
Haskell Quick
Syntax Reference

A Pocket Guide to the Language,
APIs, and Library
—
Stefania Loredana Nita
Marius Mihailescu

www.allitebooks.com

http://www.allitebooks.org

Haskell Quick Syntax
Reference

A Pocket Guide to the
Language, APIs, and Library

Stefania Loredana Nita
Marius Mihailescu

www.allitebooks.com

http://www.allitebooks.org

Haskell Quick Syntax Reference: A Pocket Guide to the Language, APIs,
and Library

ISBN-13 (pbk): 978-1-4842-4506-4		 ISBN-13 (electronic): 978-1-4842-4507-1
https://doi.org/10.1007/978-1-4842-4507-1

Copyright © 2019 by Stefania Loredana Nita and Marius Mihailescu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
9781484245064. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Stefania Loredana Nita
Bucharest, Romania

Marius Mihailescu
Bucharest, Romania

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4507-1
http://www.allitebooks.org

iii

Chapter 1: Functional Programming���1

The Advantages of Functional Programming���1

Functional Programming vs. Object-Oriented Programming���������������������������������2

Summary���3

Chapter 2: Static Typing��5

Currying and Uncurrying��6

Scoping Variables���8

Types��10

Summary���11

References���12

Chapter 3: GHC���13

Introducing GHC���13

Examples���16

Summary���18

References���18

Table of Contents

About the Authors���xi

About the Technical Reviewer��xiii

Introduction���xv

www.allitebooks.com

http://www.allitebooks.org

iv

Chapter 4: Types��19

Basic Types in Haskell��19

Defining Your Own Types��22

Synonyms���24

Structures and Enumerations���24

Records��25

Type System���26

Summary���27

References���28

Chapter 5: Tuples���29

Writing Tuples��29

Predefined Functions for Pairs���30

Summary���32

References���32

Chapter 6: Lists���33

Basic Functions on Lists��33

Other Functions��37

Summary���40

References���40

Chapter 7: Functions���41

Haskell Files���41

Pattern Matching���44

Case Expressions���45

Guards��46

Clauses��47

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

Lambda Expressions��49

Infix Functions��49

Higher-Order Functions��50

Summary���51

References���51

Chapter 8: Recursion���53

Handling for and while Loops from Imperative Languages��������������������������������55

Recursion on Lists��56

Pattern Matching and Recursion��59

Summary���60

References���60

Chapter 9: List Comprehension���63

Introduction��63

Other Functions on Lists��66

Summary���68

References���69

Chapter 10: Classes���71

Standard Classes���71

The Eq Class���72

Inheritance���73

Creating Your Own Type Class��76

Advanced Type Classes��77

Maybe, Just, and Nothing���79

Functor���79

Summary���80

References���81

Table of ContentsTable of Contents

vi

Chapter 11: Pattern Matching���83

Pattern Matching and Constructors���85

Uses of Pattern Matching���86

Summary���87

References���88

Chapter 12: Monads��89

Introduction��89

The Three Rules���91

The Right Unit���91

The Left Unit���92

Associativity���93

An Example��94

Useful Combinators��101

Summary���101

References���102

Chapter 13: Monad Transformers��103

Simple Transformers��103

MaybeT Transformer��104

Building a Simple Monad Transformer Stack���107

Summary���109

References���109

Chapter 14: Parsec��111

Summary���113

References���113

Table of ContentsTable of Contents

vii

Chapter 15: Folds��115

Summary���117

Reference���118

Chapter 16: Algorithms���119

Quicksort��119

Mergesort���121

Bubble sort���123

Summary���124

Reference���124

Chapter 17: Parsing���125

Summary���129

References���130

Chapter 18: Parallelism and Concurrency���131

Parallelism���132

Concurrency���134

Summary���134

References���134

Chapter 19: Haskell Pipes��137

Summary���144

References���144

Chapter 20: Lens��145

Summary���150

References���151

Table of ContentsTable of Contents

viii

Chapter 21: Lazy Evaluation��153

Summary���157

References���157

Chapter 22: Performance���159

Type Signatures���159

Optimization Flags���159

Profiling��160

The weigh Library��162

Other Techniques���163

References���163

Chapter 23: Haskell Stack���165

Summary���170

References���171

Chapter 24: Yesod��173

Installing and Configuring Yesod��174

Using Yesod in a Practical Example���185

Summary���187

References���187

Chapter 25: Haskell Libraries��189

Prelude���189

Haskell 2010 Libraries���190

GHC Bootstrap Libraries���191

Core Libraries and Haskell Platform Libraries���191

The Hackage Database��192

Summary���192

References���193

Table of ContentsTable of Contents

ix

Chapter 26: Cabal��195

Summary���200

References���201

Index��203

Table of ContentsTable of Contents

xi

About the Authors

Stefania Loredana Nita has two B.Sc. degrees, one in mathematics (2013)

and one in computer science (2016), from the Faculty of Mathematics

and Computer Science at the University of Bucharest; she received her

M.Sc. in software engineering (2016) from the Faculty of Mathematics

and Computer Science at the University of Bucharest. She has worked as

developer for an insurance company (Gothaer Insurance) and as a teacher

of mathematics and computer science in private centers of education.

Currently, she is a Ph.D. student in computer science in the Faculty of

Mathematics and Computer Science at the University of Bucharest. She

has been a teaching assistant at the same university and since 2015 has

worked as a researcher and developer at the Institute for Computers in

Bucharest, Romania. Her domains of interest are cryptography applied

in cloud computing and big data, parallel computing and distributed

systems, and software engineering. 

Marius Mihailescu received his B.Sc. in science and information

technology (2008) and his B.Eng. in computer engineering (2009) from

the University of Southern Denmark; he has two M.Sc. degrees, one in

software engineering (2010) from the University of Bucharest and the

second one in information security technology (2011) from the Military

Technical Academy. His Ph.D. is in computer science (2015) from

the University of Bucharest, Romania, with a thesis on the security of

biometrics authentication protocols. From 2005 to 2011 he worked as a

software developer and researcher for different well-known companies

(Softwin, NetBridge Investments, Declic) in Bucharest, Romania (working

in software and web development, business analysis, parallel computing,

xii

cryptography researching, and distributed systems). From 2012 until

2015 he was an assistant in the informatics department at the University of

Titu Maiorescu and in the computer science department of the University

of Bucharest. Since 2015, he has been a lecturer at the University of

South-East Lumina.

About the AuthorsAbout the Authors

xiii

About the Technical Reviewer

Germán González-Morris is a polyglot software architect/engineer with

20+ years in the field, with knowledge in Java (EE), Spring, Haskell, C,

Python, and JavaScript, among others. He works with web distributed

applications. Germán loves math puzzles (including reading Knuth)

and swimming. He has tech reviewed several books, including about an

application container (WebLogic) and various programming languages

(Haskell, TypeScript, WebAssembly, math for coders, and regexp). You can

find more details on his blog (https://devwebcl.blogspot.com/) or on

Twitter (@devwebcl).

https://urldefense.proofpoint.com/v2/url?u=https-3A__devwebcl.blogspot.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=hBSr1R__kjUcST0tpDOpn6t2rvV4kaPHSZvoArp2MFA&m=JBubaXpxjMKlEOaFmxdPXtt06ZW1CoYXaaEFq_1hh-o&s=sO8Vn4tmRqIE9wKH9Lreod6mn-UWXwcS36ZRZFgsdEM&e=

xv

Introduction

Haskell is a functional programming language, named after mathematician

Haskell Brooks Curry, who made important contributions to mathematical

logic that were used as the basis for functional programming. The first

version, Haskell 1.0, was released in 1990, and the latest version is Haskell

2010, released in July 2010.

These are the main characteristics of Haskell:

•	 It is purely functional, which means that all

functions written in Haskell are also functions in the

mathematical sense. The variables are immutable;

in other words, they cannot be changed by any

expression. Haskell does not contain statements or

instructions, just expressions that are evaluated.

•	 It is lazy, meaning the expressions are evaluated when

it is really necessary. Combined with the purity of

Haskell, you can create chains of functions, which

improves performance.

•	 It is statically typed, which means that every expression

has a type, established at compile time.

•	 It enables type inference through the unification of

every type bidirectionally. This is beneficial, because

you do not need to write specifically every type in

Haskell, and if you need, you can define your own types.

•	 Haskell is concurrent because it works with effects.

•	 It has many open source packages.

xvi

From these features, you can identify some of the advantages of using

Haskell, listed here:

•	 The quality of the code is high.

•	 You can work with abstract mathematical concepts.

•	 The type system is flexible.

•	 Errors are kept to a minimum.

•	 The syntax is optimized and well-designed.

•	 It brings a good performance due to concurrency.

In this book, we will start with simple topics and increase the level

of complexity with each chapter. All the chapters contain examples to

illustrate each specific subject covered.

�Source Code
You can download this book’s source code by navigating to https://www.

apress.com/us/book/9781484245064 and clicking the Download Source

Code button.

�Structure of the Book
This book contains 26 chapters. Each chapter has its own goal of

presenting the most important aspects of one topic that need to be taken

into consideration during the learning process. The book highlights all the

necessary elements of functional programming in Haskell that you’ll need

to start developing programs with it.

IntroductionIntroduction

https://www.apress.com/us/book/9781484245064
https://www.apress.com/us/book/9781484245064

xvii

The structure of the book is as follows:

•	 Chapter 1: Functional Programming. This chapter

provides a short introduction to functional programming.

•	 Chapter 2: Static Typing. This chapter presents in a

practical manner the elements necessary to understand

how you can use static typing.

•	 Chapter 3: GHC. This chapter contains the basic ideas

of the Glasgow Haskell Compiler, an open source

native code compiler for the functional programming

language. We show several examples of how you can

use GHC.

•	 Chapter 4: Types. This chapter goes through all the

details necessary to understand how types work and

how you can use them.

•	 Chapter 5: Tuples. The discussion in this chapter focuses

on how tuples are represented and implemented.

We discuss their performance, and through different

examples we show how they are best used.

•	 Chapter 6: Lists. The chapter demonstrates how

lists can be implemented and their basic operations

(finding/searching, adding, and deleting). In this

chapter, you will learn how to modify a list or its

elements and how to work with lists and I/O operations.

•	 Chapter 7: Functions. The chapter presents the main

elements necessary to construct functions and how it is

possible to work with them.

•	 Chapter 8: Recursion. The chapter shows the

necessary elements for developing applications using

recursion and the optimal way of doing it.

IntroductionIntroduction

xviii

•	 Chapter 9: List Comprehension. The chapter shows

how syntactic “sugar” such as list comprehension can

be used in Haskell applications, which are designed as

special applications.

•	 Chapter 10: Classes. The chapter discusses how classes

are defined, gives examples, and shows how data can

be structured and modeled with the help of classes.

•	 Chapter 11: Pattern Matching. This chapter covers

some of the coolest syntactic constructs and how

pattern matching can be applied.

•	 Chapter 12: Monads. This chapter covers monads

and what they are. The examples shown demonstrate

how programs, both generic and declarative, can be

structured logically. The chapter shows how generic

and declarative data types are transformed with the

help of higher-order functions.

•	 Chapter 13: Monad Transformers. This chapter

contains some examples that show the power of monad

transformers, with the goal of building computations with

effects.

•	 Chapter 14: Parsec. The chapter shows how you can

use a parsec, an industrial-strength tool.

•	 Chapter 15: Folds. The chapter illustrates through

examples the family of higher-order functions that

process a data structure in some order and how the

return value is constructed.

IntroductionIntroduction

xix

•	 Chapter 16: Algorithms. The chapter presents

examples of algorithms and goes through different

categories of algorithms such as currying, folds, design

patterns, dynamic programming, and so on.

•	 Chapter 17: Parsings. The chapter demonstrates how

you can use different methods of parsing.

•	 Chapter 18: Parallelism and Concurrency. In this

chapter, we discuss about parallelism and how to speed

up the code by making it run on multicore processors.

•	 Chapter 19: Haskell Pipes. This chapter includes

practical examples of I/O operations and Haskell pipes.

•	 Chapter 20: Lens. The chapter discusses the Control.

Lens package and how to use it to obtain maximum

results with your Haskell program.

•	 Chapter 21: Lazy Evaluation. This chapter shows the

main way to evaluate a Haskell program.

•	 Chapter 22: Performance. The chapter discusses

techniques for increasing the performance of Haskell

programs.

•	 Chapter 23: Haskell Stack. The chapter discusses the

Stack tool and how you can use it in projects. It also

discusses its dependencies.

•	 Chapter 24: Yesod. Yesod is a free and open source

web framework developed for Haskell for productive

development. The chapter gives a quick overview of

Yesod and how to use it.

IntroductionIntroduction

xx

•	 Chapter 25: Haskell Libraries. The chapter shows how

to use libraries and how to build new libraries.

•	 Chapter 26: Cabal. Cabal represents a common

architecture for developing and building applications

and libraries in Haskell. The chapter covers the

packaging and destructions of software packages and

how they can be used.

IntroductionIntroduction

1© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_1

CHAPTER 1

Functional
Programming
Functional programming represents a programming paradigm in which

the computations are evaluated by mathematical functions. The paradigm

avoids changing states and using mutable data.

Every function in Haskell is a function in the purest mathematical

sense. I/O operations which generate side-effects are represented in a

mathematical way.

This chapter introduces you to the advantages of functional

programming and then compares it to object-oriented programming.

�The Advantages of Functional Programming
There are several advantages of functional programming, listed here:

•	 Free from side effects and bugs: As mentioned,

functional programming does not maintain state.

Therefore, you will not have side effects. In conclusion,

you can write code free from side effects and bugs.

•	 Efficiency: Functional programs consist of

independent units that are able to run concurrently.

This means the efficiency is higher.

2

•	 Lazy evaluation: Functional programming supports

lazy evaluation constructs such as lazy lists, lazy maps,

and so on.

•	 Nested functions: Functional programming supports

nested functions.

•	 Parallel programming efficiency: As mentioned, there

is no mutable state, so there are no state-change issues.

�Functional Programming vs. Object-
Oriented Programming
Table 1-1 highlights the main differences between functional programming

and object-oriented programming (OOP). This gives readers with

experience in object-oriented programming a chance to understand what

it means to move from an OOP paradigm to functional programming.

Table 1-1.  Functional vs. Object-Oriented Programming

Functional Programming OOP

Functional programming uses immutable

data.

Object-oriented programming uses

mutable data.

Functional programming is based on a

declarative programming model.

Object-oriented programming is based on

an imperative programming model.

The focus is on “what you are doing.” The focus is on “how you are doing.”

Functional programming supports

parallel programming.

Object-oriented programming is not

suitable for parallel programming.

Functions do not have side effects. The methods can produce serious side

effects.

(continued)

Chapter 1 Functional Programming

3

�Summary
This chapter provided a short introduction to functional programming.

The chapters contained in this book cover the most important aspects

and powerful elements (techniques, methods, and algorithms) that a

beginner Haskell developer needs to get started with.

Functional Programming OOP

Flow control is based on using function

invocation and function invocation with

recursion.

Flow control is based on loops and

conditional statements.

The collection data is iterated using a

recursion concept.

Object-oriented programming uses a

loop concept to iterate Collection.

Data such as the for-each loop in C#

or Java.

The execution order of statements is not

important.

The execution order of statements is very

important.

There is support for “abstraction over

data” and “abstraction over behavior.”

There is support only for “abstraction

over data.”

Table 1-1.  (continued)

Chapter 1 Functional Programming

5© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_2

CHAPTER 2

Static Typing
In Haskell, the type system is quite detailed. From a theoretical point of

view, it comes from typed Lambda calculus, introduced in 1930 by Alfonso

Church,1,2 where the types are automatically deducted from the way the

objects are processed. Such programming languages are statically typed.

More precisely, the processing is enforced by and based on the rules of a

mathematical type system.

A type system is a set of rules used in a programming language to

organize, build, and handle the types that will be accepted in the language.

These rules focus on some important aspects, such as the following:

•	 Defining new types

•	 Associating types with different language constructs

•	 Focusing on type equivalence, which is important to

determine when different types are the same

•	 Verifying type compatibility, which is useful to check

whether the value of a specific type is correctly used in

a given processing context

1�Alfonso Church, https://en.wikipedia.org/wiki/Alonzo_Church
2�Lambda calculus, https://en.wikipedia.org/wiki/Lambda_calculus

https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Lambda_calculus

6

•	 Deducing the type of the language when it is not

declared, which can be done by applying rules for

synthesizing the type of a construct from the types of its

components

As you already know, Haskell is a fully static, scoped language, and the

top-level variables have static scope. In other words, the whole program

module will contain their definition. This provides referential transparency

if no side effect will rise. This is an example of a top-level expression:

variable = expression

In this expression, variable has expression as its value.

�Currying and Uncurrying
Currying represents the process of transforming a function that has

multiple arguments in a tuple with the same type as the arguments into

a function that will take just a single argument and will return another

function that will accept further arguments, one by one.

The following expression:

g :: x -> (y -> z) -- The above expression can be written as

g :: x -> y -> z

represents the curried form of the following:

h :: (x, y) -> z

You can convert these two types in any direction with the help of the

prelude functions curry and uncurry.

g = curry h

h = uncurry g

Chapter 2 Static Typing

7

If you take a closer look, both forms are equally expressive. They will

hold the following:

g x h = h (x,y)

In Haskell, all functions are considered curried. That is, all functions

in Haskell are able to take just one argument. In the examples, you will see

that this is mostly hidden in the notation.

For example, the first expression defined next will attach the variable

plus to a curried function. A curried function is a functional closure. The

second expression declared will add factorial to a recursive function,

which will compute n!.

plus = \ a -> (\ b -> a + b)

plus :: Int -> Int -> Int

factorial = \ n -> if n==1 then 1 else n*factorial(n-1)

factorial :: Int -> Int

Observe that the expression produces two values: the value that the

expression has and the type that the value has. The type of the function is

called signature. For example, the value of plus is a function of a domain in

which int represents the range. The type of the expression does not need

to be explicitly declared; it is automatically deduced based on the types

and the expression’s components. Type deduction involves the verification

of the type as a natural task or subtask. As a general conclusion, an n-ary

curried function can be defined as \ p1 p2 ... pn -> expression. The

function plus can be declared as follows:

plus = \ a b -> a + b

plus :: int -> int -> int

This is the short notation of the same thing:

plus a b = a + b

Chapter 2 Static Typing

8

The functions can be used in infix and prefix forms. For example, the

application (+) a b is equivalent to the more familiar a + b, and mod a

b can be written a 'mod' b. (op) corresponds to the prefixed form of an

infix binary operator, while 'op' corresponds to the infixed form of a prefix

binary operator.

comp m n = (\ a -> m(n a))

comp :: (b -> c) -> (d -> e) -> d -> e

ff = (\ a -> a*a) `comp` (\ a -> a+a)

ff :: Integer -> Integer

Output:

ff 2

16

In the previous example, the types that can be found in the signature

of the composition function comp are not defined as constants. They

represent generic types, which are represented by type variables in the

format identifier. As you can observe, the function declared, comp, is

polymorphic. This means that the arguments the function can take are of

any type that obey its signature.

�Scoping Variables
The scoping variables represent an extension of Haskell’s type system,

which allows free type variables to be reused in the scope of a function.

Consider the following function3 as an example:

mkpair1 :: forall a b. a -> b -> (a,b)

mkpair1 aa bb = (ida aa, bb)

 where

3�https://wiki.haskell.org/Scoped_type_variables

Chapter 2 Static Typing

https://wiki.haskell.org/Scoped_type_variables

9

 �ida :: a -> a -- This refers to a in the function's type

signature

 ida = id

mkpair2 :: forall a b. a -> b -> (a,b)

mkpair2 aa bb = (ida aa, bb)

 where

 ida :: b -> b -- Illegal, because refers to b in type

signature

 ida = id

mkpair3 :: a -> b -> (a,b)

mkpair3 aa bb = (ida aa, bb)

 where

 ida :: b -> b -- Legal, because b is now a free variable

 ida = id

It is better to avoid scoped type variables because they are not available

in all compilers. A solution is available in Haskell 98.4

For example, the following can be interpreted as x 'asTypeOf' y and

has the same value as x, but the deduced type says that x and y have the

same type.

asTypeOf :: a -> a -> a

asTypeOf a b = a

Let’s look at the following examples for the let declaration:

let {var1 = expr1; var2 = expr2; ..., varn = exprn) in expr

expr where {var1 = expr1; var2 = expr2; ..., varn=exprn}

The scope of vari (where i = 1,n) represents the whole expression that

contains the definition of vari. The variable vari is tied to the unevaluated

4�https://www.haskell.org/onlinereport/

Chapter 2 Static Typing

https://www.haskell.org/onlinereport/

10

expression expri (keep in mind that the evaluation in Haskell is lazy, as

you will see in Chapter 16). The result of expr is represented by the let

expression.

is_even = let {is_even n = n == 0 || n > 0 && is_odd(n-1);

is_odd n = n == 1 || n > 1 && is_even(n-1)}

in is_even

is_even:: Integer -> Bool

is_even' = is_even where

{is_even n = n == 0 || n > 0 && is_odd(n-1);

is_odd n = n == 1 || n > 1 && is_even(n-1)}

�Types
As mentioned, Haskell is statically typed.

From an algebraic point of view, a type is a triple like T=<V, Op, Ax>.

Here, V is the set of type values (the carrier set of the type), Op is defined as

the set of type operators (including the signatures of the operators), and Ax

represents the set of axioms describing the behavior and how the operators

interact. To illustrate this, let’s consider the following example:

type α list is
Op

 []: → α list // �a list of the
constructors

 : : α × α list →α // �[] represents the empty
list, : is like cons

Chapter 2 Static Typing

11

 head: α list \ { [] } →α // a list of the selectors
 tail: α list \ { [] } →α // �head as carrier, tail is

as a cdr

 null: α list → bool // a list of the predicates

Ax

 L: α list, x: α

 null [] = true // �testing if the list is

empty

 null (x:L) = false

 head(x : L) = x // the head of the list

 tail(x : L) = L // the tail of the list

�Summary
This chapter presented the most important aspects of static typing.

You learned about the following:

•	 Statically typing systems and how they are defined

during a program/module

•	 How new types can be defined

•	 The rules behind the type system

•	 Indentation and its importance

•	 Types and how they are defined

Chapter 2 Static Typing

12

�References

	 1.	 A. Serrano Mena, Beginning Haskell: A Project-Based

Approach (Apress, 2014).

	 2.	 Scoped type variables, https://wiki.haskell.org/

Scoped_type_variables

	 3.	 Haskell 98 Language and Libraries, https://www.

haskell.org/onlinereport/

Chapter 2 Static Typing

https://wiki.haskell.org/Scoped_type_variables
https://wiki.haskell.org/Scoped_type_variables
https://www.haskell.org/onlinereport/
https://www.haskell.org/onlinereport/

13© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_3

CHAPTER 3

GHC
GHC stands for Glasgow Haskell Compiler, which is the native code

compiler for Haskell. It is open source and can be downloaded from

https://www.haskell.org/ghc/. It is also integrated into the Haskell

Platform, available at https://www.haskell.org/downloads#platform.

(We recommend you install the Haskell Platform because it contains the

compiler, Cabal,1 and other tools you’ll use in this book.)

�Introducing GHC
The main components of GHC are the interactive interpreter GHCi and

the batch compiler. GHC contains many libraries, but you can also use

other extensions, such as for concurrency, exceptions, the type system,

quantifications, a foreign function interface, and so on. When a program

is compiled, the default behavior of GHC is to compile quickly but not to

optimize the generated code. Using the batch compiler with GHCi has

some advantages: the library code is precompiled, and a user’s program is

compiled very quickly.

Let’s look at how to use GHC in a terminal. In these examples, the

operating system is Microsoft Windows 10, and we’re using GHCi version

8.4.3. So, open a terminal and type the ghci command (if this command

is not recognized in the terminal, then it needs to be added to the

1�Cabal is a system that builds and packages Haskell libraries and programs.

https://www.haskell.org/ghc/
https://www.haskell.org/downloads#platform

14

environment variables). Now, the terminal should display the version of

GHCi followed on the next line by Prelude> (as in Figure 3-1).

Figure 3-1.  Using GHCi in a terminal

The GHCi represents GHC’s interactive environment, so the i in the

command ghci stands for interactive. Prelude is a standard module in

Haskell (a module is a set of connected functions, types, or type classes),

imported by default into all Haskell modules.

Let’s print the string “Hello, World!” to the terminal. To do that, type

putStrLn "Hello, World!" after Prelude>. putStrLn is a function in the

Prelude standard module that prints the argument on the standard output

device and adds a new line after the argument. (We will talk more about

functions in the next chapters.) You’ll get Hello, World!, as shown here:

Prelude> putStrLn "Hello, World!"

Hello, World!

Chapter 3 GHC

15

Of course, real-world programs will be much more complex. It is more

convenient to write them organized into files than to write them line by

line at the terminal like this. The extension for Haskell files is .hs. So, in a

text editor, write the following line:

main = putStrLn "This is my first Haskell program!"

and save it as first.hs. To compile the program, write the following

line at the terminal:

ghc -o first first.hs

If you don’t receive any error message, then the output should look

like this:

[1 of 1] Compiling Main (first.hs, first.o)

Linking first.exe ...

If you receive the error <no location info>: error: can't find

file: first.hs, make sure the path before the compiling command

is the one that contains the first.hs file or put the file’s full path in the

compiling command. Here’s an example:

ghc -o first D:\Haskell\FirstProgram\first.hs

The –o option tells the compiler to optimize compiler flags in order to

generate faster code.

If you want to see more options or how a command works, type --help

after the desired command.

To run the executable, type first.exe and then press Enter. Here’s an

example:

D:\Haskell\FirstProgram>first.exe

Chapter 3 GHC

16

If you use Unix, just type first (without the extension). You will get

the following:

This is my first Haskell program!

For Windows users, another way to use GHCi is to launch WinGHCi

(Figure 3-2).

Figure 3-2.  A graphical user interface (GUI) for GHCi in Windows

�Examples
For the next examples, you will keep the standard prompt of Prelude. Note

that Haskell is case sensitive, so a is different from A. You already used strings

in the previous section, so let’s look at some simple arithmetic operations.

Prelude> 10 + 5

15

Prelude> 100 - 20

80

Prelude> 14 * 88

1232

Chapter 3 GHC

17

Prelude> 78 / 5

15.6

Prelude> (27 - 15) * 42

504

If you try 12 * -7, you will get an error, as shown here:

Prelude> 12 * -7

<interactive>:12:1: error:

 Precedence parsing error

 cannot mix '*' [infixl 7] and prefix '-' [infixl 6] in

the same infix expression

But if you try 12 * (-7), you will get the right answer.

