

Get Programming with

HASKELL

Will Kurt

MANNING
Shelter Island

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books we publish printed on acid-free paper, and we exert our best efforts to that
end. Recognizing also our responsibility to conserve the resources of our planet, Manning
books are printed on paper that is at least 15 percent recycled and processed without the use
of elemental chlorine.

Development editor: Dan Maharry
Senior technical development editor: Al Sherer
Technical development editor: Palak Mathur
Review editor: Aleksandar Dragosavljević
Project editor: David Novak
Copyeditor: Sharon Wilkey
Proofreader: Melody Dolab
Technical proofreader: Vitaly Bragilevsky
Typesetter: Dottie Marsico
Cover designer: Monica Kamsvaag

Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN 9781617293764
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

http://www.manning.com

Shelter Island

To Lisa and Archer, my source of endless support and inspiration

Contents
Preface vii
Acknowledgments ix
About this book x
About the author xiv

Lesson 1 Getting started with Haskell 1

Unit 1

FOUNDATIONS OF FUNCTIONAL
PROGRAMMING

Lesson 2 Functions and functional
programming 13

Lesson 3 Lambda functions and lexical scope 23

Lesson 4 First-class functions 33

Lesson 5 Closures and partial application 43

Lesson 6 Lists 54

Lesson 7 Rules for recursion and pattern
matching 65

Lesson 8 Writing recursive functions 74

Lesson 9 Higher-order functions 83

Lesson 10 Capstone: Functional object-oriented pro-
gramming with robots! 92

Unit 2

INTRODUCING TYPES

Lesson 11 Type basics 107

Lesson 12 Creating your own types 120

Lesson 13 Type classes 132

Lesson 14 Using type classes 142

Lesson 15 Capstone: Secret messages! 155

Unit 3

PROGRAMMING IN TYPES

Lesson 16 Creating types with “and” and “or” 175

Lesson 17 Design by composition—Semigroups and
Monoids 187

Lesson 18 Parameterized types 201

Lesson 19 The Maybe type: dealing with missing
values 214

Lesson 20 Capstone: Time series 225

Unit 4

IO IN HASKELL

Lesson 21 Hello World!—introducing IO types 249

Lesson 22 Interacting with the command line and
lazy I/O 261

Lesson 23 Working with text and Unicode 271

Lesson 24 Working with files 282

Lesson 25 Working with binary data 294

Lesson 26 Capstone: Processing binary files and
book data 308

Unit 5

WORKING WITH TYPE IN A CONTEXT

Lesson 27 The Functor type class 331
v

vi Contents
Lesson 28 A peek at the Applicative type class: using
functions in a context 343

Lesson 29 Lists as context: a deeper look at the Ap-
plicative type class 357

Lesson 30 Introducing the Monad type class 372

Lesson 31 Making Monads easier with do-
notation 387

Lesson 32 The list monad and list
comprehensions 402

Lesson 33 Capstone: SQL-like queries in
Haskell 411

Unit 6

ORGANIZING CODE AND BUILDING
PROJECTS

Lesson 34 Organizing Haskell code with
modules 431

Lesson 35 Building projects with stack 442

Lesson 36 Property testing with QuickCheck 452

Lesson 37 Capstone: Building a prime-number
library 466

Unit 7

PRACTICAL HASKELL

Lesson 38 Errors in Haskell and
the Either type 483

Lesson 39 Making HTTP requests in Haskell 497

Lesson 40 Working with JSON data
by using Aeson 507

Lesson 41 Using databases in Haskell 524

Lesson 42 Efficient, stateful arrays in Haskell 544

Afterword What’s next? 561

Appendix Sample answers to exercises 566

Index 589

Preface
When I was first approached with the idea of writing Get Programming with Haskell, I
was unsure of whether I should. At the time, my primary interest was in writing about
probability topics on my blog, Count Bayesie. Though I had experience teaching both
Haskell and functional programming in general, it had been a while, and I was frankly a
bit rusty. My active interest in data science, probability, and machine learning were
somewhat borne out of a personal frustration with Haskell. Sure, the language was
beautiful and powerful, but in a few ugly lines of R and some linear algebra, I could per-
form sophisticated analysis and build models to predict the future; in Haskell I/O is
nontrivial! I was hardly the evangelist to write a Haskell book.

Then I recalled a quote from J.D. Salinger in Seymour: An Introduction, where he
describes the trick to writing:

Ask yourself, as a reader, what piece of writing in all the world ... would [you] most want to read
if [you] had [your] heart’s choice. The next step is terrible, but so simple I can hardly believe it as
I write it. You just sit down shamelessly and write the thing yourself.

I realized this is exactly why I needed to write Get Programming with Haskell. There are a
fair number of good Haskell books out there, but none scratched my particular itch for
learning Haskell. I’ve always wanted to read a book that shows you how to solve practi-
cal problems that are often a real pain in Haskell. I don’t particularly care to see large,
industrial-strength programs, but rather fun experiments that let you explore the world
with this impressive programming language. I’ve also always wanted to read a Haskell
book that’s reasonably short and that, when I’m finished, enables me to feel comfortable
doing all sorts of fun weekend projects in Haskell. It was with this realization that the
Haskell book I wanted to read didn’t yet exist that I decided that writing Get Program-
ming with Haskell would be a good idea.

Now that I’ve finished writing (and reading) this book, I’m thrilled with how much fun
I’ve had. Haskell is an endlessly interesting language that always offers more to teach.
It’s a difficult language to learn, but that’s part of the fun. Nearly every topic in this book
vii

viii Preface
is likely something you haven’t seen done quite the same way before (unless you’re an
experienced Haskeller). The joy of Haskell is opening yourself up to a rich learning
experience. If you rush to master Haskell, you’ll be in for an awful time. If, however,
you take the time to explore, to be a beginner again, you’ll find it endlessly rewarding.

Acknowledgments
Writing a book is an enormous undertaking, and the author is just one of many people
essential to making sure the project is a success. The first people I have to thank are
those who supported me both emotionally and intellectually during this great adven-
ture. My wife, Lisa, and son, Archer, have been incredibly patient with my long hours of
work and endlessly encouraging of me all along the way. I also have to thank my dear
friends Dr. Richard Kelley and Xavier Bengoechea, who were a constant source of feed-
back, support, and intellectual stimulation. This book never would have happened if it
weren’t for my graduate advisor, Dr. Fred Harris, giving me the amazing opportunity to
teach Haskell to a group of excited undergraduates. Additionally, I want to thank my
fellow coworkers at Quick Sprout: Steve Cox, Ian Main, and Hiten Shah, who endured
my rambling endlessly about Haskell for the last year.

It’s difficult to overstate how much the incredible team at Manning has contributed to
this book; more people have helped than can be named in this space. This book would
have been a shadow of what it has become without the support of my editor, Dan
Maharry. Dan has been essential to pushing every good thought I have into a much bet-
ter one. I also must give Erin Twohey credit for being the person who first came up with
the crazy idea that I should write a Haskell book. My technical editor, Palak Mathur, did
a great job of ensuring that the technical content of the book was easy to follow and
understand. I also want to thank Vitaly Bragilevsky for providing valuable feedback for
improving the code in this book, and Sharon Wilkey for her patient copyediting. Finally,
I’d like to recognize the reviewers who took the time to read and comment on the book:
Alexander A. Myltsev, Arnaud Bailly, Carlos Aya, Claudio Rodriguez, German Gonzalez-
Morris, Hemanth Kapila, James Anaipakos, Kai Gellien, Makarand Deshpande, Mikkel
Arentoft, Nikita Dyumin, Peter Hampton, Richard Tobias, Sergio Martinez, Victor Tatai,
Vitaly Bragilevsky, and Yuri Klayman.
ix

About this book
The aim of Get Programming with Haskell is to give you a thorough-enough introduction
to the Haskell programming language that you can write nontrivial, practical programs
when you finish it. Many other Haskell books focus heavily on the academic founda-
tions of Haskell but often leave readers a bit bewildered when it comes to accomplish-
ing tasks that would be mundane in other languages. At the end of this book, you
should have a solid sense of what makes Haskell interesting as a programming lan-
guage, and should also be comfortable making larger applications that work with I/O,
generate random numbers, work with databases, and generally accomplish the same
things you can in whatever language you’re most comfortable in.

Who should read this book

This book is for anyone with existing programming experience who wants to take their
programming skills and understanding of programming languages to the next level.
You can come to your own conclusions about how practical Haskell is, but there are two
great and practical reasons to learn it.

First and foremost, even if you never touch Haskell again, learning to be a competent
Haskell programmer will make you a better programmer in general. Haskell forces you
to write safe and functional code, and to model your problems carefully. Learning to
think in Haskell will make you reason better about abstraction and stop potential bugs
in code in any language. I have yet to meet a software developer who was proficient in
Haskell who was not also an above-average programmer.

The second benefit of learning Haskell is that it provides a crash course in understand-
ing programming language theory. You can’t learn enough Haskell to write nontrivial
programs and not come away knowing a fair bit about functional programming, lazy
evaluation, and sophisticated type systems. This background in programming language
theory is not merely beneficial for the academically curious, but serves a great prag-
x

xiAbout this book
matic purpose as well. Language features from Haskell are constantly making their way
into new programming languages and as new features in existing languages. Knowing
Haskell and its features well will give you a leg up in understanding what’s coming over
the horizon in programming for years to come.

How this book is organized

The structure of Get Programming with Haskell might be different from many other pro-
gramming books you’ve read before. Rather than lengthy chapters, the book is divided
into short, easy-to-digest lessons. The lessons are grouped into seven units that cover a
common topic. Except for the last unit, all units end with a capstone feature. These cap-
stone exercises combine everything covered in the unit to create a larger code example.
All lessons contain Quick Check exercises, easy-to-answer questions that ensure you’re
keeping up. At the end of each lesson, we also provide a few longer exercises (all of the
answers to these are in the back of the book). The units cover the following content:

 Unit 1—This unit sets the foundations for functional programming in general, as
well as covering the basics of many of the unique features of working with Has-
kell. After reading this unit, you’ll be familiar enough with the basics of func-
tional programming that you could start learning any other functional
programming language and find the material familiar.

 Unit 2—Here you start looking at Haskell’s powerful type system. This unit cov-
ers basic types such as Int, Char, and Boolean, and how to make your own data
types in Haskell by using these. You’ll also begin looking at Haskell’s type class
system, which allows you to use the same function for a variety of types.

 Unit 3—Now that you’ve covered the basics of types in Haskell, you can move to
more-abstract types and type classes that make Haskell so powerful. You’ll see
how Haskell allows you to combine types in ways that aren’t possible in most
other programming languages. You’ll learn about the Monoid and Semigroup type
classes, in addition to seeing how the Maybe type can remove an entire class of
errors from your programs.

 Unit 4—Finally, you’ve learned enough Haskell to discuss I/O. This unit covers
all of the basics of performing I/O in Haskell and what makes it unique (and
sometimes challenging). By the end of this unit, you’ll be comfortable writing
command-line tools, reading and writing text files, working with Unicode data,
and manipulating binary data.

xii About this book
 Unit 5—By this point in the book, you’ve seen several types that create a context
for other types. Maybe types are a context for possibly missing values, and IO types
are values that have the context of being used in I/O. In this unit, you’ll take a
deep dive into a family of type classes that are essential for working with values
in a context: Functor, Applicative, and Monad. Though they have intimidating names,
they provide a relatively straightforward role: using any function in the various
contexts that you use frequently. Although these concepts are abstract, they also
allow you to find a single way to work with Maybe types, IO types, and even lists.

 Unit 6—With one of the most challenging topics in the book behind you, it’s time
to start thinking about writing real-world code. The first thing you need is to
make sure your code is organized. This unit starts with a lesson on Haskell’s
module system. You’ll then spend the rest of the unit learning about stack, a
powerful tool for creating and maintaining Haskell projects.

 Unit 7—We conclude this book by looking at some of the missing pieces for
working with Haskell in the real world. This unit begins with an overview of
handling errors in Haskell, which is different from many other languages. After
that, you’ll look at three practical tasks in Haskell: using HTTP to make requests
to a REST API, parsing JSON data by using the Aeson library, and putting
together a database-backed application. You’ll end the book by looking at a prob-
lem you usually don’t think about using Haskell for: efficient, stateful, array-
based algorithms.

The most difficult part of learning (and teaching) Haskell is that you need to cover a
fairly large number of topics before you can comfortably perform even basic I/O. If your
aim is to understand and use Haskell, I recommend that you read each unit in succes-
sion. But the intention of this book is for you to be able to stop at a few places in the
book and still retain something of value. Unit 1 is designed to provide you with a solid
foundation for any functional programming language. Whether it’s Clojure, Scala, F#,
Racket, or Common Lisp, all of them share the core features discussed in unit 1. If you
already have a background in functional programming, you can feel free to skim unit 1,
although you should pay close attention to the lessons on partial application and lazy
evaluation. At the end of unit 4, you should know enough Haskell to play around on
weekend projects. After unit 5, you should be fairly comfortable moving on to more-
advanced topics on your own. Units 6 and 7 are primarily focused on using Haskell for
practical projects.

xiiiAbout this book
About the code

This book contains many code samples. The code in this book is presented in a fixed-
width font like this to separate it from ordinary text. Many code samples are annotated
using numbers to explain each section of the code. More-complicated code examples
include arrows pointing out each section and explaining it in more detail. When writing
Haskell, you’ll make heavy use of the REPL to interact with your code. These sections
will be different than normal code sections as they’ll have the text GHCi> indicating where
the user inputs code. There are also occasional references to the command line, in which
case $ is used to indicate where a user is to input commands.

There are many exercises throughout the book. The exercises take the form of quick
checks, which can be answered quickly, and lesson exercises that take more time and
thought. The code solutions for the quick checks are at the end of each lesson, and the
code for the lesson exercises is in the appendix at the end of the book.

Book forum

Purchase of Get Programming with Haskell includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask tech-
nical questions, and receive help from the author and from other users. To access the
forum, go to https://forums.manning.com/forums/get-programming-with-haskell. You
can also learn more about Manning's forums and the rules of conduct at https://forums
.manning.com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest his interest stray! The forum and the
archives of previous discussions will be accessible from the publisher’s website as long
as the book is in print.

https://forums.manning.com/forums/get-programming-with-haskell
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

About the author
Will Kurt works as a data scientist at Bombora. With a formal back-
ground in both computer science (MS) and English literature (BA), he
is fascinated with explaining complex technical topics as clearly and
generally as possible. He has taught a course section on Haskell at the
University of Nevada, Reno, and given workshops on functional pro-
gramming. He also blogs about probability at CountBayesie.com.
xiv

http://www.countbayesie.com/

1LESSON
GETTING STARTED WITH HASKELL

After reading lesson 1, you’ll be able to

 Install tools for Haskell development
 Use GHC and GHCi
 Use tips for writing Haskell programs

1.1 Welcome to Haskell

Before you dive into learning Haskell, you need to become familiar with the basic tools
you’ll be using on your journey. This lesson walks you through getting started with
Haskell. The lesson starts with downloading the basics to write, compile, and run Has-
kell programs. You’ll then look at example code and start thinking about how to write
code in Haskell. After this lesson, you’ll be ready to dive in!

1.1.1 The Haskell Platform

The worst part of learning a new programming language is getting your development
environment set up for the first time. Fortunately, and somewhat surprisingly, this isn’t
a problem at all with Haskell. The Haskell community has put together a single, easily
installable package of useful tools referred to as the Haskell Platform. The Haskell Plat-
form is the “batteries included” model of packaging a programming language.
1

2 Lesson 1 Getting started with Haskell
The Haskell Platform includes the following:

 The Glasgow Haskell Compiler (GHC)
 An interactive interpreter (GHCi)
 The stack tool for managing Haskell projects
 A bunch of useful Haskell packages

The Haskell Platform can be downloaded from www.haskell.org/downloads#platform.
From there, follow the directions for installing on your OS of choice. This book uses
Haskell version 8.0.1 or higher.

1.1.2 Text editors

Now that you have the Haskell Platform installed, you’re probably curious about which
editor you should use. Haskell is a language that strongly encourages you to think before
you hack. As a result, Haskell programs tend to be extremely terse. There’s little that an
editor can do for you, other than manage indentation and provide helpful syntax high-
lighting. Many Haskell developers use Emacs with haskell-mode. But if you’re not already
familiar with Emacs (or don’t like to work with it), it’s certainly not worth the work to
learn Emacs in addition to Haskell. My recommendation is that you look for a Haskell
plugin for whatever editor you use the most. A bare-bones text editor, such as Pico or
Notepad++, will work just fine for this book, and most full-fledged IDEs have Haskell
plugins.

1.2 The Glasgow Haskell Compiler

Haskell is a compiled language, and the Glasgow Haskell Compiler is the reason Has-
kell is as powerful as it is. The job of the compiler is to transform human-readable
source code into machine-readable binary. At the end compilation, you’re left with an
executable binary file. This is different from when you run Ruby, for example, in which
another program reads in your source code and interprets it on the fly (this is accom-
plished with an interpreter). The main benefit of a compiler over an interpreter is that
because the compiler transforms code in advance, it can perform analysis and optimiza-
tion of the code you’ve written. Because of some other design features of Haskell,
namely its powerful type system, there’s an adage that if it compiles, it works. Though
you’ll use GHC often, never take it for granted. It’s an amazing piece of software in its
own right.

To invoke GHC, open a terminal and type in ghc:

$ ghc

www.haskell.org/downloads#platform

3The Glasgow Haskell Compiler
In this text, whenever you come across a $ sign, it means you’re typing into a command
prompt. Of course, with no file to compile, GHC will complain. To get started, you’ll
make a simple file called hello.hs. In your text editor of choice, create a new file named
hello.hs and enter the following code.

--hello.hs my first Haskell file!
main = do
 print "Hello World!"

At this point, don’t worry too much about what’s happening in any of the code in this
section. Your real aim here is to learn the tools you need so that they don’t get in the way
while you’re learning Haskell.

Now that you have a sample file, you can run GHC again, this time passing in your
hello.hs file as an argument:

$ ghc hello.hs
[1 of 1] Compiling Main
Linking hello ...

If the compilation was successful, GHC will have created three files:

 hello (hello.exe on Windows)
 hello.hi
 hello.o

Starting out, the most important file is hello, which is your binary executable. Because
this file is a binary executable, you can simply run the file:

$./hello
"Hello World!"

Notice that the default behavior of the compiled program is to execute the logic in main.
By default, all Haskell programs you’re compiling need to have a main, which plays a
similar role to the Main method in Java/C++/C# or __main__ in Python.

Like most command-line tools, GHC supports a wide range of optional flags. For exam-
ple, if you want to compile hello.hs into an executable named helloworld, you can use
the -o flag:

Listing 1.1 hello.hs a Hello World program

A commented line with
the name of your file

The start of your 'main' function

The main function prints
out "Hello World"

4 Lesson 1 Getting started with Haskell
$ghc hello.hs -o helloword
[1 of 1] Compiling Main
Linking helloworld

For a more complete listing of compiler options, call ghc --help (no filename argument is
required).

1.3 Interacting with Haskell—GHCi

One of the most useful tools for writing Haskell programs is GHCi, an interactive inter-
face for GHC. Just like GHC, GHCi is started with a simple command: ghci. When you
start GHCi, you’ll be greeted with a new prompt:

$ ghci
GHCi>

This book indicates when you’re using GHCi by using GHCi> for lines you input and a
blank for lines that are output by GHCi. The first thing to learn about any program you
start from the command line is how to get out of it! For GHCi, you use the :q command
to exit:

$ ghci
GHCi> :q
Leaving GHCi.

Working with GHCi is much like working with interpreters in most interpreted pro-
gramming languages such as Python and Ruby. It can be used as a simple calculator:

GHCi> 1 + 1
2

You can also write code on the fly in GHCi:

GHCi> x = 2 + 2
GHCi> x
4

Quick check 1.1 Copy the code for hello.hs and compile your own executable named
testprogram.

QC 1.1 answer Simply copy the code to a file and then run this in the same directory as the file:

ghc hello.hs -o testprogram

5Interacting with Haskell—GHCi
Prior to version 8 of GHCi, function and variable definitions needed to be prefaced with
a let keyword. This is no longer necessary, but many Haskell examples on the web and
in older books still include it:

GHCi> let f x = x + x
GHCi> f 2
4

The most important use of GHCi is interacting with programs that you’re writing. There
are two ways to load an existing file into GHCi. The first is to pass the filename as an
argument to ghci:

$ ghci hello.hs
[1 of 1] Compiling Main
Ok, modules loaded: Main.

The other is to use the :l (or :load) command in the interactive session:

$ ghci
GHCi> :l hello.hs
[1 of 1] Compiling Main
Ok, modules loaded: Main.

In either of these cases, you can then call functions you’ve written:

GHCi> :l hello.hs
GHCi> main
"Hello World!"

Unlike compiling files in GHC, your files don’t need a main in order to be loaded into
GHCi. Anytime you load a file, you’ll overwrite existing definitions of functions and
variables. You can continually load your file as you work on it and make changes. Has-
kell is rather unique in having strong compiler support as well as a natural and easy-to-
use interactive environment. If you’re coming from an interpreted language such as
Python, Ruby, or JavaScript, you’ll feel right at home using GHCi. If you’re familiar with
compiled languages such as Java, C#, or C++, you’ll likely be surprised that you’re work-
ing with a compiled language when writing Haskell.

6 Lesson 1 Getting started with Haskell
1.4 Writing and working with Haskell code

One of the most frustrating issues for newcomers to Haskell is that basic I/O in Haskell
is a fairly advanced topic. Often when new to a language, it’s a common pattern to print
output along the way to make sure you understand how a program works. In Haskell,
this type of ad hoc debugging is usually impossible. It’s easy to get a bug in a Haskell
program, along with a fairly sophisticated error, and be at an absolute loss as to how to
proceed.

Compounding this problem is that Haskell’s wonderful compiler is also strict about the
correctness of your code. If you’re used to writing a program, running it, and quickly
fixing any errors you made, Haskell will frustrate you. Haskell strongly rewards taking
time and thinking through problems before running programs. After you gain experi-
ence with Haskell, I’m certain that these frustrations will become some of your favorite
features of the language. The flipside of being obsessed with correctness during compi-
lation is that programs will work, and work as expected far more often than you’re
likely used to.

The trick to writing Haskell code with minimal frustration is to write code in little bits,
and play with each bit interactively as it’s written. To demonstrate this, you’ll take a
messy Haskell program and clean it up so it’s easy to understand each piece. For this
example, you’ll write a command-line app that will draft thank-you emails to readers
from authors. Here’s the first, poorly written, version of the program.

Quick check 1.2 Edit your Hello World script to say Hello <Name> with your name. Reload
this into GHCi and test it out.

QC 1.2 answer Edit your file so that it has your name:

main = do
 print "Hello Will!"

In GHCi, load your file:

GHCi> :l hello.hs
GHCi> main
Hello Will!

7Writing and working with Haskell code
messyMain :: IO()
messyMain = do
 print "Who is the email for?"
 recipient <- getLine
 print "What is the Title?"
 title <- getLine
 print "Who is the Author?"
 author <- getLine
 print ("Dear " ++ recipient ++ ",\n" ++
 "Thanks for buying " ++ title ++ "\nthanks,\n" ++
 author)

The key issue is that this code is in one big monolithic function named messyMain. The
advice that it’s good practice to write modular code is fairly universal in software, but in
Haskell it’s essential for writing code that you can understand and troubleshoot. Despite
being messy, this program does work. If you changed the name of messyMain to main, you
could compile and run this program. But you can also load this code into GHCi as it is,
assuming that you’re in the same directory as your first_prog.hs:

$ghci
GHCi> :l first_prog.hs
[1 of 1] Compiling Main (first_prog.hs, interpreted)
Ok, modules loaded: Main.

If you get the Ok from GHCi, you know that your code compiled and works just fine!
Notice that GHCi doesn’t care if you have a main function. This is great, as you can still
interact with files that don’t have a main. Now you can take your code for a test drive:

GHCi> messyMain
"Who is the email for?"
Happy Reader
"What is the Title?"
Learn Haskell
"Who is the Author?"
Will Kurt
"Dear Happy Reader,\nThanks for buying Learn Haskell\nthanks,\nWill Kurt"

Everything works fine, but it’d be much easier to work with if this code was broken up a
bit. Your primary goal is to create an email, but it’s easy to see that the email consists of

Listing 1.2 A messy version of first_prog.hs

8 Lesson 1 Getting started with Haskell
tying together three parts: the recipient section, the body, and the signature. You’ll start
by pulling out these parts into their own functions. The following code is written into
your first_prog.hs file. Nearly all of the functions and values defined in this book can be
assumed to be written into a file you’re currently working with. You’ll start with just the
toPart function:

toPart recipient = "Dear" ++ recipient ++ ",\n"

In this example, you could easily write these three functions together, but it’s often
worth it to work slowly and test each function as you go. To test this out, you’ll load
your file again in GHCi:

GHCi> :l "first_prog.hs"
[1 of 1] Compiling Main (first_prog.hs, interpreted)
Ok, modules loaded: Main.
GHCi> toPart "Happy Reader"
"DearHappy Reader,\n"
GHCi> toPart "Bob Smith"
"DearBob Smith,\n"

This pattern of writing code in an editor and then loading and reloading it into GHCi
will be your primary means of working with code throughout the book. To avoid repeti-
tion, the :l "first_prog.hs" will be assumed rather than explicitly written from here on.

Now that you’ve loaded this into GHCi, you see there’s a slight error, a missing space
between Dear and the recipient’s name. Let’s see how to fix this.

toPart recipient = "Dear " ++ recipient ++ ",\n"

And back to GHCi:

GHCi> toPart "Jane Doe"
"Dear Jane Doe,\n"

Everything looks good. Now to define your two other functions. This time you’ll write
them both at the same time. While following along, it’s still a good idea to write code
one function at a time, load it into GHCi, and make sure it all works before moving on.

bodyPart bookTitle = "Thanks for buying " ++ bookTitle ++ ".\n"
fromPart author = "Thanks,\n"++author

Listing 1.3 Corrected toPart function

Listing 1.4 Defining the bodyPart and fromPart functions

9Writing and working with Haskell code
You can test these out as well:

GHCi> bodyPart "Learn Haskell"
"Thanks for buying Learn Haskell.\n"
GHCi> fromPart "Will Kurt"
"Thanks,\nWill Kurt"

Everything is looking good! Now you need a function to tie it all together.

createEmail recipient bookTitle author = toPart recipient ++
 bodyPart bookTitle ++
 fromPart author

Notice the alignment of the three function calls. Haskell makes limited use of significant
whitespace (but nothing as intense as Python). Assume that any formatting in this text
is intentional; if sections of code are lined up, it’s for a reason. Most editors can handle
this automatically with a Haskell plugin.

With all your functions written, you can test createEmail:

GHCi> createEmail "Happy Reader" "Learn Haskell" "Will Kurt"
"Dear Happy Reader,\nThanks for buying Learn Haskell.\nThanks,\nWill Kurt"

Your functions each work as expected. Now you can put them all together in your main.

main = do
 print "Who is the email for?"
 recipient <- getLine
 print "What is the Title?"
 title <- getLine
 print "Who is the Author?"
 author <- getLine
 print (createEmail recipient title author)

You should be all set to compile, but it’s always a good idea to test in GHCi first:

GHCi> main
"Who is the email for?"
 Happy Reader
"What is the Title?"

Listing 1.5 Defining the createEmail function

Listing 1.6 Improved first_prog.hs with a cleaned-up main

10 Lesson 1 Getting started with Haskell
 Learn Haskell
"Who is the Author?"
 Will Kurt
"Dear Happy Reader,\nThanks for buying Learn Haskell.\nThanks,\nWill Kurt"

It looks like all your pieces are working together, and you were able to play with them
each individually to make sure they worked as expected. Finally, you can compile your
program:

$ ghc first_prog.hs
[1 of 1] Compiling Main (first_prog.hs, first_prog.o)
Linking first_prog ...
$./first_prog
"Who is the email for?"
Happy Reader
"What is the Title?"
Learn Haskell
"Who is the Author?"
Will Kurt
"Dear Happy Reader,\nThanks for buying Learn Haskell.\nThanks,\nWill Kurt"

You’ve just finished your first successful Haskell program. With your basic workflow
understood, you can now dive into the amazing world of Haskell!

Summary

In this lesson, our objective was to get you started with Haskell. You started by install-
ing the Haskell Platform, which bundles together the tools you’ll be using through this
book. These tools include GHC, Haskell’s compiler; GHCi, the interactive interpreter for
Haskell; and stack, a build tool you’ll use later in the book. The rest of this lesson cov-
ered the basics of writing, refactoring, interacting with, and compiling Haskell pro-
grams. Let’s see if you got this.

Q1.1 In GHCi, find out what 2123 is.

Q1.2 Modify the text in each of the functions in first_prog.hs, test them out in GHCi
while you do this, and, finally, compile a new version of your email templating program
so that the executable is named email.

11

U
N

IT

1

Foundations of functional
programming

There are two major ways to understand the act of
programming. The first, and historically more com-
mon, is the view that the programmer provides a
sequence of instructions to a computer in order to
make it behave a certain way. This model of pro-
gramming ties the programmer to the design of a
particular tool for programming, namely a com-
puter. In this type of programming, the computer is
a device that takes input, accesses memory, sends
instructions to a processing unit, and finally deliv-
ers output to the user. This model of a computer is
called von Neumann architecture, after the famous
mathematician and physicist John von Neumann.

The programming language that best embodies this
way of thinking about programs is C. A C program
takes in data from the standard input controlled by
the operating system, stores and retrieves necessary
values in physical memory that frequently must be
manually managed, requires the handling of point-
ers to a specific block of memory, and finally
returns all output through the standard output con-
trolled by the OS. When writing C programs, pro-
grammers must understand as much about the
problem at hand as the physical architecture of the
computer in front of them.

12 Unit 1 Foundations of functional programming
But a computer built with von Neumann architecture isn’t the only way to perform
computation. Humans perform a wide variety of computations that have nothing to do
with thinking of memory allocation and instruction sets: sorting books on a shelf, solv-
ing a derivative of a function in calculus, giving directions to friends, and so forth.
When we write C code, we’re programming to a specific implementation of computa-
tion. John Backus, who led the team that created Fortran, asked in his Turing Award lec-
ture, “Can programming be liberated from the von Neumann style?”

This question leads to the second way to understand programming, which is the subject
of the first unit in this book. Functional programming attempts to liberate programming
from the von Neumann style. The foundations of functional programming are abstract,
mathematical notions of computation that transcend a specific implementation. This
leads to a method of programming that often solves problems simply by describing
them. By focusing on computation, not computers, functional programming allows the
programmer access to powerful abstractions that can make many challenging problems
much easier to solve.

The price of this is that getting started can be much more difficult. Ideas in functional
programming are often abstract, and we must start by building the idea of program-
ming up from first principles. Many concepts need to be learned before we can build
useful programs. When working through this first unit, remember that you’re learning
to program in a way that transcends programming a computer.

Just as C is the nearly perfect embodiment of the von Neumann style of programming,
Haskell is the purest functional programming language you can learn. As a language,
Haskell commits fully to Backus’s dream and doesn’t allow you to stray back to more-
familiar styles of programming. This makes learning Haskell more difficult than many
other languages, but learning Haskell makes it impossible for you to not gain deep
insights into functional programming as you go. By the end of this unit, you’ll have a
strong enough foundation in functional programming to understand the basics of all
other functional programming languages, as well as being prepared for your journey to
learn Haskell.

2 LESSON
FUNCTIONS AND FUNCTIONAL
PROGRAMMING

After reading lesson 2, you’ll be able to

 Understand the general idea of functional programming
 Define simple functions in Haskell
 Declare variables in Haskell
 Explain the benefits of functional programming

The first topic you need to understand when learning Haskell is, what is functional pro-
gramming? Functional programming has a reputation for being a challenging topic to
master. Although this is undoubtedly true, the foundations of functional programming
are surprisingly straightforward. The first thing you need to learn is what it means to
have a function in a functional programming language. You likely already have a good
idea of what using a function means. In this lesson, you’ll see the simple rules that func-
tions must obey in Haskell that not only make your code easier to reason about, but also
lead to entirely new ways of thinking about programming.
13

14 Lesson 2 Functions and functional programming
2.1 Functions

What exactly is a function? This is an important question to ask and understand if you’re
going to be exploring functional programming. The behavior of functions in Haskell
comes directly from mathematics. In math, we often say things like f(x) = y, meaning
there’s some function f that takes a parameter x and maps to a value y. In mathematics,
every x can map to one and only one y. If f(2) = 2,000,000 for a given function f, it can
never be the case that f (2) = 2,000,001.

The thoughtful reader may ask, “What about the square-root function? 4 has two roots,
2 and –2, so how can sqrt x be a true function when it clearly points to two ys!” The key
thing to realize is that x and y don’t have to be the same thing. We can say that sqrt x is
the positive root, so both x and y are positive real numbers, which resolves this issue.
But we can also have sqrt x be a function from a positive real number to pairs of real
numbers. In this case, each x maps to exactly one pair.

In Haskell, functions work exactly as they do in mathematics. Figure 2.1 shows a func-
tion named simple.

Consider this You and your friends are out getting pizza. On the menu are three
sizes of pizza pie with three different prices:

1 18 inches for $20
2 16 inches for $15
3 12 inches for $10

You want to know which choice gives you the most pizza for your dollar. You want to
write a function that will give you the dollar-per-square-inch cost of the pizza.

Function
name

All functions in
Haskell start with
a lowercase letter.

The function’s behavior is
defined here. In this case
you’re just returning
your argument.

All functions take at
least one argument.

simple x = x

Figure 2.1 Defining a
simple function

15Functional programming
The simple function takes a single argument x and then returns this argument untouched.
Notice that unlike many other programming languages, in Haskell you don’t need to
specify that you’re returning a value. In Haskell, functions must return a value, so
there’s never a need to make this explicit. You can load your simple function into GHCi
and see how it behaves. To load a function, all you have to do is have it in a file and use
:load <filename> in GHCi:

GHCi> simple^2
2
GHCi> simple "dog"
"dog"

NOTE In this section, we’re using GHCi—Haskell’s Interactive Read-Eval-Print Loop
(REPL)—to run commands and get results.

All functions in Haskell follow three rules that force them to behave like functions in
math:

 All functions must take an argument.
 All functions must return a value.
 Anytime a function is called with the same argument, it must return the same

value.

The third rule is part of the basic mathematical definition of a function. When the rule
that the same argument must always produce the same result is applied to function in a
programming language, it’s called referential transparency.

2.2 Functional programming

If functions are just mappings from a bunch of xs (that’s the plural of x—“exes”) to a
bunch of ys (that’s the plural of y—“whys”) what do they have to do with program-
ming? In the 1930s, a mathematician named Alonzo Church attempted to create a sys-
tem of logic that used only functions and variables (xs and ys). This system of logic is
called lambda calculus. In lambda calculus, you represent everything as functions: true
and false are functions, and even all the integers can be represented as functions.

Church’s goal was initially to resolve some problems in the mathematical field of set
theory. Unfortunately, lambda calculus didn’t solve these problems, but something
much more interesting came out of Church’s work. It turns out that lambda calculus
allows for a universal model of computation, equivalent to a Turing machine!

16 Lesson 2 Functions and functional programming
This discovery of the relationship between lambda calculus and computing is called the
Church-Turing thesis (for more information, see www.alanturing.net/turing_archive/
pages/reference%20articles/The%20Turing-Church%20Thesis.html). The wonderful thing
about this discovery is that you have a mathematically sound model for programming!

Most programming languages that you use are marvelous pieces of engineering but
provide little assurance about how programs will behave. With a mathematical founda-
tion, Haskell is able to remove entire classes of bugs and errors from the code you write.
Cutting-edge research in programming languages is experimenting with ways to math-
ematically prove that programs will do exactly what you expect. Additionally, the non-
mathematical nature of most programming language designs means the abstractions
you can use are limited by engineering decisions in the language. If you could program
math, you’d be able to both prove things about your code and have access to the nearly
limitless abstractions that mathematics allows. This is the aim of functional program-
ming: to bring the power of mathematics to the programmer in a usable way.

2.3 The value of functional programming in practice

This mathematical model for programming has a variety of practical implications.
Because of the simple rules that all functions must take and return values, and must
always return the same value for the same argument, Haskell is a safe programming lan-
guage. Programs are safe when they always behave exactly the way you expect them to
and you can easily reason about their behavior. A safe programming language is one
that forces your programs to behave as expected.

Let’s look at code that isn’t safe and violates our simple rules for functions. Suppose
you’re reading through a new code base and you come across lines of code that look like
the following.

What is a Turing machine?
A Turing machine is an abstract model of a computer developed by the famous com-
puter scientist Alan Turing. From a theoretical standpoint, the Turing machine is useful
because it allows you to reason about what can and can’t be computed, not just on a dig-
ital computer, but any possible computer. This model also allows computer scientists to
show equivalence between computing systems if they can each simulate a Turing
machine. You can use this to show, for example, that there’s nothing that you can com-
pute in Java that you can’t also compute in assembly language.

www.alanturing.net/turing_archive/pages/reference%20articles/The%20Turing-Church%20Thesis.html
www.alanturing.net/turing_archive/pages/reference%20articles/The%20Turing-Church%20Thesis.html

17The value of functional programming in practice
tick()
if(timeToReset){
 reset()
}

This code clearly isn’t Haskell, because both tick and reset violate the rules we estab-
lished. Neither function takes any arguments nor returns any value. The question is,
then, what are these functions doing, and how is this different from functions in Has-
kell? It’s not a long shot to suppose that tick is incrementing a counter and that reset
restores that counter to its starting value. Even if we’re not exactly right, this reasoning
gives us insight into our question. If you aren’t passing an argument to a function, you
must be accessing a value in your environment, and if you aren’t returning a value, you
must also be changing a value in your environment. When you change a value in your
programming environment, you’re changing the program's state. Changing state creates
side effects in your code, and these side effects can make code hard to reason about and
therefore unsafe.

It’s likely that both tick and reset are accessing a global variable (a variable reachable from
anywhere in the program), which in any programming language is considered poor
design. But side effects make it hard to reason about even the simplest, well-written
code. To see this, you’ll look at a collection of values, myList, and reverse it by using built-
in functionality. The following code is valid Python, Ruby, and JavaScript; see if you can
figure out what it does.

myList = [1,2,3]
myList.reverse()
newList = myList.reverse()

Now what do you expect the value of newList to be? Because this is a valid program in
Ruby, Python, and JavaScript, it seems reasonable to assume that the value of newList
should be the same. Here are the answers for all three languages:

Ruby -> [3,2,1]
Python -> None
JavaScript -> [1,2,3]

Listing 2.1 Hidden state in function calls

Listing 2.2 Confusing behavior in standard libraries

18 Lesson 2 Functions and functional programming
Three completely different answers for the exact same code in three languages! Python
and JavaScript both have side effects that occur when reverse is called. Because the side
effects of calling reverse are different for each language and aren’t made visible to the
programmer, both languages give different answers. The Ruby code here behaves like
Haskell, without side effects. Here you see the value of referential transparency. With
Haskell, you can always see which effects each function has. When you called reset and
tick earlier, the changes they made were invisible to you. Without looking at the source
code, you have no way of knowing exactly which or even how many other values
they’re using and changing. Haskell doesn’t allow functions to have side effects, which
explains why all Haskell functions must take an argument and return a value. If Haskell
functions didn’t always return a value, they’d have to change a hidden state in the pro-
gram; otherwise, they’d be useless. If they didn’t take an argument, they’d have to access
a hidden one, which would mean they’re no longer transparent.

This small property of Haskell’s functions leads to code that’s dramatically easier to pre-
dict. Even in Ruby, the programmer is allowed to use side effects. When using another
programmer’s code, you still can’t assume anything about what’s happening when you
call a function or method. Because Haskell doesn’t allow this, you can look at any code,
written by any programmer, and reason about its behavior.

2.3.1 Variables

Variables in Haskell are straightforward. Here you’re assigning 2 to the variable x.

x = 2

The only catch with variables in Haskell is that they’re not really variable at all! If you
were to try to compile the following bit of Haskell, you’d get an error, as shown in the
next listing.

Listing 2.3 Defining your first variable

Quick check 2.1 Many languages use the ++ operator to increment a value; for example, x++
increments x. Do you think Haskell has an operator or function that works this way?

QC 2.1 answer The ++ operator used in languages such as C++ couldn’t exist in Haskell because
it violates our mathematical rules for functions. The most obvious rule is that each time you call ++ on a
variable, the result is different.

19The value of functional programming in practice
x = 2
x = 3

A better way to think about variables in Haskell is as definitions. Once again, you see
mathematical thinking replace the way you typically think about code. The problem is
that in most programming languages, variable reassignment is essential to solving
many problems. The inability to change variables is also related to referential transpar-
ency. This may seem like a strict rule to follow, but the reward is that you always know
that after calling a function, the world remains the same.

The key benefit of variables in programming is to clarify your code and avoid repetition.
For example, suppose you want a function called calcChange. This function takes two
arguments: how much is owed and how much is given. If you’re given enough money,
you return the difference. But if you aren’t given enough money, you don’t want to give
negative dollars; you’ll return 0. Here’s one way to write this.

calcChange owed given = if given - owed > 0
 then given - owed
 else 0

Two things are wrong with this function:
 Even for a tiny function, it’s hard to read. Each time you see the expression given -

owed, you have to reason about what’s happening. For anything more complicated
than subtraction, this would be unpleasant.

 You’re repeating your computation! Subtraction is a cheap operation, but if this
had been a costlier operation, you’d be needlessly wasting resources.

Listing 2.4 Variables aren’t variable!

Listing 2.5 calcChange v.1

Won’t compile because it
changes the value of x

Quick check 2.2 Even languages that don’t have a ++ operator allow for a += operator, often
also used for incrementing a value. For example, x += 2 increments x by 2. You can think of += as
a function that follows our rules: it takes a value and returns a value. Does this mean += can exist
in Haskell?

QC 2.2 answer Although the += operator returns and takes an argument, just like ++, every time
you call +=, you get a different result.

20 Lesson 2 Functions and functional programming
Haskell solves these problems by using a special where clause. Here’s the previous func-
tion written with a where clause.

calcChange owed given = if change > 0
 then change
 else 0
 where change = given – owed

The first thing that should strike you as interesting is that a where clause reverses the nor-
mal order used to write variables. In most programming languages, variables are
declared before they’re used. This convention in most programming languages is par-
tially the byproduct of being able to change state. Variable order matters because you
can always reassign the value of something after you’ve assigned it. In Haskell, because
of referential transparency, this isn’t an issue. There’s also a readability gain with the
Haskell approach: if you read the algorithm, the intention is clear right away.

2.3.2 Variables that are variable

Because change is an inevitable part of life, sometimes it makes sense to have variables
that can be reassigned. One of these cases occurs when working in the Haskell REPL,
GHCi. When working in GHCi, you’re allowed to reassign variables. Here’s an example:

GHCi> x = 7
GHCi> x
7
GHCi> x = [1,2,3]
GHCi> x
[1,2,3]

Listing 2.6 calcChange v.2

given – owed is computed
only once and assigned to
change.

Quick check 2.3 Fill in the missing part of the following where clause:

doublePlusTwo x = doubleX + 2
 where doubleX = __________

QC 2.3 answer

doublePlusTwo x = doubleX + 2
 where doubleX = x*2

21Summary
Prior to version 8 of GHC, variables in GHCi needed to be prefaced with the let key-
word to mark them as different from other variables in Haskell. You can still define vari-
ables by using let in GHCi if you like:

GHCi> let x = 7
GHCi> x
7

It’s also worth noting that one-line functions can be defined in the same way:

GHCi> let f x = x^2
GHCi> f 8
64

In a few other special contexts in Haskell, you’ll see let used in this way. It can be con-
fusing, but this difference is primarily to make real-world tasks less frustrating.

It’s important to acknowledge that being able to change the definition of variables in
GHCi is a special case. Although Haskell may be strict, having to restart GHCi every
time you wanted to experiment with a different variable would be frustrating.

Summary

In this lesson, our objective was to introduce you to functional programming and writ-
ing basic functions in Haskell. You saw that functional programming puts restrictions
on the behavior of a function. These restrictions are as follows:

 A function must always take an argument.
 A function must always return a value.
 Calling the same function with the same argument must always return the same

result.

Quick check 2.4 What’s the final value of the x variable in the following code?

GHCi> let x = simple simple
GHCi> let x = 6

QC 2.4 answer Because you can reassign values, the final value of x is 6.

22 Lesson 2 Functions and functional programming
These three rules have profound consequences for the way you write programs in Has-
kell. The major benefit of writing code in this style is that your programs are much eas-
ier to reason about, and behave predictably. Let’s see if you got this.

Q2.1 You used Haskell’s if then else expression to write calcChange. In Haskell, all if
statements must include an else component. Given our three rules for functions, why
can’t you have an if statement all by itself?

Q2.2 Write functions named inc, double, and square that increment, double, and square
an argument n, respectively.

Q2.3 Write a function that takes a value n. If n is even, the function returns n - 2, and if
the number is odd, the function returns 3 × n + 1. To check whether the number is even,
you can use either Haskell’s even function or mod (Haskell’s modulo function).

3 LESSON
LAMBDA FUNCTIONS AND
LEXICAL SCOPE

After reading lesson 3, you’ll be able to

 Write lambda functions in Haskell
 Use lambda functions for ad hoc function definitions
 Understand lexical scope
 Create scope with a lambda function

In this lesson, you’re going to continue your journey into understanding functional pro-
gramming and Haskell by learning about one of the most foundational concepts in all of
functional programming: the lambda function. On the surface, a lambda function—which
is a function with no name—seems almost too simple to be interesting. But lambda
functions provide incredible theoretical benefits as well as a surprising amount of real-
world usefulness.
23

24 Lesson 3 Lambda functions and lexical scope
3.1 Lambda functions

One of the most foundational concepts in functional programming is a function without
a name, called a lambda function (hence lambda calculus). Lambda functions are often
referred to using the lowercase Greek letter λ. Another common name for a lambda
function is an anonymous function. You can use a lambda function to redefine your sim-
ple function from lesson 2, only without a name. To do this, you use Haskell’s lambda
syntax, shown in figure 3.1.

Lambda functions are the minimum possible function: they take a value and return a
value, and that’s all. You can’t paste this anonymous function you just wrote into GHCi
or a Haskell program, because it’s just an expression that by itself does nothing. To bring
life to a lambda function, you must use it for something. The easiest thing you can do is
pass an argument to it:

GHCi> (\x -> x) 4
4

Consider this You’re messing around in GHCi and want to quickly calculate the differ-
ence between the square of the sum of three values and the sum of the squares of
three values: 4, 10, 22. You could write this out by hand:

GHCi> (4 + 10 + 22)^2 - (4^2 + 10^2 + 22^2)

But this makes it easy to have a typo that causes your expression to create an error.
Additionally, it’s difficult to change these values if you want to edit this item from your
GHCi command history (press the up arrow in GHCi to get the previous item). Is there a
way to make this a bit cleaner without having to explicitly define a function?

Function
argument(s)

The forward-slash (\)
is meant to remind you
of a Greek lamda (λ).

\x -> x

Body of the lambda function:
can be as long and complex
as any other Haskell function.

Figure 3.1 The simple
function rewritten as a
lambda function

25Writing your own where clause
GHCi> (\x -> x) "hi"
hi
GHCi> (\x -> x) [1,2,3]
[1,2,3]

Notice that each time you use your lambda expression, you have to redefine it. This
makes sense, because you have no name to call it by! Lambda functions are useful but
are designed to exist for only a short while. In general, if a named function will do the
job, it’s better to use one.

3.2 Writing your own where clause

A recurring theme in functional programming is that there’s little you can’t build from
scratch if you want to. Therefore, after you’re experienced in functional programming,
you’ll typically have a deep understanding of the way programs work. To demonstrate
how powerful lambda functions can be, you’ll conduct an experiment by removing Has-
kell’s where clause and seeing whether you can rebuild it from nothing. It’s worth taking
in what this means. So far, where is the only way you know of, inside a function, to store a
variable.

It turns out the lambda function on its own is powerful enough to create variables from
nothing. To start, you’ll look at a function that uses a where statement. For this function,
you’ll take two numbers and return whichever is greater: the sum of the square of the
values (x^2 + y^2) or the square of the sum ((x + y)^2). Here’s our version with where.

Quick check 3.1 Write a lambda function that doubles its argument, and pass in a few num-
bers as arguments.

QC 3.1 answer
GHCi> (\x -> x*2) 2
4
GHCi> (\x -> x*2) 4
8

26 Lesson 3 Lambda functions and lexical scope
sumSquareOrSquareSum x y = if sumSquare > squareSum
then sumSquare
else squareSum

 where sumSquare = x^2 + y^2
squareSum = (x+y)^2

In sumSquareOrSquareSum, you’re using where to both make your code easier to read and
reduce computation (though, technically, Haskell will eliminate many cases of duplicate
function calls even without variables). Without a where, you could just replace the vari-
ables, but then you’re doubling computation and the code is ugly, as you can see here:

sumSquareOrSquareSum x y = if (x^2 + y^2) > ((x+y)^2)
then (x^2 + y^2)
else (x+y)^2

Your function is relatively trivial, but without where or some sort of variable, it’s hideous!
One solution to not having variables is to split your function into two steps. You’ll start
with a function named body that handles the main comparison part of sumSquareOrSquareSum,
and then your new sumSquareOrSquareSum can compute sumSquare and squareSum and pass
them to body. Here’s the code for body:

body sumSquare squareSum = if sumSquare > squareSum
then sumSquare
else squareSum

Then sumSquareOrSquareSum has to compute sumSquare and squareSum and pass them on to body:

sumSquareOrSquareSum x y = body (x^2 + y^2) ((x+y)^2)

This solves the problem but adds a lot of work, and you need to define a new, intermedi-
ary function body. This is such a simple function that it’d be nice if you didn’t need an in-
between step. Because you want to somehow get rid of the named body function, this is a
perfect job for a lambda function! First let’s look at the lambda function for body:

body = (\sumSquare squareSum ->
if sumSquare > squareSum
then sumSquare
else squareSum)

Now if you substitute this lambda function for body in your preceding definition of
sumSquareOrSquareSum, you get the expression in figure 3.2.

Listing 3.1 sumSquareOrSquareSum v.1

27From lambda to let: making your own variable variables!
This still isn’t as pretty as a where clause (which is why Haskell has one in the first place)
but much nicer than what you had before. More important, you’ve implemented the
idea of variables from scratch!

3.3 From lambda to let: making your own variable variables!

Although the lambda function is messier than the original where, it’s also more powerful!
The where statement makes everything much easier to understand, but it’s also syntacti-
cally wrapped up in your function. There’s no way to just pull out a where section. This
clearly isn’t the case with your lambda expression. You pasted it into place and could
just as easily pull it out. Your lambda function is an expression, a self-contained chunk of
code, all on its own.

Haskell has an alternative to where clauses called let expressions. A let expression allows
you to combine the readability of a where clause with the power of your lambda function.
Figure 3.3 shows the sumSquareOrSquareSum function using let.

Body of the lambda function

The arguments are passed
into the lambda function.

sumSquareOrSquareSum x y = (\sumSquare squareSum ->
 if sumSquare > squareSum
 then sumSquare
 else squareSum) (x^2 + y^2) ((x+y)^2)

Figure 3.2 How sumSquareOrSquareSum works using a lambda function

Quick check 3.2 Rewrite the following function to use a lambda function in place of where:

doubleDouble x = dubs*2
 where dubs = x*2

QC 3.2 answer
doubleDouble x = (\dubs -> dubs*2) (x*2)

28 Lesson 3 Lambda functions and lexical scope
Whether you choose to use let or where is a matter of style the vast majority of the time in
Haskell.

At this point, it should be clear that lambda functions, all by themselves, can be
immensely powerful. To drive this point home, you can also do something that Haskell
won’t normally let you do: overwrite variables! For this example, you’re going to use a
let expression instead of the raw lambda expression for readability. In functional pro-
gramming, it rarely makes sense to overwrite a variable on purpose, but to show it can
be done, the next listing shows a function overwrite that takes a variable x and then over-
writes its value three times.

overwrite x = let x = 2
in
let x = 3
in
let x = 4
in
x

This, by itself, is a useless function, but it should remind you of the way to redefine vari-
ables in GHCi:

GHCi> let x = 2
GHCi> x
2
GHCi> let x = 3
GHCi> x
3

Listing 3.2 The overwrite function

sumSquareOrSquareSum x y = let sumSquare = (x^2 + y^2)
squareSum = (x+y)^2

in
 if sumSquare > squareSum
 then sumSquare
 else squareSum

Body begins

Single space
indent

Variables
defined first

Body of let
expression

Figure 3.3 The sumSquareOrSquareSum function rewritten to use a let expression

29Practical lambda functions and lexical scope
The overwrite function provides insight into how GHCi can allow you to redefine vari-
ables and still not be “cheating” regarding the rules of functional programming.

And there you have it. If you want to, you can use an unnamed function to allow you to
redefine variables just as you would in any other programming language.

3.4 Practical lambda functions and lexical scope

These let and where examples of using a lambda function may initially seem academic
and contrived, but they’re the basis of one of the most important design patterns in
JavaScript. JavaScript has strong support for lambda functions; the equivalent of \x -> x
in JavaScript is as follows:

function(x){
 return x;
}

Originally, JavaScript wasn’t designed to do more than add a little flair to websites.
Therefore, unfortunate design flaws have made large, complex code bases difficult to
manage. One of the biggest flaws is that JavaScript has no implementation of name-
spaces or modules. If you need to define a length function in your code, you’d better
hope that you aren’t accidently overwriting another length function written in one of the
many other libraries you’re using. On top of this, JavaScript makes it extremely easy to
accidentally declare global variables. To demonstrate this, you’ll start with the function
libraryAdd, which you’ll pretend is in a third-party library:

var libraryAdd = function(a,b){
 c = a + b;
 return c;
}

Quick check 3.3 Redefine overwrite by using only lambdas.

QC 3.3 answer
overwrite x = (\x ->
 (\x ->
 (\x -> x) 4
)3
)2

Oops! You forgot to use JavaScript's
var keyword, accidentally creating a
global variable.

30 Lesson 3 Lambda functions and lexical scope
This simple function has a huge problem: the variable c has accidentally been declared a
global variable! How dangerous can this be? Here’s an example of how this can cause
problems:

 var a = 2;
 var b = 3;
 var c = a + b;
 var d = libraryAdd(10,20);
 console.log(c);

You did everything right, but after calling libraryAdd, the variable c is now 30! This occurs
because there are no namespaces in JavaScript, so when libraryAdd assigns a value to c, it
keeps looking until it finds one or creates a new global variable. Unfortunately, var c is
what it finds. Unless you dig deep into someone else’s JavaScript code, you’ll never be
able to figure out this bug!

To solve this problem, JavaScript developers used a lambda function. By wrapping your
code in a lambda function and then immediately calling that function, you can keep
your code safe. This pattern is called an immediately invoked function expression (IIFE).
Using IIFE, your code now looks like this:

(function(){
 var a = 2;
 var b = 3;
 var c = a + b;
 var d = libraryAdd(10,20);
 console.log(c);
})()

It’s great that you have a solution! IIFE works on exactly the same principles as our exam-
ple of replacing a where statement. Whenever you create a new function, named or not, you
create a new scope, which is the context in which a variable is defined. When a variable is
used, the program looks at the nearest scope; if the definition of the variable isn’t there,
it goes to the next one up. This particular type of variable lookup is called lexical scope.
Both Haskell and JavaScript use lexical scoping, which is why IIFE and your lambda func-
tion variables behave in a similar fashion. Figure 3.4 shows an example of a variable defi-
nition and three function definitions that use lexical scope to change their values.

Internally, this function
accesses a global variable c,
but you have no way of
knowing that.

The value of this is 30, not 5!

Defining a lambda function

This dangerous function
can’t hurt you now.

The correct value of 5

31Summary
And you can see how different the results are when calling all three functions with the
same argument:

GHCi> add1 1
5
GHCi> add2 1
4
GHCi> add3 1
3

Being able to use unnamed functions to create scope on the fly is an essential tool for
doing much more powerful things with lambda functions, which you’ll explore in
lesson 5.

Summary

In this lesson, our objective was to teach you about lambda functions. Lambda functions
are a simple idea: a function with no name. But they’re foundational for functional pro-
gramming. Aside from their role as a theoretical corner store of functional program-
ming, they provide practical benefits. The most obvious benefit is that lambda functions
allow you to easily write functions on the fly. The even more powerful feature of lambda
functions is that they allow you to create scope as needed. Let’s see if you got this.

Q3.1 Practice writing lambda functions by rewriting each function in lesson 3 as a
lambda expression.

x = 4

add1 y = y + x

add2 y = (\x -> y + x) 3

add3 y = (\y ->
 (\x -> y + x) 1) 2

Looks to top-level
definition

Ignores the argument
in add3 and uses the
lambda argument instead

Uses argument

Finds
this first

Figure 3.4 Lexical scope with add1, add2, and add3

32 Lesson 3 Lambda functions and lexical scope
Q3.2 Using a let expression and a lambda function aren’t exactly the same thing under
the hood. For example, the following code will cause an error if you try to run it:

counter x = let x = x + 1
in
let x = x + 1
in
x

To prove that let and lambda aren’t identical, rewrite the counter function exactly as it is
here, but use nested lambdas instead of let.

(Hint: Start at the end.)

4 LESSON
FIRST-CLASS FUNCTIONS

After reading lesson 4, you’ll be able to

 Understand the definition of first-class functions
 Use functions as arguments to other functions
 Abstract computation out of a function
 Return functions as values

Although functional programming has long had the reputation of being overly aca-
demic, nearly all of the key features of functional programming languages are starting
to appear in many other more mainstream programming languages. The most wide-
spread of these features is that of first-class functions. These are functions that can be
passed around like any other values. A decade ago, this idea was shocking to many pro-
grammers, but today the majority of programming languages support and frequently
use this concept. If you’ve ever assigned an event handler in JavaScript or passed cus-
tom sort logic into a sort method in a language such as Python, you’ve already used
first-class functions.
33

34 Lesson 4 First-class functions
4.1 Functions as arguments

The concept of first-class functions is that functions are no different from any other data
used in a program. Functions can be used as arguments and returned as values from
other functions. This is a deceptively powerful feature for a programming language to
have. It allows you to abstract out any repetitive computation from your code, and ulti-
mately allows you to write functions that write other functions.

Suppose you have a function ifEveninc that increments a number n if it’s even; otherwise,
it returns the number unchanged, as the next listing shows.

ifEvenInc n = if even n
 then n + 1
 else n

Later you find out that you need two more functions, ifEvenDouble and ifEvenSquare, which
double and square even numbers, respectively, as shown next. These are easy functions
to write, given that you know how to write ifEveninc.

Listing 4.1 ifEvenInc

Consider this Suppose you want to create a website that compares prices of various
items on other sites such as Amazon and eBay. You already have a function that
returns the URL of the item you need, but you need to write code for each site that
determines how to extract the price from the page. One solution is to make a custom
function for each site:

getAmazonPrice url
getEbayPrice url
getWalmartPrice url

This would be fine, except all of these functions share a lot of logic (for example, parsing
a string price such as $1,999.99 into a numeric type such as 1999.99). Is there a way
to entirely separate the logic that extracts the price from the HTML and pass that into
a common getPrice function?

35Functions as arguments
ifEvenDouble n = if even n
 then n * 2
 else n

ifEvenSquare n = if even n
 then n^2
 else n

Although these functions are easy to write, all three are nearly identical. The only differ-
ence is in the behavior of incrementing, doubling, and squaring. What you’ve discov-
ered here is a general pattern of computation that you can abstract away. The key thing
you need to do this is the ability to pass a function as an argument to perform the
desired behavior.

Let’s demonstrate this with the function ifEven, which takes a function and a number as
arguments. If that number is even, ifEven applies a function to that number.

ifEven myFunction x = if even x
 then myFunction x
 else x

You can also abstract out your incrementing, doubling, and squaring behavior into three
separate functions:

inc n = n + 1
double n = n*2
square n = n^2

Let’s see how to re-create the previous definitions by using the power of first-class
functions:

ifEvenInc n = ifEven inc n
ifEvenDouble n = ifEven double n
ifEvenSquare n = ifEven square n

Now you can easily handle adding new functions such as ifEvenCube or ifEvenNegate.

Listing 4.2 ifEvenDouble and ifEvenSquare

Listing 4.3 ifEven

36 Lesson 4 First-class functions
4.1.1 Lambda functions as arguments

Naming functions is generally a good idea, but you can also use lambda functions to
quickly add code to pass into a function. If you want to double the value, you can
quickly put together a lambda function for this:

GHCi> ifEven (\x -> x*2) 6
12

Although named functions are preferred, many times you’ll want to pass in simple
functionality.

Function and operator precedence
In this lesson, you’ve already seen examples of functions and operators. For example, inc
is a function and + is an operator. An important part of writing Haskell code is that func-
tions are always evaluated before operators. What does this mean? Take this example
in GHCi:

GHCi> 1 + 2 * 3
7

As in most programming languages, * has a higher precedence than +, so you multiply 2
and 3 and then add 1, giving you 7. Now let's look what happens when you replace 1 +
with inc:

GHCi> inc 2 * 3
9

This result is different because functions always have precedence over operators. This
means that inc 2 is evaluated first and then the result is multiplied by 3. This is true even
for multi-argument functions:

GHCi> add x y = x + y
GHCi> add 1 2 * 3
9

The key benefit is that this enables you to avoid using a large number of unnecessary
parentheses in your code.

37Functions as arguments

4.1.2 Example—custom sorting

A practical use of passing functions into other functions is for sorting. Suppose you
have a list of first and last names. In this example, each name is represented as a tuple. A
tuple is a type that’s like a list, but it can contain multiple types and is of a fixed size.
Here’s an example of a name in a tuple:

author = ("Will","Kurt")

Tuples of two items (a pair) have two useful functions, fst and snd, which access the first
and second elements of the tuple, respectively:

GHCi> fst author
"Will"
GHCi> snd author
"Kurt"

Now suppose you have a list of names you want to sort. Here’s a set of names repre-
sented as a list of tuples.

names = [("Ian", "Curtis"),
 ("Bernard","Sumner"),
 ("Peter", "Hook"),
 ("Stephen","Morris")]

You want to sort names. Thankfully, Haskell does have a built-in sort function. To use it,
you first need to import the Data.List module. To do this is fairly straightforward; you
need to add the following declaration to the top of whatever file you’re working in:

import Data.List

Listing 4.4 names

Quick check 4.1 Write a lambda function for cubing x and pass it to ifEven.

QC 4.1 answer
GHCi> ifEven (\x -> x^3) 4

38 Lesson 4 First-class functions
Alternatively, you can import into GHCi. If you load a file with names and your import, you
can see that Haskell’s sort takes a good guess at how to sort these tuples:

GHCi> sort names
[("Bernard","Sumner"),("Ian", "Curtis"),("Peter", "Hook"),

➥("Stephen","Morris")]

Not bad, given Haskell has no idea what you’re trying to do! Unfortunately, you usually
don’t want to sort by first name. To solve this, you can use Haskell’s sortBy function,
which is included in the Data.List module. You need to supply sortBy with another func-
tion that will compare two of your tuple names. After you explain how to compare two
elements, the rest is taken care of. For this, you write a function compareLastNames. This
function takes two arguments, name1 and name2, and returns GT, LT, or EQ. GT, LT, and EQ are
special values representing greater than, less than, and equal. In many programming lan-
guages, you’d return True or False , or 1 , -1 , or 0.

compareLastNames name1 name2 = if lastName1 > lastName2
 then GT
 else if lastName1 < lastName2
 then LT
 else EQ
 where lastName1 = snd name1
 lastName2 = snd name2

Now you can go back to GHCi and use sortBy with your custom sorting:

GHCi> sortBy compareLastNames names
[("Ian", "Curtis"),("Peter", "Hook"),("Stephen","Morris),

➥("Bernard","Sumner")]

Much better! JavaScript, Ruby, and Python all support a similar use of first-class func-
tions for custom sorting, so this technique is likely familiar to many programmers.

Listing 4.5 compareLastNames

39Returning functions

4.2 Returning functions

We've talked a fair bit about passing functions as arguments, but this is only half of
what it means to have first-class functions as values. Functions also return values, so for
truly first-class functions, it makes sense that functions must sometimes return other
functions. As always, the question should be, why would I ever want to return a func-
tion? One good reason is that you want to dispatch certain functions based on other
parameters.

Suppose you create a Secret Society of Contemporary Alchemists and you need to send
newsletters to members at various regional post office boxes. There are offices in three
cities: San Francisco, Reno, and New York. Here are the office addresses:

 PO Box 1234, San Francisco, CA, 94111
 PO Box 789, New York, NY, 10013
 PO Box 456, Reno, NV, 89523

Quick check 4.2 In compareLastNames, you didn’t handle the case of having two last names
that are the same but with different first names. Modify the compareLastNamesfunction to com-
pare first names and use it to fix compareLastNames.

QC 4.2 answer
compareLastNames name1 name2 = if lastName1 > lastName2
 then GT
 else if lastName1 < lastName2
 then LT
 else if firstName1 > firstName2
 then GT
 else if firstName1 < firstName2
 then LT
 else EQ
 where lastName1 = snd name1
 lastName2 = snd name2
 firstName1 = fst name1
 firstName2 = fst name2

40 Lesson 4 First-class functions
You need to build a function that will take a name tuple (as you used before in the sorting
example) and an office location and then put together the mailing address for you. A first
pass at this function might look like the following. The only other thing we need to intro-
duce that you haven’t seen yet is the ++ operator used to concatenate strings (and lists).

addressLetter name location = nameText ++ " - " ++location
 where nameText = (fst name) ++ " " ++ (snd name)

To use this function, you have to pass a name tuple and the full address:

GHCi> addressLetter ("Bob","Smith") "PO Box 1234 - San Francisco, CA, 94111"
"Bob Smith - PO Box 1234 - San Francisco, CA, 94111"

This is a fine solution. You also could easily use variables to keep track of the addresses,
and that would make errors much less likely (and save typing). You’re all set to send out
your newsletters!

After the first round of newsletters, you get some complaints and requests from the
regional offices:

 San Francisco added a new address for members with last names starting with
the letter L or later in the alphabet: PO Box 1010, San Francisco, CA, 94109.

 New York wants the name followed by a colon rather than a hyphen, for mystical
reasons they won’t share.

 Reno wants only last names to be used for greater secrecy.

It’s clear that now you need a different function for each office.

sfOffice name = if lastName < "L"
then nameText

++ " - PO Box 1234 - San Francisco, CA, 94111"
else nameText

++ " - PO Box 1010 - San Francisco, CA, 94109"
 where lastName = snd name

nameText = (fst name) ++ " " ++ lastName

nyOffice name = nameText ++ ": PO Box 789 - New York, NY, 10013"
 where nameText = (fst name) ++ " " ++ (snd name)

Listing 4.6 addressLetter v.1

Listing 4.7 sfOffice, nyOffice, renoOffice

41Returning functions
renoOffice name = nameText ++ " - PO Box 456 - Reno, NV 89523"
 where nameText = snd name

The question now is, how should you use these three functions with addressLetter? You
could rewrite addressLetter to take a function rather than a location as an argument. The
trouble with this is that the addressLetter function is going to be part of a larger web
application, and you’d like to pass in a string parameter for the location. What you’d
really like is another function that will take a location string and dispatch the right func-
tion for you. You’ll build a new function called getLocationFunction that will take a single
string and dispatch the correct function. Rather than a bunch of nested if then else
expressions, you’ll use Haskell’s case expression.

getLocationFunction location = case location of
 "ny" -> nyOffice
 "sf" -> sfOffice
 "reno" -> renoOffice
 _ -> (\name -> (fst name) ++ " " ++ (snd name))

This case expression should seem straightforward, except for that underscore (_) at the
end. You want to capture the situation in which a string other than one of the official
locations is passed in. In Haskell, _ is used frequently as a wildcard. This is covered in
much more depth in the next lesson. In this case, if the user of your code passes in an
invalid location, you put together a quick lambda function that will make the name
tuple into a string. Now you have a single function that will return the function you
need when you need it. Finally, you can rewrite addressLetter, as shown next.

addressLetter name location = locationFunction name
 where locationFunction = getLocationFunction location

In GHCi, you can test that your function performs as expected:

GHCi> addressLetter ("Bob","Smith") "ny"
"Bob Smith: PO Box 789 - New York, NY, 10013"

Listing 4.8 getLocationFunction

Listing 4.9 addressLetter v.2

case looks at the
value of location.

If location is ny, returns nyOffice

If location is sf, returns sfOffice

If location is reno, returns renoOffice

If it’s anything else
(_ is a wildcard),
returns a generic
solution

42 Lesson 4 First-class functions
GHCi> addressLetter ("Bob","Jones") "ny"
"Bob Jones: PO Box 789 - New York, NY, 10013"

GHCi> addressLetter ("Samantha","Smith") "sf"
"Samantha Smith - PO Box 1010 - San Francisco, CA, 94109"

GHCi> addressLetter ("Bob","Smith") "reno"
"Smith - PO Box 456 - Reno, NV 89523"

GHCi> addressLetter ("Bob","Smith") "la"
"Bob Smith"

Now that you’ve separated each function needed for generating addresses, you can eas-
ily add new rules as they come in from each office. In this example, returning functions
as values helped tremendously to make your code easier to understand and extend.
This is a simple use of returning functions as values; all you’ve done is automate the
way functions can move around.

Summary

In this lesson, our objective was to explain first-class functions. First-class functions
allow you to pass functions in as arguments as well as return them as values. First-class
functions are an incredibly powerful tool, because they allow you to abstract out com-
putation from your functions. The power of first-class functions is evidenced by their
wide adoption in most modern programming languages. Let’s see if you got this.

Q4.1 Anything that can be compared in Haskell (for example, [Char], which you use
for the names in your name tuples) can be compared with a function called compare. The
compare function returns GT, LT, or EQ. Rewrite compareLastNames by using compare.

Q4.2 Define a new location function for Washington, DC and add it to getLocation-
Function. In the DC function, everyone’s names must be followed by Esq.

5 LESSON
CLOSURES AND PARTIAL APPLICATION

After reading lesson 5, you’ll be able to

 Capture values in a lambda expression
 Use closures to create new functions
 Simplify this process with partial application

In this lesson, you’ll learn the final key element of functional programming: closures.
Closures are the logical consequence of having lambda functions and first-class functions.
By combining these lambda functions and first-class functions to create closures, you can
dynamically create functions. This turns out to be an incredibly powerful abstraction,
though the one that takes the most getting used to. Haskell makes closures much easier
to work with by allowing for partial application. By the end of the lesson, you’ll see how
partial application makes otherwise confusing closures much easier to work with.

Consider this In the preceding lesson, you learned how to pass in programming logic
to other functions because of first-class functions. For example, you might have a get-
Price function that takes a URL and a website-specific price-extraction function:

getPrice amazonExtractor url

Although this is useful, what happens if you need to extract items from 1,000 URLs, but
all using amazonExtractor? Is there a way to capture this argument on the fly so you have
to pass in only the url parameter for future calls?
43

44 Lesson 5 Closures and partial application
5.1 Closures—creating functions with functions

In lesson 4, you defined a function named ifEven (listing 4.3). By using a function as an
argument to ifEven, you were able to abstract out a pattern of computation. You then cre-
ated the functions ifEvenInc, ifEvenDouble, and ifEvenSquare.

ifEvenInc n = ifEven inc n
ifEvenDouble n = ifEven double n
ifEvenSquare n = ifEven square n

Using functions as arguments helped to clean up your code. But you’ll notice you’re still
repeating a programming pattern! Each of these definitions is identical except for the
function you’re passing to ifEven. What you want is a function that builds ifEvenX func-
tions. To solve this, you can build a new function that returns functions, called genIfEven,
as shown in figure 5.1.

Now you’re passing in a function and returning a lambda function. The function f that
you passed in is captured inside the lambda function! When you capture a value inside
a lambda function, this is referred to as a closure.

Even in this small example, it can be difficult to understand exactly what’s happening.
To see this better, let’s see how to create your ifEvenInc function by using genIfEven, as
shown in figure 5.2.

Listing 5.1 ifEvenInc, ifEvenDouble, ifEvenSquare

You're returning
this entire lambda
function.

The f argument is captured
in the lambda function.

Your new function is still
waiting for an argument.

The argument f is
the function you want
to use in ifEven.

genIfEven f = (\x -> ifEven f x)

Figure 5.1 The genIfEven function lets you build ifEvenX
functions simply.

45Example: Generating URLs for an API
Now let’s move on to a real-world example of using closures to help build URLs to use
with an API.

