given a value, the initial value will be whatever the compiler decides it 
to be (which is why you should always give C variables an initial value). It still has 
a value! In fact, there's no way to express that a C int variable doesn't have any 
value. Contrast this with the language of Java, which allows you to create an object 
of the Integer class. Java will initialize the variable with the null value. Java's 
null specifically means that the variable has no value, which means that all Java 
references can have either a value of the specified type or none at all. Haskell allows 
us to do the same thing using Maybe. When a variable is defined as a Maybe type, it 
means something similar to Java's notion of a reference. It is an explicit way of saying 
that this variable might hold a value of the specified data (the Just value) or it might 
hold Nothing.

Likewise, you might be asking yourself about the Either construct that we keep 
using. Either is a more advanced form of Maybe. When we encounter a variable in 
Haskell representing a Maybe, we're saying that it maybe holds a value, but we're not 
saying why if you find Nothing. The Either construct was created to address this. 
An Either expression comprises of two expressions—Left a and Right b. Either 
allows us to represent an expression that can evaluate two different expressions, 
each with their own constructors (Left and Right). Often, the Either expression is 
used to report error messages in code since computations can either be successful or 
can return an error message on failure. When using the Either expression, we can 
define the Left and Right expressions with whatever we want, but by convention, 
the Right side of Either is used to return the results of a successful execution, and 
the Left side of Either is used to return a String error message outlining why a 
function call failed. To help you remember, try remembering that Right is right and 
Left is wrong.
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Applying a function to a specified column
Our next function will do the actual work of applying our desired function to a 
column within the csv file. This will be similar to the primary function with the only 
difference being that this function will assume that an already opened CSV data 
expression will be passed instead of a filename:

applyToColumnInCSV :: ([String] -> b) -> CSV -> String -> Either 
  String b
applyToColumnInCSV func csv column = either
    Left
    Right . func . elements
  columnIndex
  where
  columnIndex = getColumnInCSV csv column
  nfieldsInFile = length $ head csv
  records = tail $
    filter (\record -> nfieldsInFile == length record) csv
  elements ci = map
    (\record -> genericIndex record ci) records

Note that this function signature requests a value of CSV expression instead 
of String. This allows us to focus on the task of data analysis instead of being 
concerned about the file's I/O. There are a few considerations here that need to be 
explained. Starting with the where clause, we used the getColumnInCSV function 
to get the column index. Next, we counted the number of fields represented on the 
first row of our csv file. We used the number of fields to filter the records and ignore 
any records that do not have one field per field heading. The line beginning with 
elements ci will take the records and reduce them to a single column defined by 
columnIndex. Since columnIndex represents either a real column index or an error 
message, our function will make sure that the error message is propagated back out 
in a Left call or the actual work of applying a function to our column is performed 
inside a Right call.

We need to return to the discussion of the polymorphic type used in our function 
call identified as b. We will apply a function to a column in the csv file, but no 
assumptions are made with regard to the type of data that exists in the column or 
the function passed. In the context of our problem, we wish to compute the average 
magnitude of earthquakes over the span of a week. The data in the column is the 
String data that needs to first be interpreted into the Double value. Here is a simple 
helper function to do just that. Both this function and the average function need to 
be in LearningDataAnalysis02.hs:

readColumn :: [String] -> [Double]
readColumn xs = map read
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As always, we should test our function in the following manner:

> csv <- parseCSVFromFile "all_week.csv"

> either

 (\error -> Left "Problem Reading File")

 (\csv -> applyToColumnInCSV (average . readColumn) csv "mag")

 csv

Right 1.6950637393767727

Note that the average magnitude for all earthquakes over the course of a sample 
week is 1.70 (rounded). Of course, if you are following along, your result will vary. 
We need to test this function again with a bad column name, as follows:

> either

 (\error -> Left "Problem Reading File")

 (\csv -> applyToColumnInCSV (average . readColumn) csv "not a column")

 csv

Left "The column does not exist in this CSV file."

This function appears to be in working order. Now, we will return to the writing of a 
function that puts what we have learned together. This function will be responsible 
for the opening of a csv file and the calling of the helper functions, as follows:

-- Opens a CSV file and applies a function to a column
-- Returns Either Error Message or the function result
applyToColumnInCSVFile ::
 ([String] -> b) -> FilePath -> String -> IO (Either String b)
applyToColumnInCSVFile func inFileName column = do
  -- Open and read the CSV file
  input <- readFile inFileName
  let records = parseCSV inFileName input
  -- Check to make sure this is a good csv file
  return $ either
    handleCSVError
    (\csv -> applyToColumnInCSV func csv column)
    records
  where
    handleCSVError ==
      Left "This does not appear to be a CSV file."
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The only consideration that needs to be addressed in this function is the use of the 
return call. This call makes sure that the Either value is wrapped in an IO monad.

Now, we will test the following code:

> :l LearningDataAnalysis02.hs

> applyToColumnInCSVFile (average . readColumn) "all_week.csv" "mag"

Right 1.6950637393767727

We will test the preceding code again, but with a nonexistent column, as follows:

> applyToColumnInCSVFile (average . readColumn) "all_week.csv" "not a 
column"

Left "The column does not exist in this CSV file."

It takes a lot of work in Haskell to reach such a simple function call and see a result. 
Once you build the layers of resources in your modules, you will see us pick up 
speed, for example, in the Data.List module, there are the maximum and minimum 
functions that we can use immediately with the work we have done so far,  
as follows:

> applyToColumnInCSVFile (maximum . readColumn)

                         "all_week.csv" "mag"

Right 6.7

> applyToColumnInCSVFile (minimum . readColumn)

                         "all_week.csv" "mag"

Right (-0.3)

While writing this example, I learned that the Richter magnitude scale can record 
negative values. I readily admit that I am not a domain expert in the geological 
sciences. Knowledge of the domain in which you will be working is something that 
is essential to an accurate interpretation of the data that you will be analyzing. When 
it comes to the geological sciences (or any other unfamiliar domain), should you lack 
the same expertise as me, do not be shy about partnering with an expert-level friend.
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Converting csv files to the SQLite3 
format
To speed up our venture in data analysis, we will convert our csv file into a SQLite3 
database. With a SQLite3 database, our work becomes easier. We spend less time 
on lines of code that are related to the integrity of the data and more time filtering, 
splicing, and combining columns of data to meet our needs.

We wish to craft a function that will produce a SQLite3 database based on the 
contents of a csv file. SQLite3 is a relational database management system. In csv 
files, we explore data through records, where every field in a record has a column 
heading. In relational databases, we see much of the same approach but with a few 
important differences. Relational databases comprise of one or more tables, each 
identified by a name. Each table comprises of zero or more records, where each 
record comprises of one field per column heading, making a table analogous to a  
csv file. An important distinction between a table and a csv file is that tables require 
each field to maintain adherence to a data type. On the contrary, csv files treat all 
fields as text.

Preparing our environment
To begin preparing our environment, make sure that you have SQLite3 and the 
Haskell Database Connectivity (HDBC) package installed on your system. The 
HDBC is known as a database abstraction layer. We can interface directly with 
SQLite3, but then, we will be attached to SQLite3 in all our code. By using an 
abstraction layer, we can continue using SQLite3 or change to a different relational 
database system in the future (such as MySQL or PostgreSQL) with minimal code 
changes. Within Haskell, we are going to need the HDBC package, the sqlite 
package, and the HDBC-sqlite3 package. On Debian-based systems, this can be  
done with apt-get on the command line. We can get the two packages on our 
system using apt-get, as follows:

sudo apt-get install sqlite3

sudo apt-get install libghc-hdbc-sqlite3-dev
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To install all of the necessary modules, we can run the following cabal install line:

cabal install HDBC sqlite HDBC-sqlite3

Got all of this installed? Good. As with the previous example, we will break the 
function into smaller functions, each with their own responsibility. In this example, 
we will craft a function to open the csv file (which is similar to the function used  
in the previous example) and a second function to create the database based on a 
CSV expression.

Those of you who are using Windows can also participate, but you will need to 
download and install the SQLite binaries from http://www.sqlite.org. There, you 
will find the Sqlite and HDBC-sqlite packages. These can be hooked during the 
installation using the --extra-lib-dirs and --extra-include-dirs flags.

Describing our needs
To craft our function to create a SQLite3 database from a CSV value, we will require 
the desired table name, the desired filename for the SQLite3 file, and the type 
information for each column in the CSV value. For each column in our table, we 
can take the same column name from the CSV value, but this presents a problem. 
Often, the column names used in csv files contain spaces and symbols, neither of 
which are handled elegantly by database systems or the programmers and analysts 
who use them. An option that you have is the manual editing of the csv file with the 
desired column names. While this is a solution, our dataset immediately becomes 
less portable. To transfer our programs to someone else, we will have to request that 
they also manually edit any new data sources to the desired column names. I humbly 
request that you resist any temptation to manually edit your data sources except 
when you have to correct something nuanced that cannot be automated.

Inspecting column information
The USGS has an excellent glossary describing each of the columns in their datasets, 
including plain English definitions, data types, and numerical ranges. Each of their 
columns are represented by single words (or short phrases using camel case). We 
have no need to rename the columns in this dataset.
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Let us examine the column headings used in the earthquake dataset. Using the 
glossary information found at http://earthquake.usgs.gov/earthquakes/feed/
v1.0/glossary.php, I included the data type information, which is as follows:

• time: ISO 8601 Timestamp String
• latitude: Decimal
• longitude: Decimal
• depth: Decimal
• mag: Decimal
• magType: String
• nst: Integer
• gap: Decimal
• dmin: Decimal
• rms: Decimal
• net: Decimal
• id: String
• updated: ISO 8601 Timestamp String
• place: String
• type: String

There are four data types used in the dataset—Integer, Decimal, String, and ISO 8601 
Timestamp Strings (which can be used by the time and date functions in SQLite3). 
Each data type must be converted to its equivalent type in SQLite3. Fortunately, 
these conversions are going to be relatively straight forward and can be listed  
as follows:

• Integer will become INTEGER
• Decimal will become REAL
• String will become TEXT
• ISO 8601 Timestamp String will become TEXT
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Before we get much further, we need to include our import statements for our 
database libraries, which are as follows:

> import Database.HDBC

> import Database.HDBC.Sqlite3

Crafting our functions
Here is the function that turns a CSV expression into a database. Rather than return 
anything, we print confirmation messages on the screen, as follows:

-- Converts a CSV expression into an SQL database
-- Returns "Successful" if successful,
-- error message otherwise.
convertCSVToSQL ::
    String -> FilePath -> [String] -> CSV -> IO ()
convertCSVToSQL tableName outFileName fields records =
  -- Check to make sure that the number of
  --   columns matches the number of fields
    if nfieldsInFile == nfieldsInFields then do
    -- Open a connection
    conn <- connectSqlite3 outFileName

    -- Create a new table
    run conn createStatement []
    -- Load contents of CSV file into table
    stmt <- prepare conn insertStatement
    executeMany stmt (tail
      (filter (\record -> nfieldsInFile == length record)
      sqlRecords))

    -- Commit changes
    commit conn
    -- Close the connection
    disconnect conn
    -- Report that we were successful
    putStrLn "Successful"
    else
    putStrLn
    "The number of input fields differ from the csv file."
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  where
    nfieldsInFile = length $ head records
    nfieldsInFields = length fields
    createStatement = "CREATE TABLE " ++ 
                       tableName ++ 
                      " (" ++ (intercalate ", " fields) ++")"
    insertStatement = "INSERT INTO " ++ 
                      tableName ++"++" VALUES (" ++ 
                      (intercalate ", " 
                      (replicate nfieldsInFile "?")) ++ ")""?")) 
                      ++ ")"
    sqlRecords = map (\record -> 
                 map (\element -> toSql element) 
                 record 
                 ) records

There's a lot to explain in the above code. Here are the related HDBC statements:

• The connectSqlite3 statement will create a blank SQLite3 file. The run 
conn createStatement [] statement creates an initial table within the 
database. Inspecting the createStatement line in the where clause reveals 
that this is a simple SQL statement to create a table based on the types and 
column names supplied by the fields input expression. The run statement 
allows us to perform string interpolation on SQL statements by replacing 
the ? symbols with values supplied in a list. We did not use this particular 
feature in the connectSqlite3 statement, but we must still pass an  
empty list.

• The stmt <- prepare conn insertStatement statement prepares the 
INSERT SQL statement to batch process of each record.

• The executeMany stmt statement performs the batch processing of SQL 
statements for each record in the CSV expression with the number of 
columns equal to the number of column headings. If there is a record in your 
CSV expression that has too many or too few fields, it is going to be skipped.
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• The commit conn statement does just what its name suggests. It commits the 
recent changes to the file.

• The disconnect conn statement formally disconnects from the database 
(that is, it closes the file).

• In the where clause, you may notice that all the fields in the database are 
converted to their respective SQL type using the toSql function.

Here is the convertCSVFileToSQL function that will open a csv file and pass the 
contents of our file to the convertCSVToSQL function. Since this is functionally 
similar to the applyToColumnInCSVFile function mentioned earlier, we will spare 
you the details of how it works. We will also test the two functions introduced in this 
section together:

-- Converts a CSV file to an SQL database file
-- Prints "Successful" if successful, error message otherwise
convertCSVFileToSQL ::
    String -> String -> String -> [String] -> IO ()
convertCSVFileToSQL inFileName outFileName tableName fields = do
    -- Open and read the CSV file
    input <- readFile inFileName
    let records = parseCSV inFileName input

    -- Check to make sure this is a good csv file
    either handleCSVError convertTool records
 where
    convertTool = convertCSVToSQL tableName outFileName fields
    handleCSVError csv =
        putStrLn "This does not appear to be a CSV file."

We will begin our testing, as follows:

> :l LearningDataAnalysis02.hs

> convertCSVFileToSQL "all_week.csv" "earthquakes.sql" "oneWeek" ["time 
TEXT", "latitude REAL", "longitude REAL", "depth REAL", "mag REAL", 
"magType TEXT", "nst INTEGER", "gap REAL", "dmin REAL", "rms REAL", "net 
REAL", "id TEXT", "updated TEXT", "place TEXT", "type TEXT"]

Successful
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At the completion of this step, a new file will exist in your current working directory 
with the earthquakes.sql filename. We will inspect our new database, as follows:

> conn <- connectSqlite3 "earthquakes.sql"
> magnitudes <- quickQuery' conn "SELECT mag FROM oneWeek" []
> :t magnitudes
magnitudes :: [[SqlValue]]

Note that the information of the type here is based on a simple SQL statement to our 
database. The data is returned as a list of SqlValue. We will inspect the first element 
that was returned by converting the data into Double by using the safeFromSql 
function, as follows:

> fromSql $ head $ head magnitudes :: Double
0.5

To end this chapter, let's apply the data returned by the SQL statement to the 
average function that was written at the beginning of the chapter:

> let magnitudesDouble = map (\record ->
    fromSql $  head record :: Double)
    magnitudes
> average magnitudesDouble
1.6950637393767727

Summary
This chapter looked at Haskell data types from the perspective of data analysis.  
You are responsible for the conversions of data within Haskell. This is both a blessing 
and a curse. Haskell will never manipulate your data without your consent, even in 
those moments where some data manipulation can be forgiven. We also explored 
the task of navigating through three common data sources—the Haskell command 
line where you enter data yourself, csv files, and SQLite3 files. The command line is 
limited since we can only type so much data ourselves without getting tired. CSV 
files are the most common source of datasets found on the web. We also explored 
the difficulties in working with csv files; everything in a csv file is a String type and 
you, as an analyst, have to be dependent on the metadata that accompanies a dataset. 
We also explored SQLite3, which allows us to leverage two powerful worlds into an 
environment—functional programming and SQL. Using SQL will give us wonderful 
versatility over csv files, as we will demonstrate in forthcoming future chapters.

The next chapter will look at the necessary task of cleaning and organizing our 
datasets. We will look at Haskell's regular expression library in order to filter data 
based on specific properties of fields.
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Cleaning Our Datasets
Data originates from various sources (empirical research, historical research, or record 
keeping). At some point, a human has to consolidate data in a dataset. Humans are 
creatures who are far from perfect, and this human process of consolidating data will 
result in tiny imperfections in our datasets. This chapter looks at the techniques that  
we can use to identify problems in a dataset.

In this chapter, we will cover the following topics:

• Structured versus unstructured datasets
• Creating your own structured data
• Counting the number of fields in each record
• Filtering data using regular expressions
• Searching fields based on a regular expression

Structured versus unstructured datasets
In the last chapter, we navigated data from three different sources: direct keyboard 
entry, csv files, and SQLite3 files. Data can originate from many more sources than 
just these. We typically classify the format of the data into two types: structured and 
unstructured data. Structured data consists of raw data with a degree of organization 
in the layout. Common examples of structured data include relational or hierarchical 
databases, CSV, XML, JSON, and YAML file formats. Regardless of the format of the 
data, the data is organized into a pattern that can be understood by the software (that 
is, our data is machine readable) and meets the criteria set forth in a metadata document.

The following sentence is what most would consider as unstructured data:

"Nicknamed "The Wizard" for his defensive brilliance, Smith set major league 
records for career assists (8,375) and double plays (1,590) by a shortstop"

                                                                          -Wikipedia entry for Ozzie Smith
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While there is a healthy debate on what structured data is, I tend to lean toward  
two requirements—the dataset should be in a machine-readable format and the 
dataset should meet the criteria set forth in a metadata document. If there is no 
machine-readable way to consistently pull values from a dataset, the dataset is 
classified as unstructured data. Unstructured data represents all other datasets. 
Examples of unstructured data include values that are found in text, the words of 
someone speaking on a recording in an audio file, the characters on a page from a 
scanned image, identifying a person in a video clip, or even structured data (like a 
csv file) that happens to be embedded in unstructured data.

How data analysis differs from pattern 
recognition
We do have strategies to extract text from images and words from audio recordings 
and pluck values from sentences. Each of these examples uses a field of computer 
science known as pattern recognition, which attempts to automate the process of 
defining a structure to unstructured data. While there are many successful techniques 
to solve this problem in various contexts, they also have a margin of error that is built 
into their success rate. In order to be considered structured, there needs to be perfect 
accuracy (we get it right the first time) and consistency (this happens every time) to 
the manner in which data is accessed. Data analysis differs from the field of pattern 
recognition because the structure of the data is assumed to not be the problem that  
we are trying to solve.

If your primary source of data is structured in your favorite format, error-free, and 
distilled to just the records needed to work on your desired problem, then someone 
has already performed the hardest job in data analysis for you—cleaning the dataset. 
Cleaning data is the least glamorous part of data analysis. Yet, it consumes most of  
our time. Datasets frequently come with their own quirks. The typical oddities that 
should be anticipated are missing values, duplicate records, misspelled identifiers, 
data outliers, and column values that do not seem to have a consistent type. Likewise, 
we frequently need to merge columns when it makes sense. We occasionally must  
split a column when multiple pieces of information are being expressed. During  
times when you are blessed with too much data, you will have to perform the  
common task of filtering data.

To perform all these tasks, you will need a scrub brush and a willingness to get the  
job done. Sometimes, the data is so messy that you will understand why an entire 
field of science is devoted to organizing data.
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Creating your own structured data
If the primary source of your data is unstructured or nonexistent, then we will start 
from the very beginning. Presented here is my personal workflow to create a single 
structured dataset:

1. Consider a question that you would like to answer through data along  
with the necessary data needed to answer that question.

2. Create a metadata document of your desired dataset columns and types.
3. Gather the data related to the problem in one or more unstructured datasets.
4. Convert each unstructured dataset into a machine-readable format.
5. Seek inconsistencies in each dataset and fix them.
6. Align types in each record to match the type defined by your  

metadata document.
7. Filter columns in each dataset to only the columns defined by your  

metadata document.
8. Merge your datasets into a single dataset.
9. Identify duplicate records and consolidate them.

If this seems like grunt work, you are correct. Haskell is here to help.

Counting the number of fields in each 
record
To demonstrate how to find problems in data, we will examine the common 
problems found in csv files. The first common issue is that the number of fields in 
each record does not always match the number of columns in the heading line. For 
this example, I created a simple csv file with an inconsistent number of fields named 
poorFieldCounts.csv. When typing up this file, make sure that the last line ends 
with a newline character. Some implementations of the Haskell CSV library require  
the following:

Name,FavoriteColor,FavoriteFood
Fred,Orange,Ribs
Wilma,White
Barney,Brown,Pie,Bowling
Betty,Blue,Cake
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We can write a simple check for this using the following function. This function 
assumes that Text.CSV and Data.List have been imported:

countFieldsInEachRecord :: CSV -> [Integer]
countFieldsInEachRecord csv = map genericLength (init csv)

The preceding function will take an already opened csv file and count the number  
of fields in each record.

Testing the following statements that shows the number of fields in the heading row 
and every subsequent record:

> let csv = parseCSVFromFile "poorFieldCounts.csv"

> either Left

    (\csv -> Right $ countFieldsInEachRecord csv) csv

Right [3,3,2,4,3]

You may see that the function reports the correct information, but this will not  
be useful if you have several thousands of lines in a csv file. We should filter out 
records that have exactly one field per column heading so that we can quickly 
identify the problem areas.

Our next function does just that. The lineNumbersWithIncorrectCount function  
will return a list of the Integer pairs. Within each pair, the first integer will represent 
the line number of a file and the second will report the number of fields that exist  
in that row:

lineNumbersWithIncorrectCount :: CSV -> [(Integer, Integer)]
lineNumbersWithIncorrectCount (fields:csv) = filter
    (\(_, thisCount) -> thisCount /= nfields)
    lineNoCountPairs
  where
    nfields = genericLength fields
    count = countFieldsInEachRecord csv
    lineNoCountPairs = zip [1..] count

Executing the preceding code reveals where we should focus our corrections:

    > either Left

      (\csv -> Right $ lineNumbersWithIncorrectCount csv) csv

    Right [(3,2),(4,4)]
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From the result of the previous code we can see that line 3 only has two fields (3,2), 
whereas line 4 has four fields (4,4). How you chose to fix your file will be based on 
the circumstances of your problem, for example, your situation may allow you to 
ignore these records by either skipping the records or deleting them (always back up 
your data first).

We will test our function on a csv file that we already know to be  correct, such as the 
earthquake data file used in the previous chapter:

> input <- readFile "all_week.csv"

> csv <- parseCSVFromFile "all_week.csv"

> either Left

  (\csv -> Right $ lineNumbersWithIncorrectCount csv)

  csv

Right []

Good! An empty list (which is what we expected) is returned.

Our next venture into the cleaning of data depends on whether each record in our 
csv files has the correct number of fields.

Filtering data using regular expressions
It has been said before that if you have a problem and your solution is to use regular 
expressions, you now have two problems. Regular expression is a term used to 
represent the language to identify patterns found in text. The language itself is terse 
(a single character in this language can have a complex meaning). In the open source 
community, the most identifiable example of regular expressions in use is with the 
command-line tool, grep. The name is derived from an older text editor called ed, 
which had a command called g/re/p. Using grep, we can search for a pattern of text 
in a file and filter out anything that does not contain this pattern, for example, let's 
assume that we have a text file that represents the entire book of the Mark Twain 
classic, The Adventures of Huckleberry Finn. You can download this entire book from 
Project Gutenberg. I have renamed my text file huckfinn.txt.

To identify each line in the file that references the character of Jim in the story,  
we will use grep. Here, I'll use grep from the Linux command line, as follows:

$ grep Jim huckfinn.txt

In this example, Jim represents a regular expression. We are looking for any  
instance in the file where J is followed by i, which is then followed by m.
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Creating a simplified version of grep in 
Haskell
Since this is a book that focuses on Haskell, we will recreate the grep tool in  
Haskell. To do this, we need to make sure that the regular expression library is 
installed on our system. We can do this using the cabal tool, as follows:

cabal install regex-posix

The primary usage of grep is that the first argument after the name of the command  
is a regular expression, and all the subsequent arguments represent filenames that 
need to be searched. We will divide the task of our program into two parts—managing 
the input arguments and searching files based on a pattern. First, we will search  
for files based on a pattern. We will begin the file with the following necessary import 
statements:

import Text.Regex.Posix ((=~))
import System.Environment (getArgs)

We will define our function to search lines in a file based on a regular expression. 
In the spirit of the original grep tool, this function will print lines rather than return 
matched lines. This can be seen using the following function:

myGrep :: String -> String -> IO ()
myGrep myRegex filename = do
    fileSlurp <- readFile filename
    mapM_ putStrLn $
        filter (=~ myRegex) (lines fileSlurp)

This function should be relatively straightforward. The filter function is the 
standard tool that is used to filter a list of values based on a Boolean expression. 
Lines break a slurped file into individual lines. The =~ operator is from the  
Text.Regex module that allows us to compare each line in a file to a pattern.

