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Preface 

Computer technology changes with frightening speed; the fundamentals, however, 
remain remarkably static. The architecture of the standard computer is hardly changed 
from the machines which were built half acentury ago, even though their size and power 
are incomparably different from those of today. In programming, modern ideas like 
object-orientation have taken decades to move from the research environment into the 
commercial mainstream. In this light, a functional language like Haskell is a relative 
youngster, but one with a growing influence to play. 

Functional languages are increasingly being used as components of larger systems 
like Fran (Elliott and Hudak 1997), in which Haskell is used to describe reactive 
graphical animations, which are ultimately rendered in a lower-level language. This 
inter-operation is done without sacrificing the semantic elegance which characterizes 
functional languages. 

Functional languages provide a framework in which the crucial ideas of modern 
programming are presented in the clearest possible way. This accounts for their 
widespread use in teaching computing science and also for their influence on the 
design of other languages. A case in point is the design of G-Java, the generics of 
which are directly modelled on polymorphism in the Haskell mould. 

This book provides a tutorial introduction to functional programming in Haskell. The 
remainder of the preface begins with a brief explanation of functional programming 
and the reasons for studying it. This is followed by an explanation of the approach 
taken in the book and an outline of its contents. Perhaps most importantly for readers 
of the first edition, the changes in approach and content in this second edition are then 
discussed. A final section explains different possible routes through the material. 
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What is functional programming? 

Functional programming offers a high-level view of programnii ng, giving its users a 
variety of features which help them to build elegant yet powerful and general libraries of 
functions. Central to functional programming is the idea of a function. which computes 
a result that depends on the values of its inputs. 

An example of the power and generality of the language is the map function, which 
is used to transform every elenlent of a list of objects in a specified way. For example. 
map can be used to double all the numbers in a sequence of numbers or to invert the 
colours in each picture appearing in a list of pictures. 

The elegance of functional programming is a consequence of the way that functions 
are defined: an equation is used to say what the value of a function is o n  an arbitrary 
input. A simple illustration is the function addDouble which adds two integers and 
doubles their sum. Its definition is 

where x and y are the inputs and 2* (x+y) is the result. 
The model of functional programming is simple and clean: to work out the value 01' 

an expression like 

the equations which define the functions involved in the expression are used. so 

This ic  how a computer would work out the value of the expression, but i t  i \  also 
possible to do exactly the same calculation using pencil and paper, mahing transparent 
the implementation mechanism. 

It i \  also possible to diccu\s how the programs behave in general. In the case of 
addDouble we can use the fact that x+y and y+x are equal for all numbers x and y to 
conclude that addDouble x y and addDouble y x are equal for all x and y. This idea 
of proof is much more tractable than those for traditional imperative and object-oriented 
(00) languages. 

Haskell and Hugs 

This text uses the programming language Haskell, which has freely available compilers 
and interpreters for most types of computer system. Used here is the Hugs interpreter 
which provides an ideal platform for the learner, with its fast compile cycle, siniplc 
interface and free availability for Windows, Unix and Macintosh systemc. 

Haskell began life in the late 1980s as an intended standard language for lazy 
functional programming, and since then it has gone through various changes and 
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n~odifications. This text is written in Haskell 98, which consolidates work on Haskell 
thus far, and which is intended to be stable; future extensions will result in  Haskell 2 
some years down the line, but i t  is expected that implenientations will continue to 
support Haskell98 after that point. 

While the book covers most aspects of Haskell98, it is primarily a programming text 
rather than a language manual. Details of the language and its libraries are contained 
in the language and library reports available from the Haskell home page, 

Why learn functional programming? 

A functional programming language gives a simple model of programming: one value, 
the result, is computed on the basis of others, the inputs. 

Bccause of its simple foundation, a functional language gives the clearest possible 
view of the central ideas in modern computing, including abstraction (in a function), 
data abstraction (in an abstract data type), genericity, polymorphism and overloading. 
This means that a functional language provides not just an ideal introduction to modern 
programming ideas, but also a useful perspective on more traditional imperative or 
object-oriented approaches. For example, Haskell gives a direct implementation of 
data types like trees, whereas in other languages one is forced to describe them by 
pointer-li nked data structures. 

Haskell is notjust a good 'teaching language'; i t  is a practical programming language, 
supported by having extensions such as interfaces to C functions and component-based 
programming, for example. Haskell has also been used in  a number of real-world 
projects. More information about these extensions and projects can be found in the 
concluding chapter. 

Who should read this book? 

This text is intended as an introduction to functional programming for computer science 
and other students, principally at university level. I t  can be used by beginners to com- 
puter science, or more experienced students who are learning functional programming 
for the first time; either group will find the inaterial to be new and challenging. 

The book can also be used for self-study by programmers, software engineers and 
others interested in gaining a grounding in functional programming. 

The text is intended to he self-contained, but some elementary knowledge of com- 
mands, tiles and so on is needed to use any of the implementations of Haskell. Some 
logical notation is introduced in the text; this is explained as i t  appears. In Chapter 19 
it would help to have an understanding of the graphs of the log,  n2 and 2n functions. 
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The approach taken here 

There is a tension in writing about a programming language: one wants to introduce all 
the aspects of the language as early as possible, yet not to over-burden the reader with 
too much at once. The firs1 edition of the text introduced ideas 'from the bottom up', 
which meant that it took more than a hundred pages before any substantial example 
could be discussed. 

The second edition takes a different approach: a case study of 'pictures' introduces 
a number of crucial ideas informally in the first chapter, revisiting then1 as the text 
proceeds. Also, Haskell has a substantial library of built-in functions, particularly over 
lists, and this edition exploits this, encouraging readers to use these functions before 
seeing the details of their definitions. This allows readers to progress more quickly. 
and also accords with practice: most real programs are built using substantial libraries 
of pre-existing code, and it is therefore valuable experience to work in this way from 
the start. A section containing details of the other changes in the second edition can be 
found later in this preface. 

Other distinctive features of the approach in the book include the following. 

The text gives a thorough treatment of reasoning about functional programs. be- 
ginning with reasoning about list-manipulating functions. Thesc are chosen in 
preference to functions over the natural numbers for two reasons: the rcsults one 
can prove for lists seem substantially more realistic, and also the structural induction 
principle for lists seenis to be more acceptable to students. 

The P i c t u r e  case study is introduced in Chapter I and revisited throughout the tcxt: 
this means that readers see different ways of programming the same function, and so 
get a chance to reflect on and compare different designs. 

Function design - to  be done before starting to code - is also emphasized explicitly 
in Chapters 4 and 1 1 .  

There i \  an emphasis on Haskell as a practical programming language, with an early 
introduction of nlodules, as well as a thorough examination of the do notation for 
110 and other monad-bawd applications. 

Types play a prominent role in the text. Every function or object defined has its typc 
introduced at the samc time as its definition. Not only does this provide a check 
that the definition has the type that its author intended, but also we view types as 
the single most important piece of documentation for a definition, since a function's 
type describes precisely how the function is to be used. 

A number of case studies are introduced in stages through the book: the picture 
example noted above, an interactive calculator program, a coding and decoding 
system based on Huffinan codes and a small queue simulation package. These are 
used to introduce various new ideas and also to show how existing techniques work 
together. 

Support materials on Haskell, including a substantial number of Web links, are 
included in the concluding chapter. Various appendices contain other backup in- 
formation including details of the availability of implementations, common Hufs 
errors and a comparison between functional, imperative and 00 programming. 
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Other support materials appear on the Web site for the book: 

Outline 

The introduction in Chapter 1 covers the basic conccpts of functional programming: 
functions and types, expressions and evaluation. detinitions and proof. Some of the 
morc advanced ideas. such as higher-order functions and polymorphism, are previewed 
here from the perspective of the example of pictures built from characters. Chapter 2 
looks at the practicalities of the Hugs implementation of Haskell, loading and running 
scripts written in traditional and 'literate' styles, and the basics of  the module system. 
It also contains a first exercise using the P i c t u r e  type. Thchc two chaptcrs together 
cover the foundation on which to build a course on functional programming in Haskell. 

Information on how to build simple programs over numbers, characters and Booleans 
is contained in Chaptcr 3. The basic lessons are backed up with exercises, as is the case 
for all chapters from hcre on. With this basis, Chapter 4 steps back and exanlines the 
various strategies which can be used to define functions, and particularly emphasizes 
the importance of using other functions, either from the system or written by the user. 
It also discusses the idea of 'divide and conquer', as well as introducing recursion over 
the natural numbers. 

Structured data, in the form of tuples and lists, come in Chapter 5. After introducing 
the idea of lists, programming over lists is performed using two resources: the list com- 
prehension. which effectively gives the power of map and f i l t e r ;  and the tirst-order 
prelude and library functions. Nearly all the list prelude functions are polymorphic, and 
so polymorphism is brought in here. Chapter 6 contains various extended examples, 
and only in Chapter 7 is primitive recursion over lists introduccd; a text processing case 
study provides a more substantial example here. 

Chapter 8 introduces reasoning about list-manipulating programs, on the basis of a 
number of introductory sections giving the appropriate logical background. Guiding 
principles about how to build inductive proofs are presented, together with a more 
advanced section on building successSi11 proofs from failed attempts. 

Higher-order functions are introduced in Chapters 9 and 10. First functional argu- 
ments are csamined. and it is shown that functional arguments allow the implen~entation 
of many of the 'patterns' of computation identified over lists at the start of the chapter. 
Chapter 10covers functions as results. defined both as lambda-expressions and as partial 
applications; these ideas are examined by revisiting the P i c t u r e  example, as wcll as 
through an index case study. This is followed by an interlude - Chapter 1 I - which 
discusses the role of the development life cycle in programming. 

Type classes allow functions to be overloaded to mean different things at different 
types; Chapter 12 covers this topic as well as surveying the various classes built into 
Haskell. The Haskell type system is somewhat complicated because of the presence 
of classes, and so Chapter 13 explores the way in which types are checked in Haskell. 
In general, type checking is a matter of resolving the various constraints put upon the 
possible type of the function by its definition. 
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In writing larger programs, it is imperative that users can define types for themselves. 
Haskell supports this in two ways. Algebraic types like trees are the subject of Chapter 
14. which covers all aspects of algebraic types from design and proof to their interaction 
with type classes, as well as introducing numerous examples of algebraic types in 
practice. These examples are consolidated in Chapter 15, which contains thc casc stidy 
of coding and decoding of information using a Huffman-style code. The foundations 
of the approach are outlined before the implementation of the case study. Modules are 
used to break the design into manageable parts, and the more advanced features of the 
Haskell module system are introduced at this point. 

An abstract data ty pe (ADT) providcs access to an implementation through a restricted 
set o f  functions. Chapter 16 explores the ADT mechanism of Haskell and gives 
numerous examples of how it is used to implement queues, sets, relations and so forth. 
as well as giving the basics of a simulation casc study. 

Chapter 17 introduces lazy evaluation in Haskell which allows programmers n dis- 
tinctive style incorporating backtracking and infinite data structures. As an example of 
backtracking there is a parsing case study, and infinite lists are used to give 'process 
style' programs as well as a random-number generator. 

Haskell programs can perform input and output by means of the I0 types. Their 
members - examined in Chapter 18 - represent action-based programs. The programs 
are most readily written using the do notation, which is introduced at the start of the 
chapter, and illustrated through a series of cxamplch, culminating in an interactivc li-ont- 
end to the calculator. The foundations of the do notation lie in monads. which can also 
be used to do action-based programming of a number of different flavours. some of 
which are examined in the second half of the chapter. 

The text continues with an examination in Chapter 19 of program behaviour, by which 
we mean the time taken for a program to compute its result, and the space used in that 
calculation. Chapter 20 concludes by surveying various applications and extensions oI' 
Haskell as well as looking at further directions for study. These are backed up with 
Web and other references. 

The appendices cover various background topics. The frst  examines links with 
functional and 00 programing, and the second gives a glossary of commonly used 
terms in functional programming. The others include a summary of Haskell operators 
and Hugs errors, together with help on understanding programs and details of the v ; I nous ' 

implementations of Haskell. 
The Haskell code for all the examples in the book, as well as other background 

materials, can be downloaded from the Web site for the book. 

What has changed from the first edition? 

The second edition of the book incorporates a number of substantial changes, for iI 

variety of reasons. 
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'Bottom up' or not? 

Most importantly, the philosophy of how to introduce material has changed, and this 
makes most impact on how lists are handled. The first edition was written with a 
resolutely 'bottom up' approach, first introducing recursive definitions of monomorphic 
functions, and only later bringing in the built-in functions of the prelude and the 
libraries. This edition starts by introducing in Chapter 5 the (first-order) polymorphic 
list-manipulating functions from the prelude as well as list comprehensions, and only 
introduces recursive definitions over lists i n  Chapter 7. 

The main reason for this change was the author's (and others') experience that once 
recursion had been introduced early, it was difficult to get students to move on and use 
other sorts of definitions; in  particular i t  was difficult to get students to use prelude and 
library functions in their solutions. This is bad in itself, and gives students only a partial 
view of the language. Moreover, it rests i l l  with modern ideas about programming. 
which emphasize the importance of re-use and putting together solutions to utilize a 
rich programming environment that provides many of the required building blocks. 

Introduction 

Another consequence of the first-edition approach was that it took some hundred pages 
before any substantial examples could be introduced; i n  this edition there is an example 
of pictures in Chapter I which both forms a more substantial case study and is used 
to preview the ideas of' polymorphism, higher-order functions and type abstraction 
introduced later in the text. The case study is revisited repeatedly as new material is 
brought in, showing how the same problems can be solved more effectively with new 
machinery, as well as illustrating the idea of program verification. 

The introduction also sets out rnore clearly some of the basic concepts of functional 
programming and Haskell, and a separate Chapter 2 is used to discuss the Hugs system, 
Haskcll scripts and modules and so forth. 

Haskell 98 

The book now has an emphasis on using the full resources of Haskell 98. Hugs now 
provides an almost complete implementation of Haskell, and so as far as systems are 
concerned Hugs is the exclusive subject. In most situations Hugs will probably be the 
implementation of choice for teaching purposes, and if it is not used, i t  is only the system 
descriptions which need to be ignored, as none of the language features described are 
Hugs-specific. 

The treatment of abstract data types uses the Haskell mechanism exclusively, rather 
than the restricted type synonym mechanism of Hugs which was emphasized in the 
first edition. The material on 110 now starts with the do notation, treating it as a 
mini language for describing programs with actions. This is followed by a general 
introduction to monads, giving an example of monadic computation over trees which 
again uses the do notation. 

Finally, functions in the text are given the same names as they have in  the prelude 
or libraries. which was not always the case in the first edition. Type variables are the 
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customary a. b, . . . and list variables are named xs, y s  and so on. 

Recursion, types and proof 

As hinted earlier, recursion is given less emphasis than before. 
The material on type checking now takes the approach of looking more explicitly at 

the constraints put upon types by definitions, and emphasizes this through a sequence 
of examples. This replaces an approach which stated typing rules but said less about 
their application in practice. 

Students have made the point that proof over lists seems more realistic and indecd 
easier to understand than proof over the natural numbers. For that reason, proof over 
lists is introduced in Chapter 8 rather than earlier. This has the advantage that practical 
examples can be brought in right from the start, and the material on proof is linked with 
the pictures case study. 

Problem solving and patterns of definition 

Because of a concern for 'getting students started' in solving problems, there is an 
attempt t o  talk more explicitly about strategies for programming, reorganizing and 
introducing new material in Chapters 4 and 11; this material owes much to Polya's 
problem-solving approach in mathematics. There is also explicit discussion about 
various 'patterns of definition' of programs in Section 9.1. 

Conclusion and appendices 

The new edition contains a concluding chapter which looks to further resources, both 
printed and on the Web, as well as discussing possible directions for functional pro- 
gramming. 

Some material from the appendices has been incorporated into the conclusion, whilc 
the appendix that discusses links with other paradigms says rather more about links 
with 00 ideas. Thc other appendices have been updated, while the one that deal1 with 
'some useful functions' has been absorbed into the body of the text. 

To the reader 

This introduction to functional programming in Haskell is designed to be read from 
start to finish, but some material can be omitted, or read in a different order. 

The material is presented in an order that the author tinds natural, and while this also 
reflects some of the logical dependencies between parts of the subject, some material 
later in the text can be read earlier than it appears. Specifically, the introductions to 110 
in the first four section\ of Chapter I8  and to algebraic types in the carly ~ect ion\  on 
Chapter 14 can be tackled at any point after reading Chapter 7. Local definition\, givcn 
by where and le t .  are introduced in Chapter 6; they can be covered at any point after 
Chapter 3. 
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It is always an option to cover only a subset of the topics, and this can be achieved 
by stopping before the end; the rest of this section discuswh i n  more detail other ways 
of trimming the material. 

There is a thread on program verification which begins with Chapter 8 and continues 
in Sections 10.9, 14.7, 16.10 and 17.9; this thread is optional. Similarly, Chaptcr 19 
gives a self-contained treatment of program time and space behaviour which is also 
optional. 

Some material is more technical. and can be omitted on (at least the) first reading. 
This is signalled explicitly in  the text, and is contained in  Sections 8.7 and part of 
Section 13.2. 

Finally, it is possible to omit some of the examples and case studies. For example, 
Scctions 6.3 and 6.4 are extended sets of exercises which need not be covered; the text 
processing (Section 7.6) and indexing (Section 10.8) can also be omitted - their roles 
are to provide reinforcement and to show the system used on rather larger examples. In  
the later chapters, the examples in Sections 14.6 and 16.7-16.9 and in Chapter 17 can 
be skipped, but paring too many examples will run the risk of losing some motivating 
material. 

Chapter 15 introduces modules in  the tirst two sections; the remainder is the Huffman 
coding case study, which is optional. Finally, distributed through thc final chapters are 
the calculator and simulation case studies. Thcsc are again optional, hut omission of 
the calculator case study will remove an important illustration of parsing and algebraic 
and abstract data types. 
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This chapter sets the scene for our exposition of functional programming in Haskell. The 
chapter has three aims. 

We want to introduce the main ideas underpinning functional programming. We 
explain what it means to be a function and a type. We examine what it means to find 
the value of an expression, and how to write an evaluation line-by-line. We look at 
how to define a function, and also what it means to prove that a function behaves in 
a particular way. 

We want to illustrate these ideas by means of a realistic example; we use the example 
of pictures to do this. 



2 Introducing functional programming 

Finally, we want to give a preview of some of the more powerful and distinctive 
ideas in functional programming. This allows us to illustrate how it differs from other 
approaches like object-oriented programming, and also to show why we consider 
functional programming to be of central importance to anyone learning computing 
science. As we proceed with this informal overview we will give pointers to later 
chapters of the book where we explain these ideas more rigorously and in more detail. 

( 1 .1  ) Computers and modelling 

In the last fifty years computers have moved from being enormous, expensive, scarce, 
slow and unreliable to being small, cheap, common, f u t  and (relatively!) dependable. 
The first computers were 'stand-alone' machines, but now computers can also play 
different roles, being organized together into networks, or being embedded in domestic 
machines like cars and washing machines, as well as appearing in personal computers 
(PCs), organizers and so on. 

Despite this, the fundamentals of computers have changed very little in this period: 
the purpose of a computer is to manipulate symbolic information. This information can 
represent a simple situation, such as the items bought in a supermarket shopping trip, or 
more complicated ones, like the weather system above Europe. Given this information, 
we are required to perform tasks like calculating the total cost of a supermarket trip, or 
producing a 24-hour weather forecast for southern England. 

How are these tasks achieved'? We need to write a description of how the information 
is manipulated. This is called a program and it is written in a programming language. 
A programming language is a formal, artificial language used to give instructions to a 
computer. In other words the Ianguage is used to write the software which controls 
the behaviour of the hardware. While the structure of computers has remained very 
similar since their inception, the ways in which they are programmed have developed 
substantially. Initially programs were written using instructions which controlled the 
hardware directly, whereas modern programming languages aim to work closer lo the 
level of the problem - a 'high' level - rather than at the 'low' or machine level. 

The programming language is made to work on a computer- by an implementation, 
which is itself a program and which runs programs written in the higher-level Ianguage 
on the computer in question. 

programs 4 9  

implementation is 
computer 1 
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Our task in this text is programming, so we shall be occupied with the upper half of the 
diagram above, and not the details of implementation (which are discussed in Peyton 
Jones 1987; Peyton Jones and Lester 1992). 

Our subject here is functional programming, which is one of a number of different 
programming styles or paradigms; others include object-oriented (OO), structured and 
logic programming. How can there be different paradigms, and how do they differ'? One 
very fruitful way of looking at programming is that i t  is the task of modelling situations 
-either real-world or imaginary -within a computer. Each programming paradigm will 
provide us with different tools for building these models; these different tools allow us 
- or force us - to think about situations in different ways. A functional programmer 
will concentrate on the relationships between values, while an 00 programmer will 
concentrate on the objects, say. Before we can say anything more about functional 
programming we need to examine what it means to be a function. 

( What is a function? 

A function is something which we can picture as a box with some inputs and an output, 
thus: 

inputs 
output 

The function gives an output value which depends upon the input value(s). We will 
often use the term result for the output, and the terms arguments or parameters for 
the inputs. 

A simple example of a function is addition, +, over numbers. Given input values 12 
and 34 the corresponding output will be 46. 

inputs 
output 

l2 -1- 
3 4 

The process of giving particular inputs to a function is called function application, 
and (12 + 34) represents the application of the function + to 12 and 34. 

Addition is a mathematical example, but there are also functions in many other 
situations; examples of these include 

a function giving the distance by road (output) between two cities (inputs); 

a supermarket check-out program, which calculates the bill (o~itput) from a list of 
bar codes scanned in (input); and 

a process controller, which controls valves in a chemical plant. Its inputs are the 
information from sensors, and its output the signals sent to the valve actuators. 
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We mentioned earlier that different paradigms are characterized by the different tools 
which they provide for modelling: in a functional programming language functions 
will be the central component of our models. We shall see this in our running example 
of pictures, which we look at now. 

( Pictures and functions 

In this chapter, and indeed throughout the book, we will look at an example of two- 
dimensional pictures, and their representation within a computer system. At this stage 
we simply want to make the point that many common relationships between pictures 
are modelled by functions; in the remainder of this section we consider a series of 
examples of this. 

Reflection in a vertical mirror will relate two pictures, and we can model this by a 
function f lipV: 

where we have illustrated the effect of this reflection on the 'horse' image 

In a similar way we have a function f l ipH to represent flipping in a horizontal mirror. 
Another function models the inversion of the colours in a (monochrome) image 

Some filnctions will take two arguments, among them a function to scale images, 

a function describing the superimposition of two images, 
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a function to put one 

- - 

picture above another, 

above a 
and a function to place two pictures side by side. 

We have now seen what it means to be afunction, as well as someexamples of functions. 
Bcfore we explain functional programming, we first have to look at another idea, that 
of a 'type'. 

Types 

The functions which we use in functional programs will involve all sorts of different 
kinds of value: the addition function + will combine two numbers to give another 
number; f l ipV will transform a picture into a picture; scale will take a picture and a 
number and return a picture, and so on. 

A type is a collection of values, such as numbers or pictures, grouped together 
because although they are different - 2 is not the same as 567 - they are the same sort 
of thing, in that we can apply the same functions to them. It is reasonable to find the 
larger of two numbers, but not to compare a number and a picture, for instance. 

If we look at the addition function, +. it only makes sense to add two numbers but not 
two pictures, say. This is an example of the fact that the functions we have been talking 
about themselves have a type, and indeed we can illustrate this diagrammatically, thus: 
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Int J 

The diagram indicates that + takes two whole numbers (or Integers) as arguments and 
gives a whole number as a result. In a similar way, we can label the s c a l e  function 

I n t  

Int 
+ * 

to indicate that its first argument is a P i c t u r e  and its second is an I n t ,  with its result 
being a P i c t u r e .  

We have now explained two of the central ideas in functional programming: a type 
is a collection of values. like the whole numbers or integers; a function is an operation 
which takes one or more arguments to produce a result. The two concepts are linked: 
functions will operate over particular types: a function to scale a picture will take two 
arguments, one of type P i c t u r e  and the other of type I n t .  

In modelling a problem situation, a type can represent a concept like 'picture', while 
a function will represent one of the ways that such objects can be manipulated, such as 
placing one picture above another. We shall return to the discussion of types in Section 
1 . 1  1 .  

P l c l - u r e  

The Haskell programming language 

Haskell (Peyton Jones and Hughes 1998) is the functional programming language which 
we use in this text. However, many of the topics we cover are of more general interest 
and apply to other functional languages (as discussed in Chapter 20), and indeed are 
lessons for programming in general. Nevertheless, [he book is of most value as a text 
on fi1nctic)nal programming in the Haskell language. 

Haskell is named after Haskell B. Curry who was one of the pioneers of the A 
calculus (lambda calculus), which is a mathematical theory of functions and has been 
an inspiration to designers of a number of functional languages. Haskell was first 
specified in the late 1980s. and has since gone through a number of revisions before 
reaching its current 'standard' state. 

There are a variety of implementations of Haskell available; in this text we shall 
use the Hugs (1 998) system. We feel that Hugs provides the best environment for thc 
learner, since it is freely available for PC, Unix and Macintosh systems, it is efficient 
and compact and has a flexible user interface. 

Hugs is an interpreter - which means loosely that it evaluates expressions step-by- 
step as we might on a piece of paper - and so it will be less efficient than a compiler 
which translates Haskell programs directly into the machine language of a computer. 
Compiling a language like Haskell nllows its programs to run with a speed similar to 
those written in more conventional languages like C and C++. Details of all the different 

Picture 
D 

9- 

Int 
?r 

scale 
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implementations of Haskell can be found in Appendix E and at the Haskell home page, 
http://www.haskell.org/. 

From now on we shall be using the Haskell programming language and the Hugs 
system as the basis of our exposition of the ideas of functional programming. Details 
of how to obtain Hugs are in Appendix E. All the programs and examples used in the 
text can be downloaded from the Web page for this book, 

Expressions and evaluation 

In our tirst years at school we learn to evaluate an expression like (7 - 3) * 2 

expression value 

( 7 - 3 )  *2 8 

evaluation 

to give the value 8. This expression is built up from symbols for numbers and for 
functions over those numbers: subtraction - and multiplication *; the value of the 
expression is a number. This process of evaluation is automated in an electronic 
calculator. 

In functional programming we do exactly the same: we evaluate expressions to givc 
values, hut in those expressions we use functions which model our particular problem. 
For example, in modelling pictures we will want to evaluate expressions whose values 
are pictures. If the picture 

is called horse. then we can form an expression by applying the function f l ipV to 
the horse. This function application is written by putting the function followed by its 
argument(s), thus: f l ipV horse and then evaluation will give 

expression value 

flipV hor se  D-* ; ,, 

: 1/ I 
evaluation :------- 

A more complicated expression is 

invertcolour (f l ipV horse) 

the effect of which is to give a h o w  reflected in a vertical mirror - f l ipV horse as 
shown above -and then to invert the colours in the picture to give 
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To recap. in functional programming, we compute by evaluating expressions which use 
functions in our area of interest. We can see an implementation of a functional language 
as something like an electronic calculator: we supply an expression, and the system 
evaluates the expression to give its value. The task of the programmer is to write the 
functions which model the problem area. 

A functional program is made up of a series of definitions of functions and other 
values. We will look at how to write these definitions now. 

Definitions 

A functional program in Haskell consists of a number of definitions. A Haskell 
definition associates a name (or identifier) with a value of a particular type. In the 
simplest case a definition will have the form 

name : :  type 
name = expression 

as in the example 

size : : Int 
size = 12+13 

which associates the name on the left-hand side, size, with the value of the expression 
on the right-hand side, 25, a value whose type is Int, the type of whole numbers or 
integers. The symbol ': :' should be read as 'is of type', so the first line of the last 
definition reads 'size is of type Int'. Note aIso that names for functions and other 
values begin with a small letter, while type names begin with a capital letter. 

Suppose that we are supplied with the definitions of horse and the various functions 
over Picture mentioned earlier - we will discuss in detail how to download these and 
use them in a program in Chapter 2 - we can then write detinitions which use these 
operations over pictures. For example, we can say 

blackHorse : :  Picture 
blackHorse = invertcolour horse 

so that the Picture associated with blackHorse is obtained by applying the function 
invertcolour to the horse, thus giving 

Another example is the definition 
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rotateHorse :: Pic tu re  
rotateHorse = flipH (flipV horse)  

and we can picture the evaluation of the right-hand side like this 

assuming the function flipH has the effect of reflecting a P i c t u r e  i n  a horimntal 
mirror. The effect of these two reflections is to rotate the picture through 180". 

In Section 1.6 we explained that the Hugs system works rather like a calculator in 
evaluating expressions. How will it evaluate an expression like 

s i z e  - 17  

for instance? Using the definition of s i z e  given earlier, we can replace the left-hand side 
- s i z e  - with the corresponding right-hand side - 12+13; this gives us the expression 

and so by doing some arithmetic we can conclude that the value of the expression is 8. 
The definitions we have seen so far are simply of constant values; we now turn our 

attention to how functions are defined. 

Function definitions 

We can also define functions, and we consider some simple examples now. To square 
an integer we can say 

square : :  I n t  -> I n t  
square n = n*n 

where diagran~n~atically the definition is represented by 

The first line of the Haskell definition of square declares the type of the thing being 
defined: this states that square is a function - signified by the arrow -> -which has a 

I n t  
n squa re  

A 

I n t  
n * n  
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single argument of type I n t  (appearing before the arrow) and which returns a result of 
type I n t  (corning after the arrow). 

The second line gives the definition of the function: the equation states that when 
square is applied to an unknown or variable n, then the result is n*n. How should 
we read an equation like this? Because n is an arbitrary, or unknown value, it means 
that the equation holds whatever the rwlue of' n, so  that it will hold whatever integer 
expression we put in the place of n, having the consequence that, for instance 

square 5 = 5*5 

and 

square (2+4) = (2+4)*(2+4) 

This is the way that the equation is used in evaluating an exprewion which uses square. 
If wc are required to evaluate square applied to the expression e, we replace the 
application square e with the corresponding right-hand side, e*e. 

In general a simple function definition will take the form 

name xl x2 . . .  xk = e 

the name of the formal the result, defined 
the function parameters in terms of the formal 
being defined parameters 

The variables used on the left-hand side of an equation defining a function are called the 
formal parameters because they stand for arbitrary values of the parameters (or actual 
parameters. as they are sometimes known). We will only use 'formal' and 'actual' in 
the text when we need to draw a distinction between the two; in most cases it will be 
obvious which is meant when 'parameter' is used. 

Accompanying the definition of the function is a declaration of its type. This will 
take the following form, where we use the function scale over pictures for illustration: 

s c a l e  :: P i c t u r e  -> Int -> P i c t u r e  

the function the types of the type of 
name the arguments the result 

In the general case we have 
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name :: tl -> t7 -> . . .  -> tk -> t 

the name of the types of the the type of the result 
the function formal parameters 
being defined 

The definition of rotateHorse in Section 1.7 suggests a general definition of a rotation 
function. To rotate ( m y  pict~~re we can perform the two reflections, and so we define 

r o t a t e  : : P i c t u r e  -> P i c t u r e  
r o t a t e  p i c  = f l i pH  (f lipV p i c )  

We can read the equation thus: 

To r o t a t e  a picture pic .  we first apply f l ipV to form (f lipV p i c )  ; we then 
reflect this in  a horizontal mirror to give f  l ipH (f l ipV p i c ) .  

Given this definition, we can replace the definition of rotateHorse by 

rotateHorse : :  P i c t u r e  
rotateHorse = r o t a t e  horse 

which states that rotateHorse is the result of applying the function r o t a t e  to the 
picture horse. 

The pattern of definition of r o t a t e  - 'apply one function, and then apply another l o  
the result' - i s  so common that Haskell gives a way of combining functions directly i n  
this way. We define 

r o t a t e  : : P i c t u r e  -> P i c t u r e  
r o t a t e  = f l i p H  . f l i pV  

The ' . ' in the definition signifies function composition. in  which the output of onc 
function becomes the input of another. I n  pictures, 

we see the creation of a new function by connecting together the input and output of 
two given functions: obviously this suggests inany other ways of connecting together 
functions, many of which we will look at in  the chapters to come. 

The direct combination of functions gives us the first example of the power of 
functional programming: we are able to combine functions using an operator like 
' . ' just as we can combine numbers using '+'. We use the tern1 'operator' here rather 
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than 'function' since ' .  ' is written between its arguments rather than before them: we 
discuss operators i n  more detail in Section 3.7. 

The direct combination of functions by means of the operator ' . '  which we have 
seen here is not possible i n  orher prograniming paradigms, or at least it would be a11 
'advanced' aspect of the language, rather than appearing on page 1 I of an introducrory 
text. 

Type abstraction 

Before moving on. we point out another crucial issue which we will explore later in thc 
book. We have just given definitions of 

blackHorse : :  Picture 
rotate : :  Picture -> Picture 

which use the type Picture and some functions already def ned over it. namely f lipH 
and f lipV. We were able to write the definitions of blackHorse and rotate ~ * i / / ~ o l r /  
k~lo\vitlg m y t h i l l g  ( ~ h o ~ l t  the details of the type Picture oraboul how the 'flip' functions 
work over pictures. save for the fact that they behavc as we have described. 

Treating the type Picture in this way is called type abstraction: as users of the type 
we don't need to concern ourselves with how the type is detined. The advantngc ol'this 
is that the definitions we give apply horwver pictures are modelled. We might choose 
to model them in different ways in different situations; whatever the case. the I'unction 
composition f lipH . f lipV will rotate a picture through 180". Chapter 16 discusses 
this in more detail, and explains the Haskell mechanism to si~pport type abstraction. I n  
the next section we preview other important features of Haskell. 

Looking forward: a model of pictures 

We include this section in the first chapter of the book for two reasons. To start with. 
we want to describe one straightforward way in which Pictures can be modelled in 
Haskell. Secondly, we want to provide an informal preview of a number of aspects of  
Haskell which make i t  n powerful and distinctive programming tool. As we go alon: 
we will indicate the parts of the book where we expand on the topics first introduced 
here. 

Our model consists of two-dimension& monochrome pictures built from characters. 
Characters are the individual letters, digits, spaces and so forth which can be typed at 
the computer keyboard and which can also be shown on a computer screcn. I n  Haskell 
the characters are given by the built-in type Char. 

This model has the advantage that i t  is straightforward to view these pictures on a 
computer terminal window (or if we are using Windows, in the Hugs window). On the 
other hand, there are other more sophisticated models; details of these can be fi)und at  
the Web site for the book, mentioned on page 7. 

Our version of the horse picture, and the same picture flipped in horizontal and 
vertical mirrors will be 
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h o r s e  flipH h o r s e  flipV h o r s e  

where we use dots to show the white parts of the pictures. 
How are the picturc)r built from characters'? I n  our model we think of a picture as 

being made up of a list of lines, that is a collection of lines coming one after another i n  
order. Each line can be seen in a similar way as a list of characters. Because we often 
deal with collections of things when programming, lists arc built into Haskcll. Morc 
specifically, given any type - like characters or lines - Haskell contains a type of lists 
of that typc. and so in particular we can model pictures as we have already explained, 
using lists of characters to represent lines, and lists of lincs to rcprescnt pictures. 

With this model of P i c t u r e s ,  we can begin to think about how to model functions 
over pictures. A first definition comes easily; to reflect a picture in a horizontal mirror 
each line is unchanged, but the order of thc lines is reversed: in other words we reverse 
the list of lines: 

flipH = r e v e r s e  

where r e v e r s e  is a built-in function to reverse the order of items in a list. How do 
we reflect a picture in a vertical mirror'? The ordering of the lines is not affected, hut 
instead each lilw is to be rrvrrsed. We can write 

flipV = map r e v e r s e  

since map is the Haskell function which applies a function to each of the items in n list, 
individually. In the definitions o f f  lipH and f lipV we can begin to see the power and 
elegance of functional programming in Haskell. 

We have used r e v e r s e  to reverse a list of lines in f lipH and to reverse each line in 
f lipV: this is because thc same definition of the function r e v e r s e  can be used over 
every type of list. This is an example of polymorphism, or gcneric programming. 
which is examined in detail in Section 5.7. 

In defining f lipV we see the function map applied to its argument r e v e r s e ,  rz.hich i.5 
i rrdf  n.functiot~. This makes map a very general function, as it can have any desired 
action on the elements of the list, specified by the function which is its argument. 
This is the topic of Chapter 9. 
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Finally, the rrs~rlt of applying map to reverse is itself a function. This covered in  
Chapter 10. 

The last two facts show that functions are 'first-class citizens' and can be handled 
in  exactly the same way as any other sort of object like numbers or pictures. The 
combination of this with polymorphism means that in a functional language we can 
write very general functions like reverse and map, which can be applied in  a multitude 
of different situations. 

The examples we have looked at here are not out of the ordinary. We can see that 
other functions over pictures have similarly simple definitions. We place one picture 
above another simply by joining together the two lists of lines to make one list. This 
is done by the built-in operator ++. which joins together two lists:' 

above = (++) 

To place two pictures sideBySide we have to join corresponding lines together, thus 

and this is defined using the function zipwith. This function is defined to 'zip together' 
corresponding elements of two lists using - in this case - the operator ++. 

The function superimpose is a rather more complicated application of zipwith, and 
also we can define invertcolour using map. We shall return to these examples in  
Chapter 10. 

In this section we explore another characteristic aspect of functional programming: 
proof. A proof is a logical or mathematical argument to show that something holds in 
all cit-cxrnstcrnces. For example, given any particular right-angled triangle 

' The operator ++ is  surrounded by parenthcws ( ... in this definition s o  that i t  i.; interprctcd a s  a function: 
w e  say more about this in Section 3.7. 
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we can check whether or not a2=b2+c2 holds. In each case we check, this formula will 
hold, but this is not in itself enough to show that the formula holds for all a, b and c. A 
proof, on the other hand, is a general argument which establishes that a2=b2+c2 holds 
whatever right-angled triangle we choose. 

How is proof relevant to functional programming? To answer this we will take an 
example over the Picture type to illustrate what can be done. We saw in Section 1.8 
that we can define 

rotate = flipH . flipV 

but it is interesting to observe that if we reverse the order in which the flip functions 
are applied then the composition has the same effect, as illustrated here: 

Now, we can exprcss this property as a simple equation between functions: 

Moreover, we can look at our implementations of f  lipV and f lipH and give a logical 
proof that these functions have the property labelled (f lipprop) above. The crux of 
the argument is that the two functions operate independently: 

the function f lipV affects each line but leaves the lines in the same order while 

the function f lipH leaves each line unaffected, while reversing the order of the list 
of lines. 

Because the two functions affect different aspects of the list it is immaterial which is 
applied first, since the overall effect of applying the two in either case is to 

reverse each line and reverse the order of the list of lines. 
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Proof is possible for most programming languages, but i t  is substantially easier for 
functional languages than for any other paradigm. Proof of program propertics will 
be a t hem in this text, and we start by exploring proof for list-processing functions in 
Chapter 8. 

What benefit is there i n  having a proof of a property like (flipProp)? I t  b' rive us 
~ ~ r t c r i n t y  that our functions have a particular property. Contrast this with the usual 
approach in  computing where we test the value of a function at a selection of places; 
this only gives us the assurance that the function has the property we seek at the test 
points, and in principle tells us nothing about the function in other circumstances. There 
are safety-critical situations in  which it is highly desirable to be sure that a program 
behaves properly, and proof has a role here. We are not. however, advocating that 
testing is unimportant - merely that testing and proof have complementary roles to play 
in software development. 

More specifically. (f lipprop) means that we can be sure that however we apply 
the functions f lipH . f lipV and f lipV . f lipH they will have the same effect. 
We could therefore transform a program using f lipH . f lipV into one using the 
functions composed in the reverse order, f lipV . f lipH, and bc certain that the new 
pmgram will have exactly the same effect as the old, Ideas like this can be used to 
good effect within implementations of languages, and also i n  developing programs 
theniselves, as we shall see in Section 10.9. 

(1 Types and functional programming 

What is the role of types in functional programming'? Giving a type to a function first 
of all gives us crucial inti)rmation about how it  is to be used. If we know that 

scale : :  Picture -> Int -> Picture 

we know two things in~mediately. 

First, scale has two arguments, the first being a Picture and the second an Int: 
this means that scale can be applied to horse and 3. 

The result of applying scale to this Picture and Int will be a Picture. 

The type thus does two things. First, it expresses a constraint on how the function 
scale is applied: it must be applied to a Picture and an Int. Sccond, the type tells us 
what the result is if the function is correctly applied: i n  this case the result is a Picture. 

Giving types to functions and other things not only tells us how they can be used; it 
is also possible to check autonlatically that functions are being used in the right way 
and this process - which is called type checking takes place in Haskell. If we use an 
expression like 

scale horse horse 

we will be told that we have made an error in applying scale to two pictures when 
a picture and a number are what was expected. Moreover, this can be done without 
knowing the w1ue.s of scale or horse - all that we need to know to perform the check 
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is the types of the things concerned. Thus, type errors like these are caught before 
programs are used or expressions are evaluated. 

It is remarkable how many errors, due either to mistyping or to misunderstanding 
the prohlem, are made by both novice and experienced programmers. A type system 
therefore helps the user to write correct programs, and to avoid a large proportion of 
programming pitfalls, both obvious and subtle. 

Calculation and evaluation 

We have explained that Hugs can be seen as a general calculator, using the functions 
and other things defined in a functional program. When wc evaluate an expression like 

23 - (double (3+1)) ($1 

we need to use the definition of the function: 

double : :  Int -> Int 
double n = 2*n 

This we do by replacing the unknown n in the definition (dbl) by the expression (3+1), 
giving 

double (3+1) = 2*(3+1) 

Now we can replace double (3+1) by 2* (3+1) in ($) , and evaluation can continue. 
One of the distinctive aspects of functional programming is that such a simple 'cal- 

culator' model effectively describes computation with a functional program. Because 
the model is so straightforward, we can perform evaluations in  a step-by-step manner; 
in this text we call these step-by-step evaluations calculations. As an example, we now 
show the calculation of the expression with which we began the discussion. 

23 - (double (3+1)) - 23 - (2*(3+1)) 
r i . ~  23 - (2*4) 

2 3 - 8  - 15 

using (dbl) 
arithmetic 
arithmetic 
arithmetic 

where we have used '-4 ' to indicate a step of the calculation, and on each line we 
indicate at the right-hand margin how we have reached that line. For instance. the 
second line of the calculation: 

-v, 23 - (2*(3+1)) using (dbl) 

says that we have reached here using the definition of the double function, (dbl). 
In  writing a calculation it is sometimes useful to underline the part of the expression 

which gets modified in transition to the next line. This is, as it were, where we need 
to focus our attention in reading the calculation. The calculation above will have 
underlining added thus: 
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23 - (double (3+l)) - 23 - (2*(3+1)) using (dbl) 
arithmetic 
arithmetic 
arithmetic 

In what is to come, when we introduce a ncw feat~ire of Haskell we shall show how i t  
fits into this line-by-line model of evaluation. This has the advantage that we can then 
explore new ideas by writing down calculations which involve these new concepts. 

Summary 

As we said at the ctart, this chapter has three aims. We wanted to introduce some of 
the fundamental ideas of functional programming; to illu\trate them with the example 
of pictures, and also to give a flavour of what i t  is that is distinctive about functional 
programming. To cum up the definition\ we have seen, 

a function is something which transforms its inputs to an output; 

a type is a collection of objects of similar sort, such as whole numbers (intcgers) or 
pictures; 

every object has a clearly defined type, and we state this type on making a definition; 

functions defined in a program are used in writing expressions to be evaluated by thc 
implementation; and 

the values of expressions can be found by performing calculation by hand, or by 
using the Hugs interpreter. 

In the remainder of the book we will cxplore different ways of defining new types and 
functions, as well as following up the topics of polymorphism, functions as arguments 
and results, data abstraction and proof which we have touched upon in an informal way 
here. 



Getting started with 
Haskell and Hugs 

2.1 A first Haskell program 

2.2 Using Hugs 

2.3 The standard prelude and the Haskell libraries 

2.4 Modules 

2.5 A second example: Pictures 

2.6 Errors and error messages 

Chapter 1 introduced the foundations of functional programming in Haskell. We are 
now ready to use the Hugs system to do some practical programming, and the principal 
purpose of this chapter is to give an introduction to Hugs. 

In beginning to program we will also learn the basics of the Haskell module system, 
under which programs can be written in multiple, interdependent files, and which can 
use the 'built-in' functions in the prelude and libraries. 

Our programming examples will concentrate on using the Picture example intro- 
duced in Chapter 1 as well as some simple numerical examples. In support of this we 
will look at how to download the programs and other background materials for the book, 
as well as how to obtain Hugs. 

We conclude by briefly surveying the kinds of error message that can result from typing 
something incorrect into Hugs. 

( A first Haskell program 

We begin the chapter by giving a first Haskell program or script, which consists of the 
numerical examples of Chapter 1. As well as definitions, ascript will contain comments. 
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Simon Thompson, June 1998 

The purpose  of t h i s  s c r i p t  i s  
- t o  i l l u s t r a t e  some s imple  d e f i n i t i o n s  

over  i n t e g e r s  ( I n t ) ;  
- t o  g i v e  a  f i r s t  example of a  s c r i p t .  

-- The v a l u e  s i z e  i s  an  i n t e g e r  ( I n t ) ,  d e f i n e d  t o  be 
-- t h e  sum of twe lve  and t h i r t e e n .  

s i z e  : : I n t  
s i z e  = 12+13 

-- The f u n c t i o n  t o  square  an  i n t e g e r .  

square  : : I n t  -> I n t  
Square n  = n*n 

-- The f u n c t i o n  t o  double  an  i n t e g e r .  

double  : :  I n t  -> I n t  
double  n  = 2*n 

-- An example u s i n g  doub le ,  square  and s i z e .  

example : :  I n t  
example = double  ( s i z e  - square  (2+2))  

Figure 2.1 An example of a traditional script. 

A comment in a script is a piece of information of value to a human reader rather 
than to a computer. It might contain an informal explanation about how a function 
works, how i t  should or should not be used, and so forth. 

There are two different styles of Haskell script, which reflect two different philoso- 
phies of programming. 

Traditionally. everything in a prograrn file is interpreted as prograrn text. cJ.wept 
where it is explicitly indicated that something is a comment. This is the style of 
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The purpose of t h i s  s c r i p t  i s  
- t o  i l l u s t r a t e  some simple d e f i n i t i o n s  

over i n t ege r s  ( I n t )  ; 
- t o  give a f i r s t  example of a l i t e r a t e  s c r i p t .  

The value s i z e  i s  an in teger  ( I n t )  , defined t o  be t h e  sum of 
twelve and t h i r t e e n .  

> s i z e  : :  I n t  
> s i z e  = 12+13 

The function t o  square an in t ege r .  

> square : : I n t  -> I n t  
> square n = n*n 

The funct ion  t o  double an in t ege r .  

> double : :  I n t  -> I n t  
> double n = 2*n 

An example using double square and s i z e .  

> example : :  I n t  
> example = double ( s i z e  - square (2+2)) 

Figure 2.2 An example of a literate script. 

F i r s t s c r i p t .  hs, in Figure 2.1. Scripts of this style are stored in files with an extension 
' .hs' .  

C o n ~ n ~ e n t s  are indicated in two ways. The symbol '--' begins a comment which 
occupies the part of the line to the right of the symbol. Comments can also be enclosed 
by the symbols ' (- '  and '-1'. These comments can be of arbitrary length, spanning 
more than one line, as well as enclosing other comments; they are therefore called 
nested comments. 
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The alternative, literate approach is to make cwr:\.thing in the file commentary on 
the program, and explicitly to signal the program text in some way. A literate version 
of the script is given in Figure 2.2, where it can be seen that the program text is on lines 
bcginnning with '>', and is separated from the rest of the text in the file by blank lines. 
Literate scripts are stored in ' . l h s '  files. 

The two approaches emphasize different aspects of programming. The traditional 
gives primacy to the program, while the literate approach emphasizes that there is more 
to programming than simply making the right definitions. Design decisions need to be 
explained. conditions on using functions and so on need to be written down - this is 
of benefit both for other users of a program and indeed for ourselves if wc re-visit a 
program we have written some time ago, and hope to modify or extend it. We could see 
this book itself as an extended 'literate script', since commentary here is interspersed 
by programs which appear in t y p e w r i t e r  f o n t  on lines of their own. Typewriter font 
is also used for URLs and proofs in later chapters. 

Downloading the programs 

All the programs defined in the book, together with other support material and general 
Haskell and functional programming links, can be found at the Web site for the book, 

The scripts we define are given in literate form. 

a Using ~ u g s  

Hugs is a Haskell implementation which runs on both PCs (under Windows 95 and NT) 
and Unix systems, including Linux. It is freely available via the Hashell home page, 

which is a source of much material on Haskell and its implementation\. Further 
information about downloading and installing Hugs may be found in Appendix E. 

In thi\ text we describe the terminal-\tyle interface to Hugs, illu\trated in Figure 2.3, 
because this is common to both Windows and Un~x.  Experienced PC users should have 
little difficulty in using the Winhug\ \y\tem, which gives a Windows-style interface to 
the Hug\ commands, once they have understood how Hugs itself work\. 

Starting Hugs 

To start Hugs on Unix, type hugs to the prompt; to launch Hugs using a particular file, 
type hugs followed by the name of the file in question, as in 

hugs F i r s t L i t e r a t e  
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Figure 2.3 A Hugs session on Windows. 

On a Windows system, Hugs is launched by choosing it from the appropriate place o n  
the Start menu; to launch Hugs on a particular file, double-click the icon for the tile in 
question.' 

Haskell scripts carry the extension . h s  or . l h s  (for literate scripts); only such files 
can be loaded, and their extensions can be omitted when they are loaded either when 
Hugs is launched or by a : l o a d  command within Hugs. 

Evaluating expressions in Hugs 

As we said in Section 1.6, the Hugs interpreter will evaluate expressions typed at the 
prompt. We see in Figure 2.3 the evaluation of s i z e  to 25, example to 18 and two 
more complex expressions, thus 

Main> double 32 - square  ( s i z e  - double 3)  
-297 
Main> double 320 - square  ( s i z e  - double 6) 
4 71 
Main> 

where we have indicated the machine output by using a slanted font; user input appears 
in unslanted form. The prompt here, Main,, will be explained in Section 2.4 below. 

As can be seen from the examples, we can evaluate expressions which use the defini- 
tions in the current script. In this case it is F i r s t L i t e r a t e .  l h s  (or F i r s t s c r i p t .  hs) .  

' This assumes that the appropriate registry entries have been matlc; wc work here with the stndard 

in.;tallation of Hugs as discussed in Appendix E. 
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One of the advantages of the Hugs interface is that it is easy to experiment with 
functions, trying different evaluations simply by typing the expressions at the keyboard. 
If we want to evaluate a complex expression, it might be sensible to add it to the program, 
as in the definition 

t e s t  : : In t  
t e s t  = double 320 - square ( s i z e  - double 6) 

All that we then need to do is to type t e s t  to the Main> prompt. 

Hugs commands 

Hugs commands begin with a colon, ':'. A summary of the main commands follows. 

: load par ro t  

: type  exp 

: i n fo  name 
: f i n d  name 
:qu i t  
:? 
! com 

Load the Haskell file pa r ro t .  hs  or pa r ro t .  lhs .  The file 
extension . hs or . l h s  does not need to be included in the 
filename. 
Repeat the last load command. 
Edit the file f i r s t  . l h s  in the default editor. Note that the 
file extension . hs  or . l h s  is needed in this case. See the 
following section for more information on editing. 
Give the type of the expression exp. For example, the result 
of typing : type size+2 is In t .  
Give information about the thing named name. 
Open the editor on the tile containing the definition of name. 
Quit the system. 
Give a list of the Hugs commands. 
Escape to perform the Unix or DOS command com. 

All the ':' commands can be shortened to their initial letter, giving : 1 parro t  and 
so forth. Details of other commands can be found in the comprehensive on-line Hugs 
documentation which can be read using a Web browser. On a standard Windows 
installation it is to be found at 

but in general you will need to consult locally to find its location on the system which 
you are using. 

Editing scripts 

Hugs can be connected to a 'default' text editor, so that Hugs commands such as : e d i t  
and : f i n d  use this editor. This may well be determined by your local set-up. The 
'default' default editor on Unix is v i ;  on Windows systems e d i t  or notepad might 
be used. Details of how to : s e t  values such as the default editor are discussed in 
Appendix E. 

Using the Hugs : e d i t  command causes the editor to be invoked on the appropriate 
file. When the editor is quit, the updated file is loaded automatically. However, it is 
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more convenient to keep the editor running in a separate window and to reload the tile 
by: 

writing the updated file from the editor (without quitting it), and then 

reloading the file in Hugs using : reload or : reload filename. 

In this way the editor is still open on the tile should it need further moditication. 
We now give some introductory exercises for using Hugs on the first example 

programs. 

A first Hugs session 

Task 1 

Load the filc F i r s t L i t e r a t e .  l h s  into Hugs, and evaluate the following expre\sion\ 

square s i z e  
square 
double (square 2) 
$$ 
square (double 2) 
23 - double (3+1) 
23 - double 3+1 
$$ + 34 
13 ' d iv '  5 
13 'mod' 5 

On the basis of this can you work out the purpose of $$? 

Task 2 

Use the Hugs command : type to tell you the type of each of these, apart from $$. 

Task 3 

What is the effect of typing each of the following? 

double square 
2 double 

Try to give an explanation of the results that you obtain. 

Task 4 

Edit the file F i r s t L i t e r a t e .  l h s  to include definitions of functions from integers to 
integers which behave as follows. 
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The function should double its input and square the result of that. 

The function should square its input and double the result of that. 

Your solution should include declarations of the types of the functions. 

(z The standard prelude and the Haskell libraries 

Wc saw in Chapter I that Haskell has various built-in types, such as integers and lists and 
functions over those types, including the arithmetic functions and the list functions map 
and ++. Definitions of these are contained in a file. the standard prelude, Prelude. hs. 
When Haskell is used, the default is to load the standard prelude, and this can bc seen 
i n  Figure 2.3 in the line 

Reading file: "C:\HUGS\lib\Prelude.hs"; 

which precedes the processing of the file FirstLiterate.lhs on which Hugs was 
invoked. 

As Haskell has developed over the last decade, the prelude has also grown. In order 
to make the prelude smaller, and to free up some of the names used in i t ,  many of the 
definitions have been moved into standard libraries, which can be included when they 
are needed. We shall say more about these libraries as we discuss particular parts of 
the language. 

As well as the standard libraries, the Hugs distribution includes various contributed 
libraries which support concurrency, firnctional animations and so forth. Again, we 
will mention these as we go along. Other Haskell systems also come with contributed 
libraries, but all systems support the standard libraries. 

In order to use the libraries we need to know something about Haskell modules, 
which we turn to now. 

(2.4) Modules 

A typical piece of computer software will contain thousands of lines of program text. 
To make this manageable, we need to split it into smaller components, which we call 
n~odules. 

A module has a name and will contain a collection of Haskell definitions. To 
introduce a module called Ant we begin the program text in the file thus: 

module Ant where 

A module may also import definitions from other modules. The module Bee will 
import the definitions in Ant by including an import statement, thus: 

module Bee where 
import Ant 

. . .  
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The import statement means that we can use all the definitions in Ant when making 
definitions in Bee. In dealing with modules in this text we adopt the conventions that 

there is exactly one module per file; 

the file Blah. hs or Blah. lhs contains the module Blah. 

The module mechanism supports the libraries we discussed in Section 2.3, but we can 
also use it to include code written by ourselves or someone else. 

The module mechanism allows us to control how definitions are imported and also 
which definitions are made available or exported by a module for use by other modules. 
We look at this in more depth in Chapter 15, where we also ask how modules are best 
used to support the design of software systems. 

We are now in a position to explain why the Hugs prompt appears as Main,. The 
prompt shows the name of the top-level module currently loaded in Hugs, and in the 
absence of a name for the module it is called the 'Main' module, discussed in Chapter 
15. 

In the light of what we have seen so far, we can picture a Hugs session thus: 

input of 

and output 
of results 

The current script will have access to the standard prelude, and to those modules which 
it imports: these might include modules from the standard libraries, which are found 
in the same directory as the standard prelude. The user interacts with Hugs, providing 
expressions to evaluate and other commands and receiving the results of the evaluations. 

The next section revisits the picture es;i~nplc ol' Chapter I, which is used to give a 
practical illustration of modules. 

A second example: Pictures 

The running example in Chapler 1 was of pictures, and in Figure 2.4 we show parts 
of a script implementing pictures. We have omitted some of the detinitions, replacing 
them with ellipses ' . . . '. The module here is called Pictures, and can be downloaded 
from the Web page for this text, mentioned on page 22. This module is imported into 
another module by the statement 

import Pictures 

The only new aspect to the example here is the function 

printpicture : : Picture -> I0 0 
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> module Pictures where 

> type Picture = . . . .  

The horse example used in Craft2e, and a completely white picture 

> horse , white : :  Picture 
> horse = . . . .  
> white = . . . .  

Getting a picture onto the screen. 

> printpicture : :  Picture -> I0 (1 
> printpicture = . . . .  

Reflection in vertical and horizontal mirrors. 

> flipV , flipH : :  Picture -> Picture 
> flipV = map reverse 
> flipH = reverse 

One picture above another. To maintain the rectangular 
property, the pictures need to have the same width. 

> above : :  Picture -> Picture -> Picture 
> above = (++) 

One picture next to another. To maintain the rectangular 
property, the pictures need to have the same height. 

> sideBySide : :  Picture -> Picture -> Picture 
> sideBySide = zipwith (++) 

Superimpose two pictures (assumed to be same size). 

> superimpose : :  Picture -> Picture -> Picture 
> superimpose = . . . .  

Invert the black and white in the picture. 

> invertcolour : :  Picture -> Picture 
> invertcolour = . . . .  

Figure 2.4 A view of the Pictures script. 
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which is used to display a Picture on the screen. The type I0  is a part of the Hashell 
mechanism for inputloutput (110). We examine this mechanic~n in detail in  Chapter I 8: 
for the present it is enough to know that if horse is the name of the picture used in  the 
earlier examples, then the effect of the function application 

printpicture horse 

is the display 

. . # # .  . .  
. . . . .  # # . . # . .  

. . .  ## . . . . .  #.  

. .  # . . . . . . .  # .  

. # . . . # . . . # .  

. .  # . . . # # # . # .  

. # . . . . # . . # # .  

. .  # . . . # . . . . .  

. . .  # . . . # . . . .  

. . . .  # . . # . . . .  

. . . . .  # . #  . . . .  

. . . . . .  ## . . . .  

first seen in Chapter 1. Any Picture can be printed in a similar way. 
In the remainder o f  this section we present a series of practical exercise\ designed to 

use the module Pictures . lhs. 

(Exercises) 

2.1 Define a module UsePictures which imports Pictures and contain? defini- 
tions of blackHorse, rotate and rotateHorse which can use the detinitions 
imported from Pictures. 

In the remaining questions you are expected to add other definitions to your 
module UsePictures. 

2.2 How would you make a definition of a black rectangle? How could yo11 do  
this without using white, but assuming that you have a function superimpose 
defined as discussed on page S ?  

2.3 How could you make the picture 

Try to find two different ways of getting the result. It may help to work with 
pieces of white and black paper. 

Using your answer to the first part of this question, how would you define a chess 
(or checkers) board, which is an 8 x 8 board of alternating square\'? 
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2.4 Three variants of the last picture which involve the 'horse' pictures are 

How would you produce these three? 

2.5 Give another variant of the 'horse' pictures in the previous question, and show 
how it could be created. Note: a nice variant is 

Errors and error messages 

No system can guarantee that what you type is sensible, and Hugs is no cxccption. 
If something is wrong, either in an expression to be evaluated or in a script, you will 
receive an error message. Try typing 

to the Hugs prompt. The error here is in the syntax, and is like a sentence in English 
which does not have the correct grammatical structure, such as 'Fishcake our camel'. 

The expression has too few parentheses: after the '4', a closing parenthesis is 
expcctcd, to niatch with the opening parenthesis before '3'. The error message reflects 
this by saying that what follows '4' is unexpected: 

ERROR: Syntax error in expression (unexpected end of input) 

In a similar way typing 2+(3+4) 1 results in the message 

ERROR: Syntax error in input (unexpected 0') 

Now try typing the following expression. 

double square 

This gives a type error. since double is applied to the function square, rather than an 
integer: 
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ERROR: Type e r r o r  i n  
*** express ion  
*** term 
*** t y p e  
*** does no t  match : 

a p p l i c a t i o n  
double square  
square  
I n t  -> I n t  
I n t  

The message indicates that something of type I n t  was expected, but something of type 
I n t  -> I n t  was present instead. Here double expects something of type I n t  as its 
argument, but square  of type I n t  -> I n t  is found in the place of an integer. 

When you gel an error message likc the one above you need to look at how the term, 
in this case square  of type I n t  -> I n t ,  does not match the context in which it is 
used: the context is given in the second line (double square)  and the type required 
by the context, I n t ,  is given in the last line. 

Type errors do not always give rise to such well-structured error messages. Typing 
either 4 double or 4 5 will give rise to a message like 

ERROR: . . .  is  no t  an  i n s t a n c e  of c l a s s  . . .  

We will explore the technical details behind these messages in a later chapter; for now 
it is sufficient to read these as 'Type Error!'. 

The last kind of error we will sec are program errors. Try the expression 

4 ' d i v  ' (3*2-6)  

We cannot divide by zero (what would the result be'!) and so we get the messagc 

Program e r r o r :  {primDivInt 4 0) 

indicating that a division of 4 by 0 has occurred. More details about the error mcssagcs 
produced by Hugs can be found in Appendix F. 

Summary 

The main aim of this chapter is practical, to acquaint the reader with the Hugs imple- 
mentation of Haskell. We have seen how to write simple Hugs programs; to load them 
into Hugs and then to evaluate expressions which use the definitions in the module. 

Larger Haskell programs are structured into modules, which can be imported into 
other modules. Modules support the Haskell library mechanism and we illustrate 
modules in the case study of P i c t u r e s  introduced in Chapter 1 .  

We concluded the chapter with an overview of the possible syntax, type and program 
errors in expressions or scripts submitted to Hugs. 

The first two chapters have laid down the theoretical and practical foundations for 
the rest of the book, which explores the many aspects of functional programming using 
Haskell and the Hugs interpreter. 
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Basic types and 
definitions 

3.1 The Booleans: Bool 

3.2 The integers: I n t  

3.3 Overloading 

3.4 Guards 

3.5 The characters: Char 

3.6 Floating-point numbers: F l o a t  

3.7 Syntax 

We have now covered the basics of functional programming and have shown how simple 
programs are written, modified and run in Haskell. This chapter covers Haskell's most 
important basic types and also shows how to write definitions of functions which have 
multiple cases to cover alternative situations. We conclude by looking at some of the 
details of the syntax of Haskell. 

Haskell contains a variety of numerical types. We have already seen the I n t  type in 
use; we shall cover this and also the type F l o a t  of floating-point fractional numbers. 

Often in programming we want to make a choice of values, according to whether or 
not a particular condition holds. Such conditions include tests of whether one number 
is greater than another; whether two values are equal, and so on. The results of these 
tests - True if the condition holds and F a l s e  if it fails - are called the Boolean values, 
after the nineteeth-century logician George Boole, and they form the Haskell type Bool. 

In this chapter we cover the Booleans, and how they are used to give choices in function 
definitions by means of guards. 

Finally, we look at the type of characters - individual letters, digits, spaces and so forth 
- which are given by the Haskell type Char. 
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The chapter provides reference material for the basic types; a reader may skip the 
treatment of Float and much of the detail about Char, referring back to this chapter 
when necessary. 

Each section here contains examples of functions, and the exercises build on these. 
Looking ahead, this chapter gives a foundation on top of which we look at a variety of 
different ways that programs can be designed and written, which is the topic of the next 
chapter. 

The Booleans: Boo1 

The Boolean values True and F a l s e  represent the results of tests, which might, for 
instance, compare two numbers for equality, or check whether the first is smaller than the 
second. The Boolean type in Haskell is called Bool. The Boolean operators provided 
in the language are: 

&& 

I I 
not 

and 
or 
not 

Because Bool contains only two values, we can detine the meaning of Roolean operators 
by truth tables which show the result of applying the operator to each possible 
combination of arguments. For instance, the third line of the first table says that the 
value of F a l s e  && True is F a l s e  and that the value of F a l s e  I I True is True. 

Booleans can be the arguments to or the results of functions. We now look at some 
examples. 'Exclusive or' is the function which returns True exactly when one but not 
both of its arguments have the value True; it is like the 'or' of a restaurant menu: you 
may have vegetarian moussaka or fish as your main course, but not both! The 'built-in 
or', I 1 ,  is 'inclusive' because it returns True if either one or both of its arguments arc 
True. 

exOr : :  Bool -> Bool -> Bool 
exOr x y = (x I I y) && n o t  (x && y) 

We can picture the function definition using boxes for functions, and lines for values. 
as we saw i n  Chapter 1.  Lines coming into a function box represent the arguments, and 
the line going out the result. 
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Boolean values can also bc comparcd for equality and inequality using the operators 
==and /=, which both havc the type 

Bool -> Bool -> Bool 

Note that /= is the same function as exor,  since both return the result True when 
exactly one of their arguments is True. 

Literals and definitions 

Expressions like True and Fa l se ,  and also numbers like 2, are known as literals. 
These are values which are given literally, and which need no evaluation; the result of 
evaluating a literal is the literal itself. 

We can use the literals True and F a l s e  as arguments, in defining not for ourselves: 

myNot : :  Bool -> Bool 
myNot True = F a l s e  
myNot F a l s e  = True 

We can also use a combination of literals and variables on the left-hand side of equations 
defining ex0r :  

exOr True x = n o t  x 
exOr F a l s e  x = x 

Here we see a definition of a function which uses two equations: the first applies 
whenever the first argument to exOr is True and the second when that argument is 
False .  

Definitions which use True and F a l s e  on the left-hand side of equations are often 
more readable than definitions which only have variables on the left-hand side. This is 
a simple example of the general pattern matching mechanism in Haskell. which we 
examine in detail in Section 7.1. 
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( Exercises 7 

3.1 Give another version of the definition of 'exclusive or' which works informally 
thus: 'exclusive or of x  and y will be True if either x  is True and y is False .  or 
vice versa'. 

3.2 Give the 'box and line' diagram corresponding to your answer to the previous 
question. 

3.3 Using literals on the left-hand side we can make the truth table for a function 
into its Haskell definition. Complete the following definition of exOr in this 
style. 

exOr True True = . . .  
exOr True F a l s e  = . . .  

3.4 Give two different definitions of the nAnd function 

nAnd : :  Bool -> Bool -> Bool 

which returns the result True except when both its arguments are True. Give a 
diagram illustrating one of your definitions. 

3.5 Give line-by-line calculations of 

nAnd True True 
nAnd True F a l s e  

for each of your definitions of nAnd in the previous exercise 

(")T The integers: I n t  

The Haskell type I n t  contains the integers. The integers are the whole numbers, used 
for counting; they are written thus: 

The I n t  type represents integers in a fixed amount of space, and so can only represent 
a tinite range of integers. The value maxBound gives the greatest value in the type, 
which happens to be 2147483647. For the majority of integer calculations these fixed 
si7e numbers are suitable, but if larger numbers are required we may use the I n t e g e r  
type, which can accurately represent whole numbers of any size.' 

' We choose to work with I n t  here because various standard Haskell functions which we introduce later in  
the chapter use the I n t  type. 
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We do arithmetic on integers using the following operators and functions; the oper- 
ations we discuss here also apply to the I n t e g e r  type. 

d i v  

mod 

ab s 
nega te  

The sum of two integers. 
The product of two integers. 
Raise to the power; 2-3  is 8. 
The difference of two integers, when infix: a-b; the 
integer of opposite sign, when prefix: -a. 
Whole nuinber division; for example d i v  14 3 is 4. 
This can also be written 14 ' d i v '  3. 
The remainder from whole nuinber division; for 
example mod 14 3 (or 14 'mod' 3) is 2. 
The absolute value of an integer; remove the sign. 
The function to change the sign of an integer. 

Note that 'mod' surrounded by backquotes is written between its two arguments, is 
an infix version of the function mod. Any function can be made infix in this way. 

/ Note: Negative literals 1 
A common pitfall occurs with negative literals. For example the number minus 
twelve is written as -12, but the prefix '-' can often get confused with the infix 
operator to subtract one number from another and can lead to unforeseen and 
confusing type error messages. For example, the application 

nega te  -34 

is interpreted as 'negate minus 34' and thus leads to the Hugs error message 

ERROR: a -> a i s  no t  an  i n s t a n c e  of c l a s s  "Num" 

If  you are in any doubt about the source of an error and you are dealing with 
negative numbers you should enclose them in parentheses, thus: nega te  (-34).  
Sec Section 3.7 for more details. 

In what follows we will use the term the natural numbers for the non-negative integers: 
0 . 1 , 2  , . . . .  

Relational operators 

There are ordering and (in)equality relations over the integers, as there are over all basic 
types. These functions take two integers as input and return a Bool, that is either True 
or Fa l se .  The relations are 

greater than (and not equal to) 
greater than or equal to 
equal to 
not equal to 
less than or equal to 
less than (and not equal to) 
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A simple example using these definitions is a function to test whether three Ints are 
equal. 

threeEqual : :  Int -> Int -> Int -> Bool 
threeEqua1 m n p = (m==n) && (n==p) 

( Exercises ) 

3.6 Explain the effect of the function defined here: 

mystery :: Int -> Int -> Int -> Bool 
mystery m n p = not ((m==n) && (n==p)) 

Hint: if you find it difficult to answer this question directly, try to see what the 
function doe5 on some example inputs. 

3.7 Define a function 

threeDifferent : :  Int -> Int -> Int -> Bool 

so that the result of threeDif f erent m n p is True only if all three of the 
numbers m, n and p are different. 

What is your answer for threeDiff erent 3 4 3? Explain why you get the 
answer that you do. 

3.8 This question is about the function 

fourEqual : : Int -> Int -> Int -> Int -> Bool 

which returns the value True only if all four of its arguments are equal. 

Give a definition of fourEqua1 modelled on the definition of threeEqua1 
above. Now give a definition o f f  ourEqual which u . w v  the function threeEqual 
in its detinition. Compare your two answers. 

3.9 Give line-by-line calculations of 

threeEqua1 (2+3) 5 (11 'div' 2) 
mystery (2+4) 5 (11 'div' 2) 
threeDifferent (2+4) 5 (I1 'div' 2) 
fourEqual (2+3) 5 (11 'div' 2) (21 'mod' 11) 

Overloading 

Both integers and Booleans can be cornpared for equality, and the same symbol == is 
used for both these operations, even though they are different. Indeed, == will be used 
for equality over any type t for which we are able to define an equality operator. This 
means that (==) will have the type 
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I n t  -> I n t  -> Bool 
Bool -> Bool -> Bool 

and indeed t -> t -> Bool if the type t carries an equality. 
Using the same symbol or name for different operations is called overloading. A 

number of symbols in Haskell are overloaded, and we will sce in Chapter 12 how 
overloading is handled in the type system of Haskell, and also how users can define 
their own overloaded operators or names. 

('") Guards 

Here we explore how condition\ or guards are used to give alternatives i n  the definition\ 
of functions. A guard is a Boolean expression, and these expressions are used to expre\\ 
variou\ case\ in the definition of a function. 

We take a\ a running example in thic \ection functions which compare integer\ for 
\ire, and \tart by looking at the example of the function to return the maximum value 
of two integers. When the two numbers are the same then we call their common value 
the maximum. 

rnax : : I n t  -> I n t  -> I n t  
rnax x y 

I x > = y  = X 

I o the rwise  = y 

How do we read a definition like this, which appears in the Haskell prelude'? 

rnax x y equals x 
if the guard is True 

rnax x y 
a' I x > = y  = X 

I o t h e r w i s e  = Y 

if the guard is False 
then rnax x y equals y 

In  general, if the first guard (here x>=y) is True then the corresponding value is the 
result (x in this case). On the other hand, if the first guard is F a l s e ,  then we look at 
the second, and so on. An o the rwise  guard will hold whatever the arguments, so that 
in the case of rnax the result is x if x>=y and y otherwise, that is in the case that y>x. 

An example in which there are multiple guards is a definition of the maximum of 
three inputs. 
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maxThree : :  I n t  -> I n t  -> I n t  -> I n t  
maxThree x y  z 

I x > = y & & x > = z  = x  
I y > = z  = Y 
I o t h e r w i s e  = z  

How does this definition work'? The first guard 

tests whether x is the rnaxi~ni~ni of the three inputs: if it is True the corresponding result 
is x. If the guard fails, then x is not the maximum, so there has to be a choice between 
y and z. The second guard is therefore 

If this holds, the result is y; otherwise the result is z .  We will go back to thc cxample 
ofmaxThree in Section 4.1. 

We first gave a general form for simple function definitions i n  Chapter I ;  we can now 
strengthen this to give a general form for function definitions with guards in Figure 3.1. 
Note that the o t h e r w i s e  is not compulsory. 

f f  theformal 
being defined parameters 

I., gl = el): 
,,I>@ = e2fi:., 
; ; . . . . . . . . ,',.' 1 . . 

otherwise = e '. .;. . . ' 
,;a 

.* 
a ,  

.. 
.A " " . 

*/' \'a 

the guards .. ... and the various 
results corresponding to 
the guards 

Figure 3.1 The general form for function definitions with guards. 

We also saw in Chapter 1 that we can write down line-by-line calculations of the 
values of expressions. How do guards fit into this model'? When we apply a function 
to its arguments we need to know which of the cases applies, and to do this we need to 
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evaluate the guards until we find a guard whose value is True; once we find this, we 
can evaluate the corresponding result. Taking the example of maxThree, we give two 
examples in which we perform the evaluation of guards on lines beginning '??'. 

maxThree 4 3 2 
?? 4>=3 && 4>=2 
?? - True && True 
?? - True - 4 

In this example the first guard we try, 4>=3 && 4>=2, gives True and so the result is 
the corresponding value, 4. In the second example we have to evaluate more than one 
guard. 

maxThree 6 (4+3) 5 
?? 6>=(4+3) && 6>=5 
?? - 6>=7 && 6>=5 
?? - False && True 
?? - False 
?? 7>=5 
?? - True 

In this example we first evaluate the first guard, 6>=(4+3) && 6>=5, which results in 
False; we therefore evaluate the second guard, 7>=5, which gives True, and so the 
result is 7. 

Once we have calculated the value of the second argument, (4+3),  we do not re- 
calculate its value when we look at it again. This is not just a trick on our part; the Hugs 
system will only evaluate an argument like (4+3) once, keeping its value in case it is 
needed again, as indeed it is in this calculation. This is one aspect of lazy evaluation, 
which is the topic of Chapter 17. 

Conditional expressions 

Guards are conditions which distinguish between different cases in definitions 
of functions. We can also write general conditional expressions by means of the 
if.. . then.. . else construct of Haskell. The value of 

if condition then m else n 

i s m  if the condition is True and is n if the condition is False, so that the expression 
if False then 3 else 4 has the value 4, and in general 

if x >= y then x else y 

will be the maximum of x and y. This shows that we can write max in a different way 
thus: 

max : :  Int -> Int -> Int 
max x y 

= if x >= y then x else y 
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We tend to u\e thc guard for111 rilther than this, but we will see examples below where 
the use of if . . . then . . . else . . . is more natural. 

/ Note: Redefining prelude functions 

The max function is detined in the prelude, Prelude. hs, and if a definition 

max : :  Int -> Int -> Int 

appears in a script maxDef . hs then this dcfi nition will conflict with thc prelude 
definition, leading lo the Hugs error message 

ERROR "maxDef.hsW (line 3): Definition of variable "max" 
clashes with import 

To redefine the prelude functions max and min, say, the line 

import Prelude hiding (max,min) 

which overrides the usual import of the prelude should be included a1 the top of 
the file maxDef . hs, after its module statement (if any). 

Many of the functions detined in  this text are in fact included in the prelude. and 
so this technique needs to be used whenever you want to redetine one of these. 

3.10 Give calculations of 

max ( 3 -2 )  (3*8) 
maxThree (4+5) (2*6) (100 'div' 7 )  

3.1 1 Give definitions of the functions 

min : :  Int -> Int -> Int 
minThree : :  Int -> Int -> Int -> Int 

which calculate the minimurn of two and three integers, respectively. 

( The characters: Char 

People and computers communicate using keyboard input and screen output. which 
are based on sequences of characters, that is letters. digits and 'special' characters 
like space, tab, newline and end-of-file. Haskell contains a built-in type of characters, 
called Char. 

Literal characters are written inside single quotes, thus 'dl is the Haskell represen- 
tative of the character d. Similarly ' 3 '  is the character three. Some special characters 
are represented as follows 
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tab '\t ' 
newline ' \ n '  

backslash ( \ )  ' \ \ '  
single quote 0 )  ,\, J 

double quote ( I1)  1\11 ' 

There is a standard coding for characters as integers, called the ASCll coding. The 
capital letters ' A ' to ' Z ' have the sequence of codes from 65 to 90, and the small letters 
'a' to ' z '  the codes 97 to 122. The character with code 34, for example, can be written 
'\34 ', and ' 9 ' and ' \97 ' have the same meaning. ASCll has recently been extended 
to the Unicode standard, which contains characters from fonts other than English. 

There are conversion functions between characters and their numerical codes which 
convert an integer into a character, and vice versa. 

ord : :  Char -> Int 
chr : : Int -> Char 

The coding functions can be used in defining functions over Char. To convert a small 
lettcr to a capital an offset needs to be added to its code: 

offset : :  Int 
offset = ord 'A' - ord 'a' 

toupper : :  Char -> Char 
toupper ch = chr (ord ch + offset) 

Note that the off set is named, rather than appearing as a part of toupper, as in  

toupper ch = chr (ord ch + (ord 'A' - ord 'a')) 

This is standard practice, making the program both easier to read and to modify. To 
change the offset value, we just need to changc the definition of off set, rather than 
having to change the function (or functions) which use it. 

Characters can be compared using the ordering given by their codes. So, since the 
digits 0 to 9 occupy a block of adjacent codes 48 to 57, we can check whether acharacter 
is a digit thus: 

isDigit : :  Char -> Boo1 
isDigit ch = ('0' <= ch) && (ch <= '9') 

The standard prelude contains a number of conversion functions like toupper, and 
discrimination functions like isDigit; details can be found in the file Prelude. hs. 
Other useful functions over Char are to be found in the library Char. hs. 
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Note: Characters and names 

It is easy to confuse a  and ' a ' .  To summarize the dit't'erence, a  is a name or a 
variable. which if defined may have any type whatever, whereas ' a '  is a literal 
character and is therefore of type Char. 

In a similar way, it is easy to confuse the number 0  and the character ' 0 ' .  

( Exercises 1 
3.1 2 Define a function to convert small letters to capitals which returns unchanged 

characters which are not small letters. 

3.13 Define the function 

charToNum : :  Char -> I n t  

which converts a digit like ' 8 '  to its value, 8. The value of non-digits should be 
taken to be 0. 

( 3 . 6  ) Floating-point numbers: F l o a t  

In Section 3.2 we introduced the Haskell type I n t  of integers. In calculating we also 
want to use numbers with fractional parts, which are represented in Haskell by the 
floating-point numbers which make up the type F l o a t .  We do not use F l o a t  heavily 
in what follows, and so this section can be omitted on first reading and used as reference 
material to be consulted when necessary. 

Internal to the Haskell system there is a fixcd amount of space allocated to representing 
each F l o a t .  This has the effect that not all fractions can be represented by floating- 
point numbcrs. and arithmetic over them will not be always be exact. I t  is possible to 
use the type of double-precision floating-point numbers, Double for greater precision. 
or for full-precision fractions built from I n t e g e r  there is the type Ra t iona l .  As this 
is a programming tutorial we restrict our attention to the types I n t  and F l o a t  but we 
shall survey the numerical types briefly in Chapter 12. 

Literal floats in Haskell can be given by decimal numerals, such as 

The numbers are called floating point because the position of the decimal point is not 
the same for all F l o a t s ;  depending upon the particular number, more of the space can 
be used to store the integer or the fractional part. 

Haskell also allows literal floating-point numbers in scientific notation. These take 
the form below, where their values are given in the right-hand column of the table 
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** 
== , /= )< )> )  

<= >= 

a b s  
acos  , a s i n  
a t  an  

c e i l i n g  
f l o o r  
round 

c o s ,  s i n  
t an 

exp 
f romInt 

1% 
logBase 

n e g a t e  

p i  
signum 

s q r t  

F l o a t  -> F l o a t  -> F l o a t  
F l o a t  -> F l o a t  -> F l o a t  
F l o a t  -> I n t  -> F l o a t  

F l o a t  -> F l o a t  
F l o a t  -> F l o a t  

F l o a t  -> F l o a t  
F l o a t  -> F l o a t  

F l o a t  -> I n t  

F l o a t  -> F l o a t  

F l o a t  -> F l o a t  
I n t  -> F l o a t  
F l o a t  -> F l o a t  
F l o a t  -> F l o a t  

F l o a t  -> F l o a t  
F l o a t  
F l o a t  -> F l o a t  

F l o a t  -> F l o a t  

-> F l o a t  
-> Boo1 

-> F l o a t  

Add, subtract, multiply. 
Fractional division. 
Exponentiation x A n  = xn for ;I 

natural number n. 
Exponentiation x**y = xY. 
Equality and ordering operations. 

Absolute value. 
The inverse o f  cosine, sine 
and tangent. 
Convert a fraction to an integer 
by rounding up, down, or to the 
closest integer. 
Cosine, sine and tangent. 

Power\ of e. 
Convert an I n t  to a F l o a t .  
Logarithm to base e. 
Logarithm to arbitrary base, pro- 
vided as first ar, nunlent. 
Change the sign of a number. 
The constant pi. 
1 . O ,  0 . 0  or -1 . O  according to 
whether the argument is positive, 
zero o r  negative. 
(Positive) square root. 

Figure 3.2 Floating-point operations and functions. 

Thi\ representation i \  more convenient than the decimal numerals above for very large 
and m a l l  numbers. Concider the number 2 .  1444. This will need well over a hundred 
digits before the decimal point, and this would not be pos4ble i n  decimal notation 
of limited \ize (uwally 20 digits at most). In scientific notation, it will be written a\ 
l . l 62433e+l43 .  

Haskell provides a range of operators and functions over F l o a t  in the \tandad 
prelude. The table in Figure 3.2 gives their name, type and a brief description of their 
behaviour. Included are the 

standard mathematical operations: square root, exponential, logarithm and trigono- 
metric functions; 

functions to convert integers to floating-point numbers: f romIn t ,  and vice versa: 
c e i l i n g ,  f l o o r  and round. 
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Haskell can be used as a numeric calculator. Try typing the expression which follows 
to the Hugs prompt: 

s i n  ( p i / 4 )  * s q r t  2 

Overloaded literals and functions 

In Haskell the numbers 4  and 2 belong to both I n t  and F l o a t ;  they are overloaded, as 
discussed i n  Section 3.3. This is also true of some of the numeric functions; addition. 
for instance, has both the types 

I n t  -> I n t  -> I n t  
F l o a t  -> F l o a t  -> F l o a t  

and the relational operators == and so forth are available over all basic types. We shall 
explore this idea of overloading in more detail when we discuss type classes below in 
Chapter 12. 

I Note: Converting integers to floating-point numbers 

Although literals are overloaded, there is no automatic conversion from I n t  to 
F l o a t .  In general if we wish to add an integer quantity. like f l o o r  5 . 6 ,  lo a 
float. like 6 .7 ,  wc will receive an error message if we type 

( f l o o r  5 . 6 )  + 6 . 7  

since we are trying to add quantities of two different types. We have to converl 
the I n t  to a F l o a t  to perform the addition. thus: 

f romInt  ( f l o o r  5 . 6 )  + 6 . 7  

where f  romInt takes an I n t  to the corresponding F l o a t .  

( Exercises 1 
3.14 Give a function to return the average of three integers 

averageThree : : I n t  -> I n t  -> I n t  -> F l o a t  

Using this function define a function 

howManyAboveAverage : :  I n t  -> I n t  -> I n t  -> I n t  

which returns how many of its inputs are larger than their average value. 

The remainder of the questions look at solutions to a quadratic equation 
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where a. b and c  are real numbers. The equation has 

two real roots, if b2 > 4.0*a*c; 

one real root, if b2 == 4.0*a*c; and 
no real roots, if b2 < 4.0*a*c. 

This assumes that a is non-zero - the case which we call non-degenerate. In  
the degenerate case, there are three sub-cases: 

one real root, if b /= 0.0;  

no real roots, if b == 0 . 0  and c  /= 0.0; 

every real number a root, if b == 0 .0  and c  == 0.0.  

3.15 Write a function 

numberNDroots : :  Float  -> Floa t  -> Float  -> I n t  

that given the coefficients of the quadratic, a,  b and c, will return how many 
roots the equation has. You may assume that the equation is non-degenerate. 

3.16 Using your answer to the last question, write a function 

numberRoots : :  Floa t  -> Floa t  -> Floa t  -> I n t  

that given the coefficients of the quadratic, a, b and c, will return how inany 
roots the equation has. In the case that the equation has every number a root you 
should return the result 3. 

3.1 7 The formula for the roots of a quadratic is 

2a 

Write definitions of the functions 

smallerRoot, 1argerRoot : :  Float  -> Float  -> Floa t  -> Floa t  

which return the smaller and larger real roots of the quadratic. In the case that 
the equation has no real roots or has all values as roots you should return zero 
as the result of each of the functions. 

Syntax 

The syntax of a language describes all the properly formed programs. This section 
looks at various aspects of the syntax of Haskell, and stresses especially those which 
might seem unusual or unfamiliar at first sight. 
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Definitions and layout 

A script contains a series of definitions, one after another. How is it clear where 
one definition ends and another begins? In writing English, the end of a sentence is 
signalled by a fir11 stop, '.'. In Haskell the layout of the program is used to state where 
one definition ends and the next begins. 

Formally, a definition is ended by the first piece of text which lies at the same 
indentation or to the left of the start of the definition. 

When we write a definition, its first character opens up a box which will hold the 
definition, thus 

f ystery x = x*x 

Whatever is typed in the box forms part of the definition . 

t ystery x = x*x 

. . . until something is found which is on the line or to the left of the line. This closes 
the box, thus 

ystery x = x*x 

next x = . . . 

In writing a sequence of definitions, it is therefore sensible to give them all the same 
level of indentation. In our scripts we shall always write top-level definitions starting 
at the left-hand side of the page, and in literate scripts we will indent the start of each 
definition by a single 'tab'. 

This rule for layout is called the offside rule because it is reminiscent of the idea of 
being 'offside' in soccer. The rule also works for conditional equations such as max 
and maxThree which consist of more than one clause. 

There is, in fact, a mechanism in Haskell for giving an explicit end to part of a 
definition, just as '.' does in English: the Haskell 'end' symbol is ';'. We can, for 
instance, use ' ;' if we wish to write more than one definition on a single line, thus: 

answer = 42 ; facSix = 720 
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Note: Layout errors 
--- ------ - 

We see error mesages involving ' ; ' wen if we have not used it ourselves. I f  we 
break the offside rule thus: 

funny x = x+ 
1 

we receive an error message like 

ERROR . . . .  : Syntax error in expression (unexpected ' ; ' )  

since internally to the system a '; ' is placed before the 1 to mark the end of the 
definition, which does indeed come at an unexpected point. 

Recommended layout 

The offside rulc permits various different styles of layout. In this book for definitions 
of any s i x  we use the form 

for a conditional equation built up from a number of clauses. In this layout, each 
clause starts on a new line, and the guards and results are lined up. Note al\o that by 
convention in this text we always specify the type of the function being detined. 

If any of the expressions ei or guards gi is particularly long, then the guard can 
appear on a line (or lines) of its own, like this 

fun vl v2 . . .  Vn 
( a long guard which may 
go over a number of lines 

= very long expression which goes 
over a number of lines 

I g2 = e2 
. . .  

Names in Haskell 

Thus far in the book we have seen a variety of uses of names in definitions and 
expressions. In a definition like 

addTwo : :  Int -> Int -> Int 
addTwo first second = first+second 
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the names or identifiers Int, addTwo, first and second are used to name a type, a 
function and two variables. Identifiers in Haskell must begin with a letter - small or 
capital - which is followed by an optional sequence of letters, digits, underscores '-' 
and single quotes. 

The names used in definitions of values must begin with a small letter, as must 
variables and type variables, which are introduced later. On the other hand, capital 
letters are uscd to begin type names, such as Int; constructors, such as True and 
False; module names and also the names of type classes, which we shall encounter 
below. 

An attempt to give a function a name which begins with a capital letter, such as 

Fun x = x+l 

gives the error message 'Undefined constructor function "Fun1". 
There are some restrictions on how identifiers can be chosen. There is a small 

collection of reserved words which cannot be used; these are 

case class data default deriving do else if import in infix 
infix1 infixr instance let module newtype of then type where 

The special identifiers as, qualified, and hiding have special meanings i n  certain 
contexts but can be used as ordinary identifiers. 

By convention, when we give names built up from more than one word, we capitalize 
the first letters of the second and subsequent words, as in 'maxThree'. 

The same identifier can be used to name both a function and a variable, or both a 
type and a type constructor; we recommend strongly that this is not done, as it can only 
lead to confusion. 

If we want to redefine a name that is already defined in the prelude or one of the 
libraries we have to hide that name on import; details of how to do this are given on 
page 4 1.  

Haskell is built on top of the Unicode character description standard, which allows 
symbols from fonts other than those in the ASCII standard. These symbols can be 
used in identifiers and the like, and Unicode characters - which are described by a 
16-bit sequence - can be input to Haskell in the form \uhhhh where each of the h is a 
hexadecimal (4 bit) digit. In this text we use the ASCII subset of Unicode exclusively.' 

Operators 

The Haskell language contains various operators, like +, ++ and so on. Operators are 
infix functions, so that they are written between their arguments, rather than before 
them, as is the case for ordinary functions. 

In principle it is possible to write all applications of an operator with enclosing 
parentheses, thus 

but expressions rapidly become difficult to read. Instead two extra properties of 
operators allow us to write expressions uncluttered by parentheses. 

Note that at the time of writing, the Hugs syqtern does not support Unicode characters. 
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Associativity 

If we wish to add the three numbers 4, 8 and 99 we can write either 4+(8+99) 
or (4+8)+99. The result is the same whichever we write, a property we call the 
associativity of addition. Because of this, we can write 

for the sum, unambiguously. Not every operator is associative, however; what happens 
when we write 

for instance'? The two different ways of inserting parentheses give 

left associative 
right associative 

In Haskell each non-associative operator is classified as either left or right associative. 
If left associative, any double occurrences of the operator will be parenthesized to the 
left; if right associative, to the right. The choice is arbitrary, but follows custom as 
much as possible, and in particular '-' is taken to be left associative. 

Binding powers 

The way in which an operator associates allows us to resolve expressions like 

where the same operator occurs twice, but what is done when two different operators 
occur, as in the following expressions? 

For this purpose the binding power or fixity of the operators need to be compared. * 
has binding power 7 while + has 6, so that in 2+3*4 the 3 sticks to the 4 rather than the 
2, giving 

In a similar way. ^ with binding power 8 binds more tightly than *, so 

A full table of the associativities and binding powers of the predefined Haskell operators 
is given in Appendix C. In the section 'Do-it-yourself operators' below we discuss how 
operators arc defined in scripts and also how their associativity and binding power can 
be set or changed by declarations. 
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( Note: Function application 

Binding most tightly is function application, which is given by writing the name 
of the function in front of its argurnent(s) thus: f vl v2 . . . vn. This binds 
more tightly than any other operator, so that f n+l is interpreted as f n plus 1, 
(f n)+l, rather than f applied to n+l, f (n+l). If in doubt, i t  is sensible to 
parenthesize each argument to a function application. 

Similarly, as '-' is both an infix and a prefix operator, there is scope for confusion. 
f -12 will be interpreted as 12 subtracted from f, rather than f applied to - 12; 
the solution again is to bracket the argument. 

Operators and functions 

Infix operators can be written heforr their arguments, by enclosing the operator in  
parentheses. We therefore have, for example, 

(+) : : Int -> Int -> Int 

so that 

(+) 2 3 = 2 + 3  

This conversion is needed later when we make functions into arguments of other 
functions. We can also convert functions into operators by enclosing the function 
name in  backquotes, thus 'name'. We therefore have, using the maximum function 
defined earlier. 

2 'max' 3 = rnax 2 3 

This notation can make expressions involving binary or two-argument functions wb- 
stantially easier to read. 

The fixity and associativity of these operators can be controlled; see Appendix C. 

Do-it-yourself operators 

The Haskell language allows us to define infix operators directly in exactly the same 
way as functions. Operator names are built from the operator symbols which include 
the ASCII symbols 

together with the Unicode symbols. An operator name may not begin with a colon. 
To define the operator &&& as an integer minimum function. we write 

(&&&I : : Int -> Int -> Int 
x &&& y 

I x > y  = Y 
I otherwise = x 

The associativity and binding power of the operator can be specified; for det a1 '1 s see 
Appendix C. 
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3.18 Rewrite your solutions to the earlier exercises to use the recommended layout. 

3.1 9 Given the definitions 

funny x = x+x 
p e c u l i a r  y  = y  

explain what happens when you remove the space in front of the p e c u l i a r  

Summary 

This chapter has introduced the base types I n t ,  F l o a t ,  Char and Boo1 together with 
various built-in functions over them. We have seen how Boolean expressions - called 
guards - allow definitions which have various cases, and this was exemplified by the 
function returning the maximum of two integer arguments. This definition contains 
two cases, one which applies when the tirst argument is the larger and the other when 
the second is the larger. 

Finally, we have seen how the layout of a Haskell program is significant - the end of  
a definition is implicitly given by the first piece of program text 'offside' of the start of 
the definition; we have also given an overview of operators in Haskell. 

This material, together with what we have seen in earlier chapters, gives us a toolkit 
which we can use to solve programming problems. In the next chapter we will explore 
various ways of using that toolkit to solve practical problems. 



( Chapter 4 ) 

Designing and writing 
programs 

4.1 Where do I stort? Designing a program in Haskell 

4.2 Recursion 

4.3 Primitive recursion in practice 

4.4 General forms of recursion 

4.5 Program testing 

In this chapter we step back from discussing the details of Haskell and instead look a t  how 
to build programs. We present some general strategies for program design; that is we 
talk about how programs can be planned before we start to write the details. The advice 
we give here is largely independent of Haskell and will be useful whatever programming 
language we use. 

We follow this by discussing recursion. We begin by concentrating on explaining why 
recursion works, and follow this by looking at how to find primitive recursive definitions, 
extending what we have said about design. We conclude with an optional examination 
of more general forms of recursion. 

Once we have written a definition we need to ask whether it does what it is intended 
to do. We conclude the chapter by exploring the principles of program testing and 
examining a number of examples. 

( Where do I start? Designing a program in Haskell 

One theme which we want to emphasize in this book is how we can design program\ 
to be written in Haskell. Design is used to mean many different things in computing: 
the way that we want to think of i t  is like this: 



54 Designing and writing programs 

( Definition 1 
Design is the stage before we start writing detailed Haskell code. 

In this section we will concentrate on looking at examples, and on talking about the 
different ways we can try to define functions, but we will also try to give some general 
advice about how to start writing a program. These are set out as questions we can ask 
ourselves when we are stuck with a programming problem. 

Do I understand what I need to do? 

Before we can start to solve a programming problem we need to be clear about what 
we have to do. Often problems are described in an informal way, and this can mean 
that the problem either is not fully stated or cannot be solved as it is described. 

Suppose we are asked to return the middle of three numbers. It is clear that given 
the numbers 2, 4 and 3 we should return 3, but when presented with 2, 4 and 2 there 
are two possible responses. 

We could say that 2 is the middle number because when we write the numbers in 
order: 2 2 4, then 2 is the number that appears in the middle. 

Alternatively we could say that there is no middle number in this case, since 2 is the 
lower and 4 the higher, and that we therefore cannot return any result. 

What can we learn from this illustration'? 

First, that even i n  simple problems there can be things we have to think about before 
we start programming. 