Prelude> 12 * (-7)

-84

GHC contains predefined mathematical functions such as succ, min,

max, div, and so on. Let’s take a deep look at the div function. Its type is as

follows:

Integral a => a -> a -> a

You should call the function like this:

Prelude> div 15 3

5

But Haskell permits you to use it in a more natural way.

Prelude> 15 'div' 3

5

Functions are the most important elements in Haskell; in the next

example, you’ll write a simple function that sums two numbers.

Prelude> mySum a b = a + b

Chapter 3 GHC

18

In this definition, mySum is the name of the function, and a and b are

the parameters. The part to the right of the equal sign is what the function

does; in these examples, it adds the parameters. To call the function, you

just type the name of the function and pass the arguments.

Prelude> mySum 7 8

15

So, there it is. In the next chapters, you will see that there are more

types of functions, and you will write your own complex functions.

�Summary
This chapter presented basic concepts about Haskell’s compiler.

•	 You learned how to use GHC in two different ways.

•	 You compiled and ran some introductory examples.

�References

	 1.	 Glasgow Haskell compiler, https://en.wikipedia.

org/wiki/Glasgow_Haskell_Compiler

	 2.	 Haskell in five steps, https://wiki.haskell.org/

Haskell_in_5_steps

	 3.	 GHC user’s guide, https://downloads.haskell.

org/~ghc/latest/docs/users_guide.pdf

	 4.	 P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler,

“A history of Haskell: being lazy with class,” in

proceedings of the third ACM SIGPLAN conference

on the history of programming languages, pp. 12–1

(ACM, 2007).

Chapter 3 GHC

https://en.wikipedia.org/wiki/Glasgow_Haskell_Compiler
https://en.wikipedia.org/wiki/Glasgow_Haskell_Compiler
https://wiki.haskell.org/Haskell_in_5_steps
https://wiki.haskell.org/Haskell_in_5_steps
https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf
https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf

19© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_4

CHAPTER 4

Types
In Chapter 3, you saw that GHC contains predefined functions, and you

worked a little with the div function. In that example, we subtly introduced

types, without a comprehensive discussion. It is time to discuss them now.

So, in this chapter, you’ll learn about the main types in Haskell, how you

can define your own types, and how the type system in Haskell works.

�Basic Types in Haskell
The following are the main types in Haskell:

•	 Char represents a Unicode character.

•	 Bool represents a Boolean value. There are just two

Boolean values: True and False.

•	 Int is an integer and represents a bounded type, which

means it has a maximum value and a minimum value.

These two values depend on the machine. For a 32-bit

machine, the minimum value is -2147483648, and the

maximum value is 2147483647.

•	 The Integer type represents integer values also (very

large integers, such as those used in cryptography), but

its type is not bounded. Anyway, Int is more efficient.

20

•	 Float represents values of floating-point numbers with

single precision.

•	 Double represents values of floating-point numbers

with double precision.

Next, let’s take a look at the following examples:

Prelude> :t 5

5 :: Num p => p

Prelude> :t 'a'

'a' :: Char

Prelude> :t "abc"

"abc" :: [Char]

Prelude> :t False

False :: Bool

Prelude> :t 3 < 2

3 < 2 :: Bool

Prelude> :t 3.44

3.44 :: Fractional p => p

Prelude> :t pi

pi :: Floating a => a

In this code, the :t command shows the type of the expression that

follows the command, the :: sign in the result means “has type of,” and the

words between the :: sign and the type is called the type signature.

You know that 5 is an integer, but you get Num here. Also, you know that

3.44 and pi are double values, and you get Fractional and Floating,

respectively. The reason for this is that Num, Fractional, and Floating are

classes in Haskell. For the moment, it is enough to know that Num includes

Int, Integer, Double, and Float types; Floating includes Double and

Float types; and Fractional includes Double and Float. You will learn

more about classes in Chapter 10, and you will see the differences between

them.

Chapter 4 Types

21

Another interesting part of the code is [Char]. The square

brackets—[]—means that the evaluated expression is a list. In this

example’s case, it is a list of Chars, which is equivalent to String.

Next, let’s bind locally a variable with a value. You can do this in two

ways: using the let keyword or simply using the name of the variable

followed by an equal sign, followed by the value, as shown here:

Prelude> let x = 1

Prelude> a = 'x'

Prelude> :t x

x :: Num p => p

Prelude> :t a

a :: Char

Prelude> :info x

x :: Num p => p -- Defined at <interactive>:49:5

Prelude> :info a

a :: Char -- Defined at <interactive>:50:1

In this code, :info is similar to :t, except that it displays some

additional information.

Some useful structures are lists and tuples. A list (represented with

squared brackets, []) is a collection of elements of the same type (as

[Char] showed earlier), while a tuple (represented with parentheses, ())

is a collection of elements of different types. A tuple can be a list, but the

reverse is not true. You will learn more about lists and tuples in Chapter 6,

but for the moment, let’s see how they look:

Prelude> [1, 2, 3]

[1,2,3]

Prelude> :t ['a', 'b']

['a', 'b'] :: [Char]

Prelude> [1, 'x']

Chapter 4 Types

22

<interactive>:97:2: error:

 • No instance for (Num Char) arising from the literal '1'

 • In the expression: 1

 In the expression: [1, 'x']

 In an equation for 'it': it = [1, 'x']

Prelude> (1, 'x')

(1,'x')

Prelude> :t (1, 'x')

(1, 'x') :: Num a => (a, Char)

Prelude> (1,2,3,4,5)

(1,2,3,4,5)

�Defining Your Own Types
Suppose you want to create a structure that simulates a date. You need

three integer values corresponding to the day, the month, and the year.

You can define it using the data keyword, as shown here:

Prelude> data DateInfo = Date Int Int Int

Prelude> myDate = Date 1 10 2018

Prelude> :t myDate

myDate :: DateInfo

Prelude> :info DateInfo

data DateInfo = Date Int Int Int -- Defined at

<interactive>:101:1

DateInfo is the name of your new type, and it is called a type

constructor, which is used to refer to the type. The Date after the equal

sign is the value constructor (or data constructor), which is used to create

values of DateInfo type. The three Ints after Date are components of the

type. Note that the name of the type constructor and the name of the value

constructor begin with capital letters. If you want to print myDate, you

Chapter 4 Types

23

would get an error, because the print function does not have an argument

of type DateInfo. To print myDate, you need to modify the definition of

DateInfo, adding deriving (Show) to the end of definition (we will talk in

detail about deriving in Chapter 10). The procedure is shown here:

Prelude> print myDate

<interactive>:34:1: error:

 • No instance for (Show DateInfo) arising from a use of

'print'

 -- Defined at <interactive>:27:44

 • In the expression: print myDate

 In an equation for 'it': it = print myDate

Prelude> data DateInfo = Date Int Int Int deriving (Show)

Prelude> myDate = Date 1 10 2018

Prelude> print myDate

Date 1 10 2018

The comparison between two dates will give a similar error. You need

to add Eq after Show, which tells the compiler that you allow comparison

between two dates.

Prelude> data DateInfo = Date Int Int Int deriving (Show, Eq)

Prelude> myDate1 = Date 1 10 2018

Prelude> myDate2 = Date 15 10 2018

Prelude> myDate3 = Date 1 10 2018

Prelude> myDate2 == myDate1

False

Prelude> myDate3 == myDate1

True

Chapter 4 Types

24

�Synonyms
Let’s define another type, called StudentInfo. A student is described by

name, birth date, and specialization, so StudentInfo looks like this:

Prelude> data StudentInfo = Student String DateInfo String

deriving (Show, Eq)

It is a little difficult to distinguish in this definition which is the

student’s name and which is the student’s specialization. But you can

“rename” the basic types, as shown here:

Prelude> type Birthdate = DateInfo

Prelude> type Name = String

Prelude> type Specialization = String

So, StudentInfo becomes as follows:

Prelude> data StudentInfo = Student Name Birthdate

Specialization deriving (Show, Eq)

Prelude> student = Student "Alice Brown" (Date 21 8 1992)

"Computer Science"

Prelude> :t student

student :: StudentInfo

This kind of structure is called a product type, and it represents a tuple

or a constructor with at least two arguments.

�Structures and Enumerations
StudentInfo in this example would be considered a struct in the C/C++

programming languages.

Chapter 4 Types

25

If you want a structure that enumerates the elements, you can do the

following:

Prelude> data Color = Red | Green | Blue | Yellow | Purple |

Orange deriving (Show, Eq)

In this example, Color is a sum type and represents a type that can

have multiple possible forms.

Now, let’s say you want to describe the people in a faculty. These can

be teachers, defined by name and subject, or students, defined by name,

birth date, and specialization. You can write this as follows:

Prelude> data FacultyPerson = Teacher String String | Student

Name DateInfo Specialization deriving (Show, Eq)

Prelude> teacher = Teacher "Emily Brian" "Functional

programming"

Prelude> student = Student "James Lee" (Date 23 4 1990)

"Computer Science"

Prelude> print teacher

Teacher "Emily Brian" "Functional programming"

�Records
Let’s suppose you want to add more information in your StudentInfo type

(for simplicity, you will use just Student). The student will be described

by first name, last name, birth date, specialization, study year, and average

grade. The Student type looks like this:

Prelude> data Student = Student String String DateInfo String

Int Float deriving (Show, Eq)

Note T he type constructor now has the same name as the data
constructor. Haskell allows you to do this.

Chapter 4 Types

26

Another way other than type to make it more intuitive is to make it a

record, as shown here:

Prelude> :{

Prelude| data Student = Student { firstName :: String

Prelude| , lastName :: String

Prelude| , birthDate :: DateInfo

Prelude| , specialization :: String

Prelude| , studyYear :: Int

Prelude| , averageGrade :: Float

Prelude| } deriving (Show, Eq)

Prelude| :}

Prelude> student = Student "Emily" "Brian" (Date 23 4 1990)

"Computer Science" 2 9.14

Prelude> firstName student

"Emily"

Prelude> averageGrade student

9.14

Prelude> :t averageGrade

averageGrade :: Student -> Float

In this piece of code, you can see :{ and :}. This means you are writing

a command on multiple lines. You can use this just in GHCi, not in .hs

files. Using record, you can easily access a field of the structure just by

typing the name of the field followed by the name of the variable.

�Type System
In Haskell, the system has the following types:

•	 Strong type: A strong type system ensures that the

program will contain errors resulting from wrong

expressions. An expression that meets all the

Chapter 4 Types

27

conditions of a language is called well-typed; otherwise,

it is ill-typed and will lead to a type error. In Haskell,

strong typing does not allow automatic conversions.

So, if a function has a Double argument but the user

provides an Int parameter, then an error will occur.

Of course, the user can explicitly convert the Int value

to a Double value using the predefined conversion

functions and everything will be fine.

•	 Static type: In a static type system, the types of all values

and expressions are known by the compiler at compile

type, before executing the program. If something

is wrong with the types of an expression, then the

compiler will tell you, as in the example of lists.

Combining strong and static types will avoid runtime

errors.

•	 Inference type: In an inference type system, the system

recognizes the type of almost all expressions in a

program. Of course, the user can define explicitly any

variable, providing its type, but this is optional.

�Summary
In this chapter, you learned the following:

•	 Which are the basic types in Haskell

•	 How to define your own types

•	 How the type system works in Haskell

Chapter 4 Types

28

�References

	 1.	 M. Lipovaca, Learn You a Haskell for Great Good!

A Beginner’s Guide (No Starch Press, 2011)

	 2.	 C. McBride, “Faking It: Simulating Dependent Types

in Haskell,” Journal of Functional Programming,

12(4–5), 375–392 (2002)

	 3.	 N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and

S Peyton-Jones, S. “Refinement Types for Haskell”

in ACM SIGPLAN Notices, vol. 49, no. 9, pp. 269–282

(ACM, 2014)

	 4.	 J. Hughes, “Restricted Data Types in Haskell,”

Haskell Workshop, vol. 99 (1999)

	 5.	 B. O’Sullivan, J. Goerzen, and D. B. Stewart, Real

World Haskell: Code You Can Believe In (O’Reilly

Media, 2008)

	 6.	 Values, types, and other goodies, https://www.

haskell.org/tutorial/goodies.html

	 7.	 Type, https://wiki.haskell.org/Type

Chapter 4 Types

https://www.haskell.org/tutorial/goodies.html
https://www.haskell.org/tutorial/goodies.html
https://wiki.haskell.org/Type

29© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_5

CHAPTER 5

Tuples
Sometimes in your applications you’ll need to group elements. In this

chapter, you will learn how to do this using tuples and what the main

predefined functions for tuples are.

Well, tuples are simple. They are a group of elements with different types.

Tuples are immutable, which means they have a fixed number of elements.

They are useful when you know in advance how many values you need to

store. For example, you can use them when you want to store the dimensions

of a rectangle or store the details of a student in the example from Chapter 4

(but it would be more difficult to read and follow the logic in the code).

�Writing Tuples
Tuples are written between regular parentheses, and the elements are

delimited by commas.

Prelude> ("first", "second", "third")

("first","second","third")

Prelude> :t ("first", "second", "third")

("first", "second", "third") :: ([Char], [Char], [Char])

Prelude> (1, "apple", pi, 7.2)

(1,"apple",3.141592653589793,7.2)

Prelude> :t (1, "apple", pi, 7.2)

(1, "apple", pi, 7.2)

 :: (Floating c, Fractional d, Num a) => (a, [Char], c, d)

30

Prelude> ("True", 2)

("True",2)

Prelude> :t ("True", 2)

("True", 2) :: Num b => ([Char], b)

Prelude> (True, 2)

(True,2)

Prelude> :t (True, 2)

(True, 2) :: Num b => (Bool, b)

In the first example, you have three elements. In the second example,

you have four elements, and in the last two examples, you have two elements

each. Note that "True" is different from True. The first one, in quotation

marks, is a String (or [Char]) value, while the second one is a Bool value.

You call a tuple with two elements a pair and a tuple with three

elements a triple.

Actually, a tuple with more than three elements is not so common.

Tuples are useful when you need to return more values from a function. In

Haskell, when you want to return more values from a function, you need to

wrap them in a single data structure with a single purpose, namely, a tuple.

Note that a tuple can have another tuple as an element, as shown here:

Prelude> (5, 'a', (2.3, False, "abc", 4))

(5,'a',(2.3,False,"abc",4))

Prelude> :t (5, 'a', (2.3, False, "abc", 4))

(5, 'a', (2.3, False, "abc", 4))

 :: (Fractional a1, Num a2, Num d) =>

 (a2, Char, (a1, Bool, [Char], d))

�Predefined Functions for Pairs
You have seen that a particular type of tuple is a pair. Pairs are more widely

used than other tuples. Let’s suppose you want to declare a point in the

Cartesian space, giving the x-coordinate and y-coordinate.

Chapter 5 Tuples

31

Prelude> (3.2, 5.7)

(3.2,5.7)

Prelude> let point = (3.2, 5.7)

If you need the x-coordinate of point, Haskell has a predefined

function for you.

Prelude> fst point

3.2

The fst function returns the first value in the pair. Similarly, the snd

function returns the second value in the pair.

Prelude> snd point

5.7

Another predefined function is swap. It belongs to the Data.Tuple

module, and to use it, you first need to import this module. Then, you need

to declare again the point variable, because it does not exist in the new

scope. Finally, call the swap function.

Prelude> import Data.Tuple

Prelude Data.Tuple> let point = (3.2, 5.7)

Prelude Data.Tuple> swap point

(5.7,3.2)

The result of swap is a pair with switched elements. For the moment,

don’t worry about modules and importing. You will learn more about

modules in Chapter 7. Note that Data.Tuple contains two more functions:

curry and uncurry (you will learn how they work in Chapter 7).

Using the predefined functions over pairs, let’s compute the distance

between two points, A and B, in the Cartesian space. The distance is given

by the following formula:

d x x y yA B A B= -() + -()2 2

Chapter 5 Tuples

32

This is easy, because you already have a function that computes the

square root of a number (sqrt) and a function that raises a number to another

number (the power sign, ^). Therefore, the distance would look like this:

Prelude> let pointA = (2.4, 6)

Prelude> let pointB = (-7, 3.5)

Prelude> d = sqrt ((fst pointA - fst pointB)^2 + (snd pointA -

snd pointB)^2)

Prelude> d

9.726767191621274

�Summary
In this chapter, you learned what tuples are and when they are useful. In

addition, you worked with predefined functions over tuples.

Also in this chapter, you looked at modules and saw a preview of how

they can be imported.

�References
	 1.	 C. Hall and J. O’Donnell, “Introduction to Haskell”

in Discrete Mathematics Using a Computer, pp. 1–33

(Springer, 2000)

	 2.	 A. S. Mena, Beginning Haskell: A Project-Based

Approach (Apress, 2014)

	 3.	 Data.Tuple, http://hackage.haskell.org/

package/base-4.12.0.0/docs/Data-Tuple.html

Chapter 5 Tuples

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Tuple.html
http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Tuple.html

33© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_6

CHAPTER 6

Lists
In this chapter, you’ll learn about lists and why are they so useful. You

will learn what a list is, which basic functions there are for lists, which

operations are faster, and in which context you might use lists.

�Basic Functions on Lists
A list is a similar data structure to a tuple, but lists can be used in more

scenarios than tuples. Lists are pretty self-explanatory, but you need to

know that they are homogenous data structures, which means the elements

are of the same type. You represent lists using square brackets, []. Here are

some examples:

Prelude> [1, 2, 3]

[1,2,3]

Prelude> ['a', 'x']

"ax"

Prelude> [True, False, False, True]

[True,False,False,True]

Prelude> :t [True, False, False, True]

[True, False, False, True] :: [Bool]

Prelude> let numList = [3, 1, 0.5]

Prelude> :t numList

numList :: Fractional a => [a]

Prelude> ['a', 5]

34

<interactive>:13:7: error:

 • No instance for (Num Char) arising from the literal '5'

 • In the expression: 5

 In the expression: ['a', 5]

 In an equation for 'it': it = ['a', 5]

The first example is intuitive. In the next example, observe that Haskell

has represented the list ['a', 'x'] as String "ax" because, as you

learned, a String is actually a list of characters. You can find out the type

of elements using the :t command, and you can give a name to your list

using the let keyword. In the previous example, observe that you cannot

create a list with elements of different types. Also, note that all the numbers

in numList are represented as Fractional.

Note that [] represents an empty list (containing no elements), as

shown here:

Prelude> []

[]

The [], [[]], and [[], []] examples are different. The first is an

empty list, the next is a list with one element (an empty list), and the last is

a list with two elements (two empty lists). You can check whether a list is

null (i.e., an empty list) using the null function.

Prelude> null []

True

Prelude> null [3.2]

False

A list can have two parts, depending the perspective (you will see in

a moment why we used can here): the head and the tail. The head is the

first element of the list, and the tail is made up of the remaining elements.

There are two function for this.

Chapter 6 Lists

35

Prelude> head [0,1,2,3,4,5]

0

Prelude> tail [0,1,2,3,4,5,6]

[1,2,3,4,5,6]

Somewhat opposite to head and tail are the last and init functions.

The last function returns the last element of the list, while the init

function returns the entire list of elements except the last one.

Prelude> last [1,2,3,4,5,6,7]

7

Prelude> init [1,2,3,4,5,6,7]

[1,2,3,4,5,6]

You can add more elements to a list in two ways, as shown here:

Prelude> [1,2,3] ++ [4,5]

[1,2,3,4,5]

Prelude> "Haskell" ++ " " ++ "programming"

"Haskell programming"

Prelude> 0 : [1,2]

[0,1,2]

Prelude> [0] ++ [1,2]

[0,1,2]

You can use : or ++ operators. What is the difference? You use : when

you want to add a new head to the list, so on the left side of : is an element

and on its right side is a list. You use ++ when you want to concatenate

two lists, so on both sides of the ++ operator you write lists. This fact is

emphasized in the previous example, where, to use ++, we wrote [0],

namely, a list with just one element. The list [5, 6, 7] is actually the

condensed representation of the operations 5:6:7:[].

Chapter 6 Lists

36

To determine the length of a list, you use the length function.

Prelude> length [1,2,3,4,5,6,7,8,9,10]

10

Prelude> length []

0

-

If you need an element in a certain position, you use the !! operator

(note that the first index of a list is 0).

Prelude> "Haskell programming" !! 10

'o'

Prelude> let listOfLists = [[1,2,3], [0], [-5, 3, 8]]

Prelude> length listOfLists

3

Prelude> listOfLists !! 2

[-5,3,8]

You can compare the elements of two lists. The comparison begins

with the first elements, followed by a comparison of the second elements,

and so on.

Prelude> [1,2,3] < [4,5]

True

Prelude> [1,2,3] < [4,1,2]

True

If you have many elements in a list, it is difficult to write them all. For

example, what if you need all numbers from 1 to 100 or the letters from a to

z or all odd numbers? How do you write them? Well, it’s simple in Haskell.

Haskell provides you with the following way:

Prelude> [1..20]

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

Prelude> ['a'..'z']

Chapter 6 Lists

37

"abcdefghijklmnopqrstuvwxyz"

Prelude> [1,3..20]

[1,3,5,7,9,11,13,15,17,19]

Prelude> [14,18..30]

[14,18,22,26,30]

Note that if you want to define a rule, you need to provide the first two

elements of the list.

You can even work with infinite lists, for example multiples of 5:

[5,10..]. Be careful when you work with infinite lists.

�Other Functions
The following are other useful functions for lists:

•	 reverse reverses the list.

•	 take takes from the list a certain number of elements

(resulting in another list, but without doing any

changes in the elements because in Haskell expressions

are immutable), beginning with the first element.

•	 drop deletes from the list a certain number of elements,

beginning with the first element.

•	 maximum extracts the maximum element of the list.

•	 minimum extracts the minimum element of the list.

•	 sum sums the elements of the list.

•	 product computes the product of elements in the list.

•	 elem checks whether an item is an element of the list.

•	 splitAt splits a list into two lists at a certain position.

Chapter 6 Lists

38

•	 cycle creates an infinite list by replicating a given list.

•	 repeat creates an infinite list by repeating a given

element.

Here are some examples:

Prelude> reverse []

[]

Prelude> reverse [1,2,3]

[3,2,1]

Prelude> take 5 [1,2,3,4,5,6,7]

[1,2,3,4,5]

Prelude> take 5 [1,2,3,4]

[1,2,3,4]

Prelude> drop 5 [1,2,3,4]

[]

Prelude> drop 5 [1,2,3,4,5,6,7]

[6,7]

Prelude> maximum [10, 3, 6, 132, 5]

132

Prelude> minimum [10, 3, 6, 132, 5]

3

Prelude> minimum []

*** Exception: Prelude.minimum: empty list

Prelude> minimum [True, False]

False

Prelude> minimum ['a', 'b']

'a'

Prelude> sum [10, 3, 6, 132, 5]

156

Prelude> sum []

0

Prelude> sum [True, False]

Chapter 6 Lists

39

<interactive>:50:1: error:

 • No instance for (Num Bool) arising from a use of 'sum'

 • In the expression: sum [True, False]

 In an equation for 'it': it = sum [True, False]

Prelude> sum ['a', 'b']

<interactive>:51:1: error:

 • No instance for (Num Char) arising from a use of 'sum'

 • In the expression: sum ['a', 'b']

 In an equation for 'it': it = sum ['a', 'b']

Prelude> product [10, 3, 6, 132, 5]

118800

Prelude> elem 3 [10, 3, 6, 132, 5]

True

Prelude> elem True [10, 3, 6, 132, 5]

<interactive>:54:13: error:

 • No instance for (Num Bool) arising from the literal '10'

 • In the expression: 10

 �In the second argument of 'elem', namely '[10, 3, 6, 132,

....]'

 In the expression: elem True [10, 3, 6, 132,]

Prelude> elem 0 [10, 3, 6, 132, 5]

False

Prelude> splitAt 3 [10, 3, 6, 132, 5]

([10,3,6],[132,5])

Prelude> take 15 (cycle [1,2,3,4])

[1,2,3,4,1,2,3,4,1,2,3,4,1,2,3]

Prelude> take 15 (repeat 2)

[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

Chapter 6 Lists

40

The operations that are always fast are the ones appending an element

(i.e., the : operator), head function, or tail function. The functions that

imply working with the nth element of a list work pretty well, too, but they

become slower as n becomes larger. Intuitively, the slowest functions are

those that process an entire list, and they become even slower when the

length of the list increases.

�Summary
In this chapter, you learned the following:

•	 What lists are

•	 What the basic functions for a list are

•	 That you can represent a list in different ways

•	 That you can work with infinite lists

•	 Which operations are faster and which are slower

�References

	 1.	 G. Hutton, Programming in Haskell (Cambridge

University Press, 2016)

	 2.	 D. Coutts, D. Stewart, and R. Leshchinskiy,

“Rewriting Haskell Strings.” International

Symposium on Practical Aspects of Declarative

Languages (Springer, 2007)

	 3.	 How to work on lists, https://wiki.haskell.org/

How_to_work_on_lists

	 4.	 Data.List, http://hackage.haskell.org/

package/base-4.12.0.0/docs/Data-List.html

Chapter 6 Lists

https://wiki.haskell.org/How_to_work_on_lists
https://wiki.haskell.org/How_to_work_on_lists
http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html
http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html

41© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_7

CHAPTER 7

Functions
In the previous chapters, you mainly worked with predefined functions

from different libraries in Haskell. Now, it’s time to write your own

functions. In this chapter, you will learn about pattern matching, guards,

clauses, higher-order functions, and lambda expressions used in functions.

Let’s start with a simple function that adds two numbers.

add :: Integer -> Integer -> Integer

add x y = x + y

main = do

 putStrLn "Adding two numbers:"

 print(add 3 7)

On the first line is the function declaration, which tells you the type of

inputs and outputs, and on the second line is the function definition. As in

the other programming languages, Haskell begins to compile the code

from the main function. The result is as follows:

Adding two numbers:

10

�Haskell Files
Haskell files can have an .hs or .lhs extension. The .lhs files have a

literate format; in other words, they include commentary, and the lines

that begin with > are considered part of the code. To write a Haskell file,

42

open a text editor and place your code in it; then save the file with an .hs

extension. To load a file into GHCi, first change the current directory to the

directory that contains the .hs file using the :cd command. So, if you save

your Haskell files in the path C:\Haskell; you can proceed as follows:

Prelude> :cd C:\Haskell

In C:\Haskell, let’s say you have the file Main.hs. You can load this file

into GHCi using the :load or :l command.