5.2 Example: Generating URLs for an API

One of the most common ways to get data is to make calls to a RESTful API by using an
HTTP request. The simplest type of request is a GET request, in which all of the parame-
ters you need to send to another server are encoded in the URL. In this example, the
data you need for each request is as follows:

 The hostname
 The name of the resource you’re requesting
 The ID of the resource
 Your API key

Figure 5.3 shows an example URL.

 ifEvenInc = genIfEven inc

 (\x -> ifEven f x)

 (\x -> ifEven inc x)

ifEvenInc = (\x -> ifEven inc x) Figure 5.2 ifEvenInc with closure

Quick check 5.1 Write a function genIfXEven that creates a closure with x and returns a new
function that allows the user to pass in a function to apply to x if x is even.

QC 5.1 answer
ifEven f x = if even x
 then f x
 else x

genIfXEven x = (\f -> ifEven f x)

46 Lesson 5 Closures and partial application
Building a URL from these parts is straightforward. Here’s your basic getRequestURL
builder.

getRequestURL host apiKey resource id = host ++
 "/" ++
 resource ++
 "/" ++
 id ++
 "?token=" ++
 apiKey

One thing that might strike you as odd about this function is that the order of your argu-
ments isn’t the same as the order you use them or that they appear in the URL itself.
Anytime you might want to use a closure (which in Haskell is pretty much anytime), you want
to order your arguments from most to least general. In this case, each host can have multiple
API keys, each API key is going to use different resources, and each resource is going to
have many IDs associated with it. The same is true when you define ifEven; the function
you pass will work with a huge range of inputs, so it’s more general and should appear
first in the argument list.

Now that you have the basic request-generating function down, you can see how it
works:

GHCi> getRequestURL "http://example.com" "1337hAsk3ll" "book" "1234"

"http://example.com/book/1234?token=1337hAsk3ll"

Great! This is a nice, general solution, and because your team as a whole will be query-
ing many hosts, it’s important not to be too specific. Nearly every programmer on the
team will be focusing on data from just a few hosts. It seems silly, not to mention error-
prone, to have programmers manually type in http://example.com every time they need
to make a request. What you need is a function that everyone can use to generate a
request URL builder just for them. The answer to this is a closure. Your generator will
look like figure 5.4.

Listing 5.2 getRequestUrl

Host

http://example.com/book/1234?token=1337hAsk3ll

API keyID

Resource Figure 5.3 Parts of a URL

http://example.com/

47Example: Generating URLs for an API
exampleUrlBuilder = genHostRequestBuilder "http://example.com"

When you pass the value example.com, you create a new, unnamed function that captures
the host and needs only the three remaining arguments. When you define exampleUrl-
Builder, you give a name to the anonymous function. Anytime you have a new URL that
you want to make requests to, you now have an easy way to create a custom function for
this. Load this function into GHCi and see how it simplifies your code:

GHCi> exampleUrlBuilder "1337hAsk3ll" "book" "1234"
"http://example.com/book/1234?token=1337hAsk3ll"

It’s clear you run into the same problem again when you look at apiKey. Passing your API
key in each time you call exampleUrlBuilder is still tedious because you’ll likely be using
only one or two API keys. Of course, you can use another closure to fix this! This time,
you’ll have to pass both your exampleUrlBuilder function and your apiKey to your generator.

genApiRequestBuilder hostBuilder apiKey = (\resource id ->
 hostBuilder apiKey resource id)

What’s interesting here is that you’re combining both functions as arguments and func-
tions as return values. Inside your closure is a copy of the specific function that you’re
going to need, as well as the API key you need to capture. Finally, you can build a func-
tion that makes creating a request URL much easier.

Listing 5.3 exampleUrlBuilder v.1

Listing 5.4 genApiRequestBuilder

Your new lambda function will
be waiting for three arguments.

genHostRequestBuilder host = (\apiKey resource id ->
 getRequestUrl host apikey resource id)

You're capturing the host
argument in this lambda function.

Figure 5.4 Capturing the host value in a closure

48 Lesson 5 Closures and partial application
myExampleUrlBuilder = genApiRequestBuilder exampleUrlBuilder "1337hAsk3ll"

And you can use this to quickly create URLs for different resource/ID combos:

GHCi> myExampleUrlBuilder "book" "1234"
"http://example.com/book/1234?token=1337hAsk3ll"

5.2.1 Partial application: making closures simple

Closures are both powerful and useful. But the use of a lambda function to create the
closure makes reading and reasoning about them more difficult than it should be. Addi-
tionally, all the closures you’ve written so far follow a nearly identical pattern: provide
some of the parameters that a function takes and create a new function awaiting the rest.
Suppose you have a function add4 that takes four variables and adds them:

add4 a b c d = a + b + c + d

Now you want to create a function addXto3, which takes an argument x and then returns a
closure awaiting the remaining three arguments:

addXto3 x = (\b c d ->
add4 x b c d)

The explicit lambda makes it relatively hard to reason about what’s happening. What if
you want to make an addXYto2?

addXYto2 x y = (\c d ->
add4 x y c d)

With four arguments to manage visually, even this trivial function isn’t easy to under-
stand. Lambda functions are powerful and useful, but can definitely clutter up other-
wise neat function definitions.

Listing 5.5 myExampleUrlBuilder v.1

Quick check 5.2 Write a version of genApiRequestBuilder that also takes the resource as an
argument.

QC 5.2 answer
genApiRequestBuilder hostBuilder apiKey resource = (\id ->

hostBuilder apiKey
resource id)

49Example: Generating URLs for an API
Haskell has an interesting feature that addresses this problem. What happens if you call
add4 with fewer than four arguments? This answer seems obvious: it should throw an
error. This isn’t what Haskell does. You can define a mystery value in GHCi by using Add4
and one argument:

GHCi> mystery = add4 3

If you run this code, you’ll find that it doesn’t cause an error. Haskell has created a
brand new function for you:

GHCi> mystery 2 3 4
12
GHCi> mystery 5 6 7
21

This mystery function adds 3 to the three remaining arguments you pass to it. When you
call any function with fewer than the required number of parameters in Haskell, you get
a new function that’s waiting for the remaining parameters. This language feature is
called partial application. The mystery function is the same thing as if you wrote addXto3
and then passed in the argument 3 to it. Not only has partial application saved you from
using a lambda function, but you don’t even need to define the awkwardly named
addXto3! You can also easily re-create the behavior of addXYto2:

GHCi> anotherMystery = add4 2 3
GHCi> anotherMystery 1 2
8
GHCi> anotherMystery 4 5
14

If you find using closures confusing so far, you’re in luck! Thanks to partial application,
you rarely have to write or think explicitly about closures in Haskell. All of the work of
genHostRequestBuilder and genApiRequestBuilder is built in and can be replaced by leaving out
the arguments you don’t need.

exampleUrlBuilder = getRequestUrl "http://example.com"
myExampleUrlBuilder = exampleUrlBuilder "1337hAsk3ll"

In some cases in Haskell, you’ll still want to use lambda functions to create a closure,
but using partial application is far more common. Figure 5.5 shows the process of par-
tial application.

Listing 5.6 exampleUrlBuilder v.2 and myExampleUrlBuilder v.2

50 Lesson 5 Closures and partial application

5.3 Putting it all together

Partial application is also the reason we created the rule that arguments should be
ordered from most to least general. When you use partial application, the arguments are
applied first to last. You violated this rule when you defined your addressLetter function
in lesson 4 (listing 4.6):

addressLetter name location = locationFunction name
 where locationFunction = getLocationFunction location

In addressLetter, the name argument comes before the location argument. It makes much
more sense that you’d want to create a function addressLetterNY that’s waiting for a name,

host apiKey id
resource

Your new lambda function will
be waiting for three arguments:

Now you supply
the apiKey.

Finally you end up with a function
waiting for two arguments.

exampleUrlBuilder = getRequestUrl "http://example.com" ? ? ?

myExampleUrlBuilder = exampleUrlBuilder "1337hAsk3ll" ? ?

 myExampleUrlBuilder resource id

Figure 5.5 Visualizing partial application

Quick check 5.3 Make a builder function that’s specifically for http://example.com, the
1337hAsk3ll API key, and the book resource. That’s a function that requires only the ID of a spe-
cific book and then generates the full URL.

QC 5.3 answer
exampleBuilder = getRequestUrl "http://example.com" "1337hAsk3ll" "books"

51Putting it all together
rather than an addressLetterBobSmith that will write letters to all the Bob Smiths of the
world. Rather than rewriting your function, which might not always be possible if
you’re using functions from another library, you can fix this by creating a partial-
application-friendly version, as follows.

addressLetterV2 location name = addressLetter name location

This is a fine solution for the one-time case of fixing your addressLetter function. What if
you inherited a code base in which many library functions had this same error in the
case of two arguments? It’d be nice to find a general solution to this problem rather than
individually writing out each case. Combining all the things you’ve learned so far, you
can do this in a simple function. You want to make a function called flipBinaryArgs that
will take a function, flip the order of its arguments, and then return it otherwise
untouched. To do this, you need a lambda function, first-class functions, and a closure.
You can put all these together in a single line of Haskell, as shown in figure 5.6.

Now you can rewrite addressLetterV2 by using flipBinaryArgs, and then create an addressLetterNY:

addressLetterV2 = flipBinaryArgs addressLetter
addressLetterNY = addressLetterV2 "ny"

And you can test this out in GHCi:

GHCi> addressLetterNY ("Bob","Smith")
Bob Smith: PO Box 789 - New York, NY, 10013

Your flipBinaryArgs function is useful for more than fixing code that didn’t follow our
generalization guidelines. Plenty of binary functions have a natural order, such as

Listing 5.7 addressLetterV2

Lambda function used to
create returning functionFunction as argument

flipBinaryArgs binaryFunction = (\x y -> binaryFunction y x)

Closure created with
function argument

Figure 5.6 The flipBinaryArgs function

52 Lesson 5 Closures and partial application
division. A useful trick in Haskell is that any infix operator (such as +, /, -, *) can be used
as a prefix function by putting parentheses around it:

GHCi> 2 + 3
5
GHCi> (+) 2 3
5
GHCi> 10 / 2
5.0
GHCi> (/) 10 2
5.0

In division and subtraction, the order of arguments is important. Despite there being a
natural order for the arguments, it’s easy to understand that you might want to create a
closure around the second argument. In these cases, you can use flipBinaryArgs to help
you. Because flipBinaryArgs is such a useful function, there’s an existing function named
flip that behaves the same.

Summary

In this lesson, our objective was to teach the important idea of a closure in functional
programming. With lambda functions, first-class functions, and closures, you have all
you need to perform functional programming. Closures combine lambda functions and
first-class functions to give you amazing power. With closures, you can easily create
new functions on the fly. You also learned how partial application makes working with
closures much easier. After you’re used to using partial application, you may sometimes
forget you’re working with closures at all! Let’s see if you got this.

Q5.1 Now that you know about partial application, you no longer need to use genIfEvenX.
Redefine ifEvenInc, ifEvenDouble, and ifEvenSquare by using ifEven and partial application.

Quick check 5.4 Use flip and partial application to create a function called subtract2 that
removes 2 from whatever number is passed in to it.

QC 5.4 answer
subtract2 = flip (-) 2

53Summary
Q5.2 Even if Haskell didn’t have partial application, you could hack together some
approximations. Following a similar pattern to flipBinaryArgs (figure 5.6), write a func-
tion binaryPartialApplication that takes a binary function and one argument and returns a
new function waiting for the missing argument.

6LESSON
LISTS

After reading lesson 6, you’ll be able to

 Identify the parts that make up a list
 Know how to build lists
 Understand the role of lists in functional programming
 Use common functions on a list
 Learn the basics of lazy evaluation

In many ways, an array is the fundamental data structure for programming in C. If you
properly understand arrays in C, you necessarily understand how memory allocation
works, how data is stored on a computer, and the basics of pointers and pointer arith-
metic. For Haskell (and functional programming in general), the fundamental data
structure is a list. Even as you approach some of the more advanced topics in this book,
such as functors and monads, the simple list will still be the most useful example.

This lesson provides a proper introduction to this surprisingly important data structure.
You’ll learn the basics of taking lists apart and putting them back together, as well as
learning some of the essential functions for a list that Haskell provides. Finally, you’ll
take a peek at another unique feature of Haskell: lazy evaluation. Lazy evaluation is so
powerful that it allows you to represent and work with lists that are infinitely long! If
you get stuck on a topic in Haskell, it’s almost always helpful to turn back to lists to see
if they can give you some insight.
54

55The anatomy of a list
6.1 The anatomy of a list

Lists are the single most important data structure in functional programming. One of
the key reasons is that lists are inherently recursive. A list is either an empty list or an
element followed by another list. Taking apart and building lists are fundamental tools
for many techniques in functional programming.

When taking apart a list, the main pieces are the head, the tail, and the end (represented
by []). The head is just the first element in a list:

GHCi> head [1,2,3]
1
GHCi> head [[1,2],[3,4],[5,6]]
[1,2]

The tail is the rest of the list left over, after the head:

GHCi> tail [1,2,3]
[2,3]
GHCi> tail [3]
[]

The tail of a list with just one element is [], which marks the end of the list. This end of
the list is just an empty list. But an empty list is different from other lists, as it has nei-
ther a head nor a tail. Calling head or tail on [] will result in an error. If you look at the
head and tail, you can start to see the recursive nature of working with lists: a head is an
element, and a tail is another list. You can visualize this by imagining tearing the first
item off a grocery list, as in figure 6.1.

Consider this You work for a company that has 10,000 employees, and some of
them want to play on an after-work softball team. The company has five teams, named
after colors, which you want to use to assign employees:

teams = ["red","yellow","orange","blue","purple"]

You have a list of employees and you want to match them to the correct team as evenly
as possible. What’s a simple way that you can use Haskell’s list functions to perform
this task?

56 Lesson 6 Lists
You can break a list into pieces, but this does you little good if you can’t put them back
together again! In functional programming, building lists is just as important as break-
ing them down. To build a list, you need just one function and the infix operator (:),
which is called cons. This term is short for construct and has its origins in Lisp. We’ll
refer to this operation as consing, because : looks a bit odd in a sentence.

To make a list, you need to take a value and cons it with another list. The simplest way
to make a list is to cons a value with the empty list:

GHCi> 1:[]
[1]

Under the hood, all lists in Haskell are represented as a bunch of consing operations,
and the [...] notation is syntactic sugar (a feature of the programming language syntax
designed solely to make things easier to read):

GHCi> 1:2:3:4:[]
[1,2,3,4]

GHCi> (1,2):(3,4):(5,6):[]
[(1,2),(3,4),(5,6)]

Notice that all of these lists end with the empty list []. By definition, a list is always a
value consed with another list (which can also be an empty list). You could attach the
value to the front of an existing list if you wanted:

GHCi> 1:[2,3,4]
[1,2,3,4]

It’s worth noting that the strings you’ve seen so far are themselves syntactic sugar for
lists of characters (denoted by single quotes rather than double quotes):

Another list (tail)

Element (head)

Figure 6.1 A list is made up of
the head element and the tail list.

57Lists and lazy evaluation
GHCi>['h','e','l','l','o']
"hello"
GHCi> 'h':'e':'l':'l':'o':[]
"hello"

An important thing to remember is that in Haskell every element of the list must be the
same type. For example, you can cons the letter 'h' to the string "ello" because "ello" is
just a list of characters and 'h' (single quotes) is a character:

GHCi> 'h':"ello"
"hello"

But you can’t cons "h" (double quotes) to "ello" because "h" is a list of one character and
the values inside "ello" are individual characters. This becomes more obvious when you
remove the syntactic sugar.

GHCi> "h":"ello"
GHCi> ['h']:['e','l','l','o']
GHCi> 'h':[]:'e':'l':'l':'o':[]

If you do want to combine two lists, you need to concatenate them by using ++. You saw
this in lesson 3 with concatenating text, but given that strings are just lists, it will work
on any list:

GHCi> "h" ++ "ello"
"hello"
GHCi> [1] ++ [2,3,4]
[1,2,3,4]

Consing is important to understand because it’s an essential part of writing recursive
functions on lists. Nearly all sequential operations in functional programing involve
building lists, breaking them apart, or a combination of the two.

6.2 Lists and lazy evaluation

Because lists are so important in Haskell, there are many ways to quickly generate
ranges of data. Here are some examples:

GHCi> [1 .. 10]
[1,2,3,4,5,6,7,8,9,10]

Listing 6.1 Consing characters and strings

Error!

Same code with one layer
of sugar removed

Completely desugared

Generates a list of numbers
from 1 through 10

58 Lesson 6 Lists
GHCi> [1,3 .. 10]
[1,3,5,7,9]

GHCi> [1, 1.5 .. 5]
[1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0]

GHCi> [1,0 .. -10]
[1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10]

These are useful but not particularly interesting. Many programing languages have a
range function that works in a similar manner. What happens if you forget to put an
upper bound to your range?

GHCi> [1 ..]
[1,2,3,4,5,6,7,8,9,10,11,12 ..

An unending list is generated! This is cool but quickly clogs up the terminal and doesn’t
seem particularly useful. What’s interesting is that you can assign this list to a variable
and even use it in a function:

simple x = x
longList = [1 ..]
stillLongList = simple longList

What’s shocking is that this code compiles just fine. You defined an infinite list and then
used it in a function. Why didn’t Haskell get stuck trying to evaluate an infinitely long
list? Haskell uses a special form of evaluation called lazy evaluation. In lazy evaluation,
no code is evaluated until it’s needed. In the case of longList, none of the values in the list
were needed for computation.

Lazy evaluation has advantages and disadvantages. It’s easy to see some of the advan-
tages. First, you get the computational benefit that any code you don’t absolutely need is
never computed. Another benefit is that you can define and use interesting structures
such as an infinite list. This can be useful for plenty of practical problems. The disadvan-
tages of lazy evaluation are less obvious. The biggest one is that it’s much harder to rea-
son about the code’s performance. In this trivial example, it’s easy to see that any
argument passed to simple won’t be evaluated, but even a bit more complexity makes
this less obvious. An even bigger problem is that you can easily build up large collec-
tions of unevaluated functions that would be much cheaper to store as values.

Adding the next step, 3,
generates odd numbers.

Generates a list in
increments of 0.5

Generates a
decrementing list

59Common functions on lists

6.3 Common functions on lists

Because lists are so important, a wide range of useful functions are built into Haskell’s
standard library module, called Prelude. So far, you’ve seen head, tail, : and ++, which
allow you to take apart lists and put them back together. There are many other useful
functions on lists that will come up so frequently when writing Haskell that it’s worth
familiarizing yourself with them.

6.3.1 The !! operator

If you want to access a particular element of a list by its index, you can use the !! opera-
tor. The !! operator takes a list and a number, returning the element at that location in
the list. Lists in Haskell are indexed starting at 0. If you try to access a value beyond the
end of the list, you’ll get an error:

GHCi> [1,2,3] !! 0
1
GHCi> "puppies" !! 4
'i'
GHCi> [1..10] !! 11
*** Exception: Prelude.!!: index too large

As mentioned in lesson 5, any infix operator (an operator that’s placed between two val-
ues, such as +) can also be used like a prefix function by wrapping it in parentheses:

GHCi> (!!) [1,2,3] 0
1

Using prefix notation can often make things such as partial application easier. Prefix
notation is also useful for using operators as arguments to other functions. You can still

Quick check 6.1 True or false: You can compile and run a program with the variable back-
wardsInfinity = reverse [1..].

QC 6.1 answer True. Even though you’re reversing an infinite list, you’re never calling this code, so
the infinite list is never evaluated. If you loaded this code into GHCi and typed the following

GHCi> backwardsInfinity

you’d have a problem, as the program would need to evaluate this argument to print it out.

60 Lesson 6 Lists
use partial application with an infix operator; you just need to wrap the expression in
parentheses:

GHCi> paExample1 = (!!) "dog"
GHCi> paExample1 2
'g'
GHCi> paExample2 = ("dog" !!)
GHCi> paExample2 2
'g'

Notice that in paExample2 you see how partial application works with infix binary opera-
tors. To perform partial application on a binary operator, called a section, you need to
wrap the expression in parentheses. If you include only the argument on the right, the
function will be waiting for the leftmost argument; if you include only the argument on
the left, you get a function waiting for the argument on the right. Here’s paExample3,
which creates partial application of the right argument:

GHCi> paExample3 = (!! 2)
GHCi> paExample3 "dog"
'g'

The important thing to remember about sections is that the parentheses aren’t optional.

6.3.2 length

The length function is obvious; it gives you the length of the list!

GHCi> length [1..20]
20
GHCi> length [(10,20),(1,2),(15,16)]
3
GHCi> length "quicksand"
9

6.3.3 reverse

As expected, reverse reverses the list:

GHCi> reverse [1,2,3]
[3,2,1]
GHCi> reverse "cheese"
"eseehc"

61Common functions on lists
You can use reverse to make a basic palindrome checker, as shown in the next listing.

isPalindrome word = word == reverse word

GHCi> isPalindrome "cheese"
False
GHCi> isPalindrome "racecar"
True
GHCi> isPalindrome [1,2,3]
False
GHCi> isPalindome [1,2,1]
True

6.3.4 elem

The elem function takes a value and a list and checks whether the value is in the list:

GHCi> elem 13 [0,13 .. 100]
True
GHCi> elem 'p' "cheese"
False

elem is a function that you may want to treat as an infix operator for readability. Any
binary function can be treated as an infix operator by wrapping it in back-quotes (`). For
example, the function respond returns a different response depending on whether a
string has an exclamation mark, as follows.

respond phrase = if '!' `elem` phrase
 then "wow!"
 else "uh.. okay"

GHCi> respond "hello"
"uh.. okay"
GHCi> respond "hello!"
"wow!"

Whether infix elem adds much readability is certainly debatable, but in the real world
you’ll frequently come across infix forms of binary functions.

Listing 6.2 isPalindrome

Listing 6.3 respond

62 Lesson 6 Lists
6.3.5 take and drop

The take function takes a number and a list as arguments and then returns the first n ele-
ments of the list:

GHCi> take 5 [2,4..100]
[2,4,6,8,10]
GHCi> take 3 "wonderful"
"won"

If you ask for more values then a list has, take gives you what it can, with no error:

GHCi> take 1000000 [1]
[1]

take works best by being combined with other functions on lists. For example, you can
combine take with reverse to get the last n elements of a list.

takeLast n aList = reverse (take n (reverse aList))

GHCi> takeLast 10 [1..100]
[91,92,93,94,95,96,97,98,99,100]

The drop function is similar to take, except it removes the first n elements of a list:

GHCi> drop 2 [1,2,3,4,5]
[3,4,5]
GHCi> drop 5 "very awesome"
"awesome"

6.3.6 zip

You use zip when you want to combine two lists into tuple pairs. The arguments to zip
are two lists. If one list happens to be longer, zip will stop whenever one of the two lists
is empty:

GHCi> zip [1,2,3] [2,4,6]
[(1,2),(2,4),(3,6)]
GHCi> zip "dog" "rabbit"
[('d','r'),('o','a'),('g','b')]
GHCi> zip ['a' .. 'f'] [1 ..]
[('a',1),('b',2),('c',3),('d',4),('e',5),('f',6)]

Listing 6.4 takeLast

63Common functions on lists
6.3.7 cycle

The cycle function is particularly interesting, because it uses lazy evaluation to create an
infinite list. Given a list, cycle repeats that list endlessly. This may seem somewhat useless
but comes in handy in a surprising number of situations. For example, it’s common in
numerical computing to need a list of n ones. With cycle, this function is trivial to make.

ones n = take n (cycle [1])

GHCi> ones 2
[1,1]
GHCi> ones 4
[1,1,1,1]

cycle can be extremely useful for dividing members of a list into groups. Imagine you
want to divide a list of files and put them on n number of servers, or similarly spilt up
employees onto n teams. The general solution is to create a new function, assignToGroups,
that takes a number of groups and a list, and then cycles through the groups, assigning
members to them.

assignToGroups n aList = zip groups aList
 where groups = cycle [1..n]

GHCi> assignToGroups 3 ["file1.txt","file2.txt","file3.txt"
 ,"file4.txt","file5.txt","file6.txt","file7.txt"
 ,"file8.txt"]

[(1,"file1.txt"),(2,"file2.txt"),(3,"file3.txt"),(1,"file4.txt"),

➥(2,"file5.txt"),(3,"file6.txt"),(1,"file7.txt"),(2,"file8.txt")]

GHCi> assignToGroups 2 ["Bob","Kathy","Sue","Joan","Jim","Mike"]
[(1,"Bob"),(2,"Kathy"),(1,"Sue"),(2,"Joan"),(1,"Jim"),(2,"Mike")]

These functions are just some of the more common of a wide range of list functions that
Haskell offers. Not all of the functions on lists are included in the standard Prelude mod-
ule. All list functions, including those automatically included in Prelude, are in the
Data.List module. An exhaustive list of Data.List functions can be found online in the stan-
dard Haskell documentation (https://hackage.haskell.org/package/basedocs/
Data-List.html).

Listing 6.5 ones

Listing 6.6 assignToGroups

https://hackage.haskell.org/package/basedocs/Data-List.html
https://hackage.haskell.org/package/basedocs/Data-List.html

64 Lesson 6 Lists
Summary

In this lesson, our objective was to go over the basic structure of a list. You learned that a
list is made up of a head and a tail that are consed together. We also went over many of
the most common functions on a list. Let’s see if you got this.

Q6.1 Haskell has a function called repeat that takes a value and repeats it infinitely.
Using the functions you’ve learned so far, implement your own version of repeat.

Q6.2 Write a function subseq that takes three arguments: a start position, an end posi-
tion, and a list. The function should return the subsequence between the start and end.
For example:

GHCi> subseq 2 5 [1 .. 10]
[3,4,5]
GHCi> subseq 2 7 "a puppy"
"puppy"

Q6.3 Write a function inFirstHalf that returns True if an element is in the first half of a
list, and otherwise returns False.

7 LESSON
RULES FOR RECURSION AND
PATTERN MATCHING

After reading lesson 7, you’ll be able to

 Understand the definition of a recursive function
 Learn the rules for writing recursive functions
 Walk through examples of recursive function definitions
 Use basic pattern matching to solve recursive problems

One of the first challenges of writing practical code in a functional language is that
because you don’t have state changes, you also don’t have common looping functions
that rely on changing state, such as for, while, and until loops. All iteration problems
have to be solved through recursion. For many programmers, this is a terrifying
thought, as recursion typically brings up memories of headache-inducing problem solv-
ing. Thankfully, you can use a few simple rules to make recursion much easier. Addi-
tionally, just as Haskell offers partial application to make closures easier to work with,
Haskell provides a feature called pattern matching to make recursion much saner to rea-
son about.
65

66 Lesson 7 Rules for recursion and pattern matching
7.1 Recursion

In general, something is recursive if it’s defined in terms of itself. This normally leads to
headaches, as programmers often imagine unwinding an infinite loop of a recursive
definition. Recursion doesn’t need to induce headaches, and is often a lot more natural
than other forms of iteration in programing. Lists are a recursive data structure defined
as an empty list, or an element and another list. No headaches or mystical acts of mental
gymnastics are required to work with lists. Recursive functions are just functions that
use themselves in their own definition. This, legitimately, sounds confusing.

But if you think of recursive functions as defining recursive processes, recursion
becomes fairly mundane. Nearly every human activity is a recursive process! Take
washing the dishes. If there are no dishes in the sink, you’re done washing, but if there is
a dish, you grab it, clean it, and put it on the rack. To continue washing dishes, you
repeat until you’re finished.

Consider this In the preceding lesson, you learned the function take, which allows you
to take n elements from a list:

take 3 [1,2,3,4]
[1,2,3]

How would you write your own version of take in Haskell?

Quick check 7.1 Write down something mundane you do daily as a recursive process.

QC 7.1 answer
When writing a lesson for this book, I write the lesson and then then do the following:

1 Get edits from the editor.
2 Accept or reject those changes and make my own edits.
3 Submit the lesson to the editor.
4 If the editor is happy, I’m finished!

Otherwise, go back to step 1.

67Rules for recursion
7.2 Rules for recursion

The trouble with recursion comes when you write down recursive processes. Even in
the case of a list or a dishwashing algorithm, writing these from scratch seems much
trickier than just being comfortable with what they are. The secret to writing recursive
functions is to not think about the recursion! Thinking about recursion too much leads to
headaches. The way to solve recursive functions is by following this simple set of rules:

1 Identify the end goal(s).
2 Determine what happens when a goal is reached.
3 List all alternate possibilities.
4 Determine your “rinse and repeat” process.
5 Ensure that each alternative moves you toward your goal.

7.2.1 Rule 1: Identify the end goal(s)

Generally, recursive processes come to an end. What does this end look like? For a list,
the end of the process is the empty list; for washing dishes, it’s an empty sink. After you
recognize that something is a recursive process, the first step to solving it is figuring out
when you know you’re finished. Sometimes there’s more than one goal. A telemarketer
might have to call 100 people or make 5 sales before calling it a day. In this case, the goal
is either 100 people have been called, or 5 sales have been made.

7.2.2 Rule 2: Determine what happens when a goal is reached

For each goal you establish in rule 1, you need to figure out what the result will be. In
the case of washing dishes, the result is that you’re finished washing the dishes. With
functions, you need to return a value, so you have to determine what value should be
returned at the end state. A typical problem programmers face is trying to think of the
goal state in terms of being the end of a long recursive process. This is usually unneces-
sary and overly complicated. Often the answer is obvious when you ask the question,
“What happens if I call my function on the goal state value?” For example, the end state
of the Fibonacci sequence is to arrive at 1; by definition, fib 1 = 1. A more mundane
example is determining the number of books you have by counting the number on each
shelf. The goal state is to have no more shelves to count; the number of books on no
shelves is 0.

68 Lesson 7 Rules for recursion and pattern matching
7.2.3 Rule 3: List all alternate possibilities

If you aren’t at your goal state, what do you have? This sounds like it can be a lot of
work, but most of the time you have only one or two alternatives to being in the goal
state. If you don’t have an empty list, you have a list with something in it. If the sink isn’t
empty, you have a sink with dishes. For the telemarketer making calls, if you still
haven’t called 100 people or made 5 sales, you have two possibilities. You can call and
make a sale, or call and not make a sale.

7.2.4 Rule 4: Determine your “Rinse and Repeat”

This rule is nearly identical to rule 2, except you have to repeat your process. Don’t over-
think or try to unwind the recursion. For a list, you might take the element and look at
the tail. For washing dishes, you wash a dish, put it up to dry, and look in the sink again.
The telemarketer either makes the call, records the sale, and repeats, or records that the
call was made (no sale) and repeats.

7.2.5 Rule 5: Ensure that each alterative moves you toward the goal

This is a big one! For every process you list in rule 4, you need to ask yourself, “Does
this move me closer to the goal?” If you keep taking the tail of a list, you’ll get the empty
list. If you keep removing dishes from the sink, you’ll have an empty sink. Recording
either sales or calls will eventually cause the counts for each to reach their goal. But sup-
pose you want to flip a coin until you get heads. The goal is getting a head: if you get
heads, you stop. The alternate is getting tails: if you get tails, you flip again. But flipping
again doesn’t ensure that you’ll ever get heads. Statistically, you should arrive there, so
in practice this would be fine, but this is a potentially dangerous function to run (imag-
ine if instead of a coin, you used something with a small chance of success).

7.3 Your first recursive function: greatest common divisor

To introduce recursion, you’ll start with one of the oldest numeric algorithms in exis-
tence: Euclid’s algorithm. This algorithm is a remarkably simple method for computing
the greatest common divisor (GCD) of two numbers. In case you’ve forgotten, the great-
est common divisor of two numbers is the largest number that evenly divides them
both. For example, the GCD for 20 and 16 is 4, because 4 is the largest number that
divides evenly into both 20 and 16. For 10 and 100, the GCD is 10. Euclid outlined the
algorithm in his book Elements (written in about 300 BC). Here’s the basic rundown:

69Your first recursive function: greatest common divisor
1 You start with two numbers, a and b.
2 If you divide a by b and the remainder is 0, clearly b is the GCD.
3 Otherwise, you change the value of a by assigning it the value of b (b becomes the

new a). You also change the value of b to be the remainder you obtained in step 2
(the new b is the remainder of the original a divided by the original b).

4 Then repeat until a/b has no remainder.

Let’s work through one example:

1 a = 20, b = 16
2 a/b = 20/16 = 1 remainder 4
3 a = 16, b = 4
4 a/b = 4 remainder 0
5 GCD = b = 4

To implement this algorithm in code, you want to start with the goal condition (rule 1).
The goal is to have no remainder for a/b. In code, you use the modulus function to
express this idea. In Haskell, your goal is expressed as follows:

a `mod` b == 0

The next question to answer is what do you return when you reach the goal state (rule
2)? If a/b has no remainder, b must divide a evenly; therefore, b is the GCD. This gives
you the entire goal behavior:

if a `mod` b == 0
then b

Next you need to figure out all the ways that you can move closer to your goal if your
goal isn’t met (rule 3). For this problem, there’s only one alternative: the remainder isn’t
0. If the remainder isn’t 0, you repeat the algorithm with b being the new a and the new
b being the remainder: a `mod` b (rule 4):

else gcd b (a `mod` b)

Now you can put all of this into your recursive implementation of Euclid’s algorithm, as
shown next.

myGCD a b = if remainder == 0
 then b
 else myGCD b remainder
 where remainder = a `mod` b

Listing 7.1 myGCD

70 Lesson 7 Rules for recursion and pattern matching
Finally, you make sure you’re moving toward your goal (rule 5). Using the remainder,
you’re always going to be shrinking your new b; in the worst case (both numbers are
prime), you’ll eventually get to 1 for a and b. This confirms that your algorithm must
terminate. By following the rules for creating recursive functions, you’ve avoided hav-
ing to think too much about endlessly spiraling recursion!

In our myGCD example, only two possible things can happen: either the goal is met, or the
process is repeated. This fits nicely into an if then else expression. It’s easy to imagine
that as you come across more-complicated functions, you might get larger and larger if
then else statements or use case. Haskell has an amazing feature called pattern matching
that allows you to peek at the values passed as arguments and behave accordingly. As
an example, let’s make a function sayAmount that returns “one” for 1, “two” for 2, and for
everything else returns a bunch. First, let’s see how to implement this by using case rather
than pattern matching in the function definition.

sayAmount n = case n of
 1 -> "one"
 2 -> "two"
 n -> "a bunch"

The pattern matching version of this looks like three separate definitions, each for one of
the possible arguments.

sayAmount 1 = "one"
sayAmount 2 = "two"
sayAmount n = "a bunch"

Listing 7.2 sayAmount v.1

Listing 7.3 sayAmount v.2

Quick check 7.2 For the myGCD function, does it matter if a > b or a < b?

QC 7.2 answer It doesn’t matter, and adds only one extra step, if a < b. For example, 20 `mod` 50
is 20, so the next call would be myGCD 50 20, which is just one more step than calling myGCD 50 20 to
begin with.

71Your first recursive function: greatest common divisor
Pattern matching, just like case, looks at the options in order, so if you’d placed sayAmount n
first in your list, calling sayAmount would always return “a bunch”.

The important thing to realize about pattern matching is that it can look only at argu-
ments, but it can’t do any computation on them when matching. For example, with pat-
tern matching, you can’t check to see whether n is less than 0. Even with this restriction,
pattern matching is powerful. You can use pattern matching to check whether a list is
empty by matching against []:

isEmpty [] = True
isEmpty aList = False

In Haskell, it’s standard practice to use _ as a wildcard for values you don’t use. In
isEmpty, you don’t use the aList parameter, so standard practice is to write it as follows:

isEmpty [] = True
isEmpty _ = False

You can do even more-sophisticated pattern matching on lists. A popular convention in
Haskell is to use the single x to represent a single value, and the variable xs to represent
a list of values (though we’ll frequently ignore this convention for readability). You
could define your own version of head as follows:

myHead (x:xs) = x

To better understand what Haskell is doing as far as pattern matching is concerned, take
a look at figure 7.1 to see how Haskell views a list argument as a pattern.

Like the real version of head in Haskell, you don’t have a way to handle the case of an
empty list, which has no head. You can use Haskell’s error function to throw an error in
this case.

myHead [1,2,3]

myHead (1:[2,3])

myHead (x:xs) = x

 1

You can rewrite
myHead as...

Figure 7.1 Visualizing pattern-
matching internals for myHead

72 Lesson 7 Rules for recursion and pattern matching
myHead (x:xs) = x
myHead [] = error "No head for empty list"

Because you want to think of recursion as merely a list of goals and alternative cases,
pattern matching becomes valuable in writing recursive code without getting a
migraine. The trick is thinking in patterns. Whenever you write recursive functions, you
can split up the definitions so that you’re concerned only with the goal state, always
defined first, and then all the possible alternatives one at a time. This often leads to
shorter function definitions, but even more important, it makes it easier to reason about
each step. Pattern matching is a wonderful way to alleviate the pain and symptoms of
recursion.

Summary

In this lesson, our objective was to teach you how to reason about writing recursive
functions. When you’re inexperienced in writing recursive functions, the problem often
can appear much more challenging than it needs to. Here are the general rules for recur-
sion that should help when you get stuck:

1 Identify the end goal(s).
2 Determine what happens when a goal is reached.
3 List all alternate possibilities.
4 Determine your “rinse and repeat” process.
5 Ensure that each alternative moves you toward the goal.

Let’s see if you got this.

Listing 7.4 myHead

Quick check 7.3

Fill in this definition of myTail by using pattern matching, and make sure to use _ where the value
isn’t needed:

myTail (<fill in this>) = xs

QC 7.3 answer
myTail (_:xs) = xs

73Summary
Q7.1 The tail function in Haskell returns an error when called on an empty list. Mod-
ify myTail so that it does handle the case of an empty list by returning the empty list.

Q7.2 Rewrite myGCD by using pattern matching.

8LESSON
WRITING RECURSIVE FUNCTIONS

After reading lesson 8, you’ll be able to

 See common patterns of applying rules of recursion
 Understand how to use recursion on lists
 Learn to time functions in GHCi
 Reason about the edge cases of our five rules of recursion

The best way to get better at recursion is to practice, practice, practice! In this lesson, we’ll
walk through a variety of recursive functions to help you apply the rules of recursion pre-
sented in the preceding lesson. As you do this, you’ll start to see that a few patterns repeat
when solving recursive problems. Because Haskell doesn’t allow you to “cheat” by using
stateful iteration, nearly all the code you write in Haskell will involve some recursion
(though often this is abstracted away). This will lead you to quickly becoming comfort-
able writing recursive functions and solving problems in a recursive style.
74

75Recursion on lists
8.1 Review: Rules of recursion

In the preceding lesson, you learned about the rules for writing recursive functions.
Here they are again for easy reference:

1 Identify the end goal(s).
2 Determine what happens when a goal is reached.
3 List all alternate possibilities.
4 Determine your “rinse and repeat” process.
5 Ensure that each alternative moves you toward the goal.

To get a better feel for these rules, you’ll walk through a wide range of examples in this
lesson. You’ll also make heavy use of pattern matching in order to solve problems recur-
sively as easily as possible.

8.2 Recursion on lists

In lesson 6, we talked about how important lists are to functional programming and dis-
cussed a few of the functions included in Haskell’s Prelude that make working with lists
easier. Now you’ll revisit a few of those functions, but this time you’ll write them from
scratch. This will demonstrate how to think recursively to solve real problems, as well
as giving a deeper sense of how these essential functions in Haskell work.

8.2.1 Implementing length

Calculating the length of a list is one of the simplest and most straightforward exam-
ples of a recursive function on a list. Using pattern matching, decomposing our prob-
lem is easy.

For our goal state, you have the empty list (rule 1). The majority of recursive functions
on a list have the empty list as their goal state. What do you do when you get to that

Consider this In the preceding lesson, you were asked to consider writing a take
function on your own. This time, consider the drop function:

drop 3 [1,2,3,4]
[4]

Write your own version of drop and consider how this function is both similar to and dif-
ferent from take.

76 Lesson 8 Writing recursive functions
goal (rule 2)? Well, the length of an empty list is 0, because there’s nothing in it. Now
you have your goal state described:

myLength [] = 0

Next you have to consider any alternate cases (rule 3). There’s only one option, which is
a nonempty list. When you encounter a nonempty list, you know that you’ve seen one
element. To get the length of this nonempty list, you add 1 to the length of the tail of the
list (rule 4):

myLength xs = 1 + myLength (tail xs)

Before declaring yourself finished, you have to think about whether this step moves you
toward your goal (rule 5). Clearly, if you keep taking the tail of a (noninfinite) list, you’ll
eventually reach []. No other alternative possibilities are left, and each of your nongoal
states moves you toward your goal, so you’re finished!

myLength [] = 0
myLength xs = 1 + myLength (tail xs)

8.2.2 Implementing take

The take function is interesting for two reasons: take uses two arguments, n and a list,
and it turns out take has two goal states! As is almost always the case, take terminates on
the empty list []. As mentioned earlier, unlike tail and head, take has no problem with
the empty list, and will return as many items as it can. The other condition when take
can be finished occurs when n = 0. In either case, you end up doing the same thing. Tak-
ing n elements from an empty list is [], and taking 0 elements of any list is []. So you
end up with this:

myTake _ [] = []
myTake 0 _ = []

Listing 8.1 myLength

Quick check 8.1 Use pattern matching to rewrite myLength without needing to explicitly call
tail.

QC 8.1 answer
myLength [] = 0
myLength (x:xs) = 1 + myLength xs

77Recursion on lists
The only case that isn’t the goal occurs when both n is greater than 0 and the list is non-
empty. In your length function, you had to worry only about taking apart your list, but
with myTake, you’re going to return a list so you have to build one as you go. What is your
new list built from? Let’s think about this with take 3 [1,2,3,4,5]:

1 You want the first element, 1, and then cons that along with take 2 [2,3,4,5].
2 Then you want the next element, 2, and cons it with take 1 [3,4,5].
3 Then you want 3 and cons it with take 0 [4,5].
4 At 0 you’ve reached a goal, so return [].
5 This leads to 1:2:3:[], which is [1,2,3].

In code, the process is as follows:

myTake n (x:xs) = x:rest
 where rest = myTake (n - 1) xs

Finally, you ask the question, “Does the recursive call move you closer to your goal?” In
this case, it’s yes on both counts. Reducing n eventually leads to 0, and taking the tail of
the list eventually leads to [].

myTake _ [] = []
myTake 0 _ = []
myTake n (x:xs) = x:rest
 where rest = myTake (n - 1) xs

8.2.3 Implementing cycle

The cycle function is the most interesting of the list functions to implement, and also one
that you can write in few languages other than Haskell. In cycle, you take a list and
repeat it forever. This is possible only because of lazy evaluation, which few languages
other than Haskell possess. Even more interesting from the viewpoint of our rules is
that cycle has no goal state. Thankfully, recursion without goal states, even in Haskell, is
fairly rare. Nonetheless, if you understand this example, you have a strong understand-
ing of both recursion and lazy evaluation.

Once again, you’ll be building a list. To start, you’ll build a noninfinite version of the
list. The basic behavior you want is to return your exact list, only with the first element
at the end:

finiteCycle (first:rest) = first:rest ++ [first]

Listing 8.2 myTake

78 Lesson 8 Writing recursive functions
The finiteCycle function doesn’t really cycle; it returns your original list with one ele-
ment at the end. To cycle this, you need to repeat the cycle behavior for the rest:[first]
section.

myCycle (first:rest) = first:myCycle (rest++[first])

Even with our rules as a guide, often recursion can cause quite a headache. The key to
solving recursive problems is to take your time, work through the goals, and reason
through the processes. The benefit of recursive problems is that their solutions are often
just a few lines of code. With practice, you’ll also come to see that there are only a few
patterns of recursion.

8.3 Pathological recursion: Ackerman function and the
Collatz conjecture

In this section, you’ll look at two interesting functions from mathematics that demon-
strate some of the limits of our five rules for recursion.

8.3.1 The Ackermann function

The Ackermann function takes two arguments, m and n. When referring to the mathemat-
ical definition of the function, you’ll use A(m, n) to save space. The Ackermann function
follows these three rules:

 If m = 0, return n + 1.
 If n = 0, then A(m – 1, 1).
 If both m != 0 and n != 0, then A(m –1, A(m, n – 1)).

Now let’s see how to implement this in Haskell by using our rules. First, your goal state
occurs when m is 0, and when you’re in your goal state, you return n + 1. Using pattern
matching, this is easy to implement (rules 1 and 2):

 ackermann 0 n = n + 1

Now you have only two alternatives: n can be 0, and both m and n are nonzero. The
definition of the function also tells you what to do in these cases (rules 3 and 4):

ackermann m 0 = ackermann (m-1) 1
ackermann m n = ackermann (m-1) (ackermann m (n-1))

Listing 8.3 myCycle

79Pathological recursion: Ackerman function and the Collatz conjecture
Finally, are you moving toward your goal in these two alternates (rule 5)? In the case of
n = 0, yes, because if you keep decreasing m, you’ll eventually get to m = 0. The same
goes for your final case. Even though you have two calls to ackermann, the first m is
decreasing to 0, and the n in the second call is decreasing toward 0 as well, which brings
you to your goal!

Everything is perfect until you run the code. You can load this function into GHCi, and
this time you can use :set +s to time your function calls:

GHCi> :set +s
GHCi> ackermann 3 3
61
(0.01 secs)
GHCi> ackermann 3 8
2045
(3.15 secs)
GHCi> ackermann 3 9
4093
(12.97 secs)

Because your recursive call is making nested calls to itself, its runtime cost quickly starts
to explode! Even though you followed the rules for recursion, you end up getting into
serious trouble with the Ackermann function.

8.3.2 The Collatz conjecture

The Collatz conjecture is an addictively fascinating problem in mathematics. The Collatz
conjecture involves defining a recursive process given a starting number n:

 If n is 1, you’re finished.
 If n is even, repeat with n/2.
 If n is odd, repeat with n × 3 + 1.

Let’s write a function collatz that implements this process. The only issue is that as
described, collatz would always return 1. To spice things up a bit, you’ll record how
long it takes to reach 1. So, for example, for collatz 5, you go through the following path:

5 -> 16 -> 8 -> 4 -> 2 -> 1

In this case, you’d expect collatz 5 to be 6.

Now to write your code. First, you establish your goal (rule 1): this is simply the case
that n is 1. What do you do when you get to your goal (rule 2)? You’ll want to return 1

80 Lesson 8 Writing recursive functions
because we consider this to be one step. You can use pattern matching to make this step
easy to describe:

collatz 1 = 1

Next you have to list your alternatives (rule 3). In this case, you have two alternatives: n
isn’t 1 and is even, or n isn’t 1 and is odd. Because you’re comparing, which requires
computation, you can’t use pattern matching for both of these cases:

collatz n = if even n
 then
 else ...

You’re nearly finished! The next step is to describe what happens in your alternate cases
(rule 4). This is easy, because they’re described clearly in the conjecture. Don’t forget that
you also want to keep track of how long your path is. This means you have to add 1 to
your next call to collatz.

collatz 1 = 1
collatz n = if even n
 then 1 + collatz (n `div` 2)
 else 1 + collatz (n*3 + 1)

And your function is all done. This is a fun function to play with:

GHCi> collatz 9
20
GHCi> collatz 999
50
GHCi> collatz 92
18
GHCi> collatz 91
93
GHCi> map collatz [100 .. 120]
[26,26,26,88,13,39,13,101,114,114,114,70,21,13,34,34,21,21,34,34,21]

But you forgot to confirm that the recursion in each of your alternate states leads you
closer to your goal (rule 5). Your first alternate case, of n being even, is no problem.
When n is even, you’re dividing it in half; if you keep doing this, you’ll eventually reach
1. But in the odd case of n × 3 + 1, it doesn’t look like you’re moving closer. It’s possible,
even likely, that increasing an odd number in this way, combined with the way you

Listing 8.4 collatz

81Summary
decrease even numbers, always leads to 1. Unfortunately, you don’t know. Nobody
knows! The Collatz conjecture is the supposition that your collatz function always ter-
minates, but there’s no proof that this is true. If you happen to find a number that locks
up GHCi, make a note of it; it could lead to a famous mathematical paper!

This collatz function violates our rules in an interesting way. This doesn’t necessarily
mean you should throw the function away. You can test it for large ranges of values (fig-
ure 8.1), so if you needed to use this function in software, it’s likely okay to use. None-
theless, it’s important to see that rule 5 is violated, as this can be extremely dangerous,
leading to functions that never terminate.

Summary

In this lesson, our objective was to reinforce the rules of recursion you learned in the
preceding lesson. With practice, and keeping the rules of recursion in mind, writing
recursive code becomes much more natural. You also learned that edge cases exist: your

300

Collatz conjecture: Length of path before reaching 1

200

P
at

h
le

ng
th

100

0

0 25,000 50,000
N

75,000 100,000

Figure 8.1 Visualizing collatz path lengths

82 Lesson 8 Writing recursive functions
code can pass the rules of recursion but still be risky to run, and it can fail to pass the
rules but for all practical purposes work fine. Let’s see if you got this.

Q8.1 Implement your own version of reverse, which reverses a list.

Q8.2 Calculating Fibonacci numbers is perhaps the single most common example of a
recursive function. The most straightforward definition is as follows:

fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

Like the Ackermann function, this implementation quickly explodes due to the mutu-
ally recursive calls. But unlike the Ackermann function, there’s a much more efficient
way to compute the nth Fibonacci number. Write a function, fastFib, that can compute
the 1,000th Fibonacci number nearly instantly. Hint: fastFib takes three arguments: n1, n2,
and counter. To calculate the 1,000th Fibonacci number, you call fastFib 1 1 1000 and for
the 5th, you call fastFib 1 1 5.

9LESSON
HIGHER-ORDER FUNCTIONS

After reading lesson 9, you’ll be able to

 Understand higher-order functions
 Use map, filter, and foldl to avoid writing explicitly recursive functions
 Implement many higher-order functions yourself

In the preceding lesson, you saw a wide variety of recursive functions. Although prac-
tice makes writing recursive code easier, many functions share the exact same patterns
of recursion. Therefore, you can abstract out this recursion into a small number of com-
monly used functions that don’t require you to think about recursion explicitly. The
practical answer to the challenge of writing recursive code is that you usually use these
existing functions, which are part of a group of functions referred to as higher-order
functions.

A higher-order function is technically any function that takes another function as an argument.
Typically, when higher-order functions are mentioned, a specific group of them comes
to mind, and nearly all of these are used to abstract away common patterns of recursion.
In this lesson, you’ll look at higher-order functions that make writing recursive func-
tions much easier. The true cure for recursive headaches is abstraction!
83

84 Lesson 9 Higher-order functions
9.1 Using map

It’s hard to overstate how important the map function is to functional programming and
Haskell. The map function takes another function and a list as arguments and applies that
function to each element in the list:

GHCi> map reverse ["dog","cat", "moose"]
["god","tac","esoom"]
GHCi> map head ["dog","cat", "moose"]
"dcm"
GHCi> map (take 4) ["pumpkin","pie","peanut butter"]
["pump","pie","pean"]

A common first impression most programmers have of map is that it’s a cleaner version of
a for loop. Compare these two approaches to adding the determiner a to a list of animal
names in JavaScript (which supports both map and for loops), as shown in the following
listing.

var animals = ["dog","cat","moose"]
//with a for loops

Listing 9.1 JavaScript map example

Consider this Here are two functions, add3ToAll and mul3byAll, which add 3 to each
member of a list and multiply 3 by each member of the list, respectively:

add3ToAll [] = []
add3ToAll (x:xs) = (3 + x):add3ToAll xs
mul3ByAll [] = []
mul3ByAll (x:xs) = (3 * x):mul3ByAll xs

Both functions are easy to write and understand, and they share nearly identical struc-
tures. Now imagine a function squareAll, which squares each element in a list. The
squareAll function also shares this same basic structure. You can probably think of an
endless variety of functions that share this exact same pattern. Can you think of how
you’d use first-class functions to rewrite these examples by using a new function that
takes in a function as an argument and a list and can be used to define both add3ByAll
and mul3ByAll?

85Abstracting away recursion with map
for(i = 0; i < animals.length; i++){
 animals[i] = "a " + animals[i]
}

//with map
var addAnA = function(s){return "a "+s}
animals = animals.map(addAnA)

Even in a language that doesn’t enforce functional programming as strictly as Haskell,
map has several advantages. For starters, because you’re passing in a named function,
you know exactly what’s happening. Given this trivial example, that’s not a big deal, but
the body of a for loop can get complicated. If the function is well named, seeing what’s
happening in the code is easy. You can also decide that you later want to change the
behavior of your map (say, using an addAThe function), and all you have to do is change
an argument.

The readability of the code is additionally improved because map is a specific kind of iter-
ation. You know that you’ll get a new list back that’s exactly the same size as the one you
put in. This advantage may not be obvious when you’re new to map and other higher-
order functions on lists. As you become more literate in the idioms of functional pro-
gramming, you’ll begin thinking in terms of how you’re transforming a list rather than
the general form of iterating through values that a for loop represents.

9.2 Abstracting away recursion with map

The main reason that you use first-class functions, and therefore have higher-order
functions, is so you can abstract out programming patterns. To make this clear, let’s look
at how map works. It turns out that map bears only a superficial resemblance to a for loop,
and under the hood looks nothing at all like it. To figure out how map works, you’ll take
two simple tasks you could solve with map and then write them assuming map didn’t exist
(nor first-class functions, for that matter). You’ll take your addAnA behavior from our
JavaScript example and another function that squares a list of numbers, squareAll. For
clarification, here’s the map behavior you’re trying to re-create:

GHCi> map ("a "++) ["train","plane","boat"]
["a train","a plane","a boat"]
GHCi> map (^2) [1,2,3]
[1,4,9]

86 Lesson 9 Higher-order functions
You’ll start with addAnA first. Once again, the first question you need to ask is, “What’s
your goal state?” Because you’re going straight through the list, you’ll be finished when
you hit []. The next question is, “What do you do at the end?” You’re trying to add a to
each of the terms in the list, and there are no terms, so it’s sensible to return the empty
list. The other hint that you want to return an empty list is that you’re building a list. If
your recursive function returns a list, it must somehow end in the empty list. For your
goal state, you get a simple definition:

addAnA [] = []

The only other possibility is that there’s a nonempty list. In that case, you want to take
the head of the list and apply addAnA to whatever is left:

addAnA (x:xs) = ("a " ++ x):addAnA xs

Do you meet your demand of moving closer to your goal? Yes, because you’re taking the
tail of your list, which will eventually lead you to the empty list.

The squareAll function follows a similar pattern. It ends at the empty list, and the only
other option is for the argument to be a non-empty list. In the event of a nonempty list,
you square the head and continue on your way:

squareAll [] = []
squareAll (x:xs) = x^2:squareAll xs

If you go ahead and remove the concatenating and squaring function, replacing them
with an f for any function, you end up with the definition of map!

myMap f [] = []
myMap f (x:xs) = (f x):myMap f xs

If you didn’t have map, you’d end up repeating this pattern of writing a recursive func-
tion over and over again. The literal recursion isn’t particularly difficult, but would be
much less pleasant to write and read frequently. If you find recursion challenging, the
good news is that any pattern of recursion that has been used enough is abstracted out.
In practice, you don’t explicitly write out recursive functions that often. But because the
common patterns of recursion are already higher-order functions, when you do come
across a truly recursive problem, it typically requires careful thought.

Listing 9.2 myMap

87Filtering a list

O
fi
9.3 Filtering a list

Another important higher-order function for working with lists is filter. The filter func-
tion looks and behaves similarly to map, taking a function and a list as arguments and
returning a list. The difference is that the function passed to filter must be passed a
function that returns True or False. The filter function works by keeping only the ele-
ments of the list that pass the test:

GHCi> filter even [1,2,3,4]
[2,4]
GHCi> filter (\(x:xs) -> x == 'a') ["apple","banana","avocado"]
["apple","avocado"]

The use of filter is straightforward, and it’s a handy tool to have. The most interesting
thing about filter is the pattern of recursion it abstracts out. As with map, the goal of
filter is an empty list. What makes filter different is that there are two possible alterna-
tives: a nonempty list in which the first element passes, and a nonempty list in which
the first element doesn’t pass. The only difference is that when the test fails, the element
isn’t recursively consed to the list.

myFilter test [] = []
myFilter test (x:xs) = if test x
 then x:myFilter test xs
 else myFilter test xs

Listing 9.3 myFilter

See whether the head of
the list passes the test.

If it does pass, cons it
with filtering the rest of
the list.therwise, continue

ltering the rest of the list.

Quick check 9.1 Implement remove, which removes elements that pass the test.

QC 9.1 answer
remove test [] = []
remove test (x:xs) = if test x
 then remove test xs
 else x:remove test xs

88 Lesson 9 Higher-order functions
9.4 Folding a list

The function foldl (the l stands for left, which we’ll explain soon) takes a list and reduces
it to a single value. The function takes three arguments: a binary function, an initial
value, and a list. The most common use of foldl is to sum a list:

GHCi> foldl (+) 0 [1,2,3,4]
10

foldl is probably the least obvious of the higher-order functions we’ve covered. The way
foldl works is to apply the binary argument to the initial value and the head of the list.
The result of this function is now the new initial value. Figure 9.1 shows the process.

Fold is useful but definitely takes some practice to get used to. You can build a concatAll
function that joins all strings in a list:

concatAll xs = foldl (++) "" xs

foldl (+) 0 [1,2,3,4]

0 + 1 = 1

foldl (+) 1 [2,3,4]

1 + 2 = 3

foldl (+) 3 [3,4]

3 + 3 = 6

foldl (+) 6 [4]

6 + 4 = 10

foldl (+) 10 [] = 10 Figure 9.1 Visualizing foldl (+)

Quick check 9.2 Write the function myProduct, which calculates the product of a list of
numbers.

QC 9.2 answer
myProduct xs = foldl (*) 1 xs

89Folding a list
It’s common to use foldl and map together. For example, you can create sumOfSquares, which
squares every value in a list and then takes the sum of it:

sumOfSquares xs = foldl (+) 0 (map (^2) xs)

Perhaps the most remarkable use of foldl is to reverse a list. To do this, you need a
helper function named rcons, which will cons elements in the reverse order.

rcons x y = y:x
myReverse xs = foldl rcons [] xs

This is another function worth visualizing to add clarity; see figure 9.2.

Note that in this case, the “single” value that foldl returns is another list!

Implementing foldl is a bit trickier than the other functions you’ve seen so far. Once
again, your goal state is the empty list, []. But what should you return? Because the ini-
tial value will get updated after each call to the binary function, it’ll contain the final
value in your computation. When you reach the end of the list, you return the current
value for init:

myFoldl f init [] = init

You have only one other alternative: a nonempty list. For this, you pass your initial
value and the head of your list to the binary function. This creates your new init value.
Then you call myFoldl on the rest of the list by using this new value as your init.

Listing 9.4 myReverse

foldl rcons [] [1,2,3]

 1:[]

foldl rcons [1] [2,3]

 2:[1]

foldl rcons [2,1] [3]

 3:[2,1]

foldl rcons [3,2,1] [] = [3,2,1] Figure 9.2 Visualizing foldl rcons

90 Lesson 9 Higher-order functions
myFoldl f init [] = init
myFoldl f init (x:xs) = myFoldl f newInit xs
 where newInit = f init x

The question that remains is, why left fold? It turns out that there’s another way to solve
this general problem of folding a list of values into a single value. The alterative to foldl is
foldr; the r stands for right. If you look at the definition of myFoldr, you can see how it differs.

myFoldr f init [] = init
myFoldr f init (x:xs) = f x rightResult
 where rightResult = myFoldr f init xs

The reason we call it a right fold is that there are two arguments in a binary function: a
left argument and a right argument. The left fold compacts the list into the left argu-
ment, and the right fold into the right argument.

Both performance and computational differences exist between foldl and foldr. At this
stage in learning, it’s important to know that these functions give different answers if
the order of the application matters. For addition, the order doesn’t matter, so these
functions behave the same:

GHCi> foldl (+) 0 [1,2,3,4]
10
GHCi> foldr (+) 0 [1,2,3,4]
10

But for subtraction, order does matter:

GHCi> foldl (-) 0 [1,2,3,4]
-10
GHCi> foldr (-) 0 [1,2,3,4]
-2

Listing 9.5 myFoldl

Listing 9.6 myFoldr

Quick check 9.3 True or false: The nongoal step in myFoldl terminates.

QC 9.3 answer
True: because you’re always recursing on the rest of the list, it must get smaller until it’s empty (if it’s not
infinite).

91Summary
When learning Haskell, foldl is preferable for folding lists because its behavior is more
intuitive. Understanding the difference between foldl and foldr is a good sign that
you’ve mastered recursion.

Summary

In this lesson, our objective was to introduce you to a family of functions that make
working with recursion much easier. Many recursive problems can be solved with map,
filter, and foldl. When encountering a recursive problem, the first question you should
ask is whether you can solve it with one of these three functions. Let’s see if you got this.

Q9.1 Use filter and length to re-create the elem function.

Q9.2 Your isPalindrome function from lesson 6 doesn’t handle sentences with spaces or
capitals. Use map and filter to make sure the phrase “A man a plan a canal Panama” is
recognized as a palindrome.

Q9.3 In mathematics, the harmonic series is the sum of 1/1 + 1/2 + 1/3 + 1/4 Write a
function harmonic that takes an argument n and calculates the sum of the series to n. Make
sure to use lazy evaluation.

The many kinds of folds
The family of fold functions are, undoubtedly, the trickiest of the higher-order functions
introduced here. There’s another useful fold function named foldl' (note the tick mark)
found in the Data.List module. Here’s a list of advice for when to use each fold:

 foldl is the most intuitive behaving of the folds, but it usually has terrible perfor-
mance and can’t be used on infinite lists.

 foldl' is a nonlazy version of foldl that’s often much more efficient.
 foldr is often more efficient than foldl and is the only fold that works on infinite

lists.

When learning Haskell, there’s no need to immediately master these various types of folds.
You’ll likely run into an issue with foldl as you write more-sophisticated Haskell code.

10LESSON
CAPSTONE: FUNCTIONAL OBJECT-
ORIENTED PROGRAMMING WITH
ROBOTS!

This capstone covers

 Using functional programming to create objects
 Creating example objects that interact with each other
 Representing state in a functional way

A common misconception is that object-oriented programming (OOP) and functional
programming somehow stand in opposition. In reality, this couldn’t be further from the
truth. Many functional programming languages support some form of object-oriented
programming, including Common Lisp, R, F#, OCaml, and Scala. In this unit, you
explored the idea that functions can be used to perform any computation. So it makes
perfect sense that by using the tools of functional programming, you can create a basic
object-oriented programming system!

This is your first capstone exercise. In this exercise, you’ll see how to use the tools of
functional programming to replicate common design features found in OOP languages.
You’ll build a simple cup object and then move on to modeling fighting robots!
92

93An object with one property: a cup of coffee

10.1 An object with one property: a cup of coffee

Let’s start with modeling a simple cup of coffee. You’ll save all the code for this section
in a cup.hs file. For this example, a cup has only one minimal property: the number of
ounces of liquid currently in it. You need a way to store this value so you can access it
later. This will act as your basic object. Fortunately, in lesson 5, you discovered a useful
tool for capturing values inside a function: closures! You’ll define a cup function that
takes the number of fluid ounces in the cup and returns a closure storing that value:
cup flOz = _ -> flOz

Because you have first-class functions, you can treat
this value stored in a closure just like data. You can
now pass your stored information around like an
object. But clearly this isn’t enough, as you can’t do
anything interesting with the fact that you’ve stored
your ounces. What you want is to be able to apply a
message to that internal value of the cup. You’ll use a
first-class function to pass a message to your object.
This message can then act on the internal property of
the object. Notice that you’re going to be using a
slightly different pattern of sending messages to the
object rather than the common approach of calling
methods. When calling methods, your object > action
pattern looks like figure 10.1.

Your approach will invert this pattern by sending a
message to an object, as shown in figure 10.2.

This less common notation is used in the Common
Lisp Object System (CLOS) as well as R’s S3 object
system.

Think like a programmer
Haskell doesn’t use objects, so why on earth should you spend time implementing OOP
from scratch? The main reason is it allows you to understand the power of the functional
tools you’ve been learning about so far. If you can understand how to build OOP by using
closures, lambdas, and first-class functions, you’ve truly reached functional enlightenment.

Instance
of object

Method
being called

car.start()

Message
being sent

Instance of object
receiving message

start car

Figure 10.1 Method-calling
approach to OOP

Figure 10.2 Message-passing
approach to OOP (commonly used in
functional programming languages)

94 Lesson 10 Capstone: Functional object-oriented programming with robots!
10.1.1 Creating a constructor

The most common way to create an instance of an object is by using a special method
called a constructor. The only thing you need to do to create a constructor for your object
is to allow a way for you to send a message to your object. By adding a single named
argument to your closure, you can add a way to pass messages in.

cup flOz = \message -> message flOz

Now you have a basic constructor that can make instances of your object. Note that
you’ve done this using a lambda function, a closure, and first-class functions! In GHCi,
you can create an instance of your cup object:

GHCi> aCup = cup 6

You can also define a 12-ounce coffee cup in a cup.hs file.

coffeeCup = cup 12

10.1.2 Adding accessors to your object

You’ve stored your value in an object, but you need something useful for this object to
do. Next you’ll create simple messages to get and set values inside your object. First you
want to be able to get the volume of coffee currently in the cup. You’ll create a getOz mes-
sage that takes a cup object and returns the number of fluid ounces (flOz) it has.

getOz aCup = aCup (\flOz -> flOz)

To use this function, you pass this message into the object:

GHCi> getOz coffeeCup
12

Next you want to do something a little more complicated. The most useful thing to do
with a cup is to drink from it! Drinking from a cup inherently changes the state of the
object. But how in the world are you going to do this in Haskell!? Easy: you’ll create a
new object behind the scenes. Your message to set a value for fluid ounces needs to
return a new instance of your object with the internal property appropriately modified.

Listing 10.1 Constructor for a basic cup object

Listing 10.2 coffeeCup

Listing 10.3 getOz message

95An object with one property: a cup of coffee
drink aCup ozDrank = cup (flOz - ozDrank)
 where flOz = getOz aCup

Now you can sip some coffee in GHCi:

GHCi> afterASip = drink coffeeCup 1
GHCi> getOz afterASip
11
GHCi> afterTwoSips = drink afterASip 1
GHCi> getOz afterTwoSips
10
GHCi> afterGulp = drink afterTwoSips 4
GHCi> getOz afterGulp
6

This definition has one slight bug: you can drink more coffee than the cup can hold.

The only issue is that your drink message allows you to have negative values in your
cup. You can rewrite drink so that the minimum amount of coffee in a cup is 0.

drink aCup ozDrank = if ozDiff >= 0
 then cup ozDiff
 else cup 0
 where flOz = getOz aCup
 ozDiff = flOz - ozDrank

With this improvement, your cup can never have a coffee debt:

GHCi> afterBigGulp = drink coffeeCup 20
GHCi> getOz afterBigGulp
0

You’ll add one more helper message to check whether the cup is empty.

isEmpty aCup = getOz aCup == 0

Listing 10.4 Defining a drink message that updates state

Listing 10.5 Improving the drink definition

Listing 10.6 Defining isEmpty

96 Lesson 10 Capstone: Functional object-oriented programming with robots!
Because you need to constantly keep track of the object’s state, taking many drinks from
the cup could make your code get a bit verbose. Luckily, foldl can save you here. In les-
son 9, we discussed the fact that foldl is a higher-order function that takes a function, an
initial value, and a list and reduces them to a single value. Here’s a partial example of
using foldl to take five drinks from the cup.

afterManySips = foldl drink coffeeCup [1,1,1,1,1]

In GHCi, you can see that this works without you having to do as much bookkeeping:

GHCi> getOz afterManySips
7

10.2 A more complex object: let’s build fighting robots!

So far, you’ve modeled the basics of an object. You’ve been able to capture information
about an object by using a constructor. Then you’ve interacted with that object by using
accessors. With the basics of representing an object behind you, you can build some-
thing more exciting. Let’s put together some fighting robots!

Your robot will have some basic properties:

 A name
 An attack strength
 A number of hit points

You need something a little more sophisticated to handle these three attributes. You
could pass in three values to your closure, but that’s going to make working with them
confusing. Instead, you’ll use a tuple of values that represent the attributes of your
robot. For example, ("Bob",10,100) is a robot named Bob that has an attack of 10 and has
100 hit points for his life.

Rather than sending a message to a single value, you’ll send a message to this collection
of attributes. Notice that you’ll use pattern matching on our tuple argument to make the
values easier to read and understand.

robot (name,attack,hp) = \message -> message (name,attack,hp)

Listing 10.7 Using foldl to model taking many sips

Listing 10.8 A robot constructor

97A more complex object: let’s build fighting robots!
All objects can be viewed as a collection of attributes that you send messages to. In the
next unit, you’ll look at Haskell’s type system, which allows a much more powerful
method of abstracting out data. Even then, the idea of a tuple serving as a minimum via-
ble data structure will persist.

You can create an instance of your robot like this:

killerRobot = robot ("Kill3r",25,200)

To make this object useful, you’ll have to add a few accessors so you can work with
these values more easily. You’ll start by making a helper function that allows you to eas-
ily access various parts of your tuple by name. These work just like fst and snd do for a
tuple of two values (as used in lesson 4).

name (n,_,_) = n
attack (_,a,_) = a
hp (_,_,hp) = hp

With these helper functions, you can easily implement your getters.

getName aRobot = aRobot name
getAttack aRobot = aRobot attack
getHP aRobot = aRobot hp

Having these accessors means you no longer have to worry about remembering the
order of the values in your tuple:

GHCi> getAttack killerRobot
25
GHCi> getHP killerRobot
200

Because you have a more complicated object this time, you’ll also want to write some
setters that allow you to set the properties. Each of these cases will have to return a new
instance of your robot.

Listing 10.9 name, attack, and hp helper functions

Listing 10.10 getName, getAttack, and getHP accessors

98 Lesson 10 Capstone: Functional object-oriented programming with robots!
setName aRobot newName = aRobot (\(n,a,h) -> robot (newName,a,h))
setAttack aRobot newAttack = aRobot (\(n,a,h) -> robot (n,newAttack,h))
setHP aRobot newHP = aRobot (\(n,a,h) -> robot (n,a,newHP))

Notice that now you not only can set values, but also can emulate the behavior of proto-
type-based object-oriented programming, because you never change state.

One more nice function would be to print all your robot’s stats. You’ll define a printRobot
message that works much like a toString method in other languages.

printRobot aRobot = aRobot (\(n,a,h) -> n ++
" attack:" ++ (show a) ++
" hp:"++ (show h))

This makes inspecting your objects in GHCi much easier:

GHCi> printRobot killerRobot
"Kill3r attack:25 hp:200"
GHCi> printRobot nicerRobot
"kitty attack:25 hp:200"
GHCi> printRobot gentlerRobot
"Kill3r attack:5 hp:200"
GHCi> printRobot softerRobot
"Kill3r attack:25 hp:50"

Listing 10.11 setName, setAttack, and setHP accessors

Listing 10.12 Defining a printRobot message

Prototype-based OOP
Prototype-based object-oriented languages, such as JavaScript, create instances of
objects by modifying a prototypical object, rather than using classes. Prototypes in Java-
Script are often a source of much confusion. Here you can see how cloning an object and
modifying it to create a new object is a natural result of using functional programming. In
Haskell, you can create new objects by modifying copies of old, existing ones:

nicerRobot = setName killerRobot "kitty"
gentlerRobot = setAttack killerRobot 5
softerRobot = setHP killerRobot 50

99A more complex object: let’s build fighting robots!
10.2.1 Sending messages between objects

The most interesting part about fighting robots is the fighting! First you need a send a
damage message to a robot. This will work just like your drink message did in the cup
example (listings 10.4 and 10.5). In this case, you need to get all of your attributes rather
than just flOz.

damage aRobot attackDamage = aRobot (\(n,a,h) ->
 robot (n,a,h-attackDamage))

With the damage message, you can tell a robot that it has taken damage:

GHCi> afterHit = damage killerRobot 90
GHCi> getHP afterHit
110

Now it’s time to fight! This is your first case of having one object interact with another,
so you’re doing some real OOP now. Your fight message is going to be the mainstream
OOP equivalent of the following:

robotOne.fight(robotTwo)

Your fight message applies damage from the attacker to the defender; additionally, you
want to prevent a robot with no life from attacking.

fight aRobot defender = damage defender attack
 where attack = if getHP aRobot > 10
 then getAttack aRobot
 else 0

Next you need a contender to fight your killerRobot:

gentleGiant = robot ("Mr. Friendly", 10, 300)

Let’s go for a three-round fight:

gentleGiantRound1 = fight killerRobot gentleGiant
killerRobotRound1 = fight gentleGiant killerRobot
gentleGiantRound2 = fight killerRobotRound1 gentleGiantRound1
killerRobotRound2 = fight gentleGiantRound1 killerRobotRound1

Listing 10.13 Completing the damage function

Listing 10.14 The definition of fight

100 Lesson 10 Capstone: Functional object-oriented programming with robots!
gentleGiantRound3 = fight killerRobotRound2 gentleGiantRound2
killerRobotRound3 = fight gentleGiantRound2 killerRobotRound2

After this fight, you can see how they both did:

GHCi> printRobot gentleGiantRound3
"Mr. Friendly attack:10 hp:225"
GHCi> printRobot killerRobotRound3
"Kill3r attack:25 hp:170"

10.3 Why stateless programming matters

So far, you’ve been able to create a reasonable approximation of an OOP system. You’ve
ended up having to do some extra bookkeeping to explicitly keep track of state after
each round. Although this solution works, wouldn’t it be easier if you could have
mutable state to solve these problems? Hidden state would make this code cleaner, but
major problems can easily arise with hidden state. Let’s look at another fight to see the
real costs of having hidden state:

fastRobot = robot ("speedy", 15, 40)
slowRobot = robot ("slowpoke",20,30)

Now you’ll have another three-round fight.

fastRobotRound1 = fight slowRobot fastRobot
slowRobotRound1 = fight fastRobot slowRobot
fastRobotRound2 = fight slowRobotRound1 fastRobotRound1
slowRobotRound2 = fight fastRobotRound1 slowRobotRound1
fastRobotRound3 = fight slowRobotRound2 fastRobotRound2
slowRobotRound3 = fight fastRobotRound2 slowRobotRound2

And you can check out the results in GHCi:

GHCi> printRobot fastRobotRound3
"speedy attack:15 hp:0"
GHCi> printRobot slowRobotRound3
"slowpoke attack:20 hp:0"

Who should win? Because of the way you changed your values, each robot attacks at the
exact same time. Looking at the names of the robots, the behavior you want is for the

Listing 10.15 Three-round robot fight with simultaneous attacks

101Why stateless programming matters
fast robot to win. The fast robot should land the fatal blow before the slow robot, and
the slow robot shouldn’t be able to attack.