Now, we will set up the call to this function, as follows:

main :: IO ()
main = do
    (myRegex:filenames) <- getArgs
    mapM_ (\filename -> myGrep myRegex filename) filenames
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The first argument obtained from getArgs (found in the System.Environment 
module) is the regular expression, and the remainder of the list should be our 
filenames. We will call myGrep on each filename with the regular expression and  
get our results, as follows in the file:

$ runhaskell hgrep.hs Jim huckfinn.txt

CHAPTER II. The Boys Escape Jim. Torn Sawyer's Gang. Deep-laid Plans.

Island. Finding Jim. Jim's Escape. Signs. Balum.

CHAPTER XXIII. Sold. Royal Comparisons. Jim Gets Home-sick.

CHAPTER XXIV. Jim in Royal Robes. They Take a Passenger. Getting

CHAPTER XXXI. Ominous Plans. News from Jim. Old Recollections. A Sheep

(...Remaining lines clipped...)

Using simple functional programming tools such as filter and map, we can easily 
create a command-line tool to parse a number of files based on a regular expression 
in just a few lines of code.

Exhibit A – a horrible customer database
We need to seek out missing values in our datasets. In the next few examples, we  
are going to use a simple csv file. The data presented below was randomly generated 
thanks to the www.fakenamegenerator.com website. I have modified several fields 
to make this dataset purposely bad. The original csv file came with an odd Unicode 
character embedded as the first character, thus illustrating that even seemingly good 
csv files can still require cleaning. Here is the file that I named poordata.csv:

Number,Gender,GivenName,Surname,City,State,Birthday
1,female,Sue,Roberson,Monroe,LA,12/31/1791
2,,George,Chavez,Chicago,IL,11/11/1948
3,male,Dexter,Grubb,Plattsburgh,NY,6/4/1984
4,male,    ,Knight,Miami,Florida,6-21-1951
5,male,Jonathan,Thomas,Fort Wayne,IN,1/15/1967
6,MALE,Brandon,    ,pittsburgh,pa,8/3/1981
7,male,Daniel,Puga,Evansville,,8/19/1988
8,Female,Geneva,Espinoza,Springfield,MA,1992-08-11
9,female,Miriam,Levron,Hicksville,N.Y.,9/7/1965
10,F,Helen,Pitts,Gibsonia,PA,"March 12, 1989"
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Imagine that you were given this file that represents your company's customer 
database. Thanks to the infinite wisdom of the developers who designed the 
registration system, the customers were allowed to freely type their birthday and 
gender in the birthday and gender fields. The system was not concerned with 
missing fields and there are a few blank fields in this dataset. If you inspect the 
State column, you will see that some people typed the two-letter capital initials  
for their state, some typed the initials with periods (see N.Y.), and some typed the 
entire state name (see Florida). Whoever was in charge of maintaining this data 
failed to do an adequate job.

The first thing that you should do is save your originals using the version control 
software. Overcome the temptation to immediately start fixing the flaws.

Searching fields based on a regular 
expression
We are going to take what we learned in the previous section and expand it to 
csv files. We wish to identify every field in the previous csv file that matches a 
regular expression. These functions will require the Text.CSV module (installed 
in the last chapter) and the getColumnInCSV function that we wrote in the 
LearningDataAnalyis02 module.

In Chapter 2, Getting Our Feet Wet, we listed several assumptions that we would be 
making about csv files. We will now add a new assumption—csv files will have 
a unique identifier column somewhere in the file. A unique identifier column 
represents a column of identifiers (none duplicated) that represent the data for that 
row. In a relational database, this would be the primary key field. We will make  
a second assumption about our data—the column of the unique identifier will be  
free from errors. Typically, this column is found in the first column of the csv file,  
but this is not always the case. In the earthquake csv file, the unique identifier 
column was the 12th out of 15 columns. 

Here's a personal story. When I was younger, I created a MySQL database table 
with a primary key using the SMALLINT type for a small business. In the third year 
of the business, the program failed because the business finally grew to the 65,537th 
business transaction, which is one more than is allowed by SMALLINT. Even the 
primary key field has the potential to fail if you make foolish design choices.
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Here are the import statements needed for our code to work:

    import Text.CSV
    import Data.List
    import Text.Regex.Posix ((=~))
    import LearningDataAnalysis02

It is a good programming strategy to think a little, code a little, and then test a little. 
The first chunk of code to think/implement/test will represent the heart of the 
program; the function will apply the regular expression to every field in a record. 
The function should return three elements for every field that matches the regular 
expression, the column name in which the field was found, the unique identifier 
for this record, and the text of the matching field. Since this function depends on 
genericIndex, I wish to remind you that this function can fail if the assumption that 
the unique identifier exists is not met. This can be seen in the following code snippet:

identifyMatchingFields ::
    (String -> Bool)
     -> [String]
     -> [String]
     -> Integer
     -> [(String, String, String)]
  identifyMatchingFields
    myStringCmpFunc record headings idColumnIndex =
      filter
        (\(_, _, field) -> myStringCmpFunc field)
      keyvalue
    where
      nfields = length headings
      keyvalue = zip3
                (replicate
                  nfields
                  (genericIndex record idColumnIndex)
                )
                headings
    record
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What this function mostly does is juggle each of the necessary input parameters. 
This function requires a Boolean function used for string comparisons called 
myStringCmpFunc, a record from a csv file called record, the headings for each file 
called headings, and the index position of the unique identifier. In the where clause 
of the function, note that a combined list of every unique identifier, column heading, 
and field is being made using the zip3 function. This list is filtered just on the field, 
but when a field does match, the identifier and heading are returned with it.

In our last example, we used the =~ regular expression comparison operator to 
facilitate the filtering of the lines of a text file. In this example, we will let you decide 
as to whether you wish to use simple string comparison functions to identify fields 
or the far more complex regular expression engine. If you are already comfortable 
with regular expressions, then we are going to continue using them. If you need a 
little more time to get used to regular expressions, I hope that you find the guide to 
regular expressions in Haskell in the appendix of this book helpful and then return 
to this chapter. Either way, the function only needs to be written once.

We will conduct a test with a small sample. A regular expression of Journ will  
match anything that includes this sequence of characters, which is demonstrated  
in the following code:

> identifyMatchingFields (\x -> x =~ "Journ") ["1", "Clark Kent", 
"Journalist", "Metropolis"] ["Id", "Name", "Profession", "Location"] 0

[("1","Profession","Journalist")]

A regular expression of Hero should not match anything, since this sequence does 
not exist in this data:

> identifyMatchingFields (\x -> x =~ "Hero") ["1", "Clark Kent", 
"Journalist", "Metropolis"] ["Id", "Name", "Profession", "Location"] 0

[]

Of course, we do not have to use a regular expression with our newly crafted 
function. If you need to search for something simple, the use of regular expressions 
is going to be overkill. You can search for Metropolis in your data if you are looking 
for fields that exactly contain the word, Metropolis. The predicate function in the 
identifyMatchingFields function allows us to be versatile in the methodology  
of how fields are searched. You can use a simple comparison, a regular expression,  
or perhaps a method that I did not consider:

> identifyMatchingFields (== "Metropolis") ["1", "Clark Kent", 
"Journalist", "Metropolis"] ["Id", "Name", "Profession", "Location"] 0

[("1","Location","Metropolis")]
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Once you feel satisfied with your testing, you can move on to building a function 
that matches every field in a csv file. This function will take a string comparison 
function, an open csv file, and a string representing a column heading and return 
every field that matches the given comparison function along with the field's unique 
identifier and heading, as follows:

identifyInCSV ::
  (String -> Bool) -> CSV -> String ->
    Either String [(String, String, String)]
    identifyInCSV myFieldFunc csv idColumn =
      either
      Left
      (\ci -> Right $ concatMap
        (\record ->
        identifyMatchingFields
        myFieldFunc record (head csv) ci
        )
        (tail csv)
      )
      columnIndex
    where
      headings = head csv
      columnIndex = getColumnInCSV csv idColumn

By now, the preceding code should be familiar to you. We used the getColumnInCSV 
function (written in the last chapter) to get the index of a column heading. Since 
this function call has the capacity to return an error, we must wrap the returned 
expression in an either clause. The concatMap function does most of the work 
in the function by calling the identifyMatchingFields function repeatedly and 
concatenating all the returned lists into one.

First, we will test the list with a regular expression that we know will return a  
value. Only one record uses the state abbreviation PA:

> csv <- parseCSVFromFile "poordata.csv"

> either (\error -> Left "CSV Problem") (\csv -> identifyInCSV (\x -> x 
=~ "PA") csv "Number") csv

Right [("10","State","PA")]
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Next, we will test the list with a regular expression that should match multiple fields. 
Several records use the word male to represent a gender. Note that this also returns 
everything that matches female. Regular expressions do not limit themselves to 
matching complete strings:

> either (\error -> Left "") (\csv -> identifyInCSV (\x -> x =~ "male") 
csv "Number") csv

Right [("1","Gender","female"),("3","Gender","male"),("4","Gender","male"
),("5","Gender","male"),("7","Gender","male"),("8","Gender","Female"),("9
","Gender","female")]

Again, after we are satisfied with our testing, we can craft a primary function,  
which will be used to call our helper functions:

identifyInCSVFile ::
  (String -> Bool) -> 
    String -> 
    String ->
    IO (Either String [(String, String, String)])
  identifyInCSVFile myStringCmpFunc inFileName idColumn = do

  records <- parseCSVFromFile inFileName
  return $ either
    (\err -> 
    Left "This does not appear to be a CSV file")
    (\csv ->
      identifyInCSV myStringCmpFunc (init csv) idColumn
    )
    records

Locating empty fields in a csv file based on a 
regular expression
Using our newly crafted function, we will attempt to locate each field in our csv 
file which is empty or nearly empty. Because a regular expression can have its 
match anywhere within a field, we must force our regular expression to start at the 
beginning and end at the end of a field. To ensure that a regular expression starts at 
the beginning, we will begin that expression with the ^ symbol. To ensure that an 
expression ends at the end of a string, we will end the expression with $. Thus, the 
regular expression ^$ represents an empty field:

> identifyInCSVFile (\x -> x =~ "^$") "poordata.csv" "Number"

Right [("2","Gender",""),("7","State","")]
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The second record contains no data for the Gender column and the seventh record 
contains no data for the State column.

How do we identify nearly empty data? In this case, we have data, but it is not 
useful because it has some space characters. We wish to find any field with 0 or 
more whitespace characters. In order to catch all the forms of whitespace characters 
(including space, tabs, and new lines), we will use the special shortcut atom called 
\\s (for space) in the following command, and it needs to be modified with the * 
modifier to represent 0 or more occurrences of that atom. We also need to add the ^ 
and $ positional modifiers. Our final whitespace expression is ^\\s*$. This regular 
expression translates as At the start of a string, there should exist 0 or more whitespace 
characters, followed by the end of the string.

> identifyInCSVFile (\x -> x =~ "^\\s*$") "poordata.csv" "Number"

Right [("2","Gender",""),("4","GivenName","    "),("6","Surname","  
"),("7","State","")]

Since our dataset is a work of fiction, we can fill in the gaps with fictional data. When 
working with gaps in your dataset, you should probably seek the advice of a domain 
expert. At the very least, filter out lines containing gaps (back up your data first) 
until you can fill in those gaps with accurate information.

Crafting a regular expression to match dates
There are still many problems with our csv file. Let's focus on the date column. 
We wish to craft a function that will be able to pull just the date of births from our 
dataset in the Birthday column. The trick to solve this lies in writing a regular 
expression that matches everything except for the accurate-looking dates and then 
writing a short filter to exclude everything except for our desired column. We will 
achieve this by building on our last function.

Without going into detail, an acceptable regular expression to identify a date in the 
form of MM/DD/YYYY (the American style of writing dates) will be ^[1-9][0-9]?/
[1-9][0-9]?/[12][0-9][0-9][0-9]$. By applying the =~ regular expression 
comparison operator to our data with this expression, we will only return the  
correctly formatted dates in our file (which is useless at this stage). We wish to  
return the poorly-formatted dates. To get everything that does not appear to be a  
date, we will wrap the evaluation expression with Haskell's not operator. Then,  
we will filter the data that does not match our desired column.
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Here is the function that is used to take the data returned by identifyInCSVFile 
and filter it based on a column name:

identifyInCSVFileFromColumn :: 
  (String -> Bool) -> String -> String -> String ->
    IO (Either String [(String, String, String)])
  identifyInCSVFileFromColumn
    myRegexFunc inFileName idColumn desiredHeading = do
      allFields <- identifyInCSVFile
        myRegexFunc inFileName idColumn
        return $ either
        Left
        (\af -> Right $
          filter
            (\(_, heading, _) ->
            heading == desiredHeading
            )
         af
         )
       allFields

By allowing identifyInCSVFile to perform our heavy lifting, we can reuse our  
old code in the following way:

> identifyInCSVFileFromColumn  (\x -> not (x =~ "^[1-9][0-9]?/[1-9][0-
9]?/[12][0-9][0-9][0-9]$")) "poordata.csv" "Number" "Birthday"

Right [("4","Birthday","6-21-1951"),("8","Birthday","1992-08-
11"),("10","Birthday","March 12, 1989")]

Good. By identifying just the poorly-formatted dates from the Birthday column, 
we can correct them. The majority of the dates are in the MM/DD/YYYY format. 
So, we will fix these data values to match the majority format. I edited the file so 
that the incorrect birthdays are now 06-21-1951, 08-11-1992, and 03-12-1989. 
After manually correcting the data (make backups first) and naming this file 
poordataFixed.csv, we will test it again, as follows:

> identifyInCSVFileFromColumn  (\x -> not (x =~ "^[1-9][0-9]?/[1-9][0-
9]?/[12][0-9][0-9][0-9]$")) "poordataFixed.csv" "Number" "Birthday"

Right []

An empty list tells us that all the fields matched the regular expression in the 
Birthday column.
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Summary
Cleaning is not only the most important but also the least glamorous phase of data 
analysis. With Haskell and the power of regular expressions, we can quickly identify 
areas with large quantities of data that need our attention. We left our cleaning 
problem incomplete in this chapter. There is still plenty of data left to clean. The 
Gender and State columns need some serious work. They are left as an exercise for 
you to learn how to craft regular expressions to quickly identify the fields that require 
your attention.

We also discussed the unclear border between what is meant by the terms, structured 
data and unstructured data. I applied two pieces of criteria for structured data—the 
data is in a machine-readable format and the data adheres to a metadata document 
standard. Our example dataset is still a long way from being structured. We assume 
that the person who aggregated this data had a metadata document in mind, but  
that didn't stop us from performing a lot of cleaning.

Our next chapter is going to put cleaning aside. We will explore data visually, allowing 
the data to speak for itself. It is also the key technique that is used to develop some 
assumptions about our data. In data analysis, the plotting of data is a method of 
speculation, and you will see that through this speculation, you can allow ideas to 
flourish. However, it will be through the subsequent chapters that we will learn how  
to check whether our speculations are correct.
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Plotting
In this chapter, we will explore data with visualization. Pictures help us tell stories 
better than words can. Like words, pictures can be used to lead or mislead the 
reader's thinking. The Yahoo! Finance website has a history of each publicly traded 
stock in the American Stock Exchange in the csv file format. We will demonstrate 
how to convert a csv file representing a company's closing price history and visualize 
that history. We will then demonstrate how to compare multiple companies' share 
prices on the same plot.

In this chapter, we cover the following:

• Introducing the Haskell library EasyPlot to plot data
• Simplifying access to data in SQLite3
• Plotting data from a SQLite3 database
• Plotting a subset of a dataset
• Plotting data passed through a function
• Plotting comparisons of multiple datasets
• Plotting a moving average
• Plotting a scatterplot

Plotting data with EasyPlot
Data visualization is the craft of using art to assist the reader in answering questions 
about data. While it is possible to answer the same questions using only words, 
pictures will bring data to life in a manner that words cannot. We wish to visualize 
our datasets using Haskell and SQLite3. To do this, we are going to use the open 
source tool gnuplot (a popular graphing tool for building visualizations of academic 
data) and the Haskell interface to gnuplot called EasyPlot. EasyPlot is among the 
easiest plotting tools to learn in Haskell, with the disadvantage that it is limited in its 
feature set.
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Visualizing data, much like writing about data, requires some criteria for establishing 
what is (and is not) a good visualization of data. Here are the simple rules that I 
follow to make my own data visualizations:

• Does this visualization contribute to the understanding of a dataset? Art 
is a powerful tool, and, to quote a famous American comic book, "with 
great power comes great responsibility." It is the job of the analyst to put 
the data into a context that does not mislead the reader into a false sense of 
understanding. Some examples of misleading the reader would be cropping 
out data points that contradict the writer's interpretation of the data, using 
colors in a manner that allow elements to be confused, or trying to express 
too much information in a single chart. Some of these design choices might 
be seen as unethical in certain contexts.

• Does the visualization help to answer one or more questions? All 
visualizations should make an attempt at answering questions that the 
reader might have regarding data. Visualizations give us an opportunity 
to express variables in a concise manner, which allows us to be expressive 
about the complexities of the data without having to be burdensome in those 
same details. The reader should gain at least one insight into the data that the 
creator of the work did not expect. The goal of a good data visualization is  
to allow the reader to explore rather than to hamstring the reader into a 
narrow context.

• Can the visualization be simplified and still answer the reader's questions? 
The scientist Carl Sagan wrote about using Occam's Razor in the quest 
to explain data- this convenient rule-of-thumb urges us, when faced with two 
hypotheses that explain the data equally well, to choose the simpler. The same 
could be said of data visualizations; when faced with two visualizations that 
explain data equally well, choose the simpler visualization. If a visualization 
is too crowded with information, you are encouraged to split each idea 
represented into its own visualization.

In this chapter, we will explore the Graphics.EasyPlot package, but to do that we 
must first install gnuplot and the EasyPlot library. Using the apt-get command in 
Debian-based Linux distributions, you can download gnuplot using the following:

sudo apt-get install gnuplot

You can also install the Graphics.EasyPlot package in Haskell using the  
cabal command:

cabal install EasyPlot
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Simplifying access to data in SQLite3
In Chapter 2, Getting Our Feet Wet, we explored how to access data in our newly 
created SQLite3 databases. Data in SQLite3 can be expressed in terms of the REAL, 
INTEGER, and TEXT data types, but our Haskell library for retrieving data returns 
data of the SqlValue type. There isn't a convenient way to ask Haskell to give us 
back our data in the original format, so we will come up with one ourselves.

Let's begin by creating our library for this chapter, LearningDataAnalysis04.hs. 
We will be creating several functions to ease the difficulty in interacting with SQLite3 
databases. This new file will begin with the following statements. Note that this file 
will require the LearningDataAnalysis02.hs file created in Chapter 2, Getting Our 
Feet Wet:

module LearningDataAnalysis04 where
import Data.List
import Database.HDBC.Sqlite3
import Database.HDBC
import Graphics.EasyPlot
import LearningDataAnalysis02

The three basic data types used by SQLite3 are REAL, INTEGER, and TEXT. The Haskell 
equivalents of these types are double, integer, and string. We need a function that 
accepts a SQLite3 result and a column number and converts that data column to a 
particular data type. Because of these assumptions, we also assume that you have 
taken the time to inspect your datasets for irregularities and corrected them. The 
information on how to quickly find and clean your data can be found in Chapter 3, 
Cleaning Our Datasets. The function introduced here will do a sufficient job of pulling 
information from a SQLite3 database:

readIntegerColumn :: [[SqlValue]] -> Integer-> [Integer]
readIntegerColumn sqlResult index = map (\row -> fromSql $  
  genericIndex row index :: Integer) sqlResult

readDoubleColumn :: [[SqlValue]] -> Integer -> [Double]
readDoubleColumn sqlResult index = map (\row -> fromSql $  
  genericIndex row index :: Double) sqlResult

readStringColumn :: [[SqlValue]] -> Integer -> [String]
readStringColumn sqlResult index = map (\row -> fromSql $  
  genericIndex row index :: String) sqlResult
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In preparing this chapter, I found it convenient to craft a function for the purpose of 
querying a not-yet-open database file. This simple function will open a connection to 
a SQLite3 database, send a query and get the results, close the connection, and return 
the results:

queryDatabase :: FilePath -> String -> IO [[SqlValue]]
queryDatabase databaseFile sqlQuery = do
  conn <- connectSqlite3 databaseFile
  let result = quickQuery' conn sqlQuery []
  disconnect conn
  result

We are all set to begin our discussion about using the EasyPlot library to plot data.

Plotting data from a SQLite3 database
In order to plot data, we need data to plot! For this, we will be using data 
representing the stock market of the United States, found on the Yahoo! Finance 
website. Yahoo! Finance has a wealth of information on every publicly traded 
company currently being traded in the United States. Conveniently, Yahoo! allows 
users to download the entire closing share value history of these companies into a 
csv file format, free of charge.

Let's begin by downloading the entire history of the Apple company from Yahoo! 
Finance (http://finance.yahoo.com). You can find Apple's content by performing 
a quote look up from the Yahoo! Finance homepage for the symbol AAPL (that's two 
As, not two Ps). From this page, find the link for Historical Prices. On the Historical 
Prices page, identify the link that says Download to Spreadsheet. The full link to 
Apple's historical prices can be found here:

http://real-chart.finance.yahoo.com/table.csv?s=AAPL&d=10&e=10&f=2014
&g=d&a=11&b=12&c=1980&ignore=.csv

We should take a moment to explore our dataset. Here are the column headers in the 
csv file:

• Date: A string representing the date of a particular day in Apple's history
• Open: The opening value of 1 share
• High: The high trade value over the course of this day
• Low: The low trade value over the course of this day
• Close: The final price of the share at the end of this trading day
• Volume: The total number of shares traded on this day
• Adj Close: A variation on the closing price that adjusts for dividend payouts 

and company splits
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One other feature of this dataset is that each of the rows are written into the table  
in a chronologically reverse order. The most recent date in the table is first.  
The oldest is last.

Yahoo! Finance provides this table under the unhelpful name table.csv. I renamed 
the csv file provided by Yahoo! Finance to aapl.csv. Within the Haskell command 
line, convert this file to a SQLite3 database using the convertCSVFileToSQL function 
written in Chapter 2, Getting Our Feet Wet.

> :l LearningDataAnalysis02.hs

> convertCSVFileToSQL "aapl.csv" "aapl.sql" "aapl" ["date STRING", "open 
REAL", "high REAL", "low REAL", "close REAL", "volume REAL", "adjclose 
REAL"]

Successful

For our purposes, the most important column in this table is the Adj Close column, 
which gives us the clearest depiction of the data. We introduce a new function called 
pullStockClosingPrices, which pulls data from a database. This function will 
require a database file and the name of a database containing the financial data of a 
stock based on the format provided by Yahoo! Finance. This function will grab each 
record's rowid (which SQLite3 gives all tables automatically) and the adjclose field.

Note that we apply the reverse function to the rowid column; this is because we 
want the data values to be represented in chronological order:

pullStockClosingPrices :: String -> String -> IO [(Double,  
  Double)]
pullStockClosingPrices databaseFile database = do
  sqlResult <- queryDatabase
    databaseFile ("SELECT rowid, adjclose FROM " ++ database)
    return $ zip
      (reverse $ readDoubleColumn sqlResult 0)
      (readDoubleColumn sqlResult 1)

Great. We have put together enough pieces of the puzzle to create our first 
visualization. We will be plotting the entire history of Apple's share price. Each 
rowid represents an x-coordinate in a scatterplot, and each adjclose represents the 
y-coordinate. We are going to pass a list of doubles defined as [(Double, Double)] 
to our plot function, where each tuple represents an (x, y) pair.

> :l LearningDataAnalysis04

> aapl <- pullStockClosingPrices "aapl.sql" "aapl"

> plot (PNG "aapl.png") $ Data2D [Title "AAPL"] [] $ aapl

True
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Look in your current working directory and you should find a file titled aapl.png. 
Open it up.