Secondly, it is important to realize that there is no right answer among the two 
options given just now: it i q  up to the person wanting the program written and the 
programmer to work out between them what is wanted. 

Thirdly, a very good way of thinking about whether we understand the problem is to 
think about how we expect it to work out in various examples. 

Finally, it is worth realizing that often difficulties like this come out at the program- 
ming stage, when we have already written a whole lot of definitions; the sooner we 
spot a problem like this, the more wasted effort we can save. 

Another example of this came up in the definition of max in Section 3.4, where we had 
to say what the function should return when its two arguments were the same. In that 
case it was sensible to think of the maximum of, say, 3 and 3 as being 3. 

Can I say anything about types a t  this stage? 

One thing we can think about at this stage is the types of the various things we are 
thinking about. We can write 

middleNurnber : :  In t  -> In t  -> Int -> Int  
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as the name and type of the function returning the middle of three numbers without 
having any idea about how we are going to define the function itself. Nevertheless, it is 
progress, and also it gives us something to check our definition against when we havc 
written it: if we manage to write a function middleNumber but it does not have the 
type Int -> Int -> Int -> Int, then the function cannot be doing what it should. 

What do I already know? How can I use this information? 

These are crucial questions for a designer of a program. We need to know what resources 
are available to us for solving the problem at hand: what definitions have we already 
written which could be useful, what does the language provide in its prelude and 
libraries? We will obviously learn more about the latter as we go along, but even when 
we have written only a small number of programs we should always think about how 
these might help us solve the problem at hand. For instance, in trying to define the 
function maxThree introduced in Section 3.4, we know that we have already got the 
rnax function, giving the maximum of two numbers. 

As well as knowing our resources we also need to know how we can use them; this 
we look at now. There are two different ways that a definition we already have can be 
helpful. 

We can take the definition of a function as a model for what we want to do 

In defining maxThree we have the resource of already having defined the function max. 
We can think of its definition as a model for how we might define maxThree. 

In rnax we give the result x on condition that it is the maximum of the two, that is 

Our definition of maxThree does a similar thing, replacing the condition for two values 
with the condition for three, namely: 

This way of using rnax is probably the first to spring to mind, but it is not the only way 
that rnax can help us in defining maxThree. 

We can use a function we have already defined within the new definition 

We are trying to find the maximum of three numbers, and we are already provided with 
a function rnax to give us the maximum of two. How could we use rnax to give us the 
result we want? We can take the maximum of the first two, and then the maximum of 
that and the third. In pictures, 
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and in Haskell 

maxThree x y z = rnax (max x y) z 

or writing the rnax in its infix form, 'rnax', 

maxThree x y z = (x 'rnax' y) 'rnax' z 

Using rnax in this way has some advantages. 
The definition of maxThree is considerably shorter and easier to read than the original. 

If at some point we changed the way that rnax was calculated - perhaps making it a 
built-in function - then this definition would get the benefit of the 'new' max. This is 
not such an advantage in a small example like this, but can be of considerable benefit in 
a larger-scale system where we can expect software to be modified and extended over 
itc lifetime. 

Can I break the problem down into simpler parts? 

If we cannot solve a problem as it stands, we can think about breaking it down into 
smaller parts. This principle of 'divide and conquer' is the basis of all larger-scale 
programming: we solve aspects of the problem separately and then put them together 
to give an overall solution. 

How do we decide how to break a problem down into parts'! We can think of solving 
a simpler problem and then building the full solution on top, or we can ask ourselves 
the question here. 

What if I had any functions I wanted: which could I use in writing the solution? 

This what l f . .  . ? is a central question, because it breaks the problem into two parts. 
First we have to give the solution c~ssumirzg we are given the auxiliary functions we want 
and thus without worrying about how they are to be defined. Then, we have separately 
to define these auxiliary functions. 

Goal 

Starting point 

Goal 

What if. .. ? functions 

Starting point 

Instead of a single jump from the starting point to the goal, we have two shorter jumps, 
each of which should be easier to do. This approach is called top-down as we start at 
the top with the overall problem, and work by breaking it down into smaller problems. 
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This process can be done repeatedly, so that the overall problem is solved in a series 
of small jumps. We now look at an example; more examples appear in the exercises at 
the end of the section. 

Suppose we are faced with the problem of defining 

middleNumber : :  Int -> Int -> Int -> Int 

according to the first of the alternatives dchcribed on page 54. A model is given by the 
delinition of maxThree, in which we give conditions for x to be the solution, y to be 
the solution and so on. We can therefore sketch out our solution like this 

middleNumber x y z 
I condition for x to be solution = x 
1 condition for y to be solution = Y 

Now, the problem comes in writing down the conditions, but here we say what jj' we 
had a function to do this. Let us call it between. It has three numbers as arguments, 
and a Boolean result, 

between : :  Int -> Int -> Int -> Boo1 

and is clef ned so that between m n p is True if n is between m and p. We can complete 
the definition of middleNumber now: 

middleNumber x y z 
1 between y x z = x 
I between x y z = Y 
I otherwise = z 

The definition of the function between is lcft as an exercise for the reader. 
This section has introduced some of the general ideas which can help us to get started 

in  solving a problem. Obviously, because programming is a creative activity there is 
not going to be a set of rules which will always lead us mechanically to a solution to 
a problem. On the other hand, the questions posed here will get us started, and show 
us some of the alternative strategies we can use to plan how we are going to write a 
program. We follow up this discussion in Chapter I 1 .  

Exercises ) 

4.1 This question is about the function 

maxFour : :  Int -> Int -> Int -> Int -> Int 

which returns the maximum of four integers. Give three definitions of this 
function: the first should be modelled on that of maxThree, the second should 
use the function max and the third should use the functions max and maxThree. 
For your second and third solutions give diagrams to illustrate your answers. 
Discuss the relative merits of the three solutions you have given. 
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4.2 Give a definition of the function 

between : :  Int -> Int -> Int -> Bool 

discussed in this section. The definition should be consistent with what we said 
in explaining how middleNumber works. You also need to think carefully about 
the different ways that one number can lie between two others. You might find 
it useful to define a function 

weakAscendingOrder : :  Int -> Int -> Int -> Bool 

so that weakAscendingOrder m n p is True exactly when m, n and p are in 
weak ascending order, that is the sequence does not go down at any point. An 
example of such a sequence is 2 3 3. 

4.3 Give a definition of the function 

howManyEqua1 : : Int -> Int -> Int -> Int 

which returns how many of its three arguments are equal, so that 

Think about what functions you have already seen - perhaps in the exercises - 
which you can use in the solution. 

4.4 Give a definition of the function 

howManyOfFourEqua1 : :  Int -> Int -> Int -> Int -> Int 

which is the analogue of howManyEqua1 for four numbers. You may need to 
think uvlzut i f .  . . ?. 

(4.2 ) Recursion 

Recursion is an important programming mechanism, in which a definition of a function 
or other object refers to the object itself. This section concentrates on explaining the 
idea o l  recursion, and why it makes sense. In  particular we give two complementary 
explanations of how primitive recursion works in defining the factorial function over the 
natural numbers. In the section after this we look at how recursion is uwd in practice. 
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Getting started: a story about factorials 

Suppose that someone tells us that the factorial of a natural number is the product of 
all natural numbers from one up to (and including) that number, so that, for instance 

fac 6 = 1*2*3*4*5*6 

Suppose we are also asked to write down a table of factorials, where we take the factorial 
of zero to be one. We begin thus 

n fac n 
0 1 
1 1 
2 1*2 = 2 
3 1*2*3 = 6 
4 1*2*3*4 = 24 

but we notice that we are repeating a lot of multiplication in doing this. In working out 

we see that we are repeating the multiplication of 1*2*3 before multiplying the result 

by 4 

l1t2*31*4 

and this suggests that we can produce the table in a different way, by saying how to 
start 

fac 0 = 1 (f ac . 1) 

which starts the table thus 

n fac n 
0 1 

and then by saying how to go from one line to the next 

fac n = fac (n-1) * n 

since this gives us the lines 

n fac n 
0 1 
1 1*1 = 1 
2 1*2 = 2 
3 2*3 = 6 
4 6*4 = 24 

and so on. 
What is the moral of this story? We started off describing the table in one way, but 

came to see that all we needed was the information in (f ac. 1) and (f ac. 2). 



60 Designing and writing programs 

(f ac  -1)  tells us the first line of the table, and 

( fac .  2) tclls us how to get from one line of the table to the next. 

The tablc is just a written form of the factorial function, so we can see that (f a c .  1) 
and (f ac.  2) actually describe the function to calculale the faclorial, and putting [hem 
together wc get 

f  ac : : I n t  -> I n t  
f a c  n 

I n==O = 1 
I n>O = f a c  (n-1) * n 

A delinilion like this is called recursive because we actually use f  ac  in  describing f  ac  
itself. Put this way it  may sound paradoxical: after all, how can we describe something 
in terms of itself? But, the slory we have just told shows that the definition is perfectly 
sensible, since it gives 

a starting point: the value o f f  ac  at 0. and 

a way of going from the value o f f  ac  at a particular point, f  a c  (n-1). to the valuc 
o f f  ac  on the next line. namely f a c  n. 

These recursive rules will give a value to f  ac  n whatever the (positive) value n has - 
we just have to write out n lines of the table. as it were. 

Recursion and calculation 

The story in the previous section described how the definition of factorial 

f a c  : :  I n t  -> I n t  
f a c  n 

I n==O = 1 
I n>O = f a c  (n-1) * n 

can be seen as generating the table of factorials, starting from f ac 0 and working up 
to f ac 1, f ac 2 and so forth, up to any value we wish. 

We can also read the definition in a calculational way, and see recursion justified in 
another way. Take the example of f  ac  4 

f a c  4 
-w f a c 3 * 4  

so that (f ac .  2) replaces one goal - f  ac  4 - with a simpler goal - finding f ac  3 (and 
multiplying i t  by 4). Continuing to use ( fac  .2) ,  we have 

f a c  4 
f a c  3 * 4 

?-, ( fac  2 * 3) * 4 
-A ( ( f ac  I * 2) * 3) * 4 - ( ( ( f a c  0 * 1) * 2) * 3) * 4 
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Now, we have got down to the simplest case (or basecase), which is solved by (f ac . I ) .  

In the calculation we have worked from the goal back down to the base case, using the 
recursion step (f ac .  2 ) .  We can again see that we get the result we want. because the 
recursion step takes us from n niorc complicated case to a simpler one, and we have 
given a value for the simplest case (zero, here) which we will eventually reach. 

We have now seen in the case o f f  ac  two explanations for why rccursion works. 

The bottom-up explanation says that the f ac  equations can be seen to generate the 
values o f f  ac  one-by-one from the base case at zero. 

A top-down view starts with a goal to be evaluated, and shows how the equations 
simplify this until we hit the base case. 

The two views here are related, Gnce we can think of the top-down explanntion 
generating a table too, but in this case the table is generated a\  it is necdcd. Starting 
with the goal of f a c  4 we require the lines fix 0 to 3 also. 

Technically, we call the form of recursion we have seen here primitive recursion. 
We will describe it more formally in the next section, where we examine how t o  start 
to find recursive definitions. Bct'ore we do that, we discuss another aspect of thc f a c  
function as defined here. 

Undefined or error values 

Our detinition of factorial cover\ rero and the positive integers. What will be the effcct 
of applying f a c  to a negative number? On evaluating f a c  ( - 2 )  in Hugs we receive 
the error message 

Program e r r o r :  { fac  ( - 2 ) )  

because f ac  is not defined on the negative numbers. We could if we wished extend the 
definition to zero, on the negative numbers, thus 

f ac  n 
I n==O = 1 
I n>O = f a c  (n-I) * n 
I otherwise = 0 

or we could include our own error message, as follows 

f a c  n 
I n==O = 1 
1 n>O = f a c  (n-1) * n 
I otherwise = e r r o r  "fac only defined on na tu ra l  numbers" 
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so that when we evaluate f a c  (-2) we receive the message 

Program e r r o r :  f a c  only def ined  on n a t u r a l  numbers 

The error message here is a Haskell string, as discussed in Chapter 5 .  

( Exercises 1 
4.5 Define the function rangeproduct which when given natural numbers m and n 

returns the product 

You should include in your definition the type of the function, and your function 
should return 0 when n is smaller than m. 
Hint: you do not need to use recursion in your definition, but you may if you 
wish. 

4.6 As f ac  is a special case of rangeproduct,  write a definition of f ac  which uses 
rangeproduct.  

(43) Primitive recursion in practice 

This section examines how primitive recursion is used in practice by examining a 
number of examples. 

The pattern of primitive recursion says that we can define a function from the natural 
numbers 0, 1, . . . b y  giving the value at Lero, and by explaining how to go from the 
value at n-1 to the value at n. We can give a template for this 

fun n 
I n==O - - . . . .  
I n>O - - . . . . fun  (n-1) . .  . . 

where we have to supply the two right-hand sides. 
How can we decide whether a function can be defined in this way? Just as we did 

earlier in the chapter, we frame a question which summarizes the essential property we 
need for primitive recursion to apply. 

What if we were given the value fun  (n-I).  How could we define fun n from it? 

We see how this form of recursion works in practice by looking at some examples. 

1 .  Suppose first that we are asked to define the function to give us powers of two for 
natural numbers 

power2 : :  I n t  -> I n t  
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so that power2 n is 2", that is 2 multiplied by itself n times. The template is 

power2 n 
I n==O - - . . . . 
I n>O - - . . . . power2 (n-1) . . . . 

In the zero case the result is 1, and in general 2n is 2"-' multiplied by 2, so we define 

2. As the next example we take the function 

sumFacs : :  I n t  -> I n t  

so that 

sumFacs n = f a c  0 + f a c  1 + . . .  + f a c  (n-I) + f a c  n 

If we are told that sumFacs 4 is 34 then we can work out sumFacs 5 in one step: we 
simply add f a c  5, that is 120, giving the result 154. This works in general, and so we 
can fill in the template like this: 

sumFacs : : I n t  -> I n t  
sumFacs n 

I n==O = 1 
I n>O = sumFacs (n-I) + f a c  n 

In fact this pattern works for any function f of type I n t  -> I n t  in the place of fac,  
so we can say 

sumFun : :  ( I n t  -> I n t )  -> I n t  -> I n t  
sumFun f n 

I n==O = f  0 
I n>O = sumFunf (n-I) + f n 

where the function whose values are being added is itself an argument of the sumFun 
function. A sample calculation using sumFun is 

sumFun f ac 3 
--i sumFun f a c  2 + f ac 3 

sumFun f a c  1 + f ac 2 + f a c  3 - sumFunfac 0 + f a c  I + f a c  2 + f a c  3 
f a c O + f a c  1 + f a c 2 + f a c 3  

-.a . . .  
?-, 10 

and we can define sumFacs from sumFun thus: 

sumFacs n = sumFun f a c  n 

We briefly introduced the idea of functions as data in Chapter 1, and we will revisit 
it in detail in Chapter 9. As we mentioned in Chapter I ,  having functions as argument\ 
is powerful and sumFun gives a good example: one definition serves to sum the values 
of any function of type I n t  -> I n t  over the range of arguments from 0 to n. 
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3. As a last example we look at a geometrical problem. Suppose we want to find out 
the maximum number of pieces we can get by making a given number of straight-line 
cuts across a piece of paper. With no cuts we get one piece; what about the general 
case'? Suppose we have n-1 lines already, and that we add one more. 

We will get the most new regions if we cross each of thesc lines; because they are 
straight lines, we can only cut each one once. This means that the new line crosses 
exactly n of the regions, and so splits each of these into two. We therefore get n new 
regions by adding the nth line. Our function definition is given by filling in the template 
(prim) according to what we have said. 

regions : :  Int -> Int 
regions n 

I n==O = 1 
I n>O = regions (n-1) + n 

f Exercises 1 

4.7 Using the addition function over the natural numbers, give a recursive definition 
of multiplication of natural numbers. 

4.8 The integer square root of a positive integer n is the largest integer whose square 
is less than or equal ton. For instance, the integer square roots of 15 and 16 are 
3 and 4, respectively. Give a primitive recursive definition of this function. 

4.9 Given a function f of type Int -> Int give a recursive definition of a function 
of type Int -> Int which on input n returns the maximum of the values f 0, 
f I, . . . , f n. You might find the max function defined in Section 3.4 useful. 

To test this function, add to your script a definition of some values o f f  thus: 

and so on; then test your function at various values. 
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4.10 Given a function f of type Int -> Int give a recursive definition of a function 
of type Int -> Boo1 which on input n returns True if one or more of the values 
f 0, f I, . . . , f n is zero and False otherwise. 

4.1 1 Can you give a definition of regions which instead of being recursive uses the 
function sumFun'? 

4.1 2 [Harder] Find out the maximum number of pieces we can get by making a given 
number of flat (that is planar) cuts through a solid block. It is not the same 
answer as we calculated for straight-line cuts of a flat piece of paper. 

(44') General forms of recursion 

As we explained in Section 4.2, a recursive definition of a function such as f ac would 
give the value o f f  ac n using the value f ac (n-I). We saw there that f ac (n-1) is 
simpler in being closer to the base case f ac 0. As long as we preserve this property 
of becoming simpler, different patterns of recursion are possible and we look at some 
of them in this section. These more general forms of recursion are called general 
recursion. In trying to use recursion to define a function we need to pose the question: 

In defining f n which values o f f  k would help me to work out the answer? 

1. The sequence of Fibonacci numbers starts with 0 and I, and subsequent values are 
given by adding the last two values, so that we get 0+1=1, 1+1=2 and so forth. This 
can be given a recursive definition as follows 

f i b  : : Int -> Int  
f i b  n 

I n==O = 0 
I n==l = I 
I n>l = f i b  (n-2) + f i b  (n-1) 

where we see in the general case that fib n depends upon not only f i b  (n-I) but 
also f i b  (n-2). 

This gives a clear description of the Fibonacci numbers, but unfortunately it gives 
a very inefficient program for calculating them. We can see that calculating f i b  n 
requires us to calculate both f i b  (n-2) and f i b  (n-I), and in calculating f i b  (n-1) 
we will have to calculate f i b  (n-2) again. We look at ways of overcoming this 
problem in Section 5.2. 

2. Dividing one positive integer by another can be done in many different ways. One 
of the simplest ways is repeatedly to subtract the divisor from the number being divided, 
and we give a program doing that here. In fact we will define two functions 
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remainder : :  I n t  -> I n t  -> I n t  
divide : :  I n t  -> I n t  -> I n t  

which separately give the division's remainder and quotient. 
In trying to find a definition it often helps to look at an example. Suppose we want 

to divide 37 by 10. We expect that 

remainder 37 10 = 7 
divide 37 10 = 3 

If we subtract the divisor, 10, from the number being divided, 37, how are the values 
related? 

remainder 27 10 = 7 
divide 27 10 = 2 

The remainder is the same, and the result of the division is one less. What happens at 
the base case'? An example is 

remainder 7 10 = 7 
divide 7 10 = 0 

Using these examples as a guide, we have 

remainder m n 
I m<n = m 
I otherwise = remainder (m-n) n 

divide m n 
1 m<n = 0 
I otherwise = I + divide (m-n) n 

These definitions also illustrate another important point: a general recursive function 
does not always give an answer; instead an evaluation may go on forever. Look at what 
happens if we evaluate 

remainder 7 0 
--t remainder (7-0) 0 - remainder 7 0 
---+ . . . .  

This calculation will loop for ever, and indeed we should expect problems if we try to 
divide by zero! However, the problem also appears if we try to divide by a negative 
number, for instance 

divide 4 (-4) 
-& divide (4-(-4)) (-4) 
-vt divide 8 (-4) 
-A . . .  

The lesson of this example is that in general there is no guarantee that a function defined 
by recursion will always terminate. We will have termination if we use primitive 
recursion, and other cases where we are sure that we always go from a more complex 
case to a simpler one; the problem in the example here is that subtracting a negative 
number increases the result, giving a more complex application of the function. 
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Exercises 

4.13 Give a recursive definition of a function to tind the highest common factor of 
two positive integers. 

4.14 Suppose we have to raise 2 to the power n. If n is even, 2*m say, then 

Tf n is odd, 2*m+l say, then 

Give a recursive function to compute 2" which uses these insights. 

Program testing 

Just because a program is accepted by the Haskell system, i t  docs not mean that it 
necessarily does what it should. How can we be sure that a program behaves as it is 
intended to? One option, tirst aired in Section I .  10, is to prove in some way that it 
behaves correctly. Proof is, however, an expensive business, and we can get a good 
deal of assurance that our programs behavc correctly by testing the program on selected 
inputs. The art of testing is then to choose the inputs to be as comprehensive as possible. 
That is, we want to test data to represent all the different 'kinds' of input that can be 
presented to the function. 

How might we choose test data? There are two possible approaches. We could 
simply be told the specification of the function, and devise test data according to that. 
This is called black box testing, as we cannot see into the box which contains the 
function. 011 the other hand, in devising white box tests we can use the form of thc 
function definition itself to guide our choice of test data. We will explore these two 
in  turn, by addressing the example of the function which is to return the maximum of 
three integers, 

maxThree : :  I n t  -> Int -> Int -> Int 

Black box testing 

How can we make a rational choice of test data for afunction, rather than simply picking 
(supposedly) random numbers out of the air? 

What we need to do is try to partition the inputs into difterent testing groups where 
we expect the function to behave in a similar way for all the values in a given group. In  
picking the test data we then want to make sure that we choose at least one rcprescntativc 
from each group. 

We should also pay particular attention to any special cases, which will occur on the 
'boundaries' of the groups. If we have groups of positive and negative numbers, then 
we should pay particular attention to the zero case, for instance. 



68 Designing and writing programs 

What are the testing groups for the example of maxThreed? There is not a single right 
answer to this, but we can think about what is likely to be relevant to the problem and 
what is likely to be irrelevant. In the case of maxThree it is reasonable to think that thc 
s i ~ e  or sign of the integers will not be relevant: what will determine the result is their 
relative ordering. We can make a first subdivision this way 

all three values different; 

all three values the same; 

two items equal, the third different. In fact, this represents two cases 

- two values equal to the maximum, one other; 

- one value equal to the maximum, two others. 

We can then pick a set of test data thus 

If we test our definition in Section 3.4 with these data then we see that the program 
gives the right results. So  too does the following program: 

mysteryMax : :  Int -> Int -> Int -> Int 
mysteryMax x y z 

I x > y & & x > z  = X 

l y > x & & y > z  = Y 
I otherwise = z 

so should we conclude that mysteryMax computes the maximum of the threc inputs'? 
If we do, we are wrong, for we have that 

This is an important example: it tells us that testing alone cannot assure us that a 
function is correct. How might we have spotted this error in designing our test data'? 
We could have said that not only did we need to consider the groups above, but that we 
should have looked at all the different possible orderings of the data, giving 

all three values different: six different orderings; 

all three values the same: one ordering; 

two items equal, the third different. In each of the two cases we consider three 
orderi ngs. 

The final case generates the test data 6 6 2 which find the error. 
We mentioned special cases earlier: we could see this case of two equal to the 

maximum in this way. Clearly the author of mysteryMax was thinking about the 
general case of three different values, so we can see the example as underlining the 
importance of looking at special cases. 
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White box testing 

In writing white box test data we will be guided by the principles which apply to black 
box testing. but we can also use the form of the program to help us choose data. 

If we have a function containing guards, we should supply data for each case in 
the definition. We should also pay attention to 'boundary conditions' by testing the 
equality case when a guard uses >= or >, for example. 

If a function uses recursion we should test the zero case, the one case and the general 
case. 

I n  the example of mysteryMax we should be guided to the data 6 6 2 since the first 
two inputs are at the boundaries of the guards 

We take up the ideas discussed in this section when we discuss proof in Chapter 8. 

Exercises 

4.15 Devise test data for a function 

a l lEqua l  : :  I n t  -> I n t  -> I n t  -> Bool 

intended to test whether its three integer inputs are equal. 

4.16 Use the test data from the previous question to test the function 

s o l u t i o n  m n p = ((m+n+p)==3*p) 

Discuss your results. 

4.1 7 The function 

a l l D i f f  e r en t  : : I n t  -> I n t  -> I n t  -> Bool 

should return True only if all its inputs are different. Devise black box test data 
for this function. 

4.18 Test the following function 

at tempt  m n p = (m/=n) && (n/=p) 

using the test data written in the previous question. What do you concludc on 
the basis of your results'? 

4.19 Devise test data for a function 

howManyAboveAverage : :  I n t  -> I n t  -> I n t  -> I n t  

which returns how many of its three integer inputs are larger than their average 
value. 

4.20 Devise test data for a function to raise two to a positive integer power. 
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Summary 

This chapter has introduced some general principles of program design. 

We should think about how best to use what we already know. If we have already 
defined a function f we can make use of it in two ways. 

- We can /nodel our new definition on the definition of f . 

- We can use f i n  our new definition. 

We should think about how to break the problem into smaller, more easily solved, 
parts. We should ask WIl~it if1 Izud ... ?. 

We can use recursion to define functions. 

We also explained the basics of recursion, and caw how i t  is used in practice to define 
a variety of functions. We shall see many more illustrations of this when we look at 
recursion over Ii\tc in Chapter 7. 

We concluded by showing that it was possible to think in a principled way about 
designing test data for function definitions rather than simply choosing the first data 
that came to mind. 
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Thus far we have looked at programs which work over the basic types such as Int, Float 
and Bool, and we have also seen how to approach the design of programs in general. 
However, in practical problems we will want to represent more complex things, as we 
saw with our P i c t u r e  example in Chapter 1. 

This chapter introduces two ways of building compound data in the Haskell language; 
these are the tuple and the list, and together they suffice to let us represent many 
different kinds of 'structured' information. We shall meet other ways of defining data 
types for ourselves in Chapters 14 and 16. 

We concentrate here on explaining the facilities that Haskell provides for defining and 
manipulating tuples and lists. The repertoire for tuples is small, but for lists the langauge 
provides many predefined functions and operations. As well as these we can use the 'list 
comprehension' notation to write down descriptions of how lists may be formed from 
other lists. 
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In order to describe properly the prelude functions on lists we need to explain 
polymorphism, which is the mechanism by which a Haskell function can act over more 
than one type: the length function on lists can be used over any list type, for instance. 

After laying the foundations in this chapter we look at a collection of examples in the 
chapter to come. 

a Introducing tuples, lists and strings 

Both tuples and lists are built up by combining a number of pieces of data into a single 
object, but they have different properties. In a tuple, we combine a predetermined 
number of values of predetermined types - which might be different - into a single 
object. In a list we combine an arbitrary number of values -all of the same type - into 
a single object. 

An example can help to clarify thedifference. Suppose we are trying to make a simple 
model of a supermarket, and as part of that model we want to record the contents of 
someone's shopping basket. A given item has a name and a price (in pence), and we 
therefore need somehow to combine thew two pieces of information. We do this in a 
tuple, such as 

( "Sa l t :  1kgn,139) 
("Pla in  c r i spsM,25)  

where in each t u p l e a s t r i n g i s  combined with an In t .  The literal S t r i n g  of characters. 
written between double quotes, gives the name of the item, and the I n t  gives its price. 
The S t r ing  is in fact a list of characters, and we discuss that type in Section 5.9. 

The values ( "Sa l t :  lkg" ,139) and ("Pla in  c r i sps"  ,25) belong to the tuple 

ty Pe 

(St r ing ,  I n t )  

Every member of this type will have two components - a S t r i n g  and an I n t  - as 
specified in the type (S t r ing ,  I n t ) .  If we are given a member of this type we can 
therefore predict what type its components will have, and this means that we can check 
that these components are used in an appropriate way: we can check that we deal with 
the second half as an I n t  and not a Bool, for example. We therefore keep the property. 
first mentioned in Chapter I, that we can type-check a11 programs prior to execution, 
and so any type errors in a program can be found before a program is actually executed. 

How are the contents of the basket represented'? We know that we have a collection 
of items. but we d o  not know in advance how many we have; one basket might contain 
ten items, another one three. Each item is represented in the same way, as a member 
of the (S t r ing ,  I n t )  type, and so we represent the contents of the basket by a list of 
these, as in the list 

[ ( "Sa l t :  lkgH,139) , ("Pla in  cr i sps8 ' ,25)  , ("Gin: l l t " , 1099)  1 

This is a member of the list type 
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Other members of this list type include the empty list, [I ,  and the basket abovc with a 
second packet of crisps replacing the gin: 

[ ( "Sa l t :  lkg" ,  139) , ( "P la in  c r i spsN,25 )  , ("Pla in  c r i sps"  ,25) 1  

Since every member of the list has the same type, we can predict the type of any itcm 
chosen from the list. Compare this with a list whose members could have different 
types: if we choose the first element of such a list we cannot predict its type, and so we 
lose the ability to type-check programs before they we run. Because we want to keep 
this important property, Haskell is designed so that lists have lo contain clements of the 
same type, but diftercnt lists will convain elements of different types. 

We can give names to types in Haskell, so that types are made easier to read. In our 
example we name the two types 

type ShopItem = (S t r i ng ,  I n t )  
type Basket = CShopItem] 

where thc keyword type introduces the fact that this is the detinition of a typc rnther 
than a value. We can also tell this because the type names ShopItem and Basket begin 
with capital lctters. as noted i n  Section 3.7. Built into the system is thc definition 

type S t r i n g  = [Char] 

so Haskell treats strings as a special case of the list type. Names such as ShopItem and 
S t r i n g  are synonyms for the types which they name. 

We now look at tuple types in more detail, and examine some examples of how tuples 
are used in practice. 

Tuple types 

The last section introduced the idea of tuple types. In general a tuple lype is built up 
from components of simpler types. The type 

consists of tuples of values 

in which v l  : : t i ,  . . . , vn: : t n .  In other words, each component v i  of the tuple has to 
have the type ti given in the corresponding position in the tuple type. 

The reason for the name 'tuple' is that these objects are usually called pairs, triples. 
quadruples, quintuples, sextuples and so on. The general word for them is therefore 
'tuple'. In other programming languages, these types are called records or structures: 
sce Appendix A for a more detailed comparison. 

We can model a type of supermarket items by the ShopItem type defined by 

type ShopItem = ( S t r i n g , I n t )  
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and we saw above that its members include items like ("Gin, lltH, 1099). 
A type definition like this is treated as shorthand in Haskell - wherever a name 

like ShopItem is used, it has exactly the same effect as if (String,Int) had been 
written. Definitions like this make programs more readable and also lead to more 
conlprehensible type error messages. 

How else are tuple types used in programs? We look at a series of examples now. 

1 .  First, we can use a tuple to return a compound result from a function, as in thc 
example where we are required to return both the minimum and the maximum of two 
Ints 

minAndMax : :  Int -> Int -> (Int,Int) 
minAndMax x y 

I x>=y = (y,x> 
I otherwise = (x,y) 

2. Secondly, suppose we are asked to find a (numerical) solution to a problem when i t  
is uncertain whether a solution actually exists in every case: this might be the question 
of where a straight line meets the horizontal or x-axis, for instance. 

One way of dealing with this is for the function to return a (Float ,Bool) pair. If the 
boolean part is False. this signals that no solution was found; if it is like (2.1, True), 
it indicates that 2.1 is indeed the solution. 

Pattern matching 

Next we turn to look at how functions can be defined over tuple\. Functions over tuples 
are usually defined by pattern matching. Instead of writing a variable for an argument 
of type (Int , Int) , say, a pattern, (x , y) is used. 

addpair : :  (Int,Int) -> Int 
addpair (x,y) = x+y 

On application the components of the pattern are matched by the corresponding cotn- 
ponents of the argument. so that on applying the function addpair to the argument 
( 5 , 8 )  the value 5 is matched to x, and 8 to y, giving the calculation 
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Patterns can contain literals and nested patterns, as in the examples 

addpair (0,~) = y 
addpair (x, y) = x+y 

shift : :  ((Int,Int),Int) -> (Int,(~nt,Int)) 
shift ( ( x , y ) , z )  = (x,(y,z)) 

Functions which pick out particular parts of a tuple can be defined by pattern matching. 
For the ShopItem type, the definitions might be 

name : : ShopItem -> String 
price : :  ShopItem -> Int 

name (n,p) = n 
price (n,p) = p 

Haskell has these selector functions on pairs built in. They are 

fst (x,y) = x 
snd (x,y) = y 

Given these selector functions we can avoid pattern matching if we so wish. For 
instance, we could redefine addpair like this 

addpair : :  (~nt,Int) -> Int 
addpair p = f st p + snd p 

but generally a pattern-matching definition is easier to read than one which usov selector 
functions instead. 

( Examples ) 

3. We tirst introduced the Fibonacci numbers 

in Section 4.4, where we gave an inefficient recursive definition of the sequence. Using 
a tuple we can give an efficient solution to the problem. The next value in the sequence 
is given by adding the previous two, so what we do is to write a function which returns 
two c.ortsecutive \?c~lue.s as a result. In other words we want t o  define a function f ibPair 
so that it has the property that 

fibpair n = (fib n , fib (n+l)) 

then given such a pair, (u ,v) we get the next pair as (v ,u+v), which is exactly the 
effcct of the f ibStep function: 
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fibstep : :  (Int,Int) -> (Int,Int) 
fibstep (u,v) = (v,u+v) 

This gives us the definition of the 'Fibonacci pair' function 

fibpair : :  Int -> (Int,Int) 
fibpair n 

I n==O = (0,l) 
I otherwise = fibstep (fibpair (n-I)) 

and we can define 

fastFib : :  Int -> Int 
fastFib = fst . fibpair 

where recall that ' .' composes the two functions, passing the output o f f  ibPair to the 
input o f f  st, which picks out its fir\t component. 

It is important to distinguish between the functions 

fibTwoStep : :  Int -> Int -> (Int,Int) 
fibTwoStep x y = (y,x+y) 

f ibStep has a single argument which is a pair of numbers, while f ibTwoStep 
has two arguments, each of which is a number. We shall see later that the second 
fi~nction can be used in a more flexible way than the first; for the moment it is 
important to rcalize that there is a difference, and that type errors will result if we 
confuse the two and write 

fibstep 2 3 fibTwoStep ( 2 , 3 )  

We say more about the relationship between these two functions in Section 10.7. 

5.1 Give a definition of the function 

maxOccurs : :  Int -> Int -> (Int,Int) 

which returns the maximum of two integers. together with the number of times 
it occurs. Using this, or otherwise, define the function 

maxThreeOccurs : :  Int -> Int -> Int -> (Int,Int) 
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which does a similar thing for three arguments. 

5.2 Give a definition of a function 

which puts the elements of a triple of three integers into ascending order. You 
might like to use the maxThree, middle  andminThree functions defined earlier. 

5.3 Define the function which tinds where a straight line crosses the x-axis. You 
will need to think about how to supply the information about the straight line to 
thc function. 

5.4 Design test data for the preceding exercises; explain the choices you have made 
in each case. Give a sample evaluation of each of your functions. 

( Our approach to lists 

Lists are a remarkably expressive data type. We can represent a text as a list of lines. 
each of which is a list of words; we can represent a collection of inlimnation, like a 
supermarket bill, as a list of individual items of data; we can represent a collection of 
readings from a measuring device as a list oC F l o a t s ,  to mention but three potential 
applications. 

At the same time, there are many different things which we can do to lists, some of 
which first came out i n  our implementation of P i c t u r e s  by lists in Chapter I. Given 
a list we can split it up according to various criteria, we can sort it, select itcnis from it  
and transform all its members i n  a particular way. We can combine lists by joining thcm 
together or by coalescing corresponding elements. We can combine all the members of 
a list together - by taking their sum, maximum or conjunction, say - among many other 
operations. Haskell contains many built-in list functions and operators in the standard 
prelude P r e l u d e .  h s  and also i n  the library module L i s t  .hs. 

Because Haskell has so many list functions built in, we can approach our discussion 
of lists in two very different ways. We could argue that we should start by defining 
list-manipulating functions for ourselves, and only use library fi~nctions after we have 
understood their definitions.' On the other hand, we could adopt a 'toolkit' approach. 
and simply discuss the library functions and how they can be used. What we aim 
to do here is to combine the two approaches, often introducing and using functions 
before they are defined explicitly, but thcn looking 'under the bonnet' to see how thc\c 
functions are defined and how we can define other functions for ourselves. 

In order fully to appreciate the general operations 011 lists we have to examine how 
gcneric or polymorphic functions are ha~idlcd in Haskcll -which we look at i n  Section 
5.7 - as well as the notion of higher-order functions, see Section 9.2. 

In the remainder of this chapter we introduce the main facilities for list manipulation 
within Haskell; in the chapters which follow we use these prelude functions. as well as 
seeing how to detine these and other functions for ourselves. 

I Thi i  was e s ~ ~ w ~ i : ~ l l y  Ihe approach Laken in rhc lirst edition o l  lhis book. 
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( Lists in Haskell 

A list in Haskell is a collection of items from a given type. For every type t there is a 
Haskell type [tl of lists from t. 

[1,2,3,4,1,41 : : [Intl 
[True] : : [Bool] 

We read these as ' [1,2,3,4,1,4] is a list of Int' and '[True] is a list of Bool'. 
String is a synonym for [Char] and the two lists which follow are the same. 

['a', 'a', 'b'] : : String 
"aab" : : String 

We can build lists of items of any particular type, and so we can have lists of functions 
and lists of lists of numbers, as in 

[fac ,f astFib] : : [ Int -> Int 1 
[~12,21,~2,121,~11 :: C [Intl I 
As can be seen, the list with elements el, e2 to en is written by enclosing the elements 
in square brackets, thus 

As a special case the empty list, [I, which contains no items, is an element of every 
list type. 

The order of the items in a list is significant, as is the number of times that an item 
appears. The three lists of numbers which follow are therefore all different: 

The first two have length 5, while the third has length 4; the first element of the first 
list is I, while the first element of thc second is 2. A set is another kind of collection in 
which the ordering of items and the number of occurrences of a particular item are not 
relevant; we look at sets in Chapter 16. 

There are some other ways of writing down lists of numbers, characters and other 
enumerated types 

[n . . ml is the list [n,n+l, . . . ,ml ; if n exceeds m, the list is empty. 

[2 . . 71 = [2,3,4,5,6,71 
13.1 . .  7.01 = [3.1,4.1,5.1,6.11 
['a' . . 'm'] = "abcdefghijklm" 

[n,p . . ml is the list of numbers whose tirst two elements are n and p and whose 
last is m, with the numbers ascending in steps of p-n. For example, 

[7,6 . . 31 = [7,6,5,4,31 
[0.0,0.3 . .  1.01 = [0.0,0.3,0.6,0.91 
['a', 'c' . . 'n'] = "acegikm" 
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In both cases i t  can be seen that if the step size does not allow us to reach m exactly, 
the last item of the list is the largestlsmallest in the sequence which is lesslgreater 
than or equal to m. It can also be the case that rounding errors on F l o a t  lead to lists 
being different from what is anticipated; an example is given in the exercises. 

I n  the next section we turn to a powerful method of writing down lists which we can 
use to define a variety of list-manipulating functions. 

( Exercises ] 

5.5 What value has the expression [O , 0.1 . . 11 ? Check your answer in Hugs 
and explain any discrepancy there might be between the two. 

5.6 How many items does the list [2,3] contain? How many does [ [2,3] 1 contain? 
What is the type of [ [2,31 I ? 

5.7 What is the result of evaluating [2 . . 21 ? What about [2,7 . . 41 ? Try 
evaluating [2,2 . . 21 ; to interrupt evaluation in Hugs under Windows or 
Unix you need to type C t r l - C .  

(5.5) List comprehensions 

One of the distinct features of a functional language is the list comprehension notation, 
which has no parallels i n  other paradigms. 

In a list comprehension we write down a description of a list in terms of the elements 
of another list. From the first list we generate elements. which we test and transform 
to form elements of the result. We will describe list comprehensions with a single 
generator in this section; Section 17.3 covers the general case. Nevertheless, the simple 
case we look at here is very useful in writing a variety of list-processing programs. We 
introduce the topic by a series of examples. 

1. Suppose that the list ex is [2,4,71, then the list comprehension 

[ 2*n I n<-ex] 

will be 

[4,8,l4l 

as it contains each of the elements n of the list ex, doubled: 2*n. We can read (1) as 
saying 

'Take all 2*n where n comes from ex.' 

where the symbol <- is meant to resemble the mathematical symbol for being an 
element, 'E'. We can write the evaluation of the list comprehension in a table, thus: 
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2. In  a similar way, 

[ isEven n I n<-ex 1 -- [True,True,False] 
if the function isEven has the definition 

isEven : :  I n t  -> Boo1 
isEven n = (n 'mod' 2 == 0) 

In list comprehensions n<-ex is called a generator because it generates the data from 
which the results are built. On the left-hand side of the '<-' there is a variable, n, while 
on the right-hand side we put the list. in this case ex, from which the elements are taken. 

3. We can conlbine a generator with one or more tests, which are Boolean expressions, 
thus: 

[ 2*n I n <- ex , isEven n , n>3 1 (2) 

(2) is paraphrased as 

'Take all 2*n where n comes from ex, n is even and greater than 3.' 

Again, we can write the evaluation in tabular form. 

[ 2*n I n <- [2,4,7] , isEven n , n>3 1 

n = 2 4 7  
isEven n = T T F 

1-03 = F T 
2*n = 8 

The result of (2) will therefore be the list [8l, as 4 is the only even element of [2 $4 $71 
which is greater than 3. 

4. Instead of placing a variable to the left of the arrow '<-', we can put a pattern. For 
instance, 

Here we choose all the pairs in the list pairlist, and add their components to give a 
single number in the result list. For example, 

C m+n I (m,d <- [(2,3),(2,l) ,(7,8)l I 



List comprehensions 81 

giving the result 

5. We can add tests in such a situation, too: 

addOrdPairs : : [ ( I n t  , I n t )  1 -> [ In t ]  
addOrdPairs p a i r L i s t  = [ m+n I (m,n) <- p a i r L i s t  , m<n 1 

so that with the same input example, 

since the second pair in the list, ( 2 , l )  , fails the test. 

6.  Note that we can simply test elements, with the effect that we filter some of the 
elements of a list, according to a Boolean condition. To find all the digits in a string we 
can say 

d i g i t s  : :  S t r i n g  -> S t r i n g  
d i g i t s  s t  = [ ch I ch<-st , i s D i g i t  ch 1 

where the prelude function 

i sD ig i t  : :  Char -> Boo1 

is True on those characters which are digits: ' 0 ' , ' 1 ' up to ' 9 ' . 

7. A list comprehension can form a part of a larger function definition. Suppose that 
we want to check whether all members of a list of integers are even, or all are odd. We 
can write 

We will see list comprehensions in practice in the next section when we examine a 
simple library database. 
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5.8 Give a definition of a function 

which doubles all the elements of a list of integers. 

5.9 Give a definition of a function 

capitalize : :  String -> String 

which converts all small letters i n  a String into capitals, leaving the other 
characters unchanged. How would you modify this function to give 

capitalizeLettem : :  String -> String 

which behaves in the same way except that all non-letters are removed from 
the list? You should check the Char .hs library to see whether it contains any 
functions useful in solving this problem. 

5.10 Define the function 

divisors : : Int -> [Intl 

which returns the list of divisors of a positive integer (and the empty list for other 
inputs). For instance, 

divisors 12 -+ [1,2,3,4,6,12] 

A prime number n is a number whose only divisors are 1 and n. Using divisors 
or otherwise define a function 

isprime : :  Int -> Boo1 

which checks whether or not a positive integer is prime (and returns False if its 
input is not a positive integer). 

5.1 1 Define the function 

matches : :  Int -> [Int] -> [Int] 

which picks out all occurrences of an integer n in a list. For instance, 

matches I [1,2,1,4,5,11 --i [1,1,11 
matches I [2,3,4,61 [I 

Using matches or otherwise, define a function 
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elem : : Int -> [Intl -> Boo1 

which is True if the Int is an element of the list, and False otherwise. For the 
examples above, we have 

elem I [1,2,1,4,5,1] --t True 
elem 1 [2,3,4,6] --t False 

Since elem is a prelude function, you need to hide it as described on page 41 

( A library database 

This section presents a simple model of the loan data kept by a library, and illustrates 
how list comprehensions are used in practice. 

A library uses a database to keep a record of the books on loan to borrowers; we first 
look at which type to use to model the database, and then look at the functions which 
extract information from a database. This is followed by a discussion of how to model 
changes to the database, and we conclude by exploring how the database functions can 
be tested. 

TY pes 
In modelling this situation, we first look at the types of the objects involved. People 
and books are represented by strings 

type Person = String 
type Book = String 

The database can be represented in a number of different ways. Three among a number 
of possibilities are 

We can record each loan as a (Person,Book) pair; 

we could associate with each person the list of books that they have borrowed, using 
a pair (Person, [Book] ), or 

we could record a list of borrowers with each book, thus: ( [Person] ,Book), 

Here we choose to make the database a list of (Person,Book) pairs. If the pair 
("Alice" , "Asterix") is in the list, it means  hat "Alice" has borrowed the book 
called "Asterix". We therefore define 

type Database = [ (Person , Book) 1 

We have chosen this representation because it is simple, and also treats people and 
books in the same way, rather than grouping data in an asymmetrical way. 

An example object of this type is 
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exampleBase :: Database 
exampleBase 
= [ ("Alice" , "Tin t in")  , ("Anna" , " L i t t l e  Women") , 

("Alice" , "Aster ix")  , ("Rory" , "Tint in")  ] 

After defining the types of the objects involved, we consider the functions which work 
over the database. 

Given a person, we want to find the book(s) that he or she has borrowed, if any. 

Given a book, we want to find the borrower(s) of the book, if any. (It is assumed that 
there may be more than one copy of any book.) 

Given a book, we want to find out whether it is borrowed. 

Given a person, we may want to find out the number of books that he or she has 
borrowed. 

Each of these lookup functions will take a Database, and a Person or Book, and return 
the result of the query. Their types will be 

books : : Database -> Person -> [Book] 
borrowers : : Database -> Book -> [Person] 
borrowed : :  Database -> Book -> Boo1 
numBorrowed : :  Database -> Person -> I n t  

Note that borrowers and books return lists; these can contain zero, one or more items, 
and so in particular an empty list can signal that a book has no borrowers, or that a 
person has no books on loan. 

Two other functions need to be defined. We need to be able to model a book being 
loaned to a person and a loaned book being returned. The functions modelling these 
will take a database, plus the loan information, and return a di/]hrent database, which 
is the original with the loan added or removed. These update functions will have type 

makeLoan : : Database -> Person -> Book -> Database 
returnLoan : :  Database -> Person -> Book -> Database 

Defining the lookup functions 

We concentrate on the definition of the function 

books : : Database -> Person -> [Book] 

which forms a model for the other lookup functions. For the exampleBase, we have 

books exarnpleBase "Alice" = [ "Tin t in"  , "Aster ix" 1 
books exampleBase "Rory" = [ "Tin t in"  1 

How are thew foundi? In the "Alice" case we need to run through the list exampleBase 
tinding all the pairs whose first component is "Alice"; for each of these we return the 
second component. As a list comprehension, we have 
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[ book I (person,book) <- exampleBase , person=="Alice" 1 

person = "Alice" "Anna" 
book = "Tintin" "Little Women" 

(person== = T F 
"Alice") 
book = "Tint in" 

We make this into a general function by saying 

books : : Database -> Person -> [Book] 
books dBase findperson 

"Alice" " Ror y " 
I' Asterix" "Tintin" 

T F 

"Asterix" 

(books. I) 

= [ book I (person,book) <- dBase , person==findPerson 1 

Note that in this definition Person is a type while person is a variable of type Person. 
As we said at the start, books forms a model for the other lookup functions, which 

we leave as an exercise. 

Defining the update functions 

The database is modified, or updated, by the functions makeLoan and returnloan. 
Making a loan is done by adding a pair to the database, which can be done simply by 
adding an extra pair to the front of the list of pairs. 

makeLoan : :  Database -> Person -> Book -> Database 
makeLoan dBase pers bk = [ (pers,bk) ] ++ dBase 

We have used the ++ operator here t o  join two lists, namely the one element list 
[ (pers , bk) I and the 'old' database dBase. 

To return a loan, we need to check through the database, and to remove the pair 
(pers,bk). We therefore run through all the pairs i n  the database, and retain those 
which are not equal to (pers , bk) , thus 

returnLoan : :  Database -> Person -> Book -> Database 
returnLoan dBase pers bk 

= [ pair I pair <- dBase , pair /= (pers,bk) ] 

Note that we have used a simple variable pair rather than a pattern to run over the pairs 
in the dBase. This is because we do not need to deal with the components separately: 
all we do is check whether the whole pair is equal to the pair (pers ,bk). On the other 
hand we could use a pattern thus: 

C (p,b) I (p,b) <- dBase , (p,b) /= (pers,bk) I 

and get exactly the same result. 
As we have defined it, the returnLoan function will remove all pairs (pers , bk) 

from the database. We will return to this point in the exercises in Section 9.3. 
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Testing 

A Haskell interpreter acts like a calculator, and this is useful when we wish to test 
functions like those in the library database. Any function can be tested by typing 
expressions to the Hugs prompt. For example, 

makeLoan [I "Alice" "Rotten Romans" 

To test more substantial examples, it is sensible to put test data into a script, so we 
might include the definition of exampleBase as well as various tests 

testl : : Boo1 
testl = borrowed exampleBase "Asterix" 

test2 : :  Database 
test2 = makeLoan exampleBase "Alice" "Rotten Romans" 

and so on. Adding them to the script means that we can repeatedly evaluate them 
without having to type them out in full each time. Another device which can help is 
to use $$, which is short for 'the last exprcssion evaluated'. The following sequence 
makes a loan, then another, then returns the tirst. 

makeLoan exampleBase "Alice" "Rotten Romans" 
makeLoan $$ "Rory" "Godzilla" 
returnLoan $$ "Alice" "Rotten Romans" 

Note: Variables in list comprehensions 

There is an important pitfall to do with the behaviour of variables in list 
comprehensions. The definition (books. 1) of books above might appear to 
be over-complicated. We might imagine that we could say 

books dBase findperson 
= C book I (findPerson,book) <- dBase 1 (books. 2) 

The effect of this is to return all the books borrowed by d l  borrowers, not just the 
particular borrower f indperson. 

The reason for this is that the f indPerson in (f indperson, book) is a new 
variable, and not the variable on the left-hand side of the definition, so in fact 
(books. 2) has the same effect as 

books dBase findperson = C book I (new,book) <- dBase 1 

where it is clear that there is no constraint on the value of new to be equal to 
f indperson. 

f Exercises 1 

5.1 2 Go through the calculation of 
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books exampleBase "Charliett 
books exampleBase "Rory" 

5.1 3 Define the functions borrowers, borrowed and numBorrowed. To define 
numBorrowed you will probably need the length function which returns the 
length of a list. 

5.14 Give calculations of 

returnLoan exampleBase "Alice" "Asterix" 
returnLoan exampleBase "Alice" "Little Women" 

5.1 5 Discuss how you would implement the database functions had you used the repre- 
sentation [ (Person, [Book] I rather than [(Person ,Book) I for the database. 

(5.7) Generic functions: polymorphism 

Before looking in detail at the functions on lists provided in the Haskell prelude and 
library we need to look at the idea of polymorphism, which literally means 'has many 
shapes'. A function is polymorphic if it 'has many types', and this is the case for many 
list-manipulating functions. An example is the length function, which returns the 
length of a list, an Int. This function can be applied to any type of list, so that we can 
say 

length : : [Bool] -> Int 
length : : [ [Char] 1 -> Int 

and so forth. How do we write down a type for length which encapsulates this? We 
say 

length : : [a] -> Int 

where a is a type variable. Any identifier beginning with a small letter can be used as 
a type variable; conventionally, letters from the beginning of the alphabet, a, b, c, . . . 
are used. Just as in the definition 

square x = x*x 

the variable x stands for an arbitrary value. so a type variable stands for an a/-birr-crr;~ 
tvpe, and so we can see all the types like 

[Bool] -> Int [ [Char]] -> Int 

as coming about by replacing the variable a by particular types: here Bool and [Char]. 
Types like [Bool] -> Int are called instances of the type [a] -> Int, and because 
every type for length is an instance of [a] -> Int we call this type the most general 
type for length. 

The type of the function to join together two lists, ++, is 
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The variable a  stands for 'an arbitrary type', but we should be clear that all the a's stand 
for the same type, just as in 

square  x = x*x 

the x's all stand for the same (arbitrary) value. Instances of [a] -> [a] -> [a] will 
include 

but not the type 

This makes sense: we cannot expect to join a list of numbers and a list of Booleans to 
give a string! 

On the other hand, the functions z i p  and unzip convert between pairs of lists and 
lists of pairs, and their types involve two type variables: 

z i p  : :  [a] -> [bl -> [ ( a , b ) l  
unzip : :  [ ( a , b ) l  -> ( [ a ] ,  [b l )  

Now, instances of the type of z i p  include 

[ I n t ]  -> [Bool] -> [ ( I n t  ,Bool) 1  

where a  and b  are replaced by different types ( I n t  and Bool, here). It is, of course, 
possible to replace both variables by the same type, giving 

and thegeneral type [a] -> [a] -> [ ( a , a ) l .  

Types and definitions 

How is a polymorphic function defined? Consider the definition of the identity function, 

which returns its argument unchanged. In the definition there is nothing to constrain 
the type of x - all we know about x is that it is returned directly from the function. We 
know, therefore, that the output type is the same as the input, and so the most general 
type will be 

At work here is the principle that a function's type is as general as possible, consistent 
with the constraints put upon the types by its definition. In the case of the i d  function, 
the only constraint is that the input and output types are the same. 

In a similar way, in defining 
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f s t  (x ,y )  = x 

neither x  nor y  is at all constrained, and so they can come from different types a and b. 

giving the type 

f s t  : :  (a,b) -> a 

A final example is given by 

mystery ( x , y )  = i f  x  t h e n  ' c '  e l s e  ' d '  

Here we see that x  is used as a Boo1 in the i f  x  t h e n  . . . , whercas y  is not used at 
all, and so is not constrained in the definition, giving mystery the type 

(Boo1,a) -> Char 

Wc >hall examine the definitions of many of the prelude functions in Chapter 7. and see 
there that, as outlined above, a function or other object will have as general as possible 
a type, consistent with the constraints put upon the types by its definition. We look i n  
more depth at the mechanics of type checking in Chapter 13. 

Hugs can be used to give the most general type of a function definition, using the 
: type  command. If you have given a type declaration for the function. this can be 
commented out before asking for the type. 

Polymorphism and overloading 

Polymorphism and overloading are both mechanisms by which the same function name 
can be used at different types, but they have an important difference. 

A polymorphic function like f  st has the same definition, namely 

f s t  (x ,y )  = x 

at all types. so that it is the same function at all its instances. 
On the other hand, an overloaded name like == has different definitions over different 

types, so that the same name is being used to mean different but similar functions at 
different types. For example, == over I n t  is built in. whereas over pairs it will be 
defined by 

More details about overloading can be found in Chapter 12. 

( Exercises 1 

5.16 Give the most general types for the functions snd and s i n g  defined by 

snd ( x , y )  = y 
s i n g  x = [XI 
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5.1 7 Explain why 

[[all -> [[all 

is a type for id but why it is not the most general type for this function. 

5.18 Earlier in the chapter we saw the example of 

shift : :  ((Int,Int),Int) -> (Int,(Int,Int)) 
shift ( ( x , y ) , z )  = (x,(y,z)) 

What is the most general type for shift, if the type declaration is omitted'? 

( Haskell list functions in Prelude. hs 

Armed with the insight provided by the previous section wc can look at the descriptions 
of the polymorphic list operations from Prelude. hs given in Figure 5.1. In this table 
we give the name of the function or operator, its type, a brief description of its effcct 
and an example, as in the description of length 

length [a] -> Int The length of the list. 
length "word" --t 4 

As well as the polymorphic functions in Figure 5.1, the standard prelude provides 
various operations over specific types; some of these can be seen in Figure 5.2. The 
types of the functions sum and product, which are overloaded, will be discussed further 
in Chapter 12. 

The importance of types 

The single most useful piece of information about a function is its type, and this is 
particularly true when we look at the polymorphic types of functions in a library like 
Figure 5.1. Suppose we are looking for a function to make a list from a number of 
copies of a single element. It must t,&e the item and a count and give a list, so its type 
will be one of 

Int -> a -> [a] a -> Int -> [a] 

Looking at Figure 5.1 we can quickly locate one function, replicate, which does have 
one of these types and is indeed the function which we seek. If we want a function to 
reverse a list it will have type [a] -> [a] and although there is more than one function 
with this type, the search is very much narrowed by looking at types. 

This insight is not confined to functional languages, but is of particular use when 
a language supports polymorphic or generic functions and operators as we have seen 
here. 
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[a1 -> [a1 -> [a1 

[a] -> I n t  -> a 

concat [ [ a l l  -> [a1 

l eng th  [a] -> I n t  

h e a d , l a s t  [a] -> a 

t a i 1 , i n i t  [a] -> [a] 

r e p l i c a t e  I n t  -> a -> [a] 

t ake  I n t  -> [a] -> [a] 

Add a single element to the fronl 01' a lisl. 

3 :  [2,31 --i [3,2,31 

Join two lists together. 

"Ron"++"aldo" --. "Ronaldo" 

xs  ! ! n returns the nlh element of xs,  slarting 

at the beginning and counling from 0 .  

[14,7,31!  ! I  --t 7 

Concalenale a list of lists into a single list. 

concat [ [2,31 , [I , [411 -.> [2 ,3 ,41 

The length of the list. 

l eng th  "word" --i 4 

The firstllast element of the list. 

head "word" --t ' w '  

l a s t  "word" -A ' d '  

All but the firstllast element of the list. 

t a i l  "word" -a "ord" 

i n i t  "word" --3 "wor" 

Make a list of n copies of the ilem. 

r e p l i c a t e  3 ' c '  --. "ccc" 

Take n elements from the front of a list. 

t ake  3 "Peccary" -i l1Pecl1 

drop I n t  -> [a] -> [a] Drop n elements from the front of a list. 

drop 3 "Peccary" --i "cary"  

s p l i t A t  I n t  -> [a] -> ( [a] , [a] ) Splil a lisl a1 a given position. 

s p l i t A t  3 "Peccary" --. ("Pec","cary")  

r everse  [a1 -> [a1 Reverse the order of the elements. 

r everse  [2 ,1 ,31 --. [3 ,1 ,21 

z i p  [a1 -> [bl-> [ ( a ,  b) 1 Take a pair of lists into a list of pairs. 

z i p  [1,21 [3 ,4 ,51 -.a [ ( 1 , 3 ) ,  (2,411 

unzip [ ( a , b > l  -> ([a] , [bl)  Take a list of pairs into a pair of lists. 

unzip [ ( l , 5 ) ,  (3,611 --t ( [1 ,31 ,  [5,61) 

Figure 5.1 Some polymorphic list operations from Prelude. hs. 
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and [Bool] -> Boo1 

o r  

sum 

The cor~junction of a list of Booleans. 
and [True , F a l s e ]  --. F a l s e  

[Bool] -> Boo1 The dis.junction of a list of Booleans. 
o r  [True , F a l s e ]  - True 

[ I n t ]  -> I n t  The sum of a numeric list. 
[F loa t ]  -> F l o a t  sum [ 2 , 3 , 4 ]  2-i 9 

p roduc t  [ I n t l  -> I n t  The product of a numeric list. 
[F loa t ]  -> F l o a t  p roduc t  [O. 1,O . 4  . . 11 - 0 .028  

Figure 5.2 Some monomorphic list operations from Prelude . h s .  

Further functions 

Wc havc not described all the functions in the prelude for two different reasons. First, 
some of the general functions are higher-order and we postpone discussion of these 
until Chapter 9; secondly, some of the functions, such as z i p 3 ,  are obvious variants 
of things we have discussed here. Similarly, we havc not chosen to enumerate the 
functions in the library L i s t  .hs; readers should consult the library file itself. which 
contains type information and comments about the effects of the functions. 

In the next chapter we explore how to use the prelude functions in making our own 
definitions of functions; before that we discuss strings, an examplc of a list type. 

( The String type 

The S t r i n g  type is a special case of lists, 

t y p e  S t r i n g  = [Char] 

and all the polymorphic prelude functions in Figure 5.1 can be used over strings. I n  
Section 3.5 we showed how to write the special characters such as newline and tab 
using the 'escapes7 ' \n ' and ' \t ' . These characters can form part of strings, as in the 
examples 

"baboon" 
I1 I 1  

I f  we evaluate one of these strings in Hug\, the result is exactly the same as the input. In 
order to resolve the escape characters and to loce the double quotes we have to perl'orm 
an output operation. This is done using the primitive Haskell function 

p u t S t r  : :  S t r i n g  -> I 0  0 
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with the effect of putting the argument string on the screen. Applying putSt r  to the 
strings above gives output as follows: 

baboon 

c a t  
g o r i l l a  
hippo 
ibex 
1 23 456 

Strings can be joined together using ++, so that "catl '++"\n"++"f i sh"  prints as 

c a t  
f i s h  

Note: Names, strings and characters 

It is easy to confuse a, ' a '  and "a". To summarize the diffcrcnce. 

a 

'a' 

is a namc or a variable, if defined it may have any typc 
whatever: 
is a character; 

#I  a I! is a ~tring. which just happens to  consist o f  a single 
character. 

Similarly, there is n difference between 

emu a Haskell name or variable: 
"emu" a string. 

Other functions over qtrings can be found i n  the library S t r i ng .  hs. 

Strings and values 

Built into Haskell are the overloaded functions show and read, which convert from a 
value to  a S t r i n g  and vice versa; for instance. 

show (2+3) - "5" 
show (True I I False)  --, "True" 

In the opposite direction, the function read is used to convert a string to the value i t  
represents, so that 

read "True" - True 
read "3" 3 

In some situations it will not be clear what should be the result type for read - i t  is 
then possible to givc a type to the application, as in 

(read "3") : : I n t  

the result of which will be 3 and its type. I n t .  
A full explanation of the types of read and show can be found in Chapter 12. 
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5.19 Define a function to convert small letters to capitals which returns unchanged 
characters which are not snmll letters. 

5.20 Define a function 

romanDigit : :  Char -> String 

which converts a digit to its repmentation in Roman numerals, so at ' 7 '  it will 
have the value "VII" and so on. 

5.21 Define a function 

onThreeLines : :  String -> String -> String -> String 

which takes three strings and returns a single string which when printed shows 
the three strings on separate lines. 

5.22 Define a function 

onSeparateLines : : [String] -> String 

which takes a list of strings and returns a single string which when printed shows 
the strings on separate lines. 

5.23 Give a function 

duplicate :: String -> Int -> String 

which takes a string and an integer, n. The result is n copies of the string joined 
together. If n is less than or equal to 0, the result should be the empty string, " I 1 ,  

and if n is I, the result will be the string itself. 

5.24 Give a function 

pushRight : :  String -> String 

which takes a string and forms a string of length linelength by putting spaces at 
the front of the  string. If linelength were 12 then pushRight "crocodile" 
would be " crocodile". How would you make linelength a parameter 
of this function? 

5.25 Can you critici~e the way the previous function is specified'? Look for a case in 
which it is not defined what it should do - it is an exceptional case. 

5.26 Define a function 

fibTable : :  Int -> String 
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which produccs a table of Fibonacci numbers. For instance, the effect of p u t S t r  
(f ibTable  6) should be 

n  f i b  n  
0 0 
1 1 
2  1 
3 2  
4 3 
5 5 
6  8 

5.27 Define functions to give more readable output from the database operations of 
Section 5.6. 

( Summary 

This chapter has introduced the structured types of tuples and lists, and explained their 
differences: in a given tuple type, ( t  1 ,  . . . t n )  the elements all have the same form. 
namely (vl , . . . vn) ,  with each component v i  being a member of the corresponding 
type t i .  The list type [tl on the other hand contains elements [el  , . . . , en1 of 
different lengths but in which all the values e i  have the same type t .  

Over tuples we introduced the notion of pattern matching - in which a pattern S L K ~  

as (x , y )  could bc used to stand for an arbitrary member of a pair type - and saw how 
this led to more readable definitions. 

The bulk of the chapter was an account of the fxilities which Haskell provides for 
working with lists. These include 

various ways of writing lists of elements of base type, including ranges like [ 2 , 4 .  . 121 ; 

list comprehensions, in which the members of a list are generated, tested and trans- 
formed from the elements of another list, as exemplified by 

which selects the alphabetic characters from s t r i n g ,  and converts them to upper 
case; 

the functions provided by the standard prelude and the L i s t  . h s  library; 

S t r i n g  as the list type [Char] . 

In order to understand the prelude functions it was necessary to discuss polymorphism, 
by which a function can have 'many types'. Types of functions like this are described 
by using type variables, as in 

r e v e r s e  : : [a1 -> [a1 

which states that r e v e r s e  can be applied to a list of any type ( a  is a type variable). 
returning a member of the same list type. 

In the chapters to come we will use the list functions given here in making our own 
definitions, as well as seeing how the prelude and library functions are themselves 
defined. 
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Programming with lists 

6.1 The Picture example, revisited 

6.2 Extended exercise: positioned pictures 

6.3 Local definitions 

6.4 Extended exercise: supermarket billing 

The purpose of this chapter is  threefold. 

We revisit and extend the Picture example in order to illustrate some of the ideas 
which we introduced in the previous chapter. 

We discuss the mechanism for making definitions local to a function or expression. 
This becomes important when we start to write more substantial programs, as it makes 
them both more readable and potentially more efficient. 

We introduce two extended sets of exercises to stretch the reader rather more than 
the small exercises we have given thus far. The two case studies are 

- an extension of Pictures to give them a position (in space); and 

- a billing program for a supermarket checkout, which has to produce a formatted 
bill from the list of bar codes scanned in at a checkout. 

The chapter following this discusses how we implement the primitive functions over lists 
using recursion; readers may skip forward to this, reading only Sections 6.1 and 6.3 on 
Pictures and local definitions. 

(6.1) The Picture example, revisited 

In this section we revisit the Picture example, first introduced in Chapter I and rc- 
examined in Section 2.5. What we do here is to look at how to implement some o f  the 
operations over the Picture type 
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type Picture = [[Char]] 

Some of the operations are defined as library functions. To flip a picture in a hori~ontal 
mirror, we sinlply have to reverse the order of the lines of the picture: 

flipH : :  Picture -> Picture 
flipH = reverse 

and to place one picture above another it is sufficient to join the two lists of lines 
together: 

above : :  Picture -> Picture -> Picture 
above = (++) 

where we have enclosed the operator ++ in parentheses to make it a (prefix) function. 
How do we flip a picture in a vertical mirror? We have to reverse each of the lines, 

that is we have to transform each member of a list in some way. This is one of the 
features of a list comprehension, so we can say 

flipV : :  Picture -> Picture 
flipV pic 

= [ reverse line I line <- pic ] 

and we can read off from this program its intended effect: 

"reverse every line in the pic" 

This is an example of the general operation of applying a function f to every element 
of a list xs, given by the list comprehension 

We shall see that this operation is itself a higher-order function in Chapter 9 below. 
Next we explore how to place two pictures side by side. What we want to do is to 

join up the corresponding lines of the two pictures, as illustrated on page 14. How can 
we accomplish this? We can see this as like f lipV, in that we want to do something to 
every pair of lines - namely join them with ++ - but we need to associate corresponding 
lines before we do this. That is exactly the purpose of the prelude function zip, which 
takes two lists and pairs corresponding elements, and so we can say 

sideBySide : :  Picture -> Picture -> Picture 
sideBySide picL picR 

= [ lineL ++ lineR I (lineL,lineR) <- zip picL picR ] 

The effect of zip is to chop the list of pairs to the shorter of the two inputs, and so 
sideBySide will clip the bottom lines off whichever picture is the longer; if they arc 
the same length, then there is no clipping. We can also use the higher-order zipwith 
to define sideBySide; we revisit this in Chapter 9. 

In our pictures, white is represented by the dot ' . ' and black by the hash sy~nbol '#'. 

To invert the colour of a single character we define 
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invertchar : :  Char -> Char 
invertchar ch 

= if ch=='.' then ' # '  else I . '  

The characters ' . ' and '#' are swapped by this definition (and any other character is 
transformed into ' . ', too). Now, how do we invert the colours in a whole picture? We 
need to invert each character in a line, using 

invertline : : [Char] -> [Char] 
invertLine line 

= [ invertchar ch I ch <- line 1 

and we want to apply this to all the lines in the picture 

invertcolour : :  Picture -> Picture 
invertcolour pic 

= [ invertLine line I line <- pic 1 

We could if we wish write this as a single definition, thus 

invertcolour : :  Picture -> Picture 
invertcolour pic 

= [ [ invertchar ch 1 ch <- line ] I line <- pic 1 

but our use of the auxiliary function invertLine makes the previous definition more 
readable. 

In the next section we extend our model of pictures to give them a position as well 
as some pictorial content. 

( Exercises 1 
6.1 Detine a function 

superimposechar : :  Char -> Char -> Char 

so that the superimposition of ' . ' with itself gives ' . ' while any other combi- 
nation of characters gives '#'. 

6.2 Define a function 

superlmp0seLine : : [Char] -> [Char] -> [Char] 

which takes two lines - which you can assume are of the same length - and 
superimposes their corresponding characters using superimposechar, so that, 
for example, 

You may want to use zip in your solution 
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6.3 In a similar way to superimposeline, define the function 

superimpose : :  Picture -> Picture -> Picture 

which superimposes two pictures, which you may assume have the same dinien- 
sions. 

6.4 Using the function putStr : : String -> 10 0 and any other functions you 
might need, define the function 

printpicture : :  Picture -> I0 0 

so that the effect ofprintpicture [ " .##. " , " .# .#"  , " . ###I1 , I t####" I 
is that 

is printed at the terminal window. 

6.5 An alternative representation of Picture is the type 

where True and False represent black and white points in a picture. How would 
you have to modify the functions working over Picture to accommodate this 
change'? What are the advantages and disadvantages of the two represcntations'? 

6.6 [Harder] Define a function 

rotate90 : :  Picture -> Picture 

which rotates a picture through 90" clockwise. For instance. the effect of 
rotate90 on the picture in the previous exercise would be to give 

Hint: you need to make a line of the new picture by picking out the i th  elements 
in each of the lines of the original picture, reflected in a hori~ontal mirror. 

6.7 Using rotate90 or otherwise, define a function which rotates a picture through 
90" anticlockwise. 
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6.8 [Harder1 Define the function 

scale : :  Picture -> Int -> Picture 

which scales the input picture by the integer provided as the second argument. 
For instance, if expic is the picture 

then the result of scale exPic 2 should be 

In the case of a zero or negative scale factor, you should return an empty picture. 

(62) Extended exercise: positioned pictures 

The pictures that we have modelled using the type Picture are not anchored at any 
particular point in space: we can think of them concretely as being on pieces of paper 
which can be joined together, superimposed, rotated and so on. 

A different model of pictures gives each picture a Position in space: we can then 
think of moving these pictures, of superin~posing two of these pictures to give another 
picture, and so on. 

Figure 6.1 An example Image 
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Basics 

How can we represent pictures with positions? First we need to think about how we 
model positions on an integer grid. A Position is given by a pair of integers, 

type Position = (Int,Int) 

We will use the term Image for a picture with a position, and so we define 

type Image = (Picture ,Position) 

An example, in which we position the horse with its bottom left-hand corner or 
reference point at position (3 1 ,23), is given in Figure 6.1. 

The remainder of this section is a collection of exercises to write functions which 
manipulate these Images; you can use any of the list functions introduced in the previous 
chapter and also the functions over Picture which we have already defined. 

6.9 Define a function 

makeImage : :  Picture -> Position -> Image 

which makes an Image from a Picture and a Position. 

6.10 Define a function 

changeposition : :  Image -> Position -> Image 

which takes an Image and returns a new Image whose Picture is unchanged 
but whose Posit ion is given by the second argument to changeposit ion. 

6.1 1 Give a definition of the function 

moveImage : :  Image -> Int -> Int -> Image 

so that the effect of moveImage img xMove yMove is to move img by xMove 
in the horizontal (x) direction and by yMove in the vertical (y) direction. 

6.1 2 Define a function 

printImage : :  Image -> I0 0 

whose action is the analogue of printpicture for pictures. 
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Figure 6.2 The geometrical view of f l i p v  and rotate. 

Transformations 

We can extend the transformations over the type P i c tu re  to the Image type, but we 
need to think about the effect of these transformations on the position. One way to lift 
the transformations from pictures to images is simply to say that the pictures stay in the 
same position - we call this the naive view. 

If we think of reflections and rotations going on in space, then the results are lnorc 
likely to be as shown in Figure 6.2, where we see that the position of the resulting image 
has changed. Rotation is about the reference point, and reflection is in the horizontal 
or vertical line through the reference point; in general these operations will change the 
reference point. We call this the geometrical view of the transformations. 

( Exercises > 
6.1 3 Implement for Image the analogues o f f  lipH, f lipV, r o t a t e  and ro ta te90  

under the naive view of how to lift the transformations. 

6.14 Implement for Image the analogues of flipH, f lipV, r o t a t e  and rotate90 
under the geometrical view. 

Superimposition 

When pictures have positions, superimposition can be more complex. Considcr the 
example illustrated in Figure 6.3; here we see one way of superimposing the two images 
is to use P i c tu r e  superimposition on two pictures which have first been 'padded out' 
with white space as shown in the figure. 

Exercises 

6.15 Define functions to 'pad out' a P i c tu re  with an amount of white space, as 
shown in Figure 6.3. 

You will need to think carefully about the intended effect of the functions before 
you start to implement them. You will need to have function parameters for the 
amount of padding to the left, right, bottom and top of the image. 
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Figure 6.3 Superimposing two Images. 

Note, i n  particular, that the Pos i t ion  of an Image might change as a result of 
padding. 

6.16 Using the padding functions, define a superimposition function for the Image 

tY Pe. 

6.17 How would you use Image superimposition to give analogues of above and 
sideBySide for Images? 

(63) Local definitions 

Before going any further, we need to discuss one further aspect of function definitions. 
Each (conditional) equation can be followed by a list of definitions which are local 
to the function or other object being defined. These definitions are written after the 
keyword where; we look first at come examples, before turning to some formalities 
about the 'visibility' of local definitions, calculation and so forth. 

( Examples 

1. A simple example is given by a function which is to return the sum of thc squares 
of two numbers. 

sumsquares : :  I n t  -> I n t  -> I n t  

The result of the function will be the sum of two values, s q N  and sqM, so that 
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The definition of these two values can be done in the where clause which follows the 
equation, thus 

sumsquares n m 
= sqN + sqM 
where 
sqN = n*n 
sqM = m*m 

In such a simple example, it is perhaps hard to see the point of making the local 
definitions, but in practice many situations occur when a local definition or definitions 
make a solution both more readable and more efficient. We look at such an example 
now. 

2. Take the example of the function 

which adds corresponding elements of the two lists, dropping any elements which fail 
to have a 'partner'. For instance, 

This can be defined by analogy with sideBySide in Section 6.1 thus 

addpairwise intListl intList2 
= [ m + n I h,n) <- zip intlistl intList2 ] 

Now suppose that we are asked to make sure that any elements without a partner are 
added to the end of the list. This will be the function 

whose effect on an example will be 

How can we approach this problem'? Using the functions take and drop first introduced 
in Figure 5.1 we are able to split up the argument lists. 

If minLength is the minimum of the two list lengths, then the front part of the result 
is given by 

addpairwise (take minLength intlistl) (take minLength intList2) 

What remains? The remains will be 

drop minLength intListl 
drop minLength intList2 



Local definitions 105 

at least otw of ~ h i c h  will he [I ,  and so we can collect all the elements 'without partners' 
simply by joining these two lists together. The function we want can therefore bc L' 71ven 
by the definition 

addpairwise' i n t L i s t l  i n tL i s t2  
= f r o n t  ++ r e a r  

where 
minLength = min ( length i n t L i s t l )  ( length in tL i s t2 )  
f r o n t  = addpairwise ( take  minLength i n t L i s t l )  

( take minLength in tL i s t2 )  
r e a r  = drop minLength i n t L i s t l  ++ drop minLength in tL i s t2  

Now, we have a gain in efficiency becauce minLength will only be calculated once, 
even though it is used four times in the def nition. We also have a definition which i h  

easier to read: we cee that the result has two parts, f r o n t  and rear ,  and we can read 
their definitions separately. 

We can, in  fact, make a further efficiency gain, by replacing separate calls lo take  
and drop by a single call to sp l i tA t ,  also introduced in Figure 5.1. as in 

addpairwise' i n t L i s t 1  i n t L i s t 2  
= f r o n t  ++ r e a r  

where 
minLength = min ( length i n t L i s t l )  ( length in tL i s t2 )  
f r o n t  = addpairwise f r o n t 1  f ron t2  
r e a r  = r ea r1  ++ rear2  
(f r o n t l ,  r e a r l )  = sp l i tA t  minLength i n t L i s t 1  
( f ron t2 , r ea r2 )  = sp l i tA t  minLength i n t L i s t 2  

In this example we see a third use of a where clause. We can put a pattern - like 
(f r o n t l  , r e a r l )  -on the left-hand side of a definition; the result of this is to associate 
the names f  r o n t l  and r e a r l  with the corresponding components of the expression on 
the right-hand side - in this case the split of the list i n t L i s t l .  

A pattern match of this form is called conformal, as the expression on the right-hand 
side of the definition has to conform to the pattern on the left, otherwise the delinition 
fails. 

Another important point in this example is that the order of different definitions is 
irrelevant. In particular it is possible to use a value before it is defined: the definilions 
of f r o n t  and r e a r  precede those of f r o n t l  and r e a r l  which they use. This is 
equally true for scripts in general, in  which the order of the top-level definitions is 
irrelevant. 

Layout 

In definitions with where clauhcs, the layout is significant. The offside rule is used by 
the system to determine the end of each definition in the where clause. 

The where clause must be found in the definition to which i t  belongs, so that the 
where must occur somewhere to the right of the start of the definition. Inside the 
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where clause, the same rules apply as at the top level: it is therefore important that the 
definitions are aligned vertically -if not, an error will result. Our recommended layout 
is therefore 

f P1 P2 - - - Pk 
I gi = el 
. . .  

I otherwise = er 
where 
VI a1 . . . an = rl 
v2 = 1-2 
. . . . 

The where clause here is attached to the whole of the conditional equation, and so is 
attached to all the clauses of the conditional equation. 

This example also shows that the local definitions can include functions - here vl is 
an example of a local function definition. We have given type declarations for all top- 
level definitions; it is also possible to give type declarations for where-defined objects 
in Haskell. In cases where the type of a locally defined object is not obvious from its 
context, our convention is to include a declaration of its type. 

l e t  expressions 

It is also possible to make definitions local to an expression. For instance, we can write 

let x = 3+2 in x-2 + 2*x - 4 

giving the result 31. If more than one definition is included in one line they need t o  be 
separated by semi-colons, thus: 

let x = 3+2 ; y = 5-1 in x-2 + 2*x - y 

We shall find that we use this form only occasionally. 

Scopes 

A Haskell script consists of a sequence of definitions. The scope of a definition i~ that 
part of the program in which the definition can be used. All definitions at the top-level 
in Haskell have as their scope the whole script that they are defined in: that is, they 
can be used in all the definitions the script contains. In particular they can be used in  
definitions which occur before theirs in the script, as in 

isodd, isEven : :  Int -> Boo1 

isOdd n 
1 n<=O = False 
I otherwise = isEven (n-I) 
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isEven n 
I n<O = False 
I n==O = True 
I otherwise = isodd (n-1) 

Local definitions, given by where clauses, are not intended to be 'visible' in the whole 
of the script, but rather just in the conditional equation in which they appear. The 
same is true of the variables in a function definition: their scope is the whole of the 
conditional equation in which they appear. 

Specifically, in the example which follows, the scope of the detinitions of sqx, sqy 
and sq and of the variables x and y is given by the large box; the smaller box gives the 
scope of the variable z. 

maxsq x y 

= sqx 
otherwise = SqY 

where 
sqx = sq x 

SqY = sq Y 

sq : : Int -> Int 
sq z = z*zl 

In particular it  is important to see that 

the variables appearing on the left-hand side of the function definition - x and y in 
this case - can be used in the local definitions; here they are used in sqx and sqy; 

local definitions can be used before they are defined: sq is used in sqx here; 

local definitions can be used in results and in guards as well as in other local 
definitions. 

It is possible for a script to have two definitions or variables with the same name. In 
the exanlple below, the variable x appears twice. Which definition is in force at each 
point? The mo.rt local is the one which is used. 

maxsq x y 

1 where I 

In the example, we can think of the inner box cuttirzg a Izole in the outer, so that the 
scope of the outer x will exclude the definition of sq. When one definition is contained 
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inside another the best advice is that different variables and names should be used for 
the inner detinitions unless there is a very good reason for using the same name twice. 

Finally note that it is not possible to have multiple definitions of the same namc at 
the same level; one of them needs to be hidden if a clash occurs due to the combination 
of a number of niodules. 

Calculation 

The way in which calculations are written can be extended to deal with where clai~ses. 
The sumsquares function in the previous section gives. for example 

sumsquares 4 3 
= sqN + sqM 

where 
sqN = 4*4 = 16 
sqM = 3*3 = 9 

= 1 6 + 9  
= 25 

The values of the local definitions arc calculated beneath the where if their values are 
needed. All local evaluation below the where is indented. To follow the top-levcl valuc. 
we just have to look a1 the calculation at the left-hand side. 

The vertical lines which appear are used to link the successive steps of a calculation 
when these have intermediale where calculations. The lines can be omitted. 

f Exercises 

6.18 Detine the function 

maxThreeOccurs : : I n t  -> I n t  -> I n t  -> ( ~ n t ,  1n t )  

which returns the maximum of three integers paired with the number of tinies 
it occurs among the three. A natural solution first tinds the maxin~um. and then 
invcstigates how often it occurs among the three. Discuss how you would write 
your so l~~ t ion  if' you were not allowed to use where-definitions. 

6.1 9 Give sample calculations of 

using your definition of maxThreeOccurs from the previous question. 

(64 Extended exercise: supermarket billing 

This collection of exercises looks at supermarket billing' The idea is to use the list- 
nranipulating techniques presented in Chapter 5 .  In particular we will be using list 

I 1 am grateful to Petcr Lindsay et trl .  of the Uepnrtmcnl of Computer Science at thc Univerdy of New 
South Waler. /\u\lr:rli:~. for IIIC inqliration for this example. which was suggested by their lecture notca. 
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comprehensions and also lhe prelude functions mentioned  here. We will a lw expect 
local definitions - as explained in Section 6.3 - to be used when appropriate. 

The problem 

A scanner at a supermarket checkout will produce from a basket of shopping a list of 
bar codes, like 

which has to be converted to a bill 

Haskell S tores  

Dry Sherry,  llt . . . . . . . . . . .  5.40 
Fish Fingers  . . . . . . . . . . . . . .  1.21 
Orange J e l l y  . . . . . . . . . . . . . .  0.56 
Hula Hoops (Giant) . . . . . . . .  1 .33  
Unknown Item . . . . . . . . . . . . . .  0.00 
Dry Sherry,  llt . . . . . . . . . . .  5.40 

Tota l  . . . . . . . . . . . . . . . . . . . .  13.90 

We havc to decide first how to model the objects involved. Bar ccnlc.3 and prices (in 
pence) can be modelled by integers; names of goods by strings. Wc say 111crcti)rc that 

type Name = S t r i n g  
type P r i ce  = I n t  
type BarCode = I n t  

The conversion will be based on a database which links bar codes, names and prices. 
As in the library. we use a list to model the relationship. 

type Database = [ (Barcode ,Name ,P r i ce )  1 

The example database we use is 

codeIndex : : Database 
codeIndex = [ (4719, "Fish  Fingers" , 1211, 

(5643, "Nappies" , 1010), 
(3814, "Orange J e l l y " ,  561, 
(1111, "Hula Hoops", 211, 
(1112, "Hula Hoops (Giant) " , 1331, 
(1234, "Dry Sherry,  l l t " ,  54011 

The ob.ject of the script will be to convert a list of bar codes into a list of (Name ,Pr ice)  
pairs; this then has to be converted into a string for printing as above. We make the 
type definitions 

type TillType = [Barcode] 
type BillType = [(Name,Price)] 
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and then we can say that the functions we wish to define are 

makeBill : :  TillType -> BillType 

which takes a list of bar codes to a list of namelprice pairs, 

formatBill : :  BillType -> String 

which takes a list of namelprice pairs into a formatted bill, and 

produceBill : :  TillType -> String 

which will combine the effects of makeBill and f ormatBill, thus 

The length of a line in the bill is decided to be 30. This is made a constant, thus 

lineLength : :  Int 
1ineLength = 30 

Making lineLength a constant in this way means that to change the length of a line in 
the bill, only one definition needs to be altered; if 30 were used in each of the formatting 
functions, then each would have to be modified on changing the line length. The rest 
of the script is developed through the sequences of exercises which follow. 

Formatting the bill 

First we develop the f ormatBill function from the bottom up: we design functions 
to format prices, lines, and the total, and using these we finally build the f ormatBill 
function itself. 

f Exercises 1 

6.20 Given a number of pence, 1023 say, the pounds and pence parts are given by 
1023 'div' 100 and 1023 'mod' 100. Using this fact, and the show function, 
define a function 

formatpence : :  Price -> String 

so that, for example, f ormatpence 1023 = l1 10.23"; you need t o  be careful 
about cases like "12.02". 

6.21 Using the f ormatpence function, define a function 

formatLine : :  (Name,Price) -> String 

which formats a line of a bill, thus 

f ormatLine ("Dry Sherry, llt" ,540) 
= "Dry Sherry, llt . . . . . . . . . . .  5.4O\nU 



Extended exercise: supermarket billing 1 1  1 

Recall that I \n I is the newline character, that ++ can be used to join two strings 
together, and that length will give the length of a string. You might also find 
the replicate function useful. 

6.22 Using the f ormatLine function, define 

formatLines : : [ (Name,Price) 1 -> String 

which applies formatLine to each (Name,Price) pair, and joins the results 
together. 

6.23 Detine a function 

makeTotal : : BillType -> Price 

which takes a list of (Name, Price) pairs, and gives the total of the prices. For 
instance, 

6.24 Define the function 

formatTota1 : :  Price -> String 

so that, for example, 

6.25 Using the functions f ormatlines, makeTota1 and f ormatTota1, define 

formatBill : : BillType -> String 

so that on the input 

[("Dry Sherry, llt",540),("Fish Fingers",l21), 
("Orange Jelly",56),("Hula Hoops (Giant)",l33), 
("Unknown Item" ,O) , ("Dry Sherry, llt" ,540)l 

the example bill at the start of the section is produced. 

Making the bill: bar codes into names and prices 

Now we have to look at the database functions which accomplish the conversion of bar 
codes into names and prices. 
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6.26 Define a fi11iction 

look : :  Database -> BarCode -> (Name,Price) 

which returns the (Name,Price) pair corresponding to the BarCode i n  the 
Database. If the BarCode does not appear in the database, then the pair 
("Unknown Item", 0) should be the result. 

Hint: using the ideas of the library database you might find that you are I-eturning 
a list of (Name ,Price) rather than a single value. You can assume that each bar 
code occurs only once in the database, so you can extract this value by taking 
the head of such a list if'it is IIOII-rlnpty. 

6.27 Define a function 

lookup : :  BarCode -> (Name,Price) 

which uses look to look up an iteni in the particular database codeIndex. This 
function clashes with a function lookup defined in the prelude: consult page 4 1 
for details of how to handle this. 

6.28 Define the function 

which applies lookup to every iteni in the input lict. For instance, when 
applied to [1234,4719,3814,1112,1113,1234] the result will bc the list of 
(Name, Price) pairs given in Exercise 6.25. Note that 11 13 does not appear in 
codeIndex and $0 is converted to ("Unknown Item", 0 ) .  

This completes the definition of makeBill and together with f ormatBill gives 
the conversion program. 

Extending the problem 

We conclude with some further exercises. 

6.29 You are asked to add a discount for multiple buys of sherry: for every two bottles 
bought, there is a 1.00 discount. From the example list of bar codes 

the bill should be as illustrated in Figure 6.4. Yo11 will probably find it helpful 
to deti ne functions 
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Haskell Stores 

Dry Sherry, llt . . . . . . . . . . .  5.40 
. . . . . . . . . . . . . .  Fish Fingers 1.21 
. . . . . . . . . . . . . .  Orange Jelly 0.56 

Hula Hoops (Giant) . . . . . . . .  1.33 
. . . . . . . . . . . . . .  Unknown Item 0.00 

Dry Sherry, llt . . . . . . . . . . .  5.40 

. . . . . . . . . . . . . . . . . .  Discount 1.00 

Total . . . . . . . . . . . . . . . . . . . .  12.90 

Figure 6.4 Bills with 'multibuy' discounts. 

makeDiscount : :  BillType -> Int 
formatDiscount : : Int -> String 

which you can use in a redefined 

formatBill : :  BillType -> String 

6.30 Design functions which update the database of bar codes. You will need a 
function to add a Barcode and a (Name, Price) pair to the Database, while at 
the same time removing any other reference to the bar code already present in 
the database. 

6.31 Re-design your system so that bar codes which do not appear in the database 
give no entry in the final bill. There are (at least) two ways of doing this. 

Keep the function makeBill as it is, and modify the formatting functions, or 

modify the makeBill function to remove the 'unknown item7 pairs. 

6.32 [Project] Design a script of functions to analyse collections of sales. Given a list 
of TillType, produce a table showing the total sales of each item. You might 
also analyse the bills to see which pairs of i t e m  are bought together; this could 
assist with placing items in the supermarket. 

( Summary 

This chapter has introduced the idea of local definitions, most importantly the where 
clauses attached to the conditional equations in function definitions. We illustrated the 
way in which these definitions are used to make definitions more readable, and also to 
avoid re-computation of results, like the minLength in the example addpairwise'. 
We gave a general template for the layout of function definitions including guards and 
where clauses. 
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We also saw how the combination of list comprehensions and the built-in functions 
from the prelude give us a powerful repertoire of tools with which to build definitions 
over particular list types. This was evident in the P i c t u r e  example as well as in the 
case studies, and these also gave an opportunity to see the way in which a larger program 
was built as a collection of related functions. 
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Defining functions over 
l ists 

7.1 Pattern matching revisited 

7.2 Lists and list patterns 

7.3 Primitive recursion over lists 

7.4 Finding primitive recursive definitions 

7.5 General recursions over lists 

7.6 Example: text processing 

We have already seen how to define a variety of functions over lists using a combination of 
list comprehensions and the built-in list processing functions in the Haskell prelude. This 
chapter looks 'under the bonnet' and explains how functions over lists can be defined 
by means of recursion. This will allow us to define the prelude functions we have already 
been using, as well as letting us look at a wider class of applications, including sorting 
and a case study of text processing. 

The chapter begins with a summary of the mechanism of pattern matching, and 
continues with a justification and explanation of recursion echoing the discussion in 
Chapter 4. We then explore a variety of examples both of functions defined by primitive 
recursion and of more general recursive functions, and conclude with the case study 
mentioned earlier. 

(71 Pattern matching revisited 

We have seen that function definitions take the form of  conditional equations like 

mystery : :  I n t  -> I n t  -> I n t  
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mystery x y 
I x==o = Y 
I otherwise = x 

where a choice of two alternatives is made by guards; we can rewrite this into two 
equations, thus 

mystery 0 y = y 
mystery x y = x 

(mystery. I)  
(mystery.2) 

where we distinguish between the two cases by using a pattern - here the literal 0 - 
instead of a variable. Just as for guards, the equations are applied sequentially, and so 
(mystery -2)  will only be used in cases that (mystery. I) does not apply. 

Another aspect of this delinition is that y is not used on the right-hand side of 
(mystery. 2). Because of this we do not need to give a name to the second argument 
in this case, and so we can replace the variable y with the wildcard '-' which matches 
anything, thus 

mystery 0 y = y 
mystery x - = x 

We have therefore seen that pattern matching can be used for distinguishing between 
certain sorts of cases in function definitions. We have also seen pattern matching used 
to name the components of tuples, as in 

joinstrings : :  (String,String) -> String 
joinstrings (stl,st2) = st1 ++ "\tU ++ st2 

where the variables st1 and st2 will be matched with the components of any argument. 
In working with lists the two aspects of distinguishing cases and extracting compo- 

nents are uscd together, as we see in the next section. 

Summarizing patterns 

A pattern can be one of a number of Lhings: 

A literal value such as 24, ' f  ' or True; an argument matches thih pattern if it is 
equal to the value. 

A variable such as x or 1ongVariableName; any argument value will match this. 

A wildcard '-'; any argument value will match this. 

A tuple pattern (pi ,p2, . . . ,pn). To match this, an argument must be of the 
form (vl ,v2, . . . , vn ) ,  and each vk must match pk. 

A constructor applied to a number of patterns; we will examine this case in the 
next section and in Chapter 14 below. 

In a function definition we have a number of conditional equations, each of which 
will have a left-hand side in which the function is applied to a number of patterns. When 
the function is applied we try to match the arguments with the patterns in sequence, and 
we use the first equation which applies; pattern matching in Haskell is Lhus sequential, 
in a similar way to the conditions expressed by guards. 
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(72) Lists and list patterns 

Every list is either empty, [ I ,  or is non-empty. In the latter case - take the example 
[4 ,2 ,3 ]  - then it can be written in the form x : xs ,  where x is the first item in the list 
and x s  is the remainder of the list; in our example, we have 4 :  [2 ,3] .  We call 4  the 
head of the list and [2 ,3]  the tail. 

What is more, every list can be built up from the empty list by repeatedly applying 
' : ', and indeed Haskell lists are represented in that way internally. Our example list 
can be thought of as being built step-by-step from the right, thus 

and we can write the list using ' : ' repeatedly thus: 

4 : 2 : 3 :  [I 

Note that here we use the fact that ' : ' is right associative, so that for any values of x, 
y and z s ,  

It is also not hard to see that 4  : 2 : 3 : [I is the orlly way that [4 ,2 ,3 ]  can be built using 
' : '. The operator ' : ', of type 

a  -> [a] -> [a] 

therefore has a special role to play for lists: it is a constructor for lists, since every list 
can be built up in a unique way from [I and ' : '. For historical reasons we sometimes 
call this constructor cons. Not all functions are constructors: ++ can be used to build 
lists. but this construction will not be unique, since, for example 

Pattern-matching definitions 

If we want to make a definition covering all cases of lists we can write 

fun  x s  = . . . .  

but more often than not we will want to distinguish between empty and non-empty 
cases, as in the prelude functions 

head : :  [a] -> a 
head (x: - )  = x 

t a i l  : : [a] -> [a] 
t a i l  ( - : x s )  = x s  

nu1 1 : : [a] -> Boo1 
n u l l  [I = True 
n u l l  (- :  -) = F a l s e  
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where head takes the first item in a non-empty list, t a i l  takes all but the head of a 
non-empty list and n u l l  checks whether or not a list is empty. 

In the definition of n u l l  the pattern (- : -) will match any non-empty list, but it gives 
no names for the head and tail; when we need to name one of these, as in t a i l ,  then a 
different pattern, (- : xs)  , is used. 

It has become an informal convention in the Haskell community to write variables 
over lists i n  the form xs, y s  (pronounced 'exes', 'whyes') and so on, with variables 
x, y, . . .ranging over their elements. We will - when using short variable names - 
endeavour to stick to that convention. 

We can now explain the final case of pattern matching. A constructor pattern over 
lists will either be [I or will have the form (p:ps) where p  and ps are themselves 
patterns. 

A list matches [I exactly when it is empty. 

A list will match the pattern (p:ps)  if it is non-empty, and moreover if its head 
matches the pattern p and its tail the pattern ps. 

In the case of the pattern (x: xs ) ,  it is sufficient for the argument to be non-empty to 
match the pattern; the head of the argument is matched with x  and its tail with xs. 

A pattern involving a constructor like ' : ' will always be parenthesized, since function 
application binds more tightly than any other operation. 

The case construction 

So far we have seen how to perform a pattern match over the arguments of functions; 
sometimes we might want to pattern match over other values. This can be done by a 
case expression, which we introduce by means of an example. 

Suppose we are asked to find the first digit in the string st, returning '\O' in case 
no digit is found. We can use the function d i g i t s  of Section 5.5 to give us the list of 
all the digits in the string: d i g i t s  st. If this is not emply, that is if it matches (x:  J, 
we want to return its first element, x; if it is empty, we return ' \ O ' .  