Because you have absolute control over how to handle state, you can change this easily.

slowRobotRound1 = fight fastRobot slowRobot
fastRobotRound1 = fight slowRobotRound1 fastRobot
slowRobotRound2 = fight fastRobotRound1 slowRobotRound1
fastRobotRound2 = fight fastRobotRound1 slowRobotRound1
slowRobotRound3 = fight fastRobotRound2 slowRobotRound2
fastRobotRound3 = fight slowRobotRound3 fastRobotRound2

In this example, you can make sure that the slow-robot version that’s attacking is the
one that’s updated after the faster robot strikes first:

GHCi> printRobot fastRobotRound3
"speedy attack:15 hp:20"
GHCi> printRobot slowRobotRound3
"slowpoke attack:20 hp:-15"

As expected, your fastRobot wins this match.

Because you don’t have state in functional programming, you have complete control
over the way computation happens. Compare this with stateful OOP. Here’s one round
using objects storing state:

fastRobot.fight(slowRobot)
slowRobot.fight(fastRobot)

But say your code is executed this way:

slowRobot.fight(fastRobot)
fastRobot.fight(slowRobot)

Then you’d get completely different results!

In the case of sequentially executed code, this is no problem at all. But suppose you’re
using asynchronous, concurrent, or parallel code. You may have no control over when
these operations execute! Furthermore, controlling the priority of fights would be much
more difficult, if you wanted to ensure that fastRobot always got in the first punch.

As a mental exercise, sketch out how to ensure that fastRobot does damage to slowRobot
first, even if you don’t know which of fastRobot.fight and slowRobot.fight will execute first.

Listing 10.16 Changing the priority of attacks

102 Lesson 10 Capstone: Functional object-oriented programming with robots!
Now think about how much extra code you’d need in order to solve this for a three-
round fight, if it’s possible that round 3 code could execute before round 1 or round 2. If
you’ve ever written low-level parallel code, you’re likely already aware of how difficult
managing state in this environment can be.

Believe it or not, Haskell also has solved the problem of round 3 happening before
round 2. This may be a surprise, but Haskell doesn’t care about the order of these func-
tions! You can rearrange the previous code any way you like and get the exact same
results!

fastRobotRound3 = fight slowRobotRound3 fastRobotRound2
fastRobotRound2 = fight slowRobotRound2 fastRobotRound1
fastRobotRound1 = fight slowRobotRound1 fastRobot
slowRobotRound2 = fight fastRobotRound1 slowRobotRound1
slowRobotRound3 = fight fastRobotRound2 slowRobotRound2
slowRobotRound1 = fight fastRobot slowRobot

The results in GHCi are the same:

GHCi> printRobot fastRobotRound3
"speedy attack:15 hp:20"
GHCi> printRobot slowRobotRound3
"slowpoke attack:20 hp:-15"

Any bugs that might come up because of the order in which the functions have been
written are much less common in Haskell. Because you can control exactly when and
how state is modeled, there are no mysteries at all in how the code is executed. We have
deliberately made this code more verbose than it needs to be so that it’s easier to under-
stand how much control you have over state. This robot fight could happen in any
order, and the results are the same.

10.4 Types—objects and so much more!

Haskell isn’t an object-oriented language. All of the functionality built here from scratch
already exists in a much more powerful form, using Haskell’s type system. Many of the
ideas used in this section will come up again, but rather than hacking together objects,
you’ll be creating types. Haskell’s types can replicate all the behavior you’ve modeled
here, but give you the added benefit that Haskell’s compiler can reason much more

Listing 10.17 Order has no importance in execution of Haskell code

103Summary
deeply about types than your ad hoc objects. Because of this ability to reason about
types, code created using a powerful type system tends to be much more robust and
predictable. The advantages you’ve seen from using functional programming are mag-
nified tremendously when you combine them with Haskell’s type system.

Summary

In this capstone, you

 Saw that object-oriented programming and functional programming aren’t
inherently at odds

 Represented OOP by using the tools of functional programming covered in this
unit

 Used closures to represent objects created with lambda functions
 Sent messages to objects by using first-class functions
 Managed state in a functional way, allowing you to be more exact in controlling

program execution

Extending the exercise

Here are some ideas for simple exercises you can do to extend this capstone on your
own:

 Use map on a list of robot objects to get the life of each robot in the list.
 Write a threeRoundFight function that takes two robots and has them fight for three

rounds, returning the winner. To avoid having so many different variables for
robot state, use a series of nested lambda functions so you can just overwrite
robotA and robotB.

 Create a list of three robots. Then create a fourth robot. Use partial application to
create a closure for the fight method so the fourth robot can fight all three robots
at once, using map. Finally, use map to get the remaining life from the rest of the
robots.

105

U
N

IT

2

Introducing types

Nearly every programming language supports
some idea of types. Types are important because
they define the kinds of computation allowed on
certain data. Take, for example, the text "hello" and
the number 6. Say you want to do something like
add them together:

"hello" + 6

Even someone with no prior programming experi-
ence would find this question interesting, because
it’s not clear what to do. The two most obvious
answers are to

 Throw an error
 Combine these values in the most reasonable

way: "hello6"

To arrive at either option, you need a way to keep
track of the type of your data, as well as the type of
data your computation is expecting. Typically, we
call the value of "hello" a String, and the value of 6 an
Int. Regardless of your choice of programming lan-
guage, you need to know the types you’re dealing
with so you can either throw an error when they
don’t match or do some sort of automatic conver-
sion by knowing how to transform types. Even if
you don’t think about types much in your program-
ming language of choice, they are an important part
of programming.

106 Unit 2 Introducing types
Languages such as Ruby, Python, and JavaScript use dynamic typing. In a dynamic type
system, all the decisions like the one we made with "hello" and 6 happen during run-
time. The benefit of dynamic typing for the programmer is a generally more flexible lan-
guage and no need to manually keep track of types. The danger of dynamic typing is
that errors happen only at runtime. For example, say you have the following expression
in Python:

def call_on_xmas():
 "santa gets a "+10

This code will cause an error because Python requires 10 to be converted to a string
before adding it to the string literal. As you can guess by the function name, this func-
tion won’t be called until Christmas! If this mistake snuck into a production system, it
could mean a frustrating Christmas debugging a rare problem. The solution has been to
incorporate extensive unit testing to ensure that bugs like this can’t slip in. This some-
what negates the benefit of not having to annotate types as you code.

Languages such as Java, C++, and C# use static typing. With static typing, problems such
as "hello" + 6 are resolved during compilation. If a type error occurs, the program won’t
compile. The obvious benefit of static typing is that an entire class of bugs can’t make it
into running programs. The downside, traditionally, is that statically typed languages
require the programmer to add many type annotations. Type signatures are required for
every function/method, and all variables must have their type declared.

Haskell is a statically typed programming language, but it certainly doesn’t look like a
statically typed language in the examples you’ve seen so far. All of your variables and
functions have made no references to types at all. This is because Haskell makes heavy
use of type inference. The Haskell compiler is smart, and can figure out what types you’re
using based on the way the functions and variables are used.

Haskell’s type system is extremely powerful, and is at least as fundamental to making
Haskell unique as its adherence to pure functional programming. In this unit, you’ll be
introduced to the basics of Haskell’s type system. You’ll learn how to model data and
define your own types and type classes.

11 LESSON
TYPE BASICS

After reading lesson 11, you’ll be able to

 Understand basic types in Haskell, including Int, String, and Double
 Read type signatures for functions
 Use simple type variables

This lesson introduces one of the most powerful aspects of Haskell: its robust type sys-
tem. The fundamentals of functional programming covered in the preceding lessons are
shared by all functional programming languages from Lisp to Scala. It’s Haskell’s type
system that sets it apart from other programming languages. Our introduction in this
lesson starts with the basics of Haskell’s type system.

Consider this You need to create a simple function for taking the average of a list of
numbers. The most obvious solution is to take the sum of the list and divide it by the
length of the list:

myAverage aList = sum aList / length aList

But this simple definition doesn’t work. How can you write a function to compute the
mean of a list of numbers?
107

108 Lesson 11 Type basics
11.1 Types in Haskell

It may come as a bit of a surprise that Haskell is a statically typed language. Other com-
mon statically typed languages include C++, C#, and Java. In these and most other stati-
cally typed languages, the programmer is burdened with keeping track of type
annotations. So far in Haskell, you haven’t had to write down any information about the
type you’re using for any of your values. It turns out this is because Haskell has done it
for you! Haskell uses type inference to automatically determine the types of all values at
compile time based on the way they’re used! You don’t have to rely on Haskell to deter-
mine your types for you. Figure 11.1 shows a variable that you’ll give the Int type.

All types in Haskell start with a capital letter to distinguish them from functions (which
all start with a lowercase letter or _). The Int type is one of the most ubiquitous and tra-
ditional types in programming. Int represents how the computer is to interpret a num-
ber represented by a fixed number of bits, often 32 or 64 bits. Because you’re describing
numbers with a fixed number of bits, you’re limited by a maximum and minimum value
that a number can take on. For example, if you load x in GHCi, you can do some simple
operations to show the limits of this type:

x :: Int
x = 2

GHCi> x*2000
4000
GHCi> x^2000
0

As you can see, Haskell handles exceeding the bounds of the Int by returning 0. This
property of having limited maximum and minimum values is referred to as being
bounded. You’ll learn more about bounded types in lesson 13.

The Int type is a traditional way of viewing types in programming. Int is a label that tells
the computer how to read and understand physical memory. In Haskell, types are more

Variable name

Type signature

Variable definition

Variable type

x :: Int
x = 2

Figure 11.1 Type
signature for a variable

109Types in Haskell
abstract. They provide a way of understanding how values behave and how to organize
data. For example, the Integer type more closely resembles the typical Haskell way of
thinking about types. Let’s see how to define a new variable y as an Integer.

y :: Integer
y = 2

You can clearly see the difference between these two types by repeating your calcula-
tions from before:

GHCi> y*2000
4000
GHCi> y^2000
11481306952742545242328332011776819840223177020886952004776427368257662613
923703138566594863165062699184459646389874627734471189608630553314259313561
666531853912998914531228000068877914824004487142892699006348624478161546364
638836394731702604046635397090499655816239880894462960562331164953616422197
033268134416890898445850560237948480791405890093477650042900271670662583052
200813223628129176126788331720659899539641812702177985840404215985318325154
088943390209192055495778358967203916008195721663058275538042558372601552834
878641943205450891527578388262517543552880082284277081796545376218485114902
9376

As you can see, the Integer type fits more closely with the mathematical sense of what an
integer is: any whole number. Unlike the Int type, the Integer type isn’t bounded by
memory limitations framed in terms of bytes.

Haskell supports all the types that you’re likely familiar with in other languages. Here
are some examples.

letter :: Char
letter = 'a'

interestRate :: Double
interestRate = 0.375

isFun :: Bool
isFun = True

Listing 11.1 Integer type

Listing 11.2 Common types Char, Double, and Bool

110 Lesson 11 Type basics
Another important type is List. Here are a few examples.

values :: [Int]
values = [1,2,3]

testScores :: [Double]
testScores = [0.99,0.7,0.8]

letters :: [Char]
letters = ['a','b','c']

A list of characters is the same as a string:

GHCi> letters == "abc"
True

To make things easier, Haskell allows you to use String as a type synonym for [Char].
Both of these type signatures mean exactly the same thing to Haskell:

aPet :: [Char]
aPet = "cat"

anotherPet :: String
anotherPet = "dog"

Another important type is a Tuple. You used tuples briefly in lesson 4. When you weren’t
thinking about types, tuples didn’t seem too different from a list, but they’re quite a bit
more sophisticated. Two main differences are that each tuple is of a specific length, and
tuples can contain multiple types. A list of type [Char] is a string of any size, whereas a
tuple of type (Char) is a tuple of exactly one character. Here are some more tuple examples.

ageAndHeight ::(Int,Int)
ageAndHeight = (34,74)

firstLastMiddle :: (String,String,Char)
firstLastMiddle = ("Oscar","Grouch",'D')

streetAddress :: (Int,String)
streetAddress = (123,"Happy St.")

Tuples are useful for modeling simple data types quickly.

Listing 11.3 List types

Listing 11.4 Tuple types

111Function types
11.2 Function types

Functions also have type signatures. In Haskell an -> is used to separate arguments and
return values. The type signature for double looks like figure 11.2.

You could easily have chosen Integer, Double, or any other number of types for your argu-
ment. In lesson 12, you’ll look at type classes that allow you to generalize numbers better.

Taking in an Int and returning an Int works for doubling a number, but it doesn’t work
for halving a number. If you want to write a function half and you want to take in an Int,
you need to return a Double. Your type signature will look like the following.

half :: Int -> Double

Now you need to define your function, and a first guess would be this:

half n = n/2

But this results in an error. The problem is that you’re trying to divide a whole number
Int in half, and such a thing is nonsensical because you’ve already declared that you’re
going to return a Double. You need to convert your value from an Int into a Double. Most
programming languages have the idea of casting a variable from one type to another.
Casting forces a value to be represented as a different type. Because of this, casting vari-
ables often feels like hammering a square peg through a round hole. Haskell has no con-
vention for casting types and instead relies on functions that properly transform values
from one type to another. In this case, you can use Haskell’s fromIntegral function:

half n = (fromIntegral n) / 2

Here you’ve transformed n from an Int into a more general number. A good question
now might be, “Why don’t you have to call fromIntegral on 2?” In many programming

Listing 11.5 Converting from one type to another with half

Type signature

Function definition

Argument type of Int

Return type of Int

double :: Int -> Int
double n = n*2

Figure 11.2 Defining the double
function by using a type signature

Incorrect code!

112 Lesson 11 Type basics
languages, if you want to treat a literal number as a Double, you need to add a decimal to
it. In both Python and Ruby, 5/2 is 2 and 5/2.0 is 2.5. Haskell is both stricter and more
flexible. It’s stricter because Haskell never does the implicit type conversion that hap-
pens in Ruby and Python, and it’s more flexible because in Haskell literal numbers are
polymorphic: their type is determined from the compiler based on the way they’re used.
For example, if you want to use GHCi as a calculator, you’ll find you rarely need to
worry about type with numbers:

GHCi> 5/2
2.5

11.2.1 Functions for converting to and from strings

One of the most common type conversions is to convert values to and from strings. Has-
kell has two useful functions that achieve this: show and read. Lessons 12 and 13 detail
how these work, but for now let’s look at some examples in GHCi. The show function is
straightforward:
GHCi> show 6
"6"
GHCi> show 'c'
"'c'"
GHCi>show 6.0
"6.0"

Quick check 11.1 Haskell has a function named div that does perform integer division (it
returns only whole numbers). Write halve, which uses div instead, and include a type signature.

QC 11.1 answer
halve :: Integer -> Integer
halve value = value `div` 2

Quick check 11.2 Write a function printDouble that takes an Int and returns that value dou-
bled as a string.

QC 11.2 answer
printDouble :: Int -> String
printDouble value = show (value*2)

113Function types
The read function works by taking a string and converting it to another type. But this is a
bit trickier than show. For example, without type signatures, what should Haskell do
here?

z = read "6"

It’s impossible to tell whether to use Int, Integer, or even Double. If you can't figure it out,
there’s absolutely no way that Haskell can. In this case, type inference can’t save you.
There are a few ways to fix this. If you use the value z, it’s likely that Haskell will have
enough info to figure out how to treat your value:

q = z / 2

Now Haskell has enough information to treat z like a Double, even though your String
representation didn’t have a decimal. Another solution is to explicitly use your type sig-
nature.

anotherNumber :: Int
anotherNumber = read "6"

Even though you got through the first unit with no type signatures, it’s generally a good
idea to always use them. This is because in practice type signatures help you reason
about the code you’re writing. This little extra annotation lets Haskell know what you
expect read to do and makes your own intentions clearer in the code. There’s one more
way to force Haskell to understand what type you want that comes up often in practice.
You can always append the expected return type to the end of a function call. This hap-
pens most frequently in GHCi, but at other times it’s helpful to specify an ambiguous
return type:

GHCi> read "6" :: Int
6
GHCi> read "6" :: Double
6.0

11.2.2 Functions with multiple arguments

So far, most of your type signatures have been straightforward. One thing that fre-
quently trips up newcomers to Haskell is the type signature for multi-argument func-
tions. Suppose you want a function that takes a house number, street address, and town
and makes a tuple representing an address. Figure 11.3 shows the type signature.

Listing 11.6 Example of reading values from strings: anotherNumber

114 Lesson 11 Type basics
What makes this confusing is that there’s no clear separation between which types are
for arguments and which are for return values. The easy way to remember is that the
last type is always the return type. A good question is, why are type signatures this
way? The reason is that behind the scenes in Haskell, all functions take only one argu-
ment. By rewriting makeAddress by using a series of nested lambda functions, as shown in
figure 11.4, you can see a multi-argument function the way Haskell does.

You could then call this function like so:

GHCi> (((makeAddressLambda 123) "Happy St") "Haskell Town")
(123,"Happy St","Haskell Town")

In this format, each function returns a function waiting for the next. This might seem
crazy until you realize this is how partial application works! You could apply argu-
ments in exactly the same way with makeAddress and get the exact same results:

GHCi> (((makeAddress 123) "Happy St") "Haskell Town")
(123,"Happy St","Haskell Town")

Type signature

Function definition

Type of first
argument

Type of second
argument

Type of third
argument

Type of
return value

makeAddress :: Int -> String -> String -> (Int, String, String)
makeAddress number street town = (number,street,town)

Figure 11.3 Type signature for multi-argument functions and definition makeAddress

You can rewrite a
multi-argument function
as a sequence of nested
lambda functions.

makeAddress number street town = (number, street, town)

makeAddressLambda = (\number ->
(\street ->
(\town -> (number, street, town)))

Figure 11.4 Desugaring the multi-argument makeAddress into a sequence of single-argument
functions

115Function types
It also turns out that because of the way Haskell evaluates arguments, you can call your
desugared lambda version the way you would any ordinary function:

GHCi>makeAddressLambda 123 "Happy St" "Haskell Town"
(123,"Happy St","Haskell Town")

Hopefully, this helps to demystify multi-argument type signatures as well as partial
application!

11.2.3 Types for first-class functions

As we mentioned in lesson 4, functions can take functions as arguments and return
functions as values. To write these type signatures, you write the individual function
values in parentheses. For example, you can rewrite ifEven with a type signature.

ifEven :: (Int -> Int) -> Int -> Int
ifEven f n = if even n

then f n
else n

Listing 11.7 Type signatures for first-class functions: ifEven

Quick check 11.3 As each argument is passed to makeAddress, write out the type signature of
the returned function.

QC 11.3 answer Starting with our type original type signature:

makeAddress :: Int -> String -> String -> (Int,String,String)

And your type signatures is now as follows:

String -> String -> (Int,String,String)

Then pass in the first String:

((makeAddress 123) "Happy St")

And here’s the type signature:

String -> (Int,String,String)

Finally, if you pass in all of your arguments, you get the type of the result:

(((makeAddress 123) "Happy St") "Haskell Town")
(Int,String,String)

116 Lesson 11 Type basics
11.3 Type variables

We’ve covered a bunch of common types and how they work in functions. But what
about the simple function, which returns any value that’s passed in to it? Really, simple
could take any type of argument at all. Given what you know so far, you’d have to make
a family of simple functions to work with every type.

simpleInt :: Int -> Int
simpleInt n = n

simpleChar :: Char -> Char
simpleChar c = c

But this is ridiculous, and clearly not how Haskell works, because type inference was
able to understand simple. To solve this problem, Haskell has type variables. Any lower-
case letter in a type signature indicates that any type can be used in that place. The type
definition for simple looks like the following.

simple :: a -> a
simple x = x

Type variables are literally variables for types. Type variables work exactly like regular
variables, but instead of representing a value, they represent a type. When you use a
function that has a type variable in its signature, you can imagine Haskell substituting
the variable that’s needed, as shown in figure 11.5.

Type signatures can contain more than one type of variable. Even though the types can
be any value, all types of the same variable name must be the same. Here’s an example
of a function that makes triples (tuples with three values).

makeTriple :: a -> b -> c -> (a,b,c)
makeTriple x y z = (x,y,z)

Listing 11.8 simpleInt and

Listing 11.9 Using type variables: simple

Listing 11.10 Multiple type variables: makeTriple

117Type variables
The reason for different names for type variables is the same as using different names
for regular variables: they may contain different values. In the case of makeTriple, you can
imagine a case in which you have a String, a Char, and another String:

nameTriple = makeTriple "Oscar" 'D' "Grouch"

In this example, you can imagine that the type signature that Haskell uses looks like
this:

makeTriple :: String -> Char -> String -> (String, Char, String)

Notice that the definition of makeTriple and makeAddress are nearly identical. But they have
different type signatures. Because of makeTriple’s use of type variables, makeTriple can be
used for a more general class of problems than makeAddress. For example, you could use
makeTriple to replace makeAddress. This doesn’t render makeAddress useless. Because make-
Address has a more specific type signature, you can make more assumptions about how it
behaves. Additionally, Haskell’s type checker won’t allow you to create an address
where you accidently used a String for the number instead of an Int.

If you define simple by using a type variable,
you can imagine that variable being substituted
for an actual type when you use that function
with various types of arguments.

When you pass a Char to simple,
it behaves as though this was
its type signature.

simple :: a -> a
simple x = x

simple 'a'

simple :: Char -> Char

Likewise, when you pass a string
to simple, it behaves as though it
has a different type signature.

simple "dog"

simple :: String -> String

Figure 11.5 Visualizing type variables taking on actual values

118 Lesson 11 Type basics
Just as with regular variables, using different names for type variables doesn’t imply
that the values represented by the variables must be different, only that they can be. Say
you compare the type signatures of two unknown functions f1 and f2:

f1 :: a -> a
f2 :: a -> b

You know that f2 is a function that can produce a much wider range of possible values.
The f1 function could behave only by changing a value and keeping it as the same type:
Int -> Int, Char -> Char, and so forth. In contrast, f2 can represent a much broader range of
possible behaviors: Int -> Char, Int -> Int, Int -> Bool, Char -> Int, Char -> Bool, and so forth.

Summary

In this lesson, our objective was to teach you the basics of Haskell’s amazing type sys-
tem. You saw that Haskell has many of the standard types that programmers are famil-
iar with, such as Int, Char, Bool, and String. Despite Haskell’s powerful type system, you
were able to get this far in the book without explicitly using types because of Haskell’s
type inference, which allows Haskell to figure out the types you intend by how they’re
used. Even though Haskell can often handle your code without types, writing down
type signatures turns out to be much more beneficial for the programmer. From this

Quick check 11.4 The type signature for map is as follows:

map :: (a -> b) -> [a] -> [b]

Why couldn’t it be this?

map :: (a -> a) -> [a] -> [a]?

Hint: Fill in the type variables for myMap show [1,2,3,4].

QC 11.4 answer map:: (a -> a) -> [a] -> [a] would mean that map must always return the same
type as it currently is.

In this case, you couldn’t perform

map show [1,2,3,4]

because show returns a type String that isn’t consistent with the original type. The real power of map isn’t
iteration, but transforming a list of one type into a list of another type.

119Summary
point in the book onward, most of our discussion will typically come back to “thinking
in types.” Let’s see if you got this.

Q11.1 What is the type signature for filter? How is it different from map?

Q11.2 In Haskell, both tail and head have an error when called on an empty list. You can
write a version of tail that won’t fail but instead return an empty list when called on an
empty list. Can you write a version of head that returns an empty list when called on an
empty list? To answer this, start by writing out the type signatures of both head and tail.

Q11.3 Recall myFoldl from lesson 9.

myFoldl f init [] = init
myFoldl f init (x:xs) = myFoldl f newInit xs
 where newInit = f init x

What’s the type signature of this function? Note: foldl has a different type signature.

12LESSON
CREATING YOUR OWN TYPES

After reading lesson 12, you’ll be able to

 Define type synonyms to clarify code
 Create your own data type
 Build types from other types
 Work with complex types by using record syntax

In the preceding lesson, you learned how to use the basic types in Haskell. Now it’s time
to start creating some types of your own. Creating types in Haskell is more important
than in most other programming languages, even statically typed ones, as nearly every
problem you solve will come down to the types you’re using. Even when using an exist-
ing type, you’ll often want to rename it to make understanding your programs easier.
For example, take a look at this type signature:

areaOfCircle :: Double -> Double

This is a perfectly fine type signature, but suppose you saw this instead:

areaOfCircle :: Diameter -> Area

With this alternate type signature, you know exactly what type of arguments your func-
tion expects as well as what the result means.

You’ll also learn how to create more-complicated types of your own. Creating types for
data in Haskell is as important as creating classes in object-oriented languages.
120

121Using type synonyms
12.1 Using type synonyms

In lesson 11, we mentioned that in Haskell you can replace the [Char] type with String.
From Haskell’s perspective, these are two names for the same thing. When you have two
names for the same type, it’s referred to as a type synonym. Type synonyms are extremely
useful, because they make reading type signatures much easier. You could have a func-
tion used for writing doctors’ reports. The function patientInfo takes a first name, last
name, age, and height and is used to create quick summaries of patients.

patientInfo :: String -> String -> Int -> Int -> String
patientInfo fname lname age height = name ++ " " ++ ageHeight
 where name = lname ++ ", " ++ fname
 ageHeight = "(" ++ show age ++ "yrs. " ++ show height ++ "in.)"

You can use this function in GHCi:

GHCi> patientInfo "John" "Doe" 43 74
"Doe, John (43yrs. 74in.)"
GHCi> patientInfo "Jane" "Smith" 25 62
"Smith, Jane (25yrs. 62in.)"

If you assume that patientInfo is part of a larger application, it’s likely that first name, last
name, age, and height will be used frequently. Type signatures in Haskell are of much
more benefit to the programmer than the compiler. You don’t need to have a brand new
type for each of these values, but quickly skimming a code base and seeing Strings and
Ints everywhere isn’t helpful. Just as String is a type synonym for [Char], you’d like to cre-
ate type synonyms for some of the properties of your patients.

Listing 12.1 Defining the patientInfo function

Consider this You want to write a function that operates on music albums. An album
includes the following properties (and types): artist (String), album title (String), year
released (Int) and a track listing ([String]). The only way you know how to store all this
data right now is with a tuple. Unfortunately, this is a bit unwieldy and makes getting
information out of the tuple tedious (because it requires pattern matching each attri-
bute). Is there a better way to do this?

122 Lesson 12 Creating your own types
In Haskell, you can create new type synonyms by using the type keyword. Here’s the
code to create the type synonyms you’d like.

type FirstName = String
type LastName = String
type Age = Int
type Height = Int

You can rewrite the original type signature now as follows:

patientInfo :: FirstName -> LastName -> Age -> Height -> String

Creating type synonyms isn’t limited to one-to-one renaming of types. It’s much more
sensible to store patient names as a tuple. You can use a single type to represent the pair
of a first and last name in a tuple as follows.

type PatientName = (String,String)

And now you can create a few helper functions to get the first and last name of the
patient.

firstName :: PatientName -> String
firstName patient = fst patient

lastName :: PatientName -> String
lastName patient = snd patient

And you can test your code in GHCi:

GHCi> firstName testPatient
"John"
GHCi> lastName testPatient
"Doe"

Listing 12.2 Type synonyms: FirstName, LastName, Age, and Height

Listing 12.3 Type synonym: PatientName

Listing 12.4 Accessing PatientName values: firstName and lastName

123Creating new types

12.2 Creating new types

Next you’ll add the patient’s sex, which can be either male or female. You could use a
string for this, using the literal words male and female, or an Int or a Bool. In many other
programming languages, this is likely the route you’d take. But none of these types
seems like an ideal fit, and it’s easy to imagine bugs that might arise from using these
solutions. In Haskell, you should use the powerful type system to help you as much as
you can. To do this, it’s better to create a new type. Creating a new type can be done
with the data keyword, as shown in figure 12.1.

In this new type, you define a few key pieces. The data keyword tells Haskell that you’re
defining a new type. The word Sex is the type constructor. In this case, the type construc-
tor is the name of the type, but in later lessons you’ll see that type constructors can take
arguments. Male and Female are both data constructors. A data constructor is used to create
a concrete instance of the type. By separating the data constructors with |, you’re saying,
“The Sex type can be either Male or an instance of Female.”

Quick check 12.1 Rewrite patientInfo to use your patientName type, reducing the total argu-
ments needed to three instead of four.

QC 12.1 answer
patientInfoV2 :: PatientName -> Int -> Int -> String
patientInfoV2 (fname,lname) age height = name ++ " " ++ ageHeight
 where name = lname ++ ", " ++ fname
 ageHeight = "(" ++ show age ++ "yrs. " ++ show height ++ "in.)"

data Sex = Male | Female

The type
constructor

The Sex type is an
instance of either of
these data constructors.

The data constructors
can be used just like values
(for example, True and False).

Figure 12.1 Defining
the Sex type

124 Lesson 12 Creating your own types
It turns out that Bool in Haskell is defined exactly the same way:

data Bool = True | False

Why not just use Bool as a type synonym? First, you have your own, more readable, data
constructors. This makes things like pattern matching easier. Here’s a function that
returns a single character for the patients’ sex.

sexInitial :: Sex -> Char
sexInitial Male = 'M'
sexInitial Female = 'F'

If you had used a type synonym, you’d have to use True and False here, which would
reduce readability. Even more important is that your compiler can now check to make
sure you’re always using the correct type. Any potential bug created by accidentally
using a Bool in a way incompatible with your Sex type will now be caught.

Next you want to model the patient’s blood type, which is more complicated than Sex.
When you talk about blood types, you say things like, “He has AB positive” or “She’s O
negative.” The AB and O part of a person’s blood type is called their ABO blood group.

The ABO blood type can have four values: A, B, AB, or O. This refers to the family of
antibodies in the blood. The positive or negative part refers to the person’s Rhesus (Rh)
group, which indicates the presence or absence of a particular antigen. A mismatch
between antibodies and antigens can cause blood transfusions to provoke a deadly
immune response.

To model blood type, you could replicate what you did with Sex and list a long range of
data constructors (APos | ANeg | BPos ...). But given that you have two Rh blood types for
each ABO blood type, you’d have eight possible constructors! A better solution is to
start by modeling the Rh and ABO types separately.

RhType is going to look just like Sex.

data RhType = Pos | Neg

ABOType is going to have four possible data constructors.

data ABOType = A | B | AB | O

Listing 12.5 Defining the sexInitial function

Listing 12.6 Defining the type RhType

Listing 12.7 Defining the type ABOType

125Creating new types
Finally, you have to define your BloodType. You stated earlier that a BloodType is an ABOType
and an RhType, so that’s exactly how you’ll define it, as shown in figure 12.2.

Notice that in this case, the data constructor has the same name as your type construc-
tor. It doesn’t have to, but in this case it makes sense. You need this data constructor to
combine your ABOType and RhType. You can read the data constructor as “A BloodType is an
ABOType with an RhType.”

Now you’re able to create BloodType data:

patient1BT :: BloodType
patient1BT = BloodType A Pos

patient2BT :: BloodType
patient2BT = BloodType O Neg

patient3BT :: BloodType
patient3BT = BloodType AB Pos

It’d be nice to be able to print out these values. Lesson 13 covers a better way to do this,
but for now let’s write showRh, showABO, and showBloodType. Pattern matching with your new
types will make this a breeze!

showRh :: RhType -> String
showRh Pos = "+"
showRh Neg = "-"
showABO :: ABOType -> String
showABO A = "A"
showABO B = "B"
showABO AB = "AB"
showABO O = "O"
showBloodType :: BloodType -> String
showBloodType (BloodType abo rh) = showABO abo ++ showRh rh

Listing 12.8 Displaying your types: showRh, showABO, showBloodType

data BloodType = BloodType ABOType RhType

Data constructor

BloodType is made by
combining an ABOType
and an RhType.

Figure 12.2 Combining
ABOType and RhType to
create BloodType

126 Lesson 12 Creating your own types
Notice that you’re able to use pattern matching in the last step to easily extract the ABO-
Type and RhType components of BloodType.

The most interesting question you can ask about blood type is whether one patient can
be a donor for another. The rules for blood type matching are as follows:

 A can donate to A and AB.
 B can donate to B and AB.
 AB can donate only to AB.
 O can donate to anybody.

(Note: We won’t worry about Rh compatibility for this example.)

You need a function canDonateTo to determine whether one BloodType can donate to
another.

canDonateTo :: BloodType -> BloodType -> Bool
canDonateTo (BloodType O _) _ = True
canDonateTo _ (BloodType AB _) = True
canDonateTo (BloodType A _) (BloodType A _) = True
canDonateTo (BloodType B _) (BloodType B _) = True
canDonateTo _ _ = False --otherwise

Here are some examples in GHCi:

GHCi> canDonateTo patient1BT patient2BT
False
GHCi> canDonateTo patient2BT patient1BT
True
GHCi> canDonateTo patient2BT patient3BT
True
GHCi> canDonateTo patient1BT patient3BT
True
GHCi> canDonateTo patient3BT patient1BT
False

At this point, it might be nice to refactor your names a bit. Another great feature would
be to model an optional middle name. Right now you have a PatientName type synonym,
which is a tuple with only first and last names. You can combine what you learned for

Listing 12.9 Defining the canDonateTo function

Universal donor

Universal receiver

127Using record syntax
your Sex type and your BloodType type to create a more robust Name type. You’ll add a type
synonym for MiddleName and use that to build out a more sophisticated type for names.

type MiddleName = String
data Name = Name FirstName LastName
 | NameWithMiddle FirstName MiddleName LastName

You can read this definition of Name as follows: a Name is either a first and last name, or a
name with a middle name included. You can use pattern matching to create a showName
function that works with either constructor.

showName :: Name -> String
showName (Name f l) = f ++ " " ++ l
showName (NameWithMiddle f m l) = f ++ " " ++ m ++ " " ++ l

Now to create a couple of examples:

name1 = Name "Jerome" "Salinger"
name2 = NameWithMiddle "Jerome" "David" "Salinger"

And you can see how these behave in GHCi:

GHCi> showName name1
"Jerome Salinger"
GHCi> showName name2
"Jerome David Salinger"

Now you have a much more flexible Name type.

12.3 Using record syntax

At the beginning of this lesson, you passed four arguments to your patientInfo function:

patientInfo :: String -> String -> Int -> Int -> String
patientInfo fname lname age height = name ++ " " ++ ageHeight
 where name = lname ++ ", " ++ fname
 ageHeight = "(" ++ show age ++ "yrs. " ++ show height ++ "in.)"

Listing 12.10 Support different names: MiddleName and Name

Listing 12.11 Displaying multiple constructors: showName

128 Lesson 12 Creating your own types
What you were trying to capture in defining that function was the idea of passing in a
patient, but you didn’t have the tools to model that information compactly in Haskell.
Now that you’ve learned more about types, you should be able to create a Patient type
that contains all this information and more. This will save you from having to pass in a
confusing and large number of arguments every time you want to perform a task
involving patient information in general.

The first step in modeling a patient should be to list all the features you want to keep
track of along with the type that should represent them:

 Name: Name
 Sex: Sex
 Age (years): Int
 Height (inches): Int
 Weight (pounds): Int
 Blood type: BloodType

You can now use the data keyword to create a new type that represents this information
just as you did for blood type.

data Patient = Patient Name Sex Int Int Int BloodType

Here you have a compact representation of all six attributes of a patient. This is great, as
you can perform all sorts of computations on a patient without having to worry about
passing in a large list of arguments. Let’s create your first example patient:

johnDoe :: Patient
johnDoe = Patient (Name "John" "Doe") Male 30 74 200 (BloodType AB Pos)

Listing 12.12 Patient v.1

Quick check 12.2 Create a Jane Elizabeth Smith patient by using whatever reasonable values
you like.

QC 12.2 answer

janeESmith :: Patient
janeESmith = Patient (NameWithMiddle "Jane" "Elizabeth" "Smith")
 Female 28 62 140

129Using record syntax
Creating new data in this way worked great for Sex and BloodType, but it definitely feels
awkward for data with so many properties. You could solve some of this with type syn-
onyms from earlier. But even if the type definition of Patient was easier to read, you
aren’t always going to have the type signature handy. Look away from the page for a
second and try to remember the order of the values. It’s easy to imagine more values
that you could add to the patient definition, which would only make this harder.

This representation of patients has one more annoying issue. It’s reasonable to want to
get each value of the patient individually. You can accomplish this by writing a bunch of
functions to get each value by using pattern matching.

getName :: Patient -> Name
getName (Patient n _ _ _ _ _) = n

getAge :: Patient -> Int
getAge (Patient _ _ a _ _ _) = a

getBloodType :: Patient -> BloodType
getBloodType (Patient _ _ _ _ _ bt) = bt

Pattern matching makes these getters wonderfully easy to write, but having to write out
all six of them seems annoying. Imagine that your final definition of a Patient ends up
being 12 values used to define the type! It’s going to be a lot of work just to get started,
which seems unHaskell-like. Fortunately, Haskell has a great solution to this problem.
You can define data types such as Patient by using record syntax. Defining a new data
type by using record syntax makes it much easier to understand which types represent
which properties of the data type.

data Patient = Patient { name :: Name
 , sex :: Sex
 , age :: Int
 , height :: Int
 , weight :: Int
 , bloodType :: BloodType }

Listing 12.13 getName, getAge, getBloodType

Listing 12.14 Patient v.2 (with record syntax)

130 Lesson 12 Creating your own types
The first victory for record syntax is that your type definition is much easier to read and
understand now. The next big win for record syntax is that creating data for your Patient
type is much easier. You can set each field by name, and order no longer matters!

jackieSmith :: Patient
jackieSmith = Patient {name = Name "Jackie" "Smith"

, age = 43
, sex = Female
, height = 62
, weight = 115
, bloodType = BloodType O Neg }

In addition, you don’t have to write your getters; each field in the record syntax auto-
matically creates a function to access that value from the record:

GHCi> height jackieSmith
62
GHCi> showBloodType (bloodType jackieSmith)
"O-"

You can also set values in record syntax by passing the new value in curly brackets to
your data. Suppose you have to update Jackie Smith’s age because of her birthday.
Here’s how you could do this using record syntax.

jackieSmithUpdated = jackieSmith { age = 44 }

Because you’re still in a purely functional world, a new Patient type will be created and
must be assigned to a variable to be useful.

Listing 12.15 Updating jackieSmith by using record syntax

Quick check 12.3 Show Jackie Smith’s name.

QC 12.3 answer
showName (name jackieSmith)

131Summary
Summary

In this lesson, our objective was to teach you the basics of creating types. You started
with type synonyms, which allow you to provide alternate names for existing types.
Type synonyms make it much easier to understand your code just by reading the type
signature. Next you learned how to make your own original types by combining exist-
ing types with the data keyword. Finally, you learned how record syntax can make it eas-
ier to create accessors for your types. Let’s see if you got this.

Q12.1 Write a function similar to canDonateTo that takes two patients as arguments
rather than two BloodTypes.

Q12.2 Implement a patientSummary function that uses your final Patient type. patient-
Summary should output a string that looks like this:

Patient Name: Smith, John
Sex: Male
Age: 46
Height: 72 in.
Weight: 210 lbs.
Blood Type: AB+

If you need to, feel free to create useful helper functions.

13LESSON
TYPE CLASSES

After reading lesson 13, you’ll be able to

 Understand the basics of type classes
 Read type class definitions
 Use common type classes: Num, Show, Eq, Ord, and Bounded

In this lesson, you’re going to look an important abstraction in Haskell’s type system:
type classes. Type classes allow you to group types based on shared behavior. At first
glance, type classes are similar to interfaces in most object-oriented programming lan-
guages. A type class states which functions a type must support in the same way that an
interface specifies which methods a class must support. But type classes play a much
more important role in Haskell than interfaces do in languages such as Java and C#. The
major difference is that as you dive deeper into Haskell, you’ll see that type classes typi-
cally require you to think in increasingly more powerful forms of abstraction. In many
ways, type classes are the heart of Haskell programming.

Consider this You’ve written the function inc to increment a value a few times as a
sample function. But how can you write an incrementing function that works with the
wide range of possible numbers you’ve seen? Frustratingly enough, in unit 1, without
specifying types, you could do this. How can you write the type signature of an inc func-
tion that works on all numbers?
132

133Type classes
13.1 Further exploring types

At this point, you’ve seen quite a few type signatures and even built some nontrivial
types of your own. One of the best ways to learn about various Haskell types is to use
the :t (or more verbose :type) command in GHCi to inspect the type of function you
find in the wild. When you first wrote simple, you did so without a type signature:

simple x = x

If you wanted to know what type this function was, you could load it into GHCi and use :t:

GHCi> :t simple
simple :: t -> t

You could do the same thing for the lambda version of simple:

GHCi> :t (\x -> x)
(\x -> x) :: r -> r

If you start exploring types this way, you’ll almost immediately come across some
things you haven’t seen yet. Take, for example, something as simple as addition:

GHCi> :t (+)
(+) :: Num a => a -> a -> a

With all the time you’ve spent so far looking at types, something as simple as addition
trips you up! The big mystery is the Num a => part.

13.2 Type classes

What you’ve encountered here is your first type class! Type classes in Haskell are a way
of describing groups of types that all behave in the same way. If you’re familiar with
Java or C#, type classes may remind you of interfaces. When you see Num a, the best way

Quick check 13.1 Find the type of the following:

aList = ["cat","dog","mouse"]

QC 13.1 answer
aList = ["cat","dog","mouse"]
GHCi> :t aList
aList :: [[Char]]

134 Lesson 13 Type classes
to understand that statement is to say that there’s some type a of class Num. But what does
it mean to be part of type class Num? Num is a type class generalizing the idea of a number.
All things of class Num must have a function (+) defined on them. There are other func-
tions in the type class as well. One of the most valuable GHCi tools is :info, which pro-
vides information about types and type classes. If you use :info on Num, you get the
following (partial) output.

GHCi> :info Num
class Num a where
 (+) :: a -> a -> a
 (-) :: a -> a -> a
 (*) :: a -> a -> a
 negate :: a -> a
 abs :: a -> a
 signum :: a -> a

What :info is showing is the definition of the type class. The definition is a list of func-
tions that all members of the class must implement, along with the type signatures of
those functions. The family of functions that describe a number is +, -, *, negate, abs, and
signum (gives the sign of a number). Each type signature shows the same type variable a
for all arguments and the output. None of these functions can return a different type
than it takes as an argument. For example, you can’t add two Ints and get a Double.

13.3 The benefits of type classes

Why do you need type classes at all? So far in Haskell, each function you’ve defined
works for only one specific set of types. Without type classes, you’d need a different name
for each function that adds a different type of value. You do have type variables, but
they’re too flexible. For example, say you define myAdd with the following type signature:

myAdd :: a -> a -> a

Listing 13.1 Num type class definition

Quick check 13.2 Why isn’t division included in the list of functions needed for a Num?

QC 13.2 answer Because division with (/) isn’t defined on all cases of Num.

135Defining a type class
Then you’d need the ability to manually check that you were adding only the types it
makes sense to add (which isn’t possible in Haskell).

Type classes also allow you to define functions on a variety of types that you can’t even
think of. Suppose you want to write an addThenDouble function like the following.

addThenDouble :: Num a => a -> a -> a
addThenDouble x y = (x + y)*2

Because you use the Num type class, this code will automatically work not only on Int and
Double, but also on anything that another programmer has written and implemented the
Num type class for. If you end up interacting with a Roman Numerals library, as long as
the author has implemented the Num type class, this function will still work!

13.4 Defining a type class

The output you got from GHCi for Num is the literal definition of the type class. Type class
definitions have the structure illustrated in figure 13.1.

In the definition of Num, you see plenty of type variables. Nearly all functions required in
any type class definition will be expressed in terms of type variables, because by defini-
tion you’re describing an entire class of types. When you define a type class, you’re
doing so precisely because you don’t want your functions to be tied to a single type. One
way of thinking of type classes is as a constraint on the categories of types that a type
variable can represent.

Listing 13.2 Using type classes: addThenDouble

class TypeName a where
 fun1 :: a -> a
 fun2 :: a -> String
 fun3 :: a -> a -> Bool

Name of the
type class

Names of all the
required functions

Type signatures of the
required functions

Type variable as a
placeholder for the
specific type that will
implement this class

Figure 13.1 Structure of a type class definition

136 Lesson 13 Type classes
To help solidify the idea, you’ll write a simple type class of your own. Because you’re
learning Haskell, a great type class to have is Describable. Any type that’s an instance of
your Describable type class can describe itself to you in plain English. So you require only
one function, which is describe. For whatever type you have, if it’s Describable, calling
describe on an instance of the type will tell you all about it. For example, if Bool were
Describable, you’d expect this:

GHCi> describe True
"A member of the Bool class, True is opposite of False"
GHCi> describe False
"A member of the Bool class, False is the opposite of True"

And if you wanted to describe an Int, you might expect this:

GHCi> describe (6 :: Int) "A member of the Int class, the number after 5 and
before 7"

At this point, you won’t worry about implementing a type class (you’ll do that in the
next lesson)—only defining it. You know that you require only one function, which is
describe. The only other thing you need to worry about is the type signature of that func-
tion. In each case, the argument for the function is whatever type has implemented your
type class, and the result is always a string. So you need to use a type variable for the
first type and a string for the return value. You can put this all together and define your
type class as follows.

class Describable a where
 describe :: a -> String

And that’s it! If you wanted to, you could build a much larger group of tools that use
this type class to provide automatic documentation for your code, or generate tutorials
for you.

13.5 Common type classes

Haskell defines many type classes for your convenience, which you’ll learn about in the
course of this book. In this section, you’ll look at four more of the most basic: Ord, Eq,
Bounded, and Show.

Listing 13.3 Defining your own type class: Describable

137The Ord and Eq type classes
13.6 The Ord and Eq type classes

Let’s look at another easy operator, greater than (>):

GHCi> :t (>)
(>) :: Ord a => a -> a -> Bool

Here’s a new type class, Ord! This type signature says, “Take any two of the same types
that implement Ord, and return a Boolean.” Ord represents all of the things in the universe
that can be compared and ordered. Numbers can be compared, but so can strings and
many other things. Here’s the list of functions that Ord defines.

class Eq a => Ord a where
 compare :: a -> a -> Ordering
 (<) :: a -> a -> Bool
 (<=) :: a -> a -> Bool
 (>) :: a -> a -> Bool
 (>=) :: a -> a -> Bool
 max :: a -> a -> a
 min :: a -> a -> a

Of course, Haskell has to make things complicated. Notice that right in the class defini-
tion there’s another type class! In this case, it’s the type class Eq. Before you can under-
stand Ord, you should look at Eq.

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

The Eq type class needs only two functions: == and /=. If you can tell that two types are
equal or not equal, that type belongs in the Eq type class. This explains why the Ord type
class includes the Eq type class in its definition. To say that something is ordered, clearly
you need to be able to say that things of that type can be equal. But the inverse isn’t true.
We can describe many things by saying, “These two things are equal,” but not “This is
better than that one.” You may love vanilla ice cream more than chocolate, and I might

Listing 13.4 Ord type class requires Eq type class

Listing 13.5 Eq type class generalizes the idea of equality

138 Lesson 13 Type classes
love chocolate more than vanilla. You and I can agree that two vanilla ice-cream cones
are the same, but we can’t agree on the order of a chocolate and vanilla cone. So if you
created an IceCream type, you could implement Eq, but not Ord.

13.6.1 Bounded

In lesson 11, we mentioned the difference between the Int and Integer types. It turns out
this difference is also captured by a type class. The :info command was useful for learn-
ing about type classes, but it’s also helpful in learning about types. If you use :info on
Int, you get a list of all the type classes that Int is a member of:

GHCi> :info Int
data Int = GHC.Types.I# GHC.Prim.Int# -- Defined in 'GHC.Types'
instance Bounded Int -- Defined in 'GHC.Enum'
instance Enum Int -- Defined in 'GHC.Enum'
instance Eq Int -- Defined in 'GHC.Classes'
instance Integral Int -- Defined in 'GHC.Real'
instance Num Int -- Defined in 'GHC.Num'
instance Ord Int -- Defined in 'GHC.Classes'
instance Read Int -- Defined in 'GHC.Read'
instance Real Int -- Defined in 'GHC.Real'
instance Show Int -- Defined in 'GHC.Show'

You can do the same thing for the Integer type. If you did, you’d find there’s a single dif-
ference between the two types. Int is an instance of the Bounded type class, and Integer
isn’t. Understanding the type classes involved in a type can go a long way toward help-
ing you understand how a type behaves. Bounded is another simple type class (most are),
which requires only two functions. Here’s the definition of Bounded.

class Bounded a where
 minBound :: a
 maxBound :: a

Members of Bounded must provide a way to get their upper and lower bounds. What’s inter-
esting is that minBound and maxBounds aren’t functions but values! They take no arguments
but are just a value of whatever type they happen to be. Both Char and Int are members
of the Bounded type class, so you never have to guess the upper and lower bounds for
using these values:

Listing 13.6 Bounded type class requires values but no functions

139The Ord and Eq type classes
GHCi> minBound :: Int
-9223372036854775808
GHCi> maxBound :: Int
9223372036854775807
GHCi> minBound :: Char
'\NUL'
GHCi> maxBound :: Char
'\1114111'

13.6.2 Show

We mentioned the functions show and read in lesson 11. Show and Read are incredibly useful
type classes that make the show and read functions possible. Aside from two special cases
for specific types, Show implements just one important function: show.

class Show a where
 show :: a -> String

The show function turns a value into a String. Any type that implements Show can be
printed. You’ve been making much heavier use of show than you might have realized.
Every time a value is printed in GHCi, it’s printed because it’s a member of the Show type
class. As a counter example, let’s define your Icecream type but not implement show.

data Icecream = Chocolate | Vanilla

Icecream is nearly identical to Bool, but Bool implements Show. Look what happens when
you type the constructors for these into GHCi:

GHCi> True
True
GHCi> False
False
GHCi> Chocolate
<interactive>:404:1:
No instance for (Show Icecream) arising from a use of ‘print’
In a stmt of an interactive GHCi command: print it

Listing 13.7 Show type class definition

Listing 13.8 Defining the Icecream type

140 Lesson 13 Type classes
You get an error because Haskell has no idea how to turn your data constructors into
strings. Every value that you’ve seen printed in GHCi has happened because of the Show
type class.

13.7 Deriving type classes

For your Icecream type class, it’s a bit annoying that you have to implement Show. After all,
Icecream is just like Bool, so why can’t you have Haskell be smart about it and do what it
does with Bool? In Bool, all that happens is that the data constructors are printed out. It
just so happens that Haskell is rather smart! When you define a type, Haskell can do its
best to automatically derive a type class. Here’s the syntax for defining your Icecream
type but deriving Show.

data Icecream = Chocolate | Vanilla deriving (Show)

Now you can go back to GHCi, and everything works great:

GHCi> Chocolate
Chocolate
GHCi> Vanilla
Vanilla

Many of the more popular type classes have a reasonable default implementation. You
can also add the Eq type class:

data Icecream = Chocolate | Vanilla deriving (Show, Eq, Ord)

And again you can use GHCi to show that you can see whether two flavors of Icecream are
identical:

GHCi> Vanilla == Vanilla
True
GHCi> Chocolate == Vanilla
False
GHCi> Chocolate /= Vanilla
True

 In the next lesson, you’ll look more closely at how to implement your own type classes,
as Haskell isn’t always able to guess your true intentions.

Listing 13.9 The Icecream type deriving the Show type class

141Summary

Summary

In this lesson, our objective was to teach you the basics of type classes. All of the type
classes we covered should seem familiar to users of object-oriented languages such as
Java and C# that support interfaces. The type classes you saw make it easy to apply one
function to a wide variety of types. This makes testing for equality, sorting data, and
converting data to a string much easier. Additionally, you saw that Haskell is able to
automatically implement type classes for you in some cases by using the deriving key-
word. Let’s see if you got this.

Q13.1 If you ran the :info examples, you likely noticed that the type Word has come up a
few times. Without looking at external resources, use :info to explore Word and the rele-
vant type classes to come up with your own explanation for the Word type. How is it dif-
ferent from Int?

Q13.2 One type class we didn’t discuss is Enum. Use :info to look at the definition of this
type class, as well as example members. Now consider Int, which is an instance of both
Enum and Bounded. Given the following definition of inc:

inc :: Int -> Int
inc x = x + 1

and the succ function required by Enum, what’s the difference between inc and succ for Int?

Q13.3 Write the following function that works just like succ on Bounded types but can be
called an unlimited number of times without error. The function will work like inc in the
preceding example but works on a wider range of types, including types that aren’t
members of Num:

cycleSucc :: (Bounded a, Enum a, ? a) => a -> a
cycleSucc n = ?

Your definition will include functions/values from Bounded, Enum, and the mystery type
class. Make a note of where each of these three (or more) functions/values comes from.

Quick check 13.3 See which flavor Haskell thinks is superior by deriving the Ord type class.

QC 13.3 answer If you add deriving Ord to your definition of Icecream, Haskell defaults to the order
of the data constructors for determining Ord. So Vanilla will be greater than Chocolate.

14LESSON
USING TYPE CLASSES

After reading lesson 14, you’ll be able to

 Implement your own type classes
 Understand polymorphism in Haskell
 Know when to use deriving
 Search for documentation with Hackage and Hoogle

In lesson 13, you got your first look at type classes, which are Haskell’s way of grouping
types by common behaviors they share. In this lesson, you’ll take a deeper look at how
to implement existing type classes. This will allow you to write new types that take
advantage of a wide range of existing functions.

Consider this You have a data type consisting of data constructors for New England
states:

data NewEngland = ME | VT | NH | MA | RI | CT

You want to be able to display them by their full name by using Show. You can easily dis-
play their abbreviations by deriving show, but there’s no obvious way to create your own
version of show. How can you make your NewEngland type display the full state name by
using show?
142

143A type in need of classes
14.1 A type in need of classes

You’ll start by modeling a six-sided die. A good default implementation is a type similar
to Bool, only with six values instead of two. You’ll name your data constructors S1
through S6 to represent each of the six sides.

data SixSidedDie = S1 | S2 | S3 | S4 | S5 | S6

Next you want to implement some useful type classes. Perhaps the most important type
class to implement is Show, because you’ll nearly always want to have an easy way to dis-
play instances of your type, especially in GHCi. In lesson 13, we mentioned that you
could add the deriving keyword to automatically create instances of a class. You could
define SixSidedDie this way and call it a day.

data SixSidedDie = S1 | S2 | S3 | S4 | S5 | S6 deriving (Show)

If you were to use this type in GHCi, you’d get a simple text version of your data con-
structors back when you type them:

GHCi> S1
S1
GHCi> S2
S2
GHCi> S3
S3
GHCi> S4
S4

This is a bit boring because you’re just printing out your data constructors, which are
more meaningful from an implementation standpoint than they are readable. Instead,
let’s print out the English word for each number.

Listing 14.1 Defining the SixSidedDie data type

Listing 14.2 The SixSidedDie type deriving Show

144 Lesson 14 Using type classes
14.2 Implementing Show

To do this, you have to implement your first type class, Show. There’s only one function
(or in the case of type classes, we call these methods) that you have to implement, show.
Here’s how to implement your type class.

instance Show SixSidedDie where
 show S1 = "one"
 show S2 = "two"
 show S3 = "three"
 show S4 = "four"
 show S5 = "five"
 show S6 = "six"

And that’s it! Now you can return to GHCi and much more interesting output than you
would with deriving:

GHCi> S1
one
GHCi> S2
two
GHCi> S6
six

Listing 14.3 Creating an instance of Show for SixSidedDie

Quick check 14.1 Rewrite this definition of show to print the numerals 1–6 instead.

QC 14.1 answer
data SixSidedDie = S1 | S2 | S3 | S4 | S5 | S6

instance Show SixSidedDie where
 show S1 = "I"
 show S2 = "II"
 show S3 = "III"
 show S4 = "IV"
 show S5 = "V"
 show S6 = "VI"

145Type classes and polymorphism
14.3 Type classes and polymorphism

One question that might come up is, why do you have to define show this way? Why do
you need to declare an instance of a type class? Surprisingly, if you remove your early
instance declaration, the following code will compile just fine.

show :: SixSidedDie -> String
show S1 = "one"
show S2 = "two"
show S3 = "three"
show S4 = "four"
show S5 = "five"
show S6 = "six"

But if you load this code into GHCi, you get two problems. First, GHCi no longer can
print your data constructors by default. Second, even if you manually use show, you get
an error:

"Ambiguous occurrence 'show'"

You haven’t learned about Haskell’s module system yet, but the issue Haskell has is that
the definition you just wrote for show is conflicting with another that’s defined by the
type class. You can see the real problem when you create a TwoSidedDie type and attempt
to write show for it.

data TwoSidedDie = One | Two

show :: TwoSidedDie -> String
show One = "one"
show Two = "two"

The error you get now is as follows:

Multiple declarations of 'show'

The problem is that by default you’d like to have more than one behavior for show,
depending on the type you’re using. What you’re looking for here is called polymor-
phism. Polymorphism means that the same function behaves differently depending on

Listing 14.4 Incorrect attempt to implement show for SixSidedDie

Listing 14.5 Demonstrating the need for polymorphism defining show for TwoSidedDie

146 Lesson 14 Using type classes
the type of data it’s working with. Polymorphism is important in object-oriented pro-
gramming and equally so in Haskell. The OOP equivalent to show would be a toString
method, one that’s common among any classes that can be turned into a string. Type
classes are the way you use polymorphism in Haskell, as shown in figure 14.1.

14.4 Default implementation and minimum complete definitions

Now that you can produce fun strings for your SixSidedDie, it’d be useful to determine
that two dice are the same. This means that you have to implement the Eq class. This is
also useful because Eq is the superclass of Ord. You touched on this relationship briefly in
lesson 13 without giving it a name. To say that Eq is a superclass of Ord means that every
instance of Ord must also be an instance of Eq. Ultimately, you’d like to compare SixSided-
Die data constructors, which means implementing Ord, so first you need to implement Eq.
Using the :info command in GHCi, you can bring up the class definition for Eq:

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

You have to implement only two methods: the Equals method (==) and the Not Equals
method (/=). Given how smart Haskell has been so far, this should seem like more work
than makes sense. After all, if you know the definition of (==), the definition of (/=) is

If you specify you want an
Int, read returns an Int.

If you’re expecting a Double
type, read returns a Double.

You want a function that solves
the problem of turning a String
into whatever type you expect.

Polymorphism means that read
behaves as you expect, given the
type that you tell it you want back.

::Int

read "10"

::Double

10

10.0

Figure 14.1 Visualizing polymorphism for read

147Default implementation and minimum complete definitions
not (==). Sure, there may be some exceptions to this, but it seems that in the vast majority
of cases, if you know either one, then you can determine the other.

It turns out that Haskell is smart enough to figure this out. Type classes can have default
implementations of methods. If you define (==), Haskell can figure out what (/=) means
without any help.

instance Eq SixSidedDie where
 (==) S6 S6 = True
 (==) S5 S5 = True
 (==) S4 S4 = True
 (==) S3 S3 = True
 (==) S2 S2 = True
 (==) S1 S1 = True
 (==) _ _ = False

In GHCi, you’ll see that (/=) works automatically!

GHCi> S6 == S6
True
GHCi> S6 == S5
False
GHCi> S5 == S6
False
GHCi> S5 /= S6
True
GHCi> S6 /= S6
False

This is useful, but how in the world are you supposed to know which methods you
need to implement? The :info command is a great source of information right at your
fingertips, but it isn’t complete documentation. A source of more thorough information
is Hackage, Haskell’s centralized package library. Hackage can be found on the web at
https://hackage.haskell.org. If you go to Eq’s page on Hackage (https://hackage.haskell
.org/package/base/docs/Data-Eq.html), you get much more info on Eq (probably more
than you could ever want!). For our purposes, the most important part is a section called
“Minimum complete definition.” For Eq, you find the following:

(==) | (/=)

Listing 14.6 Implementing an instance of Eq for SixSidedDie

https://hackage.haskell.org/package/base/docs/Data-Eq.html
https://hackage.haskell.org/package/base/docs/Data-Eq.html
https://hackage.haskell.org
https://hackage.haskell.org

148 Lesson 14 Using type classes
This is much more helpful! To implement the Eq type class, all you have to define is
either (==) or (/=). Just as in data declarations, | means or. If you provide either one of
these options, Haskell can work out the rest for you.

14.5 Implementing Ord

One of the most important features of dice is that there’s an order to their sides. Ord
defines a handful of useful functions for comparing a type:

class Eq a => Ord a where
 compare :: a -> a -> Ordering
 (<) :: a -> a -> Bool
 (<=) :: a -> a -> Bool
 (>) :: a -> a -> Bool
 (>=) :: a -> a -> Bool
 max :: a -> a -> a
 min :: a -> a -> a

Luckily, on Hackage you can find that only the compare method needs to be implemented.
The compare method takes two values of your type and returns Ordering. This is a type you

Hackage and Hoogle
Although Hackage may be the central repository for Haskell information, you might find
it a pain to search for specific types. To solve this, Hackage can be searched via a truly
amazing interface called Hoogle. Hoogle can be found at www.haskell.org/hoogle. Hoo-
gle allows you to search by types and type signatures. For example, if you search a ->
String, you’ll get results for show along with a variety of other functions. Hoogle alone is
enough to make you love Haskell’s type system.

Quick check 14.2 Use Hoogle to search for the RealFrac type class. What’s its minimal com-
plete definition?

QC 14.2 answer Go to http://hackage.haskell.org/package/base/docs/Prelude.html#t:RealFrac.
The minimal complete definition is properFraction.

http://hackage.haskell.org/package/base/docs/Prelude.html#t:RealFrac
www.haskell.org/hoogle

149To derive or not to derive?
saw briefly when you learned about sort in lesson 4. Ordering is just like Bool, except it has
three data constructors. Here’s its definition:

data Ordering = LT | EQ | GT

The following is a partial definition of compare.

instance Ord SixSidedDie where
 compare S6 S6 = EQ
 compare S6 _ = GT
 compare _ S6 = LT
 compare S5 S5 = EQ
 compare S5 _ = GT
 compare _ S5 = LT

Even with clever uses of pattern matching, filling out this complete definition would be
a lot of work. Imagine how large this definition would be for a 60-sided die!

14.6 To derive or not to derive?

So far, every class you’ve seen has been derivable, meaning that you can use the deriving
keyword to automatically implement these for your new type definition. It’s common
for programming languages to offer default implementations for things such as an
.equals method (which is often too minimal to be useful). The question is, how much
should you rely on Haskell to derive your type classes versus doing it yourself?

Listing 14.7 Partial definition of compare for SixSidedDie

Quick check 14.3 Write out the patterns for the case of S4.

QC 14.3 answer
compare S4 S4 = EQ

compare _ S4 = LT

Note: Because of pattern matching, the case of compare S5 S4 and compare S6 S4 will already be
matched.

compare S4 _ = GT

150 Lesson 14 Using type classes
Let’s look at Ord. In this case, it’s wiser to use deriving (Ord), which works much better in
cases of simple types. The default behavior when deriving Ord is to use the order that the
data constructors are defined. For example, consider the following listing.

data Test1 = AA | ZZ deriving (Eq, Ord)
data Test2 = ZZZ | AAA deriving (Eq, Ord)

In GHCi, you can see the following:

GHCi> AA < ZZ
True
GHCi> AA > ZZ
False
GHCi> AAA > ZZZ
True
GHCi> AAA < ZZZ
False

With Ord, using the deriving keyword saves you from writing a lot of unnecessary and
potentially buggy code.

An even stronger case for using deriving when you can is Enum. The Enum type allows you
to represent your dice sides as an enumerated list of constants. This is essentially what
we think of when we think of a die, so it’ll be useful. Here’s the definition:

class Enum a where
 succ :: a -> a
 pred :: a -> a
 toEnum :: Int -> a
 fromEnum :: a -> Int
 enumFrom :: a -> [a]

Listing 14.8 How deriving Ord is determined

Quick check 14.4 Rewrite SixSidedDie to derive both Eq and Ord.

QC 14.4 answer
data SixSidedDie = S1 | S2 | S3 | S4 | S5 | S6 deriving (Show,Eq,Ord)

151To derive or not to derive?
 enumFromThen :: a -> a -> [a]
 enumFromTo :: a -> a -> [a]
 enumFromThenTo :: a -> a -> a -> [a]

Once again, you’re saved by having to implement only two methods: toEnum and fromEnum.
These methods translate your Enum values to and from an Int. Here’s the implementation.

instance Enum SixSidedDie where
 toEnum 0 = S1
 toEnum 1 = S2
 toEnum 2 = S3
 toEnum 3 = S4
 toEnum 4 = S5
 toEnum 5 = S6
 toEnum _ = error "No such value"

 fromEnum S1 = 0
 fromEnum S2 = 1
 fromEnum S3 = 2
 fromEnum S4 = 3
 fromEnum S5 = 4
 fromEnum S6 = 5

Now you can see some of the practical benefits of Enum. For starters, you can now gener-
ate lists of your SixSidedDie just as you can other values such as Int and Char:

GHCi> [S1 .. S6]
[one,two,three,four,five,six]
GHCi> [S2,S4 .. S6]
[two,four,six]
GHCi> [S4 .. S6]
[four,five,six]

This is great so far, but what happens when you create a list with no end?

GHCi> [S1 ..]
[one,two,three,four,five,six,*** Exception: No such value

Yikes! You get an error because you didn’t handle the case of having a missing value.

But if you had just derived your type class, this wouldn’t be a problem:

Listing 14.9 Implementing Enum for SixSidedDie (errors with implementation)

152 Lesson 14 Using type classes
data SixSidedDie = S1 | S2 | S3 | S4 | S5 | S6 deriving (Enum)

GHCi> [S1 ..]
[one,two,three,four,five,six]

Haskell is pretty magical when it comes to deriving type classes. In general, if you don’t
have a good reason to implement your own, deriving is not only easier, but also often
better.

14.7 Type classes for more-complex types

In lesson 4, we demonstrated that you can use first-class functions to properly order
something like a tuple of names.

type Name = (String,String)

names :: [Name]
names = [("Emil","Cioran")

, ("Eugene","Thacker")
, ("Friedrich","Nietzsche")]

As you may remember, you have a problem when these are sorted:

GHCi> import Data.List
GHCi> sort names
[("Emil","Cioran"),("Eugene","Thacker"),("Friedrich","Nietzsche")]

The good thing is that clearly your tuples automatically derive Ord, because they’re
sorted well. Unfortunately, they aren’t sorted the way you’d like them to be, by last
name and then first name. In lesson 4, you used a first-class function and passed it to
sortBy, but that’s annoying to do more than once. Clearly, you can implement your own
custom Ord for Name.

instance Ord Name where
 compare (f1,l1) (f2,l2) = compare (l1,f1) (l2,f2)

But when you try to load this code, you get an error! This is because to Haskell, Name is
identical to (String, String), and, as you’ve seen, Haskell already knows how to sort
these. To solve these issues, you need create a new data type. You can do this by using
the data as before.

Listing 14.10 Using a type synonym for Name

Listing 14.11 Attempt to implement Ord for a type synonym

153Type classes for more-complex types
data Name = Name (String, String) deriving (Show, Eq)

Here the need for data constructors becomes clear. For Haskell, they’re a way to note,
“This tuple is special from the others.” Now that you have this, you can implement your
custom Ord.

instance Ord Name where
 compare (Name (f1,l1)) (Name (f2,l2)) = compare (l1,f1) (l2,f2)

Notice that you’re able to exploit the fact that Haskell derives Ord on the (String, String)
tuple to make implementing your custom compare much easier:

names :: [Name]
names = [Name ("Emil","Cioran")
 , Name ("Eugene","Thacker")
 , Name ("Friedrich","Nietzsche")]

Now your names are sorted as expected:

GHCi> import Data.List
GHCi> sort names
[Name ("Emil","Cioran"),Name ("Friedrich","Nietzsche"),
➥Name ("Eugene","Thacker")]

Listing 14.12 Defining a new type Name using data

Listing 14.13 Correct implementation of Ord for Name type

Creating types with newtype
When looking at our type definition for Name, you find an interesting case in which you’d
like to use a type synonym, but need to define a data type in order to make your type an
instance of a type class. Haskell has a preferred method of doing this: using the newtype
keyword. Here’s an example of the definition of Name using newtype:

newtype Name = Name (String, String) deriving (Show, Eq)

In cases like this, newtype is often more efficient than using data. Any type that you can
define with newtype, you can also define using data. But the opposite isn’t true. Types
defined with newtype can have only one type constructor and one type (in the case of Name,
it’s Tuple). In most cases, when you need a type constructor to make a type synonym
more powerful, newtype is going to be the preferred method.

For simplicity, we’ll stick to creating types with data throughout this book.

154 Lesson 14 Using type classes
14.8 Type class roadmap

Figure 14.2 shows the type classes that are defined in Haskell’s standard library. Arrows
from one class to another indicate a superclass relationship. This unit has covered most of
the basic type classes. In unit 3, you’ll start exploring the more abstract type classes Semi-
group and Monoid, and you’ll start to see how different type classes can be from interfaces. In
unit 5, you’ll look at a family of type classes—Functor, Applicative, and Monad—that provide
a way to model the context of a computation. Although this last group is particularly chal-
lenging to learn, it also allows for some of Haskell’s most powerful abstractions.

Summary

In this lesson, our objective was to dive deeper into Haskell’s type classes. You learned
how to read type class definitions as well as how to make types an instance of a type class
beyond simply using the deriving keyword. You also learned when it’s best to use deriving
and when you should write your own instances of a type class. Let’s see if you got this.

Q14.1 Note that Enum doesn’t require either Ord or Eq, even though it maps types to Int values
(which implement both Ord and Eq). Ignoring the fact that you can easily use deriving for Eq and Ord,
use the derived implementation of Enum to make manually defining Eq and Ord much easier.

Q14.2 Define a five-sided die (FiveSidedDie type). Then define a type class named Die
and at least one method that would be useful to have for a die. Also include super-
classes you think make sense for a die. Finally, make your FiveSidedDie an instance of Die.

Unit 2

Enum

Integral

Show Read Bounded MonoidNumEq

Ord

Real Fractional

Floating

RealFloat

RealFrac

Unit 3 Unit 5

Semigroup Functor

Applicative

Foldable

Traversable

Monad

Figure 14.2 Type class road map

15LESSON
CAPSTONE: SECRET MESSAGES!

This capstone covers

 Learning about the basics of cryptography
 Using basic types to model your data
 Making practical use of Enum and Bounded
 Writing and making instances of your own Cipher class

Everybody loves the idea of being able to communicate with a friend in secret. In this
capstone, you’re going to take your knowledge of types and type classes to build out a
few example ciphers. A cipher in cryptography is a means of encoding a message so that
others can’t read it. Ciphers are the foundation of cryptography, but they’re also just
plain fun to play around with. You’ll first look at an easy-to-implement and easy-to-
break cipher, then you’ll learn more about the basics of encrypting characters, and
finally, you’ll build an unbreakable cipher!

15.1 Ciphers for beginners: ROT13

Most people discover cryptography in elementary school, as they try to send secret mes-
sages to their friends. The typical way to encrypt text that most kids stumble upon is the
ROT13 method. ROT is short for rotation, and the 13 refers to the number of letters you
rotate a given letter by. The ROT13 approach works by translating each letter in a
155

156 Lesson 15 Capstone: Secret messages!
sentence up 13 letters. For example, a is the first
letter in the alphabet, and 13 letters away is n. So a
would be changed to n during the encoding.