Prelude> :l Main.hs

[1 of 1] Compiling Main (Main.hs, interpreted)

Ok, one module loaded.

*Main>

Note that Prelude> changes to *Main> .

GHC finds the file that contains the module M by looking at the name of

the file. So, module M must be in the M.hs file. This rule is broken when the

files are loaded using the :load command. In this case, the module name

can be different from the file name, but the file must contain that module.

If a source file is modified, it needs to be saved and then reloaded using

:reload, as shown here:

 *Main> :reload

[1 of 1] Compiling Main (Main.hs, interpreted)

Ok, one module loaded.

To import external modules, such as modules from libraries (as you

will see in the following chapters), you use the import command.

Prelude> import Data.Maybe

Prelude Data.Maybe>

Of course, modules can be imported in other modules (for example, in

source files) using the following syntax:

Chapter 7 Functions

43

module Module_Name where

 import Module1

 import Module2

...

The command import has some variations that allow you to import

some parts of a module, give a module an alias, and so on.

As with many programming languages, Haskell has a function called

main, which specifies that an I/O action will be performed. Open the Main.

hs file and type the following:

main = putStrLn "Learning about Haskell main function"

Then save it, load it, and run it.

Prelude> :l Main.hs

[1 of 1] Compiling Main (Main.hs, interpreted)

Ok, one module loaded.

*Main> main

Learning about Haskell main function

To write more I/O actions in main, you use the do block. Open the

Main.hs file again and type the following:

main = do

 putStrLn "Are you enjoying Haskell?"

 answer <- getLine

 putStrLn ("You answered: " ++ answer)

Save the file and reload it. Then run it again, as shown here:

*Main> :reload

*Main> main

Are you enjoying Haskell?

sure

You answered: sure

Chapter 7 Functions

44

�Pattern Matching
Pattern matching means the program checks whether some data matches

a certain pattern and then acts accordingly. A function can have different

bodies for different patterns. Pattern matching can be applied on any data

type. Check out this example:

day :: (Integral a) => a -> String

day 1 = "Monday"

day 2 = "Tuesday"

day 3 = "Wednesday"

day 4 = "Thursday"

day 5 = "Friday"

day 6 = "Saturday"

day 7 = "Sunday"

day x = "The week has only 7 days!"

You’ll get the following:

*Main> day 7

"Sunday"

*Main> day 0

"The week has only 7 days!"

*Main> day 3

"Wednesday"

When day is called, the matching begins from the bottom. When there

is a match, the corresponding body is chosen. Note that the function

contains a default pattern. If you do not put a default pattern and if the

function’s parameter does not fall into any defined pattern, then you will

get an exception. If you comment out or delete the last line of the function,

you get the following result:

Chapter 7 Functions

45

*Main> day 0

"*** Exception: Days.hs:(2,1)-(8,16): Non-exhaustive patterns

in function day

This function can be written using an if..then..else statement, but it

would be pretty difficult to follow. This statement is self-explanatory: if the

condition is met, then choose the value from the first branch, else choose

the value from the second branch. Here’s a short example:

numbers :: (Integral a) => a -> String

numbers x =

 if x < 0 then "negative"

 else "positive"

*Main> numbers 8

"positive"

*Main> numbers (-1)

"negative"

For negative numbers, don’t forget to put them inside parentheses.

�Case Expressions
Case expressions are simple. The general syntax is as follows:

case expression of pattern -> result

 pattern -> result

 ...

Let’s write the day function using case, as shown here:

day :: (Integral a) => a -> String

day x = case x of 1 -> "Monday"

 2 -> "Tuesday"

 3 -> "Wednesday"

Chapter 7 Functions

46

 4 -> "Thursday"

 5 -> "Friday"

 6 -> "Saturday"

 7 -> "Sunday"

 _ -> "The week has only 7 days!"

Then write the following:

Prelude> :l Day.hs

[1 of 1] Compiling Main (Day.hs, interpreted)

Ok, one module loaded.

*Main> day 7

"Sunday"

*Main> day 10

"The week has only 7 days!"

�Guards
You can use guard to test whether a value has a certain property. Guards

are alternative to else..if statements, making the code easier to write and

follow. Let’s continue with a sign example, shown here:

sign :: (RealFloat a) => a -> String

sign x

 | x < 0 = "negative"

 | x == 0 = "zero"

 | otherwise = "positive"

*Main> sign 3.5

"positive"

*Main> sign (-7)

"negative"

Chapter 7 Functions

47

As you can see in this example, to use guards, you mark them with pipes.

The evaluation begins with the bottom expression and continues until a

match is found. Note that we have the default case marked by the otherwise

keyword; any value that does not meet any of the previous conditions will

get the default. You can think of guards as Boolean expressions, where

otherwise is always evaluated as True. Pay attention to what’s after the

parameters in the function definition. Note that you don’t put an equal sign.

�Clauses
In this section, you’ll learn about the where clause and let..in clause.

Let’s begin with the where clause. As example, think about the

quadratic equation defined as ax2 + bx + c = 0. The solutions of the

equation depend on a discriminant computed as Δ = b2 − 4ac. If Δ > 0,

you will obtain two real solutions: x1, x2. If Δ = 0, you will obtain two real

identical solutions: x1 = x2. Otherwise, the equation does not have real

solutions. You can think of the three parameters a,b,c as a triple and the

solutions as a pair. Observe that you need Δ in more parts of the algorithm.

You can resolve it as follows:

quadraticEq :: (Float, Float, Float) -> (Float, Float)

quadraticEq (a, b, c) = (x1, x2)

 where

 x1 = (-b - sqrt delta) / (2 * a)

 x2 = (-b + sqrt delta) / (2 * a)

 delta = b * b - 4 * a * c

Let’s test this.

*Main> quadraticEq (1, 2, 1)

(-1.0,-1.0)

*Main> quadraticEq (1, 1, 1)

(NaN,NaN)

Chapter 7 Functions

48

*Main> quadraticEq (1, 4, 0)

 (-4.0,0.0)

The names defined in the where clause are used only in the function,

so they will not affect other functions or modules. Be careful about the

indentation; all the names should be aligned properly. Do not use the Tab

key to add large spaces. Also, the names defined in the body of a function

pattern will not be visible by the body of the same function for another

pattern. If you need a name to be visible in all patterns, you need to declare

it globally. You can also define a function in the where clause.

Another useful clause is let..in. Suppose you want to compute the

volume of a quadrilateral pyramid. You know that V
A hb=

×
3

, where Ab is

the area of the basis. You can proceed as follows:

pyramivVol :: (RealFloat a) => a -> a -> a

pyramivVol l h =

 let area = l^2

 in (area * h)/3

The names defined in the let clause are available just in the in. You

can find the volume also using the where clause. The difference between

them is that the let bindings are expressions themselves, while where

bindings are syntactic constructs. In previous chapters, you used the let..

in clause to define functions and constants in GHCi. There, you ignored

the in part, which means that the names were available through the entire

session. This clause can be used almost anywhere, not only in functions.

Prelude> 5 * (let a = 2 in a^2) + 7

27

Prelude> [let cube x = x^3 in (cube 6, cube 3)]

[(216,27)]

Prelude> (let x = 100; y = 200 in x+y, let l="Anne ";

f = "Scott" in l ++ f)

(300,"Anne Scott")

Chapter 7 Functions

49

The in part can miss when the visibility of the names are predefined.

This clause can be also used in list comprehension, inside a predicate, but

the names will be visible only in that predicate.

�Lambda Expressions
There are times when you need to use a function just once in your entire

application. To not complete with names, you can use anonymous blocks

called lambda expressions. A function without definition is called a lambda

function, and it is marked by the \ character. Let’s take a look:

main = do

 putStrLn "The square of 2 is:"

 print ((\x -> x^2) 2)

Inside print, we defined the expression x->x^2 and call it for the

value 2. The output is as follows:

The square of 2 is:

4

�Infix Functions
In Haskell, the functions are called by typing the name of the function,

followed by the arguments. But there are functions that don’t follow this

rule, such as mathematical operators. Actually, you can call an operator,

followed by the two arguments, but this is unnatural. Therefore, a function

that stands between its two arguments is called an infix function.

Prelude> (+) 2 2

 4

 Prelude> (*) 5 6

 30

Chapter 7 Functions

50

Let’s define an infix function, as shown here:

Prelude> let concatAndPrint a b = putStrLn $ (++) a b

 Prelude> concatAndPrint "abc" "def"

 abcdef

 Prelude> "abc" `concatAndPrint` "def"

 abcdef

Note that the infix function is marked by `` signs and is between its two

arguments. Usually, an infix function is used with two parameters.

�Higher-Order Functions
“A higher-order function is a function that takes other functions as

arguments or returns a function as result.”1 Let’s define the following

function:

multiplyList m [] = []

multiplyList m (y:ys) = m*y : multiplyList m ys

*Main> multiplyList 3 [2, 5, 7]

[6,15,21]

Note that it takes two inputs, a number and a list, and the output is a

list resulting from multiplying the number with the elements.

A higher-order function is multiplyListBy3.

multiplyListBy3 = multiplyList 3

*Main> multiplyListBy3 [10, 20, 30]

[30,60,90]

1�https://wiki.haskell.org/Higher_order_function

Chapter 7 Functions

https://wiki.haskell.org/Higher_order_function

51

The function multiplyListBy3 takes now one input, namely, a

list, because you know that m=3 when multiplyList is called inside

multiplyListBy3.

�Summary
In this chapter, you learned how to write source code files and how to use

them in GHCi. In addition, you learned how to use pattern matching and

guards in functions and what the difference is between them. You also saw

that in Haskell you can use a case expression. Next, you learned how to use

clauses in functions. You also learned about lambda expressions and how

you can write a function that is used just once in your entire application.

Finally, you worked with infix functions and higher-order functions.

�References

	 1.	 Haskell/control structures, https://en.wikibooks.

org/wiki/Haskell/Control_structures

	 2.	 Guard (computer science), https://en.wikipedia.

org/wiki/Guard_(computer_science)

	 3.	 P. Hudak, J. Peterson, and J. Fasel, A Gentle

Introduction to Haskell 98 (1999)

	 4.	 R. Bird, Introduction to Functional Programming

Using Haskell, vol. 2 (Prentice Hall Europe, 1998)

Chapter 7 Functions

https://en.wikibooks.org/wiki/Haskell/Control_structures
https://en.wikibooks.org/wiki/Haskell/Control_structures
https://en.wikipedia.org/wiki/Guard_(computer_science)
https://en.wikipedia.org/wiki/Guard_(computer_science)

53© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_8

CHAPTER 8

Recursion
In the previous chapter, you learned about functions in Haskell. Many

times, in real-world applications you’ll work with functions that recall

themselves, which is a process called recursion. In this chapter, you will

learn what recursion is, see some concrete examples, and learn how you

implement them in Haskell and how to apply recursion on lists.

Recursion in computer science is a method of solving a prob-
lem where the solution depends on solutions to smaller
instances of the same problem (as opposed to iteration).

—Wikipedia1

Let’s start with a simple example. Do you remember the factorial function

from math class? Well, it is defined as follows:

f f n
n

n f n n
: ,

,

,
 ® () =

=
× -() >

ì
í
î

1 0

1 0

This function is also known as n!. The first branch represents an

edge condition, which tells when the function terminates. It is important

because it will finish the recursive call; otherwise, the execution will enter

into an infinite loop.

1�Recursion (computer science), https://en.wikipedia.org/wiki/
Recursion_(computer_science)

https://en.wikipedia.org/wiki/Recursion_
https://en.wikipedia.org/wiki/Recursion_

54

Returning to the factorial function, you write it in Haskell as follows:

fact 0 = 1

fact n = n * fact (n - 1)

After writing the previous two lines into a file called Fact.hs and

loading the file, let’s test it.

*Main> fact 5

120

*Main> fact 0

1

*Main> :t fact 5

fact 5 :: (Eq p, Num p) => p

When Haskell needs to decide which function definition to choose, it

starts with the foremost definition and picks up the first one that matches.

Therefore, the order of definitions in a recursive function is important. If

you switched the definitions, you would never get a result, because Haskell

would always be stuck in the first definition, fact n = n*fact(n-1). This

fact leads us to the following note.

Note  Always start a recursive function body with the definitions for
the edge conditions. In other words, begin with the particular cases
before the general case.

If you call fact for a negative number, an infinite loop will be

encountered. Why is that? This happens because Haskell will always

choose the general definition, because it will never reach the edge

condition. Anticipating a little, you can use the function error from

Prelude to report an error (in this example, the function fact cannot be

applied on negative integers or any other value that’s not positive). You can

improve the function fact as follows:

Chapter 8 Recursion

55

fact 0 = 1

fact n | n > 0 = n * fact (n - 1)

 | otherwise = error "Wrong input"

Now, for example, if you call fact for -5 or 3.4, you get the following:

*Main> fact (-5)

*** Exception: Wrong input

CallStack (from HasCallStack):

 error, called at Fact.hs:3:22 in main:Main

*Main> fact 3.5

*** Exception: Wrong input

CallStack (from HasCallStack):

 �error, called at Fact.hs:3:22 in main:MainRecursive Functions

on Lists

�Handling for and while Loops from
Imperative Languages
In Haskell, you don’t have for or while loops like in imperative languages;

instead, you declare what something is instead of saying how to get it.

Therefore, recursion is even more important because you use it to say what

something is.

In functional languages, these loops are expressed as computations

over lists. Usually, the following three functions can be used to replace

for/while loops:

•	 map applies a function given as a parameter to every

element of a list.

•	 foldl goes through the entire list from left to right.

•	 foldr goes through the entire list from right to left.

Chapter 8 Recursion

56

Of course, these can be combined with other functions (predefined or

your own functions) and used on lists to create algorithms that are more

complex.

Further, let’s say you have a list of positive integers and you want to

compute every element’s factorial. You already saw a fact function defined

in the previous section, which computes the factorial for one number. To

apply it on the numbers of a list, you proceed as follows:

 *Main> map fact [2, 9, 8]

[2,362880,40320]

How simple is that? In this way, you eliminated the need for the

while/for loop.

You will learn more about foldl and foldr in Chapter 15.

�Recursion on Lists
Let’s begin this section with a simple example: list creation itself. You

already know that a list can be empty and you can add an element into

a list using the : operator. For example, the list [1,2,3,4] is created as

1:(2:(3:(4:[]))). Here, you used : recursively (remember that an

operator is actually a function).

The next function you’ll look at is reverse. You can define your

recursive recursiveReverse as follows:

recursiveReverse :: [a] -> [a]

recursiveReverse [] = []

recursiveReverse (x:xs) = recursiveReverse xs ++ [x]

Let’s see how it works:

*Main> recursiveReverse [3,2,6,7]

[7,6,2,3]

Chapter 8 Recursion

57

Remember that reverse reverses a list. In the function’s body, a

reversed empty list is the empty list itself. On the last line, you concatenate

the first element of the list given as a parameter to the end of an existing

list. For this example, it works like this:

recursiveReverse [3,2,6,7]

recursiveReverse [2,6,7] ++ [3]

(recursiveReverse [6,7] ++ [2]) ++ [3]

((recursiveReverse [7] ++ [6]) ++ [2]) ++ [3]

(((recursiveReverse [] ++ [7]) ++ [6]) ++ [2]) ++ [3]

On the last line, the call reaches the edge condition. Further, it

continues with the following:

((([] ++ [7]) ++ [6]) ++ [2]) ++ [3]

(([7] ++ [6]) ++ [2]) ++ [3]

([7,6] ++ [2]) ++ [3]

[7,6,2] ++ [3]

[7,6,2,3]

That’s it. Next, you implement the recursive version of the filter function.

recursiveFilter :: (a -> Bool) -> [a] -> [a]

recursiveFilter condition [] = []

recursiveFilter condition (x:xs)

 | condition x = x : recursiveFilter condition xs

 | otherwise = recursiveFilter condition xs

You call it as follows:

*Main> recursiveFilter (<10) [2, -9, 4, 20, 0, 100]

[2,-9,4,0]

*Main> import Data.Char

*Main Data.Char> recursiveFilter (isLetter) "Ann has 5 apples."

"Annhasapples"

Chapter 8 Recursion

58

To use the isLetter function, you need to import the Data.Char module.

Other functions on lists that can be defined recursively are length,

repeat, maximum, minimum, take, and `elem`.

recursiveLength :: [a] -> Int

recursiveLength [] = 0

recursiveLength (x:xs) = 1 + recursiveLength xs

recursiveReverse :: [a] -> [a]

recursiveReverse [] = []

recursiveReverse (x:xs) = recursiveReverse xs ++ [x]

recursiveRepeat :: a -> [a]

recursiveRepeat x = x:recursiveRepeat x

recursiveMaximum :: (Ord a) => [a] -> a

recursiveMaximum [] = error "Empty list"

recursiveMaximum [x] = x

recursiveMaximum (x:xs) = max x (recursiveMaximum xs)

recursiveMinimum :: [Int] -> Int

recursiveMinimum (x:[]) = x

recursiveMinimum (x:xs) = x `min` recursiveMinimum xs

recursiveTake :: (Num i, Ord i) => i -> [a] -> [a]

recursiveTake n _

 | n <= 0 = []

recursiveTake _ [] = []

recursiveTake n (x:xs) = x : recursiveTake (n-1) xs

recursiveElem :: (Eq a) => a -> [a] -> Bool

recursiveElem a [] = False

recursiveElem a (x:xs)

 | a == x = True

 | otherwise = a `elem` xs

Feel free to use and test these functions.

Chapter 8 Recursion

59

�Pattern Matching and Recursion
In this section, you will learn about a pattern matching technique that

allows you to write a standard skeleton for recursive functions on lists.

Let’s start with a general definition.

recursiveFunction [] = -- this is the edge condition

recursiveFunction (x:xs) = -- this is the general case

The edge condition is not allowed to include recursive calls; otherwise,

it would lead to an infinite loop. The edge condition must return a value, as

you saw in the previous sections. The type of the returned value needs to

be the same as the type annotation in the function. Here’s an example:

recursiveReverse :: [a] -> [a]

This definition means the edge condition should have the type [a], so

the “most particular” case for [a] is the empty list [].

recursiveReverse [] = []

For the recursion, the recursive function needs to call itself like this:

recursiveFunction (x:xs) = function x recursiveFunction xs

or like this:

recursiveFunction (x:xs) = recursiveFunction xs function x

function assures the chaining of recursive calls. The order of

recursiveFunction and function depends on the effective specifications.

To make it more intuitive, here is how to use function as an operator:

recursiveFunction (x:xs) = x `function` recursiveFunction xs

Chapter 8 Recursion

60

Don’t forget to check the annotation type of the recursive function

because `function` needs to act accordingly.

For example, in recursiveReverse, `function` is actually the operator

++.

recursiveReverse (x:xs) = recursiveReverse xs ++ [x]

Finally, you can obtain the recursive version of recursiveReverse, as

defined in the previous section.

�Summary
In this chapter, you learned about the following:

•	 What recursion is and why it is important

•	 How to handle for and while loops from imperative

languages by using recursion in the functional

language Haskell

•	 How to write some common functions recursively on

lists

•	 How to write a general skeleton of a recursive function

using pattern matching

�References

	 1.	 R. Hinze and J. Jeuring, “Generic Haskell: Practice and

Theory.” Generic Programming (Springer, 2003), 1–56

	 2.	 C. McBride, “Faking It Simulating Dependent Types

in Haskell,” Journal of Functional Programming,

12(4–5), 375–392 (2002)

Chapter 8 Recursion

61

	 3.	 Recursion, https://en.wikipedia.org/wiki/

Recursion

	 4.	 Haskell/recursion, https://en.wikibooks.org/

wiki/Haskell/Recursion

	 5.	 Recursion, http://learn.hfm.io/recursion.html

	 6.	 Recursive functions on lists, https://www.

futurelearn.com/courses/functional-

programming-haskell/0/steps/27211

Chapter 8 Recursion

https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Recursion
https://en.wikibooks.org/wiki/Haskell/Recursion
https://en.wikibooks.org/wiki/Haskell/Recursion
http://learn.hfm.io/recursion.html
https://www.futurelearn.com/courses/functional-programming-haskell/0/steps/27211
https://www.futurelearn.com/courses/functional-programming-haskell/0/steps/27211
https://www.futurelearn.com/courses/functional-programming-haskell/0/steps/27211

63© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_9

CHAPTER 9

List Comprehension
Chapter 6 introduced lists, and now you will learn another way to

represent a list. Do you remember how sets are represented using

mathematical symbols? Well, you will do that with lists. Further, you will

learn more complex functions that you can apply on lists.

�Introduction
Let’s say you have the set A = {x ∈ ℕ| 5 ≤ x ≤ 10}. If you pay a little attention,

you will observe that in natural terms A is a list. Haskell provides you with a

way to represent such lists, as shown here:

Prelude> let set = [x | x <- [5..10]]

Prelude> set

[5,6,7,8,9,10]

This type of representation is called list comprehension, and x is called

a generator.

This can be complicated. Let’s say you want the numbers between 100

and 200 that are divisible by 17. Note that you can add a condition (or a

predicate) called a guard.

Prelude> [x | x <- [100..200], x `mod` 17 == 0]

[102,119,136,153,170,187]

64

What if you want those numbers divisible with 17 and 10? You do that

like this:

Prelude> [x | x <- [100..200], x `mod` 17 == 0, x`mod` 10 == 0]

[170]

Observe that we added two predicates, separated by a comma.

But you also can do it like this:

Prelude> [x | x <- [100..200], x `mod` 17 == 0 && x`mod` 10 == 0]

[170]

You can add more variables like this:

Prelude> [x+y | x <- [1,7,12], y <- [5,9,14]]

[6,10,15,12,16,21,17,21,26]

Prelude> [x+y | x <- [1,7,12], y <- [5,9,14,17]]

[6,10,15,18,12,16,21,24,17,21,26,29]

In this case, every element from the first list is summed up with every

element from the second list. It is similar to a Cartesian product, but in this

case you sum up the elements of pairs in the Cartesian product.

Let’s add another restriction to this example, as shown here:

Prelude> [x+y | x <- [1,7,12], y <- [5,9,14,17], x+y >20]

[21,24,21,26,29]

These operations work the same on the strings.

Prelude> let l1 = ["my", "your"]

Prelude> let l2 = ["book", "pencil", "PC"]

Prelude> [elem1 ++ " " ++ elem2 | elem1 <- l1, elem2 <- l2]

["my book","my pencil","my PC","your book","your pencil","your PC"]

Chapter 9 List Comprehension

65

An important aspect about lists is the _ symbol. Here’s an example:

Prelude> let numbers = [1,3..100]

Prelude> [0 | _ <- numbers]

[0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

This means every element of the list is replaced by 0. Instead of _,

you could use a variable, but it is more convenient in this way, as

syntactic sugar. For short, syntactic sugar is just another representation for

expressions written in an analytic way and does not add functionality. The

main purpose of syntactic sugar is to make the code more readable.

You can use an if..then..else statement in a list comprehension.

Let’s say you want to check whether the positive numbers in a list are odd

or even.

Prelude> parity list = [if x `mod` 2 == 0 then "even" else

"odd" | x <- list, x >= 0]

Prelude> parity [-100,-97..25]

["even","odd","even","odd","even","odd","even","odd"]

This is a little confusing because you don’t know which are the

numbers. Let’s improve it.

Prelude> parity list = [if x `mod` 2 == 0 then show x ++ "

even" else show x ++ " odd" | x <- list, x >= 0]

Prelude> parity [-100,-97..25]

["2 even","5 odd","8 even","11 odd","14 even","17 odd","20

even","23 odd"]

Now it is better. The show function converts its parameter into a

String.

Chapter 9 List Comprehension

66

�Other Functions on Lists
Now that you know how to work with functions, you’ll write your own

functions to apply on lists. You will start by using some other functions

from the Data.List module (all other functions on lists that you have

learned about so far belong to this module), and then you will sort

elements on a list of integers.

In the first example, you will use the predefined map function. The

general definition of map is as follows:

map :: (a -> b) -> [a] -> [b]

The statement map f list will produce a new list obtained by

applying f to every element of list. Write a function double in the

Double.hs file with the following statements:

double :: Integer -> Integer

double x = 2*x

Then, load the file and apply the double function to the elements of

a list.

Prelude> :load Double

[1 of 1] Compiling Main (Double.hs, interpreted)

Ok, one module loaded.

*Main> map double [-8,-3..30]

[-16,-6,4,14,24,34,44,54]

Next, you want to check whether an element of a list is even and

whether it is greater than 20. You can use the check function.

check :: Integer -> Bool

check x =

 x `mod` 2 == 0 && x > 20

Chapter 9 List Comprehension

67

Further, you can use the any function that tells you whether there are

elements in the list that accomplish a condition.

*Main> any check [1,2,3,4]

False

*Main> any check [1,2,3,4, 22]

True

A similar function is all, which tells you whether all the elements of

the list accomplish a condition.

*Main> all check [1,2,3,4]

False

*Main> all check [1,2,3,4, 22]

False

*Main> all check [22, 24]

True

The following are other useful functions for lists:

•	 find returns the first element of the list that satisfies a

predicate, or Nothing otherwise.

•	 filter returns all elements of the list that satisfy a condition.

•	 elemIndices/elemIndex returns all indices of the

elements equal to a given item or the first index of the

element equal to a given item or Nothing if there is no

such element.

•	 findIndex/findIndices returns all indices of the

elements that make up a predicate or the first index of

the element that makes up a predicate or Nothing if

there is no such element.

•	 The zip family of functions creates tuples from lists

based on different criteria.

Chapter 9 List Comprehension

68

Go ahead and practice these functions.

Next, let’s sort a list. For this example, you can use the quicksort

technique. Quicksort takes an element as a pivot and reorders the list so

that all elements with a lesser value than the pivot move onto the left side

of the pivot and the elements with a greater value than the pivot move to

the right side of the pivot (assuming you are sorting a list in increasing

order). This can be done recursively easily.