The following screenshot is a typical default chart created by EasyPlot. We see the 
entire history of Apple's stock price. For most of that history, Apple's adjusted share 
price was less than $10 per share. At about the 6,000th trading day, we see the quick 
ascension of the share price to over $100 per share.

Exploring the EasyPlot library
EasyPlot is a wrapper for the gnuplot software and provides a simple interface to 
create basic plots. We have limited access to the full power of gnuplot using this 
library, but that's fine. We can create outstanding plots with just this library.

We do not use the more advanced functionality of EasyPlot that does 
allow us to create plots based on direct gnuplot commands.

Here is the type signature to the plot function. There's only two arguments to  
the function:

plot :: TerminalType -> a -> IO Bool
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A complete documentation of this function can be found on the Hackage page for 
EasyPlot. We believe that it's beneficial for the reader to cover this library in more 
detail by navigating here:

http://hackage.haskell.org/package/easyplot-1.0/docs/Graphics-
EasyPlot.html

The TerminalType argument is how we specify the output of the graph. The output 
allows us to tell EasyPlot that we wish to view this plot as a file or as an interactive 
plot. In our example, we specified that we wanted a PNG image followed by the 
image name. We could have easily specified JPEG or GIF (for images), LaTeX (for 
academic publications), PDF (for Adobe PDF documents), or PS (for encapsulated 
postscript documents).

Each of these arguments requires an output file name similar to the PNG call used 
in our example. There are also specific interactive plots that can be used for your 
respective operating system; Aqua is for Mac systems, Windows is for Windows 
systems, and X11 is for Linux systems with a graphical user interface installed.  
Each of these arguments can be used by themselves.

The second argument, a, is how we specify one or more datasets for plotting. The 
argument a can be a list of datasets, a single dataset, or even a gnuplot command, 
but we will commonly supply each dataset wrapped in either the Graph2D type or 
the Graph3D type.

The Graph2D type can be constructed using three different types of two dimensional 
plots: Data2D (for point cloud datasets that we use in this chapter), Function2D (for 
plotting based on a mathematical Haskell function), and Gnuplot2D (for plotting 
based on a mathematical function in a string that will be passed directly to gnuplot). 
The Graph3D type has each of these respective constructors, with the obvious 
difference that they require three-dimensional data and functions and are named 
Data3D, Function3D, and Gnuplot3D.

The default style of plotting two-dimensional point cloud data is to use the cross 
marker for each data point. With 9,000 points, the crosses overlap and our dataset  
is easily confused. We should express our data using a line plot rather than  
with crosses:

> plot (PNG "aapl_line.png") $ Data2D [Title "AAPL", Style Lines] [] $ 
aapl

True
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Identify the aapl_line.png plot in your current working directory. This is a better 
representation of the data in my opinion:

Plotting a subset of a dataset
This dataset is interesting, but we aren't trying to answer any questions with our 
data. That's fine. Data visualizations can be used to answer questions or it can  
be used as a tool for exploring data and discovering questions that need to be 
answered. We can see in the previous chart that the most interesting part of the data 
is the most recent jaggedness on right side of the graph representing the most recent 
trading days.
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Investors like to look at data through various windows of time, say, the past five 
days, one month, six months, or one year of trading. Let's look at this data by using 
Haskell to take the most recent year of trading data. According to Wikipedia, there 
are typically 252 trading days in a calendar year on the New York Stock Exchange 
(NYSE). With this information, we use the take function to plot the data of the past 
year in the following manner:

> plot (PNG "aapl_oneyear.png") $ Data2D [Title "AAPL", Style Lines] [] $ 
take 252 aapl

True

This gives the following chart as the output:

By reading this plot we can see that, about a year ago, AAPL was trading for just 
under $75 per share and has grown in value to over $105 per share. We can also see 
the fluctuation in the share price, but from this perspective it's too soon to apply any 
sort of meaning to these fluctuations.
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Plotting data passed through a function
Plotting the share price over time is a quick way of glancing at data and seeing if this 
data has increased or decreased over time. A company's share price increasing over 
time is usually associated with the attributes of a good company. If we had invested 
in Apple a year ago, our share value would have increased to just over $30 per share. 
Is $30 per share investment over the course of a year a good investment or a bad 
one? The answer to this depends on the original share value. We could answer this 
question with the previous chart, but it could be made easier. We need to examine 
this share value through the perspective of the share's percentage of change  
over time.

To compute the percentage of change, we need two values: the original value  
and a newer value. If the newer value is greater than the original, we obviously  
have a positive percent change. If the newer value is lower, we have a negative 
percent change.

In the following formula, x1 represents the first data value in our dataset. In the 
context of our analysis of Apple's share value, it's the share price one year ago from 
the date which we pulled our data. The value of xi represents any data value in our 
dataset (including the first value). When every xi equals x1 in our formula, then it 
evaluates to 0 percent change. Every other value should produce either a increase or 
a decrease percentage:

Here, xi is associated with the variable value and x1 is associated with the first 
variable value. We should represent this formula as a Haskell command:

percentChange :: Double -> Double -> Double
percentChange value first = 100.0 * (value – first) / first

The percentChange function only computes a single percent change at a given  
point in our data. We need a function that allows us to map this function to all the  
data points. The applyPercentChangeToData function does the trick for us in  
the following manner:

applyPercentChangeToData :: [(Double, Double)] -> [(Double,  
  Double)]
applyPercentChangeToData dataset = zip indices scaledData
  where
    (_, first) = last dataset
    indices = reverse [1.0..(genericLength dataset)]
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    scaledData = map
      (\(_, value) -> percentChange value first)
      dataset

This is the function that we will use for plotting the percent change of a share price. 
This function will also renumber the starting value of each data point to begin with 1. 
This will be essential for aligning the datasets in the next section. We should call our 
newly created percentChange and applyPercentChangeToData functions. We are 
also using the combination of snd and last functions to find the first data value in 
this dataset (remember, this dataset is listed in the chronologically reverse order).

> let aapl252 = take 252 aapl

> let aapl252pc = applyPercentChangeToData aapl252

> plot (PNG "aapl_oneyear_pc.png") $ Data2D [Title "AAPL - One Year, % 
Change", Style Lines] [] $ aapl252pc

True

Open up aapl_pastyear_pc.png to find the following new image. You might notice 
that it's the same line as our previous image. That's because the percent change 
formula (when applied to a full dataset) is a simple scaling of the data. The structure 
of the data is perfectly retained in the scaling. We've kept all of the peaks and valleys.
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The only aspects of the graph that have changed are the x-axis and the y-axis, which 
now report the percent change of the data rather than the share price. The first data 
point in this chart is a 0 percent change, as we should expect. From this chart, we see 
how much Apple's share price has grown with respect to our original investment. 
Most of the chart is above the 0 percent change. At the right extremity of the chart, 
we see what a one-year investment looks like; we would have seen an almost  
50 percent return on our original investment.

We need to express a few ideas on the topic of the company share value; this value 
represents a bit of fiction. Some of the value comes from the tangible assets of the 
company and some of the value comes from the public perception of that company 
(which is quantified in the daily buying and selling of shares due to countless 
subjective events). The share value multiplied by the total number of outstanding 
shares is called the market capitalization, or the total value of a company. The 
market capitalization is still a bit of fiction, since this value still incorporates the 
public perception of the company into the overall value.

There are many strategies in stock market investing and your author does not 
advocate one strategy over another. You should investigate every strategy that 
comes your way with a healthy dose of skepticism. But we do wish to highlight 
one strategy just for the ease at which it helps us to convey the ideas behind data 
visualization: simple growth investing. The growth investment strategy encourages 
the investor to seek out and buy the shares of companies that are growing faster than 
the average rate at which the overall market grows and to sell when those companies 
no longer beat the average growth rate.

For example, if you are trying to decide whether to invest in Company A or  
Company B, you should compare the growth rates of these two companies. If 
Company A is growing faster than Company B, you should invest in Company A. 
Otherwise, invest in Company B. Using this strategy, the investor should consistently 
beat the market average at the time expense of reevaluating the growth rate of 
holdings at regular intervals.

Before you race to the bank and take out a loan to throw money at the stock market, 
you should be aware of the weaknesses to the growth investing strategy. Growth 
investing ignores the market capitalization of a company (small companies tend 
to have high growth at a larger risk), the dividend payouts by a company (a value 
returned by the company that is not reflected in the share price of a stock), the 
multitude of the popular metrics used by investors to evaluate companies, the  
public perception of the company, the public perception of the industry, or the  
public perception of the entire market.
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Growth investing only looks at the day-to-day changes in the share price of a 
company. Growth investing helps investors identify companies that outperform 
the market but does not guarantee that the current performance will continue in the 
future for any length of time. You have been warned. If you invest, invest with the 
understanding that every investment is a risk.

Plotting multiple datasets
This chapter isn't about investing. It's about crafting compelling data visualizations.  
I picked Apple's stock price for these visualizations because Apple was in a position  
to tell a compelling story through their share price at the time at which this book was  
being written. I will make no predictions or promises about the future value of 
Apple's share price.

We would like to get a better picture of Apple's 50 percent increase in share price 
over one year by comparing Apple's share price with the share price values of other 
companies. As we stated earlier, all share prices are a bit of fiction. Better stated, 
we would like to compare the percent change of multiple companies' share values 
through a data visualization.

Go back to Yahoo! Finance and download the historical share price csv files for 
Google (symbol: GOOGL) and Microsoft (symbol: MSFT). I named their respective 
csv files googl.csv and msft.csv.

Here's Google's share history:

http://real-chart.finance.yahoo.com/table.csv?s=GOOGL&d=10&e=10&f=201
4&g=d&a=11&b=12&c=1980&ignore=.csv

And, here's Microsoft's share history:

http://real-chart.finance.yahoo.com/table.csv?s=MSFT&d=10&e=10&f=2014
&g=d&a=11&b=12&c=1980&ignore=.csv

We are going to perform the same steps that we did with Apple's data and create a 
plot containing Apple, Google, and Microsoft's percent change in a share price plot.
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First, Google:

> convertCSVFileToSQL "googl.csv" "googl.sql" "googl" ["date STRING", 
"open REAL", "high REAL", "low RDEAL", "close REAL", "volume REAL", 
"adjclose REAL"]

Successful

> googl <- pullStockClosingPrices "googl.sql" "googl"

> let googl252 = take 252 googl

> let googl252pc = applyPercentChangeToData googl252

Next, Microsoft:

> convertCSVFileToSQL "msft.csv" "msft.sql" "msft" ["date STRING", "open 
REAL", "high REAL", "low REAL", "close REAL", "volume REAL", "adjclose 
REAL"]

Successful

> msft <- pullStockClosingPrices "msft.sql" "msft"

> let msft252 = take 252 msft

> let msft252pc = applyPercentChangeToData msft252

Next, we are going to plot these three datasets with a single call to plot:

> plot (PNG "aapl_googl_msft_pc.png") [Data2D [Title "AAPL - One Year, % 
Change", Style Lines, Color Red] [] aapl252pc, Data2D [Title "GOOGL - One 
Year, % Change", Style Lines, Color Blue] [] googl252pc, Data2D [Title 
"MSFT - One Year, % Change", Style Lines, Color Green] [] msft252pc]

True

It's a long line, but it illustrates how to combine multiple datasets into a single plot. 
Note that each dataset is represented with its own Data2D constructor, as well as 
having its own title, color, and plotting style. Every dataset also has an empty list 
(required) that we have not discussed up to this point. This empty list is used to 
include preferences on how functions are plotted. We aren't using these options  
just yet, but we will in future chapters.
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Let's explore the chart that we created:

The benefit of using the percentChange function on each of our datasets is that 
the function will automatically scale the data so that we can enjoy an accurate 
comparison of the change in the datasets over time. From here, we can see that  
Apple clearly grew the most over the past year, followed by Microsoft at just  
over 30 percent, followed by Google at close to 10 percent.

We can also identify when during the past year the share price was below 0. Apple 
and Microsoft both briefly dipped below 0, while Google stayed in positive territory 
for the entire year. When evaluating these companies with the criteria set forth in a 
growth investing strategy, it appears that the clear winner among the three is Apple 
for this one year period.
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Plotting a moving average
Look back at each of our charts. We can see that stocks tend to move up and down 
with jagged shifts. These peaks and valleys represent the day-to-day trade noise. A 
moving average is a way of looking at the value of a stock without having to look at 
the "ugly" jaggedness of the true price. If we computed the average of the entire past 
year's data, it would be a single value and it wouldn't be very useful. If we sectioned 
off the first, say, 20 values, into a window, and averaged those values, we would 
be representing the first 20 values as its own data value. We could then shift our 
window forward one data value and average those 20 values. It wouldn't be much 
different from the first, but the overall trend would be maintained.

In order to create a moving average, we will be using the average function that 
was created at the beginning of Chapter 2, Getting Our Feet Wet. You should find that 
function in the LearningDataAnalyis02.hs file. This new function, movingAverage, 
will reside in our LearningDataAnalyis04.hs file.

The movingAverage function will take a list of Double values and a window size 
(represented by an integer). This method uses recursion to march through the list. 
This function will compute the average of the first window values of the list. If there 
are more than just window elements in values, the function will pass the tail of 
values to itself for more processing.

movingAverage :: [Double] -> Integer -> [Double]
movingAverage values window =
 | window >= genericLength values = [ average values ]
 | otherwise = average
               (genericTake window values):(movingAverage (tail  
               values) window)

Good. 2D plots require that we have an x-value and a y-value for plotting. We need 
to assign an x-value to each of these y-values. The following function will create an 
x pair for every y moving average with a starting index that is equal to the window 
size (call this function with a window size of 20 and the first index will be at  
position 20):

applyMovingAverageToData ::
  [(Double, Double)] -> Integer ->  [(Double, Double)]
applyMovingAverageToData dataset window =
  zip [fromIntegral window..] $ movingAverage
    (map snd (reverse dataset))
    window

The word size here is a bit misleading, for the list doesn't use infinite memory; 
consider just an infinite list instead.
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This command is relatively straightforward except for our use of Haskell's lazy 
evaluation. Note that we have an infinite list in the command at [fromIntegral 
window..]. We are creating a range of values starting with the value window, but 
we never told Haskell where to end. The list is infinitely long, but ZIP knows that it 
needs to stop when the movingAverage function stops.

This is Haskell's beautiful (and powerful) trait of being lazy; Haskell will only 
do the work that is necessary to get the job done, and the job is done when the 
movingAverage function stops.

We are going to apply this function to our Apple percent change data from the past 
year using a 20-day moving average:

> aapl <- pullStockClosingPrices "aapl.sql" "aapl"

> let aapl252 = take 252 aapl

> let aapl252pc = applyPercentChangeToData aapl252

> let aapl252ma20 = applyMovingAverageToData aapl252pc 20

We will be plotting the data with the color red and the 20-day moving average with 
the color black:

> plot (PNG "aapl_20dayma.png") [Data2D [Title "AAPL - One Year, % 
Change", Style Lines, Color Red] [] aapl252pc, Data2D [Title "AAPL 20-Day 
MA", Style Lines, Color Black] [] aapl252ma20 ]

True

This gives the following chart:
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Inspect the new image, aapl_20dayma.png. Note how the black line is now smooth 
compared to the original red line. The jaggedness is gone. The moving average line 
matches the original form of the share price, but without the noisiness to the data. 
The moving average function has been described as just that – a noise removal 
function of data. There are many algorithms in the field of pattern recognition that 
require the original dataset to have a noise removal function passed over the data as 
an initial step, and this is one such approach.

Does this chart help us to answer any questions? We can identify the brief moments 
when the stock is performing above its average stock value and when it isn't. Many 
investors will use two moving averages in their work (typically, a 50-day window and 
a 200-day window) and look for where the moving average lines cross. Investors will 
then pinpoint these crossings as an indicator of when they should buy or sell a stock.

This study of images and looking for patterns in the charts is a form of investing 
known as technical analysis. It is the opinion of this author that technical analysis 
is an attempt to predict the future of a stock price based on the history of that stock 
price when the reality is that they are mostly unrelated. Technical analysis should 
not be used as a substitute for traditional research.

Disclaimer: Your author doesn't own shares in any of the three 
companies mentioned in this chapter. Using the strategies demonstrated 
in this chapter, the reader can discover companies with a one-year growth 
percentage greater than 50 percent. While this practice of discovering high 
growth companies is exciting, remember to be skeptical of your findings. 
Don't fall into the trap of interpreting the past growth of a company as 
being indicative of its future growth. You can discover potential winners 
just as easily as losers with this method. Every company's fate hinges 
on tomorrow's good press or bad press. Predicting the past is easy. 
Predicting the future is not.

Plotting a scatterplot
We are going to close this chapter with a final visualization related to the earthquake 
dataset that we saw in Chapter 2, Getting Our Feet Wet. For this, I returned to the 
USGS page and downloaded their listing of earthquakes in the past month,  
totaling 7,818:

> convertCSVFileToSQL "all_month.csv" "earthquakes.sql" "oneMonth" ["time 
TEXT", "latitude REAL", "longitude REAL", "depth REAL", "mag REAL", 
"magType TEXT", "nst INTEGER", "gap REAL", "dmin REAL", "rms REAL", "net 
REAL", "id TEXT", "updated TEXT", "place TEXT", "type TEXT"]
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Using this dataset of earthquakes, we would like to plot the location of every 
earthquake in the world that happened in the path month. In this dataset, we have 
longitude coordinates (similar to an x-axis) and latitude coordinates (similar to  
a y-axis).

Let's craft a function to retrieve the latitude and longitude coordinates, similar to our 
pullStockClosingPrices function declared at the beginning of this chapter:

pullLatitudeLongitude :: String -> String -> IO [(Double, Double)]
pullLatitudeLongitude databaseFile database = do
  sqlResult <- queryDatabase
    databaseFile
    ("SELECT latitude, longitude FROM " ++ database)
    return $ zip (readDoubleColumn sqlResult 1)
                 (readDoubleColumn sqlResult 0)

Good. Now we should pull the coordinates of each earthquake. We will be plotting 
using the Dots style in EasyPlot:

> earthquakeCoordinates <- pullLatitudeLongitude "earthquakes.sql" 
"oneMonth"

> coords <- pullLatitudeLongitude "earthquakes.sql" "oneMonth"

> plot (PNG "earthquakes.png") [Data2D [Title "Earthquakes", Color Red, 
Style Dots] [] coords ]

This gives the following chart:
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From this plot, we can make out the western coastline of North America and South 
America, as well as the Eastern coastline of Asia, Indonesia, the South Pacific Islands, 
and the Aleutian Islands. This is to be expected; these parts of the world get more 
earthquakes than other parts of the globe. We can also see giant areas of white; other 
parts of the globe don't see earthquakes that often.

Where are the strongest earthquakes? Better stated, how might we plot the 
earthquakes with a magnitude higher than 2 in the color blue and those  
earthquakes with a magnitude less than or equal to to 2 in red? That will  
be an exercise for the reader.

Summary
In this chapter, we've explored how to use the EasyPlot library, which allows us to 
interface the popular plotting utility gnuplot from within Haskell. The stock market 
is a wealth of information, and there is a long history of attempting to predict the 
stock market using plots of stock prices. Plots should help us to answer questions 
about data. Plots can also help us to explore data in the search of questions, if we  
are simply investigating data for the sake of it.

Our next chapter will help us to validate our assumptions about data through 
testing. We are going to be exploring data through statistics and Haskell.
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Hypothesis Testing
Anyone can make claims and many actually do. The joy of data analysis lies partly in 
the ability to claim that a condition such as an event or a property has a measurable 
impact and defend that claim with a proper analysis. A claim that is testable is called 
a hypothesis. This chapter looks at the concept of hypothesis testing. In hypothesis 
testing, we examine a condition to determine whether it has a measurable impact 
on data or not. Since a hypothesis is only limited by one's imagination, many 
hypotheses will be determined as claims that do not have a measurable impact on 
the data. This doesn't mean that a claim isn't true. Sometimes, it just isn't measurable. 
For this reason, we stress that you should be skeptical about a hypothesis (which 
includes even your own hypothesis). Be prepared to have all of your ideas stated  
in a testable form and then perform the test.

Data in a coin
If you have a coin, you have money. If you flip that coin once and record the side 
that faces up, you have a result. If you flip that coin a second time and record the 
result, you have data.

Imagine that I have in my possession a fair coin. By the term fair coin, I mean that the 
coin has a side for heads, a side for tails, and (when flipped) the coin will land on 
the ground with a 50-50 chance of either heads or tails being the side that faces up 
(other possibilities, such as the coin landing on its edge, are not considered). You are 
allowed to inspect the coin and then hand it back to me. With the coin back in my 
possession, I cast a magic spell. I say a few magic words and tell you that the coin is 
now different. The coin is now in your hands and you are allowed to inspect it again. 
At a glance, the coin appears to be exactly the same as it was before I cast the spell. 
Did my spell have any magical effect on the coin? How will you be able to tell?
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Hypothesis test
You will instantly realize that this is going to require a test. Our test is divided into 
two equal, yet opposite, outcomes:

• The magic spell did not have a measurable impact on the coin
• The magic spell did have a measurable impact on the coin

We will call the first outcome a null hypothesis, which is considered to be the default 
position. In plain English, a null hypothesis is the result that conveys that there was 
no change as a result of our action. I took the coin and said a few magic words, but 
whatever it is that I intended to do with this spell did not have a measurable impact 
on the coin. The second outcome is called an alternative hypothesis, which means 
that something did happen. My magic spell may have impacted upon the coin. 
There's also a possibility that I quickly shaved off a tiny edge of the coin when no 
one was looking to make the coin land on one side more often than the other. Our 
test will be able to indicate that a change was detected in the coin, but it will never be 
able to tell you the cause. Without performing any testing, our intuition should lean 
towards the idea that nothing happened and our skepticism should be rooted in the 
idea that something happened. Hence, the focus of our test will be the evaluation of 
the alternative hypothesis.

If we are not able to detect a change in our coin, we say that we failed to reject the null 
hypothesis. In other words, our test should attempt to reject the idea that no changes 
were made to the coin (otherwise, there will be no point in testing). If we are not able 
to detect a change, we fail in that rejection. There is an important distinction here that 
we need to make regarding the two cases where we may either fail to reject or accept 
the null hypothesis. When we are not able to detect a change that may have been 
made to the coin, it means that this particular test was unable to find a change that 
may have been made to the coin. There is a possibility that a future test can detect 
how the coin was changed. By stating that we fail to reject the null hypothesis, we 
leave open the possibility that a change happened, but we were not able to find it.

Establishing the magic coin test
"I know! I will flip the coin 1,000 times and count the number of times I see the coin 
land with heads face up."

"Good. What do you expect the number of heads to be?"

"Oh, I suppose it should be around 500."
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This is the application of the exception formula. In the following formula, X is 
called a random variable. It is an event that will transpire with either a result of 1 (a 
coin lands on heads) or 0 (when a coin lands on tails or on the edge) based on the 
probability p. N represents the total number of event outcomes (which, in this case, is 
2). The probability pi represents an event's probability and Xi represents that event's 
value. Since there are two events, the first event has a probability of 0.5 and a value 
of 1, and the second event has a probability of 0.5 and a value of 0.

We are going to treat heads in our example as an outcome that has a value of 1  
and all other outcomes have a value of 0. The probability of heads is 0.5 and tails  
is (1 - 0.5), which is also 0.5:

Simply multiply 0.5 by 1,000 to get the expected number of 500 heads. However,  
you may realize that the true number might not be exactly 500 heads, but it should 
be close.

Understanding data variance
"We will set a window value. If the mean of the coin flips is within 500 plus or minus 
this window value, we will not be able to claim that the spell had no effect on the coin."