We therefore want to pattern match over the value of ( d i g i t s  s t )  and for this we 
use a case expression as follows: 

f i r s t D i g i t  : :  S t r i n g  -> Char 

f i r s t D i g i t  s t  
= case ( d i g i t s  s t )  of 

[I ->'\O' 
(x : J  -> X 

A case expression has the effect of distinguishing between various alternatives - here 
those of an empty and a non-empty list - and of extracting parts of a value, by associating 
values with the variables in a pattern. In the case of matching e with (x : -) we associate 
the head of e  with x; as we have used a wild-card pattern in (x: J, the tail of e is not 
associated with any variable. 

In general, a case expression has the form 
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case e of 

p1 -> e l  
P2 -> e2 
. . .  
Pk -> ek 

where e is an expression to be matched in turn against the patterns p l ,  p2, . . . , pk. If 
p i  is the first pattern which e matches, the result is e i  where the variables in p i  are 
associated with the corresponding parts of e .  

7.1 Give a pattern-matching definition of a function which returns the first integer 
in a list plus one, if there is one, and returns zero otherwise. 

7.2 Give a pattern-matching definition of a function which adds together the first 
two integers in a list, if a list contains at least two elements; returns the head 
element if the list contains one, and returns zero otherwise. 

7.3 Give solutions to the previous two questions without using pattern matching. 

(73) Primitive recursion over lists 

Suppose we are to tind the sum of a list of integers. Just as we described calculating 
factorial in Section 4.2, we can think of laying out the values of sum in a table thus: 

sum [I = 0 

. . . . sum [51 = 5 . . . . 

. . . . sum [7,51 = 12 . . . . 

. . . . sum [2,7,51 = 14 . . . .  

. . . .  sum [3,2,7,51 = I 7  . . . .  

and just as in the caw of factorial. we can describe the table by describing the first line 
and how to go from one Iine to the next, as follows: 

sum : : [ In t l  -> I n t  
sum [I = 0 
sum (x:xs) = x + sum xs 

(sum. 1) 
(sum. 2 )  

This gives a definition of sum by primitive recursion over lists. In such a detinition 
we give 

a starting point: the value of sum at [ I ,  and 

a way of going from the value of sum at a particular point - sum xs - to the value of 
sum on the next line, namely sum (x : xs) . 
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There is also a calculational explanation for why this form of recursion works; again, 
this is just like the case put forward in Section 4.2. Consider the calculation of sum 
[3 ,2 ,7 ,5] .  Using the equation (sum. 2) repeatedly we have 

sum [3,2,7,51 
3 + sum C2,7,51 - 3 + (2 + sum [7,51) 

-- 3 + (2 + (7 + sum [51)> 
^Vf 3 + (2 + (7 + (5  + s u m  [ I ) ) )  

and now we can use the equation (sum. 1) and integer arithmetic to give - 3 + (2 + (7 + (5  + 0))) 
-- 17 

We can see that the recursion used to define sum will give an answer on any finite list 
since each recursion step takes us closer to the 'base case' where sum is applied to [I.  

In the next section we look at a collection of examples of definitions by primitive 
recursion. 

7.4 Define the function 

product : : [ In t l  -> I n t  

which gives the product of a list of integers, and returns 1 for an empty list; why 
is this particular value chosen as the result for the empty list? 

7.5 Define the functions 

and, o r  : : [Boo11 -> Boo1 

which give the conjunction and disjunction of a list of Booleans. For instance, 

and [False,  True] = False  
o r  [False,  True] = True 

On an empty list and gives True and o r  gives False;  explain the reason for 
these choices. 

( Finding primitive recursive definitions 

We saw in the last section how primitive recursion over lists works, by means of two 
explanations: tabulating a function and calculating the result of a function. In this 
section we present a series of examples of primitive recursive definitions over lists. A 
template for a primitive recursive definition over lists is 

fun [I - - . . . . 
fun (x:xs)  = . . . .  x . . . .  xs  . . . .  fun xs . . . .  
The crucial question to ask in trying to find a primitive recursive definition is: 
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What if we were given the value f u n  xs.  How could we define f u n  (x :  x s )  from 
it? 

We explore how definitions are found through n series of examples. 

1. By analogy with sum, rnany other functions can be defined by 'folding in' an 
operator. The prelude functions product ,  and and o r  are examples; here we look at 
how to define the prelude function conca t ,  

conca t  : : [ [a] ] -> [a] ( conca t .  0) 

with the effect that 

concat  [ e l ,  e 2 ,  . . . , en] = e l++e2++.  . .++en 

We can begin our definition 

concat  [I = [I 
concat  ( x : x s )  = . . . . 

How do we find concat  ( x : x s )  if we are given conca t  x s ?  Look at the example 
where (x :  x s )  is the list [el  , e 2 ,  . . . , en ] .  The value of conca t  x s  is going to be 

and the result we want is e l++e2++.  . .++en, and so we simply have to join the list x  
to the front of the joined lists conca t  xs ,  giving the definition 

c  onc a t  [I = [I 
conca t  ( x : x s )  = x ++ conca t  x s  

Looking at the definition here we can see that (x :  xs )  is a list of lists, since its element 
is joined to another list in ( c o n c a t .  2 ) ;  the type of x  will be the type of the result. 
Putting these facts together we can conclude that the type of the input is [ [a] I and the 
type of the output is [a] ; this agrees with the type given in ( conca t .  0 ) .  

2. How is the function ++ which we used in the previous example itself defined'? Can 
we use primitive recursion? One strategy we can use is to look at examples, so, taking 
2  for x  and [3,4] for x s  we have 

so we get [2 ,3 ,4 ]  ++ [9,81 by putting 2  on the front of [3,41 ++ [9,81. In the 
case that the first list is empty, 

These examples suggest a definition 
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Note that the type of ++ allows lists of arbitrary type to be joined, as long as the two 
lists are of the same type. 

3. A third example is to check whether an In t  is an element of an In t  list, 

elem : : In t  -> [ ~ n t ]  -> Boo1 

Clearly, no value is an element of [ I ,  but under what circumstances is x an element of 
(y : ys) ? If you are not sure about how to answer this question, now is the point to stop 
and look at an example or two. 

Returning to the question, since (y: ys) is built by adding y to the front of ys, x can 
be an element of y: ys either 

by being equal to y, or 

by being an element of ys. 

It is this second case where we use the value elem x ys, and we make the following 
primitive recursive definition of elem. 

elem x [I = False 
elem x (y: ys) = (x==y) I I (elem x ys) 

elem x (x: ys) = True 
elem x (y:ys) = elem x ys 

in which the equality check is done by repeating the variable x on the left-hand 
side of (elem. 3). Unfortunately, repeated variables like this are not permitted in 
Haskell patterns. 

i 

4. Suppose we wish to double every element of an integer list 

The neatest solution is to use a list comprehension 

but we could ask whether this can be done 'by hand', as it were, using primitive 
recursion. Looking at some examples, we expect that 
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so that to double all the elements of (x : xs) we need to double all the elements of xs. 
and to stick 2*x on the front. Formally, we have 

5. Suppose that we want to select the even elements from an integer list. 

Using a list comprehension, we can say 

but can we give a primitive recursive definition of this function? For an empty list, 
there are no elements to select from, 

but what happens in the case of a non-empty list'? Consider the examples 

It is thus a matter of taking selectEven xs, and adding x to (the front of) this only 
when x is even. We therefore define 

selectEven (x:xs) 
I isEven x = x : selectEven xs 
1 otherwise = selectEven xs 

6 .  As a find example, supposc that we want to sort a list of numbers into ascending 
order. One way to sort the list 

is to  sort the tail [3,9,21 to give 

It is then a matter of inserting the head, 7, in the right place in this list. to give the result 

This gives the definition of iSort - the 'i' is for insertion sort. 

iSort : : [Int] -> [Int] 

isort [I = [I 
iSort (x:xs) = ins x (iSort xs) 
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This is a typical example of top-down definition, first discussed in Section 4.1. We 
have defined i S o r t  assuming we can define ins .  The development of the program has 
been in two separate parts, since we have a definition of the function i S o r t  using a 
simpler function i n s ,  together with a definition of the function i n s  itself. Solving each 
sub-problem is sinlpler than solving the original problem itself. 

Now we have to define the function 

i n s  : : I n t  -> [ I n t l  -> [Inti 

To get some guidance about how i n s  should behave, we look at some examples. 
Inserting 7 into [2,3,91 was given above, while inserting 1 into the same list gives 

Looking at these two examples we see that 

in the case of 1, if the item to be inserted is no larger than the head of the li\t, we 
cons i t  to the front oi'the list; 

In the case of 7, if the item is greater than the head, we insert it in the tail of the list, 
and cons the head to the result. thus: 

The function can now be defined. including the case that the list is empty. 

i n s  x  C1 = [XI 
i n s  x (y:ys)  

1 x < = y  = x: (y:ys)  
1 otherwise  = y  : i n s  x  y s  

( i n s .  1)  

( i n s .  2) 
( i n s .  3)  

We now show the functions in action, in the calculation of S o r t  [3,9,21: 

i S o r t  [3 ,9 ,2]  - i n s  3  ( i S o r t  D , 2 I  ) - i n s  3  ( i n s  9  ( i S o r t  [21)) - i n s  3  ( i n s  9  ( i n s  2 ( i S o r t  [I 1) - i n s  3  ( i n s  9 ( i n s  2 [I 1) 
--. i n s  3  ( i n s  9  C21) 
-.A i n s  3  (2  : i n s  9  [I ) 
- i n s  3  [2,9] 
1-. 2  : i n s  3  C91 
--t 2  : [3,91 - C2,3,91 

by ( i S o r t  . 2 )  
by ( i S o r t  .2 )  
by ( i s o r t  . 2 )  
by ( S o r t .  1) 

by ( i n s .  1 )  
by ( i n s .  3 )  
by ( i n s .  1)  
by ( i n s .  3)  
by (ins.2) 

Developing this function has shown the advantage of looking at examples while trying 
to define a function; the examples can give a guide about how the definition might break 
into cases, or the pattern of the recursion. We also saw how using top-down design can 
break a larger problem into smaller problems which are easier to solve. 

In the next section we look at definitions by more general forms of recursion. 
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7.6 Using primitive recursion over lists. define a function 

elemNum : : I n t  -> [ In t ]  -> I n t  

so that elemNum x xs returns the number of times that x occurs in the list xs. 

Can you define elemNum without using primitive recursion, using list compre- 
hensions and built-in functions instead? 

7.7 Define a function 

unique : : [ In t l  -> [Inti 

so that unique xs returns the list of elements of xs  which occur cxactly once. 
For example, unique [4 ,2 ,1 ,3 ,2 ,3]  is [ 4 , l ] .  You might like to think of 
two solutions to this problem: one using list comprehensions and the other not. 

7.8 Give primitive recursive definitions of the prelude functions reverse  andunzip .  

7.9 Can you use the iSo r t  function to find the minimum and niaximun~ elements 
of a list of numbers'! How would you find these elements without using iSor ta?  

7.1 0 Design test data for the i n s  function. Your data should address different possible 
points of insertion, and also look at any exceptional cases. 

7.1 1 By modifying the definition of the i n s  function we can change the behaviour of 
the sort, iSo r t .  Redefine i n s  in two difrerent ways so that 

the list is sorted in descending order; 
duplicates are removed from the list. For example. 

iSo r t  [2,1,4,1,23 = [1,2,4] 

under this definition. 

7.12 Design test data for the duplicate-removing version of iSor t ,  explaining your 
choices. 

7.13 By modifying the definition of the ins and iSo r t  f~unctions. define a function 
to sort lists of pairs of numbers. The ordering should be lexicographic -- the 
dictionary ordering. This ordering first looks at the first halves of the pairs: only 
if these values are equal are the second halves compared. For instance, (2,731 
is s n i d e r  than (3,0) ,  and this is smaller than ( 3 , 2 ) .  

(75 General recursions over lists 

Just as we argued in Section 4.4, a recursive definition of a function need not always 
use the value of the function on the tail; any recursive call to a value on a .siti~pler- list 
will be legitimate, and so a number of different patterns of recursion are available for 
finding function definitions over lists. In trying 10 use recursion over lists to define a 
function we need to pose the question: 
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In defining f (x :  xs) which values o f f  ys  would help me to work out the answer? 

1. It is possible to use recursion over two arguments simultaneously, an example being 
the definition of the prelude function z ip .  Recall that here we turn two lists into a list 
of pairs, 

z i p  : : [a1 -> [bl -> [ ( a ,b> l  

with the ex;~niplc.~ 

If each of the lists is non-empty, we form a pair from their heads, and then zip their 
tails, giving 

z i p  (x:xs) (y:ys)  = (x,y)  : z i p  x s  ys  ( z ip .  1) 

but in all other cases - that is when at least one of the lists is empty -the result is empty: 

z i p  - - = [I ( z i p .  2) 

Note that we rely on the sequential nature of pattern matching here; we can give the 
patterns for ( z i p .  2) explicitly if we wish, thus: 

z i p  (x:xs) (y:ys) = (x,y)  : z i p  x s  ys 
z i p  (x:xs) [I = [I 
z i p  [I zs = [I 

and in the second definition we see the lhree separate cases given in three separate 
equations. Using the original definilion, an example calculation gives 

z i p  [1,5] [ ' c '  , 'd '  , ' e ' ]  
-- ( 1 , ' ~ ' )  : z i p  [51 [ ' d ' , ' e ' ]  
-- ( 1 , ' ~ ' )  : (5,'d') : z i p  [I [ ' e ' l  - ( 1 , ' ~ ' )  : ( 5 , ' d ' )  : [I 
-- ( 1 , ' ~ ' )  : [ ( 5 , ' d ' )  ] - [ ( 1 , ' ~ ' )  , ( 5 , ' d ' )  I  

by (z ip .  1 )  
by ( z ip .1 )  
by ( z i p .  2) 

by defn of : 
by defn of : 

Note that we have used the fact that ':' is right associative in writing this calculation. 

2. The function t ake  is used to take a given number of values from a list. For instance, 

t ake  5  "Hot Rats" = "Hot R" 
take 15 "Hot Rats" = "Hot Rats" 

In this example we do recursion over an I n t  and a list 

t ake  : :  I n t  -> [a] -> [a] 
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There are some special cases, when the I n t  is zero, or the list is empty 

take 0 - = [I 
t ake  - [I = [I 

( t ake .  1) 
( take .  2) 

What about the general case, when the list is non-empty and the I n t  greater than zero'? 
We take n-1 elements from the tail of the list, and place the head on the front, thus: 

t ake  n (x:xs)  
1 n>O = x : t ake  (n-1) xs  ( t ake .  3) 

and in the other cases we give an error 

take - - = e r r o r  "Pre ludeLis t . t ake :  negat ive argument" 
( t ake .  4) 

3. As a final example, we look at another method for sorting lists (of integers). The 
quicksort algorithm works by generating two recursive calls to sort. Suppose we are 
to sort the list 

we can take off the head, 4, and then split the result [2 ,7 ,1 ,4 ,5 ,6]  into two parts: 

The first contains the elements no larger than 4, the second those exceeding 4. We sorl 
these two, giving 

and then we get an ordered version of the original list thus 

We can write this now 

It is striking to see how close this program is to our informal description of the algorithm. 
and this expressiveness is one of the important advantages of a functional approach. 

We can see that this recursion will give an answer for every finite list, since i n  the 
recursive calls we apply qSort to two suhlists of xs, which rue necessarily smaller than 
(x:xs) .  

In Chapter 19 we talk about the efficiency of various algorithms, and show that in 
general quicksort will be more efficient than insertion sort. In the following section we 
look at a larger example of definitions which use general forms of recursion. 
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Exercises 

7.14 Using the definition of take as a guide, define the prelude functions drop and 
splitAt. 

7.15 What is the value of take (-3) [I according to the definition of take given 
earlier'? How would you modify the definition so that there is an error reported 
whenever the Int argument is negative'! 

7.16 How would you define a function zip3 which z.ips together three lists? Try to 
write a recursive definition and also one which u.ve.r zip instead; what are the 
advantages and disadvantages of the two different definitions'? 

7.1 7 How would you modify qSort to sort a list into descending order'? How would 
you ensure that qSort removed duplicate elements? 

7.18 One list is a suhlist of another if the elements of the firqt occur in the second, in 
the same order. For instance, "ship" is a sublist of "Fish & Chips", but not 
of "hippies". 

A list is a suhsequence of another if it occurs as a sequence of elements ~ w x t  

to euch other. For example. "Chip" is a subsequence of "Fish & Chips", but 
not of "Chin up". 

Define functions which decide whether one string is a sublist or n subcequence 
of another string. 

Example: text processing 

In word processing systems i t  is customary for lines to be tilled and broken automatically. 
t o  enhance the appearance of the text. This book is no exception. Input of the form 

The heat bloomed in December 
as the carnival season 

kicked into gear. 
Nearly helpless with sun and glare, I avoided Rio's brilliant 
sidewalks 
and glittering beaches, 

panting in dark corners 
and waiting out the inverted southern summer. 

would be transformed by filling to 

The heat bloomed in December as the 
carnival season kicked into gear. 
Nearly helpless with sun and glare, 
I avoided Rio's brilliant sidewalks 
and glittering beaches, panting in 
dark corners and waiting out the 
inverted southern summer. 
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To align the right-hand margin, the text is justified by adding extra inter-word spaces 
on all lines but the last: 

The heat bloomed in December as the 
carnival season kicked into gear. 
Nearly helpless with sun and glare, 
I avoided Rio's brilliant sidewalks 
and glittering beaches, panting in 
dark corners and waiting out the 
inverted southern summer. 

An input file in Haskell can be treated as a string of characters, and so string-manipulating 
operations play an important role here. Also, since strings are lists, this example will 
exercise general list functions. 

Overall strategy 

In this section we give an example of bottom-up program development, thinking 
first about some of the components we will need to solve the problem, rather than 
decomposing the solution in a top-down way. 

The first step in processing text will be to split an input string into words, discarding 
any white space. The words are then rearranged into lines of the required length. These 
lines can then have spaces added so as to justify the text. We therefore start by looking 
at how text is split into words. 

Extracting words 

We first ask, given a string of characters, how should we define a function to take the 
first word from the front of a string? 

A word is any sequence which does not contain the whitespace characters space, tab 
and newline. 

In defining getword we will use the standard function elem, which tests whether an 
object is an element of a list. For instance, elem 'aJ whitespace is False. 

To guide the definition, consider two examples. 

getword boo" should be " "  as the first character is whitespace; 

getword "cat dog" is "cat". We get this by putting 'c' on the front of "at", 
which is getword "at dog". 

The definition is therefore given by: 

getword : :  String -> String 
getword [I = [I 
getword (x: xs) 

I elem x whitespace = [I 
I otherwise = x : getword xs 
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Consider an example 

getword " c a t  dog" 
--i ' c '  : getword " a t  dog" 

' c '  : ' a '  : getword " t  dog" 
--i ' c '  : ' a '  : ' t '  : getword dog" - ' c '  : ' a '  : ' t '  : [I 
--i " c a t "  

In a similar way, the first word of a string can be dropped. 

dropword : :  S t r i n g  -> S t r i n g  
dropword [I = [I 
dropword (x :xs )  

I elem x whitespace = (x :xs )  
I otherwise  = dropword x s  

It is easy to check that dropword " c a t  dog" = " dog". We aim to use the functions 
getword and dropword to split a string into its constituent words. Note that before 
we take a word from the string " dog", we should remove the whitespace character(s) 
from the front. The function dropspace will do this. 

dropspace : :  S t r i n g  -> S t r i n g  
dropspace [I = [I 
dropspace (x:xs)  

I elem x whitespace = dropspace x s  
I otherwise  = (x :xs )  

How is a string st to be split into words? Assuming st has no whitespace at the start. 

the first word in the output will be given by applying getword to s t ;  

the remainder will be given by splitting what remains after removing the first word 
and the space following it: dropspace (dropword s t ) .  

The top-level function sp l i twords  calls s p l i t  after removing any whitespace at the 
start of thc string. 

t y p e  Word = S t r i n g  

s p l i t w o r d s  : :  S t r i n g  -> [Word] 
s p l i t w o r d s  s t  = s p l i t  (dropspace s t )  

s p l i t  : : S t r i n g  -> [Word] 
s p l i t  [I = [I 
s p l i t  st 

= (getword s t )  : s p l i t  (dropspace (dropword s t ) )  

Consider a short example. 
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spl i twords " dog c a t "  
--+ s p l i t  "dog c a t "  
î.j (getword "dog c a t " )  

: s p l i t  (dropspace (dropword "dog c a t " ) )  
î.j ' 'dogn : s p l i t  (dropspace " c a t " )  - ''dog1' : s p l i t  l'cat'l 
î.j ''dogn : (getword "ca t " )  

: s p l i t  (dropspace (dropword " c a t " )  ) 
--+ "dog" : "ca t "  : s p l i t  (dropspace [ I )  
1.i "dog" : "ca t "  : s p l i t  [I 

lldogl1 : llcatll : [I - [ ''dog" , "ca t1 '  I 

Splitting into lines 

Now we have to consider how to break a list of words into lines. As before, we look to 
see how we can take the first line from a list of words. 

type Line = [Word] 
getLine : : I n t  -> [Word] -> Line 

getLine takes two parameters. The first is the length of the line to be formed, and the 
second the list from which the words are taken. The definition uses length  to give the 
length of a list. The definition will have three cases 

In the case that no words are available, the line formed is empty. 

If the first word available is w, then this goes on the line if there is room for it: its 
length, l ength  w, has to be no greater than the length of the line, len.  
The remainder of the line is built from the words that remain by taking a line of 
length len- ( length  w+l). 

If the first word does not fit, the line has to be empty. 

getLine l e n  [I = [I 
getLine l e n  (w:ws) 

I l ength  w <= l e n  = w : restOfLine 
I otherwise = [I 

where 
newlen = l e n  - ( length  w + 1) 
restOfLine = getLine newlen w s  

Why is the r e s t  of the line of length len-  ( length  w+l)? Space must be allocated 
for the word w and the inter-word space needed to separate it from the word which 
follows. How does the function work in an example? 

getLine 20 ["Mary", "Poppins", " looks" ,  " l i k e " ,  . . . 
--+ "Mary" : getLine 15 ["Poppins","looks","like", . . .  
--+ ''Mary'' : ' 'Poppins" : getLine 7 ["looks",  " l i k e " ,  . . . 
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-+ "Mary" : "Poppinsl' : "looks" : getLine I ["like",.. . 
^ ~ i  l1Maryl1 : llP~ppinsl' : lllo~k~l' : [I 

[ llMarytl , IIPoppins" , "looks1' 1 

A companion function, 

dropLine : : Int -> [Word] -> Line 

removes a line from the front of a list of words, just as dropword is a cornpanion to 
getword. The function to split a list of words into lines of length at most (the constant 
value) lineLen can now be defined: 

splitLines : : [Word] -> [Line] 
splitLines [I = [I 
splitLines ws 

= getLine lineLen ws 
: splitLines (dropLine lineLen us) 

This concludes the definition of the function splitlines, which gives filled lines from 
a list of words. 

Conclusion 

To fill a text string into lines, we write 

fill : : String -> [Line] 
fill = splitLines . splitwords 
To make the result into a single string we need to write a function 

joinLines : : [Line] -> String 

This is left as an exercise, as is justification of lines. 

( Exercises > 
7.19 Define the function dropLine specified in the text. 

7.20 Give a detinition of the function 

joinLine :: Line -> String 

which turns a line into printable form. For example, 

joinLine [ "dog" , "cat" ] = "dog cat" 

7.21 Using the function j oinline, or otherwise, define the function 

joinLines : : [Line] -> String 
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which joins together the lines, separated by newlines. 

7.22 In this case study we have defined separate 'take' and 'drop' functions for words 
and lines. Redesign the program so that it uses 'split' functions - like the prelude 
function splitAt - instead. 

7.23 [Harder] Modify the function joinLine so that it justifies the line to length 
lineLen by adding the appropriate number of spaces between the words. 

7.24 Design a function 

wc : :  String -> (Int,~nt,Int) 

which when given a text string returns the number of characters, words and lines 
in the string. The end of a line in the string is signalled by the newline character. 
'\n7. Define a similar function 

wcFormat : : String -> (Int ,1nt , ~ n t )  

which returns the same statistics for the text uftcr it has been filled. 

7.25 Define a function 

ispalin : :  String -> Boo1 

which tests whether a string is a palindrome -that is whether it is the same read 
both backwards and forwards. An example is the string 

Madam I'm Adam 

Note that punctuation and white space are ignorcd in the test. and that no 
distinction is made between capital and small letters. You might first like to 
develop atest which simply tests whetherthe string is exactly the same backwards 
and forwards, and only afterwards take account of punctuation and capital lelters. 

7.26 [Harder] Design a function 

subst : :  String -> String -> String -> String 

so that 

is the result of replacing the first occurrence in st of the substring oldsub by 
the substring newsub. For instance, 

subst "much " "tall " "How much is that?" 
= "How tall is that?" 

If the substring oldsub does not occur in st, the result should be st. 
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Summary 

This chapter has shown how functions can be defined by recursion over lists, and 
completes our account of the different ways that list-processing functions can be defined. 
In the chapter we have looked at examples of the design principles which we tirst 
discussed in Chapter 4, including 'divide and conquer' and general pieces of advice 
about designing recursive programs. The text processing case study provides a broadly 
bottorn-up approach to defining a library of functions. 



( Chapter 8T7 

Reasoning about 
programs 

8.1 Understanding definitions 

8.2 Testing and proof 

8.3 Definedness, termination and finiteness 

8.4 A little logic 

8.5 Induction 

8.6 Further examples of proofs by induction 

8.7 Generalizing the proof goal 

We gave an introduction to proof in Section 1.1 0, where we said that a proof is an 
argument that a particular proposition holds. Often a proposition will be general in 
saying that something holds for all things of a certain sort. In mathematics we might 
give a proof of Pythagoras' theorem, which states that there is a relationship a2=b2+c2 

between the sides of all right-angled triangles. 
In programming we can prove that programs have a particular property for all input 

values. A property like this means that we can be certain that the program will behave as 
we require whatever the conditions. Compare this with program testing: a test assures 
us that a program behaves as it should on a particular collection of input values; it can 
only be an act of faith to infer from this that the program behaves as expected on every 
possible input, and no mathematician would accept a proposition as valid simply because 
it holds for a limited set of test data. 

Central to the application of reasoning within functional programming is the insight 
that we can read function definitions as logical descriptions of what they do; we discuss 
this in depth at the start of the chapter. After examining the relationship of reasoning 
and testing, we look at some background topics in programming and logic, before 
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introducing the central idea of proof by induction over finite lists. 
Proofs by induction follow a pattern, and we illustrate this by giving a sequence of 

examples. We also supply advice on how to go about finding induction proofs. The 
chapter concludes with a more challenging example of proof, which can be omitted on 
a first reading. 

(81-) Understanding definitions 

Suppose that we ask ourselves the seemingly obvious question: 'how do we understand 
what a function does'?' There are various ways of answering this. 

We can evaluate what the function does on particular inputs, using an implementation 
like Hugs. 

We can do the same thing by hand, performing a line-by-line calculation. This has 
the advantage of letting us see how the program gets to its result, but the disadvantage 
of being slow and impractical for all but the smallest of programs. 

We can try to argue about how the program behaves in general. 

The third answer, in which we reason about the behaviour of ourprograms, is the subject 
of this chapter, which builds on the introduction of Section 1.10. 

Consider a simple functional program like 

length [I = 0 
length (x:xs) = 1 + length xs 

(length. 1) 
(length. 2) 

Using the definition we can calculate the length of any particular list like [2,3,1] 

length [2,3,1] 
--t 1 + length [3,1] 
l.t 1 + (1 + length [I]) 
l.t 1 + (1 + (I + length [I)) - 1 + (1 + (1 + 0 ) )  
-.. 3 

by (length. 2 )  
by (length. 2) 
by (length. 2) 
by (length. 1) 

We can alsoread (length. I) and (length. 2) as descriptionsof how length behaves 
in general. 

(length. 1) says what length [I is; 

(length. 2) says that whatever values of x and xs  we choose, length (x: xs) 
will be equal to 1 + length xs. 

In the second case we have a general property of length: it states something about 
how length behaves on all non-empty lists. On the basis of these equations we can 
conclude that 

length [x] = 1 (length.3) 

How do we do that? We know that (length. 2) holds for all values of x and xs, and 
so it will hold in particular when x s  is replaccd by [I, so 
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length [XI 
= length (x: [I) 
= 1 + length [I 
= l + O  
= 1 

by defn of I x ]  
by (length. 2) 
by (length. 1) 

The lesson of this discussion is that we can read a function definition in (at least) two 
different ways. 

We can take the dctinition as describing how to compute particular results, such as 
length [2,3, I]. 

We can also take the definition as a general description of the behaviour of the 
function in question. 

From this general description we are able to deduce other facts, some like (length. 3) 
being utterly straightforward, and others like 

length (xs ++ ys) = length xs + length ys (length. 4) 

expressing more complicated interactions between two or more functions. We will 
prove (length. 4) in Section 8.6. 

Allother way of looking at the proof of (length.3) above is that we are doing 
symbolic evaluation; rather than evaluating length at a particular value like [21 we 
have replaced the number 2 with a variable x, but used the evaluation rules in exactly 
the way that we used them earlier. We will tind that symbolic evaluation forms an 
important part of our proofs, but we will need to use another principle - induction - to 
do most proofs for recursive functions. 

To conclude this introduction, we have seen that functional programs 'describe 
themselves' in adirect way. If you are familiar with an imperative language like Pascal. 
C or Java, think how you might convince yourself of the analogues of (length.3) or 
(length. 4) for programs written in that language. It is not straightforward to see how 
one might state thew properties, and even more difficult to envisage how one might 
prove them valid. 

Testing and proof 

When we introduced program testing in Section 4.5 we looked at the example 

mysteryMax : :  Int -> Int -> Int -> Int 
mysteryMax x y z 

I x > y & & x > z  = X 

l y > x & & y > z  = Y 
I otherwise = z 

which was an attempted solution to the problem of tinding the maximum of three 
integers. We can think of trying to prove that it does this. We need to look at various 
cases of the ordering of the values. If we first look at the cases 
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then in each of these mysteryMax will produce the correct solution. In the other cases, 
at least two of the three arguments are equal. If all three are equal, 

the function also operates correctly. Finally, we start to look at the cases where precisely 
two elements are equal. The function behaves correctly when 

but in the case of 

we can see that the result will, erroneously, be z. 
Now, we can see this process of attempting to prove a result as a general way of testing 

the function - i t  is a form of symbolic testing which will consider all cases in turn. 
at least until an error is found. We can thus see that reasoning can give us a powerful 
way of debugging programs by focusing on the reason why we cannot complete a proof 
of correctness, as well as the more traditional view that a proof shows that a program 
meets the requirements put upon it. 

On the other hand, as we mentioned in Section 4.5, finding a proof is a difficult 
enterprise, and so there are clearly roles for both proof and testing in the development 
of reliable software. 

(8 Definedness, termination and finiteness 

Before we say anything more about proof, we need to talk about two aspects of 
programming upon which we have only touched so far. 

Definedness and termination 

Evaluating an expression can have one of two outcomes: 

the evaluation can halt, or terminate, to give an answer; or 

the evaluation can go on forever. 

If we make the definition 

fact : : Int -> Int 
fact n 

I n==O = 1 
I otherwise = n * fact (n-I) 

then examples of the two are given by the expressions 
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f a c t  (-2) 

since in the latter case 

f a c t  (-2) - (-2) * f a c t  (-3)_ 
-- (-2) * ((-3) * f a c t  (-4)) - . . .  
In the case that evaluation goes on for ever, we say that the value of the expression is 
undefined, since no defined result is reached. In writing proofs we often have to confine 
our attention to cases where a value is defined, since it is only for defined values that 
many familiar properties hold. One of the simplest examples is given by the expression 

which we expect to be 0 irrespective of the value of e .  That is certainly so if e has a 
defined value, but if e is f a c t  (-2), the value of 

0 * f a c t  (-2) 

will be undefined and not zero. 
In many of the proofs we give, we state that results hold for all defined values. This 

restriction does not cause problems in practice, since the defined cases will be exactly 
those which interest us in the vast majority of cases. An undefined value i s  of interest 
when a function does not give a defined value when it is expected to- acase of symbolic 
debugging. 

Finiteness 

We have said nothing so far about the order in which expressions are evaluated in 
Haskell. In fact, Haskell evaluation is lazy, so  that arguments to functions are only 
evaluated if their values are actually needed. This gives some Haskell programs a 
distinctive flavour, which we explore in depth in Chapter 17. What is important for us 
here is that lazy evaluation allows the definition and use of infinite lists like 

and partially defined lists. In what follows we will mainly confine our attention to 
finite lists, by which we mean lists which have a defined, finite length and defined 
elements. Examples are 

Reasoning about lazy programs is discussed explicitly in Section 17.9 below. 

8.1 Given the definition of f a c t  above, what are the results of evaluating the 
following expressions? 
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(4 > 2) 1 I (fact (-1) == 17) 
(4 > 2) && (fact (-1) == 17) 

Discuss the reasons why you think that you obtained these answers. 

8.2 Give a definition of a nlultiplication function 

mult : : Int -> Int -> Int 

so that mult 0 (fact (-2)) - 0. What is the result of mult ( fact  (-2)) 
0 for your function? Explain why this is so. 

A little logic 

In order lo appreciate how to reason about functional programs we nccd not have a 
background in Sormal logic. Nevertheless, it is worth discussing two aspects of logic 
before wc proceed with our proofs. 

Assumptions in proofs 

First. we look at the idea of proofs which contain assumptions. Taking a particular 
example. i t  follows from elementary arithmetic that if we a.s.vlme that pctrol costs 27 
pcncc per litre, then we can prove that four Iitres will cost £1.08. 

What does this tell us? I t  does t~o t  tell us outright how much four litres will cost: i t  
only tells us the cost ifthe a.s.sirt?~ptiori i s  i d i d .  To be sure that the cost will be 51.08, 
we need to supply some evidence that the assumption isjustified: this might be another 
proof - perhaps based on petrol costing f 1.20 per gallon - or  direct evidence. 

We can write what we have proved as a formula, 

1 litre costs 27 pence =+ 4 litres cost S1.08 

where the arrow, +, which is the logical symbol for implication, says that the second 
proposition follows from the first. 

As we have seen, we prove an implication like A + B by assuming A in proving B. 
If we then find a proof of A ,  then knowing the implication will guarantee thal B is also 
valid. 

Yet another way of looking at this is to see a proof of A + B as a nloc.Iii~tc~ liw 
t iming a proof of A into a proof of B.  We use this idea in proof by induction, as onc 
of the tasks in building an induction proof is the induction step, where we prove that 
one property holds assurning another. 

Free variables and quantifiers 

When we write an equation like 

square x = x*x 
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it is usually our intention to say that this holds for all (defined) values of the free variable 
x. If we want to make this 'for all' explicit we can use a quantifier thus 

Vx (square x = x*x) 

where we read the universal quantifier, 'Vx', as saying 'for all x. . . ' 

We now turn to induction, the main technique we use for proving properties of progranis. 

(85) lnduction 

In Chapter 7 we ww that a general mcthod for defining list\ wa\ primitive recur\lon, 
as exenlplitied by 

sum : : [ In t ]  -> I n t  
sum [I = 0 . , 
sum (x:xs) = x + sum xs 

(sum. 1) 
(sum. 2) 

Here we give a value outright at [I. and detine the value of sum (x:xs)  using the 
value sum xs. Structural induction is a proof principle which slates: 

( Definition 

Principle of structural induction for lists 

In order to prove that a logical property P (xs) holds for all finite lists xs  we have 
to do two things. 

Base case. Prove P ( [I outright. 

Induction step. Prove P (x : xs) on the assumption that P (xs)  holds. 
In other words P (xs)  j P (x : xs) has to be proved. 
The P (xs) here is called the induction hypothesis since it is assumed in proving 
P(x :xs) .  

I t  is interesting to see that this is just like primilive recursion. cxcept that instead of 
building thc values of a function, we are building up the parts of a proof. In both cases 
we deal with [I as a basis. and then build the general thing by showing how to go tiom 
xs to (x:xs).  In a function definition we define fun (x:xs)  using fun xs; in the 
proof of P (x : xs)  we are allowed to use P (xs) . 

Justification 

Just as we argucd that recursion was not circular. so  we can see proof by induction 
building up the proof for all finite lists in stages. Suppose that we are given proofs of 
P([1) andP(xs) j P(x:xs) fo ra l lxandxsandwewan t to showtha tP ( [1 ,2 ,31 ) .  
The list [1,2,31 is built up from [I using cons thus, 
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and we can construct the proof of P (  [ I ,  2,311 in a way which mirrors this step-by-step 
construction. 

P ( [I ) holds; 

Recall our discussion of '+' above; if we know that both P ( [I ) j P ( [31) and 
P ( [I ) hold, then we can infer that P ( [31) holds. 

P ( [3] ) + p ( [2,3] ) holds, and so for similar reasons we get P ( [2,31). 

Finally, because P ( [2,3] ) j P ( [I, 2,3] ) holds, we see that P ( [ 1,2,31) holds. 

This explanation is for a particular finite list, but will work for any finite list: if the list 
has nelements, then we will have n + l  steps like the four above. To conclude, this shows 
that we get P(xs) for every possible finite list xs if we know that both requirements 
of the induction principle hold. 

A first example 
I 

We have mentioned the definition of sum; recall also the function to double all elements 
of a list 

Now, how would we expect doubleAll and sum to interact? If we sum a list after 
doubling all its elements, we would expect to get the same result as by doubling the 
sum of the original list: 

sum (doubleAll xs) = 2 * sum xs (sum+dblAll) 

Setting up the induction 

How are we to prove this for all xs? According to the principle of structural induction 
we get two induction goals. The first is the base case 

sum (doubleAl1 [I) = 2 * sum 11 (base) 

The second is the induction step, in which we have to prove 

sum (doubleAl1 (x:xs)) = 2 * sum (x:xs) (ind) 

using the induction hypothesis 

sum (doubleAl1 xs) = 2 * sum xs ( ~ Y P )  

In  all proofs that follow we will label the cases by (base), (ind) and (hyp). 
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The base case 

We are required to prove (base): how do we start? The only resources we have are 
the equations (sum. 11, (sum. 21, (doubleAl1. I) and (doubleA11.2), so we have 
to concentrate on using these. As we are trying to prove an equation, we can think of 
simplifying the two sides separately, so working with the left-hand side first. 

sum (doubleAll [ I )  
= sum [I 
= 0 

Looking at the right-hand side, we have 

2 * sum [I 
= 2 * 0  
= 0 

by (sum. 1) 

by * 
This shows that the two sides are the same, and so completes the proof of the base case. 

The induction step 

Here we are required to~prove (ind). As in the base case we have the defining equations 
of doubleAll and s m ,  but we also can - and usually slzould - use the induction 
hypothesis (hyp). 

We work as we did in the base case, simplifying each side as much as we can using 
the defining equations. First the left-hand side, 

sum (doubleAl1 (x: xs) ) 
= sum (2*x : doubleAll xs) 
= 2*x + sum (doubleAl1 xs) 

and then the right 

2 * sum (x:xs) 
= 2 * (x + sum xs) 
= 2*x + 2 * sum xs 

by (doubleA11.2) 
by (sum. 2) 

by (sum. 2) 
by arith. 

Now, we have simplified each side using the defining equations. The last step equating 
the two is given by the induction hypothesis (hyp), which can be used to carry on rhe 
simplification of the left-hand side, giving 

sum (doubleAl1 (x : xs) ) 
= sum (2*x : doubleAll xs) 
= 2*x + sum (doubleAl1 xs) 
= 2*x + 2 * sum xs 

and so this final step makes the left- and right-hand sides equal, on the assumption that 
the induction hypothesis holds. This completes the induction step, and therefore the 
proof itself. . 
We use the box,. , to signify the end of a proof. 
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Finding induction proofs 

Looking at the previous example, wc can glean a number of pieces of advice about how 
to find proofs of properties of recursively dctined func~ions. 

State clcarly the goal of the induction and the two sub-goals of the induction proof: 
(base) and (hyp) + (ind). 
If any confusion is possible. change the names of the variables in the relevan1 
definitions so that they are different from the variable(s) over which yo11 are doing 
the induction. 

The only resources available are the detinitions of the functions involved and the 
general rules of arithmetic. Use thesc to simplify the sub-goals. If the sub-goal is an 
equation, then simplify each side separately. 

In the case of the induction step, (ind), you should expect to use the induction 
hypothesis (hyp) in your proof; if you do not, then it is most likely that your proof 
is incorrect. 

Label each step of your proof with its justification: this is usually one of the delining 
equations of a function. 

In the next section we look at a series of esarnples. 

(@ Further examples of proofs by induction 

In this section we present two more examples of proof by structural induction over tinitc 
lists. 

( Examples ) 

1. length and ++ 

We begin by looking at the example (length. 4) introduced at the start of the chapter. 

length (xs ++ YS) = length xs + length ys (length.4) 

Recall the def nitions of length and ++ 

length [I = 0 
length (z:zs) = 1 + length zs 

(length. 1) 
(length.2) 

where we have choqen new names for the variables so as not to conflict with the variable\ 
In the goal. 

There is some question about how to proceed with the proof, since (length.4) 
involvec two variables, xs and ys. We can be guided by the definitions, where we see 
that the definition of ++ is made by recursion over thejfiest variable. We therefore make 
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the goal a proof of ( length .  4) for all finite xs  and ys by induction over xs; the proof 
works for all ys as ys is a variable, which stands for an arbitrary list, just like the 
variable x in the earlier proof of ( length .  3) stood for an arbitrary list element. 

Statement We can now write down the two goals of the induction proof. The base 
case requires that we prove 

and in the induction step we have to prove 

length ((x:xs)  ++ ys)  = l ength  (x:xs) + l ength  ys  ( ind)  

from the inductive assumption 

length (xs ++ ys)  = l ength  xs + length ys  ( ~ Y P )  

Base We look separately at the two sides of (base),  left-hand side tirst, 

length ([I ++ ys) 
= length ys 

- 

length [I + l ength  ys 
= 0 + l ength  ys  
= l ength  ys 

which shows their equality. 

Induction First we look at the left-hand side of ( ind)  

length  ((x:xs)  ++ ys) 
= l ength  (x: (xs ++ ys) )  
= 1 + l ength  (xs ++ ys) 

by (++. 2 )  
by ( length .  2 )  

We cannot simplify this further with the defining equations, but we can use (hyp) t o  
give us 

= 1 + l ength  x s  + l ength  y s  by ( ~ Y P )  

Now, looking at the right-hand side of ( ind)  we get 

l ength  (x :xs)  + l ength  ys 
= 1 + l ength  xs + l ength  ys by ( length .  2) 

and this shows that ( ind)  follows from (hyp), completing the second half ofthe proof 
and thus the proof itself. 
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2. reverse and ++ 

What happens when we reverse the join of two lists, xs++ys? 

Each list is reversed, and they are swapped. In formal terms, 

reverse (xs ++ ys) = reverse ys ++ reverse xs 

where we define 

reverse [I = [I 
reverse (z:zs) = reverse zs ++ [z] 

(reverse. I) 
(reverse.2) 

We will try to prove (reverse++) for all finite lists xs and ys by induction over xs. 

Statement The base case is 

reverse ( [ I  ++ ys) = reverse ys ++ reverse [I 

and the induction goal is 

reverse ((x:xs) ++ ys) = reverse ys ++ reverse (x:xs) 

which is to be proved using the assumption 

reverse (xs ++ ys) = reverse ys ++ reverse xs 

Base Simplifying both sides of (base) gives us 

reverse (11 ++ ys) 
= reverse ys 

reverse ys ++ reverse [I 
= reverse ys ++ [I 

(base) 

( ind)  

by (reverse. 1) 

but we can prove the two equal only if wc can show that appending an empty list to the 
end of a list is an identity operation, that is 

We leave a proof of this by induction over xs as an exercise for the reader. 
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Induction Again, we look at the two sides o f  the equation, left-hand side first. 

reverse ((x:xs) ++ ys) 
= reverse (x:(xs ++ ys)) 
= reverse (xs ++ ys) ++ [XI 
= (reverse ys ++ reverse xs) ++ [XI 

Examining the right-hand side, we have 

reverse ys ++ reverse (x:xs) 
= reverse ys ++ (reverse xs ++ [x]) 

by (++. 2 )  
by (reverse. 2 )  

by (~YP) 

by (reverse. 2 )  

Now, these two are ulmost equal, except that the joins are bracketed differently. W e  
need another general property o f  ++, namely that it is associative: 

the proof o f  which we again leave as an exercise. 

This proof is instructive: it shows that often in proofs we use other theorems or lemmas 
(the mathematician's term for a 'little thcorcm') on the way. I f  we do any serious proof 
we will build up a library o f  these lemmas, with (++. 3) and (++ .4) being basic results 
about ++ which we will call upon almost without thinking. W e  would expect this library 
to resemble the standard prelude: it would contain all those theorems which link the 
prelude functions and which will be called into use whenever we use prelude functions. 
Many o f  the exercises at the end o f  the section ask you to prove theorems concerning 
prelude functions. 

( Exercises 1 I 

8.3 Prove for all finite xs and ys that 

sum (xs ++ ys) = sum xs + sum ys 

8.4 Prove the two rules for ++: 

for all finite xs, ys and zs. 

8.5 Show for all finite xs that 

sum (reverse xs) = sum xs 
length (reverse xs) = length xs 

What common factors can you see in your two proofs? 

8.6 Show for all finite integer lists xs and ys that 
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elem z (xs ++ ys) = elem z xs I I elem z ys 

8.7 Show for all finite lists ps that 

zip (fst (unzip ps) (snd (unzip ps) = ps 

Under what conditions on xs and ys is it the case that 

unzip (zip xs ys) = (xs,ys) 

when unzip is defined by 

unzip [I = ( CI , CI 
unzip ( (x , y) : ps) 

= (x:xs,y:ys) 
where 
(xs,ys) = unzip ps 

Give a proof in that case. 

8.8 [Harder] Show for all finite xs and defined n that 

take n xs ++ drop n xs = xs 

( Generalizing the proof goal 

It is not always easy to build a proof in a straightforward way, by induction over a 
goal we set ourselves. I n  this section we explore an example in which we are able lo 
build a proof of the property wc seek only after two false starts. The section is morc 
challenging than the rest of the chapter and can safely be omitted on first reading. 

The shunting function 

The shunt function moves the elements from one list onto another, thus 

shunt : : [a] -> [a] -> [a] 

shunt 11 ys = ys 
shunt (x:xs) ys = shunt xs (x:ys) 

Starting with an empty second argument, we have 

(shunt. 1) 
(shunt. 2 )  
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and so we can reverse lists using this function: 

rev  : : Cal -> [a1 
rev xs = shunt xs  [I ( rev .  1) 

Now we turn to looking at properties of the r ev  function. 

First proof attempt 

Reversing a list twice should give us back the list we started with, and so we aim to 
prove that 

rev  ( rev  xs)  = xs  Q(xs> 

for all finite lists xs. The base case is easily established, but when we look at the 
induction step, we meet our first problem: 

rev  (rev (x:xs) ) 
= shunt (shunt (x:xs)  [I ) [I 
= shunt (shunt xs  [XI)  [I 

by (rev.  1) 
by (shunt .  2) 

This has no direct relationship to the induction hypothesis, which mentions only the 
function rev. A clue to the problem is that r ev  is not the function defined by recursion 
-it is simply a specialization of shunt. Can we find a generalizutioit of Q(xs) which 
talks explicitly about shunt and which is to be proved by induction'? 

In general the effect of shunt xs  ys is to give 

( reverse  xs) ++ ys  

If we reverse this list, we should get 

( reverse  ys)  ++ x s  

(try some examples!)-and so we should be able to prove that 

shunt (shunt xs  ys) [I = shunt ys  x s  

When ys is replaced by [ I ,  we get Q (xs ) .  We therefore aim to prove this generalization. 

Second proof attempt 

Our aim is to show 

shunt (shunt xs  ys)  [I = shunt ys xs  

for all finite lists xs  and ys. I n  the case that xs  is [ I ,  the proof is simple. Now we look 
at the induction step: 

shunt (shunt (x:xs) ys)  [I 
= shunt (shunt xs  (x :y s ) )  [I by (shunt .  2) 

We would now like to claim by induction that this is equal to shunt (x: ys)  xs, but 
to do this we need the induction hypothesis to give the result that 
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shunt (shunt xs (x:ys)) [I = shunt (x:ys) xs 

rather than 

shunt (shunt xs ys) [I = shunt ys xs 

To get around this, we strengthen the induction hypothesis to become 

shunt (shunt xs zs) [I = shunt zs xs for all finite lists zs 

so that in particular it will hold when (x: ys) replaces zs. We now try again. 

The successful proof attempt 

In logical notation, our goal is to prove 

Vzs (shunt (shunt xs zs) [I = shunt zs xs) 

for all finite xs by induction. 

Statement Now we can state what is required. The base case is 

Vzs (shunt (shunt [I zs) [I = shunt zs [I) 

and the induction step is to prove 

Vzs (shunt (shunt (x:xs) zs) [I = shunt zs (x:xs)) 

assuming the induction hypothesis 

Vzs (shunt (shunt xs zs) [I = shunt zs xs) ( h ~ ~ )  

(base) 

(ind) 

Base In the base case we prove 

Vzs (shunt (shunt [I zs) [I = shunt zs [I) (base) 

by proving it for an arbitrary zs. The left-hand side simplifies to the right-hand side in 
one step. 

shunt (shunt [I zs) [I 
= shunt zs [I 

Induction As in the base case, we prove 

Vzs (shunt (shunt (x:xs) zs) [I = shunt zs (x:xs)) (ind) 

by proving it for an arbitrary zs. Simplifying the Ieft-hand side, we have 

shunt (shunt (x:xs) zs) [I 
= shunt ,(shunt xs (x:zs)) [I 

Now, by (hyp), where we take the particular value (x: zs) to replace the universally 
quanti fied variable zs, 
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= shunt (x:zs) xs 
= shunt zs (x:xs) 

by ( ~ Y P )  
by (shunt. 2) 

This is the right-hand side, and so the proof is complete for an arbitrary ys, giving a 
proof of (ind), and completing the induction proof. 

This example shows that we may have to generalize what has to be proved in order 
for induction proofs to work. This seeins paradoxical: we are making it harder for 
ourselves, apparently. We are in one way, but at the same time we make the induction 
hypothesis stronger, so that we have more resources to use when proving the induction 
step. 

( Exercises ) 

8.9 Prove for all finite lists xs and ys that 

rev (xs ++ ys) = rev ys ++ rev xs 

8.10 Using the function 

facAux : :  Int -> Int -> Int 
facAux 0 p = p 
f acAux n p = f ac Aux (n- I)  (n*p) 

we can define 

fac2 n = facAux n 1 

Prove that for all defined natural numbers n, 

fac n = fac2 n 

This chapter has shown that we can give Haskell programs a logical reading which 
allows us to reason about them. Central to reasoning about lists is the principle of 
structural induction, which does for proof what primitive recursion does for definitions. 

We gave a collection of hints about how we can build proofs for functional programs. 
and illustrated these by giving a number of results for common prelude functions such 
as sum, ++ and length, as well as exercises involving others. 



Generalization: patterns 
of computation 

9.1 Patterns of computation over lists 

9.2 Higher-order functions: functions as arguments 

9.3 Folding and primitive recursion 

9.4 Generalizing: splitting up lists 

Software reuse is a major goal of the software industry. One of the great strengths of 
modern functional programming languages like Haskell is that we can use them to define 
general functions which can be used in many different applications. The Haskell prelude 
functions over lists, for instance, form a toolkit to which we turn again and again in a 
host of situations. 

We have already seen one aspect of this generality in polymorphism, under which 
the same program can be used over many different types. The prelude functions over 
lists introduced in Chapter 5 provide many examples of this including length, ++ and 
take. .- 

As we said, these functions have the same effect over every argument - length corn- 
putes the length of a l i s t  of any type, for instance. In this chapter we explore a second 
mechanism, by which we can write functions which embody a pattern of computa- 
tion; two examples of what we mean follow. 

Transform every element of a list in some way. We might turn every alphabetic character 
into upper case, or double every number. 

Combine the elements of a list using some operator. We could add together the elements 
of a numeric list in this way, for example. 

How can we write general functions which implement patterns like this? We need to 
make the transformation or operator into a parameter of the general function; in other 
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words we need to have functions as arguments of other functions. These higher-order 
functions are the topic of this chapter. Complementing this is the ability to make 
functions the results of functions; we look at that in the next chapter. 

We begin the chapter by examining the patterns of computation over lists which we 
have encountered so far, and in the remaining sections of the chapter we show how these 
are realized as higher-order Haskell functions. We also re-examine primitive recursive 
definitions, and see that they generalize the process of combining the elements of a list 
using an operator. 

We conclude with an example of generalization: taking a function over S t r i n g  into a 
polymorphic, higher-order function. We do this by identifying the parts of the function 
which make i t  specific to S t r i n g  and turning those into a parameter of the function. 
The example serves as a model for how we can generalize functions in any situation thus 
making them applicable in many more contexts, so that they become suitable candidates 
for reuse. 

(91 Patterns of computation over lists 

Many o f  the definitions o f  list processing functions we have seen s o  far fall into a small 
number o f  different sorts. I n  this section wc look back over the previous chaptcrs and 
discuss the patterns which emerge. These patterns are realized as Haskell functions 
later in the chapter. 

Applying to all - mapping 

Many functions call for all o f  the elements of a list to bc transformed in  some way - 
this we call mapping. We have seen examples o f  this from the first chapter, where we 
noted that to flip a picture in  a vertical mirror - f lipV - we needcd to reverse each 
line o f  the Picture, which i s  a list o f  lines. 

We also saw mapping in Chapter 5 in our first example of a l i s t  comprehension which 
was to double every element o f  a list o f  integers. 

Other examples include 

taking the se?ond element o f  each pair in a list of pairs, as we do in  the library 
database; 

in  the supermarket billing example, converting every item in  a list of  bar codes to the 
corresponding (Name ,Price) pair; 

formatting each (Name,Price) pair in a list. 

Selecting elements - filtering 

Selecting all the elements of a list with a given property is also common. Chapter 5 
contains the euample of the function which selects the digits from a string 
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digits "29 February 2004" = "292004" 

Among the other cases we have seen are 

select each pair which has a particular person as its first element; 

select each pair which is rzot equal to the loan pair being returned. 

Combining the items - folding 

The first example of primitive recursion in Chapter 7 was sum, which computes the 
total o f a  list of integers. The total of the list is given by folding the function + into the 
list, thus: 

sum [2,3,71] = 2+3+71 

In a sinlilar way, 

++ can be folded into a list of lists to concatenate it, as is done in the definition of 
concat: 

&& can be folded into a list of Rooleans to take their conjunction: this is the prelude 
function and; 

max can be folded into a list of integers to give their maximum. 

Breaking up lists 

A common pattern in the text processing example of Chapter 7 is to take or drop items 
from a list while they havc w m e  property. A first example is getword, 

getword "cat dog" = "cat" 

in which we continue to take characters while they are alphabetic. Other examples 
include dropword, dropspace and getline. In the last of these the property in 
question depends not only upon the particular list item but also on the part of the list 
selected so far. 

Combinations 

These patterns of definition are often used together. In defining books for the library 
database. which returns all the books on loan to a given person, we filter out all pairs 
involving the person, and then take all second components of the results. The strength 
of list comprehensions is that they give this combination of mapping and filtering, which 
fits some examples - like the library database -particularly well. 

Other combinations of functions are also common. 

In the pictures case study the function invertcolour inverts the colour of every 
character in a Picture by inverting every line; inverting a line requires us to invert 
every character, so here we have two (nested) uses of mapping. 

Formatting the item part of a supermarket bill involves processing each item in some 
way. then combining the results, using ++. 
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Primitive recursion and folding 

The form of many definitions is primitive recursive. Sorting by insertion is a classic 
example: 

iSort [I = [I 
iSort (x:xs) = ins x (iSort xs) 

Haskell provides a mechanism to turn a prefix function like ins into an infix version. 
The name is enclosed by back quotes, ' ins ', so 

iSort (x:xs) = x 'ins' (iSort xs) 

and, in a given example, we have 

iSort [4,2,3] = 4 'ins' 2 'ins' 3 'ins' [I 

Looked at this way, the definition looks like 'ins' folded into the list C4,2,31. We 
shall look at this again in Section 9.3. 

The last 10% 

The different kinds of definition discussed so far have all been primitive recursive: we 
were able to define the result for (x : xs) in terms of the result for xs. 11 has been said that 
at least 90%; of all definitions of list processing functions are primitive recursive. Some 
are not, however; in Chapter 7 notable examples are quicksort and the splitLines 
function. 

splitLines [I = [I 
splitLines ws 

= getLine lineLen ws 
: splitLines (dropLine lineLen ws) 

For a non-empty list of words ws. the result splitLines ws is defined using a recursive 
call of splitLines not on the tail of ws but on (dropLine lineLen ws). This form 
of recursion will terminate because (dropLine lineLen ws) will always be shorter 
than ws itself, at least i n  sensible cases where no word in  the list ws is longer than the 
line length lineLen. 

(92 Higher-order fun;tions: functions as arguments 

A Haskell function is higher-order if it takes a function as an argument or returns a 
function as a result, or both. In this section we show how a variety of functions, including 
some of the patterns discussed in the last section, can be written using functions as 
arguments. 
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Mapping - the map function 

We can double all the elements in an integer list in two ways, either using a list 
comprehension, 

doubleAl1 : : [Intl -> [Inti 
doubleAll xs = [ 2*x I x <- xs 1 

or using primitive recursion, 

doubleAll [I = [I 
doubleAll (x:xs) = 2*x : doubleAll xs 

In both cases. we can see that the specitic operation of multiplying by two is applied to 
an element of the list in the expression '2*x'. 

Suppose that we want to modify every element of a list by another operation - for 
instance. the function ord that transl'orms a Char into an Int -we could modify one of 
the definitions above by replacing the '2*x' by 'ord x' to give a different definition. 

Taking this approach would mean that we would write a whole lot of definitions 
which differ only in the fi~nction used to make the transformation. Instead of doing 
this, we can write a single definition in which the function becomes a parameter of the 
definition. Our general definition will be 

m a p f  x s =  C f  x I x < - x s 1  (map. 0) 

or we can give an explicit primitive recursion 

map f [I = [I 
map f (x:xs) = f x : map f xs 

(map. 1) 
(map. 2) 

The function to double all the elements of a list can now be given by applying map to 
two things: the transformation - double - and  he list in question. 

doubleAll xs = map double xs 

where double x = 2*x. In a similar way, the function to convert all the characters 
into their codes will he 

convertchrs :: [Char] -> [Int] 
convertchrs xs = map ord xs 

In the Picture case study to flip a picture in a vertical mirror we can write 

f lipV : : ~ictu=e -> Picture 
flipV xs = map reverse xs 

What is the type of map? It takes two arguments t h e  first is a function, and the second 
is a list -and it returns a list. 
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map : : ( 

input function input list output list 

the input list must 
have elements to 
which the function 
can be applied 

the output list is 
made up of elements 
from the output type 
of the function 

The figure shows how the types of the functions and lists are related, giving map thc 

tY  Pe 

map : : ( a  -> b) -> [a1 -> Cbl 

where recall that a and b are type variables, standing for arbitrary types. Instances o f  
the type of map include 

map : : ( I n t  -> I n t )  -> [ In t ]  -> [Int]  

as used in the definition of doublebl l ,  where map is applied to the function double 
of typc I n t  -> I n t  and 

map : :  (Char -> I n t )  -> [Char] -> [ In t l  

as ill the definition of convertchrs .  

Modelling properties as functions 

Before defining the f~rnction t,o filter, or  select, those elements of a list having a given 
property, we necd to think about how such properties are to be niodelled in Hashcll. 
Take thc example of filtering the digits from a string - the function d i g i t s  mcntioncd 
earlicr. How is the property of 'being a digit' to be modclled? Wc have already seen 
that the prelude contains a function 

i sD ig i t  : :  Char -> Bool 

and we find out whether a particular character like ' d J  is a digit o r  not by applying the 
function to the character to give a Boolcan result, that is True or False .  

This is the way that we can model a property over any type t .  The property is given 
by a function of type I 

t -> Bool 

and an cleincnt x has the property precisely when f x has the valuc True. We have 
already seen the example of isDigit; other examples include 
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isEven : :  I n t  -> Bool 
isEven n = (n  'mod' 2  == 0) 

i s s o r t e d  : : [ In t ]  -> Bool 
i s s o r t e d  x s  = (xs  == S o r t  xs )  

where we usually adopt the convention that the names of properties begin with ' i s ' .  

Filtering - the f i l t e r  function 

Building on our discussion of properties, we see that the f i l t e r  function will take a 
property and a list, and return those elements of the list having the property: 

f i l t e r  p [I = [I 
f i l t e r  p (x:xs)  

I P X  = x : f i l t e r  p x s  
I otherwise  = f i l t e r  p x s  

( f i l t e r .  1) 

( f i l t e r .  2) 
( f i l t e r  .3 )  

In the case of an empty list, the result is empty. For a non-empty list (x :  xs)  there are 
two cases. If the guard condition p x is true then the element x  is the tirst element of 
the result list; the remainder of the result is given by selecting those element4 in xs  
which have the property p. If p x  is False ,  x is not included, and the result is given 
by searching x s  for elements with property p. 

A list comprehension also serves to define f i l t e r ,  

f i l t e r  p x s  = [ x 1 x <- X s  , p x 1 ( f i l t e r  .O) 

where again we see that the condition for inclusion of x  in the list is that i t  has the 
property p. 

Our example d i g i t s  is defi ned using f i l t e r  as follows 

d i g i t s  x s  = f i l t e r  isDigit  x s  

Other applications of f i l t e r  give 

f i l t e r  isEven [2 ,3 ,4 ,51 -- [ 2 , 4  
f i l t e r  i s s o r t e d  C [2 ,3 ,4 ,51  , [3,2,51 , [I , [31] --+ [ [2 ,3 ,4 ,51 , [I , [311 

What is the type o f f  i l t e r ?  It takes a property and a lint, and returns a list. 

input property input list output list 
filter:: ( - ...) -> [ . . . I  -> [ . . . I  

the property is 
a  function that 
returns a  Boolean 

the output list is 
made u p  of elements 
from the input list; 
the property works over 
the same type too 

filter:: ( a -> Bool) -> [ a ] -> [ a ] 
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Combining z i p  and map - the zipwith function 

We have already seen the polymorphic function 

zip : :  [a] -> [b] -> [(a,b)] 

which combines two lists into a list of pairs, where we pair corresponding elements in 
the two lists. For instance, 

zip [2,3,41 "Frank" = [(2, ' F ' ) ,  (3, 'r'), (4, 'a')] 

What happens if we want to do something to two corresponding elements other than 
making a pair of them? Recall from Chapter 1 that in our Picture case study to delinc 
sideBySide we wanted to join corresponding lines using (++). To t h ~ s  end we define 
the zipwith function, which combines the effect of zipping and mapping: 

In the first case we see that if both lists are non-empty we apply the function f to their 
heads to give the first element of the result, and zip their tails with f in a similar way. 
In the second case - when at least one of the inputs is [I - the result is [I. just as it 
was in the definition of zip. 

Returning to the Picture case study, we can then detine 

sideBySide :: Picture -> Picture -> Picture 
sideBySide picl pic2 = zipwith (++) picl pic2 

What is the type of zipwith? The function takes three arguments. The second and 
third are lists of arbitrary type, [a] and [b] respectively. The result is also a list of 
arbitrary type, [cl. Now, the first argument is applied to elements of the input lists 
to give an element of the output list, so it must have type a -> b -> c. Putting this 
together, we have 

In the exercises we look further at the examples defined here, as well as introducing 
other higher-order functions. 

9.1 Write three line-by-line calculations of doubleAll [2,1,7] using the three 
different definitions of doubleAll by means of a list comprehension, primitive 
recursion and map. 

9.2 How would you define the length function using map and sum'? 

9.3 Given the funytion 

addup ns = filter greaterone (map addone ns) 
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where 

how would you redetine i t  using f i l t e r  before map, as i n  

addup ns  = map fun1 ( f i l t e r  fun2 ns) 

9.4 Describc the effect of 

map addOne (map addOne ns) 

Can you conclude anything in general about properties of map f (map g xs) 
where f and g are arbitrary functions'? 

9.5 What is the effect of 

f i l t e r  greaterOne ( f i l t e r  lessTen ns)  

wherc lessTen n = n<10? What i~bout the general case of 

f i l t e r  p ( f i l t e r  q xs) 

where p and q are arbitrary properties? 

9.6 Givc definitions of functions to take a list of integers, ns, and 

return the list consisting of thc squares of the integers in  ns; 

return the sum of squares of items in ns; 

check whether all Items of the list are greater than zero. 

9.7 Using functions defined already wherever possible, write definitions of f~~nctions 
to 

give the minimum value of a function f on inputs 0 ton: 

test whether the values o f f  on inputs 0 to n are all equal; 

test if all values o f f  on inputs 0 to n are greater than zero, and, 

check whether the values f 0, f 1 to f n are in increasing order. 

9.8 State the type o f a d  define a function twice which takes a function from integers 
to integers and an input integer, and whose output is the function applied to the 
input twice. For instance, with the double function and 7 as input, the result is 
28. What is the most general type of the function you have defined'? 

9.9 Give the type of and define a function i t e r  so that 

i t e r  n f x = f (f if . . .  (f X I . . . ) )  
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where f occurs n times on the right-hand side of the equation. For instance. we 
should have 

iter 3 f x = f (f ( f  x)) 

and iter 0 f x should return x. 

9.1 0 Using iter and double define afunction which on input nreturns 2n; remember 
that 2n means one multiplied by two n times. 

a Folding and primitive recursion 

In this section we look at a particular sort of higher-order function which implements 
the operation of folding an operator or function into a list of values. We will see that this 
operation is more general than we might first think, and that most primitive recursive 
functions over lists can, in fact, be defined using a fold. 

The functions f o l d r l  and f o ldr  

Here we look at two sorts of folding function. First we look at a function which folds 
a function into a non-empty list; in the Haskell prelude this is called f oldrl; we will 
discuss why it is called this later in the section. 

The definition off oldrl will have two cases. Folding f into the singleton list [a1 
gives a. Folding f into a longer list is given by 

foldrl f [el,e2, . . . ,  ek] 
= el 'f' (e2 'f' ( . . .  'f' ek) . . .  ) 
= el 'f' (foldrl f [e2, . . . ,  ekl) 
= f e l  (f oldrl f [e2,. . . , ek] ) 

The Haskell definition is therefore 

foldrlf [XI = x  
foldrl f (x:xs) = f x (foldrl f xs) 

(foldrl. 1) 
(foldrl.2) 

and the type of foldrl will be given by 

foldrl : :  (a -> a -> a) -> [a] -> a 

The type shows that f oldrl has two arguments. 

The first argument is a binary function over the type a; for example, the function (+) 
over Int. 

The second is a list of elements of type a which are to be combined using theoperator; 
for instance, [3,98,1] 

The result is a single value of type a; in the running example we have 

foldrl (+) C3,98,11 = 102 
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Other examples which use f  o l d r l  include 

f  o l d r l  ( I I ) [False  ,True , F a l s e ]  = True 
'1 I 'I] = "Freak Out! 11 f o l d r l  (++) ["Freak ", "Out" , 'I", . 

f o l d r l  min [6] = 6  
f o l d r l  (*) [ I  . . 61 = 720 

The function f  o l d r l  gives an error when applied to an empty list argument. 
We can modify the definition to give an extra argument which is the value returned 

on the empty list, so giving a function defined on all finite lists. This function is called 
f  o l d r  and is defined as follows 

f o l d r  f  s [I = s 
f o l d r  f  s (x :xs )  = f  x  ( f o l d r  f  s x s )  

(f o l d r .  1 )  
( f  o l d r  .2) 

The 'r' in the definition is for 'fold, bracketing to the right'. Using this slightly more 
general function, whose type we predict is 

( a  -> a -> a )  -> a -> [ a ]  -> a 

binary operation starting value list of a values the result 
over type a of type a to be combined of type a 

we can now define some of the standard functions of Haskell, 

concat  : : [[a] 1 -> [a] 
concat  x s  = f o l d r  (++) [I x s  

and : : [Bool] -> Bool 
and bs = f o l d r  (&&I True b s  

Returning to the start of the section, wc can now see why f  o l d r l  is so called: it is fold 
function, designed to take a list with at least one element. We can also define f  o l d r l  
from f  o l d r ,  thus 

f o l d r l  f  (x:xs) = f o l d r  f  x xs  ( f o l d r l . 0 )  

Folding in general - f o l d r  again 

In fact, the most general type of f  o l d r  is more general than we predicted. Suppose 
that the starting value has type b  and the elements of the list are of type a, then 

f o l d r  : :  ( a  -> b -> b) -> b  -> [a] -> b 

We give a full explanation of how this type is derived in Section 13.2. 
With this insight about the type o f f  o l d r  we can see that f  o l d r  can be used to define 

another whole cohort of list functions. For instance, we can reverse a list thus: 
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rev : : [a1 -> Cal 
rev xs = f o l d r  snoc [I x s  

snoc : : a -> [a1 -> [a] 
snoc x  xs = xs ++ [XI 

This function is traditionally called snoc because i t  is like 'cons', :, in revcrsc. We 
can also sort a list in this way 

iSo r t  : : [ In t ]  -> [ In t ]  
iSo r t  xs  = f o l d r  i n s  [I x s  

Before we move on, we look for one last time at the definition o f f  o l d r  

f o l d r  f  s [I = s 
f o l d r  f s (x:xs) = f x  ( f o l d r  f  s xs) 

(f o ld r  . I )  
(f o ld r  .2) 

What is the effect o f f  o ld r  f  sf? We have two cases: 

the value at the empty list is given outright by s; 

the value at (x: xs)  is defined in terms of the value at xs, and x itself. 

This is just like the definition of primitive recursion over lists in Chapter 7.' Because 
of this it is no accident that we can define many of our primitive recursive functions 
using f  o ldr .  It is usually mechanical to go from a primitive recursive definition to the 
corresponding application of f  oldr .  

How do the two approaches compare'? It is often easier initially to think of a function 
definition in recursive form and only afterwards to transform it into an application of 
fo ldr .  One of the advantages of making this transformation is that we might then 
recognize properties of the function by dint of its being a Sold. We look at proof for 
general functions like map, f i l t e r  and f o l d r  in Section 10.9 and we look at other 
fold functions in Chapter 19. 

( Exercises ) 
9.1 1 How would you define the sum of the squares of the natural numbers 1 ton using 

map and f  o ldr?  

9.12 Define a function to give the sum of squares of the positive integers in a list of 
integers. 

9.13 For the purposes of this exercise you should use f  o ld r  to give definitions of the 
prelude functions unzip, l a s t  and i n i t ,  where examples of the latter two are 
given by 

last "Greggery Peccary" = 'y '  
i n i t  "Greggery Peccary" = "Greggery Peccar" 

I There is an arnbiyity in our original charactcri~ation. In defining the function g by primitive recursion the 
value of g (x:  xs) i s  defined in terms of hoth x and xs as well as the value g xs ihcll'; this make3 primitive 
recursion slightly more general than folding using foldr .  
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9.14 How does the function 

mystery xs = f o l d r  (++I [I (map s i n g  xs)  

behave, where s i n g  x = [XI for all x'? 

9.15 The function f  ormatLines is intended to format a list of lines using the function 

format l ine  : :  Line -> S t r i n g  

to format each line in the list. Define a function 

f o rma t l i s t  : : ( a  -> St r ing )  -> [a] -> S t r i n g  

which takes as a parameter a function of type 

a -> S t r i n g  

to forinat each item of the list which is passed as the second parameter. Show 
how f ormatLines can be defined using f  ormatList and f  ormatline. 

9.16 Define a function 

f i l t e r F i r s t  : :  (a -> Bool) -> [a] -> [a] 

so that f i l t e r F i r s t  p  xs  removes the first element of xs  which does not have 
the property p. Use this to give a version of returnLoan which returns only 
one copy of a book. What does your function d o  on a list all of whose elements 
have property p? 

9.1 7 Can you define a function 

f i l t e r L a s t  : :  ( a  -> Bool) -> [a] -> [a] 

which removes the last occurrence of an element of a list without property p? 
How could you define it using f i l t e r F i r s t ?  

9.18 How can you simplify some of your earlier definitions in the light of the higher- 
order functions you have seen here? You could revisit the 'supermarket billing' 
exercises and try doing those questions again using the functions you have now 
seen. 
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(94) Generalizing: splitting up lists 

As a final example in this chapter we look at how we can generalize the function 
getword into a polymorphic, higher-order function. This serves as a model for similar 
generalizations in many different circumstances. 

Many list manipulating programs involve splitting up lists in some way, as a part of 
their processing. One way of doing this is to select some or all the elements with a 
particular property -this we have seen with f i l t e r .  Other ways of processing include 
taking or dropping elements of the list from the front- this we saw in the text processing 
example. If we know the number of elements to be dropped, we can use 

t ake ,  drop : : I n t  -> [a] -> [a] 

where take  n xs and drop n xs are intended to take or drop n elenients from the 
front of the list xs. These functions are defined in Chapter 7. 

Also in Chapter 7 we looked at the example of text processing, in which lists were 
split to yield words and lines. The functions getword and dropword defined there 
were not polymorphic, as they were designed to split at whitespace characters. 

It is a general principle of functional programming that programs can often be 
rewritten to use more gencral polymorphic and/or higher-order functions, and we 
illustrate that here. 

The function getword was originally defined thus: 

getword : :  S t r i n g  -> S t r i n g  
getword [I = [I 
getword (x:xs) 

I elem x whitespace = [I 
I otherwise = x : getword xs  

What forces this to work over strings i4 the test in (getword. 21, where x is checked 
for membership of whitespace. We can generalize the function to have the test - or 
property - as a parameter. 

How is this to be done? Recall that a property over the type a is represented by a 
function of type ( a  -> Bool). Making this test a parameter we have 

g e t u n t i l  : :  ( a  -> Bool) -> [a] -> [a] 
g e t u n t i l  p [I = [I 
g e t u n t i l  p (x:xs)  

I P X  = [I 
1 otherwise = x . . g e t u n t i l  p xs 

in which the test elem x whitespace has been replaced by the test p x. the arbitrary 
property p applied to x. We can of course recover getword from this definition: 

getword xs 
= g e t u n t i l  p xs 

where 
p x = elem x whitespace 
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Built into Haskell are the functions takewhile and dropwhile, which are like getuntil 
and dropuntil, except that they take or drop elements while the condition is True. 
For instance, 

takewhile : : (a -> Bool) -> [a] -> [a] 
takewhile p [I = [I 
takewhile p (x:xs) 

I P X  = x : takewhile p xs 
I otherwise = [I 

getuntil can be defined using takewhile, and vice versa. 

9.19 Give the type and definition of the generalization dropuntil of the function 
dropword. 

9.20 How would you define the function dropspace using dropunt il'? How would 
you define takewhile using getuntil? 

9.21 How would you split a string into lines using getuntil and dropuntil'? 

9.22 The function getLine of Chapter 7 has a polymorphic type - what is it'? How 
could you generalize the test in this function'! If you do this, does the type of 
the function become more general'? Explain your answer. 

9.23 Can you give generalizations to polymorphic higher-order functions of the text 
processing functions getline, dropLine and splitlines? 

( Summary 

This chapter has shown how the informal patterns of definition over lists can be realized 
as higher-order, polymorphic functions, such as map, filter and f oldr. We saw how 
these functions arose, and also how their types were derived, as well as reviewing the 
ways in which they could be used to solve problems. 

We concluded with an example of how to generalize a function - the particular 
example was taken from the text processing case study, but the example serves as a 
model for how to generalize functions in general. 

The chapter has focused on how to write functions which take other functions as 
arguments; where do these arguments come from'? One answer is that they are already 
defined; another is that they come themselves as the results of Haskell functions - this 
is the topic of the next chapter. 



( Chapter 10 ) 

Functions as values 

10.1 Function-level definitions 

10.2 Function composition 

10.3 Functions as values and results 

10.4 Partial application 

10.5 Revisiting the Picture example 

10.6 Further examples 

10.7 Currying and uncurrying 

10.8 Example: creating an index 

10.9 Verification and general functions 

As we saw in the previous chapter, functions can be arguments of higher-order func- 
tions. We shall see in this chapter that functions can also be the results of other functions 
and operators. In this way we create functions as values within our programs, rather than 
simply being able to create them by defining them in a Haskell script. 

This machinery allows us to make the results of some functions into the arguments of 
other higher-order functions, and lets us exploit these general functions to the full. Using 
this machinery we see that we are able to give what we call function-level definitions of 
our functions, which use some of the general functions we have seen earlier. These 
definitions are both more concise and readable than traditional definitions, as well as 
being more amenable to proof and program transformation. 

In this chapter, after showing a number of ways that we can describe functions in 
Haskell, we show how functions are returned as results of other functions, especially by 
means of partial applications and operator sections. We also re-examine some of 
our examples to see how the ideas fit into programs we built earlier, and in particular we 
look again at the Picture case study. 
A longer example - building an index for a document - is used to show how these 

new ideas fit into program development. The chapter concludes with some examples of 
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program verification involving higher-order polymorphic objects, where it is shown that 
the theorems proved about them are reusable in exactly the same way that the functions 
themselves are reusable. 

Function-level definitions 

One of the reasons that functional programming is called 'functional' is that in such 
a language we can deal with functions as data, and so treat them much as we might 
handle integers or lists. Because of this, we will see in this chapter that we can often 
give a function-level definition of a function. What do we mean by this? Rather than 
explaining how a function operates on one or more parameters, as in the definition 

r o t a t e  : :  Pic tu re  -> Pic tu re  
r o t a t e  p i c  = f l ipV ( f l ipH p i c )  ( r o t a t e .  1) 

a function-level definition gives a direct definition of the function, like 

r o t a t e  = f l ipV . f l ipH ( r o t a t e .  2)  

In this case we describe r o t a t e  as the composition of two reflections; of courye, the 
effect of the definitions ( r o t a t e .  1) and ( r o t a t e .  2) is exactly the same, but there are 
two important advantages of the latter approach. First, the second definition is clearer 
to read and to modify; we see explicitly that the definition is a composition of two 
functions, rather than having to see it as a consequence of the way the right-hand side 
is defined in ( r o t a t e .  1). 

More importantly, if we state a definition in this form, then we can apply properties 
of ' . '  in analysing how r o t a t e  behave?. This means that in proofs we are able 
to use properties of composition. as well as being able to see examples of program 
transformations which will apply because of the form of composition involved. In 
general these remarks will apply to all higher-order, polymorphic functions, and we see 
examples of this in Section 10.9 below. 

We have already seen other direct definitions, as when we said 

f l i pH  : :  Pic tu re  -> Pic tu re  
f l i pH  = reverse  

We note that this definition has exactly the same effect as saying 

f l ipH p i c  = reverse  p i c  

since if we were to use (f l ipH. I)  applied to the picture horse, say, the first step of 
the evaluation would be the step 

f l ipH horse 
2, reverse  horse 

in  which f  lipH gets replaced by reverse.  
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Figure 10.1 Function composition 

(lo Function composition 

We have already used the Haskell fi~nction composition operator, ' . '; in this section 
we look at it in  more detail, and in  particular examine its type. 

One of'the simplest ways of structuring a program is to do a number of things one 
after the other - each part can be designed and implemented separately. In a functional 
program this is achievcd by composing a number of filnctions together: the output of 
one function becomes the input of another, as in  Figure 10. I .  The annotations of the 
arrows in  the diagram indicate the types of elements involved. 

For any functions f and g, the effect o f f  . g  is given by the definition 

Not all pair\ of functions can be composed. The output of g, g x, beconles the input of 
f ,  yo that the output type of g mu\t equal the input type o f f .  In  the example of r o t a t e  
from Section 10.1 we see that the output type o f f  lipH and the input type o f f  l ipV are 
both P ic ture .  

In  general, the constraint on which functions can be compo\ed i \  expres5ed by giving 
'.' the type 

type of f type of r~ typeof ( f  . g) 

which shows that. if we call the tirst input f and the second g, 

The input o f f  and the output of g  are of the same type: b. 

The result f . g has the same input type, a, as g and the same output type, c, as f .  

Composition is associative, that is f . ( g  . h) is equal to (f . g )  . h for all f .  
g and h. We can therefore write f . g . h unambiguously to mean 'doh, then g, then 
f ? . I  

Forward composition 

The order in  f . g is significant, and can be confusing; (f . g )  means 'tirst apply g 
and then apply f to the result', and so we have to read a composition from right to left 
in order to appreciate its effect. 

' For tcchnical reasons. the ' . ' is trealed as right associalivc in the Haskell standard prelude 
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The reason we write (f . g) for 'g then f '  is that we write arguments to the right of 
functions. The argument is therefore closer t o g  than to f ,  and the order of the functions 
in (f . g) x is the same as in the nested application, f  ( g  x) .  

It is simple in Haskell todefine an operator for composition which takes its arguments 
in the opposite order to ' . '. This we do thus: 

g  > . >  f  = f  , g (fcomp. 1) 

This definition has the effect that 

(g  >.> f) x = (f . g) x = f (g X) (f comp. 2 )  

showing that. as i t  were, the order of the f  and g  is swapped before the functions are 
applied. The r o t a t e  example can then be written 

r o t a t e  = f l i pH  >.> f l ipV 

which we can read as f  lipH then f lipV, with the functions being applied from left to 
right. 

The notation '>. >' contains a ' . ' to show that it is a form of composition, with the 
arrows showing the direction i n  which information is flowing. We will tend to use '> .>' 
in situation\ where a number of functions are composed, and it is therefore tiresome to 
read some lines down the page in order to work out the effect of a function definition. 

Pitfalls of composition 

There are two pitfalls associated with coniposition which we need to be aware of: 

There is an error caused by the binding power of function application. It is a common 
error to write f  . g x thinking it means (f . g) applied to x. Because function 
application binds more tightly than anything else, it is interpreted by the system as 
f  . (g x) ,  which will usually lead to a type error. 

For example, evaluating 

not  . not True 

gives the type error message 

ERROR: Type e r r o r  i n  app l i ca t i on  
***  expression : not . not True 
*** term : not  True 
*** type : Boo1 
*** does not match : a -> b 
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since there is an attempt to treat not True as a function to be composed with not. 
Such a function needs to have type a->b, whereas it actually has type Bool. 

In applying a composition we therefore need to be sure that it is parenthesized, as 
follows: 

(not . not) True 

Function application and composition can get confused. Function composition 
combines two functions, while application combines a function and an argument 
(which can be a function, of course). 

If, for example, f has type Int -> Bool, then 

- f . x means f composed with the,functinn x; x therefore needs to be of type 
s -> Int for some type s. 

- f x means f applied to the object x, so x must therefore be an integer. 

10.1 Redefine the function printBill from the supermarket billing exercise in  
Section 6.4 so that composition is used. Repeat the exercise using forward 
composition. > . >. 

10.2 If id is the polymorphic identity function, defined by i d  x = x. explain the 
behaviour of the expressions 

( i d .  f )  (f . id) id f 

I f f  is of type Int -> Bool, at what instance of its most general type a -> a 
is id used in each case? What type does f have if f i d  is properly typed? 

10.3 Define a function composeList which composes a list of functions into a single 
function. You should give the type of composeList, and explain why the 
function has this type. What is the effect of your function on an empty list of 
functions'? 

(lo Functions as values and results 

In this section we begin to look at the ways in  which functions can become the results of 
functions; in the next section we look at the important technique of partial application. 

We have already seen that functions can be combined together using the coniposition 
operator ' . ' and the forward composition operator '>. >'; this can be done on the 
right-hand side of function definitions. The simplest example of this is 

twice f = (f . f )  (twice. 1) 

f is a function. and the result is f composed with itself. For this to work, i t  needs to 
have the same input and output type, so we have 
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twice : : ( a  -> a)  -> ( a  -> a)  

This states that twice takes one argument, a function of type (a  -> a ) ,  and return+ a 
rcsult of the salnc type. For instance. if succ is the function to add onc to an integer. 

succ : : I n t  -> I n t  
succ n = n+ l  

then applying twice to i t  gives the example 

(twice succ) 12 
?-- (succ . succ) 12 

succ (succ 12) - 14 

by ( twice.  I )  
by (comp. 1) 

We can generdizc twice so that we pass a parameter giving the numbcr of times the 
functional argument is to be composed with itself 

i t e r  : : I n t  -> (a  -> a )  -> ( a  -> a )  

i t e r  n f 
I n>O = f . i t e r  (n-1) f 
I otherwise = i d  

( i t e r .  1) 
( i t e r . 2 )  

This is a standard primitive recursion over the integer argument; in the positive case 
we take the composition o f f  with itselfn-1 times and compose once more with f .  In  
the zero case we apply f n o  times, so the result is a function which does nothing to 
its argument, namely id.  We can give a constructive definition using the standard list 
functions. 

i t e r  n f = f o l d r  ( . )  i d  ( r e p l i c a t e  n f )  ( i t e r . 3 )  

In  this definition we create the list of n copies o f f  

[ f , f ,  . . . ,  f l  

which is then composed by folding in the composition operator to give 

f . f . . . .  . f 
As an example. we can dctine 2" as i t e r  n double 1, if double doubles its argunirnt. 

Expressions defining functions 

How else can we write down expressions which describe functions'! In writing a 
function definition we can use a where clause to make a definition. 

Suppose. for example, that given an integer n we are to return the function (from In t  
to I n t )  which adds n to its argument, we can say 

addNum : : Int -> ( I n t  -> I n t )  
addNum n = addN 

where 
addN m = n+m 
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\x Y -> g (f x) (f y) 

Figure 10.2 Plumbing f and g together. 

The result is a function named addN, and addN is itself defined by an equation in thc 
where clause. This method is rather indirect - we say we shall return the function 
named addN, and then detine that Function. 

Lambda notation 

Instcad of naming and defining a function that we  want to  refer to. we can instead write 
it down directly. In the case of defining addNum we can define the result as  

How is this expression to be interpreted'? 

Before the arrow are the arguments, in this case the single argument m. 

After the arrow comes the resull. here n+m. 

That the expression is a function is signalled by its beginning with ' \ '  which is the 
closest ASCII character to the Greek lambda; h, which is used in a mathematical theory 
of functions, called the lambda calculus, for exactly this purpose. The deti~iition of 
addNum now becomes 

We shall see another way of defining addNum in the next section of this chapter. 
Another example which uses the lambda notation is given by the 'plumbing' illus- 

trated in Figure 10.2. The object shown is n function, whose arguments are x and y. 
The result of the function is 
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so the overall effect is to give a function which applies f to each of its (two) arguments 
before applying g to the results. The definition states this quite straightforwardly: 

To add togcther the squares of 3 and 4 we can write 

comp2 sq add 3 4 

where add and sq have the obvious definitions. 
In general, a lambda-defined function is an anonymous version of the sort offunction 

we have defined earlier. In other word$, the function f defined by 

f x y z = result 

and the function 

\x y z -> result 

have exactly the same effect. 
We shall see in the next section that partial application will make many definitions 

- including those of the functions here - more straightforward. On the other hand 
the lambda notation is more general, and thus can be used in situations when a partial 
application could not. 

10.4 Give calculations of 

iter 3 double 1 
(comp2 succ ( * I )  3 4 
comp2 sq add 3 4 

10.5 What is the type and effect of the function 

\n -> iter n succ 

10.6 Given a function f of type a -> b -> c, write down a lambda expression that 
describes the function of type b -> a -> c which behaves like f but which 
takes its arguments in the other order. Pictorially, 
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10.7 Using the last exercise, or otherwise, give a definition of the function 

f l i p  : :  ( a  -> b -> c )  -> (b -> a  -> c )  

which reverses the order in  which its function argument takes its arguments. 

10.8 Using a lambda expression, the Boolean function n o t  and the built-in function 
elem describe a function of type 

Char -> Boo1 

which is True only on non-whitespace characters, that is those which are not 
elements of the list " \ t \ n V .  

10.9 Define a function t o t a l  

t o t a l  : : ( I n t  -> I n t )  -> ( I n t  -> I n t )  

so that t o t a l  f is the function which at value n  gives the total 

10.10 [Harder] Define a function 

s l o p e  : : ( F l o a t  -> F l o a t )  -> ( F l o a t  -> F l o a t )  

which takes a function f as argument, and returns (an approximation to) its 
derivative f ' as result. 

10.1 1 [Harder] Define a function 

i n t e g r a t e  : : ( F l o a t  -> F l o a t )  -> (F loa t  -> F l o a t  -> F l o a t )  

which takes a function f as argument, and returns (an approximation to) the two 
argument function which gives the area under its graph between two end points 
as its result. 

(104) Partial application 

The function m u l t i p l y  multiplies together two arguments, 

mul t ip ly  : : I n t  -> I n t  -> I n t  
mul t ip ly  x  y  = x*y 

We can view the function as a box, with two input arrows and an output arrow. 



176 Functions as values 

multiply i 
If we apply the function to two arguments, the result is a number; so that, for instance. 
multiply 2 3 equals 6. 

multiply 
3 

What happens if multiply is applied to one argument 2? Pictorially. we have 

multiply =Ll- 
From the picture we can see that this represents a function, as there is still one input 
arrow to the function awaiting a value. This function will, when given the awaited 
argument y, return double its value, namely 2*y. 

This is an exalnple o f  a general phenomenon: any function taking two or more 
arguments can be partially applied to one or more arguments. This gives a powerful 
way of forming functions as results. 

To illustrate, we return again to our example in which every element of a list is to he 
doubled. The function can be defined thus: 

doubleAl1 : : [Int] -> [Inti 
doubleAl1 = map (multiply 2) 

In this definition there are two partial applications: 

multiply 2 is a function from integers to inlegers, given by applying multiply to 
one rather than two arguments; 

map (multiply 2) is a function from [Int] to [Intl, given by partially applying 
map. 

Partial application is being put to two different uses here. 

In the first case -multiply 2 - the partial application is used to form the function 
which multiplies by two, and which has to be passed to map to form the doubleAl1 
function; 

the second partial application - of map to multiply 2 -could be avoided by writing 
the argument to doubleAl1 

doubleAl1 xs = map (multiply 2) xs 

but, as was argued in Section 10.1, there are advantages to this form of definition. 

In Section 10.3 we saw the example of addNum, 
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which when applied to an integer n was intended to return the function which adds n 
to its argument. With partial application we have a simpler mechanism, as we can say 

since when addNum is applied to one argument n it returns the function adding n. 
The idea of partial application is important. We have already seen that many functions 

can be defined as specializations of general operations like map, filter and so on. 
These specializations arise by passing a function to the general operation -this function 
is often given by a partial application, as in the examples from the pictures case study 
first seen in Chapter I : 

f lipV = map reverse 
sideBySide = zipwith (++) 

We return to look at the Picture case study in greater detail in Section 10.5. 
It is not always possible to make a partial application, since the argument to which 

we want to apply the function may not be its first argument. Consider the function 

elem : : Char -> [Char] -> Boo] 

We can test whether a character ch is a whitespace character by writing 

elem ch whitespace 

where whitespace is the string " \t\nM. We would like to write the function to test 
this by partially applying elem to whitespace, but cannot. We could define a variant 
of elem which takes its arguments in the other order, as in 

member xs x = elem x xs 

and write the function as the partial application 

member whitespace 

Alternatively, we can write down this function as a 

\ch -> elem ch whitespace 

In a similar vein, to filter all non-whitespace characters from a string, we could write 
either of the partial applications 

filter (not . member whitespace) 
filter (\ch -> not (elem ch whitespace)) 

The types of  partial applications 

How is the type of a partial application determined? There is a simple rule which 
explains it. 
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/ Definition ) 

Rule of cancellation 

If the type of a function f is 

and it is applied to arguments 

(where k l n )  then the result type is given by cancelling the types t 1 to t k  

which gives the type 

For example, using this rule we can see that we get the following types 

mult iply 2 : :  I n t  -> I n t  
mult iply 2 3 : :  I n t  
doubleAll : : [Int] -> [ In t l  
doubleAll [2,3] : : [ In t l  

The syntax of application and -> 

Function application is left associative so that 

The function space symbol '->' is right associative, so that a  -> b -> c means 

a -> (b -> c) 

and not 

( a  -> b) -> c 

The arrow is not associative. If 

f : : I n t  -> I n t  -> I n t  
g : : ( I n t  -> I n t )  -> I n t  

as illustrated 
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then f will yield a function from I n t  to I n t  when given a I n t  - an example is mult ip ly .  
On the other hand, when given a function of type I n t  -> I n t ,  g yields a In t .  An 
example is 

g : : ( I n t  -> I n t )  -> I n t  
g h = (h 0) + (h 1) 

The function g defined here takes a function h as argument and returns the sum of h's 
values at 0 and I, and so g succ will have the value 3. 

How many arguments do functions have? 

Partial application can appear confusing: in some contexts functions appear to take one 
argument, and in others more than one. In fact, e\wrv,func.tion in Hoskell takes ( m ~ c f l y  
one argument. If this application yields a function, then this function may be applied 
to a further argument, and so on. Consider the multiplication function again. 

mult iply : :  I n t  -> I n t  -> I n t  

This is shorthand for 

mult iply : :  I n t  -> ( I n t  -> I n t )  

and so i t  can therefore he applied to an integer. Doing this gives (for example) 

mult iply 2 : :  I n t  -> I n t  

This can itself be applied to give 

(mult iply 2) 5 : :  I n t  

which, since function application is left associative, can be written 

mult iply 2 5 : :  I n t  

Our explanations earlier in the book are consistent with this full explanation of the 
system. We hid the fact that 

were shorthand for 

but this did no harm to our understanding of how to use the Haskell language. It is to 
support this shorthand that function application is made left associative and -> is made 
right associative. 

Examples of partial applications will be seen throughout the material to come, and 
can be used to simplify and clarify many of the preceding examples. Three simple 
examples are the text processing functions 
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dropspace = dropwhile (member whitespace) 
dropword = dropwhile (not . member whitespace) 
getword = takewhile (not . member whitespace) 
where 

member xs x = elem x xs 

We look at further examples in the next section, after examining partially applied 
operators. 

Operator sections 

The operators of the language can be partially applied, giving what are known as 
operator sections. Examples include 

(+2) The function which adds two to its argument. 
(2+) The function which adds two to its argument. 
(>2) The function which returns whether a number is greater 

than two. 
(3:  The function which puts the number 3 on the front of 

a list. 
(++"\ntl) The function which puts anewline at theend ofa  string. 
( "\nBl++) The function which puts a newline at the beginning of 

a string. 

The general rule here is that a section of the operator op will put its argument to the 
side which completes the application. That is, 

(op x) y = y op x 
(x op) y = x op y 

When combined with higher-order functions like map. filter and composition, the 
notation is both powerful and elegant, enabling us to make a whole lot more function- 
level definitions. For example, 

is the function which adds one to each member of a list, and then removes those eleinents 
which are not positive. 

10.1 2 Use partial applications to define the functions comp2 and total given in Section 
10.3 and its exercises. 

10.13 Find operator sections seci and sec2 so that 

map secl . filter sec2 

has the same effect as 

filter (>O) . map (+I) 
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(los) Revisiting the Picture example 

Now that we have been introduced to higher-order functions, and in particular partial 
application, we can revisit the example of pictures and complete our definitions of the 
functions over the Picture type. The case study was introduced in Chapter 1 and 
further developed in Sections 2.5 and 6.1. 