Let’s try sending a secret message by using ROT13
to make sure you understand it. You’ll send the
message Jean-Paul likes Simone. For this example,
you’ll treat capital letters like lowercase ones, and
ignore spaces and any special characters. The best
way to visualize ROT13 is as a decoder ring, like
the one shown in figure 15.1.

Using your decoder ring, you can translate your
message. The letter j maps to w, e to r, and so forth.
Finally, you end up with Wrna-Cnhy yvxrf Fvzbar.

The reason you specifically use 13 is that with 26
letters in the alphabet, applying ROT13 twice returns the original text. Performing
ROT13 on n gives you back an a. Even more interesting is that ROT13 encoding Wrna-
Cnhy yvxrf Fvzbar yields Jean-Paul likes Simone. This symmetry is common, and essential
to most cryptography systems.

15.1.1 Implementing your own ROT cipher

Now that you’ve seen how ROT13 works, let’s make a similar cipher for Haskell’s Char
type so that you can encode and decode strings. In the preceding example, you used 13
for your rotation because you had 26 characters and you wanted to rotate halfway around
all the characters to encode your message. You already encountered a problem when you
had to ignore both spaces and special characters in the sentence Jean-Paul likes Simone.
Ideally, you could rotate over all N characters for any given character system. What you
want is a generic rotN function that can rotate any alphabet system with N elements. Let’s
see how to create a simple four-letter alphabet that you can use to experiment with.

data FourLetterAlphabet = L1 | L2 | L3 | L4 deriving (Show,Enum,Bounded)

It’s important to notice the type classes you derive and why:

 You add deriving Show to your alphabet to make it easier to work with this type
in GHCi.

 You add deriving Enum because this will allow you to automatically convert your
data constructors to type Int. Being able to convert a letter into an Int allows you

Listing 15.1 Defining a four-letter alphabet

az
y

x

w
v

u
t

s
r

q
p o n m l

k

j
i

h
g

f
e

d
cb

a z y
x

w
v

u
t

s
r

q
ponml

k

j
i

h
g

f
e

d
c b

Output is n.Input is a.

Rotated 13 places

Figure 15.1 The best way to visualize
ROT13 is as a decoder ring.

157Ciphers for beginners: ROT13
to use simple math to rotate out letters. You can use fromEnum to convert your let-
ters to Ints, and toEnum to take Ints and turn them back into letters.

 Finally, you add deriving Bounded because it provides maxBound and minBound values
that will help you know how far you have to cycle.

Now that you have an alphabet class you can work with, let’s think about how the
cipher itself is going to work.

15.1.2 The rotN algorithm

Here’s how your rotN function is going to work:

1 You pass in the size of your alphabet and a letter you want to rotate.
2 You use the div function to find the middle. Remember, div is different from / in

that it divides Ints into whole-valued Ints: although 4 `div` 2 is 2, 5 `div` 2 is also 2.
The result of your div function indicates how far you want to rotate your letter.

3 To rotate, you add half of your alphabet size to the Int value of your letter (as an
Enum). Of course, for half of your Enum values, adding half the size of the alphabet
will give you an Int outside the bounds of your enum. To solve this, you modulo
your offset by the alphabet size.

4 Finally, you use toEnum to convert this Int representation of your letter back into an
instance of the letter’s type.

This rotN will work on any type that’s both a member of Bounded and Enum.

rotN :: (Bounded a, Enum a) => Int -> a -> a
rotN alphabetSize c = toEnum rotation
 where halfAlphabet = n `div` 2
 offset = fromEnum c + halfAlphabet
 rotation = offset `mod` alphabetSize

You can try this with your FourLetterAlphabet in GHCi:

GHCi> rotN 4 L1
L3
GHCi> rotN 4 L2
L4
GHCi> rotN 4 L3
L1
GHCi> rotN 4 L4
L2

Listing 15.2 A generic rotN function to work on any alphabet

Finds the middle value
of your alphabet

Uses the middle to find the
offset of your character

Uses modulo arithmetic
to make sure you’re in
the bounds of your Enum

158 Lesson 15 Capstone: Secret messages!
An interesting point to observe is that the Bool type is also a member of both Enum and
Bounded, so your rotN function will also work to rotate Bools. Because of type classes, you
can rotate any member of both Enum and Bounded.

Now you can use rotN to rotate Chars. The only thing you need to do is to figure out how
many Chars there are. You can start by using the maxBound value required by the Bounded
type class. By using maxBound, you can get the largest Char value. Then you can convert this
to an Int by using the fromEnum function required by Enum. Here’s the code to get the num-
ber of the largest Char.

largestCharNumber :: Int
largestCharNumber = fromEnum (maxBound :: Char)

But the Int value for the lowest Char is 0 (you can get this using the same trick with (min-
Bound). Because of this, the size of the Char alphabet is largestCharNumber + 1. If you look up
the Enum type class on Hackage, you’ll find that the definition does assume that Enums start
at 0 and go to n–1 (recall that Hackage, https://hackage.haskell.org/, is the online source
for full definitions of Haskell type classes). Because of this, it’s generally safe for you to
assume that the total number of items in any alphabet is always maxBound + 1. If you
wanted to write a Char-specific rotN function, it would look like the following.

rotChar :: Char -> Char
rotChar charToEncrypt = rotN sizeOfAlphabet charToEncrypt
 where sizeOfAlphabet = 1 + fromEnum (maxBound :: Char)

15.1.3 Rot encoding a string

So far, you have a method for rotating a single character for any type that’s a member of
both Enum and Bounded. But what you want is to encode and decode messages. Messages in
any alphabet are just lists of letters. Suppose you have a message in your FourLetter-
Alphabet you’d like to send.

message :: [FourLetterAlphabet]
message = [L1,L3,L4,L1,L1,L2]

Listing 15.3 Getting the number representing the largest Char

Listing 15.4 Rotating a single Char

Listing 15.5 A message in your four-letter alphabet

Notice that you must add :: Char so
maxBound knows which type you’re using.

https://hackage.haskell.org/

159Ciphers for beginners: ROT13
To encode this message, you want to apply the appropriate rotN function to each letter in
this list. The best tool to apply a function to each item in a list is map! The following is an
encoder for your four-letter alphabet.

fourLetterAlphabetEncoder :: [FourLetterAlphabet] -> [FourLetterAlphabet]
fourLetterEncoder vals = map rot4l vals
 where alphaSize = 1 + fromEnum (maxBound :: FourLetterAlphabet)
 rot4l = rotN alphaSize

Here’s an example in GHCi of your new encoded message:

GHCi> fourLetterEncoder message
[L3,L1,L2,L3,L3,L4]

The next step is to rotN decode your message. As you may remember from the first sec-
tion, the ROT13 cipher is symmetric: to decode an ROT13 message, you apply ROT13 to
the message once again. It seems that you have an easy solution to your problem: you
can apply the same rotN function. But this symmetry works only if your alphabet has an
even number of letters.

15.1.4 The problem with decoded odd-sized alphabets

An issue arises when decoding odd-sized alphabets because you’re doing integer divi-
sion and always rounding down. As an illustration, here’s a ThreeLetterAlphabet and a cor-
responding secret message and encoder.

data ThreeLetterAlphabet = Alpha
 | Beta
 | Kappa deriving (Show,Enum,Bounded)

threeLetterMessage :: [ThreeLetterAlphabet]
threeLetterMessage = [Alpha,Alpha,Beta,Alpha,Kappa]

threeLetterEncoder :: [ThreeLetterAlphabet] -> [ThreeLetterAlphabet]
threeLetterEncoder vals = map rot3l vals
 where alphaSize = 1 + fromEnum (maxBound :: ThreeLetterAlphabet)
 rot3l = rotN alphaSize

Listing 15.6 Defining a fourLetterEncoder with map

Listing 15.7 A three-letter alphabet, message, and encoder

160 Lesson 15 Capstone: Secret messages!
Now in GHCi, you can compare what happens when trying to encode and decode using
the same function for each alphabet:

GHCi> fourLetterEncoder fourLetterMessage
[L3,L1,L2,L3,L3,L4]
GHCi> fourLetterEncoder (fourLetterEncoder fourLetterMessage)
[L1,L3,L4,L1,L1,L2]
GHCi> threeLetterMessage
[Alpha,Alpha,Beta,Alpha,Kappa]
GHCi> threeLetterEncoder threeLetterMessage
[Beta,Beta,Kappa,Beta,Alpha]
GHCi> threeLetterEncoder (threeLetterEncoder threeLetterMessage)
[Kappa,Kappa,Alpha,Kappa,Beta]

As you can see, in the case of an odd-numbered alphabet, your encoder isn’t symmetric.
To solve this, you can create a similar function to rotN, which adds 1 to the offset if the
alphabet has an odd number of letters.

rotNdecoder :: (Bounded a, Enum a) => Int -> a -> a
rotNdecoder n c = toEnum rotation
 where halfN = n `div` 2
 offset = if even n
 then fromEnum c + halfN
 else 1 + fromEnum c + halfN
 rotation = offset `mod` n

With rotNdecoder, you can build a much more robust decoder.

threeLetterDecoder :: [ThreeLetterAlphabet] -> [ThreeLetterAlphabet]
threeLetterDecoder vals = map rot3ldecoder vals
 where alphaSize = 1 + fromEnum (maxBound :: ThreeLetterAlphabet)
 rot3ldecoder = rotNdecoder alphaSize

In GHCi, you can see that this works:

GHCi> threeLetterMessage
[Alpha,Alpha,Beta,Alpha,Kappa]

Listing 15.8 A rotNdecoder that works with odd-numbered alphabets

Listing 15.9 A working decoder for ThreeLetterAlphabet

161Ciphers for beginners: ROT13
GHCi> threeLetterEncoder threeLetterMessage
[Beta,Beta,Kappa,Beta,Alpha]
GHCi> threeLetterDecoder (threeLetterEncoder threeLetterMessage)
[Alpha,Alpha,Beta,Alpha,Kappa]

Finally, you can put this all together to create a robust rotEncoder and rotDecoder to decode
strings. These will work even if a single extra Char is added or removed, making the
number of Char letters odd.

rotEncoder :: String -> String
rotEncoder text = map rotChar text
 where alphaSize = 1 + fromEnum (maxBound :: Char)
 rotChar = rotN alphaSize

rotDecoder :: String -> String
rotDecoder text = map rotCharDecoder text
 where alphaSize = 1 + fromEnum (maxBound :: Char)
 rotCharDecoder = rotNdecoder alphaSize

threeLetterEncoder :: [ThreeLetterAlphabet] -> [ThreeLetterAlphabet]
threeLetterEncoder vals = map rot3l vals
 where alphaSize = 1 + fromEnum (maxBound :: ThreeLetterAlphabet)
 rot3l = rotN alphaSize

threeLetterDecoder :: [ThreeLetterAlphabet] -> [ThreeLetterAlphabet]
threeLetterDecoder vals = map rot3ldecoder vals
 where alphaSize = 1 + fromEnum (maxBound :: ThreeLetterAlphabet)
 rot3ldecoder = rotNdecoder alphaSize

fourLetterAlphabetEncoder :: [FourLetterAlphabet] -> [FourLetterAlphabet]
fourLetterEncoder vals = map rot4l vals
 where alphaSize = 1 + fromEnum (maxBound :: FourLetterAlphabet)
 rot4l = rotN alphaSize

fourLetterDecoder :: [FourLetterAlphabet] -> [FourLetterAlphabet]
fourLetterDecoder vals = map rot4ldecoder vals
 where alphaSize = 1 + fromEnum (maxBound :: ThreeLetterAlphabet)
 rot4ldecoder = rotNdecoder alphaSize

Listing 15.10 Rotating strings with rotEncoder and rotDecoder

162 Lesson 15 Capstone: Secret messages!
In GHCi, you can explore encoding and decoding messages by rotating around all pos-
sible Char values:

GHCi> rotEncoder "hi"
"\557160\557161"
GHCi> rotDecoder(rotEncoder "hi")
"hi"
GHCi> rotEncoder "Jean-Paul likes Simone"
"\557130\557157\557153\55....
GHCi> rotDecoder (rotEncoder "Jean-Paul likes Simone")
"Jean-Paul likes Simone"

ROT13 is hardly a secure method of sending messages. Because each letter is always
encoded exactly the same way, it’s easy to find patterns that allow you to decode the
encoded message. Next you’ll look at a cryptographically stronger approach to sending
secret messages.

15.2 XOR: The magic of cryptography!

Before you can implement a much stronger cipher, you need to learn a bit about cryp-
tography. Thankfully, you only need to learn about one simple binary operator, XOR. XOR
(short for exclusive or) is just like the typical logical OR, only it’s false for the case where
both values are true. Table 15.1 shows the values for XORing two Booleans.

XOR is powerful in cryptography because it has two important
properties. The first is that like ROT13, XOR is symmetric.
XORing two lists of Bools results in a new list of Bools. XORing
this new list with either one of the originals results in the
other. Figure 15.2 is a visual example.

Table 15.1 XOR Booleans

First value Second value Result
false false false

true false true

false true true

true true false

10110

xor

00111

10001

10001

xor

10110

00111

Figure 15.2 The
symmetric nature of XOR

163XOR: The magic of cryptography!
T

U
88

8
17

41
The other useful property of XOR is that given a uniform distribution of True and False val-
ues (or in practice a string of bits), no matter what the distribution of True and False val-
ues in your plain text, the output of the XOR will be a uniform distribution of True and
False values. In practice, if you take a nonrandom string of values, such as text, and XOR it
with a random one, the result will appear to the observer as random noise. This fixes a
major problem with ROT13. Though the ROT13-encoded text is illegible on initial
inspection, the patterns of characters in the output text are the same as the original and
thus easy to decode. When properly XORing data, the output is indistinguishable from
noise. You can best visualize this by comparing using rotN on an image to XORing it with
noise (see figure 15.3). Assume that the gray pixels are False and the black ones are True.

Let’s define a simple xor function. You’ll start by making a helper function named xor-
Bool, which will operate on two Bools.

NOTE Haskell’s Data.Bool module does have an xor function that’s identical to this
xorBool function.

xorBool :: Bool -> Bool -> Bool
xorBool value1 value2 = (value1 || value2) && (not (value1 && value2))

For your version of xor, your main goal is to easily XOR two lists of Bool values. Internally,
in your final xor function, you’ll want to work on pairs because it’s easy to zip the two
lists together and then map across the list of pairs. As a step toward this, you’ll build an
xorPair function that operates on a single pair of Booleans.

xorPair :: (Bool,Bool) -> Bool
xorPair (v1,v2) = xorBool v1 v2

Listing 15.11 xorBool, a foundation for xor

Listing 15.12 xorPair to xor pairs of Bools

rotN =

xor =
Figure 15.3 Comparing rotN
encoding to XOR on an image

164 Lesson 15 Capstone: Secret messages!
Finally, you can put this all together into an xor function that operates on two lists of
Booleans.

xor :: [Bool] -> [Bool] -> [Bool]
xor list1 list2 = map xorPair (zip list1 list2)

With your xor function in hand, the next thing you need to do is figure out how to xor
two strings.

15.3 Representing values as bits

In cryptography, you don’t think of lists of Booleans but rather streams of bits. To make
reasoning about your code in the rest of this section easier, you’ll create a useful type
synonym, Bits.

NOTE In unit 4, you’ll look at how Haskell represents different values as bits, but for now
you can create your own system to represent them.

type Bits = [Bool]

Your end goal is to encrypt strings of text, but to do that you need to translate them into
bits. You can start by first converting Ints into bits because each Char can be converted
into an Int. Given you have an Int, all you need to do is to transform a base 10 into a
stream of bits, which is the binary equivalent.

You can convert a base 10 number into binary by recursively dividing a number by 2. If
there’s no remainder, you add False (or 0) to your list of bits and otherwise add a 1. You
stop when the number is either 0 or 1. You’ll define a function named intToBits' (note
the apostrophe). You’re adding the apostrophe to the name because this function will
serve as a helper function for your final intToBits function.

intToBits' :: Int -> Bits
intToBits' 0 = [False]
intToBits' 1 = [True]
intToBits' n = if (remainder == 0)

Listing 15.13 Finally, your completed xor function

Listing 15.14 Bits type synonym

Listing 15.15 intToBits' starting to convert an Int type to Bits

165Representing values as bits
 then False : intToBits' nextVal
 else True : intToBits' nextVal
 where remainder = n `mod` 2
 nextVal = n `div` 2

If you try this on a few well-known powers of 2, you can see that this code has a small
issue:

GHCi> intToBits' 2
[False,True]
GHCi> intToBits' 8
[False,False,False,True]

This algorithm works well, except your number is reversed! Your final version of this
function, intToBits (with no '), will need to reverse the output of intToBits'. Additionally,
you’d like all of your Bit lists to be the same size. Right now, intToBits' 0 will return a list
of a single Bool, whereas intToBits maxBound will return one with 63 Bools! To solve this,
you’ll make sure that you prepend extra False values so that the list is equal to the size of
the length of the e converted to bits. For this example, you’ll calculate maxBits first.

maxBits :: Int
maxBits = length (intToBits' maxBound)

intToBits :: Int -> Bits
intToBits n = leadingFalses ++ reversedBits
 where reversedBits = reverse (intToBits' n)
 missingBits = maxBits - (length reversedBits)
 leadingFalses = take missingBits (cycle [False])

Finally, you can convert a single Char into Bits.

charToBits :: Char -> Bits
charToBits char = intToBits (fromEnum char)

With charToBits, you have the basic tools to make more cryptographically secure secret
messages! The only problem is that you’d like to be able to convert bits back into Chars.
Fortunately, this isn’t too complicated. You’ll start with a function bitsToInts. You create

Listing 15.16 maxBits and your final intToBits function

Listing 15.17 charToBits to convert Chars into Bits

166 Lesson 15 Capstone: Secret messages!
a list of indices for each bit, and if the Bit is True, you add 2^index. To understand this,
it’s helpful to realize that binary 101 in decimal is 1*2^2 + 0*2^1 + 1*2^0. Because the only
two values are 1 or 0, you take the sum of those nonzero powers. You could use an if

then else expression here, but the more Haskellish approach is to use filter.

bitsToInt :: Bits -> Int
bitsToInt bits = sum (map (\x -> 2^(snd x)) trueLocations)
 where size = length bits

indices = [size-1,size-2 .. 0]
trueLocations = filter (\x -> fst x == True)

(zip bits indices)

You can verify that this function works in GHCi:

GHCi> bitsToInt (intToBits 32)
32
GHCi> bitsToInt (intToBits maxBound)
9223372036854775807

NOTE There’s a source of possible errors in your handling of converting integers to bits:
you have no way to handle negative numbers. This is okay in this case, because you’re using
intToBits and its converse only as a means of working with Chars as Enums. All Char Enum val-
ues are between 0 and maxBound, so you should never encounter a negative number in prac-
tice. In lesson 38, you’ll take a close look at issues like this.

The last function you need for working with bits is one to convert bitsToChar, which can
be done with toEnum.

bitsToChar :: Bits -> Char
bitsToChar bits = toEnum (bitsToInt bits)

In GHCi, you can see that this works as well:

GHCi> bitsToChar (charToBits 'a')
'a'
GHCi> bitsToChar (charToBits maxBound)
'\1114111'
GHCi> bitsToChar (charToBits minBound)
'\NUL'

Listing 15.18 bitsToInt to go backward from Bits to an Int type

Listing 15.19 Completing the transformation by going back from bitsToChar

167The one-time pad
Now you can put all these pieces together to make a much more secure system of creat-
ing secret messages!

15.4 The one-time pad

With your xor function, you can go from the insecure ROT13 cipher to the unbreakable
one-time pad! The one-time pad is an incredibly important tool in cryptography; if imple-
mented correctly, it can’t be cracked. Conceptually, the one-time pad is simple. You start
with your plain text and another text at least as many characters long as your plain text.
Then you take each character from the second text and xor it with a character from your
plain text, one at a time. Traditionally, this second text was written on a pad of paper,
hence the term pad in the cipher’s name. The one-time pad is uncrackable as long as the
pad is sufficiently random and, as indicated by the name, you use the pad only once.

15.4.1 Implementing your one-time pad

To implement your one-time pad, let’s start with a sample pad.

myPad :: String
myPad = "Shhhhhh"

Next you have some plain text to encrypt.

myPlainText :: String
myPlainText = "Haskell"

To encrypt your myPlainText, you convert both your pad and your plain text to bits, and
then xor the results.

applyOTP' :: String -> String -> [Bits]
applyOTP' pad plaintext = map (\pair ->
 (fst pair) `xor` (snd pair))
 (zip padBits plaintextBits)
 where padBits = map charToBits pad
 plaintextBits = map charToBits plaintext

Listing 15.20 A simple pad

Listing 15.21 Your plain text

Listing 15.22 applyOTP' for converting a string to bits with a one-time pad

168 Lesson 15 Capstone: Secret messages!
Of course, applyOTP' gives back only a list of bits. What you want is a string. Your final
version of applyOTP will take the output of applyOTP' and map it into a string.

applyOTP :: String -> String -> String
applyOTP pad plaintext = map bitsToChar bitList
 where bitList = applyOTP' pad plaintext

With your final applyOTP, you can encrypt your plain text:

GHCi> applyOTP myPad myPlainText
"\ESC\t\ESC\ETX\r\EOT\EOT"

The first thing you should notice is why it’s never a good idea to roll your own cryptog-
raphy system! Clearly, your simple XOR-based one-time pad shows some patterns when
you apply the same letters to each other. This is because your pad isn’t a particularly good
one, given how often letters are repeated in it. Remember that xor provides a uniformly
random output, given one of the values being xorBool is also uniformly random. Clearly,
your plain text isn’t, and, unfortunately your pad also isn’t random. If your pad was ran-
dom, and an attacker didn’t know the pad, your encrypted text would be uncrackable!

The interesting thing is that you can decode your text the same way you encoded it. By
using partial application (applying fewer arguments to a function than required to get a
function awaiting the remaining arguments, covered in lesson 5), you can create an
encoder/decoder.

encoderDecoder :: String -> String
encoderDecoder = applyOTP myPad

Your encoder/decoder will work with any text shorter than your pad:

GHCi> encoderDecoder "book"
"1\a\a\ETX"
GHCi> encoderDecoder "1\a\a\ETX"
"book"

With your one-time pad, you have a much better way to send encrypted messages than
you started with using ROT13. The biggest constraints are that your pad is sufficiently
random, and most important: you use it only one time!

Listing 15.23 Finally, applyOTP to encode strings using a one-time pad

Listing 15.24 Partial application to create an encoderDecoder

169A Cipher class
15.5 A Cipher class

Now that you have two ciphers for encoding messages, it’d be a good idea to write a
type class that captures the general behavior of encoding and decoding messages. This
allows you to create a common interface for any new ciphers you may write, as well as
making working with rotEncode and applyOTP easier. You’ll create a type class Cipher that
requires two methods: encode and decode.

class Cipher a where
 encode :: a -> String -> String
 decode :: a -> String -> String

But what are the types for your ciphers? So far you don’t have anything that looks like it
would be a solid type, just some algorithms for transforming strings. You can start by
making a simple type for your ROT13 cipher.

data Rot = Rot

What good is a single type and data constructor? By using this simple type and imple-
menting the Cipher class, you can specify ROTN encoding of your text by using the more
generic encode and decode functions.

instance Cipher Rot where
 encode Rot text = rotEncoder text
 decode Rot text = rotDecoder text

To encode text using the ROT13 approach, you pass in the Rot data constructor and your
text:

GHCi> encode Rot "Haskell"
"\557128\557153\557171\557163\557157\557164\557164"
GHCi> decode Rot "\557128\557153\557171\557163\557157\557164\557164"
"Haskell"

Listing 15.25 A Cipher class to generalize your cipher operations

Listing 15.26 The Rot data type

Listing 15.27 Making Rot an instance of Cipher

170 Lesson 15 Capstone: Secret messages!
Next you need to make a type for your one-time pad. This is trickier because the one-
time pad needs an extra argument. You can capture this extra argument in your defini-
tion of the type. You’ll create a data type OneTimePad, which takes a String, which will serve
as the pad.

data OneTimePad = OTP String

Then you make OneTimePad an instance of the Cipher class.

instance Cipher OneTimePad where
 encode (OTP pad) text = applyOTP pad text
 decode (OTP pad) text = applyOTP pad text

You can test this if you create an instance of the OneTimePad data type. But what should
you use for the pad? As long as it’s longer than your plain text, you should be fine, but
how can you get something long enough for any possible text you could input? You can
solve this by using lazy evaluation to create an infinite list of all Chars cycling forever!

myOTP :: OneTimePad
myOTP = OTP (cycle [minBound .. maxBound])

Now you can encode and decode strings of any length:

GHCi> encode myOTP "Learn Haskell"
"Ldcqj%Nf{bog`"
GHCi> decode myOTP "Ldcqj%Nf{bog`"
"Learn Haskell"
GHCi> encode myOTP "this is a longer sentence, I hope it encodes"
"tikp$lu'i)fdbjk}0bw}`pxt}5:R<uqoE\SOHKW\EOT@HDGMOX"
GHCi> decode myOTP "tikp$lu'i)fdbjk}0bw}`pxt}5:R<uqoE\SOHKW\EOT@HDGMOX"
"this is a longer sentence, I hope it encodes"

With your Cipher class, you have a great interface for working with any sort of secret
message system you can think up. But remember: never, ever, ever roll your own cryp-
tography for practical use.

Listing 15.28 The OneTimePad data type

Listing 15.29 Making OneTimePad an instance of Cipher

Listing 15.30 Using lazy evaluation to create a limitless pad

171Summary
Summary

In this capstone, you

 Used some of the basic type classes, Enum and Bounded, to build your own generic
rotN cipher.

 Learned how to use XOR in order to encrypt a stream of Bools.
 Used type synonyms to help you think of [Bool] as Bits. In the process of translat-

ing Char to Bits, and Bits to Char, you explored how different types work together
and how to transform data in one type to another. You combined all this knowl-
edge to create a powerful cryptographic tool, the one-time pad.

 Used a type class to create an interface for using different ciphers, and imple-
mented the Cipher class for two types used to represent your different algorithms
for encryption.

Extending the exercise

The problem with the one-time pad is the one-time pad itself. It has to be at least as long
as the message you want to send, and you can use it only one time. The solution is to
generate your own one-time pad from a “seed.” How is this done? All you need is a
pseudo-random number generator (PRNG). Given an initial seed value, a PRNG pro-
duces a random number. Then this next number can be used as the seed for the next
number. By generating a stream of Ints, you can use intToBits to create all the necessary
xor values you need. In this way, a PRNG can use a single number to transmit an effec-
tively infinitely long one-time pad. Encrypting a message by using the output of a
PRNG as the pad is called a stream cipher.

Here’s the Haskell code for a simple PRNG. The specific algorithm is called a linear con-
gruential generator.

prng :: Int -> Int -> Int -> Int -> Int
prng a b maxNumber seed = (a*seed + b) `mod` maxNumber

The a and b parameters are initialization parameters that help determine the random-
ness, maxNumber determines the upper bound of the number that can be produced, and
finally you have the seed. The following is an example of using partial application to
create an example PRNG for numbers less than 100.

Listing 15.31 A linear congruential PRNG

172 Lesson 15 Capstone: Secret messages!
examplePRNG :: Int -> Int
examplePRNG = prng 1337 7 100

Here you’re generating random numbers in GHCi:

GHCi> examplePRNG 12345
72
GHCi> examplePRNG 72
71
GHCi> examplePRNG 71
34
GHCi> examplePRNG 34
65

To explore this on your own, use the PRNG to create a StreamCipher type that can be an
instance of the Cipher class. Remember: never use your own crypto in the real world!
Assume that this should be used for passing notes only.

Listing 15.32 examplePRNG

173

U
N

IT

3

Programming in types

Types in Haskell constitute their own way of writ-
ing programs. Unit 1 introduced you to the general
ideas of functional programming. If this was your
first introduction to functional programming, you
were likely presented with an entirely new way of
thinking about writing code and solving problems.
Haskell’s type system is so powerful that it’s best to
approach it as a second programming language
that works in conjunction with what you learned in
unit 1.

But what does it mean to think about programming
in types? When you look at the type signature of a
function—say, a -> b—you can view this signature
as a description of a transformation. Suppose you
have a type signature CoffeeBeans -> CoffeeGrounds;
what function could this possibly describe? Know-
ing no more than those two types, you could guess
that this function is grind. What about CoffeeGrounds ->
Water -> Coffee? Clearly, this is the brew function.
Types in Haskell allow you to view programs as a
series of transformations.

You can think of transformations as a more abstract
level of thinking about functions. When solving
problems in Haskell, you can approach them first as
a sequence of abstract transformations. For exam-
ple, say you have a large text document and you
need to find all the numbers in that document and

174 Unit 3 Programming in types
then add them all together. How are you going to solve this problem in Haskell? Let’s
start with knowing that a document can be represented as a String:

type Document = String

Then you need a function that will break your big String into pieces so you can search for
numbers:

Document -> [String]

Next you need to search for numbers. This will take your list of Strings and a function to
check whether a String is a number, and will return your numbers:

[String] -> (String -> Bool) -> [String]

Now you have your numbers, but they need to be converted from strings to numbers:

[String] -> [Integer]

Finally, you need to take a list of integers and transform it into a single integer:

[Integer] -> Integer

And you’re finished! By thinking about the types of transformations that you’re going to
make, you’ve been able to design your overall program much the same way you design
a single function.

Although this example has shown how types can allow you to design programs, you’ve
only scratched the surface of what Haskell’s type system has to offer. In this unit, you’ll
start exploring the more powerful features of types in Haskell. You’ll combine types in
ways not possible in other languages, see how types can take arguments of their own,
and learn how the right types can eliminate entire classes of bugs from your code. The
more Haskell you learn, the more you’ll find yourself programming in types first and
then using functions to hash out the details.

16 LESSON
CREATING TYPES WITH “AND” AND “OR”

After reading lesson 16, you’ll be able to

 Understand product types in various programming languages
 Use sum types to model problems in new ways
 Think beyond hierarchical program design

In this lesson, you’ll take a closer look at some of the types we’ve already covered. You’ll
do this so you can learn more about what makes Haskell’s types unique and how to
design programs using types. Most of the types you’ve seen so far are algebraic data
types. Algebraic data types are any types that can be made by combining other types. The
key to understanding algebraic data types is knowing exactly how to combine other
types. Thankfully, there are only two ways. You can combine multiple types with an and
(for example, a name is a String and another String), or you can combine types with an or
(for example, a Bool is a True data constructor or a False data constructor). Types that are
made by combining other types with an and are called product types. Types combined
using or are called sum types.
175

176 Lesson 16 Creating types with “and” and “or”
16.1 Product types—combining types with “and”

Product types are created by combining two or more existing types with and. Here are
some common examples:

 A fraction can be defined as a numerator (Integer) and denominator (another
Integer).

 A street address might be a number (Int) and a street name (String).
 A mailing address might be a street address and a city (String) and a state (String)

and a zip code (Int).

Although the name product type might make this method of combining types sound
sophisticated, this is the most common way in all programming languages to define
types. Nearly all programming languages support product types. The simplest example
is a struct from C. Here’s an example in C of a struct for a book and an author.

struct author_name {
 char *first_name;

Listing 16.1 C structs are product types—an example with a book and author

Consider this You’re writing code to help manage the breakfast menu at a local
diner. Breakfast specials are made up of selections of one or more sides, a meat
choice, and the main meal. Here are the data types for these options:

data BreakfastSide = Toast | Biscuit | Homefries | Fruit deriving Show
data BreakfastMeat = Sausage | Bacon | Ham deriving Show
data BreakfastMain = Egg | Pancake | Waffle deriving Show

You want to create a BreakfastSpecial type representing specific combinations of these
items that the customer can choose. Here are the options:

 Kids’ breakfast—One main and one side

 Basic breakfast—One main, one meat, and one side

 The lumberjack!—Two mains, two meats, and three sides

How can you create a single type that allows for these, and only these, possible selec-
tions from your other breakfast types?

177Product types—combining types with “and”
 char *last_name;
};

struct book {
 author_name author;
 char *isbn;
 char *title;
 int year_published;
 double price;
};

In this example, you can see that the author_name type is made by combining two Strings
(for those unfamiliar, char * in C represents an array of characters). The book type is made
by combining an author_name, two Strings, an Int, and a Double. Both author_name and book are
made by combining other types with an and. C’s structs are the predecessor to similar
types in nearly every language, including classes and JSON. In Haskell, our book exam-
ple would look like this.

data AuthorName = AuthorName String String

data Book = Author String String Int

Preferably, you’d use record syntax (lesson 12) to write a version of book even more rem-
iniscent of the C struct.

data Book = Book {
 author :: AuthorName
 , isbn :: String
 , title :: String
 , year :: Int
 , price :: Double}

Book and AuthorName are examples of product types and have an analog in nearly every
modern programming language. What’s fascinating is that in most programming lan-
guages, combining types with an and is the only way to make new types.

Listing 16.2 C’s author_name and book structs translated to Haskell

Listing 16.3 Using record syntax for Book to show the similarity to a C struct

178 Lesson 16 Creating types with “and” and “or”

16.1.1 The curse of product types: hierarchical design

Making new types only by combining existing types leads to an interesting model of
designing software. Because of the restriction that you can expand an idea only by add-
ing to it, you’re constrained with top-down design, starting with the most abstract rep-
resentation of a type you can imagine. This is the basis for designing software in terms
of class hierarchies.

As an example, suppose you’re writing Java and want to start modeling data for a book-
store. You start with the preceding Book example (assume that the Author class already exists).

public class Book {
 Author author;
 String isbn;
 String title;
 int yearPublished;
 double price;
}

This works great until you realize that you also want to sell vinyl records in the book-
store. Your default implementation of VinylRecord looks like this.

public class VinylRecord {
 String artist;
 String title;
 int yearPublished;
 double price;
}

Listing 16.4 A first pass at defining a Book class in Java

Listing 16.5 Expanding your selection by adding a Java class for VinylRecord

Quick check 16.1 Rewrite AuthorName by using record syntax.

QC 16.1 answer
data AuthorName = AuthorName {
 firstName :: String
 , lastName :: String
}

179Product types—combining types with “and”
VinylRecord is similar to Book, but dissimilar enough that it causes trouble. For starters, you
can’t reuse your Author type, because not all artists have names; sometimes the artist is a
band rather than an individual. You could use the Author type for Elliott Smith but not for
The Smiths, for example. In traditional hierarchical design, there’s no good answer to this
issue regarding the Author and artist mismatch (in the next section, you’ll see how to
solve this in Haskell). Another problem is that vinyl records don’t have an ISBN number.

The big problem is that you want a single type that represents both vinyl records and
books so you can make a searchable inventory. Because you can compose types only by
and, you need to develop an abstraction that describes everything that records and
books have in common. You’ll then implement only the differences in the separate
classes. This is the fundamental idea behind inheritance. You’ll next create the class Store-
Item, which is a superclass of both VinylRecord and Book. Here’s the refactored Java.

public class StoreItem {
 String title;
 int yearPublished;
 double price;
}

public class Book extends StoreItem{
 Author author;
 String isbn;
}

public class VinylRecord extends StoreItem{
 String artist;
}

The solution works okay. You can now write all the rest of your code to work with Store-
Items and then use conditional statements to handle Book and VinylRecord. But suppose
you realize that you ordered a range of collectible toy figurines to sell as well. Here’s the
basic CollectibleToy class.

public class CollectibleToy {
 String name;

Listing 16.6 Creating a StoreItem superclass of Book and VinylRecord in Java

Listing 16.7 A CollectibleToy class in Java

180 Lesson 16 Creating types with “and” and “or”
 String description;
 double price;
}

To make everything work, you’ve completely refactored all of your code again! Now
StoreItem can have only a price attribute, because it’s the only value that all items share in
common. The common attributes between VinylRecord and Book have to go back into those
classes. Alternately, you could make a new class that inherits from StoreItem and is a
superclass of VinylRecord and Book. What about ColletibleToy’s name attribute? Is that differ-
ent from title? Maybe you should make an interface for all of your items instead! The
point is that even in relatively simple cases, designing in strictly product types can
quickly get complex.

In theory, creating object hierarchies is elegant and captures an abstraction about how
everything in the world is interrelated. In practice, creating even trivial object hierar-
chies is riddled with design challenges. The root of all these challenges is that the only
way to combine types in most languages is with an and. This forces you to start from
extreme abstraction and move downward. Unfortunately, real life is full of strange edge
cases that make this much more complicated than you’d typically want.

16.2 Sum types—combining types with “or ”

Sum types are a surprisingly powerful tool, given that they provide only the capability
to combine two types with or. Here are examples of combining types with or:

 A die is either a 6-sided die or a 20-sided die or
 A paper is authored by either a person (String) or a group of people ([String]).
 A list is either an empty list ([]) or an item consed with another list (a:[a]).

The most straightforward sum type is Bool.

Quick check 16.2 Assume you have a Car type. How could you represent a SportsCar as a
Car with a Spoiler? (Assume that you have a Spoiler type as well.)

QC 16.2 answer
data SportsCar = SportsCar Car Spoiler

181Sum types—combining types with “or”
data Bool = False | True

An instance of Bool is either the False data constructor or the True data constructor. This
can give the mistaken impression that sum types are just Haskell’s way of creating enu-
merative types that exist in many other programming languages. But you’ve already
seen a case in which sum types can be used for something more powerful, in lesson 12
when you defined two types of names.

type FirstName = String
type LastName = String
type MiddleName = String

data Name = Name FirstName LastName
 | NameWithMiddle FirstName MiddleName LastName

In this example, you can use two type constructors that can either be a FirstName consist-
ing of two Strings or a NameWithMiddle consisting of three Strings. Here, using or between
two types allows you to be expressive about what types mean. Adding or to the tools
you can use to combine types opens up worlds of possibility in Haskell that aren’t avail-
able in any other programming language without sum types. To see how powerful sum
types can be, let’s resolve some of the issues in the previous section.

An interesting place to start is the difference between author and artist. In our example,
you need two types because you assume that the name of each book author can be rep-
resented as a first and last name, whereas an artist making records can be represented as
a person’s name or a band’s name. Resolving this problem with product types alone is
tricky. But with sum types, you can tackle this problem rather easily. You can start with
a Creator type that’s either an Author or an Artist (you’ll define these next).

data Creator = AuthorCreator Author | ArtistCreator Artist

You already have a Name type, so you can start by defining Author as a name.

data Author = Author Name

Listing 16.8 A common sum type: Bool

Listing 16.9 Using a sum type to model names with and without middle names

Listing 16.10 A Creator type that’s either an Author or an Artist

Listing 16.11 Defining the Author type by using your existing Name type

182 Lesson 16 Creating types with “and” and “or”
An artist is a bit trickier; as we already mentioned, Artist can be a person’s name or a
band’s name. To solve this issue, you’ll use another sum type!

data Artist = Person Name | Band String

This is a good solution, but what about some of those tricky edge cases that pop up in
real life all the time? For example, what about authors such as H.P. Lovecraft? You could
force yourself to use Howard Phillips Lovecraft, but why force yourself to be constrained
by your data model? It should be flexible. You can easily fix this by adding another data
constructor to Name.

data Name = Name FirstName LastName
 | NameWithMiddle FirstName MiddleName LastName
 | TwoInitialsWithLast Char Char LastName

Notice that Artist, Author, and as a result, Creator all depend on the definition of Name. But
you had to change only the definition of Name itself and didn’t need to worry at all about
how any other types using Name are defined. At the same time, you still benefit from code
reuse, as both Artist and Author types benefit from having Name defined in a single place.
As an example of all of this, here’s our H.P. Lovecraft Creator type.

hpLovecraft :: Creator
hpLovecraft = AuthorCreator

(Author
(TwoInitialsWithLast 'H' 'P' "Lovecraft"))

Although the data constructors in this example may be verbose, in practice you’d likely
be using functions that would abstract out much of this. Now think of how this solution
compares to one you could come up with using hierarchal design required by product
types. From the hierarchical design standpoint, you’d need to have a Name superclass
with only a last-name attribute (because this is the only property that all three types of
name share). Then you’d need separate subclasses for each of the three data constructors
you use. But even then, a name such as Andrew W.K., with a last name as a char, would
completely break that model. This is an easy fix with sum types.

Listing 16.12 An artist can be either a Person or a Band

Listing 16.13 Expanding your Name type to work with H.P. Lovecraft

Listing 16.14 Making a Creator type for H.P. Lovecraft

183Putting together your bookstore
data Name = Name FirstName LastName
 | NameWithMiddle FirstName MiddleName LastName
 | TwoInitialsWithLast Char Char LastName
 | FirstNameWithTwoInits FirstName Char Char

The only solution for the product-type-only view is to create a Name class with a growing
list of fields that would be unused attributes:

public class Name {
 String firstName;
 String lastName;
 String middleName;
 char firstInitial;
 char middleInitial;
 char lastInitial;
}

This would require a lot of extra code to ensure that everything behaves correctly. Addi-
tionally, you have no guarantees about your Name being in a valid state. What if all these
attributes had values? There’s nothing a type checker in Java could do to ensure that a
Name object met the constraints you’ve specified for names. In Haskell, you can know that
only the explicit types you’ve defined can exist.

16.3 Putting together your bookstore

Now let’s revisit our bookstore problem and see how thinking with sum types can help.
With your powerful Creator type in hand, you can now rewrite Book.

data Book = Book {
 author :: Creator
 , isbn :: String
 , bookTitle :: String
 , bookYear :: Int
 , bookPrice :: Double
 }

Listing 16.15 Easily expanding Name to work with Andrew W.K.

Listing 16.16 The Book type using Creator

184 Lesson 16 Creating types with “and” and “or”
You can also define your VinylRecord type.

data VinylRecord = VinylRecord {
 artist :: Creator
 , recordTitle :: String
 , recordYear :: Int
 , recordPrice :: Double
 }

Now you can trivially create a StoreItem type.

data StoreItem = BookItem Book | RecordItem VinylRecord

But once again, we’ve forgotten about the CollectibleToy. Because of sum types, it’s easy
to add this data type and extend your StoreItem type to include it.

Listing 16.17 The VinylRecord type

Listing 16.18 A StoreItem type is either a Book or a VinylRecord

Why not just price?
The careful reader may notice that Book and VinylRecord have their own unique name for
price. Why not make working with these types more consistent and use the name price
rather than bookPrice and recordPrice? The issue here has nothing to do with the limita-
tion of sum types but rather a limitation of Haskell’s way of dealing with record syntax.
You’ll recall that without record syntax, you’d define your book type as follows:

data Book = Book Creator String String Int Double

Record syntax automates creating a function like this:

price :: Book -> Double
price (Book _ _ _ _ val) = val

The problem is that using the same name for a property of both a Book and a VinylRecord
means defining conflicting functions!

This is incredibly annoying, and a failing of Haskell I have a hard time forgiving. We’ll touch
on workarounds later in the book. But if you think this is ridiculous, you’re not alone.

185Putting together your bookstore
data CollectibleToy = CollectibleToy {
 name :: String
 , descrption :: String
 , toyPrice :: Double
 }

Fixing StoreItem just means adding one more or.

data StoreItem = BookItem Book
 | RecordItem VinylRecord
 | ToyItem CollectibleToy

Finally, we’ll demonstrate how to build functions that work on all of these types by writ-
ing a price function that gets the price of any item.

price :: StoreItem -> Double
price (BookItem book) = bookPrice book
price (RecordItem record) = recordPrice record
price (ToyItem toy) = toyPrice toy

Sum types allow you to be dramatically more expressive with your types while still pro-
viding convenient ways to create groups of similar types.

Listing 16.19 Adding a CollectibleToy type

Listing 16.20 Easily refactoring StoreItem to include CollectibleToy

Listing 16.21 An example of using the StoreItem type with a price function

Quick check 16.3 Assume that Creator is an instance of Show. Write a madeBy function that
has the type StoreItem -> String and does its best to determine who made the StoreItem.

QC 16.3 answer
madeBy :: StoreItem -> String
madeBy (BookItem book) = show (author book)
madeBy (RecordItem record) = show (artist record)
madeBy _ = "unknown"

186 Lesson 16 Creating types with “and” and “or”
Summary

In this lesson, our objective was to teach you about the two ways to create types from
existing types. The first way is with product types. Product types work by combining
types using and, bundling two or more types together to define a new type. Nearly
every programming language supports product types, even if not by that name. The
other way to combine types is with or. Sum types are much less common than product
types. The problem with product types alone is that you’re forced to think in hierarchi-
cal abstractions. Sum types are a powerful tool that allows you to be much more expres-
sive in defining new types. Let’s see if you got this.

Q16.1 To further complicate the items in your store, you eventually keep an inventory
of free pamphlets. Pamphlets have a title, a description, and a contact field for the orga-
nization that provides the pamphlet. Create the Pamphlet type and add it to StoreItem.
Additionally, modify the price so that it works with Pamphlet.

Q16.2 Create a Shape type that includes the following shapes: Circle, Square, and Rectangle.
Then write a function to compute the perimeter of a Shape as well as its area.

17 LESSON
DESIGN BY COMPOSITION—
SEMIGROUPS AND MONOIDS

After reading lesson 17, you’ll be able to

 Create new functions with function composition
 Use Semigroup to mix colors
 Learn how to use guards in code
 Solve probability problems with Monoid

In the preceding lesson, you looked at how sum types allow you to think outside the
typical hierarchical design patterns present in most programming languages. Another
important way that Haskell diverges from traditional software design is with the idea of
composability. Composability means that you create something new by combining two
like things.

What does it mean to combine two things? Here are some examples: you can concatenate
two lists and get a new list, you can combine two documents and get a new document,
and you can mix two colors and get a new color. In many programming languages, each
of these methods of combining types would have its own unique operator or function.
In much the same way that nearly every programming language offers a standard way
to convert a type to a string, Haskell offers a standard way to combine instances of the
same type together.
187

188 Lesson 17 Design by composition— Semigroups and Monoids
17.1 Intro to composability—combining functions

Before diving into combining types, let’s look at something more fundamental: combin-
ing functions. A special higher-order function that’s just a period (called compose) takes
two functions as arguments. Using function composition is particularly helpful for com-
bining functions on the fly in a readable way. Here are some examples of functions that
can easily be expressed using function composition.

myLast :: [a] -> a
myLast = head . reverse

myMin :: Ord a => [a] -> a
myMin = head . sort

myMax :: Ord a => [a] -> a
myMax = myLast . sort

myAll :: (a -> Bool) -> [a] -> Bool
myAll testFunc = (foldr (&&) True) . (map testFunc)

Listing 17.1 Examples of using function composition to create functions

Consider this So far, when you’ve combined multiple strings, you’ve used ++. This can
get tedious for larger strings:

"this" ++ " " ++ "is" ++ " " ++ "a" ++ " " ++ "bit" ++ " " ++ "much"

Is there a better way to solve this?

Using sort requires
the Data.List module
to be imported.

myAll tests that a
property is true of all
items in a list.

Quick check 17.1 Implement myAny by using function composition. myAny tests that a prop-
erty is True for at least one value in the list.

QC 17.1 answer
myAny :: (a -> Bool) -> [a] -> Bool
myAny testFunc = (foldr (||) False) . (map testFunc)

Here’s an example:

GHCi> myAny even [1,2,3]
True

189Combining like types: Semigroups
In many cases where you’d use a lambda expression to create a quick function, function
composition will be more efficient and easier to read.

17.2 Combining like types: Semigroups

To explore composability further, let’s look at a remarkably simple type class called Semi-
group. To do this, you need to import Data.Semigroup at the top of your file (Lesson17.hs for
this lesson).

The Semigroup class has only one important method you need, the <> operator. You can
think of <> as an operator for combining instances of the same type. You can trivially
implement Semigroup for Integer by defining <> as +.

instance Semigroup Integer where
 (<>) x y = x + y

This may seem all too trivial, but it’s important to think about what this means. Here’s
the type signature for (<>):

(<>) :: Semigroup a => a -> a -> a

This simple signature is the heart of the idea of composability; you can take two like
things and combine them to get a new thing of the same type.

17.2.1 The Color Semigroup

Initially, it might seem like this concept would be useful only for mathematics, but we’re
all familiar with this idea from an early age. The most well-known example of this is

Listing 17.2 Semigroup for Integer

You use the “instance” keyword to
make Integer an instance of the
Semigroup type class.

You define the <> operator
as simple addition.

Quick check 17.2 Can you use (/) to make Int a Semigroup?

QC 17.2 answer No, because division doesn’t always return an Int type, which violates the rule.

190 Lesson 17 Design by composition— Semigroups and Monoids
adding colors. As most children experience, we can combine basic colors to get a new
color. For example:

 Blue and yellow make green.
 Red and yellow make orange.
 Blue and red make purple.

You can easily use types to represent this problem of mixing colors. First, you need a
simple sum type of the colors.

data Color = Red |
 Yellow |
 Blue |
 Green |
 Purple |
 Orange |
 Brown deriving (Show,Eq)

Next you can implement Semigroup for your Color type.

instance Semigroup Color where
 (<>) Red Blue = Purple
 (<>) Blue Red = Purple
 (<>) Yellow Blue = Green
 (<>) Blue Yellow = Green
 (<>) Yellow Red = Orange
 (<>) Red Yellow = Orange
 (<>) a b = if a == b
 then a
 else Brown

Now you can play with colors just as you did when you smeared your fingers in paint
as a kid!

GHCi> Red <> Yellow
Orange
GHCi> Red <> Blue

Listing 17.3 Defining the Color type

Listing 17.4 Implementing Semigroup for Color v1

191Combining like types: Semigroups
Purple
GHCi> Green <> Purple
Brown

This works great, but you get an interesting problem when you add more than two colors.
You want your color mixing to be associative. Associative means that the order in which
you apply your <> operator doesn’t matter. For numbers, this means that 1 + (2 + 3) = (1 + 2)
+ 3. As you can see, your colors clearly aren’t associative:

GHCi> (Green <> Blue) <> Yellow
Brown
GHCi> Green <> (Blue <> Yellow)
Green

Not only does this rule about associativity make intuitive sense (mixing colors in any
order should give you the same color), but this is formally required of the Semigroup type
class. This can be one of the more confusing parts of the more advanced type classes we
cover in this unit. Many of them have type class laws that require certain behavior. Unfor-
tunately, the Haskell compiler can’t enforce these. The best advice is to always carefully
read the Hackage documentation (https://hackage.haskell.org/) whenever you imple-
ment a nontrivial type class on your own.

17.2.2 Making Color associative and using guards

You can fix this issue by making it so that if one color is used to make another, combin-
ing them yields the composite color. So purple plus red is still purple. You could
approach this problem by listing out a large number of pattern-matching rules compar-
ing each possibility. But this solution would be long. Instead, you’ll use the Haskell fea-
ture called guards. Guards work much like pattern matching, but they allow you to do
some computation on the arguments you’re going to compare. Figure 17.1 shows an
example of a function using guards.

192 Lesson 17 Design by composition— Semigroups and Monoids
With an understanding of guards, you can rewrite your instance of Semigroup for Color so
that you adhere to the type class laws for semigroups.

instance Semigroup Color where
 (<>) Red Blue = Purple
 (<>) Blue Red = Purple
 (<>) Yellow Blue = Green
 (<>) Blue Yellow = Green
 (<>) Yellow Red = Orange
 (<>) Red Yellow = Orange
 (<>) a b | a == b = a

| all (`elem` [Red,Blue,Purple]) [a,b] = Purple
| all (`elem` [Blue,Yellow,Green]) [a,b] = Green
| all (`elem` [Red,Yellow,Orange]) [a,b] = Orange
| otherwise = Brown

As you can see, now the problem is fixed:

GHCi> (Green <> Blue) <> Yellow
Green
GHCi> Green <> (Blue <> Yellow)
Green

Listing 17.5 Reimplementing Semigroup for Color to support associativity

howMuch :: Int -> String
howMuch n | n > 10 = "a whole bunch"

| n > 0 = "not much"
| otherwise = "we're in debt!"

Guards separate
conditions.

The argument is checked
first, and then the function
is defined much as in
pattern matching.

otherwise is
the default
case.

Figure 17.1 Using guards in howMuch

193Composing with identity: Monoids
Type class laws are important because any other code that uses an instance of a type
class will assume that they’re upheld.

In the real world, there are many ways to make a new thing from two things of the same
type. Imagine the following possibilities for composition:

 Combining two SQL queries to make a new SQL query
 Combining two snippets of HTML to make a new snippet of HTML
 Combining two shapes to make a new shape

17.3 Composing with identity: Monoids

Another type class that’s similar to Semigroup is Monoid. The only major difference between
Semigroup and Monoid is that Monoid requires an identity element for the type. An identity
element means that x <> id = x (and id <> x = x). So for addition of integers, the identity
element would be 0. But in its current state, your Color type doesn’t have an identity ele-
ment. Having an identity element might seem like a small detail, but it greatly increases
the power of a type by allowing you to use a fold function to easily combine lists of the
same type.

The Monoid type class is also interesting because it demonstrates an annoying problem in
the evolution of Haskell type classes. Logically, you’d assume that the definition of
Monoid would look like the following.

class Semigroup a => Monoid a where
 identity :: a

Listing 17.6 The rational definition of Monoid

Quick check 17.3 Does your implementation of Semigroup for Integers support associativity?

QC 17.3 answer Yes, because addition of integers is associative: 1 + (2 + 3) = (1 + 2) + 3.

194 Lesson 17 Design by composition— Semigroups and Monoids
After all, Monoid should be a subclass of Semigroup because it’s just Semigroup with identity.
But Monoid predates Semigroup and isn’t officially a subclass of Semigroup. Instead, the defini-
tion of Monoid is perplexing.

class Monoid a where
 mempty :: a
 mappend :: a -> a -> a
 mconcat :: [a] -> a

Why mempty instead of identity? Why mappened instead of <>? These oddities in naming
occur because the Monoid type class was added to Haskell before Semigroup. The most com-
mon Monoid is a list. The empty list is the identity for lists, and ++ (the append operator) is
the <> operator for lists. The strange names of Monoid’s methods are just m (for Monoid)
tacked onto common list functions: empty, append, and concat. Here you can compare all
three ways to do the same identity operation on a list:

GHCi> [1,2,3] ++ []
[1,2,3]

GHCi> [1,2,3] <> []
[1,2,3]

GHCi> [1,2,3] `mappend` mempty
[1,2,3]

Notice that mappend has the exact same type signature as <>.

17.3.1 mconcat: Combining multiple Monoids at once

The easiest way to see how powerful identity is, is to explore the final method in the
definition of Monoid: mconcat. The only required definitions in Monoid are mempty and mappend.

Listing 17.7 The actual definition of Monoid

Quick check 17.4 If you implement mappend/<> for Integer as * instead of +, what will your
mempty value be?

QC 17.4 answer
1, because x × 1 = x.

195Composing with identity: Monoids
If you implement these two, you get mconcat for free. If you look at the type signature of
mconcat, you get a good sense of what it does:

mconcat :: Monoid a => [a] -> a

The mconcat method takes a list of Monoids and combines them, returning a single Monoid.
The best way to understand mconcat is by taking a list of lists and seeing what happens
when you apply mconcat. To make things easier, you’ll use strings because those are just
lists of Chars:

GHCi> mconcat ["does"," this"," make"," sense?"]
"does this make sense?"

The great thing about mconcat is that because you’ve defined mempty and mappend, Haskell
can automatically infer mconcat! This is because the definition of mconcat relies only on
foldr (lesson 9), mappend, and mempty. Here’s the definition of mconcat:

mconcat = foldr mappend mempty

Any type class method can have a default implementation, provided the implementa-
tion needs only a general definition.

17.3.2 Monoid laws

Just like Semigroup, there are Monoid type class laws. There are four:

 The first is that mappend mempty x is x. Remembering that mappend is the same as (++),
and mempty is [] for lists, this intuitively means that
[] ++ [1,2,3] = [1,2,3]

 The second is just the first with the order reversed: mappend x mempty is x. In list form
this is
[1,2,3] ++ [] = [1,2,3]

 The third is that mappend x (mappend y z) = mappend (mappend x y) z. This is just associa-
tivity, and again for lists this seems rather obvious:
[1] ++ ([2] ++ [3]) = ([1] ++ [2]) ++ [3]

Because this is a Semigroup law, then if mappend is already implemented as <>, this
law can be assumed because it’s required by the Semigroup laws.

 The fourth is just our definition of mconcat:
mconcat = foldr mappend mempty

Note that the reason mconcat uses foldr instead of foldl is due to the way that foldr can
work with infinite lists, whereas foldl will force the evaluation.

196 Lesson 17 Design by composition— Semigroups and Monoids
17.3.3 Practical Monoids—building probability tables

Now let’s look at a more practical problem you can solve with monoids. You’d like to
create probability tables for events and have an easy way to combine them. You’ll start
by looking at a simple table for a coin toss. You have only two events: getting heads or
getting tails. Table 17.1 is your table.

You have a list of Strings representing events and a list of Doubles representing probabilities.

type Events = [String]
type Probs = [Double]

Your probability table is just a list of events paired with a list of probabilities.

data PTable = PTable Events Probs

Next you need a function to create a PTable. This function will be a basic constructor, but
it’ll also ensure that your probabilities sum to 1. This is easily achieved by dividing all
the probabilities by the sum of the probabilities.

createPTable :: Events -> Probs -> PTable
createPTable events probs = PTable events normalizedProbs
 where totalProbs = sum probs

normalizedProbs = map (\x -> x/totalProbs) probs

You don’t want to get too far without making PTable an instance of the Show type class.
First you should make a simple function that prints a single row in your table.

Table 17.1 Probability of heads or tails

Event Probability

Heads 0.5

Tails 0.5

Listing 17.8 Type synonyms for Events and Probs

Listing 17.9 PTable data type

Listing 17.10 createPTable makes a PTable ensuring all probabilities sum to 1

197Composing with identity: Monoids
showPair :: String -> Double -> String
showPair event prob = mconcat [event,"|", show prob,"\n"]

Notice that you’re able to use mconcat to easily combine this list of strings. Previously, you
used the ++ operator to combine strings. It turns out that mconcat not only requires less
typing, but also provides a preferable way to combine strings. This is because there are
other text types in Haskell (discussed in unit 4) that support mconcat, but not ++.

To make PTable an instance of Show, all you have to do is use zipWith on your showPair func-
tion. This is the first time you’ve seen zipWith. This function works by zipping two lists
together and applying a function to those lists. Here’s an example adding two lists
together:

GHCi> zipWith (+) [1,2,3] [4,5,6]
[5,7,9]

Now you can use zipWith to make your PTable an instance of Show.

instance Show PTable where
 show (PTable events probs) = mconcat pairs
 where pairs = zipWith showPair events probs

In GHCi, you can see that you have the basic setup you need:

GHCi> createPTable ["heads","tails"] [0.5,0.5]
heads|0.5
tails|0.5

What you want to be able to model using the Monoid type class is the combination of two
(or more) PTables. For example, if you have two coins, you want an outcome like this:

heads-heads|0.25
heads-tails|0.25
tails-heads|0.25
tails-tails|0.25

This requires generating a combination of all events and all probabilities. This is called
the Cartesian product. You’ll start with a generic way to combine the Cartesian product of

Listing 17.11 showPair creates a String for a single event-probability pair

Listing 17.12 Making PTable an instance of Show

198 Lesson 17 Design by composition— Semigroups and Monoids
two lists with a function. The cartCombine function takes three arguments: a function for
combining the two lists, and two lists.

cartCombine :: (a -> b -> c) -> [a] -> [b] -> [c]
cartCombine func l1 l2 = zipWith func newL1 cycledL2
 where nToAdd = length l2

repeatedL1 = map (take nToAdd . repeat) l1
newL1 = mconcat repeatedL1
cycledL2 = cycle l2

Then your functions for combining events and combining probabilities are specific cases
of cartCombine.

combineEvents :: Events -> Events -> Events
combineEvents e1 e2 = cartCombine combiner e1 e2
 where combiner = (\x y -> mconcat [x,"-",y])

combineProbs :: Probs -> Probs -> Probs
combineProbs p1 p2 = cartCombine (*) p1 p2

With your combineEvent and combineProbs, you can now make PTable an instance of Semigroup.

instance Semigroup PTable where
 (<>) ptable1 (PTable [] []) = ptable1
 (<>) (PTable [] []) ptable2 = ptable2
 (<>) (PTable e1 p1) (PTable e2 p2) = createPTable newEvents newProbs
 where newEvents = combineEvents e1 e2

newProbs = combineProbs p1 p2

Listing 17.13 The cartCombine function for the Cartesian product of lists

Listing 17.14 combineEvents and combineProbs

Listing 17.15 Making PTable an instance of Semigroup

You need to repeat
each element in the
first list once for each
element in the second.

Maps l1 and makes
nToAdd copies of
the element

The preceding line leaves
you with a lists of lists,
and you need to join them.

By cycling the second list,
you can use zipWith to
combine these two lists.

When combining
events, you hyphenate
the event names.

To combine probabilities,
you multiply them.

You want to handle the special
case of having an empty PTable.

199Composing with identity: Monoids
Finally, you can implement the Monoid type class. For this class, you know that mappend and
<> are the same. All you need to do is determine the identity, mempty element. In this case,
it’s PTable [] []. Here’s your instance of Monoid for PTable.

instance Monoid PTable where
 mempty = PTable [] []
 mappend = (<>)

Don’t forget: you gain the power of mconcat for free!

To see how all this works, let’s see how to create two PTables. The first is a fair coin, and
the other is a color spinner with different probabilities for each spinner.

coin :: PTable
coin = createPTable ["heads","tails"] [0.5,0.5]

spinner :: PTable
spinner = createPTable ["red","blue","green"] [0.1,0.2,0.7]

If you want to know the probability of getting tails on the coin and blue on the spinner,
you can use your <> operator:

GHCi> coin <> spinner
heads-red|5.0e-2
heads-blue|0.1
heads-green|0.35
tails-red|5.0e-2
tails-blue|0.1
tails-green|0.35

For your output, you can see that there’s a 0.1, or 10%, probability of flipping tails and
spinning blue.

What about the probability of flipping heads three times in a row? You can use mconcat to
make this easier:

GHCi> mconcat [coin,coin,coin]
heads-heads-heads|0.125
heads-heads-tails|0.125

Listing 17.16 Making PTable an instance of Monoid

Listing 17.17 Example PTables coin and spinner

200 Lesson 17 Design by composition— Semigroups and Monoids
heads-tails-heads|0.125
heads-tails-tails|0.125
tails-heads-heads|0.125
tails-heads-tails|0.125
tails-tails-heads|0.125
tails-tails-tails|0.125

In this case, each outcome has the same probability: 12.5%.

Initially, the idea of abstracting out “combining things” might seem a bit too abstract.
Once you start seeing problems in terms of monoids, it’s remarkable how frequently
they appear every day. Monoids are a great demonstration of the power of thinking in
types when writing code.

Summary

In this lesson, our objective was to introduce you to two interesting type classes in Has-
kell: Semigroup and Monoid. Though both classes have rather strange names, they provide a
relatively simple role. Monoid and Semigroup allow you to combine two instances of a type
into a new instance. This idea of abstraction through composition is an important one in
Haskell. The only difference between Monoid and Semigroup is that Monoid requires you to
specify an identity element. Monoid and Semigroup are also a great introduction to the
abstract thinking typically involved in more-advanced type classes. Here you start to
see the philosophical difference between type classes in Haskell and interfaces in most
OOP languages. Let’s see if you got this.

Q17.1 Your current implementation of Color doesn’t contain an identity element. Mod-
ify the code in this unit so that Color does have an identity element, and then make Color
an instance of Monoid.

Q17.2 If your Events and Probs types were data types and not just synonyms, you could
make them instances of Semigroup and Monoid, where combineEvents and combineProbs were the
<> operator in each case. Refactor these types and make instances of Semigroup and Monoid.

18 LESSON
PARAMETERIZED TYPES

After reading lesson 18, you’ll be able to

 Use parameterized types to make generic data types
 Understand kinds of types
 Write code using the Data.Map type to look up values

In this unit so far, we’ve discussed how types can be added and multiplied, like data.
Like functions, types can also take arguments. Types take arguments by using type vari-
ables in their definitions (so their arguments are always other types). Types defined
using parameters are called parameterized types. Parameterized types perform an import-
ant role in Haskell, as they allow you to define generic data structures that work with a
wide range of existing data.

Consider this Suppose you want to create a type representing a pair of two values of
the same type. They could be a pair of Doubles representing latitude and longitude, a pair
of Names representing a couple dating, or a pair of graph nodes representing an edge,
for example. You don’t want to use the existing Tuple type because you want to ensure
that the elements in your pair are exactly the same type. How can you accomplish this?
201

202 Lesson 18 Parameterized types
18.1 Types that take arguments

If you’re familiar with type generics in languages such as C# and Java, parameterized
types will initially seem similar. Like generics in C# and Java, parameterized types allow
you to create “containers” that can hold other types. For example, List<String> represents
a List containing only strings, and KeyValuePair<int, string> represents a pair of values in
which an int serves as a key to a string. Usually, you use generic types to constrain the
types of values a Container type can take to make it easier to work with. In Haskell, the
same is true.

The most basic parameterized type you could make is a Box that serves as a container for
any other type. The Box type is the equivalent of your simple function, but for parameter-
ized types (code from this lesson will go into a Lesson18.hs file). Figure 18.1 details the
definition of Box.

The Box type is an abstract container that can hold any other type. As soon as you put a
type inside Box, the Box type takes on a concrete value. You can use GHCi to explore some
of these:

GHCi> n = 6 :: Int
GHCi> :t Box n
Box n :: Box Int
GHCi> word = "box"
GHCi> :t Box word
Box word :: Box [Char]
GHCi> f x = x
GHCi> :t Box f
Box f :: Box (t -> t)
GHCi> otherBox = Box n
GHCi> :t Box otherBox
Box otherBox :: Box (Box Int)

data Box a = Box a deriving Show

Type constructor Data constructor

Type variable
being used

Declaration of
a type variable

Figure 18.1 Definition of the
Box parameterized type

203Types that take arguments
You can also make simple functions for your Box, such as wrap and unwrap to put items into
or take them out of a box.

wrap :: a -> Box a
wrap x = Box x

unwrap :: Box a -> a
unwrap (Box x) = x

Notice that both of these functions don’t know the concrete type of the box, but are still
able to work with it.

18.1.1 A more useful parameterized type: Triple

Like the simple function, the Box type is a little too primitive to be of any use. A much
more useful container is Triple, which we’ll define as three values that are the same.

data Triple a = Triple a a a deriving Show

It’s worth noting that Triple isn’t the same as a 3-tuple (a,b,c). Tuples in Haskell can have
different types as values. In this Triple type, all three values must be of the same type.
There are many practical cases in which values have this property. For example, points
in 3D space can be viewed as a Triple of type Double.

type Point3D = Triple Double

aPoint :: Point3D
aPoint = Triple 0.1 53.2 12.3

Listing 18.1 Defining the wrap and unwrap functions for Box

Listing 18.2 Defining the Triple type

Listing 18.3 Defining a 3D point in space as a Triple

Quick check 18.1 What’s the type of wrap (Box 'a')?

QC 18.1 answer
Box (Box Char)

204 Lesson 18 Parameterized types
People’s names can be represented as a Triple of Strings.

type FullName = Triple String

aPerson :: FullName
aPerson = Triple "Howard" "Phillips" "Lovecraft"

Likewise, initials are a Triple of Char.

type Initials = Triple Char

initials :: Initials
initials = Triple 'H' 'P' 'L'

Now that you have a model for homogenous Triples, you can write functions one time
that work on all these cases. The first thing you can do is create a way to access each of
the values in the Triple. It turns out that fst and snd are defined on only 2-tuples; in larger
tuples, there’s no way to access their values.

first :: Triple a -> a
first (Triple x _ _) = x

second :: Triple a -> a
second (Triple _ x _) = x

third :: Triple a -> a
third (Triple _ _ x) = x

You can also easily turn your Triple into a list.

toList :: Triple a -> [a]
toList (Triple x y z) = [x,y,z]

Listing 18.4 Using a Triple to define a name data type

Listing 18.5 Using a Triple to define Initials

Listing 18.6 Assessors for the Triple type

Listing 18.7 Defining a toList function on Triple

205Types that take arguments
Finally, you can make a simple tool to transform any Triple and keep it a Triple of the
same type.

transform :: (a -> a) -> Triple a -> Triple a
transform f (Triple x y z) = Triple (f x) (f y) (f z)

This type of transformation is useful for a variety of things. You can now move your
third point in all directions by a constant value:

GHCi> transform (* 3) aPoint
Triple 0.30000000000000004 159.60000000000002 36.900000000000006

You can reverse all the letters in a person’s name:

GHCi> transform reverse aPerson
Triple "drawoH" "spillihP" "tfarcevoL"

Or if you import Data.Char, you can make your initials lowercase:

GHCi> transform toLower initials
Triple 'h' 'p' 'l'

By combining this last transformation with toList, you can get a lowercase initial string:

GHCi> toList (transform toLower initials)
"hpl"

18.1.2 Lists

The most common parameterized type is a List. The List type is interesting because it
has a different constructor than most other types you’ve seen. As you know, you use
brackets to construct a list and put values in them. This is for convenience but makes
looking up information about lists more difficult than types that have a more typical

Listing 18.8 A function to transform Triples

Quick check 18.2 What’s the difference between transform and the map function for lists?
(Hint: Look up the type signature of map again.)

QC 18.2 answer The transform function doesn’t allow you to change the type; that is, a function
(a -> b). The map function for lists does allow this.

206 Lesson 18 Parameterized types
type constructor. In GHCi, you can get more info on
the List type by using :info []. Figure 18.2 shows the
formal definition of the List type.

What’s fascinating is that this is a complete and
working implementation of a list! If you’ve ever writ-
ten a linked list in another programming language,
this should come as a surprise. To better understand
this, you can reimplement a list on your own. The
special usage of brackets around the type value is a
built-in syntax for lists, one that you can’t emulate.
Likewise, you can’t use the : cons data constructor
either. For this definition, you’ll use the terms List,
Cons, and Empty. Here’s the definition.

data List a = Empty | Cons a (List a) deriving Show

Notice that the definition of List is recursive! In plain English, you can read this defini-
tion as follows: “A list of type a is either Empty or the consing of the value a with another
list of type a.” What may be hard to believe is that this type definition by itself is the
complete definition of your List data structure! But here are lists that are identical.

builtinEx1 :: [Int]
builtinEx1 = 1:2:3:[]

ourListEx1 :: List Int
ourListEx1 = Cons 1 (Cons 2 (Cons 3 Empty))

builtinEx2 :: [Char]
builtinEx2 = 'c':'a':'t':[]

ourListEx2 :: List Char
ourListEx2 = Cons 'c' (Cons 'a' (Cons 't' Empty))

Listing 18.9 Defining your own list

Listing 18.10 Comparing your List to the built-in list

data [] a = [] | a:[a]

The cons operator is
a data constructor!

A unique, built-in type and
data constructor for list

Figure 18.2 The definition of a List

207Types with more than one parameter
As a final demonstration, you can implement map for your list.

ourMap :: (a -> b) -> List a -> List b
ourMap _ Empty = Empty
ourMap func (Cons a rest) = Cons (func a) (ourMap func rest)

And here’s your code in GHCi:

GHCi> ourMap (*2) ourListEx1
Cons 2 (Cons 4 (Cons 6 Empty))

Now you know that next time you’re in a job interview and you’re asked to implement a
linked list, your first question should be, “Can I do it in Haskell?”

18.2 Types with more than one parameter

Just like functions, types can also take more than one argument. The important thing to
remember is that more than one type parameter means the type can be a container for
more than one type. This is different from containing more than one value of the same
type, as your Triple does.

18.2.1 Tuples

Tuples are the most ubiquitous multiparameter type in Haskell and the only multi-
parameter type you’ve seen so far. Like lists, tuples use a built-in type constructor, (). If
you want to use :info on a tuple, you have to use () with one comma inside for every n – 1
items in the tuple. For example, if you want the definition of a 2-tuple, you’d type :info
(,) into GHCi. Here’s the built-in definition.

data (,) a b = (,) a b

Notice that the 2-tuple type definition includes two type variables. As we’ve mentioned
before, this gives the tuple the useful capability to contain values of two types. In many
dynamically typed languages such as Python, Ruby, and JavaScript, ordinary lists can
contain multiple types. It’s important to realize that Haskell’s tuples aren’t the same as
lists in these other languages. The reason is that after you make your type, it takes on

Listing 18.11 Defining ourMap for your list

Listing 18.12 Definition of a tuple

208 Lesson 18 Parameterized types
concrete values. This is best observed if you try to make lists of tuples. Suppose you
have an inventory system that keeps track of items and their counts.

itemCount1 :: (String,Int)
itemCount1 = ("Erasers",25)

itemCount2 :: (String,Int)
itemCount2 = ("Pencils",25)

itemCount3 :: (String,Int)
itemCount3 = ("Pens",13)

You can make a list of these items to keep track of your inventory.

itemInventory :: [(String,Int)]
itemInventory = [itemCount1,itemCount2,itemCount3]

Notice that you specify the concrete type of your tuple: (String,Int).