Sounds good. However, what should we set our window value to? We need to know 
how much our random variable spreads out over time. If we set the window value 
to 0, only an experiment with exactly 500 heads will pass. That might be too strict 
given that even a perfectly fair coin will not produce this value every time. If we set a 
window value of 50 (meaning plus or minus 50 heads), most people will agree that it 
is within the natural spread of a fair coin. If we set a window value of 100, we might 
still have a high number of people who believe that our coin was fair, but it should 
be fewer than when we set our window value to 50. If we set the window value to 
300 (this means that we can have the total number of heads as low as 200 and as high 
as 800), it will be reasonable to conclude that this test is not useful to us. We need to 
understand how this variable spreads naturally. An understanding of this spread is 
called variance.
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However, how do we evaluate this thought experiment without data? We need to 
study the problem itself. A Bernoulli trial is a single experiment (in this case, a coin 
flip) that results in a success (heads) or a failure (all other outcomes). When the 
trial is repeated, say, 5 times, we get sequences of heads and tails, such as HHTHT 
or THHHT. We can convert these sequences into values—11010 and 01110. Each 
sequence will have a computable total number of successes (in our small example, 
both trials resulted in a total of three successes) and these sets of experiments can be 
plotted into a histogram. This small example has 6 possible totals from 0 successes to 
5 successes.

Probability mass function
We can illustrate this experiment by computing the average of all the possible 
sequences of 1,000 coin flips (of which there are  combinations (type 2 ^ 1000 
into GHCi to see the size of this number). There is a better way. When many 
Bernoulli trials happen, the collection of these trials forms a binomial distribution. 
The following is a convenient formula to recreate the binomial distribution of data 
called the probabilityMassFunction. The plotting of the probabilityMassFunction will 
produce the same plot as a histogram of all the possible outcomes of coin flips.  
The formula for this can be denoted as:

This formula can be framed as a sentence in the following way; an event that 
succeeds with the probability p will succeed exactly k times out of n trials out of all 
possible outcomes with a probability determined by multiplying the probability of 
at least k desired successes by the probability of at least (n-k) desired failures by all of 
the possible arrangements that k number of successes can be arranged in n trials.

We can create a histogram of coin flips using Haskell. To make our lives easier, we 
are going to install the Combinatorics package. This packages contains the function 
that allows us to quickly perform the calculation required to determine the number 
of possible arrangements of k successes out of n trials:

$ cabal install exact-combinatorics
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At the top of our LearningDataAnalysis05.hs file, make sure that our package  
is imported:

import Math.Combinatorics.Binomial

Next, let's craft the function:

probabilityMassFunction ::
    Integral a => a -> a -> Double -> Double
probabilityMassFunction k n p =
    (fromIntegral (n 'choose' k))
      * (p^k) * ((1-p)^(n-k))

We will call the plot function (introduced in Chapter 4, Plotting) using the new 
probabilityMassFunction function to create a graph with a range of 0 to 1,000. 
To gain access to the LearningDataAnalysis04 and LearningDataAnalysis02 
modules (used later in this chapter), use the following GHCi command:

> :l LearningDataAnalysis02 LearningDataAnalysis04 LearningDataAnalysis05

> :m LearningDataAnalysis02 LearningDataAnalysis04 LearningDataAnalysis05

Now, we will plot the function, as follows:

> import Graphics.EasyPlot> plot (PNG "coinflips.png") $ 
Function2D [Title "Coin Flip Probabilities"] [Range 0 1000] (\k -> 
probabilityMassFunction (floor k) 1000 0.5)

The following screenshot shows the result of the preceding command:
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Note that the data has a sharp peak at the 500 mark. It can be seen that the majority 
of the peak's width extends somewhere between 400 and 600. The portions of the 
graph that lie before and after the peak indicate that the probability of occurrence is 
almost 0. It is not impossible, but it is just highly unlikely. Let's find out the outcome 
of the most likely event at the peak of this plot:

> probabilityMassFunction 500 1000 0.5

2.52250181783608e-2

The mostly likely event from all the possible coin flips will happen 2.5 percent of the 
time. While this may seem small, it is still larger than the remaining 1,000 possible 
totals. While we are at it, take a note of the entire plot. The plot represents the 
probability of every individual possible outcome, no matter how insignificant. If we 
were to add up the probability of every possible outcome, the sum should be exactly 
1. We will demonstrate this with Haskell:

> sum $ map (\k -> probabilityMassFunction k 1000 0.5) [0..1000]

1.0

The probability that any event will happen is equal to the sum of the probabilities of 
each event outcome, and this probability is always equal to 1.

Determining our test interval
We wish to create a test that will allow us to determine whether the results of the 1,000 
enchanted coin flips fall within 99 percent of the possible fair coin outcomes. I picked 
99 percent because the value needs to be convincingly high to show that the enchanted 
coin is different to a fair coin. This section of the process of testing is arbitrary. We need 
to know the range of events that result in the sum of all probabilities that equal 0.99 
that reside at the center of the problem's mass function plot.

With a bit of trial and error, we will see that a window size of 40 hits our mark, 
which is close to the 99 percent threshold that we selected. I manually tested the 
ranges until I came across a range that is close to 0.99. It probably took about four 
tries to find a result that I liked:

> sum $ map (\k -> probabilityMassFunction k 1000 0.5) [(500-40)..
(500+40)]

0.9896118684338442
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Establishing the parameters of the experiment
Finally, we can establish the parameters of our experiment. The null hypothesis is 
that the enchanted coin will flip heads 500 times (plus or minus 40). The alternative 
hypothesis is that the enchanted coin will flip heads more than 540 times or fewer 
than 460 times. Once we perform the experiment and gather the results, we will 
accept the alternative hypothesis if the result is greater than 540 or fewer than 460. 
Otherwise, we fail to reject the null hypothesis.

Introducing System.Random
We will now begin our actual experiment. To do this, we will not put any magical 
spells over real coins. We will use Haskell. Though Haskell is a purely functional 
programming language, it does have the ability to extend outside itself to look for 
resources, including the ones related to random number generation.

To use the System.Random module, you will first need to create a new random 
number generator, as follows:

> import System.Random

> g <- newStdGen

Using this new random number generator, we can utilize the random function to 
return pseudorandom values (and a new generator). The random number generation 
functions can output any numeric type we desire, so I have explicitly stated that I 
want a Double type. Note that if you make this call again a second time, you will get 
the same result thanks to Haskell's side effect-free nature. Here are the results that I 
get when I make a call to random:

> random g :: (Double, StdGen)

(0.8872828052781477,805351557 696985193)

We can use the random function to generate infinite random numbers in the range of 
0 to 1. Since you probably do not need an infinite amount of random numbers, use 
the take function to limit this to your needs. Note that the first number in the list is 
identical to the previously generated random number. This is not a fluke. I didn't 
change my random number generation variable between these two calls. Here,  
we will generate three random values in the range of 0 to 1:

> take 3 $ randoms g :: [Double]

[0.8872828052781477,0.6612757244159314,0.7335027565852938]
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We can also generate random values that are integers ranging from two specified 
values using the randomRs function. Again, you will need to use the take function to 
limit this to your needs. Here, we generate 5 random values in the range of 0 to 100:

> take 5 $ randomRs (0,100) g

[62,55,29,69,20]

Performing the experiment
Since our experiment calls for the flipping of a coin 1,000 times (where tails is equal 
to 0 and heads is equal to 1), we will use the randomRs function to generate 1,000 
values on the integer range of 0 to 1 (the speaking of any magical words while 
issuing this line is optional):

> let coinflips = take 1000 $ randomRs (0, 1) g

What is the final result of this experiment? We will compute the sum of the 
coinflips value (your result may vary), as follows:

> sum coinflips 

492

Since my result is within the range of 460 to 540, the experiment failed to reject the 
null hypothesis. There might have been some actual magic in my magical spell, but 
our experiment is not able to detect any change, and hence, the possibility is left 
open. If the experiment accepted the alternative hypothesis, it may mean that there is 
something unique to your system that justifies the result. It may also mean that you 
should re-run your experiment to be sure.

Does a home-field advantage really 
exist?
We perform tests on data for the following two reasons:

• We wish to evaluate a claim
• We have a limited amount of data

Both must be true in order to justify a test. If you have a complete picture of the data 
related to a claim, there will be no need to perform a test because a simple calculation 
will suffice. In the next example, we are going to have a look at an age-old claim in 
sports and use a limited amount of data to test the claim.
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There is some important terminology that we will discuss here—population  
and sample. A complete picture of data is called a population dataset. Anything  
less than a complete picture is called a sample dataset. As discussed in Chapter 1, 
Tools of the Trade, sometimes the population dataset is so large that we are unable to 
work with it using the resources that are available on a single computer. A strategy 
that can be used to work with big data is to take a sample of the data that is small  
enough to be worked upon on a single computer and then test our claims using the 
limited dataset.

Baseball in America has a history dating back to the 19th century, and the data  
that we have on some teams is just as old. We shall continue our discussion of 
testing while using some historic professional baseball data. The Retrosheet website, 
http://retrosheet.com/, has many of these records available for viewing 
purposes in the CSV format. We will test the claim that a team scores more runs 
while playing at its home stadium as opposed to an away stadium. For this, we will 
need data (provided by Retrosheet), and we need to establish the null hypothesis and 
an alternative hypothesis using the following theory:

• The null hypothesis will be that there exists no difference in runs, or that  
a lesser number of runs were scored while playing at a home stadium as 
opposed to an away stadium

• The alternative hypothesis will be that more runs were scored while  
playing at a home stadium as opposed to an away stadium

I visited the Retrosheet website and found out that their page for game logs 
according to the year. Then, I downloaded the data corresponding to the 2014 
dataset. At the time of writing this book, the page where you can download the  
game log data is http://www.retrosheet.org/gamelogs/index.html.

Converting the data to SQLite3
On downloading the file and unzipping its contents, you will quickly realize that 
there are many columns in the csv file with a huge amount of data. It will be fun to 
explore all of this data, but we are only interested in a few columns. To break this 
file into a few necessary columns, I used the cut gnuplot tool (with apologizes to my 
readers using Windows) to filter this data down to something far more manageable, 
as follows:

$ cut -d, -f 1,4,7,10,11 GL2014.TXT > winloss2014.csv
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The -d flag tells cut that we are using a comma delimiter. The -f 1,4,7,10,11 flag 
tells cut that we require the first (date), fourth (away team), seventh (home team), 
tenth (away runs), and eleventh (home runs) columns. The convenient aspect of 
baseball data is that any time a baseball game is described, the away team is always 
listed first, followed by the home team. If you don't have the cut tool, you can load 
the csv file into your favorite spreadsheet software, delete the unnecessary columns, 
and export the document back to the csv file type.

Once the dataset has been filtered down to just these five columns, we can import the 
data into a SQLite3 database using Haskell, as follows:

> convertCSVFileToSQL "winloss2014.csv" "winloss.sql" "winloss" ["date 
TEXT", "awayteam TEXT", "hometeam TEXT", "awayscore INTEGER", "homescore 
INTEGER"]

Successful

Exploring the data
We can quickly get an idea of the awayteam runs and hometeam runs using the sum 
function within the SQL query, as follows:

> queryDatabase "winloss.sql" "SELECT SUM(awayscore), sum(homescore) FROM 
winloss"

[[SqlByteString "9791",SqlByteString "9966"]]

We can immediately see that there is a difference between the away team runs and 
the home team runs, and the home team runs scored more. Perhaps, there is some 
validity to the claim. First, we should get the performance of each team when they 
played at home. This is best done with SQL. With the following line, we will see the 
number of runs each team scored while playing at their own stadium. The ORDER BY 
clause will help us keep our teams in order, as follows:

> runsAtHome <- queryDatabase "winloss.sql" "SELECT hometeam, 
SUM(homescore) FROM winloss GROUP BY hometeam ORDER BY hometeam"

> runsAtHome

[[SqlByteString "ANA",SqlByteString "362"],[SqlByteString 
"ARI",SqlByteString "343"],[SqlByteString "ATL",SqlByteString "280"],... 
remaining content clipped
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This time, we will gather the performance of each team as they play stadiums away 
from home, as follows:

> runsAway <- queryDatabase "winloss.sql" "SELECT awayteam, 
sum(awayscore) FROM winloss GROUP BY awayteam ORDER BY awayteam"

> runsAway

[[SqlByteString "ANA",SqlByteString "411"],[SqlByteString 
"ARI",SqlByteString "271"],[SqlByteString "ATL",SqlByteString "293"],... 
remaining content clipped

Use zip to get a pairwise comparison of each team. We will also use the 
readDoubleColumn function that was created in Chapter 4, Plotting as follows:

> let runsHomeAway = zip (readDoubleColumn runsAtHome 1) 
(readDoubleColumn runsAway 1)

> runsHomeAway

[(362.0,411.0),(343.0,271.0),(280.0,293.0),(341.0,364.0),(324.0,310.0),(3
35.0,325.0),(308.0,306.0),(306.0,289.0),(323.0,346.0),(500.0,255.0),(364.
0,393.0),(318.0,311.0),(300.0,351.0),(328.0,387.0),(349.0,296.0),(329.0,3
21.0),(368.0,347.0),(304.0,329.0),(286.0,343.0),(376.0,353.0),(303.0,316.
0),(350.0,332.0),(267.0,268.0),(281.0,353.0),(325.0,340.0),(332.0,287.0),
(317.0,295.0),(298.0,339.0),(387.0,336.0),(362.0,324.0)]

Plotting what looks interesting
I bet that this is some interesting data. We will plot it, as follows:

> import Graphics.EasyPlot

> plot (PNG "HomeScoreAwayScore.png") $ Data2D [Title "Runs at Home (x 
axis) and Runs Away (y axis)"] [] runsHomeAway

True
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The following screenshot shows the result of the preceding command:

The preceding screenshot can be far more useful to us if we can identify the team 
that is associated with each data point (which is not something that the EasyPlot 
library currently allows). We will subtract the away scores from the home scores so 
that the data is focused on the scores that are around zero. Positive values represent 
more runs at home, and negative scores represent more away scores:

> let runsHomeAwayDiff = map (\(a,b) -> a-b) runsHomeAway

> plot (PNG "HomeScoreAwayScoreDiff.png") $ Data2D [Title "Difference in 
Runs at Home and Runs Away"] [] $ zip [1..] runsHomeAwayDiff

True
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The following screenshot shows the result of the preceding command:

You may note that there is a data point in this chart that represents almost 250 
positive runs. This data point represents the Colorado Rockies team, which played at 
Mile High Stadium. This stadium is located a mile above sea level. Rockies aside, you 
will note that most of the data points range from -50 to 50 runs. Our goal is to figure 
out whether this data supports the claim that a team playing in its own stadium 
produces any scoring advantage. At a glance, it is still hard to tell from the picture.
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Returning to our test
Now is a good time to restate our claim in mathematical terms, as follows:

• The null hypothesis is that the difference of runs scored at home and runs 
scored at the away games will be less than or equal to 0

• The alternative hypothesis is that the difference of runs scored at home and 
runs scored at the away games will be greater than 0

The next step is to compute the sample mean of this dataset. Since this is a sample 
dataset, we will call our mean a sample mean. Simply compute the average of each 
difference in runs for the listing of teams. We can easily compute the sample mean 
on a single machine. The population mean is a part of an unknown quantity that 
we will test. The following line requires you to keep the LearningDataAnalysis02 
module loaded:

> average runsHomeAwayDiff 

5.833333333333333

Each team scored, on average, almost 6 more runs at home than away during  
the entire 2014 season. While this may seem like evidence to support our claim,  
we are not finished with the test.

The standard deviation
The standard deviation is a term that can be interpreted as the spread of the data. 
If the standard deviation is a small value, then the data is clustered around the 
mean. If the standard deviation is a large value, then data is scattered. We compute 
the standard deviation by finding the adjusted average squared distance from the 
average. We say that this is an adjusted average instead of just an average to take 
into account that this is a sample and not the entire population. To compute the 
adjusted average, we will divide the sum by the number of elements subtracted by 1. 
This n-1 adjustment is known as Bessel's correction. The sample standard deviation is 
easily computed with the data sampled from the year 2014. The population sample 
deviation represents an unknown quantity.

We need to make sure the following import statements are found at the beginning of 
our LearningDataAnalysis05.hs file:

import Data.List
import Math.Combinatorics.Exact.Binomial
import LearningDataAnalysis02
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standardDeviation :: [Double] -> Double
standardDeviation values =
    (sqrt . sum $ map (\x -> (x-mu)*(x-mu)) values) /sqrt_nm1
  where
    mu = average values
    sqrt_nm1 = sqrt $ (genericLength values - 1)

Good. We will now calculate the standard deviation:

> standardDeviation runsHomeAwayDiff 

57.90365561286553

The sample mean is 5.83 runs and the sample deviation is 57.90 runs, which means 
that the average team scored 63.73 more runs at home or 52.07 more runs at away 
stadiums during the 2014 season.

The standard error
We will compute the standard error of the samples by dividing the standard 
deviation by the square root of the number of samples. The standard error is  
our way of expressing the mean to a precision:

> import Data.List

> standardDeviation runsHomeAwayDiff / (sqrt $ genericLength 
runsHomeAwayDiff)

10.571712780392359

The standard error is 10.57 runs. We believe that the population mean of the runs' 
difference is 5.83 runs plus or minus 10.57 runs. Since 5.83 runs subtracted by 10.57  
is -4.74 runs (and this is less than 0), we now have a small reason to doubt our 
original claim.

The confidence interval
So, is the population mean greater than 0 or not? We will attempt to answer this 
question with a confidence interval. A confidence interval is a way of expressing that 
a value is within two end points on a number line at a set confidence level. As with 
our last example, selecting the confidence level is arbitrary, but it needs to be a high 
value. In this example, we are going to use the 95 percent confidence level.
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The example involving coin flips was contrived because it is possible to 
mathematically compute all the possible outcomes of 1,000 coin flips, and we showed 
how the outcomes followed a binomial distribution. In this example involving 
baseball data, we do not know the distribution of the data. In cases where the 
distribution of data is unknown, we have to assume a distribution. According to 
the central limit theorem, we can approximate a normal distribution with a defined 
mean and standard deviation, even when we aren't sure of the real distribution. The 
normal distribution has a curve that is similar to that of the binomial distribution. 
The normal distribution goes by another name that you are probably familiar with—
the bell curve. We are going to assume that the difference in the runs at home to the 
runs at away stadiums follows a normal distribution.

The standard normal distribution has a mean of 0 and a standard deviation of 1. This 
is the probability density function for the standard normal distribution. Similar to the 
binomial distribution, the integral of this function ranging from negative infinity to 
positive infinity is one. Its formula can be denoted as follows:

We will plot this formula on the range of -4 to 4. This function extends infinitely in 
both directions:

> plot (PNG "standardNormal.png") $ Function2D [Title "Standard Normal"] 
[Range (-4) 4] (\x -> exp(-(x*x)/2)/sqrt(2*pi)) 

True
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The following screenshot shows the result of the preceding command:

Based on our assumption that the difference in runs at home stadiums and away 
stadiums follows a normal distribution, we can establish a confidence interval 
that is centered around our sample mean. We must normalize this dataset so that 
we can utilize the standard normal curve. The normalizing of our dataset yields a 
distribution that is t-distributed. Just like what we did with the coin flip problem, we 
need to discover the interval that represents 95 percent of the area under the curve 
from the starting interval point to the ending interval point, and the center of this 
area is aligned to 0. The discovering of the area under the curve usually requires 
calculus, but there is a Haskell module that is designed just for this purpose, which 
makes the job a little easier.
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We are going to work with the Error Function (Erf) module. You can install the Erf 
module using cabal, as follows:

$ cabal install erf

An introduction to the Erf module
Once this library is installed, you will have access to seven new functions that allow 
you to evaluate normal curves, including normal cumulative density function 
(normcdf) and inverse normal cumulative density function (invnormcdf). The 
normcdf function will take a parameter (x, which ranges from negative infinity to 
infinity) and returns the area under the curve of the normal standard starting from 
negative infinity to x. The invnormcdf function does the opposite of normcdf. Given 
a parameter (area, which ranges from 0 to 1), this function will return the value of x 
that produces a range from negative infinity to x, which has an area under the curve 
equal to the specified area.

For example, the mean of the standard normal curve is 0 (it is the center of the plot). 
The area under the curve to the left of 0 is 0.5 units. The area towards the right under 
the curve is also 0.5 units. Simply calling normcdf 0 produces the area that is located 
towards the left of the plot, as follows:

> import Data.Number.Erf

> normcdf 0

0.5

We know that the total area under the curve is 1, which means that to produce the 
area to the right side of the plot of any value x, we must subtract normcdf x from 1:

> 1 - (normcdf 0)

0.5

If we are interested in the value of x that produces half the area of the chart, we 
can use invnormcdf for this. We have already established that the value of x that 
designates exactly half the curve has to have the value of 0. So, it is no surprise that 
invnormcdf 0.5 produces 0.0:

> invnormcdf 0.5

0.0
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Likewise, you can ask for the position of x that produces an area of 1, as follows:

> invnormcdf 1

Infinity

Haskell tells it like it is.

Using Erf to test the claim
We want to know the starting left position and the ending right position of a range 
that has an area of 0.95 (our confidence level), which is also centered at the middle  
of the standard normal distribution. This is going to be trickier than a simple 
normcdf 0.95. Because the range we desire will have 0.95 in the middle, we need  
to compute the area on both the sides of this range. Subtract 0.95 from 1 and divide 
the result by 2:

> (1-0.95)/2

2.5000000000000022e-2

We must compute the position of x with an area of 0.025, as follows:

> invnormcdf 0.025

-1.9599639845400543

-1.96 will be the left side of our interval. Since we know that the area of the  
unused section towards the far right of the plot is also 0.025 units, the right side  
of the interval will have the value 1.96. The full interval at the 95 percent confidence  
level is -1.96 to 1.96. We can demonstrate this by calling normcdf 1.96 and 
subtracting the area towards the far left tail of the curve from it:

> normcdf 1.96 - 0.025

0.9500021048517795

Next, we will multiply the standard error by each of the interval end points and  
add the mean of the sample data to it:

(5.83 + -1.96 * 10.57, 5.83 + 1.96 * 10.57) = (-14.89, 26.55)
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A discussion of the test
The 95 percent confidence interval shows that, in the 2014 season, the teams score 
somewhere between -14.89 to 26.55 more runs at home stadiums than at away 
stadiums. As stated earlier, the null hypothesis is that the difference of runs scored at 
home and away games will be less than or equal to 0. Since our confidence interval 
clearly contains the 0 value in the range, we have failed to reject the null hypothesis. 
There might be a home-field advantage, but our sampling of the 2014 games failed to 
demonstrate this at the designated confidence level.

Summary
This chapter specifically looked at testing claims using the traditional statistical 
techniques and the Haskell Erf library. We defined the difference between the null 
hypothesis and the alternative hypothesis. We stressed that one should never accept 
the null hypothesis, but should always fail to reject it. We also emphasized a basic 
premise of skepticism—when faced with a claim that emphasizes how a particular 
event (magic spells, playing at home stadiums, new drugs, and so on) causes a 
change, your default position should be that the event doesn't change anything. 
You should also be willing to properly define a test that allows you to accept the 
alternative hypothesis and then perform the test.

Along the way, we explored binomial and normal distribution. Binomial distribution 
is used to compute the likelihood of discrete events at a known probability. The 
normal distribution is used as a reference to define confidence intervals. We also 
explored how Haskell handles pseudorandom number generation and used some 
generated numbers in a test.

The next chapter will cover regression analysis. Regression analysis serves two 
purposes. The first is to provide assistance in the discovery of correlations in data. 
The second is to determine data trends for the purpose of making predictions.  
We will explore both linear and nonlinear regressions on various datasets.
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Correlation and Regression 
Analysis

In the previous chapter, we examined the classical procedure to test claims using the 
normal distribution curve. We also discussed the fundamental concept of variance 
and presented the function that computes the standard deviation of a dataset.

This chapter will examine the relationships between the input and output data. 
This is a truism to most sports fans—there exists a relationship between scoring and 
winning. It should seem obvious that sports teams that score higher points tend to 
win more games. As you might expect, the teams that don't often score high points 
tend to not win that often. The craft of measuring the relationship between the input 
(the number of points scored) and output (whether the team won or not) data is 
known as correlation analysis. Regression analysis allows us to estimate the result 
of an unknown output based on the input by creating an equation that minimizes 
errors between the independent and dependent variables that are believed to be 
linked. After creating a regression equation, we estimate the output for each of the 
known outputs based on the known inputs. This understanding is not without its 
drawbacks. A discussion of this approach should also come with an understanding 
of the potential errors that result from using it.