Recall that a picture is a list of lines, each of which is made up of a list of characters 

type Picture = [[Char]] 

We first define reflection in a horizontal mirror, which is given simply by reversing the 
list of lines. 

flipH : :  Picture -> Picture 
flipH = reverse 

To reflect in a vertical mirror we need to reverse every line - clearly a task for map: 

flipV : :  Picture -> Picture 
flipV = map reverse 

To place pictures next to each other we have two functions. To put one picture above 
the other we join together the two lists of lines 

above :: Picture -> Picture -> Picture 
above = (++) 

while placing the pictures side-by-side requires corresponding lines to be joined together 
with ++, using the function zipwith first introduced in  Section 9.2. 

sideBySide : :  Picture -> Picture -> Picture 
sideBySide = zipwith (++) 

Among the other functions mentioned were 

invertcolour : :  Picture -> Picture 
superimpose : :  Picture -> Picture -> Picture 
printpicture : :  Picture -> I0 () 

and we give their definitions now. To invert the colour in a picture, we need to invert 
the colour in every line, so 

invertcolour = map . . . 
where . . . will be the function to invert the colour in a single line. To invert every 
character in a line - which is itself a list of characters - we will again use map. The 
function mapped is invertchar, first defined in Section 6.1. This gives the definition 

invertcolour : :  Picture -> Picture 
invertcolour = map (map invertchar) 

which we can read as saying 
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apply map invertchar to every line in the Picture; that is, apply the function 
invertchar to every character in the Picture, which is a list of lists of 
characters. 

Suppose we are equipped with a function 

combinechar : :  Char -> Char -> Char 

which superimposes two characters; how are we to use this in superimposing two 
pictures'? Recall the function 

zipwith : : (a -> b -> c) -> [a] -> [b] -> [c] 

where zipwith f xs ys produces a list by applying the function f to corresponding 
elements chosen from xs and ys, so that, for instance 

To superimpose the pictures, we will need to superimpose corresponding lines, so 

superimpose = zipwith . . .  

where . . . will be required to superimpose two single lines. 
In doing this, we have to superimpose corresponding characters, so this is again 

an application of zipwith. What is used to perform the combination of individual 
characters? The answer is combinechar, and so we have 

superimpose : :  Picture -> Picture -> Picture 
superimpose = zipwith (zipwith combinechar) 

Our final definition is of printpicture, which outputs a Picture to the screen. 
We have already seen that to output a String we can use the function 

putStr : :  String -> I0 0 

so it will be sufficient for us to precede application of this by a function to turn the 
list of lines making up the Picture into a string, in which the lines are separated by 
newline characters. This we can write as a composition 

concat . map (++"\nW) 

since the e f i c t  of thir ir tirst to add a newline character to every line - the role of map 
(++"\nl') - and then to join this list of strings into a single string - the effect of the 
concat. We therefore define the printing function thus: 

printpicture : :  Picture -> I0 () 

printpicture = putStr . concat . map (++"\nu) 

( Exercises 1 
In these exercises we suggest further operations over pictures. 
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10.1 4 Define a function 

chessBoard : :  Int -> Picture 

so that chessBoard n is a picture of an n by n chess board. 

10.15 How would you implement invertcolour, superimpose and printpicture 
if Picture was defined to be [ [Booll I '? 

10.16 Define a function 

makepicture : :  Int -> Int -> [(Int,Int)] -> Picture 

where the list argument gives the positions of the black points in the picture, and 
the two integer arguments give the width and height of the picture. For example, 

will have the form 

It is evident from this that positions within lines and lines themselves are counted 
from zero, with line zero being the top line. 

10.1 7 Define a function 

pictureToRep : :  Picture -> ( Int , Int , [(Int,Int)l ) 

which has the reverse effect of makepicture. For example, if pic is 

then pictureToRep pic  will be ( 4 , 3, [ ( I ,  11, (1,211 1 

10.1 8 If we make the definition 

type Rep = ( Int , Int , C(Int,Int)l ) 

discuss how you would define functions over Rep to rotate, reflect and superim- 
pose pictures under this alternative representation. Discuss the advantages and 
disadvantages of this representation in comparison with the original representa- 
tion given by the Picture type. 

10.19 In the light of the discussion in the last four chapters, redo the exercises of 
Section 6.2, which deal with positioned pictures. 
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(lo Further examples 

This section explores how partial applications and operator sections can be used to 
simplify and shorten definitions in a number of other examples. Often it is possible to 
avoid giving an explicit function definition if we can use a partial application to return 
a function. Revisiting the examples of Chapter 7 we see that to double all the elements 
in a list we can write 

doubleAll : : [Int] -> [Intl 
doubleAll = map (*2) 

using an operator section (*2) to replace the double function, and giving the function 
definition directly by partially applying map. 

To filter out the even elements in a numerical list, we have to check whether the 
remainder on dividing by two is equal to zero. As a function we can write 

(==O) . ('mod' 2) 

This is the composition of two operator sections: first find the remainder on dividing 
by two, then check if it is equal to zero. (Why can we not write ( 'mod' 2 == O)'?) 
The filtering function can then be written 

getEvens : : [Int] -> [Int] 
getEvens = filter ((==O).('modC 2)) 

Our final example comes from the list splitting study. We defined 

getword xs 
= getuntil p xs 

where 
p x = elem x whitespace 

The local definition is not now needed, as we can define the function p by an operator 
section: 

getword xs = getuntil ('elem' whitespace) xs 

Note the way that we partially apply a function to its second argument, by forming an 
operator section. This works because 

('elem' whitespace) x 
= x 'elem' whitespace 
= elem x whitespace 

as required. 
Finally, the function getword can itself be given a direct definition, by partial 

application thus 

getword = getuntil ('elem' whitespace) 

This definition reads like an informal explanation - to get a word, get characters until 
a whitespace character is found. 
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(10 Currying and uncurrying 

In Haskell we have a choice of how to model functions of two or Inore arguments. 
We usually represent them i n  what is called a curried form, where they take their 
arguments one at a time. This is called currying after Haskell curry2 who was onc 
of the pioneers of the A-calculus and after whom the Haskell language is named. For 
instance, a function to multiply two integers would normally be defined thus: 

m u l t i p l y  : :  I n t  -> I n t  -> I n t  
m u l t i p l y  x  y  = x*y 

while an uncurried version can be given by bundling the arguments into a pair, thus: 

multiplyUC : :  ( I n t , I n t )  -> I n t  
multiplyUC ( x , y )  = x*y 

Why do we usually opt for the curried form'! There are a number of reasons. 

The notation is somewhat neater: we apply a function to a single argument by 
juxtaposing the two, f x, and application to two arguments is done by extending 
this thus: g x y. 

It permits partial application. In the case of multiplication we can write expressions 
like m u l t i p l y  2, which returns a function, while this is not possible if the two 
arguments are bundled into a pair, as is the case for multiplyUC. 

We can in any case move between the curried and uncurried representations with little 
difficulty, and indeed we can define two higher-order functions which convert between 
curried and uncurried functions. 

Suppose first that we want to write a curried version of a function g, which is itself 
uncurried and of type (a ,  b) -> c.  

curry g 

This function expects its arguments as a pair, but its curried version, c u r r y  g, will take 
them separately - we therefore have to form them into a pair before applying g to them: 

cur ry  : : ( ( a , b )  -> C )  -> (a -> b -> C )  
cur ry  g x y  = g (x ,y )  

cur ry  multiplyUC will be exactly the same function as mul t ip ly .  
Suppose now that f is a curried function, of type a -> b -> c. 

uncurry f 

In Lhct the t i n t  person to describe the idea was Schiintinkel, but 'SchBntinkeling7 does not  sound somappy! 
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The function uncurry f will expect its arguments as a pair, and these will have to be 
separated before f can be applied to them: 

uncurry : :  ( a  -> b -> c)  -> ( (a ,b)  -> c) 
uncurry f (x,y) = f x y 

uncurry mult iply will be exactly the same function as multiplyUC. The functions 
cur ry  and uncurry are inverse to each other. 

Partial application of functions is done on the arguments from left to right, so a 
function cannot directly be applied to its second argument only. This effect can be 
achieved indirectly by first transforming the order in which the function takes its 
arguments and then partially applying it. 

f l i p  : :  ( a  -> b -> c)  -> (b -> a -> c) 
f l i p f  x y = f  y x  

f l i p  map will takes as its first argument the list and as its second the function to be 
mapped; it can be applied to its first argument, having the effect of applying map to its 
second only. 

Another way of forming the partial application ( ' elem' whitespace) is to use the 
f l i p  function. We have 

f l i p  elem : : [Char] -> Char -> Boo1 

(among other types) and so we can form the partial application thus: 

f l i p  elem whitespace 

We now turn to a more substantial example in which we use the ideas of composition, 
partial application and operator sections in a variety of ways. 

@ Example: creating an index 

This section explores a different aspect of text processing from those we have looked 
at already. How can an index for a document be produced automatically? We use 
the example to illustrate how higher-order functions are used in many parts of the 
final program. Polymorphism allows their use at different types, and their function 
parameters mean that they can be used to ditTerent effect in different situations. 

To make the example texts shorter, a scaled-down version of the indexing problem 
is investigated. This is only done for ease of presentation, as all the important aspects 
of the system are explored here. 

Specification 

We should first specify what the program is to do. The input is a text string, in which 
lines are separated by the newline character ' \n '. The index should give every line on 
which the word in question occurs. Only words of length at least four letters are to be 
indexed, and an alphabetical listing of the results produced. Within each entry, a line 
number should not be duplicated. For example, on the input 
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"cathedral doggerel cathedral\nbattery doggerel cathedral\ncathedralU 

we would expect to get an index 

battery 2 
cathedral 1, 2, 3 
doggerel 1, 2 

Designing the program 

We can represent the index as a list, with each entry being an item. What will a single 
entry be'? It has to associate a collection of line numbers with each word in the text; 
wc can therefore represent each entry by a pair consisting of a list of numbers, of type 
[Intl, and a word, of type String. The top-level function will therefore be 

rnakeIndex : :  Doc -> [ ([Inti ,word) 1 

where we use the type synonyms 

type Doc = String 
type Line = String 
type Word = String 

to distinguish the different uses of the string type in the design which follows. Note 
that these are all the same type; we use the names to make our discussion of types carry 
more information: the definition of 'Line' can be read as saying 'String thought o f  
as representing a line', for example. 

How can the program be designed'! We focus on the data structures which the 
program will produce, and we can see the program as working by making a series of 
moditications to the data with which we begin. This data-directed design is common 
in Haskell functional program development. 

At the top level, the solution will be a composition of functions. These perform the 
following operations. in turn. 

Split the text, a Doc, into lines, giving an object of type [Line] 

Pair each line with its line number, giving an object of type [(Int ,Line)] 

Split the lines into words, associating each word with the number of the line on which 
it occurs. This gives a list of type [(Int ,Word)]. 

Sort this list according to the alphabetical ordering of words (Strings), giving a list 
of the same type. 

Modify the lists so that each word is paired with a list containing a single line number. 
This gives a result of type [ (  [Intl ,Word)]. 

Amalgamate entries for the same word into a list of numbers, giving a list of type 
C (  [Intl ,Word)]. 

Shorten the list by ren~oving all entries for words of less than four letters, giving a 
list of type [ ( [Int] ,Word) I .  
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The definition follows; note that we have used comments to give the type of each 
component function in the forward composition: 

makeIndex 
= lines >. > - - Doc -> [Line] 
numLines > .>  -- [Line] -> [(Int ,Line>] 
allNumWords > . >  - - [(~nt ,Line) 1 -> [(Int ,Word)] 
sortLs >.> -- [(Int ,Word)] -> [(Int ,Word)] 
makeLists > . > -- [ (1nt ,Word> 1 -> 1 ( [Intl ,Word) 1 
amalgamate > . > - - [ ( [Intl ,Word) 1 -> C ( [Intl ,Word) 1 
shorten -- [ (  [Intl ,Word)] -> [ (  [Inti ,Word)] 

Once thc type of each of the functions is given, developn~ent o f  each can proceed 
independently. The only information necessary to use a function is its type. and these 
types are specified in the definition above. Each of the functions can now bc given. i n  
turn. 

Implementing the component functions 

To split a string into a list of' lines it must be split at each occurrence of the newline 
character, '\n'. How is this written as a function'! One solution is to write functions 
analogous to getword and dropword, which together were used earlier in splitwords. 
Alternatively. we can use the functions getuntil and dropuntil from Chapter 7. A 
third alternative is to look in the standard prelude where we find the function lines 
already defined; we therefore use that. 

lines : : Doc -> [Line] 

The next function should pair each line with its line number. If the list of lines is 
linels. then lhe list of line nu~nbers is 

[1 . . length linels] 

Stepping back from the problem, it is apparent that the lists of lines and linc numbers 
need to be combined into a list of pairs, by zipping the two lists together. The zip 
function has already been defined to do exactly this. so the required function is 

numLines : : [Line] -> [ ( Int , Line ) 1 
numLines linels 

= zip [I . . length linels] linels 
Now the lines have to he split into words, and line numbers attached. We lirst consider 
the problen~ for a single line. 

numWords : :  ( Int , Line ) -> [ ( Int , Word ) ] 

Splitting into words can be done by the function splitwords of Chapter 7, tiioditied - 
slightly. When we defined splitwords we preserved any punctuation characters. as 
these werc to appear in Lhe output of the text processor. In contrast here we will modify 
the definition of whitespace to include punctuation, and so remove the punctuation from 
the resulting words. We define 
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whitespace : :  S t r i n g  
whitespace = " \ n \ t ; : . , \ ' \ " ! ? ( ) - "  

Each of these words is then to be paired with the (same) line number. Stepping back 
from the problem, we see that we have to perform an operation on every item of n list, 
the list of words making up the line. This is a job for map, 

numWords (number , l i n e )  
= map (\word -> (number,word)) ( sp l i twords  l i n e )  

or a list comprehension 

numWords (number , l i n e )  
= [ (number , word) I word <- sp l i twords  l i n e  1 

To apply this to the whole text, the function nunwords has to be applied to every line. 
This is again done by map, and the individual results joined together or concatenated. 
We make a direct definition of the function. by composing its two parts. First we map 
the function nunwords, then we concatenate the results, using concat.  

allNumWords : : [ ( I n t  , Line ) ] -> [ ( I n t  , Word ) ] 
allNumWords = concat . map numWords 

What has been achieved so far'! The text has been transformed into a l i \ t  of line- 
numbcrlword pail-s, from which an index is to be built. For instance, the text 

"ca t  dog\nbat dog\ncat " 

will be convcrted to 

The list n~ust  next be sorted by word order, and lists of lines o n  which a word appears 
be built. The ordering relation on pairs of numbers and words is given by 

o rde rpa i r  : :  ( I n t  , Word ) -> ( I n t  , Word ) -> Boo1 
o rde rpa i r  ( n l  , w l  ) ( n2 , w2 ) 

= w l  < w2 1 I ( w l  == w2 && n l  < n2 ) 

The words are compared for dictionary order. For pair\ containing the wme worcls, 
ordering is by line number. 

Sorting a list is most eacily done by a version of the quicksort algorithm. The l i \ t  i \  
split into parts smaller than and larger than a given clement; each of thew halve\ can 
be sorted xparately, and then joined together to form the result. 

so r tLs  : :  [ ( I n t  , Word ) 1 -> [ ( I n t  , Word ) 1 

sor tLs  [I = [I 
sor tLs  (p:ps)  = so r tLs  smal le r  ++ [p] ++ so r tLs  l a r g e r  
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The lists smaller  and l a r g e r  are the lists of elements of ps which are smaller (or 
larger) than the pair p. Note that it is here that duplicate copies are removed - any other 
occurrence of the pair p in the list ps does not appear in  either smaller  or la rger .  

How are the two lists defined'? They are given by selecting those elements of ps 
with given properties: a job for f i l t e r ,  or a list comprehension. Going back to the 
definition of s o r t l s ,  

sor tLs  (p : ps)  
= sor tLs  smaller  ++ [p] ++ sor tLs  l a r g e r  

where 
smaller  = [ q I q<-ps , orderpa i r  q p I 
l a r g e r  = [ q I q<-ps , orderpa i r  p q 1 

After sorting the running example will be 

The entries for the sarne word need to be accumulated together. First each entry is 
converted to having a list of line numbers associated with it, thus 

makeLists : : [ ( I n t  ,word) 1 -> [ ( [Int]  ,Word) 1 
makeLists 

= map mklis 
where 
mklis ( n , st ) = ( [nl , st  ) 

For our example, this b- w e s  

After this, the lists associated with the same words are amalgamated. 

amalgamate [I = [I 
amalgamate [p] = [pl 
amalgamate ((11 ,wl) : (12,w2) : r e s t )  

1 w l  /= w2 = (l1,wI) : amalgamate ((12,w2) : r e s t )  (amalg.1) 
I otherwise = amalgamate ((11++12,wI):rest)  (amalg .2) 

The frst two equations are simple, with the third doing the work. 

If we have two adjacent entries with different words, case (amalg. I ) ,  then we know 
that there is nothing to add to the first entry - we therefore have to amalgamate entries 
in  the tail only. 

If two adjacent entries have the same word associated, case (amalg .2) ,   hey are 
amalgamated and the function is called again on the result. This is because there 
may be other entries with the same word, also to be amalgamated into the leading 
entry. 
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Consider an example 

To meet the requirements, one other operation needs to be performed. 'Small' words 
of less than four letters are to be removed. 

shorten 
= filter sizer 

where 
sizer (n1,wd) = length wd > 3 

Again, the filter function proves useful. The index function can now be defined in 
full: 

makeIndex : : Doc -> [ ( [Int] ,Word) 1 
makeIndex 

= lines >.> numLines >.> allNumWords >.> sortLs >.> 
makeLists > . >  amalgamate >.> shorten 

As was said at the beginning of this section, function composition provides a powerful 
method for structuring dcsigns: programs are written as a pipeline of operations, 
passing the appropriate data structures bctween them. 

It is easy to see how designs like these can be modified. To take one example, thc 
indexing program above filters out short words only as its final operation. Therc are 
a number of earlier points in the chain at which this could have been done, and it is a 
worthwhile exercise to consider these. 

10.20 Detine the function lines using the functions getuntil and dropuntil from 
Chapter 9, or the built-in functions takewhile and dropwhile. You should be 
careful that your functions do not give an empty word when there are empty lines 
in the Doc; this might happen for the examples "cat\n\ndogW and "f ish\nV. 

10.21 How would you use lambda expressions to replace the local detinitions in 
makeLists and shorten'? How would you define these functions using list 
comprehensions? 

10.22 In the index for this book, instead of printing an entry like 

cathedral 3, 5, 6, 7, 9, 10 



192 Functions as values 

a number of ranges could be given: 

cathedral 3, 5-7, 9-10 

How would you redesign your program to do this'? Hint: tirst think about the 
type of the new index representation and then consider adding another function 
to the (forward) composition which currently forms the definition of makeIndex. 

10.23 How would you re-define sortLs so that duplicate copies of an item are 17ot 
removed? For the index, this means that if a word occurs twicc o n  line 123 say. 
then 123 occurs twice in the index entry for that word. 

10.24 How could the functions getuntil and dropuntil be used in the delinition of 
amalgamate? 

10.25 Explain how the function sizer defined locally in shorten can be dctined as a 
composition of built-in functions and operator sections; the role of sizer is to 
pick the second half of a pair, find its length, and compare the result with 4. 

10.26 How is the following definition of the last conditional equation for amalgamate 
incorrect? Give an example calculation to justify your answer. 

amalgamate ((ll,wl):(12,~2):rest) 
I wl /= w2 = (11,wl) : amalgamate ((12,w2):rest) 
I otherwise = (11++12,wI) : amalgamate rest 

10.27 Give a detinition of 

which gives a neatly laid-out printable version of an index, as shown at the start 
of the section. You might find it useful to define a function 

showIndex : :  [ ([Int] ,Word) 1 -> String 

and to use this as a part of your definition of printIndex. 

10.28 Modify the program so that words of less than four letters are removed as a part 
of the definition of allNumWords. 

10.29 Modify the makeIndex function so that instead of returning the list of line 
numbers on which a word occurs, the function returns the total number of times 
that the word occurs. You will need to make sure that multiple occurrences of a 
word in a single line are counted. There are two ways of tackling the problem. 

Modify the program as little as is necessary - you could return the length of 
a list rather than the list itself, for instance. 

Take the program 5tructure as a guide, and write a (simpler) program which 
calculates the number of occurrences directly. 
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10.30 Modify the program so that capitalized words like "Dog" are indexed under their 
uncapitalized equivalents ("dog"). This does not work well for proper names 
like "Amelia" - what could you do about that? 

10.31 The function sor tLs  is limited to sorting lists of type [ ( I n t  ,Word)] because 
it calls the orderpa i r  function. Redefine the function so that it takes the 
comparison function as a pammeter. What is its type after this redefinition? 

10.32 How would you modify the program if it was to be used to form the index for 
a Haskell script'? Hint: you need to think about what it is sensible to ignore in 
such an enterprise. 

(109) Verification and general functions 

Verification can takc on a different character when we look at higher-order polymorphic 
functions. We can start to prove equalities between functions, ratherthan between values 
of functions, and we shall also see that we are able to prove theorems which resemble 
their subjects in being general and reusable, and so applicable in many contexts. 

Function-level verification 

We claimed in Section 10.3 that the function i t e r  is a generalization of twice, since 

i t e r  2  f  
= f . i t e r  1 f  
= f .  ( f .  i t e r O f )  
= f . (f , i d )  
= f .  f  
= twice f 

by ( i t e r .  1)  
by ( i t e r .  1) 
by ( i t e r  -2)  
by (compId) 

by ( twice.  1) 

In proving this we have used the equality between two functions 

How is this proved? We examine how each side behaves on an arbitrary argument x 

(f . i d )  x 
= f  ( i d  x) 
= f  x 

so that for any argument x the two functions have the same behaviour. As black boxes, 
they are therefore the same. As what interests us here is their behaviour, we say that 
they are equal. We call this 'black-box' concept of equality extensional. 

Definition 

Principle of extensionality: 

Two functions f  and g are equal if they have the same value at every argument. 
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This is called extensionality in contrast to the ideaof intensionality in which wc hay two 
functions are the same only if they have the same definitions - we no longer think of them 
as black boxes; we are allowed to look inside them to see how the mechanisms work. 
as it were. If we are interested in the results of our programs, all that matters are the 
values given by functions, not how they are arrived at. We therefore use extensionality 
when we are reasoning about function behaviour in Haskell. If we are interested in 
efficiency or other performance aspects of programs, then the way in which a result is 
found will be signiticant, however. This is discursed further in Chapter 19. 

( Exercises 1 

10.33 Using the principle of extensionality, show that fi~nction composition is associa- 
tive: that is, for all f ,  g and h, 

10.34 Show that for all f ,  

10.35 Show that the function f l i p  defined in Section 10.7 satisfies 

f l i p  . f l i p  = i d  

Hint: to show this, you might want to prove that for any f ,  

f l i p  ( f l i p  f )  = f 

10.36 Two functions f and g are inverses if it can be shown that 

Prove that the functions curry and uncurry of Section 10.7 are inverses. Can 
you think of other pairs of inverse functions? 

10.37 Using induction, prove that for all natural numbers n, 

i t e r  n i d  = i d  

10.38 A function f  is called idempotent if 

Show that the functions abs and signum are idempotent. Can you think of any 
other idempotent functions? 
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Higher-level proofs 

Our verification thus far has concentrated on first-order, monomorphic functions. Just 
as map, f i l t e r  and f o l d  generalize patterns of definition, we shall find that proofs 
about these functions generalize results we have seen already. To give some examples, 
it is not hard to prove that 

doubleAl1 (xs++ys) = doubleAll xs  ++ doubleAll ys  

holds for all finite lists xs  and ys. When doubleAll is defined as map ( *2 )  it becomes 
clear that we have an example of a general result, 

map f (xs++ys) = map f xs  ++ map f ys (map++) 

which is valid for any function f .  We also claimed in an earlier exercise that 

sum (xs++ys) = sum xs  + sum ys (sum. 3) 

for all finite lists xs, ys. The function sum is given by folding in (+I,  

sum = f o l d r  (+) 0 

and we have, generally, i f f  is associative, and s t  is an identity for f ,  that is, 

x ' f '  (y ' f '  z )  = (X ' f '  y) ' f '  z 

X ' f '  st = X = st ' f '  X 

for all x, y, z then the equation 

f o l d r  f st (xs++ys) = f ( f o l d r  f st xs)  ( f o l d r  f st ys)  ( fo ld r .3 )  

holds for all finite xs  and ys. Obviously (+) is associative and has 0 as an identity. 
and so (sum. 3)  is a special case of ( fo ld .  3) .  Now we give three proofs of examples 
in the same vein. 

map and composition 

A first example concerns map and composition. Recall the definitions 

map f [I = [I 
map f (x :xs)  = f x : map f xs  
(f . g) x = f (g X) 

It is not hard to see that we should be able to prove that 

(map. 1) 
(map. 2) 

(comp. I)  

map (f . g) xs = (map f . map g) xs  (map. 3) 

holds for every finite list xs. 
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Applying (f . g) to every member of a list should be the same as applying g to every 
member of the list and then applying f to every member of the result. It is proved just 
as easily, by structural induction. The (base) case requires the identity to be proved 
for the empty list. 

map (f . g) [I = [I by (map.1) 

(map f . map g) [I 
= map f (map g [I 
= map f [I 
= [I 

by (comp. 1) 
by (map.1) 
by (map.1) 

Assuming that 

map (f . g)  xs = (map f . map g)  xs ( ~ Y P )  

is true, it is now necessary to prove that 

map (f . g) (x:xs) = (map f . map g)  (x:xs)  (ind) 

Again, it is enough to analyse each side of the equation. 

map (f . g) (x:xs)  
= (f . g) x : map (f  . g) xs 
= f (g X) : map (f . g) xs 

(map f . map g)  (x:xs)  
= map f (map g (x:xs))  
= map f (g x : map g xs)  
= f (g X) : map f (map g xs)  
= f (g X) : (map f . map g )  x s  

by (map. 2) 
by (comp. 1) 

by (comp . I) 
by (map. 2) 
by (map. 2) 

by (comp. 1) 

The induction hypothesis is exactly what is needed to prove the two sides equal. 
completing the proof of the induction step and the proof itself. I 

Each Haskell list type, besides containing finite lists, also contains infinite and parlial 
lists. In Chapter 17 these will be explained and it will be shown that (map. 3) is true 
for ~111 lists XS, and therefore that the functional equation 

map (f  . g) = (map f )  . (map g)  

holds in general. 

map and f i l t e r  

The proof above showed how properties of functional programs could be proved from 
the definitions of the functions in a straightforward way. The properties can state how 
the program behaves - that a sorting function returns an ordered list, for instance -or 
can relate one program to another. This latter idea underlies program transformation 
for functional languages. This section introduces an example called filter promotion 
which is one of the most useful of the basic functional transformations. 
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f i l t e r  p  . map f  = map f  . f i l t e r  (p  . f )  

The equation says that a map followed by a f i l t e r  can be replaced by a f i l t e r  
followed by a map. The right-hand side is potentially more efficient than the left, since 
the map operation will there be applied to a shorter list, consisting ofjust those elements 
with the property (p . f ) .  An example is given by the function first defined in Section 
10.4. 

f i l t e r  (O<) . map (+ I )  

Instead of mapping first, the function can be replaced by 

map (+I )  . f i l t e r  ( ( 0 0  . ( + I ) )  
= map (+ I )  . f i l t e r  (O<=) 

and it  is clear that here the transformed version is more efficient, since the test (O<=) 
is no more costly than (O<). The proof that 

( f i l t e r  p  . map f )  xs = (map f  . f i l t e r  (p . f ) )  x s  

for finite lists xs  is by structural induction. First we reiterate the definitions of map, 
f i l t e r  and composition. 

map f  [I = [I 
map f  (x:xs) = f  x  : map f  x s  

f i l t e r  p  [I = [I 
f i l t e r  p  (x:xs) 

I P X  = x  : f i l t e r  p  xs 
I otherwise = f i l t e r  p  xs 

(f . g) x = f  (g x) 

The base case consists of a proof of 

( f i l t e r  p  . map f  11 = (map f  

Thih is true since 

( f i l t e r  p  . map f )  [I 
= f i l t e r  p  (map f [I) 
= f i l t e r  p  [] 

= [I 

and 

(map f  . f i l t e r  (p . f  ) )  [I 
= map f  ( f i l t e r  (p . f )  [I) 
= map f  [I 
= [I 

In the induction step, a proof of 

(map. 1) 
(map. 2 )  

( f i l t e r .  I )  

( f i l t e r  . 2 )  
( f i l t e r  .3 )  

(comp . I )  

f i l t e r  (p  . f  1) [I (base) 

by (comp. I) 
by (map. 1) 

by ( f i l t e r .  I )  

by (comp. 1) 
by ( f i l t e r .  1) 

by (map.1) 
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( f i l t e r  p  . map f )  (x:xs)  = (map f  . f i l t e r  (p . f ) )  (x:xs)  (ind) 

is required, using the induction hypothesis 

( f i l t e r  p  . map f )  xs  = (map f  . f i l t e r  (p . f ) )  x s  ( ~ Y P )  

The proof begins with an analysis of the left-hand side of ( ind) .  

( f i l t e r  p  . map f )  (x:xs) 
= f i l t e r  p  (map f  (x:xs))  
= f i l t e r  p  (f x  : map f  xs)  

by (comp. 1) 
by (map. 2) 

There are two' cases to consider: whether p  (f x) is True or False. Taking the case 
where p  (f x) is True, we continue to examine the left-hand side of ( ind) ,  giving 

= f  x  : f i l t e r  p (map f  xs)  
= f  x  : ( f i l t e r  p  . map f )  xs  
= f  x :  (mapf . f i l t e r  ( p .  f)) xs  

by ( f i l t e r .  2) 
by (comp. 1) 

by (hyp) 

Now we look at the right-hand side of ( ind) ,  also assuming that p  (f x)  is True: 

(map f  . f i l t e r  (p . f  ) )  (x :xs)  
= map f  ( f i l t e r  (p . f )  (x :xs) )  
= map f  (x:  ( f i l t e r  (p . f )  x s ) )  
= f  x  : map f  ( f i l t e r  (p . f )  xs)  
= f  x  : (map f  . f i l t e r  (p . f ) )  xs 

by (comp. 1) 
by ( f i l t e r .  2) 

by (map. 2) 
by (comp.1) 

which shows that ( ind)  holds in the case that p  (f x) is True. 
A similar chain of reasoning gives the same result in thecase where p  (f x) is False. 

This establishes ( ind)  assuming (hyp), and so together with (base) completes the 
proof of the filter promotion transformation i n  the case of finite lists; it holds, in fact, 
for all lists. I 

map, reverse and the Picture case study 

When we introduced the P i c tu re  case study in Chapter I we claimed that we could 
prove that f l ipV and f  l ipH can be applied in either order to give the same result. Our 
implementation defines them thus 

f l i pH  = reverse  
f l ipV = map reverse  

and we can see informally that 

reverse  affects the order of the elements, while leaving the elements unchanged: 

map reverse  affects each of the elements, while keeping their order the same. 

The second observation is a consequence of the function being a map, and so we make 
the more general claim that for all finite lists xs  and all functions f ,  

We should alao think about what happens when p (f x) is undefined; in this case both sides will be 
undefined, and so equal. 



Verification and general functions 199 

map f (reverse xs) = reverse (map f xs) (map/reverse) 

This has the consequence that 

flipV (flipH xs) = flipH (flipV xs) 

if we replace f in (map/reverse) by reverse. We will see in Chapter 17 that we can 
establish (map/reverse) for all lists xs and so conclude that the functional equations 
hold: 

map f . reverse = reverse . map f 
flipV . flipH = flipH . flipV 

We now prove (map/reverse) by induction over xs. 
We have seen the definition of map in the previous examples; reverse is defined 

thus. 

reverse [I = [I 
reverse (z:zs) = reverse zs ++ [zl 

Statement We first have to prove the base case: 

map f (reverse [ I )  = reverse (map f 11) 

and then we need to prove the induction step, 

map f (reverse (x:xs)) = reverse (map f (x:xs)) 

assuming the induction hypothesis: 

map f (reverse xs) = reverse (map f xs) 

Base Looking at the two sides of the base case in turn, we have 

map f (reverse [I ) 
= map f [I 
= [I 

reverse (map f [I) 
= reverse [I 
= [I 

(base) 

by (reverse. I) 
by (map.1) 

by (map. 1) 
by (reverse. I) 

and this shows that the two sides of the base case equation have the same value, and so 
we move on to the induction case. 

Induction We start by examining the left-hand side of (ind) : 

map f (reverse (x:xs)) 
= map f (reverse xs ++ [XI) by (reverse. 2) 

Now, it is not hard to prove that 
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map f (ys++zs) = map f ys ++ map f z s  (map++) 

(we leave this proof as an exercise for the reader) and using (map++) we can continue 
to simplify the left-hand side 

= map f ( reverse  xs)  ++ map f Ixl by (map++) 
= map f ( reverse  xs)  ++ [f XI by (map. 11, (map.2) 

Using the induction hypothesis, we can make one more step, 

= reverse  (map f xs) ++ [f XI 

Now looking at the right-hand side, 

reverse  (map f (x:xs))  
= reverse  (f x : map f xs)  
= reverse  (map f xs)  ++ Cf XI 

by (map. 2) 
by ( reverse .  2) 

and now we see that the two sides are equal, which establishes the induction step and 
so completes the proof. 

Libraries of theorems 

We have seen in this section that we can prove properties of general functions like map. 
f i l t e r  and f o ldr .  This means that when we define a function which uses map, say, 
we can call on a whole library of properties of map, including, for all finite x s  and ys: 

map (f . g) x s  = (map f . map g) x s  
( f i l t e r  p . map f )  x s  = (map f . f i l t e r  (p . f ) )  xs  
map f ( reverse  xs)  = reverse  (map f xs)  
map f (ys++zs) = map f ys  ++ map f z s  

We have seen that using the general functions map, f i l t e r  and others allowed us 
to make direct definitions of new functions rather than having to define them 'from 
scratch' using recursion. In exactly the same way, these general theorems will mean 
that in many cases we can avoid writing an induction proof about our specific function, 
and instead simply use one of these theorems. 

( Exercises 7 

10.39 Prove that for all ys  and z s  the equation 

as was used in the proof of the theorem about map and reverse.  

10.40 If f  is associative, and st is an identity for f - these notions were defined o n  
page 195 - then prove that the equation (f o ld r  .3) : 

f o ld r  f st (xs++ys) = f ( f o l d r  f st xs)  ( f o l d r  f st ys) 
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holds for all finite xs  and ys. 

10.41 Argue that the result 

concat (xs  ++ ys)  = concat xs  ++ concat ys  

is a special case of (f o ld r  . 3 ) ,  using 

concat = f o l d r  (++) [I 

as the definition of concat. 

10.42 Prove that for all finite lists xs, and functions f ,  

concat (map (map f )  xs )  = map f (concat xs) 

10.43 Prove that over the type I n t  

as is used in the theorem relating map and f i l t e r .  

10.44 Prove for all tinite lists x s  that 

f i l t e r  p ( f i l t e r  q xs) = f i l t e r  (p &&& q) xs  

where the operiltor &&& is detined by 

[ Summary ) 
We have seen in this chapter how we can write functions with functions as results. 
This means that we can create the functions by applying operations like map, f i l t e r  
and f o ld r  within our programs, and that we can indeed treat functions as 'first-class 
citizens' of our programming language. A consequence of this has bccn that we are 
able to explain the definitions of some of the P ic ture  operations first scen in Chapter I .  

The main mechanisms introduced here have allowed us to create functions by apply- 
ing functions or operators to fewer arguments than wc expected, thus creating partial 
applications and operator sections. We also saw how the Haskell-type system and 
syntax were adapted to deal with the curried form of function definitions, by which 
multi-argument functions take their arguments one at a time. 

We concluded by showing that we could prove general properties about general 
functions like map, and thus build up libraries of results about these functions which 
can potentially be applied whcncver the general function is reused. 
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11.1 The development cycle 

11.2 Development in practice 

In this short chapter which builds on the discussion in Chapter 4 we step back from the 
details of programming in Haskell to take a more general look at the cycle of stages in 
which we see a program being developed. Although some of the remarks are specific to 
Haskell, most are general, and would applyto developing a program in any programming 
language. 

We include a table giving hints about how to proceed in the four steps of understand- 
ing, design, implementation and reflection, which owes much to Polya's approach to 
problem solving in mathematics (Polya 1988). We conclude the chapter by looking at 
some Haskell illustrations of the general advice given earlier. 

(11 The development cycle 

We can see programs being developed in a cycle. 

Understand 
the problem 

b~~x.'-', - - - - 
Look back: Design 

evaluate, test _ _ - the solution 

Write the 
solution 
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First, we have to understand the programming problem that we are trying to solve 
- we spent some time talking about this in Chapter 4. Once we have done this we can 
try to plan or design how we might approach the problem, using all the resources of 
the programming language, its libraries and also the programs that we have already 
written. Again in Chapter 4 we argued that we can make considerable progress at this 
stage before we actually start to write programs, which is the next step in the cycle. 

Once the program is complete we can reflect or look back and see how well we have 
achieved our goal: we might test the program - as outlined in Chapter 4-or we might at 
this stage try to prove various properties of the programs we have written. We can also 
at this point look back at the original problem - was that in fact what the user wanted 
to solve, or in the light of seeing a running program does the user want to change the 
specification of the problem? 

This clockwise cycle of stages is a simplified model of the way that software is built 
in practice, from small exercise programs to large-scale industrial projects. Even for 
the sort of programs we are writing here, reflecting on what we are doing is a very 
important activity. and this is emphasized by the dotted arrows in the cycle diagram. 

As we design a program, we get further insight about how it should be specified: we 
might tind there are cases missed, or questions unanswered by the specification -we 
need to go back to the specifier and sort these out before we can move on. 

Also at the design stage we might think of competing approaches to solving the 
problem: we need to think about which will be the better, and maybe we will tind 
that we have to change our approach if our first choice prove\ to be unworkable. 

In writing the program we may well see how the design could be improved. An 
example we have seen already concerns the index created in Section 10.8: in that 
case we kept hold of short words right until the la\t stage in the composition while 
we could have got rid of them at a much earlier stage: at the point where the lines 
were split into words, say. 

Especially when we are learning to program it is very good to get into the habit of 
criticizing our own and other people's programs. Sometimes, indeed, we find that after 
we have written a program we have gained so much deeper an understanding of the 
problem and the ways that we might solve i t  that we throw away our first solution and 
rewrite it from scratch in order to clean it up and to reflect our better understanding. 

It is hard to give general advice about how to write programs, but some of the most 
important ideas are contained in the table in Figure 1 1 . 1 .  The advice contained there 
is strongly influenced by Polya's approach to problem solving in mathematics, and his 
How To Solve It (Polya 1988) contains a wealth of suggestions about how to go about 
looking for solutions to problems, many of which carry over to programming examples. 
The suggestion of error logging is an integral part of Humphrey's P e r s o ~ ? d  S o j t ~ w t - e  
Process (Humphrey 1996). 

In the next section we illustratc some of the points in the development cycle using 
Haskell programming examples. 
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Understanding the problem 

First we need to understand the problem we are trying to solve. 

o What are the inputs and outputs to the problem'? Are there any special conditions 
on the inputs or outputs'? 

o Looking at examples can help to clarify the problem. 

o Can the problem be solved'? Is the specification complete, or are there aspects which 
need clarification? 

o If there are different possible ways of making sense of it, try to find out from the 
specifier what was intendcd. 

o Does the problem itself have a structure'? Is it made up of a number of parts which 
could be solved separatcly'! Does a diagram help to describe the problem'? 

Designing a solution - 

Before writing a program we need to plan how we are going to do it. 

o Have you seen a siruilar problem before'? If  so, you might use its design as a guide. 

o Can you think of a simpler but I-elated problem'! If you can wlve that. you might 
use or modify the solution. 

o Can you think of a gcnerali~ation of the problem'? This might be easier to solve 
than the original. 

o What is the architecture of the problem'? Can you break it up into parls which may 
be solved (relatively) independently'? As well as the parts themselves you will need to 
think about how the parts fit together. 

o Think about how to go from the inputs to the output - a bottom-up approach; use 
the intermediate data as a guide. Also think about what resources you could be given 
which would let you solve the problem -this 'wixit ; f . .  . ?' approach is top-down. 

o Even at the planning stage it is important to know what your resources are. Make sure 
you check what is provided by your programming language and its libraries. Another 
important resource consists of the programs which you yourself have already written. 

o Design with change in mind. If your program is useful, then it will probably be 
modified a number of times over its lifetime. 

Writing a program 

To write a program you need to be aware of the resources that your programming 
language provides. You also need to follow the informal design or plan. 

o Haskell has a substantial number of library fimctions which support programming 
over lists. Some of these are general polymorphic higher-order functions which can be 
used in a large variety of situations. Try to use these if you can. (cont.) 

Figure 11.1 The development cycle. 
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o We shall see that over other data types we can define similar general functions. It is 
usually easier to use these functions than to write a solution from scratch. 

o You write your own general functions by abstracting away from the particular. 
Specifically, the particular - like multiplying by two - can be turned into a function 
which becomes a parameter to the general function (such as map). 

o Most languages allow you to make definitions with different cases; Haskell also 
provides pattern matching. which selects parts of an ob,ject as well as distinguishing 
cases. 

o Recursion is a general strategy for designing programs over data types like lists and 
numbers. To define a recursive function f at argument x you need to ask 'bvhnt $1 l l t r t l  

the V L I ~ L I P  o f f  tit . . . ?'. 

o List comprehensions provide an expressive notation for lists. 

o You may need to introduce other functions as you begin to write your definitions. 
These might appear in where clauses or at the top level of the program. 

o If you cannot define the function you need to, try a sinipler one. A solution to this 
might be a model for what you want, or could be used in the definition of the linal 
function. 

Reflection 

Look~ng back on what you have done might affect your program, i t \  de\ign or indccd 
the \pecificat~on of the problcm itclf .  

o Can you test your solution? You need to think of the testing groups over which the 
program should show similar behaviour, as well as looking hard at any special cases. 

o If your testing reveals errors or 'bugs', try to find their source. Are error\ duc 
to accidental mistakes'? problems in understanding how the Haskell language works? 
miwnderstanding how to solve the problem? misunderstanding the problem it\elf? or 
some other reason'? 

o You can learn from the errors you have made; try keeping a log of all the crrors that 
you make. and the reason for them. This should help you not to repeat them. 

o Can you prove that your program does what it should? If not, you can ask why this 
is, and whether i t  points to errors in the program or the design. 

o Suppose you were asked to write the same program again. How would you do it 
differently'? 

o Suppose you were asked to modify or extend the program. How easy would that 
be? If it is difficult, can you think how you might have designed or written the solution 
differently to accommodate changes more readily'? 

o Does the program run in reasonable time'? If not, can you see where the bottlenecks 
are'? Can you see how to modify the program to improve its performance'? 

Figure 11.1 The development cycle (contd). 
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(11 Development in practice 

This section looks at the design and programming advice from Chapter 4 and Figure 
I 1.1 by means of a series of programming examples. 

Generalizing the problem 

Suppose that we are asked to define the lists [i . . nl for ourselves. A first attempt 
might try to use recursion, thus 

but the problem here is that [ 2  . . n] is not an instance of what we are trying to define. 
The presence of the 2 here suggests that instead of solving the particular problem of 
lists starting at I we should solve the more general problem of defining lists beginning 
at an arbitrary value. We therefore define [m . . n] : 
[m . , nl 

I m>n = [I 
I otherwise = m . [m+l . . n] 

Another solution is given by 

[i . . nl 
I l>n = [I 
I otherwise = [I . . n-I] ++ [n] 

but ( . .3) has the disadvantage that it is substantially less efficient than ( . . 2 ) ,  a topic 
we pick up in Chapter 19. 

Another example of generalization was given in the text processing example in 
Section 7.6 where we defined a function getline. The effect of this function is to 
take a list of words and to return the list of words making up the maximal first line (of 
length lineLen) which can be built from the words. It was apparent in making the 
definition that we needed to make the line length a parameter of the definition, so that 
we defined 

getLine : : Int -> [Word] -> Line 

rather than giving it the type [Word] -> Line. 

Simplifying the problem 

Suppose that we are asked to solve the problem of identifying strings which are 
palindromes, like 

"Madam I\'m Adam" 

One way of approaching the problem is first to think of identifying palindromes where 
punctuation and capitalization are not considered, such as "ABBA". We might solve this 
by 
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simplePalCheck : :  String -> Bool 
simplePalCheck st = (reverse st == st) 

for instance, but note that there are at least two other different ways we might implement 
the function simplePalCheck. Once we have this function we can then modify i t  to 
solve the original problem. Alternatively we can use this solution to a simplified 
problem in the full solution: 

palcheck = simplePalCheck . clean 

where 

clean : :  String -> String 

puts all capitals into small letters and removes punctuation. We look at this in  the next 
section. 

Design choices 

The clean function combines mapping (capitals to smalls) and filtering (removing 
punctuation) and so can be solved thus 

clean = map tosmall . filter notPunct (clean. I)  

or by means of a list comprehension 

clean st = C tosmall ch I ch <- st , notPunct ch I (clean. 2) 

How do we choose between these options'? One advantage of (clean. I) is that wc we 
clearly that we have a function composition, but perhaps (clean.2) is more readable. 

Auxiliary functions 

Suppose we are asked to define when one string is a subsequence of another. By that 
we mean that the characters ofthe first string occur next to each other inside the second 
string, so that "Chip" is a subsequence of "Fish & Chips", but not of "Chin up". 
The function we seek to detine is 

subseq : :  String -> String -> Bool 

and we try to define this by recursion. Starting with the cases of the empty string, 

subseq [I - = True 
subseq ( - :  -) [I = False 

so what is the general case, subseq (x: xs) (y : ys)? 

One alternative is that (x:xs) is a subsequence of ys, as in 
subseq "Chip" "Fish & Chips" 

The other alternative is that (x: xs) occurs at the start of (y: ys), as in 
subseq "Chip" "Chips" 
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This latter is not a recursive call to the function we are defining, so we have to say 

subseq ( x : x s )  (y :  ys)  
= subseq (x :xs )  y s  1 I f r o n t s e q  (x :xs )  (y :ys )  

and write an auxiliary function definition to check this new condition. 

f r o n t s e q  : :  S t r i n g  -> S t r i n g  -> Bool 
f r o n t s e q  [I - = True 
f r o n t s e q  (-:-I [I = F a l s e  
f r o n t s e q  (x :xs )  (y :ys )  

= (x==y) && f r o n t s e q  x s  ys  

f Exercises 1 

11.1 Give a recursive definition of the range 

11.2 Think of two more ways of implementing the function 

simplePalCheck : :  S t r i n g  -> Bool 

discussed on page 207 

11.3 Define a function 

s u b s t  : :  S t r i n g  -> S t r i n g  -> S t r i n g  -> S t r i n g  

so that the result of s u b s t  start f i n d  r e p l a c e  is the string start rnoditied 
so that the tirst occurrence o f f  i n d  as a subsequence is replaced by rep lace .  If 
there is no such cubsequence, the string should be returned unmodified, so that, 
for instance, 

s u b s t  " F i s h  & Chips" "Chip" "Boat" 2.i "F i sh  & Boats1' 
s u b s t  " F i s h  & Chips" "Ship" "Boat" -.+ "F i sh  & Chips" 

Modify the definition so that every occurrence o f f  i n d  is replaced by replace .  
Explain what your original and modified definitions do in the case of the example 

s u b s t  "F i sh  & Chips" "I' "Boat" 
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This chapter has explored the idea that program development works in a cycle: first we 
clarify the specification of the problem to be solved, next we devise a plan of how to 
solve the problem, and only then do we implement the solution. 

At each stage we should reflect on and evaluate what we have done: this aspect is 
crucial particularly when we are learning to program. For example, being aware of the 
errors that we make can help us to prevent making them in the future. Also, if we take 
a problem we have already solved and try to solve it with a new technique we will learn 
something about the new technique as well as seeing how it fits in with what we have 
learned already. Thi4 is something that we do by continually revisiting the Picture 
case study. 



Overloading and type 
classes 

12.1 Why overloading? 

12.2 Introducing classes 

12.3 Signatures and instances 

12.4 A tour of the built-in Haskell classes 

12.5 Types and classes 

In looking at Haskell so far we have seen two kinds of function which work over more 
than one type. A polymorphic function such as length has a single definition which 
works over all its types. Overloaded functions like equality, + and show can be used at 
a variety of types, but with different definitions being used at different types. 

The chapter starts with a discussion of the benefits of overloading, before looking 
at type classes, which are collections of types; what the members of a class have in 
common is the fact that certain functions are defined over the type. For instance, the 
members of the equality type class, Eq, are those types which carry an equality function, 
==. Type classes are thus the mechanism by which overloaded functions can be given 
types in Haskell. 

We shall see how to define type classes and types which belong to these classes - so- 
called instances of the class. We will also see that there is a form of inheritance between 
type classes, which is related to the inheritance of object-oriented programming. We take 
this up again in Chapter 16 below. 

Haskell's prelude and libraries contain a number of classes and instances, particularly 
for numeric types - we survey these, referring readers to the Haskell report (Peyton Jones 
and Hughes 1998) for a full exposition. 
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Why overloading? 

This section looks at the reason for including overloading in Haskell; we do this by 
looking at a scenario. 

Suppose that Haskell did not have overloading, and that we wanted to check whether 
a particular element is a member of a list of type Bool. We would define a function like 

elemBool : : Bool -> [Bool] -> Bool 
elemBool x [I = False 
elemBool x (y:ys) 

= (x = = ~ ~ ~ l  y) ( 1  elemBool x ys 

where we have to write = = ~ ~ ~ l  for the equality function over Bool. 
Suppose now that we want to check whether an integer is a member of an integer list, 

then we need to define a new function 

elemInt : : Int -> [Int] -> Bool 

which differs from elemBool only in using = = ~ ~ t  instead of = = ~ ~ ~ l .  Each time we 
want to check membership of a list of a different type we will have to define yet another 
- very similar - function. 

One way out of this problem is to make the equality function a parameter of a general 
function 

elemGen : : (a -> a -> Bool) -> a -> [a] -> Bool 

but this gives too much generality in a sense, because it can be used with uny parameter 
of type a -> a -> Bool rather than just an equality check. Also in  this case the 
parameter has to be written down explicitly each time the function elemGen is used, as 
in 

making programs less easy to read. 
The alternative is to define a function which uses the overloaded equality, 

elem : : a -> [a] -> Bool 

where the type a has to be restricted to those types which have an equality. The 
advantages of this approach are 

Reuse The definition of elem can be used over all types with equality. 

Readability It is much easier to read == than = = ~ ~ t  and SO on. This argument 
holds particularly for numeric operators, where it is more than tiresome to have to 
write + ~ ~ t ,  * ~ l ~ ~ t  and so on. 

What this discussion shows is that a mechanism is needed to give a type to functions 
like elem: that is precisely the purpose of type classes. 
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(12 Introducing classes 

The elem function appears to have the type 

elem : : a  -> [a] -> Bool 

but this type only holds for types a  which have an equality function. How is this to be 
expressed? We need some way of saying whether we have an equality function over a 
given type. We call the collection of types over which a function is defined a type class 
or simply class. For instance, the set of types over which == is defined is the equality 
class, Eq. 

Defining the equality class 

How do we define a class, such as Eq? We say what is needed for a type a  to he in a 
class. In this case we need a function == detined over a, of type a->a->Bool. 

class Eq a  where 
(==) : : a  -> a  -> Bool 

Members of a type class are called its instances. Built-in instances of E q  include 
the base types I n t ,  F l o a t ,  Bool, Char. Other instances are given by tuples and lists 
built from types which are themselves instances of Eq; examples include the types 
( I n t  , Bool) and [ [Char] 1. 

Not all types will necessarily carry an equality; we may choose not to define one. for 
reasons of information hiding, or there may be no natural way of defining an equality 
on a particular type. For example, function types like I n t  -> I n t  are not instances of 
Eq, since there is no algorithm which will decide whether two functions over I n t  have 
the same behaviour. 

It is unfortunate that the term instance is used in two quite different ways in Haskell. 
We talked in Section 5.7 of a type t 1 being an instance of a type t 2 ,  when we can 
substitute for a type variable in t 2  to give ti. Here we have talked about a typc bcing 
an instance of a c1~1.s.s. 

Functions which use equality 

Many of the functions which we have defined so far use equality over particular type$. 
The function 

a l l E q u a l  : :  I n t  -> I n t  -> I n t  -> Bool 
a l l E q u a l  m n  p = (m==n) && (n==p) 

decides whether three integers are equal. If we cxamine the definition itself, it contains 
nothing which is specific to integers; the only constraint it makes is that m, n and p  are 
compared for equality. Their type can be a  for any a  in the type L'INSS Eq. This gives 
a l l E q u a l  a most general type thus: 

a l l E q u a l  : :  Eq a  => a -> a  -> a  -> Bool 
a l l E q u a l  m n  p = (rn==n) && (n==p) 
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The part before the => is called the context. We can read the type as saying that 

if the type a  is in the class Eq - that is, if == is defined over the type a - then 
al lEqua1 has type a  -> a -> a -> Bool 

This means that a l l E q u a l  can be used at the following types 

a l lEqua l  : :  Char -> Char -> Char -> Bool 
a l lEqua l  : :  ( In t ,Bool )  -> ( In t ,Bool )  -> ( In t ,Bool )  -> Bool 

since both Char and ( I n t  , Bool) belong to Eq, among many olher types. What happens 
if we break this constraint by trying to compare functions for equality? If we define 

suc  : : I n t  -> I n t  
S U C  = (+I) 

and try to evaluate 

a l l E q u a l  suc  suc  s u c  

we get the message 

ERROR: I n t  -> I n t  i s  no t  an i n s t a n c e  of c l a s s  "Eq" 

which conveys the fact that ( I n t  -> I n t )  is not in the Eq class, hccause i t  is not an 
instance of that class. 

Further equality examples 

The elem example in Section 12.1 will have the type 

elem : : Eq a  => a -> [a] -> Bool 

and so i t  will be usable at the types 

Bool -> [Booll -> Boo1 
I n t  -> [ I n t l  -> Boo1 

Many of the functions we have defined already use equality in an overloaded way. We 
can use the Hugs system to deduce the most general type of a function. such as the 
books fiinction from the library database of Section 5.6, by commenting out its type 
declaration in the script, thus 

-- books : : Database -> Person -> [Book] 

and then by typing 

: type  books 

to the prompt. The result we get in that case is 

books : : Eq a  => [ ( a , b )  1 -> a -> [b] 
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which is perhaps a surprise at first. This is less so if we rewrite the definition with 
books renamed lookupFirst, because it looks up all the pairs with a particular first 
part, and returns their corresponding second parts. Here it is with its variables renamed 
as well 

Clearly from this definition there is nothing specific about books or people and so it 
is polymorphic, if we can compare objects in the first halves of the pairs for equality. 
This condition gives rise to the context Eq  a. Finally from Section 5.6, as we saw for 
books, 

borrowed : :  Eq b => [ (a,b) 1 -> b -> Boo1 
numBorrowed : :  Eq a => [ (a,b) ] -> a -> Int 

( Summary ) 
In this section we have introduced the idea of a class, which is a collection of types - 
its instances -with the property that certain functions are defined over them. One way 
we can think of a class is as an adjective: any particular type is or is not in the class, 
just as the weather at any particular moment might or might not be sunny. 

We saw how equality could be seen as being defined over all the types in the class 
Eq. This allows many of the functions defined so far to be given polymorphic type, 
allowing them to be used over any type in the class Eq. In the following sections we 
explain how classes and instances are defined in general, and explore the consequences 
of classes for programming in Haskell. 

( Exercises 1 
12.1 How would you define the 'not equal' operation. /=, from equality. ==? What 

is the type of /=? 

12.2 Define the function numEqual which takes a list of items, xs say, and an item. 
x say, and returns the number of times x occurs i n  xs. What is the type of your 
function? How could you use numEqual to define member'? 

12.3 Define functions 

oneLookupFirst takes a list of pairs and an item, and returns the second part 
of the first pair whose first part equals the item. You should explain what your 
function does if there is no such pair. oneLookupSecond returns the first pair 
with the roles of first and second reversed. 
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@ Signatures and instances 

In the last section we saw that the operation of equality, ==, is overloaded. This allows 
==to be used over a variety of types, and also allows for functions using == to be defined 
over all instances of the class of types Eq. This section explains the mechanics of how 
classes are introduced, and then how instances of them may be declared. This allows us 
to program with classes that we define ourselves, rather than simply using the built-in 
classes of Haskell. 

Declaring a class 

As we saw earlier, a class is introduced by a declaration like: 

class Visible a where 
tostring : :  a -> String 
size : : a -> Int 

The declaration introduces the name of the class, Visible, and then follows asignature. 
that is a list of names and their types. Any type a in the Visible class must carry the 
two functions in the signature: 

the tostring function, which converts an object of the type to a String, and, 

the size function, which returns a measure of the size of the argument, as an integer. 

Visible things can be viewed, using the tostring function, and we can give an estimate 
of their size: the size of a list might be its length, while a Boolean might have size one. 

The general form of a class definition will be: 

class Name ty where 
. . .  signature involving the type variable ty . . .  

Now, how are types niadc instances of such a class'? 

Defining the instances of a class 

A type is made a member or instance of a class by defining the signature functions for 
the type. For example, 

instance Eq Bool where 
True == True = True 
False == False = True 

-- - -- = False - 

describes how Bool is an instance of the equality class. The declarations that numeric 
types like Int and Float are in  the equality class (and indeed other built-in classes) 
involve the appropriate primitive equality functions supplied by the implementation. 

Although we have called the class Eq the equality class, there is no requirement that 
the == function we define has any of the usual properties of equality apart from having 
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the same type as equality. It is up to the user to ensure that he or she makes sensible 
definitions, and documents them adequately. 

Taking up our other example, we might say 

instance Visible Char where 
tostring ch = [ch] 
size - = 1 

This shows how characters can be turned into strings - by making them into strings of 
length one - and gives a measure of their size. We can also make Boo1 an instance. 
thus: 

instance Visible Boo1 where 
tostring True = "True" 
tostring False = "False" 
size - = I 

Suppose the type a is visible: this means that we can estimate the size of a value in a, 
and turn a value into a string. If presented with a list of values of type a, we can use 
the tostring and size on a to define those functions over [a], so we can declare the 
following instance 

instance Visible a => Visible [a] where . . . . 

in which the context Visible a appears, making clear that we are only making visible 
lists of objects which are themselves visible. We can complete the definition by saying 
how we print and give the size of a list of a: 

instance Visible a => Visible [a] where 
tostring = concat . map tostring 
size = foldr (+) I . map size 

To turn a list of a into a String, we turn each element of the list into a string (map 
tostring) and then we concatenate the results, using concat. In a similar way we 
can estimate the size of a list of a: we take the size of each object (map size), and add 
one to the total of these sizes by f oldr (+) 1. 

On the right-hand sides of these definitions we use tostring and size over the type 
a; this shows that we need the context which says that a is a Visible type. 

There are some limitations to what can be declared as an instance, in other words 
on what can appear after the => (if any) in an instance declaration. This must either 
be a base type like Int, or consist of a type former (or constructor) like [ .  . . I  or 
( . . . , . . . ) applied to distinct type variables. 

We will not be able, for example, to declare (Float, Float) as an instance; nor can 
we use named types (introduced by a type definition). More details of the mechanism 
can be found in the Haskell report (Peyton Jones and Hughes 1998). We shall explore 
more complex examples in the next part of the book, after we have introduced our own 
type constructors. 
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Default definitions 

To return to our example of equality, the Haskell equality class is i n  fact defined by 

class Eq  a where 
(==I,  (/=) :: a -> a -> Bool 
x /= y = not (x==y) 

== Y = not (x/=y> 

To the equality operation is added inequality, /=. As well as this, there are default 
definitions of /= from == and of == from /=. These definitions have two purposes; 
they give a definition over all equality types, but as defaults they are overridden by an 
instance declaration. 

At any instance a definition of at least one of == and /= needs to be supplied for there 
to be a proper definition of (in)equality, but a definition of either is sufficient t o  give 
both, by means of the defaults. 

I t  is also possible to define both of the operations in an instance delaration , so that if 
we wanted to define a different version of /= over Bool, we could add to our instance 
declaration for Bool the line 

- x / = y  - . . .  our definition . .  

If we want to stop a default being overridden, we should remove the operation from the 
class, and instead give its definition at the top level and not in the signature. In the case 
of the operation /= in Eq  we would give the top-level definition 

x /= y = not (X  == y) 

which has the type 

(/=) : :  Eq a => a -> a -> Bool 

and will be effective over all types which carry the == operation. 
There are some situations when it is better to give default definitions, which can 

be overridden, rather than top-level definitions, which cannot. Over the nu~nerical 
types, for instance, an implementation may well supply all the operations as hardware 
instructions, which will be much more efficient than the default definitions. 

Derived classes 

Functions and instances can depend upon types being i n  classes; this is also true of 
classes. The simplest example in Haskell is the class of ordered types, Ord. To be 
ordered, a type must carry the operations >, >= and so on, as well as the equality 
operations. We say 

class Eq  a => Ord a where 
( < I ,  ( < = I ,  ( > I ,  (>=I : : a -> a -> Bool 
max, min : :  a -> a -> a 
compare : : a -> a -> Ordering 
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For a type a to be in the class Ord, we must supply over a detinitions of the operations 
of Eq as well as the ones in the signature of Ord. Given a definition of < we can supply 
default definitions of the remaining operations of Ord. For instance, 

We will explain the type Ordering and the function compare in Section 12.4. 
A simple example of a function defined over types in the class Ord is the insertion 

sort function iSort of Chapter 7. Its most general type is 

iSort : :  Ord a => [a] -> [a] 

Indeed, any sorting function (which sorts using the ordering given by <=) would be 
expected to have this type. 

From a different point of view, we can see the class Ord as inheriting the operations 
of Eq; inheritance is one of the central ideas of object-oriented programming. 

Multiple constraints 

In the contexts we have seen so  far, we have a single constraint on a type, such as Eq a. 
There is no reason why we should not have multiple constraints on types. This section 
introduces the notation we use, and some examples where it is needed. 

Suppose we wish to sort a list and then show the results as a string. We can write 

To sort the elements, we need the list to consist of elements from an ordered type, as 
we saw above. To convert the results to a String we need [a] to be Visible; given 
the instance declaration on page 2 16, this will hold if a is visible. We therefore have 

vSort : : (Ord a,Visible a) => [a] -> String 

showing that a must be in both the classes Ord and Visible. Such types include Bool, 
[Char] and so on. 

In a similar way, suppose we are to use lookupFirst, and then make the results 
visible. We write 

We have twin constraints again on our list type [(a,b) I .  We need to be able to compare 
the first halves of the pairs, so Eq a is required. We also want to turn the second halves 
into strings, so needing Visible b. This gives the type 

vLookupFirst : :  (Eq a,Visible b) => [(a,b)l -> a -> String 

Multiple constraints can occur in an instance declaration, such as 

instance (Eq a,Eq b) => Eq (a,b) where 
(x,y) == ( 2 , ~ )  = x==z && y==w 
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which shows that a pair of types in Eq again belongs to Eq. Multiple constraints can 
also occur in  the definition of a class, 

class (Ord a,Visible a) => OrdVis a 

In such a declaration, the class inherits the operations of both Ord and Visible. 
In this particular case, the class declaration contains an empty signature. To be in 

OrdVis, the type a must simply be in the classes Ord and Visible. We could then 
modify the type of vSort to say 

vSort : : OrdVis a => [a] -> String 

The situation when a class is built on top of two or more classes is called multiple 
inheritance: this has consequences for programming style, explored in Section 14.6. 

( Summary ) 
This section has explained the basic details of the class mechanism in Haskell. We 
have seen that a class definition specities a signature, and that in defining an instance 
of a class we must provide definitions of each of the operations of the signature. These 
detinitions override any default definitions which are given in the class declaration. 
Contexts were seen to contain one or more constraints on the type variables which 
appear in polymorphic types, instance declarations and class declarations. 

( Exercises 

12.4 How would you make Bool, pair types, (a, b), and triple types, (a, b ,  c ) ,  into 
Visible types? 

12.5 Write a function to convert an integer into a String, and hence show how Int 
can be an instance of Visible. 

12.6 What is the type of the function 

compare x y = size x <= size y ? 

12.7 Con~plete the default definitions for the class Ord. 

12.8 Complete the following instance declarations: 

instance (Ord a, Ord b) => Ord (a,b) where . . . 
instance Ord b => Ord [b] where . . . 

where pairs and lists should be ordered lexicographically, like the words in a 
dictionary. 
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a A tour of the built-in Haskell classes 

Haskell contains a number of built-in classes, which we briefly introduce in this section. 
Many of the classes are numeric, and are built to deal with overloading of the numerical 
operations over integers, floating-point reals, complex numbers and rationals (that is 
integer fractions like 7). Rather than give complete details of the numeric types. we 
give an exposition of their major features. 

Equality: E q  

Equality was described above; to recap, we define it by 

class Eq a where 
(==I ,  (/=) : : a -> a -> Bool 
x /= y = not (x==y) 
x == y = not (x/=y) 

Ordering: Ord 

Sin~ilarly. we build the ordered class on Eq: 

class (Eq a) => Ord a where 
compare : :  a -> a -> Ordering 
(<) , (<=), (>=I ,  (>) : : a -> a -> Bool 
max, min : :  a - >  a -> a 

The type Ordering contains three values LT, EQ and GT, which represent the three 
possible outcomes from comparing two elements in the ordering. We shall see how the 
type Ordering is detined formally in Chapter 14, page 243. 

The advantage of using compare is that a single function application decides the 
exact relationship between two inputs, whereas when using the ordering operators - 
which return Boolean results - two comparisons might well be neccwary. Indeed. we 
see this in the dehult definition of compare from ==and <=, where two tests are needed 
to reach the results LT and GT. 

compare x y 
I x = = y  = EQ 
I x < = y  = LT 
1 otherwise = GT 

The defaults also contain definitions of the ordering operators from compare: 

x <= y = compare x y /= GT 

x <  Y = compare x y == LT 
x >= y = compare x y /= LT 

X >  Y = compare x y == GT 

There are dcfault definitions for all the operations of Ord, but we need to supply an 
implementation of either compare or <= in order to give an instance of Ord. 

Finally we have default definitions for the maximum and minimum operations, 
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max x y  
I x > = y  = X 

I otherwise = y  
min x y 

I x < = y  = X 

1 otherwise = y 

Most Haskell types belong to theve equality and ordering classes: among the exceptions 
are function types, and some of the abstract data types we meet below in Chapter 16. 

Enumeration: Enum 

It is useful to generate lists like [2,4,6,81 using the enumeration expression 

but enumerations can be built over other types as well: characters, floating-point 
numbers, and so on. The class definition is 

class (Ord a) => Enum a where 
t oEnum : : Int -> a 
f romEnum : : a -> Int 
enumFrom : : a -> [a] -- [n . .  1 
enumFromThen : : a -> a -> [a] -- [n,m . . 1 
enumFromTo : :  a -> a -> [a] -- [n . . m] 
enumFromThenTo : : a -> a -> a -> [a] -- [n,n' . . m] 

where enumFromTo and enumFromThenTo have default definitions. which we leave as 
exercises for the reader. 

The signature of the class also contains operations fromEnum and toEnum which 
convert between the type and Int. In the case of Char these conversion functions are 
also known as ord and chr, where these specializations are given by the definitions: 

ord : :  Char -> Int 
ord = f romEnum 

chr : :  Int -> Char 
chr = toEnum 

Confusingly, the Haskell report states that 'these functions [toEnum and f romEnuml are 
not meaningful for all instances of Enum', and using these operations over floating-poinl 
values or full precision integers will result in a run-time error. 

Full instances of the class include Int, Char, Boo1 and other finite types like 
Ordering. Definable over the class are the successor and predecessor functions, 

SUCC, pred :: Enum a => a -> a 

succ = toEnum . (+I) . fromEnum 
pred = toEnum . (subtract 1) . fromEnum 
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Bounded types: Bounded 

The Bounded class is specified by the declaration 

c l a s s  Bounded a where 
minBound, maxBound : :  a 

and the two values give the minimum and maximum values in these types. The types 
In t ,  Char, Bool, Ordering belong to this class. 

Turning values to strings: Show 

In our introduction to type classes we talked about the class Vis ib le  as an example of 
a user-defined class. The standard prelude defines the class Show, which contains types 
whose values can be written as strings. 

type ShowS = St r ing  -> St r ing  

c l a s s  Show a where 
showsPrec : :  I n t  -> a -> Shows 
show : :  a -> St r ing  
showList : : [a] -> ShowS 

The function showsPrec supports flexible and efficient conversion of large data values, 
but in an introductory context, the function 

show : :  a -> St r ing  

which converts a value into a string is all that is needed. The class contains default 
definitions of showsPrec from show and vice versa. Further details about how to 
exploit the subtleties of showsPrec can be found in Hudak, Fasel and Peterson (1997). 

Most types belong to the class Show; even if values of the type in question cannot be 
shown fully, a textutal representation of some sort is given. A function, for example, 
will be shown as <<function>>. For other types, example instance declarations might 
be 

instance Show Bool where 
show True = "True" 
show False = "False" 

instance (Show a,  Show b) => Show (a,b)  where 
show (x, y) = ( "  ++ show x ++ " , " ++ show y ++ ") " 

Turning strings to values: Read 

The class Read contains types whose values can be read from strings. To use the class 
it is enough to know about the function 

read : : (Read a )  => St r ing  -> a 
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The result of a read may not be properly defined: there needs to be exactly one object 
of the required type in the input string (which may optionally also contain whitespace 
or nested comments); in any other case the read will fail with an error. More details 
of how strings are parsed in this way can be found in Section 17.5. 

It is also important to see that in many cases the type of the result of the read has to 
be specified. since it could potentially be of any type in the class Read. For instance. 
we can write 

(read " 1 " ) : : I n t  

which indicates that in this case we require the result of the read to be an In t .  
The class Read complements Show, since strings produced by show are usually 

readable by read. Many types can be read, but exclusions include function types. 

The Haskell numeric types and classes 

One of the purposes of the Haskell design was to build a functional programming 
language which had a strong type system - in which any type errors in definitions and 
expressions are found before evaluation - yet which contains a rich set of numeric 
types, as befits a language suitable to substantial 'real world' tasks. Among Haskell's 
numeric types are 

The fixed precision integers, In t ,  and the full precision integers, Integer ,  which 
represent d l  integers faithfully. 

The floating-point numbers, Float ,  and thedouble-precision floating-point numbers. 
Double. 

Rational numbers, that is fractions, represented as ratios of integers; built-in is the 
type Rational  of In teger  fractions. 

Complex numbers, which can be built over other types such as F loa t .  

The design also required that the usual operations like + and / and literals such as 23 
and 57 .4  would be overloaded. For instance, I n t  and In teger  will carry identical 
operation\' and have identical literals, as indeed will Float  and Double; a guide to the 
operations over integers and floats was given in Sections 3.2 and 3.6. This overloading 
can lead to situations where the type of an expression is undetermined; in such a case 
we can give an explicit type to an exprc\sion, thus: 

(2+3) : : I n t  

The Haskell report (Peyton Jones and Hughes 1998) discusses a mechanism by which 
a default type can be given to numeric expressions. 

Overloading of numeric functions is achieved by defining a collection of classes. Full 
details of these can be found in the Haskell report (Peyton Jones and Hughes 1998). 
and in the standard prelude, Prelude .hs; a brief introduction follows here. 

The base class to which all numeric types belong is Num, which has the signature 

I Apart fro111 (dr)coding of Char, take, drop  and so forth 
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c l a s s  (Eq a ,  Show a )  => Num a  where 
( 1 ,  (-1, ( )  : : a  -> a  -> a  
negate : :  a  -> a  
abs ,  signum : :  a - >  a 
frornInteger : :  In teger  -> a  
f romInt : : I n t  -> a 

- Y = x + negate y 
f romInt = fromIntegra1 

Thi\ signature has the effect that all numeric types carry equality and show functions. 
together with addition, subtraction, n~ultiplication and related operations. It is also 
possible to convert an I n t  or and In teger  into a value of any numeric type. 

Integer literals are of any numeric type, so that, for example 

The integer types belong to the class I n t e g r a l  among whose signature functions are 

quot ,  rem : :  a -> a  -> a  
d i v ,  mod : :  a  -> a  -> a  

which give two variants of integer division. 'quot ' truncating towards zero. and 'div'  
truncating below. 

Numbers with fractional parts have a substantially richer class structure. Literals of 
this kind belong to every type in the Frac t iona l  class, 

2 . 3  : : Frac t iona l  a => a  

which extends Num with fractional division and reciprocal, 

c l a s s  (Num a)  => Frac t iona l  a where 
( / I  : :  a  -> a  -> a  
r e c i p  : :  a  -> a  
f romRationa1 : : Rational -> a 

r e c i p  x = l / x  

The floating-point numbers in F loa t  and Double belong to the class Floating. which 
carries the 'mathematical' functions. A part of its signature follows, 

c l a s s  (Frac t iona l  a)  => Floa t ing  a  where 

p i  : :  a  
exp, l og ,  s q r t  : :  a  -> a  
(**I, logBase : :  a -> a  -> a  
s i n ,  cos ,  t a n  : :  a -> a 

and the full signature is to be found in Prelude .hs. Further details of this and the 
complex and rational types can be found in the prelude, libraries and the Haskell 
docunlentation. 



Types and classes 225 

Exercises 

12.9 Investigate theHaskell definition of '<' on the types Bool and (t 1 , t2, . . . , tk) . 
12.10 Define a function 

showBoolFun : :  (Bool -> Bool) -> String 

which displays a Boolean function as a table. Generalize this to 

showBoolFunGen : :  (a -> String) -> (Bool -> a) -> String 

whose first argument is a function to show elements of a. This argument is used 
in giving a table of the results of the function. How would you extend your 
answer to deal with multiple-argument Boolean functions'? 

12.1 1 Using your answer to the previous question, or otherwise, describe how you 
would make Bool -> Bool an instance of the class Show. (Note, however, that 
this will not be legitimate Haskell, since Bool -> Bool is not of the right form 
tbr an instance declaration.) 

Types a n d  classes 

This section discusses the relationship between Haskell type classes and the classes of 
object-oriented programming; it can be omitted on first reading. 

The type system of Haskell can be seen as giving monomorphic types to functions. 
Polymorphic types like 

show : :  Show a => a -> String 

which involve type classes can be seen as shorthand for collections of typings, such as 

show :: Bool -> String 
show : :  Char -> String 

for each type Bool, Char, . . . belonging to the class. 
In Haskell a class is a collection of types. Other languages such as C++ make a 

type and a class the same thing. Under that approach, introducing the class of visible 
objects would effectively give us a type2 ShowType. This class would be characterized 
by having the function 

show : :  ShowType -> String 

in its interface. The class ShowType would have Bool and Char among its sub-classes 
(or sub-types). This would allow us to write values like 

' In C++ terninology this would be an abstract base class, with Bool etc. inheriting and being forced to 
imple~iient the oprations of that class. 
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[True, ' N '  , False ]  : : [ShowType] 

Moreover, to convert such a list to a S t r i n g  we could write 

concat  . map show : : [ShowType] -> S t r i n g  

At different items of the list we use difer-mt versions of the show function; on the tirst 
we use the Bool function, on the second the Char function and so forth. This so-called 
dynamic binding is a powerful feature of many object-oriented languages, including 
C++. but it is not a feature of Haskell 98; an extension which would allow dynamic 
binding is described in Laufer (1996). 

Returning to o ~ ~ r  example, what is the type of concat  . map show in Haskell? It 
is not hard to see that it is 

Show a => [a] -> [Char] 

so that it can be applied to elements of [Bool], [Char] and so on, but not to hetero- 
geneous lists like [True, ' N '  ,Fa l se ]  which are not legitimately typed in Haskell. 

Java allows users to define interfaces, which consist of a signature. A part of a class 
definition can say which interfaces the class implements. This is very like the way i n  
which Haskell types are made instances of type classes, except that i n  Haskell i t  is not 
necessary to make the instance declaration a part of the type definition itself. This has 
the effect of allowing p o s t  hoc. extensions to the operations supported by a type, i n  a 
way which is not poccible for a class i n  Java. 

Summary 

This chapter has shown how names such as r e a d  and show and operators like + can 
be overloaded to have different definitions at different types. The mechanism which 
enables this is the system of Haskell classes. A c l a s s  definition contains a signature 
which contains the names and types of operations which must be supplied if a type is to 
be a member of the class. For a particular type. the function definitions are contained 
in an i n s t a n c e  declaration. 

In giving the type of a function, or introducing a class or an instance, we can supply 
a context, which constrains the type variables occurring. Examples include 

member : :  E q  a => [a] -> a -> Bool 
i n s t a n c e  E q  a => E q  [a] where . . . . 
c l a s s  E q  a => Ord a where . . . .  

In the examples, i t  can be seen that member can only be used over types i n  the class Eq. 
Lists of a can be given an equality, provided that a itself can; types in the class Ord 
must already be in the class Eq. 

After giving examples of the various mechanisms, we looked at the classes in the 
standard preludes of Haskell, and concluded with a discussion of the relationship 
between the type classes of Haskell and the classes of object-oriented programming. I n  
the final part of the book we shall revisit classes and see how they are used to structure 
larger-scale systems. 



Checking types 

13.1 Monomorphic type checking 

13.2 Polymorphic type checking 

13.3 Type checking and classes 

Every value in Haskell has a defined type, which might be monomorphic, polymorphic, 
or involve one or more type class constraints in a context. For example, 

'w' : :  Char 
flip : :  (a -> b -> c) -> (b -> a -> c )  

elem :: Eq a => a -> [a] -> Boo1 

Strong typing means that we can check whether or not expressions we wish to evaluate 
or definitions we wish to use obey the typing rules of the language without any evaluation 
taking place. The benefit of this is obvious: we can catch a whole lot of errors before we 
run a program. 

Beyond this, types are a valuable form of program documentation: when we look at 
a definition, the first relevant piece of information about it is its type, since this explains 
how it is to be used. In the case of a function, we can read off from its type the types of 
values to which it has to be applied, and also the type of the result of applying it. 

Types are also useful in locating functions in a library. Suppose we want to define a 
function to remove the duplicate elements from a list, transforming [2,3,2,1,3,41 to 
[2,3,1,41, for instance. Such a function will have type 

A search of the standard prelude Prelude .hs and the library L i s t .  hs reveals just one 
function of this type, namely nub, which has exactly the effect we seek. Plainly in practice 
there might be multiple matches (or missed matches because of the choice of parameter 
order) but nonetheless the types provide a valuable 'handle' on the functions in a library. 

In this chapter we give an informal overview of the way in which types are checked. 
We start by looking at how type checking works in a monomorphic framework, in which 
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every properly typed expression has a single type. Building on this, we then look at the 
polymorphic case, and see that it can be understood by looking at the constraints put 
on the type of an expression by the way that the expression is  constructed. Crucial 
to this is the notion of unification, through which constraints are combined. We 
conclude the chapter by looking at the contexts which contain information about the 
class membership of type variables, and which thus manage overloading. 

(F) Monomorphic type checking 

In this section we look at how type checking works in a monomorphic setting, without 
polymorphism or overloading. The main focus here is type-checking function appli- 
cations. The simplified picture we see here prepares us for Haskell type checking i n  
general, which is examined in the section after this. When discussing polymorphic 
operations in this section we will use monomorphic instances, indicated by a type 
subscript or subscripts. For example, we write 

+ I n t  -> I n t  -> I n t  
I n t  ' 

lengthoar : : [Char] -> I n t  

We look first at the way that we type-check expressions, and then look at how 
definitions are type-checked. 

Expressions 

In general, an expres\ion ic either a literal, a variable or a con\tant or it is built up by 
apply~ng a function to ronie ~lrguments, which are themselve\ expressions. 

The cace of function applications includes rather more than we might at first expect. 
For example, we can see list expressions like [True, False] as the result of applying the 
constructor function, ' : ', thu\: True : [False]. Also, operators and the i f  . . then 
. . . e l s e  construct act in exactly the wme way as function\, albeit with a different 
syntax. 

The rule for type checking a function application is set out in the following diagram. 
where we we  that a function of type s -> t must be applied to an argument of type s. 
A properly typcd application re\ults in an exprecrion of type t .  

f must have a 
function type e must have 

the result , 
has type t 
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We now look at two examples. First we take o rd  ' c '  +Int 3,nt, a correctly typed 
expression of type In t ,  

C h a r  -> Int C h a r  

0 
0 

0 

Int Int -> Int -> Int Int 

The application of o r d  to ' c ' results in an expression of type In t .  The second argument 
to +Int is also an In t ,  so the application is correctly typed, and gives a result of 
type In t .  

If we modify the example to o rd  ' c ' + False, we now see a type error, since a 
I n t  

Boolean argument, Fa l se ,  is presented to an operator expecting I n t  arguments, +Int. 

C h a r  -> I n t  C h a r  . . . -. -. . . \ 
.L -1 

ord ' c ' +,,,, False 
0 
0-' + k 

0 
\ 

0 I \ 
\ 

Argument of ~n t expected 
the correct type ~ o o l  given 

Function definitions 

In type-checking a monomorphic function definition such as 

we need to check three things. 

Each of the guards gi must be of type Bool. 

The value ei returned in each clause must be of type t. 

( f  def ) 

The pattern p .  must be consistent with type of that argument, namely t. 
J J 
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A pattern is consistent with a type if it will match (some) elements of the type. We now 
look at the various cases. A variable is consistent with any type; a literal is consistent 
with its type. A pattern (p:q)  is consistent with the type [t] if p is consistent with t 
and q is consistent with [t]. For example, (0:~s) is consistent with the type CIntl, 
and (x:xs) is consistent with any type of lists. The other cases of the definition are 
similar. 

This concludes our discussion of type checking in the monomorphic case; we turn 
to polymorphism next. 

( Exercise I 

13.1 Predict the type errors you would obtain by defining the following functions 

f n = 37+n 
f True = 34 

g 0 = 37 
g n = True 

h x 
I x>O = True 
I otherwise = 37 

Check your answers by typing each definition into a Haskell script, and loading 
the script into Hugs. Remember that you can use :type to give the type of an 
expression. 

@ Polymorphic type checking 

In a monomorphic situation, an expression is either well typed, and has a single type, or 
is not well typed and has none. In  a polymorphic language like Haskell, the situation is 
more complicated, since a polymorphic object is precisely one which has many types. 

In this section we first re-examine what is meant by polymorphism, before explaining 
type checking by means of constraint satisfaction. Central to this is the notion of 
unification, by which we find the types simultaneously satisfying two type constraints. 

Polymorphism 

We are familiar with functions like 

length : : [a] -> Int (length) 
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whose types are polymorphic, but how should we understand the type variable a in this 
type? We can see (length) as shorthand for saying that length has a set of types, 

[Intl -> Int 
[(Bool ,Char)] -> Int 

in fact containing all the types [t] -> Int where t is a monotype, that is a type not 
containing type variables. 

When we apply length we need to determine at which of these types length is 
being used. For example, when we write 

length [ ' c '  , 'd'] 

we can see that length is being applied to a list of Char, and so we are using length 
at type [Char] -> Int. 

Constraints 

How can we explain what is going on here in general'? We can see different parts of an 
expression as putting different constraints on its type. Under this interpretation, type 
checking becomes a matter of working out whether we can find types which meet the 
constraints. We have seen some informal examples of this when we discussed the types 
of map and filter in Section 9.2. We consider some further examples now. 

( Examples 1 

1. Consider the definition 

The argument o f f  is a pair, and we consider separately what constraints there are on 
the types o f x  and y. x is completely unconstrained, as it is returned as the first half of 
a pair. On the other hand, y is used within the expression ['a' . . yl, which denotes 
a range within an enumerated type, starting at the character 'a'. This forces y to have 
the type Char, and gives the type for f :  

f : :  (a , Char) -> (a , [Char]) 

2. Now we examine the definition 

g (m,zs) = m + length zs 

What constraints are placed on the types of m and zs in this definition'? We can see that 
m is added to something, so m must have a numeric type - which one it is remains to be 
seen. The other argument of the addition is length zs, which tells us two things. 
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g ( m , z s )  = m + l e n g t h  zs 

adds numeric values :h: -> ~ n t  

First, we see that zs will have to be of type [bl, and also that the result is an Int. This 
forces + to be used at In t ,  and so forces m to have type In t ,  giving the result 

g : : ( In t  , Cbl) -> I n t  

3. We now consider the composition of the last two examples, 

In a composition g . f ,  the output o f f  becomes the input of g, 

(Int , Tbl) -> Int (a , Char) -> (a 

the output of f 

Here we should recall the meaning of types which involve type variables; we can see 
them as shorthand for sets of types. The output of f is described by (a , [Char]), 
and the input of g by ( In t  , [bl 1. We therefore have to look for types whichmeet 
both these descriptions. We will now look at this general topic, returning to the example 
in the course of this dicussion. 

Unification 

How are we to describe the types which meet the two descriptions ( a  , [Char] ) and 
( In t  , Cbl)? 



Polymorphic type checking 233 

As sets of types, we look for the intersection of the sets given by (a  , [Char] ) and 
( I n t  , Cbl ). How can wc work out a description of this intersection'? Before we do 
this, we revise and introduce some tern~inology. 

Recall that an instance of a type is given by replacing a type variable or variables by 
type expressions. A type expression is a common instance of two type exprcssions if it is 
an instance of each expression. The most general common instance of two expressions 
is a common instance mgci with the property that every other common instance is an 
instance of mgci. 

Now we can dcicribe the intersection of the sets given by two type expressions. I t  is 
called the unification of the two, which is the most general common instance of the 
two type expressions. 

3 (contd) In this example, we have 

( I n t  , [Char]) 

with a single type resulting. This givcs the function h the following type 

h : : ( I n t  , [Char]) -> Int 

and this completes the discussion of example 3. 

Unification need not rc\ult i n  a monotype. In the example of unifying the types ( a ,  [a] ) 
and ( [bl , c ) ,  

the result is the type ( Cbl , C [b] I ). This is because the expression ( a ,  [a] ) constrains 
the type to have in its second component a list of elements of the first component type, 
while the expression ( [bl , c )  constrains its first component to  be a list. Thus satisfying 
the two gives the type ( [bl , [ [bl I ) .  

In the last example, note that there are many common instances of the two type 
expressions, including ( [Booll , [ [Bool] 1 ) and ( C [c l]  , [ C Ccl I I 1, but neither of 
these examples is the unifier, since ( [bl , C [b] 1 ) is not an instance of either of them. 
On the other hand, they are each instances of ( [b] , C [b] I ) ,  as it is the most general 
common instance, and so the unifier of the two type expressions. 

Not every pair of types can be unified: consider the case of [ In t l  -> CIntl and 
a -> [a]. 
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a becomes Int 

-> [Int] 

a becomes [Intl 

Unifying the argument types requires a to become [Int], while unifying the result 
types requires a to become Int; clearly these constraints are inconsistent, and so the 
unification fails. 

Type-checking expressions 

As we saw in Section 13.1, function application is central to expression formation. This 
means that type checking also hinges on function applications. 

Type-checking polymorphic function application 

In applying a function f : : s -> t to an argument e : : u we do not require that s 
and u are equal, but instead that they are unifiable to a type s ' ,  say, giving e : : s '  

and f : : s ' -> t ' ; the result in  that case is of type t ' . As an example, consider the 
application map ord where 

map : : (a -> b) -> [a] -> [b] 
ord :: Char -> Int 

Unifying a -> b and Char -> Int results in a becoming Char and b becoming Int:  
this gives 

map : :  (Char -> Int) -> [Char] -> [ In t ]  

and so 
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map ord  : : [Char] -> [Int] 

As in the monomorphic case, we can use this discussion of typing and function appli- 
cation in explaining type checking all aspects of expressions. We now look at another 
example, before examining a more technical aspect of type checking. 

4. f  o l d r  again 

In Section 9.3 we introduced the f  o l d r  function 

f o l d r  f  s [I = s 
f o l d r  f  s (x:xs) = f  x ( f o l d r  f  s xs) 

( f  o l d r .  1) 
( f  o l d r  .2) 

which could be used to fold an operator into a list, as in 

f o l d r  (+) 0 [2,3,l] = 2+(3+(1+0)) 

so that it appears as i f f  o l d r  has the type given by 

In fact, the most general type of f o l d r  is more general than this. Suppose that the 
starting value has type b and the elements of the list are of type a 

f o l d r  :: ( . . .  -> . . .  -> ...) -> b -> [a] -> . . .  

Then we can picture the definition thus: 

P a 
foldr f s [ I  = s  / b 

s is the result of the ti rst equation, and so the result type of the f  o l d r  function itself 
will be b, the type of s 

In the second equation, f is applied to x as first argument, giving 

f o l d r  : :  (a -> . . .  -> . . . ) -> b -> [a] -> b 

The second argument off  is the result of a f  o l d r ,  and so of type b, 

f o l d r  : :  (a -> b -> . . .  ) -> b -> [a] -> b 
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Finally. the result of the second equation is an application of f; this result must have 
the same result type as the f o l d r  itself, b. 

With this insight about the type o f f  o l d r  we were able to scc that f  o l d r  could be used 
to define another whole cohort of list functions, such as an insertion sort, 

i S o r t  : :  Ord a  => [a] -> [a] 
i S o r t  = f o l d r  i n s  [I 

in which i n s  has the type Ord a  => a -> [a1 -> [a] 

Polymorphic definitions and variables 

Here we examine a more technical aspect of how type checking works over polymorphic 
definitions; it may be omitted on fir+t reading. 

Functions and constants can bc used at different types in the same expression. A 
simple instance is 

expr  = l e n g t h  ( [I ++ [True] ) + l e n g t h  ( [I ++ [2 ,3 ,41)  (expr ) 

The first occurrence of [I 1s at [ I n t l  , whilst the second is at [Bool] . This is completely 
legitimate, and is one of the advantages of a polymorphic definition. Now suppose that 
we replace thc [I by a variable, and define 

funny x s  = l e n g t h  (xs++[True] ) + l e n g t h  (xs++[2,3,4] ) (funny) 

The variable xs  is forced to have type [Booll mad type [ I n t l ;  it I +  forced to be 
polymorphic. in other words. This is not allowed in Haskell, as there is no way of 
expressing the type o f f  unny. I t  might be thought that 

funny : : [a] -> I n t  

was a correct type, but this would mean that funny would have all the instance types 

funny : : [ I n t ]  -> I n t  
funny : : [ [Char] ] -> I n t  

which it clearly does not. We conclude that constants and variables are treated dif- 
ferently: constants may very well appear at different incompatible types in the same 
expression, variables cannot. 

What is the significance of disallowing the definition (funny) but allowing the 
definition (expr )?  Taking (expr)  first, we have a polymorphic definition of the form 
[I : : [a] and an expression in which [I occurs twice; the first occurrence is at 
[Bool] , the second at [ I n t ]  . To allow these independent uses to occur, we type-check 
each use of a polymorphic definition with different type variables, so that a constraint 
on one use does not affect any of the others. 
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On the other hand, how is the delinition of (funny) disallowed? When wc type 
check the use of a variable we will not treat each instance as being of an independent 
type. Suppose we begin with no constraint on xs, so xs : : t ,  say. The first occurrence ol' 
xs forces xs : : [Bool] , the second requires xs : : [ I n t ]  ; these two constraints cannot 
be satisfied simultaneously, and thus the definition (funny) fails to type check. 

The crucial point to remember rroni this example is that the definition of a function 
is not permitted to force any of its arguments to he polyn~orphic. 

Function definitions 

In lype checking a function definition like (f d e f )  on page 229 above we have to obcy 
rules similar to the monomorphic casc. 

Each of the guards gi must be of type Bool. 

The value ei returned in each clause must have a type si which is at least as general 
as t: that is, si must have t as an instance. 

The pattern p .  initst be consistent with type of that argument, namely t .. 
J J 

We take up a final aspect of type checking - the impact of type classes - in rhc next 
scction. 

f Exercises 7 

13.2 Do the following pairs of types - listed vertically - unify? If so. give a most 
general unifier for them: if not, explain why they fail to unify. 

( I n t  -> b) 
( a  -> Bool) 

13.3 Show that we can unify ( a ,  [a] with (b,  c)  to give (Bool ,  [Bool] ) .  

13.4 Can the function 

be applied to the argun~ent!, (2, [31 ) , (2, [I ) and ( 2 ,  [True] ) : if so. what are 
the types of the results'? Explain your answers. 

13.5 Repeat the previous question for the function 

Explain your answers. 

13.6 Give the type o f f  [I [I i f f  has type 

f : : [a] -> [b] -> a -> b 
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What is the type of the function h given by the definition 

13.7 How can you use the Haskell system to check whether two type expressions 
are unifiable, and if so what is their unification? Hint: you can make dummy 
definitions in Haskell in which the defined value, zircon say, is equated with 
itself: 

zircon = zircon 

Values defined like this can be declared to have any type you wish. 

13.8 [Harder] Recalling the definitions of curry and uncurry from Section 10.7. 
what are the types of 

curry id 
uncurry id 
curry (curry id) 
uncurry (uncurry id) 
uncurry curry 

Explain why the following expressions do not type-check: 

curry uncurry 
curry curry 

13.9 [Harder] Give an algorithm which decides whether two type expressions are 
unifiable. If they are, your algorithm should return a most general unifying 
substitution; if not, it  should give some explanation of why the unification fails. 

a Type checking and classes 

Classes in Haskell restrict the use of some functions, such as ==, to types i n  the class 
over which they are defined, in this case Eq. These restrictions are apparent in the 
contexts which appear in some types. For instance, if we define 

member [I y = False 
member (x:xs) y = (x==y) I I member xs y 

its type will be 

E q  a => [a] -> a -> Boo1 
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because x and y of type a are compared for equality in the definition, thus forcing the 
type a to belong to the equality class Eq. 

This section explores the way in which type checking takes place when overloading 
is involved; the material is presented informally, by means of an example. 

Suppose we are to apply the function member to an expression e, whose type is 

Ord b => [[b]] 

Informally, e is a list of lists of objects, which belong to a type whichcarries an ordering. 
In the absence of the contexts we would unify the type expressions, giving 

member : : [[b]] -> [b] -> Boo1 e : :  [[b]] 

and so giving the application member e the type [b] -> Bool. We do the same here, 
but we also apply the unification to the contexts, producing the context 

(Eq Cbl , Ord b) ( c tx .  1) 

Now, we check and simplify the context. 

The requirements in a context can only apply to type variables, so we need to eliminate 
requirements like Eq [bl . The only way these can be eliminated is to use the 
instance declarations. In this case the built-in instance declaration 

ins tance  Eq a => Eq [a] where . . . . 

allows us to replace the requirement Eq [b] with Eq b in (c tx .  I),  giving the new 
context 

(Eq b , Ord b) ( c tx .  2) 

We repeat this process until no more instances apply. 
If we fail to reduce all the requirements to ones involving a type variable, the 

application fails, and an error message would be generated. This happens if we 
apply member to [id] ; 

ERROR: a -> a i s  not an instance of c l a s s  "Eq" 

since i d  is a function, whose type is not it the class Eq. 

We then simplify the context using the c l a s s  definitions. In our example we have 
both Eq b and Ord b, but recall that 

c l a s s  Eq a => Ord a where . . .  

so that any instance of Ord is automatically an instance of Eq; this means that we can 
simplify (c tx .  2) to 

Ord b 
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This is repeated until no further simplifications result. 

For our example, we thus have the type 

member e : : Ord b => [bl -> Boo1 

This three-stage process of unification, checking (with instances) and simplification is 
the general pattern for type checking with contexts in Haskell. 

Finally, we should explain how contexts are introduced into the types of the language. 
They originate in  types for the functions in class declarations, so that, for instance. we 
have 

tostring : :  Visible a => a -> String 
size : : Visible a => a -> Int 

The type checking of functions which use thcsc: overloaded functions will propagate 
and combine the contexts as we have seen above. 

We have seen informally how the Haskell type system accommodates type checking 
for the overloaded names which belong to type classes. A more thorough overview of 
the technical aspects of this, including a discussion of the 'monomorphism restriction' 
which needs to be placed on certain polymorphic bindings, is to be found i n  the Hnskell 
98 report (Peyton Jones and Hughes 1998). 

( Exercises 7 

13.10 Give the type of each of the individual conditional equations which follow, and 
discuss the type of the function which together they define. 

merge (x:xs) (y:ys) 
I xcy = x : merge xs (y:ys) 
I x==y = x : merge xs ys 
I otherwise = y : merge (x:xs) ys 

merge (x:xs) [I = (x:xs> 
merge [I (y:ys) = (y:ys) 
merge [I [I = [I 

13.11 Define a polymorphic sorting function, and show how its type is derived from 
the type of the ordering relation 

compare :: Ord a => a -> a -> Ordering 

13.1 2 Investigate the types of the following numerical functions; you will find that the 
types refer to some of the built-in numeric classes. 

mult x y = x*y 
divide x = x 'div' 2 
share x = x / 2.0 
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Recall that these can be given more restrictive types, such as 

d iv ide  : :  Int -> Int 

by explicitly asserting their typcs as above. 