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (y:ys) = (qsort ls) ++ [y] ++ (qsort gt)

 where

 ls = filter (< y) ys

 gt = filter (>= y) ys

This works as follows:

*Main> qsort [10, 1, 5]

[1,5,10]

*Main> qsort [10, 1, 5, -7, 0]

[-7,0,1,5,10]

�Summary
In this chapter, you learned about the following:

•	 How to represent a list in a comprehension form

•	 How to apply your own functions on lists

•	 Other useful functions applied on lists

•	 How to sort a list, using the quicksort algorithm

Chapter 9 List Comprehension

69

�References
	 1.	 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein, Introduction to Algorithms (MIT Press,

2009)

	 2.	 A. Nunes-Harwitt, M. Gambogi, and T. Whitaker,

“Quick-Sort: A Pet Peeve” in proceedings of the 49th

ACM Technical Symposium on Computer Science

Education, pp. 547–549 (ACM, 2018)

	 3.	 M. Lipovaca, Learn You a Haskell for Great Good! A

Beginner’s Guide (No Starch Press, 2011)

	 4.	 M. Aslam, Functional Programming Language–

Haskell (2003)

	 5.	 Data.List, http://hackage.haskell.org/

package/base-4.12.0.0/docs/Data-List.html

	 6.	 List comprehension, https://wiki.haskell.org/

List_comprehension

Chapter 9 List Comprehension

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html
http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html
https://wiki.haskell.org/List_comprehension
https://wiki.haskell.org/List_comprehension

71© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_10

CHAPTER 10

Classes
In the previous chapters, you created your own types. Now, it’s time to

learn what classes are in Haskell and how to work with them. In this

chapter, you’ll learn about the standard classes and then how to create

your own classes.

�Standard Classes
In Haskell, the most common standard classes are the following ones:

•	 Eq is used when you work with == (is equal) and /=

(is not equal).

•	 Ord is used when you work with the operators <, <=, >,

and >= and the functions min, max, and compare.

•	 Enum is used in enumerations and lets you use syntax

such as [Red .. Yellow].

•	 Read includes the function read, which takes a string as

a parameter and parses it into a value.

•	 Show includes the function show, which takes a value as

a parameter and converts it to a string.

•	 Bounded is used in enumerations and includes the

functions minBound and maxBound.

72

Do you remember in Chapter 4 when you used the command

deriving followed by one of the previous classes? You did that because

you wanted your type to use functions that actually belong to these classes.

For example, to compare two dates of type DateInfo, you used deriving

Eq. That allowed you to write myDate2 == myDate1.

�The Eq Class
The following is the minimal definition of Eq from Prelude1:

class Eq a where

 (==), (/=) :: a -> a -> Bool

 x /= y = not (x == y)

 x == y = not (x /= y)

This says that if type a is an instance of Eq, it must support == and /=.

The operators == and /= are called class methods, and they are defined

in terms of each other. This means that a type in Eq should provide the

definition for one of them, with the other being deduced automatically.

Let’s take a look at ==, shown here:

(==) :: (Eq a) => a -> a -> Bool

This says that the == has the type a->a->Bool for every type a that is an

instance of the class Eq.

1�http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.
html#t:Eq

Chapter 10 Classes

http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#t:Eq
http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#t:Eq

73

When you already have a type, you can make it an instance of a class,

which is a process called instance declaration.

data MyType = MyType {stringVal :: String, intVal :: Integer}

instance Eq MyType where

 (MyType s1 i1) == (MyType s2 i2) = (s1 == s2) && (i1 == i2)

*Main> MyType "apples" 2 == MyType "apples" 2

True

*Main> MyType "apples" 2 /= MyType "apples" 2

False

In the previous code, we defined the type MyType and then made it an

instance of Eq. Further, we said that two values of type MyType are equal

(==) if the string of the first value is equal to the string of the second value

and the integer of the first value is equal to the integer of the second

value. It worked. Observe that you use /= even if you don’t define it in

the instance declaration of MyType; this is because Haskell knows how to

automatically deduce it from the definition of ==.

�Inheritance
All types you define should be an instance of Eq and even Show or Ord.

When the definitions of methods of these classes are evident, then you

can use deriving, as in Chapter 4. In this way, you avoid having to write

complex definitions. But you can derive just some of the standard classes:

Eq, Show, Ord, Enum, Bounded, Read.

Chapter 10 Classes

74

A class can inherit another class. For example, a brief definition of Ord

from Prelude2 is as follows:

class (Eq a) => Ord a where

 compare :: a -> a -> Ordering

 (<), (<=), (>=), (>) :: a -> a -> Bool

 max, min :: a -> a -> a

The => sign says that Ord inherits Eq, which means that a type that is an

instance of Ord is also an instance of Eq. Thus, it must also implement ==

and /=. A class can inherit multiple classes.

class (Num a, Ord a) => Real a where

 �-- | the rational equivalent of its real argument with full

precision

 toRational :: a -> Rational

This definition is from Prelude,3 and the multiple inheritance is

marked by the inherited classes in the parentheses.

Figure 10-1 presents the hierarchy of classes in Haskell, taken from the

Haskell report4. The names of classes are in bold, and the instances are

regular font. In every ellipse, -> means function, and [] means list. The

arrows between ellipses show the inheritance relationships, indicating the

inheriting class.

2�http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#t:Ord
3�http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.
html#t:Real

4�https://www.haskell.org/onlinereport/basic.html#standard-classes

Chapter 10 Classes

http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#t:Ord
http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#t:Real
http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#t:Real
https://www.haskell.org/onlinereport/basic.html#standard-classes

75

You can add constraints to your types, in the following keywords :

•	 instance: You declare parametrized types.

•	 class: You can add constraints, different from the ones

in the class definition, in method signatures.

•	 data: This constrains the constructor signatures.

Figure 10-1.  Hierarchy of classes in Haskell [4]

Chapter 10 Classes

76

Further, note the following:

•	 In our examples, we used three definitions marked by

the keywords class, data, and instance. In fact, these

are separate, and there isn’t any rule that specifies how

you should group them.

•	 Classes are not types; they are categories of types, which

means that an instance of a class is a type (not a value!).

•	 You can’t define an instance of a class from type

synonyms defined with the keyword type.

In the examples in this section, you saw that you can test whether two

values are equal for different types. For example, you can test whether

two integer values are equal, you can test whether two string values are

equal, and you can test whether two values of type MyType are equal. So,

you can apply the == operator in different types. This behavior is known as

overloading (or less commonly known as ad hoc polymorphism).

�Creating Your Own Type Class
Now, let’s create a simple example. You’ll see how to define a data type

called Animal, which can be Cat, Dog, or Parrot. Then, you’ll tell Haskell

which is equal to which and how to show them.

data Animal = Cat | Dog | Parrot

instance Eq Animal where

 Cat == Cat = True

 Dog == Dog = True

 Parrot == Parrot = True

 _ == _ = False

Chapter 10 Classes

77

instance Show Animal where

 �show Cat = "In ancient times cats were worshipped as gods;

they have not forgotten this."

 show Dog = "It is Human's best friend."

 show Parrot = "It repeats everything you say."

Now let’s test it.

*Main> Cat == Cat

True

*Main> Cat == Parrot

False

*Main> show Cat

"In ancient times cats were worshipped as gods; they have not

forgotten this."

�Advanced Type Classes
Now, let’s suppose you want to define a class Set, which allows you to add

an element to the set and test whether a value is an element of that set. You

might proceed as follows:

class Set a where

 add :: a -> b -> a

 isElem :: a -> b -> Bool

instance Set [c] where -- List becomes instance of Set

 add xs x = x:xs

 isElem = flip elem

But this definition is not correct, because type b in the method

definitions is unknown, so Haskell will not know from where to take it. A

way to correct this is to use type classes with multiple parameters, which

allows you to integrate b into the type of the class.

Chapter 10 Classes

78

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE MultiParamTypeClasses #-}

class Eq b => Set a b where

 add :: a -> b -> a

 isElem :: a -> b -> Bool

instance Eq c => Set [c] c where

 add = flip (:)

 isElem = flip elem

The previous code uses language extensions. This is marked by the

LANGUAGE pragma.

{-# LANGUAGE <Extension>, <Extension> #-}

Language extensions enable features of Haskell that are useful in

certain contexts. In this example, we needed multiparameter type classes.

In addition, we used flexible instances, which allows a type parameter to

occur twice in a type class instance (for Set [c] c).

Still, the definition is not entirely correct because it will lead to

ambiguities. Your intuition might tell you that the type of set will provide

the type of its elements, so the type of elements depends on the type

of the set. For example, if a is [p], then b is p. To make things clear for

the compiler, you add another language extension, called functional

dependency:

{-# LANGUAGE FunctionalDependencies #-}

 class Eq b => Set a b | a -> b where ...

In the previous definition, | a -> b means “a uniquely identifies b.” In

other words, for a given b, it will be just one a.

You can add as many constraints as you want (of course, they need to

make sense) to a class definition, and in a multiparameter class you can

use more than two parameters.

Chapter 10 Classes

79

�Maybe, Just, and Nothing
In Prelude, Maybe is a type that has two constructors: Just a or Nothing.

In situations in which a type has more constructors, it must be constructed

with only one constructor, so Maybe is constructed with Just a (a can be

any type) or Nothing. Let’s take a closer look.

•	 Nothing: When constructed with Nothing, Maybe

is defined as a constant that becomes a member of

Maybe a, for all types a, because Nothing doesn’t take a

parameter type;.

•	 Just a: When constructed with Just, Maybe is used as

a type parameter a; in this scenario, Just behaves as

a function from a to Maybe a, meaning its type is a->

Maybe a.

When Maybe is used with pattern matching, two patterns are necessary,

one for each constructor. Here’s an example:

case maybeExample of

 Nothing -> "This is the Noting constructor."

 �Just a -> "This is the Just constructor, with value "

++ (show a)

Maybe is mostly used to extend types with the Nothing value, i.e., the

absence of a value. This approach prevents errors. In other programming

languages, the “no value” is treated with a NULL reference.

�Functor
The type class Functor provides a way to make the operations from a base

type work with a new type constructed by transforming the base type into

the new one. Functor contains the function fmap, which is used to map

Chapter 10 Classes

80

the function that takes values from the base type with functions that take

values from the new type.

Functor can be combined with Maybe.

case maybeExample of

 Nothing -> Nothing

 Just a -> Just (f a)

In the first branch, there is no value, so return Nothing; in the second

branch, there is the value a, so apply the function f to a.

For example, if you work with a value valueI of type Maybe Integer

and a function f that goes from an integer to other integer (in other words,

Int -> Int), then you can use fmap f valueI to apply f directly on the

Maybe Integer value. When using Maybe, it’s safe to think there is nothing

to worry about if it didn’t get a value.

�Summary
In this chapter, you learned the following:

•	 What standard classes Haskell has and what the class

hierarchy looks like

•	 How to inherit standard classes

•	 How to define your own type classes and how to avoid

common mistakes in class definitions

•	 What language extensions are and when you can use

them

•	 What Maybe, Just, and Nothing are and how can you

use them with Functor

Chapter 10 Classes

81

�References

	 1.	 A. Serrano Mena. Beginning Haskell: A Project-Based

Approach (Apress, 2014)

	 2.	 B. Heeren and J. Hage, “Type class directives,”

International Workshop on Practical Aspects of

Declarative Languages (Springer, 2005)

	 3.	 W. Kahl and J. Scheffczyk. “Named Instances for

Haskell Type Classes,” in proceedings of the 2001

Haskell Workshop, UU-CS-2001-23 (Tech. Rep., 2001)

	 4.	 Predefined types and classes, https://www.haskell.

org/onlinereport/basic.html#standard-classes

	 5.	 Prelude, http://hackage.haskell.org/package/

base-4.12.0.0/docs/Prelude.html

	 6.	 Type classes and overloading, https://www.

haskell.org/tutorial/classes.html

	 7.	 Standard Haskell classes, https://www.haskell.

org/tutorial/stdclasses.html

	 8.	 Type classes, https://www.schoolofhaskell.com/

school/starting-with-haskell/introduction-

to-haskell/5-type-classes

	 9.	 Language extensions, https://wiki.haskell.org/

Language_extensions

Chapter 10 Classes

https://www.haskell.org/onlinereport/basic.html#standard-classes
https://www.haskell.org/onlinereport/basic.html#standard-classes
http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html
http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html
http://www.haskell.org/tutorial/classes.html
http://www.haskell.org/tutorial/classes.html
http://www.haskell.org/tutorial/stdclasses.html
http://www.haskell.org/tutorial/stdclasses.html
http://www.schoolofhaskell.com/school/starting-with-haskell/introduction-to-haskell/5-type-classes
http://www.schoolofhaskell.com/school/starting-with-haskell/introduction-to-haskell/5-type-classes
http://www.schoolofhaskell.com/school/starting-with-haskell/introduction-to-haskell/5-type-classes
https://wiki.haskell.org/Language_extensions
https://wiki.haskell.org/Language_extensions

83© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_11

CHAPTER 11

Pattern Matching
In Chapter 7, you learned the basics of pattern matching, which is used

with functions. In this chapter, you’ll learn more about the details of

pattern matching.

Basically, pattern matching means matching values with patterns and

binding variables with the matches that succeeded.

Let’s take a closer look at the map function. The type signature and the

definition are as follows:

map _ [] = []

map f (x:xs) = f x : map f xs

Here, you can identify four types of patterns.

•	 f: This pattern matches basically anything and binds

the f to anything that fits in.

•	 (x:xs): This pattern matches a list with at least one

element; the list contains something (which is bounded

to x) created (with (:) operator) from something else

(bounded to xs).

•	 []: This pattern matches an empty list and does not

bind anything.

•	 _: This pattern matches everything but does not bind

anything.

84

In the expression (x:xs), the x and xs can be considered subpatterns

that match parts of a list, matching with everything that respects the types

in the type signature of map. In other words, x matches with anything of

type a, and xs matches with anything of type [a], in particular with an

empty list. Therefore, a list with one element matches (x:xs).

Pattern matching is useful in the following situations:

•	 Recognizing values: For example, map’s definition says

that when an empty list is the second parameter, the

result will be an empty list. In other words, it is chosen

as the first branch.

•	 Binding variables to identified values: For example,

f, x, and xs from the previous definition are mapped

to the arguments of map when called, and the second

branch is chosen. Binding can be seen as a side effect

of the fact that variables names are used as patterns, as

using _ and [] suggests.

•	 Sectioning values into more parts: For example, the

(x:xs) expression binds x with the head of a list and xs

with the tail of a list.

Further, let’s consider a function that duplicates the first element in a

list. It should look like this:

g (y:ys) = y:y:ys

Observe that y:ys appears both on the left side and on the right side.

To make the code easy to follow, you can use the as-pattern (@), which

allows you to write y:ys just once.

g s@(y:ys) = y:s

Chapter 11 Pattern Matching

85

Even the subpattern can fail, i.e., y:ys. The as-pattern always matches.

Another advantage is that it can be faster because in the first version, the

y:ys is reconstructed, instead of reusing the value to which it matched.

The result of a pattern matching process can have one of the following

states:

•	 Success: When a pattern matching process succeeds,

the variables are bounded with the arguments.

•	 Fail: When in a pattern matching process an equation

fails, then the matching process moves to the next

equation, and so on. If all equations fail, then a runtime

error occurs.

•	 Divergence: When a pattern matching process

diverges, it means that a value needed in the pattern

contains an error.

�Pattern Matching and Constructors
Not all functions are allowed to be used in pattern matching. In pattern

matching you use just constructors—those functions that construct

data types.

Let’s examine the following piece of code:

data MyData = Zero | Double Int

g :: MyData -> Int

g Zero = 0

g (Double x) = 2*x

Here, Zero and Double are constructors for the MyData type. You can

use them to pattern match Zero with the 0 value of the Int type and bind a

value constructed with Double from MyData with its Int double.

Chapter 11 Pattern Matching

86

Pattern matching works on lists, because on a naïve implementation

you can interpret lists as defined with the data keyword.

data [a] = [] | a : [a]

Here, the type constructors for the list are the empty list and the (:)

operator.

Note that the previous definition is not actually correct; we used it as

an intuitive explanation of the reason why the pattern matching works on

lists. In fact, in Haskell, lists are important, and they have a much more

complex construction.

Tuples have a similar explanation.

Pattern matching is useful in records. For a comprehensive explanation

of records, refer to Chapter 4.

�Uses of Pattern Matching
You can use pattern matching in the following scenarios:

•	 Equations (see the map example)

•	 let expressions

Prelude> y = let (x:_) = map (+8) [5,6] in x * 3

Prelude> y

39

•	 where clauses

Prelude> y = x * 3 where (x:_) = map (+8) [5,6]

Prelude> y

39

Chapter 11 Pattern Matching

87

•	 Lambda abstractions

Prelude> switch = \(a,b) -> (b,a)

Prelude> switch (5,6)

(6,5)

•	 List comprehension

associate :: Eq a => a -> [(a, t)] -> [t]

associate character xs = [y | (x,y) <- xs ,

x == character]

Prelude> associate 'D' [('D', 15), ('B', 0), ('D', 35),

('D', 100)]

[15,35,100]

•	 do blocks

firstLetter = do

 (x:_) <- getLine

 putStrLn [x]

�Summary
In this chapter, you learned the following:

•	 What pattern matching is

•	 How pattern matching and constructors are related

•	 When to use pattern matching

Chapter 11 Pattern Matching

88

�References

	 1.	 M. Lipovaca, Learn You a Haskell for Great Good!

A Beginner’s Guide (No Starch Press, 2011)

	 2.	 B. O’Sullivan, J. Goerzen, and D. B. Stewart,

Real-World Haskell: Code You Can Believe In

(O’Reilly Media, 2008)

	 3.	 T. Sheard and S. P. Jones, “Template Meta-

programming for Haskell” in proceedings of

the 2002 ACM SIGPLAN workshop on Haskell

(ACM, 2002)

	 4.	 Case expressions and pattern matching, https://

www.cs.auckland.ac.nz/references/haskell/

haskell-intro-html/patterns.html

Chapter 11 Pattern Matching

https://www.cs.auckland.ac.nz/references/haskell/haskell-intro-html/patterns.html
https://www.cs.auckland.ac.nz/references/haskell/haskell-intro-html/patterns.html
https://www.cs.auckland.ac.nz/references/haskell/haskell-intro-html/patterns.html

89© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_12

CHAPTER 12

Monads
Monads are important in Haskell, and they are used in many scenarios.

The concept of monads can be confusing at first, but in this chapter, you

will learn what monads are and how to use them in complex programs.

�Introduction
A monad is a way for values to be used in sequences of computations,

resulting in a structure of computations. The sequential building blocks

can be used to create computations, and the building blocks themselves

can be structured as computations. As the official Haskell documentation

states, “It is useful to think of a monad as a strategy for combining

computations into more complex computations.”1

A monad is characterized by these three elements:

•	 A type constructor m (when working with monads, it is a

good practice to name the type constructor m)

•	 A return function, which returns values of the type m

•	 A binding operation (>>=), which, by combining

values of type m with computations that output values

of type m, are used for producing new computations

for m values

1�https://wiki.haskell.org/All_About_Monads

https://wiki.haskell.org/All_About_Monads

90

At the same time, return and >>= must follow three laws—right unit,

left unit, and associativity. We will talk about these rules later in this

chapter. A general representation of a monad is shown here:

data m a = ...

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

On the first line, the type of the monad is m. On the second line, the

value a is taken by the return function and is embedded into the monad m.

On the third line, the binding function takes the monad instance m a and

a computation that produces a monad instance m b from a’s and produces

the new monad instance m b.

One of the most common monads is the Maybe monad, whose type

constructor m is Maybe. return and the binding operator have the following

definition:

data Maybe a = Nothing | Just a

return :: a -> Maybe a

return x = Just x

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

m >>= g = case m of

 Nothing -> Nothing

 Just x -> g x

Looking at the general structure of a monad and the definition of the

Maybe monad, you can say the following about the Maybe monad: the type

constructor is Maybe, and the return function takes a value and wraps it

with Just, bringing the value into Maybe. The binding function takes as

parameters the value m :: Maybe a and the function g :: a -> Maybe b.

In other words, it looks like this: (a -> Maybe b) == g. It also shows how

to work with g to m: if m is Nothing, then the result also will be Nothing, or g

is applied to x, resulting in a value of Maybe b.

Chapter 12 Monads

91

�The Three Rules
You have seen that a monad must follow three rules: right unit, left unit,

and associativity. These three rules show you the relation between a

computation, the return function, and the binding operation.

All monads are instances of the Monad type class from Prelude, which is

defined as follows:

class Monad m where

 return :: a -> m a

 fail :: String -> m a

 (>>=) :: m a -> (a -> m b) -> m b

 (>>) :: m a -> m b -> m b

In this definition, the last rule can be expressed in terms of the third

rule. Note that (>>=) is read as “bind,” and (>>) is read as “then.”

Before going further, we need to mention that the do notation works

great with monads; it acts as syntactic sugar for operations. You will see

some examples in the next sections.

�The Right Unit
This rule states the following:

f >>= return ≡ f

In this rule, f represents a computation. The rule says that if you make

a computation f whose output is taken by return, then all that you did is

nothing other than a computation. An example is the getLine function.

The right unit rule applied on getLine states that reading a string and then

returning the value is the same thing as just reading the string.

Chapter 12 Monads

92

Using the do notation, the right unit rule says that the following

programs make the same thing:

rightUnit1 = do

 x <- f

 return x

rightUnit2 = do

 f

�The Left Unit
This rule states the following:

return a >>= f ≡ f a

In this rule, f is a computation, and a is a value. The rule says that if

the result of a computation is a despite everything and you pass it to a

computation f, then all what you did is to apply f directly on a. An example

is the putStrLn function. The left unit rule applied on putStrLn says that if

putStrLn takes a computation whose result is the value a, then this is the

same thing as printing the value a.

Using the do notation, the right unit rule says that the following

programs make the same thing:

leftUnit1 = do

 x <- return a

 f x

leftUnit2 = do

 f a

Chapter 12 Monads

93

�Associativity
The third rule says the following:

f >>= (\x -> g x >>= h) ≡ (f >>= g) >>= h

In this representation, the ≡ sign means “is equivalent.” For short, this

is the associativity rule for monads. To better understand, let’s simplify the

rule for the moment.

f >>= (g >>= h) ≡ (f >>= g) >>= h

In this version of the rule, it is pretty simple to identify the associativity.

In other words, this means that when you make computations, it doesn’t

matter how they are grouped. Think of it as number addition: it doesn’t

matter how you group the numbers when you add them.

Next, let’s take a look at (\x -> g x >>= h). This says that you take a

value x, perform the computation g on the x, and send the result to h. The

right side (f >>= g) >>= h says that the result of f is sent to g, and the

result of g (performed on the result of f) is sent to h.

This a little complicated, but in a few words, the last rule says that

when you have three computations, it doesn’t matter the manner in which

you group them because the result will be the same in all scenarios.

Using the do notation, the right unit rule says that the following

programs make the same thing:

associativity1 = do

 x <- f

 do y <- g x

 h y

associativity2 = do

 y <- do x <- f

 g x

 h y

Chapter 12 Monads

94

It is important to know that these three rules need to be assured by the

programmer.

�An Example
In this section, you will use the code examples provided at Yet Another

Haskell Tutorial.2

Let’s suppose you want to define a binary tree and then create a

particular version of the map function that will apply a function to every leaf

in the tree. It would look like this:

data Tree a

 = Leaf a

 | Branch (Tree a) (Tree a) deriving Show

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f (Leaf a) = Leaf (f a)

mapTree f (Branch lhs rhs) =

 Branch (mapTree f lhs) (mapTree f rhs)

This works just fine, but if you want to count the leaves from left to

right, it would fail. To do this, you need a to use a state, which counts the

leaves thus far. The function that uses states is called mapTreeState, and it

is defined as follows:

mapTreeState :: (a -> state -> (state, b)) ->

 Tree a -> state -> (state, Tree b)

mapTreeState f (Leaf a) state =

 let (state', b) = f a state

 in (state', Leaf b)

2�https://en.wikibooks.org/wiki/Yet_Another_Haskell_Tutorial/Monads

Chapter 12 Monads

https://en.wikibooks.org/wiki/Yet_Another_Haskell_Tutorial/Monads

95

mapTreeState f (Branch lhs rhs) state =

 let (state' , lhs') = mapTreeState f lhs state

 (state'', rhs') = mapTreeState f rhs state'

 in (state'', Branch lhs' rhs')

The differences between mapTree and mapTreeState are that there are

more arguments for f and the type -> Tree b was replaced with -> state

-> (state, Tree b). To make it easier to work, let’s use a type synonym

declaration for the state, as shown here:

type State st a = st -> (st, a)

Next, add the following two functions that work on states:

returnState :: a -> State st a

returnState a = \st -> (st, a)

bindState :: State st a -> (a -> State st b) ->

 State st b

bindState m k = \st ->

 let (st', a) = m st

 m' = k a

 in m' st'

The function returnState keeps the state st and returns the value a.

In other words, for the value a, it generates something of type State st a.

The function bindState transforms a into b. It works as follows: the

initial state st is applied to m (whose type is State st a), resulting in a

new state st and the value a. Next, applying the function k on a, it results in

m' (whose type is State st b). Lastly, m' and the new state st' run.

Chapter 12 Monads

96

Further, a new function is created, which uses the functions

returnState and bindState.

mapTreeStateM :: (a -> State st b) -> Tree a -> State st (Tree b)

mapTreeStateM f (Leaf a) =

 f a `bindState` \b ->

 returnState (Leaf b)

mapTreeStateM f (Branch lhs rhs) =

 mapTreeStateM f lhs `bindState` \lhs' ->

 mapTreeStateM f rhs `bindState` \rhs' ->

 returnState (Branch lhs' rhs')

For a Leaf, the function f is applied to a, whose result is bound to a

function that generates a Leaf with other value. For a Branch, the function

begins with the left side and binds the result to a function that begins with

the right side, whose result is bound with a function that generates a new

Branch.

Having all these, you can say that State st is actually a monad with

return implemented as returnState and (>>=) implemented as bindState.

In [7], it is proved that these functions follow the three rules for monads.

To take it a step further, you can create the State st instance of Monad,

but just writing instance Monad (State st) where { ... } won’t work,

because instances cannot be made from non-fully-applied type synonyms.