In this chapter, we will cover the following:

• The terminology of correlation and regression
• Study – is there a relationship between scoring and winning in baseball?
• Regression analysis
• The pitfalls of regression analysis
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The terminology of correlation and 
regression
Before we explore any data, we will discuss some terminology. When using 
regression analysis, we need a set of input and output variables. Analysis where a 
single column of data is used as an input variable is known as univariate analysis. 
Analysis that takes multiple sets of input variables is known as multivariate 
analysis. Regression analysis allows us to estimate unknown values in a single 
column of output. The input data is known as an independent variable. There are 
no assumptions being made as to how independent variables behave. Unlike the 
input, the output is known as a dependent variable. The assumption in this case is 
that the input variables impact the output variable, for example, we will return to 
our assumption that scoring high points leads to a team winning more often than 
an average number of times. An average team in this context is a team that wins 
and loses an equal number of times. A team can work hard, practice, and exercise 
to their full potential in order to account for the offensive effort of the team, which 
will account for the team scoring more points than the average number of points. 
We generally believe that these actions translate to a team that wins more often than 
an average team (while we ignore some equally important factors like the defensive 
abilities of an opposing team). Likewise, a team puts forth a minimal amount of 
effort into practice in order to score fewer points. We also believe that these actions 
translate to a team that wins less often than an average number of times. In both 
cases, the team represents an independent variable. The amount of hard work put 
towards an offensive effort is purely under their control. Unlike offensive effort, 
winning is not completely under their control. An opposing team might have a better 
offensive or defensive plan, or more capable players on their side. These qualities 
represent an unknown variable when performing regression. Finally, there is luck. 
Ignoring luck, our assumption is that winning is dependent on scoring, and scoring 
is dependent on offensive effort.

The expectation of a variable
An independent variable is denoted as X. If we have multiple independent variables, 
then you will see each independent variable denoted as X1, X2, X3, …, Xm. A 
dependent variable is denoted as Y. The X and Y variables represent a dataset of n 
values (or observations). The mean of X is known as X-bar. If we wish to take every 
value of X and subtract X-bar from it, we will write it in the following way:
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The term average (which is the result of a sum of a listing of values divided by the 
number of values) also goes by the term mean as well as expectation. Sometimes,  
we will see the preceding formula written as follows:

You can think of E as a function that computes the average of a list of values.

The result of this operation will be a new dataset with the average being 0. If a 
value in this dataset is positive, we know that the result is above average. Likewise, 
negative values will give the result as below average.

The variance of a variable
We would like to know the spread of this variable. To do this, we will take each 
value in the dataset, subtract the mean, and then square the result. This produces a 
dataset that consists of positive values. After this step, add up all of the values and 
divide the sum by the number of observations to get the average squared distance 
from the average. This, as we discussed in Chapter 5, Hypothesis Testing, is the 
population variance. To find out the sample variance, rather than dividing by n,  
we divide it by (n-1):

We can write the same formula with the help of a cleaner notation by using  
the E function:

To find out the population standard deviation, we will take the square root of the 
population variance. The standard deviation is signified by the Greek letter, sigma 
(denoted as σ):
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Normalizing a variable
Now that we know the average distance from the average of the values in the 
dataset, we can use this to normalize the X variable. To do this, we will divide  
each value in X- X-bar by the standard deviation:

This normalized version of our dataset still contains positive and negative values, but it 
is also a measure of how extreme in distance the normalized variable is from the mean. 
A score between -1 and 1 means that a value is closer to the mean than the typical data 
value. Scores ranging from -2 to -1 and from 1 to 2 mean that the value is between one 
and two times distant from the mean than the typical value. Most of your data should 
fall between a score of -2 and 2. Scores from -3 to -2 and from 2 to 3 indicate that the 
value is a little more distant. A value greater than 3 or less than -3 means that this value 
is more than 3 times the distance from the average of the values in the dataset than 
the typical value. Values with a score in this range are considered rare and indicate 
special circumstances that merit investigation. Values that deviate significantly from 
the majority of a dataset are called outliers. When an outlier value has been identified, 
it possibly represents special circumstances and should be investigated for unique 
qualities. It can also mean something less special—a noisy data point was not properly 
identified in the cleaning phase of data analysis.

The covariance of two variables
When working with two variables (in our case, an input and an output variable), 
we may want to study how the variables move in conjunction with each other. Like 
variance, the tool known as covariance helps us to measure how variables relate to 
each other. Instead of one X variable, we now have two—X and Y.

We will begin by subtracting the mean of X from each value of X, whose answer is 
then multiplied by the result of the mean of Y subtracted from each value of Y:
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Again, we add each of these distance measures and divide the sum by the number 
of observations to find out the population covariance coefficient. To find the sample 
covariance coefficient, we change n to n-1:

Again, we can write the same formula by using the E notation:

The covariance coefficient is a measurement of how the variables relate to each other.  
If the X variable increases as the Y variable increases, then this coefficient will have 
a positive value. Likewise, if X or Y increases and the other variable decreases, then 
this coefficient will have a negative value.

Finding the Pearson r correlation coefficient
We can normalize this value as we did before. This normalized value will always 
have a value from -1 to 1. We need the standard deviations of X and Y (σx and 
σy). This normalized version of the covariance value is known as the Pearson r 
correlation coefficient. The formula for this can be denoted as follows:

As with the correlation coefficient, a positive r value informs us that the  
variables are linearly correlated (as the value of one variable increases, the value  
of the other increases) and a negative r value informs us that the variables are 
inversely correlated (as the value of a variable increases, the other decreases). The 
closer an r value is to the extremes of -1 or 1, the more the strength of the correlation 
it indicates. An r value that is close to 0 tells us that the connection between the two 
variables is weak.
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Finding the Pearson r2 correlation coefficient
The r value is tweaked further to r2 (we simply multiply r by itself). Because r ranges 
from -1 to 1, the value of r2 will always be a value from 0 to 1. A higher r2 implies that 
there is stronger evidence of a correlation. A lower r2 implies little or no correlation. 
An r2 that is greater than 0.9 is considered to be an excellent correlation, while an r2 
that is less than 0.5 is considered to be weak. Interpreting an r2 is a form of art—it is 
what you make of it. The r2 values go by the name, coefficient of determination.

We will not continue this discussion without talking about a key pitfall of r2—the 
discovery of an input and output variable that produces a high r2 value does not 
automatically imply that the input has an impact on the output. This is known by 
the saying, correlation does not imply causation. When data mining for correlations, 
you are bound to find pairs of variables that produce high r2 values. Some of these 
input variables might have a causal effect on the output variable, and at times, 
you may find a similar pattern between two unrelated variables. This frequently 
happens when two output variables are compared. This measurement only tells you 
what correlates, not whether the discovered correlations are sensible. You might discover 
a link between the sale of food and the sale of beverages at a restaurant, but there is 
nothing interesting about this correlation because these variables are dependent on 
the number of customers who frequent the restaurant.

Translating what we've learned to Haskell
We can express these formulas to Haskell in the following way:

module LearningDataAnalysis06 where

  import Data.List
  import Graphics.EasyPlot
  import LearningDataAnalysis02
  import LearningDataAnalysis04
  import LearningDataAnalysis05

  {- Covariance -}
  covariance :: [Double] -> [Double] -> Double
  covariance x y = average $ zipWith (\xi yi -> (xi-xavg) * (yi-  
  yavg)) x y
    where
      xavg = average x
      yavg = average y
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  {- Pearson r Correlation Coefficient -}
  pearsonR :: [Double] -> [Double] -> Double
  pearsonR x y = r
    where
      xstdev = standardDeviation x
      ystdev = standardDeviation y
      r = covariance x y / (xstdev * ystdev)

  {- Pearson r-squared -}
  pearsonRsqrd :: [Double] -> [Double] -> Double
  pearsonRsqrd x y = pearsonR x y ^ 2

Study – is there a connection between 
scoring and winning?
We will continue using the baseball dataset that we introduced in the last chapter. 
We can check whether there is a correlation between scoring and winning. To do 
this, we will compute the runs scored per game for each team as well as the win 
percentage for each team. We must compute the total number of runs scored, the 
total number of wins, and the total number of games played by each team.

A consideration before we dive in – do any 
games end in a tie?
Before we can proceed with our analysis, we need to make sure that we handle data 
that does not quite fit into our model. In this case, we are talking about tie games. 
There are many games played each year and, often, games have an extra inning. 
However, does any game ever end up as a tie? A few select queries will let us 
know whether the home score equals the away score. The first query will tell us the 
number of games in our database and the second will report the number of games 
that ended in a tie:

> queryDatabase "winloss.sql" "SELECT COUNT(*) FROM winloss"

[[SqlByteString "2429"]]

> queryDatabase "winloss.sql" "SELECT COUNT(*) FROM winloss WHERE 
awayscore==homescore;"

[[SqlByteString "0"]]

Games that ended in a tie are not a part of this dataset. All the 2,429 games of the 
2014 season had clear winners.
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Compiling the essential data
You may recall that the data is organized according to the individual games. For 
each record in the database, the away team is listed before the home team. We are 
going to split the information gathering phase into two steps— a step to gather the 
home team stats and a step for the away team stats. The information that we are 
going to gather is the 3-letter code for the team name, the number of home wins, the 
total number of runs scored at home games, and the number of home games. First, 
we will gather the stats related to the home team. The GROUP BY statement will make 
sure that all the teams stay in the alphabetical order, according to the team code:

> homeRecord <- queryDatabase "winloss.sql" "SELECT homeTeam, 
SUM(homescore > awayscore), SUM(homescore), COUNT(*) FROM winloss GROUP 
BY homeTeam;"

Second, we will collect the stats pertaining to the away team. With the following 
query, we will switch from looking at the information related to the home field to  
the data related to the away field:

> awayRecord <- queryDatabase "winloss.sql" "SELECT awayTeam, 
SUM(awayscore > homescore), SUM(awayscore), COUNT(*) FROM winloss GROUP 
BY awayTeam;"

Now, we must combine these datasets. First, we will gather the total number of wins. 
In the two matrices, this information appears in column index 1:

> let totalWins = zipWith (+) (readDoubleColumn homeRecord 1) 
(readDoubleColumn awayRecord 1)

> totalWins

[98.0,64.0,79.0,96.0,71.0,73.0,73.0,76.0,85.0,66.0,90.0,70.0,89.0,93.0,77
.0,82.0,70.0,84.0,79.0,88.0,73.0,88.0,77.0,87.0,88.0,90.0,77.0,67.0,83.0,
96.0]

Next, we will gather the total number of runs scored. This information appears in 
column index 2:

> let totalRuns = zipWith (+)  (readDoubleColumn homeRecord 2) 
(readDoubleColumn awayRecord 2)

> totalRuns

[773.0,614.0,573.0,705.0,634.0,660.0,614.0,595.0,669.0,755.0,757.0,629.0,
651.0,715.0,645.0,650.0,715.0,633.0,629.0,729.0,619.0,682.0,535.0,634.0,6
65.0,619.0,612.0,637.0,723.0,686.0]
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Finally, we will gather the total number of games played by each team. There  
are 162 games in a typical baseball season, but we should not depend on this tidbit  
of knowledge and should instead calculate it ourselves. This information is in 
column index 3:

> let totalGames = zipWith (+) (readDoubleColumn homeRecord 3) 
(readDoubleColumn awayRecord 3)

> totalGames

[162.0,161.0,162.0,162.0,162.0,162.0,162.0,162.0,162.0,162.0,162.0,162.0,
162.0,161.0,162.0,162.0,162.0,162.0,162.0,162.0,162.0,162.0,162.0,162.0,1
62.0,162.0,162.0,162.0,162.0,162.0]

As you can see, almost every team played 162 games (save two teams that  
played 161).

We are still not done with the compiling of information. We now need the win 
percentage and the number of runs per game, both of which can be obtained by 
dividing totalWins and totalRuns by totalGames, as follows:

> let winPercentage = zipWith (/) totalWins totalGames

> let runsPerGame = zipWith (/) totalRuns totalGames

Searching for outliers
We mentioned previously that a simple definition of an outlier is a data point that 
is more than 3 standard deviation units from the mean of the dataset. Let's explore 
these two datasets (runsPerGame and winPercentage) for outliers. First, we will 
look at the runsPerGame function. Here, we will take the absolute value of the 
normalized dataset and check to see whether any of these values exceed 3 units:

> any (\xi -> abs( (xi - average runsPerGame) / standardDeviation 
runsPerGame) > 3) runsPerGame

False

None of the values in the runsPerGame function exceed 3 units. Let's do this again 
for the winPercentage dataset:

> any (\xi -> abs((xi - average winPercentage) / standardDeviation 
winPercentage) > 3) winPercentage

False
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Again, none of the values in either the runsPerGame dataset or the winPercentage 
dataset seem to indicate that they contain an outlier. If we were to encounter an 
outlier, it might indicate that either something is wrong with the dataset, or there is 
something unique about that particular data point. Either way, outliers will require 
further investigation on the part of the data analyst. If you believe that an outlier in 
your data exists based on certain unique circumstances, you will be forgiven if you 
exclude this observation from your overall analysis and make a note of the exclusion.

Plot – runs per game versus the win 
percentage of each team
Let's plot this information. Plotting will prove useful during the interpretation of 
the results. The x-axis and y-axis of this chart will represent the number of runs per 
game and the win percentage of each team respectively:

> import Graphics.EasyPlot

> plot (PNG "runs_and_wins.png") $ Data2D [Title "Runs Per Game VS Win % 
in 2014"] [] $ zip runsPerGame winPercentage

True

The preceding statement would give the following chart as a result:
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What immediately pops out when we look at this image is how cloudy the data 
looks. We can see that the data does trend upward, and this is evidence of a positive 
correlation. Yet, it is hard to make out a line in the data. You might notice that at the 
bottom right corner of the image is a data point representing the team with the third 
highest number of runs per game in 2014, and yet they have a dismal win percentage 
of less than 0.45. This (again) is the Colorado Rockies, who tend to have high scoring 
games at their one-mile-above-sea-level stadium, but this does not translate into a 
majority of wins for the team. At the opposite corner of this graph, we can see that 
there are three teams that scored less than 4 runs per game in more than half of  
their games in 2014. These are the teams with winning seasons in spite of having 
a less-than-stellar offense. This contradicts the idea that higher scores lead to the 
winning of more games.

Performing correlation analysis
Let's measure the correlation between these two variables:

> pearsonR runsPerGame winPercentage

0.40792278544575666

> pearsonRsqrd runsPerGame winPercentage 

0.16640099888582482

A Pearson r score of 0.41 is positive, which indicates that there is a positive 
correlation between the runs per game and the win percentage. When you square 
this value to compute the r2 score, you will see that it is 0.17. As we mentioned 
earlier, an r2 score of less than 0.5 is considered a weak correlation of the two 
variables. We see in this analysis that scoring is a part of winning, but the 
relationship between these two variables should be considered weak. In other  
words, the idea that a team will improve their win percentage only by improving  
the runs scored per game is considered to be weak.

Regression analysis
Should we tell our coaches that scoring is not important? Of course not. A team 
needs to score at least one run to have a chance of winning a game. We should 
communicate to our coaches the importance of scoring more runs per game, even 
when we know that there is a weak correlation between scoring and winning. We 
communicate this importance by using regression analysis. With regression analysis, 
we create an equation that will allow us to estimate the win percentage of a team 
based on their runs per game value. 
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The approach that we will follow is known as simple linear regression. Linear 
regression is the simplest type of regression. The working assumption is that our 
data forms a straight line. While we admit that it is difficult to make out a line in our 
data, we shall make the assumption that a line exists. This line indicates the increase 
in the win percentage of a team as the team scores more runs per game. When one 
factor goes up, the other goes up linearly.

The regression equation line
A linear equation is as follows:

In this equation, x represents the number of runs per game, B represents the slope 
(or the gradient) of the line this equation gives, A represents the y-intercept, and y 
represents the estimated winning percentage of a team that is able to score x runs 
per game. The equation line will represent a best fit that will closely follow down 
the middle of the data, minimizing the difference in the distance between the points 
above and below the line.

Estimating the regression equation
The regression equation is a best fit line. The goal in crafting this equation is to 
produce the smallest overall error between the real data and what the equation will 
estimate the data to be. We can minimize the error term by computing the covariance 
of the X and Y variables and dividing it by the variance of X:

We can compute the value of A (our y-intercept) by computing the average of X and 
Y and substituting these values into our linear equation:
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Translate the formulas to Haskell
In Haskell, the preceding formula will look like the following code:

{- Perform simple linear regression to find a best-fit line.
  Returns a tuple of (gradient, intercept) -} 
linearRegression :: [Double] -> [Double] -> (Double, Double)
linearRegression x y = (gradient, intercept)
  where
    xavg = average x
    yavg = average y
    xstdev = standardDeviation x
    gradient = covariance x y / (xstdev * xstdev)
    intercept = yavg - gradient * xavg

Here, I have renamed B to gradient and A to intercept.

Returning to the baseball analysis
When we execute the preceding code with our baseball data, we get the  
following output:

> let (gradient, intercept) = linearRegression runsPerGame winPercentage 

> gradient

6.702070689192714e-2

> intercept

0.22742671114723823

The value of the slope is 0.07 and the value of the intercept is 0.23. A slope of value 
0.07 indicates that if a team increases their runs per game by 1 run per game, it 
should increase their seasonal win percentage by an estimated seven percent. This 
percentage grows with a linear progression, so an increase of 2 runs per game will 
increase their win percentage by an estimated 14 percent (and so forth). Here, we 
will estimate the win percentage for a fictional team that was able to score 3, 4, and 5 
runs per game for an entire season:

> 3*gradient+intercept

0.42848883182301967

> 4*gradient+intercept

0.4955095387149468

> 5*gradient+intercept

0.5625302456068739
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A team that scores 3 runs per game should win about 43 percent of their games. At 4 
runs per game, the estimated win percentage is 50 percent. At 5 runs per game, this 
increases to 56 percent. In our dataset, the team with the highest win percentage won 
over 60 percent of their games while not quite hitting 5 runs per game.

Plotting the baseball analysis with the 
regression line
In the previous chart that displays the runs per game and the win percentage for 
each team, the chart ranges between 3.2 and 4.8 runs per game. I created a new 
dataset of line estimates based on the values of runs per year that range from 3.3 to 
4.7. This way, we have a line that can fit nicely within the existing chart:

> let winEstimate = map (\x -> x*gradient + intercept) [3.3, 3.4 .. 4.7]

> let regressionLine = zip [3.3, 3.4 .. 4.7] winEstimate

> plot (PNG "runs_and_wins_with_regression.png") [Data2D [Title "Runs Per 
Game VS Win % in 2014"] [] (zip runsPerGame winPercentage), Data2D [Title 
"Regression Line", Style Lines, Color Blue] [] regressionLine]

The preceding statements would give the following chart as a result:
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What makes the regression line so helpful in our analysis is that it allows us to 
quickly identify the teams that are above average and below average. Above the  
line exists the teams that did better than our estimate suggests. Below the line exists 
the teams that did worse than our estimate.

The pitfalls of regression analysis
There are several pitfalls of regression analysis. We will go over some of the 
limitations of this analysis:

• Keep your estimates close to the original input variable range:  
The regression equation is in the form of a straight line. A line in a  
two-dimensional plane has a slope and a y-intercept and extends infinitely in 
two directions. Because of this, we are capable of estimating values beyond 
the range of our input variables, for example, the y-intercept of our equation 
is 0.22. This means that a baseball team that scores an average of 0 runs per 
game should win an estimated 22% of their games (which is laughable). Just 
because we can estimate values outside of the range of our input, it doesn't 
mean that we should.

• There is more to regression than simple linear regression: This chapter 
only looks at simple linear regression, but there are several other types of 
regression, including log regression (where we first compute the natural 
log of the output variable) and log-log regression (where we first compute 
the natural log of both the input and the output variables). The fundamental 
approach is the same, but having an understanding of the curvature of the 
data (and not automatically assuming that the data forms a line) sometimes 
yields better results.

• Any analysis that uses the mean of a dataset is easily skewed: Since the 
regression line is so dependent on the average of both the input and output 
variables, using simple linear regression can create a line that is distorted 
based on a single heavily skewed data point.

The next example illustrates this clearly. The following table represents 
a contrived dataset known as an Anscombe's quartet. This dataset was 
manually developed so that each dataset has a nearly identical mean of the x 
column, mean of the y column, correlation coefficient, and linear regression 
line. It demonstrates the problem of simple linear regression. The procedure 
is not robust with respect to outlier data values or data that isn't in a linear 
order. In each of these four datasets, a simple linear regression analysis 
reports that all four datasets follow the same linear path when it is clear  
that three of them do not.
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The data for the following table was taken from the Wikipedia entry for an 
Anscombe's quartet:

I II III IV
x y x y x y x y
10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Plotting the data of this table would give us the following charts:
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These graphs were created using the Haskell functions, the EasyPlot library 
that was defined in this chapter, and the same procedure that was used 
to analyze the baseball data (except that all the outlier observations were 
retained for the purpose of this demonstration).

Summary
In this chapter, we took a crash course in univariate analysis. We took a closer look 
at the ways used to compute covariance, the Pearson r score, and the Pearson r2 
score, as well as the methods deployed to interpret this data. We then took a look 
at the baseball dataset again and explored the question, Is there a relationship between 
scoring and winning? It may be a surprise to the reader, but we found out that 
the relationship between the two variables is weak. We also looked at regression 
analysis, which allows us to estimate unknown output variables based on the 
covariance of the existing data. We also spent time knowing about the pitfalls of 
blindly using simple linear regression.

The next chapter looks more at prediction, but this time from the perspective  
of Bayesian analysis. Bayesian probability is a form of conditional probability  
where we estimate the likelihood of events happening based on the evidence  
of past probabilities.
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Naive Bayes Classification of 
Twitter Data

In the last chapter, we looked at regression analysis and created a simple linear 
regression based on baseball data in order to determine if a team was playing above 
expectations or below expectations. In some sense, we created a classifier. We took 
raw data and partitioned the data space into two classes, those performing above 
and those performing below expectation based on a linear interpretation of the data.

Up to this point in the book, all of the data that we have investigated has been 
numerical data. Looking at numerical data is great for an introduction to data 
analysis because so much of an analyst's job is applying simple formulas (such as 
average, normalization, or regression) to data and interpreting the results. Numerical 
data is only half the picture. Raw, unstructured data is an equally important that we 
haven't touched upon. We will look at unstructured data in this chapter.

In this chapter, we cover the following:

• An introduction to Naive Bayes classification
• Downloading tweets via the Twitter API
• Creating a database to collect tweets
• Analyzing text data based on word frequency
• Cleaning our tweets
• Creating a Naive Bayes classifier to detect the language of tweets
• Testing our classifier
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In this chapter, we look at tweets, which are the short messages posted to the 
enormously popular social networking website, Twitter. Tweets only have one 
limitation; they must fit into 140 characters. Because of this limitation, tweets are 
short bursts of ideas or quick messages to other members. The collection of tweets 
by a member is called the timeline. The social network on Twitter follows a directed 
graph. Members are encouraged to follow other members and members who gain 
a follower have the option to follow back. The default behavior of each Twitter 
account is that no special permissions are required for a member to be followed, to 
view a member's timeline, or to send public messages that are delivered to another 
member. This openness allows members to have conversations with others who may 
join and leave at their pleasure. Active conversations can be discovered through the 
use of hashtags, which is a way of tagging a tweet with a subject, thus encouraging 
discussion on a topic by allowing others to find tweets in an easier manner. Hashtags 
begin with a # and are followed by a subject term. Searching hashtags is a way for 
people to quickly find like-minded members and build communities around an 
interest. Twitter is a social network with broad international appeal and supports a 
wide variety of languages. We wish to use Twitter in this chapter to study language 
specifically. Language is a tool that humans use to convey ideas to other humans. 
As the case may be, not everyone communicates in the same language. Look at the 
following two sentences:

• My house is your house
• Mi casa su casa

Both of these sentences convey the same idea, just in a different natural language 
(the first, obviously, in English, and the second in Spanish). Even if you don't know 
Spanish (I must confess that I don't), you might be able to guess that the second 
sentence represents a sentence in the Spanish language based on the individual 
words. What we would like to accomplish in this chapter is the creation of a classifier 
that will take a sentence and produce what it thinks is the best guess of the language 
used. This problem builds upon data analysis by utilizing that analysis to make an 
informed decision. We will attempt to gently step into the field of machine learning, 
where we attempt to write software that makes decisions for us. In this case, we will 
be creating a language detector.
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An introduction to Naive Bayes 
classification
The Bayes theorem is a simple yet efficient method of classifying data. In the context 
of our example, tweets will be analyzed based on their individual words. There 
are three factors that go into a Naive Bayes classifier: prior knowledge, likelihood, 
and evidence. Together, they attempt to create a proportional measurement of an 
unknown quality of an event based on something knowable.