( Summary 

The chapter explained how type checking of expressions and definitions is perfornled 
in Haskell. Initially this was explored in the monomorphic case, and then expanded to 
deal with polymorphism. In that case we saw type checking as a process of extracting 
and consolidating constraints, the latter being given by unification of type expressions 
which contain type variables. We concluded by examining how to manage contexts in 
types, and thus how overloading is handled in the Haskell type system. 
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Algebraic types 

14.1 Introducing algebraic types 

14.2 Recursive algebraic types 

14.3 Polymorphic algebraic types 

14.4 Case study: program errors 

14.5 Design with algebraic data types 

14.6 Algebraic types and type classes 

14.7 Reasoning about algebraic types 

So far in our discussion of Haskell we have been able to model entities using 

the base types, In t ,  Float ,  Boo1 and Char, and 

composite types: tuple types, ( t i  ,t2,. . . , t n ) ;  list types, [ti]; and function types, 
( t i  -> t 2 ) ;  where ti, . .., tn are themselves types. 

This gives a wide choice of types and we have seen quite complex structures, like an 
index for a document, represented by the appropriate combination of types: in the 
index example, [: ( [ In t l  , [Char] ) I was used. 

However, there are other types which are difficult to model using the constructs we 
have seen so far. Examples include 

the type of months: January, . . ., December; 

the type whose elements are either a number or a string: a house in a street will either 
have a number or a name, for instance; 

the type of trees, as illustrated in Figure 14.1 

All these types can be modelled by Haskell algebraic types, which form the subject of 
this chapter. 
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Figure 14.1 An example of a tree of integers. 

(141) Introducing algebraic types 

Algebraic data type definitions are introduced by the keyword da ta ,  followed by the 
name of the type, an equals sign and then the constructors of the type being defined. 
The name of the type and the names of constructors begin with capital letters. 

We give a sequence of examples of increasing complexity, before discussing the 
general form of these type definitions. 

Enumerated types 

The simplest sort of algebraic type is defined by enumerating the elements of the type. 
For instance, 

d a t a  Temp = Cold I Hot 
d a t a  Season = Spr ing  I Summer I Autumn I Winter 

introduces two types. The type Temp has two members, Cold and Hot, and Season has 
four members. More formally, Cold and Hot are called the constructors of the type 
Temp. 

To define functions over these types we use pattern matching: we can match against 
either a literal or a variable. To describe the (British!) weather we might say 

weather : :  Season -> Temp 

weather Summer = Hot 
weather - = Cold 

Pattern matching is sequential; the first pattern to match an argument will be used. This 
means that the British weather is only hot in the summer, and it is cold the rest of the 
year. The built-in Boolean type is defined by 

d a t a  Boo1 = F a l s e  I True 

and the type Ordering, used in the class Ord, by 

d a t a  Ordering = LT I EQ I GT 
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As we have seen, pattern matching is used to define functions over algebraic types. We 
can use it to define equality over Temp, for instance, 

Cold == Cold = True 
Hot == Hot = True 

- -- -- - = False 

to put Temp into the equality class Eq. 
It would be tiresome to have to give a definition of equality for every new type which 

we introduce, and so the Haskell system can be made to generate definitions of ==, 

ordering, enumeration and text functions automatically. We discuss the details of this 
at the end of this section, after looking at some more examples. 

Product types 

Instead of using a tuple we can define a type with a number of components, oftcn called 
a product type, as an algebraic type. An example might be 

data People = Person Name Age (People) 

where Name is n synonym for String, and Age for Int, written thus: 

type Name = String 
type Age = Int 

The definition of People should be read as saying 

To construct an element of type People, you need to supply two value$; one, st say. 
of type Name, and another, n say, of type Age. The element of People formed from 
them will be Person st n. 

Example values of this type include 

Person "Electric Aunt Jemima" 77 
Person "Ronnie" 14 

As before, functions are defined using pattern matching. A general element of type 
People has the form Person st n, and we can use this pattern on the Icft-hand side 
of a definition, 

showPerson : :  People -> String 
showPerson (Person st n) = st ++ " -- " ++ show n 

(recall that show gives a textual form of an Int, since Int belongs to the Show class). 
For instance. 

showPerson (Person "Electric Aunt Jemima" 77) 
= "Electric Aunt Jemima -- 77" 

In this example, the type has a single constructor, Person, which is binary bccause i t  
takes two elements to form a value of type People. For the enumerated types Temp 
and Season the constructors are called nullary (or 0-ur-y) as they take no arguments. 
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The constructors introduced by algebraic type definitions can be used just like 
functions, so that Person s t  n is the result of applying the function Person to the 
arguments s t  and n; we can interpret the definition (People) as giving the type of the 
constructor, here 

Person : :  Name -> Age -> People 

An alternative definition of the type of people is given by the type synonym 

type People = (Name,Age) 

The advantages of using an algebraic type are threefold. 

Each object of the type carries an explicit label of the purpose of the element; in this 
case that it represents a person. 

It is not possible accidentally to treat an arbitrary pair consisting of a string and a 
number as a person; a person must be constructed using the Person constructor. 

The type will appear in any error messages due to mis-typing; a type synonym might 
be expanded out and so disappear from any type error messages. 

There are also advantages of using a tuple type, with a synonym declaration. 

The elements are more compact, and so definitions will be shorter. 

Using a tuple, especially a pair, allows us to reuse many polymorphic functions such 
as f s t ,  snd and unzip over tuple types; this will not be the case for the algebraic 

tY Pe. 

In each system that we model we will have to choose between these alternatives: our 
decisions will depend exactly on how we use the products, and on the complexity of 
the system. 

The approach here works cqually well with unary constructors, so we might say 

da t a  Age = Years I n t  

whose elements are Years 45 and so on. It is clear from a definition like this that 45 
is here being used as an age in years, rather than some unrelated numerical quantity. 
The disadvantage is that we cannot use functions defined over I n t  directly over Age. 

We can use the same name, for instance Person, for both the type and the constructor 
of a type, as in the definition 

da t a  Person = Person Name Age 

We choose not to do this, as using the same name for two related but different objects can 
easily lead to confusion. but it is an idiom used by a number of Haskell programmers. 

The examples of types given here are a special case of what we look at next. 

Alternatives 

A shape in a simple geometrical program is either a circle or a rectangle. These 
alternatives are given by the type 
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data Shape = Ci rc l e  F loa t  I (Shape) 
Rectangle F loa t  F loa t  

which says that there are two ways of building an element of Shape. One way is to 
supply the radius of a Ci rc le ;  the other alternative is to give the sides of a Rectangle. 
Example objects of this type are 

C i r c l e  3 . 0  
Rectangle 45.9 87.6 

Pattern matching allows us to define functions by cases, as in 

isRound : :  Shape -> Boo1 
isRound (C i r c l e  -) = True 
isRound (Rectangle - -1 = False 

and also lets us use the components of the elements: 

a r ea  : :  Shape -> Floa t  
a r e a  (Ci rc le  r )  = p i* r* r  
a r ea  (Rectangle h w) = h*w 

Another way of reading the definition (Shape) is to say that there are two constructor 
functions for the type Shape, whose types are 

C i r c l e  : :  Floa t  -> Shape 
Rectangle : :  Floa t  -> Floa t  -> Shape 

These functions are called constructor functions because the elements of the type are 
constructed by applying these functions. 

Extensions of this type, to  accommodate the position of an object, are discussed in 
the exercises at the end of this section. 

The general form of algebraic type definitions 

The general form of the algebraic type definitions which we have seen so far is 

da t a  Typename 
= Con1 ti1 . . .  t l k l  I 

Con2 t 2 1  . . . t 2k  I 2 . . . .  
Conn tnl . . .  tnkn 

(Typename) 

Each Coni is a constructor, followed by k i  types, where k i  is a non-negative integer 
which may be zero. We build elements of the type Typename by applying these 
constructor functions to arguments of the types given in the definition, so that 

Coni v i l  . . . viki 

will be a member of the type Typename if v i j  is in t i j  for j ranging from 1 to k i .  
Reading the constructors as functions, the definition (Typename) gives the construc- 

tors the following types 
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Coni : :  ti1 -> . . .  -> tiki -> Typename 

In the sections to come, we shall see two extensions of the definitions seen already. 

The types can be recursive; we can use the type we are defining, Typename. as (part 
of) any of the types tij. This gives us lists, trees and many other data structures. 

The Typename can be followed by one or more type variables which may be used on 
the right-hand side. making the definition polymorphic. 

Recursive polymorphic types combine thcsc two ideas, and this powerful mixture 
provides types which can be reused in many different situations - the built-in type 
of lists is an example which we have already seen. Other examples are given in the 
sections which follow. 

Before we move on, it is worth contrasting type and data definitions. A synonym 
given by type is simply a shorthand, and s o a  synonym type can always beexpanded out, 
and therefore removed from the program. On the other hand, a data definition creates 
a new type. Because synonyms are simply shorthand, a synonym definition cannot be 
recursive; data definitions can be and often are recursive, as we shall discover presently. 

Deriving instances of classes 

As we saw earlier, Haskell has a number of built-in classes including 

Eq, a class giving equality and inequality; 

Ord, built on Eq, giving an ordering over elements of a type; 

Enum, allowing the type to be enumerated, and so giving [n . . ml-style expres- 
sions over the type, and 

Show, allowing elements of the type to be turned into textual form, and Read, which 
allows values of the type to be read from strings. 

When we introduce a new algebraic type, such as Temp or Shape, we might well expect 
to have equality, enumerations and so on. These can be supplied by the system if we 
ask for them, thus: 

data Season = Spring I Summer I Autumn I Winter 
deriving (Eq,Ord,Enum,Show,Read) 

data Shape = Circle Float I 
Rectangle Float Float 
deriving (Eq,Ord,Show,Read) 

We can thus compare seasons for equality and order, write expressions of the form 

[Spring . . Autumn] 
denoting the list 

[Spring, Summer, Autumn] 
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and show values of the type. The same applies to Shape, except that we cannot 
enumerate shapes; being in Enum can only be derived for enumerated types such as 
Season. 

We are not forced to use the derived definitions; we can give our own instances. 
so that, for example, all circles of negative radius are made equal. The definition of 
showPerson above could also form a model for making People an instance of the type 
class Show. 

14.1 Redefine the function weather: : Season -> Temp so that a guard or an i f  
. . . is used rather than pattern matching. Which of the definitions is preferable 
in your opinion? 

14.2 Define the type of months as a Haskell algebraic type. Give a function which 
takes a month to its appropriate season - in doing this you might want to use the 
ordering on the type, which is derived as explained above. 

14.3 What would be the weather function for New Zealand, which is on a similar 
latitude to Britain, but in the Southern Hemisphere? What would be the definition 
for Brazil, which is crossed by the Equator? 

14.4 Define a function to give the length of the perimeter of a geometrical shape, of 
type Shape. What is the type of this function? 

14.5 Add an extraconstructor to Shape for triangles, and extend the functions isRound. 
a r ea  and perimeter to include triangles. 

14.6 Define a function which decides whether a Shape is regular: a circle is regular, 
a square is a regular rectangle and being equilateral makes a triangle regular. 

14.7 Investigate the derived definitions for Temp and Shape: what form do the 
orderings and the show functions take, for example? 

14.8 Define == over Shape so that all circles of negative radius are equated. How 
would you treat rectangles with negative sides? 

14.9 The type Shape takes no account of the position or orientation of a shape. After 
deciding how to represent points, how would you modify the original definition 
of Shape to contain the centre of each object? You can assume that rectangles 
lie with their sides parallel to the axes, thus: 



Introducing algebraic types 249 

14.10 Calling the new shape type NewShape, define a function 

move : :  F l o a t  -> F l o a t  -> NewShape -> NewShape 

which moves a shape by the two offsets given: 

14.1 1 Define a function to test whether two Newshapes overlap. 

14.12 Some houses have a number; others have a name. How would you implement 
the type of 'strings or numbers' used as a part of an address? Write a function 
which gives the textual form of one of these objects. Give a definition of a type 
of names and addresses using the type you have defined. 

14.13 Reimplement the library database of Section 5.6 to use an algebraic type like 
People  rather than a pair. Compare the two approaches to this example. 

14.14 The library database of Section 5.6 is to be extended in the following ways. 

CDs and videos as well as books are available for loan. 
A record is kept of the authors of books as well as their titles. Similar 
information is kept about CDs, but not about videos. 
Each loan has a period: books one month, CDs one week and videos threc 
days. 

Explain how you would modify the types used to implement the database, 
and how the function types might be changed. The system should perform 
the following operations. For each case, give the types and definitions of the 
functions involved. 

Find all items on loan to a given person. 
Find all books, CDs or videos on loan to a particular person. 
Find all items in the database due back on or before a particular day, and the 
same information for any given person. 
Update thedatabase with loans; the constant t o d a y  can be assumed to contain 
today's date, in a format of your choice. 

What other functions would have to be defined to make the system usable'? Give 
their types, but not their definitions. 
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Figure 14.2 Two trees. 

@ Recursive algebraic types 

Types are often naturally described in terms of themselves. For instance, an integer 
expression is either a literal integer, like 347, or is given by combining two expressions 
using an arithmetic operator such as plus or minus, as in (3-1)+3. 

da t a  Expr = L i t  I n t  I 
Add Expr Expr I 
Sub Expr Expr 

Similarly, a tree is either nil or is given by combining a value and two sub-trees. For 
example, the number 1 2  and the trees in Figure 14.2 are assembled to give the tree in 
Figure 14.1. As a Haskell type we say 

da t a  NTree = NilT 1 
Node Irt NTree NTree 

Finally, we have already used the type of lists: a list is either empty ( [I ) or is built from 
a head and a tail -another list - using the list constructor ' : '. Lists will provide a good 
guide to using recursive (and polymorphic) definitions. In particular they suggest how 
'general' polymorphic higher-order functions over other algebraic types are defined, 
and how programs are verified. We now look at some examples in more detail. 

Expressions 

The type Expr gives a model of the simple numerical expressions discussed above. 
These might be used in implementing a simple numerical calculator, for instance. 

d a t a  Expr = L i t  I n t  1 
Add Expr Expr I 
Sub Expr Expr 

Some examples are 
2 L i t  2 
2+3 Add (L i t  2) (L i t  3) 
(3-1)+3 Add (Sub (L i t  3) ( L i t  1)) ( L i t  3) 

where the informal expressions are listed in the left-hand column, and their Expr f o r m  
in the right. Given an expression, we might want to 
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evaluate it; 

turn it into a string, which can then be printed; 

estimate its size -count the operators, say. 

Each of these functions will be defined in the same way, using primitive recursion. As 
the type is itself recursive, it is not a surprise that the functions which handle the type 
are also recursive. Also, the form of the recursive definitions follows the recursion in 
the type definition. For instance, to evaluate an operator expression we work out the 
values of the arguments and combine the results using the operator. 

eval  : :  Expr -> I n t  

eval  (Li t  n) = n 
eval  (Add e l  e2) = (eva l  e l )  + (eval  e2) 
eval  (Sub e l  e2) = (eval  e l )  - (eval  e2) 

Primitive recursive definitions have two parts: 

At the non-recursive, base cases - (Li t  n) here - the value is given outright. 

At the recursive cases, the values of the function at the sub-expressions from which 
the expression is formed - eval  e l  and eval  e2 here - can be used in calculating 
the result. 

The show function has a similar form 

show : :  Expr -> S t r i n g  

show (L i t  n) = show n 
show (Add e l  e2) 

= 11(11 ++ show el ++ "+I1 ++ show e2 ++ " ) "  

show (Sub e l  e2) 
= ( I1 ++ show e l  ++ "-" ++ show e2 ++ " )  " 

as does the function to calculate the number of operators in an expression; we leave this 
as an exercise. Other exercises at the end of the section look at a different representation 
of expressions for which a separate type is used to represent the different possible 
operators. Next, we look at another recursive algebraic type, but after that we return 
to Expr and give an example of a non-primitive-recursive definition of a function to 
rearrange expressions in a particular way. 

Trees of integers 

Trees of' integers like that in Figure 14.1 can be modelled by the type 

da t a  NTree = NilT I 
Node I n t  NTree NTree 

The null tree is given by NilT, and the trees in Figure 14.2 by 
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Node 10 NilT NilT 
Node 17 (Node 14 NilT NilT) (Node 20 NilT NilT) 

Detinitions of many functions arc primitive recursive. For instance, 

sumTree,depth : :  NTree -> Int 

sumTree NilT = 0  
sumTree (Node n ti t2) = n + sumTree tl + sumTree t2 

depth NilT = 0 
depth (Node n ti t2) = 1 + max (depth tl) (depth t 2 )  

with, for example, 

sumTree (Node 3 (Node 4 NilT NilT) NilT) = 7 
depth (Node 3 (Node 4 NilT NilT) NilT) = 2  

As another example, take the problem of finding out how many times a number, p say. 
occurs in a tree. The primitive recursion suggests two cases, depending upon the tree. 

For a null tree, NilT. the answer must be zero. 

For a non-null tree. (Node n tl t2), we can find out how many times p occurs in 
the sub-trees ti and t2 by two recur\ive calls; we have to make a case split depending 
on whether p occur\ at the particular node, that is depending on whether or not p==n. 

The tinal definition is 

occurs : :  NTree -> Int -> Int 

occurs NilT p = 0 
occurs (Node n tl t2) p 

I n==p = 1 + occurs ti p + occurs t2 p 
I otherwise = occurs ti p + occurs t2 p 

The exercises at the end of the section give a number of other examples of functions 
defined over trees using primitive recursion. We next look at aparticular example where 
a different form of recursion is used. 

Rearranging expressions 

The next example shows a definition which uses a more general recursion than we have 
seen so far. After showing why the generality is necessary, we argue that the function 
we have defined is total: it will give a result on all well-defined expressions. 

The operation of addition over the integers is associative, so that the way in which an 
expression is bracketed is irrelevant to its value. We can, therefore, decide to bracket 
expressions involving '+' in any way we choose. The aim here is to write a program to 
turn expressions into right bracketed form, as shown in the following table: 
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What is the program to d o ?  The main aim is to spot occurrences of 

Add (Add e l  e2) e3 

and to transform them to 

Add e l  (Add e2 e3) 

( AddL) 

(AddR) 

so a first attempt at the program might say 

t r y  (Add (Add e l  e2) e3) 
= Add ( t r y  e l )  (Add ( t r y  e2) ( t r y  e3))  

t r y  . . . 
which is primitive recursive: on the right-hand side of their detinition the function t r y  
is only used on sub-expressions of the argument. This function will have thc effect of 
transforming ( AddL) to ( AddR) , but unfortunately ( AddExL) will be sent to ( AddExR) : 

( AddExL) 
( AddExR) 

The problem is that in transforming (AddL) to (AddR) we may produce another pattcrn 
we are looking for at the top level: this is precisely what happens when ( AddExL) i \  
translbrnled to (AddExR). We therefore have to call the fimction cigain on the re\ult of 
the rearrangement 

assoc : :  Expr -> Expr 

assoc (Add (Add e l  e2) e3) 
= assoc (Add e l  (Add e2 e3))  (Add. 1) 

The other cases in the definition make sure that the parts of an expression are rearranged 
as they should be. 

assoc (Add e l  e2) 
= Add (assoc e l )  (assoc e2) 

assoc (Sub e l  e2) 
= Sub (assoc e l )  (assoc e2) 

assoc (L i t  n) 
= L i t  n 

(Add. 2) 

The equation (Add. 2) will only be applied to the cases where (Add. 1) does not apply 
- this is when e l  is either a Sub or a L i t  expression. This is always the case in pattern 
matching: the,first applicable equation is used. 

When we use primitive recursion we can be sure that the recursion will terminate to 
give an answer: the recursive calls are only made on smaller expressions and so, after 
a finite number of calls to the function, a base case will be reached. 
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The a s s o c  function is more complicated, and we need a more subtle argument to 
see that the function will always give a result. The equation (Add. 1) is the tricky one, 
but intuitively, we can see that some progress has been made - some of the 'weight' of 
the tree has moved from left to right. In particular, one addition symbol has swapped 
sides. None of the other equations moves a plus in the other direction, so that after 
applying (Add. 1 )  a finite number of times, there will be no more exposed addition 
symbols at the top level of the left-hand side. This means that the recursion cannot go 
on indefinitely, and so the function always leads to a result. 

Syntax: infix constructors 

We have seen that functions can be written in infix form; this also applies to constructors. 
We can, for example, redefine the function assoc thus: 

a s s o c  ( ( e l  'Add' e2) 'Add' e 3 )  
= assoc ( e l  'Add' (e2  'Add' e 3 ) )  

. . .  

using the infix fonn of the constructor, given by surrounding it with back-quotes. 
When an expression like this is shown, it appears in prefix form, so that the expression 

( L i t  3 )  'Add' ( L i t  4 )  appears as 

Add ( L i t  3 )  ( L i t  4 )  

In a datadefinition we can define Haskell operalors which are themselves constructors. 
These constructors have the same syntax as operator symbols, except that their first 
character must be a ' : ', which is reminiscent of ' : ', itself an infix constructor. For our 
type of integer expressions, we might define 

d a t a  Expr = L i t  I n t  I 
Expr :+: Expr I 
Expr :-: Expr 

When an expression involving operator constructors is printed, the constructors appear 
in the intix position, unlike the quoted constructors above. 

It is left as an exercise to complete the redefinition of functions over Expr under this 
redefinition of the Expr type. 

Mutual recursion 

In describing one type, it is often useful to use others; these in turn may refer back to 
the original type: this gives a pair of mutually recursive types. A description of a 
person might include biographical details, which in turn might refer to other people. 
For instance: 

data Per son  = Adul t  Name Address Biog I 
C h i l d  Name 

d a t a  Biog = P a r e n t  S t r i n g  [Person] I 
NonParent S t r i n g  
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In the case of a parent, the biography contains some text, as well as a list of their 
children, as elements of the type Person. 

Suppose that we want to define afunction which shows informationabout a person as a 
string. Showing this information will require us to show some biographical information, 
which itself contains further information about people. We thus have two mutually 
recursive functions: 

showPerson (Adult nm ad bio)  
= show nm ++ show ad ++ showBiog b io  
. . .  

showBiog (Parent s t  p e r l i s t )  
= st ++ concat (map showPerson p e r l i s t )  

Exercises 

14.1 5 Give calculations of 

eval  (L i t  67) 
eval  (Add (Sub (Li t  3) (Li t  I ) )  (Li t  3 ) )  
show (Add (Li t  67) (Li t  (-34))) 

14.16 Detine the function 

s i z e  : :  Expr -> I n t  

which counts the number of operators in an expression. 

14.1 7 Add the operations of multiplication and integer division to the type Expr, and 
redefine the functions eval ,  show and s i z e  to include these new cases. What 
does your definition of eva l  do when asked to perform a division by zerod? 

14.1 8 Instead of adding extra constructors to the Expr type, as in the previous question. 
it is possible to factor the definition thus: 

da t a  Expr = L i t  I n t  I 
Op Ops Expr Expr 

da t a  Ops = Add I Sub I Mu1 1 Div 

Show how the functions eval,  show and s i z e  are defined for this type. and 
discuss the changes you have to make to your definitions if you add the extra 
operation Mod for remainder on integer division. 

14.1 9 Give line-by-line calculations of 

sumTree (Node 3 (Node 4 NilT NilT) NilT) 
depth (Node 3 (Node 4 NilT NilT) NilT) 
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14.20 Complete the redefinition of functions over Expr after it has been defined using 
the infix constructors : + : and : - : . 

14.21 Detine functions to return the left- and right-hand sub-trees of an NTree. 

14.22 Define a function to decide whether a number is an element of an NTree. 

14.23 Define functions to find the maximum and minimum values held in an NTree. 

14.24 A tree is reflected by swapping left and right sub-trees. recursively. Define 
a function to reflect an NTree. What is the result of reflecting twice, 
r e f l e c t  . r e f l e c t ' ?  

14.25 Define functions 

co l l apse ,  s o r t  : :  NTree -> [Int] 

which turn a tree into a list. The function co l lapse  should enumerate the left 
sub-tree, then the value at the node and finally the right sub-trcc; s o r t  should 
sort the elements in ascending order. For instance, 

co l l apse  (Node 3 (Node 4 NilT NilT) NilT) = [4,3] 
s o r t  (Node 3 (Node 4 NilT NilT) NilT) = [3,4] 

14.26 Complete the definitions of showPerson and showBiog which were left incom- 
plete in the text. 

14.27 It is possible to extend the type Expr so that it contains conditiotzul expressions. 
I f  b e l  e2, where e l  and e2 are expressions, and b is a Boolean expression, 
a member of the type BExp, 

d a t a  Expr = L i t  Int I 
Op Ops Expr Expr I 
I f  BExp Expr Expr 

The expression 

has the value of e l  if b has the value True and otherwise it has the value of e2. 

d a t a  BExp = BoolLit Boo1 1 
And BExp BExp I 
Not BExp I 
Equal Expr Expr I 
Greater  Expr Expr 

The five clauses here give 
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Boolean literals, BoolLit  True and BoolLit  False .  
The conjunction of two expressions; it is True if both sub-expressions have 
the value True. 

The negation of an expression. Not be has value True if be has the value 
Fa l se .  

Equal e l  e2 is True when the two numerical expressions have equal values. 
Grea te r  e l  e2 is True when the numerical expression e l  has a larger value 
then e2. 

Define the functions 

e v a l  : :  Expr -> I n t  
bEval : :  BExpr -> Bool 

by mutual recursion, and extend the function show to show the redefined type 
of expressions. 

(143) Polymorphic algebraic types 

Algebr~ic  type definitions can contain the type variables a, b and so on, defining 
polymorphic types. The definitions are as before, with the type variables used in 
the definition appearing after the type name on the left-hand side of the definition. A 
simple example is 

d a t a  P a i r s  a = P r  a a 

and example elements of the type are 

P r  2 3 : : P a i r s  I n t  
Pr  [I [3] : : P a i r s  [ I n t ]  
P r  [I [I : : P a i r s  [a1 

A function to test the equality of the two halves of a pair is given by 

e q u a l p a i r  : :  Eq a => P a i r s  a -> Bool 
e q u a l p a i r  (Pr  x y) = (x==y) 

The remainder of this section explores a scquence of further examples. 

Lists 

The built-in type of lists can be given by a definition like 

d a t a  L i s t  a = N i l L i s t  I Cons a ( L i s t  a )  
d e r i v i n g  (Eq,Ord,Show,Read) 

where the syntax [a], [I and ':' is uscd for L i s t  a, N i l L i s t  and 'Cons'. Because 
of this, the type of lists forms a useful paradigm fur recursive polymorphic types. In 
particular, we can see the possibility of defining useful families of functions over such 
types, and the way in which program verification can proceed by induction over the 
structure of a type. 
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Binary trees 

The trees of Section 14.2 carry numbers at each node; there is nothing special about 
numbers, and we can equally well say that they have elements of an arbitrary type at 
the nodes: 

data Tree a = Nil I Node a (Tree a) (Tree a) 
deriving (Eq,Ord,Show,Read) 

The definitions of depth and occurs carry over unchanged: 

depth : :  Tree a -> Int 
depth Nil = 0 
depth (Node n tl t2) = 1 + max (depth tl) (depth t2) 

as do many of the functions defined in the exercises at the end of Section 14.2. One of 
these is the function collapsing a tree into a list. This is done by visiting the elements 
of the tree 'inorder', that is visiting first the left sub-tree, then the node itself. then the 
right sub-tree, thus: 

collapse : : Tree a -> [a] 
collapse Nil = [I 
collapse (Node x tl t2) 

= collapse tl ++ [x] ++ collapse t2 

For example, 

collapse (Node 12 
(Node 34 Nil Nil) 
(Node 3 (Node 17 Nil Nil) Nil)) 

= [34,12,17,3] 

Various higher-order functions are definable, also, 

mapTree : :  (a -> b) -> Tree a -> Tree b 
mapTree f Nil = Nil 
mapTree f (Node x tl t2) 

= Node (f x) (mapTree f tl) (mapTree f t2) 

We shall return to trees in Section 16.7, where particular 'search' trees form a case 
study. 

The union type, Ei the r  

Type definitions can take more than one parameter. We saw earlier the example of the 
type whose elements were either a name or a number. In general we can form a type 
whose elements come either from a or from b: 

data Either a b = Left a 1 Right b 
deriving (Eq,Ord,Read,Show) 
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Figure 14.3 Joining together functions. 

Members of the 'union' or 'sum' type are (Left  x),  with x: : a, and (Right y) with 
y :  :b. The 'name or number' type is given by E i the r  S t r i n g  I n t  and 

Lef t  "Duke of Prunes" : :  Ei the r  S t r i ng  I n t  
Right 33312 : :  Ei the r  S t r i n g  I n t  

We can tell whether an element is in the first half of the union by 

i sLe f t  : :  Ei the r  a  b -> Boo1 
i sLe f t  (Left -1 = True 
i sLe f t  (Right -) = False  

To define a function from E i the r  a  b to I n t ,  say, we have to deal with two cases, 

fun : :  Ei the r  a  b -> I n t  
fun (Left  x) = . . .  x ... 
fun (Right y) = . . .  y  . . .  

In the first case, the right-hand side takes x to an I n t ,  so is given by a function from a  
to I n t ;  in the second case y  is taken to an I n t ,  thus being given by a function from b 
to In t .  

Guided by this, wc can give a higher-order function which joins togrt/ter two 
functions defined on a  and b to a function on E i the r  a  b. The definition follows, 
and is illustrated in Figure 14.3. 

e i t h e r  : :  (a -> c)  -> (b -> c) -> Ei the r  a  b -> c 

e i t h e r  f  g  (Left  x) = f x 
e i t h e r  f  g  (Right y) = g  y 

If we have a funclion f  : : a  -> c and we wish to apply it Lo an element of E i the r  a b. 
there is a problem: what do we do if the element is in the right-hand side of the E i the r  
type? A simple answer is to raise an e r r o r  

applyLeft : :  ( a  -> c) -> Ei the r  a  b -> c 
applyLeft f  (Left  x) = f  x 
applyLeft f  (Right -) = e r r o r  "applyLeft applied t o  Right" 

but in the next section we shall explore other ways of handling errors in more detail 
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14.28 Investigate which of the functions over trees discussed in the exercises of Section 
14.2 can be made polymorphic. 

14.29 Define a function t w i s t  which swaps the order of a union 

twis t  : :  Either a  b -> Either b a 

What is the effect of ( twist  . twis t )?  I 

14.30 How would you define applyLeft using the function e i the r?  

14.31 Show that any function of type a  -> b can be transformed into functions of type 

a -> Either b c 
a -> Either c b 

14.32 How could you generalize e i t h e r  to join so that it has type 

join : :  (a -> c) -> (b -> d) -> Either a  b -> Either c d  

You might find the answer to the previous exercise useful here, if you want to 
define join using e i ther .  

The trees defined in the text are hincrry: each non-nil tree has exactly two sub- 
trees. We can instead define general trees with an arbitrary list of sub-trees, 
thus: 

da ta  GTree a  = Leaf a  I Gnode [GTree a] 

The exercises which follow concern these trees. 

14.33 Define functions 

to count the number of leaves in a GTree; 

to find the depth of a GTree; 

to sum a numeric GTree Int ;  

to find whether an element appears in a GTree; 

to map a function over the elements at the leaves of a GTree; and 

to flatten a GTree lo a list. 

14.34 How is the completely empty tree represented as a GTree? 
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(144) Case study: program errors 

How should a program deal with a situation which ought not to occur? Examples of 
such situations include 

attempts to divide by Lero, to take the square root of a negative number, and other 
arithmetical transgressions; 

attempts to take the head of an empty list - this is a special case of a definition over 
an algebraic type from which one case (here the empty list) is absent. 

This section examines the problem, giving three approaches of increasing sophisti- 
cation. The simplest method is to stop computation and to report the source of the 
problem. This is indeed what the Haskell system does in the cases listed above, and we 
can do this in functions we define ourselves using the error function, 

error : :  String -> a 

An attempt to evaluate the expression error "Circle with negative radius" 
results in the message 

Program error: Circle with negative radius 

being printed and computation stopping. 
The problem with this approach is that all the useful information in the computation 

is lost; instcad of this, the error can be dealt with in some way witho~lt stopping 
computation completely. Two approaches suggest themselves. and we look at them 
in turn now. 

Dummy values 

The function tail is supposed to  give the tail of a list, and it gives an error message 
on an empty list: 

tail : : [a] -> [a] 
tail (-:xs) = xs 
tail [I = error "PreludeList.tai1: empty list" 

We could redefine it to say 

tl : : Cal -> Cal 
tl (-:xs) = xs 

tl [I = [I 

Now, an attempt to take the tail of an?. list will succeed. In a similar way we could say 

divide : :  Int -> Int -> Int 
divide n m 

I (m /= 0) = n 'div' m 
I otherwise = 0 
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so that division by zero gives some answer. For tl and divide there have been obvious 
choices about what the value in the -error' case should be; for head there is not, and 
instead we can supply an extra parameter to head, which is to be used in  the case of 
the list being empty. 

This approach is con~pletely general; if a function f (of one argument, say) usually 
raises an error when cond is True, we can define a new function 

fErr y x 

I cond = Y 
I otherwise = f x 

This approach works well in many cases; the only drawback is that we have no way of 
telling when an error has occurred, since we may get the result y from either the error 
or the 'normal' case. Alternatively we can use an error type to trap and process errors; 
this we look at now. 

Error types 

The previous approach works by returning a dummy value when an error has occurred. 
Why not instead return an error value as a result? We define the type 

data Maybe a = Nothing I Just a 
deriving (Eq, Ord, Read, Show) 

which is effectively the type a with an extra value Nothing added. We can now define 
a division function errDiv thus 

errDiv : :  Int -> Int -> Maybe Int 
errDiv n m 

I (m /= 0) = Just (n 'div' m) 
I otherwise = Nothing 

and in the general case, where f gives an error when cond holds, 

fErr x 
I cond = Nothing 
I otherwise = Just (f x) 

Thc rcsults of these functions are now not of the original output type, a say, but of type 
Maybe a. These Maybe types allow us to raise an error, potentially. We can do two 
things with a potential error which has been raised 

we can tmrzsrnit the error through a function, the effect of mapMaybe; 

we can trap an error, the role of maybe. 
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laybe a Maybe b 

maybe n f 

Figure 14.4 Error-handling functions. 

These two operations are illustrated in Figure 14.4, and we define them now. 
The function mapMaybe transmits an error value though the application of the function 

g. Suppose that g is a function of type a -> b, and that we are to lift it to operate on 
the type Maybe a. In the case of an argument Ju s t  x, g can be applied to the x to give 
a result, g x, of type b; this is put into Maybe b by applying the constructor function 
Jus t .  On the other hand, if Nothing is the argument then Nothing is the result. 

mapMaybe : :  ( a  -> b) -> Maybe a -> Maybe b 

mapMaybe g Nothing = Nothing 
mapMaybe g ( J u s t  X) = J u s t  (g X) 

In trapping an error, we aim to return a result of type b. from an input of type Maybe 
a; we have two cases to deal with 

in the Jus t  case, we apply a function from a to b; 

in the Nothing case, we have to give the value of type b which is to be returned. 
(This is rather like the value we supplied to hd earlier.) 

The higher-order function which achieves this is maybe, whose arguments n and f are 
used in the Nothing and J u s t  cases respectively. 

maybe : : b -> ( a  -> b) -> Maybe a -> b 

maybe n f Nothing = n 
maybe n f ( Jus t  x) = f x 

We can see the functions mapMaybe and maybe in action in the examples which follow. 
In the tirst, a division by zero leads to a Nothing which passe%,through the lifting to 
be trapped - 56 is therefore returned: 

maybe 56 ( I+)  (mapMaybe (*3) (errDiv 9 0)) 
= maybe 56 ( I+ )  (mapMaybe (*3) Nothing) 
= maybe 56 (I+) Nothing 
= 56 
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In the second, a normal division returns a J u s t  9. This is multiplied by three. and the 
maybe at the outer level adds one and removes the Just :  

maybe 56 ( I+)  (mapMaybe (*3) (errDiv 9 1 ) )  
= maybe 56 (I+) (mapMaybe (*3) ( Jus t  9)) 
= maybe 56 ( I+)  ( Jus t  27) 
= 1 + 2 7  
= 28 

The advantage of the approach discussed here is that we can first define the system 
without error handling, and afterwards add the error handling, using the mapMaybe and 
maybe functions together with the modified functions to raise the error. As we have 
seen numerous times already, separating a problem into two parts has made the solution 
of each, and therefore the whole, more accessible. 

We revisit the Maybe type in Section 18.8 where we see that it is an example of 
a more general programming structure, a monad. In particular there we examine the 
relationship between the function mapMaybe and the map function over lists. 

14.35 Using the functions mapMaybe and maybe, or otherwise, define a function 

process : : [ In t ]  -> I n t  -> I n t  -> I n t  

so that process xs n m takes the nth and mth items of the list of numbers xs, 
and returns their sum. Your function should return 0 if either of the numbers is 
not one of the indices of the list: for a list of length p, the indices are 0, . . . , p-1 
inclusive. 

14.36 Discuss the advantages and disadvantages of the three approaches to error 
handling presented in this section. 

14.37 What are the values of type Maybe (Maybe a )  ? Define a function 

squashMaybe :: Maybe (Maybe a )  -> Maybe a 

which will 'squash' Ju s t  ( Jus t  x) to J u s t  x and all other values to Nothing. 

14.38 In a similar way to mapMaybe, define the function 

composeMaybe : :  ( a  -> Maybe b) -> 
(b -> Maybe c) -> 
( a  -> Maybe c) 

which composes two error-raising@nctions. How could you use mapMaybe, the 
function composition operator and the squash function to define composeMaybe? 

14.39 The Maybe type could be generalized to allow messages to be carried i n  the 
Nothing part, thus: 
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da ta  E r r  a = OK a 1 Error  S t r i n g  

How do the definitions of mapMaybe, maybe and composeMaybe have to be 
modified to  accomniodate this new detinition'! 

(145) Design with algebraic data types 

Algebraic data types provide us with a powerf~~l mechanism for modelling typcs which 
occur both in problems thenlselves, and within the programs designed to solve them. 
In this section we suggest a three-stage method for finding the appropriate algebraic 
type definitions. We apply it in two examples: finding the 'edit distance' between two 
words, and a simulation problem. 

An important moral of the discussion here is that we can start to design data types 
hdependently of the program itself. For a system of any size we should do this, as 
we will be more likely to succeed if we can think about separate parts of the system 
separately. 

We shall have morc to say about design of data types in the next two chapters. 

Edit distance: problem statement 

In discussing the stages of design, we follow the example of finding the edit distance 
between two strings. This is the shortest sequence of simple editing operations which 
can take us from one string to the other. 

The example is a version of a practical problem: in keeping a display (of windows 
or simple text) up-to-date. the speed with which updates can be done is crucial. It is 
therefore desirable to be able to make the updatcs from as few elementary operations 
as possible; this is what the edit distance program achieves in a different context. 

We suppose that there are ti ve basic editing operations on a string. We can change 
one character into another, copy a character without modifying it, delete or insert a 
character and delete (kill) to the end of the string. We also assume that each operation 
has the same cost, cxcept a copy which is free. 

To turn the striny " f i sh"  into "chips", we could kill the whole string, then insert 
the characters one-by-one, at a total cost of six. An optimal solution will copy as much 
of the string as pohsible, and is given by 

inserting the character ' c ', 
changing ' f '  to ' h J  , 

copying ' i ' , 
inserting ' p ' , 
copying ' s J ,  and finally 

deleting the remainder of the string, "h" 

In the remainder of this section we design a type to represent the editing steps, and after 
looking at another example of data type design, define a function to give an optimal 
sequence of editing steps from one string to another. 
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The analysis here can also be used to describe the difference between two lists of 
arbitrary type. If each item is a line of a file, the behaviour of the function is similar to 
the Unix dif  f utility, which is used to give the difference between two text files. 

Design stages in the edit distance problem 

Now we look at the three stages of algebraic type detinition i n  detail. 

First we have to identify the types of data involved. In the example, we have to define 

data  Edit = . . . 

which represents the editing operations. 

Next, we have to identify the different sorts of data in each of the types. Each sort of 
data is given by a constructor. I n  the example, we can change, copy, delete or insert 
a character and delete (kill) to the end of the string. Our type definition is therefore 

data  Edit = Change . . . 1 
Copy . . . I 
Delete . . .  I 
Inser t  . . . I 
K i l l  . . . 

The ' . . . ' show that we have not yet said anything about the types of the constructors. 

Finally, for each of the constructors, we need to decide what its components or 
arguments are. Some of the constructors - Copy, Delete and K i l l  - require no 
information; the others need to indicate the new character to be inserted, so 

data  Edit = Change Char 

COPY 1 
Delete I 
Inser t  Char 
K i l l  

," 
This completes the definition. 

We now illustrate how other type definitions work i n  a similar way, before returning to 
give a solution to the 'edit distance' problem. 
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Simulation 

Suppose we want to model, or simulate, how the queues in a bank or Post Office behave: 
perhaps we want to decide how many bank clerks need to be working at particular times 
of the day. Our system will take as input the arrivals of customers, and give as output 
their departures. Each of these can be modelled using a type. 

Inmess is the type of input messages. At a given time, there are two possibilities: 

- No-one arrives, represented by the 0-ary constructor No; 

- Someone arrives, represented by the constructor Yes. This will have components 
giving the arrival time of the customer, and the amount of  time that will be needed 
to serve them. 

Hence we have 

data Inmess = No I Yes Arrival Service 

type Arrival = Int 
type Service = Int 

Similarly, we have Outmess, the type of output messages. Either no-one leaves 
(None), or a person is discharged (Discharge). The relevant information they carry 
is the time they have waited, together with when they arrived and their service time. 
We therefore define 

data Outmess = None I Discharge Arrival Wait Service 

type Wait = Int 

We return to the simulation example in Chapter 16. 

Edit distance: solution 

The problen~ is to find the lowest-cost sequence of edits to take us from one string to 
another. We can begin the definition thus: 

transform : :  String -> String -> [Edit] 

transform [I [I = [I 

To transform the non-empty string st, to [I, we simply have to Kill it. while to 
transform [I to st we have to Insert each of the characters in turn: 

transform xs [I = [Kill] 
transform [I ys = map Insert ys 
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In the general case, we have a choice: should we first use Copy. Delete, Insert or 
Change? If the first characters of the strings are equal we should copy; but if not, there 
is no obvious choice. We therefore try rill possibilities and choose the best of them: 

transform (x:xs) (y:ys) 
I x==y = Copy : transform xs ys 
I otherwise = best [ Delete : transform xs (y:ys) , 

Insert y : transform (x:xs) ys , 
Change y : transform xs ys 1 

How do we choose the best sequence? We choose the one with the lowest cost. 

best : : [[Edit]] -> [Edit] 
best[x] = x  
best (x:xs) 

1 cost x <= cost b = x 
I otherwise = b  

where 
b = best xs 

The cost is given by charging one for evcry operation except copy, which is equivalent 
to 'leave unchanged'. 

cost : : [Edit] -> Int 
cost = length . filter (/=Copy) 

The first four questions are designed to make you think about how data types are 
designed. These questions are not intended to have a single 'right' answer, rather you 
should satisfy yourself that you have adequatcl y represented the types which appear in 
your informal picture of the problem. 

14.40 It is decided to keep a record of vehicles which will use a particular car park 
Design an algebraic data type to represent them. 

14.41 If you knew that the records of vehicles were to bc used for comparative tests of 
fuel efficiency, how would you modilji your answer to the last question'? 

14.42 Discuss the data types you might use in a database of students' marks for classes 
and the like. Explain the design of any algebraic data typcs that you use. 

14.43 What data types might bc used to represent the objects which can be drawn 
using an interactive drawing program'? To give yourself more of a challenge. 
you niight like to think about grouping of objects, multiple copies of object\. 
and scaling. /' 

14.44 How would you modify the edit distance program to accommodate a Swap 
operation, which can be used to transform "abxyz" to "baxyz" in a single 
step'? 
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14.45 Write a definition which when given a list of edits and a string s t ,  returns the 
sequence of strings given by applying the edits to st in sequence. 

14.46 Give a calculation of t r a n s f  orm " c a t t 1  "am". What do you conclude about 
the efficiency of the t r a n s f o r m  function? 

(146) Algebraic types and type classes 

We have reached a point where i t  is possible to explore rathcr more substantial examples 
of type classcs, first introduced in Chapter 12. 

Movable objects 

We start by building a class of typcs whose members are geometrical objects in two 
dimensions. The operations ofthcclass are those to nwve the objects in various different 
ways. 

We now work through the definitions, which are illustrated in Figurc 14.5. Some 
moves will be dictated by vectors, so we first define 

d a t a  Vector  = Vec F l o a t  F l o a t  

The class detinition itself is 

c l a s s  Movable a where 
move : :  Vector  -> a -> a 
r e f l e c t X  : :  a -> a 
r e f l e c t Y  : :  a -> a 
r o t a t e 1 8 0  : :  a -> a 
r o t a t e 1 8 0  = r e f l e c t X  . r e f l e c t Y  

and it shows the ways in which an object can be moved. First it can be moved by a 
vector, as i n  the diagram below. 

We can also reflect sn object in the x-axis (the hori~ontal axis) or the y-axic (the 
vertical), or ro ta ledigure  through 180' around the origin (the point where the axe, 
meet). The default definition of r o t a t e 1 8 0  works by reflecting first in the y-axi5 and 
then the x, as we did with the P i c t u r e  type in Chapter I .  

We can now define a hierarchy of movable objects; fir\t we have the Po in t .  
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da ta  Vector = Vec Float  Float  

c l a s s  Movable a  where 
move : :  Vector -> a -> a 
ref  lectX : : a -> a 
ref lec tY : :  a -> a 
rotate180 : : a -> a 
rotate180 = re f lec tX . re f lec tY 

da ta  Point = Point  Float  Float  
der iv ing  Show 

ins tance  Movable Point where 
move (Vec v l  v2) (Point c l  c2) = Point ( c l+v l )  (c2+v2) 
re f lec tX (Point c l  c2) = Point  c l  (-c2) 
re f lec tY (Point c l  c2) = Point ( -c l )  ~2 
rotate180 (Point c l  c2) = Point (-c1) (-c2) 

d a t a  Figure = Line Point  Point I 
Circ le  Point Float  
der iv ing  Show 

ins tance  Movable Figure where 
move v (Line p l  p2) = Line (move v p l )  (move v p2) 
move v (Circ le  p r )  = Circ l e  (move v p) r 

ref lec tX (Line p l  p2) = Line ( r e f l e c t x  p l )  ( r e f l e c t x  p2) 
ref  lectX (Circle  p r )  = Circ l e  ( r e f l e c t x  p) r 

ref lec tY (Line p i  p2) = Line ( ref lec tY p l )  ( re f lec tY p2) 
re f lec tY (Circ le  p r )  = Circ l e  ( re f lec tY p) r 

ins tance  Movable a  => Movable [a] where 
move v = map (move v) 
re f lec tX = map ref lec tX 
ref lec tY = map ref lec tY 

Figure 14.5 Movable objects. 

da t a  Point = Point Float  Float  
der iv ing  Show 

To make Point an instance of Movable we have to give definitions of move. ref  lectX 
and re f  lectY over the Point type. 

/- 

move (Vec v l  v2) (Point c l  c2) = Point ( c l+v l )  (c2+v2) 
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Here we can see that the move is achieved by adding the components v l  and v2 to 
the coordinates of the point. Reflection is given by changing the sign of one of the 
coordinates 

re f lec tX (Point c l  c2) = Point c l  (-c2) 
re f lec tY (Point c l  c2) = Point (-cl) c2 

For this instance we override the default definition of rotate180 by changing the sign 
of both coordinates. This is a more efficient way of achieving the same transformation 
than the default definition. 

rotate180 (Point c l  c2) = Point ( -c l )  (-c2) 

Using the type of points we can build figures: 

da t a  Figure = Line Point Point I 
Circ l e  Point Float 

and in the instance declaration of Movable for Figure given in Figure 14.5 we use the 
corresponding operations on Point ;  for example, 

move v (Line p l  p2) = Line (move v p1) (move v p2) 
move v (Circ le  p r )  = Circ l e  (move v p) r 

This same approach works again when we consider a list of movable objects: 

ins tance  Movable a => Movable [a] where 
move v = map (move v) 
re f lec tX = map ref lec tX 

and so on. Using overloading in this way has a number of advantages. 

The code is much easier to read: at each point we write move, rather than movepoint, 
and so on. 

We can reuse definitions; the instance declaration for Movable [a] makes lists of 
any sort of movable object movable themselves. This includes lists of points and 
lists of figures. Without overloading we would not be able to achieve this. 

Named objects 

Many forms of data contain some sort of name, a S t r ing  which identifies the object in  
question. What do we expect to be able to do with a value of such a type? 

We should be able to identify the name of a value, and 

we ought to be able to give a new name to a value. 

These operations are embodied in the Named class: 

c l a s s  Named a where 
lookName : :  a -> S t r i n g  
giveName : :  S t r i n g  -> a -> a 

L 
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and an example of Named types is given by 

da t a  Name a = Pa i r  a S t r ing  

the one-constructor type whose two components are of type a and Str ing.  The 
instance declaration for this type is 

instance Named (Name a )  where 
lookName (Pai r  obj nm) = nm 
giveName nm (pa i r  obj -) = (Pa i r  obj nm) 

Putting together classes 

An important aspect of object-oriented software dcvcloprnent i s  the way i n  which one 
class can be built upon another, reusing the operations of the original class on the 
subclass. In this section we explore how to combine the Movable and Named classes, to 
give objects which are both movablc and named. The section is rather more advanced, 
and can be omitted on first reading. 

Suppose we are to add names to our movable objects - how might this be done? We 
examine one approach in the text, and another in the exercises. 

Our approach is to build the type Name a where elements 01' type a arc movable. 
that is Movable a holds. We then want to establish that the type Name a is in both the 
classes Movable and Named. We have shown the latter for any type a already in (1) 
above. so we concentrate on the former. 

The crucial insight is that the naming is independent of the named type; any operation 
on the typc can be lifted to work over named types thus: 

mapName : :  (a  -> b) -> Name a -> Name b 

mapName f (Pa i r  obj nm) = P a i r  (f obj)  nrn 

We can then argue that all the operations of the Movable class can be lifted. 

ins tance  Movable a => Movable (Name a)  where 
move v = mapName (move v) 
re f lec tX = mapName ref lec tX 
ref  lectY = mapName ref  lectY 

Now we already know that Named (Name a) by (1) above, so if we detine a class 
combining these attributes 

c l a s s  (Movable b ,  Named b) => NamedMovable b (3) 

we can declare the instance 

ins tance  Movable a => NamedMovable (Name a) 

This last instance is established by showing that the two constraints of (3) hold when 
b is replaced by Name a, but this is exactly what (1) and (2) say given the constraint 
Movable a. 
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d a t a  Name a = P a i r  a S t r i n g  

exam1 = P a i r  (Po in t  0 . 0  0 .0 )  "Dweezil" 

i n s t a n c e  Named (Name a )  where 
lookName ( P a i r  o b j  nm) = nm 
giveName nm ( P a i r  o b j  -) = ( P a i r  o b j  nm) 

mapName : : ( a  -> b)  -> Name a -> Name b 

mapName f ( P a i r  o b j  nm) = P a i r  (f o b j )  nm 

i n s t a n c e  Movable a => Movable (Name a )  where 
move v = mapName (move v) 
r e f l e c t X  = mapName r e f l e c t X  
r e f l e c t Y  = mapName r e f l e c t Y  

c l a s s  (Movable b ,  Named b) => NamedMovable b 

i n s t a n c e  Movable a => NamedMovable (Name a )  

Figure 14.6 Named movable objects. 

This completes the demonstration that NamedMovable (Name a )  holds when we 
know that Movable a.  It is worth realising that this demonstration is produced auto- 
matically by the Haskell system - we only need to type what is seen in Figure 14.6. 

This section has begun to illustrate how classes can be used in the software develop- 
ment process. In particular we have shown how our movable objects can be named in 
a way which allows reuse of all the code to move the objects. 

14.47 A different way of combining the classes Named and Movable is to establish the 
instance 

i n s t a n c e  (Movable b,Named c )  => NamedMovable (b ,c )  

This is done by giving the instances 

i n s t a n c e  Movable b => Movable (b ,  c)  where . . . . 
i n s t a n c e  Named c => Named (b ,c )  where . . . . 

Complete these instance declarations. 
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14.48 Show that the method of the previous question can be used to combine instances 
of any two classes. 

14.49 The example in the final part of this section shows how we can combine an 
arbitrary instance of the Movable class, a, with a particular instance of the 
Named class, S t r i n g .  Show how it can be used to combine an arbitrary instance 
of one class with a particular instance of another for any two classes whatever. 

14.50 Extend the collection of operations for moving objects to include scaling and 
rotation by an arbitrary angle. This can be done by re-defining Movable or 
by defining a class MovablePlus over the class Movable. Which approach is 
preferable'? Explain your answer. 

14.51 Design a collection of classes to model bank accounts. These have different 
forms: current, deposit and so on, as well as different levels of functionality. 
Can you reuse the Named class here'? 

(14 Reasoning about algebraic types 

Verification for algebraic types follows the example of lists, as first discussed in Chapter 
8. The general pattern of structural induction over an algebraic type states that the result 
has to be proved for each constructor; when a constructor is recursive, we are allowed 
to use the corresponding induction hypotheses in making the proof. We first give some 
representative examples in this section, and conclude with a rather more sophisticated 
proof. 

Trees 

Structural induction over the type Tree of trees is stated as follows. 

Structural induction over trees 

To prove the property P ( t r )  for all finite t r  of type Tree t we have to do two things. 

N i l  case Prove P(Ni1).  
Node case Prove P (Node x t r l  t r 2 )  for all x of type t 

assuming that P ( t r 1 )  and P ( t r 2 )  hold already. 

The advice of Chapter 8 about finding proofs can easily be carried over to the situation 
here. Now we give a representative example of a proof. We aim to prove for all finite 
trees t r  that 

map f ( c o l l a p s e  t r )  = c o l l a p s e  (mapTree f t r )  (map-collapse) 

which states that if we map a function over a tree, and then collapse the result we get 
the same result as collapsing before mapping over the list. The functions we use are 
defined as follows 
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map f [I = [I 
map f (x:xs) = f x : map f x s  

(map. 1) 
(map. 2) 

mapTree f N i l  = N i l  (mapTree . 1 ) 
mapTree f (Node x t l  t 2 )  

= Node (f x) (mapTree f t i )  (mapTree f  t 2 )  (mapTree .2)  

co l lapse  N i l  = [I 
co l lapse  (Node x t i  t 2 )  

= col lapse  t i  ++ [x] ++ col lapse  t 2  

Base In the N i l  case, we simplify each side, giving 

map f (co l lapse  Nil)  
= map f [I 
= [I 

col lapse  (mapTree f Nil)  
= col lapse  N i l  
= [I 

This shows that the base case holds. 

Induction I11 the Node case, we have to prove: 

map f (co l lapse  (Node x trl t r 2 ) )  
= col lapse  (mapTree f (Node x t r l  t r 2 ) )  

(co l lapse .  1) 

(co l lapse .  2) 

by (co l lapse .  1) 
by (map.1) 

by (mapTree . 1) 
by (co l lapse .  1 )  

( ind)  

assuming the two induction hypotheses: 

map f (co l lapse  t r l )  = col lapse  (mapTree f t r l )  (hyp. 1) 
map f (co l lapse  t r 2 )  = col lapse  (mapTree f t r 2 )  (hyp. 2) 

Looking at ( ind)  , we can simplify the left-hand side thus 

map f  (co l lapse  (Node x t r l  t r 2 ) )  
= map f (co l lapse  tr l  ++ [XI ++ col lapse  t r 2 )  by ( c o l l a ~ s e . 2 )  
= map f (co l lapse  t r l )  ++ [f x] ++ map f (co l lapse  t r 2 )  

by (map++) 
= col lapse  (mapTree f t r l )  ++ [f XI ++ 

col lapse  (mapTree f t r 2 )  by (hypl ,hyp2) 

The final step is given by the two induction hypothescs, that the result holds for the two 
subtrees trl and t r 2 .  The result (map++) is the theorem 

map g (ys++zs) = map g ys  ++ map g z s  (map++) 

discussed in Chapter 10. Examining the right-hand side now, we have 
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col lapse  (mapTree f (Node x t r l  t r 2 ) )  
= col lapse  (Node (f x) (mapTree f t r l )  

(mapTree f t r 2 ) )  by (mapTree .2) 
= col lapse  (mapTree f t r l )  ++ [f xl ++ 

col lapse  (mapTree f t r 2 )  by (col lapse .2) 

and this finishes the proof in the Node case. As this is the second of the two cases, the 
proof is complete. 

The Maybe type 

Structural induction for the type Maybe t becomes proof by cases - because the type 
is not recursive, in none of the cases is there an appeal to an induction hypothesis. The 
rule is 

Structural induction over the Maybe type 

To prove the property P (x) for all defined' x of type Maybe t we have to do two things: 

Nothing case Prove P (Nothing). 
Ju s t  case Prove P ( Jus t  y) for all defined y of type t. 

Our example proof is that, for all defined values x of type Maybe I n t ,  

maybe 2 abs x 3 0 

Proof The proof has two cases. In the first x is replaced by Nothing: 

maybe 2 abs Nothing 
= 2 2 0  

In the second, x is replaced by Jus t  y for a defined y. 

maybe 2 abs ( Jus t  y) 
= abs y > 0 

In both cases the result holds, and so the result is valid in general. 

Other forms of proof 

We have seen that not all functions are defined by primitive recursion. The example we 
saw in Section 14.2 was of the function assoc, which is used to rearrange arithmetic 
expressions represented by the type Expr. Recall that 

assoc (Add (Add e l  e2) e3) 
= assoc (Add e l  (Add e2 e3))  (assoc. 1) 

assoc (Add e l  e2) = Add (assoc e l )  (assoc e2) (assoc .2) 
assoc (Sub e l  e2) = Sub (assoc e l )  (assoc e2) (assoc .3)  
assoc (L i t  n) = L i t  n (assoc .4) 

' When the type i s  not recursive. thc induction principle glvcs a proof fo r  all defined oh.jccts. An object of 
this type is defined if it is Nothing. or Just y for  n defined y.  
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with (assoc .  1)  being the non-primitive recursive case. We would like to prove that 
the rearrangement does not affect the value of the expression: 

e v a l  (assoc  ex) = e v a l  ex (eval-assoc)  

for all finite expressions ex. The induction principle for the Expr type has three cases. 

L i t  case Prove P ( L i t  n). 
Add case Prove P(Add e l  e2),  assuming P ( e l )  and P(e2) 
Sub case Prove P(Sub e l  e2) ,  assuming  el) and P (e2)  

To prove (eval-assoc)  for all finite expressions, we have the three cases given above. 
The L i t  and Sub cases are given, respectively, by (assoc  .4) and (assoc  .3), but the 
Add case is more subtle. For this we will prove 

e v a l  (assoc  (Add e l  e 2 ) )  = e v a l  (Add e l  e2)  (eval-Add) 

by induction on the number of Adds which are left-nested at the top level of the 
expression e l  -recall that it was by counting these and noting that assoc  preserves the 
total number of Adds overall that we proved the function would always terminate. Now, 
if there are no Adds at the top-level of e l ,  the equation (assoc . 2 )  gives (eval-Add). 
Otherwise we rearrange thus: 

e v a l  (assoc  (Add (Add f l  f 2 )  e 2 ) ) )  
= e v a l  (assoc  (Add f l  (Add f 2  e 2 ) ) )  

and since f 1 contains fewer Adds at top level, 

= e v a l  (Add f 1 (Add f 2 e2) ) 
= e v a l  (Add (Add f I f 2 )  e2) 

by (assoc .  1)  

by associativity of + 

which gives the induction step, and therefore completes the proof. 
This result shows that verification is possible for functions defined in a more general 

way than primitive recursion. 

f Exercises 

14.52 Prove that the function weather from Section 14.1 has the same behaviour as 

when 

makeHot True = Hot 
makeHot F a l s e  = Cold 
issummer = (==Summer) 

where recall that (==Summer) is an operator section whose effect is to test 
whether its argument is equal to Summer. 
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14.53 Is it the case that the area of each Shape from Section 14.1 is non-negative'? If 
so, give a proof; if not, give an example which shows that it is not the case. 

14.54 If we define the s i z e  of an NTree thus 

s i z e  N i l T  = 0 
s i z e  (Node x  t l  t2 )  = I + s i z e  t l  + s ize  t 2  

then prove that for all finite nTrees, t r ,  

s i z e  tr < 2l(depth t r )  

14-55 Show for all finite NTrees t r  that 

occurs tr x = length ( f i l t e r  (==XI (collapse t r ) )  

The next two exercises refer back to the exercises of Section 14.3. 

14.56 Prove that the function t w i s t  has the property that 

t w i s t  . twis t  = i d  

14.57 Explain the principle of structural induction for the type GTree. Formulate and 
prove the equivalent of the theorem relating map, mapTree and collapse for 
this type of trees. 

j Summary ) 
Algebraic types sharpen our ability to model types in our programs: we have seen in 
this chapter how simple, finite typcs like Temp can be defined, as well as the more 
complex Either and recursive types. Many of these recursive types are varieties of 
tree: we looked at numerical trees; elements of the type Expr can also be thought of as 
trees representing the underlying structure of arithmetical expressions. 

The type of lists gives a guiding example for various aspects of algebraic types. 

The definition of the type is recursive and polymorphic, and many polymorphic 
higher-order functions can be defined over lists - thi\ carrie\ over to the various 
types of tree and the error type, Maybe, for example. 

There is a simple principle for reasoning over lists, structural induction, which is the 
model for structural induction over algebraic typey. 

The chapter also gives guidelines for defining algebraic types. The definition can be 
given in three parts: first the type name is identified, then the constructors are named, and 
finally their component types are specified. As in other aspects of program development, 
this separation of concerns assists the system developer to produce simple and correct 
solutions. 

Having introduced algebraic data types we are able to give more substantial examples 
of classes and their instances. We can see that the overloading that classes bring makes 
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code both easier to read and more amenable to reuse; we can see in particular how 
software can he extended in a way that requires little modification to the code. 

In the chapters to come, algebraic types will be an integral part of the systems we 
develop, and indeed in the next case study we exhibit various aspects of these types. 
We shall also explore a different approach to types: abstract data types, and see how 
this approach complements and contrasts with the use of algebraic data types. 



( Chapter 15 ) 

Case study: Huffman 
codes 

15.1 Modules in Haskell 

15.2 Modular design 

15.3 Coding and decoding 

15.4 Implementation - I 

15.5 Building Huffman trees 

15.6 Design 

15.7 Implementation - I I  

We use the case study in this chapter as a vehicle to illustrate many of the features of 
the previous chapters - polymorphism, algebraic types and program design - and to 
illustrate the module system of Haskell, which is discussed first. 

Modules in Haskell 

As we first saw in Section 2.4, a module consists of a number of definitions (of types, 
functions and so on), with a clearly defined interface stating what the module exports 
to other modules which use or import it. 

Using modules to structure a large program has a number of advantages. 

Parts of the system can be built separately from each other. Suppose we want to 
monitor traffic on a network: one module might produce the statistics, while another 
displays them in a suitable form. If we agree which statistics are to be presented 
(their type etc.), that is we agree the interface, then development of the two parts of 
the system can go on independently. 
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Parts of a system can be compiled separately; this is a great advantage for a system 
of any conlplexity. 

Libraries of components can be reused, by importing the appropriate modules con- 
taining them. 

In the definition of Haskell, there is no identitication between modules and tiles. 
Nonetheless, we choose here to write one module per file. 

Now we look at the details of Haskell modules, before giving our example which 
exhibits the system in action. 

Module headers 

Each module is named, so an example named Ant might be 

module Ant where 

da t a  Ants = . . .  
an tea t e r  x = . . .  

Note that the definitions all begin in the column under the keyword module; it is safest 
to make this the leftmost column of the tile, or in the case of a literate script, one tab-stop 
in  from the leftmost column. 

Our convention for file names is that a module Ant resides in the Haskell file Ant. hs 
or Ant. lhs .  

Importing a module 

The basic operation on modules is to import one into another, so in defining Bee we 
might say 

module Bee where 

import Ant 

This means that the visible definitions from Ant can be used in Bee. By default the 
visible definitions in a module are those which appear in the module itself. If we define 

module Cow where 

import Bee 

the definitions of Ants and an tea t e r  will not be visible in Cow. They can be made 
visible either by importing Ant explicitly, or by using the export controls discussed 
below to modify exactly what is exported from Bee. 



282 Case study: Huffrnan codes 

The main module 

Each system of modules should contain a top-level module called Main, which gives 
a definition to the name main. In a compiled system, this is the expression which is 
evaluated when the compiled code is executed; in an interpreter like Hugs, it is of less 
significance. Note that a module with no explicit name i y  treated as Main. 

Export controls 

As we explained when import was introduced, the default is that all top-level definitions 
of a module are exported. 

This may be too much: we might wish not to export some auxiliary functions, such 
as the shunt function below 

reverse : : [a] -> [a] 
reverse = shunt [I 

shunt : : [a] -> [a] -> [a] 
shunt ys [I = ys 
shunt ys (x:xs) = shunt (x:ys) xs 

since its only role is in defining the reverse function. 

On the other hand, it might be too little: we perhaps want to export some of the 
definitions we imported from other modules. The modules Ant, Bee and Cow above 
provide an example of this. 

We can control what is exported by following the name of the module with a list of 
what is to be exported. For instance, we say in  the case of Bee 

module Bee ( beeKeeper, Ants(..), anteater ) where . . .  
The list contains names of defined objects, such as beeKeeper, and also data types 
like Ants. In the latter case we follow the type name with ( .  .) to indicate that the 
constructors of the type are exported with the type itself; if this is omitted, then the type 
acts like an abstract data type, which we investigate further in the next chapter. The 
( . .) is not necessary for a type definition. 

Such a list works on a definition-by-definition basis; we can also state that all the 
definitions in a module are to be exported, as in 

module Bee ( beeKeeper, module Ant ) where . . .  
or equivalently 

module Bee ( module Bee , module Ant ) where . . .  
where preceding the name of a module by the keyword module is shorthand for all the 
names defined within the module. The simple header 

module Fish where 

is therefore equivalent to 

module Fish ( module Fish ) where 
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Import controls 

We can control how objects are to be imported, just as we can control their export. We 
do this by following the import statement with a list of objects, types or classes. For 
instance, if we choose not to import an t ea t e r  from Ant we can write 

import Ant ( Ants ( . . ) ) 

stating that we want just the type Ants; we can alternatively say which names we wish 
to hide: 

import Ant hiding ( an tea t e r  ) 

Suppose that in our module we have a definition of bear, and also there is an object 
named bear in the module Ant. How can we gain access to both definitions'? The 
answer is that we use the qualified name Ant. bear  for the imported object, reserving 
bear for the locally defined one. A qualified name is built from the name of a module 
and the name of an object in that module, separated by a full stop. Note that there 
should be no  white space between the ' .' and the two names, so as to avoid confusion 
with the composition operator. To use qualified names we should make the import thus: 

import qua l i f i ed  Ant 

In the qualified case we can also state which particular items are to be imported or 
hidden, just as in the unqualified case above. It is possible to use a local name for an 
imported module, as in 

import Insec t  a s  Ant 

which gives the local name Insec t  to the imported module Ant. 

The standard prelude 

The standard prelude, Prelude. hs, is implicitly imported into every module. If we 
wish we can modify this import, perhaps hiding one or more bindings thus 

module Eagle where 

import Prelude hiding (words) 

so that we can give our own definition of the name words. If we import Eagle into 
another module, this module will also have explicitly to hide the import of words from 
the prelude if conflicting definitions are to be avoided, and so we see that a re-definition 
of a prelude function cannot be done 'invisihly', as it were. 

If we also wish to have access to the original definition of words we can make a 
qualified import of the prelude, 

import qua l i f i ed  Prelude 

and use the original words by writing its qualified name Prelude. words. 
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Further details 

Further information about the Haskell module system can be found in the language 
report (Peyton Jones and Hughes 1998); note that some of the details will be different 
in particular implementations. 

15.1 Can you get the effect of export controls using import'? Can you get the et'fcct of 
the qualification9 of import using export controls? Discuss why both directive5 
are included in the language. 

15.2 Explain why you think il is the default that imported definitions are not thein- 
selves exported. 

15.3 It is proposed to add the following option to the module export control and 
the import statement. If the item -module Dog appears, then none of the 
definitions in the module Dog is exported or imported. Discuss the advantages 
and disadvantages of this proposal. How would you achieve the effect of this 
feature in the existing Haskell module syctem? 

(15.2) Modular design 

Any computer system which is used seriously will be modified durin? its lifetime. either 
by the person or team who wrote it ,  or more likely by others. For this reason, all systems 
should be designed with C ~ C I M ~ Y  i n  mind. 

We mentioned this earlier when we said that systems should be documented. with 
types given to all top-level definitions, and comments accompanying each script and 
substantial definition. Another useful form of description is to link each definition with 
proofs which concern it; if we know some of  the logical properties of a function, we 
have a more solid conception of its purpose. 

Documentation makes a script easier to understand. and therefore change. but we 
can give structure to a collection of definitions if they are split among modules or 
scripts. each script concerning a separate part of the overall system. The directives 
which link the files tell us how the parts of the system fit together. If we want to modify 
a particular part of a system, we should therefore be able to modify a single module 
(at least initially). rather than starting by modifying the whole of the system as sinsle 
unit. 

How should we begin to design a system as a collection of modules? The pieces of 
advice which follow are aimed to make modification as straightforward as possible. 

Each module should have a clearly identified role. 

Each module should do one thing only. If a module has two separate purpose\. 
the\e should be split between two separate modules. The chance of a change to one 
affecting the other is thereby reduced. 
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Each part of the system should be performed by one module: each module should 
do one thing completely; it should be self-contained, in other words. If performing 
one part of the whole is split between two modules, then either their code should he 
merged, or there should be a module defined with the single purpose of bringing the 
two components together. 

Each module should export only what is necessary. It is then clearer what the effect of 
an import is: precisely the functions which are needed are imported. This process is 
often called information hiding in software engineering, which is itself the general 
study of principles for prograrnniing in the large. 

Modules should be small. As a rule of thumb, no n~odule should bc largcr than can 
be printed on two or three sides of paper. 

We have also mentioned design for reuse, particularly in the context of polymorphic 
types and higher-orderfunctions. The module will be the unit ofreuse, and a library will 
be accessed hy means of an import statement. Similar principles apply to the design 
of libraries. Each library should have a clearly detincd purpose. like implementing a 
type together with basic operations over the type. In addition, we can say that 

on including a general-purpose module, it is possible to suppress thc delinition\ 
which are not used: 

a qualified import can be used to avoid the name-clashes which can often occur: 
despite the (infinite) choice of name5 for functions, in practice we tend to choose 
from a very small subset! 

The advicc here might seem dry - what has been said is illustratcd in the case study 
which follows. In the next chapter we will return to the idea of information hiding 
when we meet abstract data types. In the remainder of this chapter we examine the case 
study of Huffman coding, the foundations of which we explore now. 

a Coding and decoding 

Electronic messages of various kinds are sent between machines and people by thc 
billion each day. Such messages are usually sent as sequences of hinary 'bits'. For the 
transmission to be swift, the messages need to be coded as efficiently as possible. The 
area we explore here is how to build codes -translalions of characters into sequences 
of bits - which produce messages as compact as possible. 

Trees can be used to code and decode messages. Consider as an example the tree 

We can see this as giving codes for the letters a, b and t by looking at the routes taken 
to rcach the letters. For example, to get to b, we go right at the top node, and lqft at the 
next: 
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which gives b the code RL. Similarly, L codes a, and RR the letter t .  
The codes given by trees are prefix codes; in these codes no code for a letter is the 

start (or prefix) of the code for another. This is because no route to a leaf of the tree can 
be the start of the route to another leaf. For more infor~nation about Huffman codes and 
a wealth of general material on algorithms, see Cormen, Leiserson and Rivest (1990). 

A message is also decoded using the tree. Consider the rncssage RLLRRRRLRR. To 
decode we follow the route through the tree given, moving right then left, to give the 
letter b, 

where we have shown under each tree the sequence of bits remaining to he decoded. 
Continuing g a i n  from thc top, we have the codes for a then t ,  

Pi.. . . R . .  . . . . 

so the decoded message begins with the letters bat. 
In full, the message is bat ta t ,  and the coded message is ten bits long. The codes 

for individual characters are of different lengths; a is coded in one bit, and the other 
characters in two. Is this a wise choice of code in view of a message in which the letter 
t predominates'? Using the tree 

the coded message becomes RRRLLLRLL, a nine-bit coding. A Huffman code is built 
so that the most frequent letters have the shortest sequences of code bits, and the 
less frequent have more 'expensive' code sequences, justified by the rarity of their 
occurrence; Morse code is an example of a Huffman code in common use. 
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The remainder of the chapter explores the implementation of Huffrnan coding, 
illustrating the module system of Haskell. 

( Exercises 1 
15.4 What is the coding of the message b a t t a t  using the following tree? 

Compare the length of the coding with the others given earlier. 

15.5 Using the first coding t r w .  decode the coded message RLLRLRLLRR. Which tree 
would you expect to give the best coding of the message? Check your answer 
by trying the three possibilities. 

(154) Implementation - I 

We now begin to implement the Huffman coding and decoding, in a series of Haskell 
nlodules. The overall structure of the system we develop is illustrated at the end of the 
chapter in Figure 15.4. 

As earlier, we first develop the types used in the system. 

The types - Types. lhs 

The codes are sequences of bits, so we define 

da t a  B i t  = L 1 R der iv ing  (Eq,Show) 
type HCode = [Bit]  

and in the translation we will convert the Huffman tree to a table for ease of coding. 

type Table = [ (Char,HCode) 1 

The Huffman trees themselves carry characters at the leaves. We shall see presently 
that during their formation we also use information about the frequency with which 
each character appears; hence the inclusion of integers both at the leaves and at the 
internal nodes. 

da t a  Tree = Leaf Char Int I 
Node I n t  Tree Tree 

The file containing the module is illustrated in Figure 15.1. The name of the file, with 
an indication of its purpose, is listed at the start of the tile; each of the definitions is 
prcceded by a comment as to its purpose. 
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Types. lhs 

The types used in the Huffman coding example 

The interface to the module Types is written out 
explicitly here, after the module name. 

> module Types ( Tree(Leaf,Node), 
> Bit(L,R), 
> HCode , 
> Table ) where 

Trees to represent the relative frequencies of characters 
and therefore the Huffman codes. 

> data Tree = Leaf Char Int 1 
> Node Int Tree Tree 

The types of bits, Huffman codes and tables of Huffman codes. 

> data Bit = L I R deriving (Eq,Show) 

> type HCode = [Bit] 

> type Table = [ (Char ,HCode) ] 

Figure 15.1 The file Types. lhs. 

Note that we have given a full description of what is exported by the n~odule. by 
listing the items after the module name. For the data types which are exported, Tree 
and Bit, the constructors are exported explicitly; this could also be done by following 
their names with (. . ). This interface information could have been omitted, but we 
include it here as useful documentation of the interface to the module. 

Coding and decoding - Coding. lhs 

This module uses the types in Types. lhs, and so imports them with 

import Types ( Tree (Leaf ,Node), Bit (L,R), HCode, Table ) 

W e  have chosen to list the names imported here; the statement import Types would 
have the same e f lk t ,  but would lose the extra documentation. 

The purpose of'rhe module is to define functions to code and decode messages: we 
export only these. and not the auxiliary function(s) which may be used in their detinition. 
Our module thercfore begins 

module Coding ( codeMessage , decodeMessage ) 
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To code a message according to a table of codes, we look up each character in the table, 
and concatenate the results. 

codeMessage : :  Table -> [Char] -> HCode 

codeMessage tbl = concat . map (1ookupTable tbl) 

It is interesting to see that the function level definition here gives an exact imple- 
mentation of the description which precedes it; using partial application and function 
composition has made the definition clearer. 

We now define lookupTable, which is a standard function to look up the value 
corresponding to a 'key' in a table. 

lookupTable : :  Table -> Char -> HCode 

lookupTable [I c = error "lookupTablel' 
lookupTable ((ch,n) : tb) c 

I ch==c = n 
I otherwise = lookupTable tb c 

Because of the module statement, this definition is not exported. 
To decode a message, which is a sequence of bits, that is an element of HCode, we 

use a Tree. 

decodeMessage : :  Tree -> HCode -> [Char] 

We saw in  Section 15.3 that decoding according to the tree tr has two main cases. 

If we are at an internal Node, we choose the sub-tree dictated by the first bit of the 
code. 

If at a leaf, we read off the character found, and then begin to decode the remainder 
of the code at the top of the tree tr. 

When the code is exhausted, so is the decoded message. 

decodeMessage tr 
= decodeByt tr 
where 
decodeByt (Node n tl t2) (L:rest) 

= decodeByt tl rest 
decodeByt (Node n ti t2) (R:rest) 

= decodeByt t2 rest 
decodeByt (Leaf c n) rest 

= c : decodeByt tr rest 
decodeByt t [I = [I 

The locally defined function is called decodeByt because it decodes 'by t'. 
The first coding tree and example message of Section 15.3 can be given by 
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examl = Node 0  (Leaf 'a' 0 )  
(Node 0  (Leaf 'b' 0 )  (Leaf 't' 0 ) )  

mess1 = [R,L,L,R,R,R,R,L,R,R] 

and decoding of this message begins thus 

decodeMessage examl messl 
decodeByt examl messl 

-.A decodeByt examl [R,L ,L,R,R,R,R,L,R,R] 
--+ decodeByt (Node 0  (Leaf 'b' 0 )  (Leaf 't' 0 ) )  

[L,L,R,R,R,R,L,R,Rl - decodeByt (Leaf 'b' 0 )  CL,R,R,R,R,L,R,R] 
-- ' b' : decodeByt examl [L ,R,R,R,R,L ,R,R] 
-A 'b' : decodeByt (Leaf 'aJ 0 )  [R,R,R,R,L,R,R] - 'b' : 'a' : decodeByt examl [R,R,R,R,L,R,R] 

Before looking at the implementation any further, we look at how to conslruct the 
Huffman coding tree, given a text. 

Exercises 

15.6 Complete the calculation of decodeMessage examl messl begun above. 

15.7 With the table 

give a calculation of 

codeMessage table1 "battab" 

(Is Building Huffman trees 

Given a text, such as "battat", how do we find the tree giving the optimal code for the 
text'? We explain it in a number of stages following Section 17.3 of Cormen, Leiserson 
and Rivest ( 1990). 

We first find the frequencies of the individual letters, in this case giving 

The main idea of the translation is to build the tree by taking the two characters 
occurring least frequently, and making a sitzgle character (or tree) of them. This 
process is repeated until a single tree results; the steps which follow give this process 
in  more detail. 

Each of ( ' b ' , I), . . . is turned into a tree, giving the list of trees 
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[ Leaf 'b '  1 , Leaf ' a '  2 , Leaf 't' 3 1 

which is sorted into frequency order. 

We then begin to amulgamate together trees: we take the two trees of lowest 
frequency, put them together, and insert the result in the appropriate place to preserve 
the frequency order. 

[ Node 3 (Leaf 'b '  I) (Leaf ' a '  2) , Leaf ' t '  3 1 

This process is repeated, until a single tree results 

Node 6 (Node 3 (Leaf 'b '  I)  (Leaf ' a '  2))  (Leaf ' t '  3) 

which is pictured thus 

This tree can then be turned into a Table 

We now look at how the system is implemented in Haskell. 

(15 Design 

Implementing the systein will involve us in designing various modules to perform the 
stages given above. We start by deciding what the modules will be and the functions that 
they will implement. This is the equivalent at the larger scale of divide and conquer; 
we separate the problem into manageable portions, which can be solved separately, 
and which are put together using the import and module statements. We design these 
interfaces before implementing the functions. 

The three stages of conversion are summarized in Figure 15.2, which shows the 
module directives of the three component files. We have added as comments the types 
of objects to be exported, so that these directives contain enough information for the 
exported functions in the files to be used without knowing how they are defined. 

In fact the component functions frequency and makeTree will never be used 
separately, and so we compose them in the module Makecode. l h s  when bringing 
the three tiles together. This is given in Figure 15.3. 

Our next task is to implement each module in full and we turn to that now. 
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Frequency.lhs 

module Frequency ( frequency ) -- [Char] -> [(Char,Int)] 

module MakeTree ( makeTree ) -- [(Char,Int)] -> Tree 
import Types 

> module CodeTable ( codeTable ) -- Tree -> Table 
> import Types 

Figure 15.2 Module directives for Huffman tree formation. 

MakeCode. lhs 

Huffman coding in Haskell. 

> module MakeCode ( codes, codeTable ) where 

> import Types 
> import Frequency ( frequency 
> import MakeTree ( makeTree ) 
> import CodeTable ( codeTable ) 

Putting together frequency calculation and tree conversion 

> codes : : [Char] -> Tree 

> codes = makeTree . frequency 

Figure 15.3 The module MakeCode. lhs 
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(Is Implementation - II 

In this section we discuss in turn the three implementation modules. 

Counting characters - Frequency. lhs 

The aim of the function frequency is to take a text such as " b a t t a t "  to a list of 
characters. in increasing frequency of occurrence, [ ( ' b ' , 1)  , ( ' a ' ,2 )  , ( ' t ' , 3 )  I . 
We do this in three stages: 

First we pair each character with the count of 1, giving 

Next, we sort the list on the characters, bringing together the counts of equal 
characters. 

Finally, we sort the list into increasing frequency order, to give the list above. 

The function uses two different sorts - one on character, one on frequency - to achieve 
its result. Is there any way we can define a single sorting function to perforill both 
sorts'? 

We can give a general merge sort function, which works by merging, in order, the 
results of sorting the front and rear halves of the list. 

mergesort merge xs  
I l eng th  xs  < 2 = xs 
I otherwise 

= merge (mergesort merge f i r s t )  
(mergesort merge second) 

where 
f i r s t  = t a k e  ha l f  xs  
second = drop ha l f  xs  
ha l f  = ( l eng th  xs )  ' d i v '  2  

The first argument to mergesort is the merging function, which takes two sorted lists 
and merges their contents in order. It is by making this operation a parutneter that thc 
mergesort function becomes reusable. 

In sorting the characters, we amalgamate entries for the same character 
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alphaMerge ((p,n) :xs) ((q,m) : ys) 
1 (p==q) = (p,n+m) : alphaMerge xs ys 
I (p<q) = (p,d : alphaMerge xs ((q,m):ys) 
I otherwise = (q,m) : alphaMerge ((p,n) :xs) ys 

while when sorting on frequency we compare frequencies; when two pairs have the 
same frequency, we order according to the character ordering. 

freqMerge :: [(Char,Int)l -> [(Char,Int)] -> [(Char,Int)] 

freqMerge xs [I = xs 
freqMerge [I ys = ys 
freqMerge ((p,n):xs) ((q,m):ys) 

I (n<m 1 1 (n==m && p<q)) 
= (p,n) : freqMerge xs ((q,m) :ys) 

I otherwise 
= (q,m) : freqMerge ((p,n):xs) ys 

We can now give the top-level definition o f f  requency 

frequency : : [Char] -> [ (Char, Int) ] 

frequency 
= mergesort freqMerge . mergesort alphaMerge . map start 
where 
start ch = (ch,l) 

which we can see is a direct combination of the three stages listed in the informal 
description of the algorithm. 

Note that of all the functions defined in this module, only frequency is exported. 

Making the Huffman tree - MakeTree . lhs 
We have two stages in making a Huffman tree from a list of characters with their 
frequencies. 

makeTree : :  [ (Char,Int) 1 -> Tree 
makeTree = makecodes . toTreeList 
where 

toTreeList : : [ (Char,~nt) ] -> [~ree] 
makecodes : : [Tree] -> Tree 

The function toTreeList converts each character-number pair into a tree, thus 

toTreeList = map (uncurry Leaf) 

where note that we use the prelude function uncurry to make an uncurried version of 
the constructor function Leaf. 

The function makecodes amalgamates trees successively into a single tree 
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makecodes [t] = t 
makecodes ts = makecodes (amalgamate ts) 

How are trees amalgamated? We have to pair together the first two trees in the list 
(since the list is kept in ascending order of frequency) and then insert the result in the 
list preserving the frequency order. Working top-down, we have 

amalgamate : : [ Tree 1 -> [ Tree 1 

amalgamate (tl:t2:ts) = insTree (pair tl t2) ts 

When we pair two trees, we need to combine their frequency counts, so 

pair : :  Tree -> Tree -> Tree 

pair ti t2 = Node (vl+v2) ti t2 
where 
vl = value tl 
v2 = value t2 

where the value of a tree is given by 

value : :  Tree -> Int 

value (Leaf - n) = n 
value (Node n - -) = n 

The definition of insTree, which is similar to that used in an insertion sort, is left as 
an exercise. Again, the definition of the exported function uses various others whose 
definitions are not visible to the 'outside world'. 

The code table - Code~able . lhs 

Here we give the function codeTable which takes a Huffman tree into a code table. 
In converting the tree Node n t I t2 we have to convert t I, adding L at the front of 
the code, and t2 with R at the head. We therefore write the more general conversion 
function 

convert : :  HCode -> Tree -> Table 

whose first argument is the 'path so far' into the tree. The definition is 

convert cd (Leaf c n) 
= [(c,cd)l 

convert cd (Node n tl t2) 
= (convert (cd++ [L] ) ti) ++ (convert (cd++ [RI t2) 

The codeTable function is given by starting the conversion with an empty code string 

codeTable : :  Tree -> Table 
codeTable = convert [I 
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Figure 15.4 The modules of the Huffman coding system. 

Consider the calculation of 

codeTable (Node 6 (Node 3 (Leaf 'b' 1) (Leaf 'a' 2)) 
(Leaf 't' 3)) - convert [I (Node 6 (Node 3 (Leaf 'b' I) (Leaf 'a' 2)) 

(Leaf 't' 3)) 
0 convert [LI (Node 3 (Leaf 'b' 1) (Leaf 'a' 2)) ++ 

convert [R] (Leaf 't' 3) 
I-, convert [L,L] (Leaf ' b '  1) ++ 

convert [L,RI (Leaf 'a' 2) ++ 
C ('t',[RI) I 

-- [ ('b',CL,Ll) , ('a', [L,Rl) , ('t',[Rl) I 

The top-level file - Main. lhs 

We can now pull all the parts of the system together into a top-level file. 

module Main (main) where 

import Types ( Tree (Leaf ,Node) , Bit (L,R) , HCode , Table ) 

import Coding ( codeMessage , decodeMessage ) 
import MakeCode ( codes, codeTable ) 

In this file we can include representative examples, using the major functions listed in 
the import statements. 

The structure of the system is given in Figure 15.4. Modules are represented by 
boxes, and an arrow from A t o  B indicates that A .  lhs is imported into B .  lhs. An 



Implementation - 11 297 

armw is marked to indicatc the functions exported by the included module, so that. for 
example, codes and codeTable are exported from Makecode. l h s  to Main. lhs. 

If this coding system were to be used as a component of a larger system, a module 
directive could be used to control which of the four functions and the types are expor[cd. 
after the module had been renamed. It is important to realize that the types will need 
to be exported (or be included in the file including Main. lhs)  if the functions are to bc 
used. 

Exercises 

15.8 Give a definition of merge sort which uses the built-in ordering '<='. What is its 
type? 

15.9 Modifying your previous answer if neccwary, give a version of merge sost which 
removes duplicate entries. 

15.10 Give a version of  lnergc sort which t;~lics an ordering function as a parameter: 

ordering : :  a -> a -> Ordering 

Explain how to implemenl mergesort f reqMerge using this version of merge 
sort, and discuss why you cc~nnot implement mergesort alphaMerge this way. 

15.1 1 Define the insTree function, used i n  the definition of makeTree. 

15.12 Give a calci~lation of 

15.1 3 Define functions 

showTree : :  Tree -> Str ing 
showTable : :  Table -> Str ing 

which give printable versions of Huffman trees and code tables. One general way 
of printing trees is to use indentation to indicate the structure. Schetnatically, 
this looks like 

l e f t  sub t r e e ,  indented by 4 characters 
value ( s )  a t  Node 

r igh t  sub t r e e ,  indented by 4 characters 

( Summary 1 
When writing a program of any she, we need to divide up the work in a sensible way. 
The Haskell module system allows one script to be included in another. At the boundary, 
it is possible to control exactly which detinitions are exported from one module and 
imported into another. 
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We gave a number of guidelines for the design of a program into its constituent 
modules. The most important advice is to make each module perform one clearly 
defined task, and for only as much information as is needed to be exported - the 
principle of information hiding. This principle is extended in the next chapter when 
we examine abstract data types. 

The design principles were put into practice in the Huffrnan coding example. In 
particular, it was shown for the file Makecode. lhs and its three sub-modules that 
design can begin with the design of modules and their interfaces - that is the detini- 
tions (and their types) which are exported. Thus the design process starts hfbre  any 
implementation takes place. 
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16.1 Type representations 

16.2 The Haskell abstract data type mechanism 

16.3 Queues 

16.4 Design 

16.5 Simulation 

16.6 Implementing the simulation 

16.7 Search trees 

16.8 Sets 

16.9 Relations and graphs 

16.1 0 Commentary 

The Haskell module system allows definitions of functions and other objects to be hidden 
when one file i s  included in another. Those definitions hidden are only of use in defining 
the exported functions, and hiding them makes clearer the exact interface between the 
two files: only those features of the module which are needed will be visible. 

This chapter shows that information hiding is equally applicable for types, giving 
what are known as abstract data types, or ADTs. We explain the abstract data type 
mechanism here, as well as providing a number of examples of ADTs, including queues, 
sets, relations and the fundamental types belonging to a simulation case study. 

(161) Type representations 

We begin our discussion with a scenario which i s  intended to show both the purpose 
and the operation of the abstract data type mechanism. 

Suppose we are to build a calculator for numerical cxpressions, like those given 
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uc-h  

n.:ial : :  S t o r e  
c ,  le : : S t .  L , ~  - , ' . ' . I I  - . - I I 

u p d l t e  :: S t c r e  > V a r  -> Int -> S t o : ~  

IMPLEMENTOR 

Figure 16.1 The Store abstract data type. 

by the Expr type of Section 14.2, but with variables included. The calculator is lo 

providz the facility to set the values of variables, as well as for variables Lo form parts 
of expressions. 

As a par1 of our system, we need to be able to niodel the current values ol'the variables. 
which we might call the store of the calculator. How can this be done'? A nuniberof 
111odels present themselves, including: 

a list of inteperlvariable pairs: [ ( In t  ,Var) l ;  and 

a function from variables to integers: (Var -> I n t )  

Both models allow us to look up and update the values of variables. as well as set a 
starting value for the store. These operations have types as follows. 

i n i t i a l  : :  Store  
value : :  Store  -> Var -> I n t  
update : :  Store  -> Var -> I n t  -> Store  

(StoreSig) 

but each ~riodel allows more than that: we can, for instance, reverse a list, or coniposea 
function with others. In using the lype S tore  we intend only to use the three operations 
givcn, but i t  is always possible to use the model i n  unintended ways. 

How can we give a better model of a store'? The answer is to detine a type which 
only has the operations i n i t i a l ,  value and update. so that we cannot abuse the 
representation. Wc therefore hide the information about how the type is actually 
implemented, and only allow the operations (StoreSig) to manipulate objects of 
the type. 

When we provide a limited interface to a type by means of a specified set ofoperations 
we call the type an abstract data type (or ADT). Since the 'concretc' type itself is no 
longer accessible and we may only access the type by means of the operations provided. 
these operations give a more 'abstract' view of the type. 

Figure 16.1 illustrates the situation, and suggests that as well as giving a natural 
reprcscntation of the type of storcs, there are two other benetits of type abstraction. 

The type declarations in (StoreSig) form a clearly defined interface, which is 
called the signature of the ADT, between the user of the type and its iniplementer. 
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The only infornmtion that they have to agree on i\ the signature; once this is agreed. 
they can work independently. This is therefore another way of breaking a complex 
problem into simpler parts; another aspect of the 'divide and conquer' method. 

We can modify the implementation of the S t o r e  without having any effect o n  thc 
user. Contrast this with the situation where the implementation is visible to the 
user. In particular, if the implementation is an algebraic type then any change in the 
implementation will mean that all definitions that use pattern matching will have to bc 
changed. These will include not just those in the signature, but also any user-defined 
functions which use pattern matching. 

We shall see both aspects illustrated in the sections to come; first we look at the details 
of the Haskell abstract data type mechanism. 

(162) The Haskell abstract data type mechanism 

When we introduced the Haskell module system in Chapter 15 we saw that there were 
two ways in which we could export a d a t a  type, called Data say. If we include 
Da ta ( .  . ) in the export list of the module, the type is exported with its constructors; 
if we includc Data  then the constructors are not exported, and so we can only operate 
over the type using the other operations of the signature. 

In the case of the S t o r e  type, our module header would be 

module S t o r e  ( S t o r e ,  i n i t i a l ,  v a l u e ,  update  ) where 

which shows that we can access the type only through the three functions mentioned. 
In this book we will adopt the convention that we will also include as comments in 
the module header the types of the exported functions, giving in the case of S t o r e  the 
following header. 

module S t o r e  
( S t o r e ,  

i n i t i a l ,  -- S t o r e  
v a l u e ,  -- S t o r e  -> Var -> I n t  
update  -- S t o r e  -> Var -> I n t  -> S t o r e  

) where 

Now, the module must contain a def nition of the S t o r e  type and the functions over it. 
If the imple~nentation type was a d a t a  type, then this would complete the realization 

of the abstract data type. However, in our running example of stores. we suggested 
earlier that we would use a list of pairs, [ ( I n t  ,Var) 1,  to model the type, and so we 
will have to define a new d a t a  type, called S t o r e  

d a t a  S t o r e  = S t o  [ ( I n t , V a r )  1 

which has a single constructor which we call Sto .  This is the function which converts 
a list into an element of the S t o r e  type; we can think of it as 'wrapping up' a list to 
make it into a S to re .  
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We now have to define the functions i n i t i a l ,  value and update over the Store 
type. One approach is to detine the analogous functions over [ ( I n t  ,Var)] and then 
to adapt those. We can say 

va l  :: [ ( I n t , ~ a r ) l  -> Var -> I n t  
va l  [I v  = 0 
va l  ( (n ,w>:s to)  v 

I v==w = n 
I otherwise = v a l  s t o  v 

upd :: [(Int ,Var)]  -> Var -> I n t  -> [(Int ,Var)]  
upd s t o  v n = (n,v) : s t o  

The initial store, i n i t ,  is represented by an empty list; the value of v is looked up 
by finding the first pair (n,v) in the list, and the store is updated by adding a new 
( I n t  ,Var) at the front of the list. 

These functions then have to be converted to work over the type Store. so that 
arguments and results are of the form Sto  xs with xs : : [ ( In t  , Var) 1. The def nitions 
become 

i n i t i a l  :: Store  
i n i t i a l  = Sto [I 

value : : Store  -> Var -> I n t  
value (Sto [ I )  v  = 0 
value (Sto ((n,w) : s t o ) )  v 

I v==w = n 
I otherwise = value (Sto s to )  v 

update : :  Store  -> Var -> I n t  -> Store  
update (Sto s t01 v n = Sto ( (n ,v ) : s to )  

where we can see that the pattern of the definitions is similar, except that we have to 
'unwrap' arguments of the form (Sto st01 on the left-hand side, and 'wrap up' resulrs 
using S to  on the right-hand side. We look at a general mechanism for 'wrapping up' 
functions in the example of the Set  ADT in Section 16.8. 