To improve this, you can convert the type synonym to a newtype.

newtype State st a = State (st -> (st, a))

This implies that the State constructor needs to be packed and

unpacked for the Monad instance declaration.

import Control.Applicative

import Control.Monad (liftM, ap)

instance Functor (State state) where

 fmap = liftM

Chapter 12 Monads

97

instance Applicative (State state) where

 pure = return

 (<*>) = ap

newtype State st a = State (st -> (st, a))

instance Monad (State state) where

 return a = State (\state -> (state, a))

 State run >>= action = State run'

 where run' st =

 let (st', a) = run st

 State run" = action a

 in run'' st'

Putting it all together, the function mapTreeM looks like this:

mapTreeM :: (a -> State state b) -> Tree a ->

 State state (Tree b)

mapTreeM f (Leaf a) = do

 b <- f a

 return (Leaf b)

mapTreeM f (Branch lhs rhs) = do

 lhs' <- mapTreeM f lhs

 rhs' <- mapTreeM f rhs

 return (Branch lhs' rhs')

If the type signature is removed, then a more general version of

mapTreeM is obtained.

mapTreeM :: Monad m => (a -> m b) -> Tree a ->

 m (Tree b)

In fact, mapTreeM can be applied in any monad, not just in State. Now,

let’s see some functions that take a current state and change it.

Chapter 12 Monads

98

getState :: State state state

getState = State (\state -> (state, state))

putState :: state -> State state ()

putState new = State (_ -> (new, ()))

The function getState returns the value of the current state, while

putState inserts a new state, ignoring the current state.

Finally, to count the leaves, you can use the following function:

numberTree :: Tree a -> State Int (Tree (a, Int))

numberTree tree = mapTreeM number tree

 where number v = do

 cur <- getState

 putState (cur+1)

 return (v,cur)

To run the action, you should provide an initial state.

runStateM :: State state a -> state -> a

runStateM (State f) st = snd (f st)

Now let’s put it all together. The final code should look like this:

import Control.Applicative

import Control.Monad (liftM, ap)

instance Functor (State state) where

 fmap = liftM

instance Applicative (State state) where

 pure = return

 (<*>) = ap

data Tree a

 = Leaf a

 | Branch (Tree a) (Tree a) deriving Show

Chapter 12 Monads

99

newtype State st a = State (st -> (st, a))

instance Monad (State state) where

 return a = State (\state -> (state, a))

 State run >>= action = State run'

 where run' st =

 let (st', a) = run st

 State run'' = action a

 in run'' st'

mapTreeM :: Monad m => (a -> m b) -> Tree a -> m (Tree b)

mapTreeM f (Leaf a) = do

 b <- f a

 return (Leaf b)

mapTreeM f (Branch lhs rhs) = do

 lhs' <- mapTreeM f lhs

 rhs' <- mapTreeM f rhs

 return (Branch lhs' rhs')

getState :: State state state

getState = State (\state -> (state, state))

putState :: state -> State state ()

putState new = State (_ -> (new, ()))

numberTree :: Tree a -> State Int (Tree (a, Int))

numberTree tree = mapTreeM number tree

 where number v = do

 cur <- getState

 putState (cur+1)

 return (v,cur)

runStateM :: State state a -> state -> a

runStateM (State f) st = snd (f st)

Chapter 12 Monads

100

Put it into a file called Tree.hs and then load it into GHCi (don’t forget

to change the current directory with the directory that contains the file

Tree.hs).

Prelude> :load Tree.hs

[1 of 1] Compiling Main (Tree.hs, interpreted)

Ok, one module loaded.

And now, let’s see an example of tree.

testTree =

 Branch

 (Branch

 (Leaf 'a')

 (Branch

 (Leaf 'b')

 (Leaf 'c')))

 (Branch

 (Leaf 'd')

 (Leaf 'e'))

Let’s apply the function runStateM and then print values in leaves.

*Main> runStateM (numberTree testTree) 1

Branch (Branch (Leaf ('a',1)) (Branch (Leaf ('b',2)) (Leaf

('c',3)))) (Branch (Leaf ('d',4)) (Leaf ('e',5)))

*Main> mapTreeM print testTree

'a'

'b'

'c'

'd'

'e'

Branch (Branch (Leaf ()) (Branch (Leaf ()) (Leaf ()))) (Branch

(Leaf ()) (Leaf ()))

Chapter 12 Monads

101

�Useful Combinators
In the Monad/Control.Monad, you can find some useful monadic

combinators (note that m is an instance of Monad).

 (=<<) :: (a -> m b) -> m a -> m b

 mapM :: (a -> m b) -> [a] -> m [b]

 mapM_ :: (a -> m b) -> [a] -> m ()

 filterM :: (a -> m Bool) -> [a] -> m [a]

 foldM :: (a -> b -> m a) -> a -> [b] -> m a

 sequence :: [m a] -> m [a]

 sequence_ :: [m a] -> m ()

 liftM :: (a -> b) -> m a -> m b

 when :: Bool -> m () -> m ()

 join :: m (m a) -> m a

We will not discuss these combinators here, so please check the

documentation.3

�Summary
In this chapter, you learned about monads.

•	 What a monad is

•	 What the rules are that structures and computations

need to follow to be considered a monad

•	 How to create a monad

•	 What are some useful combinators

As a final remark in this chapter, monads are extremely important in

Haskell, so you need to understand them well.

3�http://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Monad.html

Chapter 12 Monads

http://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Monad.html

102

�References

	 1.	 C. A. R. Hoareetal, “Tackling the Awkward Squad:

Monadic Input/Output, Concurrency, Exceptions,

and Foreign-Language Calls in Haskell,” Engineering

Theories of Software Construction” (2001)

	 2.	 M. Maruseac, A. S. Mena, A. Abel, A. Granin,

H. Apfelmus, D. Austin, and J. Breitner, “Haskell

Communities and Activities Report” (2017)

	 3.	 M. P. Jones and L. Duponcheel, “Composing

Monads,” Technical Report YALEU/DCS/

RR-1004 (Department of Computer Science,

Yale University, 1993)

	 4.	 T. Schrijvers, and B. CdS Oliveira, “Monads, Zippers,

and Views: Virtualizing the Monad Stack,” ACM

SIGPLAN Notices 46.9: 32–44 (2011)

	 5.	 J. Hedges, “Monad Transformers for Backtracking

Search,” arXiv preprint arXiv:1406.2058 (2014)

	 6.	 All about monads, https://wiki.haskell.org/

All_About_Monads

	 7.	 Yet another Haskell tutorial/monads, https://

en.wikibooks.org/wiki/Yet_Another_Haskell_

Tutorial/Monads

	 8.	 Control.Monad, http://hackage.haskell.org/

package/base-4.12.0.0/docs/Control-Monad.html

Chapter 12 Monads

https://wiki.haskell.org/All_About_Monads
https://wiki.haskell.org/All_About_Monads
https://en.wikibooks.org/wiki/Yet_Another_Haskell_Tutorial/Monads
https://en.wikibooks.org/wiki/Yet_Another_Haskell_Tutorial/Monads
https://en.wikibooks.org/wiki/Yet_Another_Haskell_Tutorial/Monads
http://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Monad.html
http://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Monad.html

103© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_13

CHAPTER 13

Monad Transformers
In the previous chapter, you saw how useful monads are. But what if you

need operations from two different monads? In this chapter, you will learn

how to proceed in such scenarios.

�Simple Transformers
We’ll start with a brief description of transformers: a transformer

represents a special type that allows you to combine two monads into one

monad that uses the properties of both monads. The result of combining

two monads is also a monad.

In Haskell, there are two main packages related to monad

transformers.

•	 transformers, which includes the monad transformer

class and actual transformers. The most commonly

used classes in this package are MonadTrans and

MonadIO. All transformers in this package are instances

of MonadTrans, and they are used to create new monads

from existing monads.

•	 mtl (Monad Transform Library), which includes

instances of different monad transformers, based on

functional dependencies.

104

These packages are compatible for use together; they have in

common classes, type constructors, and functions, although the names

of the modules are different. The transformers package is independent

of functional dependencies, being more portable than mtl. Still, the

operations in one monad need to be lifted by the programmer in the

resulting monad since the actual transformers do not have monad classes.

When you create a monad transformer, the convention is that the

resulting monad keeps the name of the base monad, followed by the T

character. For example, the transformer for the Maybe monad is MaybeT.

The following are some examples of transformers (m in the following

examples represents an arbitrary monad):

•	 MaybeT: A monad incorporates Maybe a, resulting in m

(Maybe a).

•	 ReaderT: The result a in Reader r a is incorporated by

another monad, resulting in r-> m a.

•	 StateT: From State s, a monad incorporates the

return value and its state (a,s), resulting in s -> m

(a,s).

•	 ExceptT: A monad incorporates Either e a, resulting

in m (Either e a).

�MaybeT Transformer
In this section, you will see how the MaybeT transformer was obtained from

the Maybe monad. The code in this section is based on [6].

The first step is to define a new type.

newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }

Chapter 13 Monad Transformers

105

Here, the type constructor is MaybeT, with the parameter m and a term

constructor of MaybeT. You can access this representation through the

function runMaybeT.

You saw in the previous chapter that all monads are instances of the

Monad class, so you need to make MaybeT an instance of Monad. Remember

that a monad needs to contain the return function and the binding

operation (>>=).

instance Monad m => Monad (MaybeT m) where

 return = MaybeT . return . Just

-- (>>=) :: MaybeT m a -> (a -> MaybeT m b) -> MaybeT m b

 x >>= f = MaybeT $ do maybe_value <- runMaybeT x

 case maybe_value of

 Nothing -> return Nothing

 Just value -> runMaybeT $ f value

Let’s take a look at the binding operation, which wraps and unwraps

a few times. In the first instruction from the do block into the runMaybeT,

the value x is unwrapped into the m (Maybe a) computation, from which

Maybe a are extracted through ->. In the case statement, maybe_value

is tested, returning Nothing into m in the case of Nothing, while, in the

case of Just, f is applied on the value of Just. In addition, in the Just

case, runMaybeT puts the output into monad m, because the result of f has

type MaybeT m b. The type of the entire do block is m (Maybe b), which is

wrapped into the MaybeT constructor.

The function maybe_value is defined in terms of the bind operator

from Maybe.

maybe_value >>= f = case maybe_value of

 Nothing -> Nothing

 Just value -> f value

Chapter 13 Monad Transformers

106

Although the runMaybeT is in do block, you need to use the MaybeT

constructor before do, because the do block needs to be in m, not in MaybeT m.

Next, MonadT m needs to be set as an instance of Monad, Applicative,

and Functor.

instance Monad m => Applicative (MaybeT m) where

 pure = return

 (<*>) = ap

instance Monad m => Functor (MaybeT m) where

 fmap = liftM

It is natural to make a MaybeT m instance of MonadTrans, because all

transformers are instances of MonadTrans. They are all instances of

Alternative and MonadPlus as well, because Maybe is an instance of these two.

import Control.Applicative

import Control.Monad (MonadPlus, liftM, ap)

import Control.Monad.Trans

import Control.Monad (mplus, mzero, liftM, ap)

instance Monad m => Alternative (MaybeT m) where

 empty = MaybeT $ return Nothing

 x <|> y = MaybeT $ do maybe_value <- runMaybeT x

 case maybe_value of

 Nothing -> runMaybeT y

 Just _ -> return maybe_value

instance Monad m => MonadPlus (MaybeT m) where

 mzero = empty

 mplus = (<|>)

instance MonadTrans MaybeT where

 lift = MaybeT . (liftM Just)

Chapter 13 Monad Transformers

107

The function lift from MonadTrans takes functions from the monad m,

bringing them into the MaybeT m monad. In this way, they can be used in

do blocks.

�Building a Simple Monad Transformer Stack
In this section, you will use the following monads in this order to build

a monad transformer stack: Identity,1 Reader,2 and Writer.3 The

Identity monad does not do anything important, but it is useful in

certain situations. The Reader monad can be used when you want to add

information to a pure function. Lastly, the Writer monad can be used

when you want to add logging to a function.

Another thing you need is the lift4 function from Control.Monad.

Trans.Class, which takes a computation from a monad and allows

you to use that computation in another monad. It is useful when you

want to work with the ask function from Reader, which is contained in a

transformer stack.

Let’s write the example.

import Control.Monad.Trans.Class (lift)

import Data.Functor.Identity (Identity, runIdentity)

import Control.Monad.Trans.Reader (ReaderT, ask, runReader)

import Control.Monad.Trans.Writer (WriterT, tell, runWriter)

1�https://hackage.haskell.org/package/base-4.8.0.0/docs/Data-Functor-
Identity.html

2�https://hackage.haskell.org/package/transformers-0.4.3.0/docs/
Control-Monad-Trans-Reader.html

3�https://hackage.haskell.org/package/transformers-0.4.3.0/docs/
Control-Monad-Trans-Writer-Lazy.html

4�https://hackage.haskell.org/package/transformers-0.4.3.0/docs/
Control-Monad-Trans-Class.html#v:lift

Chapter 13 Monad Transformers

https://hackage.haskell.org/package/base-4.8.0.0/docs/Data-Functor-Identity.html
https://hackage.haskell.org/package/base-4.8.0.0/docs/Data-Functor-Identity.html
https://hackage.haskell.org/package/transformers-0.4.3.0/docs/Control-Monad-Trans-Reader.html
https://hackage.haskell.org/package/transformers-0.4.3.0/docs/Control-Monad-Trans-Reader.html
https://hackage.haskell.org/package/transformers-0.4.3.0/docs/Control-Monad-Trans-Writer-Lazy.html
https://hackage.haskell.org/package/transformers-0.4.3.0/docs/Control-Monad-Trans-Writer-Lazy.html
https://hackage.haskell.org/package/transformers-0.4.3.0/docs/Control-Monad-Trans-Class.html#v:lift
https://hackage.haskell.org/package/transformers-0.4.3.0/docs/Control-Monad-Trans-Class.html#v:lift

108

type DataIn = Integer

type DataOut = [String]

type Outcome = Integer

transformersStack :: WriterT DataOut (ReaderT DataIn Identity)

Outcome

transformersStack = do

 y <- lift ask

 tell ["The user introduced: " ++ show y]

 return y

To test this, you need to import Control.Monad.Trans.Writer

and Control.Monad.Trans.Reader and then load your file (called

TransformersStack.hs).

Prelude> import Control.Monad.Trans.Writer

Prelude Control.Monad.Trans.Writer> import Control.Monad.Trans.

Reader

Prelude Control.Monad.Trans.Writer Control.Monad.Trans.Reader>

:load TransformersStack.hs

[1 of 1] Compiling Main (TransformersStack.hs, interpreted)

Ok, one module loaded.

*Main Control.Monad.Trans.Writer Control.Monad.Trans.Reader>

let myReader = runWriterT transformersStack

*Main Control.Monad.Trans.Writer Control.Monad.Trans.Reader>

let myIdentity = runReaderT myReader 7

*Main Control.Monad.Trans.Writer Control.Monad.Trans.Reader>

runIdentity myIdentity

(7,["The user introduced: 7"])

The Identity monad is a base monad that lets you put things on the

top (the other base monad is IO). Before the Identity monad is the Reader

monad, which holds a number in the previous example. At the top of the

transformers stack is the Write monad, which takes a list of strings.

Chapter 13 Monad Transformers

109

The external Writer monad could be used directly with tell, but

the calls needs to be wrapped into the internal Reader. This is done by

the lift function. Note that the lift function is useful in the monad

transformer stack no matter the number of monads.

�Summary
In this chapter, you learned what monad transformers are and how they

can be used. You saw a simple example of building a monad transformer.

Finally, you learned how to create a stack of monad transformers.

�References

	 1.	 M. P. Jones, “Functional Programming with

Overloading and Higher-Order Polymorphism,”

International School on Advanced Functional

Programming(Springer, 1995)

	 2.	 Transformers: concrete functor and monad

transformers, http://hackage.haskell.org/

package/transformers

	 3.	 mtl: monad classes, using functional dependencies,

http://hackage.haskell.org/package/mtl

	 4.	 Monad transformers, https://wiki.haskell.org/

Monad_Transformers

	 5.	 Monad transformers, https://www.schoolofhaskell.com/

user/commercial/content/monad-transformers

Chapter 13 Monad Transformers

http://hackage.haskell.org/package/transformers
http://hackage.haskell.org/package/transformers
http://hackage.haskell.org/package/mtl
https://wiki.haskell.org/Monad_Transformers
https://wiki.haskell.org/Monad_Transformers
https://www.schoolofhaskell.com/user/commercial/content/monad-transformers
https://www.schoolofhaskell.com/user/commercial/content/monad-transformers

110

	 6.	 All about monads, https://wiki.haskell.org/

All_About_Monads

	 7.	 Haskell/monad transformers, https://

en.wikibooks.org/wiki/Haskell/Monad_

transformers

	 8.	 All about monads, https://wiki.haskell.org/

All_About_Monads#Monad_transformers

Chapter 13 Monad Transformers

https://wiki.haskell.org/All_About_Monads
https://wiki.haskell.org/All_About_Monads
https://en.wikibooks.org/wiki/Haskell/Monad_transformers
https://en.wikibooks.org/wiki/Haskell/Monad_transformers
https://en.wikibooks.org/wiki/Haskell/Monad_transformers
https://wiki.haskell.org/All_About_Monads#Monad_transformers
https://wiki.haskell.org/All_About_Monads#Monad_transformers

111© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_14

CHAPTER 14

Parsec
Now that you know how to work with monads, let’s take a step further.

In this chapter, you will learn how to use the parsec library.

The parsec library is an “industrial-strength, monadic parser

combinator library for Haskell.”1 It’s used to create larger expressions

by constructing parsers through a combination of different higher-

order combinators. The main module of parsec is Text.Parsec, which

provides ways to parse to Char data. The other module of parsec is Text.

ParserCombinators.Parsec.

Parsec is useful when you are working with many user inputs and

the users need to understand the error messages. The library may take

different types of inputs, for example, Strings or tokens (strings with

an assigned meaning) provided by an external program that performs

lexical analysis (regarding Text.Parsec). The library also can be layered

into a monad stack through the monad transformer that it provides

(Text.ParserCombinators.Parsec). The monad transformer is useful in

scenarios in which additional states of parsing need to be monitored.

The parsec package should be installed by default, but if it is not

installed, open a terminal (if you use a Windows operating system, it is

recommended that you choose the option Run as Administrator) and then

type the following:

cabal install parsec

1�Parsec, https://wiki.haskell.org/Parsec

https://wiki.haskell.org/Parsec

112

For the moment, take this instruction as it is; you will learn about

cabal in Chapter 26.

Now let’s take a look at the example given on the official page of the

package:2

Prelude> import Text.Parsec

Prelude Text.Parsec> let parenSet = char '(' >> many parenSet

>> char ')' :: Parsec String () Char

Prelude Text.Parsec> let parens = (many parenSet >> eof) <|> eof

Prelude Text.Parsec> parse parens "" "()"

Right ()

Prelude Text.Parsec> parse parens "" "()(())"

Right ()

Prelude Text.Parsec> parse parens "" "("

Left (line 1, column 2):

unexpected end of input

expecting "(" or ")"

This example creates a parser that verifies whether the input contains

matching parentheses.

Let’s analyze the functions that are being used. The function char takes

as input a single character and returns the parsed character. Next (>>) is a

function from the Monad class, which takes a constant function, which will

be mapped over an instance of a monad and finally flatten the result (note

that this function needs to return an instance of the monad itself). The

function many applies a parser zero or more times and returns a list of the

results of the parser. The eof parser succeeds only at the end of the input.

Finally, the combinator (<|>) takes two parsers: if the left parser succeeds,

then it applies this parser; otherwise, it tries the right parser.

2�http://hackage.haskell.org/package/parsec

Chapter 14 Parsec

http://hackage.haskell.org/package/parsec

113

You get two results: Right() indicates that there are matching

parentheses, while Left... indicates a failure, detailing the error.

You can find some great documentation of parsec, including

comprehensive examples, in [2]. Other relevant examples are in

Chapter 16 of [3].

�Summary
In this chapter, you learned what parsec is and when you can use it. Also,

you examined a short example of using the functions of this package.

�References

	 1.	 D. Leijen and E. Meijer. “Parsec: Direct Style

Monadic Parser Combinators for the Real World,”

(2001)

	 2.	 Parsec, a fast combinator parser, https://web.

archive.org/web/20140528151730/http://

legacy.cs.uu.nl/daan/parsec.html

	 3.	 B. O’Sullivan, J. Goerzen, and D. B. Stewart, Real-

World Haskell: Code You Can Believe In (O’Reilly

Media, 2008)

	 4.	 Parsec, https://wiki.haskell.org/Parsec

	 5.	 parsec: monadic parser combinators, http://

hackage.haskell.org/package/parsec

Chapter 14 Parsec

https://web.archive.org/web/20140528151730/http://legacy.cs.uu.nl/daan/parsec.html
https://web.archive.org/web/20140528151730/http://legacy.cs.uu.nl/daan/parsec.html
https://web.archive.org/web/20140528151730/http://legacy.cs.uu.nl/daan/parsec.html
https://wiki.haskell.org/Parsec
http://hackage.haskell.org/package/parsec
http://hackage.haskell.org/package/parsec

115© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_15

CHAPTER 15

Folds
An important element in functional programming is the fold (also known

as reduce). A fold represents a set of higher-order functions that operate

on recursive data structures and take a combining operation as one of the

parameters, recombining the results of recursive operations in order to

build a return value. In this chapter, you will learn to use fold functions.

The fold family contains the following functions:

•	 fold takes as one of the parameters a function and

folds it onto a list.

•	 foldr takes as one of the parameters a function and

folds it from right to left onto a list.

•	 foldl takes as one of the parameters a function and

folds it from right to left onto a list.

•	 foldr1 is similar to foldr.

•	 foldl1 is similar to foldl.

To better understand these functions, let’s examine the following

example:

Prelude> foldl (+) 5 [1..6]

26

116

In the first step, you have a list.

1 2 3 4 5 6

Then the function that is the first argument is folded into the elements.

+ 1 + 2 + 3 + 4 + 5 + 6

Next, foldl needs a starting point, which is taken from the second

argument (note there is nothing in the leftmost piece).

5 + 1 + 2 + 3 + 4 + 5 + 6

Indeed, 5+1+2+3+4+5+6=26; therefore, you get the result 26.

Note that you used the left fold, which is the reason why you started

folding from the left. Another important note is that the fold functions are

not limited to infix functions as the first argument.

Further, let’s take a look at foldr and foldr1. The definition of foldr is

as follows:

foldr :: (a -> b -> b) -> b -> [a] -> b

The definition of foldr1 is as follows:

foldr1 :: (a -> a -> a) -> [a] -> a

From here, you can see that both of them have as the first argument a

function that takes two arguments. The differences are as follows:

•	 For foldr, the two arguments may have different types,

resulting in output with the same type as the second

argument.

•	 For foldr1, the two arguments must have the same

type, resulting in output of the same type as the

arguments. Another aspect is that it does not need the

starting point (it will choose the rightmost element to

start with).

Chapter 15 Folds

117

Similar to the fold functions are scan functions, which contain

the following: scanl, scanr, sccanl1, and scanr1. Basically, these are

analogous to foldl, foldr, foldl1, and foldl2, but they show the

intermediate results. Returning to the example, if you apply scanl instead

of foldl, you will get the following:

Prelude> scanl (+) 5 [1..6]

[5,6,8,11,15,20,26]

The opposite function of foldr is unfoldr. While foldr reduces a list

to just one value, unfoldr builds a list based on a seed. Its definition is as

follows:

unfoldr :: (b -> Maybe (a, b)) -> b -> [a]

Observe that unfoldr returns Nothing if it finished building or

Just(a,b) otherwise, where a represents the list and b represents the next

element. Let’s see an example1:

Prelude Data.List> unfoldr (\b -> if b == 0 then Nothing else

Just (b, b-1)) 10

[10,9,8,7,6,5,4,3,2,1]

�Summary
In this chapter, you learned the following:

•	 What fold family functions are and how to work with

them

•	 What the opposite of folding is

1�The example is taken from http://hackage.haskell.org/package/base-
4.12.0.0/docs/Data-List.html.

Chapter 15 Folds

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html
http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html

118

�Reference

	 1.	 Data.List, http://hackage.haskell.org/

package/base-4.12.0.0/docs/Data-List.html

Chapter 15 Folds

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html
http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-List.html

119© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_16

CHAPTER 16

Algorithms
In this chapter, you’ll learn how to implement algorithms such as

quicksort, mergesort, and bubble sort.

�Quicksort
Quicksort is a divide-and-conquer algorithm. Quicksort divides a large

array into two smaller subarrays, known as the low elements and high

elements. The time complexity in the best case is O(n log n) and in the

worst case is O(n2).

The steps are as follows:

	 1.	 Choose an element from the array. The element will

be called the pivot.

	 2.	 Reorder the array in such a way that all the elements

with values less than the pivot come before the

pivot, while the elements with values that are greater

than the pivot come after it. After the partitioning

process, the pivot is in its final position. This is

called the partition operation. The equal values

don’t matter; they can go on any branch.

120

	 3.	 Recursively you will need to apply these steps to

the subarray elements that have smaller values and

separately to the subarray of elements with values

that are greater.

The function qs (quicksort) will take a list [a] of some type a, such that

elements of a can be compared with each other (this is specified using the

(Ord a) guard). Then, the function will return a list of the same type [a].

qs :: (Ord a) => [a] -> [a]

The quicksort is implemented in Haskell as follows:

qs (y:ys) = qs [x | x <- ys, x<= y] ++ [y] ++ qs [x | x <- ys, x > y]

qs takes as an argument (y:ys), which is a list consisting of the first

element, x, and the rest of the list, ys. You apply the list comprehension

[x | x <-ys, x <= y] to get a list of all the elements in the list ys that

are smaller or equal than y. Next, you concatenate the resulting list with a

single element list, [y], and the list of elements that are greater than x.

The recursion in the quicksort algorithm is defined by the function qs,

but you still need to finish somehow the recursion at a certain point, so

you need to specify the condition when the recursion will end. This is also

easily done in Haskell by augmenting the definition of the function qs by

adding one more extra rule.

qs [] = []

The algorithms applied on an empty list will return an empty list.

By combining everything, you get the complete quicksort

implementation in Haskell, as shown here:

qs :: (Ord a) => [a] -> [a]

qs [] = []

qs (y:ys) = qs [x | x <- ys, x<= y] ++ [y] ++ -qs[x | x <- ys, x > y]

Chapter 16 Algorithms

121

Prelude> qs [1,2,7,8,9,5,3,3]

[1,2,3,3,5,7,8,9]

�Mergesort
Compared with quicksort, mergesort is a little more complicated during

the implementation process. The time complexity is O(n log n).

The algorithm steps are as follows:

	 1.	 The list is divided into two parts.

	 2.	 The two parts are sorted by the algorithm.

	 3.	 The sorted parts are merged by a special merging

procedure that is dedicated to sorted lists.