Prior knowledge
Prior knowledge allows us to contemplate our problem of discovering the language 
represented by a sentence without thinking about the features of the sentence. Think 
about answering the question blindly; that is, a sentence is spoken and you aren't 
allowed to see or hear it. What language was used? Of all of the tens of thousands of 
languages used across time, how could you ever guess this one? You are forced to 
play the odds. The top five most widely spoken languages are Mandarin, Spanish, 
English, Hindi, and Arabic. By selecting one of these languages, you have improved 
your odds (albeit still in the realm of speculation). The same basic strategy is taken 
by the Naive Bayes classifier; when stumped between multiple classes and the data 
presented is equally split, it leans towards the more popular category.

Prior knowledge is denoted in the following way:

In other words, without any information to go on, the probability that a language 
will be selected will be based on the popularity of that language. This quantity is 
sometimes called the prior belief, since it can be difficult to measure. Care should  
be taken while estimating the prior belief since our results will be sensitive to  
this quantity.
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Likelihood
Likelihood asks for the probability of our known features, given that the class of the 
features is already known. In essence, we ask how likely a tweet is represented by 
a particular language based on a single word in which we already know how likely 
we are to see that word in phrases representing this language. A word is a feature 
of a language. Some words are used often, such as the word the in English. If you 
were told that a sentence contains the word the, based on this word alone there's a 
pretty good chance that a sentence is written in English. Some words cross language 
boundaries. The word casa is house in Spanish, but casa is also house in Portuguese, 
making casa a term that might help you to narrow down a sentence to a subset of 
languages, but it won't determine the language for you automatically.

Likelihood is denoted by the following:

In other words, we are asking, What is the probability of B given that we already 
know A is true? We could rephrase this as, What is the probability that a sentence 
contains the word casa given that we know it's written in Spanish? and What is the 
probability that a sentence contains the word casa given that we know it's written  
in Portuguese?

Evidence
Evidence asks for the probability of our known features independent of any 
unknown features. We will be dividing our likelihood property by the evidence,  
thus creating a proportional measurement of how the probability of a feature given 
the known class relates to the probability of the feature as a whole.

Evidence is denoted in the following:
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Putting the parts of the Bayes theorem 
together
Putting it all together, we get the classical Bayes theorem:

The Bayes theorem will tell us the probability of A (the unknown language class 
of a tweet) given that we know B (a single word) is in a sentence. This needs to be 
generalized further. We know that there are multiple classes of languages (English, 
Spanish, Portuguese, and so on.) and each tweet will have multiple words (also 
known as features).

Since the evidence portion of the Bayes theorem involves the same investigation  
as the likelihood portion, the evidence portion is often ignored when there are 
multiple features. When dealing with multiple features, we multiply the likelihood 
of each feature given a class times the prior probability of that class. This can be 
denoted by the following:

This represents the probability that a feature vector (a list of words represented by 
B1 to Bn) represents a class (language A) based on our prior knowledge of multiple 
known features. We perform this calculation for each of our classes and select the 
class with the highest probability.

But before we can do any of this, we need data.

Creating a Twitter application
We need to collect data from Twitter via Twitter's available APIs. In order to 
follow along with the book, you are going to need a Twitter account and a Twitter 
application project. Go to www.twitter.com and create an account if you don't have 
one already. 
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Sign in to your account and go to https://apps.twitter.com/ and create a new 
Twitter application. Here's a screenshot of the application that I used for this chapter:

Upon creating an application, Twitter will generate a Consumer key and a 
Consumer secret key for you. It's considered a best practice to keep this information 
a secret since Twitter will hold the holder of these keys responsible for the activity 
generated by them. In addition to these two keys, you will have to manually 
generate an Access token and an Access token secret in order to access the REST 
APIs. These keys can be generated from the Keys and Access Tokens tab within the 
Twitter Application Management page.

Communicating with Twitter
Now we need to craft some Haskell code that will communicate with the Twitter 
API and download tweets. The Twitter API uses OAuth in order to provide some 
security for their application. All responses to the Twitter API are returned as JSON 
objects. The code presented in this chapter for communicating with the Twitter API 
was adapted from a tutorial from the FP Complete website. You can find the full 
tutorial here: https://www.fpcomplete.com/school/starting-with-haskell/
libraries-and-frameworks/text-manipulation/json.
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Our goal is to download tweets and we aren't picky about which tweets are 
downloaded. We just need data and plenty of it. The closest API call within the 
documentation is the search API, which requires that we provide a term on which 
to search. For this, we selected the search term a, which has usage across multiple 
languages (which is our goal in this exercise). At the time of writing, Twitter allows 
us to download a maximum of 100 tweets per query and allows us to query the API 
up to 180 times every 15 minutes (for a total of 18,000 tweets). Complete information 
about the search API command that we will be using in this chapter can be found 
here: https://dev.twitter.com/rest/reference/get/search/tweets.

The JSON object returned by the Twitter API contains lots of information on each 
tweet, including the tweet itself, the member who wrote the tweet, the time, and 
the detected language. Twitter admits that Language detection is best-effort in their 
documentation. Understanding the potential that Twitter might be wrong, we  
will be using Twitter's assumption of the detected language as the training data  
for our classifier.

From the GHCi prompt, we import the following libraries:

> import Data.HashMap.Strict as HM

> import Data.List as L

We should display all of the libraries used in this chapter (and we depend on 
several). This is the beginning of this chapter's module (LearningDataAnalysis07):

{-# LANGUAGE OverloadedStrings, DeriveGeneric #-}
module LearningDataAnalysis07 where
import Data.List as L
import Data.Hashable
import Data.HashMap.Strict as HM
import Database.HDBC.Sqlite3
import Database.HDBC
import Control.Concurrent
import Data.Char
import Network.HTTP.Conduit
import Web.Authenticate.OAuth
import Data.Aeson
import GHC.Generics
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As you can see in these import snippets, I've started to use the as keyword to 
differentiate the Data.List and the Data.HashMap.Strict libraries. Both of these 
libraries have a function called map, and this requires that the two libraries be named.

Let's begin by creating our credentials for the API. Replacing the fields that begin 
with YOUR... with your API credentials, myoauth and mycred, will allow us to be 
properly identified by Twitter:

myoauth :: OAuth
myoauth =
  newOAuth { oauthServerName     = "api.twitter.com"
           , oauthConsumerKey    = "YOUR CONSUMER KEY"
           , oauthConsumerSecret = "YOUR CONSUMER SECRET KEY"
           }
mycred :: Credential
mycred = newCredential "YOUR ACCESS TOKEN"
                       "YOUR ACCESS TOKEN SECRET"

Next, we have to create some data objects that will be pattern-matched with the 
JSON object returned by the API. Each JSON tweet object returned by the search 
command will contain various fields. We can select just the fields we desire here.

Within the User object, there is the screenName field. We collect it here.  
While we aren't using the screenName information in this chapter, we do use  
it in the next chapter:

data User =
    User { screenName :: !String } deriving (Show, Generic)

The Status object contains the tweet (called text), the detected language  
(called lang), and a User object as shown in the following function:

data Status =
  Status { text :: !String,
          lang :: !String,
          user :: !User } deriving (Show, Generic)

Each Status object is contained in a list of objects named statuses as shown in the 
following function:

data Search =
  Search { statuses :: ![Status] } deriving (Show, Generic)
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Once our data objects have been defined, we make sure that Haskell recognizes that 
we will be performing JSON pattern matching on these objects using the following 
instance statements:

instance FromJSON User
instance ToJSON User
instance FromJSON Status
instance ToJSON Status
instance FromJSON Search
instance ToJSON Search

We then call the Twitter_Search function and download tweets. This function will 
call Twitter's search API using a signed OAuth request and parse what is returned 
using the Search object.

twitterSearch :: String -> IO (Either String Search)
twitterSearch term = do
  req <- parseUrl $  
  "https://api.twitter.com/1.1/search/tweets.json?count=100&q=" ++  
  term
  res <- withManager $ \m -> do
          signedreq <- signOAuth myoauth mycred req
          httpLbs signedreq m
  return $ eitherDecode $ responseBody res

This function will return either an error string or a Search object.

Creating a database to collect tweets
Now that we have a function to search Twitter, we need to create a database  
to collect tweets. We will create a tweets.sql file in the same manner that we  
used in Chapter 2, Getting Our Feet Wet:

createTweetsDatabase :: IO()
createTweetsDatabase = do
    conn <- connectSqlite3 "tweets.sql"
    run conn createStatement []
    commit conn
    disconnect conn
    putStrLn "Successfully created database."
  where
    createStatement =
        "CREATE TABLE tweets (message TEXT, user TEXT, language  
        TEXT)"
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Next, we need a separate function for inserting tweets into this database. Again, we 
will be using a similar technique to insert records that we used in Chapter 2, Getting 
Our Feet Wet for CSV records:

insertTweetsInDatabase :: [Tweet] -> IO()
insertTweetsInDatabase tweets = do
    conn <- connectSqlite3 "tweets.sql"
    stmt <- prepare conn insertStatement
    executeMany stmt sqlRecords
    commit conn
    disconnect conn
    putStrLn "Successfully inserted Tweets to database."
  where
    insertStatement = "INSERT INTO tweets VALUES (?, ?, ?)"
    sqlRecords = L.map (\(Tweet message language (User user)) ->
                 [toSql message, toSql user, toSql language])  
                 tweets

Next, we need a function to call our twitterSearch function and insert the returned 
objects into the database via insertTweetsInDatabase. We are using threadDelay 
in order to have a delay of five seconds after each API call in order to allow a little 
breathing time between each call, as seen in the following function:

collectTweetsIntoDatabase :: IO()
collectTweetsIntoDatabase = do
    status <- twitterSearch "a"
    either
       putStrLn
       (\(Search statuses) -> insertTweetsInDatabase statuses)
       status
    threadDelay 5000

Finally, we collect the tweets. Simply create the database and call 
collectTweetsIntoDatabase 180 times. If written correctly, this should print the 
success message 180 times on the screen and the database will be populated with 
18,000 tweets. It's enough to get us started.

> :l LearningDataAnalysis02 LearningDataAnalysis04 LearningDataAnalysis07 

> :m LearningDataAnalysis02 LearningDataAnalysis04 LearningDataAnalysis07

> createTweetsDatabase

> mapM_ (\x -> collectTweetsIntoDatabase) [1..180]
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From the command line, we can pull our tweets from the database.

> sqlTweets <- queryDatabase "tweets.sql" "SELECT message, language FROM 
tweets"

> let tweets = zip (readStringColumn sqlTweets 0) (readStringColumn 
sqlTweets 1)

A frequency study of tweets
A frequency function is one that counts the number of times each element is seen in a 
list. We will be using our frequency function in order to create a unique set of tweets, 
words, and languages in our database. The function that we will be creating returns 
a HashMap structure and will be used extensively in this chapter. Make sure that you 
install the library using cabal:

$ cabal install hashmap

This recursive function indexes through each element in a list and creates a mapped 
value of 1 for the elements that do not currently exist in the HashMap and adds 1 to 
the elements that do exist.

frequency :: (Eq k, Data.Hashable.Hashable k, Integral v) =>  
             [k] -> HashMap k v
frequency [] = HM.empty
frequency (x:xs) = HM.insertWith (+) x 1 (frequency xs)

You can quickly test to see if the function is working with a little help from Dr. Seuss. 
The title of one fish two fish red fish blue fish has five unique words and 
the word fish is repeated four times.

> frequency $ words "one fish two fish red fish blue fish"

fromList [("blue",1),("one",1),("two",1),("red",1),("fish",4)]

We can pass our listing of tweets to the frequency function in order to create a 
unique list:

> let freqTable = frequency tweets

> let uniqueTweets = HM.keys freqTable

> HM.size freqTable

15656

It seems that almost 87 percent of the tweets from your author's downloaded  
dataset represented unique content. We will be using these unique tweets for  
the remaining phases.
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Cleaning our tweets
Now that we have data, we need to scrub this data. We wish to focus on the 
individual words in a tweet. Our ideal tweet is one that is written in all lowercase 
letters without any punctuation, without any hashtags, without any links, and 
without any replies to other users. This mythical tweet is rare and we must adapt  
the existing tweets to this form.

To scrub our data, I'm going to borrow a function found in the Haskell Data Analysis 
Cookbook, Nishant Shukla, Packt Publishing (I was a technical reviewer for this book; it's 
an excellent book and I referred back to it regularly when preparing for this book):

-- Removes @ replies, hashtags, and links from strings.
clean :: String -> String
clean myString = unwords $ L.filter
    (\myWord -> not (or
                [ isInfixOf "@" myWord
                , isInfixOf "#" myWord
                , isInfixOf "http://" myWord ]))
    (words myString)

Now what this function won't do is convert tweets to all lowercase letters 
and remove punctuation. For that, I created a second function called 
removePunctionation:

removePunctuation :: String -> String
removePunctuation myString =
                  [toLower c | c <- myString, or [isAlpha c,  
                  isSpace c]]

With these two functions in place, we can clean our data to our ideal  
working conditions:

> let cleanedTweets = zip (L.map (removePunctuation.clean.fst) 
uniqueTweets) (L.map snd uniqueTweets)

Creating our feature vectors
To begin, let's create the frequency table of our languages seen in the database:

> let languageFrequency = (frequency . L.map snd) cleanedTweets

> languageFrequency
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fromList [("uk",3),("pt",1800),("th",1),("sl",13),("in",34),("ja",274),("
tl",13),("ar",180),("hi",1),("en",8318),("lv",2),("sk",13),("fi",2),("el"
,4),("vi",1),("ht",16),("es",3339),("pl",50),("da",4),("hu",10),("zh",1),
("nl",13),("ko",17),("tr",73),("und",86),("it",235),("sv",8),("fr",1078),
("is",1),("de",20),("bg",2),("fa",3),("ru",38),("et",3)]

You can glance through the list and see the language codes. English (en) has just 
over 8,000 tweets. Next in size is Spanish (es) with over 3,000 tweets. Third is 
Portuguese (pt) with 1,800 tweets, and fourth is French (fr) with a little over 1,000 
tweets. By dividing each of these language counts by the sum (15,656), we have our 
prior estimation required by the Bayes theorem. Since English is represented by 
8,318 tweets, the probability that a tweet will be English will be about 53 percent 
without knowing the contents of that tweet. (My original search term of "a" causes 
the database to be heavily slanted towards English. For the purposes of this tutorial, 
that's okay.)

While we're looking at the languageFrequency table, let's grab the unique  
languages represented:

> let allLanguages = HM.keys languageFrequency

> length allLanguages

34

Next, we need to know the frequency table of each word across all languages.  
This will be similar to our last command, which computed the frequency table  
of languages.

> let wordFrequency = (frequency . concatMap words) (L.map fst 
cleanedTweets)

> size wordFrequency

34250

Our database contains 34,000 unique words across 15,000 unique tweets and over  
30 unique languages, all from waiting 15 minutes to download tweets. Not bad at all.

Here's where it gets tricky. We now need a frequency table of each word, frequency 
with respect to each language. This requires a HashMap object of languages that 
maps to a HashMap object of words and frequencies:

> let wordFrequencyByLanguage = (HM.fromList . L.map (\language -> 
(language, (frequency . concatMap words . L.map fst) (L.filter (\tweet -> 
language == (snd tweet)) cleanedTweets)))) allLanguages
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We've got HashMap objects embedded within a HashMap. On the first layer of our 
HashMap object is each two-letter language code. Each two-letter language code 
maps to another HashMap with the word frequency for words among this language.

At the end of this section, we should have four variables: allLanguages (a list of 
String objects representing each language code), languageFrequency (a HashMap 
of String objects that map to Integer objects), wordFrequency (a HashMap of String 
objects that map to Integer objects), and wordFrequencyByLanguage (a HashMap of 
String objects that map to a HashMap of String objects that map to Integer objects). 
We will be using these variables when writing our Naive Bayes classifier.

Writing the code for the Bayes theorem
To begin, we will be writing the code for the simple single-feature Bayes theorem:

probLanguageGivenWord ::
    String
    -> String
    -> HashMap String Integer
    -> HashMap String Integer
    -> HashMap String (HashMap String Integer)
    -> Double
probLanguageGivenWord
    language
    wordlanguageFrequency
    wordFrequency
    wordFrequencyByLanguage =
    pLanguage * pWordGivenLanguage / pWord
  where
      countTweets = fromIntegral . sum $ elems languageFrequency

      countAllWords = fromIntegral . sum $ elems wordFrequency

      countLanguage = fromIntegral $
                      lookupDefault 0 language languageFrequency

      countWordsUsedInLanguage = fromIntegral . sum . elems $
                                 wordFrequencyByLanguage ! 
                                 language

      countWord = fromIntegral $ lookupDefault 0 word 
                  wordFrequency
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      countWordInLanguage = fromIntegral $ lookupDefault 0 word
                            (wordFrequencyByLanguage ! language)

      pLanguage = countLanguage / countTweets

      pWordGivenLanguage = countWordInLanguage / 
                              countWordsUsedInLanguage

      pWord = countWord / countAllWords

This code is piecing together each of the individual parts of the Bayes theorem. 
Under the function's where clause, I've created several variables that begin with 
count. These count variables tally various important values from the four variables 
collected in the previous section. The three variables essential to the Bayes theorem 
are probLanguage, probWordGivenLanguage, and probWord. You should be able to 
identify how these variables are being calculated in the preceding code.

Let's test this algorithm on the word house with the top four languages found in  
our database:

> probLanguageGivenWord "en" "house" languageFrequency wordFrequency 
wordFrequencyByLanguage

0.9637796833052451

> probLanguageGivenWord "es" "house" languageFrequency wordFrequency 
wordFrequencyByLanguage

0.0

> probLanguageGivenWord "pt" "house" languageFrequency wordFrequency 
wordFrequencyByLanguage

0.0

> probLanguageGivenWord "fr" "house" languageFrequency wordFrequency 
wordFrequencyByLanguage

0.0

As you can see, house is a very English word. None of the other three languages 
return a score greater than 0. Let's look at the word casa with the top four languages 
in our database:

> probLanguageGivenWord "en" "casa" languageFrequency wordFrequency 
wordFrequencyByLanguage

7.899833469715125e-3
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> probLanguageGivenWord "es" "casa" languageFrequency wordFrequency 
wordFrequencyByLanguage

0.4144443354127799

> probLanguageGivenWord "pt" "casa" languageFrequency wordFrequency 
wordFrequencyByLanguage

0.5225466167002369

> probLanguageGivenWord "fr" "casa" languageFrequency wordFrequency 
wordFrequencyByLanguage

2.3998008047484393e-2

The term casa appears in all four languages to some degree, but especially in 
Spanish and Portuguese. There appears to be a slight edge to Portuguese over 
Spanish in terms of the dominant ownership of the word.

Creating a Naive Bayes classifier with 
multiple features
As we stated earlier in the chapter, of the three parts of the Bayes Theorem, the two 
more important ones are the prior probability and the likelihood probability. I've 
extracted out the probability of a language into its own function here. We compute 
the total number of tweets of this language divided by the total number of tweets:

probLanguage :: String
    -> HashMap String Integer
    -> Double
probLanguage language languageFrequency =
    countLanguage / countTweets
  where
    countTweets = fromIntegral . sum $ elems languageFrequency
    countLanguage = fromIntegral $
                    lookupDefault 0 language languageFrequency

Next, we find the probability of a word given a language, in which we divide the 
number of times a word is seen in a language by the count of all occurrences of all 
words within a language.
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The lookupDefault function uses a default value of 0. This 
means that if lookupDefault cannot find a word within a 
language's HashMap, it returns 0.

Recall that our formula for computing the probability of a classifier given a set of 
features requires that we multiply the probability of each feature. The product of 
any value multiplied by 0 is 0, thus, if a word cannot be identified within a language, 
our approach will automatically assume that the probability of a match is 0, when it 
could just mean that we don't have enough data.

This can be done using the probWordGivenLanguage function as follows:

probWordGivenLanguage :: String
    -> String
    ->HashMap String (HashMap String Integer)
    -> Double
probWordGivenLanguage word language wordFrequencyByLanguage =
    countWordInLanguage / countWordsUsedInLanguage
  where
    countWordInLanguage = fromIntegral .
                          lookupDefault 0 word $
                          wordFrequencyByLanguage ! language
    countWordsUsedInLanguage = fromIntegral . sum . elems $
                               wordFrequencyByLanguage ! 
                               language

Finally, we can craft our Naive Bayes calculation based on multiple features.  
This function will multiply the probabilities of each word assuming a particular 
language by the probability of the language itself:

probLanguageGivenMessage :: String
    -> String
    -> HashMap String Integer
    -> HashMap String (HashMap String Integer)
    -> Double
probLanguageGivenMessage language message languageFrequency  
wordFrequencyByLanguage =
    probLanguage language languageFrequency *
    product (L.map
            (\word ->
            probWordGivenLanguage word language  
            wordFrequencyByLanguage)
            (words message))
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Great! We should test this function on various phrases and languages:

> probLanguageGivenMessage "en" "my house is your house" 
languageFrequency wordFrequencyByLanguage

1.4151926487738795e-14

> probLanguageGivenMessage "es" "my house is your house" 
languageFrequency wordFrequencyByLanguage

0.0

> probLanguageGivenMessage "en" "mi casa su casa" languageFrequency 
wordFrequencyByLanguage

2.087214738575832e-20

> probLanguageGivenMessage "es" "mi casa su casa" languageFrequency 
wordFrequencyByLanguage

6.3795321947397925e-12

Note that the results are tiny numbers. This can be expected when multiplying the 
probabilities of words. We are not concerned with the size of the probability but 
with how the probabilities relate to each other across languages. Here, we see that my 
house is your house returns 1.4e-14 in English, which is small, but returns 0.0 
in Spanish. We would select the English class for this sentence. We also see mi casa 
su casa returns 6.4e-12 in Spanish and 2.1e-20 in English. Here, Spanish is the 
selected class.

We can aggregate this process by mapping the function across all known languages:

languageClassifierGivenMessage ::
    String
    -> (HashMap String Integer)
    -> (HashMap String (HashMap String Integer))
    -> [(String, Double)]
languageClassifierGivenMessage
    message languageFrequency wordFrequencyByLanguage =
    L.map (\language->
          (language,
           probLanguageGivenMessage
              language message languageFrequency  
              wordFrequencyByLanguage))
          (keys languageFrequency)
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Here, we can take the results of our language classifier and return the maximum 
(which should be the most likely language):

maxClassifier :: [(String, Double)] -> (String, Double)
maxClassifier = L.maximumBy (comparing snd)

Testing our classifier
We are finally at a point where we can perform some testing on our approach.  
We will begin with simple phrases in English and Spanish, since these two  
languages make up most of the database.