18.2.2 Kinds: types of types

Another thing that Haskell’s types have in common with functions and data is that they
have their own types as well! The type of a type is called its kind. As you might expect,
kinds are abstract. But they’ll come up as you dive deeper into the more advanced types
classes covered in unit 5 (Functor, Applicative, and Monad).

The kind of a type indicates the number of parameters the type takes, which are
expressed using an asterisk (*). Types that take no parameters have a kind of *, types
that take one parameter have the kind * -> *, types with two parameters have the kind *
-> * -> *, and so forth.

Listing 18.13 Exploring the types of tuples

Listing 18.14 Creating an item inventory

Quick check 18.3 What would happen if you tried to add ("Paper",12.4) to your inventory?

QC 18.3 answer It would cause an error because the rest of your pairs are (String,Int), and
("Paper",12.4) would be a (String,Double).

209Types with more than one parameter
In GHCi, you use the :kind command to look up the kinds of any types you’re unsure of
(make sure to import Data.Map):

GHCi> :kind Int
Int :: *
GHCi> :kind Triple
Triple :: * -> *
GHCi> :kind []
[] :: * -> *
GHCi> :kind (,)
(,) :: * -> * -> *
GHCi> :kind Map.Map
Map.Map :: * -> * -> *

It’s worth pointing out that concrete types have a different kind than their nonconcrete
equivalents:

GHCi> :kind [Int]
[Int] :: *
GHCi> :kind Triple Char
Triple Char :: *

Kinds may initially seem like abstract nonsense. But understanding kinds can be useful
when trying to make instances of type classes such as Functor and Monad (which we cover
in unit 5).

18.2.3 Data.Map

Another useful parameterized type is Haskell’s Map (not to be confused with the map func-
tion). To use Map, you first have to import Data.Map. Because the Data.Map module shares
some functions with Prelude, you’re going to do a qualified import. To perform a quali-
fied import, add the details in figure 18.3 to the top of your file.

Quick check 18.4 What’s the kind of (,,)?

QC 18.4 answer
(a,b,c)

210 Lesson 18 Parameterized types
With your qualified import, every function and type from that module must be prefaced
with Map. Map allows you to look up values by using keys. In many other languages, this
data type is called Dictionary. The type parameters of Map are the types of the keys and
values. Unlike Lists and Tuples, Map’s implementation is nontrivial. The best way to
understand this type is through a concrete example.

Say you work at a mad scientist’s laboratory and have a list of numbers that correspond
to various organs used to create hideous monsters. You can start by making a quick sum
type of relevant body parts.

data Organ = Heart | Brain | Kidney | Spleen deriving (Show, Eq)

Suppose in your inventory you have the following organs. (Duplicates are okay; you
can never have enough spleens!)

organs :: [Organ]
organs = [Heart,Heart,Brain,Spleen,Spleen,Kidney]

Now each organ is placed in a numbered drawer so it can be retrieved at a later date.
Each drawer has a number on it. Because the drawers are going to be used to look up
items, each drawer number should be unique. Additionally, it’s important that whatever
ID you use, it must be of the class Ord. If the drawers have no order to them, it’ll be diffi-
cult to look up your organ efficiently!

Listing 18.15 The Organ data type

Listing 18.16 An example list of organs

import qualified Data.Map as Map

The qualified statement lets you
give the module you’re importing
a name so it doesn’t conflict
with existing functions.

This is the nickname you’ll use
to preface all types and functions
from the Data.Map module.

Figure 18.3 Using a qualified import

211Types with more than one parameter
Here’s your list of IDs (not every drawer has an organ, so gaps exist).

ids :: [Int]
ids = [2,7,13,14,21,24]

With the organs and the IDs, you have all the information you need to build a Map! This
will serve as a catalog of your drawers so you can easily see which items are in which
drawer.

The most common way to build a Map is with the fromList function. By using :t in GHCi,
you can see that the type of fromList is as shown in figure 18.4.

Now you can see the type parameters for your map Map: k and a. What’s interesting here
is that your key type, k, must be of the class Ord. This restriction is due to the way keys
are stored and looked up internally. The other thing to notice is that fromList expects a

Listing 18.17 A List of IDs to represent the locations of various organs

Maps and hash tables
Maps (or dictionaries) are similar to another data structure called a hash table. Both
allow you to look up values with keys. The big difference between these two structures is
the way the values are looked up. In a hash table, a function transforms your key into the
index of an array where the value is stored. This allows for a fast lookup of items, but
requires a large amount of memory to store in order to prevent collisions. A map looks
up values by using a binary search tree. This is slower than a hash table but still fast. The
map looks up values by searching the keys needed to have the property of being of class
Ord, so you can compare two keys and efficiently find them in the tree.

fromList :: Ord k => [(k,a)] -> Map k a

The type variable for the key
is restricted to the class Ord.

Your Map takes two type
parameters: the type of the
keys, k, and of the values, a.

The input to the function
is a list of key/value tuples.

Figure 18.4 The fromList
function for building a Map

212 Lesson 18 Parameterized types
list of tuples, which represent pairs of keys and values. You could rewrite your two lists
in the following way.

pairs = [(2,Heart),(7,Heart),(13,Brain) ...

But for sufficiently long lists, this would be a real pain! Instead, you can use the handy
zip function from lesson 6. The zip function takes two lists and returns a list of pairs.

organPairs :: [(Int,Organ)]
organPairs = zip ids organs

Now you have all the parts (get it!?) to put together your organCatalog.

organCatalog :: Map.Map Int Organ
organCatalog = Map.fromList organPairs

Finally, you can look up an item by using Map.lookup. When you do this in GHCi, you get
an interesting result:

GHCi> Map.lookup 7 organCatalog
Just Heart

You get your Heart back as expected, but it’s preceded by the data constructor Just. If you
look at the type signature for Map.lookup, you get the answer.

Map.lookup :: Ord k => k -> Map.Map k a -> Maybe a

Map.lookup returns a new parameterized type: Maybe. Maybe is a simple but powerful type
that’s the subject of our next lesson!

Listing 18.18 Pairs of organs and IDs v1

Listing 18.19 organPairs created using zip

Listing 18.20 Creating your organCatalog

Listing 18.21 The type signature for Map.lookup

213Summary
Summary

In this lesson, our objective was to teach you about parameterized types. Parameterized
types are types that take one or more arguments (like generics in most OOP languages).
The most common instance of a parameterized type is List, which can contain elements
of any type. Parameterized types can take any number of types as arguments. The num-
ber of types that a parameterized type takes as arguments defines its kind. Map is a
parameterized type that takes two arguments: one for the type of its keys and another
for the type of its values. Let’s see if you got this.

Q18.1 For the types Triple and Box, implement a function similar to map, tripleMap, and
boxMap.

Q18.2 Modify the Organ type so that it can be used as a key. Then build a Map, organ-
Inventory, of each organ to its count in the organCatalog.

19LESSON
THE MAYBE TYPE: DEALING WITH
MISSING VALUES

After reading lesson 19, you’ll be able to

 Understand the Maybe type
 Use the Maybe type to handle missing values
 Design programs with Maybe types

Just as type classes can often be much more abstract than interfaces in OOP, parameter-
ized types play a much larger role than generics do in most languages. This lesson intro-
duces an important parameterized type: Maybe. Unlike List or Map, which represent
containers for values, Maybe is the first of many types you’ll see that represents a context
for a value. Maybe types represent values that might be missing. In most languages, a
missing value is represented by the null value. By using a context representing a value
that might be missing, the Maybe type allows you to write much safer code. Because of the
power of the Maybe type, errors related to null values are systematically removed from
Haskell programs.
214

215Introducing Maybe: solving missing values with types
19.1 Introducing Maybe: solving missing values with types

At the end of lesson 18, you were working for a mad scientist organizing a collection of
human organs. You used the Map type to store a list of organs for easy lookup. Let’s con-
tinue exploring this exercise in a new file named Lesson19.hs. Here’s the important code
from the preceding lesson:

import qualified Data.Map as Map

data Organ = Heart | Brain | Kidney | Spleen deriving (Show, Eq)

organs :: [Organ]
organs = [Heart,Heart,Brain,Spleen,Spleen,Kidney]

ids :: [Int]
ids = [2,7,13,14,21,24]

organPairs :: [(Int,Organ)]
organPairs = zip ids organs

organCatalog :: Map.Map Int Organ
organCatalog = Map.fromList organPairs

Everything was going fine until you decided to use Map.lookup to look up an Organ in your
Map. When doing this, you came across a strange new type, Maybe.

Consider this Suppose you have a simple Map that contains grocery items and indi-
cates the number of them that you need to purchase:

groceries :: Map.Map String Int
groceries = Map.fromList [("Milk",1),("Candy bars",10),

➥("Cheese blocks",2)]

You accidentally look up MILK instead of Milk. What behavior should you expect from
your Map, and how can you handle this type of mistake so that your programs can be
sure to run safely even in the presence of missing values in your Map?

216 Lesson 19 The Maybe type: dealing with missing values
Maybe is a simple but powerful type. So far, all of our parameterized types have been
viewed as containers. Maybe is different. Maybe is best understood as a type in a context.
The context in this case is that the type contained might be missing. Here’s its definition.

data Maybe a = Nothing | Just a

Something of a Maybe type can be either Nothing, or Just something of type a. What in the
world could this mean? Let’s open up GHCi and see what happens:

GHCi> Map.lookup 13 organCatalog
Just Brain

When you look up an ID that’s in the catalog, you get the data constructor Just and the
value you expect for that ID. If you look up the type of this value, you get this:

Map.lookup 13 organCatalog :: Maybe Organ

In the definition of lookup, the return type is Maybe a. Now that you’ve used lookup, the
return type is made concrete and the type is Maybe Organ. The Maybe Organ type means
pretty much what it says: this data might be an instance of Organ. When would it not be?
Let’s see what happens when you ask for the value of an ID that you know has nothing
in it:

GHCi> Map.lookup 6 organCatalog
Nothing

19.2 The problem with null

The organCatalog has no value at 6. In most programming languages, one of two things
happens if you ask for a value that isn’t in the dictionary. Either you get an error, or you
get back a null value. Both of these responses have major issues.

Listing 19.1 Definition of Maybe

Quick check 19.1 What’s the type of Nothing in the preceding example?

QC 19.1 answer The type is Maybe Organ.

217The problem with null
19.2.1 Handling missing values with errors

In the case of throwing an error, many languages don’t require you to catch errors that
might be thrown. If a program requests an ID not in the dictionary, the programmer
must remember to catch the error, or the whole program could crash. Additionally, the
error must be handled at the time the exception is thrown. This might not seem like a
big issue, because it might be wise to always stop the error at its source. But suppose
that you want to handle the case of a missing Spleen differently from a missing Heart.
When the missing ID error is thrown, you might not have enough information to prop-
erly handle the different cases of having a missing value.

19.2.2 Returning null values

Returning null has arguably more problems. The biggest issue is that the programmer
once again has to remember to check for null values whenever a value that can be null is
going to be used. There’s no way for the program to force the programmer to remember
to check. Null values are also extremely prone to causing errors because they don’t typi-
cally behave like the value your program is expecting. A simple call of toString can easily
cause a null value to throw an error in a part of the program. If you’re a Java or C#
developer, the mere phrase null pointer exception should be argument enough that null
values are tricky.

19.2.3 Using Maybe as a solution to missing values

Maybe solves all of these problems in a clever way. When a function returns a value of the
Maybe type, the program can’t use that value without dealing with the fact that the value
is wrapped in a Maybe. Missing values can never cause an error in Haskell because Maybe
makes it impossible to forget that a value might be null. At the same time, the program-
mer never has to worry about this until absolutely necessary. Maybe is used in all the typ-
ical places that Null values pop up, including these:

 Opening files that might not exist
 Reading from a database that could have null values
 Making a RESTful API request to a potentially missing resource

The best way to illustrate the magic of Maybe is with code. Let’s say you’re the assistant of
the mad scientist. Periodically you need to do inventory to figure out what new body
parts must be harvested. You can never remember which drawers have what in them, or
even which have anything in them. The only way you can query all the drawers is to use
every ID in the range of 1 to 50.

218 Lesson 19 The Maybe type: dealing with missing values
possibleDrawers :: [Int]
possibleDrawers = [1 .. 50]

Next you need a function to get the contents of each drawer. The following maps this list
of possible drawers with the lookup function.

getDrawerContents :: [Int] -> Map.Map Int Organ -> [Maybe Organ]
getDrawerContents ids catalog = map getContents ids
 where getContents = \id -> Map.lookup id catalog

With getDrawerContents, you’re ready to search the catalog.

availableOrgans :: [Maybe Organ]
availableOrgans = getDrawerContents possibleDrawers organCatalog

Had this been a programming language that threw exceptions on nulls, your program
would already have blown up. Notice that your type is still a List of Maybe Organ. You’ve
also avoided the issue with returning a special null value. No matter what you do with
this list, until you deal explicitly with this possibility of missing values, you must keep
this data a Maybe type.

The final thing that you need is to be able to get a count of a particular organ you’re
interested in. At this point, you do need to deal with the Maybe.

countOrgan :: Organ -> [Maybe Organ] -> Int
countOrgan organ available = length (filter

(\x -> x == Just organ)
available)

The interesting thing here is that you didn’t even have to remove the organ from the
Maybe context. Maybe implements Eq, so you can just compare two Maybe Organs. You not only
didn’t have to handle any errors, but because your computation never explicitly dealt

Listing 19.2 List of possibleDrawers in your organCatalog

Listing 19.3 Definition of getDrawers

Listing 19.4 A list of availableOrgans that can contain missing values

Listing 19.5 countOrgan function counts instances of an Organ

219Computing with Maybe
with values that didn’t exist, you also never had to worry about handling that case!
Here’s the final result in GHCi:

GHCi> countOrgan Brain availableOrgans
1
GHCi> countOrgan Heart availableOrgans
2

19.3 Computing with Maybe

It would be useful to be able to print your list of availableOrgans so you could at least see
what you have. Both your Organ type and Maybe support Show so you can print it out in GHCi:

GHCi> show availableOrgans [Nothing,Just Heart,Nothing,Nothing,Nothing,
➥Nothing,Just Heart,Nothing,Nothing,Nothing...

Although you do get printing for free, this is ugly. The first thing you want to do is
remove all the Nothing values. You can use filter and pattern matching to achieve this.

isSomething :: Maybe Organ -> Bool
isSomething Nothing = False
isSomething (Just _) = True

And now you can filter your list to the organs that aren’t missing.

justTheOrgans :: [Maybe Organ]
justTheOrgans = filter isSomething availableOrgans

In GHCi, you can see that you’ve made quite an improvement:

GHCi>justTheOrgans
[Just Heart,Just Heart,Just Brain,Just Spleen,Just Spleen,Just Kidney]

The problem is you still have these Just data constructors in front of everything. You can
clean this up with pattern matching as well. You’ll make the showOrgan function that will
turn a Maybe Organ into a String. You’ll add the Nothing pattern even though you won’t need
it because it’s a good habit to always match all patterns just in case.

Listing 19.6 Definition of isSomething

Listing 19.7 Using isSomething with filter to clean [Maybe Organ]

220 Lesson 19 The Maybe type: dealing with missing values
showOrgan :: Maybe Organ -> String
showOrgan (Just organ) = show organ
showOrgan Nothing = ""

Here are a couple of examples in GHCi to get a feel for how this works:

GHCi> showOrgan (Just Heart)
"Heart"
GHCi> showOrgan Nothing
""

Now you can map your showOrgan function on justTheOrgans.

organList :: [String]
organList = map showOrgan justTheOrgans

As a final touch, you’ll insert commas to make the list prettier. You can use the intercalate
(a fancy word for insert) function in the Data.List module (so you’ll need to add import
Data.List to the top of your file):

cleanList :: String
cleanList = intercalate ", " organList

GHCi> cleanList
"Heart, Heart, Brain, Spleen, Spleen, Kidney"

Listing 19.8 Definition of showOrgan

Listing 19.9 Using showOrgan with map

isJust and isNothing
The Data.Maybe module contains two functions, isJust and isNothing, that solve the general
case of handling Just values. isJust is identical to the isSomething function but works on
all Maybe types. With Data.Maybe imported, you could’ve solved this problem as follows:

justTheOrgans = filter isJust availableOrgans

221Back to the lab! More-complex computation with Maybe

19.4 Back to the lab! More-complex computation with Maybe

Suppose you need to do several things to a value in a Maybe. The mad scientist has a more
interesting project. You’ll be given a drawer ID. You need to retrieve an item from the
drawer. Then you’ll put the organ in the appropriate container (a vat, a cooler, or a bag).
Finally, you’ll put the container in the correct location. Here are the rules for containers
and locations:

For containers:

 Brains go in a vat.
 Hearts go in a cooler.
 Spleens and kidneys go in a bag.

For locations:

 Vats and coolers go to the lab.
 Bags go to the kitchen.

You’ll start by writing this out, assuming everything goes well and you don’t have to
worry about Maybe at all.

data Container = Vat Organ | Cooler Organ | Bag Organ

instance Show Container where
 show (Vat organ) = show organ ++ " in a vat"
 show (Cooler organ) = show organ ++ " in a cooler"
 show (Bag organ) = show organ ++ " in a bag"

Listing 19.10 Defining key functions and data types for mad scientist request

Quick check 19.2 Write a function numOrZero that takes a Maybe Int and returns 0 if it’s
nothing, and otherwise returns the value.

QC 19.2 answer

numOrZero :: Maybe Int -> Int
numOrZero Nothing = 0
numOrZero (Just n) = n

222 Lesson 19 The Maybe type: dealing with missing values
data Location = Lab | Kitchen | Bathroom deriving Show

organToContainer :: Organ -> Container
organToContainer Brain = Vat Brain
organToContainer Heart = Cooler Heart
organToContainer organ = Bag organ

placeInLocation :: Container -> (Location,Container)
placeInLocation (Vat a) = (Lab, Vat a)
placeInLocation (Cooler a) = (Lab, Cooler a)
placeInLocation (Bag a) = (Kitchen, Bag a)

A function, process, will handle taking an Organ and putting it in the proper container and
location. Then a report function will take your container and location, and output a
report for the mad scientist.

process :: Organ -> (Location, Container)
process organ = placeInLocation (organToContainer organ)

report ::(Location,Container) -> String
report (location,container) = show container ++

" in the " ++
show location

These two functions are written assuming that no organs are missing. You can test how
they work before you worry about working with the catalog:

GHCi> process Brain
(Lab,Brain in a vat)
GHCi> process Heart
(Lab,Heart in a cooler)
GHCi> process Spleen
(Kitchen,Spleen in a bag)
GHCi> process Kidney
(Kitchen,Kidney in a bag)
GHCi> report (process Brain)
"Brain in a vat in the Lab"
GHCi> report (process Spleen)
"Spleen in a bag in the Kitchen"

Listing 19.11 The core functions process and report

223Back to the lab! More-complex computation with Maybe
You still haven’t handled getting your Maybe Organ out of the catalog. In Haskell, other
types such as Maybe handle the many cases in software where things could go wrong.
What you’ve done here with your process function is a common pattern in Haskell: you
separate the parts of the code for which you need to worry about a problem (for exam-
ple, missing values) from the ones that you don’t. Unlike in most other languages, it’s
impossible for Maybe values to accidentally find their way into process. Imagine that you
could write code that couldn’t possibly have null values in it!

Now let’s put this together so you can get data out of your catalog. What you want is
something like the following function, except you still need to handle the case of Maybe.

processRequest :: Int -> Map.Map Int Organ -> String
processRequest id catalog = report (process organ)
 where organ = Map.lookup id catalog

The trouble is that your organ value is a Maybe Organ type and that process takes an Organ. To
solve this given the tools you have now, you’ll have to combine report and process into a
function that handles the Maybe Organ.

processAndReport :: (Maybe Organ) -> String
processAndReport (Just organ) = report (process organ)
processAndReport Nothing = "error, id not found"

You can now use this function to process the request.

processRequest :: Int -> Map.Map Int Organ -> String
processRequest id catalog = processAndReport organ
 where organ = Map.lookup id catalog

This solution works out well, as you can see in GHCi the function handles both null and
existing organs:

GHCi> processRequest 13 organCatalog
"Brain in a vat in the Lab"
GHCi> processRequest 12 organCatalog
"error, id not found"

Listing 19.12 Ideal definition of processRequest (won’t compile)

Listing 19.13 processAndReport to handle the Maybe Organ data

Listing 19.14 processRequest with support for Maybe Organ

224 Lesson 19 The Maybe type: dealing with missing values
There’s one minor issue from a design perspective. Right now your processRequest func-
tion handles reporting when there’s an error. Ideally, you’d like the report function to
handle this. But to do that given your knowledge so far, you’d have to rewrite process to
accept a Maybe. You’d be in a worse situation, because you’d no longer have the advantage
of writing a processing function that you can guarantee doesn’t have to worry about a
missing value.

Summary

In this lesson, our objective was to introduce you to one of Haskell’s more interesting
parameterized types: Maybe. The Maybe type allows you to model values that may be miss-
ing. Maybe achieves this by using two data constructors, Just and Nothing. Values repre-
sented by the Nothing data constructor are missing. Values represented by the Just a
constructor can be safely accessed through pattern matching. Maybe is a great example of
how powerful types make your code less erro- prone. Because of the Maybe type, the
entire class of errors related to having null values is completely eliminated. Let’s see if
you got this.

Q19.1 Write a function emptyDrawers that takes the output of getDrawerContents and tells
you the number of drawers that are empty.

Q19.2 Write a version of map that works for Maybe types, called maybeMap.

Quick check 19.3 How would you rewrite report so that it works with Maybe (Location,
Container) and handles the case of the missing Organ?

QC 19.3 answer
report :: Maybe (Location,Container) -> String
report Nothing = "container not found"
report (Just (location,container)) = show container ++

" in the " ++
show location

20 LESSON
CAPSTONE: TIME SERIES

This capstone covers

 Learning the basics of time-series analysis
 Combining multiple time series with Monoid and Semigroup
 Using Map to solve problems of duplicate values in a time series
 Avoiding errors involving missing values by using Maybe

In this capstone, you’ll model time-series data by using tools you’ll build in Haskell.
Time-series data is, in theory, relatively simple: it’s a series of values and dates for each
piece of data. Figure 20.1 presents sales data from the Box & Jenkins data set that’s com-
monly used to demonstrate a time series (the data used in this capstone is also a subset
of the first 36 months of this same data).

Although conceptually easy to work with, in practice time-series data presents many
interesting challenges. Often you’re missing data, need to combine multiple incomplete
data sets, and then need to perform analytics on this messy data, which often requires
other transformations to make sense of. In this capstone, you’ll use the techniques cov-
ered in this unit to make tools for working with time-series data. You’ll explore how to
combine multiple time series into one, take summary statistics (such as the average) of
time-series data with missing values, and conclude by performing transformations on
your data such as smoothing to eliminate noise.
225

226 Lesson 20 Capstone: Time series
All of the code for this section should live in a file named time_series.hs. The file should
have the following imports at the top.

import Data.List
import qualified Data.Map as Map
import Data.Semigroup
import Data.Maybe

With this file started, you’re ready to begin!

20.1 Your data and the TS data type

Suppose you’ve started working at a new company and have been tasked with organiz-
ing its financial data. You have 36 months of (partial) financial data that you need to
make sense of. The data is contained in four files, and no file has a complete set of data.
Because we haven’t covered working with files in Haskell yet, you’ll assume that you’ve
read in the data you have. You’ll represent each file as lists of (Int,Double) tuples.

Listing 20.1 Imports for time_series.hs

Box and Jenkins (1976) sales data

260

S
al

es
240

220

200

0 50 100
Time

150

Figure 20.1 An example of time-series data for sales

227Your data and the TS data type
file1 :: [(Int,Double)]
file1 = [(1, 200.1), (2, 199.5), (3, 199.4)
 , (4, 198.9), (5, 199.0), (6, 200.2)
 , (9, 200.3), (10, 201.2), (12, 202.9)]

file2 :: [(Int,Double)]
file2 = [(11, 201.6), (12, 201.5), (13, 201.5)
 ,(14, 203.5), (15, 204.9), (16, 207.1)
 ,(18, 210.5), (20, 208.8)]

file3 :: [(Int,Double)]
file3 = [(10, 201.2), (11, 201.6), (12, 201.5)
 ,(13, 201.5), (14, 203.5), (17, 210.5)
 ,(24, 215.1), (25, 218.7)]

file4 :: [(Int,Double)]
file4 = [(26, 219.8), (27, 220.5), (28, 223.8)
 ,(29, 222.8), (30, 223.8), (31, 221.7)
 ,(32, 222.3), (33, 220.8), (34, 219.4)
 ,(35, 220.1), (36, 220.6)]

When working with company data, it’s common to find a similar pattern: you have your
data split into multiple files, the data in the files is missing points, and there’s overlap in
the data as well. You want to be able to do the following:

 Stitch these files together easily
 Keep track of the missing data
 Perform analysis on the time series without having to worry about errors due to

missing values

When stitching timelines together, you combine two timelines to make a new one. This is
a familiar pattern that you saw when we discussed semigroups. You can solve the prob-
lem of stitching together individual time series by making your time series an instance of
Semigroup. If you want to combine a list of time series elements, you’ll also want to imple-
ment Monoid so you can use mconcat. For working with missing values, you can take advan-
tage of your Maybe type. By using careful pattern matching on Maybe values, you can
perform functions on your time-series data and handle the case of missing values.

Listing 20.2 Your data

228 Lesson 20 Capstone: Time series

You’ll
of the
you kn
20.1.1 Building a basic time-series type

First you need a basic type for your time series. To simplify things, consider that all of
your dates are just Ints, which will be a relative index. Having 36 months, days, or milli-
seconds of data could be represented by the indices 1–36. For the values in the type
series, you’ll use a type parameter because you don’t want to restrict the type of values
you’re going to allow in your time series. In this case, you want a type Double, but you
could easily have a time series of Bools (“Did we meet the sales goal?”) or a time series of
Strings (“Who was the lead sales person?”). The type you use to represent the time series
will be a parameterized type of kind * -> *, a parameterized type that takes only one
argument. You also want to use a Maybe type for your values because having missing val-
ues is a common problem when working with any data. In data analytics, missing values
are commonly referred to as having the value NA (for not available, as opposed to Null in
software). Here’s the definition of your TS type.

data TS a = TS [Int] [Maybe a]

Next you’ll create a function that takes a list of times and a list of values and creates a TS
type. As with the data in your files, you’re assuming that the times might not be per-
fectly contiguous when you create a TS type. When you use createTS, you’ll expand the
timeline so that it’s contiguous. Then you’ll create a Map by using the existing times and
values. You’ll map over the completed list of times and look up the time in your Map. This
will automatically create a Maybe a list of your values, where existing values will be Just a
and NA values will be Nothing.

createTS :: [Int] -> [a] -> TS a
createTS times values = TS completeTimes extendedValues
 where completeTimes = [minimum times .. maximum times]

timeValueMap = Map.fromList (zip times values)
extendedValues = map (\v -> Map.lookup v timeValueMap)

completeTimes

Listing 20.3 The definition of the TS data type

Listing 20.4 createTS to make an easier interface for creating TS types

You want to create your time series with a
full timeline and a list of Maybe values; you
assume the arguments may represent
only a limited set of possible values.

The completeTimes are all the times
from the minimum passed into the
function up to the maximum.

create a simple Map
 times and values
ow you have.

By mapping lookup over complete times, you’ll get Just x values
for all existing values and Nothing for all missing values. This
takes care of filling in your complete set of values to match the
complete timeline (even if some of those values are missing).

229Your data and the TS data type
Your files aren’t in quite the right format for your createTS function, so you’ll make a
helper function that will unzip the pairs.

fileToTS :: [(Int,a)] -> TS a
fileToTS tvPairs = createTS times values
 where (times, values) = unzip tvPairs

Before you go any further, it’d be nice to make a usable instance of Show for your TS object.
First you’ll create a function to show a time/value pair.

showTVPair :: Show a => Int -> (Maybe a) -> String
showTVPair time (Just value) = mconcat [show time,"|",show value,"\n"]
showTVPair time Nothing = mconcat [show time,"|NA\n"]

Now you can make an instance of Show by using zipWith and your showTVPair function.

instance Show a => Show (TS a) where
 show (TS times values) = mconcat rows
 where rows = zipWith showTVPair times values

You can see your files as TS in GHCi:

GHCi> fileToTS file1
1|200.1
2|199.5
3|199.4
4|198.9
5|199.0
6|200.2
7|NA
8|NA
9|200.3
10|201.2
11|NA
12|202.9

Listing 20.5 fileToTS to easily convert your file data into TS types

Listing 20.6 showTVPair to render time/value pairs readable

Listing 20.7 Making TS an instance of Show by using zipWith and showTVPair

230 Lesson 20 Capstone: Time series
Next you can convert all of your files to TS types.

ts1 :: TS Double
ts1 = fileToTS file1

ts2 :: TS Double
ts2 = fileToTS file2

ts3 :: TS Double
ts3 = fileToTS file3

ts4 :: TS Double
ts4 = fileToTS file4

Now you have all your file data converted to a basic TS type that you can also print to
screen to make it easier to experiment with. Next you’ll solve your first issue, which is
using Semigroup and Monoid to simplify combining files.

20.2 Stitching together TS data with Semigroup and Monoid

With your basic time-series model done, you want to solve the problem of stitching
together individual time series. Thinking about this problem in types, you want the fol-
lowing type signature:

TS a -> TS a -> TS a

You need a function that takes two TS types and returns just one. This type signature
should remind you of a familiar pattern. If you look up the type of Semigroup’s <> operator,
you’ll see that it’s a generalization of the type signature you’re looking for:

(<>) :: Semigroup a => a -> a -> a

This is a good sign that what you want to do is ultimately make TS an instance of
Semigroup. Now you have to consider how you’re going to combine two TS types.

Given that your TS type is basically two lists, it may be tempting to think you can
append those two lists to make a new TS type. But you have two issues to solve that
make this different from simply appending one list to another. The first is that data
points aren’t all bound by the range in an individual file; for example, file2 contains a
value for date 11, but file1 includes a value for date 12. The other issue is that two time
series might have conflicting values for a single date point. Files 1 and 2 both contain

Listing 20.8 Converting all your data files into TS types

231Stitching together TS data with Semigroup and Monoid
information on date 12, but they don’t agree. You’ll solve this problem by having the
second file be the one that has priority.

You can use Map to solve both problems. You’ll start by taking the time/value pairs in the
first TS and use them to build them a Map of time/value pairs. You’ll then insert the
time/value pairs from the second TS. This will seamlessly combine the two sets of pairs
and will handle the overwriting of duplicate values. Figure 20.2 shows how two time
series would be combined.

The important thing to realize is that the Map to combine all the data from both time
series will be of type Map k v, where k is the key type and v is the value type. But your val-
ues in the TS are k and Maybe v. You need one small helper function that will allow you to
insert pairs of type (k, Maybe v) into a Map of type k v. The following is your insertMaybePair
function.

insertMaybePair :: Ord k => Map.Map k v -> (k, Maybe v) -> Map.Map k v
insertMaybePair myMap (_,Nothing) = myMap
insertMaybePair myMap (key,(Just value)) = Map.insert key value myMap

With insertMaybePair, you have all the tools you need to combine two TS types into a new
one. With this, you’ll be able to seamlessly stitch together any two of your sets of data.

Listing 20.9 insertMaybePair, a helper function for inserting (k, Maybe v) pairs

Time series 1

10 NA 15

1 2 3

Time series 2

15 25 17

2 3 4

Time series 1 and 2 combined

10 15 25

1 2 3

17

4
Figure 20.2 Combining
two time series

Because your map is of actual
values, you can ignore the case
when the Maybe value is missing
by returning the original Map.

If you have an actual value, you
grab it out of the Just context

and insert it into your map.

232 Lesson 20 Capstone: Time series

If on
retu

combineTS :: TS a -> TS a -> TS a
combineTS (TS [] []) ts2 = ts2
combineTS ts1 (TS [] []) = ts1
combineTS (TS t1 v1) (TS t2 v2) = TS completeTimes combinedValues
 where bothTimes = mconcat [t1,t2]
 completeTimes = [minimum bothTimes .. maximum bothTimes]
 tvMap = foldl insertMaybePair Map.empty (zip t1 v1)
 updatedMap = foldl insertMaybePair tvMap (zip t2 v2)
 combinedValues = map (\v -> Map.lookup v updatedMap)
 completeTimes

Here’s how your combineTS function works: The first thing you need to do is solve the
cases in which one (or both) of your TS types are empty. In this case, you return the non-
empty one (or if both are empty, an empty one). If you have two nonempty TS types, you
combine them by first combining all the times they cover. Using this, you can create a
continuous timeline covering all the possible times. You then insert all of the existing
values for the first TS type into a Map using insertMaybePair and folding over a list of
value/time pairs created with zip and initializing the foldl function with an empty Map.
After that, you insert the values of the second TS type the same way, only instead of
using foldl with an empty Map, you use the Map created in the last step. By inserting the
second after the first, you know that the second TS type will have the final say for any
duplicates. Finally, you look up all the values in the Map from both TS types, which gives
you a list of Maybe values just as in your createTS function.

And combineTS is all you need to implement a Semigroup! You could’ve put all of this logic
directly into the definition of (<>). Personally, I find it easier to debug a separate function.

Listing 20.10 combineTS

e series is empty,
rn the nonempty one.

This indicates all the times in your two
TS types. Duplicates may happen, but
you use only the minimum and maximum
values from the combined times.

Now you can make a
complete timeline for both
TS types.

You first insert all the values from ts1
into your Map. The zip function creates
a list of time/value pairs, and you use
foldl to insert them into the Map.

Then you update that Map with the values
from ts2. Inserting this way means

duplicate values will automatically be
overwritten by the values from ts2.

Finally, you create your list of
Maybe values by looking up
all the completed times.

233Stitching together TS data with Semigroup and Monoid
To avoid duplication, it’d be better to paste the definition of combineTS as the definition of
(<>). But for this example, you’ll define (<>) as combineTS.

instance Semigroup (TS a) where
 (<>) = combineTS

In GHCi, you can see that you can easily combine two time series now!

GHCi> ts1 <> ts2
1|200.1
2|199.5
3|199.4
4|198.9
5|199.0
6|200.2
7|NA
8|NA
9|200.3
10|201.2
11|201.6
12|201.5
13|201.5
14|203.5
15|204.9
16|207.1
17|NA
18|210.5
19|NA
20|208.8

With TS an instance of Semigroup, you can now combine time series, automatically filling
missing values and overwriting the duplicate values.

20.2.1 Making TS an instance of Monoid

Being able to combine two or more TS types with <> is useful. But given that you have
four unique files to combine, it’d be even nicer if you could combine a list of them.

Listing 20.11 Making TS an instance of Semigroup

234 Lesson 20 Capstone: Time series
Thinking in types again, you end up with this type signature to describe the behavior
you want:

[TS a] -> TS a

Looking at this type signature should remind you of concatenating a list, which is done
with the mconcat function. The type signature of mconcat generalizes this pattern:

mconcat :: Monoid a => [a] -> a

The only thing missing now is that your TS type isn’t an instance of Monoid.

As always, after you have Semigroup implemented, all you need is to add the mempty (that
is, the identity) element. Without an identity element, you can’t automatically concate-
nate a list of TS types.

instance Monoid (TS a) where
 mempty = TS [] []
 mappend = (<>)

Because you get mconcat for free with Monoid, you can easily combine lists of TS:

GHCi> mconcat [ts1,ts2]
1|200.1
2|199.5
3|199.4
4|198.9
5|199.0
6|200.2
7|NA
8|NA
9|200.3
10|201.2
11|201.6
12|201.5
13|201.5
14|203.5
15|204.9
16|207.1
17|NA

Listing 20.12 Making TS an instance of Monoid

235Performing calculations on your time series
18|210.5
19|NA
20|208.8

Finally, you can stitch together all of your time series into a single time series that’s as
complete as possible from all of your files.

tsAll :: TS Double
tsAll = mconcat [ts1,ts2,ts3,ts4]

Although it took a bit of work to get here, for all future time-series data you work with,
you have a one-liner to safely combine separate files into a single TS type.

20.3 Performing calculations on your time series

Your time series data isn’t helpful if you can’t do basic analytics with it. The primary rea-
son time series are used in analytics is to understand the general trends and changes
over time to the value you’re tracking. Even simple questions about a time series can be
complicated because time-series data rarely represents a nice, neat straight line. To start
analyzing your time-series data, you’re going to look at simple summary statistics. A
summary statistic is a small number of values that help summarize a more complex data
set. The most common summary statistic for almost all data is the average. In this sec-
tion, you’ll look at calculating the average (mean) of your data, as well as finding when
the highest and lowest values in your data happened and what they were.

The first thing you’ll want to do is calculate the mean of the values in your time series.
Your meanTS function will take a TS parameterized with a Real type and return the mean of
the values in the TS as a Double. The Real type class allows you to use the realToFrac func-
tion to make it easier for you to divide types such as Integer. Your mean will have to
return a Maybe type because in two instances there’s no meaningful result: an empty time
series and a time series in which all values are Nothing.

First you need a function to calculate the mean of a list.

mean :: (Real a) => [a] -> Double
mean xs = total/count

Listing 20.13 tsAll easily created using mconcat

Listing 20.14 mean to average a list of most number types

236 Lesson 20 Capstone: Time series
 where total = (realToFrac . sum) xs
count = (realToFrac . length) xs

Then you can move on to your meanTS function:

meanTS :: (Real a) => TS a -> Maybe Double
meanTS (TS _ []) = Nothing
meanTS (TS times values) = if all (== Nothing) values

then Nothing
else Just avg

 where justVals = filter isJust values
cleanVals = map fromJust justVals
avg = mean cleanVals

In GHCi, you can inspect your mean sales over time:

GHCi> meanTS tsAll
Just 210.5966666666667

20.3.1 Calculating the min and max values for your time series

Knowing the minimum and maximum of your time series would also be useful. You
don’t want to know only the values that represent the min and max, but also the times
they happened. Because maxTS and minTS are going to be nearly the same except for their
comparators, you might as well make a generic compareTS function that takes a (a -> a -> a)
function (a function like max that compares two values and returns the “winner”). Inter-
estingly, your comparison type signature is exactly the same as your Semigroup (<>). But
type signatures aren’t always enough to tell the entire story. Typically, you want to use
Semigroup (and Monoid) to abstract away combining two types, rather than comparing them.

Again, you’re stuck with the problem that you have a compare function of the type (a ->
a -> a) but you’re going to want to compare types (Int, Maybe a). This is because you want
to keep track of the value and the time the value happened. But all you care about is
comparing the values. To make this easier, you’ll write a makeTSCompare function that takes
a comparing function (a -> a -> a) and transforms it into a function of type ((Int, Maybe a)
-> (Int, Maybe a) -> (Int, Maybe a)). You can transform any function such as min or max and
it’ll work with (Int, Maybe a) tuples!

isJust requires the
import of the
Data.Maybe module,
and tests whether a
value “is Just.”

fromJust, also in
Data.Maybe, is the
equivalent of (\(Just x) -> x).

237Performing calculations on your time series

H
n

type CompareFunc a = a -> a -> a
type TSCompareFunc a = (Int, Maybe a) -> (Int, Maybe a) -> (Int, Maybe a)

makeTSCompare :: Eq a => CompareFunc a -> TSCompareFunc a
makeTSCompare func = newFunc
 where newFunc (i1, Nothing) (i2, Nothing) = (i1, Nothing)
 newFunc (_, Nothing) (i, val) = (i,val)
 newFunc (i, val) (_, Nothing) = i,val)
 newFunc (i1,Just val1) (i2,Just val2) =
 if func val1 val2 == val1
 then (i1, Just val1)
 else (i2, Just val2)

With makeTSCompare, you no longer have to think about using comparison functions such
as max and min, or any other similar function. As an example, let’s compare two
time/value pairs in GHCi:

GHCi> makeTSCompare max (3,Just 200) (4,Just 10)
(3,Just 200)

Now you can build a generic compareTS function that lets you compare all values in a
TS type.

compareTS :: Eq a => (a -> a -> a) -> TS a -> Maybe (Int, Maybe a)
compareTS func (TS [] []) = Nothing
compareTS func (TS times values) = if all (== Nothing) values
 then Nothing
 else Just best
 where pairs = zip times values
 best = foldl (makeTSCompare func) (0, Nothing) pairs

Listing 20.15 makeTSCompare and useful type synonyms

Listing 20.16 compareTS, a generic means of applying comparison functions to TS

ere you’re creating a
ewFunction to return.

Even though you’re in a where, you
can still do pattern matching.

These first three cases handle
when one or both values are
Nothing.

This last definition performs the
behavior of the comparison function,

only it returns the full tuple.

238 Lesson 20 Capstone: Time series
compareTS allows you to trivially create other comparison functions for TS. Here are max
and min.

minTS :: Ord a => TS a -> Maybe (Int, Maybe a)
minTS = compareTS min

maxTS :: Ord a => TS a -> Maybe (Int, Maybe a)
maxTS = compareTS max

Here are some examples in GHCi:

GHCi> minTS tsAll
Just (4,Just 198.9)
GHCi> maxTS ts1
Just (12,Just 202.9)

With a few basic summary statistics to work with, you can move on to more-advanced
analysis of time-series data.

20.4 Transforming time series

Basic summary statistics can be helpful but are rarely enough
to cover all the details you want to know about a time series.
In the case of monthly sales data, you might want to make
sure your company is growing. Because time-series data isn’t a
simple straight line, it can be surprisingly tricky to answer
simple questions such as, “How fast are sales growing?” The
most straightforward approach is to look not at the values of
the time series itself, but at how the values change over time.
Another problem is that time-series data is noisy. To reduce
noise, you perform a task called smoothing, which attempts to
remove noise from the data to make it easier to understand.
Both of these tasks are a way of transforming your original data so that you can extract
further insights from it.

The first transformation you’re going to look at is taking the diff of a TS. The diff indi-
cates the change each day. Say, for example, you have the values shown in figure 20.3.

Listing 20.17 Trivially creating minTS and maxTS using compareTS

1 2 4

4–22–1

3

NA 1 2 –1

3–4

Figure 20.3 Visualizing
the diff function

239Transforming time series
Notice that your list is one value shorter than before. This occurs because there’s nothing
to subtract from the first value. You’ll have to make sure you add a Nothing value to the
beginning of the resulting TS to reflect this. To enable you to see the effect that a diff
transformation has on the time series, figure 20.4 shows the original sales data (from fig-
ure 20.1) with diff applied.

In terms of types, the diff transformation can be cleanly expressed as follows:

TS a -> TS a

This isn’t the perfect description of what you want your final result to be. Your TS type
can take any parameter for the type of its values, but not all values can be subtracted
from one another. Your transformation will be of any Num type because all Num types can
be subtracted from each other:

Num a => TS a -> TS a

With your revised type signature, you’re being more specific about exactly what type of
transformation you’re allowing.

You once again run into a problem: you’re working with Maybe values when you want to
perform an operation on the Num a type inside the Maybe. As you have before, you’ll start
with a diffPair function that takes two Maybe a values and subtracts them.

Box and Jenkins (1976) sales data (diff)

4

C
ha

ng
e

fro
m

 p
re

vi
ou

s
da

y

2

0

–2

0 50 100
Time

150

Figure 20.4 Sales time series with diff applied

240 Lesson 20 Capstone: Time series
diffPair :: Num a => Maybe a -> Maybe a -> Maybe a

If either value is Nothing, you’re going to return nothing; otherwise, you’ll return the
difference.

diffPair Nothing _ = Nothing
diffPair _ Nothing = Nothing
diffPair (Just x) (Just y) = Just (x - y)

Now you can create diffTS. You can use zipWith to make this easy. The zipWith function
works just like zip, but instead of combining the two values into a tuple, it combines
them with a function.

diffTS :: Num a => TS a -> TS a
diffTS (TS [] []) = TS [] []
diffTS (TS times values) = TS times (Nothing:diffValues)
 where shiftValues = tail values

diffValues = zipWith diffPair shiftValues values

With diffTS, you can see the mean change in your sales over time:

GHCi> meanTS (diffTS tsAll)
Just 0.6076923076923071

On average, your sales have grown about 0.6 each month. The great thing about this is
that you can use these tools without worrying at all about missing values!

20.4.1 Moving average

Another important transformation of time-series data is smoothing. Many times data
has noisy spikes, unexplainable drops, and other random noise that makes it harder to
understand the data. Another issue is seasonality in the data. Suppose you have weekly
data; do you expect sales to be as good on Sunday as on Tuesday? You don’t want the
seasonality of the data to affect how you understand it.

Listing 20.18 Type signature of diffPair

Listing 20.19 Definition of diffPair

Listing 20.20 diffTS to take the diff of a TS

241Transforming time series
The best way to smooth is by taking a moving average. The moving average is similar to
the diff, but rather than looking at just two numbers at a time, you’re averaging over an
entire window. A moving average takes a parameter n for the number of items it will
smooth over. Here’s an example of a moving average of 3 taken over these six numbers:

1,2,3,4,3,2

2.000000 3.000000 3.333333 3.000000

To visualize the effects of this smoothing, figure 20.5 shows the original time series
(from figure 20.1) with a moving average of 12 applied.

Notice that you end up missing n/2 values. For diff, you added a single Nothing at the
beginning of your data, but for a moving average, you like to “center” the data, adding
NA (or Nothing, in this case) values to both ends.

Your type signature of your movingAverageTS function is going to be more restrictive than
your diffTS function. Because you know you’ll be using your mean function to average
numbers, you can look at its type signature to help figure out the final type signature for
movingAverageTS:

mean :: (Real a) => [a] -> Double

Box and Jenkins (1976) sales data (moving average)

260

12
-m

on
th

 m
ov

in
g

av
er

ag
e 250

240

230

220

200

0

210

50 100
Time

150

Figure 20.5 Sales time-series with a moving average of 12 applied

242 Lesson 20 Capstone: Time series
Because mean will be doing most of the work for calculating your moving average, you
know that your final type signature will involve transforming a (Real a) => TS a into one
of type TS Double. You also need one more value for your type signature. You need to
specify the number of values you want to smooth over. This means your final type sig-
nature should be as follows:

movingAverageTS :: (Real a) => TS a -> Int -> TS Double

With a better sense of your goal, you can start building out the functions that will get
you there.

To make things easier to reason about, you’ll abstract out just the part of the moving
average function that has to work with a list of [Maybe a], your values from the time
series.

meanMaybe :: (Real a) => [Maybe a] -> Maybe Double
meanMaybe vals = if any (== Nothing) vals

then Nothing
else (Just avg)

 where avg = mean (map fromJust vals)

Now you can write the core logic to calculate your moving average.

movingAvg :: (Real a) => [Maybe a] -> Int -> [Maybe Double]
movingAvg [] n = []
movingAvg vals n = if length nextVals == n

then meanMaybe nextVals:movingAvg restVals n
else []

 where nextVals = take n vals
restVals = tail vals

With these two functions taking care of the work, the last thing you need to worry about
is making sure your final TS is “centered.” For this, you’ll use integer division with div to
give you a whole-number halfway point.

Listing 20.21 meanMaybe, which takes the mean of a list of Maybe a values

Listing 20.22 movingAvg calculates the moving average of a Maybe a list

243Summary
movingAverageTS :: (Real a) => TS a -> Int -> TS Double
movingAverageTS (TS [] []) n= TS [] []
movingAverageTS (TS times values) n = TS times smoothedValues
 where ma = movingAvg values n
 nothings = replicate (n `div` 2) Nothing
 smoothedValues = mconcat [nothings,ma,nothings]

With movingAverageTS, you can smooth your TS data!

Summary

In this capstone, you

 Learned about common techniques you can apply to working with time-series
data

 Created a TS type that handles the basics of a time series
 Used Maybe to model NA values in data
 Used the Map type to handle combining sets of values
 Combined TS types easily by using Semigroup and Monoid type classes
 Applied nontrivial computation in the context of a Maybe

Extending the exercise

If you’d like to continue this capstone on your own, there’s no limit to the cool stuff you
can do with a time series. Easy extensions to this project include the following:

 Use the median rather than the mean for smoothing.
 Create a function that calculates the div rather than the diff of data, capturing the

percent change.
 Implement a function for calculating the standard deviation of a TS type.

If you still want more, the next most useful task is to add and subtract time series from
each other. For each point in the timeline that two TS types have in common, you add or
subtract the values as necessary.

Listing 20.23 maTS for calculating the moving average of a TS with centering

The replicate
function creates
a list of repeated
values.

245

U
N

IT

4

IO in Haskell

So far in this book, you’ve seen many examples of
the powerful things you can do with Haskell. A
recurring theme of Haskell is that much of this
power comes from simple things such as referential
transparency and Haskell’s type system. But there
has been one glaring omission so far: I/O.

No matter what your program does, no matter what
language it’s written in, I/O is a hugely important
part of software. It’s the point where your code meets
the real world. So why haven’t you seen much Has-
kell involving I/O yet? The problem is that using I/O
inherently requires you to change the world. Take,
for example, getting user input from the command
line. Each time you have a program that requests
user input, you expect the result to be different. But
in unit 1 we spent a great deal of time talking about
how important it is that all functions take an argu-
ment, return a value, and always return the same
value for the same argument. Another issue with I/O
is that you’re always changing the world, which
means you’re dealing with state. If you read a file
and write to another, your programs would be use-
less if you didn’t change the world somewhere along
the way. But again, avoiding state is one of the key
virtues of Haskell discussed in unit 1.

So how does Haskell solve this problem? As you
might expect, Haskell does this by using types.

246 Unit 4 IO in Haskell
Haskell has a special parameterized type called IO. Any value in an IO context must stay
in this context. This prevents code that’s pure (meaning it upholds referential transpar-
ency and doesn’t change state) and code that’s necessarily impure from mixing.

To demonstrate this, you’ll compare two similar mystery functions in both Java and
Haskell. You’ll start by taking a look at two nearly identical Java methods, called mystery1
and mystery2.

public class Example {

 public static int mystery1(int val1, int val2){
int val3 = 3;
return Math.pow(val1 + val2 + val3, 2);

 }

 public static int mystery2(int val1, int val2){
int val3 = 3;
System.out.print("Enter a number");
try {

Scanner in = new Scanner(System.in);
val3 = in.nextInt();

} catch (IOException e) {

 e.printStackTrace();
}
return Math.pow(val1 + val2 + val3,2);

 }
}

Here you have two static methods, mystery1 and mystery2. Both do the same thing: they
take in two values, add them with a mystery value, and square the result. What’s most
important is that these methods have identical type signatures in Java. But I don’t think
anyone would argue that these methods are remotely the same!

The mystery1 method is predictable. Every time you enter two inputs, you’ll get the exact
same output. In Haskell terms, mystery1 is a pure function. If you play around with this
function enough, you’ll eventually be able to figure out what it does.

The mystery2 method, on the other hand, is a different method. Every time you call
mystery2, many things can go wrong. Additionally, every time you call mystery2, you’re

Listing 1 Two Java methods with the same type signature, mystery1 and mystery2

247 Unit 4 IO in Haskell
likely to get a different answer. You may never be able to figure out what mystery2 is
doing. Now, in this example you could clearly tell the difference because mystery2 will
force a command prompt. But suppose mystery2 just read from a random file on disk. You
might never know what it was doing. The idea of mystery functions may seem con-
trived, but anytime you use legacy code or an external library, you’re often dealing with
mystery functions: you may easily understand them from their behavior, but have no
way of knowing what they’re doing.

Haskell solves this problem by forcing these two functions to be different types. When-
ever a function uses IO, the results of that function are forever marked as coming from
IO. Here are the two Java methods rewritten as Haskell functions.

mystery1 :: Int -> Int -> Int
mystery1 val1 val2 = (val1 + val2 + val3)^2
 where val3 = 3

mystery2 :: Int -> Int -> IO Int
mystery2 val1 val2 = do
 putStrLn "Enter a number"
 val3Input <- getLine
 let val3 = read val3Input
 return ((val1 + val2 + val3)^2)

Why does this IO type make your code safer? IO makes it impossible to accidentally use
values that have been tainted with I/O in other, pure functions. For example, addition is
a pure function, so you can add the results of two calls to mystery1:

safeValue = (mystery1 2 4) + (mystery1 5 6)

But if you try to do the same thing, you’ll get a compiler error:

unsafeValue = (mystery2 2 4) + (mystery2 2 4)
"No instance for (Num (IO Int)) arising from a use of '+'"

Although this certainly adds safety to your program, how in the world are you going to
do things? In this unit, you’ll focus on learning the Haskell tools that enable you to keep
your pure code separated from I/O code and still make useful programs that interact
with the real world. After this unit, you’ll be able to use Haskell for a wide range of
everyday, real-world programming problems that involve using I/O.

Listing 2 mystery1 and mystery2 rewritten in Haskell

21 LESSON
HELLO WORLD!—INTRODUCING IO TYPES

After reading lesson 21, you’ll be able to

 Understand how Haskell handles I/O by using IO types
 Use do-notation to perform I/O
 Write pure programs that interact with the real world

In lesson 1, you saw a basic example of a Hello World program. In this lesson, you’ll
revisit a similar program to get a better sense of how I/O works in Haskell. Here’s an
example program using I/O that reads a name from the command line and prints out
"Hello <name>!".

helloPerson :: String -> String
helloPerson name = "Hello" ++ " " ++ name ++ "!"

main :: IO ()
main = do
 putStrLn "Hello! What's your name?"
 name <- getLine
 let statement = helloPerson name
 putStrLn statement

Listing 21.1 A simple Hello World program
249

250 Lesson 21 Hello World!—introducing IO types
Before you saw any Haskell, you likely could have read this program pretty well. Unfor-
tunately, now that you know more about Haskell, this probably looks much more con-
fusing! The helloPerson function should be straightforward, but everything starting with
main is different from anything else you’ve seen so far. You should have the following
questions:

 What in the world is the type IO ()?
 Why is there a do after main?
 Does putStrLn return a value?
 Why are some variables assigned with <- and others with let?

By the end of this lesson, you’ll have a reasonable explanation of each of these things,
and hopefully a much better understanding of the basics of IO in Haskell.

21.1 IO types—dealing with an impure world

As is often the case with Haskell, if you’re unsure of what’s going on, it’s best to look at
the types! The first type you have to understand is the IO type. In the preceding unit, you
ended by looking at the Maybe type. Maybe is a parameterized type (a type that takes
another type as an argument) that represents a context when a value may be missing. IO
in Haskell is a parameterized type that’s similar to Maybe. The first thing they share in
common is that they’re parameterized types of the same kind. You can see this by look-
ing at the kind of IO and of Maybe:

Quick check 21.1 Which line retrieves the user’s input? What type do you assume that
input is?

QC 21.1 answer The line using getLine receives the input. At this point, it’s safe to assume that
input is a String (at the end of the lesson, you’ll know it’s an IO String).

Consider this You can get a line of user input by using the getLine function. But each
time getLine is called, it can clearly return a different result. How can this work, given
one of the most important features of Haskell is always returning the same value for
the same input?

251IO types—dealing with an impure world
GHCi> :kind Maybe
Maybe :: * -> *
GHCi> :kind IO
IO :: * -> *

The other thing that Maybe and IO have in common is that (unlike List or Map) they describe
a context for their parameters rather than a container. The context for the IO type is that
the value has come from an input/output operation. Common examples of this include
reading user input, printing to standard out, and reading a file.

With a Maybe type, you’re creating a context for a single specific problem: sometimes a
program’s values might not be there. With IO, you’re creating context for a wide range of
issues that can happen with IO. Not only is IO prone to errors, but it’s also inherently state-
ful (writing a file changes something) and also often impure (calling getLine many times
could easily yield a different result each time if the user enters different input). Although
these may be issues in I/O, they’re also essential to the way I/O works. What good is a
program that doesn’t change the state of the world in some way? To keep Haskell code
pure and predictable, you use the IO type to provide a context for data that may not
behave the way all of the rest of your Haskell code does. IO actions aren’t functions.

In your example code, you only see one IO type being declared, the type of your main:

main :: IO ()

At first () may seem like a special symbol, but in reality it’s just a tuple of zero elements.
In the past, we’ve found tuples representing pairs or triples to be useful, but how can a
tuple of zero elements be useful? Here are some similar types with Maybe so you can see
that IO () is just IO parameterized with (), and can try to figure out why () might be useful:

GHCi> :type Just (1,2)
Just (1,2) :: (Num t, Num t1) => Maybe (t, t1)
GHCi> :type Just (1)
Just (1) :: Num a => Maybe a
GHCi> :type Just ()
Just () :: Maybe ()

For Maybe, being parameterized with () is useless. It can have only two values, Just () and
Nothing. But arguably, Just () is Nothing. It turns out that representing nothing is exactly
why you want to parameterize IO with an empty tuple.

You can understand this better by thinking about what happens when your main is run.
Your last line of code is as follows:

putStrLn statement

252 Lesson 21 Hello World!—introducing IO types
As you know, this prints your statement. What type does putStrLn return? It has sent a
message out into the world, but it’s not clear that anything meaningful is going to come
back. In a literal sense, putStrLn returns nothing at all. Because Haskell needs a type to
associate with your main, but your main doesn’t return anything, you use the () tuple to
parameterize your IO type. Because () is essentially nothing, this is the best way to con-
vey this concept to Haskell’s type system.

Although you may have satisfied Haskell’s type system, something else should be trou-
bling you about your main. In the beginning of the book, we stressed three properties of
functions that make functional programming so predictable and safe:

 All functions must take a value.
 All functions must return a value.
 Anytime the same argument is supplied, the same value must be returned (refer-

ential transparency).

Clearly, main doesn’t return any meaningful value; it simply performs an action. It turns
out that main isn’t a function, because it breaks one of the fundamental rules of functions:
it doesn’t return a value. Because of this, we refer to main as an IO action. IO actions work
much like functions except they violate at least one of the three rules we established for
functions early in the book. Some IO actions return no value, some take no input, and
others don’t always return the same value given the same input.

21.1.1 Examples of IO actions

If main isn’t a function, it should follow that neither is putStrLn. You can quickly clear this
up by looking at putStrLn’s type:

putStrLn :: String -> IO ()

As you can see, the return type of putStrLn is IO (). Like main, putStrLn is an IO action
because it violates our rule that functions must return values.

The next confusing function should be getLine. Clearly, this works differently than any
other function you’ve seen because it doesn’t take an argument! Here’s the type for getLine:

getLine :: IO String

Unlike putStrLn, which takes an argument and returns no value, getLine takes no value
but returns a type IO String. This means getLine violates our rule that all functions must
take an argument. Because getLine violates this rule of functions, it’s also an IO action.

Now let’s look at a more interesting case. If you import System.Random, you can use randomRIO,
which takes a pair of values in a tuple that represents the minimum and maximum of a

253IO types—dealing with an impure world
range and then generates a random number in that range. Here’s a simple program called
roll.hs that uses randomRIO and, when run, acts like rolling a die.

import System.Random

minDie :: Int
minDie = 1

maxDie :: Int
maxDie = 6

main :: IO ()
main = do
 dieRoll <- randomRIO (minDie,maxDie)
 putStrLn (show dieRoll)

You can compile your program with GHC and “roll” your die:

$ ghc roll.hs
$./roll
2

What about randomRIO? It takes an argument (the min/max pair) and returns an argument
(an IO type parameterized with the type of the pair), so is it a function? If you run your
program more than once, you’ll see the problem:

$./roll
4
$./roll
6

Each time you call randomRIO, you get a different result, even with the same argument.
This violates the rule of referential transparency. So randomRIO, just like getLine and put-
StrLn, is an IO action.

Listing 21.2 roll.hs program for simulating the roll of a die

Quick check 21.2 Is it okay if the last line in your main is getLine?

QC 21.2 answer No, because the type of main is IO (), but the type of getLine is IO String

254 Lesson 21 Hello World!—introducing IO types
21.1.2 Keeping values in the context of IO

The interesting thing about getLine is that you have a useful return value of the type IO
String. Just as a Maybe String means that you have a type that might be missing, IO String
means that you have a type that comes from I/O. In lesson 19 we discussed the fact that
a wide range of errors is caused by missing values that Maybe prevents from leaking into
other code. Although null values cause a wide variety of errors, think of how many
errors you’ve ever encountered caused by I/O!

Because I/O is so dangerous and unpredictable, after you have a value come from I/O,
Haskell doesn’t allow you to use that value outside of the context of the IO type. For
example, if you fetch a random number using randomRIO, you can’t use that value outside
main or a similar IO action. You’ll recall that with Maybe you could use pattern matching to
take a value safely out of the context that it might be missing. This is because only one
thing can go wrong with a Maybe type: the value is Nothing. With I/O, an endless variety of
problems could occur. Because of this, after you’re working with data in the context of
IO, it must stay there. This initially may seem like a burden. After you’re familiar with
the way Haskell separates I/O logic from everything else, you’ll likely want to replicate
this in other programming languages (though you won’t have a powerful type system
to enforce it).

21.2 Do-notation

Not being able to escape the context of IO means that you need a convenient way to per-
form a sequence of computations within the context of IO. This is the purpose of the spe-
cial do keyword. This do-notation allows you to treat IO types as if they were regular
types. This also explains why some variables use let and others use <-. Variables
assigned with <- allow you to act as though a type IO a is just of type a. You use let state-
ments whenever you create variables that aren’t IO types. Figure 21.1 shows the two lines
in your main action that use <- and let so you can understand this better.

You know from earlier that getLine returns a type IO String. The type of name must be IO
String. But you want to use name as an argument to helloPerson. Look at the type of hello-
Person again:

helloPerson :: String -> String

You see that helloPerson works only with an ordinary String, not a type IO String. Do-
notation allows you to assign an IO String variable by using <-, to act like it’s an ordinary
String, and then to pass it to functions that work with only regular Strings. Here’s our

255Do-notation
original program again, this time with annotations to highlight where you’re using IO
types and regular types.

helloPerson :: String -> String
helloPerson name = "Hello" ++ " " ++ name ++ "!"

main :: IO ()
main = do
 putStrLn "Hello! What's your name?"
 name <- getLine
 let statement = helloPerson name
 putStrLn statement

What makes this powerful is that you can blend functions that work with safe, non-IO
values and use them seamlessly with data in an IO context.

Listing 21.3 Understanding do-notation in your Hello World program

name <- getLine
let statement = helloPerson name

Because you assigned name
by using <-, you can treat it
like a normal String.

This returns a
type IO string...

...but helloPerson takes a
String type, not a IO String.

Figure 21.1 Treating an IO String
like a regular String using do-notation

getLine is an IO action and
returns a type IO String.

helloPerson is a function
String -> String, but your
IO String 'name' still works
because of do-notation.

putStrLn is an IO action that
takes a normal String (not
an IO String).

Quick check 21.3 Could you simplify your code to combine helloPerson and getLine like this?

let statement = helloPerson getLine

QC 21.3 answer No, because getLine is still of type IO String.

256 Lesson 21 Hello World!—introducing IO types
21.3 An example: command-line pizza cost calculator

To get a better sense of how do-notation works, let’s try an extended example. You’ll cre-
ate a command-line tool that asks the user for the size and then the cost of two pizzas,
and then tells the user which one is cheaper per square inch. Because you’re using IO
now, you can finally create a real, compiled program. You’ll call this one pizza.hs. This
program will ask you for the cost and size of two pizzas and tell you which one is the bet-
ter deal in terms of cost per square inch. Here’s what it’ll look like to compile and run
your program:

$ ghc pizza.hs
$./pizza
What is the size of pizza 1
12
What is the cost of pizza 1
15
What is the size of pizza 2
18
What is the cost of pizza 2
20
The 18.0 pizza is cheaper at 7.859503362562734e-2 per square inch

When designing programs that use I/O in Haskell, it’s typical to write as much code as
you can that doesn’t use IO types. This makes reasoning about problems easier and
allows you to easily test and experiment with pure functions. The more code you write
that isn’t in the IO context, the more code you know will never be vulnerable to I/O errors.

To get started, you’ll need a function to calculate the cost of a pizza given its diameter.
The first thing you need to do is calculate the area of a circle given its diameter. The area
of a circle is equal to pi × radius2, and the radius is half the diameter.

areaGivenDiameter :: Double -> Double
areaGivenDiameter size = pi*(size/2)^2

You’ll use size/cost pairs to more easily represent the pizza. You can use a type synonym
for this.

Listing 21.4 Calculating the area of a pizza given its diameter

257An example: command-line pizza cost calculator
type Pizza = (Double,Double)

To calculate the cost per square inch, you divide the total cost by the area.

costPerInch :: Pizza -> Double
costPerInch (size, cost) = cost / areaGivenDiameter size

Next you’ll compare two pizzas. The comparePizzas function will take two Pizza pairs and
return the cheaper of the two.

comparePizzas :: Pizza -> Pizza -> Pizza
comparePizzas p1 p2 = if costP1 < costP2
 then p1
 else p2
 where costP1 = costPerInch p1
 costP2 = costPerInch p2

Finally, you want to print a statement to the user that indicates which pizza is cheaper
and its price per square inch.

describePizza :: Pizza -> String
describePizza (size,cost) = "The " ++ show size ++ " pizza " ++
 "is cheaper at " ++
 show costSqInch ++
 " per square inch"
 where costSqInch = costPerInch (size,cost)

Now all you have to do is tie this all together in a main. There’s still one interesting prob-
lem to solve. getLine returns an IO String, but you need your values to be of type Double. To
solve this, you can use read.

Listing 21.5 Pizza type synonym

Listing 21.6 Calculating cost per inch

Listing 21.7 Comparing two pizzas

Listing 21.8 Describing a pizza

258 Lesson 21 Hello World!—introducing IO types
main :: IO ()
main = do
 putStrLn "What is the size of pizza 1"
 size1 <- getLine
 putStrLn "What is the cost of pizza 1"
 cost1 <- getLine
 putStrLn "What is the size of pizza 2"
 size2 <- getLine
 putStrLn "What is the cost of pizza 2"
 cost2 <- getLine
 let pizza1 = (read size1, read cost1)
 let pizza2 = (read size2, read cost2)
 let betterPizza = comparePizzas pizza1 pizza2
 putStrLn (describePizza betterPizza)

The key thing here is that you only worry about the parts of the program that must be
done in the context of IO, which is mostly capturing and manipulating your input.

21.3.1 A peek at Monad—do-notation in Maybe

IO can use do-notation because it’s a member of a powerful type class called Monad. We
discuss Monad much more in unit 5. Do-notation has nothing to do with IO in particular
and can be used by any member of Monad to perform computation in a context. The con-
text for values in a Maybe is that they might not exist. The context for IO is that you’re
interacting with the real world and your data might not behave as it does in the rest of
your Haskell program.

Maybe is also a member of the Monad type class and therefore can also use do-notation. Sup-
pose that rather than getting your pizza values from user inputs, you had to retrieve
these values from two Maps: one with sizes and one with costs. Here’s a nearly identical
program to the one you just wrote using Maybe. Rather than getting your info from a user,
you’ll look up the cost of a pizza by ID in a costData Map.

costData :: Map.Map Int Double
costData = Map.fromList [(1,18.0),(2,16.0)]

Listing 21.9 Putting all of your code together in main

Listing 21.10 costData Map containing pizza cost info

259An example: command-line pizza cost calculator
Likewise, size is in another Map.

sizeData :: Map.Map Int Double
sizeData = Map.fromList [(1,20.0),(2,15.0)]

Now here’s a maybeMain function that looks almost the same!

maybeMain :: Maybe String
maybeMain = do
 size1 <- Map.lookup 1 sizeData
 cost1 <- Map.lookup 1 costData
 size2 <- Map.lookup 2 sizeData
 cost2 <- Map.lookup 2 costData
 let pizza1 = (size1,cost1)
 let pizza2 = (size2,cost2)
 let betterPizza = comparePizzas pizza1 pizza2
 return (describePizza betterPizza)

The only new thing you’ve added is the return function, which takes a value of a type
and puts it back in the context of the do-notation. In this case, a String is returned as a
Maybe String. You didn’t need to do this in your main because putStrLn returns a type IO ().
In GHCi, you can see that this works out well:

GHCi> maybeMain
Just "The 20.0 pizza is cheaper at 5.729577951308232e-2 per square inch"

If you’ve heard of monads before and wondered what all the excitement is about, you
may find this example underwhelming. But the Monad type class allows you to write gen-
eral programs that can work in a wide range of contexts. Because of do-notation, you
could write a different program, using all the same core functions as your original. In
most other programming languages, you’d likely have to rewrite every function to
translate it from one that used IO to one that worked with potentially null values in a
dictionary. In unit 5, you’ll dive much deeper into this topic. For now, it’s perfectly okay
to think of do-notation as a convenient way to perform IO actions in Haskell.

Listing 21.11 sizeData Map containing pizza size info

Listing 21.12 maybeMain: a version of your previous main using Maybe instead of IO

260 Lesson 21 Hello World!—introducing IO types
21.4 Summary

In this lesson, our object was to teach you how Haskell handles interacting with I/O. The
trouble with I/O is that it requires all the features of functions that we removed earlier in
the book. I/O often changes the state of the world, and likewise frequently causes values
to return different results each time a function (or, more specifically, action) is called.
Haskell handles this by ensuring that all I/O logic is contained in an IO type. Unlike the
Maybe type, you can never remove values from an IO type after they’re there. To make
working with IO types easier, Haskell has a special do-notation that allows you to write
code as though you weren’t in the context of an IO type. Let’s see if you got this.

Q21.1 Translate listing 21.1 (reproduced below) into code by using do-notation in a
Maybe. Assume that all the user input is replaced with a Map with a value for the input.
Ignore the first putStrLn and simply return the statement at the end.

helloPerson :: String -> String
helloPerson name = "Hello" ++ " " ++ name ++ "!"

main :: IO ()
main = do
 putStrLn "Hello! What's your name?"
 name <- getLine
 let statement = helloPerson name
 putStrLn statement

Q21.2 Create a program that asks the user to input a number and then returns the nth
Fibonacci numbers (see lesson 8 for an example of computing Fibonacci numbers).

22LESSON
INTERACTING WITH THE COMMAND LINE
AND LAZY I/O

After reading lesson 22, you’ll be able to

 Access command-line arguments
 Use the traditional approach to interacting through I/O
 Write I/O code using lazy evaluation to make I/O easier

Often when people first learn about I/O and Haskell, they assume that I/O is somewhat
of a challenge for Haskell because Haskell is all about pure programs and I/O is any-
thing but pure. But there’s another way to view I/O that makes it uniquely suited to
Haskell, and somewhat clunky in other programming languages. Often when working
with I/O in any language, we talk about I/O streams, but what is a stream? One good
way to understand I/O streams is as a lazily evaluated list of characters. STDIN streams
user input into a program until an eventual end is reached. But this end isn’t always
known (and in theory could never occur). This is exactly how to think about lists in Has-
kell when using lazy evaluation.

This view of I/O is used in nearly every programming language when reading from
large files. Often it’s impractical, or even impossible, to read a large file into memory
before operating on it. But imagine that a given large file was simply some text assigned
to a variable, and that variable was a lazy list. As you learned earlier, lazy evaluation
261

262 Lesson 22 Interacting with the command line and lazy I/O
allows you to operate on infinitely long lists. No matter how large your input is, you can
handle it if you treat the problem like a large list.

In this lesson, you’ll look at a simple problem and solve it in a few ways. All you want to
do is create a program that reads in an arbitrarily long list of numbers entered by a user,
and then adds them all up and returns the result to the user. Along the way, you’ll learn
both how to write traditional I/O and how to use lazy evaluation to come up with a
much easier way to reason about the solution.

22.1 Interacting with the command line the nonlazy way

First let’s design a command-line tool that reads a list of numbers entered by the user
and adds them all up. You’ll create a program called sum.hs. In the preceding lesson,
you dealt with taking in user inputs and performing computations on them. The tricky
thing this time is that you don’t know how many items the user is going to enter in
advance.

One way to solve this is to allow the user to enter a value as an argument to the pro-
gram; for example:

$./sum 4
"enter your numbers"

 3
 5
 9
 25

"your total is 42"

To get arguments, you can use the getArgs function found in System.Environment. The type
signature of getArgs is as follows:

getArgs :: IO [String]

Consider this You want to write a program that will let a user test whether words
are palindromes. This is easy for a single word, but how can you let the user supply a
continuous list of potential palindromes and keep checking as long as the user has
words to check?