Here is the procedure for splitting the list into two parts:

ms'splitinhalf :: [a] -> ([a], [a])

ms'splitinhalf ys = (take m ys, drop m ys)

 where m = (length ys) `div` 2

Let’s analyze this code. The function ms'splitinhalf will return a pair

of arrays into which the original array was divided into two. The m is equal

to half of the length of the array, and the standard functions take and drop

are used to get the first m elements of the list take m ys and the rest of the

elements of the list after those first elements that are used with drop m ys.

Next, you have to define the function that merges the two sorted arrays.

ms'splitinhalf :: [a] -> ([a], [a])

ms'splitinhalf ys = (take m ys, drop m ys)

 where m = (length ys) `div` 2

ms'merge :: (Ord b) => [b] -> [b] -> [b]

ms'merge [] ys = ys

ms'merge ys [] = ys

Chapter 16 Algorithms

122

ms'merge (y:ys) (x:xs)

 | (y < x) = y:ms'merge ys (x:xs)

 | otherwise = y:ms'merge (y:ys) ys

The function will receive two arrays and will produce one array of the

same type. The algorithm for merging is as follows:

	 1.	 If the first list is empty, [], the result of the merge

function is the second list, ys.

	 2.	 If the second list is empty, [], then the result of the

merge is the first list, xs.

	 3.	 Otherwise, you will return the first elements of the

lists and append with the colon (:) function the

least of them to the new list, which is the result of

merging the two remaining lists.

After you have defined the functions ms'splitinhalf and ms'merge,

you can easily define the function mergesort.

ms :: (Ord a) => [a] -> [a]

ms xs

 | (length xs) > 1 = ms'merge (ms ls) (ms rs)

 | otherwise = xs

 where (ls, rs) = ms'splitinhalf xs

Now, if the length of the list is bigger than 1, then you follow the default

steps of the algorithm. Otherwise, the list with a length of 1 will already be

sorted, which represents the condition for ending the recursion.

The complete code for the mergesort is shown here:

ms'merge :: (Ord a) => [a] -> [a] -> [a]

ms'merge [] xs = xs

Chapter 16 Algorithms

123

ms'merge xs [] = xs

ms'merge (x:xs) (y:ys)

 | (x < y) = x:ms'merge xs (y:ys)

 | otherwise = y:ms'merge (x:xs) ys

ms'splitinhalf :: [a] -> ([a], [a])

ms'splitinhalf xs = (take n xs, drop n xs)

 where n = (length xs) 'div' 2

ms :: (Ord a) => [a] -> [a]

ms xs

 | (length xs) > 1 = ms'merge (ms ls) (ms rs)

 | otherwise = xs

 where (ls, rs) = ms'splitinhalf xs

Prelude> ms [1,3,4,1,2,23,7,8,5]

[1,1,2,3,4,5,7,8,23]

�Bubble sort
For a bubble sort operation, you change the placement of the element

pairs, while there is still a pair of elements (x,y) such as x > y. The time

complexity for the worst case is O(n2), and for the best case it is O(n).

You will define a function that will iterate through all the elements in a

list, and it will switch the pairs of the unsorted elements.

bs'iter :: (Ord a) => [a] -> [a]

bs'iter (x:y:xs)

 | x > y = y : bsiter (x:xs)

 | otherwise = x : bs'iter (y:xs)

bs'iter (x) = (x)

Prelude> bs'iter [2,1,3]

[3,2,1]

Chapter 16 Algorithms

124

Next, you just need to apply the next function n times. The function

represents the length of the list that should be sorted.

bs :: (Ord a) => [a] -> Int -> [a]

bs xs i

 | i == (length xs) = xs

 | otherwise = bs' (bs'iter xs) (i + 1)

bs :: (Ord a) => [a] -> [a]

bs xs = bs' xs 0

Prelude> bs' [3,2,1,5] 4

[3,2,1,5]

You can do this by defining the function bs', which will take two

arguments: the list and the number of the current iteration, which is i.

This transforms the iteration into a recursion in such a way that bubble

sorting will become a recursive algorithm (just for this example, because

the bubble sort is not recursive like the original definition).

�Summary
In this chapter, we discussed the three most important algorithms used

for sorting: quicksort, mergesort, and bubble sort. We presented their

implementations by providing the shortest and most flexible versions of

how they can be implemented.

�Reference

	 1.	 Cormen, Thomas H., Charles E. Leiserson, Ronald

L. Rivest, and Clifford Stein. Introduction to

algorithms. MIT press, 2009.

Chapter 16 Algorithms

125© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_17

CHAPTER 17

Parsing
Wikipedia defines the parsing process as follows:

“The process of analyzing a string of symbols, either in natural
language, computer languages, or data structures, conform-
ing to the rules of a formal grammar. The term is used to refer
to the formal analysis by a computer of a sentence or other
string of words into its constituents, resulting in a parse tree
showing their syntactic relation to each other, which may also
contain semantic and other information.”

This sounds a little complex, and it really is, involving grammars,

parsing trees, some tokens, expressions, terms, and so on. In this chapter,

you will learn something easier: how to parse binary data in Haskell.

This chapter is inspired from [2] and will use the examples provided

there. Note that the examples may not work with newer versions of ghc. To

run them, use ghc 8.0.2.

When you have a string of bytes, you will want to do something with

them. A package that deals with binary data in Haskell is called Binary.

First you need to install it, so open a terminal and type the following:

cabal install binary

The Binary package has three main components.

•	 The Get monad

•	 The Put monad

•	 A serialization component

126

Get is a state monad, so it keeps a state and changes it when an action

is applied on that state. In this situation, the state is actually an offset of the

lazy string of bytes that will be parsed. In scenarios where you get a failure

when trying to parse a bytestring, the failure will be interpreted as an

exception—these are handled in the IO monad due to laziness—which will

probably be thrown in a different place than you expect. In such situations,

you can use a stricter version of the Get monad.

Here is an example with a regular Get:

import qualified Data.ByteString.Lazy as BL

import Data.Binary.Get

import Data.Word

deserialiseHeader :: Get (Word32, Word32, Word32)

deserialiseHeader = do

 alen <- getWord32be

 plen <- getWord32be

 chksum <- getWord32be

 return (alen, plen, chksum)

main :: IO ()

main = do

 input <- BL.getContents

 print $ runGet deserialiseHeader input

The inputs are three 32-bit numbers in big-endian format, and the

output is a tuple.

% runhaskell /ch17/parsing.hs << EOF

heredoc> 123412341235

heredoc> EOF

(825373492,825373492,825373493)

Chapter 17 Parsing

127

If the input is too short, you get an exception.

% runhaskell / ch17/parsing.hs << EOF

tooshort

EOF

parsing.hs: Data.Binary.Get.runGet at position 8: not enough bytes

CallStack (from HasCallStack):

 �error, called at libraries/binary/src/Data/Binary/Get.

hs:351:5 in binary-0.8.6.0:Data.Binary.Get

In the previous example, the function getWord32 takes the input, goes

through it, and returns a value.

The next example decodes a list of numbers that end with EOF in a

recursive manner:

listOfWord16 = do

 empty <- isEmpty

 if empty

 then return []

 else do v <- getWord64be

 rest <- listOfWord16

 return (v : rest)

You saw in the first example that you get an exception when the

input is too short. There are two ways to handle exceptions: write your

own parser or handle the exceptions in the IO monad. The second way is

simpler because it involves a stricter version of the Get monad, in which

the parser Get a taken as input to runGet results in (Either String a,

ByteString). This means the first value is either a string (i.e., the exception

message) or the result, while the second value is the remaining bytestring.

Chapter 17 Parsing

128

The following is the modified version of the first example with the strict

Get being used:

import qualified Data.ByteString as B

import Data.Binary.Strict.Get

import Data.Word

deserialiseHeader :: Get (Word32, Word32, Word32)

deserialiseHeader = do

 alen <- getWord32be

 plen <- getWord32be

 chksum <- getWord32be

 return (alen, plen, chksum)

main :: IO ()

main = do

 input <- B.getContents

 print $ runGet deserialiseHeader input

Note that this example requires binary-strict, which needs to be

installed using cabal. The changes in the code are that it is using a strict

bytestring instead of a lazy bytestring and it is importing Data.Binary.

Strict.Get. If the example is run again, you will obtain:

% runhaskell /ch17/parsing.hs << EOF

heredoc> 123412341235

heredoc> EOF

(Right (825373492,825373492,825373493),"\n")

Now it works correctly because the output is a Right, and a new line

was added instead of being consumed by the parser. Let’s run it with the

shorter input, as shown here:

Chapter 17 Parsing

129

% runhaskell /ch17/parsing.hs << EOF

heredoc> tooshort

heredoc> EOF

(Left "too few bytes","\n")

Now, the output is a Left instead of an exception and can be handled

in the IO monad. The fail can be called inside the parser.

Operations on bits are allowed. Importing Data.Bits, the following

operators can be used:

Operator Symbol

AND .&.

OR .|.

XOR `xor`

NOT `complement`

Left shift `shiftL`

Right shift `shiftR`

Don’t forget that working with bits needs special attention.

�Summary
In this chapter, you learned how to parse a bytestring using binary and

binary-strict.

For a parser created from scratch, check out [3].

Chapter 17 Parsing

130

�References

	 1.	 G. Hutton and E. Meijer, “Monadic Parsing in

Haskell,” Journal of Functional Programming, 8.4:

437–444 (1998)

	 2.	 Dealing with binary data, https://wiki.haskell.

org/Dealing_with_binary_data#Binary_parsing

	 3.	 Parser, https://www.schoolofhaskell.com/

school/starting-with-haskell/basics-of-

haskell/8_Parser

Chapter 17 Parsing

https://wiki.haskell.org/Dealing_with_binary_data#Binary_parsing
https://wiki.haskell.org/Dealing_with_binary_data#Binary_parsing
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/8_Parser
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/8_Parser
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/8_Parser

131© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_18

CHAPTER 18

Parallelism
and Concurrency
Parallelism is a computing strategy that enables many computations

(or the execution of processes) to be performed simultaneously. In this

chapter, you will learn the basic elements of parallelism and concurrency

in Haskell.

Before continuing, let’s see what the differences are between

parallelism and concurrency. In parallel computing, a larger problem is

divided into smaller ones that are solved simultaneously, which implies

that the hardware needs to have many processing units. Mainly, the

purpose of parallelism is to make programs faster by adopting a strategy in

which the dependencies between data are at a minimum. By contrast, the

purpose of concurrency is to make programs more usable, and it can be

used on a single processing unit (although it is compatible with multiple

processing units to increase the speed). In concurrency, a problem can be

executed partially without affecting the final output. When you are dealing

with concurrency, it involves distributed computing.

Typically, in parallelism, you work with processes (do not confuse

processes with processors, which refers to the hardware component), while

in concurrency you work with threads. As concurrency can be executed on

a single processing unit, you can easily deduce that a process contains at

least one thread.

132

Note that parallelism and concurrency are closely related and are used

in many situations together.

�Parallelism
In Haskell, there are two ways to use parallelism.

•	 Using Control.Parallel, which leads to pure

parallelism

•	 Using concurrency to parallelize IO

The advantages of using parallel programming are that you obtain

the same result every time (i.e., determinism) and you don’t get race

conditions (i.e., the system depends on the timing or sequences of

uncontrollable events) or deadlocks (a number of processes/threads

expects a response from another process/thread).

The Control.Concurrent module is in the parallel package1 and

contains the following two combinators:

infixr 0 `par`

infixr 1 `pseq`

par :: a -> b -> b

pseq :: a -> b -> b

The par combinator says that the first argument is evaluated at the same

time as the second argument, but it returns the value of the second argument.

For these scenarios, you’ll meet a new term, spark. So, in the x `par` y

statement, the evaluation of x is sparked, but y is returned. The sparks

are stored in a queue and are executed in first in, first out (FIFO) order,

not immediately. If at the time of an execution step an idle central unit

1�http://hackage.haskell.org/package/parallel

Chapter 18 Parallelism and Concurrency

http://hackage.haskell.org/package/parallel

133

processing (CPU) is detected, then a spark is converted into a thread that

will run on the idle CPU.

The combinator pseq is similar to seq,2 but the difference is at runtime:

seq may evaluate the arguments in any order, and pseq is forced to

evaluate the first argument before the second one.

A simple example of parallelism is the Fibonacci example.3

import Control.Parallel

nfib :: Int -> Int

nfib n | n <= 1 = 1

 | otherwise = par n1 (pseq n2 (n1 + n2 + 1))

 where n1 = nfib (n-1)

 n2 = nfib (n-2)

Let’s look for values where n>1. Here, par sparks the thread to evaluate

nfib(n-1), while pseq forces the evaluation of nfib(n-2) on the parent

thread. Through pseq, the nfib(n-2) branch is evaluated before addition

with nfib(n-1). This approach is actually a divide-and-conquer operation,

in which the parent thread evaluates a branch, while a new thread is

sparked to evaluate the other branch. The combinatory pseq ensures that

n2 is evaluated before n1 in the parent thread in the expression (n1+n2+1).

This is mandatory because the compiler may not generate code to evaluate

the addends from left to right.

More complex combinators are provided in the Control.Parallel.

Strategies4 module. Here, the operations are created around the par

combinator, which provides more complex patterns for parallel computing.

2�http://hackage.haskell.org/package/base-4.11.1.0/docs/Prelude.
html#v:seq

3�Here’s an example taken from some older Haskell documentation:
https://downloads.haskell.org/~ghc/8.6.3/docs/html/users_guide/
parallel.html#parallel-haskell

4�https://downloads.haskell.org/~ghc/6.6.1/docs/html/libraries/base/
Control-Parallel-Strategies.html

Chapter 18 Parallelism and Concurrency

http://hackage.haskell.org/package/base-4.11.1.0/docs/Prelude.html#v:seq
http://hackage.haskell.org/package/base-4.11.1.0/docs/Prelude.html#v:seq
https://downloads.haskell.org/~ghc/8.6.3/docs/html/users_guide/parallel.html#parallel-haskell
https://downloads.haskell.org/~ghc/8.6.3/docs/html/users_guide/parallel.html#parallel-haskell
https://downloads.haskell.org/~ghc/6.6.1/docs/html/libraries/base/Control-Parallel-Strategies.html
https://downloads.haskell.org/~ghc/6.6.1/docs/html/libraries/base/Control-Parallel-Strategies.html

134

�Concurrency
In Haskell, concurrency (provided through Control.Concurrent) is

accomplished by using threads from the monad IO. One of the greatest

models in concurrency is software transactional memory (STM), which

works with forkIO and MVars. We will not cover parallel and concurrent

programming in this chapter because they require a whole separate

discussion. In [8] you will find a great list of documentation about

concurrent and parallel programming in Haskell.

�Summary
In this chapter, you learned the following:

•	 What parallelism and concurrency are

•	 The difference between parallelism and concurrency

•	 How the function Control.Parallel can be used

�References

	 1.	 S. P. Jones, A. Gordon, and S. Finne, “Concurrent

Haskell,” POPL, vol. 96 (1996)

	 2.	 S. Marlow, Parallel and Concurrent Programming in

Haskell: Techniques for Multicore and Multithreaded

Programming (O’Reilly Media, 2013)

	 3.	 S. P. Jones and S. Singh, “A Tutorial on Parallel and

Concurrent Programming in Haskell,” International

School on Advanced Functional Programming

(Springer, 2008)

Chapter 18 Parallelism and Concurrency

135

	 4.	 parallel: Parallel programming library, http://

hackage.haskell.org/package/parallel

	 5.	 Prelude, http://hackage.haskell.org/package/

base-4.11.1.0/docs/Prelude.html

	 6.	 Chapter 7, GHC language features, https://

downloads.haskell.org/~ghc/7.0.3/docs/html/

users_guide/lang-parallel.html

	 7.	 Control.Parallel.Strategies, https://

downloads.haskell.org/~ghc/6.6.1/docs/html/

libraries/base/Control-Parallel-Strategies.

html

	 8.	 Parallel/reading, https://wiki.haskell.org/

Parallel/Reading

Chapter 18 Parallelism and Concurrency

http://hackage.haskell.org/package/parallel
http://hackage.haskell.org/package/parallel
http://hackage.haskell.org/package/base-4.11.1.0/docs/Prelude.html
http://hackage.haskell.org/package/base-4.11.1.0/docs/Prelude.html
https://downloads.haskell.org/~ghc/7.0.3/docs/html/users_guide/lang-parallel.html
https://downloads.haskell.org/~ghc/7.0.3/docs/html/users_guide/lang-parallel.html
https://downloads.haskell.org/~ghc/7.0.3/docs/html/users_guide/lang-parallel.html
https://downloads.haskell.org/~ghc/6.6.1/docs/html/libraries/base/Control-Parallel-Strategies.html
https://downloads.haskell.org/~ghc/6.6.1/docs/html/libraries/base/Control-Parallel-Strategies.html
https://downloads.haskell.org/~ghc/6.6.1/docs/html/libraries/base/Control-Parallel-Strategies.html
https://downloads.haskell.org/~ghc/6.6.1/docs/html/libraries/base/Control-Parallel-Strategies.html
https://wiki.haskell.org/Parallel/Reading
https://wiki.haskell.org/Parallel/Reading

137© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_19

CHAPTER 19

Haskell Pipes
Haskell streaming programs provide great features such as effects,

streaming, and composability. In classical programming, you can choose

just two of these features. In this chapter, you will learn how to use pipes to

achieve all three.

If you renounce effects, then you will obtain lists that are pure and lazy

(we will talk about laziness in Haskell in Chapter 21). You will be able to

transform them by applying composable functions in constant space, but

you will not be able to interleave the effects. If you renounce streaming,

then you will obtain mapM (which maps every element of a structure to a

monadic action, and after the actions are evaluated from left to right, the

results are collected), forM (similar to mapM but with flipped arguments),

and a version of ListT that will not work properly. These imply effects

and composability, but the result is returned only after the whole list is

processed and loaded into memory. Lastly, if you renounce composability,

then you will be able to write dependent reads, writes, and transforms, but

they won’t be separate or modular.

A way to get all three functionalities is to use pipes, provided by

the pipes1 library. This library provides abstractions such as Producer,

Consumer, Pipe, and the correct version of ListT, which can be combined

in any way, because they have the same base type.

1�http://hackage.haskell.org/package/pipes

http://hackage.haskell.org/package/pipes

138

Specifically, with pipes, levels of streaming processing are forced to

be decomposed such that they can be combined. This approach is useful

because streaming components can be reused as interfaces or can be

connected using constant memory if they are premade.

To decouple data, there are two commands: yield, which sends output

data, and await, which receives input data. The following are the monad

transformers and the contexts in which they can be used:

•	 Producer is used only with yield and models

streaming sources.

•	 Consumer is used only with await and models

streaming sinks.

•	 Pipe can be used with both of them and models stream

transformations.

•	 Effect cannot be used with any of them and models

nonstreaming components.

These components are combined using the following tools:

•	 for works with yield.

•	 (>~) works with await.

•	 (>->) works with both of them.

•	 (>>=) works with returned values.

When these monad transformers are combined, their types change to

focus on the inputs and outputs that have been combined. When all inputs

and outputs have been handled (i.e., they have been connected), you

obtain an Effect. To stream, the last obtained Effect will be run.

The pipes package is not installed by default, so you need to install it

using the following command at a terminal (if you get any error/warning

message, see Chapter 26):

cabal install pipes

Chapter 19 Haskell Pipes

139

Let’s see a simple example:

Prelude> import Pipes

Prelude Pipes> import qualified Pipes.Prelude as PP

Prelude Pipes PP> runEffect $ PP.stdinLn >-> PP.takeWhile

(/= "exit") >-> PP.stdoutLn

this is [--hit Enter key]

this is

a simple example [--hit Enter key]

a simple example

of using [--hit Enter key]

of using

the pipes library [--hit Enter key]

the pipes library

exit

Prelude Pipes PP>

Here, the first step is to import Pipes (to use runEffect) and Pipes.

Prelude (to use stdinLn and takeWhile). The takeWhile function (this

action works with Pipe) accepts an input as long as a predicate is satisfied

(in this case, as long as the text you introduce is different from exit). The

output of takeWhile becomes the input for stdinLn (this action works with

Producer), which reads the string and adds a new line. To connect these

two actions, you use (>->), and their result is an Effect. Finally, runEffect

runs this Effect, converting it to the base monad.

Next, let’s see, as an example, how stdinLn action is defined in [1].

import Control.Monad (unless)

import Pipes

import System.IO (isEOF)

stdinLn :: Producer String IO ()

stdinLn = do

Chapter 19 Haskell Pipes

140

 �eof <- lift isEOF -- 'lift' an 'IO' action from the

base monad

 unless eof $ do

 str <- lift getLine

 yield str -- 'yield' the 'String'

 stdinLn -- Loop

Here, the current Producer is suspended by yield, which generates

a value and keeps the Producer suspended until the value is consumed.

There are situations in which the value is not consumed by anybody, in

this case yield will never return.

A great example of using pipes is an example of communication

between a client and the server, provided in [3]. Here, the type of data that

can be used in communication is defined:

{-# LANGUAGE DeriveGeneric #-}

module Command where

import Data.Binary

import GHC.Generics (Generic)

data Command = FirstMessage

 | DoNothing

 | DoSomething Int

 deriving (Show,Generic)

instance Binary Command

Next, you can see the way in which the server should handle the

communication. To write the Server module, pipes-binary and pipes-

network need to be installed. Open a terminal and type the following:

cabal install pipes-binary

cabal install pipes-network

Chapter 19 Haskell Pipes

141

Server looks like this:

module Server where

import Pipes

import qualified Pipes.Binary as PipesBinary

import qualified Pipes.Network.TCP as PNT

import qualified Command as C

import qualified Pipes.Parse as PP

import qualified Pipes.Prelude as PipesPrelude

pageSize :: Int

pageSize = 4096

-- pure handler, to be used with PipesPrelude.map

pureHandler :: C.Command -> C.Command

pureHandler c = c -- answers the same command that we have

receveid

-- impure handler, to be used with PipesPremude.mapM

sideffectHandler :: MonadIO m => C.Command -> m C.Command

sideffectHandler c = do

 liftIO $ putStrLn $ "received message = " ++ (show c)

 return $ C.DoSomething 0

 -- �whatever incoming command 'c' from the client, answer

DoSomething 0

main :: IO ()

main = PNT.serve (PNT.Host "127.0.0.1") "23456" $

 \(connectionSocket, remoteAddress) -> do

 �putStrLn $ "Remote connection from ip = " ++

(show remoteAddress)

 _ <- runEffect $ do

Chapter 19 Haskell Pipes

142

 �let bytesReceiver = PNT.fromSocket

connectionSocket pageSize

 �let commandDecoder = PP.parsed PipesBinary.

decode bytesReceiver

 �commandDecoder >-> PipesPrelude.mapM

sideffectHandler >-> for cat PipesBinary.

encode >-> PNT.toSocket connectionSocket

 -- if we want to use the pureHandler

 �--commandDecoder >-> PipesPrelude.map

pureHandler >-> for cat PipesBinary.Encode

>-> PNT.toSocket connectionSocket

 return ()

Finally, the client acts like this:

module Client where

import Pipes

import qualified Pipes.Binary as PipesBinary

import qualified Pipes.Network.TCP as PNT

import qualified Pipes.Prelude as PipesPrelude

import qualified Pipes.Parse as PP

import qualified Command as C

pageSize :: Int

pageSize = 4096

-- pure handler, to be used with PipesPrelude.amp

pureHandler :: C.Command -> C.Command

pureHandler c = c -- answer the same command received from the

server

-- inpure handler, to be used with PipesPremude.mapM

sideffectHandler :: MonadIO m => C.Command -> m C.Command

Chapter 19 Haskell Pipes

143

sideffectHandler c = do

 liftIO $ putStrLn $ "Received: " ++ (show c)

 �return C.DoNothing -- whatever is received from server,

answer DoNothing

main :: IO ()

main = PNT.connect ("127.0.0.1") "23456" $

 \(connectionSocket, remoteAddress) -> do

 �putStrLn $ "Connected to distant server ip = " ++ (show

remoteAddress)

 sendFirstMessage connectionSocket

 _ <- runEffect $ do

 let bytesReceiver = PNT.fromSocket connectionSocket pageSize

 �let commandDecoder = PP.parsed PipesBinary.decode

bytesReceiver

 �commandDecoder >-> PipesPrelude.mapM sideffectHandler >->

for cat PipesBinary.encode >-> PNT.toSocket connectionSocket

 return ()

sendFirstMessage :: PNT.Socket -> IO ()

sendFirstMessage s = do

 _ <- runEffect $ do

 let encodedProducer = PipesBinary.encode C.FirstMessage

 encodedProducer >-> PNT.toSocket s

 return ()

In this example from [3], the client requests a connection through

FirstMessage. The server accepts the connection through DoSomething 0,

and then the client notices the connection is opened and sends DoNothing.

After the connection is initiated, the communication is defined through

cycles of DoSomething 0 and DoNothing. To compile, use ghc, as shown

here:

Chapter 19 Haskell Pipes

144

ghc Command.hs

ghc -main-is Client Client.hs

ghc -main-is Server Server.hs

�Summary
In this chapter, you learned the following:

•	 You saw that Haskell provides great features, but they

cannot be used all at once.

•	 You saw that, luckily, there is a library that forces the

program to combine them all, namely, pipes.

•	 You saw a more complex example of using pipes.

�References

	 1.	 Pipes.Tutorial, http://hackage.haskell.org/

package/pipes-4.3.9/docs/Pipes-Tutorial.html

	 2.	 Haskell pipes library, https://github.com/

Gabriel439/Haskell-Pipes-Library

	 3.	 Combining pipes and network communication,

https://riptutorial.com/haskell/

example/29864/combining-pipes-and-network-

communication

Chapter 19 Haskell Pipes

http://hackage.haskell.org/package/pipes-4.3.9/docs/Pipes-Tutorial.html
http://hackage.haskell.org/package/pipes-4.3.9/docs/Pipes-Tutorial.html
https://github.com/Gabriel439/Haskell-Pipes-Library
https://github.com/Gabriel439/Haskell-Pipes-Library
https://riptutorial.com/haskell/example/29864/combining-pipes-and-network-communication
https://riptutorial.com/haskell/example/29864/combining-pipes-and-network-communication
https://riptutorial.com/haskell/example/29864/combining-pipes-and-network-communication

145© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_20

CHAPTER 20

Lens
In this chapter, you will learn about a particular type of functional reference.