What happens if we try to break the abstraction barrier and deal with a Store as 
having the form (Sto xs)'? On typing 

i n i t i a l  == Sto [I 

in a module importing S tore  we get the type error message 

ERROR: Undefined constructor  funct ion  "Sto" 

The fact that i n i t i a l  is indeed implemented as Sto [I is irrelevant. since the imple- 
mentation is not visible outside the S tore  module. 
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The newtype construction 

In fact in this case rather than using a d a t a  type we will define 

newtype S t o r e  = S t o  [ ( I n t , V a r )  1 

which has the same effect as declaring a d a t a  type with one unary constructor but 
which is implemented in a more efficient fashion. 

Another possible way of implementing the type would be to say 

newtype S t o r e  = S t o r e  [ ( I n t  ,Var) 1 

using the same name for the type and its constructor. Unfortunately, at the time of 
writing, this has the effect in Hugs of making the constructor visible, despite the 
instruction to the contrary in the module header. The same remarks apply to d a t a  
declarations of this form in Hugs. 

Type classes: showing values and equality 

We can declare types as belonging to particular type classes such as Show and Eq, and 
this applies equally well to abstract data types. In the case of S t o r e  we can say 

i n s t a n c e  Eq S t o r e  where 
(S t0  s t o l )  == (St0 s t o 2 )  = ( s t o l  == s t021  

i n s t a n c e  Show S t o r e  where 
show n (Sto s t o )  = show n  s t o  

Note, however, that once declared, these instances cannot be hidden, so that even 
though they are not named in the export list, the functions over S t o r e  which are defined 
by means ofthese i n s t a n c e  declarations will be available whenever the module S t o r e  
is imported. Of course, we can choose not to declare these instances, and so not to 
provide an equality or a show function over S t o r e s .  

Stores as functions 

A different implementation of S t o r e  is given by the type of functions from variables 
to integers. 

newtype S t o r e  = S t o  (Var -> I n t )  

i n i t i a l  : :  S t o r e  
i n i t i a l  = S t o  ( \v  -> 0) 

va lue  : :  S t o r e  -> Var -> I n t  
va lue  (S to  s t o )  v = s t o  v 

update  : :  S t o r e  -> Var -> I n t  -> S t o r e  
update (Sto s t o )  v  n  

= S t o  (\w -> i f  v==w then  n  e l s e  s t o  w) 
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Under this implementation, 

the i n i t i a l  store maps every variable to 0; 

to look up a value of a variable v the store function s t o  is applied to v, and 

in the case of an update, a function returned is identical lo s t o  except on the variable 
whose value is changed. 

( Exercises 7 
16.1 Give an implementation of S tore  using lists whose entries are ordered according 

to  the variable names. Discucs why this might be preferable to the original list 
implementation, and also its disadvantages, if any. 

16.2 For thc implementation of S tore  as a list type [ ( I n t  ,Var) l ,  give a definition 
of equality which equates any two stores which give the same values to each 
variable. Can this operation be defined for the second implementation? If not, 
give a modification of the implenientation which allows it to be defined. 

16.3 In this question you should use the type Maybe a. Suppose it is an error to look 
up the value of a variable which does not have a value in the given store. Explain 
how you would modify both the signature of S tore  and the two implementations. 

16.4 Rather than giving an error when looking up a variable which does not have a 
value in the particular 5tore, extend the signature to provide a test of whether a 
variable has a value in a given ctore, and explain how you would modify the two 
in~plementations to define the test. 

16.5 Suppose you are to implement a fourth operation over S tore  

s e t A l l  : :  I n t  -> Store  

so that s e t A l l  n is the store where every variable has the value n. Can you do 
this for both the example implementations? Show how if you can, and explain 
why, if not. 

16.6 Design an ADT for the library database. first examined in Chapter 5.  

Queues 

A queue is a 'first in, first out' structure. If first Flo and then Eddie joins an initially 
empty queue, the first person lo leave will be Flo. As an abstract data type, we expect 
to be able to add items and remove items as well as there being an empty queue. 

module Queue 
( Queue , 

empty4 , -- Queue a 
isEmptyQ , - - Queue a -> Boo1 
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addQ 9 
-- a -> Queue a -> Queue a 

remQ -- Queue a -> ( a , Queue a > 
) where 

The function remQ returns a pair - the item removed together with the part of the queue 
that remains - if there are any items in the queue. If not, the standard function error 
is called. 

A list can be used to model a queue: we add to the end of the list, and remove from 
the front, giving 

newtype Queue a = Qu [a] 

isEmptyQ (Qu [I ) = True 
isEmptyQ - = False 

addQ x (Qu xs) = Qu (xs++ 1x1 ) 

remQ q@(Qu xs) 
I not (isEmptyQ q) = (head xs , Qu (tail xs)) 
I otherwise = error "remQ" 

The definition of remQ uses an aspect of pattern matching which we have not seen so 
far. We use the pattern qQ(Qu xs), where we can read 'O' as 'as', to match the input. 
The variable q matches the whole input, while it is also matched against Qu xs, so that 
xs gives us access to the list from which it is built. This means that wc can refer directly 
to the whole input and to its components in the definition. Without this, the alternative 
would be 

remQ (Qu xs) 
I not (isEmptyQ (Qu xs)) = (head xs , Qu (tail xs)) 
I otherwise = error "remQ1l 

in which we have to rebuild the original queue from xs. 
Rather than adding elements at the cnd of the list, we can add them at the beginning. 

This leaves empty9 and isEmptyQ unchanged, and gives 

remQ q@(Qu xs) 
I not (isEmptyQ q) = (last xs , Qu (init xs)) 
I otherwise = error "remQU 

where the built-in funct~onx last and init take the last element and the remainder of 
a lint. 

Although we have not said exactly how to calculate the cost of evaluation (a topic we 
take up in Chapter 19). we can see that in each implementation one of the operations 
is 'cheap' and the other is 'expensive'. The 'cheap' functions - remQ in the tint 
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remQ 

addQ 

El remQ remQ 
I 

Figure 16.2 A two-list queue in action. 

implementation and addQ in the second - can be evaluated in one step, while in both 
cases the 'expensive' function will have to run along a list x s  one step per element, and 
so will be costly if the list is long. 

Is there any way of making both operations 'cheap'? The idea is to make the queue 
out of two lists, so that both adding and removing an element can take place at the head 
of a list. The process is illustrated in Figure 16.2, which represents a number ofqueues. 
Initially the queue containing the dements 7, 5, 2 and 3 is shown. Subsequently we 
see the effect of removing an element, adding the element 0, and removing two further 
elements. In each case the queue is represented by two lists, where the left-hand list 
grows to the left, and the right-hand to the right. 

The function remQ removes elements from the head of the left-hand list, and add4 
adds elements to the head of the right. This works until the left-hand list is empty, when 
the elements of the right-hand queue have to be transferred to the left (the picture might 
be misleading here: remember that the two lists grow in opposite directions). 

This case in which we have to transfer elements is expensive, as we have to run along 
a list to reverse i t ,  but we would not in general expect to perform this every time we 
remove an element from the queue. The I-laskell implementation follows now. 

: J .  Wta Queue a = Qu [a] [a] 

isEmptyQ (Qu [I [ I )  = True 
isEmptyQ - = False 
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remQ (Qu (x:xs) ys) = (x , Qu xs ys) 
remQ (Qu [I (y:  y s ) )  = remQ (Qu ( reverse  (Y: YS)) [ I )  
remQ (Qu 11 [I = e r r o r  "remQn 

As we commented for the S tore  types, the behaviour of this implementation will be 
indistinguishable from the first two, as far as the operations of the abstract data type are 
concerned. On the other hand, the implementation will be substantially more efticient 
than the single list implementations, as we explained above. A thorough examination of 
recent work on the efficient implementation of data structures in functional languages 
can be found i n  Okasaki ( I  998). 

( Exercises ] 

16.7 Give calculations of 

"abcde" ++ " f "  

i n i t  "abcdef " 

last "abcdef " 

where 

i n i t  x  = take ( length  x-I) x  
l a s t  x  = x ! !  ( length  x-I) 

16.8 Explain the behaviour of the three queue models if you are asked to perform 
the following sequence of queue operations: add 2, add 1 ,  remove item, add 3, 
remove item, add 1, add 4, remove item, remove item. 

16.9 A double-ended queue, or deque, allows elements to be added or removed from 
either end of the structure. Give a signature for the ADT Deque a, and give two 
different implementations of the deque type. 

16.10 A unique queue can contain only one occurrence of each entry (the one to arrive 
earliest). Give a signature for the ADT of these queues, and an implementation 
of the ADT. 

16.1 1 Each element of a priority queue has a numerical priority. When an element is 
removed, i t  will be of the highest priority in the queue. If there is more than one 
of these, the earliest to arrive is chosen. Give a signature and implementation of 
the ADT of priority queues. 

16.12 [Harder] Examine how priority queues could be used to implement the Huffman 
coding system in Chapter 15. 

Design 

This section examines the design of Haskell abstract data types, and how the presence 
of this mechanism affects design in general. 
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General principles 

In building a system, the choice of types is fundamental, and affects the subsequent 
design and implementation profoundly. If we use abstract data types at an early stage we 
hope to find 'natural' representations of the types occurring in the problem. Designing 
the abstract data types is a three-stage process. 

First we need to identify and name the types in the system. 

Next, we should give an informal description of what is expected from each type. 

Using this description we can then move Lo writing the signature of each abstract 
data type. 

How do we decide what should go in the signature'? This is the $64,000 question, 
of course, but there are some general questions we can ask of any abstract data type 
signature. 

Can we create objects of the type? For instance, in the Queue a type, we have the 
object emptyQ, and in a type of sets, we might give a function taking an element 
to the 'singleton' set containing that element alone. If there are no such ob.jects or 
functions, something is wrong! 

Can we check what sort of object we have'? In a tree ADT we might want to check 
whether we have a leaf or a node, for instance. 

Can wc extract the components of objects, if we so require? Can we take the head 
of a Queue a, say'? 

Can we transform objects: can we reverse a list, perhaps, or add an item to a queue? 

Can we combine objects'? We might want to be able to join together two trees, for 
example. 

Can we collapse objects'? Can we take the sum o fa  numerical list, or find the size of 
an object, say'? 

Not all these questions are appropriate in every case, but the majority of operations we 
perform on types fall into one of these categories. All the operations in the following 
signature for binary trees can be so classified, for instance. 

module Tree 
(Tree, 
nil, 
isNil, 
isNode , 
left Sub, 
right Sub, 
treeVal, 
insTree , 
delete, 
minTree 

) where 

-- Tree a 
-- Tree a -> Bool 
-- Tree a -> Bool 
-- Tree a -> Tree a 
-- Tree a -> Tree a 
-- Tree a -> a 
-- Ord a => a -> Tree a -> Tree a 
-- Ord a => a -> Tree a -> Tree a 
-- Ord a => Tree a -> Maybe a 
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Other functions might be included in the signature; in the case of Tree a we might want 
to include the size function. This function can be defined using the other operations. 

size : :  Tree a -> Int 
size t 

I isNil t = 0 
I otherwise = 1 + size (leftsub t) + size (rightsub t) 

This definition of size is independent of the implementation. and so would not have 
to be reimplemented if the implementation type for Tree a changed. This is a good 
reason for leaving size out of the signature, and this is a check we can make for any 
signature: are all the functions in the signature needed'? We come back to this point, 
and the tree type, later in the chapter. Now we look at a larger-scale example. 

16.13 Are all the operations in the Tree a signature necessary? Identify those which 
can be implemented using the other operations of the signature. 

16.14 Design a signature for an abstract type of library databases, as first introduced 
in Chapter 5.  

16.15 Design a signature for an abstract type of indexes, as examined in Section 10.8. 

Simulation 

We first introduced the simulation example in Section 14.5, where we designed the 
algebraic types Inmess and Outmess. Let us suppose, for ease of exposition, that the 
system time is measured in minutes. 

The Inmess No signals no arrival, while Yes 34 12 signals the arrival of a customer 
at the 34th minute, who will need 12 minutes to be served. 

The Outmess Discharge 34 27 12 signals that the person arriving at time 34 
waited 27 minutes before receiving their 12 minutes of service. 

Our aim in this section is to design the ADTs for a simple simulation of queueing. 
We start by looking at a single queue. Working through the stages, we will call the type 
Queuestate, and it can be described thus. 

There are two main operations on a queue. The first is to add a new item, an 
Inmess, t o  the queue. The second is to process the queue by a one-minute 
step; the effect of this is to give one minute's further processing to the item at 
the head of the queue (if there is such a thing). Two outcomes are possible: 
the item might have its processing completed, in which case an Outmess is 
generated, or further processing may be needed. 

Other items we need are an empty queue, an indication of the length of a queue 
and a test of whether a queue is empty. 

This description leads directly to a signature declaration 
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module queuestate 
( QueueState , 

addMessage, -- Inmess -> queuestate -> queuestate 
queuestep, -- queuestate -> ( Queuestate , [Outmess] ) 
queuestart ,  -- queuestate 
queueLength, -- Queuestate -> In t  
queuehpty -- queuestate -> Boo1 
) where 

The queuestep function returns a pair: the QueueState after a step of processing, 
and a list of Outmess. A list is used, rather than a single Outmess, so that in  the case 
of no output an empty list can be returned. 

The QueueState type allows us to model a situation in which all customers are 
served by a single processor (or bank clerk). How can we model the case where there is 
more than one queue'! We call this a server and it is to be modelled by the ServerState 
ADT. 

A server consists of a collection of queues, which can be identified by the 
integers 0,  1 and so on. I t  is assumed that the system receives one Inmess each 
minute: at most one person arrives every minute, in other words. 

There are three principal operations on a server. First, we should be able to add 
an Inmess to one of the queues. Second, a processing step of the server is given 
by processing each of the constituent queues by one step: this can generate a 
list of Outmess, as each queue can generate such a message. Finally, a step 
of the simulation combines a server step with allocation of the Inmess to the 
shortest queue in the server. 

Three other operations are necessary. We have a starting server, consisting of 
the appropriate number of empty queues, and we should be able to identify the 
number of queues in a server, as well as the shortest queue it contains. 

As a signature, we have 

module ServerState 
( ServerState , 

addToqueue, -- In t  -> Inmess -> Serverstate -> Serverstate 
serverstep,  -- Serverstate -> ( Serverstate , [Outmess] ) 

simulationstep, -- ServerState -> Inmess -> ( ServerState , 
[Outmess] > 

s e r v e r s t a r t ,  -- Serverstate 
servers ize ,  -- Serverstate -> I n t  
shortestqueue -- ServerState -> I n t  

) where 

In the next section we explore how to implement these two abstract data types. It is im- 
portant to realize that users of the ADTs can begin to do their programming now: all the 
information that they need to know is contained in the signature of the abstract data type. 
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f Exercises 

16.16 Are there redundant operations in the signatures of the ADTs QueueState and 
ServerState? 

16.1 7 Design a signature for round-robin simulation, in which allocation of the first 
item is to queue 0, the second to queue 1, and so on, starting again at 0 after the 
final queue has had an element assigned to it. 

(166) Implementing the simulation 

This section gives an implementation of the ADTs for a queue and a server. The 
QueueState is implemented from scratch, while the ServerState  implementation 
builds on the QueueState ADT. This means that the two implementations are indepen- 
dent; modifying the implementation of QueueState has noeffect on the implementation 
of ServerState .  

The queue 

In the previous section, we designed the interfaces for the ADT; how do we proceed with 
implementation? First we ought to look again at the description of the QueueState 
type. What information does this imply the type should contain'? 

There has to be a queue of Inmess to be processed. This can be represented by a list, 
and we can take the item at the head of the list as the item currently being processed. 

We need to keep a record of the processing time given to the head item, up to the 
particular time represented by the state. 

In an Outmess, we need to give the waiting time for the particular item being 
processed. We know the time of arrival and the time needed for processing - if 
we also know the current time, we can calculate the waiting time from these three 
numbers. 

It therefore seems sensible to define 

d a t a  QueueState = QS Time Service [Inmess] 
der iv ing  (Eq, Show) 

where the first tield gives the current time, the second the service time so far for the item 
currently being processed, and the third the queue itself. Now we look at the operations 
one by one. To add a meshage, it is put at the end of the list of messages. 

addMessage : :  Inmess -> QueueState -> queuestate  

admessage i m  (QS time se rv  ml) = QS time se rv  (ml++[im]) 

The most complicated definition is of queuestep. As was explained informally, there 
are two principal cases, when there is an item being processed. 
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queuestep : :  QueueState -> ( QueueState , [Outmess] ) 

queuestep (QS time servSoFar (Yes a r r  s e rv  : inRes t ) )  
I servSoFar < se rv  

= (QS ( t ime+l)  (servSoFar+l) (Yes a r r  s e rv  : inRest) , [I) 
I otherwise 

= (QS ( t ime+l)  0 inRest , [Discharge a r r  (time-serv-arr) serv]) 

In the first case, when the service time so far (servSoFar) is smaller than is required 
(serv), processing is not complete. We therefore add one to the time, and the service 
so far, and produce no output message. 

If processing is complete - which is the otherwise case - the new state of the queue 
is QS ( t ime+l)  0 inRest.  In this state the time is advanced by one, processing time 
is set to zero and the head item in the list is removed. An output message is also 
produced in which the waiting time is given by subtracting the service and arrival times 
from the current time. 

If there is nothing to process, then we simply have to advance the current time by 
one, and produce no output. 

queuestep (QS time se rv  [ I )  = (QS ( t ime+l)  s e rv  [I , [ I )  

Note that the case of an input message No is not handled here sincc these messages are 
filtered out by the server; this is discussed below. 

The three other functions are given by 

queues ta r t  : :  QueueState 
queues ta r t  = QS 0 0 [I 

queueLength : :  QueueState -> I n t  
queueLength (QS - - q)  = l ength  q 

queueEmpty : :  QueueState -> Boo1 
queueEmpty (QS - - q)  = (q==[]) 

and this completes the implementation. 
Obviously there are different possible implementations. We might choose to take the 

item being processed and hold it separately from the queue, or to use an ADT for the 
queue part, rather than a 'concrete' list. 

The server 

The server consists of a collection of queues, accessed by integers from 0; we choose 
to use a list of queues. 

newtype Se rve r s t a t e  = SS [Queuestatel 
der iv ing  (Eq, Show) 

Note that the implementation of this ADT builds on another ADT; this is not unusual. 
Now we take the functions in turn. 



Implementing the simulation 31 3 

Adding an element to a queue uses the function addMessage from the Queuestate 
abstract type. 

addToQueue : :  Int -> Inrness -> ServerState -> ServerState 

addToQueue n im (SS st) 
= SS (take n st ++ CnewQueueState] ++ drop (n+l) st) 
where 
newqueuestate = addMessage im (st! !n) 

A step of'the server i s  given by making a step in each of the constituent queues, and 
concatenating together the output mcssages they produce. 

serverstep : : ServerState -> ( ServerState , [Outmess] ) 

serverstep (SS [I ) 
= (SS [I , [I ) 

serverstep (SS (q:qs)) 
= (SS (q':qs') , mess++messes) 
where 
(4' , mess) = queuestep q 
(SS qs' , messes) = serverstep (SS qs) 

In making a simulation step, we perform a server step, and then add the incoming 
message, if it indicates an arrival, to the shortest queue. 

simulationstep 
: :  ServerState -> Inmess -> ( ServerState , [Outmess] ) 

simulationstep servSt im 
= (addNewObject im servStl , outmess) 
where 
(servStl , outmess) = serverstep servSt 

Adding the message to the shortest queue is done by addNewObject, which is not in the 
signature. The reason for this is that it can be detined using the operations addToQueue 
and shortestQueue. 

addNewObject : :  Inmess -> ServerState -> ServerState 

addNewObject No servSt = servSt 

addNewObject (Yes arr wait) servSt 
= addToQueue (shortestqueue servSt) (Yes arr wait) servSt 

It is in this function that the input messages No are not passed to the queues, as was 
mentioned above. 

The other three functions of the signature are standard. 
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serverstart : :  ServerState 
serverstart = SS (replicate numQueues queuestart) 

where numQueues is a constant to be defined, and the standard function replicate 
returns a list of n copies of x when applied thus: replicate n x. 

serversize : :  ServerState -> Int 
serversize (SS xs) = length xs 

In tinding the shortest queue, we use the queueLength function from the QueueState 

type. 

shortestQueue : :  ServerState -> Int 

shortestQueue (SS [ql) = 0 
shortestqueue (SS (q: qs)) 

I (queueLength (qs! !short) <= queueLength q) = short+l 
I otherwise = 0 

where 
short = shortestQueue (SS qs) 

This concludes the implementation of the two simulation ADTs. The example is 
intended to show the merit of designing in stages. First we gave an informal description 
of the operations on the types, then a description of their signature, and finally an 
implementation. Dividing the problem up in this way makes each stage easier to solve. 

The example also shows that types can be implemented independently: since 
ServerState uses only the abstract data type operations over QueueState, we can 
reimplement QueueState without affecting the server state at all. 

( Exercises 

16.1 8 Give calculations of the expressions 

queuestep (QS 12 3 CYes 8 41 
queuestep (QS 13 4 CYes 8 41) 
queuestep (QS 14 0 [I ) 

16.19 If we let 

serverst1 = SS [ (QS 13 4 [Yes 8 41) , (QS 13 3 [Yes 8 41 1 

then give calculations of 

serverstep serverst1 
simulationstep (Yes 13 10) serverst1 

16.20 Explain why we cannot use the function type (Int -> QueueState) as the 
representation type of ServerState. Design an extension of this type which 
will represent the server state, and implement the functions of the signature over 
this type. 
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16.21 Given the implementations of the ADTs from this section, is your answer to the 
question of whether there are redundant operations in the signatures of queues 
and servers any different? 

16.22 If you have not done so already, design a signature for round-robin simulation, 
in which allocation of the first item is to queue 0, the second to queue 1, and so 
on. 

16.23 Give an implementation of the round-robin simulation which uses the ServerState  
ADT. 

16.24 Give a different implementation of the round-robin simulation which rnod{fic~.s 
the implementation of the type Se rve r s t a t e  itself. 

(16j) Search trees 

A binary search tree is an object of type Tree a whose elements are ordered. A general 
binary tree is implemented by the algebraic data type Tree: 

d a t a  Tree a = N i l  I Node a (Tree a )  (Tree a )  

When is a tree ordered? The tree (Node va l  t 1 t2) is ordered if 

all values in t l  are smaller than val .  

all values in t 2  are larger than va l ,  and 

the trees t i  and t 2  are themselves ordered; 

and the tree N i l  is ordered. 
Search trees are used to represent sets of elements, for instance. How can we create a 

type of search trees'? The concrete (algebraic) type Tree a will not serve, as it contains 
elements like Node 2 (Node 3 N i l  Nil) N i l ,  which are not ordered. 

The answer is to build elements of the type Tree a using only operations which 
create or preserve order. We ensure that only these 'approved' operations are used by 
making the type an abstract data type. 

The abstract data type for  search trees 

We discussed the signature of the abstract data type earlier, in Section 16.4, but we 
repeat it here. 

module Tree 
(Tree, 
n i l ,  -- Tree a 
i s N i l ,  -- Tree a -> Boo1 
isNode , -- Tree a -> Boo1 
l e f  tSub, -- Tree a -> Tree a 
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rightsub, -- Tree a -> Tree a 
treeVal, -- Tree a -> a 
insTree , -- Ord a => a -> Tree a -> Tree a 
delete, -- Ord a => a -> Tree a -> Tree a 
minTree -- Ord a => Tree a -> Maybe a 

) where 

As we have said. the implementation type is 

data Tree a = Nil I Node a (~ree a) (Tree a) 

and the standard operations to discriminate between different sorts of tree and toextract 
components are defined by 

nil : :  Tree a 
nil = Nil 

isNil : :  Tree a -> Bool 
isNil Nil = True 
isNil - = False 

isNode : :  Tree a -> Bool 
isNode Nil = False 
isNode - = True 

leftsub :: Tree a -> Tree a 
leftsub Nil = error "1eftSub" 
leftsub (Node - tl -) = tl 

rightsub : :  Tree a -> Tree a 
rightsub Nil = error "rightSub1I 
rightsub (Node - - t2) = t2 

treeVal : : Tree a -> a 
treeVal Nil = error "treeVal" 
treeVal (Node v - -) = v 

Figure 16.3 contains the definitions of the insertion, deletion and join functions. The 
function join is used to join two trees with the property that all elements in the left are 
smaller than all in the right; that will be the case for the call in delete where i t  is used. 
It is not exported, as i t  can break the ordered property of search trees i f  i t  is applied to 
an arbitrary pair of scarch trees. 

Note that the types of insTree, delete, minTree and join contain the context 
Ord a. Recall from Chapter 12 that this constraint means that these functions can 
only be uscd over types which carry an ordering operation, <=. I t  is easy to see from 
the definitions of these functions that they do indeed use the ordering, and given the 
detinition of search trees it is unsurprising that we use an ordering in these operations. 
Now we look at the definitions in Figure 16.3 in turn. 
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insTree : :  Ord a => a -> Tree a -> Tree a 

insTree val Nil = (Node val Nil Nil) 

insTree val (Node v tl t2) 
I v==val = Node v tl t2 
I vsl > v = Node v tl (insTree val t2) 
I val < v = Node v (insTree val tl) t2 

delete : :  Ord a => a -> Tree a -> Tree a 

delete val (Node v tl t2) 
I val < v = Node v (delete val ti) t2 
I val > v = Node v ti (delete val t2) 
I isNil t2 = tl 
I isNil tl = t2 
I otherwise = join tl t2 

minTree : :  Ord a => Tree a -> Maybe a 

minTree t 
I isNil t = Nothing 
I isNil tl = Just v 
I otherwise = minTree tl 

where 
tl = leftsub t 
v = treeVal t 

- - join is an auxiliary function, used in delete; 
- - it is not exported. 

join : :  Ord a => Tree a -> Tree a -> Tree a 

join tl t2 
= Node mini ti newt 
where 
(Just mini) = minTree t2 
newt = delete mini t2 

Figure 16.3 Operations over search trees. 
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Inserting an element which is already present has no effect, while inserting an element 
smaller (larger) than the value at the root causes it to be inserted in the left (right) subtree. 
The diagram shows 3 being inserted in the tree 

(Node 7 (Node 2 N i l  N i l )  (Node 9 N i l  N i l ) )  

Deletion is straightforward when the value is smaller (larger) than the value at theroot 
' 

node: the deletion is made in the left (right) sub-trcc. If the value to be deleted lies at 
the root, deletion is again simple if either sub-tree is Ni l :  the other sub-tree is returned. 
The problem comes when both sub-trees are non-Nil. In this case, the two sub-trees 
have to be joined together, keeping the ordering intact. 

To j o i n  two non-Nil trees tl and t2, where it is assumed that tl is smaller than 
t 2 ,  we pick the minimum element, mini,  of t2 to be the value at the root. The left 
sub-tree is t i ,  and the right is given by deleting mini from t2. The picture shows the 
deletion of 7 ti-on1 

(Node 7 (Node 2 N i l  N i l )  (Node 9 (Node 8 N i l  N i l )  N i l ) )  

The minTree function returns a value of type Maybe a,  since a N i l  tree has no 
minimum. The Just constructor therefore has to be removed in the where clause 
of j o i n .  

Modifying the implementation 

Given a search tree, we might be asked for its nth element, 

indexT : :  I n t  -> Tree  a -> a 



indexT n t 
1 i s N i l  t = er ro r  "indexTM 
1 n < s t 1  = indexT n t l  
I n == s t 1  = v 
I otherwise = indexT (n-stl-1) t 2  

where 
v = treeVal t 
tl  = l e f t sub  t 
t 2  = r ightsub t 
s t 1  = s i z e  t l  
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(indexT) 

where the s i z e  is given by 

s i z e  : :  Tree a -> I n t  
s i z e  t 

I i sNi l  t = 0 
I otherwise = 1 + s i z e  ( lef tsub t )  + s i z e  (rightsub t )  

If we are often asked to index elements of a tree, wc will repeatedly have to tind the 
s i ze  of search trees, and this will require computation. 

We can think of making the size operation Inore efficient by chunxin,y the imple- 
mentation of Tree a, so that an extra field is given in an Stree to hold the size of the 
tree: 

data St ree  a = N i l  I Node a In t  (Stree a) (Stree a) 

What will have to be changed'? 

We will have to redefine all the operations in the signature, since they access the 
implementation type, and this has changed. For example, the insertion function has 
the new definition 

insTree val  N i l  = (Node va l  1 N i l  Nil) 

insTree val  (Node v n t l  t2 )  
I v==val = Node v n t l  t 2  
I val > v = Node v (1 + s i z e  t l  + s ize  nt2) t l  nt2 
I val < v = Node v (1 + s i z e  n t l  + s i z e  t2 )  n t l  t 2  

where 
n t l  = insTree val  t l  
nt2  = insTree val  t 2  

We will have to add s i z e  to the signature, and redefine it thus: 

s i ze  N i l  = 0 
s i ze  (Node - n - -) = n 

to use the value held in the tree. 



320 Abstract data types 

Nothing else needs to be changed, however. In particular, the definition of indexTgiven 
in (indexT) is unchanged. This is a powerful argument in favour of using abstract 
data type definitions, and against using pattern matching. If (indexT) had used a 
pattern match over its argument, then it woi~ld have to be rewritten if the underlying 
type changed. This shows that ADTs make programs more easily modifiable. as we 
argued at the start of the chapter. 

In conclusion, it should be said that these search trees form a model for a collection 
of types. as they can be nloditied to carry differcnt sorts of information. For, example, 
we could carry a count of the number of times an element occurs. This would be 
increased when an element is inserted, and reduced by one on deletion. Indeed any 
type of additional information can be held at the nodes-the insertion, deletion and other 
operations use the ordering on the elements to structure the tree irrespective of whatever 
else is held there. An example might be to store indexing information together with a 
word. for instance. This would form the basis for a reimplenlentation of the indexing 
system of Section 10.8. 

Exercises ) 

16.25 Explain how you would test the implementations of the functions over search 
trees. You might need to augment the signature of the type with a function to 
print a tree. 

16.26 Define the functions 

successor : :  Ord a => a -> Tree a -> Maybe a 
closest : :  Int -> Tree Int -> Int 

The successor of v in a tree t is the smallest value in t larger than v, while the 
closest value to v in a numerical tree t is a value in t which has the smallest 
difference from v. You can assume that closest is always called on a non-Nil 
tree, so always returns an answer. 

16.27 Redefinc the functions of the Tree a signature over the Stree implementation 

tY Pe. 

16.28 To speed up the calculation of maxTree and other functions, you could imagine 
storing the maximum and minimum of the sub-tree at each node. Redefine 
the functions of the signature to manipulate these maxima and minima, and 
redefine the functions maxTree, minTree and successor to make use of this 
extra information stored in the trees. 

16.29 You are asked to implement search trees with a count of the number of times an 
element occurs. How would this affect the signatureof the type'? How would you 
implement the operations'? How much of the previously written implementation 
could be re-used? 

16.30 Using a modified vcrsion of search trees instead of lists, reimplement the indexing 
software of Section 10.8. 
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16.31 Design a polymorphic abstract data type 

Tree a b c 

so that entries at each node contain an item of type a, on which the tree is ordered, 
and an item of type b, which might be something like the count, or a list of index 
entries. 

On inserting an element, information of type c is given (a single index entry in 
that example); this information has to be combined with the information already 
present. The method of combination can be a functional parameter. There also 
needs to be a function to describe the way in which information is transformed 
at deletion. 

As a test of your type, you should be able to implement the count trees and 
the index trees as instances. 

(168) Sets 

A finite set is a collection of elements of a particular type, which is both like and unlike 
a list. Lists are, of course, familiar, and examples include 

[Joe, Sue, Ben] [Ben, Sue, Joel 
[Joe,Sue,Sue,Benl [Joe,Sue,Ben,Sue] 

Each of these lists is different - not only do the elements of a list matter. but also 
the order in which they occur and the number of times that each element occurs (its 
multiplicity) are significant. 

In many situations, order and multiplicity are irrelevant. If we want to talk about 
the collection of people going to a birthday party, we just want the names; a person is 
either there or not and so multiplicity is not important and the order in which we might 
list them is also of no interest. In other words, all we want to know is the set of people 
coming. In the example above, this is the set consisting of Joe, Sue and Ben. 

Like lists, queues, trees and so on, sets can be combined in many different ways: 
the operations which combine sets form the signature of the abstract data type. The 
search trees we saw earlier provide operations which concentrate on elements of a singlc 
ordered set: 'what is the successor of element e in set s?' for instance. 

In this section we focus on the combining operations for sets. The signature for sets 
is as follows. We explain the purpose of  the operations at the same time as giving their 
implementation. 

module Set 

( Set , 
empty , -- Set a 
sing , -- a -> Set a 
memSet , -- Ord a => Set a -> a -> Boo1 
union,inter,diff , -- Ord a => Set a -> Set a -> Set a 
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eqSet 
subset  
makeset 
mapset 
f i l t e r S e t  
f  o ld se t  
showset 
card 

) where 

, -- Eq a => Set  a -> Set  a -> Bool 
, -- Ord a => Set  a -> Set  a -> Bool 
, -- Ord a => [a] -> Set  a  
, -- Ord b => ( a  -> b) -> Set  a -> Set  b 
, -- (a->Boo11 -> Set  a -> Set  a  
, -- ( a  -> a -> a )  -> a -> Set  a  -> a 
, -- ( a  -> St r ing )  -> Set  a  -> St r ing  

-- Set  a  -> I n t  

There are numerous possible signatures for sets, some of which assume certain proper- 
ties of the element type. To test for elementhood, we need the elements to belong to a 
type in the Eq class: here we assume that the elements are in fact from an ordered type, 
which enlarges the class of operations over Set  a. This gives the contexts Ord a and 
Ord b, which are seen in some of the types in the signature above. 

Implementing the type and operations 

We choose to represent a set as an ordered list of elements without repetitions: 

newtype Se t  a  = Set1  [a1 

The principal definitions over Se t  a  are given in Figures 16.4 and 16.5. At the startof 
the file we see that we import the library L i s t ,  but as there is a definition of union in 
there we have to hide this on import, thus, 

import L i s t  h id ing  ( union ) 

Also at the start of the file we give the ins tance  declarations for the type. It is important 
to list these at the start because there is no explicit record of them in the module header. 

We now run through the individual functions as they are implemented in Figures 
16.4 and 16.5. In our descriptions we use curly brackets '{', ']', to represent sets in 
examples - this is emphatically not part of Haskell notation. 

The empty set (1 is represented by an empty list. and the singleton set {x], consisting 
of the single element x, by a one-element list. 

To test for membership of a set, we define memset. It is important to see that we 
exploit the ordering in giving this definition. Consider the three cases where the list is 
non-empty. In (memSet . I ) ,  the head element of the set, x, is smaller than the element 
y  which we seek, and so we should check recursively for the presence of y  in the tail 
xs. In case (mernset. 2)  we have found the element, while in case (memSet .3) the 
head element is larger than y; since the list is ordered, all elements will be larger than 
y. so it cannot be a member of the list. This definition would not work if we chose to 
use arbitrary lists to represent sets. 

The functions union, i n t e r ,  d i f  f  give the union, intersection and difference of two 
sets. The union consists of the elements occurring in either set (or both), the intersection 
of those elements in both sets and the difference of those elements in the first but not the 
second set - we leave the definition o f d i f  f as an exercise for the reader. For example, 
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import L i s t  h id ing  ( union ) 

ins tance  Eq a => Eq (Set  a) where 
(==) = eqSet 

ins tance  Ord a => Ord (Set  a) where 
(<=) = l eqSet  

newtype Se t  a = S e t I  [a] 

empty : : Se t  a 
empty = S e t I  [I 

s ing  : : a -> Set  a 
s i n g  x = S e t I  [x] 

memSet : :  Ord a => Se t  a -> a -> Boo1 
memSet (Se t I  [ I)  y  = False  
memSet (Se t I  ( x :x s ) )  y  

I x<y = memSet (Se t1  xs)  y  
I x==y = True 
1 otherwise = False  

union : :  Ord a => Set  a -> Se t  a -> Se t  a 
union (Se t I  xs )  (Se t I  ys )  = S e t I  (uni  xs  ys )  

uni  : : Ord a => [a] -> [a] -> [a] 
uni  [I ys  = ys 
un i  xs [I = xs 
un i  (x:xs)  (y:ys) 

I x<y = x : un i  xs  (y :  ys)  
I x==y = x : un i  xs  y s  
I otherwise = y : uni  (x:xs)  ys  

i n t e r  : :  Ord a => Set  a -> Set  a -> Set  a 
i n t e r  (Se t I  xs)  (Se t I  ys)  = S e t I  ( i n t  xs ys)  

i n t  : : Ord a => [a] -> [a] -> [a] 
i n t  [I ys  = [I 
i n t  xs  [I = [I 
i n t  (x :xs )  (y:ys) 

I X<Y = i n t  xs (y :ys )  
I x==y = x : i n t  xs y s  
I otherwise = i n t  (x:xs) ys  

Figure 16.4 Operations over the set abstract data type, part 1 .  



324 Abstract data types 

subset  : :  Ord a => Set  a  -> Set  a  -> Bool 
subset  (Se t I  xs)  (Se t I  ys) = subS xs  ys  

subS : :  Ord a => [a] -> [a] -> Bool 
subs [I ys = True 
subs x s  [I = False 
subS (x:xs)  (y:ys) 

I x<y = False 
I x==y = subs xs ys 
I x>y = subs (x:xs) ys 

eqSet : :  Eq a => Set  a  -> Set  a  -> Bool 
eqSet (Se t I  xs)  (Se t I  ys) = (xs == ys)  

leqSet  : :  Ord a => Set  a  -> Set  a  -> Boo1 
leqSet  (Set1 xs)  (Set1 ys) = (xs <= ys) 

makeset : : Ord a => [a] -> Set  a  
makeset = S e t I  . remDups . s o r t  

where 
remDups [I = 11 
remDups [XI = [XI 
remDups (x:y:xs) 

I x < y  = x : remDups (y:xs) 
I otherwise = remDups (y:xs) 

mapset : :  Ord b => ( a  -> b) -> Set  a  -> Set  b 

mapset f  (Se t I  xs)  = makeset (map f xs)  

f i l t e r s e t  : :  ( a  -> Bool) -> Set  a  -> Set  a 
f i l t e r s e t  p  (Se t I  xs)  = S e t I  ( f i l t e r  p  xs)  

f o l d s e t  : :  ( a  -> a -> a )  -> a -> Set  a  -> a 
f o l d s e t  f  x  (Se t I  xs) = ( f o l d r  f  x  xs)  

showset : :  (a->Str ing)  -> Set  a  -> S t r i n g  
showset f (Se t I  xs )  = concat (map ((++"\nu) 

card : :  Set  a -> I n t  
card (Se t I  xs)  = l ength  xs 

Figure 16.5 Operations over the set abstract data type, part 2. 
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union {Joe ,  Sue} {Sue, Ben} = {Joe ,  Sue, Ben] 
i n t e r  {Joe ,Sue} {Sue ,Ben) = {Sue} 
d i f  f {Joe ,  Sue} {Sue, Ben} = {Joe} 

In making these definitions we again exploit the fact that the two arguments are ordered. 
We also define the functions by 'wrapping up' a function over the 'barc' list type. For 
instance. in defining union we first define 

uni  : :  Ord a => [a] -> [a] -> [a] 

which works directly over ordered lists, and then make a version which works over Set ,  

union : :  Ord a => Set  a -> Set  a -> Set  a 
union (Se t I  xs)  (Se t I  ys) = S e t I  (uni  xs ys) 

Recall that the brackets '(', '1' are not a part of Haskell; we can see them as shorthand 
ibr Haskell expressions as follows. 

{ e l ,  . . . ,en} = makeset [ e l ,  - .  . ,en] 

To test whether the first argument is a subset of the second, we use subset ;  x is a subset 
of y if every element of x is an element of y. 

Two sets are going to be equal if their representations as ordered lists are the same 
- hence the definition of eqSet as list equality; note that we require equality on a to 
define cquality on Se t  a .  The function eqSet is exported as part of the signature. but 
also we declare an instance of the Eq class, binding == to eqSet thus 

ins tance  Eq a => Eq (Set a)  where 
(==) = eqSet 

The ADTequality will not in general be the equality on the underlying type: if we were 
to choose arbitrary lists to niodel sets, the equality test would be more complcx, since 
[ I ,  23 and [2,1,2,21 would represent the same set. 

We also export list ordering as an ordering over Set .  

instance Ord a => Ord (Set a )  where 
(<=I  = leqSet 

Thc subset ordering is not bound to <= since it is customary for thc <= in Ord to be a 
total order, that is for all elemcnts x and y. either x<=y or y<=x will hold. The subset 
ordering is not a total order, while the lexicographic ordering over (ordered) lists is 
total. Some examples for comparison are given in the exercises. 

To form a set from an arbitrary list, makeset, the list is sorted, and then duplicate 
elements are removed, before it is wrapped with Se t I .  The definition of s o r t  is 
imported from the L i s t  library. 

mapset, f i l t e r S e t  and f o ld se t  behave like map, f i l t e r  and f o ld r  except that 
they operate over sets. The latter two are essentially given by f i l t e r  and fo ld r ;  in 
mapset duplicates have to be removed after mapping. 

showset f (Se t I  xs) gives a printable version of a set, one item per line, using 
the function f to give a printable version of each element. 
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showset f  (Set1 xs)  = concat (map ((++"\nM) . f )  xs)  

The cardinality of a set is the number of its members. The function card gives this, as 
it returns the length  of the list. 

In the next section we build a library of functions to work with relations and graphs 
which uses the Se t  library as its basis. 

( Exercises 

16.32 Compare how the following pairs of sets are related by the orderings <= and 
subset .  

16.33 Define the function d i f  f  so that d i f  f  sl s 2  consists of the elements of sl 
which do not belong to s2. 

16.34 Define the function 

symmDiff : :  Ord a => Se t  a -> Set  a -> Set  a 

which gives the symmetric difference of two sets. This consists of the elements 
which lie in one of the sets but not the other, so that 

symmDif f {Joe,  Sue] {Sue, Ben] = (Joe ,Ben] 

Can you use the function d i f  f  in your definition? 

16.35 How can you define the function 

powerset : : Ord a => Set  a  -> Set  (Set a) 

which returns the set of all subsets of a set defined? Can you give a definition 
which uses only the operations of the abstract data type and not the concrete 
implementation'? 

16.36 How are the functions 

setunion : : Ord a => Set  (Set a )  -> Set  a 
s e t I n t e r  : : Ord a => Set  (Set a )  -> Set  a 

which return the union and intersection of a set of sets defined using the opera- 
tions of the abstract data type'? 

16.37 Can infinite sets (of numbers, for instance) be adequately represented by ordered 
lists? Can you tell if two infinite lists are equal, for instance'? 
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16.38 The abstract data type Set a can be represented in  a number of different ways. 
Alternatives include arbitrary lists (rather than ordered lists without repetitions) 
and Boolean valued functions, that is elements of the type a -> Bool. Give 
implementations of the type using these two representations. 

16.39 Give an implementation of the Set abstract data type using search trees. 

16.40 Give an implementation of the search tree abstract data type using ordered lists. 
Compare the behaviour of the two implementations. 

(169) Relations and graphs 

We now use the Set abstract data type as a means of implementing relations and. taking 
an alternative view of the same objects. graphs. 

Relations 

A binary relation relates together certain elements of a set. A family relationship can be 
summarized by saying that the isparent relation holds between Ben and Sue, between 
Ben and Leo and between Sue and Joe. In other words, it relates the pairs (Ben, Sue), 
(Ben,Leo) and (Sue, Joe), and so we can think of this particular relation as the set 

In  general we say 

This definition means that all the set operations are available on relations. We can test 
whether a relation holds of two elements using memSet: the union of two relations like 
isparent and issibling gives the relationship of being either a parent or a sibling. 
and so on. 

We look at two particular examples of family relations, based on a relation isparent 
which we assume is given to us. We first set ourselves the task of defining the function 
addchildren which adds to a set of people all their children; we then aim to define the 
isAncestor relation. The full code for the functions discussed here is given in Figure 
16.6. 

1. Working bottom-up, we first ask how we find all elements related to agivcn element: 
who are all Ben's children, for instance? We need to find all pairs beginning with Ben, 
and then return their second halves. The function to perform this is image and the set 
of Ben's children will be 

image isparent Ben = {Sue ,Leo] 

Now, how can we find all the elements related to a set of elements'? We find the image 
of each element separately and then take the union of these sets. The union of a set ot 
sets is given by folding the binary union operation into the set. 
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image : :  Ord a => Relation a -> a -> Set a 
image re1 val = mapset snd (f ilterSet ((==val) .f st) rel) 

setImage : :  Ord a => Relation a -> Set a -> Set a 
setImage re1 = unionset . mapset (image rel) 

unionset : : Ord a => Set (Set a) -> Set a 
unionset = foldset union empty 

addImage : :  Ord a => Relation a -> Set a -> Set a 
addImage re1 st = st 'union' setImage re1 st 

addchildren : :  Set People -> Set People 
addchildren = addImage isparent 

compose : :  Ord a => Relation a -> Relation a -> Relation a 
compose re11 re12 

= mapset outer (filterset equals (setproduct re11 re12)) 
where 
equals ((a,b) , (c,d)) = (b==c) 
outer ((a,b), (c,d)) = (a,d) 

setproduct : :  (Ord a,Ord b) => Set a -> Set b -> Set (a,b) 
setproduct st1 st2 = unionset (mapset (adjoin stl) st21 

adjoin : :  (Ord a,Ord b) => Set a -> b -> Set (a,b) 
adjoin st el = mapset (addEl el) st 

where 
addEl el el) = (el',el) 

tClosure : :  Ord a => Relation a -> Relation a 
tClosure re1 = limit addGen re1 

where 
addGen rel' = rel' 'union' (rel' 'compose' rel) 

limit: : Eq a => (a -> a) -> a -> a 
limit f x 

1 x == next = x 
I otherwise = limit f next 
where 
next = f x 

Figure 16.6 Functions over the type of relations, Relation a. 
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unionset {sl , . . . , sn} 
= SI U . . .  U Sn 
= SI 'union' . . .  'union' sn 

Now, how do we add all the children to a set of people'? We find the image of the 
set under isparent, and combine it with the set itself. This is given by the function 
addchildren. 

2. The second task we set ourselves was to find the isAncestor relation. The 
general problem is to find the transitive closure of a relation, the function tClosure 
of Figure 16.6. We do this by closing up the relation, so we add grandparenthood. 
great-grandparenthood and so forth to the rclation until nothing further is added. We 
explain transitive closure formally later in  th i4  section. 

How do wc get the isGrandparent relation? We match together pairs like 

and see that this gives that Ben is a grandparent of Joe. We call this thc relational 
composition of isparent with itself. In general, 

isGrandparent 
= isparent 'compose' isparent 
= ((Ben, Joe)] 

I n  defining compose we have used the setproduct fimction to give the product of 
two scts. This is formed by pairing every element of the first set with every element of 
the second. For instance, 

setproduct (Ben, Suzie] {Sue, Joe] 
= { (Ben,Sue) , (Ben,Joe) , (Suzie,Sue) , (Suzie,Joe) ) 

setproduct uses the function adjoin to pair each element of a set with a given element. 
For instance, 

adjoin Joe {Ben,Sue) = { (Ben,Joe) , (Sue,Joe) } 

A relation re1 is transitive if  for all (a,b) and (b,c) in rel, (a,c) is in  rel. The 
transitive closure of a rclation re1 is the smallest relation extending re1 which is 
transitive. We compute the transitive closure of rel, tclosure rel, by repeatedly 
adding one more 'generation' of rel, using compose, until nothing more is added. 

To do this, we make use of the limit function, a polymorphic higher-ordcr filnction 
of general use. limit f x gives the limit of the sequence 

The limit is the value to which the sequence settles down if it exists. It is found by 
taking the first element in the sequence whose successor is equal to the element itself. 

As an example, take Ben to be Sue's father, Sue to be Joe's mother, who himsclf has 
no children. Now define 

addchildren : :  Set Person -> Set Person 



330 Abstract data types 

to add to a set the children of all members of the set, so that for instance 

addchildren {Joe ,Ben) = {Joe, Sue, Ben] 

Now we can give an example calculation of a limit of a function over sets. 

limit addchildren {Ben) 
?? (Ben)=={Ben, Sue] -.., False - limit addchildren {Ben, Sue] 
?? {Ben, Sue)==(Ben, Joe, Sue) -u False 

-.A limit addchildren {Ben,Joe,SueJ 
?? {Ben, Joe, Sue]=={Ben, Joe, Sue] --. True 

-.A {Ben, Joe, Sue} 

Con text simplification 

The functions of Figure 16.6 give an interesting example of context simplification for 
type classes. The adjoin function requires that the types a and b carry an ordering. 
Haskell contains the instance declaration 

instance (Ord a, Ord b) => Ord (a,b) . . . . (pair) 

and so this is sufficient to ensure Ord (a,b), which is required for the application of 
mapset within adjoin. 

Similarly. in defining compose we require an ordering on the type ( (a,a) , (a,a)); 
again, knowing Ord a is sufficient to give this, since (pair) can be used to derive the 
ordering on ((a,a) , (a,a) 1. 

Graphs 

Another way of seeing a relation is as a directed graph. For example, the relation 

can be pictured thus 

where we draw an arrow joining a to b if the pair (a,b) is in the relation. What then 
does the transitive closure represent? Two points a and b are related by tClosure 
graphl i f  there is a path from a to b through the graph. For example, the pair (1,4) 
is in the closure, since a path leads from 1 to 3 then to 2 and finally to 4, while the pair 
(2,l) is not in the closure, since no path leads from 2 to I through graphl. 
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Strongly connected components 

A problem occurring in many different application areas, including networks and 
compilers, is to find the strongly connected components of a graph. Every graph 
can have its nodes split into sets or components with the property that every node in 
a component is connected by a path to all other nodes in the same component. The 
components of graphl are (I), (3) and {2,4]. 

We solve the problem in two stages: 

we first form the relation which links points in the same component, then 

we form the components (or equivalence classes) generated by this relation. 

There is a path from x  to y  and vice versa if both ( x ,  y) and (y , x )  are in  the closure. 
so we define 

connect : :  Ord a => Relation a -> Relation a 
connect re1 = clos 'inter' solc 

where 
clos = tClosure re1 
solc = inverse clos 

inverse : :  Ord a => Relation a -> Relation a 
inverse = mapset swap 

where 
swap ( x , y )  = (y,x) 

Now, how do we form the components given by the relation graphl? We start with the 
set 

and repeatedly add the images under the relation to each of the classes. until a fixed 
point is reached. In general this gives 

classes : : Ord a => Relation a -> Set (Set a) 
classes re1 

= limit (addImages rel) start 
where 
start = mapset sing (eles rel) 

where thc auxiliary functions used are 

eles : : Ord a => Relation a -> Set a 
eles re1 = mapset fst re1 'union' mapset snd re1 

addImages : : Ord a => Relation a -> Set (Set a) -> Set (Set a) 
addImages re1 = mapset (addImage re11 
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Searching in graphs 

Many algorithms require us to search through the nodes of a graph: we might want to 
find a shortest path from one point to another, or to count the number of paths between 
two points. 

Two general patterns of search are depth-tirst and breadth-first. In a depth-first 
search, we explore all elements below a given child before moving to the nexr child: a 
breadth-first search examines all the children before examining the grandchildren, and 
so on. In the case of searching below node 1 in graphl,  the sequence [ I ,  2,4,31 is 
depth-first (4 is visited before 3), while [I ,  2,3,41 is breadth-first. These examples 
show that we can characterize the searches as transformations 

breadthFi rs t  : : Ord a => Relat ion a  -> a -> [a] 
depthFi rs t  : :  Ord a => Relat ion a  -> a -> [a] 

with breadthFi rs t  graph1 1 = [ I ,  2 ,3 ,4 ] ,  for instance. The use of a list in theqe 
functions is crucial - we are not simply interested in finding the nodes below a node 
( t c lo su re  does this), we are interested in the order in which they occur. 

A crucial step in both searches is to find all the dcwendants of a node which have 
not been visited so  far. We can write 

newDescs : :  Ord a => Relat ion a  -> Set  a  -> a -> Set  a  
newDescs r e 1  st v = image r e 1  v ' d i f f '  st 

which returns the set of descendants of v in r e 1  which are not in the set s t .  Here we 
have a problem; the result of this function is a set and not  a list, but we require the 
elements in some order. One solution is to add to the Se t  abstract data type a function 

f l a t t e n  : :  Set  a  -> [a1 
f l a t t e n  (Set1 xs)  = xs 

which breaks the abstraction barrier in the case of the ordered list implementation. An 
alternative is to supply as a parameter a function 

minSet : :  Set  a  -> Maybe a 

which returns the minimum of a non-empty set and which can be used in flattening a 
set to a list without breaking the abstraction barrier. Unconcerned about its particular 
definition, we assume the existence of a flatten function of type ( s e tL i s t ) .  Then we 
can say 

findDescs : : Ord a => Relat ion a  -> [a] -> a -> [a] 
findDescs r e 1  xs v = f l a t t e n  (newDescs r e 1  (makeset xs) v) 

Breadth-first search 

A breadth-first search involves repeatedly applying f  indDescs until a h i i t  is reached. 
The l i m i t  function discussed earlier will find this, so we define 
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breadthFirst : :  Ord a => Relation a -> a -> [a] 
breadthFirst re1 val 
= limit step start 
where 
start = [val] 
step xs = xs ++ nub (concat (map (f indDescs re1 xs) xs)) 

A step perforn~s a number of operations: 

First, all the desccndants of elements in xs which are not already in xs are found. 
This is given by mapping (f indDescs re1 xs) along the list xs. 

This list of lists is then concatenated into a single list. 

Duplicates can occur in  this list, as anode may be a descendant of more than one node, 
and so any duplicated elements must be removed. This is the effect of the library 
function nub : : Eq a => [a] -> [a], which removes all but the first occurrence 
of each element in a list. 

Depth-first search 

How does depth-first search proceed'? We first generali~e the problem to 

depthsearch : :  Ord a => Relation a -> a -> [a] -> [a] 
depthFirst re1 v = depthsearch re1 v [I 

where the third argument is used to carry the list of nodes already visited, and which 
are therefore not to appear in the result of the function call. 

depthsearch re1 v used 
= v : depthList re1 (findDescs re1 used' v) used' 
where 
used' = v:used 

Here we call the auxiliary function depthlist, which finds all the descendants of a 
list of nodes. 

depthList : : Ord a => Relation a -> [a] -> [a] -> [a] 

depthList re1 [I used = [I 

depthList re1 (va1:rest) used 
= next ++ depthList re1 rest (used++next) 
where 
next = if elem val used 

then [I 
else depthsearch re1 val used 

The definition has two equations, the first giving the trivial case where no nodes are to 
be explored. In the second there are two parts to the solution: 
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next gives the part of the graph accessible below val .  This may be [ I ,  if val is a 
member of the list used, otherwise depthsearch is called. 

depthList  is then called on the tail of the list, but with next appended to the list of 
nodes already visited. 

This pair of definitions is a good example of definition by mutual recursion, since 
each calls the other. It is possible to define a single function to perform the effect of the 
two, but this pair of functions seems to express the algorithm in the most natural way. 

16.41 Calculate 

c l a s ses  (connect graph11 
c l a s ses  (connect graph21 

where graph2 = graphl U { (4 ,3 ) ) .  

16.42 Give calculations of 

where graph2 is defined in the previous question. 

16.43 Using the searches as a model, give a function 

d is tance  : :  Eq a => Relat ion a -> a -> a -> I n t  

which gives the length of a shortest path from one node to another in a graph. 
For instance, 

d is tance  graphl  1 4 = 2 
d is tance  graphl 4 1 = 0 

0 is the result when no such path exists, or when the two nodes are equal. 

16.44 A weighted graph carries a numerical weight with each edge. Design a type to 
model this. Give functions for breadth-first and depth-first search which return 
lists of pairs. Each pair consists of a node, together with the length of a shortest 
path to that node from the node at the start of the search. 

16.45 A heterogeneous relation relates objects of different type. An example might be 
the relation relating a person to their age. Design a type to model these relations: 
how do you have to modify the functions defined over Relat ion a to work over 
this type. if it is possible? 
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(1610! Commentary 

This section explores a number o f  issues raised by the introduction o f  ADTs into our 
repertoire. 

First, we have not yet said anything about verification o f  functions over abstract data 
types. This i s  because there is nothing new to say about the proof o f  theorems: these 
are proved for the implementation types exactly as we have seen earlier. The theorems 
valid for an abstract data type are precisely those which obey the type constraints on 
the functions in the signature. For a queue type, for instance, we will be able to prove 
that 

by proving the appropriate result about the implementation. What would not be valid 
would be an equation like 

since this breaks the information-hiding barrier and reveals something o f  the imple- 
mentation itself. 

Next we note that our implementation o f  sets gives rise to some properties which 
we ought to prove, often called proof obligations. We have assumed that our sets are 
implemented as ordered lists without repetitions; we ought to prove that each operation 
over our implementation preserves this property. 

Finally, observe that both classes and abstract data types use signatures, so it i s  worth 
surveying their similarities and differences. 

Their purposes are different: ADTs are used to provide information hiding, and to 
structure programs; classes are used to overload names, to allow the same name to 
be used over a class o f  different types. 

The signature in an ADT is associated with a single implementation type, which may 
be rnonornorphic or polymorphic. On the other hand, the signature in a class will 
be associated with multiple instances; this is the whole point o f  including classes, in 
fact. 

The functions in the signature of an ADT provide the only access to the underlying 
type. There i s  no such information hiding over classes: to be a member o f  a class, a 
type must provide at least the types in signature. 

ADTs can be polymorphic, so we can have a polymorphic type o f  search trees, for 
instance. Classes classify single types rather than polymorphic families o f  types; 
constructor classes as discussed in Chapter 18 extend classes to do exactly that. 

( Summary ) 
The abstract data types o f  this chapter have three important and related properties. 

They provide a natural representation o f  a type, which avoids being over-specific. 
An abstract data type carries precisely the operations which are naturally associated 
with the type and nothing more. 
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The signature of an abstract data type is a firm interface between the user and the 
iniplernenter: development of a system can proceed completely independently on 
the two sides of the interface. 

If the implementation of a type is to be modified, then only the operations in the 
signature need to be changed; any operation using the signature functions can be used 
unchanged. Wc saw an example of this with search trees, when the implementation 
was modified to include size information. 

We saw various examples of ADT development. Most importantly we saw the practical 
example of the simulation types being designed in the three stages suggested. First the 
types are named, then they are described informally and finally a signature is written 
down. After that we are able to implement the operations of the signature as a separate 
task. 

One of the difticulties in writing a signature is being sure that all the relevant 
operations have been included; we have given a check-list of the kinds of operations 
which should be present, and against which it is sensible to evaluate any candidate 
signature detinitions. 
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Lazy programming 

17.1 Lazy evaluation 

17.2 Calculation rules and lazy evaluation 

17.3 List comprehensions revisited 

1 7.4 Data-directed programming 

17.5 Case study: parsing expressions 

17.6 Infinite lists 

17.7 Why infinite lists? 

17.8 Case study: simulation 

17.9 Proof revisited 

In our calculations so far we have said that the order in which we make evaluation steps 
will not affect the results produced - it may only affect whether the sequence leads to 
a result. This chapter describes precisely the lazy evaluation strategy which underlies 
Haskell. Lazy evaluation is well named: a lazy evaluator will only evaluate an argument to 
a function if that argument's value is  needed to compute the overall result. Moreover, if 
an argument is structured (a list or a tuple, for instance), only those parts of the argument 
which are needed will be examined. 

Lazy evaluation has consequences for the style of programs we can write. Since an 
intermediate list will only be generated on demand, using an intermediate list will not 
necessarily be expensive computationally. We examine this in the context of a series of 
examples, culminating in a case study of parsing. 

To build parsers we construct a toolkit of polymorphic, higher-order functions which 
can be combined in a flexible and extensible way to make language processors of all 
sorts. One of the distinctive features of a functional language is the collection of facilities 
it provides for defining such sets of building blocks. 

We also take the opportunity to extend the list comprehension notation. This does 
not allow us to write any new programs, but does make a lot of list processing programs 
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- especially those which work by generating and then testing possible solutions - easier 
to express and understand. 

Another consequence of lazy evaluation is that it is possible for the language to de. 
scribe infinite structures. These would require an infinite amount of time to evaluate 
fully, but under lazy evaluation, only parts of a data structure need to be examined. Any 
recursive type will contain infinite objects; we concentrate on lists here, as infinite lists 
are by far the most widely used infinite structures. 

After introducing a variety of examples, such as infinite l ists of prime and random 
numbers, we discuss the importance of infinite lists for program design, and see 
that programs manipulating infinite lists can be thought of as processes consuming and 
creating 'streams' of data. Based on this idea, we explore how to complete the simulation 
case study. 

The chapter concludes with an update on program verification in the light of lazy 
evaluation and the existence of infinite lists; this section can only give a flavour of the 

area, but contains references to more detailed presentations. 
Sections 1 7.1 and 1 7.2 are essential reading, but it is possible to follow as much of the 

remainder as you like: the chapters which follow do not depend upon it. 

Lazy evaluation 

Central to evaluation i n  Haskell is function application. The basic idea behind this is 
simple; to evaluate the function f applied to arguments al, a2, . . . , ak, we simply 
substitute the expressions ai for the corresponding variables in the definition of the 
function. For instance, if 

then 

since we replace x by (9-3) and y by (f 34 3). The expressions (f 34 3) and 
(9-3) are not evaluated before they are passed to the function. 

In  this case, for evaluation to continue, we need to evaluate the arguments to '+', 
giving 

I n  this example, both o f  the arguments are evaluated eventually, but this is not always 
the case. If we define 

then 
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Here (9-3) is substituted tbr x, but as y does not appear on the right-hand side of the 
equation, the argument (g 34 3) will not appear in the result, and so is not evaluated. 
Here we see the first advantage of lazy evaluation - an argument which is not needed 
will not be evaluated. This example is rather too simple: why would we write the 
second argument if its value is never needed? A rather more realistic example is 

switch : :  I n t  -> a -> a -> a 
switch n x y 

I n>O = x 
I otherwise = y 

If the integer n is positive, the result is the value of x; otherwise it is the value 01' y. 
Either of the arguments x and y might be used, but in the first case y is not evaluated 
and in the second x is not evaluated. A third example is 

so that 

(h-eval) 

It appears here that we will have to evaluate the argument (9-3) twice since it is 
duplicated on substitution. Lazy evaluation ensures that a duplicated argument is 
never evaluated more than once. This can be modelled in a calculation by doing the 
corresponding steps simultaneously, thus 

In the implementation, there is no duplicated evaluation because calculations are made 
over graphs rather than trees to represent the expressions being evaluated. For instance. 
instead of duplicating the argument, as in ( i )  below, the evaluation of (h-eval) will 
give a graph in which on both sides of the plus there is the sunze expression. This is 
shown in ( i i ) .  

i .  ii. 

A final example is given by the pattern matching function, 
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applied to the pair (3+2,4-17) 

The argument is examined, and part of it is evaluated. The second half of the pair 
remains unevaluated, as it is not needed in the calculation. This completes the informal 
introduction to lazy evaluation, which can be summarized in the three points: 

arguments to functions are evaluated only when this is necessary for evaluation to 
continue; 

an argument is not necessarily evaluated fully: only the parts that arc needed are 
examined; 

an argument is evaluated at most only once. This is done in the implementation by 
replacing expressions by graphs and calculating over them. 

We now give a more formal account of the calculation rules which embody lazy 
evaluation. 

(17 Calculation rules and lazy evaluation 

As we first saw in Section 3.7, the definition of a function consists of a nunlber of 
conditional equations. Each conditional equation can contain multiple clauses and may 
have a number of local definitions given in a where clause. Each equation will have on 
its left-hand side the function under definition applied to a number of patterns. 

f PI P2 . . .  Pk 
I gi = el 
I g2 = e2 
. . . 
I otherwise = er 
where 
v1 al,l . . .  = rl 
. . . . 

f ql 92 . . . qk 
- - * . .  

In calculating f a1 . . . ak there are three aspects. 

Calculation - pattern matching 

In order to determine which of the equations is used, the arguments are evaluated. The 
arguments are not evaluated fully, rather they are evaluated sufficiently to see whether 
they match the corresponding patterns. If they match the patterns p i  to pk, then 
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evaluation proceeds using the first equation; if not, they are checked against the second 
equation, which may require further evaluation. This is repeated until a match is given, 
or until there are no more equations (which would generate a Program error). For 
instance, given the definition 

f : : [Int]  -> [Int]  -> I n t  
f [I ys = 0 
f (x:xs) [I = 0 
f (x:xs) (y:ys) = x+y 

the evaluation o f f  [l . . 31 [l . . 31 proceeds thus 

At stage (I), there is not enough information about the arguments to determine whether 
there is a match with (f . 1). One step of evaluation gives (21, and shows there is not 
a match with (f . I). 

The first argument of (2) matches the first pattern of (f .21, so we need to check 
the second. One step of calculation in (3) shows that there is no match with (f .2). 
but that there is with (f -3); hence we have (4). 

Calculation - guards 

Suppose that the first conditional equation matches (simply for the sake of explanation). 
The expressions a1 to ak are substituted for the patterns pl to pk throughout the 
conditional equation. We must next determine which of the clauses on the right-hand 
side applies. The guards are evaluated in turn, until one is found which gives the value 
True; the corresponding clause is then used. If we have 

f : :  Int -> I n t  -> I n t  -> Int 
f m n p  

I m>=n && m>=p = m 
I n>=m && n>=p = n 
1 otherwise = P 

then 

f (2+3) (4-1) (3+9) 
?? (2+3)>=(4-1) && (2+3)>=(3+9) 
?? - 5>=3 && 5>=(3+9) 
?? - True && 5>=(3+9) 
?? - 5>=(3+9) 
?? 5>=12 
?? - False 
?? 3>=5 && 3>=12 
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?? - False && 3>=12 
?? - False 
?? otherwise ?-i True - 12 

We leave it as an rxcrcise for the reader to work out which 
are shared. 

Calculation - local definitions 

Values in where clauses are calculated on demand: only 
calculation begin. Given the definitions 

f : : Int -> Int -> Int 

f m n  
1 notNil xs = front xs 
1 otherwise = n 
where 
xs = [m . .  n] 

front (x:y:zs) = x+y 
front [XI = x 

notNil [] = False 
notNil (-:-I = True 

the calculation off 3 5 will be 

f 3 5  
?? notNil xs 
?? where 
?? 1 xs = C3 . . 51 
? ? ?-i 3:[4 .. 51 
?? - notNi1 (3: [4 . . 51 ) 
?? I. True 

--+ front xs 
where 
xs = 3: [4 . . 51 - 3:4: [5] 

I. 3+4 
7 

parts of 

when a 

To evaluate the guard notNil xs, evaluation of xs begins, and after one step, (1) 
shows that the guard is True. Evaluating front xs requires more information about 
xs, and so we evaluate by one more step to give (2). A successful pattern match in the 
definition of front then gives (31, and so the result. 
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Operators and other expression formers 

The three aspccts of evaluating a function application are now complete; we should now 
say something about the built-in operators. If they can be given Haskell detinitions, 
such as 

True && x = x 
False && x = False 

then they will follow the rules for Haskell definitions. The left-to-right order means 
that '&&' will not evaluate its second argument in the case that its first is False, for 
instance. This is unlike many programming languages, where the 'and' function will 
evaluate both its arguments. 

The other operations, such as the arithmetic operators, vary. Plus needs both its 
arguments to return a result, but the equality on lists can return False on comparing 
[I and (x:xs) without evaluating x or xs. In general the language is implemented so 
that no manifestly unnecessary evaluation takes place. 

Recall that i f  . . . then. .  . e l s e  . . . ; cases; l e t  and lambda expressions can be used 
in forming expressions. Their evaluation follows the form we have seen for function 
applications. Specifically, i f  . . . then. .  . e l s e . .  . is evaluated like aguard. cases like 
a pattern match, l e t  like a where clause and a lambda expression like the application 
of a named fi~nction such as f above. 

Finally, we turn to the way in which a choice is made between applications. 

Evaluation order 

What characterizes evaluation in Haskell, apart from the fact that no argument is 
evaluated twice, is the order in which applications are evaluated when there is a choice. 

Evaluation is from the outside in. In a situation like 

where one application encloses another, as seen in the expression. the outer one. 
f 1 e l  (f e2 171, is chosen for evaluation. 

Otherwise, cvuluation is from left to right. In the expression 

the underlined expressions are both to be evaluated. The left-hand one, f 1 e l ,  will 
be examined first. 

These rules are enough to describe the way in which lazy evaluation works. In 
the sections to come we look at the consequences of a lazy approach for functional 
programming. 
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(17 List comprehensions revisited 

The list comprehension notation does not add any new programs to the Haskell language, 
but it does allow us to (re-)write programs in a new and clearer way. Building on the 
introduction in Section 5.5, the notation lets us combine multiple maps and f i l t e r s  
together in a single expression. Combinations of these functions allow us to write 
algorithms which generate and test: all the elements of a particular form are generated 
and combinations of them are tested, before results depending upon them are returned. 
We begin the section with a re-examination of the syntax of the list comprehension, 
before giving some simple illustrative examples. After that we give the rules for 
calculating with list comprehensions, and we finish the section with a series of longer 
examples. 

Syntax 

A list comprehension has the form 

C e 1 q1 , . - .  , gk 1 

where each qualifier q i  has one of two forms. 

It can be a generator, p <- lExp, where p is a pattern and lExp is an exprcs4on of 
list type. 

It can be a test, bExp, which is a boolean expression. 

An expression lExp or bExp appearing in qualifier q i  can refer to the variables used 
in the patterns of qualitiers q l  to qi-1. 

Simpler examples 

Multiple generators allow us to combine elements from two or more lists 

This example is important as it shows the way in which the values x and y are chosen. 

p a i r s  [1,2,3] [4,51 
-- C(1,4),(1,5),(2,4>,(2,5),(3,4),(3,5)1 

The first element of xs, 1, is given to x, and then for thisjixed value all possible values 
of y in ys  are chosen. This process is repeated for the remaining values x in xs, namely 
2 and 3. 

This choice is not accidental, since if we have 

t r i a n g l e  : :  I n t  -> [ ( I n t , I n t ) ]  
t r i a n g l e n  = C (x,y) I x <- C1 . .  n] , y <- [I .. x] 1 

the second generator, y <- [I . . x] depends on the value of x given by the tirst 
generator. 
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For the first choice of x, 1, the value of y is chosen from [I . . I ] ,  for the second 
choice of x, the value of y is chosen from [I . . 21, and so on. 

Three positive integers form a Pythagorean triple i f  the sum of squares of the lirst 
two is equal to the square of the third. The list of all triples with all sides below n 
particular bound, n, is given by 

Here the test combines values from the three generators. 

Calculating with list comprehensions 

How can wc describe the way in which the results of list comprehensions are obtained'? 
One way is to give a translation of the comprehensions into applications of map, 
f i l t e r  and concat. We give a different approach here, of calculating dirt.cf(s with 
the expressions. 

Before we do this, we introduce one piece of very helpful notation. We write e ( f  /x) 
for the expression e in which every occurrence of the variable x has been replaced by 
the expression f .  This is the substitution off for x in e. If p is a paltern, we use e(f /pJ 
for the substitution of the appropriate parts o f f  for the variables in p. For instance, 

since 2 matches x, and [3,41 matches xs when (2, [3,4] ) is matched against (x , xs) . 
We now explain list comprehensions. The notation looks a bit daunting, but the effect 

should be clear. The generator v <- [a1 , . . . ,an] has the effect of setting v to the 
values a1 to an in turn. Setting the value appears in the calculation as substitution of 
a value for a variable. 

As a running example for this section we take 
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where the values 1 and 2 are substituted for x. The rules for tests are simple, 

C e  I True , q2 , . . .  , q k l  
--i [ e I q 2 , . . - , ~ 1  

[ e I F a l s e  , q2 , . . . qk 1 - [I 

so that our example is 

--i [ l + y  I F a l s e  , y <- [l .. 2*1] 1 ++ 
[ 2+y I True , y <- [2 . . 2*21 1 

-- [ 2+y l y <- [2 ,3 ,41 I - [ 2+2 1 ] ++ [ 2+3 I I ++ [ 2+4 1 1 

and when there are no qualifiers, 

Completing the example, we have 

Now we consider some more examples. 

t r i a n g l e  3 
-- [ ( x , y >  l x <- [I . . 31 , y <- . - 
-- [ ( 1 , ~ )  I y < -  [l . .  11 1 ++ 

[ ( 2 , ~ )  I y <- 11 . .  21 I ++ 

[ ( 3 , ~ )  I y <- C1 . .  31 I 
-- C (1 ,1 )  I I ++ 

[ ( 2 , l )  1 I ++ [ (2 ,2 )  I I ++ 

as we argued above. Another example contains a test: 

[ m*m I m <- [ I  . . 101 , m*m<50 I 
[ 1*1 1 1*1<50 ] ++ [ 2*2 1 2*2<50 I ++ . . . 
[ 7*7 1 7*7<50 ] ++ [ 8*8 1 8*8<50 1 ++ . . . 

1-. [ 1 I True ] ++ [ 4 1 True 1 ++ . . . 
[ 49 1 True ] ++ [ 64 1 F a l s e  1 ++ . . . 

-- [ l , 4 ,  . . .  491 

We now look at two longer examples, the solutions for which are aided by the list 
conlprehension style. 
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( Example 1 

List permutations 

A permutation of a list is a list with the same elements in a different order. The perms 
function returns a list of all permutations of a list. 

perms : : Eq a => [a] -> [[a] 1 

The empty list has one permutation, itself. If xs is not empty, a permutation is given 
by picking an element x from xs and putting x at the front of a permutation of the 
remainder xs\\ Cxl . (The operation '\\ ' returns the difference of two lists: xs\\ys is 
the list xs with each element of ys removed, if it is present.) The definition is therefore 

perms [I = CCl I 
perms xs = C x:ps I x <- xs , ps <- perms (xs\\Cxl) I 
Example evaluations give, for a one-element list, 

perms C21 - [x: ps l x <- C21 , ps <- perms [I 1 
[x:psI x < -  C21 , ps <- C[11 1 

* [2:psl ps <- [Cll I - [2:[1 1 1  - [[211 

for a two-element list, 

perms C2,31 
--. [ x:ps I x <- C2,31 , ps <- perms ( [2,3l\\ Cxl) 1 - [ 2:ps I ps <- perms [31 ] ++ [ 3:ps I ps <- perms C21 I 
-- [ 2:[31 I ++ C 3:[21 I - C2,31 , [3,21 I 
and finally for a three-elenlent list, 

perms C1,2,3] 
[ x:ps I x <- C1,2,31 , ps <- perms([l,2,3]\\[xl) I 

2-. [ 1:ps I ps <- perms C2,311 ++...++ C 3:ps I ps <- perms [1,2]] 
-- C 1:ps I ps<-CC2,31, c3,2111 ++. . .++ C 3:ps I ps<-CC1,21, C2,1111 
-- ~~1,2,3~,~1,3,21,~2,1,31,[2,3,11,~3,1,21,~3,2,111 

There is another algorithm for permutations: in this, a permutation of a list (x:xs) is 
given by forming a permutation of xs, and by inserting x into this soniewhcre. The 
possible insertion points are given by finding all the possible splits of the list into two 
halves. 

perm : : [a] -> C [a] I 

perm [I = [[I1 
perm (x:xs) = [ ps++[xl ++qs I rs <- perm xs , 

(ps,qs) <- splits rs 1 
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We get the list of all possible splits of a list xs after seeing that on splitting (y :ys), 
we either split at the front of (y :ys). or somewhere inside ys, as givcn by a split of 

YS. 

splits : : [a] -> [ (  [a] , [a] ) 1 

Before moving on, observc that the type of perms requires that a must be in the class 
Eq. This is needed for the list difference operator \\ to be defined over the type [a]. 

There is no such restriction on the type of perm, which uses a different method for 
calculating the permutations. 

Vectors and matrices 

In this section we give one model for veclors and matrices of real nutnbers; others exist. 
and are suitable for different purposes. 

A vector is a sequence of real numbers, [2.1,3.0,4.01, say. 

type Vector = [Float] 

The xalarproduct of two vectors (assumed to be the same length) is given by mitltiplying 
together corre5ponding elements and taking the total of the rewlts. 

As a first attempt we might write 

but this gives 

mu1 [2.0,3.1] [4.1,5.0] - sum [8.2,10.0,12.71,15.51 
u 46.41 

since all combinations of pairs from the lists are taken. In order to multiply together 
corresponding pairs, we first zip the lists together: 

scalarProduct : :  Vector -> Vector -> Float 
scalarProduct xs ys = sum [ x*y I (x,y) <- zip xs ys 1 

and a calculation shows that this gives the required result. (It is also possible to use 
zipwith to detine scalarProduct.) A matrix like 

can be thought of as a list of rows or a list of columns; we choose a list of rows here. 
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type Matrix = [Vector] 

The example matrix is 

Two matrices M and P are multiplied by taking the scalar products of rows of M with 
columns of P. 

We therefore define 

matrixProduct : :  Matrix -> Matrix -> Matrix 
matrixproduct m p 

= 1 CscalarProduct r c I c <- columns p] I r <- m 1 

where the function columns gives the representation of a matrix as a list of columns. 

columns : :  Matrix -> Matrix 

columns y = C C z ! ! j  I z <- y 1 I j <- [O . .  s] I 
where 
s = length (head y)-1 

The expression [ z ! ! j I z <- y 1 picks the j th element from cach row z in y: [hi\ 
is exactly the j th column of y. length (head y) is the length of a row in y. and so 
the indices j will bc in the range 0 to s = length (head y)-1. Another variant of 
the columns function is transpose which is in the library List .hs. 

Refutable patterns in generators 

Some patterns are refutable, meaning that an attempt to  pattern-match against them 
may fail. If a refutable pattern is used on the left-hand side of an '<-', its effect is to 
filter from the list only the elcinents matching the pattern. For example, 

C x I (x:xs) <- CC1,[2I,~l,C4,511 1 --- C2,41 

The rules for calculation with generators containing a refutable pattern on their Icft-hand 
side are similar to those given above, except that before performing the substitution for 
the pattern. the list is filtered for the elements which match the pattern. The details are 
left as an exercise. 

( Exercises \r 

17.1 Give a calculation of the expression 
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17.2 Using the list comprehension notation, define the Functions 

s u b l i s t s  ,subsequences : : [a] -> [[a] 1 

which return all the sublists and subsequences of a list. A sublist is obtained 
by omitting some of the elements of a list; a subsequence is a continuous block 
from a list. For instance, both [2,41 and [3,41 are sublists of [2,3,41, but 
only [3,4] is a subsequence. 

17.3 Give calculations of the expressions 

perm C21 
perm [2,31 
perm [1,2,31 

and of the matrix multiplication 

17.4 Give a definition of scalarProduct  using zipwith. 

17.5 Define functions to calculate the determinant of a square matrix and, if this is 
non-zero, to invert the matrix. 

17.6 The calculation rules for list comprehensions can be re-stated for the two cases 
[I and (x: xs),  instead of for the arbitrary list [a1 , . . . ,an].  Give these rules 
by completing the equations 

17.7 Give the precise rules for calculating with a generator containing a refutable 
pattern, like (x:xs) <- 1Exp. You might need to define auxiliary functions to 
do this. 

17.8 List coniprehensions can be translated into expressions involving map, f i l t e r  
and concat by the following equations. 

[ x I x<-xs I = xs 
[ f x l x<-xs 1 = map f xs  
C e 1 x<-xs , p x , . . .  1 = [ e 1 x < - f i l t e r  p xs , . . .  I 
[ e I x<-xs , y<-ys , . . 1 = concat [ [ely<-ys, . . I  1 x<-xsl 

Translate the expressions 

[ m*m 1 m <- [ I  . .  101 1 
[ m*m I m <- [I . . 101 , m*m<50 ] 
[ x+y I x <- [I . .  41 , y <- [2 . .  41 , x>y 1 
[ x :p  I x <- xs , p <- perms (xs\ \ [xl)  ] 

using these equations; you will need to define some auxiliary functions as a part 
of your translation. 
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(174) Data-directed programming 

The data structures manipulated by a program will be generated on demand. and 
indeed may never appear explicitly. This makes possible n style of programming, 
data-directed programming, in which complex data structures are constructed and 
manipulated. Take the example of finding the sum of fourth powers of numbers from 
1 to n. A data-directed solution is to 

build the list of numbers 11 . . nl ; 

take the power of each number, giving [ I ,  16, . . . ,n41, and 

find the sum of this list. 

As a program, we have 

sumFourthPowers n = sum (map (-4) [I . . n] ) 

How does the calculation proceed? 

sumFourthPowers n 
sum (map (-4) [ I  . . n l )  

2-t sum (map (-4)  (1:[2 . .  n l ) )  - sum ( ( -4)  I : map (-4) [2 . .  n]) 
-- (1-4) + sum (map (-4) [2 . . n]) - 1 + sum (map (-4) [2 . . n]) 
'-4 . . .  - 1 + (16 + sum (map (-4) [3 . . n]) )  
^v) . . .  - 1 + (16 + (81 + . . .  + n4))  

As can be seen, none of the intermediate lists is created in this calculation. As soon 
as the head of the list is crcated, its fourth power is taken, and it becomes n part of the 
sum which produces the final result. 

Examples 

1. List minimum 

A more striking example is given by the problem of finding the minimum of a list of 
numbers. One solution is to sort the list, and take its head! This would be ridiculous 
if the whole list were sorted in the process, but, in fact we have, using the definition of 
insertion sort from Chapter 7, 

iSo r t  [8,6,1,7,51 - i n s  8 ( i n s  6 ( in s  1 ( in s  7 ( in s  5 [I)))) 
2-t i n s  8 ( i n s  6 ( i n s  1 ( i n s  7 C51))) - i n s  8 ( i n s  6 ( i n s  1 (5 : i n s ?  [ I ) ) )  - i n s  8 ( in s  6 (1 : (5 : i n s  7 11 1)) 
2-t i n s 8  ( 1 :  i n s 6  ( 5 :  i n s 7  [ I ) )  

1 : i n s  8 ( i n s  6 (5  : i n s  7 [I ) )  
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As can be seen from the underlined parts of the calculation, each application of ins 
calculates the minimum of a largcr part of the list, since the head of the result of insis 
given in a single step. The head of the whole list is determined in this case without us 
working out thc value of the tail, and this means that we have a sensible algorithm for 
minimum given by (head . iSort). 

2. Routes through a graph 

A graph can be seen as an object of type Relation a, as defined in Section 16.9. How 
can we find a route from one point in a graph to another'? For example, in the graph 

a route from 1 to 4 is the list [I, 2,4]. 
We solve a slightly different problem: tind the list of all routes from x to y; our 

original problem is solved by taking the head of this list. Note that as a list is returned. 
the algorithm allows for the possibility of there being no route from x to y - the empty 
list of routes is the answer in such a case. This method, which is applicable in many 
different situations, is often called the list of successes technique: instead of returning 
one result, or an error if there is none, we return a list; the error case is signalled by the 
empty list. The method also allows for nlultiple results to be returned, as we shall see. 

How do we solve the new problem'? For the present we assume that the graph is 
acyclic: there is no circular path from any node back to itself. 

The only route from x to x is [XI. 
A route from x to y will start with a step to one of x's neighbours, z say. The 
remainder will be a path from z to y. 

We therefore look for all paths from x to y going through z, for each neighbour z of x. 

routes : :  Ord a => Relation a -> a -> a -> [[all 
routes re1 x y 

I x==y = [[XI] 
I otherwise = [ x:r 1 z <- nbhrs re1 x , 

r <- routes re1 z y I 

The nbhrs function is defined by 

nbhrs : :  Ord a => Relation a -> a -> [a] 
nbhrs re1 x = flatten (image re1 x) 

where flatten turns a set into a list. Now consider the example, where we write 
routes' for routes graphEx and nbhrs' for nbhrs graphEx, to make the calcula- 
tion more readable: 
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routes' 1 4 
2-, [ 1:r 1 z <- nbhrs' 1 , r <- routes' z 4 ] 
-- [ l:r I z <- [2,3] , r <- routes' z 4 1 
-- [ 1:r I r <- routes' 2 4 ] ++ 

[ 1:r I r <- routes' 3 4 1 (1) - [ l:r I r <- [ 2:s I w <- nbhrs' 2 , s <- routes' w 4 ]I++ ... 
-- [ 1:r 1 r <- [2:s I w <- [41 , s <- routes' w 4 1  I ++ . . .  
1-1 [ 1:r I r <- [ 2:s 1 s <- routesJ 4 4 1 1 ++ . . .  ($1 
--t [ 1:r I r <- [ 2:s I s <- CC411 1 1 ++ . . .  
2-, [ l:r I r <- C [2,41 I I ++ ... 
1-1 [C1,2,411 ++ . . .  

The head of the list is given by exploring only the first neighbour of 1, namely 2, and 
its first neighbour, 4. In this case the search for a route leads directly to a result. This 
is not always so. Take the example of 

routes1 1 6 = . . .  
--t [ l:r 1 r <- routes' 2 6 ] ++ 

[ 1:r 1 r <- routes7 3 6 1 
-W . . .  - [ 1:r I r <- [ 2:s I s <- routes' 4 6 1 I ++ 

[ 1:r I r <- routes' 3 6 1 ($1 

Corresponding points in the calculations are marked by ( t )  and ($1. The search for 
routes from 4 to 6 will fail, though, as 4 has no neighbours - we therefore have 

The effect of this algorithm is to backtrack when a search has failed: there is no route 
from 1 to 6 via 2, so the other possibility of going through 3 is explored. This is done 
only when the first possibility is exhausted, however, so lazy evaluation ensures that 
this search through 'all' the paths turns out to be an efficient method of finding a single 
path. 

We assumed at the start of this development that the graph was acyclic, so that we 
have no chance of a path looping back on itself, and so of a search going into a loop. 
We can make a simple addition to the program to make sure that only paths without 
cycles are explored, and so that the program will work for an arbitrary graph. We add 
a list argument for the points not to be visited (again), and so have 

routed : : Ord a => Relation a -> a -> a -> [a] -> [[a]] 
routesC re1 x y avoid 

I x==y = [Cxll 
1 otherwise = [ x:r 1 z <- nbhrs re1 x \\ avoid , 

r <- routesC re1 z y (x:avoid) 1 

Two changes are made in the recursive case. 
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In looking for neighbours of x we look only for those which are not in  the list avoid: 

in looking for routes from z to y, we exclude visiting both the elements of avoid 
and the node x itself. 

A search for a route from x to y in re1 is given by routesC re1 x y [ I .  

17.9 Defining graphEx2 to be 

try calculating the effect of the original definition on 

routes graphEx 1 4 

Repeat the calculation with the revised definition which follows: 

routes re1 x y 
1 x==y = CCxl1 
I otherwise = [ x:r I z <- nbhrs r e l x  , 

r <- routes re1 z y , 
not (elem x r) I 

and explain why this definition is not suitable for use on cyclic graphs. Finally, 
give a calculation of 

Case study: parsing expressions 

We have already seen the definition of Expr, the type of arithmetic expressions. in 
Section 14.2 and in a revised version given on page 255: 

data Expr = Lit Int I Var Var I Op Ops Expr Expr 
data Ops = Add I Sub I Mu1 I Div I Mod 

and showed there how we could calculate the results of these cxpressions using the 
function eval. Chapter 16 began with a discussion of how to represent the values 
held in the variables using the abstract data type Store. Using these components. we 
can build a calculator for simple arithmetical expressions, but the input is unacceptably 
crude, as we have to enter members of the Expr type, so that to add 2 and 3, we are 
forced to type 

Op Add (Lit 2) (Lit 3) (exp) 
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What we need to make the input reasonable is a function which performs the reverse of 
show: i t  will take the text l1 (2+3) " and return the expression (exp). 

Constructing a parser for a type like Expr gives a read function which essentially 
gives the functionality of the Read class, introduced in Section 12.4 above. Note, 
however, that the derived definition of read for Expr will parse strings of the form 
"Op Add ( L i t  2) (L i t  3) " rather than the more compact form which we read with 
our parser. 

The type of parsers: Parse 

In building a library of parsing functions, we first have to establish the type we shall 
use to represent parsers. The problem of parsing is to take a list of objects - of type a 
and characters in our example " (2+3) " -and from it to extract an object of some other 
type, b, in this case Expr. As a first attempt, we might define the type of parsers thus: 

type Parse1 a b = [a] -> b 

Suppose that bracket  and number are the parsers of this type which recognize brackets 
and numbers then we have 

bracket  " (xyz" -A ' ( '  
number "234" -.A 2 or 23 or 234? 
bracket "234" no result? 

The problem evident here is that a parser can return more than one result - as in number 
"234" - or none at all, as seen in the final case. Instead of the original type, we suggest 

type Parse2 a b = [a] -> [b] 

where a list of results is returned. In our examples, 

bracket  "(xyz" --+ [' ( ' I  
number "234" --+ [2 , 23 , 2341 
bracket  "234" --p [I 

In this case an empty list signals failure to find what was sought, while multiple results 
show that more than one successful parse was possible. We are using the 'list of 
successes' technique again, in fact. 

Another problem prcsents itself. What if we look for a bracket.fillowed by a number, 
which we have to do  in parsing our expressions'? We need to know the part of the input 
which remains after the successful parse. Hence we define 

type Parse a b = la] -> [ (b ,  [a ] ) ]  

and our example functions will give 

bracket "(xyz" - [(' ( '  , "xyz")] 
number "234" -A [ (2 ,"34")  , (23,"411) , (234,"11)1 
bracket  "234" - [I 
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Each element in the output list represents a successful parse. In number "234" we 
see three successful parses, each recognizing a number. In the first, the number 2 is 
recognized, leaving "34" unexamined, for instance. 

The type Reads b, which appears in the standard prelude and is used in defining 
the Read class, is a special case of the type Parse a b in which [a] is replaced by 
Str ing ,  that is, a  is replaced by Char. 

Some basic parsers 

Now we have established the type we shall use, we can begin to write some parsers. 
These and the parser-combining functions are illustrated in Figure 17.1 ; we go through 
the definitions now. 

The first is a parser which always fails, so accepts nothing. There are no entries i n  
its output list. 

none : : Parse a b 
none inp  = [I 

On the other hand, we can succeed immediately, without reading any input. The value 
recogniaed is a parameter of the function. 

succeed : : b -> Parse  a  b 
succeed v a l  inp  = [ (va l , i np ) ]  

More useful is a parser to recognize a single object or token, t, say. We define 

token : :  Eq a => a -> Parse a a 
token t (x:xs) 

I t = =  X = C(t ,xs) l  

I otherwise = [I 
token t [I = [I 
More generally, we can recogni~e (or spot )  objects with a particular property, as 
represented by a Boolean-valued function. 

spot  : : ( a  -> Bool) -> Parse a a 
spot  p (x:xs) 

I P X  = C(x,xs>l 
I otherwise = [I 

spot p [I = [I 

These parsers allow us to recognize single characters like a left bracket, or a single 
digit, 

bracket  = token ' ( '  
d i g  = spot  i sD ig i t  

and indeed. we can detine token from spot:  

token t = spot  (== t )  

If we are to build parsers for complex structures like expressions we will need to be able 
to combine these simple parsers into more complicated ones to, for instance, recognize 
numbers consisting of lists of digits. 
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i n f i x r  5 >*> 

type  Parse  a b = [a1 -> [ (b ,  [a])]  

none : :  Parse  a b 
none inp  = [I 

succeed : :  b -> Parse  a b 
succeed v a l  i n p  = [ ( v a l ,  inp)]  

token : :  Eq a => a -> Parse  a a 
token t = spo t  ( = = t )  

spo t  : : ( a  -> Bool) -> Parse  a a 
spo t  p (x:xs)  

I P X  = C(x,xs>l 
I otherwise  = [I 

spot  p [I = [I 

a l t  : :  Parse  a b -> Parse  a b -> Parse  a b 
a l t  p l  p2 inp  = p l  inp  ++ p2 i n p  

(>*>) : :  Parse  a b -> Parse  a c -> Parse  a ( b , c )  
(>*>I p l  p2 i n p  

= [ ( ( y , ~ )  ,re11121 I (y,rernl) <- p l  i n p  , (z,rem2) <- p2 remi 1 

b u i l d  : : Parse  a b -> (b  -> c)  -> Parse  a c 
b u i l d  p f i n p  = [ (f x,rem) I (x,rern) <- p inp  1 

l i s t  : :  Parse  a b -> Parse  a [bl 
list p = (succeed [ I )  ' a l t '  

( (P  >*> l ist  p)  ' b u i l d '  (uncurry (:))I 

Figure 17.1 The major parsing functions. 

Combining parsers 

Here we build a library of higher-order polymorphic functions, which we then use lo 
give our parser for expressions. First we have to think about the ways in which parsers 
need to be combined. 

Looking at the expression cxamplc. an cxprcsqion is either a literal, or a variable or 
an operator expression. From parsers for the three sorts of expression, we want to build 
a single parser for expressions. For this we use a l t  

a l t  : :  Parse  a b -> Parse  a b -> P a r s e  a b 
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a l t  p l  p2 inp  = p l  i np  ++ p2 inp  

The parser combines the results of the parses given by parsers p l  and p2 into a single 
list, so a success in either is a success of the combination. For example, 

(bracket  ' a l t '  d ig)  "234" 
-- [I ++ [(2,"34")1 

the parse by bracket  fails, but that by d i g  succeeds, so the combined parser succeeds. 
For our second function, we look again at the expression example. In recognizingan 

operator expression we see a bracket then a number. How do we put parsers together 
so that the second is applied to the input that remains after the firqt has been applied? 

We make this function an operator, as we find that it is often used to combinea 
sequence of parsers, and an infix form with defined associativity is most convenient for 
this. 

i n f i x r  5 >*> 

(>*>) :: Parse a b -> Parse a c -> Parse a (b , c )  

(>*>) p l  p2 inp  
= [ ( ( y , z )  ,rem2) I (y,reml) <- p l  i np  , (z,rem2) <- p2 reml 1 

The values (y,reml) run through the possible results of parsing inp  using pl. Foi 
each of these, we apply p2 to reml, which is the input which is unconsumed by pl  ir 
that particular case. The results of the two successful parses, y and z, are returned asr  
pair. 

As an example, assume that number recognizes non-empty sequences of digits, ant 

look at (number >*> bracket)  "24(". Applying number to the string "24(" give! 
two results, 

number "24(11 2-t [(2,"4(11) , (24 ," (" ) ]  

and so (y ,reml) runs through two cases 

(number >*> bracket)  " X ( "  - [ ( (y ,z ) , rem2)  I (y,reml) <- [ (2 ,"4(" )  , (24 ," (" )1  , 
(z,rem2) <- bracket  reml 1 - [ ( (2 , z )  ,rem2) I (z,rem2) <- bracket  "4 ( "  1 ++ 

[((24 , z )  ,rem2) I ( z  ,rem2) <- bracket  " ( "  1 

Now, bracket  "4("  -- [I, so  fails, giving - [I ++ [ ( (24 ,z)  ,rem2) I (z,rem2) <- bracket  " (I1 1 

and 

bracket  "(I1 - [('(' , " " > I  

which signals success, and finally gives 
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This shows we have one successful parse, in which we have recognized the number 24 
followed by the left bracket ' ( ' . 

Om final operation is to change the item returned by a parser, or to build somelhing 
from it. Consider the case of a parser, diglist, which returns a list of digits. Can we 
make it return the number which the list of digits represents? We apply conversion to 
the results, thus 

build : :  Parse a b -> (b -> c) -> Parse a c 

build p f inp = [ (f x,rem) I (x,rem) <- p inp 1 

so in an example, we have 

(digList 'build' digsToNum) "21a3" 
u [ (digsToNum x,rem) I (x,rem) <- digList 1121a3" 1 
-v, [ (digsToNwn x,rem) 1 (x,rem) <- [("2","la3"), (t1211f,"a3")11 
7- [ (digsToNum "2" , "la3") , (digsToNum "21" , "a3") 1 
-- C (2,"la3") , (21,"a3")1 

Using the three operations or combinators alt, >*> and build together with the 
primitives of the last section we will be able to define all the parsers we require. 