263Interacting with the command line the nonlazy way
So you get a list of Strings in the context of IO. Here’s an example of using getArgs in your main.

import System.Environment

main :: IO ()
main = do
 args <- getArgs

To get a feel for how getArgs works, it would be nice to print out all the args you have.
Because you know that args is a list, you could use map to iterate over each value. But you
have a problem, because you’re working in the context of a do statement with an IO type.
What you want is something like this.

map putStrLn args

But args isn’t an ordinary list, and putStrLn isn’t an ordinary function. You can map over a
list of values in IO with a special version of map that operates on Lists in the context of IO
(technically, on any member of the Monad type class). For that, there’s a special helper
function called mapM (the M stands for Monad).

main :: IO ()
main = do
 args <- getArgs
 mapM putStrLn args

Now when you compile your program, you still end up getting an error:

Couldn't match type '[()]' with '()'

GHC is complaining because the type of main is supposed to be IO (), but you’ll recall
that map always returns a list. The trouble is that you just want to iterate over args and
perform an IO action. You don’t care about the results, and don’t want a list back at the
end. To solve this, there’s another function called mapM_ (note the underscore). This works
just like mapM but throws away the results. Typically, when a function ends with an
underscore in Haskell, it indicates that you’re throwing away the results. With this small
refactor, you’re ready to go:

Listing 22.1 Getting command-line arguments by using getArgs

Listing 22.2 Proposed solution to print your args (note: won’t compile)

Listing 22.3 Next improvement: using mapM (still won’t compile)

264 Lesson 22 Interacting with the command line and lazy I/O
main :: IO ()
main = do
 args <- getArgs
 mapM_ putStrLn args

You can try a few commands and see what you get:

$./sum
$./sum 2
2
$./sum 2 3 4 5
2
3
4
5

Now you can add the logic to capture your argument. You should also cover the case of
a user failing to enter an argument. You’ll treat that as 0 lines. Also note that you’re
using the print function for the first time. The print function is (putStrLn . show) and
makes printing any type of value easier.

main :: IO ()
main = do
 args <- getArgs
 let linesToRead = if length args > 0
 then read (head args)
 else 0 :: Int
 print linesToRead

Listing 22.4 Using a command-line argument to determine how many lines to read

Quick check 22.1 Write a main that uses mapM to call getLine three times, and then use
mapM_ to print out the values’ input. (Hint: You’ll need to throw away an argument when using mapM
with getLine; use (_ -> ...) to achieve this.)

QC 22.1 answer

exampleMain :: IO ()
exampleMain = do
 vals <- mapM (_ -> getLine) [1..3]
 mapM_ putStrLn vals

265Interacting with the command line the nonlazy way
Now that you know how many lines you need, you need to repeatedly call getLine. Has-
kell has another useful function for iterating in this way called replicateM. The replicateM
function takes a value for the number of times you want to repeat and an IO action and
repeats the action as expected. You need to import Control.Monad to do this.

import Control.Monad

main :: IO ()
main = do
 args <- getArgs
 let linesToRead = if length args > 0
 then read (head args)
 else 0
 numbers <- replicateM linesToRead getLine
 print "sum goes here"

Okay, you’re almost there! Remember that getLine returns a String in the IO context.
Before you can take the sum of all these arguments, you need to convert them to Ints,
and then you can return the sum of this list.

import System.Environment
import Control.Monad

main :: IO ()
main = do
 args <- getArgs
 let linesToRead = if length args > 0
 then read (head args)
 else 0 :: Int
 numbers <- replicateM linesToRead getLine
 let ints = map read numbers :: [Int]
 print (sum ints)

That was a bit of work, but now you have a tool that lets users enter as many ints as they
want, and you can add them up for them:

Listing 22.5 Reading a number of lines equal to the user’s argument

Listing 22.6 The full content of your sum.hs program

266 Lesson 22 Interacting with the command line and lazy I/O
$./sum 2
4
59

$./sum 4
1
2
3
410

Even in this simple program, you’ve covered a number of the tools used to handle user
inputs. Table 22.1 covers some useful functions for iterating in an IO type.

Next you’ll look at how much easier this would be if you used lazy evaluation.

22.2 Interacting with lazy I/O

Your last program worked but had a few issues. First is that you require the user to
input the specific number of lines needed. The user of your sum program needs to know
this ahead of time. What if users are keeping a running tally of visitors to a museum, or

Table 22.1 Functions for iterating in an IO context

Function Behavior
mapM Takes an IO action and a regular list, performing the action on each item in the list,

and returning a list in the IO context

mapM_ Same as mapM, but it throws away the values (note the underscore)

replicateM Takes an IO action, an Int n, and then repeats the IO action n times, returning the
results in an IO list

replicateM_ Same as replicateM, but it throws away the results

Quick check 22.2 Write your own version of replicateM, myReplicateM, that uses mapM. (Don’t
worry too much about the type signature.)

QC 22.2 answer
myReplicateM :: Monad m => Int -> m a -> m [a]
myReplicateM n func = mapM (_ -> func) [1 .. n]

267Interacting with lazy I/O
piping in the output of another program to yours? Recall that the primary purpose of
having an IO type is to separate functions that absolutely must work in I/O with more
general ones. Ideally, you want as much of your program logic outside your main. In this
program, all your logic is wrapped up in IO, which indicates that you’re not doing a
good job of abstracting out your overall program. This is partially because so much I/O
behavior is intermingled with what your program is supposed to be doing.

The root cause of this issue is that you’re treating your I/O data as a sequence of values
that you have to deal with immediately. An alternative is to think of the stream of data
coming from the user in the same way you would any other list in Haskell. Rather than
think of each piece of data as a discrete user interaction, you can treat the entire interac-
tion as a list of characters coming from the user. If you treat your input as a list of Chars,
it’s much easier to design your program and forget all about the messy parts of I/O. To
do this, you need just one special action: getContents. The getContents action lets you treat
the I/O stream for STDIN as a list of characters.

You can use getContents with mapM_ to see how strangely this can act. You’ll be working
with a new file named sum_lazy.hs for this section.

main :: IO ()
main = do
 userInput <- getContents
 mapM_ print userInput

The getContents action reads input until it gets an end-of-file signal. For a normal text file,
this is the end of the file, but for user input you have to manually enter it (usually via
Ctrl-D in most terminals). Before running this program, it’s worth thinking about what’s
going to happen, given lazy evaluation. In a strict (nonlazy) language, you’d assume
that you have to wait until you manually enter Ctrl-D before your input would be
printed back to use. Let’s see what happens in Haskell:

$./sum_lazy
hi
'h'
'i'
'\n'
what?
'w'

Listing 22.7 A simple main to explore lazy I/O

268 Lesson 22 Interacting with the command line and lazy I/O
'h'
'a'
't'
'?'
'\n'

As you can see, because Haskell can handle lazy lists, it’s able to process your text as
soon as you enter it! This means you can handle continuous interaction in interesting
ways.

22.2.1 Thinking of your problem as a lazy list

With getContents, you can rewrite your program, this time completely ignoring IO until
later. All you need to do now is take a list of characters consisting of numbers and new-
line characters \n. Here’s a sample list.

sampleData = ['6','2','\n','2','1','\n']

If you can write a function that converts this into a list of Ints, you’ll be all set! There’s a
useful function for Strings that you can use to make this easy. The lines function allows
you to split a string by lines. Here’s an example in GHCi with your sample data:

GHCi> lines sampleData
["62","21"]

The Data.List.Split module contains a more generic function than lines, splitOn, which
splits a String based on another String. Data.List.Split isn’t part of base Haskell, but is

Listing 22.8 Sample data representing a string of input characters

Quick check 22.3 Use lazy I/O to write a program that reverses your input and prints it
back to you.

QC 22.3 answer
reverser :: IO ()
reverser = do
 input <- getContents
 let reversed = reverse input
 putStrLn reversed

269Interacting with lazy I/O
W

G
50

0
58

53
included in the Haskell Platform. If you aren’t using the Haskell Platform, you may
need to install it. The splitOn function is a useful one to know when processing text.
Here’s how lines could be written with splitOn.

myLines = splitOn "\n"

With lines, all you need is to map the read function over your new lists and you’ll get
your list of Ints. You’ll create a toInts function to do this.

toInts :: String -> [Int]
toInts = map read . lines

Making this function work with IO is remarkably easy. You apply it to your userInput you
captured with getContents.

main :: IO ()
main = do
 userInput <- getContents
 let numbers = toInts userInput
 print (sum numbers)

As you can see, your final main is much cleaner than your first version. Now you can
compile your program and test it out:

$./sum_lazy
4
234
23
1
3
<ctrl-d>
265

This is much nicer than before, as your code is cleaner and users don’t have to worry
about how many numbers are in the list when they start. In this lesson, you’ve seen how

Listing 22.9 Defining myLines with splitOn from Data.List.Split

Listing 22.10 toInts function to convert your Char list into a list of Ints

Listing 22.11 Your lazy solution to processing your numbers

270 Lesson 22 Interacting with the command line and lazy I/O
to structure your program to work in a way similar to most other programming lan-
guages. You request data from the user, process that data, and then request more input
from the user. In this model, you’re performing strict I/O, meaning that you evaluate
each piece of data as you get it. In many cases, if you treat the user input as a regular
lazy list of Chars, you can abstract out nearly all of your non-I/O code much more easily.
In the end, you have only one point where you need to treat your list as I/O: when you
first receive it. This allows all the rest of your code to be written as code that operates on
a normal list in Haskell.

Summary

In this lesson, our objective was to introduce you to the ways to write simple command-
line interfaces in Haskell. The most familiar way is to treat I/O just like any other pro-
gramming language. You can use do-notation to create a procedural list of IO actions,
and build interactions with I/O this way. A more interesting approach, possible in few
languages other than Haskell, is to take advantage of lazy evaluation. With lazy evalua-
tion, you can think of the entire input stream as a lazily evaluated list of characters,
[Char]. You can radically simplify your code by writing out pure functions as though
they were just working on the type [Char]. Let’s see if you got this.

Q22.1 Write a program, simple_calc.hs, that reads simple equations involving adding
two numbers or multiplying two numbers. The program should solve the equation each
user types into each line as each line is entered.

Q22.2 Write a program that allows a user to select a number between 1 and 5 and then
prints a famous quote (quotes are of your choosing). After printing the quote, the pro-
gram will ask whether the user would like another. If the user enters n, the program
ends; otherwise, the user gets another quote. The program repeats until the user enters
n. Try to use lazy evaluation and treat the user input as a list rather than recursively call-
ing main at the end.

Quick check 22.4 Write a program that returns the sum of the squares of the input.

QC 22.4 answer
mainSumSquares :: IO ()
mainSumSquares = do
 userInput <- getContents
 let numbers = toInts userInput
 let squares = map (^2) numbers
 print (sum squares)

23LESSON
WORKING WITH TEXT AND UNICODE

After reading lesson 23, you’ll be able to

 Use the Text type for more-efficient text processing
 Change Haskell’s behavior with language extensions
 Program by using common text functions
 Use Text to properly handle Unicode text

So far in this book, you’ve made heavy use of the String type. In the preceding lesson,
you saw that you can even view an I/O stream as a lazy list of type Char, or a String. String
has been useful in helping you explore many topics in this book. Unfortunately, String
has a huge problem: it can be woefully inefficient.

From a philosophical standpoint, nothing could be more perfect than representing one
of the more important types in programing as one of the most foundational data struc-
tures in Haskell: a list. The problem is that a list isn’t a great data structure to store data
for heavy string processing. The details of Haskell performance are beyond the scope of
this book, but it suffices to say that implementing Strings as a linked list of characters is
needlessly expensive in terms of both time and space.

In this lesson, you’ll take a look at a new type, Text. You’ll explore how to replace String
with Text for more-efficient text processing. Then you’ll learn about the functions com-
mon to both String and Text for processing text. Finally, you’ll learn about how Text han-
dles Unicode by building a function that can highlight search text, even in Sanskrit!
271

272 Lesson 23 Working with text and Unicode
23.1 The Text type

For practical and commercial Haskell programming, the preferred type for working
with text data is the type Text. The Text type can be found in the module Data.Text. In
practice, Data.Text is almost always imported as a qualified import by using a single let-
ter, usually T:

import qualified Data.Text as T

Unlike String, Text is implemented as an array under the hood. This makes many string
operations faster and much more memory-efficient. Another major difference between
Text and String is that Text doesn’t use lazy evaluation. Lazy evaluation proved to be help-
ful in the preceding lesson, but in many real-world cases it can lead to performance
headaches. If you do need lazy text, you can use Data.Text.Lazy, which has the same inter-
face as Data.Text.

23.1.1 When to use Text vs. String

In the commercial Haskell community, Data.Text is strongly preferred over String. Some
members of the Haskell community argue that the standard Prelude should be thrown
out for anything practical due to the heavy dependency on String. While learning Has-
kell, String is useful for two reasons. First, as mentioned, many of the basic string utili-
ties are baked into the standard Prelude. Second, lists are to Haskell what arrays are to C.
Many concepts in Haskell are nicely demonstrated with lists, and strings are useful lists.
For learning purposes, feel free to stick with String. But for anything beyond exercises,
use Data.Text as much as possible. You’ll continue to use String in many places in this
book but will start to use Data.Text more often.

23.2 Using Data.Text

The first thing you need to do is learn how to use the Text type. Data.Text has two func-
tions, pack and unpack, which can be used to convert String -> Text and Text -> String. Fig-
uring out which function does what can easily be determined by their type signatures:

Consider this In Haskell, String is a special case of a List. But in most programming
languages, string types are stored much more efficiently as arrays. Is there a way in
Haskell to use the tools you already know about for working with the String type, but still
have the efficiency of an array-based implementation?

273Using Data.Text
T.pack :: String -> T.Text
T.unpack :: T.Text -> String

Here are some examples of converting a String to Text and back again.

firstWord :: String
firstWord = "pessimism"

secondWord :: T.Text
secondWord = T.pack firstWord

thirdWord :: String
thirdWord = T.unpack secondWord

It’s important to note that conversion isn’t computationally cheap, because you have to
traverse the entire string. Avoid converting back and forth between Text and String.

23.2.1 OverloadedStrings and Haskell extensions

An annoying thing about T.Text is that this code throws an error.

myWord :: T.Text
myWord = "dog"

The error you get reads as follows:

Couldn't match expected type 'T.Text' with actual type '[Char]'

This error occurs because the literal "dog" is a String. This is particularly annoying because
you don’t have this problem with numeric types. Take, for example, these numbers.

Listing 23.1 Converting back and forth between String and Text types

Listing 23.2 The problem with using literal strings to define Text

Quick check 23.1 Create fourthWord once again, making the String type T.Text.

QC 23.1 answer

fourthWord :: T.Text
fourthWord = T.pack thirdWord

274 Lesson 23 Working with text and Unicode
myNum1 :: Int
myNum1 = 3

myNum2 :: Integer
myNum2 = 3

myNum3 :: Double
myNum3 = 3

This code will compile just fine even though you’ve used the same literal, 3, for three
different types.

Clearly this isn’t a problem that you can solve with clever coding, no matter how power-
ful Haskell may be. To fix this issue, you need a way to fundamentally change how
GHC reads your file. Surprisingly, an easy fix for this exists! GHC allows you to use lan-
guage extensions to alter the way Haskell itself works. The specific extension you’re going
to use is called OverloadedStrings.

There are two ways to use a language extension. The first is by using it when compiling
with GHC. To do this, use the flag -X followed by the extension name. For a program
named text.hs, this looks like the following:

$ ghc text.hs -XOverloadedStrings

This can also be used as an argument to GHCi, to start an instance of GHCi by using the
language extension.

The trouble is that someone who is using your code (and that someone could be you)
might not remember to use this flag. A preferred method is to use a LANGUAGE pragma.
The pragma looks like this:

{-# LANGUAGE <Extension Name> #-}

Here’s a text.hs file that will allow you to use literal values for Text types.

{-# LANGUAGE OverloadedStrings #-}
import qualified Data.Text as T

aWord :: T.Text
aWord = "Cheese"

Listing 23.3 The same numeric literal used in three types

Listing 23.4 Using OverloadedStrings to easily assign Text using a literal

275Using Data.Text
main :: IO ()
main = do
 print aWord

With the LANGUAGE pragma, you can compile this program just like any other Haskell
program.

Language extensions are powerful and range from practical to experimental. In real-
world Haskell, a few extensions are common and useful.

23.2.2 Basic Text utilities

The trouble with using Text instead of String is that most useful functions for working
with text are intended to be used with the String type. You definitely don’t want to be
converting Text back to String in order to use functions such as lines. Luckily, nearly
every important String function has its own version for working on Text in Data.Text.
Here’s some sampleInput you’ll work with to show how these functions work.

Other useful language extensions
Language extensions are common in practical Haskell. They’re powerful, as they allow
you to use features of Haskell that may not be available as a default in the language for
years, if ever. OverloadedStrings is the most common. Here are a few others you may
come across or find useful:

 ViewPatterns—Allows for more-sophisticated pattern matching.
 TemplateHaskell—Provides tools for Haskell metaprogramming.
 DuplicateRecordFields—Solves the annoying problem from lesson 16, where using

the same field name for different types using record syntax causes a conflict.
 NoImplicitPrelude—As mentioned, some Haskell programmers prefer to use a

custom Prelude. This language extension allows you to not use the default Prelude.

Quick check 23.2 There’s a language extension called TemplateHaskell. How would you com-
pile templates.hs to use this extension? How would you add it using a LANGUAGE pragma?

QC 23.2 answer

$ghc templates.hs -XTemplateHaskell

{-# LANGUAGE TemplateHaskell -#}

276 Lesson 23 Working with text and Unicode
sampleInput :: T.Text
sampleInput = "this\nis\ninput"

To use lines on this example, all you have to do is make sure you preface lines with T.,
because of your qualified import. Here’s an example in GHCi:

GHCi>T.lines sampleInput
["this","is","input"]

The following are a few other useful functions that exist for both Text and String.

words

The words function is the same as lines, but it works for any whitespace characters, rather
than just new lines.

someText :: T.Text
someText = "Some\ntext for\t you"

In GHCi, you can easily see how this works:

GHCi> T.words someText
["Some","text","for","you"]

splitOn

Lesson 22 briefly mentioned splitOn. For strings, splitOn is part of the Data.List.Split mod-
ule. Thankfully, the text version is included in Data.Text so no additional import is
needed. splitOn lets you split up text by any substring of text.

breakText :: T.Text
breakText = "simple"

exampleText :: T.Text
exampleText = "This is simple to do"

And in GHCi:

GHCi> T.splitOn breakText exampleText
["This is "," to do"]

Listing 23.5 sampleInput of type Text

Listing 23.6 someText as a sample input for words

Listing 23.7 Code for splitOn example

277Using Data.Text
unwords and unlines

Breaking up Text by using whitespace is fairly common when working with I/O. The
inverse is also common, so two functions can undo what you’ve just done, conveniently
called unlines and unwords. Their usage is fairly obvious, but they’re useful functions to
have in your tool belt:

GHCi> T.unlines (T.lines sampleInput)
"this\nis\ninput\n"
GHCi> T.unwords (T.words someText)
"Some text for you"

Intercalate

You’ve used the string version of intercalate before in lesson 18. It’s the opposite of splitOn:

GHCi> T.intercalate breakText (T.splitOn breakText exampleText)
"This is simple to do"

Almost any useful function for working with strings works on text and has its own Text
version.

Monoid operations

The exception to the rule that most useful functions on strings work on text is the ++
operator. So far, you’ve used ++ to combine strings:

combined :: String
combined = "some" ++ " " ++ "strings"

Unfortunately, ++ is defined only on the List type, so it won’t work for Text. In lesson 17,
we discussed the Monoid and Semigroup type classes, which allow you to combine like types
and concatenate lists of the same type. This provides a general solution to combining both
strings and text. You can either import Semigroup and use <> to combine text, or use mconcat:

{-# LANGUAGE OverloadedStrings #-}
import qualified Data.Text as T
import Data.Semigroup

combinedTextMonoid :: T.Text
combinedTextMonoid = mconcat ["some"," ","text"]

combinedTextSemigroup :: T.Text
combinedTextSemigroup = "some" <> " " <> "text"

278 Lesson 23 Working with text and Unicode
Because String is also an instance of Monoid and Semigroup, strings can be combined in the
same way.

23.3 Text and Unicode

The Text type has excellent support for working seamlessly with Unicode text. At one
point, programmers could largely ignore the complications of working with non-ASCII
text. If input had accents or umlauts, it could be squashed out of existence; it was accept-
able to change Charlotte Brontë to Charlotte Bronte. But ignoring Unicode today and in the
future is a recipe for disaster. There’s no reason to be unable to record a user’s name that
includes diacritical marks, or to fail to handle Japanese Kanji.

23.3.1 Searching Sanskrit

To demonstrate how seamlessly you can use Text for working with Unicode characters,
you’ll build a simple program that highlights words in text. The trick is that you’re
going to be highlighting Sanskrit words written in Devanagari script! The Unicode text
can be easily copied from this link if you want to paste this into your editor to follow
along: https://gist.github.com/willkurt/4bced09adc2ff9e7ee366b7ad681cac6.

All of your code will go in a file named bg_highlight.hs. Your program will take a text
query and a body of text, and use curly braces, {}, to highlight all cases of the word
you’re looking for. For example, if dog is your query text, and your main text is a dog
walking dogs, you’d expect this output:

a {dog} walking {dog}s

Quick check 23.3 Create your own version of T.lines and T.unlines by using splitOn and
T.intercalate.

QC 23.3 answer
myLines :: T.Text -> [T.Text]
myLines text = T.splitOn "\n" text

myUnlines :: [T.Text] -> T.Text
myUnlines textLines = T.intercalate "\n" textLines

https://gist.github.com/willkurt/4bced09adc2ff9e7ee366b7ad681cac6

279Text and Unicode
In this task, you want to highlight the Sanskrit word dharma in a sample text from the Bha-
vagad Gita. The word dharma has many meanings in Sanskrit, ranging from duty to refer-
ences of cosmic order and divine justice. Sanskrit is a language that has no singular writing
system. The most popular today is Devanagari, an alphabet used by more than 120 lan-
guages, including Hindi. Here’s the Sanskrit word dharma written in Devanagari script.

dharma :: T.Text
dharma = " "

Next you’ll take an excerpt from the Bhavagad Gita, itself a part of the Indian epic, The
Mahabharata. Here’s our section.

bgText :: T.Text
bgText = " "

Your goal here is to highlight everywhere in your bgText where the word dharma appears.
In English, your first thought might be to split a sentence by using T.words, and then look
for the word you’re looking for. But Sanskrit is more complicated. Because Sanskrit was
a spoken language long before it was written, whenever words are naturally combined
when speaking a sentence, they end up combined in text. To solve this, you can split
your text on the target text query, wrap the query in brackets, and then put it all back
together. You can use T.splitOn to split up the text, mconcat to add brackets to your query
string, and T.intercalate to piece your words back together.

Here’s your highlight function.

highlight :: T.Text -> T.Text -> T.Text
highlight query fullText = T.intercalate highlighted pieces
 where pieces = T.splitOn query fullText
 highlighted = mconcat ["{",query,"}"]

Listing 23.8 A Unicode text variable for dharma written in Devanagari script

Listing 23.9 Your search text from the Bhavagad Gita

Listing 23.10 The highlight function for highlighting text segments

धर्म

श्रेयान्स्वधर्मो विगुणः परधर्मात्स्वनुष्ठितात्।स्वधर्मे निधनं श्रेयः परधर्मो

After you have the
query text format
with brackets, you
can use intercalate
to stitch everything
back together.

Using splitOn, you can
find all locations of
your query text and
split the text based on
these locations.

You can use
mconcat to take the
query and surround
it in brackets.

280 Lesson 23 Working with text and Unicode
Finally, you can put this all together in your main. But first you have to learn how to use
IO with your Text type.

23.4 Text I/O

Now that you have a highlight function, you want to print the results of your highlight-
ing back to the users. The trouble is that so far you’ve always used an IO String type to
send output to the user. One solution would be to unpack your end text back into a
string. What you want is to have a putStrLn for Text; this way, you never have to convert
your text to a string (and can hopefully forget about strings altogether). The Data.Text
module includes only functions for manipulating text. To perform text I/O, you need to
import the Data.Text.IO package. You’ll do another qualified import:

import qualified Data.Text.IO as TIO

With TIO.putStrLn, you can print your Text type just as you would String. Any IO action
you’ve used related to the String type has an equivalent in Data.Text.IO. Now you can put
together your main, which calls your highlight function on your data. Here’s your full file,
including the necessary imports and LANGUAGE pragma.

{-# LANGUAGE OverloadedStrings #-}
import qualified Data.Text as T
import qualified Data.Text.IO as TIO

dharma :: T.Text
dharma :: " "

bgText :: T.Text
bgText = " "

highlight :: T.Text -> T.Text -> T.Text
highlight query fullText = T.intercalate highlighted pieces
 where pieces = T.splitOn query fullText

highlighted = mconcat ["{",query,"}"]

main = do
 TIO.putStrLn (highlight dharma bgText)

Listing 23.11 Full file for your program

धमॅ

श्रेयान्स्वधर्मो विगुणः परधर्मात्स्वनुष्ठितात्।स्वधर्मे निधनं श्रेयः परधर्मो भयावहः

281Summary
You can compile your program and see the highlighted text:

$./bg_highlight

Now you have a program that easily handles Unicode and also works with text data
much more efficiently than String.

Summary

In this lesson, our objective was to teach you how to efficiently process text (including
Unicode) in Haskell by using Data.Text. Although strings as lists of characters are a use-
ful tool for teaching Haskell, in practice they can lead to poor performance. The pre-
ferred alternative whenever you’re working with text data is to use the Data.Text module.
One issue you came across was that Haskell, by default, doesn’t know how to under-
stand string literals as Data.Text. This can be remedied by using the OverloadedStrings lan-
guage extension. Let’s see if you got this.

Q23.1 Rewrite the hello_world.hs program (reproduced here) from lesson 21 to use
Text instead of String types.

helloPerson :: String -> String

helloPerson name = "Hello" ++ " " ++ name ++ "!"

main :: IO ()
main = do
 putStrLn "Hello! What's your name?"
 name <- getLine
 let statement = helloPerson name
 putStrLn statement

Q23.2 Use Data.Text.Lazy and Data.Text.Lazy.IO to rewrite the lazy I/O section from lesson
22 by using the Text type.

toInts :: String -> [Int]
toInts = map read . lines

main :: IO ()
main = do
 userInput <- getContents
 let numbers = toInts userInput
 print (sum numbers)

यान्स्व{धर्म}ो विगुणः पर{धर्म}ात्स्वनुष्ठितात्।स्व{धर्म}े निधनं श्रेयः पर{धर्म}ो भया

24LESSON
WORKING WITH FILES

After reading lesson 24, you’ll be able to

 Work with file handles in Haskell
 Read from and write to files
 Understand limitations of lazy evaluation for I/O

One of the most important uses of I/O is to read and write from files. So far in this unit,
you’ve learned a bit of the syntax behind IO types in Haskell, saw how to build command-
line programs using lazy evaluation, and learned about efficient text processing by using
the Text type. Now you’ll look at working with files, including how they can make using
lazy I/O a bit tricky. You’ll start with the basics of opening, closing, reading from, and
writing to simple files. Then you’ll write a program that takes various statistics from an
input file (including word count and character count) and writes them to a file. You’ll
discover that even in this rather straightforward task, lazy evaluation can be a major
headache. The solution is to use strict data types to force the program to perform as
you’d expect.

Consider this In lesson 22, you saw a way to add up numbers entered in as user
input. How can you write the same program that works with a file rather than user
input (other than manually piping the file into your program)?
282

283Opening and closing files
24.1 Opening and closing files

Before learning how files work in Haskell, you need to have a file to work with. You’ll
look at the basics of opening and closings files. Your first task is to open and close a text
file. Here’s the hello.txt file you’ll start with.

Hello world!
Good bye world!

Next you need a file that you’ll put all of your code in. You’ll call your file hello_file.hs.
To start, you need to include the System.IO module, which will allow you to read and
write files:

import System.IO

The first thing you need to do to work with your file is open it. To do this, you can use
the openFile function, which has the following type signature (reminder: you can use :t
to look up the type signature of a function in GHCi):

openFile :: FilePath -> IOMode -> IO Handle

As is usually the case, the more you understand the type of a function, the better you
can understand how it works. If you open GHCi and use the :info command, you’ll find
that FilePath is just a type synonym for String:

type FilePath = String

Using :info on IOMode, you find it’s a simple type like Bool, consisting of only single
constructors:

data IOMode = ReadMode | WriteMode | AppendMode | ReadWriteMode

It should be clear from these constructor names that IOMode specifies whether you’re
reading, writing, appending, and so forth, your file. This is similar to nearly every other
programming language, which typically requires programmers to specify what they’re
going to be doing with the file they’re accessing.

Listing 24.1 hello.txt sample file

284 Lesson 24 Working with files
You’re then left with the IO Handle. The Handle type is a file handle that lets you pass
around a reference to a file. As we’ve discussed throughout the unit, the IO type means
that you have a handle in the context of IO. In order to get this file handle, you’ll ulti-
mately be doing the work in your main IO action.

Now you can put this all together and open hello.txt. The one missing piece is that just
as in most other languages, whenever you open a file, you want to close it when you’re
finished. This can be achieved by using hClose (for handle close).

main :: IO ()
main = do
 myFile <- openFile "hello.txt" ReadMode
 hClose myFile
 putStrLn "done!"

Opening and closing a file is boring if you don’t do anything with what’s inside! You
clearly want to read and write to files. To do this, you can use two familiar functions,
hPutStrLn and hGetLine. The only difference between these two functions and putStrLn and
getLine is that you need to pass in a handle. It turns out that putStrLn is a specific instance
of hPutStrLn. In hPutStrLn the handle is assumed to be stdout. Likewise, getLineis hGetLine
where the handle is stidn. Here’s a modified version of your code that reads the first line
from hello.txt and writes it to the console, and then reads the second line and writes it to
a new file, goodbye.txt.

main :: IO ()
main = do
 helloFile <- openFile "hello.txt" ReadMode

Listing 24.2 main, which opens and closes a file

Listing 24.3 Reading from a file and writing to stdout and another file

Quick check 24.1 If you want to open a file named stuff.txt to read it, what will the function
call look like?

QC 24.1 answer
openFile "stuff.txt" ReadMode

285Opening and closing files
 firstLine <- hGetLine helloFile
 putStrLn firstLine
 secondLine <- hGetLine helloFile
 goodbyeFile <- openFile "goodbye.txt" WriteMode
 hPutStrLn goodbyeFile secondLine
 hClose helloFile
 hClose goodbyeFile
 putStrLn "done!"

This program works because you happen to know that hello.txt has two lines. What if
you want to revise this program to read each line and print it out as it goes? You’d need
to be able to check for the end of the file. To do this, you use hIsEOF. Here’s a version of
your program that checks the Hello file first before printing out the first line.

main :: IO ()
main = do
 helloFile <- openFile "hello.txt" ReadMode
 hasLine <- hIsEOF helloFile
 firstLine <- if not hasLine
 then hGetLine helloFile
 else return "empty"
 putStrLn "done!"

Listing 24.4 Checking whether helloFile is empty before printing the first line

Quick check 24.2 Write the code to check whether the second line is empty before writing it
to a file.

QC 24.2 answer For this example, you’ll return an empty String if there’s no second line.

hasSecondLine <- hIsEOF helloFile
secondLine <- if not hasSecondLine
 then hGetLine helloFile
 else return ""

286 Lesson 24 Working with files
24.2 Simple I/O tools

Although it’s important to understand how file handles work, in many cases you can get
away without dealing with them directly. A few useful functions named readFile, write-
File, and appendFile hide away many of the details of reading, writing, and appending
files. Here are the type signatures of these functions:

readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> IO ()
appendFile :: FilePath -> String -> IO ()

To see how these functions are used, you’ll create a program called fileCounts.hs. Your
program will take a file as an argument, and then count the characters, words, and lines
in the file. The program will display this data to the user as well as append the info to a
stats.dat file. Here’s an example of what stats.dat will look like, given that it has to be
used on two files, hello.txt and what.txt.

hello.txt chars: 29 words: 5 lines: 2
what.txt chars: 30000 words: 2404 lines: 1

Now you can move on to write your code to perform this analysis.

The first step is to write a function that gets all of your counts. You can write this by
assuming that your input data is a String. You’ll represent your counts as a 3-tuple.

getCounts :: String -> (Int,Int,Int)
getCounts input = (charCount, wordCount, lineCount)
 where charCount = length input
 wordCount = (length . words) input
 lineCount = (length . lines) input

Next you’ll create the countsText function to convert a 3-tuple of counts into a human-
readable summary. You’ll use unwords to join your text.

Listing 24.5 Sample contents of stats.dat file for your fileCounts.hs program

Listing 24.6 getCounts collects character, word, and line count info into a tuple

287Simple I/O tools
countsText :: (Int,Int,Int) -> String
countsText (cc,wc,lc) = unwords ["chars: "
 , show cc
 , " words: "
 , show wc
 , " lines: "
 , show lc]

In GHCi, you can see that this works great:

GHCi> (countsText . getCounts) "this is\n some text"
"chars: 18 words: 4 lines: 2"

You can now easily put these functions together with readFile and appendFile to build
your program.

main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 input <- readFile fileName
 let summary = (countsText . getCounts) input
 appendFile "stats.dat" (mconcat [fileName, " ",summary, "\n"])
 putStrLn summary

Listing 24.7 countsText renders count data in a human-readable form

Listing 24.8 Putting your code together into main

Quick check 24.3 Why is it preferable to use unwords instead of combining your strings
with ++?

QC 24.3 answer The ++ operator is specific to lists. In lesson 23, we talked at length about the
other text types beyond String. The unwords function has a version for Text as well as String, whereas ++
works only on type String. Using unwords makes it much, much easier to refactor your code if you decide
to swap out String for Text.

288 Lesson 24 Working with files
If you compile this program, you can see that it works as expected:

$./fileCounts hello.txt
chars: 29 words: 5 lines: 2

$ cat stats.dat
hello.txt chars: 29 words: 5 lines: 2

Using readFile and appendFile made solving this problem much easier than if you were
using handles and openFile.

24.3 The trouble with lazy I/O

Your fileCounts.hs program is clearly missing a lot of important checks: you don’t
bother to make sure there are arguments or that the file exists. These have been inten-
tionally left out to make the code easier to read for learning. There’s one interesting
thing you can try that will create a bug that you might not expect. What happens if you
try to use fileCounts on its own stats.dat file?

$./fileCounts stats.dat
fileCounts: stats.dat: openFile: resource busy (file is locked)

You get an error! The trouble here is that readFile doesn’t close the file handle. Under the
hood, readFile uses hGetContents, which works exactly like getContents except you’re
required to pass in a file handle. Here’s how readFile is implemented in Haskell:

readFile :: FilePath -> IO String
readFile name = do
 inputFile <- openFile name ReadMode
 hGetContents inputFile

You can see that this code never closes the file handle, and just returns the results of
hGetContent. If you ever need to view the source of a function in Haskell, you can look it
up on Hackage, and the definition will contain a link to the source.

You can see why readFile doesn’t close the handle if you attempt to fix your main by writ-
ing out the full operations you need. Here’s your revised code.

289The trouble with lazy I/O
II

39
4

26
76
main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 file <- openFile fileName ReadMode
 input <- hGetContents file
 hClose file
 let summary = (countsText . getCounts) input
 appendFile "stats.dat" (mconcat [fileName, " ",summary, "\n"])
 putStrLn summary

That’s a bit more verbose, but should prevent the error involving appendFile from trying
to write a file that you still have open. Let’s recompile and try this again:

$./fileCounts stats.dat
fileCounts: stats.dat: hGetContents: illegal operation (delayed read on

➥closed handle)

This time you have an even stranger error! Your program is completely broken now, as
it will no longer work with hello.txt either:

$./fileCounts hello.txt
fileCounts: stats.dat: hGetContents: illegal operation (delayed read on

➥closed handle)

The problem here is lazy evaluation. The key to lazy evaluation is that no code is evalu-
ated until it’s absolutely needed. Your input isn’t used until you define summary. But the
problem doesn’t end there: summary isn’t used until you call appendFile. Because appendFile
performs an IO action, it does force summary to be evaluated, which forces input to be eval-
uated. The real problem is that hClose closes the file immediately because it’s an IO action
and must happen as soon as you evaluate it. Figure 24.1 provides a visual of the process.

So you can put hClose after appendFile because that’s when summary is finally evaluated,
right?

 appendFile (mconcat [fileName, " ",summary, "\n"])
 hClose file

Listing 24.9 Revised main with the readFile function expanded out

290 Lesson 24 Working with files
But now you’re back where you started; you’re closing the file after you need a new han-
dle! You need a solution that forces you to evaluate summary before you write to the file. One
way to achieve this is to move putStrLn summary before you write to the file. This will force
summary to be evaluated first. Then you can close the handle, finally appending the file.

main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 file <- openFile fileName ReadMode
 input <- hGetContents file
 let summary = (countsText . getCounts) input
 putStrLn summary

Listing 24.10 main with the evaluation bugs fixed

main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 file <- openFile fileName ReadMode
 input <- hGetContents file
 hClose file
 let summary = (countsText . getCounts) input
 appendFile "stats.dat" (mconcat
 [fileName, " ", summary, "\n"])
 putStrLn summary

Finally, you call appendFile which, like hClose,
has something to do. At this point, summary
is evaluated and because of this input is as
well. But now the file is closed, and the OS
won’t let you read from it anymore!

Because hGetContents is lazy, the value
stored in input isn’t used until it’s needed.
At this point, you can think of input as a
substitute for “hGetContents file”.

When you define summary, you’re
using input, but you still don’t
need to evaluate it. The input
will be evaluated only when
summary is evaluated.

In terms of lazy evaluation, hClose
has nothing to wait for and executes
immediately. At this point in the
program, the file is closed but input
hasn't been evaluated yet.

Figure 24.1 The problem with closing a file before we use it when using lazy evaluation

input still hasn’t been
evaluated yet.

Even though summary is
defined, it hasn’t been
used. Neither summary nor
input have been evaluated.

putStrLn needs to print summary; this forces
summary to be evaluated, and thus the input to
be read in so it can be used by summary.

291Strict I/O

 hClose file
 appendFile "stats.dat" (mconcat [fileName, " ",summary, "\n"])

This should serve as an object lesson that although lazy I/O can be powerful, it can also
lead to nasty bugs.

24.4 Strict I/O

The best solution to this problem is to use a strict (nonlazy) type. We mentioned in les-
son 23 that Data.Text is preferred over String when working with text data. We also men-
tioned that Data.Text is a strict data type (it doesn’t use lazy evaluation). You can rewrite
your original program by using the Text type, and your problem will be solved!

{-# LANGUAGE OverloadedStrings #-}

import System.IO
import System.Environment
import qualified Data.Text as T
import qualified Data.Text.IO as TI

getCounts :: T.Text -> (Int,Int,Int)
getCounts input = (charCount, wordCount, lineCount)
 where charCount = T.length input
 wordCount = (length . T.words) input
 lineCount = (length . T.lines) input

Now closing the file causes no
problem because the value inside
summary has been evaluated.

Appending the file works
as expected; your file will
be updated correctly.

Quick check 24.4 Why doesn’t readFile close the handle?

QC 24.4 answer Because of lazy evaluation, if readFile closes the handle, you’d never be able to
use the contents of the file. This is because a function acting on the contents of the file wouldn’t be called
until after the file handle was closed

292 Lesson 24 Working with files
countsText :: (Int,Int,Int) -> T.Text
countsText (cc,wc,lc) = T.pack (unwords ["chars: "

, show cc
, " words: "
, show wc
, " lines: "
, show lc])

main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 input <- TI.readFile fileName
 let summary = (countsText . getCounts) input
 TI.appendFile "stats.dat"

(mconcat [(T.pack fileName), " ",summary, "\n"])
 TI.putStrLn summary

Strict evaluation means that your I/O code works just as you’d expect it to in any other
programming language. Although lazy evaluation has many great benefits, for any non-
trivial I/O, reasoning about its behavior can be tricky. Your fileCounts.hs was a trivial
demo program, but you still had a nasty bug to fix created by lazy evaluation.

24.4.1 When to use lazy vs. strict

In this unit, you’ve seen cases in which lazy evaluation in I/O can make life much easier
and much more difficult. The key factor in deciding between the two is the complexity
of your program’s I/O. If your program is reading a single file and doing relatively little
I/O work, sticking with lazy evaluation will likely provide many benefits and few prob-
lems. As soon as your I/O becomes even moderately complex, involving reading and
writing files, or operations for which order is important, stick with strict evaluation.

Summary

In this lesson, our objective was to teach you the basics of reading and writing from files
in Haskell. Most file I/O is similar to other forms of I/O in Haskell that you’ve seen.
Issues can arise when you use lazy I/O without understanding how this will impact your

293Summary
program’s behavior. Although lazy I/O can greatly simplify code, it becomes incredibly
difficult to reason about as program complexity increases. Let’s see if you got this.

Q24.1 Write a version of the Unix cp program that will copy a file and allow you to
rename it (just mimic the basic functionality and don’t worry about specific flags).

Q24.2 Write a program called capitalize.hs that will take a file as an argument, read
that file, and then rewrite it capitalized.

25 LESSON
WORKING WITH BINARY DATA

After reading lesson 25, you’ll be able to

 Use the ByteString type to efficiently work with binary data
 Treat ByteStrings as regular ASCII strings by using ByteString.Char8
 Glitch JPEG images by using Haskell
 Work with binary Unicode data

In this lesson, you’ll learn about working with binary file data by using Haskell’s
ByteString type. ByteString allows you to treat raw binary data as though it were a regular
string. To demonstrate the use of ByteString, you’ll focus on a fun project requiring you to
manipulate binary file data. You’ll create a simple command-line tool that will allow
you to create glitch art, like that in figure 25.1.

Glitch art is the practice of deliberately corrupting binary data in order to create visual
artifacts in an image or video. You’ll work on the relatively simple task of “glitching”
JPEG images. You’ll also take a look at some of the issues around working with binary
Unicode data.
294

295Working with binary data by using ByteString
25.1 Working with binary data by using ByteString

So far in the unit, you’ve only looked at working with text in files. You started working
with the basic String type and then learned that Text is a better type for working with tex-
tual data. Another important type that’s similar to String and Text is called ByteString. The
interesting thing about ByteString is that it’s not specifically for text, as the name String
might imply. ByteString is an efficient way to deal with any streams of binary data. Like
Data.Text, you almost always import Data.ByteString with a qualified import by using a
single letter:

import qualified Data.ByteString as B

Even though ByteString is an array of bytes and not a type of text, you can always use
ASCII to represent strings of bytes. There are 256, or 28 (8 bits) ASCII characters, so every
possible byte can be represented as an ASCII character. As long as you’re using the Over-
loadedStrings extension, you can use literal ASCII strings to represent vectors of bytes.

Figure 25.1 A scene from
Michael Betancourt’s glitch art
video “Kodak Moment” (2013)

Consider this You have the name of the Japanese author Tatsuhiko Takimoto repre-
sented in Japanese Kanji using T.Text:

tatsuhikoTakimoto :: T.Text
tatsuhikoTakimoto = " "

You need to know the number of bytes in this text. For ASCII text, this would be the
length of the text, but in this case, using T.length gives you only the number of charac-
ters (5). How can you find the number of bytes?

296 Lesson 25 Working with binary data
sampleBytes :: B.ByteString
sampleBytes = "Hello!"

But you quickly run into a problem if you try to convert your ByteString into an ordinary
String by using B.unpack. The following code will throw an error.

sampleString :: String
sampleString = B.unpack sampleBytes

As you can see by the type signature, B.unpack attempts to convert the ByteString into a list
of bytes (of type Word8):

B.unpack :: B.ByteString -> [GHC.Word.Word8]

By default, Data.ByteString doesn’t allow you to treat bytes just like Char, so instead you
use Data.ByteString.Char8. The Char8 stands for 8-bit Chars (ASCII characters). You need to
import Char8 separately, and usually use the qualifier BC:

import qualified Data.ByteString.Char8 as BC

You can see the difference between plain ByteString and ByteString.Char8 by looking at the
types of their unpack functions:

B.unpack :: BC.ByteString -> [GHC.Word.Word8]
BC.unpack :: BC.ByteString -> [Char]

You can see that ByteString.Char8’s unpack works just like Data.Text’s unpack. ByteString.Char8
allows you to use the same core functions for working with text as Data.Text does. The
careful reader will also notice that the type signature of B.unpack has changed! B.unpack
now uses the ByteString representation from ByteString.Char8. This means you’re free to
treat your ByteStrings as plain ASCII text from here on out.

Like Text, ByteString shares a common API with String. As you’ll see in the next section,
you can use all of the same functions you would when working with Text and String with
binary data. This makes it easy to reason about efficiently stored binary data just as you
would a normal list.

Listing 25.1 ByteString defined by using the OverloadedStrings extension

Listing 25.2 Trying to unpack a ByteString into a String causes an error

297Glitching JPEGs

25.2 Glitching JPEGs

Now that you’ve covered the basic use of ByteString, let’s dive into creating glitch art. All
the code for your program will be put in a file called glitcher.hs. You’ll be working with
an image that can be downloaded from Wikipedia (https://en.wikipedia.org/wiki/
H._P._Lovecraft#/media/File:H._P._Lovecraft,_June_1934.jpg). For this exercise, you’ll
name this file lovecraft.jpg, shown in figure 25.2.

Quick check 25.1 Write a function that takes numbers in ASCII character form and con-
verts them to Ints. For example, make the following an Int:

bcInt :: BC.ByteString
bcInt = "6"

QC 25.1 answer

bcInt :: BC.ByteString
bcInt = "6"

bcToInt :: BC.ByteString -> Int
bcToInt = read . BC.unpack

Figure 25.2 The target of your
glitching is the lovecraft.jpg image.

https://en.wikipedia.org/wiki/H._P._Lovecraft#/media/File:H._P._Lovecraft,_June_1934.jpg
https://en.wikipedia.org/wiki/H._P._Lovecraft#/media/File:H._P._Lovecraft,_June_1934.jpg

298 Lesson 25 Working with binary data
To get started with your program, let’s see how to create the basic functionality you
want for reading and writing your image. Here’s the basic structure of the program:

1 Take a filename argument from the user.
2 Read in the binary data for the image file.
3 Randomly alter bytes in the image data.
4 Write a new file containing the glitched image.

You’ll use both Data.ByteString and Data.ByteString.Char8 in the program to work with the
image’s binary data. Because you’re working with binary data, you want to read in your
file by using BC.readFile. Here’s the basic outline of your program without any of the
glitching code.

import System.Environment
import qualified Data.ByteString as B
import qualified Data.ByteString.Char8 as BC

main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 imageFile <- BC.readFile fileName
 glitched <- return imageFile
 let glitchedFileName = mconcat ["glitched_",fileName]
 BC.writeFile glitchedFileName glitched
 print "all done"

With this bit of code, you can run your program, pass in a file, and get a new file that
should be your glitched JPEG. The only thing missing is the code to glitch your image!

Listing 25.3 Basic layout for your glitcher.hs file

Using getArgs to
access the filename

The first and only argument
should be your file.

Next you want to read
your file in by using the
BC version of readFile.

You’re using return because
eventually this will be replaced
with an IO action that will
alter the binary data.

Glitching can often
create broken
files; you definitely
want to write to a
new file.

Finally, you use the BC
version of writeFile to
write your altered data
to the new file.

299Glitching JPEGs
.

25.2.1 Inserting random bytes

Part of the aesthetic of glitch art is to try different approaches to corrupting the data and
see what works. You’ll start with replacing a random byte in the file with another byte
you pick at random. Creating a random number requires an IO action. But it’s always
best to separate as much code from IO actions as you possibly can, because your non-I/O
code is pure and predictable. You can also easily test your code by loading it into GHCi
and trying it out on a range of data samples.

Before you make your IO action, you’ll start with a function that will convert an Int to a
Char. Because Char is a member of Enum, you can use toEnum. You could use toEnum by itself,
but if you do, you have no way to enforce the constraint that your Char is between 0 and
255. To enforce this, you’ll take modulo 255 of the Int you pass to toEnum. You’ll put all
this together in an intToChar function.

intToChar :: Int -> Char
intToChar int = toEnum safeInt
 where safeInt = int `mod` 255

Next you need a function that will convert this Char into a ByteString. You can do this by
using BC.pack to take your Char and make it a BC.ByteString. Because BC.pack requires a
string, you need to put your Char inside a list.

intToBC :: Int -> BC.ByteString
intToBC int = BC.pack [intToChar int]

Listing 25.4 intToChar creates a valid byte from an Int

Listing 25.5 intToBC takes an Int and gives you a single-character ByteString

Quick check 25.2 At this point, the glitched variable in your main doesn’t need to be an IO
type. Change that line so that glitched is a regular variable.

QC 25.2 answer

let glitched = imageFile

300 Lesson 25 Working with binary data
Now that you have a way to make an Int into a single byte represented as a BC.ByteString,
you can write the code to replace a byte with this value. You still don’t need to use IO
actions yet.

Your replaceByte function is the deterministic version of your random goal. This function
will take the location of the byte to be replaced, the Int value of the new Char/Byte to go
there, and the bytes of the image file. You’ll use BC.splitAt to split your byte around the
target byte. BC.splitAt will give you a pair of values representing the first part of the data
and then the rest (just like calling take and drop at the same time). Then you’ll drop one
from the rest of the bytes to make room for your new byte. Finally, you’ll concatenate
the new byte in the middle of these two sections.

replaceByte :: Int -> Int -> BC.ByteString -> BC.ByteString
replaceByte loc charVal bytes = mconcat [before,newChar,after]
 where (before,rest) = BC.splitAt loc bytes

after = BC.drop 1 rest
newChar = intToBC charVal

Now you're ready for your IO action. You’ll be using randomRIO from System.Random. randomRIO
will take a pair of values in a tuple and randomly give you a number in that range. Your
IO action will be named randomReplaceByte. All randomReplaceByte needs to do is pick two ran-
dom numbers: one for the Char, and one for the location.

randomReplaceByte :: BC.ByteString -> IO BC.ByteString
randomReplaceByte bytes = do
 let bytesLength = BC.length bytes
 location <- randomRIO (1,bytesLength)

Listing 25.6 replaceByte removes a byte and replaces it with a new one

Listing 25.7 randomReplaceByte applies random numbers to replaceByte

Your new ByteString is
just the parts before and
after the byte you’re
replacing concatenated
with your newChar.

BC.splitAt will give you a pair of
values, like drop and take at the
same time. You can use pattern
matching to assign these to two
variables at once.

You use BC.drop 1 here
to remove the byte
you’re going to replace.

You're representing your
byte as an ASCII Char.

301Glitching JPEGs
 charVal <- randomRIO (0,255)
 return (replaceByte location charVal bytes)

Now you can use this IO action in your main to modify your image file:

main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 imageFile <- BC.readFile fileName
 glitched <- randomReplaceByte imageFile
 let glitchedFileName = mconcat ["glitched_",fileName]
 BC.writeFile glitchedFileName glitched
 print "all done"

You can compile your program and run it at the command line:

$ ghc glitcher.hs
$./glitcher lovecraft.jpg

These results are okay but not as dramatic as you’d hoped, as shown in figure 25.3.

Let’s try something a bit more sophisticated to see if you can get better results.

Figure 25.3 The underwhelming
effect of changing a single byte

302 Lesson 25 Working with binary data
25.2.2 Sorting random bytes

Another common technique for image glitching is to take a subsection of bytes and sort
them. You can achieve this by splitting your ByteString at a point by using BC.splitAt, and
then splitting the second half of this into a chunk of a fixed size; you sort the chunk and
then put it all back together with mconcat. Here’s your sortSection function, which takes a
starting point of the section, a size of the section, and the byte stream.

sortSection :: Int -> Int -> BC.ByteString -> BC.ByteString
sortSection start size bytes = mconcat [before,changed,after]
 where (before,rest) = BC.splitAt start bytes

(target,after) = BC.splitAt size rest
changed = BC.reverse (BC.sort target)

All you need to use this in your main to create an IO action that picks a random starting
point.

randomSortSection :: BC.ByteString -> IO BC.ByteString
randomSortSection bytes = do
 let sectionSize = 25
 let bytesLength = BC.length bytes
 start <- randomRIO (0,bytesLength - sectionSize)
 return (sortSection start sectionSize bytes)

Listing 25.8 sortSection sorts a section of bytes in your file

Listing 25.9 Randomizing your sortSection by using an IO action

Quick check 25.3 Write an IO action that returns a random Char.

QC 25.3 answer
randomChar :: IO Char
randomChar = do
 randomInt <- randomRIO (0,255) -- could also use max and min bound
 return (toEnum randomInt)

Here you’re
somewhat
arbitrarily picking
the size of the
section you’re
going to sort.

Using randomRIO to figure
out where you should sort
your data from

303Glitching JPEGs
You can replace randomReplaceByte with randomSortSection and try a revised approach.

main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 imageFile <- BC.readFile fileName
 glitched <- randomSortSection imageFile
 let glitchedFileName = mconcat ["glitched_",fileName]
 BC.writeFile glitchedFileName glitched
 print "all done"

With this trick, you get much more interesting results, as you can see in figure 25.4.

But you could probably do better if you could combine these approaches!

25.2.3 Chaining together IO actions with foldM

Suppose you want to use randomSortSection twice on your data and randomReplaceByte three
times. You could rewrite your main like this.

Listing 25.10 Your main revised to use randomSortSection to glitch your file

Figure 25.4 A much more
interesting result, achieved
with randomSortSection

304 Lesson 25 Working with binary data
main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 imageFile <- BC.readFile fileName
 glitched1 <- randomReplaceByte imageFile
 glitched2 <- randomSortSection glitched1
 glitched3 <- randomReplaceByte glitched2
 glitched4 <- randomSortSection glitched3
 glitched5 <- randomReplaceByte glitched4
 let glitchedFileName = mconcat ["glitched_",fileName]
 BC.writeFile glitchedFileName glitched5
 print "all done"

This works, but it’s clearly cumbersome to write code this way, and it’s easy to make a
simple typo with all the names you have to keep track of. Instead, you can use foldM
from Control.Monad. Just as mapM generalizes map to monads (at this point, just code using
do-notation), foldM does the same for folding. With foldM, you can take your original
imageFile as the initial values, and then a list of IO actions that will transform your file.
The only thing missing is a function that will apply these functions. In this case, you can
use a simple lambda. Here’s your main rewritten by using foldM.

main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 imageFile <- BC.readFile fileName
 glitched <- foldM (\bytes func -> func bytes) imageFile

[randomReplaceByte
,randomSortSection
,randomReplaceByte
,randomSortSection
,randomReplaceByte]

Listing 25.11 A cumbersome approach to applying multiple actions

Listing 25.12 An improved way to use multiple actions with foldM

305Glitching JPEGs
 let glitchedFileName = mconcat ["glitched_",fileName]
 BC.writeFile glitchedFileName glitched
 print "all done"

Now you can compile your program one last time and see what kind of glitches you can
make! Figure 25.5 shows an example.

There’s still probably more you could do to make this image even more interesting, but
now you have a setup that allows you to easily chain together whatever strange muta-
tions you can come up with.

Figure 25.5 Now your
beloved author looks more like
a resident of Innsmouth!

Quick check 25.4 Create a variable glitchActions outside your main that includes all your
actions in a list. Don’t forget to give it the correct type.

QC 25.4 answer

glitchActions :: [BC.ByteString -> IO BC.ByteString]
glitchActions = [randomReplaceByte
 ,randomSortSection
 ,randomReplaceByte
 ,randomSortSection
 ,randomReplaceByte]

306 Lesson 25 Working with binary data
25.3 ByteStrings, Char8, and Unicode

As you’ve seen in our glitch art example, ByteString.Char8 is a helpful tool for treating
binary data as though it were text. But it’s important to be careful when using ByteString,
ByteString.Char8, and Unicode data. Here’s an example of setting a BC.ByteString to a Uni-
code string (for this Unicode, you’re using the Devanagari script for the famous philoso-
pher Nagarjuna).

nagarjunaBC :: BC.ByteString
nagarjunaBC = " "

If you load this into GHCi, you see that the Unicode isn’t preserved:

GHCi> nagarjunaBC
"(>\ETB0M\FSA("

This isn’t too surprising, as Char8 ByteStrings are only for ASCII. But you may want to
transform text to just bytes for a variety of reasons, the primary one being writing Uni-
code to a file as ByteStrings. Suppose you have your Unicode safely represented as the
Text type.

nagarjunaText :: T.Text
nagarjunaText = " "

To convert nagarjunaText to a vector of bytes, you can’t simply use BC.pack because BC.pack
is of type String -> ByteString, so first you’d need to use T.unpack and then BC.pack.

nagarjunaB :: B.ByteString
nagarjunaB = (BC.pack . T.unpack) nagarjunaText

If you look at the type signature, you should have your Unicode safely represented as
bytes. But if you convert back, you see this isn’t the case. Note that you need to do a
qualified import of Data.Text.IO to ensure that you’re printing the text properly:

GHCi> TIO.putStrLn ((T.pack . BC.unpack) nagarjunaB)
"(>\ETB0M\FSA("

Listing 25.13 Creating a Unicode BC.ByteString

Listing 25.14 Same Unicode example, properly represented as Text

Listing 25.15 Attempting to transform Text into a ByteString

नागर्जुनॅ

नागर्जुनॅ

307Summary
You’re stuck with the same problem! If you had written nagarjunaB to a file, you’d have
ultimately lost your Unicode. What you need is a way to convert Text directly to a
B.ByteString and not a BC.ByteString along the way. For this, you use Data.Text.Encoding, and
you’ll do another qualified import:

import qualified Data.Text.Encoding as E

This module contains two essential functions that allow you to perform this direct trans-
formation:

E.encodeUtf8 :: T.Text -> BC.ByteString
E.decodeUtf8 :: BC.ByteString -> T.Text

Now you can safely convert Unicode text to raw bytes and back again.

nagarjunaSafe :: B.ByteString
nagarjunaSafe = E.encodeUtf8 nagarjunaText

GHCi> TIO.putStrLn (E.decodeUtf8 nagarjunaSafe)

To be safe, never use the convenience of Data.ByteString.Char8 if you’re working with data
that may contain Unicode. If you’re working with purely binary data, as in the case of
this lesson’s example, the combination of regular ByteStrings and Char8 works great. For
anything else, stick to ByteString, Text, and Text.Encoding. In this unit’s capstone, you’ll see
an extended example of this latter case.

Summary

In this lesson, our objective was to teach you about writing binary data in Haskell. The
ByteString type allows you to treat raw binary data similarly to the way you would ordi-
nary strings. This can greatly simplify how you write programs editing binary data. But
it’s essential to remember not to mix single-byte representations of binary data (Char8)
with Unicode text. Let’s see if you got this.

Q25.1 Write a program that reads in a text file and outputs the difference between the
number of characters in the file and the number of bytes in the file.

Q25.2 Add another glitching technique, randomReverseBytes, that randomly reverses a
section of bytes in your data.

Listing 25.16 Converting between Text and ByteString with de/encodeUtf8

नागर्जुन

26LESSON
CAPSTONE: PROCESSING BINARY FILES
AND BOOK DATA

This capstone covers

 Learning about a unique binary format used by libraries
 Writing tools to bulk-process binary data by using ByteString
 Working with Unicode data by using the Text type
 Structuring a large program performing a complicated I/O task

In this capstone, you’re going to use the data on books created by libraries to make a
simple HTML document. Libraries collectively spend a huge amount of time cataloging
every possible book in existence. Thankfully, much of this data is freely available to any-
one who wants to explore it. Harvard Library alone has released 12 million book records
to be used for free by the public (http://library.harvard.edu/open-metadata). The Open
Library project contains millions of additional records for use (https://archive.org/
details/ol_data).

In a time when data science is a hot trend, it would be great to make some fun projects
with all this data. But there’s a big challenge to using this data. Libraries store their book-
related metadata in a rather obscure format called a MARC record (for Machine-Readable
Cataloging record). This makes using library data much more challenging than if it were
in a more common format such as JSON or XML. MARC records are in a binary format
that also makes heavy use of Unicode to properly store character encodings. To use
308

http://library.harvard.edu/open-metadata
http://library.harvard.edu/open-metadata
https://archive.org/details/ol_data
https://archive.org/details/ol_data

309
MARC records, you have to be careful about separating when you’re working with bytes
from when you’re working with text. This is a perfect problem to explore all you’ve
learned in this unit!

Our goal for this capstone is to take a collection of MARC records and convert it into an HTML
document that lists the titles and authors of every book in the collection. This will leave you
with a solid foundation to further explore extracting data from MARC records:

 You’ll start your journey by creating a type for the book data you want to store
and converting that to HTML.

 Next you have to learn how MARC records are formatted.
 Then you’ll break apart a bulk of records serialized into a single file into a list of

individual records.
 Once you’ve split the records up, you’ll be able to parse individual files to find

the information you need.
 Finally, you’ll put all of this together into a single program that will process your

MARC records into HTML files.

You’ll be writing all of your code in a single file, marc_to_html.hs. To get started, you’ll
need the following imports (plus your OverloadedStrings extension).

{-# LANGUAGE OverloadedStrings #-}
import qualified Data.ByteString as B
import qualified Data.Text as T
import qualified Data.Text.IO as TIO
import qualified Data.Text.Encoding as E
import Data.Maybe

You may have noticed that you’re not importing Data.ByteString.Char8. This is because
when working with Unicode data, you never want to confuse Unicode text with ASCII text. The
best way to ensure this is to use plain old ByteStrings for manipulating bytes and Text for
everything else.

Listing 26.1 The necessary imports for marc_to_html.hs

Your OverloadStrings LANGUAGE
pragma so you can use string
literals for all string types

Because you’re working
with binary data, you need
a way to manipulate bytes.

Anytime you’re working
with text, especially
Unicode, you need the
Text type.

The IO functions for
Text are imported
separately.

Part of working with
Unicode is safely
encoding and decoding it
to and from binary data.

You’ll be using Maybe
types, as the isJust
function from the Maybe
package is useful.

310 Lesson 26 Capstone: Processing binary files and book data
26.1 Working with book data

Unpacking MARC records is going to be a bit of work, so it’s good to figure out where
you want to end up before you get lost. Your primary goal is to convert a list of books
into an HTML document. The books being in an obscure format is one obstacle to our
goal. In this capstone, you’re concerned with recording only the author and title of the
books. You can use a type synonym for these properties. You could use String, but as
mentioned in lesson 23, as a general rule it’s much better to use Text when dealing with
any large task consisting mostly of text data.

Now you can create your type synonyms for Author and Title.

type Author = T.Text
type Title = T.Text

Your Book type will be the product type of Author and Title.

data Book = Book {
 author :: Author
 ,title :: Title } deriving Show

Your final function for this will be called booksToHtml and will have the type [Books] ->
Html. Before implementing this function, you first need to determine what type Html will
be, and ideally how to make an individual book into a snippet of HTML. You can use
the Text type once again to model your HTML.

type Html = T.Text

To make transforming a list of books easier to turn into HTML, you’ll start with creating
a snippet of HTML for a single book. Your HTML will create a paragraph element, and
then denote the title with a tag and the author with an tag.

Listing 26.2 Type synonyms for Author and Title

Listing 26.3 Create a Book type

Listing 26.4 Html type synonym

311Working with book data
bookToHtml :: Book -> Html
bookToHtml book = mconcat ["<p>\n"
 ,titleInTags
 ,authorInTags
 ,"</p>\n"]
 where titleInTags = mconcat["",(title book),"\n"]
 authorInTags = mconcat["",(author book),"\n"]

Next you need some sample books you can work with.

book1 :: Book
book1 = Book {
 title = "The Conspiracy Against the Human Race"
 ,author = "Ligotti, Thomas"
 }

book2 :: Book
book2 = Book {
 title = "A Short History of Decay"
 ,author = "Cioran, Emil"
 }

book3 :: Book
book3 = Book {
 title = "The Tears of Eros"
 ,author = "Bataille, Georges"
 }

In GHCi, you can test this bit of code:

GHCi> bookToHtml book1
"<p>\nThe Conspiracy Against the Human Race\nLigotti,

➥Thomas\n</p>\n"

Listing 26.5 bookToHtml creates an individual snippet of HTML from a book

Listing 26.6 A collection of sample books

312 Lesson 26 Capstone: Processing binary files and book data
To transform a list of books, you can map your bookToHtml function over the list. You also
need to make sure you add html, head, and body tags as well.

booksToHtml :: [Book] -> Html
booksToHtml books = mconcat ["<html>\n"

, "<head><title>books</title>"
,"<meta charset='utf-8'/>"
,"</head>\n"]
, "<body>\n"
, booksHtml
, "\n</body>\n"
, "</html>"]

 where booksHtml = (mconcat . (map bookToHtml)) books

To test this out, you can put your books in a list:

myBooks :: [Book]
myBooks = [book1,book2,book3]

Finally, you can build a main and test out your code so far. You’ll assume you’re writing
to a file called books.html. Remember that your Html type is Text. To write text to a file,
you’ll also need to include Text.IO.

main :: IO ()
main = TIO.writeFile "books.html" (booksToHtml myBooks)

Running this program will output your books.html file. Opening it up, you can see that
it looks like you’d expect (see figure 26.1).

Listing 26.7 Turning a list of books into an HTML document with booksToHtml

Listing 26.8 Temporary main to write your books list to HTML

Because you’re dealing
with Unicode data, it’s
important to declare
your charset.

Figure 26.1 Your book
data rendered as HTML

313Working with MARC records
With the ability to write books to a file, you can tackle the more complicated issue of
working with MARC records.

26.2 Working with MARC records

The MARC record is the standard used in libraries for recording and transmitting infor-
mation about books (called bibliographic data). If you’re interested in data about books,
MARC records are an important format to understand. There are many large, freely
available collections of MARC records online. You’ll be using the Oregon Health & Sci-
ence University library records in this capstone. As noted earlier, MARC stands for
Machine-Readable Cataloging record. As indicated by the name, MARC records are
designed to be read by machines. Unlike formats such as JSON and XML, they aren’t
designed to be human-readable. If you open a MARC record file, you’ll see something
that looks like figure 26.2.

If you’ve ever worked with the ID3 tag format for storing MP3 metadata, you’ll find
MARC records are similar.

26.2.1 Understanding the structure of a MARC record

The MARC record standard was developed in the 1960s with the primary aim of mak-
ing it efficient to store and transmit information. Because of this, MARC records are

Figure 26.2 The content of a raw MARC record

314 Lesson 26 Capstone: Processing binary files and book data
much less flexible and extensible than formats such as XML or JSON. The MARC record
consists of three main parts:

 The leader
 The directory
 The base record

Figure 26.3 shows an annotated version of your raw MARC record to help visualize
how the record is laid out.

The leader contains information about the record itself, such as the length of the record
and where to find the base record. The directory of the record tells you about the infor-
mation contained in the record and how to access it. For example, you care only about
the author and title of the book. The directory will tell you that the record contains this
information and where to look in the file to find it. Finally, the base record is where all the
information you need is located. But without the leader and directory, you don’t have
the information needed to make sense of this part of the file.

26.2.2 Getting the data

The first thing you need to do is get some MARC record data you can work with.
Thankfully, archive.org has a great collection of freely available MARC records. For this

The leader of a record is the
first 24 bytes.

The directory tells you where
to find information in the
record.

Base of the record contains
information that can be
navigated only with the
aid of the directory.

Figure 26.3 Annotated version of the MARC record

315Working with MARC records
project, you’re going to use a collection of records from the Oregon Health & Science
University library. Go to the project page on archive.org:

https://archive.org/download/marc_oregon_summit_records/catalog_files/

Download the ohsu_ncnm_wscc_bibs.mrc file. For this lesson, you’ll rename the file
sample.mrc. At 156 MB, this file is the smallest of the bunch, but if you'd like to play
around with the others, they should all work equally as well.

26.2.3 Checking the leader and iterating through your records

Your .mrc file isn’t a single MARC record but rather a collection of records. Before wor-
rying about the details of a single record, you need to figure out how to separate all the
records in this collection. Unlike many other formats for holding serialized data, there’s
no delimiter to separate files. You can’t simply split your ByteString stream on a character
in order to split your list of records. Instead, you need to look into the leader of each
record to see how long it is. By looking at the length, you can then iterate through the
list and collect records as you go. To begin, let’s create synonyms for your MarcRecord and
MarcLeader.

type MarcRecordRaw = B.ByteString
type MarcLeaderRaw = B.ByteString

Because you’re primarily manipulating bytes, nearly all of your types when working
with the raw MARC record are going to be ByteStrings. But using type synonyms will
make it much easier to read your code and understand your type signatures. The first
take you want to do is to get the leader from the record:

getLeader :: MarcRecordRaw -> MarcLeaderRaw

The leader is the first 24 bytes of the record, as shown in figure 26.4.

Listing 26.9 Type synonyms for MarcRecordRaw and MarcLeaderRaw

Figure 26.4 The leader in your record highlighted

https://archive.org/download/marc_oregon_summit_records/catalog_files/

316 Lesson 26 Capstone: Processing binary files and book data
You can declare a variable to keep track of your leader length.

leaderLength :: Int
leaderLength = 24

Getting the leader from a MARC record is as straightforward as taking the first 24 char-
acters of the MarcRecord.

getLeader :: MarcRecordRaw -> MarcLeaderRaw
getLeader record = B.take leaderLength record

Just as the first 24 bytes of the MARC record is the leader, the first 5 bytes of the leader
contain a number telling you the length of the record. For example, in figure 26.4 you
see that the record starts with 01292, which means this record is 1,292 bytes long. To get
the length of your entire record, you need to take these first five characters and then
convert them to an Int type. You’ll create a useful helper function, rawToInt, which will
safely convert your ByteString to Text, then convert that Text to a String, and finally use
read to parse an Int.

rawToInt :: B.ByteString -> Int
rawToInt = (read . T.unpack . E.decodeUtf8)

getRecordLength :: MarcLeaderRaw -> Int
getRecordLength leader = rawToInt (B.take 5 leader)

Now that you have a way to figure out the length of a single record, you can think about
separating all the records that you find into a list of MarcRecords. You’ll consider your file
a ByteString. You want a function that will take that ByteString and separate it into a pair
of values: the first record and the rest of the remaining ByteString. You’ll call this function
nextAndRest, which has the following type signature:

nextAndRest :: B.ByteString -> (MarcRecordRaw,B.ByteString)

Listing 26.10 Declaring the length of the leader to be 24

Listing 26.11 getLeader grabs the first 24 bytes of the record

Listing 26.12 rawToInt and getRecordLength

https://www.loc.gov/marc/specifications/speccharconversion.html
https://www.loc.gov/marc/specifications/speccharconversion.html

317Working with MARC records
E

O
55

2
95

50
You can think of this pair of values as being the same as getting the head and tail of a
list. To get this pair, you need to get the length of the first record in the stream and then
split the stream at this value.

nextAndRest :: B.ByteString -> (MarcRecordRaw,B.ByteString)
nextAndRest marcStream = B.splitAt recordLength marcStream
 where recordLength = getRecordLength marcStream

To iterate through the entire file, you recursively use this function to take a record and
the rest of the file. You then put the record in a list and repeat on the rest of the file until
you reach the end.

allRecords :: B.ByteString -> [MarcRecordRaw]
allRecords marcStream = if marcStream == B.empty
 then []
 else next : allRecords rest
 where (next, rest) = nextAndRest marcStream

You can test allRecords by rewriting your main to read in your sample.mrc file and print
out the length of that file:

main :: IO ()
main = do
 marcData <- B.readFile "sample.mrc"
 let marcRecords = allRecords marcData
 print (length marcRecords)

You can run your main by either compiling your program or loading it into GHCi and
calling main:

GHCi> main
140328

There are 140,328 records in this collection! Now that you’ve split up all of your records,
you can move on to figuring out exactly how to get all of your Title and Author data.

Listing 26.13 nextAndRest breaks a stream of records into a head and tail

Listing 26.14 Converting a stream of raw data into a list of records

318 Lesson 26 Capstone: Processing binary files and book data
26.2.4 Reading the directory

MARC records store all the information about a book in fields. Each field has a tag and
subfields that tell you more about the information that’s in a book (such as author, title,
subject, and publication date). Before you can worry about processing the fields, you
need to look up all the information about those fields in the directory. Like everything
else in our MARC records, the directory is a ByteString, but you can create another syn-
onym for readability.

type MarcDirectoryRaw = B.ByteString

Unlike the leader, which is always the first 24 characters, the directory can be of variable
size. This is because each record may contain a different number of fields. You know
that the directory starts after the leader, but you have to figure out where the directory
ends. Unfortunately, the leader doesn’t tell you this information directly. Instead it tells
you the base address, which is where the base record begins. The directory, then, is
what’s missing from where the leader ends and the base record begins.

Information about the base address is located in the leader starting with the 12th charac-
ter and including the 16th byte (for a total of 5 bytes), assuming a 0 index. To access this,
you can take the leader, drop the first 12 characters from it, and then take the next 5 in
the remaining 12 of the leader. After this, you have to convert this value from a ByteString
to an Int, just as you did with the recordLength.

getBaseAddress :: MarcLeaderRaw -> Int
getBaseAddress leader = rawToInt (B.take 5 remainder)
 where remainder = B.drop 12 leader

Then, to calculate the length of the directory, you subtract the (leaderLength + 1) from the
base address, giving you the value of space between these two values.

getDirectoryLength :: MarcLeaderRaw -> Int
getDirectoryLength leader = getBaseAddress leader - (leaderLength + 1)

Listing 26.15 Type synonym for MarcDirectoryRaw

Listing 26.16 Getting the base address to determine the size of the directory

Listing 26.17 Calculating the length of the directory with getDirectoryLength

319Working with MARC records
You can now put all these pieces together to get the directory. You start by looking up
the directory length from the record, and then dropping the leader length and taking
the length directly from that.

getDirectory :: MarcRecordRaw -> MarcDirectoryRaw
getDirectory record = B.take directoryLength afterLeader
 where directoryLength = getDirectoryLength record
 afterLeader = B.drop leaderLength record

At this point, you’ve come a long way in understanding this rather opaque format. Now
you have to make sense of what’s inside the directory.