First, let’s see define functional reference: reference means you can access

and/or modify part of the values, and functional means that the flexibility

and composability of functions are assured while accessing these parts.

Lenses are a type of functional reference, implemented in Haskell by

the lens library, that represent a first-class getter and setter. With a lens,

you can do the following things:

•	 Access a subpart

•	 Alter the whole by modifying a subpart

•	 Merge the lens with another lens to get a deeper view

When working with lenses, you need to follow some rules, depending

on what you want to obtain.

•	 Get-put: If something is modified by changing just the

subpart, then nothing happens.

•	 Put-get: When a particular subpart is inserted and you

want to check the whole result, you will get exactly that

subpart.

•	 Put-put: If subpart a is inserted, then a is modified by

inserting subpart b, and this is actually the same as just

inserting b.

146

If these rules sound a bit odd, follow this chapter and things will

become clearer.

The most commonly used types of lenses are as follows:

•	 Lens's a: When type s always contains type a,

Lens s a is used to get or set the a inside of s. This is

characterized as a has-a relationship.

•	 Prism's a: When type s could contain type a, Prism

s a is used to extract a if it exists; also, given the a,

it may create the s. This is characterized as an is-a

relationship.

•	 Traversal's a: This finds as many a’s as can be

contained in s.

•	 Iso's a: This shows that s and a are representations of

the same type.

In the previous list, the ' mark means that the lens is a simpler version

of the main lens.

Let’s see some simple examples of using lenses. To use them, you need

to install the lens package. As usual, open a terminal and type the following:

cabal install lens

Then, in GHCi, import the library.

Prelude> import Control.Lens

The first examples are focused on tuples. The lens _1 concentrates the

attention on the first element of a tuple. Some functions that can be used

with _1 are view, over, and set.

Prelude Control.Lens> view _1 ("goal", "chaff") "goal"

Chapter 20 Lens

147

Prelude Control.Lens> view _1 ("Haskell", "Lens") "Haskell"

Prelude Control.Lens> over _1 (++ " programming") ("Haskell", "Lens")

("Haskell programming","Lens")

Prelude Control.Lens> set _1 "Functional References" ("Haskell", "Lens")

("Functional References","Lens")

These examples are self-explanatory. Maybe over is a little more

complex: the alteration is applied on the focal point _1. The three

functions have an infix form: view as (^.), set as (.~), over as (%~).

The mathematical operators can be applied as lenses, in the following

forms: (+~), (-~), (*~), (<>~).

By now, all these functions belong to Lens. Let’s continue with Prism.

The main functions in Prism are preview (^?), which can get a value from

a structure, and review (#), which constructs s from a.

Prelude Control.Lens> preview _Left (Left "Haskell")

Just "Haskell"

Prelude Control.Lens> review _Left "Hakell"

Left "Hakell"

Prelude Control.Lens> review _Just "Hakell"

Just "Hakell"

Prelude Control.Lens> preview _Cons [1,2,3]

Just (1,[2,3])

Some useful functions in Traversal are traverse, which is a

generalization of over, and toListOf (^..), which creates a list from what

it traverses.

Prelude Control.Lens> (_1 . traverse) (\x -> [x, -x]) ([11,12],

"Haskell")

[([11,12],"Haskell"),([11,-12],"Haskell"),

([-11,12],"Haskell"),([-11,-12],"Haskell")]

Chapter 20 Lens

148

Prelude Control.Lens> toListOf _2 (4, [1,2,3])

[[1,2,3]]

Prelude Control.Lens> toListOf _1 (4, [1,2,3])

[4]

Let’s see a simple example of using traversals, from a great post of

Chris Penner.1 First, define a data structure like this:

data Transaction =

 Withdrawal {amount :: Int}

 | Deposit {amount :: Int }

 deriving Show

This representation is for a bank transaction, where you have the two

constructors Withdrawal and Deposit, each of them with an amount value

that gets the sum from either of the constructors. With a list of transactions,

to focus on every element of the list using a traversal, proceed like this:

simpleTransactions :: Traversal' [Transaction] Transaction

simpleTransactions = traverse

Note that simpleTransactions has the same signature as traverse.

The previous function can be successfully replaced by traverse. Moreover,

it is actually recommended to use traverse instead to define your own

versions.

In fact, simpleTransactions won’t work. Traversal' s a may not

change the structure’s type or the focused value, which means with

simpleTransactions, Transaction may not be changed in other type. Let’s

check it out with this example:

Prelude Control.Lens> :{

Prelude Control.Lens| someTransactions :: [Transaction]

1�https://lens-by-example.chrispenner.ca/articles/traversals/
writing-traversals

Chapter 20 Lens

https://lens-by-example.chrispenner.ca/articles/traversals/writing-traversals
https://lens-by-example.chrispenner.ca/articles/traversals/writing-traversals

149

Prelude Control.Lens| someTransactions = [Deposit 100,

Withdrawal 50]

Prelude Control.Lens| :}

Prelude Control.Lens> someTransactions & simpleTransactions .~

"a string"

error:

 • Couldn't match expected type 'Transaction'

 with actual type '[Char]'

 • In the second argument of '(.~)', namely '"a string"'

 In the second argument of '(&)', namely

 'simpleTransactions .~ "a string"'

 In the expression:

 someTransactions & simpleTransactions .~ "a string"

The & used in lenses is defined as a flip, so it will reverse the application

operator. If the traversal is allowed to change the type of the focus, it will work.

typeChangingTransactions :: Traversal [Transaction] [result]

Transaction result

typeChangingTransactions = traverse

Then you have this:

Prelude Control.Lens > someTransactions &

typeChangingTransactions .~ "a string"

["a string","a string"]

Going further with lenses, let’s focus now on Iso, whose name comes

from isomorphism. This means it represents a connection between

equivalent types. The following is an example of Iso:

isoExample :: Iso' (Maybe a) (Either () a)

Prelude Control.Lens> Just "hello" ^. isoExample

Right "hello"

Chapter 20 Lens

150

Iso has an interesting behavior because it is invertible and always

succeeds, and by making some changes, you can easily get the other types

of lenses. Giving up invertibility, you get a Lens; giving up successfulness

you get a Prism; and giving up both, you get almost a Traversal.

To actually get a Traversal, you need to go a step further and renounce

having at most one target. Speaking more technically, note the following:

•	 The existence of i :: Iso's a says that having the

value s, you also have the value a and the inverse. Based

on this, the important functions in Iso are view i :: s

-> a and review i :: a -> s. Both of them succeed

and have no loss.

•	 The existence of l :: Lens's a says that having the

value s, you have also the value a, but the inverse way

is not possible. It is possible that the function view

l :: s -> a can eliminate some information in its

way, because it is not guaranteed that a conversion is

lossless. So, having the a, you can’t go backward to s.

•	 Finally, the existence of p :: Prism's a says that having

the value s, it is possible to also have the value a, but

this fact is not guaranteed. Even when converting with

preview p :: s -> Maybe a is possible to fail, you still

have the inverse of review p :: a -> s.

�Summary
In this chapter, you learned the following:

•	 What lenses are

•	 When lenses can be used and which are the main

functions for every type of lens

•	 How you can obtain the other lenses from Iso

Chapter 20 Lens

151

Note that lenses are analogous to structures in other programming

languages, such as C.

�References

	 1.	 S. Fischer, H. Zhenjiang, and H. Pacheco, “A Clear

Picture of Lens Laws,” International Conference on

Mathematics of Program Construction (Springer,

2015)

	 2.	 R. O’Connor, “Functor Is to Lens as Applicative Is

to Biplate: Introducing Multiplate,” arXiv preprint

arXiv:1103.2841 (2011)

	 3.	 Lens: lenses, folds and traversals, http://hackage.

haskell.org/package/lens

	 4.	 Haskell/lenses and functional references, https://

en.wikibooks.org/wiki/Haskell/Lenses_and_

functional_references

	 5.	 A little lens starter tutorial, https://www.

schoolofhaskell.com/school/to-infinity-and-

beyond/pick-of-the-week/a-little-lens-

starter-tutorial

	 6.	 Writing traversals, https://lens-by-example.

chrispenner.ca/articles/traversals/writing-

traversals

	 7.	 Control.Lens.Tutorial, http://hackage.

haskell.org/package/lens-tutorial-1.0.3/

docs/Control-Lens-Tutorial.html

Chapter 20 Lens

http://hackage.haskell.org/package/lens
http://hackage.haskell.org/package/lens
https://en.wikibooks.org/wiki/Haskell/Lenses_and_functional_references
https://en.wikibooks.org/wiki/Haskell/Lenses_and_functional_references
https://en.wikibooks.org/wiki/Haskell/Lenses_and_functional_references
https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.schoolofhaskell.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://lens-by-example.chrispenner.ca/articles/traversals/writing-traversals
https://lens-by-example.chrispenner.ca/articles/traversals/writing-traversals
https://lens-by-example.chrispenner.ca/articles/traversals/writing-traversals
http://hackage.haskell.org/package/lens-tutorial-1.0.3/docs/Control-Lens-Tutorial.html
http://hackage.haskell.org/package/lens-tutorial-1.0.3/docs/Control-Lens-Tutorial.html
http://hackage.haskell.org/package/lens-tutorial-1.0.3/docs/Control-Lens-Tutorial.html

153© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_21

CHAPTER 21

Lazy Evaluation
You already know that Haskell is based on lazy evaluation. This means

that the expressions are evaluated only when it is necessary. But what is

“necessary”? In this chapter, you will get an answer to that question, and

you will take a deeper look at lazy evaluation in Haskell.

First, let’s take a look at strict evaluation, which is the opposite of lazy

evaluation. Suppose you have this function:

f x y = 2*y

If you call f (1234^100) 3, in strict evaluation the first argument will

be evaluated and then the second one. Looking closely at the function

body, you can see that the first argument is not used. Still, it is evaluated

in a strict evaluation approach, which is useless in this particular example.

The advantage of strict evaluation is that it knows for sure when and

in what order things will happen. For example, if you write f(count_

apples(), sing_song()) in Java, first count_apples() is evaluated, and

then sing_song() is evaluated. Finally, their results are passed to f, which

will be evaluated. When the results are not used in the body of f, extra

work is done.

Languages are also focused on side effects. A side effect is any event that

triggers the evaluation of an expression to interact with something outside

itself. Lazy evaluation does not know when a certain expression will be

evaluated, so a side effect would be useless. But a pure programming

language would not make too many things; it is restrictive.

154

In Haskell, side effects are handled in an elegant manner, through the

IO monad, where they are restricted so that they do not affect the essential

purity of the language.

As you saw at the beginning of the chapter, lazy evaluation means

that the evaluation of an expression is postponed as much as possible;

it’s evaluated in the moment when it really is needed and only as far

as needed, not further. The arguments of a function are just packed as

unevaluated expressions called thunks, without doing any computation. In

the example f (1234^100) 3, the arguments are packed, and the function

is called immediately. As (1234^100) is not used, it remains a thunk, and

no additional work is done. In other words, the expressions are evaluated

when they pattern match.

Here’s a simple example:

Prelude> pick a b c = if a > c then a else b

Prelude> pick (7+2) (9+1) (3+2)

9

In strict evaluation, this would be resolved as follows:

pick (7+2) (9+1) (3+2)

pick 9 (9+1) (3+2)

pick 9 10 (3+2)

pick 9 10 5

if 9 > 5 then 9 else 10

if True then 9 else 10

9

With lazy evaluation, it is resolved, beginning with the outermost

expression.

pick (7+2) (9+1) (3+2)

if (7+2) > (3+2) then (7+2) else (9+1)

if 9 > (3+2) then 9 else (9+1)

Chapter 21 Lazy Evaluation

155

if 9 > 5 then 9 else (9+1)

if True then 9 else (9+1)

9

What are the advantages of lazy evaluation? There are many, described

here:

•	 Lazy languages are pure, which means it is difficult to

identify side effects. Function reasoning is done using

equality, for example, fct y = y + 5.

•	 In lazy languages, “value restriction” is not needed,

which means that the syntax is cleaner. For example,

in nonlazy languages you can use keywords like var

or function to define things, but in Haskell, all these

things fall into one area. Lazy languages permit you to

write code in a “very functional” manner, which enables

a top-down approach to coding. This feature has the

advantage that things can be understood in fragments.

For example, in Haskell, you can have things like this:

fct x y = if cond1

 then some (combinators) (applyedon

largeexpression)

 else if cond2

 then largeexpression

 else Nothing

 where some x y = ...

 largeexpression = ...

 cond1 = ...

 cond2 = ...

Chapter 21 Lazy Evaluation

156

Haskell keeps the details in the where clause

explicitly, because it knows that the elements in the

where clause are evaluated when needed. In practice,

the previous code is often written using guards.

fct x y

 | cond1 = some (combinators) (applyedon

largeexpression)

 | cond2 = largeexpression

 | otherwise = Nothing

 where some x y = ...

 largeexpression = ...

 cond1 = ...

 cond2 = ...

•	 In lazy evaluation, some algorithms are expressed

more elegantly. For example, in the lazy version of

quicksort, the cost of looking at just the first few items is

proportional to the cost of selecting them.

•	 Lazy evaluation lets you (re)define your own structures.

In nonlazy languages, things like the following piece of

code cannot be done, because both branches will be

evaluated, no matter the value condition.

if' True x y = x

if' False x y = y

•	 Elements that deal with side effects in the type system,

such as monads, work only in a lazy evaluation manner.

•	 Operators are short-circuited. For example, && returns

false if the evaluation of the first expression is false.

In this case, the second expression remains a thunk.

Chapter 21 Lazy Evaluation

157

•	 It permits interesting data structures such as infinite

ones. Remember the function repeat 2 from the

discussion of lists in Chapter 6.

You can find a more comprehensive description of lazy evaluation and

more examples in [2].

�Summary
In this chapter, you learned the following:

•	 What lazy evaluation is

•	 How lazy evaluation works

•	 What the advantages of lazy evaluation are

�References

	 1.	 P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler,

“A History of Haskell: Being Lazy with Class,” in

Proceedings of the Third ACM SIGPLAN Conference

on History of Programming Languages, pp. 12–1

(ACM, 2007)

	 2.	 Haskell/laziness, https://en.wikibooks.org/

wiki/Haskell/Laziness

	 3.	 Haskell/lazy evaluation, https://wiki.haskell.

org/Haskell/Lazy_evaluation

	 4.	 T. Takenobu, “Lazy Evaluation Illustrated for

Haskell Divers,” https://takenobu-hs.github.io/

downloads/haskell_lazy_evaluation.pdf

Chapter 21 Lazy Evaluation

https://en.wikibooks.org/wiki/Haskell/Laziness
https://en.wikibooks.org/wiki/Haskell/Laziness
https://wiki.haskell.org/Haskell/Lazy_evaluation
https://wiki.haskell.org/Haskell/Lazy_evaluation
https://takenobu-hs.github.io/downloads/haskell_lazy_evaluation.pdf
https://takenobu-hs.github.io/downloads/haskell_lazy_evaluation.pdf

159© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_22

CHAPTER 22

Performance
Sometimes your program will need to meet some requirements for

space and time execution. It is really important to know how the data is

represented, what lazy evaluation or strict evaluation involves, and how to

control the space and time behavior. In this chapter, you will learn basic

techniques to improve the performance of your programs.

�Type Signatures
If you don’t specify the type signatures, GHC will provide you with a

warning about defaults and missing types. It is important to explicitly

name the types. For example, the default type for the integer values is

Integer, which is ten times slower than Int.

�Optimization Flags
When you are thinking about time complexity, you can use –O flags. There

are several options, listed here1:

•	 No –O flag: This is the default type of compiling.

•	 -O0 is equivalent to the first option (no optimization at all).

1�https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
using-optimisation.html#o-convenient-packages-of-optimisation-flags

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/using-optimisation.html#o-convenient-packages-of-optimisation-flags
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/using-optimisation.html#o-convenient-packages-of-optimisation-flags

160

•	 -O or -O1 means, “Generate good-quality code without

taking too long about it.” In a terminal, you use the

following command:

ghc -c -O Program.hs

•	 -O2 means “Apply every nondangerous optimization,

even if it means significantly longer compile times.”

A dangerous optimization means that you actually

obtain a worse time or space complexity.

�Profiling
One of the most important technique that allows you to learn about space

and time allocation in Haskell is profiling.

Profiling is a technique through which you can monitor the

expressions in the programs. You can observe how many times an

expression runs and how much it allocates. There are three methods in

which you can enable profiling: using GHC, using Stack, or using Cabal.

In this section, you will use GHC’s profiling.

The main steps are as follows:

	 1.	 Compile the program with the –prof option. If you

want automatic annotations, use the –fprof-auto

option.

	 2.	 Run the program with an option that generates the

profile. For example, the option +RTS –p shows

time profiling, generated in a file with the .prof

extension.

	 3.	 Check the profile.

Chapter 22 Performance

161

To see how it works, write the following line into a file called Main.hs:

main = print (fib 30)

fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

Save the file and then open a terminal and compile it (don’t forget to

change the current directory to the directory that contains the Main.hs file).

$ ghc -prof -fprof-auto -rtsopts Main.hs

The –rtsopts option enables RTS.

Next, run the program.

$ Main.exe +RTS –p

If you use Unix, type ./Main instead of Main.exe. This will print the

result of fib 30 and will generate a file called Main.prof, which contains

statistics about the time of execution. It looks similar to Figure 22-1.

Figure 22-1.  Profiling a simple program

Chapter 22 Performance

162

In the first section of the file, you can see the program names and

options, the total time, and the total memory used. The second section

shows the costliest function (time and allocation), and the third section

shows details about costs. The statistics are displayed for individual items

and inherited, which includes the cost of the children of the node.

For a complete guide to profiling, consult [1]. If you want to use

profiling with Cabal, consult [2]. For profiling with Stack, consult [3].

�The weigh Library
The weigh library measures how much memory a value or a function uses.

To install it, open a terminal and type the following:

cabal install weigh

The following is a simple example, from the GitHub page of the

library2:

import Weigh

main :: IO ()

main =

 mainWith

 (do func "integers count 0" count 0

 func "integers count 1" count 1

 func "integers count 10" count 10

 func "integers count 100" count 100)

 where

 count :: Integer -> ()

 count 0 = ()

 count a = count (a - 1)

2�https://github.com/fpco/weigh

Chapter 22 Performance

https://github.com/fpco/weigh

163

The result will look like this:

Case Allocated GCs

integers count 0 16 0

integers count 1 88 0

integers count 10 736 0

integers count 100 7,216 0

�Other Techniques
Here are some other techniques for obtaining good performance:

•	 Checking for space leaks [4]

•	 Setting up an isolated benchmark, using Criterion [5]

•	 Checking for the strictness of functions’ arguments [6]

•	 Using a correct data structure [7]

•	 Checking for strictness and unpacking the types [8]

•	 Checking to see whether the code is polymorphic [9]

•	 Using the core language to generate real code before

assembly (many optimizations can be done here) [10]

•	 Using Text or ByteString instead of String [11]

�References
	 1.	 Profiling, https://downloads.haskell.org/~ghc/

master/users-guide/profiling.html

	 2.	 Tutorial: profiling Cabal projects, https://nikita-

volkov.github.io/profiling-cabal-projects/

Chapter 22 Performance

https://downloads.haskell.org/~ghc/master/users-guide/profiling.html
https://downloads.haskell.org/~ghc/master/users-guide/profiling.html
https://nikita-volkov.github.io/profiling-cabal-projects/
https://nikita-volkov.github.io/profiling-cabal-projects/

164

	 3.	 DWARF, https://docs.haskellstack.org/en/

latest/GUIDE/#dwarf

	 4.	 Detecting space leaks, http://neilmitchell.

blogspot.com/2015/09/detecting-space-leaks.

html?m=1

	 5.	 Criterion: a Haskell microbenchmarking library,

http://www.serpentine.com/criterion/

	 6.	 Performance/strictness, https://wiki.haskell.

org/Performance/Strictness

	 7.	 Specific comparisons of data structures, https://

wiki.haskell.org/Performance#Specific_

comparisons_of_data_structures

	 8.	 Unpacking strict fields, https://wiki.haskell.

org/Performance/Data_types#Unpacking_strict_

fields

	 9.	 Performance/overloading, https://wiki.haskell.

org/Performance/Overloading

	 10.	 Looking at the core, https://wiki.haskell.org/

Performance/GHC#Looking_at_the_Core

	 11.	 Haskell string types, http://www.alexeyshmalko.

com/2015/haskell-string-types/

Chapter 22 Performance

https://docs.haskellstack.org/en/latest/GUIDE/#dwarf
https://docs.haskellstack.org/en/latest/GUIDE/#dwarf
http://neilmitchell.blogspot.com/2015/09/detecting-space-leaks.html?m=1
http://neilmitchell.blogspot.com/2015/09/detecting-space-leaks.html?m=1
http://neilmitchell.blogspot.com/2015/09/detecting-space-leaks.html?m=1
http://www.serpentine.com/criterion/
https://wiki.haskell.org/Performance/Strictness
https://wiki.haskell.org/Performance/Strictness
https://wiki.haskell.org/Performance#Specific_comparisons_of_data_structures
https://wiki.haskell.org/Performance#Specific_comparisons_of_data_structures
https://wiki.haskell.org/Performance#Specific_comparisons_of_data_structures
https://wiki.haskell.org/Performance/Data_types#Unpacking_strict_fields
https://wiki.haskell.org/Performance/Data_types#Unpacking_strict_fields
https://wiki.haskell.org/Performance/Data_types#Unpacking_strict_fields
https://wiki.haskell.org/Performance/Overloading
https://wiki.haskell.org/Performance/Overloading
https://wiki.haskell.org/Performance/GHC#Looking_at_the_Core
https://wiki.haskell.org/Performance/GHC#Looking_at_the_Core
http://www.alexeyshmalko.com/2015/haskell-string-types/
http://www.alexeyshmalko.com/2015/haskell-string-types/

165© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_23

CHAPTER 23

Haskell Stack
Haskell Stack is a tool used to build Haskell projects and to handle its

dependencies, including GHC, Cabal, a version of the Hackage repository,

and a version of the Stackage package collection tool. In this chapter, you

will learn the main uses of Haskell Stack.

The first step is to install Haskell Stack. On a Unix system, open a

terminal and type the following:

curl -sSL https://get.haskellstack.org/ | sh

Or type the following:

wget -qO- https://get.haskellstack.org/ | sh

In Windows, go to https://get.haskellstack.org/stable/windows-

x86_64-installer.exe, where you will be prompted to download the

installer. Then follow the steps in the installer.

The following are the main commands for Haskell Stack:

stack new my-project

cd my-project

stack setup

stack build

stack exec my-project-exe

https://get.haskellstack.org/stable/windows-x86_64-installer.exe
https://get.haskellstack.org/stable/windows-x86_64-installer.exe

166

Let’s see what every command does.

•	 stack new: Creates a new directory and all the

necessary files to begin a project. The structure will

look like Figure 23-1.

•	 stack setup: Downloads the compiler if needed,

putting it in a separate location. This means it won’t

make changes outside its directory.

•	 stack build: Builds a minimal project, designing

reproducible builds. In this process, curated package

sets are used, called snapshots. The main directory

contains a file called stack.yaml representing a

blueprint. It contains a reference called resolver that

points to the snapshot used in the build process.

•	 stack exec my-project-exe: Executes a command.

Figure 23-1.  The structure of a new project

Chapter 23 Haskell Stack

167

Another useful command is stack install <package_name>, which

installs a desired package. And, of course, don’t forget about stack

--help, which provides all the commands.

Now let’s see a concrete example, called hello-world, inspired from [1]

(note that, in this example, we will work on the Windows operating system).

Open a terminal (if you use Windows, then right-click a command

prompt and choose Run as Administrator). At the terminal, choose a

location for the new project.

C:\Windows\System32>cd C:\HaskellStack

Then create the project.

C:\HaskellStack>stack new hello-world new-template

This will create a new project called hello-world using the new-template

template, applying an initial setup. Don’t worry if you get a lot of messages.

Now, you will see file in the hello-world directory, as shown in Figure 23-2.

Figure 23-2.  The files in the hello-world directory

Chapter 23 Haskell Stack

168

The next step is to build the project. Before building, change the

current directory to hello-world.

C:\HaskellStack>cd hello-world

C:\HaskellStack\hello-world>stack build

In this step, Stack will check for GHC and will download and install

it into the global Stack root directory. This will take a while, and you will

get intermediary messages about the download progress. After the build

process, a library called hello-world and an executable called hello-

world-exe are created in the autocreated directory .stack-work in the

hello-world directory.

Further, let’s run the executable.

C:\HaskellStack\hello-world>stack exec hello-world-exe

You will get a someFunc message.

In Haskell Stack, you can even test the project. To do so, use the

following command:

C:\HaskellStack\hello-world>stack test

Now, let’s add other functionalities to your project. Find the Lib.hs file

in the src folder and type the following:

module Lib

 (someFunc

) where

import Acme.Missiles

someFunc :: IO ()

someFunc = launchMissiles

If you build the project, you will get an error because the acme-

missiles package is not found as a dependency (Figure 23-3).

Chapter 23 Haskell Stack

169

To correct this, you need to modify the file package.yaml, adding the

following line in the dependencies section (don’t forget to save the file

after editing):

- acme-missiles

If you build again, you will get another error that says it failed to

construct the plan. This error is caused by the fact that the acme-missile

package is not included in the long-term support (LTS) package set. To

correct this, in the file stack.yaml, add the following line to create a new

section called extra-deps:

extra-deps:

- acme-missiles-0.3

Now build again the project, and it will finally succeed (Figure 23-4).

Figure 23-3.  The result of build after modifying the Lib.hs file

Chapter 23 Haskell Stack

170

Run the project.

C:\HaskellStack\hello-world>stack exec hello-world-exe

Nuclear launch detected.

You have created a simple project with the Haskell tool Stack.

The Haskell tool Stack is great for versioning control, focusing on

reproducible build plans and multipackage projects. Of course, you can

do a lot more things with it than what was presented in this chapter. For

example, you can put your project into a Git repository, or you can include

other projects from Git. You can find a comprehensive tutorial in [1].