First, we will test five phrases in English:

> maxClassifier $ languageClassifierGivenMessage "the quick brown fox 
jumps over the lazy dog" languageFrequency wordFrequencyByLanguage

("en",1.0384385163880495e-32)

> maxClassifier $ languageClassifierGivenMessage "hi how are you doing 
today" languageFrequency wordFrequencyByLanguage

("en",4.3296809098896647e-17)

> maxClassifier $ languageClassifierGivenMessage "it is a beautiful day 
outside" languageFrequency wordFrequencyByLanguage

("en",4.604145482001343e-16)

> maxClassifier $ languageClassifierGivenMessage "would you like to join 
me for lunch" languageFrequency wordFrequencyByLanguage

("en",6.91160501990044e-21)

> maxClassifier $ languageClassifierGivenMessage "my teacher gave me too 
much homework" languageFrequency wordFrequencyByLanguage

("en",6.532933008201886e-23)
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Next, we evaluate five phrases in Spanish using the same training data. As I 
mentioned earlier in the chapter, I don't know Spanish. These phrases were  
pulled from a Spanish language education website:

> maxClassifier $ languageClassifierGivenMessage "estoy bien gracias" 
languageFrequency wordFrequencyByLanguage

("es",3.5494939242101163e-10)

> maxClassifier $ languageClassifierGivenMessage "vaya ud derecho" 
languageFrequency wordFrequencyByLanguage

("es",7.86551836549381e-13)

> maxClassifier $ languageClassifierGivenMessage "eres muy amable" 
languageFrequency wordFrequencyByLanguage

("es",2.725124039761997e-12)

> maxClassifier $ languageClassifierGivenMessage "le gusta a usted aquí" 
languageFrequency wordFrequencyByLanguage

("es",6.631704901901517e-15)

> maxClassifier $ languageClassifierGivenMessage "feliz cumpleaños" 
languageFrequency wordFrequencyByLanguage

("es",2.4923205860794728e-8)

Finally, I decided to throw some French phrases at the classifier again, these phrases 
were pulled from a French language education website:

> maxClassifier $ languageClassifierGivenMessage "cest une bonne idée" 
languageFrequency wordFrequencyByLanguage

("fr",2.5206114495244297e-13)

> maxClassifier $ languageClassifierGivenMessage "il est très beau" 
languageFrequency wordFrequencyByLanguage

("fr",8.027963170060149e-13)

Hopefully, you can see that our classifier, which we built on a small database of 
18,000 tweets, was enough to detect the correct language of simple phrases.
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Summary
Naive Bayes is a simple theorem that can produce a robust classifier. With a little 
bit of simple math, we have analyzed the frequency of words used across several 
thousands of tweets and used that analysis in the creation of a language classifier. 
With a larger database, we could handle more complex phrases. We also learned 
how to pull data from Twitter's REST API and learned the powerful features of the 
HashMap library.

The next chapter looks at another tool in the data analyst's toolkit – Principal 
Component Analysis (PCA). The math behind PCA has been used to produce 
recommendation engines for websites such as Amazon and Netflix. We will continue 
to use our Twitter database in the next chapter to create a recommendation engine of 
our own.
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Building a Recommendation 
Engine

In the last chapter, we looked at ways of classifying data into categories. We took 
a difficult problem of language detection and used a Naive Bayesian approach to 
solve it. We also took a lot of unorganized text data, cleaned it, and converted it into 
a numerical form. The accomplishing of our goal didn't require a lot of code either, 
all thanks to Haskell's expressive syntax for recursion and list processing. Haskell's 
beauty comes from its emphasis on type correctness and functional paradigms.

In this chapter, we will cover the following:

• Analyzing the frequency of words in tweets
• Removing stop words from tweets
• Creating multivariate datasets
• Understanding eigenvalues and eigenvectors
• Performing simple linear algebra in Haskell
• Creating a covariance matrix in Haskell
• Eigen-solving in Haskell
• Creating a recommendation engine based on PCA
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The problems that we have encountered so far looked at data that fit nicely into 
one or a maximum of two features. In Chapter 4, Plotting, we looked at the share 
prices of various companies over time. In Chapter 5, Hypothesis Testing, we compared 
the runs per game for matches that were played at home stadiums to the runs per 
game for matches that were played at away stadiums in baseball data. In Chapter 
6, Correlation and Regression Analysis, we compared the runs per game to the win 
percentage in baseball data. The data analyst's job is relatively simple when working 
with bivariate data. In each example, the primary task is to compare the independent 
(input) variable to the dependent (output) variable. Life would be so much easier if 
we could reduce all our problems to a single input variable and an output variable. 
We alluded to this in the chapter on the estimation of the win percentage of baseball 
teams—there is more to winning a game than the scoring of runs. Some variables 
help us to explain the output (such as the runs scored per game and the on-base 
percentage). However, we won't expect some variables to do the same (such as the 
temperature at the starting time of the game). You should not immediately rule out 
these obscure variables, but you can fall into the trap of trying to look for correlations 
in everything. At some point, you need to make a decision about which variables to 
include and ignore.

In Chapter 6, Correlation and Regression Analysis, we discussed the statistical measure 
of covariance. Covariance measures how two variables relate to each other. A 
positive covariance score indicates that the two variables are related. A negative 
score indicates that the two variables are inversely related. A covariance score that 
is close to 0 (the score can be either positive or negative) indicates that the two 
variables are probably not related. We also discussed the Pearson's r2 correlation 
coefficient, which is a normalized squared version of the covariance score. The 
Pearson's r2 score allows us to quickly judge the strength at which two variables 
correlate. A Pearson's r2 score of 1 indicates that the two variables correlate and a 
score of 0 indicates that the two variables do not correlate. When working with lots 
of variables, our goal should be to improve the results by selecting a subset of input 
variables with the largest variance scores with the output variable.

In this chapter, we will look at recommendation engines. Websites such as Amazon 
will recommend products for you to purchase based on your prior purchases. Netflix 
famously offered 1 million dollars to a team that could design a system to improve 
their already excellent movie recommendation engine. Facebook will recommend 
people as your friends and Twitter will recommend people who might have interests 
that are similar to yours. There are plenty of variables that go into a recommendation 
engine, but what should come out is a single list of items with a score associated with 
each item. A select number of top-ranked items are passed along to you as your  
top-ranked recommendations. Some of these input variables are directly relevant  
to our recommendations and the others aren't.
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Our goal in this chapter is to build our own recommendation engine based on the 
Twitter data that was obtained using the methods described in Chapter 7, Naive  
Bayes Classification of Twitter Data. After writing Chapter 7, Naive Bayes Classification  
of Twitter Data, I have been collecting more tweets. The database used in this chapter 
consists of just over 50,000 tweets, with a little over half of them representing tweets 
in the English language. We will mine the database consisting of just the English 
tweets and develop a recommendation engine to find like-minded users to any  
other user.

This problem is rather difficult to solve and there are lots of ways to approach this. 
In this chapter, we will attempt to solve it by discovering pairs of users who share 
the usage rate of commonly used words. The general thinking in this approach is 
that if two people tend to use the same words in their speech, they will share even 
more things in common. (I picked this approach because it allows us to use the same 
dataset collected in the last chapter.) To accomplish this, we need to discover the 
most frequently used words that were tagged by Twitter with the en language code.

Before we proceed further, we need to discuss the necessary software for this 
chapter. You need to install LAPACK on your system. LAPACK is a collection 
of algorithms that are used to solve common matrix-related tasks such as the 
eigenvalue decomposition problem. On Debian-based systems, you should be  
able to download it using apt-get, as follows:

$ sudo apt-get install liblapack-dev

You will also need to install the Haskell matrix wrapper modules for LAPACK called 
hmatrix using cabal, as follows:

$ cabal install hmatrix

We will discuss the Numeric.LinearAlgebra libraries later on in the chapter. Here 
are the necessary libraries used in this chapter for the LearningDataAnalysis08 
Haskell module:

module LearningDataAnalysis08 where
import Numeric.LinearAlgebra.Data
import Numeric.LinearAlgebra.Algorithms
import Numeric.LinearAlgebra.HMatrix
import Data.List as L
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Analyzing the frequency of words in 
tweets
We will begin by pulling English tweets from our database. From the Haskell 
command line, we will query the database in the following way:

> :l LearningDataAnalysis04 LearningDataAnalysis06 LearningDataAnalysis07 
LearningDataAnalysis08

> :m LearningDataAnalysis04 LearningDataAnalysis06 LearningDataAnalysis07 
LearningDataAnalysis08

> import Data.HashMap.Strict as HM

> import Data.List as L

> tweetsEnglish <- queryDatabase "tweets.sql" "SELECT message, user FROM 
tweets WHERE language='en'"

> let tweets = zip (readStringColumn tweetsEnglish 0) (readStringColumn 
tweetsEnglish 1)

Using the frequency function presented in the last chapter, we will compute the set 
of unique tweets, as follows:

> let freqTable = frequency tweets

> -- Number of unique tweets

> HM.size freqTable

27348

> let uniqueTweets = keys freqTable

After writing the last chapter, I've collected 27,000 unique English tweets. Just as we 
did in the last chapter, we must clean our tweets:

> let cleanedTweets = L.map (\(message, user) -> (removePunctuation $ 
clean message, user)) uniqueTweets

We can now build a frequency HashMap of our cleaned tweets in the  
following way:

> let wordsFrequency = frequency $ concatMap (words . fst) cleanedTweets
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A note on the importance of removing stop 
words
Now, we must take our word frequency HashMap, convert it into a list, and sort 
that list from largest to smallest. We will then take the first 25 items from the list:

> let topWords = take 25 $ sortBy (\(_, c1) (_, c2) -> compare c2 c1) $ 
HM.toList wordsFrequency

> topWords

[("a",30028),("rt",12594),("to",9815),("the",7754),("i",7506),("you",7
425),("and",5403),("for",5337),("of",5312),("in",5187),("is",4832),("
on",2906),("it",2723),("me",2665),("my",2648),("with",2617),("be",2564),(
"have",2507),("that",2281),("this",2203),("if",1959),("your",1891),("just
",1832),("at",1807),("like",1732)]

Looking through this list, you will find that it's not interesting at all. The top two 
words are a (which was the term used to gather these tweets) and rt (which is 
Twitter speak for retweet). The rest of the list consists of common words that are 
known as function words. Function words are the words that are ambiguous in 
meaning until used in a sentence to provide some context. We will filter these words 
out in order to work on more interesting data. In the field of natural language 
processing, these words are called stop words. With a search using your favorite 
search engine of choice, you can find websites with lists stop words. I made my own 
list and added it to my LearningDataAnalysis08 module. A few words have been 
added to this list, such as rt (for retweet), mt (for modified tweet), and u (which is 
short for "you"):

stopWords :: [String]
stopWords = ["a", "about", "above", "above", "across", "after", 
"afterwards", "again", "against", "all", "almost", "alone", "along", 
"already", "also", "although", "always", "am", "among", "amongst", 
"amoungst", "amount",  "an", "and", "another", "any", "anyhow", 
"anyone", "anything", "anyway", "anywhere", "are", "around", "as",  
"at", "back", "be", "became", "because", "become", "becomes", 
"becoming", "been", "before", "beforehand", "behind", "being", 
"below", "beside", "besides", "between", "beyond", "bill", "both", 
"bottom", "but", "by", "call", "can", "cannot", "cant", "co", "con", 
"could", "couldnt", "cry", "de", "describe", "detail", "do", "done", 
"dont", "down", "due", "during", "each", "eg", "eight", "either", 
"eleven", "else", "elsewhere", "empty", "enough", "etc", "even", 
"ever", "every", "everyone", "everything", "everywhere", "except", 
"few", "fifteen", "fifty", "fill", "find", "fire", "first", "five", 
"for", "former", "formerly", "forty", "found", "four", "from", 
"front", "full", "further", "get", "give", "go", "got", "had", "has", 
"hasnt", "have", "he", "hence", "her", "here", "hereafter", "hereby", 
"herein", "hereupon", "hers", "herself", "him", "himself", "his", 

                  



Building a Recommendation Engine

[ 142 ]

"how", "however", "hundred", "i", "ie", "if", "im", "in", "inc", 
"indeed", "interest", "into", "is", "it", "its", "itself", "just", 
"keep", "last", "latter", "latterly", "least", "less", "ltd", "made", 
"many", "may", "me", "meanwhile", "might", "mill", "mine", "more", 
"moreover", "most", "mostly", "move", "much", "must", "my", "myself", 
"name", "namely", "neither", "need", "never", "nevertheless", 
"next", "nine", "no", "nobody", "none", "noone", "nor", "not", 
"nothing", "now", "nowhere", "of", "off", "often", "on", "once", 
"one", "only", "onto", "or", "other", "others", "otherwise", "our", 
"ours", "ourselves", "out", "over", "own", "part", "per", "perhaps", 
"please", "put", "rather", "re", "same", "see", "seem", "seemed", 
"seeming", "seems", "serious", "several", "she", "should", "show", 
"side", "since", "sincere", "six", "sixty", "so", "some", "somehow", 
"someone", "something", "sometime", "sometimes", "somewhere", "still", 
"such", "system", "take", "ten", "than", "that", "the", "their", 
"them", "themselves", "then", "thence", "there", "thereafter", 
"thereby", "therefore", "therein", "thereupon", "these", "they", 
"thick", "thin", "third", "this", "those", "though", "three", 
"through", "throughout", "thru", "thus", "to", "together", "too", 
"top", "toward", "towards", "twelve", "twenty", "two", "un", "under", 
"until", "up", "upon", "us", "very", "via", "want", "was", "we", 
"well", "were", "what", "whatever", "when", "whence", "whenever", 
"where", "whereafter", "whereas", "whereby", "wherein", "whereupon", 
"wherever", "whether", "which", "while", "whither", "who", "whoever", 
"whole", "whom", "whose", "why", "will", "with", "within", "without", 
"would", "yet", "you", "your", "youre", "yours", "yourself", 
"yourselves", "rt", "mt", "u"]

Once your stop list has been created, you can filter out these words in the  
following way:

> let notStopWords = L.filter (\(word, _) -> notElem word stopWords) (HM.
toList wordsFrequency)

> let topWords = take 25 . L.map fst $ sortBy (\(_, c1) (_, c2) -> 
compare c2 c1) notStopWords

> topWords

["like", "amp", "day", "good", "new", "love", "time", "follow", "great", 
"today", "make", "lot", "people", "video", "know", "life", "happy", 
"look", "think", "girl", "win", "photo", "way", "little", "really"]

You might argue that there are some words in this list that represent stop words.  
I hope that you agree that this list contains words that are more interesting than our 
previous set of stop words. We will use this set of 25 words in order to represent the 
25 features of each person represented in our dataset.
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Working with multivariate data
With our desired word list created, we must now compile the feature vector for each 
user in our database. A feature vector is a set of features representing an entity in 
our dataset. You can think of a set of feature vectors as a spreadsheet. At the top of 
our spreadsheet is a listing of columns. The first column contains the first feature, 
the second column contains the second feature, and so forth. There will be a column 
per feature in the dataset. The number of columns (or features) in a dataset will 
be represented by the d variable (which is short for dimensionality). Our example 
problem utilizes 25 dimensions for every user. Each row represents one full entity  
in our dataset and will contain 25 listings. The number of rows (or observations)  
in a dataset will be represented by the n variable (which is used to count items).  
Our matrix should consist of n-by-d values.

We will build a HashMap of a HashMap of Strings representing a list of users,  
their words, and the usage count of each word. This step will be almost identical to 
the method performed in the previous chapter. We will compile a list of unique users 
to our dataset and then compile our listing of word frequencies by user:

> let userFrequency = frequency $ L.map snd uniqueTweets

> let allUsers = keys userFrequency

> let wordFrequencyByUser = HM.fromList $ L.map (\user -> (user, 
frequency $ concatMap words [ message | (message, thisUser) <- 
cleanedTweets, thisUser == user ])) allUsers

Next, we will create a matrix. This matrix should be n-by-d in size and should 
consist of several thousand rows and 25 columns. Note that I will use the 
fromIntegral function in this step. This is done to ensure that the variables  
are in the Double data type in the subsequent steps:

> let getFrequencyOfWordByUser user word = fromIntegral $ (HM.
lookupDefault 0 word (wordFrequencyByUser HM.! user)) :: Double

> let wordsMatrix = L.map (\user -> L.map (\word -> 
getFrequencyOfWordByUser user word) topWords) allUsers
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Describing bivariate and multivariate data
Let's take a break from our wordsMatrix function and talk about bivariate data 
again. In particular, I want to return to the discussion of the problem presented  
in Chapter 6, Correlation and Regression Analysis, where we compared the runs per 
game to the win percentage in baseball data. In that chapter, we used regression 
analysis to create a linear formula to describe how the runs per game could be 
used to estimate the win percentage of a team. What we would like to do is expand 
this topic to allow for more than just two variables, and it will require some linear 
algebra in order to solve our problem.

When trying to find a linear regression of our baseball data, we discussed the 
concept of covariance and then computed the covariance of each of our variables.  
In particular, we wanted to maximize the variance between the two variables.  
There were three possible covariance combinations:

• The runs scored per game and the runs scored per game
• The win percentage and the win percentage
• The runs scored per game and the win percentage

Any time a variable is compared with itself to find the covariance, we are in essence 
computing the variance. We can arrange the covariance scores into a matrix in the 
following way:

1 2
1 The variance of the runs scored per game The covariance of the runs scored per 

game and the win percentage
2 The covariance of the runs scored per 

game and the win percentage
The variance of the win percentage

We will describe the features of this covariance matrix. Each row in the matrix 
represents a variable in our dataset. Each column in the matrix also represents a 
variable in the same order as the row order. When a column number and a row 
number are equal, it should hold the variance of a feature of the data. When the 
column and row in our matrix equals 1, that cell holds the variance of the runs 
scored per game. When the column and row equals 2, that cell holds the variance of 
the win percentage. When the indices of the matrix are not equal (either [1,2] or [2,1]) 
we see the covariance of the runs scored per game and the win percentage.

                  



Chapter 8

[ 145 ]

When expanding this idea to more than two variables, maintain these rules. Now, 
there are d variables (representing the dimensionality of the dataset). Like before, 
each row and column in the matrix represents a variable in our dataset. The order in 
which the variables are represented are the same across the rows and columns. When 
a row and column index are equal, we compute the variance of that variable. When 
the column and row number are not equal, we compute the covariance of the variable 
of the column index and the variable of the row index. Since the covariance of the two 
variables is the same regardless of the order in which they are stated, we should find 
the same covariance when the two indices are flipped. Hence, our matrix is always 
symmetrical from the top left of the matrix to the bottom right of the matrix.

To state this in mathematical terms, we have a dataset called X consisting of n 
observations and d dimensions. A column of values will be identified by Xi.  
We wish to create a covariance matrix called C. Our covariance matrix will be  
d-by-d in size. The equation for variance is denoted as follows:

The equation for covariance is denoted as follows:

Eigenvalues and eigenvectors
Eigenvalues and Eigenvectors are used to measure how a matrix is stretched in 
various directions, and they are perfect if you want to discover the directions in 
which a dataset is stretched. We will try to solve the following equation to discover 
the eigenvalues and eigenvectors of a matrix:

Explaining the preceding formula English, for a square matrix A that has d rows  
and d columns, we are trying to find the column matrix v (which is a matrix of 
exactly one column and d rows) and a value called lambda. Lambda is a single 
number (also called a scalar). When we multiply lambda with the matrix v, we 
should get the same result as the product of matrix A and matrix v. Lambda is  
called the eigenvalue and the column matrix v is called the eigenvector. 
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This problem is known as eigenvalue decomposition, and it's how we reduce an 
entire matrix down to just a vector and a scalar for that vector. There can be multiple 
ways to satisfy this problem for a given matrix A. For our purpose, we will use the 
covariance matrix C as our matrix for eigenvalue decomposition, and we expect to 
get back d eigenvalues and d eigenvectors. Eigenvalues and eigenvectors represent 
pairs—the first eigenvalue is paired with the first eigenvector column, the second 
eigenvalue is paired with the second eigenvector column, and so forth. Because 
of this pairing nature, it is important to maintain the order of the eigenvalues and 
eigenvectors. Should the order of the eigenvalues change, the eigenvectors need 
to be reordered accordingly. (The hmatrix library does not require us to reorder 
eigenvalues, so this should not be an issue).

An interesting feature of the eigenvectors returned by the process of eigenvalue 
decomposition is that each vector is orthogonal to every other vector. This means 
that the angle between any two eigenvectors will be π/2 radians (or 90 degrees if 
you measure angles in degrees). The value of each eigenvalue is also important. The 
larger the eigenvalue, the more our data is skewed in the direction of the associated 
eigenvector and accounts for a major part of the data's variance.

The airplane analogy
The analogy that I use to understand eigenvectors consists of thinking of an airplane. 
Our dataset will be the points scattered along the surface of the airplane. The airplane 
has a massive body, which accounts for most of the data. Also, there are two thin 
wings which stretch out from the either side of the body, and some of the data will 
be scattered along the wings. The airplane is tall, but the length of the airplane and 
the wingspan are greater than the height. We typically don't think of airplanes as 
being tall, but they are still tall objects. If we were to take our set of points in three 
dimensions, we can compute the covariance matrix of this dataset and produce a 3-by-
3 matrix. We can pass this covariance matrix to the eigenvalue decomposition process.

An airplane is a three-dimensional object. So, the results of our eigenvalue 
decomposition process will have 3 eigenvalues and 3 eigenvectors. We will look at 
the eigenvalues and rank them in order from the largest to the smallest, making sure 
to remember their order since they each have an associated eigenvector. We will 
examine the largest eigenvalue and its associated eigenvector. When we position this 
eigenvector at the center of the airplane, note that it will extend below the body of 
the airplane (towards either the nose of the airplane or the tail of the airplane). 
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Most of our data is in the body of the airplane and the decomposition process 
recognizes this at the start. When we take a look at the eigenvector associated 
with the second largest eigenvalue and position it at the center of the airplane, the 
eigenvector points towards one of the two wings. Some of our data was spread  
along the wings, and the eigenvalue decomposition makes this the second ranked 
feature of the data. Also, this vector will be orthogonal to the vector pointing down 
the body of the airplane. Finally, we will examine the eigenvector for the smallest 
eigenvalue and position it at the center of the airplane. It will point either directly 
above or below the airplane along the third dimension. The smallest eigenvalue 
accounts for the least amount of variance in our data. Also, the third eigenvector 
is orthogonal to the first two eigenvectors. The following figure shows the three-
dimensional structure of an airplane:

Here's what makes the eigenvalue decomposition process so useful—we never 
mentioned the original orientation of the airplane. It doesn't matter! This process 
works when the airplane is flat on the ground, in the air making a banking turn, 
upside down, lifting off, making a descent, or any other conceivable orientation.  
The eigenvalue decomposition process will first notice the body, then the wings,  
and finally the height of the airplane, and the vectors will orient themselves to the 
original orientation of the airplane when the data was first obtained.

                  



Building a Recommendation Engine

[ 148 ]

Preparing our environment
When performing the eigenvalue decomposition for a small matrix of 2-by-2 or  
3-by-3, there is a simple set of steps that we can take to produce our eigenvalues and 
eigenvectors. When working with larger matrices, this problem is rather tedious and 
it's best left to a computer to discover the eigenvalues. A study of the algorithms 
used to discover eigenvalues goes well beyond the scope of this book. We will use 
the hmatrix library and LAPACK to compute the eigenvalues and eigenvectors of 
our covariance matrices.

Performing linear algebra in Haskell
Through hmatrix, you will have access to a large collection of linear algebra 
functions. In this section, we are going to provide a brief introduction to this library. 
If you have ever taken a linear algebra course, you will have learned how powerful 
matrix operations are.