26.2.5 Using the directory to look up fields

At this point, your directory is a big ByteString, which you still need make sense of. As
mentioned earlier, the directory allows you to look up fields in the base record. It also
tells you what fields there are. Thankfully, each instance of this field metadata is exactly
the same size: 12 bytes.

type MarcDirectoryEntryRaw = B.ByteString

dirEntryLength :: Int
dirEntryLength = 12

Next you need to split up your directory into a list of MarcDirectoryEntries. Here’s the type
signature of this function:

splitDirectory :: MarcDirectoryRaw -> [MarcDirectoryEntryRaw]

This is a fairly straightforward function: you take a chunk of 12 bytes and add them to a
list until there’s no more list left.

splitDirectory directory = if directory == B.empty
 then []
 else nextEntry : splitDirectory restEntries
 where (nextEntry, restEntries) = B.splitAt dirEntryLength directory

Listing 26.18 Putting everything together to getDirectory

Listing 26.19 MarcDirectoryRaw type synonym and dirEntryLength

Listing 26.20 splitDirectory breaks down the directory into its entries

320 Lesson 26 Capstone: Processing binary files and book data
Now that you have this list of raw DirectoryEntries, you’re close to finally getting your
author and title data.

26.2.6 Processing the directory entries and looking up MARC fields

Each entry in the directory is like a miniature version of the record leader. The metadata
for each entry has the following information:

 Tag of the field (first three characters)
 Length of the field (next four characters)
 Where the field starts relative to the base address (rest of the chars)

Because you want to use all this information, you’re going to create a data type for your
FieldMetadata.

data FieldMetadata = FieldMetadata { tag :: T.Text
 , fieldLength :: Int
 , fieldStart :: Int } deriving Show

Next you have to process your list of MarcDirectoryEntryRaw into a list of FieldMetadata. As is
often the case whenever you’re working with lists, it’s easier to start with transforming a
single MarcDirectoryEntryRaw into a FieldMetadata type.

makeFieldMetadata :: MarcDirectoryEntryRaw -> FieldMetadata
makeFieldMetadata entry = FieldMetadata textTag theLength theStart
 where (theTag,rest) = B.splitAt 3 entry
 textTag = E.decodeUtf8 theTag
 (rawLength,rawStart) = B.splitAt 4 rest
 theLength = rawToInt rawLength
 theStart = rawToInt rawStart

Now converting a list of one type to a list of another is as simple as using map.

getFieldMetadata :: [MarcDirectoryEntryRaw] -> [FieldMetadata]
getFieldMetadata rawEntries = map makeFieldMetadata rawEntries

Listing 26.21 FieldMetadata type

Listing 26.22 Converting a raw directory entry into a FieldMetadata type

Listing 26.23 Mapping makeFieldMetadata to [FieldMetadata]

321Working with MARC records
With getFieldMetadata, you can write a function that lets you look up the field itself. Now
that you’re looking up fields, you need to stop thinking in bytes and start thinking in
text. Your fields will have information about author and title, and other text data. You’ll
create another type synonym for your FieldText.

type FieldText = T.Text

What you want now is to take a MarcRecordRaw, FieldMetadata and get back a FieldText so you
can start looking up useful values!

To do this, you first have to drop both the leader and the directory from your MarcRecord
so you end up with the base record. Then you can drop the fieldStart from the record
and finally take the fieldLength from this remaining bit.

getTextField :: MarcRecordRaw -> FieldMetadata -> FieldText
getTextField record fieldMetadata = E.decodeUtf8 byteStringValue
 where recordLength = getRecordLength record
 baseAddress = getBaseAddress record
 baseRecord = B.drop baseAddress record
 baseAtEntry = B.drop (fieldStart fieldMetadata) baseRecord
 byteStringValue = B.take (fieldLength fieldMetadata) baseAtEntry

You’ve come a long way in understanding this mysterious format. You have just one
step to go, which is processing the FieldText into something you can use.

26.2.7 Getting Author and Title information from a MARC field

In MARC records, each special value is associated with a tag. For example, the Title tag
is 245. Unfortunately, this isn’t the end of the story. Each field is made up of subfields
that are separated by a delimiter, the ASCII character number 31. You can use toEnum to
get this character.

fieldDelimiter :: Char
fieldDelimiter = toEnum 31

Listing 26.24 Type synonym for FieldText

Listing 26.25 Getting the FieldText

Listing 26.26 Getting the field delimiter

322 Lesson 26 Capstone: Processing binary files and book data
You can use T.split to split the FieldText into subfields. Each subfield is represented by a
single character. Each subfield contains a value—for example, a title or author. Preced-
ing the value is the subfield code, which is a single letter, as shown in figure 26.5.

To fetch your title, you want field 245 and subfield a, with subfield a being the main title.
For your author, you want field 100 and subfield a.

titleTag :: T.Text
titleTag = "245"

titleSubfield :: Char
titleSubfield = 'a'

authorTag :: T.Text
authorTag = "100"

authorSubfield :: Char
authorSubfield = 'a'

To get the value of a field, you need to look up its location in the record by using Field-
Metadata. Then you split the raw field into its subfields. Finally, you look at the first char-
acter in each subfield to see whether the subfield you want is there.

Now you have another problem. You don’t know for certain that the field you want will
be in your record, and you also don’t know that your subfield will be in your field. You
need to use the Maybe type to check both of these. You’ll start with lookupFieldMetadata,
which will check the directory for the FieldMedata that you’re looking for. If the field
doesn’t exist, it returns Nothing; otherwise, it returns just your field.

lookupFieldMetadata :: T.Text -> MarcRecordRaw -> Maybe FieldMetadata
lookupFieldMetadata aTag record = if length results < 1

then Nothing
else Just (head results)

Listing 26.27 Tags and subfield codes for title and author

Listing 26.28 Safely looking up FieldMetadata from the directory

Figure 26.5 An example title subfield a. Notice that a is the first character of
the title text you receive.

323Working with MARC records
 where metadata = (getFieldMetadata . splitDirectory . getDirectory)
 record
 results = filter ((== aTag) . tag) metadata

Because you’re going to be concerned with only looking up both a field and a subfield at
the same time, you’ll pass this Maybe FieldMetadata into the function that looks up a sub-
field. The lookupSubfield function will take a Maybe FieldMetadata argument, the subfield
Char, and the MarcRecordRaw, returning a Maybe BC.ByteString of the data inside the subfield.

lookupSubfield :: (Maybe FieldMetadata) -> Char ->
 MarcRecordRaw -> Maybe T.Text
lookupSubfield Nothing subfield record = Nothing
lookupSubfield (Just fieldMetadata) subfield record =
 if results == []
 then Nothing
 else Just ((T.drop 1 . head) results)
 where rawField = getTextField record fieldMetadata
 subfields = T.split (== fieldDelimiter) rawField
 results = filter ((== subfield) . T.head) subfields

All you care about is the value for a specific field/subfield combo. Next you’ll create a
specific lookupValue function that takes a tag, a subfield char, and a record.

lookupValue :: T.Text -> Char -> MarcRecordRaw -> Maybe T.Text
lookupValue aTag subfield record = lookupSubfield entryMetadata
 subfield record
 where entryMetadata = lookupFieldMetadata aTag record

Listing 26.29 Safely looking up a potentially missing subfield

Listing 26.30 General lookupValue function for looking up tag-subfield code pairs

If the metadata is
missing, clearly you
can't look up a subfield. If the results of your

search for the subfield
are empty, the
subfield isn’t there.

Empty results mean
you return nothing.

Otherwise, you turn your subfield
value into Text and drop the first
character, which is the subfield code.

324 Lesson 26 Capstone: Processing binary files and book data
You can wrap up getting your values by making two helper functions for lookupAuthor
and lookupTitle by using partial application.

lookupTitle :: MarcRecordRaw -> Maybe Title
lookupTitle = lookupValue titleTag titleSubfield

lookupAuthor :: MarcRecordRaw -> Maybe Author
lookupAuthor = lookupValue authorTag authorSubfield

At this point, you’ve completely abstracted away the details of working with your
MARC record format, and can build your final main, which will tie this all together.

26.3 Putting it all together

You’ve tackled the mess of writing a parser for your MARC records, but now you have
access to a wide range of book information you can use. Remembering that you want as
little in your main IO action as possible, and you also want to reduce all you have to do to
converting a ByteString (representing the MARC file) to HTML (representing your output
file). The first step is to convert your ByteString to a list of (Maybe Title, Maybe Author) pairs.

marcToPairs :: B.ByteString -> [(Maybe Title, Maybe Author)]
marcToPairs marcStream = zip titles authors
 where records = allRecords marcStream

titles = map lookupTitle records
authors = map lookupAuthor records

Next you’d like to change these Maybe pairs into a list of books. You’ll do this by only
making a Book when both Author and Title are Just values. You’ll use the fromJust function
found in Data.Maybe to help with this.

pairsToBooks :: [(Maybe Title, Maybe Author)] -> [Book]
pairsToBooks pairs = map (\(title, author) -> Book {

title = fromJust title

Listing 26.31 Specific cases of looking up Title and Author

Listing 26.32 Raw MARC records to Maybe Title, Maybe Author pairs

Listing 26.33 Convert Maybe values into Books

325Summary
 ,author = fromJust author
 }) justPairs
 where justPairs = filter (\(title,author) -> isJust title
 && isJust author) pairs

You already have your booksToHtml function from before, so now you can compose all
these functions together to get your final processRecords function. Because there are so
many records in your files, you’ll also provide a parameter to specify the number of
records you’re looking up.

processRecords :: Int -> B.ByteString -> Html
processRecords n = booksToHtml . pairsToBooks . (take n) . marcToPairs

Despite this being a lesson on I/O, and this being a fairly intensive I/O task, you might
be surprised at how remarkably minimal your final main IO action is:

main :: IO ()
main = do
 marcData <- B.readFile "sample.mrc"
 let processed = processRecords 500 marcData
 TIO.writeFile "books.html" processed

Now you’ve successfully converted your raw MARC records into a much more readable
format. Notice that Unicode values also came out okay!

With lookupValue, you also have a nice, general tool you can use to look up any tag and
subfield specified in the MARC standard.

Summary

In this capstone, you
 Modeled textual book data by using the Text type
 Wrote tools to perform binary fill processing by using ByteString to manipulate

bits
 Safely managed Unicode text within a binary document by using decodeUtf8 and

encodeUtf8
 Successfully transformed an opaque binary format into readable HTML

Listing 26.34 Putting it all together in processRecords

326 Lesson 26 Capstone: Processing binary files and book data
Extending the exercise

Now that you know the basics of processing MARC records, there’s a world of interest-
ing book data out there to explore. If you’d like to extend this exercise, look into fleshing
out more of the details of processing the MARC record. For example, you may have
noticed that trailing punctuation sometimes appears after our title. This is because a
subfield b contains the rest of the extended title. Combining subfields a and b will give
you the full title. The Library of Congress (LoC) provides extensive information on
MARC records, and you can start exploring at www.loc.gov/marc/bibliographic/.

Another challenge you didn’t tackle is dealing with an annoying non-Unicode character
encoding that exists in a large number of MARC records called MARC-8. In MARC-8, a
small subset of the Unicode characters is represented differently for historical reasons.
The LoC has resources to add in this conversion: www.loc.gov/marc/specifications/
speccharconversion.html. Whether a record is encoded in MARC-8 or standard Unicode
can be determined from the leader. See the “Character Coding Scheme” section of the
official LoC documentation: www.loc.gov/marc/bibliographic/bdleader.html.

www.loc.gov/marc/bibliographic/bdleader.html
www.loc.gov/marc/specifications/speccharconversion.html
www.loc.gov/marc/specifications/speccharconversion.html

327

U
N

IT

5

Working with type in a
context

In this unit, you’ll take a look at three of Haskell’s
most powerful and often most confusing type
classes: Functor, Applicative, and Monad. These type
classes have funny names but a relatively straight-
forward purpose. Each one builds on the other to
allow you to work in contexts such as IO. In unit 4,
you made heavy use of the Monad type class to work
in IO. In this unit, you’ll get a much deeper under-
standing of how that works. To get a better feel for
what these abstract type classes are doing, you’ll
explore types as though they were shapes.

One way to understand functions is as a means of
transforming one type into another. Let’s visualize
two types as two shapes, a circle and a square, as
shown in figure 1.

These shapes can represent any two types, Int and
Double, String and Text, Name and FirstName, and so
forth. When you want to transform a circle into a
square, you use a function. You can visualize a func-
tion as a connector between two shapes, as shown
in figure 2.

Figure 1 A circle and square
visually representing two types

328 Unit 5 Working with type in a context
This connector can represent any function from one type to another. This shape could
represent (Int -> Double), (String -> Text), (Name -> FirstName), and so forth. When you want
to apply a transformation, you can visualize placing your connector between the initial
shape (in this case, a circle) and the desired shape (a square); see figure 3.

As long as each shape matches correctly, you can achieve your desired transformation.

In this unit, you’ll look at working with types in context. The two best examples of types
in context that you’ve seen are Maybe types and IO types. Maybe types represent a context in
which a value might be missing, and IO types represent a context in which the value has
interacted with I/O. Keeping with our visual language, you can imagine types in a con-
text as shown in figure 4.

These shapes can represent types such as IO Int and IO Double, Maybe String and Maybe Text,
or Maybe Name and Maybe FirstName. Because these types are in a context, you can’t simply use
your old connector to make the transformation. So far in this book, you’ve relied on
using functions that have both their input and output in a context as well. To perform the
transformation of your types in a context, you need a connector that looks like figure 5.

This connector represents functions with type signatures such as (Maybe Int -> Maybe Dou-
ble), (IO String -> IO Text), and (IO Name -> IO FirstName). With this connector, you can easily
transform types in a context, as shown in figure 6.

Figure 2 A function can transform
a circle to a square.

Figure 3 Visualizing a function as a way
of connecting one shape to another

Figure 4 The shape around the shape
represents a context, such as Maybe or IO.

Figure 5 A function that
connects two types in a context

Figure 6 As long as your connector matches,
you can make the transformation you want.

329Unit 5 Working with type in a context
This may seem like a perfect solution, but there’s a problem. Let’s look at a function
halve, which is of the type Int -> Double, and as expected halves the Int argument.

halve :: Int -> Double
halve n = fromIntegral n / 2.0

This is a straightforward function, but suppose you want to halve a Maybe Int. Given the
tools you have, you have to write a wrapper for this that works with Maybe types.

halveMaybe :: Maybe Int -> Maybe Double
halveMaybe (Just n) = Just (halve n)
halveMaybe Nothing = Nothing

For this one example, it’s not a big deal to write a simple wrapper. But consider the wide
range of existing functions from a -> b. To use any of these with Maybe types would
require nearly identical wrappers. Even worse is that you have no way of writing these
wrappers for IO types!

This is where Functor, Applicative, and Monad come in. You can think of these type classes
as adapters that allow you to work with different connectors so long as the underlying
types (circle and square) are the same. In the halve example, you worried about trans-
forming your basic Int-to-Double adapter to work with types in context. This is the job of
the Functor type class, illustrated in figure 7.

But you can have three other types of mismatches. The Applicative type class solves two
of these. The first occurs when the first part of your connector is in a context, but not its
result, as shown in figure 8.

Listing 1 A halve function from Int -> Double

Listing 2 halveMaybe wraps halve function to work with Maybe types

Figure 7 The Functor type class solves this mismatch
between types in a context and a connector.

Figure 8 This is one of the
mismatches that Applicative solves.

330 Unit 5 Working with type in a context
The other problem occurs when an entire function is in a context. For example, a func-
tion of the type Maybe (Int -> Double) means you have a function that might itself be miss-
ing. This may sound strange, but it can easily happen when using partial application
with Maybe or IO types. Figure 9 illustrates this interesting case.

There’s only one possible mismatch between a function and types in a context left. This
occurs when the argument to a function isn’t in a context, but the result is. This is more
common than you may think. Both Map.lookup and putStrLn have type signatures like this.
This problem is solved by the Monad type class, illustrated in figure 10.

When you combine all three of these type classes, there’s no function that you can’t use
in a context such as Maybe or IO, so long as the underlying types match. This is a big deal
because it means that you can perform any computation you’d like in a context and have
the tools to reuse large amounts of existing code between different contexts.

Figure 9 Sometimes the connector itself is trapped
in a context; Applicative solves this problem as well.

Figure 10 The Monad type class provides an
adapter for this final possible mismatch.

27 LESSON
THE FUNCTOR TYPE CLASS

After reading lesson 27, you’ll be able to

 Use the Functor type class
 Solve problems with fmap and <$>
 Understand kinds for Functors

So far in this book, you’ve seen quite a few parameterized types (types that take another
type as an argument). You’ve looked at types that represent containers, such as List and
Map. You’ve also seen parameterized types that represent a context, such as Maybe for miss-
ing values and IO for values that come from the complex world of I/O. In this lesson,
you’ll explore the powerful Functor type class. The Functor type class provides a generic
interface for applying functions to values in a container or context. To get a sense of this,
suppose you have the following types:

 [Int]

 Map String Int

 Maybe Int

 IO Int

These are four different types, but they’re all parameterized by the same type: Int (Map is
a special case, but the values are type Int). Now suppose you have a function with the
following type signature:

Int -> String
331

332 Lesson 27 The Functor type class
This is a function that takes an Int and returns a String. In most programming languages,
you’d need to write a custom version for your Int -> String function for each of these
parameterized types. Because of the Functor type class, you have a uniform way to apply
your single function to all these cases.

27.1 An example: computing in a Maybe

Maybe has already proven a useful solution to your problem of potentially missing values.
But when you were introduced to Maybe in lesson 19, you still had to deal with the prob-
lem of handling the possibility of a missing value as soon as you encountered it in your
program. It turns out you can do computation on a potentially missing value without
having to worry about whether it’s actually missing.

Suppose you get a number from a database. There are plenty of reasons why a request
to a database would result in a null value. Here are two sample values of type Maybe Int:
failedRequest and successfulRequest.

successfulRequest :: Maybe Int
successfulRequest = Just 6

failedRequest :: Maybe Int
failedRequest = Nothing

Next imagine you need to increment the number you received from the database and
then write it back to the database. From a design standpoint, assume that the logic that
talks to the database handles the case of null values by not writing the value. Ideally,

Listing 27.1 Possibly null values: successfulRequest and failedRequest

Consider this You have a potentially missing Int (a Maybe Int). You want to square this
value, turn it into a string, and then add an ! to the end. The function that you want to
pass this value to, printInt, assumes that there might be missing values already:

printInt :: Maybe String -> IO ()
printInt Nothing = putStrLn "value missing"
printInt (Just val) = putStrLn val

How can you transform your Maybe Int into a Maybe String to be used by printInt?

333Using functions in context with the Functor type class
you’d like to keep your value in a Maybe. Given what you know so far, you could write a
special incMaybe function to handle this.

incMaybe :: Maybe Int -> Maybe Int
incMaybe (Just n) = Just (n + 1)
incMaybe Nothing = Nothing

In GHCi, this works just fine:

GHCi> incMaybe successfulRequest
Just 7
GHCi> incMaybe failedRequest
Nothing

The problem is that this solution scales horribly. The increment function is just (+ 1), but
in our example, you need to rewrite it for Maybe. This solution means that you’d have to
rewrite a special version of every existing function you want to use in a Maybe! This
greatly limits the usefulness of tools such as Maybe. It turns out Haskell has a type class
that solves this problem, called Functor.

27.2 Using functions in context with the Functor type class

Haskell has a wonderful solution to this problem. Maybe is a member of the Functor type
class. The Functor type class requires only one definition: fmap, as shown in figure 27.1.

Listing 27.2 Defining incMaybe to increment Maybe Int values

Quick check 27.1 Write the function reverseMaybe :: Maybe String -> Maybe String that
reverses a Maybe String and returns it as a Maybe String.

QC 27.1 answer

reverseMaybe :: Maybe String -> Maybe String
reverseMaybe Nothing = Nothing
reverseMaybe (Just string) = Just (reverse string)

334 Lesson 27 The Functor type class
Going back to your visual language from the introduction, fmap provides an adapter, as
shown in figure 27.2. Notice that we’re using <$>, which is a synonym for fmap (except it’s
a binary operator rather than a function).

You can define fmap as a generalization of your custom incMaybe function.

instance Functor Maybe where
 fmap func (Just n) = Just (func n)
 fmap func Nothing = Nothing

Listing 27.3 Making Maybe an instance of Functor

fmap :: Functor f => (a -> b) -> f a -> f b

This is a function from
type a to type b.

This f is confusing because you
often associate f with function.
Here it is a type class
constraint for a Functor.

This is a Functor of
type a. For example,
Maybe Int.

This is the transformed
Functor of type b. For
example, Maybe Double.

Figure 27.1 The type signature for the fmap function

fmap allows you to connect these
and get your square in a context.

<$>

Figure 27.2 Visualizing how fmap, also <$>,
works as an adapter, allowing you to work with
types in a context.

335Using functions in context with the Functor type class
With fmap, you no longer need a special function for keeping your value in a Maybe:

GHCi> fmap (+ 1) successfulRequest
Just 7
GHCi> fmap (+ 1) failedRequest
Nothing

Though fmap is the official function name, in practice the binary operator <$> is used
much more frequently:

GHCi> (+ 1) <$> successfulRequest
Just 7
GHCi> (+ 1) <$> failedRequest
Nothing

In this example, (+ 1) adds 1 into the Maybe Int and returns a Maybe Int as well. But it’s
important to realize that the type signature of the function in fmap is (a -> b), meaning
that the Maybe returned doesn’t need to be parameterized by the same type. Here are two
examples of going from a Maybe Int to a Maybe String.

successStr :: Maybe String
successStr = show <$> successfulRequest

failStr :: Maybe String
failStr = show <$> failedRequest

This ability to transform the types of values inside a Maybe is the true power of the Functor
type class.

Listing 27.4 Examples of using fmaps from one type to another

Quick check 27.2 Use fmap or <$> to reverse a Maybe String.

QC 27.2 answer

GHCi> reverse <$> Just "cat"
Just "tac"

336 Lesson 27 The Functor type class
27.3 Functors are everywhere!

To understand instances of Functor, you’ll run through some examples. Recall from les-
son 18 that kinds are the types of types. Types of a kind * -> * are parameterized types
that take just one type parameter. All Functors must be of kind * ->*. It also turns out that
many parameterized types of kind * -> * are instances of Functor.

Members of Functor that you’ve seen so far in this book include List, Map, Maybe, and IO. To
demonstrate how Functor allows you to generalize by solving a single problem the same
way in multiple parameterized types, you’ll explore how working with the same data
type in multiple contexts can represent different problems. Then you’ll see how Functor’s
<$> makes it easy to solve each of these problems in the same way. Rather than work
with simple types such as Int or String, you’ll work with something more complicated: a
RobotPart data type.

27.3.1 One interface for four problems

In this example, you’re going to assume that you’re in the business of manufacturing
robot parts. Here’s the basic data type for your robot part.

data RobotPart = RobotPart
 { name :: String
 , description :: String

Listing 27.5 RobotPart defined using record syntax

Strange type class names?
Semigroup, Monoid, and now Functor! What’s up with these weird type class names? All
these names come from fields of mathematics called abstract algebra and category the-
ory. You absolutely don’t need to know any advanced mathematics to use them. All of
these type classes represent the design patterns of functional programming. If you’ve
used Java, C#, or any enterprise programming language, you’re likely familiar with
object-oriented design patterns such as the Singleton, Observer, and Factory patterns.
These names are more reasonable-sounding only because they’ve become part of the
everyday vocabulary of OOP. Both OOP design patterns and category theoretic type
classes abstract out common programming patterns. The only difference is that Has-
kell’s are based on mathematical foundations, rather than ad hoc patterns discovered
in code. Just as Haskell’s functions derive power from their mathematical basis, so do
Haskell’s design patterns.

337Functors are everywhere!
 , cost :: Double
 , count :: Int
 } deriving Show

Here are some example robot parts you’ll use in this section.

leftArm :: RobotPart
leftArm = RobotPart
 { name = "left arm"
 , description = "left arm for face punching!"
 , cost = 1000.00
 , count = 3
 }

rightArm :: RobotPart
rightArm = RobotPart
 { name = "right arm"
 , description = "right arm for kind hand gestures"
 , cost = 1025.00
 , count = 5
 }

robotHead :: RobotPart
robotHead = RobotPart
 { name = "robot head"
 , description = "this head looks mad"
 , cost = 5092.25
 , count = 2
 }

One of the most common things you’ll need to do is to render the information con-
tained in a RobotPart as HTML. Here’s code for rendering an individual RobotPart as an
HTML snippet.

Listing 27.6 Example robot parts: leftArm, rightArm, and robotHead

338 Lesson 27 The Functor type class
type Html = String

renderHtml :: RobotPart -> Html
renderHtml part = mconcat ["<h2>",partName, "</h2>"

,"<p><h3>desc</h3>",partDesc
,"</p><p><h3>cost</h3>"
,partCost
,"</p><p><h3>count</h3>"
,partCount,"</p>"]

 where partName = name part
partDesc = description part
partCost = show (cost part)
partCount = show (count part)

In many cases, you’ll want to convert a RobotPart into an HTML snippet. Next you’ll see
four scenarios of this, using different parametrized types.

You’ll start by using the Map type to create partsDB, which is your internal database of
RobotParts.

import qualified Data.Map as Map

partsDB :: Map.Map Int RobotPart
partsDB = Map.fromList keyVals
 where keys = [1,2,3]

vals = [leftArm,rightArm,robotHead]
keyVals = zip keys vals

Map is a useful type for this example because it naturally involves three instances of
Functor: it’s made from a List, returns Maybe values, and is itself a Functor.

27.3.2 Converting a Maybe RobotPart to Maybe Html

Now suppose you have a website driven by partsDB. It’s reasonable that you’d have a
request containing an ID for a part that you wish to insert into a web page. You’ll
assume that an insertSnippet IO action will take HTML and insert it into a page’s tem-
plate. It’s also reasonable to assume that many data models might be generating

Listing 27.7 Rendering a RobotPart as HTML

Listing 27.8 Your RobotPart “database”

Remember to include this
in the top of your file if
you’re using Map.

339Functors are everywhere!
snippets. Because any one of these models may have an error, you’ll assume that
insertSnippet accepts Maybe Html as its input, allowing the template engine to handle miss-
ing snippets as it sees fit. Here’s the type signature of your imaginary function:

insertSnippet :: Maybe Html -> IO ()

The problem you need to solve is looking up a part and passing that part as Maybe Html to
insertSnippet. Here’s an example of fetching a RobotPart from your partsDB.

partVal :: Maybe RobotPart
partVal = Map.lookup 1 partsDB

Because Maybe is a Functor, you can use <$> to transform your RobotPart into HTML while
remaining in a Maybe.

partHtml :: Maybe Html
partHtml = renderHtml <$> partVal

You can now pass partHtml to insertSnippet easily because of Functor.

27.3.3 Converting a list of RobotParts to a list of HTML

Next suppose you want to create an index page of all your parts. You can get a list of
parts from your partsDB like this.

allParts :: [RobotPart]
allParts = map snd (Map.toList partsDB)

List is also an instance of Functor. In fact, fmap for a List is the regular map function you’ve
been using since unit 1. Here’s how you can apply renderHtml to a list of values by using <$>.

allPartsHtml :: [Html]
allPartsHtml = renderHtml <$> allParts

Listing 27.9 partVal: a Maybe RobotPart value

Listing 27.10 Using <$> to transform RobotPart to HTML, remaining in Maybe

Listing 27.11 A list of RobotParts

Listing 27.12 Transforming a list of RobotParts to HTML with <$> instead of map

340 Lesson 27 The Functor type class
Because <$> is just fmap, and for lists fmap is just map, this code is identical to the following.

allPartsHtml :: [Html]
allPartsHtml = map renderHtml allParts

For lists, it’s more common to use map over <$>, but it’s important to realize these are iden-
tical. One way to think of the Functor type class is as “things that can be mapped over.”

27.3.4 Converting a Map of RobotParts to HTML

The partsDB Map has been useful, but it turns out all you need it for is converting RobotParts
to HTML. If that’s the case, wouldn’t it make more sense to have an htmlPartsDB so you
don’t have to continually convert? Because Map is an instance of Functor, you can do this
easily.

htmlPartsDB :: Map.Map Int Html
htmlPartsDB = renderHtml <$> partsDB

Now you can see that you’ve transformed your Map of RobotParts into a Map of Html snip-
pets!

GHCi> Map.lookup 1 htmlPartsDB
Just "<h2>left arm</h2><p><h3>desc</h3>left ...

This example highlights just how powerful the simple interface that Functor provides can
be. You can now trivially perform any transformation that you can on a RobotPart to an
entire Map of robot parts.

Listing 27.13 The traditional way of transforming a list by using map

Listing 27.14 Turning your partsDB into a Map of HTML rather than RobotParts

Quick check 27.3 Rewrite the definition of all parts to use <$> instead of map.

QC 27.3 answer

allParts :: [RobotPart]
allParts = snd <$> Map.toList partsDB

341Functors are everywhere!
The careful reader may have noticed something strange about Map being a Functor. Map’s
kind is * -> * -> * because Map takes two type arguments, one for its keys and another for
its values. Earlier we said that Functors must be of kind * -> *, so how can this be? If you
look at the behavior of <$> on your partsDB, it becomes clear. Functor for Map is concerned
only about the Map’s values and not its keys. When Map is made an instance of Functor,
you’re concerned only about a single type variable, the one used for its values. So for the
purposes of Map being a member of Functor, you treat it as being of kind * -> *. When we
introduced kinds in lesson 18, they may have seemed overly abstract. But they can be
useful for catching issues that arise with more advanced type classes.

27.3.5 Transforming an IO RobotPart into IO Html

Finally, you might have a RobotPart that comes from IO. You’ll simulate this by using
return to create an IO type of a RobotPart.

leftArmIO :: IO RobotPart
leftArmIO = return leftArm

Suppose you want to turn this into HTML so that you can write the HTML snippet to a
file. By now, the pattern should start to be familiar.

htmlSnippet :: IO Html
htmlSnippet = renderHtml <$> leftArmIO

Let’s take a look at all of these transformations at once:

partHtml :: Maybe Html
partHtml = renderHtml <$> partVal

allPartsHtml :: [Html]
allPartsHtml = renderHtml <$> allParts

htmlPartsDB :: Map.Map Int Html
htmlPartsDB = renderHtml <$> partsDB

htmlSnippet :: IO Html
htmlSnippet = renderHtml <$> leftArmIO

Listing 27.15 Simulating a RobotPart coming from an IO context

Listing 27.16 Transforming

342 Lesson 27 The Functor type class
As you can see, Functor’s <$> provides a common interface to apply any function to a
value in a context. For types such as List and Map, this is a convenient way to update val-
ues in these containers. For IO, it’s essential to be able to change values in an IO context,
because you can’t take IO values out of their context.

Summary

In this lesson, our objective was to introduce you to the Functor type class. The Functor
type class allows you to apply an ordinary function to values inside a container (for
example, List) or a context (for example, IO or Maybe). If you have a function Int -> Double
and a value Maybe Int, you can use Functor’s fmap (or the <$> operator) to apply the Int ->
Double function to the Maybe Int value, resulting in a Maybe Double value. Functors are incredi-
bly useful because they allow you to reuse a single function with any type belonging to
the Functor type class. [Int], Maybe Int, and IO Int can all use the same core functions. Let’s
see if you got this.

Q27.1 When we introduced parameterized types in lesson 15, you used a minimal
type Box as the example:

data Box a = Box a deriving Show

Implement the Functor type class for Box. Then implement morePresents, which changes a
box from type Box a to one of type Box [a], which has n copies of the original value in the
box in a list. Make sure to use fmap to implement this.

QC27.2 Now suppose you have a simple box like this:

myBox :: Box Int
myBox = Box 1

Use fmap to put the value in your Box in another Box. Then define a function unwrap that
takes a value out of a box, and use fmap on that function to get your original box. Here’s
how your code should work in GHCi:

GHCi> wrapped = fmap ? myBox
GHCi> wrapped
Box (Box 1)
GHCi> fmap unwrap wrapped
Box 1

Q27.3 Write a command-line interface for partsDB that lets the user look up the cost of
an item, given an ID. Use the Maybe type to handle the case of the user entering missing
input.

28LESSON
A PEEK AT THE APPLICATIVE TYPE CLASS:
USING FUNCTIONS IN A CONTEXT

After reading lesson 28, you’ll be able to

 Build an application that handles missing data
 Extend the power of the Functor type class with the Applicative type
 Use Applicative to use one data model in many contexts

In the preceding lesson, you learned how the Functor type class allows you to perform
computation inside a container such as List or a context such as Maybe and IO. The key
method behind Functor is fmap (more commonly, the <$> operator), which works just like
map on a list. In this lesson, you’ll work with a more powerful type class called Applicative.
The Applicative type class extends the power of Functor by allowing you to use functions
that are themselves in a context.

Although this may not seem useful, it allows you to chain together long sequences of
computation in a context such as IO or Maybe.

In your first example, you’ll see the limitations of Functor by building a command-line
tool that allows the user to calculate the distance between two cities. The issue is that
you need to pass two Maybe values to a function, which surprisingly Functor can’t do.
You’ll then see how Applicative resolves this issue. After you learn about Applicative,
you’ll see how this can help you create data in the context of either IO or Maybe, while
allowing you to reuse the majority of your code.
343

344 Lesson 28 A peek at the Applicative type class: using functions in a context
28.1 A command-line application for calculating the distance
between cities

In this section, you’re going to build a simple command-line application that allows the
user to enter cities by name and then returns the distance between them. The big chal-
lenge you’ll face is ensuring that your application fails gracefully when the user enters a
city not in your database. You’ll use the Maybe type and the Functor type class to achieve
this, but you’ll find you need something a bit more powerful to deal with having two
values in a Maybe context.

NOTE Everything in this section should go in a file named dist.hs.

Let’s assume you have a Map type (remember to add import qualified Data.Map as Map) for
locations on the globe and their latitude and longitude as a tuple.

type LatLong = (Double,Double)

locationDB :: Map.Map String LatLong
locationDB = Map.fromList [("Arkham",(42.6054,-70.7829))

,("Innsmouth",(42.8250,-70.8150))
,("Carcosa",(29.9714,-90.7694))
,("New York",(40.7776,-73.9691))]

What you’d like to do is calculate the distance between two points on the globe from
your locationDB. To do this, you need to use the formula for calculating distance on a
globe. Because a globe curves, you can’t calculate the straight-line distance between two
points. Instead, you need to use the Haversine formula. Note that you need to convert
your latitude and longitude to radians first. Here’s an implementation of haversine (you
don’t need to understand the details of this function).

Listing 28.1 Using a Map as your database of city coordinates

Consider this You want to combine a first- and last-name string to create a person’s
name: "Alan" ++ " " ++ "Turing". The trouble is, both your first and last names are Maybe
Strings because they come from an unreliable source and might be missing. How can
you combine these Strings and return a Maybe String for the name?

345A command-line application for calculating the distance between cities
toRadians :: Double -> Double
toRadians degrees = degrees * pi / 180

latLongToRads :: LatLong -> (Double,Double)
latLongToRads (lat,long) = (rlat,rlong)
 where rlat = toRadians lat
 rlong = toRadians long

haversine :: LatLong -> LatLong -> Double
haversine coords1 coords2 = earthRadius * c
 where (rlat1,rlong1) = latLongToRads coords1
 (rlat2,rlong2) = latLongToRads coords2
 dlat = rlat2 - rlat1
 dlong = rlong2 - rlong1
 a = (sin (dlat/2))^2 + cos rlat1 * cos rlat2 * (sin (dlong/2))^2
 c = 2 * atan2 (sqrt a) (sqrt (1-a))
 earthRadius = 3961.0

Here’s an example of using haversine to compute the distance between two points on the
globe:

GHCi> haversine (40.7776,-73.9691) (42.6054,-70.7829)
207.3909006336738

Next you want to make a simple command-line tool that will let the user get the dis-
tance between two cities. You want the user to enter in two city names, and you’ll return
the distance. Given that you’re dealing with user input, you definitely need to handle
the case in which the user enters a city that doesn’t exist in your database. If one of the
names is missing, you’ll let the user know that an error occurred in their input.

As is often helpful, you’ll start reasoning backward from where you want to end up.
What you want to end up with is an IO action that takes a Maybe value for your distance
and either prints the distance or tells the user that an error occurred.

printDistance :: Maybe Double -> IO ()
printDistance Nothing = putStrLn "Error, invalid city entered"
printDistance (Just distance) = putStrLn (show distance ++ " miles")

Listing 28.2 Computing the distance between two points with haversine

Listing 28.3 An IO action to handle printing your potentially missing distance

346 Lesson 28 A peek at the Applicative type class: using functions in a context
Now you just have to tie everything together. You need to get two locations from your
locationDB, calculate their distance, and then pass that distance to printDistance. The trou-
ble is that your locationDB will give you Maybe values. Thinking in types, here’s the prob-
lem. You have haversine, which is of this type:

haversine :: LatLong -> LatLong -> Double

What you need is a function that looks like figure 28.1.

This is almost exactly the type signature of haversine, but everything is in the context of a
Maybe. This problem should be reminiscent of the problem you solved with Functor. You
want to be able to use normal functions in a context. The naive solution is to put a wrap-
per function around haversine, which will work the specific case of Maybe.

haversineMaybe :: Maybe LatLong -> Maybe LatLong -> Maybe Double
haversineMaybe Nothing _ = Nothing
haversineMaybe _ Nothing = Nothing
haversineMaybe (Just val1) (Just val2) = Just (haversine val1 val2)

The haversineMaybe solution is a poor one for two reasons. First, you have to write wrap-
pers for any similar function, which is needlessly repetitive. Second, you have to write a
different version of haversineMaybe for other similar context types such as IO. Because the
promise of the Functor type is to provide a general way of working in different contexts,
let’s see if you can solve this problem with Functor.

Listing 28.4 One solution to working in a Maybe is to create wrapper functions

Maybe LatLong -> Maybe LatLong -> Maybe Double

These Maybe LatLong values
come from using Map.lookup
on your locationsDB.

You don’t want your result to
leave the context of the Maybe.
You’ll let printDistance handle
the case of missing cities.

Figure 28.1 The signature of the function you need to connect your
locationsDB with printDistance

347A command-line application for calculating the distance between cities

28.1.1 The limitations of Functor

Before you dive in, let’s refresh your memory on Functor’s only method, fmap, and look at
its type signature, shown in figure 28.2.

The fmap function takes any function from type a to type b, and the value of type a in the
context of a Functor (like Maybe), and returns a value of type b in the same context. If you
think of the problem in terms of types, this is pretty close. The major difference is you
have one extra argument. What you want to do is this:

1 Take haversine, which is (LatLong -> LatLong -> Double).
2 Take two arguments of type Maybe: Maybe LatLong -> Maybe LatLong.
3 And finally, you want your answer in a Maybe: Maybe Double.

Quick check 28.1 Write addMaybe for adding two Maybe Ints.

QC 28.1 answer

addMaybe :: Maybe Int -> Maybe Int -> Maybe Int
addMaybe (Just x) (Just y) = Just (x + y)
addMaybe _ _ = Nothing

fmap :: Functor f => (a -> b) -> f a -> f b

This is just a function from
type a to type b. Don’t forget,
it’s okay for a and b to be the
same type. Different variables
mean only that the values can
be different, not that they
have to be.

Your first argument
is in a functor, such
as Maybe.

Your result remains
in the same Functor
as your argument.
But now the function
has been applied
inside the context.

The f type variable can
be confusing. It means
any parameterized type,
belonging to Functor.

Figure 28.2 Annotated type signature for Functor’s only method, fmap

348 Lesson 28 A peek at the Applicative type class: using functions in a context
This leads to the following series of type transformations:

(LatLong -> LatLong -> Double) ->
(Maybe LatLong -> Maybe LatLong -> Maybe Double)

If you translate this to a more generic type signature, you get the following:

 Functor f => (a -> b -> c) -> f a -> f b -> f c

This is nearly identical to fmap, except you’re adding one argument. This is one of the
limitations of Functor’s fmap: it only works on single-argument functions. Because your
main problem is having an extra argument, using partial application should move you
close to a solution.

28.2 Using <*> for partial application in a context

The problem you need to solve now is generalizing Functor’s fmap to work with multiple
arguments. In lesson 5, you learned that partial application means that calling an argu-
ment with fewer arguments than it requires results in a function waiting for the remain-
ing arguments. Then in section 10.2.2, you saw that all functions are functions of one
argument. Multi-argument functions are just a chain of single-argument functions. The
key to solving your problem lies in being able to perform partial application in a context
such as Maybe or IO.

The real limitation of Functor’s <$> is that if you end up with a function in a context,
through partial application, you have no way of using that function. For example, you
can use <$>, (+), and the number 1 in a context to create a maybeInc function.

maybeInc = (+) <$> Just 1

Listing 28.5 Using Functor’s <$> operator for partial application in a context

Quick check 28.2 Suppose you don’t have to worry about Maybes and have raw coordinate
pairs. If you have the pair newYork, how would you make a function distanceFromNY that’s waiting
for an additional location?

QC 28.2 answer
distanceFromNY = haversine newYork

349Using <*> for partial application in a context
If you look up the type of this function, you find that it’s as follows:

maybeInc :: Maybe (Integer -> Integer)

The (+) operator is a function that takes two values; by using <$> on a Maybe value, you
created a function waiting for a missing value, but it’s inside a Maybe. You now have a
Maybe function, but there’s no way to apply this function! Recalling the visual language of
circles and squares in context, you’ve arrived at a problem of finding an adapter for the
situation illustrated in figure 28.3.

Thankfully, there’s another type class that solves precisely this problem!

28.2.1 Introducing the <*> operator

A powerful type class called Applicative contains a method that’s the <*> operator (pro-
nounced app). If you look at the type signature of <*>, you can see what this does, as
shown in figure 28.4.

You need a new adapter to connect this
function in a context with your other values.

Figure 28.3 You need a new type of
adapter for connecting types in a
context with functions in a context.

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

You have a function
in an Applicative
from a -> b. For
example, Maybe
(Int -> Double).

You take an
argument in
the context of
an Applicative.
For example,
Maybe Int.

Finally, you get your
result in the same
applicative context
you started with.
In this case, a
Maybe Double.

This f means any type that's
an instance of Applicative.
For example, Maybe.

Figure 28.4 Annotated type signature for the <*> operator

350 Lesson 28 A peek at the Applicative type class: using functions in a context
Applicative’s <*> allows you to apply a function in a context. Now you can use maybeInc to
increment Maybe values. Here are a couple of examples in GHCi:

GHCi> maybeInc <*> Just 5
Just 6
GHCi> maybeInc <*> Nothing
Nothing
GHCi> maybeInc <*> Just 100
Just 101

You’ve not only solved the case of combining two values inside a Maybe, but also found a
general way to use existing binary functions in a Maybe context.

You can use this to combine Strings in a Maybe context as well:

GHCi> (++) <$> Just "cats" <*> Just " and dogs"
Just "cats and dogs"
GHCi> (++) <$> Nothing <*> Just " and dogs"
Nothing
GHCi> (++) <$> Just "cats" <*> Nothing
Nothing

Because of the way partial application works, you can use <$> and <*> to chain together
any number of arguments.

Quick check 28.3 Use the pattern for using binary values in a context for the functions (*),
div, and mod on these two values:

val1 = Just 10
val2 = Just 5

QC 28.3 answer
val1 = (Just 10)
val2 = (Just 5)
result1 = (+) <$> val1 <*> val2
result2 = div <$> val1 <*> val2
result3 = mod <$> val1 <*> val2

351Using <*> for partial application in a context
28.2.2 Using <*> to finish your city distance program

With Applicative and <*>, you can finally solve your problem of wanting to use your hav-
ersine function with two Maybe values:

GHCi> startingCity = Map.lookup "Carcosa" locationDB
GHCi> destCity = Map.lookup "Innsmouth" locationDB
GHCi> haversine <$> startingCity <*> destCity
Just 1415.7942372467567

Because of heavy use of operators here, this can be difficult to parse. Figure 28.5 illus-
trates the key part of this to help clarify.

Now that you can extend the power of fmap with <*>, you can put everything together to
build a program that will take two city names from user input, and output the distance.
Here’s the main for your program.

main :: IO ()
main = do
 putStrLn "Enter the starting city name:"
 startingInput <- getLine
 let startingCity = Map.lookup startingInput locationDB
 putStrLn "Enter the destination city name:"
 destInput <- getLine

Listing 28.6 The main for dist.hs

haversine <$> startingCity <*> destcity

The <*> operator takes a function
in a context, in this case
Maybe (LatLong -> Double)
and an argument in the same context Maybe LatLong
and applies the function to that argument, returning
a type still in the context, here a Maybe Double.

This first part uses partial application,
which leaves you with a function of
type Maybe (LatLong -> Double)
waiting for a missing argument.

Figure 28.5 Combining <$> with <*> to compute haversine in a Maybe context

352 Lesson 28 A peek at the Applicative type class: using functions in a context
 let destCity = Map.lookup destInput locationDB
 let distance = haversine <$> startingCity <*> destCity
 printDistance distance

If you compile this program, you can see that you can now handle user input errors
quite well:

$./dist
Enter the starting city name:
Carcosa
Enter the destination city name:
Innsmouth
1415.7942372467567 miles

And now an example with a city not in your database:

$./dist
Enter the starting city name:
Carcosa
Enter the destination city name:
Chicago
Error, invalid city entered

This example demonstrates the value of Functors and Applicatives. You just wrote a pro-
gram that handles missing values well, but not once did you have to check whether a
value was null using conditionals, or worry about exception handling. Even better, you
could write the core functionality of your program, haversine, as though nothing in the
world might go wrong.

Haskell’s type system makes it impossible for you to accidentally pass a Maybe LatLong to
haversine. In nearly every other programming language, even those with static types such
as Java and C#, there’s no way to ensure that a null value doesn’t sneak into a function.
Functor and Applicative complement this safety by making it easy to mix regular functions
such as haversine with Maybe types or IO types, without compromising that safety.

28.2.3 Using a multi-argument function in IO using <$> and <*>

IO is also a member of Applicative. To show this off, let’s see how to use <$> and <*> to
make a simple command-line tool that returns the minimum of three numbers entered
by the user, called min3.hs. You’ll start with a three-argument function called minOfThree,
which gives you the minimum of three values.

353Using <*> for partial application in a context
minOfThree :: (Ord a) => a -> a -> a -> a
minOfThree val1 val2 val3 = min val1 (min val2 val3)

Next you’ll create a simple IO action, readInt, which will read an Int from the command line.

readInt :: IO Int
readInt = read <$> getLine

Now you can use <$> with <*> to make an IO action that reads in three Ints and returns
the minimum.

minOfInts :: IO Int
minOfInts = minOfThree <$> readInt <*> readInt <*> readInt

Finally, you can put this in a main.

main :: IO ()
main = do
 putStrLn "Enter three numbers"
 minInt <- minOfInts
 putStrLn (show minInt ++ " is the smallest")

Now you can compile and run your min3.hs:

$ ghc min3.hs
$./min3.hs
Enter three numbers
1
2
3

1 is the smallest

Listing 28.7 minOfThree function takes three arguments and returns the smallest

Listing 28.8 A simple readInt IO action made using <$>

Listing 28.9 minOfInts shows using multiple arguments with <*>

Listing 28.10 Your main for min3.hs

354 Lesson 28 A peek at the Applicative type class: using functions in a context
Because of the power of partial application and <*>, you can chain together as many
arguments as you’d like!

28.3 Using <*> to create data in a context

One of the most common uses of Applicatives in practice occurs when you want to create
data, but all the information you need for the data is in a context such as a Maybe or IO. For
example, suppose you have user data for a video game.

data User = User
 { name :: String
 , gamerId :: Int
 , score :: Int
 } deriving Show

It’s important to note that just because you’re using record syntax doesn’t mean that you
can’t create the type as you would without it. For example:

GHCi> User {name = "Sue", gamerId = 1337, score = 9001}
User {name = "Sue", gamerId = 1337, score = 9001}
GHCi> User "Sue" 1337 9001
User {name = "Sue", gamerId = 1337, score = 9001}
GHCi>

Let’s look at two cases where you want to create a user from data that’s in a context.

Listing 28.11 User data for a game

Quick check 28.4 Use minOfThree to get the Maybe Int value of these three Maybe values:

Just 10
Just 3
Just 6

QC 28.4 answer
GHCi> minOfThree <$> Just 10 <*> Just 3 <*> Just 6
Just 3

355Using <*> to create data in a context
28.3.1 Creating a user in the context of a Maybe

The first context is a Maybe. It’s reasonable to assume that you’ve gathered the necessary
information from sources in which the data might be missing. Here are some sample
Maybe types that you’ll pretend come from a server that might have accidently sent you
missing data.

serverUsername :: Maybe String
serverUsername = Just "Sue"

serverGamerId :: Maybe Int
serverGamerId = Just 1337

serverScore :: Maybe Int
serverScore = Just 9001

To create a user from this data, you can use <$> and <*>, because your data constructor
User works as a function that takes three arguments. Here’s your code to do this in GHCi:

GHCi> User <$> serverUsername <*> serverGamerId <*> serverScore
Just (User {name = "Sue", gamerId = 1337, score = 9001})

Another context in which you might want to create a user is from IO. You can make a
command-line tool that reads three lines of input for the user values and outputs your
user data. You’ll reuse the readInt function from the preceding lesson to transform user
input directly to an Int.

readInt :: IO Int
readInt = read <$> getLine

main :: IO ()
main = do
 putStrLn "Enter a username, gamerId and score"
 user <- User <$> getLine <*> readInt <*> readInt
 print user

The powerful thing here is that you need to define only a single type, User, that works
with regular Strings and Ints. Because of the Applicative type class, you can trivially use
the same code to create a user in different contexts.

Listing 28.12 Maybe types for the necessary information to create a user

Listing 28.13 Using Applicative to create a user from IO types

356 Lesson 28 A peek at the Applicative type class: using functions in a context
Summary

In this lesson, our objective was to introduce you to the Applicative type class. The
Applicative’s <*> operator allows you to use functions that are themselves in a context. For
example, if you have a function that might not exist, Maybe (Int -> Double), you can apply
it to a value in the same context, Maybe Int, and get a result still in that context, Maybe
Double. This may seem like a seldom-used operator, but it’s essential to being able to
extend Functor to multi-argument functions. Because of the prevalence of partial applica-
tion in Haskell programs, it’s fairly common to wind up with a function in a context.
Without Applicative, it’d be impossible to use these functions in many cases. Let’s see if
you got this.

Q28.1 Writing haversineMaybe (listing 28.4) was straightforward. Write the function
haversineIO without using <*>. Here’s the type signature:

haversineIO :: IO LatLong -> IO LatLong -> IO Double

Q28.2 Rewrite haversineIO, this time using <*>.

Q28.3 Recall the RobotPart type from the preceding lesson:

data RobotPart = RobotPart
 { name :: String
 , description :: String
 , cost :: Double
 , count :: Int
 } deriving Show

Make a command-line application that has a database of various RobotParts (at least five),
and then lets the user enter in two-part IDs and returns the one with the lowest cost.
Handle the case of the user entering an ID that’s not in the parts database.

Quick check 28.5 Show the result of creating a user with a missing (Nothing) userName.

QC 28.5 answer
GHCi> User <$> Nothing <*> serverGamerId <*> serverScore
Nothing

29 LESSON
LISTS AS CONTEXT: A DEEPER LOOK AT
THE APPLICATIVE TYPE CLASS

After reading lesson 29, you’ll be able to

 Explain the formal definition of the Applicative type class
 Represent parameterized types as either containers or contexts
 Use List as a context to explore nondeterministic computing

In the preceding lesson, you learned how to use the <*> (pronounced app) operator to
extend the power of Functor’s <$> (pronounced fmap) operator. In this lesson, you’ll take a
closer look at the Applicative type class. You’ll explore the difference between types that
represent a container and types that represent a context. You’ll finish by looking at the
powerful things you can achieve by using lists as a context.

Consider this

A breakfast place offers you the choice of the following:

 Coffee or tea

 Eggs, pancakes, or waffles

 Toast or a biscuit

 Sausage, ham, or bacon

What are all the possible meals you could choose, and how can you use List to help?
357

358 Lesson 29 Lists as context: a deeper look at the Applicative type class
29.1 Introducing the Applicative type class

The Applicative type class allows you to use functions that are inside a context, such as
Maybe or IO. As you saw in the preceding lesson, this extends the power of the Functor type
class. Because of the way that Applicative works with Functor, Functor is a superclass of
Applicative. See figure 29.1.

One tricky thing in this definition is that there are two constraints on your type variable
f. The first says that f is a Functor, which enforces that Applicative must be a Functor, and
then you define f as your stand-in for Applicative. In your method signatures, f is a vari-
able for any Applicative (see figure 29.2). Notice that the operator <*> has the same type
signature as your fmap, except the function argument is also in a context. This small dif-
ference in <*> allows you to chain together larger sequences of functions inside members
of the Functor type class. Here are a few examples of using <$> and <*> to perform mathe-
matical operations on Maybe types:

GHCi> (*) <$> Just 6 <*> Just 7
Just 42
GHCi> div <$> Just 6 <*> Just 7
Just 0
GHCi> mod <$> Just 6 <*> Just 7
Just 6

fmap :: Functor f :: (a -> b) -> f a -> f b
(<$>) :: Functor f :: (a -> b) -> f a -> f b

fmap :: Functor f :: (a -> b) -> f a -> f b
(<$>) :: Functor f :: (a -> b) -> f a -> f b
(<*>) :: Applicative f :: f (a -> b) -> f a -> f b
pure :: Applicative f :: a -> f a

Applicative

Functor

Figure 29.1 Functor is the superclass of applicative. Figure 29.2
provides the definition of Applicative with its two required methods.

359Introducing the Applicative type class
R

S
45

1
93

77
This solution may seem either elegant or confusing, depending on how comfortable you
are with Haskell’s infix binary operators. Undoubtedly, using <$> and <*> can initially
seem confusing. Further complicating the issue is that unlike <$> and fmap, <*> has no
equivalent function. If you’re struggling with these operators, the best solution is prac-
tice. Try going back to some of the examples in unit 1 and change values used as argu-
ments to Maybe values. Remember, because of fmap and <*>, you don’t need to rewrite any
functions to work with Maybe values.

29.1.1 The pure method

The function pure is the second method required by the Applicative type class. The pure
method is a useful helper function for taking an ordinary value or function and putting

class Functor f => Applicative f where
 (<*>) :: f (a -> b) -> f a -> f b
 pure :: a -> f a

The type constraint on the type
variable f means that Functor is
a superclass of Applicative. So all
Applicatives are also Functors.

You've just seen how (<*>)
works; it takes a function in
a Functor and a value in the
same Functor, and applies
that function to that value.

The pure function is the
only other method required
of Applicative. It takes a normal
type and puts it in the context
of a Functor.

These are the two
required methods
for the Applicative
type class.

Figure 29.2 Type class definition for Applicative

Quick check 29.1 Use <$> and <*> to combine two Maybe String types with ++.

QC 29.1 answer

GHCi>(++) <$> Just "Learn" <*> Just " Haskell"
Just "Learn Haskell"

360 Lesson 29 Lists as context: a deeper look at the Applicative type class
it into a context. The best way to understand pure is to play around with it in GHCi. In
the example of a Maybe, pure will return a Just:

GHCi> pure 6 :: Maybe Int
Just 6

You can also use pure to put a function into the context of Applicative. For example, if you
want to add 6 to (Just 5), you can use either fmap or pure:

GHCi> (6+) <$> Just 5
Just 11
GHCi> pure (6+) <*> Just 5
Just 11

Though these examples are fairly simple, in practice you’ll frequently want a quick way
to transform a value into the desired Applicative type. In our visual language, pure also
performs an important role, as shown in figure 29.3.

Because of pure, you can take any value that’s not in a context and trivially put it in one.
This is vital to allowing all possible computations in a context.

The pure method provides an adapter
for when you simply need to put a
regular type into a context.

Figure 29.3 The pure method means you
always have a way to take an ordinary type and
put it in a context.

Quick check 29.2 Make the String "Hello World" into an IO String.

QC 29.2 answer
hello :: IO String
hello = pure "Hello World"

361Containers vs. contexts
29.2 Containers vs. contexts

So far, we’ve talked somewhat loosely about the difference between parameterized
types that represent containers and contexts. At this point, you need to be a bit clearer
about what you mean by these terms. The reason is that unlike Functor, Applicative and
the next lesson’s type class Monad make sense only when you’re talking about types as a
context. Here’s the distinction in a nutshell:

 Parameterized types that represent a container are types that represent a data
structure.

 When a type is a context, extra information is implied about the type, beyond its
structure.

Let’s explore this further. The best test of whether a type is a container is whether you can
tell what it does, independent of its name. For example, consider the 2-tuple (a,b). You
could implement the same type named Blah.

data Blah a b = Blah a b

Even with a completely useless name like Blah, it’s hard to argue that this type is any dif-
ferent than a regular tuple pair (a,b).

The Data.Map type is another, similar structure. You could call this a Dictionary, a Binary-
SearchTree, a MagicLookupBox, and so forth. But what the type means is implied by the data
structure itself. Even if the entire set of functions around Map were written in an alien lan-
guage, you’d still quickly figure out what the type is used for. (Probably…eventually.)

It’s worth pointing out that the 2-tuple (,) and Data.Map are both instances of Functor but
not instances of Applicative. Remember that the key power of Applicative is that it lets you
apply a function in a parameterized type. Another good way to differentiate containers
from contexts is to ask, “Does it make sense to have a <type> function?” Maybe (a -> b) is a
function from a -> b that itself might not exist because it was made via partial applica-
tion with a Nothing value. An IO (a -> b) function is any function that’s operating in the
world of IO. What does a Data.Map function mean? Likewise, what does a 2-tuple function
mean? If you can answer these questions, you have the starting ground for figuring out
the Applicative instance for these types.

Listing 29.1 A poorly named 2-tuple is still the same thing

362 Lesson 29 Lists as context: a deeper look at the Applicative type class
When a type is a context, on the other hand, extra information is implied about the type,
beyond its structure. The most obvious case is the IO type. When you first introduce
parameterized types, you introduce the idea of a Box type.

data Box a = Box a

Clearly, Box is a uselessly trivial type. But there’s no difference at the data constructor
level between Box and IO. IO, from our perspective, is just a data constructor that wraps
types that came from IO (there’s much more to the IO type, but not that you can immedi-
ately see).

The Maybe type is another context type. Suppose you want to create a parameterized type
for a resource-constrained computation. You could imagine this type as follows.

data ResourceConstrained a = NoResources | Okay a

Behind the scenes, there would be a lot of magic determining resource usage, but this
type is no different from Maybe at the type-constructor level. Most of the information
about this type is in a context that you assume about the type itself.

The best way to understand this distinction between container and context is to look at
an example. List turns out to be the perfect case. It’s easy to understand List as a con-
tainer because it’s a common data structure. But List also describes a context. If you
understand how List can be a container and a context, you’re on the path to truly under-
standing Applicatives.

Listing 29.2 The trivial Box type doesn’t seem much different from IO

Listing 29.3 A type representing if there are enough resources to continue

Quick check 29.3 Suppose you want to make it so that (pure +) <*> (1,2) <*> (3,4) =
(1+2,1+4,2+3,2+4) = (3,5,5,6). Why doesn’t this work?

QC 29.3 answer This doesn’t work because (3,5,5,6) is an entirely different type than (1,2) or
(3,4). The first is type (a,b,c,d), and the other two are (a,b).

363List as a context
29.3 List as a context

The List type, being a fundamental example of nearly everything in Haskell, is both a
container and a context. List as a container is easy to understand. List is basically a chain
of buckets of whatever type of data you want to hold. But List is a member of Applicative,
so there must be a way to view List as a context.

The reason context matters for a list is that to use Applicative, you need to be able to
answer the question, “What does it mean to apply a function to two or more values in
the context of a list?” For example, what does [1000,2000,3000] + [500,20000] mean? The
naive assumption might be as follows:

[1000,2000,3000] + [500,20000] = [1000,2000,3000,500,20000]

But this would be just adding two lists, which is concatenation (the ++ operator for lists).
What you’re curious about is what it means to combine two values in the context of List
by using addition. In terms of Applicative, you’d read this statement as follows:

pure (+) <*> [1000,2000,3000] <*> [500,20000]

The List data structure alone doesn’t give you enough information to say what this
means. To understand how you add two values in a list, you need extra context to inter-
pret the general idea of applying a binary function to values in lists.

The best way to understand List as a context is that it describes nondeterministic compu-
tation. Normally, you think of programming as purely deterministic. Each step in the
computation is followed by another in a precise order that yields one, final result. In
nondeterministic computing, you’re computing multiple possibilities all at once. In
terms of thinking nondeterministically, when you add values in the context of a list,
you’re adding together all possible values from the two contexts. You can see the some-
what surprising result of using <*> with Lists in GHCi:

GHCi> pure (+) <*> [1000,2000,3000] <*> [500,20000]
[1500,21000,2500,22000,3500,23000]

Adding together two Ints in the context of a List means adding all possible combina-
tions of the values in those lists.

29.3.1 Exploring container vs. context with a list

It’s important to take a moment and point out the major differences between a list as a
container and a list as a context:

364 Lesson 29 Lists as context: a deeper look at the Applicative type class
 A list as a container is a sequence of values that can hold any type. Each item in
the list points to the next one or to the empty list.

 A list as a context represents a set of possibilities. Think of a list as a context as
being a single variable that can contain many possible values.

Don’t be fooled by your familiarity with List as a container. Both Maybe and IO are much
simpler contexts to reason about. A Maybe Int is a single Int value in the context that it
may be missing. An IO Int is an Int value in the context that it was produced by an IO
action that may have produced side effects or other issues. An [Int] is an Int in the con-
text that there are many possible values for that Int. Because there are many possible
values for that [Int], when you apply a function (Int -> Int -> Int) in the context of a list,
you must think nondeterministically and compute all possible results of that operation.

29.3.2 A game show example

As an example, suppose you’re on a game show and you get to choose one of three
doors and then one of two boxes. Behind the doors are prizes worth $1,000, $2,000, and
$3,000. You don’t know which you’ll get, so you can represent this as a list.

doorPrize :: [Int]
doorPrize = [1000,2000,3000]

After the door, you choose one of two boxes; a box can contain either $500 or $20,000.
You can represent these possibilities as a list as well.

boxPrize :: [Int]
boxPrize = [500,20000]

In a deterministic context, you can open only one door, and pick only one box, getting
only one prize. But if you nondeterministically think about this problem, you’re com-
puting all possible combinations of doors you can open and boxes you can pick. Deter-
ministically, if you want to talk about prizes, you’re talking about the one prize you can
win. Figure 29.4 presents the deterministic and nondeterministic ways to understand
your prize.

The equation for your totalPrize in a deterministic world would be the following (you
use the prefix (+) so it’s easy to compare with the Applicative version).

Listing 29.4 Nondeterministic possibilities for door values

Listing 29.5 Nondeterministic possibilities for box prizes

365List as a context
totalPrize :: Int
totalPrize = (+) doorPrize boxPrize

In a nondeterministic context, you’re talking about all possible prizes that can be won.
You can describe the nondeterministic totalPrize with the function shown in figure 29.5.

In GHCi, you can see that totalPrize represents all possible prizes that can be won:

GHCi> totalPrize
[1500,21000,2500,22000,3500,23000]

Listing 29.6 Deterministic door prize can represent only a single path

$1,000

Deterministic computing means following a single path to
a single answer. Follow the solid line to the bold answer.

Nondeterministic computing means following all possible
paths at once to all possible answers. Lists as context
represent nondeterministic computing.

$2,000

$3,000

[1500

,21000
,2500

,22000

,3500

,23000]

$500

$20,000

Figure 29.4 Thinking of lists as
nondeterministic computing is
hard because you normally think
deterministically.

366 Lesson 29 Lists as context: a deeper look at the Applicative type class
When you add two lists in context, you get the combination of all possible worlds. For each
door prize, you can pick one of the two possible box prizes. The results of adding two lists
within the context of a list are all possible solutions in your nondeterministic world.

Next you’ll look at two more examples of practical nondeterministic computing. You’ll
use nondeterministic computing to compute all nonprime numbers, allowing you to
easily identify primes. Then you’ll use nondeterministic computing to quickly generate
a set of possible test data.

29.3.3 Generating the first N prime numbers

A prime number is any number divisible by only 1 and itself. Suppose you want to gener-
ate a list of prime numbers. There’s an amazingly simple method for computing a list of
primes using the Applicative properties of a list. Here’s the basic process:

You’re thinking in contexts now. This
[Int] doesn’t represent a sequence of
Ints but rather a nondeterministic Int.
That’s an Int that can take on a range
of values.

totalPrize is all possible
prizes you can get from
the nondeterministic
view of your game.

Using pure means you’re
putting your typically
deterministic + in the
nondeterministic
context of a list.

doorPrize is all
possible door prizes.

boxPrize is all
possible box prizes.

totalPrize :: [Int]
totalPrize = (pure +) <*> doorPrize <*> boxPrize

Figure 29.5 Nondeterministic computing computes on all possible paths, rather than just one.

Quick check 29.4 Solve this problem if the boxes contain a prize multiplier instead of just an
additional prize. The multipliers are 10× and 50×.

QC 29.4 answer

boxMultiplier = [10,50]
newOutcomes = pure (*) <*> doorPrize <*> boxMultiplier

GHCi> newOutcomes
[10000,50000,20000,100000,30000,150000]

367List as a context
1 Start with your list from 2 to n.
2 Determine all the nonprime numbers (composite numbers).
3 Filter out all items from the list that aren’t composite.

The only question remaining then is, “How do you compute the composite numbers?”
A composite number is any number that results from multiplying two or more other num-
bers together. You can easily build this list by multiplying each number in your [2 .. n]
list by itself. How can you do this easily? With Applicative! For example, if you have
[2..4], you can use multiplication *, pure, and <*> to build your list of all possible num-
bers that are made from these numbers:

GHCi> pure (*) <*> [2 .. 4] <*> [2 .. 4]
[4,6,8,6,9,12,8,12,16]

This list is inefficient, as it includes numbers out of your range as well as duplicate num-
bers. But it’ll include every composite number in your range. Given this bit of code, you
can easily write your function for listing all prime numbers to n.

primesToN :: Integer -> [Integer]
primesToN n = filter isNotComposite twoThroughN
 where twoThroughN = [2 .. n]
 composite = pure (*) <*> twoThroughN <*> twoThroughN
 isNotComposite = not . (`elem` composite)

Although not the most efficient prime-number-generating algorithm, this is incredibly
easy to implement and works well enough for reasonably small ranges:

GHCi> primesToN 32
[2,3,5,7,11,13,17,19,23,29,31]

If you ever need to whip up a quick prime-number generator, this little trick can be a
useful tool to have.

29.3.4 Quickly generating large amounts of test data

In the preceding lesson, we showed how a User could be created in different contexts by
using Applicative. You used this User type for a user in a video game:

data User = User {
 name :: String
 , gamerId :: Int

Listing 29.7 primesToN, a simple but inefficient primer algorithm

368 Lesson 29 Lists as context: a deeper look at the Applicative type class
 , score :: Int
 } deriving Show

You used Applicative to create instances of User in the context of both IO and Maybe. To
demonstrate how powerful the list context is, you’ll do the same thing, only to create a
large amount of test data.

Suppose you have a list of usernames, some typical and others problematic in certain
cases. Thinking of lists as context, testNames represents possible names.

testNames :: [String]
testNames = ["John Smith"
 ,"Robert'); DROP TABLE Students;--"
 ,"Christina NULL"
 ,"Randall Munroe"]

You want to test possible gamer IDs with gamerIds.

testIds :: [Int]
testIds = [1337
 ,0123
 ,999999]

And you also want to make sure you have possible troublesome scores as well.

testScores :: [Int]
testScores = [0
 ,100000
 ,-99999]

What you want to do is generate test data that includes all possible combinations of
these values. This means nondeterministically computing a list of possible users. You
could do that by hand, but that would mean writing out 4 × 3 × 3 = 36 entries! Plus, if
you later decide to add another value to any of those lists, it means a lot of work for you.

Listing 29.8 Some testNames for your data

Listing 29.9 testIds with different values

Listing 29.10 Sample testScores for testing

369List as a context
Instead, you can use the Applicative properties of List to nondeterministically generate
your test data for you. You’ll do this exactly the same way you created User types for IO
and Maybe in the preceding lesson.

testData :: [User]
testData = pure User <*> testNames
 <*> testIds
 <*> testScores

In GHCi, you can see that you’ve successfully created a list of all 36 possible combina-
tions of these values. Even better, to update your list, you have to add whatever values
you like to testNames, testIds, or testScores:

GHCi> length testData
36
GHCi> take 3 testData
[User {name = "John Smith", gamerId = 1337, score = 0}
,User {name = "John Smith", gamerId = 1337, score = 100000}
,User {name = "John Smith", gamerId = 1337, score = -99999}]

Using the List type to perform nondeterministic computing shows how powerful the
Applicative type class can be when working with contexts!

Listing 29.11 Same pattern used for IO and Maybe to generate many test users

Quick check 29.5 Add your own name to testNames and regenerate the data. How many
examples are there now?

QC 29.5 answer
testNames = ["Will Kurt"
 , "John Smith"
 ,"Robert'); DROP TABLE Students;--"
 ,"Christina NULL"
 ,"Randall Munroe"]

testData :: [User]
testData = pure User <*> testNames
 <*> testIds
 <*> testScores

There are now 45 examples.

370 Lesson 29 Lists as context: a deeper look at the Applicative type class
Summary

In this lesson, our objective was to give you a deeper insight into the Applicative type
class. You were formally introduced to the full Applicative type class, which includes the
<*> operator you learned in the preceding lesson, as well as the pure method. The role of
pure is to take normal values and put them into the context you need; for example, turn-
ing an Int into a Maybe Int. You also focused on the differences between containers and
contexts by exploring a list as a context. Contexts differ from containers in that they
require you to understand something about the computation happening beyond what
the data structure alone tells you. For lists, this means representing nondeterministic
computation, rather than just a container for sequential data. Let’s see if you got this.

Q29.1 To prove that Applicative is strictly more powerful than Functor, write a universal
version of fmap, called allFmap, that defines fmap for all members of the Applicative type
class. Because it works for all instances of Applicative, the only functions you can use are
the methods required by the Applicative type class. To get you started, here’s your type
signature:

allFmap :: Applicative f => (a -> b) -> f a -> f b

When you’re finished, test this out on List and Maybe, which are both members of Applicative:

GHCi> allFmap (+ 1) [1,2,3]
[2,3,4]
GHCi> allFmap (+ 1) (Just 5)
Just 6
GHCi> allFmap (+ 1) Nothing
Nothing

Q29.2 Translate the following expression into one where the result is a Maybe Int. The
catch is that you may not add (or remove) anything to the code except pure and <*>. You
can’t use the Just constructor or any extra parentheses.

example :: Int
example = (*) ((+) 2 4) 6

Here’s the type signature for your answer:

exampleMaybe :: Maybe Int

Q29.3 Take the following example and use nondeterministic computing with Lists to
determine how much beer you need to purchase to assure there will be enough:

371Summary
 You bought beer last night but don’t remember whether it was a 6-pack or a 12-
pack.

 You and your roommate each had two beers last night.
 You’re having either two or three friends coming over tonight, depending on

who can come.
 For a long night of gaming, you expect the average person to drink three to four

beers.

30LESSON
INTRODUCING THE MONAD TYPE CLASS

After reading lesson 30, you’ll be able to

 Understand the limitations of both Functor and Applicative
 Use Monad’s (>>=) operator to chain together functions in a context
 Write IO code without do-notation

You’ve just finished learning about two important type classes, Functor and Applicative.
Each has allowed you to perform increasingly powerful computations within a context
such as Maybe or IO. Functor allows you to change individual values in a context:

GHCi> (+ 2) <$> Just 3
Just 5

Applicative increases your power by enabling you to use partial application in a context.
This, in turn, allows you to use multiple arguments in a context:

GHCi> pure (+) <*> Just 3 <*> Just 2
Just 5

In this lesson, you’ll look at the final evolution of this process, the Monad type class.
Through one more operator, the Monad type class will allow you to perform any arbitrary
computation in a context you’d like. You already saw this power in unit 4 with do-
notation, which is syntactic sugar for the methods of the Monad type class.
372

373The limitations of Applicative and Functor
main :: IO ()
main = do
 putStrLn "Remember do-notation!"
 putStrLn "It makes things easy!"