�Summary
In this chapter, you learned the following:

•	 What the Haskell tool Stack is

•	 What the main commands are and what they mean

Figure 23-4.  Successful build

Chapter 23 Haskell Stack

171

•	 How to create, build, run, and test a new project

•	 How to add new dependencies to the project

�References

	 1.	 User guide, https://docs.haskellstack.org/en/

stable/GUIDE/

	 2.	 The Haskell Tool Stack, https://docs.

haskellstack.org/en/stable/README/

Chapter 23 Haskell Stack

https://docs.haskellstack.org/en/stable/GUIDE/
https://docs.haskellstack.org/en/stable/GUIDE/
https://docs.haskellstack.org/en/stable/README/
https://docs.haskellstack.org/en/stable/README/

173© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_24

CHAPTER 24

Yesod
Yesod is a web framework based on Haskell for the professional

development of type-safe, REST model–based, high-performance web

applications.

Yesod uses templates to generate instances for the listed entities and

to produce dynamic content. The templates are based on code expression

interpolations in web-like language snippets; in this way, they are fully

type-checked at compile time.

Yesod divides its functionality into separate libraries. This helps you

choose the functionality that you need, such as database, HTML rendering,

forms, etc. You might be wondering why are we choosing Yesod here with

all the web frameworks out there. There are couple of reasons why Yesod is

one of the best choices.

•	 It’s free and open source.

•	 It can turn runtime bugs into compile-time errors.

•	 Asynchronous programming is easy.

•	 It is scalable and performant.

•	 Its syntax is lightweight.

The current version of this chapter will cover version 1.6 of Yesod.

Yesod is using the Shakespearean family of template languages as a

standard to HTML, CSS, and JavaScript. The templates of this language

174

family share some common syntax and overreaching principles, such as

the following:

•	 Well-formed content is guaranteed at compile time

•	 Static type safety, which helps prevent cross-site

scripting (XSS) attacks

•	 Interpolated links that are automatically validated

through type-safe URLs

�Installing and Configuring Yesod
Installing Yesod can be a little tricky. Follow these steps:

	 1.	 Install and configure the Stack build tool.

	 a.	 With your favorite browser, go to the following page: https://

haskell-lang.org/get-started/windows.

	 b.	 Download the Haskell Stack tool for your operating system.

If your operating system is Windows, you should have a

file called stack-1.9.1-windows-x86_64-installer.exe.

Double-click and follow the steps in the installer.

	 c.	 Once you run the file, in Windows 10 you will see the message

shown in Figure 24-1. Click “More info” and click “Run

anyway,” as shown in Figure 24-2.

Chapter 24 Yesod

https://haskell-lang.org/get-started/windows
https://haskell-lang.org/get-started/windows

175

Figure 24-1.  Message

Chapter 24 Yesod

176

	 d.	 Configure the path where Haskell Stack will be installed, as

shown in Figure 24-3. We recommend you leave the default

path as it is.

Figure 24-2.  Run anyway

Chapter 24 Yesod

177

	 e.	 Select or deselect the components that you want or do not

need. We recommend you leave everything at their defaults

and click Install, as shown in Figure 24-4.

Figure 24-3.  Choosing a location

Chapter 24 Yesod

178

	 f.	 Once you see the screen in Figure 24-5, click Close.

Figure 24-4.  Choosing the components

Chapter 24 Yesod

179

	 2.	 Copy the following code into your favorite editor

(e.g., Notepad++):

#!/usr/bin/env stack

-- stack --install-ghc runghc

main :: IO ()

main = putStrLn "Hello World"

	 3.	 Save the file as HelloWorld.hs.

	 4.	 Open a terminal and run stack HelloWorld.hs.

	 5.	 If everything goes accordingly, you should see

in your terminal the message “Hello World,” as

shown in Figure 24-6. If it is the first time you are

running the program, it will take a couple of minutes

Figure 24-5.  Installation complete

Chapter 24 Yesod

180

until Stack is installed and configured properly

(it’s possible to install the newest version of GHC

underneath, which might take about 3 GB of free

space).

Figure 24-6.  Running the program

	 6.	 Create a new scaffold site by running the following

command, shown in Figure 24-7, in your terminal:

stack new my-project yesod-sqlite && cd my-

project.

Chapter 24 Yesod

181

	 7.	 Once that is done, you should see the screen shown

in Figure 24-8 in the terminal.

Figure 24-7.  Creating new site

Figure 24-8.  Project created

	 8.	 Install the Yesod command-line tool by running the

command stack install yesod-bin --install-

ghc in your terminal, as shown in Figure 24-9. So

you don’t experience any issues, it is recommended

that you turn off your antivirus program. The firewall

and other network settings need to be configured

during the installation process of the Yesod

tool. Remember also that the antivirus will run

automatically because of some executable files that

need to be checked.

Chapter 24 Yesod

182

	 9.	 After a couple of minutes, if everything is OK, you

should see the lines shown in Figure 24-10 in your

terminal. If you see them, it means that the Yesod

tool has been installed correctly.

Figure 24-9.  Installing the Yesod command-line tool

Figure 24-10.  Correctly installed

	 10.	 Build libraries by running the command stack

build in the terminal, as shown in Figure 24-11.

Figure 24-11.  Building libraries

	 11.	 Launch the devel server by running the command

stack exec -- yesod devel in the terminal, as

shown in Figure 24-12. Once it starts, you will see

two pop-ups with Windows Security Alert (GHC and

Yesod). Click “Allow access.” The process will take a

couple of minutes to run.

Chapter 24 Yesod

183

	 12.	 Once the server has been installed with success, you

should see the screen in Figure 24-13.

Figure 24-12.  Launching the server

Figure 24-13.  Successful install

	 13.	 To test Yesod, go to the browser and type http://

localhost:3000 in the address bar. If everything

was installed successfully, you should see the screen

in Figure 24-14. In the terminal you will see the

server running accordingly (Figure 24-15).

Chapter 24 Yesod

184

	 14.	 To quit, just press Ctrl+C to stop the server. See

Figure 24-16.

Figure 24-14.  Successful installation

Figure 24-15.  Server running

Chapter 24 Yesod

185

�Using Yesod in a Practical Example
This example will show some basic commands for writing a simple

application in Yesod to display text on the screen. Follow these steps:

	 1.	 Open Notepad from Windows or download

Notepad++ (recommended).

	 2.	 Copy and paste the following code in your editor

and save the file as HelloThere.hs. As a note, the

following is a general example that can be found

also within other literature references.

{-# LANGUAGE OverloadedStrings #-}

{-# LANGUAGE QuasiQuotes #-}

{-# LANGUAGE TemplateHaskell #-}

{-# LANGUAGE TypeFamilies #-}

{-# LANGUAGE MultiParamTypeClasses #-}

import Yesod

data HelloWorld = HelloWorld

mkYesod "HelloWorld" [parseRoutes|

/ HomeR GET

|]

Figure 24-16.  Stopping the server

Chapter 24 Yesod

186

instance Yesod HelloWorld

getHomeR :: Handler Html

getHomeR = defaultLayout [whamlet|Hello

There World!|]

main :: IO ()

main = warp 3000 HelloWorld

	 3.	 Save the file as HelloWorld.hs in a specific path.

	 4.	 Open a command prompt and navigate to the path

where you saved the file (e.g., in our case it will

be D:\).

	 5.	 At the prompt, enter the command stack runghc

HelloWorld.hs, as shown in Figure 24-17, and hit

Enter.

Figure 24-17.  Running the program

	 6.	 After running the command, you should see the

result in the command prompt window, as shown in

Figure 24-18.

Figure 24-18.  Result of program

Chapter 24 Yesod

187

	 7.	 Go to the browser and open a new tab. Enter

the following address: http://localhost:3000.

If everything is OK, you should see on the screen

the result, as shown in Figure 24-19.

Figure 24-19.  http://localhost:3000

�Summary
In this chapter, you learned about the Yesod web framework and saw how

to use it to start developing applications.

�References

	 1.	 Yesod (web framework), https://en.wikipedia.

org/wiki/Yesod_(web_framework)

	 2.	 Yesod, https://github.com/yesodweb/yesod

	 3.	 Yesod: creation of type-safe, RESTful web

application, http://hackage.haskell.org/

package/yesod

	 4.	 Yesod, web framework, https://www.yesodweb.

com/book

Chapter 24 Yesod

https://en.wikipedia.org/wiki/Yesod_
https://en.wikipedia.org/wiki/Yesod_
https://github.com/yesodweb/yesod
http://hackage.haskell.org/package/yesod
http://hackage.haskell.org/package/yesod
https://www.yesodweb.com/book
https://www.yesodweb.com/book

189© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_25

CHAPTER 25

Haskell Libraries
In programming, libraries are collections of precompiled routines that

can be used in other programs. Usually, a library stores frequently used

routines (for example, reading or printing an input), or it is specialized for

a particular subject (for example, the libraries used in the statistics field).

In this chapter, you will learn about the main libraries in Haskell and when

you can use them to create powerful programs.

�Prelude
The main library in Haskell is Prelude, which is imported by default when

you install GHC.

Prelude contains standard types and classes, operations on lists,

conversion techniques from a value to a String and vice versa, basic

input and output operations and functions, basic exception handling, and

functions for types.

Here is an example that handles exceptions using error:

divide :: Float -> Float -> Float

divide x 0 = error "Cannot divide by 0"

divide x y = x / y

190

After loading and compiling, let’s test it.

Prelude> :load Division.hs

[1 of 1] Compiling Main (Division.hs, interpreted)

Ok, one module loaded.

*Main> divide 3 5

0.6

*Main> divide 10 0

*** Exception: Cannot divide by 0

CallStack (from HasCallStack):

 error, called at Division.hs:2:14 in main:Main

The previous example is simple. If the second argument of the division

function is 0, then you print an error message; otherwise, you print the

result of division between the two arguments.

�Haskell 2010 Libraries
The language and library specification of Haskell 2010 contains a

collection of libraries with basic functionalities included in all Haskell

implementations. The libraries are maintained by the Haskell process, and

you can find the complete list of Haskell 2010 libraries in [1].

Two important packages are base (which includes modules like

Control.Monad, Data.List, and System.IO) and vector (which includes

modules such as Data.Vector).

Because you have already worked with elements from base, this

example involves vectors. To use functions from vector, you need to install

it with the following command at a terminal:

cabal install vector

Chapter 25 Haskell Libraries

191

You can create a vector from a list, as shown here:

Prelude> import Data.Vector

Prelude Data.Vector> let a = fromList [5,6,7]

Prelude Data.Vector> a

[5,6,7]

Prelude Data.Vector> :t a

a :: Num a => Vector a

Here you can see which element has index 1 (note the indexing begins

from 0):

Prelude Data.Vector> a ! 1

6

�GHC Bootstrap Libraries
GHC Bootstrap libraries are an extension of the Haskell 2010 libraries, used

to build GHC itself. Examples of such libraries are haskeline and integer-

gmp., For this chapter, you don’t need packages from this collection.

�Core Libraries and Haskell Platform
Libraries
Core libraries are part of the management process, defining the basic

APIs that can be used in any Haskell implementation, the packages for

backward compatibility, or the packages that are needed to link things in

the Haskell platform together. Examples of such libraries and packages are

the Monad transformer library, random, and parallel.

Chapter 25 Haskell Libraries

192

The following is an example of using the random library, where

randomRs generates a random sequence:

import System.Random

main = do

 g <- getStdGen

 print $ take 10 (randomRs ('a', 'z') g)

In addition to the core libraries, the Haskell platform libraries contain

more complex packages such as attoparsec, network, and QuickCheck.

�The Hackage Database
The Hackage database contains a huge list of libraries, specializing in a

large range of subjects, such as blockchain, chemistry, files, hydrology,

scientific simulation, and so on. You can find the complete list of packages

grouped by subjects in [2].

�Summary
In this chapter, you learned about classified packages and libraries in

Haskell. Note that because Haskell is an open source platform, anyone can

create libraries. A short tutorial of the processes involved in creating and

submitting a library can be found in [3] or [4].

Chapter 25 Haskell Libraries

193

�References

	 1.	 Part II, the Haskell 2010 libraries, https://www.

haskell.org/onlinereport/haskell2010/

haskellpa2.html

	 2.	 Packages by category, http://hackage.haskell.

org/packages/

	 3.	 How to write a Haskell program, https://wiki.

haskell.org/How_to_write_a_Haskell_program

	 4.	 Creating a package, https://downloads.haskell.

org/~ghc/7.0.4/docs/html/Cabal/authors.html

	 5.	 Applications and libraries, https://wiki.haskell.

org/Applications_and_libraries

Chapter 25 Haskell Libraries

https://www.haskell.org/onlinereport/haskell2010/haskellpa2.html
https://www.haskell.org/onlinereport/haskell2010/haskellpa2.html
https://www.haskell.org/onlinereport/haskell2010/haskellpa2.html
http://hackage.haskell.org/packages/
http://hackage.haskell.org/packages/
https://wiki.haskell.org/How_to_write_a_Haskell_program
https://wiki.haskell.org/How_to_write_a_Haskell_program
https://downloads.haskell.org/~ghc/7.0.4/docs/html/Cabal/authors.html
https://downloads.haskell.org/~ghc/7.0.4/docs/html/Cabal/authors.html
https://wiki.haskell.org/Applications_and_libraries
https://wiki.haskell.org/Applications_and_libraries

195© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1_26

CHAPTER 26

Cabal
Haskell includes a standard package system called Cabal, which is used to

configure, build, install, and (re)distribute Haskell software. In this chapter,

you will learn how to use Cabal to increase your productivity.

Cabal is that part of Haskell that helps you to manage packages. It draws

the packages from Hackage, the archive of Haskell that contains a large

number of libraries in the Cabal package format.

Packages help developers to distribute and (re)use software. A package

system is an important component because it centralizes reusable software

that can be shared by many developers.

The components of Cabal are called Cabal packages and can be

independent, but they can also depend on one another. Cabal knows this,

and when a package is installed, it also installs all the dependencies of that

package. Note that packages are not part of the Haskell language (because

they are not included by default in the Haskell installation), but you can

think of them as features resulting from a combination of Cabal and GHC.

The command that is used to build and install a package is cabal.

Let’s see a simple example. Open a terminal (if you work on Windows OS,

right-click the terminal and choose Run as Administrator). Type cabal

--help. This command will provide a list of options for cabal, as shown in

Figure 26-1.

196

A Cabal package contains the following items:

•	 The software, i.e., libraries, executable, tests

•	 The .cabal file, which is a metadata file with

information about that package

•	 The Setup.hs file, which is a standard interface, based

on which the package is built

Many developers use cabal to install a package. To install a package,

all you need to do is to check its page at http://hackage.haskell.org and

then type at the terminal cabal install, followed by the package name.

For example, let’s install the errors package (this package helps to handle

errors), as shown in Figure 26-2.

Figure 26-1.  The result of the cabal --help command

Chapter 26 Cabal

http://hackage.haskell.org

197

If you already have installed a desired package, you will receive the

message shown in Figure 26-3.

Figure 26-2.  Installing the errors package

Figure 26-3.  Message for an already installed package

Figure 26-4.  A warning message

If you feel everything is OK, you don’t need to reinstall the package.

Let’s see some warnings. If you received a warning message when you

tried to install the pipes package in Chapter 19, you are in the right place.

Let’s try to install the pipes package; you will receive the message shown

in Figure 26-4.

Chapter 26 Cabal

198

This means your package archive is out-of-date, but don’t worry—all

you need to do is to follow the steps in the message. So, update the archive,

as shown in Figure 26-5.

Figure 26-5.  Updating the archive of packages

This may take a few minutes. Next, type the installation command, as

shown in Figure 26-6.

Figure 26-6.  Successful installation of a package

Chapter 26 Cabal

199

That’s it, you just installed the pipes package.

Note that in Figure 26-6 that we built and installed all the packages that

pipes needs to work properly.

In addition, these steps work for all packages for which you receive

a similar warning message, not just for pipes. Now that you know what

happens in the terminal, we will show you just the commands.

You can also install a package from a local source (the archive for a

package usually ends with .tar.gz), as shown here:

$ cabal install pipes-4.3.9.tar.gz

Resolving dependencies...

In order, the following will be installed:

pipes-4.3.9 (reinstall)

Warning: Note that reinstalls are always dangerous. Continuing

anyway...

Configuring pipes-4.3.9...

Building pipes-4.3.9...

Installed pipes-4.3.9

Note  When you install a package from a local source, the current
directory from the terminal needs to be the same as the local path
where the package is located.

Cabal is not used just to install packages. It can do a lot more, such as

the following:

•	 Build a software system

•	 Configure a system

•	 Package a system for distribution

•	 Run tests

Chapter 26 Cabal

200

•	 Generate documentation

•	 Automatically manage the packages

•	 Archive online and local packages in Cabal form

For example, here are the commands used to build and install a system

package:

$ runhaskell Setup.hs configure --ghc

$ runhaskell Setup.hs build

$ runhaskell Setup.hs install

On the first line, the system is prepared to build the software using

GHC, on the second line it is actually built, and on the third line it installs

the package by copying the build results to a permanent place and

registering the package with GHC.

There are lot things that can be done with Cabal that require more

advanced programming skills than shown here. You can find a complete

guide to using Cabal on the official page.1

�Summary
In this chapter, you learned the following:

•	 What Cabal is and what it can do

•	 What the structure of a package is

•	 How to install packages and resolve some error or

warning messages

1�https://www.haskell.org/cabal/users-guide/

Chapter 26 Cabal

https://www.haskell.org/cabal/users-guide/

201

�References

	 1.	 I. Jones, “The Haskell Cabal: A Common

Architecture for Building Applications and

Libraries” (2005)

	 2.	 P. Hudak, “A History of Haskell: Being Lazy with

Class” in proceedings of the Third ACM SIGPLAN

Conference on History of Programming Languages

(ACM, 2007)

	 3.	 Cabal user guide, https://www.haskell.org/

cabal/users-guide

Chapter 26 Cabal

https://www.haskell.org/cabal/users-guide
https://www.haskell.org/cabal/users-guide

203© Stefania Loredana Nita and Marius Mihailescu 2019
S. L. Nita and M. Mihailescu, Haskell Quick Syntax Reference,
https://doi.org/10.1007/978-1-4842-4507-1

Index

A
Ad hoc polymorphism, 76
Algorithms

bubblesort, 123
mergesort, 121
quicksort, 119

Arbitrary monad, 104
await command, 138

B
Binary data, 125
Binary package, 125
bindState function, 95–96
Bits operation, 129
Bubblesort algorithm, 123–124
Bytestring, 127–128

C
Cabal, 195

errors package, 196–197
local source, 199
pipes package, 197, 199
system package, 200

cabal command, 195
cabal--help command, 195–196
Cabal packages, 195

Cartesian product, 64
Case expressions, 45
Class methods, 72
Concurrency, 134
Constructors, 85–86
Control.Concurrent module, 132
Core libraries, 191
Criterion, 163
Cross-site scripting (XSS)

attacks, 174
Currying, 6
cycle function, 38

D
Deadlocks, 132
Divergence, 85
Divide-and-conquer algorithm, 119
drop function, 37

E
elem function, 37
elemIndices/elemIndex

function, 67
else..if statements, 46
eof parser, 112
Eq class, 72–73

https://doi.org/10.1007/978-1-4842-4507-1

204

F
fact function, 54
filter function, 67
find function, 67
findIndex/findIndices

function, 67
First in, first out (FIFO), 132
fold functions, 117
foldr function, 55
Functional dependency, 78
Functional programming

advantages, 1–2
definition, 1
fold, 115–117
nested functions, 2
vs.OOP, 2–3

Functor, 79–80

G
Get monad, 125
getLine function, 91
Get monad, 126–127
Get-put, 145
getState function, 98
GHC Bootstrap libraries, 191
Glasgow Haskell Compiler(GHC)

components, 13
definition, 13
examples, 16–17
GUI, 15–16
in terminal, 13–14

Guards, 46

H
Hackage database, 192
Haskell

basic types, 19–21
records, 25–26
structures, enumerations, 24
synonyms, 24
type constructor, 22–23
type signature, 20
type system, 26–27

Haskell 2010
libraries, 190

Haskell files
cd command, 42
do block, 43
import command, 43
load command, 42
reload command, 42

Haskell Stack, 165
acme-missile

package, 169
commands, 165
hello-world project, 167–170
Unix system, 165
Windows, 165

Hierarchy of classes, 75
Higher-order

function, 50–51

I, J, K
Infix function, 49
Inheritance, 73–76

INDEX

205

Instance declaration, 73
IO monad, 126–127

L
Lambda expressions, 49
Lazy evaluation, 154–157
length function, 36
Lens

installation, 146
isomorphism, 149
library, 145
mathematical operators, 147
simpleTransactions, 148
traversal, 147, 150
traverse, 147–148
types, 146

let..in clause, 48
List, 33

comparison, 36
empty list, 34
init function, 35
last function, 35
!! operator, 36
++ operator, 35
: operator, 35
string, 34

List comprehension, 63
check function, 66
Data.List module, 66
double function, 66
if..then..else statement, 65

Long-term support (LTS)
package, 169

M
map function, 55, 66, 83, 94
mapTreeM function, 97
mapTreeState function, 94
Maybe monad, 90
MaybeT transformer, 104–107
Mergesort algorithm, 121–123
Monad class, 112
Monad

binary tree, 94, 99
branch, 96
leaf, 96

combinators, 101
defined, 89
binding operation (>>=), 89
m type constructor, 89
return function, 89
rules, 91–93
state constructor, 96

Monad transformer stack, 107–109
Monad transform library, 103

N
Nested functions, 2
Nonlazy languages, 155–156
NULL reference, 79

O
Object-oriented programming

(OOP), 2
Optimization flags, 159–160
Overloading, 76

Index

206

P
Parallel computing, 131, 133
Parallelism, 132–133
Parallel package, 132
Parallel programming, 134
Parsec package, 111–113
Parsing process, 125
Partition operation, 119
Pattern matching, 44–45

result, 85
types, 83–84
uses, 84–87

Pipes
client, 142–143
DoNothing, 143
DoSomething 0, 143
installation, 138
library, 137
server module, 140, 142
stdinLn, 139
streaming, 138

Pivot, 119
Prelude, 189–190
Prism’s a, 146, 150
Processors, 131
Profiling, 160

Cabal, 162
GHC, 160
Stack, 162
Unix, 161

Put monad, 125
Put-get, 145
Put-put, 145
putStrLn function, 92

Q
Quicksort algorithm, 119–120
Quicksort technique, 68

R
Random library, 192
Recursion, 53

filter function, 57
for/while loops, 55
Haskell, 54
lists functions, 58
pattern matching, 59–60

recursiveReverse, 56
Reduce, 115
repeat function, 38
returnState function, 95–96
reverse function, 37
runStateM function, 100

S
scan functions, 117
Scoping variables, 8
Serialization component, 125
show function, 65
Side effect, 153
Software transactional memory

(STM), 134
splitAt function, 37
stack build command, 166
stack exec my-project-exe

command, 166
stack install <package_name>

command, 167

INDEX

207

stack new command, 166
stack setup command, 166
Standard classes, 71–72
Statically typing

Currying, 6–8
rules, 5–6
scoping variables, 8–9
type, 10
type system, 5
uncurring, 6

Strings/tokens, 111
sum function, 37

T, U
takeWhile function, 139
Threads, 131
thunks, 154
Transformers, 103–104
TransformersStack.hs, 108
Traversal’ s a, 146
Tuples

definition, 29
pairs, 30–32
writing, 29–30

Type
class, 76–78
constructor, 22

signature, 20
signatures, 159

V
vector package, 190

W, X
weigh library, 162–163
where clause, 47–48

Y, Z
Yesod, 173

devel server, 182
editor, 179
quit server, 184–185
scaffold site, 180
stack build

command, 182
stack build tool, 174–178
stack install yesod-bin--install-

ghc, 181
templates, 173
test, 183
text display, 185–187

yield command, 138

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Functional Programming
	The Advantages of Functional Programming
	Functional Programming vs. Object-Oriented Programming
	Summary

	Chapter 2: Static Typing
	Currying and Uncurrying
	Scoping Variables
	Types
	Summary
	References

	Chapter 3: GHC
	Introducing GHC
	Examples
	Summary
	References

	Chapter 4: Types
	Basic Types in Haskell
	Defining Your Own Types
	Synonyms
	Structures and Enumerations
	Records

	Type System
	Summary
	References

	Chapter 5: Tuples
	Writing Tuples
	Predefined Functions for Pairs
	Summary
	References

	Chapter 6: Lists
	Basic Functions on Lists
	Other Functions
	Summary
	References

	Chapter 7: Functions
	Haskell Files
	Pattern Matching
	Case Expressions
	Guards
	Clauses
	Lambda Expressions
	Infix Functions
	Higher-Order Functions
	Summary
	References

	Chapter 8: Recursion
	Handling for and while Loops from Imperative Languages
	Recursion on Lists
	Pattern Matching and Recursion
	Summary
	References

	Chapter 9: List Comprehension
	Introduction
	Other Functions on Lists
	Summary
	References

	Chapter 10: Classes
	Standard Classes
	The Eq Class
	Inheritance

	Creating Your Own Type Class
	Advanced Type Classes

	Maybe, Just, and Nothing
	Functor
	Summary
	References

	Chapter 11: Pattern Matching
	Pattern Matching and Constructors
	Uses of Pattern Matching
	Summary
	References

	Chapter 12: Monads
	Introduction
	The Three Rules
	The Right Unit
	The Left Unit
	Associativity

	An Example
	Useful Combinators
	Summary
	References

	Chapter 13: Monad Transformers
	Simple Transformers
	MaybeT Transformer
	Building a Simple Monad Transformer Stack
	Summary
	References

	Chapter 14: Parsec
	Summary
	References

	Chapter 15: Folds
	Summary
	Reference

	Chapter 16: Algorithms
	Quicksort
	Mergesort
	Bubble sort

	Summary
	Reference

	Chapter 17: Parsing
	Summary
	References

	Chapter 18: Parallelism and Concurrency
	Parallelism
	Concurrency
	Summary
	References

	Chapter 19: Haskell Pipes
	Summary
	References

	Chapter 20: Lens
	Summary
	References

	Chapter 21: Lazy Evaluation
	Summary
	References

	Chapter 22: Performance
	Type Signatures
	Optimization Flags
	Profiling
	The weigh Library
	Other Techniques
	References

	Chapter 23: Haskell Stack
	Summary
	References

	Chapter 24: Yesod
	Installing and Configuring Yesod
	Using Yesod in a Practical Example
	Summary
	References

	Chapter 25: Haskell Libraries
	Prelude
	Haskell 2010 Libraries
	GHC Bootstrap Libraries
	Core Libraries and Haskell Platform Libraries
	The Hackage Database
	Summary
	References

	Chapter 26: Cabal
	Summary
	References

	Index