As an example, we show how to define a parser for a list of objects, when we are 
given a parser to recognize a single object. There are two sorts of list: 

A list can be empty, which will be recognized by the parser succeed [I. 
Any other list is non-empty, and consists of an object followed by a list ofobjects. A 
pair like this is recognized by p >*> list p; we then have to turn this pair (x,xs) 
into the list (x: xs), for which we use build, applied to the uncurried form of ( : 1, 
which takes its arguments as a pair, and thus converts (x ,xs) to (x: xs). 

list : : Parse a b -> Parse a [b] 

list p = (succeed [I) 'alt' 
((p >*> list p) 'build' (uncurry (:))I 

( Exercises 1 
1 7.1 0 Define the functions 

neList : :  Parse a b -> Parse a [b] 
optional : : Parse a b -> Parse a [bl 

so that neList p recognizes a non-empty list of the objects which are recognized 
by p, and optional p recognizes such an object optionally - it may recognize 
an object or succeed immediately. 



360 Lazy programming 

17.1 1 Define the function 

nTimes : :  I n t  -> Parse a b -> Parse a [b] 

so that nTimes n p recognizes n of the objects recognized by p. 

A parser for expressions 

Now we can describe our expressions and define the parser for them. Expressions haw 
three forms: 

Literals: 67, -89, where '-' is used for unary minus. 

Variables: ' a ' to ' z ' . 
Applications of the binary operations + , * , - , / , %, where %is used for mod, and / give 
integer division. Expressions are fully bracketed, if compound, thus: (23+ (34-45) 
and white space not permitted. 

The parser has three parts 

pa r se r  :: Parse Char Expr 
pa r se r  = l i t p a r s e  ' a l t '  varParse ' a l t '  opExpParse 

corresponding to the three sorts of expression. The simplest to define is 

varParse : : Parse Char Expr 
varParse = spot  isVar ' bu i ld '  Var 

isVar : :  Char -> Boo1 
isVar x = ( ' a '  <= x && x <= ' z ' )  

(Here the constructor V a r  is used as a function taking a character to the type Expr.) 
An operator expression will consist of two expressions joined by an operator, the 

whole construct between a matching pair of parentheses: 

opExpParse 
= (token ' ( '  >*> 

pa r se r  >*> 
spot  isOp >*> 
pa r se r  >*> 
token '1') 
' bu i ld '  makeExpr 

where the conversion function takes a nested sequence of pairs, like 

into the expression Op Add (L i t  23) (Var ' x '  1, thus 

makeExpr ( - , ( e l , ( b o p , ( e 2 , - 1 ) ) )  = Op (charToOp bop) e l  e2 
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Defining the functions isOp and charToOp is left as an exercise. 
Finally, we look at the case of literals. A number consists of a non-empty list of digits. 

with an optional '-' at the front. We therefore usc the functions from the exercises of 
the previous section to say 

litparse 
= ((optional (token '"'1) >*> 

(neList (spot isDigit)) 
'build' (charlistToExpr . uncurry (++)) 

Left undefined here is the function charlistToExpr which should convert a list of 
characters to a literal integer; this is an exercise for the reader. 

Exercises > 
17.1 2 Detine the functions 

isOp : :  Char -> Boo1 
charToOp : : Char -> Ups 

used in the parsing of expressions. 

17.1 3 Detine the function 

charlistToExpr : : [Char] -> Expr 

so that 

charlistToExpr "234" 1.. Lit 234 
charlistToExpr ""98" -..t Lit (-98) 

which is used in parsing literal expressions. 

17.14 A command to the calculator to assign the value of expr to the variable var is 
represented thus 

var : expr 

Give a parser for these commands. 

17.15 How would you change the parser for numbers if decimal fractions are to be 
allowed in addition to integers? 

17.16 How would you change the parser for variables if names longer than a single 
character are to be allowed? 

17.1 7 Explain how you would modify your parser so that the whitespace characters 
space and tab can be used in expressions, but would be ignored on parsing. (Hint: 
there is a simple pre-processor which does the trick!) 
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17.18 (Note: this exercise is for those familiar with Backus-Naur notation for gram. 
mars.) 

Expressions without bracketing and allowing the multiplicative expressions 
higher binding power are described by the grammar 

Expr 

Lexpr 
Mexpr 

::= I n t  I Var I (Expr Ops Expr) 1 
Lexpr Mop Mexpr I Mexpr Aop Expr 

: := I n t  I Var I (Expr Ops Expr) 
: := I n t  I Var 1 (Expr Ops Expr) I Lexpr Mop Mexpr 

Mop : : =  ' * '  1 ' / J  1 '1' 
AOP : := J + J  I J - J  

Ups : : = Mop I Aop 

Give a Haskell parser for this grammar. Discuss the associativity of the operata 
'-' in this grammar. 

The top-level parser 

The parser defined in the last section, pa r se r  is of type 

[Char] -> [ (Expr , [Char] 1 

yet what we need is to convert this to a function taking a string to the expression i~ 
represents. We therefore define the function 

topLevel : : Parse a b -> [a] -> b 
topLevel p i np  

= case r e s u l t s  of 
C] -> e r r o r  "parse unsuccessful" 
- -> head r e s u l t s  

where 
r e s u l t s  = [ found I (found, [ I )  <- p inp  1 

The parse p i np  is successful if the result contains at least one parse (the second case 
! 

1 ! 

in which all the input has been read (the test given by the pattern match to (found, [I )). 
If  this happens, the first value found is returned; otherwise we are in error. 

We can define the type of commands thus 

d a t a  Command = Eva1 Expr I Assign Var Expr I Null 

which are intended to cause 

the evaluation of the expression, 

the assignment of the value of the expression to the variable, and 

no effect. 

If the assignnient command takes the form va r :  expr, then it is not difficult to design 
a parser for this type, 

commandParse : :  Parse Char Command 

We will assume this has been built when we revisit the calculator example below. 
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Conclusions 

The type of parsers Parse a b with the functions 

none : :  Parse a b 
succeed : :  b -> Parse a b 
spot : :  (a -> Bool) -> Parse a a 
a l t  : :  Parse a b -> Parse a b -> Parse a b 
>*> : :  Parse a b -> Parse a c  -> Parse a (b ,c )  
build : :  Parse a b -> (b -> c )  -> Parse a c 
topLevel : : Parse a b -> [a] -> b 

allow us to construct so-called recursive descent parsers in a straightforward way. It is 
worth looking at the aspects of the language we have exploited. 

The type Parse a b  is represented by a function type, so that all the parser combi- 
nators are higher order functions. 

Because of polymorphism, we do not need to be specific about either the input or the 
output type of the parsers we build. 

In our example we have confined ourselves to inputs which are strings of characters. 
but they could have been tokens of any other type, if required: we might take the 
tokens to be words which are then parsed into sentences, for instance. 

More importantly in our example, we can return objects of any type using the 
same combinators, and in the example we returned lists and pairs as well as simple 
characters and expressions. 

Lazy evaluation plays a role here also. The possible parses we build are generated 
on drrncrntl as the alternatives are tested. The parsers will backtrack through the 
different options until a successful one is found. 

Building general libraries like this parser library is one of the major advantages of using 
a modern functional progra~nming language with the facilities mentioned above. From 
a toolkit like this it is possible to build a whole range of parsers and language processors 
which can form the front ends of systems of all sorts. 

We will return to a discussion of parsing in Chapter 18; note also that we could 
make the type of Parse a b into an abstract data type, along the lines discussed in 
Chapter 16. On the other hand, i t  would also be useful to leave the iniplementation 
open to extension by users, which is the way in which other Haskell libraries are made 
available. 

17.19 Detine a parser which recognizes strings representing Haskell lists of integers. 
like " C2,-3,451". 

17.20 Define a parser to recogniye simple sentences of English, with a subject, verb 
and object. You will need to provide some vocabulary, "cat ", "dog", and so 
on, and a parser to recognise a string. You will also need to define a function 
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tokenList : : Eq a => [a] -> Parse a [a] 

so that, for instance. 

tokenList "Hello" "Hello Sailor" --, [ ("Hello", " Sailor") 1 

17.21 Define the function 

spotwhile : : (a -> Bool) -> Parse a [a] 

whose parameter is afunction which tests elements of the input typc, and return! 
the longest initial part of the input, all of whose elements have the requirer 
property. For instance 

spotwhile digit "234abcl1 --t [ ("234","abcU) ] 
spotwhile digit "abc234" - [ ( [] , "abc234") 1 

(176) Infinite lists 

One important consequence of lazy evaluation is that it is possible for thc languagetl 
descrihe infinite structures. These would require an infinite amount of time to evaluat 
fully, but under lazy evaluation it is possible to compute with only portions of a dat 
structure rather than the whole object. Any recursive type will contain inlinite object> 
we concentrate on lists here, as these are by far the most widely used infinite structure! 

In this section we look at a variety of examples, starting with simple onc-line defi 
nitions and moving to an examination of random nu~nbcrs to be used in our simulatio 
case study. The siniplest examples of infinite lists are constant lists like 

ones = 1 : ones 

Evaluation of this in a Haskell system produces a list of ones, indefinitely. This cant le I 
interrupted in Hugs by typing Ctrl-C or in the Hugs Windows interface by hitting 
the 'Stop' button. In either case this produces the result 

We can sensibly evaluate functions applied to ones. If we define 

addFirstTwo : : [Int] -> Int 
addFirstTwo (x:y:zs) = x+y 

then applied to ones we have 

addFirstTwo ones - addFirstTwo (1:ones) 
rcri addFirstTwo - ( I :  1 :ones) 
?n 1+1 
- 2 
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Built into the system are the lists Cn . . 1,  [n,m . . I ,  so that 

We can define these ourselves: 

from : : I n t  -> [ In t ]  
from n = n  . from (n+l)  

fromStep : : I n t  -> I n t  -> [Int]  
fromStep n m = n : fromStep (n+m) m 

and an example evaluation gives 

These functions are also defined over any instance of Enum; details can be found i n  
Prelude. hs. 

List comprehensions can also define infinite lists. The list of [ill Pythagorean triples 
is given by selecting z in  [2 . . 1, and then selecting suitable values ofx  and y below 
that. 

The powers of an integer are given by 

powers : : I n t  -> [Int]  
powers n = [ n-x I x <- CO . . 1 I 

and this is a spccial case of the prelude function i t e r a t e ,  which gives the infinite list 

i t e r a t e  : : (a -> a) -> a -> [a] 
i t e r a t e  f  x = x : i t e r a t e  f  (f x) 

( Examples ) 

1. Generating prime numbers 

A positive integer greater than one is prime if it is divisible only by itself and one. The 
Sieve of Erurosthene.~ - an algorithm known for over two thousand years - works by 
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Figure 17.2 The Sieve of Eratosthenes. 

cancelling out all the multiples of numbers, once they are established as prime. Th 
primes are the only elements which remain in the list. The process is illustrated i 
Figure 17.2. 

We begin with the list of numbers starting at 2. The head is 2, and we remove all th 
multiples of 2 from the list. The head of the remainder of the list, 3, is prime, sinc 
it was not removed in the sieve by 2. We therefore sieve the remainder of the list ( 
multiples of 3, and repeat the process indefinitely. As a Haskell definition, we write 

primes : : CIntl 

primes = sieve [2 . . I 
sieve (x:xs) = x : sieve [ y I y <- xs , y 'mod' x > 01 

where we test whether x divides y by evaluating y 'mod' x; y is a multiple of x if th 
value is zero. Beginning the evaluation, we have 

primes 
?-. sieve [2 . . I - 2 :  sieve [ y  l y < -  [3 . .  

2 : sieve ( 3  : [ y I y <- - 2 : 3 : sieve [ z I z <- 
z 'mod' 

^vt . . .  
--. 2 : 3 : sieve [ z I z <- - . . .  

y 'mod' 2 > 01 
. ] , y 'mod' 2 > 01) 
y <- [4 . .  1 , y 'mod'2>0], 
01 

9.. . I  , z 'mod' 3 > 01 

--. 2 : 3 : sieve [5,7,11,. . .] 
^vt ... 

Can we use primes to test for a number being a prime? If we evaluate member prim 
7 we get the response True, whilemember primes 6 gives no answer. This is becau 
an infinite number of elements have to be checked before we conclude that 6 is not 
the list. The problem is that member cannot use the fact that primes is ordered. Tt 
we do in memberord. 

memberOrd : : Ord a => [a] -> a -> Boo1 
memberord (x:xs) n 
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I x<n = memberord xs n 
I x==n = True 
I otherwise = False 

The difference here is in the final case: if the head of the list (x) is greater than the 
element we seek (n), the element cannot be a member of the (ordered) list. Evaluating 
the test again, 

memberord [2,3,5,7,11, . . . I  6 - memberord [3,5,7,11,. . .I 6 
--t memberOrd [5,7,ll, . . .  1 6 
ny) memberOrd [7,ll, . . . I  6 
"..i False 

2. Generating random numbers 

Many computer systems require us to generate 'random' numbers, one after another. 
Our queuing simulation is a particular example upon which we focus here, after looking 
at the basics of the problem. 

No Haskell program can produce a truly random sequence; after all, we want to be able 
to predict the behaviour of our programs, and randomness is inherently unpredictable. 
What we can do, however, is generate a pseudo-random sequence of natural numbers, 
smaller than modulus. This linear congruential method works by starting with a 
seed, and then by getting the next element of the sequence from the previous value 
thus 

nextRand : :  Int -> Int 
nextRand n = (multiplier*n + increment) 'mod' modulus 

A (pseudo-)random sequence is given by iterating this function, 

randomsequence : :  Int -> [Intl 
randomsequence = iterate nextRand 

Given the values 

seed = 17489 
multiplier = 25173 
increment = 13849 
modulus = 65536 

the sequence produced by randomsequence seed begins 

The numbers in this sequence, which range from 0 to 65535, all occur with the same 
frequency. What are we to do if instead we want the numbers to come in the (integer) 
range a to b inclusive'? We need to scale the sequence, which is achieved by a map: 



368 Lazy programming 

scalesequence : : Int -> Int -> [Int] -> [Int] 
scalesequence s t 

= map scale 
where 
scale n = n 'div' denom + s 
range = t-s+l 
denorn = modulus 'div' range 

The original range of numbers 0 to modulus-1 is split into range blocks. each of thc 
same length. The number s is assigned to values in the first block, s+1 to values in t h ~  
next, and so on. 

In our simulation example, we want to generate for each arrival the length of servicc 
that person will need on being served. For illustration, we suppose that they range fron 
I to 6 minutes. but that they are supposed to happen with different probabilities. 

We need a function to turn such a distribution into a transformer of infinite lists. Oncl 
we have a function transforming individual values, we can map i t  along the list. 

We can represent a distribution of objects of type a by a list of type [(a,Float)] 
where we assume that the numeric entries add up to one. Our function transformin, 
individual values will be 

makeFunction : :  [(a,Float)] -> (Float -> a) 

Waiting time 
Probability 

so that numbers in the range 0 to 65535 are transformed into items of type a. The ide 

4 
0.15 

of the function is to give the following ranges to the entries for the list above. 

1 
0.2 

5 
0.1 

where m is used for modulus. The definition follows: 

2 
0.25 

6 
0.05 

makeFunction dist = makeFun dist 0.0 

3 
0.25 

. . . 

. . . 

. . .  

Waiting time 
Range start 
Range end 

makeFun ((ob,p) :dist) nLast rand 
I nNext >= rand && rand > nLast 

= ob 
1 otherwise 

= makeFun dist nNext rand 
where 
nNext = p*fromInt modulus + nLast 

The makeFun function has an extra argument, which carries the position in the range 0 
to modulus-1 reached so far in the search; it is initially zero. The f romInt function 
used here converts an Int to an equivalent Float. 

The transformation of a List of random numbers is given by 

1 
0 

m*0.2 

2 
(m*0.2)+1 
m*O -45 

3 
(m*0.45)+1 
rn*0.7 
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map (makeFunction dist) 

and the random distribution of waiting times we require begins thus 

map (makeFunction dist . fromInt) (randomsequence seed) 
= [2,5,1,4,3,1,2,5,4,2,2,2,1,3,2,5, . . .  

with 6 first appearing at the 35th position. 
Another random number generator is given in the library Random. hs. 

/ Note: Infinite list generators 

The list comprehension pythagTriples2, intended to produce the list of all 
Pythagorean triples, instead produces no output to the prompt. 

pythagTriples2 = 

= C (x,y,z> I x < -  C2 . .  I , 
y <- [x+l . . 1 , 
z <- [y+l . . 1 , 
x*x + y*y == z*z I 

The problem is in the order of choice of the elements. The first choice for x is 2, 
and for y is 3; given this, there are an infinite number of values to try for z: 4. 5 
and so on, indefinitely. We therefore never try any of the other choices for x or y. 
among which the triples lie. 

Two options present themselves. First we can redefine the solution, as in the 
original pythagTriples, so that it involves only one infinite list. Alternatively. 
we can try to write a function which returns all pairs of elements from two infinite 
lists: 

infiniteproduct : : [a] -> [b] -> [(a,b)l 

This is left as an exercise. Using such a function it is possible to adapt the definition 
of pythagTriples2 to make it give all the Pythagorean triples. 

\ 

/ Exercises 

17.22 Define the infinite lists of factorial and Fibonacci numbers, 

factorial = [l,I,2,6,24,l20,720, . . .  1 
fibonacci = [O,l,l,2,3,5,8,l3,2l, . . .  1 

17.23 Give a definition of the function 

factors : : Int -> [Intl 

which returns a list containing the factors of a positive integer. For instance, 
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factors 12 = [1,2,3,4,6,12] 

Using this function or otherwise, define the list of numbers whose only prin 
factors are 2, 3 and 5, the so-called Hamming numbers: 

hamming = [l,2,3,4,5,6,8,9,lO,l2,l5, . . .  

17.24 Define the function 

which calculates the running sums 

of a list 

17.25 Define the function inf initeproduct specified above, and use it to correct11 
definition of pythagTriples2. 

Why infinite lists? 

Haskell supports infinite lists and other infinite structures, and we saw in the last sectic 
that we could define a number of quite complicated lists, like the list of prime number 
and lists of random numbers. The question remains, though, of whether these listsa 
anything other than a curiosity. There are two arguments which show their irnporta~ 
in functional programming. 

First, an intinite version of a program can be more abstract, and so simpler 
write. Consider the problem of finding the nth prime number, using the Sieve I 

Eratosthenes. If we work with finite lists, we need to know in advance how large ali 
is needed to accommodate the first n primes; if we work with an infinite list. this isn 
necessary: only that part of the list which is needed will be generated as con~putatic 
proceeds. 

In a similar way. the random numbers given by randomsequence seed provided; 
unlimited resource: we can take as many random numbers from the list as we requir 
There needs to be no decision at the start of programming as to the size of sequea 
needed. (These arguments are rather like those for virtual memory in a computer. 
is often the case that predicting the memory use of a program is possible, but tiresom 
virtual memory makes this unnecessary. and so frees the programmer to proceed wi 
other tasks.) 

The second argument is of wider significance, and can be seen by re-examining tl 
way in which we generated random numbers. We generated an infinite list by mea 
of iterate, and we transformed the values using map; these operations are pictur 
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I X, y, z,... I I g x, g y, g 2, . . . I  
L - - - - - - - J  L - - - - - - - - - - J  

Figure 17.3 A generator and a transformer. 

Figure 17.4 Linking processes together. 

in  Figure 17.3 as a generator of and a transformer of lists of values. These values are 
shown in the dashed boxes. These components can then be linked together, giving more 
complex combinations, as in Figure 17.4. This approach modularizes the generation 
of values i n  a distribution in an interesting way. We have separated the generation of the 
values from their transformation, and this means we can change each part independently 
of the other. 

Once we have seen the view of infinite lists as the links between processes, other 
combinations suggest themselves, and in particular we can begin to write process-style 
programs which involve recursion. 

Among the exercises in the last section was the problem of finding the running sums 

of the list [ao , a 1  , a 2 , .  . . . Given the sum up to ak, say, we get the next sum by 
adding the next value in the input, ak+1. It is as if we j>ed the sum buck into the 
process to have the value ak+l  added. This is precisely the effect of the network of 
processes in Figure 17.5, where the values passing along the links are shown in the 
dotted boxes. 

The tirst value in the output o u t  is 0, and we get the remaining values by adding the 
next value in i L i s t  to the previous sum, appearing in the list o u t .  This is translated 
into Haskell as follows. The output of the function on input i L i s t  is out.  This is 
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I X, y, z,. . . I I X, x+y, x+y+z, . . .  I 

L - ~ - - - - -  .--- r - - - - - - '  

Figure 17.5 A process to compute the running sums of a list. 

itself got by adding 0 to the front of the output from the zipwith (+I, which itselfha 
inputs iList and out. In other words, 

listsums iList = out 
where 
out = 0 : zipwith (+) iList out 

where we recall that zipwith is defined by 

and the operator section (0: ) puts a zero on thc front of a list. We give a calculation 
of an example now. 

listsums [I . . ] - out 
?-r 0 : zipwith (+) [I . . ] out 
I- 0 : zipwith (+) [l . .  1 (0: . . .  ) (1) 

0 : 1+0 : zipwith (+) 12 . .  ] (1+0: . . .  ) (2) 
--. 0 : 1 : 2+1 : zipwith (+) [3 . . 1 (2+1:. . . )  --t . . . 
In making this calculation, we replace the occurrence of out in line (1) with the 
incomplete list (0: . . . ) .  In a similar way, we replace the tail of out by (1+0:. ..) 
in line (2). 

The definition of listsums is an example of the general function scanll'. which 
combines values using the function f ,  and whose first output is st. 
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s c a n l l '  : :  ( a  -> b -> b) -> b -> [a] -> [bl 
s c a n l l '  f s t  i L i s t  

= out  
where 
ou t  = st  : z i p w i t h  f i L i s t  o u t  

The function l i s t s u m s  is given by s c a n l l '  (+) 0, and a function which keeps 
a running sort of the initial parts of list is s o r t s  = s c a n l l '  i n s  [ I ,  where i n s  
inserts an element in the appropriate place in a sorted list. The list of factorial values, 
[ I ,  1 , 2 , 6 , .  . . I  is given by s c a n l l '  (*) 1 [l . . I ,  and taking this as a model, 
any primitive recursive function can be described in a similar way. 

The definition we give here is a minor variant of the prelude function s c a n l ,  but we 
choose to give the definition here because of its close correspondence to the process 
networks for running sums given in Figure 17.5. 

Exercises 

17.26 Give a definition of the list [ 2-n 1 n  <- [O . . ] ] using a process 
network based on s c a n l l  '. (Hint: you can take the example of factorial as 
a guide.) 

17.27 How would you select certain elements of an infinite list? For instance, how 
would you keep running sums of the positive numbers in a list of numbers'? 

17.28 How would you merge two infinite lists, assuming that they are sorted? How 
would you remove duplicates from the list which results? As an example, how 
would you merge the lists of powers of 2 and 3'? 

17.29 Give definitions of the lists of Fibonacci numbers [O , 1 , 1 , 2 , 3 , 5 ,  . . . I  and 
Hamming numbers [ I ,  2 , 3 , 4 , 5 , 6 , 8 , 9 ,  . . . I  (defined on page 370) using 
networks of processes. For the latter problem, you may find the merge function 
of the previous question useful. 

(17 Case study: simulation 

We are now in a position to put together the ingredients of the queue simulation covered 
i n  

Section 14.5, where we designed the algebraic types Inmess and Outmess, 

Section 16.5, where the abstract types Q u e u e s t a t e  and S e r v e r s t a t e  were intro- 
duced, and in 

Section 17.6, where we showed how to generate an infinite list of pseudo-random 
waiting times chosen according to a distribution over the times 1 to 6. 

As we slid in Section 14.5, our top-level simulation will be a function from a series of 
input messages to a series of output messages, so 
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dosimulation : : ServerState -> [Inmess] -> [Outmess] 

where the first parameter is the state of the server at the start of the simulation. In 
Section 16.5 we presented the function performing one step of the simulation, 

simulationstep : :  ServerState -> 
Inmess -> 
(ServerState, [Outmess] ) 

which takes the current server state, and the input message arriving at the current minute 
and returns the state after one minute's processing, paired with the list of the output I 
messages produced by the queues that minute (potentially every queue could releasea 
customer at the same instant. just as no customers might be released.) 

The output of the sinlulation will be given by the output messages generated i n  the 
first minute, and after those the results of a new simulation beginning with the updaled 
state: 

dosimulation servSt (im:messes) 
= outmesses ++ doSimulation servStNext messes 

where 
(servStNext , outmesses) = simulationstep servSt im 

How do we generate an input sequence? From Section 17.6 we have the sequence of 
times given by 

randomTimes 
= map (makeFunction dist . fromInt) (randomsequence seed) - [2 ,5 ,1 ,4 ,3 ,1 ,2 ,5 ,  . . .  

We are to have arrivals of one person per minute, so the input messages we generate 
are 

simulationInput 
= zipwith Yes [ I  . . 1 randomTimes - [ Y e s l 2 , Y e s 2 5 , Y e s 3 1 , Y e s 4 4 , Y e s 5 3 ,  . . .  

What are the outputs produced when we run the simulation on this input with four 
queues, by setting the constant numQueues to 4? The output begins 

dosimulation serverstart simulationInput 
--- [Discharge 1 0 2,  Discharge 3 0 1 ,  Discharge 6 0 1 ,  

Discharge 2 0 5, Discharge 5 0 3, Discharge 4 0 4, 
Discharge 7 2 2 ,  . . .  

The first six inputs are processed without delay, but the seventh requires a waiting time 
of 2 before being served. 

The infinite number of arrivals represented by simulationInput will obviously 
generate a corresponding infinite number of output messages. We can make a finite 
approximation by giving the input 
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simulationInput2 = take 50 simulationInput ++ noes 
noes = No : noes 

where after one arrival in each of the first 50 minutes. no further people arrive. Fifty 
output messages will be generated, and we define this list of outputs thus: 

take 50 (dosimulation serverstart simulationInput2) 

Experimenting 

We now have the facilities to begin experimenting with different data, such as the 
distribution and the number of queues. The total waiting time for a (finite) sequence of 
Outmess is given by 

totalwait : : [Outmess] -> Int 
totalwait = sum . map waitTime 

where 
waitTime (Discharge - w -1 = w 

For simulationInput2 the total waiting time is 29, going up to 287 with three queues 
and down to zero with five. We leave it to the reader to experiment with the round 
robin simulation outlined in the exercises of Section 16.5. 

A more substantial project is to model a set-up with a single queue feeding n number 
of bank clerks - one way to do this is to extend the serverstate with an extra queue 
which feeds into the individual queues: an element leaves the feeder queue when one 
of the small queues is empty. This should avoid the unnecessary waiting time we face 
when making the wrong choice of queue, and the simulation shows that waiting times 
are reduced by this strategy, though by less than we might expect if service times are 
short. 

j179) Proof revisited 

After summarizing the effect that lazy evaluation has on the types of Haskell. we 
examine the consequences for reasoning about programs. Taking lists as a representative 
example, we look at how we can prove properties of infinite lists, and of all lists. rather 
than simply the set of finite lists, which was the scope of the proofs we looked at in 
Chapters 8, 10 and 14. 

This section cannot give complete coverage of the issues of verification; we conclude 
with pointers to further reading. 

Undefinedness 

In nearly every programming language, it is possible to write a program which fails 
to terminate, and Haskell is no exception. We call the value of such programs the 
undefined value. as it gives no result to a computation. 

The simplest expression which gives an undefined result is 
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undef : : a 
undef = undef (undef . l)  

which gives a non-terminating or undefined value of every type, but of course we can 
write an undefined program without intending to, as in 

fak n = (n+l) * fak n 
where we have confused the use of n and n+l in attempting to define the factorial 
function. The value of f ak n will he the same as undef, as they are both non, 
terminating. 

We should remark that we are using the term 'undefined' in two different ways here 
The name undef is given a definition by (undef . I); the value that the definitior 
gives it is the undefined value, which represents the result of a calculation or evaluatior 
which fails to terminate (and therefore fails to define a result). 

The existence of these undefined values has an effect on the type of lists. What ifw 
define, for example, the list 

listl = 2:3:undef 

The list has a well-defined head, 2, and tail 3:undef. Similarly, the tail has a head 
3, but its tail is undefined. The type [Intl therefore contains partial lists like listl 
built from the undefined list, undef, parts of which are defined and parts of whicharl 
not. 

Of course, there are also undefined integers, so we also include in [Intl lists like 

list2 = undef: [2,3] 
list3 = undef:4:undef 

which contain undefined values, and might also be partial. Note that in list3 the fin 
occurrence of undef is at type Int while the second is at type [Intl. 

What happens when a function is applied to undef? We use the rules for calculatio 
we have seen already, so that the const function of the standard prelude satisfies 

const 17 undef - 17 

If the function applied to undef has to pattern match, then the result of the functio 
will be undef, since the pattern match has to look at the structure of undef, which wi 
never terminate. For instance, for the functions used in Chapter 8, 

sum undef --+ undef 
doubleAll undef - undef 

In writing proofs earlier in the book we were careful to state that in some cases the 
results hold only for defined values. 

An integer is defined if it is not equal to undef; a list is defined if it is a finite list of 
defined values; using this as a model it is not difficult to give a definition of the defined 
values of any algebraic type. 

A finite list as we have defined it may contain undefined values. Note that in some 
earlier proofs we stipulated that the results hold only for (finite) lists of defined values, 
that is for defined lists. 
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List induction revisited 

As we said above, since there is an undefined list, undef, in each list type. lists can be 
built up from this; there will therefore be two base cases in the induction principle. 

Proof by structural induction: fp-lists 

To prove the property P(xs) for all finite or partial lists (fp-lists) xs wc have to do 
three things: 

Hase cases Prove P ( [I ) and P (undef 1. 
Induction step Prove P (x : xs) assuming that P(xs) holds already. 

Among the results we proved by structural induction in Chapter 8 were the equations 

sum (doubleAl1 xs) = 2 * sum xs (sum-double) 
xs ++ (ys ++ ZS) = (XS ++ ys) ++ zs (assoc++) 
reverse (xs ++ ys) = reverse ys ++ reverse xs (reverse++) 

for all finite lists xs, ys and 2s. For these results to hold for all fp-lists, we need to 
show that 

sum (doubleAll undef) = 2 * sum undef (sum-doub1e.u) 
undef ++ (ys ++ 2s) = (undef ++ ys) ++ zs (assoc++.u) 
reverse (undef ++ ys) = reverse ys ++ reverse undef (reverse++.u) 

as well as being sure that the induction step is valid for all fp-lists. Now, by (sum.u) and 
(doub1eAll.u) the equation (sum-doub1e.u) holds, and so (sum-double) holds 
for all fp-lists. In a similar way, we can show (assoc++.u). More interesting is 
(reverse++ .u) . Recall the detinition of reverse: 

reverse [I = [I 
reverse (x:xs) = reverse xs ++ [XI 

It is clear from this that since there is a pattern match on the parameter, undef as the 
first parameter will give an undef result, so 

reverse undef = undef 

Taking a defined list, like [2,3] for ys in (reverse++. u) gives 

reverse (undef ++ [2,31) 
= reverse undef 
= undef 

reverse [2,3] ++ reverse undef 
= [ 3 , 2 ]  ++ undef 

This is enough to show that (reverse++ .u) does not hold, and that we cannot infer 
that (reverse++) holds for all fp-lists. Indeed the example above shows exactly that 
(reverse++) is not valid. 
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Infinite lists 

Beside the fp-lists, there are infinite members of the list types. How can we pro\ 
properties of infinite lists? A hint is given by our discussion of printing the results~ 
evaluating an infinite list. In practice what happens is that we interrupt evaluation t 
hitting Ctrl-C after some period of time. We can think of what we see on the screc 
as an approximation to the infinite list. 

If what we see are the elements a0 , a1 , a2, . . . ,an, we can think of the approxim, 
tion being the list 

since we have no information about the list beyond the element an. 
More formally, we say that the partial lists 

undef, ag:undef, ao:al:undef, ao:al:a2:undef, . . .  
are approximations to the infinite list [a0 ,a1 ,a2, . . . ,an, . . . I .  

Two lists xs and ys are equal if all their approximants are equal, that is for all natur 
numbers n, take n xs = take n ys. (The take function gives the defined portic 
of the nth approximant, and i t  is enough to compare these parts.) A more usable versic 
of this principle applies to infinite lists only. 

Infinite list equality 

A list xs is infinite if for all natural numbers n, take n xs # take (n+l) xs. 
Two infinite lists xs and ys are equal if for all natural numbers n, xs! !n = ys! !n. 

p~ 

Example ) 

Two factorial lists 

Our example here is inspired by the process-based programs of Section 17.7. If fac  
the factorial function 

f ac : : Int -> Int 
fac 0 = 1 
fac m = m * fac (m-1) 
one way of defining the infinite list of factorials is 

f acMap = map f ac [O . . 1 ( f acMap . 

while a process-based solution is 

facs = 1 : zipwith (*) [I . . 1 f acs ( f  acs. 

Assuming these lists are infinite (which they clearly are), we have to prove for all natu 
numbers n that 

facMap! !n = facs! !n (f acMap . ! 
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Proof In our proof we will assume for all natural numbers n  the results 

(map f  x s ) !  !n  = f  (xs ! ! n) (map. ! ! ) 
(zipwith g xs ys)  ! !n  = g (xs!  !n)  (ys!  !n)  (zipwith.  ! ! ) 

which we discuss again later in this section. 
(f acMap . ! ! ) is proved by mathematical induction, that is we prove the result for 0  

outright, and we prove the result for a positive n  assuming the result for n-I. 

Base We start by proving the result at zero. Examining the left-hand side first, 

f  acMap ! ! 0 
= (map f a c  [O . .  1 ) ! ! 0  
= f a c  ([O . .  1 ! ! 0 )  
= f a c  0  
= 1 

The right-hand side is 

f ac s !  !O 
= (1 : zipwith (*) [ I  . . 1 f ac s )  ! !0  
= I  

by (f acMap. 1) 
by (map. ! ! ) 

bydefof  [O . .  I , ! !  
by ( f a c .  1) 

by (f a c s .  1) 
by defof ! ! 

thus establishing the base case. 

Induction In the induction case we have to prove (f acMap. ! ! ) using the induction 
hypothesis: 

f a c ~ a p !  ! (n-1) = f a c s !  ! (n-I) 

The left-hand side of (f acMap. ! ! ) is 

f  acMap ! ! n 
= (map f a c  [O . . I ) !  !n  
= f a c  ([O . .  I ! ! n )  
= f a c  n  
= n * f a c  (n-I) 

by (facMap. 1) 
by (map. ! ! ) 

bydefof  [O . .  I , ! !  
by ( fac .2)  

It is not hard to see that we have facMap ! ! (n-1) = f a c  (n-1) by a similar 
argument to the first three steps here and so, 

= n * (facMap! ! (n-1)) 

The right-hand side of (f acMap . ! ! ) is 

f a c s !  !n 
= (1 : zipwith (*) [ I  . . 1 f a c s ) !  !n  by (f acs  . 1) 
= (zipwith (*) [ I  . . I f a c s ) !  ! (n-I) by def of ! ! 
= (*) ( [ I  . . I ! ! (n - I ) )  ( f ac s !  ! (n - I ) )  by (zipwith. ! ! )  
= ( [ I  . .  I ! ! ( n - 1 ) )  * ( f ac s ! ! (n -1 ) )  by def of (*) 
= n * ( f ac s !  ! (n-1)) bydefof  [ I  . .  I , ! !  
= n * (facMap! ! (n-I))  by ( ~ Y P )  

The final step of this proof is given by the induction hypothew, and completes the 
proof of the induction step and the result itself. rn 
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Proofs for infinite lists 

When are results we prove for all fp-lists valid for all lists? If a result holds for a! 
fp-lists, then it holds for all approximurions to infinite lists. For some properties it i! 
enough to know the property for all approximations to know that it will be valid ford 
infinite lists as well. In particular, this is true for all equations. This means that. fa 
example, we can assert that for all lists xs, 

(map f . map g)  xs  = map (f .g) x s  

and therefore by the principle of extensionality for functions, 

map f . m a p g = m a p  ( f . g )  

Many other of the equations we proved initially for finite lists can be extended to proo 
for the fp-lists, and therefore to all lists. Some of these are given in the exercises whicl 
follow. 

Further reading 

The techniques we have given here provide a flavour of how to write proofs for infinit 
lists and inlinite data structures in general. We cannot give the breadth or depth of 
full presentation. but refer the reader to Paulson (1 987) for more details. An alternativ 
approach to proving the fktorial list example is given in 'Thompson ( 1999). which als 
gives a survey of proof in functional programming. 

Exercises 

17.30 Show that for all fp-lists ys and zs, 

undef ++ (ys ++ zs )  = (undef ++ ys) ++ z s  

to infer that ++ is associative over all lists. 

17.31 If  r ev  x s  is defined to be shunt x s  [I, as in Section 8.7, show that 

r ev  ( rev  undef) = undef (rev-rev. 1 

In Chapter 8 we proved that 

r ev  ( rev  xs)  = xs (rev-rev.? 

for all finite lists xs. 

Why can we not infer from (rev-rev . 1) and (rev-rev .2) that the equation 
r ev  ( rev  xs)  = xs holds for all fp-lists xs? 

17.32 Prove for all natural numbers m. n and functions f : : I n t  -> a that 

(map f [m . . I ) ! !n = f (m+n) 
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[Hint: you will need to choose the right variable for the induction proof.] 

17.33 Prove that the lists 

f acMap = map f ac [O . . ] 
f ac s  = 1 : zipwith (*) [I . . 1 f a c s  

are infinite. 

17.34 If we define indexing thus 

x :  0 = X 

( - :xs ) !  ! n  = xs!  ! (n-I) 
[] ! ! n  = e r r o r  "Indexing" 

show that for all functions f ,  fp-lists xs  and natural numbers n, 

(map f xs )  ! ! n  = f (xs !  !n) 

and therefore infer that the result is valid for all lists xs. State and prove a similar 
result for zipwith. 

17.35 Show that the following equations hold between functions. 

f i l t e r  p . map f = map f . f i l t e r  (p . f )  
f i l t e r  p . f i l t e r  q = f i l t e r  (q &&& p) 
concat . map (map f )  = map f . concat 

where the operator &&& is defined by 

[ Summary ) 
L a ~ y  evaluation of Haskell expressions means that we can write progranls in a different 
style. A data structure created within a program execution will only be created on 
demand, as we saw with the example of finding the sum of fourth powers. I n  finding 
routes through a graph we saw that we could explore just that part of the graph which is 
needed to reveal a path. In these and many more cases the advantage of lazy evaluation 
is to give progranls whose purpose is clear and whose execution is efficient. 

We re-examined the list comprehension notation, which makes many list processing 
programs easier to express: we saw this in the particular examples of route finding and 
parsing. 

A design principle exploited i n  this chapter involved the use of lazy lists: if a function 
can return multiple results it is possible to represent this as a list: using lazy evaluation, 
the multiple results will only be generated one-by-one, as they are required. Also, we 
are able to represent 'no result' by the empty list. [ I .  This 'list of successes' method 
is useful i n  a variety of contexts. 
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Exploiting this principle as well as higher-order functions, polymorphisnl and l i s ~  
comprehensions we gave a library of parsing functions, which we saw applied to the 
type of arithmetical expressions, Expr. This showed one of the strengths of modem 
functional programming languages, whose constructs are especially well suited to 
describing general toolkits of this sort. 

- - 

Rather than being simply a curiosity, this chapter has shown that we can exploit 
infinite lists for a variety of purposes. 

In giving an infinite list of prime or random numbers we provide an unlimited re. 
source: we do not have to know how much of the resource we need while constructing 
the program; this ahstruction makes programming simpler and clearer. 

Infinite lists provide a mechanism for process-based programming in a functional 
setting. 

The chapter concluded with a discussion of how proofs could be lifted to the partial 
and infinite elements of the list type: criteria were given in both cases and we gave 
examples and counter-examples in illustration. 
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18.1 Why is I10 an issue? 
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18.3 The do notation 

18.4 Iteration and recursion 

18.5 The calculator 

18.6 Further I10 

18.7 The do construct revisited 

18.8 Monads for functional programming 

18.9 Example: monadic computation over trees 

The programs we have written so far in this book have been self-contained. However, 
most larger-scale programs have some interaction with the 'world outside'. This can take 
many forms. 

A program, like the Hugs interpreter itself, can read from a terminal and write to a 
terminal. 

A mail system reads and writes from files as well as standard terminal channels. 

An operating system executes programs in parallel, as well as controlling devices like 
printers, CD-ROM readers and terminals. 

This chapter explores how the simplest kinds of programs, reading and writing to a 
terminal, can be developed in Haskell. The model we describe forms the foundation for 
more complex interactions like those in a mail system or an operating system. 
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We begin the chapter by discussing how in the past I10 has been a problem for the 
users of a functional language. The solution in Haskell i s  to introduce the types 10 a, 

which we can think of as programs that do some input/output before returning a value 
of type a. These programs include simple operations to read and write information, a 
well complex programs which are built from a number of 10 programs sequenced into 
one by means of the do construct. 

We show a number of examples of interactive programs, including an interactii 
version of the calculator case study, and also discuss some of the more general I10 
facilities in the standard prelude and libraries. 

The sequential nature of the 10 a types i s  not peculiar to I/O and in the second hall 
of the chapter we show how these types are simply one example of the more general 
phenomenon of a monad; other examples include side-effects, error-handling and non. 
determinacy. 

We argue that monads provide a powerful structuring mechanism for functional pro. 
grams incorporating these effects, as well as providing an interface between the func. 
tional and imperative worlds. We illustrate this versatility by showing that two substan, 
tially different programs over a tree will have the same top-level structure if they art 
programmed in a monadic style. 

a Why is  I/O an issue? 

A functional prograrn consists of  a number of definitions. such as 

v a l  : : Int 
v a l  = 42 

function : : Int -> Int 
function n = v a l  + n 

The effect uf thcxc' definitions is to associate a fixed value with each name: in the casl 
o f  v a l  the value is an integer and in  the case o f  function i t  i s  a function from integer 
to integers. How is an input or an output action to fit into this model'? 

One approach -taken in Standard ML (Milner rt al. 1997), for instance - i s  to includ 
operations like 

inputInt : :  Int 

whose effect is to read an integer from the input; the value read in becomes the valu 
given to inputInt. Each time inputInt is evaluated i t  wi l l  be given a new value, an d 
so i t  is not a fixed integer value as i t  ought to be according to our original model. 

I 
Allowing this operation into our language may not seem to cause too big a problem, 

but examining the example o f  

inputDiff = inputInt - inputInt (inputDiff) 

shows how i t  has two important consequences for our model o f  functional programming. 
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Suppose that the tirst item input is 4, and that the next is 3. Depending upon the 
order in which the arguments to '-' are evaluated, the value of inputDiff will be 
either 1 or -1. 

More seriously, (inputDif f .1) breaks the model of reasoning which we have used. 
We would hitherto have expected that subtracting a value from itself would have given 
a result of 0, but that is not the case here. 

The reason for this is precisely that the meaning of an expression is no longer 
determined by looking only at the meanings of its parts, since we cannot give a 
meaning to inputInt without knowing where it occurs in a program; as we saw in 
the previous point, the first and second occurrences of input Int in inputDif f will 
generally have different values. 

As the second point shows, if we take this approach then it will be substantially more 
difficult to understand the meaning of any program. This is because m y  definition in 
a program may be affected by the presence of the I10 operations. An example is the 
function 

funny : :  Int -> Int 
funny n = inputInt + n 

from whose definition we can see the dependence on 110, but potentially any function 
may be affected in a similar way. 

Because of this, YO proved to be a thorny issue for functional programmers for some 
considerable time, and there have been a number of attempts to find the right model for 
110 - indeed, earlier versions of Haskell included two of these. An illuminating history 
and overview of functional 110 is given in Gordon (1994). 

This chapter describes the monadic approach, which has proved to be a robust model 
that extends easily to other sorts of interaction with the 'world outside'. The basic idea 
of monadic I10 is to control how programs that perform 110 are built, and in particular 
to limit the way that the I10 operations affect functions in general. This is the topic of 
the next section. 

(1s The basics of inputloutput 

In thinking about inputloutput or UO it makes more sense to think of actions happen- 
ing in sequence. For instance, first some input might be read, and then on the basis of 
that some further input might be read, or output might be produced. 

Haskell provides the types 10 a of I/0 actions of type a or 110 programs of type 
a. An object belonging to I0 a is a program which will do some 110 and then return 
a value of type a. Built into Haskell are some primitive 110 programs, as well as a 
mechanism to sequence these 110 programs. 

One way of looking at the I0 a types is that they provide a simple imperative pro- 
gramming language for writing 110 programs on top of Haskell, without compromising 
the functional model of Haskell itself. 

The best way to understand how I0 a works is to look at some representative 
examples of objects in I0 a which come from the standard prelude. We then examine 
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how to put these components together using the do notation to form more complex U0 
programs. 

Reading input 

The operation which reads a line of text from the standard input does some 110 and 
returns a S t r i n g  which is the line just read. According to the explanation above, this 
should be an object of type 10 S t r ing ,  and indeed, the built-in function 

getLine : :  I0  S t r i n g  

reads a line from the standard input. In a similar way, 

ge tchar  :: I 0  Char 

will read a single character from the input. 

The one-element type 

Haskell contains the type 0, which contains one element only. This element is also 
written 0. A value of this type can convey no useful inforlnation and so the type isnot 
often used. However, it is useful in performing 10, as there are cases of 10 programs 
whose only significance is their 110 actions and not the results they return. Programs 
of that sort will have type 

I0  0 

and they will return the value 0 as their result. 

Writing Strings 

The operation of writing the string "Hello, World! " will be an object which performs 
some 110, but which has nothing of significance to pass back to the program. It is 
therefore of type 10 0. 

The general operation to print a text string will be a function which takes the strinf 
to be written, and gives back the 110 object which writes that string: 

pu tS t r  : :  S t r i n g  -> I0  () 

and using this we can write our 'hello, world' program. 

helloworld : :  I 0  () 
helloworld = pu tS t r  "Hello, World!" 

Using pu tS t r  we can define a function to write a line of output. 

putStrLn : : S t r i n g  -> I 0  () 
putStrLn = pu tS t r  . (++ " \nu)  

The effect of this is to add a newline to the end of its input before passing it to putsti-. 
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Writing values in general 

The Haskell prelude provides the class Show with the function 

show : :  Show a => a -> String 

which can be used to write values of many types. For example, we can define a general 
print function from the standard prelude thus 

print : :  Show a => a -> I 0  ()  

print = putStrLn . show 

Returning a value: return 

Suppose we want to write an 110 action which does no I10 but does return a value -we 
will see examples of this in due course. This is achieved by the built-in function 

return : :  a -> I 0  a 

The effect of I 0  x is to do no 110, but simply to return the result x. 

Running an I10 program 

We have written a simple 110 program, namely helloworld; how is it run'? I n  Hugs 
we can evaluate it at the prompt: 

Main> helloworld 
Hello, World! 
Main> . . . 
Strictly speaking, the main detinition of a Haskell program should be of type I 0  a for 
some a. In Hugs, if we ask to evaluate an expression e of type b then it is wrapped up 
as an object of type I 0  0 by applying the print function. 

Thiq completes our introduction to the basic 110 functions in the standard prelude as 
well as the method by which I 0  a programs are run. 

We now need to look at how programs are sequenced, and also how to use the values 
read in by means of input programs like getline; this is the topic of the next section. 

(18 The d o  notation 

The do notation is a flexible mechanism which supports two things: 

it is used to sequence I10 programs, and 

it is used to 'capture' the values returned by I0 actions and so to pass these values 
to actions which follow them in the program. 

Together these ideas make a do expression appear like a simple imperative program, 
containing a sequence of commands and assignments; although this analogy is not 
complete -we examine how it breaks down in the next section - it shows that the model 
of 110 given by the I 0  types is a familiar one, albeit in a different guise. 
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Sequencing 110 actions 

One purpose of the do construct is to sequence I/O actions and we show how i t  is usel 
through a series of examples. 

1. We begin by looking at the definition of putStrLn from the standard preludc 
The effect of putStrLn str is to do two things: first the string str is output, then 
newline. This is accomplished by 

putStrLn : : String -> I 0  0 
putStrLn str = do putStr str 

putStr "\n" 

Here we see the effect of do is to sequence a number of I0 actions into a single actio~ 
The syntax of do is governed by the offside rule, and do can take any number c 
arguments. We see an example of more arguments next. 

2. We can write an I/O program to print something four times. The first version1 
this is 

put4times : :  String -> I 0  () 

put4times str 
= do putStrLn str 

putStrLn str 
putStrLn str 
putStrLn str 

3. Rather than 'hard wiring7 the number of times to output the string, we can make 
this a parameter of the program, 

putNtimes : : Int -> String -> I0 () 
putNtimes n str 

= if n <= 1 
then putStrLn str 
else do putStrLn str 

putNtimes (n-1) str 

and using this we can give another definition of put4times, 

put4times = putNtimes 4 

4. We have only seen examples of output, but we can also make inputs a part of a 
sequence of actions. For instance, we can read two lines of input and then output the 
message "Two lines read. I' thus: 
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read2lines :: I0 () 
read2lines 

= do getLine 
getLine 
putStrLn "Two lines read." 

and by analogy with Example 3 it is not difficult to see that we could write an 110 
program which reads an arbitrary number of lines. 

Capturing the values read 

As was apparent in Section 18.1, it is necessary to he careful in the way that the results 
of input actions are handled. The operation inputInt : : Int was shown to be too 
powerful to fit into the functional model, but some mechanism to handle input values 
is required. This is the second purpose of the do notation; it is only possible t o  use the 
result of an input within a do expression, and this limitation prevents the 110 actions 
from 'contaminating' the whole program. 

The sequence of examples continues by examining this aspect of the do notation. 

( Examples ] 

5 .  The last example read two lines, but did nothing with the results of the getLine 
actions. How can we use these lines in the remainder of the 110 program'? As part of 
a do program we can name the results of I0 a actions. A program to read a line and 
then write that line is given by 

getNput : : I0 ()  

getNput = do line <- getLine 
putStrLn line 

where the 'line <-' names the result of the getline. 
If you are familiar with imperative programming you can think of this as like an 

assignment to a variable, as in 

line := getLine 

but you should be aware that there arc important differences between the names in 
a Haskell 110 program and the variables in an imperative program. The essential 
difference is that each 'var <-' creates a new variable var, and so the lang~~age 
pennits 'single assignment' rather than the 'updatable assignment' familiar from the 
vast majority of modern imperative languages; we will say more about this difference 
in Section 1 8.4. 

6. We are not forced simply to output the lines we have read, unchanged, so that we 
might define 
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reverse2lines : :  I0 ()  
reverse2lines 

= do linel <- getLine 
line2 <- getLine 
putStrLn (reverse line21 
putStrLn (reverse linel) 

In this example, we read two lines, and then write them in the opposite order, reversed 

Local definitions in a d o  expression 

The notation var <- getLine names the output of the getline, and so acts like 
definition. It is also possible to make local definitions within a do expression so tht 

we can revisit the last example, as follows. 

[ Example ) 

7. Example 6 can be redefined to contain local definitions of the reversed lines 

reverse2lines : : I0 () 
reverse2lines 

= do linel <- getLine 
line2 <- getLine 
let revl = reverse linel 
let rev2 = reverse line2 
putStrLn rev2 
putStrLn revl 

Reading values in general 

Haskell contains the class Read with the function 

read : :  Read a => String -> a 

which can be used to parse a string representing a value of a particular type into that 
value. 

Example 

8. As an example, suppose that we want to write an 110 program to read in an integer 
value. To read an integer from a line of input we start by saying 

do line <- getLine 

but then we need to sequence this with an I 10  action to return the line interpreted as 
an Int. We can convert the line to an integer by the expression 
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read l i n e  : :  I n t  

What we need is the I 0  I n t  action which returns this value - this is the purpose of 
re turn  introduced in the previous section. Our program to read an I n t  is therefore 

ge t In t  : : I0  I n t  
ge t In t  = do l i n e  <- getLine 

r e t u r n  (read l i n e  : :  I n t )  

Summary 

This section has shown that a do expression provides a context in which to do sequential 
programming. It is po9sible to program complicated 110 interactions, by sequencing 
simpler 110 programs. Moreover, the '<-' allows us to name the value returned by an 
action and then to use this named value in the remainder of the I10 program. It  is also 
possible to make these programs more readable by judicious use of l e t  definitions to 
name intermediate calculations. 

In the next section we look at how to write repetitive 110 programs, reading all the 
lines in the input, for example. We shall see that this can be done by defining a looping 
construct recursively. We also discuss the way in which '<-' behaves differently from 
the usual assignment operator. 

18.1 Write an I10 program which will read a line of input and test whether the input 
is a palindrome. The program should 'prompt' for its input and also output an 
appropriate message after testing. 

18.2 Write an 110 program which will read two integers, each on a separate line, and 
return their sum. The program should prompt for input and explain its output. 

18.3 Write an I10 program which will first read a positive integer, n  say. and then 
read n  integers and write their sum. The program should prompt appropriately 
for its inputs and explain its output. 

(la Iteration and recursion 

In this section we examine how to build 110 programs with a repetitive nature; this will 
involve us b~~ilding a general while-loop operation, as well as seeing the difference 
between variables and the names used in do expressions. 

A while loop 

Suppose that we want to repeat an I0  (1 action while a condition is true. The condition 
will depend upon the UO system, and so will be of type 
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An example of this, which is provided in the library module 10. hs, is a test for theend 
of input, 

This discussion means that our while-loop construct will have the type 

while : :  I0 Boo1 -> I0 () -> I0 () 

and the function itself is given by 

while test action 
= do res <- test 

if res then do action 
while test action 

else return 0 

which is a sequence of two I0  actions. Tn the first we perform the test, and its Boolea 
result is named res. The second action is conditional on the value of res; if resi 
True then the action performed is 

do action 
while test action 

This means that in the then case the effect is first to perform the action and then I 
repeat the loop. On the other hand, if the condition is False the effect of the progm 
should be to 'do nothing'. The null I10 action is 

return 0 

since i t  returns the single value of type 0 without performing any 110. 

Copying input to output 

Now we look at an example of the while loop in practice. If we want to copy 
to the output, line by line, we can write this as a while loop. Informally, 

the 

while -- not end of file 
-- read and write a line 

How to test for not being the end of file? We want to perform the test isEOF but to I 
return the negation of the result. This we do by writing 

do res <- isEOF 
return (not res) 

What action do we want to do if there is still input to be read? We read then write, as 
we saw earlier, 

do line <- getLine 
putStrLn line 
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Putting this together we have the program 

copyInputToOutput : : I0 () 

copyInputToOutput 
= while (do res <- isEOF 

return (not res)) 
(do line <- getLine 

putStrLn line) 

where i t  should be noted that the parentheses are necessary. 

An important example 

Suppose now that we want to copy lines o f  input until we hit a line which is empty. 
when we stop. A first attempt might be 

goUntilEmpty : :  I0 () 

goUntilEmpty 
= do line <- getLine 

while (return (line /= [I)) 
(do putStrLn line 

line <- getLine 
return 0) 

where the lines have been numbered to make discussion easier. The apparent effect ol' 

thi\ program is as follow\. At (1) a line is read, and named line: while this line is 
not empty -the test return (line /= [I ) at (2) - we output line at (3) and read 
another line into line at (4). 

The effect of this program is repeatedly to write out the jrst  line of the input; that 
is the line read in at (1) and used i n  (2) and (3). In (4) we create a new variable 
line and associate the value read with it, but this is not a re-assignment to the original 
variable. and so the test in (2) and the print in (3) still refer to the first line. It is i n  
this way that these variables differ from the variable\ of an imperative programming 
language: if we think of 

line <- getLine 

as an assignment line : = getLine then it is a sirzgle assignntctzt to a variable which 
cannot be updated: every occurrence of line <- . . . creates a new variable. In other 
words, the variables here do not change their values. 

How can we think of writing a correct program to this specification'! The key is to 
think recursively. 

goUntilEmpty : : I0 0 
goUntilEmpty 

= do line <- getLine 
if (line == [ I )  

then return () 

else (do putStrLn line 
goUntilEmpty) 
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sumInts 
= do n <- getInt 

if n==O 
then return 0 
else (do m <- sumInts 

return (n+m) ) 

Programming with actions 

The effect here is to get a line, ( I ) ,  and if that line is empty, (2). the 110 actionshd 
with the return 0 in (3) .  On the other hand, if the line is not empty it is outpurl 
(4). This is followed by the whole program being reinvoked, and when this is do 
the next line read is called line, and if that is not empty, (2). (4) and (5) are repeati 
for this new line. 

Adding a sequence of integers 

Now suppose we want to write an interactive program to sum integers supplied onepw 
line until zero is input. We will write an 110 program 

sumInts : :  I 0  Int 

which returns this sum. In writing the program there are two cases: if we read zem 
then the result must be zero; if not, we get the result by adding the number just read to 
the sum of the remaining lines, which is given by calling sumInts again. This gives 

where we use the getInt function defined earlier to read a single Int on a line ofits 
own. It is interesting with compare this with the recursion in 

sum [I = 0 
sum (n:ns) 

= n + sum ns 

or especially with a modified definition of sum 

sum C1 = 0 
sum (n:ns) 

= let m = sum ns 
in (n + m) 

We can also put the sumInts program inside a 'wrapper' which explains its purpose 
and prints the sum at the end. 

sumInteract : : I0 0 
sumInteract 

= do putStrLn "Enter integers one per line" 
putStrLn "These will be summed until zero is entered" 
sum <- sumInts 
putStr "The sum was " 
print sum 
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Exercises ] 
4 Write a program which repeatedly reads lines and tests whether they are palin- 

dromes until an empty line is read. The program should explain clearly to the 
user what input is expected and output is produced. 

18.5 Write a program which repeatedly reads integers (one per line) until finding 
a zero value and outputs a sorted version of the inputs read. Which sorting 
algorithm is most appropriate in such a case? 

18.6 Give a definition of the function 

the effect of which is to transform an interaction by applying the function to its 
result. You should define it using the do construct. 

18.7 Define the function 

repeat : : I0 Bool -> I0 () -> I0 (1 

so that repeat t e s t  oper has the effect of repeating oper until the condition 
t e s t  is True. 

18.8 Give a generalization of while in which the condition and the operation work 
over values of type a. Its new type is 

whileG : : (a -> I0 Bool) -> (a -> I0 a)  -> (a -> I0 a)  

18.9 Using the function whileG or otherwise, define an interaction which reads a 
number, n say, and then reads a further n numbers and finally returns their 
average. 

18.10 Modify your answer to the previous question so that if the end of file is reached 
before n numbers have been read, a message to that effect is printed. 

18.1 1 Define a function 

accumulate : : [I0 a] -> I0 [a] 

which performs a sequence of interactions and accumulates their result in a list. 
Also give a definition of the function 

sequence : : [I0 a] -> I0 0 

which performs the interactions in turn, but discards their results. Finally, show 
how you would sequence a series, passing values from one to the next: 

What will be the result on an empty list? 
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The calculator 

The ingredients of the calculator are contained in three places in the text. 

In Section 14.2 we saw the introduction of the algebraic type of expressions, Expr, 
which we subsequently revised in Section 17.5, giving 

d a t a  Expr = L i t  I n t  I Var Var I Op Ops Expr Expr 
da t a  Ops = Add I Sub 1 Mu1 1 Div I Mod 
type Var = Char 

We revise the evaluation of expressions after discussing the store below. 

In Chapter 16 we introduced the abstract type Store,  which we use to model the 
values of the variables currently held. The signature of the abstract data type is 

i n i t i a l  : :  Store  
value : :  Store  -> Var -> I n t  
update : :  Store  -> Var -> I n t  -> Store  

In Section 17.5 we looked at how to parse expressions and commands. 

d a t a  Command = Eval Expr I Assign Var Expr 1 Null 

and defined the ingredients of the function 

commLine : :  S t r i n g  -> Command 

which is used to parse each line of input into a Command. For instance, 

commLine "(3+x)" = (Eval (Op Add (L i t  3)  (Var ' x ' ) ) )  
commLine "x: (3+x)" = (Assign 'x '  (Op Add (L i t  3) (Var ' x ' ) ) )  
commLine " "  = Null 

Expressions are evaluated by 

eva l  :: Expr -> Store  -> I n t  

eva l  (L i t  n) st  = n 
eva l  (Var v) s t  = value st v 
eva l  (Op op e l  e2) st 

= opValue op v l  v2 
where 
v l  = eva l  e l  st 
v2 = eval  e2 st 
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where the opValue function of type Ops->Int->Int->Int interprets each operator. 
such as Add, as the corresponding function, like (+ I .  

What is the effect of a command? An expression should return the value of thc 
expression in the current store; an assignment will change the store, and a null comn~and 
will do nothing. We therefore define a function which returns both a value and a store, 

command : :  Command -> Store -> (Int,Store) 

command Null st = ( 0  , st) 
command (Eva1 e) st = (eval e st , st) 
command (Assign v e) st 

= (val , newst) 
where 
val = eval e st 
newst = update st v val 

A single step of the calculator will take a starting Store, and read an input line. evaluate 
the command in the line, print some output and finally return an updated Store. 

calcStep : :  Store -> I0 Store 

calcStep st 
= do line <- getLine 

let comm = commLine line 
(va1,newSt) = command comm st 

print val 
return newst 

In lines (1) and (2) of the definition of calcStep we see an example of the use of 
let within a do expression. Line (I), 

let comm = commLine line 

gives comm the value of parsing the line, and this is subsequently used in (2). 

(va1,newSt) = command comm st 

which sin~ultaneously givcs val and newst the value of the expression read and the 
new state. Note that the let extends over multiple lines, and that it is terminated by 
the symbol 'print'. In the lines that follow the let, the value val is printed and thc 
new state newst is returned as the overall result of the interaction. 

A sequence of calculator steps is given by 

calcsteps : :  Store -> I0 () 

calcsteps st 
= while notEOF 

(do newst <- calcStep st 
calcsteps newst) 



398 Programming with actions 

where the looping test notEOF is given by 

notEOF : :  I0 Boo1 
notEOF = do r e s  <- isEOF 

r e t u r n  (not r e s )  

and the main 110 program for the calculator is given by starting off calcSteps wi 
the i n i t i a l  store. 

rnaincalc : : I 0  () 
mainCalc = ca lcs teps  i n i t i a l  

In the exercises various extensions and modifications of the calculator program a 
discussed. 

18.12 How would you add initial and final messages to the output of the calculator: 

18.1 3 If the calculator is not given a valid command, then an error message will 
generated by the function toplevel ,  and evaluation stops. Discuss how yl 
would add an extra argument to topLevel to be used in the error case. so tt 
evaluation with the calculator does not halt. 

18.14 Discuss how you would have to modify the system to allow variables to ha 
arbitrarily long names, consisting of letters and numbers, starting with a lette 

18.1 5 How would you extend the calculator to deal with decimal floating-point numbc 
as well as integers? 

18.16 Discuss how you would modify the calculator so that it could read i n p u t  COI 

mands split over more than one line. You will need to decide how t h i s  sort 
split is signalled by the user - maybe by \ at the end of the line - and how 
modify the interaction program to accommodate this. Alternatively, you might 
let the user do this without signalling; can you modify the program to do that? 

18.1 7 How would you modify the parser so that 'white space' is permitted i n  the input 
commands, as in the example 

I t  x : (2\t+3) I 1  

which parses to the Command 

(Assign 'x' (Op Add (L i t  2) (Li t  3))) 

@ Further 110 

In this section we survey further features of Haskell 110. 
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File I/O 

So far we have seen that we can read from the terminal - the 'standard input' - and 
write to the screen - the 'standard output'. The Haskell 110 model also provides for 
reading from and writing and appending to files, by means of the functions 

readFile :: FilePath -> I0 String 
writeFile : :  FilePath -> String -> I0 (1 
appendFile : :  FilePath -> String -> I0 0 

where 

type FilePath = String 

and files are specified by the text strings appropriate to the implementation in question. 

Errors 

110 programscan raiseerrors. which belong to the system-dependent datatype IOError, 
The function 

ioError : :  IOError -> I0 a 

builds an I10 action which fails giving the appropriate error, and the program 

catch : :  I0 a -> (IOError -> I0 a) -> 10 a 

will catch an error raised by the first argument and handle it using the second argument. 
which gives a handler - that is an action of type I0 a - for each possible IOError. 
More details of error handling can be found in the documentation for the I10 library 
10. hs. 

Input and output as lazy lists 

An alternative view of 110 programs, popular in earlier lazy functional programming 
languages, was to see the input and output as Strings, that is as lists of characters. 
Under that model an 110 program is a function 

1istIOprog : :  String -> String 

This obviously makes sense in a 'batch' program, where all the input is read before any 
output is produced, but in fact it also works for interactive programs where input and 
output are interleaved, if the language is lazy. This is because in a lazy language we 
can begin to print the result of a computation - the output of the interactive program 
here -before the argument - the interactive input - is fully evaluated. As an example, 
repeatedly to reverse lines of input under this model one can write 

unlines . map reverse . lines 
The drawback of this approach is in scaling it up. It is often difficult to predict in 
advance the way in which the input and output are interleaved: often output comes 
after it is expected, and sonietimes even before; the I0 approach in Haskell avoids such 
problems. Nevertheless, support for this style is available, using 
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getcontents  : :  10 S t r ing  

a primitive to  get the contents of the standard input, and which is used in 

i n t e r a c t  : : (S t r ing  -> Str ing)  -> I 0  0 
i n t e r a c t  f = do s <- getcontents  

putSt r  (f s) 

The 10. hs library 

A more sophisticated library for manipulating files and their contents appears in IO.hs 
It is based on the principles introduced here, and is covered in  the Library documents. 
tion. 

f Exercises I 
18.18 Write file-handling versions of the programs goUntilEmpty and sumInts. 

18.19 Write lazy-list versions of thc programs goUntilEmpty and sumInts. 

18.20 [Harder] Write a lazy-list version of the calculator program. 

(Is The do construct revisited 

We have seen that the type 10 a comes with various functions, including 

r e tu rn  : :  a -> I 0  a 
putSt r  : : St r ing  -> I0  0 
getLine : :  I 0  S t r i n g  

but also items of the I0  a type can be sequenced using the do construct. In this sectio 
we look 'under the bonnet' to see how the do works, as this will lead to us seeing I0 a 
just one example of a general phenomenon. 

The key to understanding the do is the operation (>>=). which is often pronounce d 1 
'then', which sequences two operations, one after the other, passing the result of the 
first as a parameter to the second. 

What is the effect of this operation? It combines an 10 a  

with a function taking the result of this (of type a) into an 10 b, that is an object of 
type a -> I 0  b, 
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We can join them together, passing the result of the first as an argument to the second, 
thus: 

The result of putting them together i s  something which does some I10 before returning 
a value of type b: 

in other words, an object of type I0 b. 

How does this relate to the do notation? We look at an example by way of explanation. 
Consider what happens in the program 

addOneInt : : I0 () 
addOneInt 

= do line <- getLine 
putStrLn (show (1 + read line : :  Int)) 

The value returned by getLine is called line and then used in the subsequent inter- 
action. Using (>>=) we have to sequence the interaction with a function expecting an 
argument of type String, so we write 

addone Int 
= getLine >>= \line -> 
putStrLn (show (I  + read line : :  Int)) 

where recall that \x -> e is the function which takes the parameter x to result e. so 
here the parameter is called line, and used just as above. More complex examples are 
translated in a similar way. 

We will continue to use the do notation, but will note that it rests on the existence of 
a function (>>=I which does the work of sequencing I10 programs. 

( Exercise 1 
18.21 Repeat some of the earlier examples and exercises using the >>=operator instead 

of a do expression. 

@ Monads for functional programming 

As research and experience in functional programming have increased, certain styles of 
programming have shown themselvcs to be particularly elegant and powerful. Among 
these is the monadic style, which extends beyond 110 to cover a number of fields. This 
section contains an introductory discussion of the approach; further details of this and 
other advanced techniques can be found in Jeuring and Meijer (1 995). 
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As we have already seen, a characteristic of monads is that they make explicit& 
sequence i n  which operations take place. It is the do construct, which is itself basedon 
the combinator >>= which sequences the operations of a general monad m. 

When is such a sequencing necessary'? Consider the example of the numeric expression 

e - f  

As this is simply an expression, we can choose to evaluate the arguments to -, e and 
f ,  in either order, or indeed in parallel. Suppose, however, that the expressions e ad 
f cause some 110 to take place, or cause some store to be changed. Then we needto 
say in  which order the evaluation takes place, since different orders will give different 
results. A simple example. first discussed in Section 18.1, is 

If the input is 7 followed by 4, evaluation left-to-right gives 3, while right-to-left gives 
-3; parallel evaluation has an unpredictable effect! 

How do we achieve an explicit sequence'? The operation 

do e <- g e t I n t  
f <- g e t I n t  
r e t u r n  (e-f) 

clearly inputs the left-hand value before the right, where ge t  I n t  : : I0  In t  performs 
integer input. 

This sort of explicit sequencing is, as we said, a feature of many kinds of programming 
where side-effects accompany a computation. The novel feature of the monadic ap 
proach is that these side-effects can be incorporated into a pure functional programming 
language by means of monads. 

We should now say formally what a monad is. 

What is a monad? 

A monad is a family of types m a, based on a polymorphic type constructor m, wid 
functions r e tu rn ,  (>>=I ,  (>>I ,  and fai l :  

class Monad m where 
(>>=) : : m a  -> (a -> m b) -> m b  
r e t u r n  : : a -> m a  
(>>) : : m a  -> m b -> m b 

f a i l  : : S t r i n g  -> m a  

This is an example of a constructor class, which is like a type class, except that th 
things which belong to a constructor class are type constructors - that is function 
which build types from types - rather than types. Examples of type constructors ar 
'list', written [I in Haskell, and I0 as we have seen already. 

The definition of Monad also contains default declarations for >> and fail: 
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m >> k = m >>= \_  -> k 
fail s = error s 

From this definition it can be seen that >> acts like >>=, except that the value returned 
by the first argument is discarded rather than being passed to the second argument. 

In order properly to be a monad, the functions return and (>>=I and the value 
zero should have some simple properties. Informally we can state the requirements as 
follows. 

The operation return x should simply return the value x, without any additional 
computational effect, such as input or output in the case of the I0 monad. 

The sequencing given by >>= should be irrelevant of the way that expressions are 
bracketed. 

The value f a i l  s corresponds to a computation which fails, giving the error message 
s. 

The laws are much clearer when stated in terms of a derived operator, >a>. 
(>@>I : :  Monad m => (a -> m b) -> 

(b -> m c )  -> 
(a  -> m c )  

This operator generalizes function conlpositionl in that it composes objects 

to give 

Note also that return is of this shape, as its type is a  -> m a. 
Now we can state formally the rules that the operations of a monad should satisfy. 

First, return is an identity for the operator >@>: 

return >@> f  = f  
f >@> return = f 

and the operator >@> should be associative: 

The derived sequencing operator, >>, is also associative. 
Of course, there is no way that we can make the requirements (MI)-(M3) a part of 

the Haskell definition of Monad. 
We can also restate the rules in terms of do, since 

' In calegory theory, this operation is called Kleisli composition 
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The first two rules become 

do y <- r e t u r n  x = f x 

f Y 
do x <- m = m 

r e t u r n  x 

and the third is implicit in the fact that the do construct is associative. 

Some examples of monads 

We said earlier that we can think of a monad m a as representing some sort of compu 
tation, with elements of m a being 'computations' which perform actions of somesor 
before returning a value of type a. Here we look at a number of examples and explaii 
their computational interpretation. 

The identity monad 

The identity monad, which takes a type to itself, is the simplest example of a monad, 1 
with the definitions 

m > > = f  = f  m 
r e t u r n  = i d  

Under this interpretation, >@> becomes forward co~nposition of functions, >. >, which 
is indeed associative and has i d  as its identity. An undefined computation sequenced 
with any other computation will be undefined. 

Computationally, this monad represents the trivial state in which no actions are 
performed, and values are returned immediately. 

The inpu t/ou tput monad 

We have already seen the example of the 10 monad in Section 18.2. 

Other examples come from collections of objects. 

The list monad 

We can build a monad from lists 

ins tance  Monad [I where 
xs >>= f = concat (map f xs)  
r e t u r n  x = Cxl 
f a i l  s = [I 



Monads for functional programming 405 

The computational interpretation of the list monad is of non-deterministic computation: 
an element of [a] represents ull the results of a potentially non-deterministic compu- 
tation. In this case the r e t u r n  gives a single answer, while >>= applies the function 
f to every possible outcome in xs, and concatenates the results to give a single list of 
overall outcomes. The value f a i l  s corresponds to there being no result of the non- 
deterministic computation; a failure to give a result, in other words. 

The Maybe monad 

Another instance of a monad is given by the 'maybe' type, Maybe a, whose values are 
'just' members of a  or the single value Nothing - they maybe contain a value of type 
a: 

ins tance  Monad Maybe where 
( Jus t  x) >>= k = k x 
Nothing >>= k = Nothing 
r e t u r n  = Jus t  
f a i l  s = Nothing 

The computational interpretation here is of computations which might produce a result, 
but that might also produce an error; this was discussed at some length in Section 14.4. 

The parsing monad 

A fifth example is given by parsing, where we can show that Parse a  is a monad. To 
make a formal declaration of this we need to wrap it in a new da t a  constructor, SParse. 
whose inclusion clutters the definition somewhat. 

d a t a  SParse a  b = SParse (Parse a  b) 

ins tance  Monad (SParse a )  where 
r e t u r n  x = SParse (succeed x) 
f a i l  s = SParse none 
(SParse p r )  >>= f  

= SParse ( \ s t  -> concat [ sparse  (f x) r e s t  I ( x , r e s t )  <- p r  st 1) 

sparse  : :  SParse a b -> Parse a  b 

sparse  (SParse p r )  = p r  

The crux of the def nition of (>>=I is like that of (>*>I - a parse is done by one parser, 
pr,  and the remains of the input are passed to a second parser f ,  here dependent on 
the result of the first parse, and so a result of the first parse, x, is passed to f to give a 
second parser, which is applied to the remaining input, r e s t .  

The state monad 

Later in this chapter we will give an example of a state monad, S t a t e  a b. An 
operation of this type can change the state (of type a )  before returning a value of type 
b. 
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Combining monads 

The monads here can be combined to give more complex effects, so that one can build 
computations which perform 110 and inanipulate a state value, for instance. A full 
account of how this can be done in a systematic way is given in Liang, Hudak andJones 
( 1995). 

Some standard functions 

We can define some standard functions over every monad. Their types should be 
familiar from the list case 

mapF : :  Monad m => (a -> b) -> m a -> m b 
joinM : :  Monad m => m (m a) -> m a 

and their definitions are 

mapF f m 
= do x <- m 

return (f x) 
joinM m 

= do x <- m 
X 

Over lists these functions are called map and concat; many of the properties ofmapand 
concat over lists lift to these functions. For instance, we can show using properties 
(MI) to (M3) that for all f and g 

mapF (f .g)  = mapF f . mapF g (M4) 

Exercises 

18.22 Show that sets and binary trees can be given a monad structure, as can the type 

data Error a = OK a I Error String 

18.23 For the monads Id, [I and Maybe prove the rules (MI) to (M3). Also show tha 
these rules hold for your implementations in the previous exercise. 

18.24 Prove the property (M4) using the laws (MI) to (M3). 

18.25 Prove the following properties using the monad laws: 

joinM return = joinM . mapF return 
joinM return = id 

18.26 Can you define a different monad structure over lists from that given above 
Check that your definition has properties (MI) t o  (M3). 
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18.27 Write down the definitions ofmap and join over lists using list comprehensions. 
Compare them with the definitions of mapF and joinM given in the do notation 
in this section. 

18.28 Reimplement the parser for the calculator using the do construct (based on >>=) 
rather than (>*>I and build. Contrast the two approaches. 

(ls Example: monadic computation over trees 

We now illustrate how co~nputations over the type of 

data Tree a = N i l  I Node a (Tree a) (Tree a)  

can be given a monadic structure. We first look at a simple example, and then we look 
at a rather more realistic one. 

We see that with a monadic approach the top-level structure of the two solutions is 
exactly the same. This structure guides the way that we build the implementation of 
the second example, as we shall see. 

The moral of these examples is that monads provide an important structuring mechan- 
ism for program construction, as they encourage a separation of concerns. The top- 
level structure of the computation is given in terms of a monad whose specitic properties 
are only touched upon. Within the monad itself is the appropriate computational 
behaviour to, for example, maintain a state or to perform some I 0  (or both); the particular 
sequencing operation of the monad will ensure that values are passed between the parts 
of the program in an appropriate way. 

This separation of concerns comes into its own when changes are required in the 
details o f  the computation: it is usually possible to change the monad implementing a 
computation with at most minimal changes requircd at the top level. This is in stark 
contrast to a non-monadic computation in which data representations are visible: a 
wholesale restructuring is often required in such a situation. 

Summing a tree of integers 

Suppose we are asked to give the sum of a tree of integers, 

sTree : :  Tree Int -> I n t  

A direct recursive solution is 

sTree N i l  = 0 
sTree (Node n tl t2) = n + sTree t l  + sTree t 2  

In writing this we give no explicit sequence to the calculation of the sum: we could 
calculate sTree t l  and sTree t2 one after the other, or indeed in parallel. How might 
a monadic solution proceed? 

sumTree : :  Tree I n t  -> S t  Int 
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where St is a monad which we have yet to define. Tn the Nil case, 

sumTree Nil = return 0 

while in the case of a Node we calculate the parts in a given order: 

sumTree (Node n tl t2) (sumTree) 
= do num <- return n 

sl <- sumTree ti 
s2 <- sumTree t2 
return (num + sl + s2) 

How is the definition structured? We put the operations in sequence, using do. First 
we return the value n, giving it the name num. Next we calculate sumTree tl and 
sumTree t2, naming their results sl and s2. Finally we return the result, whichis 
the sum num+sl+s2. 

Now, since all we are doing here is calculating values and not trying to do any I10 
or other side-effecting operation, we make the monad St the identity monad Id which 
we mentioned earlier. Its formal definition is 

data Id a = Id a 

instance Monad Id where 
return = Id 
(>>=I (Id x) f = f x 

This means that we could say 

sumTree : :  Tree Int -> Id Int 

There is a remarkable similarity between the definition (sumTree) and an imperative 
program, bearing in mind that do performs a sequencing and j <- . . . gives (or 
assigns) a value to j. In an imperative setting, we might well write 

num : = n  ; 
sl := sumTree tl ; 
s2 := sumTree t2 ; 
return (num + sl + s2) ; 

where 'num : =' corresponds to the '<-' and do puts a sequence of commands one after 
the other, as does the semi-colon. 

To give a function of type Tree Int -> Int we compose with the extract function 
to give 

extract . sumTree 
where 

extract : :  Id a -> a 
extract (Id x) = x 

takes the wrapper off an element Id x to give the element x. In the next section we 
tackle a more complex problem, but see the same monadic structure repeated. 
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I 
Moon 

Ahmet Moon 

Figure 18.1 Replacing the elements of a tree with natural numbers. 

Using a state monad in  a tree calculation 

Building on the experience of the last section in defining sumTree we tackle here a 
rather more tricky problem. We want to write a function 

numTree : :  Eq a => Tree a -> Tree Int 

so that given an arbitrary tree we transform it to a tree of integers in which the original 
elements are replaced by natural numbers, starting from 0. An example is given in Figure 
18.1. The same element has to be replaced by the same number at every occurrence, 
and when we meet an as-yet-unvisited element we have to find a 'new' number to match 
it with. 

How does our delinition appear'? We give the function a type, 

numberTree : :  Eq a => Tree a -> State a (Tree Int) 

in which the monad State a will have to carry about enough information to allow us 
to replace the elements in the correct way. The structure of the program then is 

numberTree Nil = return Nil 

numberTree (Node x tl t2) 
= do num <- numberNode x 

ntl <- numberTree tl 
nt2 <- numberTree t2 
return (Node num ntl nt2) 

The structure here is exactly the same as that of (sumTree) on page 408; we perform 
the operations on the components x, t 1 and t2 (for the subtrees we use recursion) and 
then combine them in the result (Node num ntl nt2). 

What else do we have to define to give the result? We need to identify the monad 
State a and to define the function which replaces an individual entry, 

numberNode : :  Eq a => a -> State a Int 

We now have to think about the implementation of the monad. We have called it State 
since it keeps a record of the state, that is of which values are associated with which 
numbers. This we do in a table: 
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type Table a = [a1 

where the table [True ,False]  indicates that True is associated with 0 and Falsewitl 
1. 

What then is the state monad'? It consists of functions 

d a t a  S t a t e  a  b = S t a t e  (Table a -> (Table a , b) )  

which. after we strip off the constructor S t a t e ,  we can think of as taking the star 
before doing the operation to the state afier the operation, together with its result. 11 
other words, we return a value of type b, but perhaps we change the value of the stat1 
of type Table a  as a side-effect. 

Next we have to define the two monad operations. 

ins tance  Monad (S t a t e  a )  where 

To r e t u r n  a value, we leave the state unchanged. 

r e t u r n  x = S t a t e  ( \ t a b  -> ( t ab ,x ) )  

How do we sequence the operations? The intended effect here is to do st, pass its resu 
to f and then do the resulting operation. 

In more detail, to perform s t ,  we pass it the table tab;  the output of this is a nei 

state, newTab, and a value y. This y is passed to f ,  giving an object of type State a 1 
this is then performed starting with the new state newTab. 

(S t a t e  s t )  >>= f 

= S t a t e  ( \ tab  -> l e t  
( n e w ~ a b , ~ )  = s t t a b  
(S t a t e  t r a n s )  = f y  
i n  
t r a n s  newTab) 

Here we can see that the operations are indeed done in sequence. leading from one st8 

value to the next. This has given us the monad; all that remains is to define the functit 
numberNode. Our definition is 

numberNode : :  E q  a  => a -> S t a t e  a  I n t  
numberNode x = S t a t e  (nNode x) 

nNode : :  E q  a  => a -> (Table a -> (Table a , I n t ) )  
nNode x t a b l e  

1 elem x t a b l e  = ( t ab l e  , lookup x t a b l e )  
I otherwise = (table++Cx] , l ength  t a b l e )  

If x is an element of t ab l e ,  we return its position in the table, given by lookup; if it is 
not, we add it to the end of the table, and return its position, which is length table. 
The definition of 

lookup :: Eq a  => a -> Table a  -> I n t  
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is standard, and we leave it as an exercise for the reader. 
Standing back, we can see that we have completed our definition of the function 

nmberTree : : Eq a => Tree a -> Sta te  a (Tree 1nt) 

but one ingredient of the solution is still needed. If we form 

for some exampleTree of the tree type, we have an object in 

S ta te  a (Tree In t )  

In order to ext rac t  the result, we have to write a function 

ext ract  : : Sta te  a b -> b 

This has to perform the calculation, starting with some initial table, and rcturn the 
resulting value of type u. The definition is 

ext rac t  : :  Sta te  a b -> b 
extract  (State s t )  = snd ( s t  [I) 

where we see that s t  is applied to the initial statc [I. The result of this is a pair. from 
which we select the second part, of type b. Now we can define our function 

numTree : :  E q  a => Tree a -> Tree I n t  
nwnTree = extract  . numberTree 

which has the effect we require. 
To conclude, we have shown how a complex calculation over a tree, (numberTree), 

can be structured in exactly the same way as a simple one, (sumTree). In the case of 
a tree type the advantage is tangible. but for more complex types a monadic stsucturc 
becomes almost cwential if we are to follow a computation with complicated side- 
effects. 

18.29 Show how to look up the position of an element in a list 

lookup : :  Eq a => a -> Table a -> In t  

You might find it useful to define a function 

look :: Eq a => a -> Table a -> In t  -> In t  

where the extra integer parameter carries the current 'offset' into the list. 

18.30 Show how you can use a State-style monad in a computation to replace each 
element in a tree by a random integer, generated using the techniques of Section 
17.6. 
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18.31 We can use monads to extend the case study of the calculator in a variety of 
ways. Consider how you would 

add exceptions or messages to be given on an attempt to divide by zero: 

count the number of steps taken in a calculation; and 

combine the two. 

Summary 

Looking at the examples we have covered, we can conclude that the advantages of 
structuring a computation using a monad are threefold: 

We follow a well-defined strategy for writing sequential programs. which has stmy 
similarities with imperative programming. 

These is an advantage in abstraction: we can change the underlying inonad ye1 
retain the overall structure of the computation. 

Finally, we have seen that various properties can be inferred automatically once we 
have a monad. As we saw above, (M4) is a consequence of the monad propertier 
(MI) to (M3). 

We have also seen that many different sort of computational effects like 10, state, error! 
(as implemented by the Maybe type) and non-determinism, as given by the list monad 
are all described by means of monads. On the one hand this means that we can makt 
models in a functional language of these effects, but on the other we can use monad! 
as a way of building an interface between a pure functional language like Haskel 
and systems with effects; this approach appears to be very fruitful, allowing Haskel 
programs to call foreign-language functions, and indeed allowing Haskell programmer: 
to inter-work with programmers in C and Java. We give some pointers to this workanr 
also to further work on programming in a monadic style in the concluding chapter. 



Time and space 
behaviour 

19.1 Complexity of functions 

19.2 The complexity of calculations 

19.3 Implementations of sets 

19.4 Space behaviour 

19.5 Folding revisited 

19.6 Avoiding recomputation: memoization 

This chapter explores not the values which programs compute, but the way in which 
those values are reached; we are interested here in program efficiency rather than 
program correctness. 

We begin our discussion by asking how we can measure complexity in general, before 
asking how we measure the time and space behaviour of our functional programs. We 
work out the time complexity of a sequence of functions, leading up to looking at various 
implementations of the Se t  abstype. 

The space behaviour of lazy programs is complex: we show that some programs use 
less space than we might predict, while others use more. This leads into a discussion 
of folding functions into lists, and we introduce the f old1 function, which folds from 
the left, and gives more space-efficient versions of folds of operators which need their 
arguments - the strict operations. In contrast to this, foldr gives better performance 
on lazy folds, in general. 

In many algorithms, the naive implementation causes recomputation of parts of the 
solution, and thus a poor performance. In the final section of the chapter we show how 
to exploit lazy evaluation to give more efficient implementations, by memoizing the 
partial results in a table. 
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a Complexity of functions 

If we are trying to measure the behaviour of functions, one approach i \  to ask how much 
time and space are consumed in evaluations for different input values. We might, fo~ 
example, given a function f red over the natural nulnbers, count the number of step 
taken in calculating the value off red n for natural numbers n. This gives usafunction, 
call i t  stepsFred, and then we can ask how complex that function is. 

One way of estimating the complexity of a function is to look at how fast i t  grows 
for large values of its argument. The idea of this is that the essential behaviour of! 
function becomes clearer for large values. To start with, we examine this idea througt 
an example. How fast does the function 

grow, as n gets large? The function has three components: 

a constant 13, 

a term 4*n, and 

a term, 2*n2. (Note that here we use the mathematical notation for n2, rathe~ 
than the Haskell notation, n-2.) 

As the values of n become large, how do these components behave? 

The constant 13 is unchanged; 

the term 4*n grows like a straight line; but 

a square term, 2*n2, will grow the most quickly. 

For 'large' values of n the square term is greater than the others, and so we say that f i! 
of order n2, 0 (n2). In this case the square dominates for any n greater than or equa 
to 3; we shall say exactly what is meant by 'large' when we make the definitiono 
order precise. As a rule of thumb we can say that order classifies how functions behavr 
when all but the fastest-growing components are removed, and constant multipliers an 
ignored; the remainder of the section makes this precise, but this explanation shouldh 
sufficient for understanding the remainder of the chapter. 

The notation n2 is the usual way that mathematicians write down 'the function tha 
takes n to n2'. This is the notation which is generally used in describing complexity 
and so we use it here. In a Haskell program to describe the function we would eithe 
write \n -> n-2 or use the operator section (-2). 

In the remainder of this section we make the idea of order precise, before examinin1 
various examples and placing them on a scale for measuring complexity. 

The big-Oh and Theta notation - upper bounds 

A function f : : I n t  -> I n t  is O(g) ,  'big-Oh g',  if there are positive integers m a n d  1 
d, so that for all nzm, 
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The definition expresses the fact that when numbers are large enough (n>m) the value 
off  is no larger than a multiple of the function g, namely (d*) . g. 

For example, f above is 0(n2) since, for n greater than or equal to 1, 

so the definition is satistied by taking m as I and d as 19. 
Note that the measure gives an upper bound, which may be an overestimate; by 

similar reasoning, f is 0 (nI7) as well. In most cases we consider the bound will i n  fact 
be a tight one. One way of expressing that g is a tight bound on f is that in addition to 
f being 0 (g), g is 0 ( f )  ; we then say that f is O (g), 'Theta g'. Our examplc f is in  
fact O (n2). 

A scale of measurement 

We say that f << g i f f  is O(g), but g is not O(f ); we also use f - g to mean that f 
is 0 (g) and simultaneously g is 0 (f 1. 

We now give a scale by which function complexity can be measured. Constants 
which are 0(n0) grow more slowly than linear - O(nl) - functions, which in tu rn  
grow more slowly than quadratic functions of order O(n2). This continues through 
the powers, and all the powers (nk) are bounded by exponential functions, such as 2". 

Two other points ought to be added to the scale. The logarithm function, log, grows 
more slowly than any positive power, and the product of the functions n and log  n, 
n(1og n) fits between linear and quadratic, thus 

no << log  n << n1 << n( log  n) << n2 << . . . 

Counting 

Many of the arguments we make will involve counting. In this section we look at somc 
general examples which we will come across i n  examining the behaviour of functions 
below. 

1. The first question we ask is - given a list, how many times can we bisect i t .  before 
we cut i t  into pieces of length oneL? If the length is n, after the first cut, the length of 
each half is n/2, and after p cuts, the length of each piece is n/ (2p). This number will 
be smaller than or equal to one when 

(2') I n > (2(p-l)) 

which when we take log2 of each side gives 

The function giving the number of steps in terms of the length of the list, n, will thus 
be @(log2 n). 
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Figure 19.1 Counting the nodes of trees. 

2. The second question concerns trees. A tree is called balanced if a11 its branches 
are the same length. Suppose we have a balanced binary tree, whose branches areof 
length b; how many nodes does the Lree have? On the first level i t  has 1, on the second 
2, on the kth it has 2(k-1), so over all b+l  levels it has 

as illustrated in Figure 19.1. 
We thus see that the size of a balanced tree is @(2b) in the length of the branches, 

b; taking logarithms, a balanced tree of size n will therefore have branches of length 
@(log2 n) in the size of the tree. If a tree is not balanced, the length of its longest 
branch can be of the same order as the size of the tree itself; see Figure 19.1 for an 
example. 

3. Our final counting question concerns taking sums. If we are given one object every 
day for n days, we have n at the end; if we are given n each day, we have n2; what if 
we are given 1 on the first day, 2 on the second. and so on? What is the sum of the list 
C1 . . nl, i n  other words? Writing the list backwards, as well as forwards, we have 

adding verticall~l at each point we have a sum of (n+l) ,  

and this sum occurs n times, so  

sum [I . .  nl = n*(n+l) ' d i v '  2 

which lnakes it @(n2), or quadratic. In a similar way, the sum of the squares is @(n3), 
and so on. 
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f Exercises 1 

19.1 Show that the example 

is @(n2). 

19.2 Give a table of the values of the functions no, log n, n', n(log n), n2, n3 and 
2" for the values 

19.3 By giving the values of d, m and c (when necessary), show that the following 
functions have the complexity indicated. 

19.4 Show that nk << 2" for all positive k. By taking logarithms of both sides, show 
that log n << nk for all positive k. 

19.5 Show that 

log - In = log2 

and in fact that logarithms to any base have the same rate of growth. 

19.6 The function f i b  is defined by 

f i b  0 = 0 
f i b  1 = 1 
f i b  m = f i b  (m-2) + f i b  (m-I) 

Show that nk << f i b  n for all k. 

19.7 Show that << is transitive - that is f  <<g and g<<h together imply that f  <<h. 
Show also that - is an equivalence relation. 

19.8 If f is 0 (g) , show that any constant multiple of f  is also of the same order. If 
f 1 and f  2 are 0 (g), show that their sum and difference are also 0 (g). Are the 
same results valid with Q replacing O'? 

19.9 If f  1 is o (nkl ) and f 2 is 0 (nk2 1, show that their product, 

19.10 Prove by induction over the natural number n that 

1 + 2 + 4 +  . . .  + 2n = 2(n+ l )  - 1 
1 + 2  + . . .  + n = n*(n+l) ' d i v '  2 
l2 + 22 + . . . + n2 = n*(n+l)*(2*n+l) ' d i v '  6 
l3 + 23 + . . . + n3 = (n*(n+l) ( d i v '  212 
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(19 The complexity of calculations 

How can we measure the complexity of the functions we write? One answer is tc 

use an implementation of Haskell, which can be expected to produce some diagnostic 
information about evaluation. In Hugs we use the command : se t  +s to achieve this 
While this gives some information, we opt for a cleaner model of what is going on, an( 
we choose to analyse the calculations we have been using. There are three principa 
measures we can use. 

The time taken to compute a result is given by the number of steps in a calculatio~ 
which uses l a ~ y  evaluation. 

The space necessary for the computation can be measured in two ways. First 
there is a lower limit on the amount of space we need for a calculation to complet~ 
successfully. During calculation, the expression being calculated grows and shrinks 
obviously, we need enough space to hold the lc~rgest expression built during th~ 
calculation. This is often called the residency of the computation, we shall call i 
the space complexity. 

We can also make a measurc of the total space used by a computation, whichil 
some way reflects the total area of the calculation; it is of interest to implenienterso 
functional languages but for users (and for us) the first two are the crucial measurer 

How then do we measure the complexity of a function? 

Complexity measures 

We measure thecomplexity of the function f  by looking at the time and spacecomplexit 
as described above. as , f u r d o n s  of the size of the inputs to f .  The ~ i z e  of a numbe 
is the number itself, while the size of a list is given by its length, and of a tree by th 
number of nodes it contains. We now look at a series of examples. 

1. Let us start with the example of f  ac. 

f a c  : :  In t  -> Int 
f a c  0 = I  
f a c  n = n * f a c  (n-1) 

Working through a calculation, we have 

f a c  n - n * f a c  (n-1) 
4 . . .  
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The calculation contains 2*n+l steps, and the largest expression, (f  acMax), contains 
n  multiplication symbols. This makes the time and space complexity both @ ( n i l ,  or 
linear. 

2. Next we look at insertion sort. Recall that 

i S o r t  [I = [I 
i S o r t  ( x : x s )  = i n s  x  ( i S o r t  xs )  

i n s  x  [I = [XI 
i n s  x  (y :ys )  

I (x<=y> = x : y : y s  
I otherwise  = y : i n s  x  ys  

A general calculation will be 

i S o r t  [a1 , a 2 ,  . . . , an-1, an] 
-.A i n s  a 1  ( i S o r t  [ a 2 , .  . . ,an-1 , a n ] )  - . . .  
-.A i n s  a 1  ( i n s  a2 ( . . . ( i n s  an-1 ( i n s  an [ I ) ) .  . . ) )  

followed by the calculation of the n  ins's. What sort of behaviour does i n s  have? 
Take the general example of 

i n s  a  [ a l ,  a 2 ,  . . . , an-1 ,an] 

where we assume that [ a l ,  . . . ,an] is sorted. There are three possibilities: 

In the best case, when a < = a l ,  the calculation takes 1 step. 

In the worst case, when a>an, the calculation takes n  steps. 

In an averctgc2 case, the calculation will take n/2 steps. 

What does this mean for iSor t '?  

In the hrst case, each i n s  will take one step, and the calculation will therefore take 
a further n  steps, making it 0 (nl ) in this case. 

On the other hand, in the worst case, the first i n s  will take one step, the second two, 
and so on. By our counting argument in Section 19.1 the calculation will take 0 (n2) 
steps. 

In an ai-erugr case, the ins 's  will take a total of 

steps, whose sum is again o (n2) ,  by our observation in Section 19.1 about the size 
of the sum 1+2. . .n.  

We therefore see that in most cases the algorithm takes quadratic time, but in some 
exceptional cases, when sorting an (almost) sorted list, the complexity is linear in the 
length of the list. In all cases the space usage will also be linear. 
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3. Before looking at another sorting algorithm, we look at the time taken to join 
together two lists, using ++. 