To begin, let's create a 3-by-4 matrix consisting of values from 1 to 12. This can be 
done using the matrix function in the following way:

> let a = matrix 4 [1 .. 12]

> a

(3><4)

 [ 1.0,  2.0,  3.0,  4.0

 , 5.0,  6.0,  7.0,  8.0

 , 9.0, 10.0, 11.0, 12.0 ]

We can compute the transpose of this matrix using the tr function. Here, we will 
compute the transpose of a, as follows:

> tr a

(4><3)

 [ 1.0, 5.0,  9.0

 , 2.0, 6.0, 10.0  , 3.0, 7.0, 11.0

 , 4.0, 8.0, 12.0 ]
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We can also perform matrix multiplication using the mul operator. Here, we will 
multiply "a" with the transpose of a, as follows:

> mul a $ tr a

(3><3)

 [  30.0,  70.0, 110.0

 ,  70.0, 174.0, 278.0

 , 110.0, 278.0, 446.0 ]

This set of modules allows for the use of the standard math operators (+, -, /, *,  
and ^) for pair-wise operations on matrices:

> a + a

(3><4)

 [  2.0,  4.0,  6.0,  8.0

 , 10.0, 12.0, 14.0, 16.0

 , 18.0, 20.0, 22.0, 24.0 ]

Computing the covariance matrix of a dataset
The function that is used to compute the covariance matrix of a dataset (meanCov, 
which comes with hmatrix) uses a slightly different formula to the one we presented 
in the chapter on linear regression. Rather than use the expectation function, 
meanCov will sum the necessary values then divide the covariance by (n-1) rather 
than divide by n. This is done to signify that this is a sampling of the data (and thus, 
there is always an unknown quality to the data) rather than a complete sampling of 
all the data. The equation for this can be denoted as follows:

To illustrate the use of meanCov, we are going to use the baseball dataset from 
Chapter 6, Correlation and Regression Analysis. Rather than using linear regression  
to estimate a line, we are going to use eigenvalue decomposition. We need to  
get our baseball data into a matrix data structure. I've morphed the current baseball 
dataset consisting of 30 pairs of runs per game and win percentages into a list of 
Double values. 
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We've reconstructed the baseball dataset from scratch in the following statements so 
that you don't have to flip back to that portion of the book:

> :l LearningDataAnalysis06

> queryDatabase "winloss.sql" "SELECT COUNT(*) FROM winloss"

> queryDatabase "winloss.sql" "SELECT COUNT(*) FROM winloss WHERE 
awayscore == homescore;"

> homeRecord <- queryDatabase "winloss.sql" "SELECT homeTeam, 
SUM(homescore > awayscore), SUM(homescore), COUNT(*) FROM winloss GROUP 
BY homeTeam;"

> awayRecord <- queryDatabase "winloss.sql" "SELECT awayTeam, 
SUM(awayscore > homescore), SUM(awayscore), COUNT(*) FROM winloss GROUP 
BY awayTeam;"

> let totalWins = zipWith (+) (readDoubleColumn homeRecord 1) 
(readDoubleColumn awayRecord 1)

> let totalRuns = zipWith (+) (readDoubleColumn homeRecord 2) 
(readDoubleColumn awayRecord 2)

> let totalGames = zipWith (+) (readDoubleColumn homeRecord 3) 
(readDoubleColumn awayRecord 3)

> let winPercentage = zipWith (/) totalWins totalGames

> let runsPerGame = zipWith (/) totalRuns totalGames

> let baseball = L.map (\(a,b) -> [a,b]) $ zip winPercentage runsPerGame

> :t baseball

baseball :: [[Double]]

> baseball

[[0.6049382716049383,4.771604938271605],[0.39751552795031053,3.8136645962
73292],[0.4876543209876543,3.537037037037037],[0.5925925925925926,4.35185
1851851852], … [content clipped]

We can now compute the covariance matrix of our dataset by calling meanCov.  
This function will return two values. The first value is a vector consisting of the  
mean of each column of data. The second value is the covariance matrix:

> let (baseballMean, baseballCovMatrix) = meanCov $ fromLists baseball

> baseballMean 
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fromList [4.066924826828208,0.4999948879175932]

> baseballCovMatrix 

(2><2)

 [   0.1204356428862124,  8.350015780569988e-3

 , 8.350015780569988e-3, 3.4790736953854207e-3 ]

Discovering eigenvalues and eigenvectors in 
Haskell
Following this step, we will perform the eigenvalue decomposition process.  
The eigSH function will return a list of eigenvalues and eigenvectors presorted  
so that the largest eigenvalues are ordered first:

> let (baseballEvalues, baseballEvectors) = eigSH baseballCovMatrix

> baseballEvalues

fromList [0.12102877720686984,2.8859393747279805e-3]

> baseballEvectors 

(2><2)

 [   -0.9974865990115773, 7.085537941692915e-2

 , -7.085537941692915e-2,  -0.9974865990115773 ]

The eigenvectors are returned in a single matrix. Each eigenvector can be identified 
in each column. The largest eigenvalue (0.12) is associated with the first column of 
the eigenvector matrix (-0.9975, -7.0855e-2). The second largest eigenvalue (2.89e-3) is 
associated with the second column of the eigenvector matrix (7.0855e-2, -0.9975).

Here, we will visualize what happens when we plot a line with the first eigenvector 
of (-0.9975, -7.0855e-2) that is centered at the mean position (4.0667, 0.5) of the dataset 
with a blue line. We do the same for our second eigenvector (7.0855e-2, -0.9975) with 
a red line. I call these lines eigenlines. This is done using the following statements:

> let xmean = 4.0667

> let ymean = 0.5

> let samplePoints = [3.3, 3.4 .. 4.7]

> let firstSlope = (-7.085537941692915e-2) / (-0.9974865990115773)

> let secondSlope = (-0.9974865990115773) / (7.085537941692915e-2)
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> let firstIntercept = ymean - (xmean * firstSlope)

> let secondIntercept = ymean - (xmean * secondSlope)

> let firstEigenline = zip samplePoints $ L.map (\x -> x*firstSlope + 
firstIntercept) samplePoints

> let secondEigenline = zip samplePoints $ L.map (\x -> x*secondSlope + 
secondIntercept) samplePoints

> import Graphics.EasyPlot

> plot (PNG "runs_and_wins_with_eigenlines.png") [Data2D [Title "Runs Per 
Game VS Win % in 2014"] [] (zip runsPerGame winPercentage), Data2D [Title 
"First Eigenline", Style Lines, Color Blue] [] firstEigenline, Data2D 
[Title "Second Eigenline", Style Lines, Color Red] [] secondEigenline]

True

> plot (PNG "runs_and_wins_first_eigenline.png") [Data2D [Title "Runs Per 
Game VS Win % in 2014"] [] (zip runsPerGame winPercentage), Data2D [Title 
"First Eigenline", Style Lines, Color Blue] [] firstEigenline]

The preceding command would give the following chart as a result:

                  



Chapter 8

[ 153 ]

The scale is causing some distortion in this image, but the red and blue lines are 
perpendicular to each other. By removing the red line for the second red eigenline 
from the image, we see an image that is almost identical to the one presented in 
Chapter 6, Correlation and Regression Analysis. Any difference between the following 
image and the similar image depicting linear regression can be chalked up to our 
differences in computing the covariance:

Principal Component Analysis in Haskell
The previous example demonstrates an important trait of the eigenvalue 
decomposition process—some of the vectors produced by this process are not useful 
to us. Sometimes, we just need a few vectors to do the job. In this example, we only 
needed to use the first eigenvector and we could easily identify this vector because it 
had the largest associated eigenvalue.
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Principal Component Analysis (PCA) is the process by which we compute the 
eigenvalues of a covariance matrix, rank them from the largest to the smallest, and 
then keep just the t largest eigenvalues and vectors. The eigSH function goes through 
the trouble of eigenvalue discovery and ranking for us. It's our job to select the 
number of top eigenvalues that we want to keep.

Once we have gathered our top eigenvalues and eigenvectors, we can map our dataset 
to a lower dimensional space. If X is the n-by-d matrix representing the original dataset 
and T is the d-by-t matrix (where t is a value less d) representing the top eigenvector 
matrix, we can perform the following to create an n-by-t matrix named S. Just a 
reminder about what each of these letters mean—n represents the number of records in 
our dataset, d represents the original dimensionality of the dataset, and t represents the 
desired dimensionality. We are morphing X using T to create S:

A bit of an explanation is due with regards to this formula. Each variable in this 
equation represents a matrix. The multiplication symbol refers to the process  
of matrix multiplication (performed by calling the mul function). The apostrophe 
character to the right of a matrix refers to the matrix transpose operation  
(performed by calling the tr function).

The S matrix is now a dataset with fewer features than our original X dataset.  
Think of this S matrix as a dataset that's been cleaned somewhat by dropping  
some of the dimensions of the data that did not contribute enough variance,  
which helps us better explain the dataset.

Let's craft our own PCA function in Haskell. This function will take a List of  
Double values representing our original dataset (named records) as well as an 
Integer value representing the desired number of eigenvectors that we wish to  
use (named top). The following method will return a matrix representing our 
original dataset in a lower dimensional space using only the top dimensions  
instead of all the dimensions:

principalComponentAnalysis :: [[Double]] -> Integer -> Matrix  
  Double
principalComponentAnalysis records top =
    tr $ mul (tr topOrderedEvectors) (tr featureVectors)
  where
    featureVectors = fromLists records
    (_, covMatrix) = meanCov featureVectors
    (_, evectors) = eigSH covMatrix
    topOrderedEvectors = takeColumns (fromInteger top) evectors
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Building a recommendation engine
When we left the recommendation engine problem at the beginning of the chapter, 
we created the wordsMatrix variable. We should now have enough background 
with regards to the benefits of the eigenvalue decomposition process, which will 
help us to finish the creation of our recommendation engine. We can use the 
principalComponentAnalysis function and produce our own dataset based on 
wordsMatrix, as follows:

> let pcaMatrix = principalComponentAnalysis wordsMatrix 5

The pcaMatrix function is a compressed form of the wordsMatrix variable,  
which focuses on the 5 vectors with the highest variance.

Finding the nearest neighbors
Each row in the pcaMatrix function represents one user. If we were to plot this 
dataset (which would be a challenge in five dimensions), we would see points 
scattered through the space. These points would be gathered near other points with 
a high similarity. What we are going to do next is use pcaMatrix and seek out the 5 
nearest neighbors to a given user at a specified index.

To find the point nearest to another point, you need a distance measure. A commonly 
used distance measure is known as the Euclidean distance. The equation for this can be 
denoted as follows:

This approach returns the true distance between two points, say a and b, but there 
is a way to optimize this function. When comparing two distances, we are trying 
to figure out the distance that is the shortest, but we don't require the distances 
themselves. We can still get the information desired by dropping the square root 
function. Comparing Euclidean distances with or without a square root will return 
the same result (and the square root operation can be a costly calculation). 
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Because of this, we will use the Euclidean squared distance:

In order to perform this operation in code, we are going to isolate a single desired 
row in our matrix, repeat it n times (where n is the number of rows in the matrix), 
and then use matrix operations to return the Euclidean squared distance in the 
following way:

euclideanDistanceSqrdFromRow :: Matrix Double) -> Integer ->  
  Vector Double
euclideanDistanceSqrdFromRow records row =
    sumOfSquaresVector
  where
    d = cols records
    copyMatrix = repmat
      (subMatrix (fromIntegral row, 0) (1, d) records) (rows  
      records) 1
      diffMatrix = records - copyMatrix
      diffSqrdMatrix = diffMatrix * diffMatrix
      sumOfSquaresVector = sum $ toColumns diffSqrdMatrix

The result of this operation will be a vector (not a matrix), that is, n elements long 
representing distances from a selected index to every index. The distance from the 
selected index to itself should be 0.

Next, we need to come up with an ordering for the values returned by this function. 
Here's what I came up with. This algorithm assumes that the list of distances has 
been nubsorted. This means that the distances have been sorted and all the duplicates 
have been removed. For each value in the nubSorted list, we return a list of all the 
index positions in the unsorted list that match this position. This is accomplished by 
using the elemIndices function, as follows:

order :: Eq a => [a] -> [a] -> [Integer]
order unsorted nubSorted =
  concatMap (\x -> L.map toInteger $ L.elemIndices x unsorted)  
  nubSorted
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Finally, we put it all together into a function that will recommend users to us based 
on our usage of popular words. This function will take a matrix returned by the 
principalComponentAnalysis function and search the knn nearest index positions 
in index position's row by using the Euclidean similarity, as follows:

findClosestFeaturesToRow :: Matrix Double -> Integer -> Integer
  -> [Integer]

findClosestFeaturesToRow records row knn =
    take (fromIntegral knn) orderOfFeatures
  where
    sumOfSquares = toList $ euclideanDistanceSqrdFromRow records  
    row
    orderOfFeatures = order sumOfSquares . nub $ sort  
    sumOfSquares

Testing our recommendation engine
This aspect of the testing process will be different for everyone since each of us 
should have downloaded our databases individually. I found a user in my database 
at the 22951 index position who tweeted a lot. We are going to see whether we can 
recommend users to user #22951.

First, here's the feature vector for user #22951 representing the 25 most commonly 
used words in our database:

> genericIndex wordsMatrix 22951

[0.0,0.0,0.0,24.0,0.0,24.0,0.0,24.0,0.0,0.0,24.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]

It seems that this user's word patterns focused on just 4 popular words. Let's use our 
recommendation to provide the 5 users who are the most similar to #22951 using the 
following statement. Note that we purposely typed 6 here instead of 5. The closest 
match to #22951 is #22951, which shouldn't be surprising to us at all. (We will hope 
that a recommendation engine will be smart enough to notice someone identical to 
ourselves first.) Ignore the first result.

> findClosestFeaturesToRow pcaMatrix 22951 6

[22951,8020,13579,19982,11178,22227]
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To see whether our engine works, the feature vector of each of these five users will 
hopefully be similar to #22951's feature vector. These users won't have the exact 
same word usage pattern as #22951, but it will be similar enough to provide a 
recommendation. This can be seen using the following statements:

> genericIndex wordsMatrix 8020

[0.0,0.0,0.0,0.0,0.0,14.0,0.0,14.0,0.0,0.0,0.0,14.0,0.0,0.0,0.0,0.0,0.0,0
.0,0.0,0.0]

> genericIndex wordsMatrix 13579

[0.0,0.0,0.0,0.0,0.0,16.0,0.0,8.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
,0.0,0.0]

> genericIndex wordsMatrix 19982

[0.0,0.0,13.0,0.0,0.0,13.0,0.0,13.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0
.0,0.0,0.0]

> genericIndex wordsMatrix 11178

[10.0,0.0,0.0,0.0,0.0,10.0,0.0,10.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0
.0,0.0,0.0]

> genericIndex wordsMatrix 22227

[0.0,0.0,0.0,0.0,0.0,8.0,0.0,8.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0]

Our PCA recommendation engine was able to find some users that shared a common 
word usage pattern with the user at row 22951 in our database using only the 
eigenvectors associated with the top 5 eigenvalues. This was a small database of only 
25,000 users with about 1 tweet each and we were still able to come up with a short 
list of similar users.
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Summary
In this chapter, we used an analysis of the word frequency of tweets and the 
mathematics behind eigenvectors to build a recommendation engine to help Twitter 
users find other users similar to themselves. Along the way, we learned that there 
are many words in our language that aren't useful to the data analysis process. We 
filtered out the stop words from our dataset. We studied the jump from bivariate 
data to multivariate data and looked at the tools that linear algebra has to offer. 
Before this, we had worked with simple lists and a single input and output. We got 
the chance to work with matrices with many dimensions of data. We were able to 
organize our multidimensional datasets using a covariance matrix. We were able to 
measure the skewness of our covariance matrix using the eigenvalue decomposition 
process. We learned that not all dimensions of data are useful, and we were able to 
weed out the less useful dimensions by utilizing Principal Component Analysis (the 
process by which we used only the top ranked eigenvalues and eigenvectors). Using 
our lower dimensional dataset, we built a recommendation engine that searched 
for the users that were the nearest matches to a user using the Euclidean squared 
distance measure. Finally, we tested our dataset by selecting a user and discovered 
some similar users to this member.
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Regular Expressions  
in Haskell

In Chapter 3, Cleaning Our Datasets, we discussed the use of regular expressions to 
assist the programmer in finding irregularities in datasets. Chapter 3, Cleaning Our 
Datasets, in my opinion, is the most important chapter in the book. This appendix 
sets out to compile a list of the most frequently used regular expression features. 
Before we begin, we must import the regex-posix package:

> import Text.Regex.Posix

A crash course in regular expressions
A regular expression is made up of atoms. An unmodified atom in a regular 
expression must match one, and exactly one, instance of a matching sequence in 
a string in order to satisfy the expression. When two or more unmodified atoms 
appear consecutively in an expression (such as Jim used in Chapter 3, Cleaning Our 
Datasets), the sequence of J, followed immediately by i, which is then followed 
immediately by m, must appear somewhere in the string. This behavior is similar to 
the Find feature found in most text editors and word processors. This is also where 
regular expressions begin to differ from a simple substring search. The sequence of 
Jim can be seen using the following statements:

> ("My name is Jim." =~ "Jim") :: Bool

True

> ("My name is Frank." =~ "Jim") :: Bool

False
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The three repetition modifiers
Atoms can be modified. In our initial examples, we see our modifiers acting on a 
single character, but (as demonstrated later) an atom may be a single character or 
a grouping of characters. There are three primary modifiers in regular expressions. 
The * modifier means that an atom may be found zero or more times in a string. 
For example, a* can match a, aaaaaa, rabbit, and even cow. The + modifier means 
that an atom should be found one or more times. The a+ expression can match a, 
aaaaa, and rabbit, but it will never match cow. Finally, there is ?, which means 
that an atom may exist zero times or once (think of it as the maybe modifier). These 
atoms are known as greedy modifiers, which means that they try to gobble up as 
much of the string with an atom as possible. The * and ? modifiers may both match 
with 0 instances of an atom. Since there is always going to be at least a zero match of 
everything, these modified atoms will always return a successful match unless joined 
by something else.

When using the * modifier, it is important to remember that the atom will always 
have a match and it will never be evaluated as False:

> ("a" =~ "a*") :: Bool

True

> ("aaaaaaaa" =~ "a*") :: Bool

True

> ("rabbit" =~ "a*") :: Bool

True

> ("cow" =~ "a*") :: Bool

True

> ("" =~ "a*") :: Bool

True

When using the + modifier, the atom must match at least one character in order  
to be True:

> ("a" =~ "a+") :: Bool

True

> ("aaaaaaaa" =~ "a+") :: Bool

True

> ("rabbit" =~ "a+") :: Bool

True

> ("cow" =~ "a+") :: Bool

False

> ("" =~ "a+") :: Bool

False
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Depending on where you live in the world, the agreed-upon correct spelling of a 
term that is a synonym of hue can be color or colour. Using the ? modifier, we  
can craft a regular expression that evaluates to True for both the spellings and to 
False for incorrect spellings. Like the * modifier, this atom modification will  
always evaluate to True when the expression matches the intended atom (and  
thus consumes the matched characters) or when it matches with nothing. The  
last expression in the following example evaluates to False due to other atoms  
in the expression:

> ("color" =~ "colou?r") :: Bool

True

> ("colour" =~ "colou?r") :: Bool

True

> ("coluor" =~ "colou?r") :: Bool

False

Anchors
Regular expressions can be anchored to either of the two ends of a string. The  
symbol for the start and end of the string is ^ and $ respectively. Let's examine 
a regular expression to match with the words that contain grand, but only at the 
beginning of the expression:

> ("grandmother" =~ "^grand") :: Bool

True

> ("hundred grand" =~ "^grand") :: Bool

False

Likewise, we can anchor an expression to the end of a string. Let's examine the 
expression to match words ending with the -ing suffix:

> ("writing" =~ "ing$") :: Bool

True

> ("zingers" =~ "ing$") :: Bool

False
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We can use ^ and $ together if you want to match a regular expression with a word 
that may have the expression stretching across the entire string. When using the 
anchors together, the regular expression engine expects the regular expression to 
match from the start of the string to the end of the string. The first occurrence of 
an atom that evaluates to False will cause the entire expression to be evaluated to 
False. The last example in the following set evaluates to True because the string 
starts and ends with 0 occurrences of a:

> ("a" =~ "^a*$") :: Bool

True

> ("aaaaaaaa" =~ "^a*$") :: Bool

True

> ("rabbit" =~ "^a*$") :: Bool

False

> ("cow" =~ "^a*$") :: Bool

False

> ("" =~ "^a*$") :: Bool

True

The dot
The dot (or the period) is a special atom that allows us to match any one character. 
With the modification of * to make .*, we have crafted an expression that will  
match everything. To craft an expression that matches only a period, you have to 
escape the dot with a \ for the regular expression engine. Since Haskell escapes 
strings before passing them to the regular expression engine, we have to escape  
the \ with a second \:

> ("." =~ ".") :: Bool

True

> ("a" =~ ".") :: Bool

True

> ("." =~ "\\.") :: Bool

True

> ("a" =~ "\\.") :: Bool

False
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Character classes
Characters can be grouped into character classes using the square brackets, [ and 
]. A character class is a collection of characters in which one character must match. 
The words grey and gray can be considered correct spellings. We can craft a regular 
expression to match both spellings:

> ("grey" =~ "gr[ae]y") :: Bool

True

> ("gray" =~ "gr[ae]y") :: Bool

True

> ("graey" =~ "gr[ae]y") :: Bool

False

By beginning a character class with ^, we  create the complement of a character  
class. That is, a character will match because it is not found in that character class. 
For example, we can check to see whether a word doesn't contain any vowels  
using a regular expression. This requires us to modify the character class so that  
it matches at least one character using + and is anchored to the beginning and  
end of the expression:

> ("rabbit" =~ "^[^aeiou]+$") :: Bool

False

> ("cow" =~ "^[^aeiou]+$") :: Bool

False

> ("why" =~ "^[^aeiou]+$") :: Bool

True

Character classes can also support a range of letters. Rather than requiring a character 
class to match a lowercase letter that looks like [abcdefghijklmnopqrstuvwxyz], it is 
clearer to write [a-z]. The [A-Z] range works for uppercase letters and [0-9] works 
for numbers:

> ("a" =~ "[a-z]") :: Bool

True

> ("A" =~ "[a-z]") :: Bool

False

> ("s" =~ "[A-Z]") :: Bool

False

> ("S" =~ "[A-Z]") :: Bool

True

> ("S" =~ "[a-zA-Z]") :: Bool

True
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Groups
Atoms can be grouped together using parentheses, and these groups can be 
modified. Therefore, the regular expression (row, )+row your boat will match the 
entire string of row, row, row your boat. An added benefit of grouping is that the 
text matched in one part of an expression can be used as a regular expression that is 
used later on in the same expression:

> ("row your boat" =~ "(row, )+row your boat") :: Bool

False

> ("row, row your boat" =~ "(row, )+row your boat") :: Bool

True

> ("row, row, row your boat" =~ "(row, )+row your boat") :: Bool

True

> ("row, row, row, row your boat" =~ "(row, )+row your boat") :: Bool

True

The lyrics to this song are row, row, row your boat. We can enforce that there are 
exactly three row words in our string (two with commas after it and one without). 
We also need to use our anchors and the {} modifier, which enforces an explicit 
number of repetitions:

> ("row your boat" =~ "^(row, ){2}row your boat$") :: Bool

False

> ("row, row your boat" =~ "^(row, ){2}row your boat$") :: Bool

False

> ("row, row, row your boat" =~ "^(row, ){2}row your boat$") :: Bool

True

> ("row, row, row, row your boat" =~ "^(row, ){2}row your boat$") :: Bool

False

Alternations
Alterations can happen any time we want one expression or another. For example, 
we wish to create a regular expression to match the year of birth of someone that is 
still alive. At the time of writing this book, the oldest living person was born in 1899. 
We would like to craft a regular expression to match the birth year of anyone born 
after 1899 to 2099. We can do this with an alternation. 
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Using the pipe character |, we can say that the regular expression A|B|C must match 
A, B, or C in order to be evaluated as True. Now, we must craft three separate regular 
expressions for the year 1899, any year in the 1900s, and any year in the 2000s:

> ("1898" =~ "^1899|19[0-9][0-9]|20[0-9][0-9]$") :: Bool

False

> ("1899" =~ "^1899|19[0-9][0-9]|20[0-9][0-9]$") :: Bool

True

> ("1900" =~ "^1899|19[0-9][0-9]|20[0-9][0-9]$") :: Bool

True

> ("1999" =~ "^1899|19[0-9][0-9]|20[0-9][0-9]$") :: Bool

True

> ("2015" =~ "^1899|19[0-9][0-9]|20[0-9][0-9]$") :: Bool

True

> ("2115" =~ "^1899|19[0-9][0-9]|20[0-9][0-9]$") :: Bool

False

A note on regular expressions
Regular expressions are defined by their engine, and every regular expression  
engine has differences. We did our best in this appendix to include features of 
regular expressions that are common across most engines. (When creating this 
appendix, we discovered differences between the regex-posix package on 
Windows and Linux.) Some excellent resources to learn about regular expressions 
include Mastering Regular Expressions, Jeffrey Friedl, O'Reilly Media and Mastering 
Python Regular Expressions, Felix Lopez, Victor Romero, Packt Publishing.

Regular expressions should be avoided whenever possible. They are difficult to read, 
debug, and test, and are prone to being slow. Sometimes, a parser is a better solution 
than a regular expression due to the recursive nature of some text. If you find a 
regular expression on the Internet that you intend to use in your code, be sure to  
test it thoroughly. If you can find a function that does something similar to your 
needs without having to craft a regular expression, I recommend that you use the 
function instead.

Having said why you shouldn't use regular expressions, I believe that they provide a 
fun and intellectual challenge to craft expressions to match patterns of text. A simple 
regular expression will help you find features in your datasets, which is easier than a 
simple substring search.
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