[al , a 2 , .  . . ,an-1 ,an] ++ x 
+ a1 : (Ca2, - . . ,an-1 ,an] ++ x) 
1.i a1  : (a2 : Ca3,. . . , an- l ,an l  ++ x) 
+ . . .  n-3 s t e p s  . . .  
-.-, a1  : (a2 : . . .  : (an:x)  . . . I  

The time taken is lineur in the length of the first list. 

4. Our second sorting algorithm, quicksort, is given by 

When the list is sorted and contains no duplicate elements, the calculation goes thus: 

qSort [a1 , a2 ,  . . . , an-1 ,an] 
* . . .  n s t e p s  . . .  
l.i [I ++ [a1] ++ qSort [a2,  . . . , an-1 ,an] 
1.i . . .  n-1 s t e p s  . . .  
* a1 : ([I ++ [a2] ++ qso r t  [ a 3 , .  . . , an] )  
1.i . . .  n-2 s t e p s  . . .  

Since the number of steps here is 1 +2+. . . n, we have quadratic behaviour in this sorte 
case. In the average case, we split thus 

where the list has been bisected. Forming the two sublists will take O(nl) steps, a 
will the joining together of the results. As we argued in Section 19.1, there can b 
log211 bisections before a list is reduced to one-element lists, so we have O(nl) ste[ 

to perform 0 ( l og  n) many times; this makes quicksort take 0 (n ( l o g  n) ) steps. G 

uvertrge, although we saw that it can take quadratic steps in the worst (already sorted 
case. ' 

The logarithmic behaviour here is characteristic of a 'divide and conquer' algorithm: 
we split the problem into two smaller problems, solve these and thcn recombine the 
reesults. The result is a comparatively efficient algorithm. which reaches its base caws 
in 0 (log2 n) rather than 0 (nl) steps. 

I The explamtion we have given here depend!, upon us rearranging the order of rhc c;~lculution steps; this 
is Icgitimate if we observe that lazy cvaluation of combinalors is o p t i n i d ,  in the sense of taking fewest steps 
to reach a rcsult: any rearrangement can only give more steps to our calculi~tion. so thc bound of n( log  n) 
holds. 
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[ Exercises 

19.1 1 Estimate the time complexity of the two reverse functions given here: 

rev1 [I = [I 
rev1 (x:xs) = revl xs ++ [XI 

and 

rev2 = shunt [I 
shunt xs [I = xs 
shunt xs (y:ys) = shunt (y:xs) ys 

19.1 2 We can define multiplication by repeated addition as follows: 

mult n 0 = 0 
mult n m = mult n (m-1) + n 

'Russian' nlultiplication is defined by 

russ n 0 = 0 
russ n m 

I (m 'mod' 2 == 0) = russ (n+n) (m 'div' 2) 
I otherwise = russ (n+n) (m 'div' 2) + n 

Estimate the time conlplexity of these two multiplication algorithms. 

19.1 3 Estimate the time complexity of the Fibonacci function. 

19.14 Show that thc worst-case time behaviour of the merge sort function bclow is 
O(n(1og n)). 

mSort xs 
I (len < 2) = xs 
1 otherwise = mer (mSort (take m xs)) (mSort (drop m xs)) 
where 
len = length xs 
m = len 'div' 2 

mer (x:xs) (y:ys) 
I (x<=Y) = x : mer xs (y:ys) 

I otherwise = y : mer (x:xs) ys 
mer (x:xs) [I = (X:XS) 
mer [I ys = ys 
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(19 Implementations of sets 

We first saw the Set abstract datatype in Section 16.8, where we gave an implementation 
based on ordered lists without repetitions. Alternatively we can write an inlplementation 
based on arbitrary lists whose elements may occur in any order and be repeated. 

type Set a = [a] 

empty 
memSet 
inter xs ys 
union 
subset xs ys 
eqSet xs ys 
makeset 
mapset 

= [I 
= member 
= filter (member xs) ys 
= (++) 

= and (map (member ys) xs) 
= subset xs ys && subset ys xs 
= id 
= map 

We can also write an implementation based on the search trees of Section 16.7. We 
now compare the time complexity of these implementations, and summarize the results 
in the table which follows. 

1 Lists Ordered lists Search trees ) 

As we can see from the table, there is no clear 'best' or 'worst' choice; depending upon 
the kind of set operation we intend to perform, different implementations make more 
sense. This is one more reason for providing the abstract data type boundary beneath 
which the implementation can be changed to suit the use to which the sets are being 
put without any need to change the user programs. 

Exercises 

19.15 Confirm the time conlplexities given in the table above for the two list imple- 
mentations of sets. 

19.16 Implement the operations subset, inter, makeset and mapset for the search 
tree implementation, and estimate the time complexity of your implementations. 

19.1 7 Give an implementation of sets as lists without repetitions, and estimate the time 
complexity of the functions in your implementation. 
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(19 Space behaviour 

A rule of thumb for estimating thc space needed to calculate a result is to measure the 
largest expression produced during the calculation. This is accurate if the result being 
computed is a number or a Boolean, but it is not when the result is a data structure, like 
a list. 

Lazy evaluation 

Recall the explanation of lazy evaluation in Section 17.1, where we explained that parts 
of results are printed as soon as possible. Once part of a result is printed, i t  need no 
longer occupy any space. In estimating space complexity, we must be aware of this. 

Take the example of the lists [m . . nl ,  defined thus 

[m . . nl 
I n>=m = m: [ m + l  . . nl 
I otherwise = [I 

Calculating [i . . nl gives 

where we have underlined those parts of the result which can be output. To measure 
the space complexity we look at the non-underlined part, which is of constant size. so 
the space complexity i \  0 (no). The calculation has approximately 2*n steps, giving it 
linear time complexity, as expected. 

Saving values in where clauses 

Consider the example of 

The time taken to calculate this will be O(nl). and the space used will be O(nO), but 
we will have to calculate the expression [I . . nl twice. Suppose instead that we 
compute 

exam2 = l ist  ++ l i s t  
where 
list=[1 . . nl 
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The effect here is to compute the list [I . . nl once, so that we save its value after 
calculating it in order to be able to use it again. Unfortunately, this means that after 
evaluating l i s t ,  the whole of the list is stored, giving an O(nl) space complexity. 

This is a general phenomenon. If we save something by referring to it in a where 
clause we have to pay the penalty of the space that it occupies: if the space is available, 
fair enough; if not, we have turned a working computation into one which fails for lack 
of space. 

This problem can be worse! Take the examples 

exam3 = [ I  . . n] ++ [ l a s t  [I . . n]] 
exam4 = l ist  ++ [last l i s t ]  

where 
l ist= [ I  . . n] 

in which l a s t  returns the last element of a non-empty list. The space required by 
exam3 is 0 (no), while in exam4 it is 0 (nl) ,  since we hold on to the calculated valueof 
l is t  even though we require only one value from it, the last. This feature, of keeping 
hold of a large structure when we only need part of it, is called a dragging problem. In 
the example here, the problem is clear, but in a larger system the source of a dragging 
problem can be most difficult to find. 

The lesson of these examples must be that while it is always sensible not to repeat 
the calculation of a simple value, saving a compound value like a list or a tuple can 
increase the space usage of a program. 

Saving space? 

As we saw in Section 19.2, the naive factorial function has 0 (nl ) space complexity, as 
it forms the expression 

before it is evaluated. Instead, we can perform the multiplications as we go along, using 

newFac :: I n t  -> I n t  
newFac n = aFac n 1 

aFac 0 p = p 
aFac n p = aFac (n-1) (p*n) 

and compute the factorial of n using aFac n I .  Now, we examine the calculation 

newFac n 
1-t aFac n I 
1-t aFac (n-I) ( l*n)  

?? (n-1)==0 -.., False - aFac (n-2) (l*n*(n-I)) - . . .  - aFac 0 (l*n* (n-1) * (11-21 *. . . *2*1) - (l*n* (n-l)* (n-2)*. . . *2*1) 
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so that the effect of this program is exactly the same: it still forms a large unevaluated 
expression! The reason that the expression is unevaluated is that i t  is not clear that its 
value is needed until the step (needVal). 

How can we overcome this? We ought to make the intermediate values n~cclrcl, so 
that they are calculated earlier. We do this here by adding a test; another method is 
given in Section 19.5. 

aFac n p 
I p==p = aFac (n-I) (p*n) 

Now the calculation of the factorial of 4, say. is 

aFac 4 1 - aFac (4-1) (1*4) 
?? (4-1)==0 1-* False 
?? (1*4)==(1*4) ?.i True 

?-t aFac (3-1) (4*3) 
?? (3-1)==0 - False 
?? (4*3)==(4*3) -.-i True - aFac (2-1) (12*2) 

?.i . . .  - aFac 0 (24*1) - (24*1) 
^c-* 24 

The lines (eqTest) show where the guard p==p is tested, and so where the intermediate 
multiplications take place. From this we can conclude that this version has better 
(constant) space behaviour. 

Exercises 

19.18 Estimate the space complexity of the function 

sumsquares : : I n t  -> In t  
sumsquares n = sumList (map s q  [ I  . . n] ) 

where 

sumList = foldr (+) 0 
sq n = n*n 

and map and [ I  . . n] have their standard definitions. 

19.19 Give an informal estimate of the complexity of the text processing functions in 
Chapter 7. 
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Folding revisited 

One of the patterns of computation which we identified in Chapter 9 is folding an 
operator or function into a list. This section examines the complexity of the two 
standard folding functions, and discusses how we can choose between them i n  program 
design. Before this we make a definition which exprcsses the fact of a function needing 
to evaluate an argument. This distinction will be crucial to our full understanding of 
folding. 

Strictness 

A function is strict in an argument if the result is undetined whenever an undefined 
value is passed to this argument. For instance, (+) is strict in both arguments, while 
(&&) is strict in its first only. Recall that it is defined by 

True && x = x 
False && x = False  

The pattern match in the first argument forces it to be strict there, but equation 
(andFalse) shows that it is possible to get an answer from (&&) when the second 
argument is undef, so it is therefore not strict in the second argument. 

If a function is not strict in an argument, we say that it is non-strict or lazy i n  that 
argument. 

Folding from the right 

Our definition of folding was given by 

f o l d r  f st [I = st 
f o l d r  f st (x:xs) = f x ( fo ld r  f s t  xs)  

which we saw was of general application. Sorting a list, by insertion sort, was given by 

iSo r t  = f o l d r  i n s  [I 

and indeed any primitive recursive definition over lists can be given by applying f oldr. 
Writing the function applications as infix operations gives 

f o l d r  f st [a1 , a2 ,  . . . , an-1, an] 
-.A a1 ' f '  (a2 ' f '  . . . ' f '  (a,-1 ' f '  (an ' f '  s t ) ) .  . . I  (f oldr)  

and shows why the 'r' is added to the name: bracketing is to the right, with the starting 
value s t  appearing to the right of the elements also. I ff  is lazy in its second argument, 
we can see from (f o ld r )  that given the head of the list, output may be possible. For 
instance, map can be defined thus 

map f = f o l d r  ( ( : ) . f )  [I 
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and in calculating map (+2) [I . . nl we see 

As in Section 19.4, we see that the space complexity of this will be O(nO), since the 
elements of the list will be output as they are calculated. What happens when we fold 
a strict operator into a list'? The definition o f f  a c  in Section 19.2 can be rewritten as 

f a c  n = f o l d r  (*) 1 [I . .  nl  

and we saw there that the effect was to give 0 (nl)  space behaviour, since the multipli- 
cations in equation (f o l d r )  cannot be performed until the whole expression is formed, 
as they are bracketed to the right. We therefore define a function to fold from the left. 

Folding from the left 

Instead of folding from the right, we can define 

f o l d l  : :  ( a - >  b - > a )  -> a - >  [bl - > a  
f o l d 1  f st [I = st 
f o l d l  f s t  (x:xs) = f o l d l  f ( f  st x) xs 

which gives 

f o l d l  f st lal , a 2 ,  . . . , a,-l, an] 
( . . . ( ( s t  ' f '  a l l  ' f '  a2)  I f '  . . .  ' f '  an-1) ' f '  an ( f  o l d l )  

We can calculate this in the factorial example, the effect being 

f o l d l  (*) 1 [I . . n] 
-A f o l d l  (*) (1*1) [2 . . n] 
-A . . .  

f o l d l  (*) ( .  . . ((1*1)*2)*. . .*n) [I 
-- ( .  . . ( (1*1)*2)*.  . .*n)  

As in Section 19.2, the difficulty is that f o l d l  as we have defined it is not strict in its 
second argument. Using the standard function s e q  

s e q  : :  a -> b -> b 

it is possible to make it strict in the second argument. The effect of s e q  x y is to 
evaluate x before returning y. We can use seqover every type, since it is a polymorphic 
function. If we write 

s t r i c t  : :  ( a  -> b) -> a -> b 
s t r i c t  f x = s e q  x (f x) 
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then s t r i c t  f  is a strict version of the fi~nction f which evaluates its argument x 
before computing the result f  x. We can therefore write as a strict version of f o l d l  
the fimction f  o l d l  '. 

f o l d l '  : :  ( a  -> b -> a )  -> a -> [b] -> a  
f o l d l '  f  s t  [I = st 
f o l d l '  f  st (x:xs)  = s t r i c t  ( f o l d l '  f )  (f s t  x) x s  

Now, evaluating the example again, 

f o l d l '  (*) 1 [i . .  n] - f o l d l '  (*) 1 C2 . . nl  
r~ f o l d l '  (*) 2  C3 . . n] - f  o l d l  ' (*) 6 [4 . . n] - . . .  

Clearly, this evaluation is in constant space, O(nO). Can we draw any conclusionsfrom 
these examples'? 

Designing folds 

When we fold in a strict function, we will form a list-sized expression with foldr, so 
it will always be worth using f o l d l ' .  This covers the examples of (+I ,  (*) and so 
forth. 

We saw earlier that when map was defined using f  o l d r  we could begin to give output 
before the whole of the list argument wasconstructed. If we use f o l d l  ' instead, wewill 
have to traverse the whole list before giving any output, since any f  o l d l  ' computation 
follows the pattern 

f o l d l '  f  st1 x s l  
-.A f o l d l '  f  s t 2  xs2 
-4 . . .  

f o l d l '  f  s t k  XSk - .. .  
--t f o l d l '  f  s tn [I 
-A S t n  

so in the cahe of map, f  o l d r  is the clear choice of the two, 
A more interesting example is given by the function which is True only if a list of 

Booleans consists of True throughout. We fold in (&&I, of course. but should we use 
f  o l d r  or f  o l d l  ' ?  The latter will give a constant-space version, but will examine the 
entire list. Since (&&I is lazy in its second argument, we might not need lo examine 
the value returned from the remainder of the list. For instance, 

f o l d r  (&&I True (map (==2) C2 . . n]) 
-A (2==2) && ( f o l d r  (&&I True (map (==2) [3 . . n] ) )  

True && ( f o l d r  (&&I True (map (==2) [3 . . n l ) )  - f o l d r  (&&I True (map (==2) [3 . . n l )  
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--i (3==2) && ( fo ld r  (&&I True (map (==2) [4 . . n l ) )  
w False && ( fo ld r  (&&I True (map (==2) [4 . . n])) 
-vt False 

This version uses constant space, m d  may not examine the whole list; f  o ld r  is therefore 
the best choice. 

Beside the examples of (+) and (*), there are many other examples where f  o l d l '  
is preferable. including: 

Reversing a list. To use f  o ld r  we have to add an element a  to the end of a list, x. 
The operation x++ [a] is strict in x, while the 'cons' operation ( : ) is l a ~ y  in its list 
argument. 

Converting a list of digits "7364" into a number is strict in both the conversion of 
the front, 736 and the final character, '4 ' .  

Since f o l d l '  consumes an entire list before giving any output, it will be of no use 
in defining functions to work over infinite lists or the partial lists we looked at while 
writing interactive systems. 

19.20 Define the functions to reverse a list and to convert a digit list into a number using 
both f  o ldr  and f o l d l '  and compare their behaviour by means of calculation. 

19.21 Is it better to define insertion sort using f  o ld r  or f  o l d l '  ? Justify your answer. 

19.22 How are the results of f o l d r  and f o l d l )  related? You may like to use the 
functions reverse and f l i p  in framing your answer. 

19.23 What is the relationship between f o l d r  and f o l d l )  when the function to bc 
folded is 

associative: a ' f '  (b ' f '  c )  = ( a  ' f '  b) ' f '  C; 

has st as an identity: st ' f '  a = a  = a ' f '  st; 
commutative: a  ' f l b = b  ' f '  a; 

and what is the relationship when all three hold'? 

(Is Avoiding recomputation: memoization 

In this section we look at general strategies which allow us to avoid having to recompute 
results during the course of evaluating an expression. This happens particularly in 
some recursive solutions of problems, where the solutions to sub-problems can be used 
repeatedly. 

We begin the discussion by looking again at the Fibonacci fimction. 
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f i b P  3 
= (y,x+y> 

where 
(x,y) = f i b P  2 

= (y1,x1+y1) 
where 
(xl,yl) = f i b P  1 

= ( ~ 2 , ~ 2 + ~ 2 )  
where 
(x2,y2) = f i b P  0 

= (0,l) 
= (1,l) 

Figure 19.2 Calculating f ibP 3. 

f i b  : : Int -> Int 
f i b  0 = 0 
f i b  1 = 1 
f i b  n = f i b  (n-2) + f i b  (n-1) 

This definition is remarkably inefficient. Computing f i b  n calls f i b  (n-2) and f l b  
(n-1) -the latter will call f i b  (n-2) again, and within each call off  i b  (n-2) there 
will be two calls to f i b  (n-3). The time complexity of f  i b  is greater than any power. 
How might we avoid this recomputation? We explore two ways of augmenting the 
definition to make it efficient; in the first we return a complex data structure from each 
call, and in  the second we define an infinite list to hold all the values of the function. 

First we observe that to get the value at n we need the two previous values; we could 
therefore return both these values in the result. 

f i b P  : :  Int -> (Int,Int) 
f i b P  0 = (0,l) 
f i b P  n = (y,x+y) 

where 
(x,y) = f  ibP (n-1) 

A calculation is given in Figure 19.2, where different variables xi, yl and so on have 
been used for the different occurrences of the local variables x and y: this is not necessary 
but does make the different occurrences clearer. 

As an alternative strategy, we can try to define the list of Fibonacci values, fibs, 
directly. The values of the f i b  function given above now become values at particular 
indices: 

f i b s  : : [Int] 



Avoiding recomputation: memoization 431 

f i b s !  !O = 0  
f i b s !  ! 1  = 1 
f i b s !  !(n+2) = f i b s !  !n  + f i b s !  !(n+l) 

This gives a description of the list, but it is not executable in this form. The first two 
lines tell us that f i b s  = 0  : 1 : r e s t ,  while the third equation tells us what the 
r e s t  is. The (n+2)nd element of f i b s  is the nth element of r e s t ;  similarly, the 
(n+l)s t  element is the nth element of ( t a i l  f i b s ) .  We therefore have, for every n, 

r e s t ! ! n  = f i b s ! ! n  + ( t a i l  f i b s ) ! ! n  

which says that each element is got by adding the corresponding elements of two lists, 
that is 

r e s t  = zipwith (+) f i b s  ( t a i l  f i b s )  

so that putting the parts together, we have 

f i b s  : : [ In t ]  
f i b s  = 0  : 1 : zipwith (+) f i b s  ( t a i l  f i b s )  

a process network computing the Fibonacci numbers. This gives a linear time, constant 
space algorithm for the problem, in contrast to the pair solution which is linear in both 
time and space, since all the nested calls to f  ibP are built before any result can be 
given. 

Dynamic programming 

The example in this section illustrates a general method of solving problems by what is 
known as dynamic programming. Dynamic programming solutions work by breaking 
a problem into subproblems but, as in the Fibonacci example, the subproblems will not 
be independent, in general. A naive solution therefore will contain massive redundancy, 
which we remove by building a tuhle of solutions to subproblems. 

The example we consider is to find the length of a maximal common subsequence of 
two lists -the subsequences need not have all their elements adjacent. In the examples 
of 

the length of 4 is given by the subsequence [ I ,  5,3,2]. This problem is not simply a 
'toy'; a solution to this can be used to find the common lines in two files, which gives 
the basis of the Unix d i f f  program, which is used, for instance, for comparing different 
versions of programs stored in separate files. 

The naive solution is given by mLen in Figure 19.3. The interesting part of the 
definition is given by the third equation. In the case where the lists have equal first 
elements, these elements must be in a maximal common subsequence, so we find the 
overall solution by looking in the tails and adding one to the result. More problematic 
is the case in which the heads are distinct. We have the choice of excluding either x 
or y; in this algorithm we try both possibilities and take the maximal result. There, 
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mLen : : Eq a => [a] -> [a] -> I n t  

mLen xs [I = 0 
mLen [I ys  = 0 
mLen (x:xs) (y:ys) 

I x==y = 1 + mLen xs  ys  
I otherwise = max (mLen xs (y :ys) )  (mLen (x :xs)  ys) 

maxLen : :  Eq a => [a] -> [a] -> I n t  -> I n t  -> I n t  

maxLen xs ys 0 j = 0 (maxLen. 1) 
maxLen xs ys i 0 = 0 (maxLen. 2) 
maxLen xs ys i j 

I xs !  ! ( i -1)  == ys !  ! ( j - I )  = (maxLen xs ys  (i-1) ( j -1))  + 1 
(maxLen -3) 

I otherwise = max (maxLen xs ys i ( j -1) )  
(maxLen xs  ys (i-1) j)  

(maxLen .4) 

maxTab : : Eq a => [a] -> [a] -> [ [ ~ n t l l  

maxTab xs ys 
= r e s u l t  

where 
r e s u l t  = [O,O . . 1 : zipwith f [O . . 1 r e s u l t  
f i prev 

= ans 
where 
ans = 0 : zipwith g [O . . 1 ans 

g j v  
I X S ! ! ~  == y s ! ! j  = prev!  ! j  + 1 
I otherwise = max v (prev! ! ( j + l ) )  

Figure 19.3 Three algorithms for the maximum common subsequence. 

of course, is the source of the redundant computations - each of these may well give 
rise to a computation of mLen xs  ys. How are we to avoid this situation'? We shall 
store these results in a table, which will be represented by a list of lists. Once a result 
appears in the table, we have no need to recompute it. 
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As an intermediate step. we rewrite the solution as maxLen which uses list indexing, 
so that 

is the longest common subsequence in the lists t a k e  u x s  and t a k e  v ys.  The 
function is given in Figure 19.3, and the definition is a straightforward adaptation of 
mLen. 

Now we aim to define the table maxTab x s  y s  so that 

This requirement is made specific by equations (maxLen .1 )  to (maxLen .4 ) .  The base 
case is given by (maxLen . 1 )  , stating that 

for all v. In other words, 

SO, 

r e s u l t  = [0,0 . .  1 : . .  

Theequations (maxLen. 2) to (maxLen. 4) tell us how todefine the IistmaxTab ! ! ( i + l )  
from the list maxTab! ! i ,  and i, so we can define 

maxTab x s  y s  = r e s u l t  
where 
r e s u l t  = [O,O . . ] : z ipwi th  f [O . . 1 r e s u l t  

where f : : I n t  -> [ I n t ]  -> [ In t ]  is the function taking i and the previous value, 
maxTab! ! i, to maxTab! ! ( i + l ) .  Now we have to define this latter, which appears in 
the solution as ans. 

Equation (maxLen.2) tells us that it starts with 0, and g is the function taking 
maxTab! ! ( i + l ) !  ! j and j tomaxTab! ! ( i + l )  ! ! ( j + l ) ,  where wearealsoable touse 
the values of maxTab! ! i, nanied by prev. Using these insights, the definition of g is 
a straightforward transliteration of (maLen.  3) and (maxLen. 4)  : 

arts = 0 : z ipwi th  g [O . . 1 a n s  

g j v  
I X S ! ! ~  == y s !  ! j  = prev!  ! j  + 1 
I otherwise  = max v ( p r e v ! ! ( j + l ) )  

The top-level result is given by calling 

maxTab x s  y s  ! ! ( l e n g t h  xs )  ! ! ( l e n g t h  ys )  

and this is computed in linear time and space. 
Haskell provides arrays which can be used to give a more efficient implementation 

of a number of algorithms, including this one here. Further details can be found in the 
library module Array. h s  and its documentation. 
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Greedy algorithms 

A greedy solution to a dynamic programming problem works by building up the optimal 
solution by making local choices of what appear to be the best solutions of sub-problems. 
In the common subsequence problem, we can think of searching along the two listsina 
single sweep, looking successively for the first points of agreement; we search all pairs 
of indices smaller than n before looking at n. In an example, the greedy solution gives 

which is not optimal: the subsequence [ I ,  2,31 has been missed, since we make the 

choice of 2 the first element, it is the first point of agreement. This local choice is not 
part of an optimal global solution, but the algorithm gives reasonable performance. 

In many situations, where local choices are always part of a global solution, a greedy 
solution will work. Examples we have seen thus far include 

the line-splitting algorithm we gave in Chapter 7 is optimal in minimizing the sum 
of the inter-word spaces when the lines are justified; 

the Huffman codes described in Chapter 15 are optimal i n  the sense of giving the 
shortest possible codings of files. We did not search all possible sets of codes in 
giving the Huffman code, rather we built it up from locally sensible choices. 

19.24 Give an implementation of the greedy solution to the maximal common sub- 
sequence problem, and show that it behaves as explained above on the lists 
Cl ,2,31 and C2,4,1,2,31 above. 

19.25 Can you give an improvement of the maximal common subsequence solution 
along the lines o f f  ibP, returning a complex (finite) data structure as the result 
of a function call, rather than simply one value? 

19.26 Finding the 'edit distance' between two strings was first discussed in Section 
14.5 where we gave a dynamic programming solution to the problem. Show how 
you can give an efficient implementation of this algorithm using the techniques 
of this section, and also how you give a greedy solution to the problem. How do 
the two solutions compare? 

19.27 Based on the examples of this section, provide a program which gives the 
difference between two files, matching the corresponding lines and giving the 
output in a suitable form, such as a list of the pairs of matching line numbers or 
a form copied from the Unix d i f  f program. 
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Summary 

In this chapter we have examined the efficiency of lazy functional programs. We saw 
that we are able to analyse the time complexity of many of our more straightforward 
functions without too much difficulty. To analyse the space behaviour is more difficult, 
but we have shown how the space consumption of lazy programs can be estimated from 
our calculations. 

The introduction of f old1 brings the space issue into focus, and the distinction we 
made between strict and lazy functions allows us to analyse the different behaviour of 
the two folds. 

We concluded the discussion with an application of l a ~ y  infinile lists to memoizing 
results for reuse; the transition from naive to efficient was done in a syctematic way. 
which can be carried over to other application areas. 

This chapter has provided an introduction to the study of functional program be- 
haviour; much more information - particularly about functional data structures - can 
be found in Okasaki (1 998). 



( Chapter 20 1) 

Conclusion 

This book has covered the basics of functional programming in the lazy language Haskell. 
It has shown how to craft programs, both by giving extensive examples as each new as. 
pect of the language was introduced, and also by giving general advice on how to design 
programs, in a distinct phase between giving a precise specification of the problem and 
writing a solution in Haskell. 

The power of functional programming 

A functional programmer rnodels the real world at a high level of abstraction, concentrat- 
ing on what relationships there are between values, embodied in function definitions. 
This contrasts with a lower-level view in which the details of how items are related 
predominate. For instance, in Haskell lists are simply values, whereas in  C or Ctt  
they become data structures built from pointers, and even in Java it  is difficult to 
present a suitably abstract model of lists. This higher-level approach has a numberof 
consequences, which have come out in the course of the book. 

Higher-order functions and polymorphism combine to support the construction of 
general-purpose libraries of functions, such as the list functions in the Haskell 
standard prelude and library. The map function, for instance, 

map : : (a -> b) -> [a] -> [b] 

embodies the 'pattern' of applying the same transformation lo every element in  a list. 
which will be reused in a host of applications of lists. 

Also supporting reuse through overloading are type classes, used for instance in 
giving the function 

which tests for membership of a list using the overloaded equality function. 

The definitions of functions are equations which express propertics of the functions 
defined. From the definitions of map and function composition, ' . '. for example. it 
is possible to prove that for all functions f and g, 
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map (f . g) = map f . map g 

Proof provides a user with assurance about how a program behaves on all arguments, 
in contrast to testing which can only give direct information about its behavour on a 
- hopefully representative - subset of inputs. 

Data structures can be introduced in a directly recursive manner, giving trees, queues 
and so forth without having to look at their representations. Algorithms are written at 
the same level as they would be described informally, in contrast with more traditional 
approaches which make the representation very clear. 

A text like this can only provide an introduction to a subject as rich and developed as 
functional programming; the rest of this concluding chapter discusses other aspects of 
the subject, as well as giving pointers to other sources on the Web and in books and 
articles. 

Further Haskell 

The purpose of this text is to introduce functional programming ideas using the Haskell 
language. It covers the important aspects of the language, but d c w  not aim to be 
complcte, Among the topics omitted are data types with labelled fields, which resemble 
records or structures in other languages; strictness annotations, which are used to make 
data type constructors strict in some or all of their arguments; details of the Read class 
and the numeric types and classes. 

Further information about all these can be found in the Haskell language report 
(Peyton Jones and Hughes 1998), and the 'Gentle Introduction' of Hudak, Fasel and 
Peterson (1997) also contains useful information about some of then], as well as 
providing an overview of the language for an experienced functional programmer. 
Both of these, as well as many other Haskell resources, can be found at the Haskell 
home page, h t t p  : //www . haske l l  . org/ 

The text has discussed many of the most important functions in the standard pre- 
lude but on thc whole has avoided discussing the contents of the libraries, which are 
documented in Peyton Jones and Hughes (1998). These libraries fall into two classes. 
First there are libraries of utilities, such as L i s t .  hs  which contains a multitude of 
list-manipulating functions. These are in libraries, which can be included or not by the 
programmer at will, so as not to clutter up the name space of the language. 

Other libraries contain extensions of the language, including a library of arrays, 
Array. hs, as well as facilities for file crcation and management, Di rec tory .  hs, and 
for system links, System.hs. These libraries come with all Haskell implementations; 
each implen~entation will also come with particular extensions, usually available in  the 
form of library modules. 

Haskell in the future 

Haskcll was first defined in 1987, and has been modified and extended since then. This 
t c ~ t  is written in Haskell 98, which is meant to provide a stable base system consisting 
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of tried and tested features. The progress of research in functional programming makes 
it clear that a language like Haskell will not stand still forever and at the time of writing 
there is an initiative under way to design Haskell 2, which will extend and modify the 
language in a number of significant ways. Nevertheless, it is likely that systems will 
continue to support the features of Haskell98 as outlined in this text. The Haskell home 
page can be relied upon to contain up-to-date information on the status of Haskell. 

Extending Haskell 

As it has been introduced in this text, Haskell is a general-purpose, high-level pro- 
gramming language. Many real-world applications require programs to, for instance, 
manipulate computer graphics, modify the state of a machine, or operate in parallel, 
and Haskell as i t  stands does not provide these facilities directly. 

However, there have been extensions to particular Haskell implementations to per- 
form tasks like this. Information about a great number of applications and extensions 
of Haskell can be found on the home page 

http://www.haskell.org/libraries.html (libraries) 

or in the documentation for particular implementations, as detailed on the Haskell home 
page and in Appendix E. 

Often languages are not used in isolation, and so links to external libraries and 
programming languages are important. These interfacing issues are discussed in Finne 
et crl. (1998) and Meijer (1998). A variety of graphical user interfaces for Haskell 
programs have been written; details of these can be found on the (libraries) page. 

Other specific extensions include a library to write CGI scripts, which are used to 
extend the interactive capabilities of Web pages, 

to provide a language for describing graphical animations which interact with users 
(Elliott and Hudak 1997), 

to give efficient implementations of functional data structures (Okasaki 1998). 

to describe musical notation in  Haskell (Hudak pt (11. 1996), 

and to support a concurrent version of the language Glasgow Parallel Haskell, 

http : //www . dcs .gla. ac . uk/f ~ / s o f  tware/gph/ 

Using a monadic view it is also possible to integrate mutable state into the Haskell 
model. This is discussed in Peyton Jones and Wadler (1993) and Launchbury and 
Peyton Jones (1994) and implemented in the Glasgow Haskell Compiler. 
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Haskell and functional programming on the Web 

There are now many resources on Haskell and functional programming to be found on 
the World Wide Web. This text itself has a home page at 

which lists all the links given here. The Haskell home page is at 

http : / /www . haskell . org/ 

and information about the Haskell mailing list can also be found there. 
The Haskell language was named in honour of Haskell Brooks Curry. A short 

biography and photograph of Curry can be found at 

For functional programming in general, the first place to start is the 'FAQ', 

which gives details of all functional programming languages, as well as more general 
information and indeed answers to frequently asked questions about the basics of 
functional programming. 

Information about a number of real-world applications of functional programming 
can be found at 

Jon Mountjoy has a web page on functional programming, 

and Claw Reinke makes available his functional programming bookmarks. 

Functional programming languages are used in many universities and other institutions, 
and resources on functional languages in education are accessible from 

A final resource is the Internet newsgroup 

news:comp.lang.functional 

devoted to discussion of functional programming in general. 

Other functional programming languages 

Haskell is a lazy, strongly typed functional programming language; another is Miranda 
(Turner 1986: Thompson 1995). In this text laziness is only examined explicitly in 
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Chapter 17, and up to that point it looks at aspects of functional programming which 
are broad1 y shared with Standard ML (Milner et al. 1997; Appel 1993), the best known 
and most widely used strict and strongly typed functional language, for which Paulson 
(1996) provides an introduction. I t  is possible to model lazy evaluation within a strict 
language, and Haskell provides facilities to make evaluation strict, so the two schools 
are very close indeed. 

A different style of functional programming, eschewing variables as much as possible, 
was introduced in Backus (1978). Bird and de Moor (1997) is a recent text which 
emphasizes the benefits of this style in supporting program transformation and also 
advocates a 'relational' style of programming which extends the functional. 

LISP is the oldest established functional lanaguage, but it differs from Haskell and 
SML in not being strongly typed. An excellent tutorial introduction to programming 
in the Scheme dialect of LISP is given in Abelson, Sussman and Sussman (1996). An 
imperative language with similiarities to LISP and used for telephone switching and 
other real-time applications is Erlang (Armstrong, Virding and Williams 1993). 

Two recent surveys of applications of functional programming languages in large- 
scale projects are Runciman and Wakeling (1995) and Hartel and Plasmeijer (l995b), 
and there is also information about this on the Web, as cited above. 

In the last ten years, powerful techniques of implementation of especially lazy 
functional languages have been developed. The twin texts (Peyton Jones 1987; Peyton 
Jones and Lester 1992) describe these in lucid detail. 

Where is functional programming going? 

The material in this text is an introduction to modern functional programming in a typed, 
lazy, language. As the field develops, new techniques and approaches are continually 
being developed; a good place to start in learning about these is the proceedings of 
two summer schools in Advanced Functional Programming (Jeuring and Meijer 1995; 
Launchbury, Meijer and Sheard 1996). To see the ways in which functional langauges 
are being used in education, the proceedings of a meeting on Functional Languages 
in Education appear in Hartel and Plasmeijer (1995a), and these have been followed 
up with the creation of the FPLE Web site mentioned above. Research in functional 
programming is reported in the Journal of Functional Programming 

and at the annual International Conference in Functional Programming (Hudak and 
Queinnec 1998), as well as at other meetings detailed at the Web sites mentioned 
above. 

It is difficult to predict future directions in a field like computing, but it is clear 
that one fruitful direction for functional programming is in  forming a component of 
larger systems. The Fran system (Elliott and Hudak 1997) uses a functional language 
to describe animations which are ultimately produced at a lower level using a lihrary 
written in C++. The opening up of functional systems, so that it is no longer a choice 
of 'either functional or non-functional, but not both', means that functional languages 
can take their place in the programmer's toolkit of techniques and prove their worth 
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alongside object-oriented and other languages. This opening up is enabled by systems 
such as HIDirect (Finne et al. 1998) and ActiveHaskell, which links Haskell to COM 
components; details of this can be found on the (libraries) Web page. 

Another direction is in strengthening type systems for functional languages, so 
that only terminating programs can be written. At first sight this seems to exclude too 
many programs to be practical, but with 'co-data' (Turner 1995). and dependent types 
- where the type of a result depends upon the value of an argument (Augustsson 1998) 
- it appears that practical languages can be defined. The advantage of languages like 
these is that they make reasoning much more straightforward, as well as allowing a 
programmer to express more of their intuitions about how a program behaves as a part 
of the program. This text has already shown how a strongly typed language allows for 
the capture of many errors at compile time, and strengthening the type system can only 
help this. 

A third issue is that of providing tool support for developers of functional programs. 
As was evident in the discussion of lazy evaluation, it is often very difficult indeed to 
predict the space behaviour of lazy programs; interesting work on this is reported in 
Runciman and Riijemo ( 1  996). 

These are only three of the possible directions for functional languages, and it is clear 
that they provide a fertile approach to programming which will remain an important 
element of computing science in years to come. 



Functional, imperative 
and 00 programming 

In this appendix we compare programming in Haskell to more traditional notions in 
imperative languages like Pascal and C and object-oriented (00) languages such as C t t  
and Java. 

Values and states 

Consider the example offinding the sum of squares of natural numbers up to a particular 
number. A functional program describes the values that are to be calculated, directly. 

sumsquares : :  Int -> Int 
sumsquares 0 = 0 
sumsquares n = n*n + sumsquares (n-1) 

These equations state what the sum of squares is for a natural number argument. In the 
first case it is a direct description; in the second it states that the sum to non-7,ero n i s  
got by finding the sum to n-l and adding the square of n. 

A typical imperative program might solve the problem thus 

s :=  0 ; 
i :=  0 . 
while i<n do begin 

i := i+l ; 

s := i*i + s ; 

end {while) 

The sum is the final value of the variable s, which is changed repeatedly during program 
execution, as is the 'count' variable, i. The effect of the program can only be seen 
by following the sequence of changes made to these variables by the commands in the 
program, while the functional program can be read as a series of equations defining 
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the sum of squares. This meaning is explicit in the functional program, whereas the 
imperative program has an overall effect which is not obvious from the program itself. 

A more striking algorithm still is one which is completely explicit: 'to find the sum of 
squares, build the list of numbers 1 to n, square each of them, and sum the result'. This 
program, which uses neither complex control flow, as does the imperative example, nor 
recursion as seen in the function sumsquares, can be written in a functional style, thus: 

newSumSq : :  I n t  -> I n t  
newSumSq n = sum (map square [I . . nl ) 

where square x = x*x, the operation map applies its first argument to every member 
of a list, and sum finds the sum of a list of numbers. More examples of this sort of 
data-directed programming can be seen in the body of the text. 

Functions and variables 

An important difference between the two styles is what is meant by yome of the 
terminology. Both 'function' and 'variable' have different interpretations. 

As was explained earlier, a function in a functional program is simply something 
which returns a value which depends upon some inputs. In imperative and object- 
oriented languages like Pascal, C, C++ and Java a function is rather different. It will 
return a value depending upon its arguments, but in general it will also change the 
values of variables. Rather than being a pure function it is really a procedure which 
returns a value when it terminates. 

In a functional program a variable stands for an arbitrary or unknown value. Evcry 
occurrence of a variable in an equation is interpreted in the same way. They are just 
like variables in logical formulas, or the mathematical variables familiar from equations 
like 

a2 - b2 = (a-b) (a+b) 

In any particular case, the value of d l  three occurrences of a will be the same. In exactly 
the same way, in 

all occurrences of n will be interpreted by the same value. For example 

The crucial motto is 'variables in functional programs do not w r y ' .  
On the other hand, the value of a variable in an imperative program changes through- 

out its lifetime. In the sum of squares program above, the variable s will take the values 
0,1,5,. . . successively. Variables in imperative programs do vary over time, on the 
other hand. 
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Program verification 

Probably the most important difference between functional and imperative programs 
is logical. As well as being a program, a functional definition is a logical equation 
describing a property of the function. Functional programs are self-describing, as it 
were. Using the definitions, other properties of the functions can be deduced. 

To take a simple example, for all n>O, it is the case that 

To start with, 

which is greater than 0. In general, for n greater than zero, 

Now. n*n is positive, and if sumsquares (n-1) is positive, their sum, sumsquares 
n, must be. This proof can he formalized using mathematical induction. The body of 
the text contains numerous examples of proofs by induction over the structure of data 
structures like lists and trees, as well as over numbers. 

Program verification is possible for imperative programs as well, but imperative 
programs are not self-describing in the way functional ones are. To describe the effect 
of an imperative program, like the 'sum of squares' program above, we need to add 
to the program logical formulas or assertions which describe the state of the program 
at various points in its execution. These methods are both more indirect and more 
difficult, and verification seems very difficult indeed for 'real' languages like Pascal 
and C. Another aspect of program verification is program transformation in which 
programs are transformed to other programs which have the same effect but better 
performance, for example. Again, this is difficult for traditional imperative languages. 

Records and tuples 

In Chapter 5 the tuple types of Haskell are introduced. In particular we saw the detinition 

type Person = (String,String,Int) 

This compares with a Pascal declaration of a record 

type Person = record 
name : String; 
phone : String; 
age : Integer 

end ; 

which has three fields which have to be named. In Haskell the fields of a tuple can 
be accessed by pattern matching, but it is possible to define functions called selectors 
which behave in a similar way, if required: 
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name : :  Person -> String 
name (n,p,a) = n 

and so on. If per : : Person then name per : : String, similarly to r. name being 
a string variable if r is a variable of type Person in Pascal. 

Haskell 98 also contains records with named fields, rather more like those of Pascal. 
For further details, see the Haskell Report (Peyton Jones and Hughes 1998). 

Lists and pointers 

Haskell contains the type of lists built in, and other recursive types such as trccs can 
be defined directly. We can think of the type of linked lists given by pointers i n  Pascd 
as an implementation of lists, since in Haskell it is not necessary to think of pointer 
values, or of storage allocation ( new and dispose) as i t  is i n  Pascal. Indeed, we can 
think of Haskell programs as designs for Pascal list programs. If we define 

type list = ^node; 
type node = record 

head : value; 
tail : list 

end ; 

then we have the following correspondence, where the Haskell head and tail functions 
give the head and tail of a list. 

[ 1 
head ys 
tail ys 
(x:xs) 

nil 
ys* .head 
ys' .tail 
cons (x, xs) 

The function cons in Pascal has the definition 

function cons(y:value;ys:list):list; 
var xs:list; 
begin 
new(xs) ; 

xs-.head : =  y; 
xs-.tail := ys; 
cons := xs 

end ; 

Functions such as 

can then be transferred to Pascal in a straightforward way. 

function sumList(xs:list):integer; 
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begin 
if xs=nil 
then sumList : =  0 
else sumList := xsA.head + sumList(xs-.tail) 

end ; 

A second example is 

where we use cons in the Pascal definition of the function 

function doubleAll(xs:list):list; 
begin 
if xs=nil 
then doubleAll := nil 
else doubleAll := cons( 2*xse.head , doubleAll(xs-.tail) ) 

end ; 

If we define the functions 

function head(xs:list):value; function tail(xs:list):list; 
begin begin 
head := xs-.head tail := xs- .tail 

end ; end ; 

then the correspondence is even clearer: 

function doubleAll(xs:list):list; 
begin 
if xs=nil 
then doubleAl1 := nil 
else doubleAll := cons( 2*head(xs) , doubleAll( tail(xs) ) ) 

end ; 

This is strong evidence that a functional approach can be useful even if we are writing in  
an imperative language: the functional language can be the high-level design language 
for the imperative implementation. Making this separation can give us substantial help 
in finding imperative programs - we can think about the design and the lower level 
implementation sqmwrely ,  which makes each problem smaller, simpler and therefore 
easier to solve. 

Higher-order functions 

Traditional imperative languages give little scope for higher-order programming; Pas- 
cal, Java and C allow functions as arguments, so long as those functions are not 
themselves higher-order, but has no facility for returning functions as results. In C t t  
it is possible to return objects which represent functions by overloading the function 



Functional, imperative and 00 programming 447 

application operator! This underlies the genericity hailed in the C++ Standard Template 
Library, which requires advanced features of the language to implement functions like 
map and filter. 

Control structures like if -then-else bear some resemblance to higher-order func- 
tions, as they take commands, cl, c2 etc. into other commands, 

if b then c l  else c2 while b do c l  

just as map takes one function to another. Turning the analogy around, we can think of 
higher-order functions in Haskell as control structures which we can detine ourselves. 
This perhaps explains why we form libraries of polymorphic functions: they are the 
control structures we use in programming particular sorts of system. Examples in the 
text include libraries for building parsers (Section 17.5) and interactive 110 programs 
(Chapter 18), as well as the built-in list-processing functions. 

Polymorphism 

Again, this aspect is poorly represented in many imperative languages; the best we can 
do in Pasca l ,  say, is to use a text editor to copy and modify the list processing code 
from one type of lists for use with another. Of course, we then run the risk that the 
different versions of the programs are not modified in step, unless we are very careful 
to keep track of modifications, and so on. 

Polymorphism in Haskell is what is commonly known as generic polymorphism: 
the same 'generic' code works over a whole collection of types. A simple example is 
the function which reverses the elements in a list. 

Haskell classes support what is known as 'ad hoc' polymorphism, or in object- 
oriented terminology simply 'polymorphism', in which different programs implement 
the same operation over different types. An example of this is the Eq class of types 
carrying an equality operation: the way in which equality is checked is completely 
different at different types. Another way of viewing classes is as interfaces which 
different types can implement in different ways; in this way they resemble the interfaces 
of object-oriented languages like Java. 

As is argued in the text, polymorphism is one of the mechanisms which helps to 
make programs reusahl~ in Haskell; it remains to be seen whether this will also be true 
of advanced imperative languages. 

Defining types and classes 

The algebraic type mechanism of Haskell, explained in Chapter 14, subsumes various 
traditional type definitions. Enumerated types are given by algebraic types all of whose 
constructors are 0-ary (take no arguments); variant records can be implemented as alge- 
braic types with more then one constructor, and recursive types usually implemented 
by means of pointers become recursive algebraic types. 

Just as we explained for lists, Haskell programs over trees and so on can be seen as 
designs for programs in imperative languages manipulating the pointer implen~entations 
of the types. 
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The abstract data types, introduced in Chapter 16, are very like the abstract data 
types of Modula-2 and so on; the design methods we suggest for use of abstract data 
types mirror aspects of the object-based approach advocated for modern imperative 
languages such as Ada. 

The Haskell class system also has object-oriented aspects, as we saw in Section 14.6. 
It is important to note that Haskell classes are in some ways quite different from the 
classes of, for instance, C++. In Haskell classes are made up of types, which themselves 
have members; in C++ a class is like a type, in that it contains ob.jects. Because of this 
many of the aspects of object-oriented design in C++ are seen as issues of type design 
in Haskell. 

List comprehensions 

List comprehensions provide a convenient notation for iteration along lists: the ana- 
logue of a for loop, which can be used to run through the indices of an array. For 
instance, to sum all pairs of elements of xs and ys, we write 

The order of the iteration is for a value a from the list xs to be fixed and then forb to 
run through the possible values from ys; this is then repeated with the next value from 
xs. until the list is exhausted. Just the same happens for a nested for loop 

for i:=O to xLen-I do 
for j : =O to yLen-1 do 
write( x[il+y[jl ) 

where we fix a value for i while running through all values for j. 
In the for loop, we have to run through the indices; a list generator runs through the 

values directly. The indices of the list xs are given by 

[O . . length xs - I] 
and so a Haskell analogue of (twoFor) can be written thus: 

[ xs!!i + ys!!j I i <- [O . .  length xs - 11 , 
j <- [O . . length ys - 11 1 

if we so wish. 

Lazy evaluation 

Lazy evaluation and imperative languages do not mix well. In Pascal, for instance, 
we can write the function definition 

function succ(x : integer1:integer; 
begin 

y := y+l; 
succ := x+l 

end ; 
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This function adds one to its argument, but also has the side-effect of increasing y by 
one. If we evaluate f (y , succ(z))  we cannot predict the effect it will have. 

I f f  evaluates its second argument first, y will be increased before being passed to f ;  

on the other hand, i f f  needs its first argument first (and perhaps its second argument 
not at all), the value passed to f will not be increased, even if i t  is increased before 
the function call terminates. 

In general, it will not be possible to predict the behaviour of even the simplest programs. 
Since evaluating an expression can cause a change of the state, the order of expression 
evaluation determines the overall effect of a program, and so a lazy implementation can 
behave differently (in unforeseen ways) from the norm. 

State, infinite lists and monads 

Section 17.6 introduced infinite lists, and one of the first examples given there was an 
infinite list of random numbers. This list could be supplied to a function requiring a 
supply of random numbers; because of lazy evaluation, these numbers will only be 
generated on demand. 

If we were to implement this imperatively, we would probably keep in a variable the 
last random number generated, and at each request for a number we would update this 
store. We can see the infinite list as supplying all the values that the var-iahle will ttrke 
as a single structure; we therefore do not need to keep the state, and hence have an 
abstraction from the imperative view. 

We have seen in Section 18.8 that there has been recent important work on integrating 
side-effecting programs into a functional system by a monadic approach. 

Conclusion 

Clearly there are parallels between the functional and the imperative, as well as clear 
differences. The functional view of a system is often higher-level, and so even i f  we 
ultimately aim for an imperative solution, a functional design or prototype can be most 
useful. 

We have seen that monads can be used to give an interface to imperative features 
within a functional framework. Many of the Haskell implementations offer these 
facilities, and so give a method of uniting the best features of two important prograln- 
ming paradigms without compromising the purity of the language. Other languages. 
including Standard ML (Milner, Tofte and Harper 1990), combine the functional and 
the imperative, but these systems tend to lose their pure functional properties in  the 
process. 

It is interesting to see the influence of ideas from modern functional programming 
languages in the design of Java extensions. One of the main drawbacks of Java is that i t  
lacks a generic mechanism; the Pizza language (Odersky and Wadler 1997) adds this, 
together with Haskell-style pattern matching, and Pizza is a forerunner of the Generic 
Java extension, GJ, www. cs . bell-labs . com/who/wadler/pizza/gj/. 
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Glossary 

We include this glossary to give a quick reference to the most widely used terminology in 
the book. Words appearing in bold in the descriptions have their own entries. Further 
references and examples are to be found by consulting the index. 

Abstract type An abstract type 
definition consists of the type name, the 
signature of the type, and the 
implementation equations for the names 
in the signature. 

Algebraic type An algebraic type 
definition states what are the 
constructors of the type. For instance, 
the declaration 

data Tree = Leaf Int I 
Node Tree Tree 

says that the two constructors of the Tree 
type are Leaf and Node, and that their 
types are, respectively, 

Leaf : :  Int->Tree 
Node : :  Tree->Tree->Tree 

Application This means giving values 
to (some of) the arguments of a function. 
If an n-argument function is given fewer 
than n arguments, this is called a partial 
application. Application is written using 
juxtaposition. 

Argument A function takes one or 
more arguments into an output. 

Arguments are also known as inputs and 
parameters. 

Associativity The way in which an 
expression involving two applications of 
an operator is interpreted. If x#y#z is 
interpreted as (x#y)#z then # is left 
associative, if as x#(y#z) it is right 
associative; if both bracketings give the 
same result then # is called associative. 

Base types The types of numbers, 
including Int  and Float, Booleans. 
Bool, and characters, Char. 

Binding power The 'stickiness' of an 
operator, expressed as an integer; the 
higher the number the stickier the 
operator. For example, 2+3*4 is 
interpreted as 2+ (3*4) as '*' has higher 
binding power - binds more tightly - 
than '+'. 

Booleans The type containing the two 
'truth values' True and False. 

Calculation A calculation is a 
line-by-line evaluation of a Haskell 
expression on paper. Calculations use 
the definitions which are contained in a 
script as well as the built-in definitions. 
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Cancellation The rule for finding the 
type of a partial application. 

Character A single letter, such as s ' 
or '\t ', the tab character. They form the 
Char type. 

Class A collection of types. A class is 
defined by specifying a signature; a type 
is made an instance of the class by 
supplying an implementation of the 
definitions of the signature over the type. 

Clause A clause is one of the 
alternatives making up a conditional 
equation. A clause consists of a guard 
followed by an expression. When 
evaluating a function application, the first 
clause whose guard evaluates to True is 
chosen. 

Combinator Another name for a 
function. 

Comment Part of a script which plays 
no computational role; it is there for the 
reader to read and observe. Comments 
are specified in two ways: the part of the 
line to the right is made a comment by the 
symbol --; a comment of arbitrary length 
is enclosed by ( -  and -1. 

Complexity A measurement of the time 
or space behaviour of a function. 

Composition The combination of two 
functions by passing the output of one to 
the input of the other. 

Concatenate To put together a number 
of lists into a single list. 

Conditional equation A conditional 
equation consists of a left-hand side 
followed by a number of clauses. Each 
clause consists of a guard followed by an 
expression which is to be equated with 
the left-hand side of the equation if that 
particular clause is chosen during 
evaluation. The clause chosen is the first 
whose guard evaluates to True. 

Conformal pattern match An 
equation in  which a pattern appears on 
the left-hand side of an equation, as in 

Constructor An algebraic type is 
specified by its constructors, which are 
the functions which build elements of the 
algebraic type. 

In the example in  the entry for 
algebraic types, elements of the type are 
constructed using Leaf and Node; the 
elements are Leaf n where n : : I n t  and 
Node s t where s and t are trees. 

Context The hypotheses which appear 
before => in type and class declarations. 
A context M a means that the type a must 
belong to the class M for the function or 
class definition to apply. For instance. to 
apply a function of type 

Eq a => [a] -> a -> Boo1 

to a list and object, these must come from 
types over which equality is defined. 

Curried function A function of at least 
two arguments which takes its arguments 
one at a time, so having the type 

in contrast to the uncurried version 

The name is in  honour of Haskell B. 
Curry, after whom the Haskell language 
is also named. 

Declaration A definition can be 
accompanied by a statement of the type 
of the object defined; these are often 
called type declarations. 

Default A default holds in the absence 
of any other definition. Used in  class 
definitions to give definitions of some of 
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the operations in terms of others; an 
example is the definition of /= in the Eq 
class. 

Definition A definition associates a 
value or a type with a name. 

Design In writing a system, the effort 
expended hej2)r.e implementation is 
started. 

Derived class instance An instance of 
a standard class which is derived by the 
system, rather than put in explicitly by 
the programmer. 

Enumerated type An algebraic type 
with each constructor having no 
arguments. 

Equation A definition in Haskell 
consists of a number of equations. On the 
left-hand side of the equation is a name 
applied to zero or more patterns; on the 
right-hand side is a value. In many cases 
the equation is conditional and has two 
or more clauses. Where the meaning is 
clear we shall sometimes take 'equation' 
as shorthand for 'equation or conditional 
equation'. 

in which the operator '-' is applied to 
two arguments. 

Extensionality The principle of proof 
which says that two functions are equal if 
they give equal results for every input. 

Filter To pick out those elements of a 
list which have a particular property. 
represented by a Boolean-valued 
function. 

Floating-point number A number 
which is given in decimal (e.g. 456.23) 
or exponent (e.g. 4.5623e+2) form: 
these numbers form the type Float .  

Fold To combine the elements of a list 
using a binary operation. 

Forward composition Used for the 
operator '>. >' with the definition 

f >.> g c a n b e r e a d ' f  theng' .  

Function A function is an object which 
returns a value, called the output or 
result when it is applied to its inputs. 
The inputs are also known as its 
parameters or arguments. 
Examples include the square root 
function, whose input and output are 

Evaluation Every expression in numbers, and the function which returns 
H~iskell has a value; evaluation is the the borrowers (output) or a book (input, 
process of finding that value. A in a database (input). 
calculation evaluates an expression, as 
does an interactive Haskell svstenl when Function types The tYPc of a function 

that expression is typed to the prompt. 

Export The process of defining which 
definitions will be visible when a module 
1s imported by another. 

Expression An expression is formed by 
applying a function or operator to its 
arguments; these argument., can be literdl 
values, or expressions themselves. A 
simple numerical expression is 

(2+8) -10 

is a function type. so that, for instance. 
the function which checks whether its 
integer argument is even has type 
Int->Bool. This is the type of functions 
with input type I n t  and output type 
Bool. 

Generalization Replacing an object by 
something of which the orjgjnt)J object j.s 

an instance. 
This might be the replacement of a 

function by a polymorphic function from 
which the original is obtained by passing 
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the appropriate parameter, or replacing a 
logical formula by one which implies the 
original. 

Guard The Boolean expression 
appearing to the right of ' I ' and to the 
left of '=' in a clause of a conditional 
equation in a Haskell definition. 

Higher-order function A function is 
higher-order if either one of its 
arguments or its result, or both, are 
functions. 

Identifier Another word for name. 

Implementation The particular 
definitions which make a design 
concrete; for an abstract data type, the 
definitions of the objects named in the 
signature. 

Import The process of including the 
exported definitions of one module in 
another. 

Induction The name for a collection of 
methods of proof, by which statements of 
the form 'for all x . . . ' are proved. 

Infix An operation which appears 
between its arguments. lntix functions 
are called operators. 

Inheritance One class inherits the 
operations of another if the tirst clas\ is in 
the context of the detinition of the 
sccond. For instance, of the standard 
classes, Ord inherits (in)equality from Eq. 

Input A function takes one or more 
inputs into an output. Inputs are also 
known as arguments and parameters. 
The 'square' function takes a single 
nun~erical input. for instance. 

Instance The term 'instance' is used in 
two different ways in Haskell. 

An instance of a type is a type which is 
given by substituting a type expression 
for a type variable. For example, 

[(Bool , b)] is an instance of [a], given 
by substituting the type (Bool, b) for the 
variable a. 

An instance of a class, such as Eq 
(a ,  b), is given by declaring how the 
function(s) of the class, in this case ==, 
are defined over the given type (here 
(a ,  b)). Here we would say 

Integers The positive and negative 
whole numbers. In Haskell the type I n t  
represents the integers in a fixed size, 
while the type Integer represents them 
exactly, so that evaluating 2 to the power 
1000 will give a result consisting of some 
three hundred digits. 

Interactive program A program 
which reads from and writes to the 
terminal; reading and writing will be 
interl~avrd,  in general. 

Interface The common information 
which is shared between two program 
modules. 

Juxtaposition Putting one thing next to 
another; this is the way in which I'unction 
application is written down in Haskell. 

Lambda expression An expression 
which denotes a function. After a '\' we 
list the arguments of the function, then an 
'->' and then the result. For inslance, t o  
add a number to the length of a list we 
could write 

\xs n -> length xs + n 

The term 'lambda' is used since '\' is 
close to the Greek letter 'A', or lambda, 
which is used in a similar way in 
Church's lambda calculus. 

Lazy evaluation The sort of expression 
evaluation in Haskcll. In a function 
application only those arguments whosc 
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values are needed will be evaluated, and 
moreover, only the parts of structures 
which are needed will be examined. 

Linear complexity Order 1, 0 (nl 1, 
behaviour. 

Lists A list consists of a collection of 
elements of a particular type, given in 
some order, potentially containing a 
particular item more than once. The list 
[2 ,  I ,  3 ,23 is of type [ In t l  . for 
example. 

Literal Something that is 'literally' a 
valuc: it needs no evaluation. Examples 
include 34, [23] and " s t r i ng" .  

Local definitions The definitions 
appearing i n  a where clause or a l e t  
expression. Their scope is the equation or 
expression to which the clause or l e t  is 
attached. 

Map To apply an operation to every 
element of a list. 

Mathematical induction A method of 
proof for statements of the form 'for all 
natural numbers n, the statement P(n) 
holds'. 

The proof is in two parts: the base 
case, at zero, and the induction step, at 
which P(n) is proved on the assumption 
that P (n-I) holds. 

Memoization Keeping the value of a 
sub-computation (in a list, say) so that it 
can be reused rather than recomputed, 
when it is needed. 

Module Another name for a script; 
used particularly when more than one 
script is used to build a program. 

Monad A nionad consists of a type 
with (at least) two functions, r e tu rn  and 
>>=. Informally, a nionad can be seen as 
performing some sorts of action before 
returning an object. The two monad 
functions respectively return a value 

without any action, and sequence two 
monadic operations. 

Monomorphic A type is 
monomorphic if it is not polymorphic. 

Most general type The most general 
type of an expression is the type t with 
the property that every other type for the 
expression is an instance o f t .  

Mutual recursion Two definitions, 
each of which depends upon the other. 

Name A definition associates a name or 
identifier with a value. Names of classes. 
constructors and types must begin with 
capital letters; names of values, 
variables and type variables begin with 
small letters. After the first letter, any 
letter, digit, ' ' '  or T can be used. 

Natural numbers The non-negative 
whole numbers: 0, 1, 2, . . . . 

Offside rule The way in which the end 
of a part of a definition is expressed using 
the l qou t  of a script, rather than an 
explicit symbol for the end. 

Operation Another name for function. 

Operator A function which is written 
i n  infix form, between its arguments. 
The function f is made infix thus: 'f '. 

Operator section A partially applied 
operator. 

Output When a function is applied to 
one or more inputs, the resulting value is 
called the output, or result. Applying the 
'square' function to (-2) gives the 
output 4, for example. 

Overloading The use of the same 
name to mean two (or more) different 
things, at different types. The equality 
operation, ==, is an example. 
Overloading is supported i n  Haskell by 
the class mechanism. 
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Parameter A function takes one or 
more parameters into an output. 
Parameters are also known as arguments 
and inputs. and applying a function to its 
inputs is sometimes known as 'passing its 
parameters'. 

Parsing Revealing the structure of a 
sentence in a formal language. 

Partial application A function of type 
t i - > t 2 - > .  . . -> tn-> t  can be applied to 
n arguments, or less. In the latter case, 
the application is partial, since the result 
can itself be passed further parameters. 

Pattern A pattern is either a variable, a 
literal, a wild card or the application of a 
constructor to other patterns. 

The term 'pattern' is also used as short 
for a 'pattern of computation' such as 
'applying an operation to every member 
of a list', a pattern which in Haskell is 
realised by the map function. 

Polymorphism A type is polymorphic 
if it contains type variables; such a type 
will have many instances. 

Prefix An operation which appears 
before its arguments. 

Primitive recursion Over the natural 
numbers, defining the values of a 
function outright at zero, and at n greater 
than zero using the value at n-1. 
Over an algebraic type defining the 
function by cases over the constructors; 
recursion is permitted at arguments to a 
constructor which are of the type in 
question. 

Proof A logical argument which leads 
us to accept a logical statement as being 
valid. 

Pure programming language A 
functional programming language is pure 
if i t  does not allow side-effects. 

Quadratic complexity Order two, 
0 (n2), behaviour. 

Recursion Using the name of a value or 
type in its own definition. 

Result When a function is applied to 
one or more inputs, the resulting value is 
called the result, or output. 

Scope The area of a program in which a 
definition or definitions arc applicable. 
In Haskell the scope of top-level 
definitions is by default the whole script 
in which they appear; it may be extended 
by importing the module into another. 
More limited scopes are given by local 
definitions. 

Script A script is a file containing 
definitions, declarations and module 
statements. 

Set A collection of objects for which 
the order of elements and the number of 
occurrences of each element are 
irrelevant. 

Side-ef'fect In a language like Pascal, 
evaluating an expression can cause other 
things to happen besides a value being 
computed. These might be 110 
operations, or changes in values stored. 
In Haskell this does not happen, but a 
monad can be used to give a similar 
effect, without compromising the simple 
model of evaluation underlying the 
language. Examples are I0 and S t a t e .  

Signature A sequence of type 
declarations. These declarations state 
what are the types of the operations (or 
functions) over an abstract type or a 
class which can be used to manipulate 
elements of that type. 

Stream A stream is a channel upon 
which items arrive in sequence; in 
Haskell we can think of lazy lists in this 
way, so it becomes a synonym for lazy 
list. 
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String The type String is a synonym 
for lists of characters, [Char]. 

Structural induction A method of 
proof for statements of the form 'for all 
finite lists xs, the statement P(xs) holds 
of xs'. The proof is in two parts: the base 
case, at [I ,  and the induction step, at 
which P(y:ys) is provedon the 
assumption that P (ys) holds. 
Also used of the related principle for any 
algebraic type. 

Substitution The replacement of a 
variable by an expression. For example, 
(9+12) is given by substituting 12 for n 
in (9+n). Types can also be substituted 
for type variables; see the entry for 
instance. 

Synonym Naming a type is called a 
type synonym. The keyword type is 
used for synonyms. 

Syntax The description of the properly 
formed programs (or sentences) of a 
language. 

Transformation Turning one program 
into another program which computes 
identical results, but with different 
behaviour in other respects such as time 
or space efficiency. 

Tuples A tuple type is built up from a 
number of component types. Elements of 
the type consist of tuples of elements of 
the component types, so that 

for instance. 

Type A collection of values. Types can 
be built from the base types using tuple, 

list and function types. New types can 
be defined using the algebraic and 
abstract type mechanisms, and types can 
be named using the type synonym 
mechanism. 

Type variable A variable which 
appears in a polymorphic type. An 
identifier beginning with a small letter 
can be used as a type variable; in this text 
we use the letters at the start of the 
alphabet, a, b, c and so on. 

Undefinedness The result of an 
expression whose evaluation continues 
forever, rather than giving a dejned 
result. 

Unification The process of finding a 
common instance of two (type) 
expressions containing (type) variables. 

Value A value is a member of some 
type; the value of an expression is the 
result of evaluating the expression. 

Variable A variable stands for an 
arbitrury value, or in the case of type 
variables, an arbitrary type. Variables and 
type variables have the same syntax as 
names. 

Verification Proving that a function or 
functions have particular logical 
properties. 

Where clause Definitions local to a 
(conditional) equation. 

Wild card The name for the pattern '_', 

which is matched by any value of the 
appropriate type. 
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The Haskell operators are listed below in decreasing order of binding power: see Section 
3.7 for a discussion of associativity and binding power. 

Left associative Non-associative Right associative 

8 **, 
7 *, /, 'div', 

'mod', 'rem', 
'quot ( 

6 +, - : + 
5 \ \ 
4 /=, < 9 <= I ,  == 

>, >=, 'elem', 
' notElem ' 

3 && 
2 I I 
1 >>, >>= . - - 

Also defined in this text are the operators 

The restrictions on names of operators, which are formed using the characters 

are that operators must not start with a colon; this character starts an infix constructor. 
The operators - and ! can be user-defined, but note that they have a special meaning 
in certain circumstances -the obvious advice here is not to use them. Finally, certain 
combinations of symbols are reserved, and cannot be used: . . : : => = Q \ I <- 
->. 
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To change the associativity or binding power of an operator, &&& say, we make a 
declaration like 

which states that &&& has binding power 7, and is a left associative operator. We 
can also declare operators as non-associative ( inf ix)  and right associative (inf ixr). 
Omitting the binding power gives a default of 9. These declarations can also be used 
for back-quoted function names, as in 

i n f i x  0 'poodle' 
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Understanding 
programs 

This appendix is included to offer help to readers confronted with a n  unfamiliar function 
definition. There are various things we can do with the definition, and these are examined 
in turn here. Given a functional program like 

mapwhile : :  (a -> b) -> (a -> Bool) -> [a] -> [bl 

mapwhile f p [I = [I 
mapwhile f p (x:xs) 

I P x  = f x : mapwhile f p xs 
1 otherwise = [I 

we can understand what it means in various complementary ways. We can read the 
program itself, we can write calculations of examples using the program, we can prove 
progertiPs~ofthe_p~oq-amL and we - - can - - estimate - its space and time complexity, 

- - - - -  - - - - - - - - - - - - - - - 

Reading the program 

Besides any comments which might accompany a program, the program itself is its 
most important documentation. 

The type declaration gives information about the input and output types: formapwhile, 
we have to supply three arguments: 

s function, f say, of arbitrary type. a -> b; 

a property of objects of type a; that is a function taking an a to a Boolean value; 
and, 

a list of items of type a. 

The output is a list of elements of type b - the output type of f .  
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The function definition itself is used to give values of mapwhile, but also can be read 
directly as a description of the program. 

On [I. the result is [ I .  
On a non-empty list. if the head x has property p, then according to (mapwhile . 2 ) .  
we have f x as the first element of the result, with the remainder given by a recursive 
call on xs. 

If the property p fails of x, the result is terminated, as it were, by returning the empty 
list [I . 

In the definition we have a complete description of how the program behaves. but we 
can animate this by trying specific examples. 

Calculating with the program 

A more concrete view of what the progritnl does is given by calculating particular 
examples. For instance, 

Other examples include 

Note that in thcse exanlples we use mapwhile at the instance 

(Int -> Int) -> (Int -> Bool) -> [~ntl -> [Intl 

of its polymorphic type, given by replacing the type variables a and b by the type I n t .  

Reasoning about the program 

We can get a deeper understanding about a program by proving properties that the 
program might have. For mapwhile, we might prove that for all f ,  p and finite lists xs. 

mapwhile f p xs = map f (takemile p xs) (mapWhile.4) 
mapwhile f (const True) xs = map f xs (mapmile. 5) 
mapwhile id p xs = takewhile p xs (mapmile. 6) 

where we can, in fact, see (mapwhile. 5) and (mapwhile. 6) as consequences of the 
characterization of mapwhile given by property (mapwhile. 4). 
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Program behaviour 

It i \  not hard to see that the program will at worst take time linear (that is 0 (n l )  ) i n  the 
length (n) of the list argument assuming 0 (no) behaviour o f f  and p. as it runs through 
the elements of the list once, if at all. 

The space behaviour is more interesting; becau\e we can output the head of a list 
once produced. the space required will be constant, a\ suggested by underlining thc 
parts which can be output in the calculation above. 

Getting started 

Each view of the program gives us a different understanding of its behaviour, but when 
we are presented with an unfamiliar delinition we can begin to understand what its cffect 
is by calculating various s~nall  examples. If we are given a collection of function\, we 
can test out the functions from the bottom up, building one calculation on top of anotlier. 

The important thing is to realize that rather than being ,tuck, we can get started by 
calculating representative examples to show us the way. 
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Implementations of 

Implementations of Haskell have been built at various sites around the world. This text 
discusses the Hugs interpreter, which was developed in a joint effort by staff at the 
Universities of Nottingham in the UK and Yale in the USA. Compilers have been developed 
at the University of Glasgow, UK, and Chalmers Technical University, Goteborg, Sweden. 

Hugs 

Hugs is available from 

For the Unix version of Hugs you should follow the installation notes. 

/' 

Note: Downloading Hugs for Windows 

If you want to download the standard installation of Hugs which will set up the 
appropriate registry entries, you should download one of the 

selfinstall.exe 
self install. zip 

tiles which will run an InstallShield script to make the appropriate settings and so 
on. If you download the binaries, you will have to make these settings and so 
forth for yourself. 

You can choose to set the default editor for Hugs. The most straightforward way of 
doing this under Windows is to run WinHugs and to change the settings there. These 
changes persist to future invocations of both Hugs and WinHugs. The Programmer's 
File Editor is a freely available editor for Windows systems: 
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http: //www . lancs . ac .uk/people/cpaap/pf e/ 
For the Macintosh, there is a port of Hugs 1.4 to the Power Macintosh OS at 

which has been made by Hans Aberg. 
The developers of Hugs recommend it as a Haskell program development system 

because of its fast compilation cycle, but it cannot offer the speed of execution of the 
various compilers. 

Other Haskell systems 

These include the Glasgow Haskell compiler 

http://www.dcs.gla.ac.uk/fp/software/ghc/ 

developed at the University of Glasgow, the HBCIHBI system 

http://www.cs.chalmers.se/"augustss/hbc/hbc.html 

developed at Chalmers Technical University. NHC 13 

http://www.cs.york.ac.uk/fp/nhcl3/ 

is a 'lightweight' compiler designed with implementation experimentation in mind. 

Further information 

Up-to-date information about future developments of these and any other implementa- 
tions will be available from the Haskell home page, 
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This appendix examines some of the more common programming errors in Haskell, and 
shows the error messages to which they give rise in Hugs. 

The programs we write all too often contain errors. On encountering an error, the 
system either halts, and gives an error message, or continues, but gives a warning 
message to tell us that something unusual has happened, which might signal that we 
have made an error. In this appendix, we look at a selection of the messages output 
by Hugs; we have chosen the messages which are both common and require some 
explanation; messages like 

Program e r r o r  : (head [I 1 

are self-explanatory. The messages are classified into roughly distinct areas. Syntax errors 
show up malformed programs, while type errors show well-formed programs in which 
objects are used at the wrong types. In fact, an ill-formed expression can often show 
itself as a type error and not as a syntax error, so the boundaries are not clear. 

Syntax errors 

A Haskell system attempts to match the input we give to the syntax of the language. 
Commonly, when something goes wrong, we type something unexpected. Typing 
'2==3)' will provoke the error message 

ERROR: Syntax error in input (unexpected ' ) I )  

If a part of a definition is missing, as in 

fun x 
fun 2 = 34 

we receive the message 

Syntax error in declaration (unexpected ' ; ' I  

The ' ; '  here is an indication of the end of a definition - the error message therefore 
tells u s  that a definition has been ended unexpectedly, as there is no right-hand side 
corresponding to the fun x. 
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The inclusion of a type definition in a where clause is signalled by 

Syntax e r r o r  i n  dec l a r a t i on  (unexpected keyword "type") 

The syntax of patterns is more restricted than the full expression syntax, and so we get 
error messages like 

Repeated va r i ab l e  "x" i n  p a t t e r n  

when we use the same variable more than once within a pattern. 
In specifying constants, we can make errors: floating-point numbers can be too large, 

and characters specified by an out-of-range ASCII code: 

Inf . 0 
ERROR: Decimal charac te r  escape out of range 

Not every string can be used as a name; some words in Haskell are keywords or 
reserved identifiers, and will give an error if used as an identifier. The keywords are 

case c l a s s  d a t a  de fau l t  der iv ing  do e l s e  i f  import i n  i n f i x  
i n f i x 1  i n f i x r  ins tance  l e t  module newtype of then  type where 

The special identifiers as,  q u a l i f i e d  and h id ing  have special meanings in certain 
contexts but can be used as ordinary identifiers. 

The final restriction on names is that names of constructors and types must begin 
with a capital letter; nothing else can do so, and hence we get error messages like 

Undefined cons t ruc tor  func t ion  "Montana" 

if we try to define a function called Montana. 

Type errors 

As we have seen in the body of the text, the main type error we meet is exemplified by 
the response to typing ' c J  && True to the Hugs prompt: 

ERROR: Type e r r o r  i n  app l i ca t i on  
*** expression : ' c '  && True 
*** term : ' c '  
*** type : Char 
*** does not match : Bool 

which is provoked by using a Char where an Bool is expected. Other type errors, such 
as 

True + 4 

provoke the error message 

ERROR: Bool is  not an ins tance  of c l a s s  "Num" 
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This comes from the class mechanism: the system attempts to make Bool an instance 
of the class Num of numeric types over which '+' is defined. The error results since 
there is no such instance declaration making Bool belong to the class Num. 

As we said before, we can get type errors from syntax errors. For example, writing 
a b s  -2 instead of abs  (-2) gives the error message 

ERROR: a -> a is no t  an i n s t a n c e  of c l a s s  "Num" 

because i t  is parsed as 2 subtracted from a b s :  :a->a, and the operator '-' expects 
something in the class Num, rather than a function of type a->a. Other common type 
errors come from confusing the roles of ' : ' and '++' as in 2++ [21 and [21 : [21. 

We always give type declarations for our definitions; one advantage of this is to spot 
when our definition does not conform to its declared type. For example. 

mycheck : :  I n t  -> Bool 
mycheck n = o r d  n == 6 

gives the error message 

ERROR " e r r o r . h s M  ( l i n e  8 ) :  Type e r r o r  i n  f u n c t i o n  b ind ing  
*** t e r m  : mycheck 
*** t y p e  : Char -> Boo1 
*** does  n o t  match : I n t  -> Bool 

Without the type declaration the definition would be accepted, only to give an error 
(presumably) when i t  is used. A tinal error related to types is given by definitions like 

t y p e  Fred = (Fred,  I n t )  (Fred) 

a recursive type synonym; thew are signalled by 

ERROR " e r r o r . h s N  ( l i n e  11): Recurs ive  t y p e  synonym "Fred" 

The effect of (Fred) can be modelled by the algebraic type definition 

d a t a  Fred = Node Fred I n t  

which introduces the constructor Node to identify objects of this type. 

Program errors 

Once we have written a syntactically and type correct script, and asked for the value 
of an expression which is itself acceptable, other errors can be produced during the 
evaluation of the expression. 

The first class of errors comes from missing cases in definitions. If  we have written 
a definition like 

b a t  [I = 45 

and applied it to [34] we get the response 
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Program e r r o r :  (ba t  ( d i c t }  [Nun-Int-f romInt 341 ) 

which shows the point at which evaluation can go no further, since there is no case 
in the definition of ba t  to cover a non-empty list. Similar errors come from built-in 
functions, such as head. 

Other errorc happen because an arithmetical constraint has been broken. These 
include an out-of-range list index, division by Lero, using a fraction where an integer 
is expected and floating-point calculations which go out of range; the error messages 
all have the same form: 

Program e r r o r :  P r e ludeL i s t . !  ! :  index t oo  l a r g e  
Program e r r o r :  {primDivInt 3 0 )  

If we make a conformal definition. like 

this will fail with a lengthy message 

Program error: {b-v851-~850-v852 [I, 2, 31 ++ takewhile (flip (Ord-<= (dict}) 10) 
(-strict (numericEnumFrom (dictl) (Num-Int-+ 3 (Num-Int-fromInt 1)))) 

which reveals the implementation of this sort of definition. 
Evaluation in Haskell is by need. and so a script which uses a narnc with no 

corresponding definition for the name will not be i n  error; only if the value of that 
name is required, will we get the message 

ERROR: Undefined va r i ab l e  " ca t "  

Module errors 

The module and import statements can provoke a variety of error messages: files may 
not be present, or may contain errors: names may be included more than once, or an 
alias on inclusion may cause a name clash. The error message\ for these and other 
errors are self-explanatory. 

System messages 

In response to some commands and interrupts, the system generates messages. including 

signalling the interruption of the current task, 

ERROR: Garbage c o l l e c t i o n  f a i l s  t o  reclaim s u f f i c i e n t  space 

which shows that the space consumption of the evaluation exceeds that available. One 
way around this is to increase the s i ~ e  of the heap. To see the current s i ~ e  o f  thc heap 
and the other settings of the system type 
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The message given there shows how the heap size can be changed, as well as how to 
affect other system parameters. 

If the option +s is set, the system prints diagnostic information of the form 

(2  reductions, 8 cells) 

The number of reduct ions corresponds to the number of steps in our calculations and 
the cells to the total space usage. 

A measure of the space complexity of a function, as described in Chapter 19, is given 
by the size of the smallest heap in which the evaluation can take place; there is no direct 
measure of this given by the system. 
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different uses in Haqkell, 21 2 
of class, 2 12, 453 
of variable, 453 

instance,  215 
insTree. 3 17 
I n t ,  5, 6, 8, 35, 223 
Integer ,  35 
In tegra l ,  224 
intensionality, 194 
i n t e r ,  323 
i n t e r a c t ,  400 
interpace, 29 1, 300,447,453 
interpreter, 6 
inverse,  33 1 

invertchar ,  98, 18 1 
invertcolour ,  4,7,98. 154, 18 1 
i nve r t l i ne ,  98 
10, see I10 
10,385 
10. hs, 392,400 
i sDig i t ,  42, 157 
isEmptyQ, 304 
isEOF, 392 
isEven, I58 
isLef t ,  259 
i sNi l ,  3 I6 
isNode, 3 16 
iSor t ,  123, 155, 163, 218, 236, 351, 

419,426 
i sparent ,  327 
i s so r t ed ,  158 
i t e r ,  172, 193 
i t e r a t e ,  365 

Jemirna, Electric Aunt, 244 
join, 317 
jo in l ines ,  132 
j o inn, 406 
Jus t ,  262 
juxtaposition, 453 

key word, 465 
Kleisli composition, 403 

lambda calculus, 6 
lambda expression, 453 
lambda notation, 173 
l a s t ,  91 
layout, 47 

recommended, 48, 106 
lazy evaluation, 337-340, 448, 453 
Left ,  258 
l e f t  Sub, 3 16 
lengthaar, 228 
length, 87,90,9 1, 136, 144 
l e t ,  106,390.397 
. lhs ,  22 
l i m i t ,  328,329 
l i n e s ,  188 
l i s t ,  357 
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list comprehensions, 79-83, 97, 154, 
344-350,448 

calculation rules, 345 
generator, 80, 344 
infinite, 365 
infinite generators, 369 
library database, 85 
multiple generators, 344 
pitfalls, 86 
refutable patterns. 349 
syntax, 344 
test, 80, 344 

list of successes method, 352 
L i s t .  hs, 77,92,227 
lists, 13, 77-95, 454 

algebraic type of, 257 
and sets, 32 1 
approach taken, 77 
as Pascal type, 445 
as processes, 37 1, 43 1 
as sets, 477 
bisection ot; 4 15 
constructor, 1 17 
defined, 376 
defining functions, 1 15-1 33 
finite/partial, 377 
head, 1 17 
infinite, 139, 364-375, 378,449 

approximation to, 378 
why'!. 370 

minimum of, 35 1 
partial, 376 
partially defined, 1 39 
permutations, 347 
prelude functions, 90-92 
tail, 117 

l is tsums,  372 
L i t ,  250 
literal, 34, 454 

overloaded, 45 
literate script, 22 
l i t p a r s e ,  361 
: load, 23,24 
local definitions, 103-108, 172,454 

calculation, 342 
log, 224 

logBase, 224 
looking back, 203 
lookupFirst,  214 
lookupTable, 289 

Main, 282 
main, 282,387 
Main. l h s ,  296 
Main>. 23,27 
maincalc, 398 
makeBill, 110, 112 
makecodes, 294 
makeFunct ion, 368 
makeImage, 10 l 
makeIndex, 187 
makeLoan, 84,85 
makeset, 324 
makeTree, 294 
MakeTree . l h s ,  294 
map, 13, 156, 195, 196, 198,274,275 

deti ned using f o ldr ,  426 
type of, 157 

mapF, 496 
mapMaybe, 262,263 
mapName, 272 
mapping, 153,454 
mapset, 324 
mapTree, 25%. 274,275 
mapwhile, 459 
mathematical induction, 379,444,454 
Matrix, 349 
matrixproduct,  349 
max, 38,22 1 
maxBound, 222 
maximal common subsequence. 43 1 
maxlen, 432 
maxsq, 107 
maxTab, 432 
maxThree, 39,55,67 
Maybe, 262,276,405 
maybe, 262,263,276 
member, 177,238 
memberord, 366 
memoization, 429435,454 
memSet, 323 
mergesort, 293 
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middleNumber, 54,57 
min, 221 
minAndMax, 74 
minBound, 222 
minTree, 3 17 
Miranda, 439 
mLen, 432 
'mod', 457 
mod, 36,224 
modelling, 3 
module, 26,28 1,282,299, 301 
modules, 26, 280-284,454 

ADT via export list, 301 
errors, 467 
export list, 282 
import list, 283 
instance declarations, 322 
interface documentation, 288 
introduction, 26-27 
local name on import, 283 
structure diagram, 296 

monad, 40 1-4 1 1,449,454 
do notation, 402 
Maybe, 405 
advantages of monads, 4 12 
and imperative programming, 408 
as foreign function interface, 4 12 
definition, 402 
examples, 404 
failure in ( f a i l ) ,  403 
identity, 404 
list, 404 
parsing, 405 
properties, 403 
sequencing, 402 
state, 405, 409 
trees, 407 

monotype, 23 1 
Movable, 270 
moveImage, 10 1 
multiplicity, 32 1 
mult iply,  175, 179, 185 
multiplyUC, 185 
myNot, 34 
mysteryMax, 68, 137 

name, 8,49,376,454 
overloading of, 37 
qualified, 283 
type, 8 
value, 8 

Name, 272 
Named, 27 1 
NamedMovable, 273 
nbhrs, 352 
negate, 36,224 
newtype, 303 
N i l ,  258 
n i l ,  316 
Node, 258 
none, 356, 357 
not ,  33 
Nothing, 262 
NTree, 250,25 
nub, 227,333 
Num, 223 
numberNode, 4 
numbers 

Frac t iona l ,  224 
In t eg ra l ,  224 
Num, 223 
conversion between types, 45 
defined, 376 
floating point, 32, 4346,452 
floating-point, 224 
integer literals, 224 
integers, 35-37,453 
natural numbers, 36,454 
prime, 365 
random, 367 
scientific notation, 43 

numberTree, 409 
numBorrowed, 84,2 14 
numlines, 188 
numWords, 188 

object-oriented, 2 18 
occurs, 252 
offside rule, 47, 105,454 
ones, 364 
operation, 6 
operator, 1 1,49-5 1,454 
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as function, 14 
associativity of, 50 
binding power of, 50, 450 
calculation, 343 
definitions of, 5 1 
floating point, 44 
infix, 49 
table of properties, 457 
type checking, 228 

operator sections, lXO,4 14,454 
opExpParse, 360 
Ops, 255,354,396 
or, 92 
Ord, 2 17, 220,226,239,3 16 
ord, 42,229 
order, 36,4 14 

lexicographic, 125 
partial, 325 
total, 325 

Ordering, 220,243 
orderpair, 189 
otherwise, 38 
Outmess, 267,309 
output, 3, 454 
overloaded literals 

integer, 224 
overloading, 37, 210,454 

advantages of, 27 1 
and polymorphism. 89 
literals, 45 
reason for, 2 1 1 

Pairs, 257 
palcheck, 207 
palindrome, 206 
parameter, 3, 455 

actual, 10 
formal, 10 

Parse, 355,357,363 
parser, 360 
parsing, 354-364, 455 

and read, 355 
basic parsers, 356 
combinators, 357 
expressions, 360-364 
library, 363 

monad, 405 
top-level parser, 362 

partial application, 175- 180.455 
and currying, 185 
type of, 177 

pattern, 74,455 
consistent with type, 230 
nested, 75 
refutable, 349 
wild card, 456 

pattern matching, 34,74, 1 15- 1 19.253, 
339 

O: 'as' pattern, 305 
algebraic type, 246 
algebraic types, 243 
calculation, 340 
conformal, 105,45 1 
constructors, 1 18 
in  expressions, 1 18 
literals, I I6 
repeated variables, 122 
sequentiality, 1 16 
sequentiality of, 1 16, 126 
variables, 1 16 
wildcard, 1 1 6 

pattern of computation, 152 
over lists, 153-155 

Peccary, Greggery, 9 1, 163 
perm, 347 
perms, 347 
Person, 83 
pi, 224 
Picture, 6,8, 12,77,96 
pictures, 4-7, 12-14 
Pictures, 27 
pictures, 96-103, 181-1 83, 198 

alternative representation of, 99 
horse, 4, 9 
positioned, 100-1 03 

Pictures, 28 
pipeline, 19 1 
pitfalls 

; in error message, 48 
Char, 43 
Char and String, 93 
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downloading Hugs for Window\, 
462 

function application, 5 1 
function composition, 170 
infinite list generators, 369 
list comprehensions. 86 
negative literals, 36 
numeric conversions, 45 
paired arguments, 76 
repeated variables in patterns, 122 

plumbing, 173 
Point, 270 
pointer, 445 
polymorphism. 13,87-90,447,455 

and overloading, 89 
function definition, X X  
type checking, 230-238 

Position, 100 
positioned pictures, 100- 103 
power2,63 
pred, 22 1 
prelude, redefining functions in, 41 
Prelude. hs, 26.77,223,283 
primes, 366 
primitive recursion, 6 I, 25 I ,  252,373, 

455 
and folding, 155, 161-164 
base case, 25 1 
examples on numbers, 62 
finding definitions, 120-1 24 
list, 1 19-124 
recursive case, 25 1 
template, 62 

print. 387 
printpicture, 27,99, 182 
processes. 37 1 
produceBill, l l O 
product, 92 
product type, 244 
program, 2 
program development, 202-209 

cycle. 202-203 
in practice, 206-208 

program error, 3 1,466 
program modification, 301, 3 18 
program transformation, 196, 456 

programming language, 2 
high-level, 2 

programming paradigm, 3 
prompt, 23 
proof, 14-16, 135-1 5 1,444,455.460 

abstract data types and, 335 
algebraic types, 274 
and safety-critical situa~ions, 16 
and testing, 137 
as documentation, 284 
by cases, 198 
function level, 193 
higher-level, 195 
higher-order functions. 193-200 
libraries of theorems, 700 
non-primitive recursive. 276 

proof obligation, 335 
properties as func~ions. 157 
property, 157 
pseudo-random numbers, 367 
putNtimes, 388 
putStr, 92,386 
putStrLn, 386,388 
Pythagoras's theorem, 15 
Pythagorean triple, 345, 365. 369 
pythagTriples, 365 
pyTriple, 345 

qSort, 420 
quadratic equation, 45 
qualified, 49,283 
qualifier, 344 
quantitier, universal, 140 
Queue, 304 
Queuestate, 310,311 
queuestep, 3 12 
quicksort, 127 
:quit, 24 
quot, 224 

Random. hs, 369 
randomsequence, 367 
randomTimes. 374 
Read. 292 
read, 93,222,390 
Reads, 356 
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reasoning, see proof 
rec ip ,  224 
records, 444 
Rectangle, 246 
recursion, 58-66, 37 1,455 

and calculation, 60 
base case, 6 1 
bottom-up, 6 1 
general, 65-66 
justification, 5 9 4 1  
mutual, 254, 334, 454 
primitive, 6 1 
recursion step, 61 
top-down, 6 1 

recursive type, 250-257 
mutually recursive, 254 

reference point, 10 1 
reflection, 203 
regions, 64 
relation, 327 

composition, 329 
family relations, 327 
operations, 328 
transitive, 329 
transitive closure, 329 

Relation, 327,352 
relations, 327-330 
:reload,  24 
rem, 224 
remQ, 304 
r ep l i ca t e ,  91 
reserved words, 49 
residency, 4 18 
result, 3, 167, 455 
re turn ,  387,402,4 10 
returnloan,  84, 85 
reuse. 273, 285 
rev, 149, 163 
reverse,  13,91, 146, 198,377 
Right, 258 
r i g h t  Sub, 3 16 
r o t a t e ,  1 1 ,  12, 15, 168, 170 
ro ta te90 ,99  
rotateHorse, 9 
routes ,  352 
routesC, 353 

scalarProduct ,  348 
sca le ,  4-6, 100 
scalesequence, 368 
scan11 ', 373 
scan l l ,  373 
Scheme, 440 
scope, 106,455 

nested, 107 
script, 19,455 

literate, 22 
search tree, 3 15-320,422 

deletion, 3 18 
insertion, 3 16 
operations, 3 17 

Season, 243,247 
selectEven, 123 
selector, 75 
' seq ' ,  457 
seq, 427 
sequencing, see do 
Servers ta te ,  3 10,3 12 
servers tep ,  313 
: s e t ,  24,467 
Set,  321,323,422 
setImage, 328 
setproduct ,  328 
sets, 78, 321-327,455 

and lists, 321 
behaviour of implementations, 422 
operations, 323, 324 
product, 329 

Shape, 246, 247 
ShopItem, 73 
show, 93,222 

Expr, 25 1 
Show, 224,387 
showset, 324 
ShowType, 225 
shunt, 148 
side-effect, 402, 455 
sideBySide, 5, l4,97, 159. 177, 181 
sieve,  366 
signature, 2 15, 300, 308, 32 1 335,455 

for Tree. 308, 3 15 
signum, 44,224 
simplification, 206 
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simulation, 267, 309-3 15, 373-375 
experimenting, 375 
the queue, 3 1 1 
the server, 3 12 

simulationInput, 374 
simulationstep, 3 13 
sin, 224 
sing, 323 
size, 309,319 
snd, 75 
snoc, 163 
software, 2 
sorting, 123 

insertion, 123, 155 
merge sort, 293 
quicksort, 127, 189,420 

sortls, 189 
specialization, 177 

of polymorphic function, 22 1 
specification, 67 
splitAt, 91 
splitlines, 1.2, 155 
splitwords, 130 
spot, 356,357 
sqrt, 44,224 
square, 9 
squashMaybe, 264 
standard libraries, 26 

location of, 27 
Standard ML, 440 
standard prelude, see Prelude. hs 
state, 442,449 
State, 409,410 
store. 300 

as n ADT, 302 
as a list. 302 
as function, 303 

Store, 300.303,354,396 
stream, 455 
Stree, 319 
sTree, 407 
strict, 427 
String, 73,7X, 92 
String. hs, 93 
strings, 92-95,456 

structural induction, 14 1 ,  196, 197,377. 
456 

Maybe type, 276 
expression type, 277 
for lists, 14 1 
trees, 274 

Sub, 250 
subseq, 207 
subset, 324 
substitution, 338, 345. 456 

duplication on, 339 
succ, 221 
succeed, 356,357 
sum, 92, 1 19, 142, 154, 195,377 
sum type, 258 
sumFacs, 63 
sumFun, 63 
sumInts, 394 
sumsquares, 103 
sumTree, 252,407 
superimpose, 4,99, I82 
symbolic evaluation, 137 
syntax, 30,46-5 1,456 

of application, 178 
syntax error, 30,464 
system messages, 467 
System. hs, 437 

Table, 287,410 
tail, 91,261 
take, 91, 126, 165 
takewhile, 166 
tan, 224 
tclosure, 328-330 
Temp, 243 
termination, 66, 138, 253 
testing, 16, 67-69 

and proof, 137 
black box, 67 
black-box, 67 
library database. 86 
special cases, 67 
testing groups, 67 
white box, 67, 69 

text processing, 128,434 
filling, 128 
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justification, 129 
splitting into words, 129, 165 

threeEqual,37 
tl, 261 
toEnum, 22 1 
token, 356, 357 
topLeve1,362 
toTreeList, 294 
toupper, 42 
transform, 267 
transfonnation, 16 
tree, 278 

balanced, 4 I6 
binary, 258 
branch length, 4 16 
numeric, 25 1 

Tree, 258, 274, 287, 308, 3 15, 3 16, 
407 

treeVal, 3 16 
triangle, 344 
True, 32.33 
truth table, 33 
tuples, 73-77,444,456 

and lists, 72 
compared with algebraic type, 245 

twice, 171, 193 
type, 5, 18,456 

abstract, 12 
ba\e, 450 
conjtraint, 16, 88 
importance oftypcs, 16, 90 
instance, 87 
~nonornorphic, 454 
most general, 87, 454 
numeric type?, 223-224 
one element, 386 

:type, 24, 89, 2 13 
type and data, 247 
type, 73,74,299 
type checking, 16,227-24 1 

and classes, 238-240 
constraints, 228, 23 1-238 
function definitions, 237 
instance error, 239 
monomorphic, 228-230 
polymorphic, 230-238 

polymorphic definitions, 236 
polymorphic function application, 

234 
rule of cancellation, 178, 45 1 

type classes, see classes 
type declaration, 106,459 

for function, I0 
type error, 17,30,76,465 

ADT, 302 
in application, 229 
instance error, 2 13 

type synonym, 456 
type variable, 87,456 
type-checking, 72 
Types. lhs, 287 
typewriter font, use of, 22 

uncurry, 186 
uncurrying, 185 
undef, 376 
undefinedness, 6 I, 375,456 
underlining, 423 
understanding programs. 459 
Unicode, 42 
unification, 232-234,456 
union, 323,325 
union type, 258 
unionset, 328 
universal quantifier, 140 
unknown, 10 
unzip, 88,9 1 ,  I48 
update, 300-303 
use, 12 

value, 7,442, 456 
defined, 376 
error, 6 1 
literal, 34 
undefined, 6 1,376 

value, 300-303 
variable, 10,430,443,456 

free, 140 
type, 87 

varParse, 360 
Vector. 270,348 
visibility of definitions, 281 
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Vis ib le .  2 15, 2 16, 240 

weather, 243, 277 
Web site 

for Hashell, 7 
for this book, 22 
sites with further information, 436- 

44 1 
where. 103,456 
while loop, 39 1 
whitespace, 129 
wildcard, 1 16 
Word. 130 

xs, 118 

ys, 118 

z ip ,  88, 9 1 ,  97, 126, 188 
zipwith,  14, 159,372 

type of, 159 