To understand why you need the Monad type class, you’ll ignore do-notation for this les-
son and see why you need Monads at all, given how powerful Functor and Applicative are.
Because do-notation does make life much easier, you’ll revisit it in the next lesson.

You’ll start this lesson by looking at two relatively straightforward problems that are
frustratingly challenging to solve with Functor or Applicative. You’ll then learn about
Monad’s powerful bind operator, and how it can make these problems easy to solve. You’ll
conclude this lesson by using Monad’s methods to write IO actions similar to what you
used do-notation for in unit 4.

30.1 The limitations of Applicative and Functor

Remembering back to our visual representation of Functor, Applicative, and Monad, you’ve
solved three of the four possible mismatches. The Functor’s fmap provides an adapter
when you have a value in a context and a regular function, and want your result in a
context, as shown in figure 30.1.

Applicative’s <*> allows you to connect a function in a context with values in a context, as
shown in figure 30.2.

Listing 30.1 A quick reminder of do-notation

Consider this How would you write a single IO action that reads in a number from
the user, doubles it, and prints that value back to the user, without using do-notation?

Figure 30.1 A visualization of the
mismatch between function and
context that Functor solves

374 Lesson 30 Introducing the Monad type class
And finally, Applicative’s pure method allows you to handle the case of your final result
not being in a context, as shown in figure 30.3.

This leaves one problem left to solve, when the initial argument isn’t in a context but its
result is, as shown in figure 30.4.

After you have a solution for this last pattern, you have a solution for using any possible
function in a context. This last case may initially seem like an odd one, but it appears
often. Next you’ll investigate two examples of when this comes up and how Functor and
Applicative can’t help.

30.1.1 Combining two Map lookups

In this section, you’ll explore a common issue of needing to look up a value in one Map in
order to access another value in a second Map. This can happen anytime you need one
value to look up another, such as the following:

 Looking up a zip code to find a city, and then looking up the city to find the state
 Using an employee name to look up an employee ID, and then using the ID to

look up a record
 Taking a stock ticker and looking up the company name, and then looking up the

company location

You’re writing code for managing user credits for a mobile gaming platform. Currently,
each user is identified as a unique GamerId that’s just an Int. Suppose that earlier instances

Figure 30.2 Applicative’s <*> solves the
problem of functions themselves being in a context.

Figure 30.3 Applicative’s pure method
means you can always put a result into a
context.

Figure 30.4 This is the only pattern you
need a solution for; the Monad type class
provides an answer.

375The limitations of Applicative and Functor
of your program used a unique Username, a String, to associate a user with the credits in
their account. Because of this legacy dependence of Username as an identity, to look up
user credits on newer users, you still have to look up a Username given a GamerId and then
use the Username to look up the credits in their account. Here’s the basic code to get you
started.

import qualified Data.Map as Map

type UserName = String
type GamerId = Int
type PlayerCredits = Int

userNameDB :: Map.Map GamerId UserName
userNameDB = Map.fromList [(1,"nYarlathoTep")
 ,(2,"KINGinYELLOW")
 ,(3,"dagon1997")
 ,(4,"rcarter1919")
 ,(5,"xCTHULHUx")
 ,(6,"yogSOThoth")]

creditsDB :: Map.Map UserName PlayerCredits
creditsDB = Map.fromList [("nYarlathoTep",2000)
 ,("KINGinYELLOW",15000)
 ,("dagon1997",300)
 ,("rcarter1919",12)
 ,("xCTHULHUx",50000)
 ,("yogSOThoth",150000)]

With your sample data in place, you can start working on your main problem: writing a
function to look up a user’s credits given that user’s GamerId. You want a function that
will look up PlayerCredits given a GamerId. You still want your PlayerCredits value to be a
Maybe PlayerCredits because it’s entirely possible that either you have a missing GamerId or
there’s a missing entry for your GamerID in creditsDB. The function you want is as follows.

creditsFromId :: GamerId -> Maybe PlayerCredits

Listing 30.2 Basic setup for the problem of combining two Map lookups

Listing 30.3 Type signature of your goal function, creditsFromId

This Map represents the
database you’re getting
your UserName from,
given a GamerId.

This Map represents the
database; you’ll use the
UserName to look up
PlayerCredits.

376 Lesson 30 Introducing the Monad type class
To create this function, you have to combine two Map.lookup functions. You’ll create
helper functions that abstract out your databases. The lookupUserName function will take a
GamerID and give you a Maybe UserName result, and the lookupCredits function will take a User-
Name and give the user a Maybe Credits result.

lookupUserName :: GamerId -> Maybe UserName
lookupUserName id = Map.lookup id userNameDB

lookupCredits :: UserName -> Maybe PlayerCredits
lookupCredits username = Map.lookup username creditsDB

Before you dive deeper, you should think about the type signature of the missing func-
tion that you need. You need to connect the result of lookupUserName, Maybe Username, with
the function lookupCredits, UserName -> Maybe PlayerCredits. For this concrete case, the type
signature of your function is as follows:

Maybe UserName -> (UserName -> Maybe PlayerCredits) -> Maybe PlayerCredits

Applicative and Functor have taught you to think more abstractly about solving problems
in types such as Maybe. The general form of the combining function you want is as follows:

Applicative f => f a -> (a -> f b) -> f b

You’ll assume the Applicative constraint rather than Functor only because Applicative is
more powerful. If you can’t solve your problem with Applicative, you can’t solve it with
Functor either. Now let’s take a look at the tools you get from Applicative and Functor:

(<$>) :: Functor f => (a -> b) -> f a -> f b
(<*>) :: Applicative f => f (a -> b) -> f a -> f b
pure :: Applicative f => a -> f a

Unfortunately, for all the power you’ve gained with Applicative, it doesn’t look like any
combination of these tools will solve this rather straightforward problem of wanting to
chain together two functions. You can solve this problem by writing a wrapper for
lookupCredits to be a function of Maybe UserName -> Maybe PlayerCredits.

altLookupCredits :: Maybe UserName -> Maybe PlayerCredits
altLookupCredits Nothing = Nothing
altLookupCredits (Just username) = lookupCredits username

Listing 30.4 The functions to combine: lookupUserName and lookupCredits

Listing 30.5 altLookupCredits, a solution without using Functor or Applicative

377The limitations of Applicative and Functor
Now you can put together your final creditsFromId function.

creditsFromId :: GamerId -> Maybe PlayerCredits
creditsFromId id = altLookupCredits (lookupUserName id)

And you can see in GHCi that this works well:

GHCi> creditsFromId 1
Just 2000
GHCi> creditsFromId 100
Nothing

This solution works, but having to write a wrapper function to make it work for Maybe
should be a warning at this point. In lesson 28, you saw a similar pattern of being forced
to write a wrapper function to work in a context as motivating more powerful type
classes. But at this point, you might not be convinced of the need for yet another, even
more powerful type class.

30.1.2 Writing a not-so-trivial echo IO action

The reason your problem with Maybe doesn’t seem so bad is that Maybe is an easy context to
work in. You can always manually create a solution to any Maybe problem by a clever use
of pattern matching on Just and Nothing. The IO type, on the other hand, isn’t nearly as
friendly. To demonstrate this, let’s attempt to solve an easy-looking problem. You want
to write a simple IO action, echo. The echo action is a single action that reads in user input
and immediately prints it back. To do this, you need to combine two IO actions that you
already know well:

getLine :: IO String
putStrLn :: String -> IO ()

Listing 30.6 Going straight from GamerId -> Maybe PlayerCredits

Quick check 30.1 Interestingly enough, the following function seems to do what you want
and compiles just fine. What’s the issue? (Hint: Look at its type signature in GHCi.)

creditsFromIdStrange id = pure lookupCredits <*> lookupUserName id

QC 30.1 answer The trouble with this function is that it returns a Maybe (Maybe PlayerCredits).
That’s a nested Maybe!

378 Lesson 30 Introducing the Monad type class
And of course the type of echo is as follows:

echo :: IO ()

You need to combine getLine with putStrLn. If you once again think of this problem in
types, you’ll see a familiar pattern. You need a function that combines getLine and
putStrln and returns an IO String:

IO String -> (String -> IO ()) -> IO ()

If you abstract this out, you have this:

Applicative f => f a -> (a -> f b) -> f b

This is exactly the same type signature you ended up with before. To solve this problem,
you need something strictly more powerful than either Functor or Applicative. This finally
brings you to the Monad type class!

30.2 The bind operator: >>=

The missing operator you need is >>= (pronounced bind) and has the following type
signature:

(>>=) :: Monad m => m a -> (a -> m b) -> m b

As you can see, (>>=) has exactly the signature you were looking for! From the type class
constraint, you can see that >>= is a member of the Monad type class. Maybe and IO are both
instances of Monad, which means you can use >>= to solve your problems. With bind, you
can find a more elegant solution to your creditFromId function.

Quick check 30.2 Why can’t you write a function like creditsFromId to solve this problem?

altLookupCredits :: Maybe UserName -> Maybe PlayerCredits
altLookupCredits Nothing = Nothing
altLookupCredits (Just username) = lookupCredits username

creditsFromId :: GamerId -> Maybe PlayerCredits
creditsFromId id = altLookupCredits (lookupUserName id)

QC 30.2 answer You have no way of getting a value out of an IO context as you do a Maybe context.
You need more powerful tools such as Applicative and Functor to work with IO types.

379The bind operator: >>=
creditsFromId :: GamerId -> Maybe PlayerCredits
creditsFromId id = lookupUserName id >>= lookupCredits

As you can see, >>= allows you to chain together a function of a type (a -> m b). In the case
of Maybe, this means you can endlessly chain together lookups. For example, suppose you
have yet another level of indirection. Imagine your mobile gaming company was pur-
chased by WillCo Industries, and now each GamerId is itself associated with a WillCoId.

type WillCoId = Int

gamerIdDB :: Map.Map WillCoId GamerId
gamerIdDB = Map.fromList [(1001,1)
 ,(1002,2)
 ,(1003,3)
 ,(1004,4)
 ,(1005,5)
 ,(1006,6)]

lookupGamerId :: WillCoId -> Maybe GamerId
lookupGamerId id = Map.lookup id gamerIdDB

Now you need a new function, creditsFromWCId, of type WillCoId -> Maybe PlayerCredits. You
can easily create this by chaining all three of your lookup functions with >>=.

creditsFromWCId :: WillCoId -> Maybe PlayerCredits
creditsFromWCId id = lookupGamerId id >>= lookupUserName >>= lookupCredits

In GHCi, you can see that this works as expected:

GHCi> creditsFromWCId 1001
Just 2000
GHCi> creditsFromWCId 100
Nothing

Although using >>= made chaining together Maybe functions much easier, it’s essential to
solving your IO action problem. When you left off, you wanted to chain together getLine

Listing 30.7 creditsFromId rewritten to use bind instead of pattern matching

Listing 30.8 Adding yet another Map to lookup in order to get a user’s credit

Listing 30.9 You can chain together arbitrarily many lookups with >>=

380 Lesson 30 Introducing the Monad type class
and putStrLn. But you were absolutely stuck because there was no way to combine these
actions and there was no way to crack open the IO type to write a wrapper as you did for
Maybe. With >>=, creating an echo function is trivially easy. Let’s put what you know into
an echo.hs file and see how it behaves.

echo :: IO ()
echo = getLine >>= putStrLn

main :: IO ()
main = echo

If you compile this program, you can see that it behaves as expected:

$ ghc echo.hs
$./echo
Hello World!
Hello World!

The >>= operator is the heart of the Monad type class. Though relatively simple, the >>=
operator is the final piece in your puzzle. Now that you have <$>, <*>, pure, and >>=, you
can chain together any computation you need in a context.

Listing 30.10 Using >>= to create your echo function

Quick check 30.3 Combine readInt and printDouble (defined next) into a single IO action:

readInt :: IO Int
readInt = read <$> getLine

printDouble :: Int -> IO ()
printDouble n = print (n*2)

QC 30.3 answer

readInt :: IO Int
readInt = read <$> getLine

printDouble :: Int -> IO ()
printDouble n = print (n*2)

readInt >>= printDouble

381The Monad type class
30.3 The Monad type class

In the same way the Applicative type class extends the power of Functor, the Monad type
class extends the power of Applicative. See figure 30.5.

Here’s the definition of Monad:

class Applicative m => Monad (m :: * -> *) where
 (>>=) :: m a -> (a -> m b) -> m b

fmap :: Functor f :: (a -> b) -> f a -> f b
(<$>) :: Functor f :: (a -> b) -> f a -> f b

fmap :: Functor f :: (a -> b) -> f a -> f b
(<$>) :: Functor f :: (a -> b) -> f a -> f b
(<*>) :: Applicative f :: f (a -> b) -> f a -> f b
pure :: Applicative f :: a -> f a

Applicative

fmap :: Functor f :: (a -> b) -> f a -> f b
(<$>) :: Functor f :: (a -> b) -> f a -> f b
(<*>) :: Applicative f :: f (a -> b) -> f a -> f b

(>>=) :: Monad m :: m a -> (a -> m b) -> m b
(>>) :: Monad m :: m a -> m b -> m b
return :: Monad m :: a -> m a
fail :: Monad m :: String -> m a

pure :: Applicative f :: a -> f a

Monad

Functor

Figure 30.5 Functor is a superclass of Applicative, which is a
superclass of Monad.

382 Lesson 30 Introducing the Monad type class
 (>>) :: m a -> m b -> m b
 return :: a -> m a
 fail :: String -> m a

Here you have four important methods in your type class definition. The only method
required for the minimum definition of Monad is >>=. You’ve already seen how >>= lets you
chain together a sequence of functions that put a normal value into a context. The fail
method handles the case of errors happening in your Monad. For Maybe, fail returns Nothing;
and for IO, fail raises an I/O error. You’ll discuss fail in more depth in unit 7 when we
discuss handling errors in Haskell. That leaves only >> and return to explain.

The return method should look awfully familiar. If you compare this to pure, you’ll find
they’re nearly identical:

pure :: Applicative f => a -> f a
return :: Monad m => a -> m a

The only difference is that pure has a type class restraint on Applicative, whereas return has
a constraint on the Monad type class. It turns out that pure and return are identical and have
different names only for historical reasons. The Monad type class predates the Applicative
type class, so the return method exists for legacy reasons. Because every Monad must be an
Applicative, it would be reasonable to use pure over return because pure will work every-
where return does. But this isn’t typically the case. When using pure in the context of Monad,
it’s preferable to stick with return.

Finally, you can look at the >> operator. If you look carefully, >> has a rather strange type
signature, as shown in figure 30.6.

It looks like this operator throws away the first m a type. It turns out this is exactly what
>> does. Why would you want this? It’s particularly useful in contexts that produce side
effects such as IO (there are others, which we’ll discuss in unit 7). So far, the only context
you’ve seen like this is IO. Whenever you use putStrLn, you don’t get anything back. It’s
common that you’ll want to print something to the user and just throw away the IO ()

The >> operator takes two arguments
but ends up throwing the first away.

(>>) :: m a -> m b -> m b

Figure 30.6 The >> operator has a
strange type signature but is useful for
Monads with side effects.

383The Monad type class
result. For example, you might want to modify your echo.hs program so that it lets your
user know what it’s doing.

echoVerbose :: IO ()
echoVerbose = putStrLn "Enter a String an we'll echo it!" >>
 getLine >>= putStrLn

main :: IO ()
main = echoVerbose

When working with IO, >> is useful anytime you need to perform an IO action that
doesn’t meaningfully return a value.

30.3.1 Using Monad to build a Hello <Name> program

To demonstrate how you tie all these together, let’s write a simple IO action that will ask
a user’s name, and then print out "Hello, <NAME>!". You need to chain together a few basic
functions to do this. The first is an IO action that will ask for the name; this is simply
putStrLn with your question.

askForName :: IO ()
askForName = putStrLn "What is your name?"

The next IO action you need to use is getLine. After that, you need to take the result of get-
Line and make your "Hello, <NAME>!" string. This function is a regular function of the form
String -> String.

nameStatement :: String -> String
nameStatement name = "Hello, " ++ name ++ "!"

Then you have to send the results of this to putStrLn, and your action is finished. You
start with chaining together askForName and getLine with >>, because you don’t need the
results:

(askForName >> getLine)

Listing 30.11 Showing the benefit of >> with a verbose version of echo

Listing 30.12 askForName IO action

Listing 30.13 nameStatement works on normal String rather than IO String

384 Lesson 30 Introducing the Monad type class
The next part is tricky; you now have an IO String, but you need to connect it with name-
Statement, which is a regular String -> String function. You can use >>= to do this if you can
make nameStatement return an IO String. You could rewrite nameStatement, but a more com-
mon solution is to wrap nameStatement in a lambda and use return at the end. Because of
type inference, Haskell knows which context to put the type into, as shown in figure 30.7.

This is your program so far:

(askForName >> getLine) >>= (\name -> return (nameStatement name))

To finish, you use >>= to return the results to putStrLn. Here’s your final helloName IO action.

helloName :: IO ()
helloName = askForName >>

getLine >>=
(\name ->
return (nameStatement name)) >>=

putStrLn

Listing 30.14 Your Hello Name program using Monad methods

nameStatement is
a regular function of
type String -> String.

Using a lambda and return
transforms nameStatement
into the type String -> IO String.

(\name -> return (nameStatement name))

Figure 30.7 Using a lambda
expression with return to transform a
type a -> a into a -> m a

Quick check 30.4 Turn (+ 2) from type Num a => a -> a to type Num a => a -> IO a using a
lambda and return. Use :t in GHCi to double-check that you’re getting the correct type.

QC 30.4 answer
 (\n -> return ((+ 2) n))

385Summary
You can either make this its own program or use GHCi to test it out. Here’s the result in
GHCi:

GHCi> helloName
What is your name?
Will
Hello, Will!

The great thing about using Monad to solve this problem is that you were able to chain all
your functions and actions together relatively easily. The bad part is that if you had to
add more IO functions such as nameStatement, all these lambdas would get a bit annoying.
Additionally, going back and forth with all these operators can be confusing. In the next
lesson, you’ll see how the do-notation from unit 4 is just syntactic sugar over Monad’s
methods.

Summary

In this lesson, our objective was to introduce you to the Monad type class. The Monad type
class is the final refinement of computing in a context that you started with Functor. The
most important method of the Monad type class is the >>= (pronounced bind) operator. You
use >>= to chain together functions of the type (a -> m b). This is particularly important
for working with the IO type. Unlike Maybe, you can’t trivially use pattern matching to
access values inside the IO context. The Monad type class is what makes I/O programming
possible. Let’s see if you got this.

Q30.1 To prove that Monad is strictly more powerful than Functor, write a universal ver-
sion of <$>, as in the preceding lesson’s exercise, called allFmapM, that defines <$> for all
members of the Monad type class. Because it works for all instances of Monad, the only func-
tions you can use are the methods required by the Monad type class (and lambda func-
tions). To get you started, here’s your type signature:

allFmapM :: Monad m => (a -> b) -> m a -> m b

Q30.2 To prove that Monad is strictly more powerful than Applicative, write a universal
version of <*>, called allApp, that defines <*> for all members of the Monad type class.
Because it works for all instances of Monad, the only functions you can use are the meth-
ods required by the Monad type class (and lambda functions). To get you started, here’s
your type signature:

allApp :: Monad m => m (a -> b) -> m a -> m b

386 Lesson 30 Introducing the Monad type class
This question is much trickier than the last one. Two hints:

 Try to think exclusively in terms of the type signatures.
 Use <$> if you want and replace it with your answer to Q29.1

Q30.3 Implement a bind function which is the same as (>>=) for Maybe:

bind :: Maybe a -> (a -> Maybe b) -> Maybe b

31 LESSON
MAKING MONADS EASIER WITH
DO-NOTATION

After reading lesson 31, you’ll be able to

 Use do-notation to simplify working with Monads
 Translate from Monad methods and lambdas to do-notation
 Generate code from one instance of Monad to all Monads

The Monad type class allows for powerful abstraction when using types in context. But the
use of the Monad methods >>=, >>, and return quickly becomes cumbersome. In this lesson,
you’ll look at two useful tools that make working with Monads significantly easier. The
first is do-notation, which you already made heavy use of in unit 4. Now you’ll get a
sense of how do-notation works behind the scenes. After this, you’ll learn about how
List works as a Monad. This leads to another abstraction over Monads that makes them even
easier to work with: list comprehensions. Although it’s important to understand the
methods of the Monad type class, in practice most of the work you’ll do with Monads
involves using these methods of simplifying your code.

In the preceding lesson, you left off with a helloName IO action that asks the user for their
name and then says hello to them.
387

388 Lesson 31 Making Monads easier with do-notation
askForName :: IO ()
askForName = putStrLn "What is your name?"

nameStatement :: String -> String
nameStatement name = "Hello, " ++ name ++ "!"

helloName :: IO ()
helloName = askForName >>

getLine >>=
(\name ->
return (nameStatement name)) >>=

putStrLn

You were able to achieve this by using the methods of the Monad type class. As a refresher,
here are those methods:

 >> allows you to perform an IO action and chain it with another action, ignoring
its value.

 >>= allows you to perform an IO action and then hand off the return value of that
function to another waiting for a value.

 (\x -> return (func x)) allows you to take an ordinary function and have it work in
the context of IO.

The good thing about all this is that now you have the tool to do basically anything that
you’d like inside a context such as IO or Maybe. Unfortunately, this code is messy, and is
difficult to read and write. Thankfully, Haskell has a great solution to this problem!

Listing 31.1 helloName

Consider this Write a program by using the tools of the Monad type class that takes a
pair of values in a context, and then returns the maximum of each pair. Here’s your type
signature to get you started:

maxPairM :: (Monad m, Ord a) => m (a,a) -> m a

The resulting function should work on IO (a,a), Maybe (a,a), and [(a,a)].

389Do-notation revisited
31.1 Do-notation revisited

It turns out that you’ve already seen the solution to making your monadic code look
cleaner: do-notation. Do-notation is syntactic sugar for using >>, >>=, and (\x -> return
(func x)). Here’s the previous example rewritten in do-notation.

helloNameDo :: IO ()
helloNameDo = do
 askForName
 name <- getLine
 putStrLn (nameStatement name)

Figure 31.1 provides an annotated version of this transformation.

It’s a useful exercise to learn how to translate back and forth between using Monad’s oper-
ators and do-notation. In unit 4, you saw this simple Hello World program.

Listing 31.2 Rewriting helloName using do-notation

Actions performed using >> are
written as single-line statements.

The <- abstracts out creating a lambda function and
connecting with >>=. Notice that the assigned variable
is the name of the argument in the lambda function.

helloName :: IO ()
helloName = askForName >>
 getLine >>=

(\name ->
 return (nameStatement name)) >>=
 putStrLn

helloName :: IO ()
helloNameDo = do
 askForName
 name <- getLine
 putStrLn nameStatement

Figure 31.1 Mapping Monad methods to do-notation

390 Lesson 31 Making Monads easier with do-notation
helloPerson :: String -> String
helloPerson name = "Hello" ++ " " ++ name ++ "!"

main :: IO ()
main = do
 name <- getLine
 let statement = helloPerson name
 putStrLn statement

You can desugar main, as shown in figure 31.2.

If you’re having trouble understanding the translation of let and <- into lambda expres-
sions, it’d be a good idea to review lesson 3 from unit 1. For reasons that should be clear,
do-notation is strongly preferred for nontrivial use of monadic operators. But for simple
cases such as an echo function, using >>= is often easier than doing things with do-notation.

echo :: IO ()
echo = getLine >>= putStrLn

Listing 31.3 A program illustrating do-notation

Listing 31.4 A trivial IO action in which >>= makes more sense than do

You start by expanding the <- into
>>= and a lambda expression. Again,
the variable assigned with <- becomes
the argument of the lambda.

This let creates another lambda
in which the variable is the argument.
Notice that because this is a normal
variable, you assign it by passing it
to the lambda.

main :: IO ()
main = do

name <- getLine
let statement = helloPerson name
putStrLn statement

main :: IO ()
main = getLine >>=
 (\name ->
 (\statement ->

putStrLn statement) (helloPerson name))

Figure 31.2 Desugaring do-notation

391Using do-notation to reuse the same code in different contexts
When learning Haskell, it’s okay if translating back and forth between do-notation and
lambda with Monad methods takes some work. The important thing is to realize that
there’s nothing magic about do-notation.

31.2 Using do-notation to reuse the same code in different
contexts

In unit 4, when you first saw do-notation, you briefly touched on the idea that the power
of the Monad type class is that it allows you to create different programs by using the same
code in different contexts. The example you used in lesson 21 was creating an I/O pro-
gram that asked a user for information about comparing the costs of two pizzas. Because
do-notation works on all members of Monad, you were able to trivially translate this pro-
gram to work with Maybe types when your values came from Data.Maps rather than IO.

To further demonstrate the idea that Monad allows you to easily reuse code across differ-
ent contexts, you’re going to look at a series of examples of using the same code in dif-
ferent contexts. The fundamental issue is processing data on job candidates for your
company. You want to determine whether they’ve passed or failed your interview pro-
cess. You’ll see how the same code can handle candidates in the context of IO, Maybe, and
even List. In the end, you’ll be able to refactor the code you’ve reused in each section to
a single function that works on all instances of Monad.

31.2.1 The problem setup

To get started, you need to model your candidate data. Each Candidate is tracked by a
unique ID. During the interview, candidates are given a code review and a culture fit
interview. Each of these is scored by using a grade.

Quick check 31.1 Rewrite echo by using do-notation.

QC 31.1 answer

echo :: IO ()
echo = do
 val <- getLine
 putStrLn val

392 Lesson 31 Making Monads easier with do-notation
data Grade = F | D | C | B | A deriving (Eq, Ord, Enum, Show, Read)

Because you have a variety of research positions, you also keep track of the candidates’
education level, and some positions require a minimum degree.

data Degree = HS | BA | MS | PhD deriving (Eq, Ord, Enum, Show, Read)

Here’s your final model for your Candidate.

data Candidate = Candidate
 { candidateId :: Int
 , codeReview :: Grade
 , cultureFit :: Grade
 , education :: Degree } deriving Show

The big thing you want to do is determine whether a candidate is viable. If a candidate
is viable, you’ll pass that person on to a committee for review. Here’s your code for
viable, which makes sure a candidate passes your minimum requirements.

viable :: Candidate -> Bool
viable candidate = all (== True) tests
 where passedCoding = codeReview candidate > B

passedCultureFit = cultureFit candidate > C
educationMin = education candidate >= MS
tests = [passedCoding

,passedCultureFit
,educationMin]

Next you’ll look at three contexts in which you might want to check whether a candi-
date is viable.

Listing 31.5 The Grade data type code review and culture fit

Listing 31.6 The Degree data type for highest level of education

Listing 31.7 The Candidate data type representing performance on an
interview

Listing 31.8 The viable function checks how well your Candidate did

393Using do-notation to reuse the same code in different contexts

31.2.2 The IO context—building a command-line tool

Your first case is building a command-line tool so that someone can manually enter in
the data about a candidate. This task should be similar to the types of problems you
solved in unit 4. The only difference is that in unit 4 you treated do-notation a bit like
magic. The first thing you need is a bunch of simple IO actions to read in Int, Grade, and
Degree types. You could use do-notation to implement these actions, but this is a great
example of when using >>= comes in handy. Each of these actions needs a way to connect
getLine with reading the result, and finally returning that result back as an IO type.

readInt :: IO Int
readInt = getLine >>= (return . read)

readGrade :: IO Grade
readGrade = getLine >>= (return . read)

readDegree :: IO Degree
readDegree = getLine >>= (return . read)

With these helper actions, you can create a single IO action that reads in a candidate. For
this action, all you’re doing is adding output to help the user understand what to enter.

Listing 31.9 Useful IO actions for building your Candidate

Quick check 31.2 Create a Candidate type and see whether that candidate is viable.

QC 31.2 answer

testCandidate :: Candidate
testCandidate = Candidate
 { candidateId = 1
 , codeReview = A
 , cultureFit = A
 , education = PhD }

GHCi> viable testCandidate
True

394 Lesson 31 Making Monads easier with do-notation
This use of do-notation is exactly the same type of problem you solved in unit 4, so it
should feel fairly familiar.

readCandidate :: IO Candidate
readCandidate = do
 putStrLn "enter id:"
 cId <- readInt
 putStrLn "enter code grade:"
 codeGrade <- readGrade
 putStrLn "enter culture fit grade:"
 cultureGrade <- readGrade
 putStrLn "enter education:"
 degree <- readDegree
 return (Candidate { candidateId = cId

, codeReview = codeGrade
, cultureFit = cultureGrade
, education = degree })

The core logic of your program is an assessCandidateIO action. This will take in a candi-
date, check whether the candidate is viable, and then return a String as passed if the can-
didate passed; otherwise it will return failed. You can write this action easily by using
do-notation.

assessCandidateIO :: IO String
assessCandidateIO = do
 candidate <- readCandidate
 let passed = viable candidate
 let statement = if passed

then "passed"
else "failed"

 return statement

You could put this in a main, compile your program, and run it, but in this case it’s easier
to use GHCi:

Listing 31.10 A single function to read your candidate in from the command line

Listing 31.11 An IO action that lets you know if candidate passed/failed

395Using do-notation to reuse the same code in different contexts
GHCi> assessCandidateIO
enter id:
1
enter code grade:
A
enter culture fit grade:
B
enter education:
PhD
"passed"

Because you have the Monad type class, you have an easy way to take a Candidate that
wasn’t designed with I/O in mind and use that Candidate in the IO context.

31.2.3 The Maybe context—working with a map of candidates

Entering users one by one in the command line is a tedious way to check candidate data.
In our next example, you’ll use Data.Map to store a bunch of candidates and then look
them up. First you need a few candidates to work with.

candidate1 :: Candidate
candidate1 = Candidate { candidateId = 1
 , codeReview = A
 , cultureFit = A
 , education = BA }

candidate2 :: Candidate
candidate2 = Candidate { candidateId = 2

Listing 31.12 Example candidates

Quick check 31.3 Rewrite readGrade with do-notation.

QC 31.3 answer

readGradeDo :: IO Grade
readGradeDo = do
 input <- getLine
 return (read input)

396 Lesson 31 Making Monads easier with do-notation
, codeReview = C
, cultureFit = A
, education = PhD }

candidate3 :: Candidate
candidate3 = Candidate { candidateId = 3

, codeReview = A
, cultureFit = B
, education = MS }

Then you can put all these candidates into candidateDB.

candidateDB :: Map.Map Int Candidate
candidateDB = Map.fromList [(1,candidate1)

,(2,candidate2)
,(3,candidate3)]

Once again you want to assess your candidates and return a string if you’ve found
them. Now you can use your candidateDB. Because each lookup will return a Maybe type,
you have a problem in a different context than the IO case before. In the last example,
you were worried about interacting with a user; now you’re concerned with passing
around potentially missing values. To handle this, you need a function that looks a lot
like assessCandidateIO but works for Maybe types.

assessCandidateMaybe :: Int -> Maybe String
assessCandidateMaybe cId = do
 candidate <- Map.lookup cId candidateDB
 let passed = viable candidate
 let statement = if passed

then "passed"
else "failed"

 return statement

Now all you have to do is pass in a potential candidate’s ID and you’ll get your result in
a Maybe context:

Listing 31.13 Putting your example candidates in a Data.Map

Listing 31.14 Similarity between assessCandidateMaybe and
assessCandidateIO

397Using do-notation to reuse the same code in different contexts
GHCi> assessCandidateMaybe 1
Just "failed"
GHCi> assessCandidateMaybe 3
Just "passed"
GHCi> assessCandidateMaybe 4
Nothing

Notice that your code is essentially identical. This is because after you assign a variable
with <- in do-notation, you get to pretend it’s an ordinary type that’s not in a particular
context. The Monad type class and do-notation have abstracted away the context you’re
working in. The immediate benefit in this case is you get to solve your problem without
having to think about missing values at all. The larger benefit in terms of abstraction is
that you can start thinking about all problems in a context in the same way. Not only is it
easier to reason about potentially missing values, but along the way you can start
designing programs that work in any context.

31.2.4 The List context—processing a list of candidates

It should come as no surprise that List is also a Monad, as List is an example of virtually
every feature of Haskell. In the next lesson, you’ll look more into what this means, but
for now let’s see what happens when you want to look at a list of candidates.

candidates :: [Candidate]
candidates = [candidate1
 ,candidate2
 ,candidate3]

Listing 31.15 A list of possible candidates

Quick check 31.4 Write a simple function Maybe String -> String that will print
failed/passed if there’s a result and error id not found for the Nothing constructor.

QC 31.4 answer

failPassOrElse :: Maybe String -> String
failPassOrElse Nothing = "error id not found"
failPassOrElse (Just val) = val

398 Lesson 31 Making Monads easier with do-notation
Because List is an instance of Monad, you should be able to convert your other assess-
Candidate function into an assessCandidateList function. If you do and pass in a list, you get
a useful result.

assessCandidateList :: [Candidate] -> [String]
assessCandidateList candidates = do
 candidate <- candidates
 let passed = viable candidate
 let statement = if passed
 then "passed"
 else "failed"
 return statement

As you can see in GHCi, this checks each of your candidates in the list to see whether
they pass and returns a list indicating whether candidates have passed or failed:

GHCi> assessCandidateList candidates
["failed","failed","passed"]

Once again, you haven’t done much to change the core logic of your assessCandidateX
functions. Working with lists by using the tools of the Monad type class, you can treat
entire lists as single values. If you didn’t know Haskell, you could easily read the body
of your assessCandidateList function, but you’d likely assume it was for a single value. You
could’ve written this code by using a list function such as map.

assessCandidates :: [Candidate] -> [String]
assessCandidates candidates = map (\x -> if x
 then "passed"
 else "failed") passed
 where passed = map viable candidates

But this code has two issues in terms of abstraction. The first is that you’re forced to
think of the problem in terms of a list. Showing this same code to someone unfamiliar
with Haskell, they’d likely be much more confused by the use of map. The second, and
more important, is that there’s no way to generalize this code to other types in a context.
The assessCandidates code is completely distinct from the assessCandidateIO and assess-
CandidateMaybe code you’ve written, even though it does the exact same thing.

Listing 31.16 Assessing a list of candidates using List as a Monad

Listing 31.17 A list-specific way to assess candidates

399Using do-notation to reuse the same code in different contexts
In the next section, you’ll start thinking about problems in terms of Monads and realize
that you have a general solution that you can easily put together to solve all three of the
contexts you’ve explored so far.

31.2.5 Putting it all together and writing a monadic function

So far, you’ve focused primarily on the way that do-notation and the Monad type class
allow you to solve problems while abstracting away the context:

 You can write code for IO types and not worry about the mismatch between IO
Strings and regular Strings.

 You can write code for Maybe and forget about dealing with missing values.
 You can even write code for lists and pretend you have only a single value.

But there’s another benefit to Monad that can emerge as a consequence of letting you for-
get context when you write programs. The action and two functions you wrote—assess-

CandidateIO, assessCandiateMaybe, and assessCandidateList—all share nearly identical code.
Not only is it easier to solve a problem in a specific context with the Monad type class, but
you end up with a single solution that works in any context.

The only limitation to using the same code in all three contexts is that the type signa-
tures are too restrictive. Because IO, Maybe, and List are all instances of Monad, you can use a
type class constraint in your definition of a universal assessCandidate function. The amaz-
ing thing here is you need to change only the type signature of your assessCandidateList
function to do this.

assessCandidate :: Monad m => m Candidate -> m String
assessCandidate candidates = do
 candidate <- candidates
 let passed = viable candidate
 let statement = if passed

Listing 31.18 The monadic assessCandidate works on IO, Maybe, and List

Quick check 31.5 Does assessCandidateList handle the empty list?

QC 31.5 answer It does! Passing any empty list to assessCandidateList returns the empty list.

400 Lesson 31 Making Monads easier with do-notation
then "passed"
else "failed"

 return statement

In GHCi, you can now demonstrate by using this single function in three contexts:

GHCi> assessCandidate readCandidate
enter id:
1
enter code grade:
A
enter culture fit grade:
B
enter education:
PhD
"passed"

GHCi> assessCandidate (Map.lookup 1 candidateDB)
Just "failed"
GHCi> assessCandidate (Map.lookup 2 candidateDB)
Just "failed"
GHCi> assessCandidate (Map.lookup 3 candidateDB)
Just "passed"

GHCi> assessCandidate candidates
["failed","failed","passed"]

Many of the examples you’ve seen so far show how the Monad type class allows you to
write code for regular types and use them in increasingly powerful ways in a context
such as Maybe, IO, or List. Here you see how to take code that does work in one of these
contexts and generalize it to work in all contexts because of Monad.

Summary

In this lesson, our objective was to teach you do-notation for working with Monads. The
good news is that you already have plenty of experience using do-notation, as it was
used heavily in unit 4. It’s still important to understand desugared monadic code as it
can help tremendously in debugging and understanding issues when working with
Monads. You also saw how code written for IO using do-notation can be trivially rewritten

401Summary
for Maybe types. Although this is useful in itself, it also means you can write more gener-
alized code that will work on all Monads. Let’s see if you got this.

Q31.1 At the end of lesson 21, you saw the following program used to calculate the
cost of pizza:

main :: IO ()
main = do
 putStrLn "What is the size of pizza 1"
 size1 <- getLine
 putStrLn "What is the cost of pizza 1"
 cost1 <- getLine
 putStrLn "What is the size of pizza 2"
 size2 <- getLine
 putStrLn "What is the cost of pizza 2"
 cost2 <- getLine
 let pizza1 = (read size1, read cost1)
 let pizza2 = (read size2, read cost2)
 let betterPizza = comparePizzas pizza1 pizza2
 putStrLn (describePizza betterPizza)

Desugar this code to use >>=, >>, return and lambda functions rather than do-notation.

Q31.2 At the end of lesson 21 in unit 4, we first introduced the idea that do-notation
isn’t specific to IO. You ended up with this function for a Maybe type:

maybeMain :: Maybe String
maybeMain = do
 size1 <- Map.lookup 1 sizeData
 cost1 <- Map.lookup 1 costData
 size2 <- Map.lookup 2 sizeData
 cost2 <- Map.lookup 2 costData
 let pizza1 = (size1,cost1)
 let pizza2 = (size2,cost2)
 let betterPizza = comparePizzas pizza1 pizza2
 return (describePizza betterPizza)

Rewrite this function so it works with the List type (don’t worry if the results seem
strange).

Q31.3 Refactor the maybeMain function from the preceding exercise so that it works with
any Monad. You’ll need to change the type signature as well as remove the type-specific
parts from the body of the function.

The via
func

takes a sin
candidate

an argume
32LESSON
THE LIST MONAD AND LIST
COMPREHENSIONS

After reading lesson 32, you’ll be able to

 Use do-notation to generate lists
 Filter results in do-notation by using guard
 Further simplify do-notation with list comprehensions

At the end of the preceding lesson, you saw that List is an instance of Monad. You saw
only a simple example of using List as a Monad to process a list of candidates.

assessCandidateList :: [Candidate] -> [String]
assessCandidateList candidates = do
 candidate <- candidates
 let passed = viable candidate
 let statement = if passed

then "passed"
else "failed"

 return statement

Listing 32.1 The assessCandidateList function from the previous lesson

By using <- , you’re able to
treat your list of candidates
like a single candidate.

ble
tion
gle
 as
nt.

Again you’re treating the
results of computation on
your candidates as operations
on a single Candidate.

When you return the results,
you get your list back.
402

403Building lists with the list monad
What makes using List as a Monad so interesting is that when you assign your list to a
variable using <-, you get to treat it as though it were a single value. The rest of this code
looks like it’s operating on one candidate, and yet the final result is the same as applying
your logic to every candidate in a list.

When you looked at List as Applicative, you saw some initially confusing examples of
nondeterministic computing. For example, if you have two lists and use pure (*) to mul-
tiply them with <*>, you get every possible combination of the values from the two lists
combined:

GHCi> pure (*) <*> [1 .. 4] <*> [5,6,7]
[5,6,7,10,12,14,15,18,21,20,24,28]

You may expect List as Monad to be even more confusing, but it turns out to be surpris-
ingly familiar. The list monad allows you to trivially build complicated lists in an easy-
to-program fashion. This is similar to LINQ in C# or list comprehensions in Python and
other languages. It turns out there’s even a way to further simplify do-notation for lists
that makes generating lists even easier.

32.1 Building lists with the list monad

The main use of the list monad is to quickly generate lists. Figure 32.1 shows an example
of using the list monad to create a list of powers of 2.

Consider this What’s the simplest way to create a list of the square of every odd number
less than 20?

When you assign values by
using <-, you can pretend that
values aren’t in its context.
In this case, the context is
an [Int], so you can treat
this as an Int. Even though you’re working with a

list of values, you can raise 2 to the
power of value as if it were a single
value. The magic of the Monad class
is that you can pretend that types in
context are just plain types.

powersOfTwo :: Int -> [Int]
powersOfTwo n = do
 value <- [1 :: n]
 return (2 value)

‹

Figure 32.1 Generating lists by thinking of List as a Monad

404 Lesson 32 The list monad and list comprehensions
In GHCi, you can use this to create the first 10 powers of 2:

GHCi> powersOfTwo 10
[2,4,8,16,32,64,128,256,512,1024]

Notice that in this definition you can treat the entire list as a single value and the results
are as you’d expect. You could easily solve this with map, as you would have in unit 1:

powersOfTwoMap :: Int -> [Int]
powersOfTwoMap n = map (\x -> 2^x) [1 .. n]

But in this case, you’re thinking of a list as a list data structure, not abstracting out the
context of the list. For this case, the version using map is probably much easier to write
and read. But as you generate more complicated lists, being able to focus on how you’d
transform a single value can be helpful. Here are some more examples of generating
lists with do-notation.

You can combine two lists easily. Suppose you want powers of 2 and 3 as n pairs.

powersOfTwoAndThree :: Int -> [(Int,Int)]
powersOfTwoAndThree n = do
 value <- [1 .. n]
 let powersOfTwo = 2^value
 let powersOfThree = 3^value
 return (powersOfTwo,powersOfThree)

Now you have a list for pairs of powers of 2 and powers of 3:

GHCi> powersOfTwoAndThree 5
[(2,3),(4,9),(8,27),(16,81),(32,243)]

In the preceding example, you used one list, value, to generate your powers of 2. If you
make two lists and combine them into pairs the same way, you get different results.
Here’s a function that will generate all possible combinations of odd and even numbers
up to n:

Listing 32.2 Making a list of pairs by using do-notation

Again, you’re treating a
list as a single value.

powersOfTwo is a single
value representing a list
of powers of 2.

powersOfThree is a
single value representing
a list of powers of 3.

When you return this
single pair, it’s actually
a list of pairs.

405Building lists with the list monad
allEvenOdds :: Int -> [(Int,Int)]
allEvenOdds n = do
 evenValue <- [2,4 .. n]
 oddValue <- [1,3 .. n]
 return (evenValue,oddValue)

As you can see in GHCi, you don’t get a list of size n, but rather all possible combina-
tions of even and odd values:

GHCi> allEvenOdds 5
[(2,1),(2,3),(2,5),(4,1),(4,3),(4,5)]
GHCi> allEvenOdds 6
[(2,1),(2,3),(2,5),(4,1),(4,3),(4,5),(6,1),(6,3),(6,5)]

32.1.1 The guard function

Another useful trick is to filter lists. Again you could use filter, but when working with
monads, you’d like to be able to reason about a value outside its context. In Control.Monad,
a function called guard allows you to filter your values in a list. You have to import
Control.Monad to use guard. Here’s a method of generating even numbers by using guard:

evensGuard :: Int -> [Int]
evensGuard n = do

evenValue is a single
value representing a list.

oddValue is another
single value
representing a list.Because evenValue and

oddValue were created with <-,
this pair represents all possible

pairs from the two values.

Quick check 32.1 Use do-notation to generate pairs of numbers up to 10 and their squares.

QC 32.1 answer

valAndSquare :: [(Int,Int)]
valAndSquare = do
 val <- [1 .. 10]
 return (val,val^2)

406 Lesson 32 The list monad and list comprehensions
 value <- [1 .. n]
 guard(even value)
 return value

Although do-notation makes it easy to generate arbitrarily complex lists by using the
methods of Monad, there’s a more familiar interface for this.

guard filters out all the values
that don’t satisfy your test.

Quick check 32.2 Write filter by using guard and do-notation.

QC 32.2 answer
guardFilter :: (a -> Bool) -> [a] -> [a]
guardFilter test vals = do
 val <- vals
 guard(test val)
 return val

The guard function and the Alternative type class
If you look at guard’s type signature, you find that it’s a strange function. Most notably, it
has a type class constraint you haven’t seen before:

guard :: Alternative f => Bool -> f()

The Alternative type class is a subclass of Applicative (meaning all instances of Alternative
must be instances of Applicative). But, unlike Applicative, Alternative isn’t a superclass of
Monad; not all Monads are instances of Alternative. For the guard function, the key method of
Alternative is empty, which works exactly like mempty from Monoid. Both List and Maybe are
instances of Alternative. List’s empty value is [], and Maybe’s is Nothing. IO, however, isn’t
an instance of Alternative. You can’t use guard with IO types.

When you first encounter guard, it might seem like magic. Surely, there must be some
stateful mischief going on behind the scenes! Surprisingly, guard is a completely pure
function. It’s far beyond the scope of this book, but if you feel comfortable with Monads,
revisit guard and see whether you can implement it yourself. To understand guard, it helps
tremendously to translate from do-notation back to >>=, >>, and lambdas. Learning about
guard will also teach you a lot about the subtleties of >>. Again, this isn’t a particularly use-
ful exercise for beginners, but highly recommended after you’re comfortable working
with Monads.

407List comprehensions
32.2 List comprehensions

If you’re a Python developer, you likely find this method of generating lists a bit ver-
bose. Python uses a special syntax to generate lists, called list comprehensions. Here’s a
Python list comprehension to generate powers of 2:

Python> [n**2 for n in range(10)]
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

Python’s list comprehensions also allow you to filter a list on a condition. Here’s a list of
squares that are even:

Python> [n**2 for n in range(10) if n**2 % 2 == 0]
[0, 4, 16, 36, 64]

Because you’ve been playing with do-notation and lists, this should look close, though
more compact, to what you’ve been doing. Here’s the do-notation version of the last
Python list comprehension in Haskell, evenSquares.

evenSquares :: [Int]
evenSquares = do
 n <- [0 .. 9]
 let nSquared = n^2
 guard(even nSquared)
 return nSquared

It may come as a bit of a surprise to any Python programmer, but list comprehensions
are just specialized applications of monads! Of course, our Haskell example is signifi-
cantly more verbose than Python’s. By this point in your journey to learning Haskell, the
phrase “Haskell is more verbose than ...” should be surprising. Not to be outdone in
terseness, Haskell has a further refinement of do-notation specifically for lists: Haskell’s
list comprehensions.

List comprehensions provide an even simpler way of generating lists than do-notation.
Figure 32.2 shows how to translate a function, powersOfTwo, from do-notation to a list
comprehension.

Listing 32.3 evenPowersOfTwo emulates Python’s list comprehensions

408 Lesson 32 The list monad and list comprehensions
The conversion is reasonably straightforward; here’s powersOfTwoAndThree converted:

powersOfTwoAndThree :: Int -> [(Int,Int)]
powersOfTwoAndThree n = [(powersOfTwo,powersOfThree)
 | value <- [1 .. n]
 , let powersOfTwo = 2^value
 , let powersOfThree = 3^value]

One thing that makes list comprehensions much easier to work with is that you start
with the result and then show how it’s generated. It’s often easier to understand what a
list comprehension is doing just by looking at the beginning of it:

allEvenOdds :: Int -> [(Int,Int)]
allEvenOdds n = [(evenValue,oddValue) | evenValue <- [2,4 .. n]
 , oddValue <- [1,3 .. n]]

The guard function is completely abstracted out of list comprehensions:

evensGuard :: Int -> [Int]
evensGuard n = [value | value <- [1 .. n], even value]

One of the best features of
list comprehensions is that
you see your final result in the
beginning. This often makes
for more-readable code.

All the rest of the steps in
your do-notion go here.
If there’s more than one
step in the process, they’re
separated by a comma.

The | separates your final result
from the steps used to achieve that.

powersOfTwo :: Int -> [Int]
powersOfTwo n = do
 value <- [1 .. n]
 return (2 value)

‹

powersOfTwo :: Int -> [Int]
powersOfTwo n = [value 2 | value <- [1 .. n]]

‹

Figure 32.2 List comprehensions simplify do-notation even further for generating lists.

As you can see, this is nearly
identical to do-notation, except lines
are separated by a commas and the
new line is purely optional.

For clarity, the full variable names are used.
Typically, shorter variables are used to keep

the comprehension a one-liner if possible.

409Monads: much more than just lists
List comprehensions are a nice way to make working with the list monad even easier.
The other great insight here is that if you’ve used them in another language, you already
have experience writing monadic code! Despite their prominence in Haskell, nothing
prevents monads from existing in other languages that support the basics of functional
programming covered in unit 1: first-class functions, lambda expressions, and closures.
You could build a primate list comprehension system in any language that supports
this. You’d simply have to implement >>=, >>, and return.

32.3 Monads: much more than just lists

In this unit’s capstone, you’re going to take abstracting operations on lists one step fur-
ther by creating a SQL-like interface for working with lists. All of this time thinking
about the list monad may leave you thinking that monads are all about lists. Don’t for-
get about unit 4! Even though we didn’t discuss it much, nearly every line of code you
wrote in that lesson used the Monad type class.

By the end of this unit, you’ll have taken a deep dive into two ways of thinking in Monads:
IO and List. The goal here is to show you how powerful an abstraction the idea of work-
ing in a context can be. For IO, you used working in a context to separate stateful, non-
pure code necessary for I/O from the rest of your safe, predictable program logic. For
lists, you’ve seen how to make generating complex data much easier by using the Monad
type class. You’ve also seen many examples of using monads to write programs with

Quick check 32.3 Write a list comprehension that takes the following words

["brown","blue","pink","orange"]

and capitalizes the first letter, and prepends Mr. in front. (Hint: use Data.Char’s toUpper.)

QC 32.3 answer

import Data.Char

answer :: [String]
answer = ["Mr. " ++ capVal | val <-
 ["brown","blue","pink","organge","white"]
 , let capVal = (\(x:xs) ->
 toUpper x:xs) val]

410 Lesson 32 The list monad and list comprehensions
Maybe types. This has allowed you to write complex programs dealing with missing val-
ues while never having to think about how you’ll handle those missing values. All three
of these contexts are extremely different, and yet the Monad type class allows you to think
about them the exact same way.

Summary

In this lesson, our objective was to further explain the Monad type class by exploring how
List behaves as a member of Monad. It may be surprising for many people learning Has-
kell to discover that list comprehensions, popular in the Python programming lan-
guage, are equivalent to Monads. Any list comprehension can be trivially converted to do-
notation, and any code using do-notation can be trivially desugared to >>= and lambdas.
The amazing thing about the Monad type class is that it allows you to abstract out the logic
you might use in a list comprehension and seamlessly apply it to both Maybe types and IO
types! Let’s see if you got this.

Q32.1 Use a list comprehension that generates a list of correct calendar dates, given
that you know the number of days in each month. For example, it should start with 1 ..
31 for January and be followed by 1 .. 28 for February.

Q32.2 Translate the preceding question into do-notation, and then into Monad methods
and lambdas.

33LESSON
CAPSTONE: SQL-LIKE QUERIES IN
HASKELL

This capstone covers

 Using the Monad type class to create SQL-like queries on lists
 Generalizing functions written for one Monad (for example, List) to many
 Organizing functions with types

In the preceding lesson, you saw how List as a Monad can also be understood as a list com-
prehension, which is used heavily in Python. In this capstone, you’re going to take your
use of lists and monads one step further to create a SQL-like interface to lists (and other
monads). SQL is used as the primary means to query relational databases. It has a clean
syntax for representing the relationships between data. For example, if you had data
about teachers teaching classes, you could query the teachers teaching English like this:

select teacherName from
teacher inner join course
on teacher.id = course.teacherId
where course.title = "English";

This allows you to easily combine two data sets, the teacher table and course table, to
extract relevant information. You’ll build a set of tools you’ll call HINQ (borrowing its
411

412 Lesson 33 Capstone: SQL-like queries in Haskell
name from the similar .NET tool LINQ). HINQ will allow you to query your data rela-
tionally. You’ll make extensive use of the Monad type class to make this possible. In the
end, you’ll have a query tool that

 Provides a familiar interface for querying relational data in Haskell
 Is strongly typed
 Uses lazy evaluation to allow you to pass around queries without executing them
 Can be used seamlessly with other Haskell functions

You’ll start by making some select queries on a list, learn to filter your queries with a
where function, and finally build a join function that allows you to easily combine com-
plex data inside a monad.

33.1 Getting started

Let’s start with some basic data. You can put everything you need in a file named
hinq.hs. Because you want to see how well you can treat lists such as tables in a rela-
tional database, you’ll use an example involving students, teachers, courses, and enroll-
ments. Figure 33.1 illustrates this setup.

You’ll start with modeling your student. Each student has a name, which you’ll keep to
firstName and lastName.

Enrollment

student :: Int
course :: Int

Student

studentId :: Int
gradeLevel :: GradeLevel
studentName :: Name

Course

courseId :: Int
courseTitle :: String
teacher :: Int

Teacher

teacherId :: Int
teacherName :: Name

Figure 33.1 The relationships among the basic data you’ll be
working with

413Getting started
data Name = Name
 { firstName ::String
 , lastName :: String }

instance Show Name where
 show (Name first last) = mconcat [first," ",last]

Then each student has a grade level.

data GradeLevel = Freshman
 | Sophmore
 | Junior
 | Senior deriving (Eq,Ord,Enum,Show)

In addition to these two things, you’ll include a unique student ID. Here’s your Student
data type.

data Student = Student
 { studentId :: Int
 , gradeLevel :: GradeLevel
 , studentName :: Name } deriving Show

And you want a list of students you can play with.

students :: [Student]
students = [(Student 1 Senior (Name "Audre" "Lorde"))
 ,(Student 2 Junior (Name "Leslie" "Silko"))
 ,(Student 3 Freshman (Name "Judith" "Butler"))
 ,(Student 4 Senior (Name "Guy" "Debord"))
 ,(Student 5 Sophmore (Name "Jean" "Baudrillard"))
 ,(Student 6 Junior (Name "Julia" "Kristeva"))]

Listing 33.1 A simple Name data type with its Show instance

Listing 33.2 GradeLevel represents the student’s grade

Listing 33.3 The Student data type

Listing 33.4 A list of example students that you can query

414 Lesson 33 Capstone: SQL-like queries in Haskell
With just this list, you can move on to building out your basic operations, select and
where. In addition to select and where, you’ll also want a join function that will allow
you to combine two lists based on a common property.

Thinking in types, you can reason about these three functions as follows: Your select
function needs to take a function representing the property being selected and a list of
items to select from. Then the result will be a list of the selected property. Figure 33.2
shows the type signature of select.

Your where function will take a test function (which is just a function from a -> Bool) and
a list and will return only the remaining values in the list. The type signature of where is
shown in figure 33.3.

Finally, your join function will take two lists of potentially different types, and then two
functions that extract a property from each list. It’s important that both properties are of
the same type and instances of Eq so they can be compared. The result of join will be a
list of tuples of the matching values from the original lists. Here’s the type signature for
the join function (we’ll explain this in more detail when you implement it):

Eq c => [a] -> [b] -> (a -> c) -> (b -> c) -> [(a,b)]

This function selects the property
you want to extract from your list.

Your list is of type a.

Your property is of type b.

(a -> b) -> [a] -> [b]

Figure 33.2 The type signature of your select function

This is a test function
for your where.

Your return type is the same
as your list because you’re
effectively filtering the list.

(a -> Bool) -> [a] -> [a]

Figure 33.3 The type signature
for your where function

415Basic queries for your list: select and where
Next you’ll get started with implementing your select and where functions, which will
make it easy to perform simple queries on lists.

33.2 Basic queries for your list: select and where

The functions you’ll start with are select and where. The select clause in SQL allows you
to select properties from a table:

select studentName from students;

This query gives you all the student names from the students table. In the case of your
HINQ queries, you’d expect select to give you all the names from a list of students. The
where clause in SQL allows you to condition your select on a given value:

select * from students where gradeLevel = 'Senior';

In this SQL statement, you’d select all the entries in the student table that have a grade
level of Senior. Notice that in most databases, you’d have to represent the grade level as a
String, but in Haskell you get the benefit of using a specific type.

Now you can move on to implementing these as functions. You’ll preface all the func-
tions for HINQ with an underscore (_), not only because you haven’t covered modules
and want to avoid collision, but also because where is a reserved keyword.

33.2.1 Implementing _select

The easiest operation to implement is _select. The _select function works just like fmap,
only you’ll use the Monad syntax in this case.

_select :: (a -> b) -> [a] -> [b]
_select prop vals = do
 val <- vals
 return (prop val)

Here are a few examples of selecting properties from your students in GHCi:

GHCi> _select (firstName . studentName) students
["Audre","Leslie","Judith","Guy","Jean","Julia"]
GHCi> _select gradeLevel students
[Senior,Junior,Freshman,Senior,Sophmore,Junior]

Listing 33.5 The _select function is just fmap

416 Lesson 33 Capstone: SQL-like queries in Haskell
This example may make it seem like _select can choose only a single property, but you
can easily use a lambda to make a single function that selects two properties:

GHCi> _select (\x -> (studentName x, gradeLevel x)) students
[(Audre Lorde,Senior),(Leslie Silko,Junior),(Judith Butler,Freshman),
➥(Guy Debord,Senior),(Jean Baudrillard,Sophmore),(Julia Kristeva,Junior)]

Even after all the tricks of functional programming you’ve learned so far, it’s easy to for-
get how much power combining first-class functions with lambda functions can provide.

One more thing to notice is that your _select function is strictly less powerful than fmap
solely because of its type signature. If you had literally defined _select as _select = fmap,
your _select function would work on all members of the Functor type class. Later in this
capstone, you’ll refactor your code (though for monads), but it’s worth realizing just
how powerful a type signature can be.

33.2.2 Implementing _where

Your _where function will also be surprisingly simple. You’ll create a simple wrapper
around guard, which will take a test function and your list. Remember, to use guard, you’ll
have to import Control.Monad. The _where function is more complicated than _select
because it’s not just the guard function (whereas _select could be defined as fmap). You’ll
use the <- assignment to treat your list like a single value and then use your test function
with guard to filter out the results that don’t pass your test.

_where :: (a -> Bool) -> [a] -> [a]
_where test vals = do
 val <- vals
 guard (test val)
 return val

To show off _where, you’ll start with a helper function that tests whether a String starts
with a specific letter.

startsWith :: Char -> String -> Bool
startsWith char string = char == (head string)

Listing 33.6 _where allows you to filter your queries

Listing 33.7 Check whether a String starts with a particular character using
startsWith

417Joining Course and Teacher data types
Now you can use where and select together to select only the students with names start-
ing with J:

GHCi> _where (startsWith 'J' . firstName) (_select studentName students)
[Judith Butler,Jean Baudrillard,Julia Kristeva]

With the basics of _select and _where down, you can start to look at the heart of relational
queries: _join.

33.3 Joining Course and Teacher data types

Before you join two data sets, you need to create more data. You’ll look at teachers and
courses next. Your Teachers have a teacherId and a teacherName.

data Teacher = Teacher
 { teacherId :: Int
 , teacherName :: Name } deriving Show

Here are some example teachers.

teachers :: [Teacher]
teachers = [Teacher 100 (Name "Simone" "De Beauvior")
 ,Teacher 200 (Name "Susan" "Sontag")]

Your courses have a courseId, a courseTitle, and a teacher. The teacher is an Int that rep-
resents the teacherId of the Teacher leading the Course.

data Course = Course
 { courseId :: Int
 , courseTitle :: String
 , teacher :: Int } deriving Show

And you need some examples.

Listing 33.8 A Teacher data type

Listing 33.9 A list of example teachers

Listing 33.10 Course data type references a Teacher by ID

418 Lesson 33 Capstone: SQL-like queries in Haskell
courses :: [Course]
courses = [Course 101 "French" 100

,Course 201 "English" 200]

Now what you want is to join these two data sets. In SQL terms, the join you’re describ-
ing is an inner join, meaning that you care only about matching pairs. In SQL, the follow-
ing query returns pairs of teachers and the class they teach:

select * from
teachers inner join courses
on (teachers.teacherId = courses.teacher);

You’re going to assume that for your _join, you’ll be checking to see whether a given
property of data in one list is equal to another property in another list. This will have a
rather large type signature. What you want to pass into your _join function is two lists,
and then a function to select the property to join those lists on, and finally it will
return those lists combined. Figure 33.4 shows the type signature to help you under-
stand the process.

You’ll create your _join the same way a join works in the relational algebra used to create
databases. You’ll start by computing the Cartesian product of your two lists (by itself,
this is a cross join in SQL). The Cartesian product is the combination of all possible pairs.
Before you return the result, you’ll filter these pairs out by matching property values
(based on the properties you passed in, as shown in figure 33.5).

Listing 33.11 A list of example courses

You take two
lists of possibly
different types.

Then you have two
accessor functions that
return the same type of
value from each list.

These accessor functions need
to be an instance of Eq so that
you can check whether the
result is equal.

Finally, you end up
with a list of pairs of
types from each list.

_join :: Eq c => [a] -> [b] -> (a -> c) -> (b -> c) -> [(a,b)]

Figure 33.4 Reading the type signature for _join

419Building your HINQ interface and example queries
You can use _join to combine your teachers and courses:

GHCi> _join teachers courses teacherId teacher
[(Teacher {teacherId = 100, teacherName = Simone De Beauvior},

➥Course {courseId = 101, courseTitle = "French", teacher = 100}),

➥(Teacher {teacherId = 200, teacherName = Susan Sontag},Course

➥{courseId = 201, courseTitle = "English", teacher = 200})]

With the three major parts of your query language together, you can start packaging
_select, _where, and _join into an easier-to-use format.

33.4 Building your HINQ interface and example queries

You want to make it a bit easier to stick together the pieces of your query. Here’s an
example of using all three functions to find a list of English teachers (there’s only one).

joinData = (_join teachers courses teacherId teacher)
whereResult = _where ((== "English") . courseTitle . snd) joinData
selectResult = _select (teacherName . fst) whereResult

Listing 33.12 You need a way to pleasantly combine _join, _select , and _where

You then create
pairs of these two
lists. Remember,
in do-notation this
represents the
combination of
all possible pairs
of d1 and d2.

By using <-, you treat each
of the lists of data as though
it were as single value.

_join data1 data2 prop1 prop2 = do
 d1 <- data1
 d2 <- data2
 let dpairs = (d1,d2)
 guard ((prop1 (fst dparis)) == (prop2 (snd dpairs)))
 return dpairs

The guard means
you accept only
pairs in which the
two properties you
passed in match.

You finally return
the filtered set of
pairs, containing
only matches.

Figure 33.5 The _join function joins two data sets on matching properties.

420 Lesson 33 Capstone: SQL-like queries in Haskell
This solution is okay, but what you want is your query to feel like a SQL query. Typi-
cally, SQL queries are structured like this:

select <elements> from <data> where <tests>

Your data can be either a list or data created from joining two lists together. You want to
be able to restructure your query so it looks like this:

(_select (teacherName . fst))
(_join teachers courses teacherId teacher)
(_where ((== "English") .courseTitle . snd))

You can achieve this by using lambda functions to restructure your code so it looks the
way you want it to. You’ll create a function called _hinq that will take the _select,_join,
and _where queries in the order you expect and then use lambdas behind the scenes to
restructure everything.

_hinq selectQuery joinQuery whereQuery = (\joinData ->
 (\whereResult ->
 selectQuery whereResult)
 (whereQuery joinData)
) joinQuery

The _hinq function can be used to run your query. Obviously, this code isn’t a perfect rep-
lication of SQL or LINQ, but it’s pretty close and allows you to think about combining
two lists in the same way you would a relational query. Here’s the previous query
restructured using your _hinq function.

finalResult :: [Name]
finalResult = _hinq (_select (teacherName . fst))
 (_join teachers courses teacherId teacher)
 (_where ((== "English") .courseTitle . snd))

There’s one small annoyance left. Suppose you want to get the first names from your
finalResult for all teachers, not just those teaching English. To do this, you wouldn’t need
a _where clause. You can solve this by using (_ -> True), which will automatically make
everything True.

Listing 33.13 _hinq function allows you to restructure your query

Listing 33.14 Using _hinq allows you to approximate SQL syntax in Haskell

421Making a HINQ type for your queries
teacherFirstName :: [String]
teacherFirstName = _hinq (_select firstName)
 finalResult
 (_where (_ -> True))

This works, but it’s no fun to have to remember to pass in this universally true state-
ment. And Haskell doesn’t support default arguments. How can you make an easier
way to deal with cases with missing where clauses? You’ll use a HINQ type that will have
two constructors.

33.5 Making a HINQ type for your queries

In this section, you’ll create a HINQ type that represents a query. You know that a query
can be a select clause, join/data clause, and a where clause, or just the first two. This will
allow you to run queries with and without _where statements. Before moving on, though,
you need to make one more improvement in your _select, _where, and _join functions.
Currently, these all operate on lists, but you can generalize this so they work on other
monads. To fix this, you don’t need to change your code at all, only make your type sig-
natures less restrictive. But you’ll have to add a type class constraint. The guard function
works on types of the Alternative type class. Alternative is a subtype of Applicative, and
includes defining an empty element for the type (a lot like Monoid). Both List and Maybe are
members of Alternative, but IO isn’t. To use the Alternative type class, you need to import
Control.Applicative. Here are your refactored type signatures that will extend the power
of your HINQ queries.

_select :: Monad m => (a -> b) -> m a -> m b
_where :: (Monad m, Alternative m) => (a -> Bool) -> m a -> m a
_join :: (Monad m, Alternative m, Eq c) => m a -> m b ->
 (a -> c) -> (b -> c) -> m (a,b)

This is a great example of why writing monadic code is so useful. You start by solving
your problem for just the List type. But you can make your code dramatically more gen-
eralized by changing the type signatures! If you had used list-specific functions, such as

Listing 33.15 One possible solution to a missing _where

Listing 33.16 _select, _where, and _join functions can work for all monads

422 Lesson 33 Capstone: SQL-like queries in Haskell
map and filter, this would require much more work to refactor. Now that your types are
refactored, you can make a generic HINQ type to represent the queries you’re interested in
running, as shown in figure 33.6.

This constructor uses the types of your _selector, _join, and possibly _where functions. With
this data type, you can write a runHINQ function that takes a HINQ type and runs the query.

runHINQ :: (Monad m, Alternative m) => HINQ m a b -> m b
runHINQ (HINQ sClause jClause wClause) = _hinq sClause jClause wClause
runHINQ (HINQ_ sClause jClause) = _hinq sClause jClause

(_where (_ -> True))

The other benefit of having the HINQ type is that it clarifies the originally long type you
were working with. Let’s run a few queries to see how it does!

33.6 Running your HINQ queries

With your HINQ type, you can start exploring different queries you might want to run.
You’ll start by revisiting your English teacher query. Here’s the full HINQ query with a
type signature:

query1 :: HINQ [] (Teacher, Course) Name
query1 = HINQ (_select (teacherName . fst))

(_join teachers courses teacherId teacher)
(_where ((== "English") .courseTitle . snd))

Listing 33.17 runHINQ function allows you to execute HINQ queries

Your HINQ type takes
three type parameters:
The type of Monad
The type of the data
The type of the result

The HINQ data constructor
takes three functions:

_select _join (or plain data) _where

data HINQ m a b = HINQ (m a -> m b) (m a) (m a -> m a)
| HINQ_ (m a -> m b) (m a)

The HINQ_ data constructor
omits the _where type signature.

Figure 33.6 Understanding the HINQ data type

423Running your HINQ queries
Because Haskell uses lazy evaluation, simply defining this query doesn’t run it. This is
great because it emulates the behavior of .NET LINQ (which also uses lazy evaluation)
and it means you can pass around expensive computation without worrying about run-
ning the queries until you need the result. Another great thing about HINQ is that it’s
strongly typed. You’ll easily be able to find bugs in your query because Haskell’s type
checker will yell at you. Because of type inference, you can always choose to leave the
type out for quick queries. Run query1 and look at the result:

GHCi> runHINQ query1
[Susan Sontag]

If you want to select teacher names from a similar data set, you can omit the where clause
and use HINQ_:

query2 :: HINQ [] Teacher Name
query2 = HINQ_ (_select teacherName)
 teachers

This is the same as using _select on teachers by itself, but it shows that your query type
works even for extremely simple cases. You can see that you get the results you expect
in GHCi:

GHCi> runHINQ query2
[Simone De Beauvior,Susan Sontag]

Lists are the most common use of something like HINQ, but remember that you refac-
tored it to work with all members of Monad and Alternative. Next you’ll look at an example
of querying a Maybe.

33.6.1 Using HINQ with Maybe types

It’s not hard to imagine that you could end up with a Maybe Teacher and a Maybe Course. Just
because you don’t have a list of values doesn’t mean you don’t want to join your teacher
with the course. Here’s an example of a possible Teacher and a possible Course.

possibleTeacher :: Maybe Teacher
possibleTeacher = Just (head teachers)

possibleCourse :: Maybe Course
possibleCourse = Just (head courses)

Listing 33.18 Because it’s written for monads you can query Maybe types

424 Lesson 33 Capstone: SQL-like queries in Haskell
Running a query with a Maybe type means that you’ll get results only if the query doesn’t
fail. It can fail from missing data or because it doesn’t find a match. Here’s your English
teacher query again for Maybe types.

maybeQuery1 :: HINQ Maybe (Teacher,Course) Name
maybeQuery1 = HINQ (_select (teacherName . fst))
 (_join possibleTeacher possibleCourse
 teacherId teacher)
 (_where ((== "French") .courseTitle . snd))

Even in a Maybe context, you can still think relationally, run queries, and get your results:

GHCi> runHINQ maybeQuery1
Just Simone De Beauvior

If you had a missing course, you can still safely run the query.

missingCourse :: Maybe Course
missingCourse = Nothing

maybeQuery2 :: HINQ Maybe (Teacher,Course) Name
maybeQuery2 = HINQ (_select (teacherName . fst))
 (_join possibleTeacher missingCourse teacherId teacher)
 (_where ((== "French") .courseTitle . snd))

In GHCi, you can see that the missing data is still handled safely:

GHCi> runHINQ maybeQuery2
Nothing

You’ll end this capstone by using HINQ to solve a more complicated problem involving
multiple joins.

33.6.2 Joining multiple lists to get all enrollments

Next you’ll look at querying your data to determine course enrollment. To do this, you
need another data type to represent an enrollment. Enrollment is a student ID and a
course ID. Here’s the type you’ll use to represent this.

Listing 33.19 An example of a Maybe query

Listing 33.20 You can join Maybe data and easily handle the case of missing data

425Running your HINQ queries
data Enrollment = Enrollment
 { student :: Int
 , course :: Int } deriving Show

You can represent all of your student enrollments by creating a list of them, each pairing
a student’s ID with a course ID.

enrollments :: [Enrollment]
enrollments = [(Enrollment 1 101)
 ,(Enrollment 2 101)
 ,(Enrollment 2 201)
 ,(Enrollment 3 101)
 ,(Enrollment 4 201)
 ,(Enrollment 4 101)
 ,(Enrollment 5 101)
 ,(Enrollment 6 201)]

Suppose you want to get a list of all the students’ names paired with the name of the
course they’re enrolled in. To do this, you need to join students with enrollments, and
then join the result of that with courses. You can get all of the student enrollments in one
go by using a HINQ_ query. This is a great example of the occasional times you may want
to take advantage of type inference. How your queries combine types can get compli-
cated, so writing out the full type signature can be tough. Thankfully, type inference
takes care of all the work for you! This query will join students and enrollments to get a
list of courses the students are enrolled in.

studentEnrollmentsQ = HINQ_ (_select (\(st,en) ->
 (studentName st, course en))
 (_join students enrollments studentId student)

Listing 33.21 Enrollment relates a Student to a Course

Listing 33.22 A list of example enrollments

Listing 33.23 Queries students and the course they’re enrolled in

426 Lesson 33 Capstone: SQL-like queries in Haskell
Even though you didn’t want to have to worry about the type signature of the query,
you know the result should be a Name and an Id. When you run this query, you can make
sure that this is the type of your result.

studentEnrollments :: [(Name, Int)]
studentEnrollments = runHINQ studentEnrollmentsQ

In GHCi, you can double-check that your query ran as expected.

GHCi> studentEnrollments
[(Audre Lorde,101),(Leslie Silko,101),(Leslie Silko,201),

➥(Judith Butler,101),(Guy Debord,201),(Guy Debord,101),

➥(Jean Baudrillard,101),(Julia Kristeva,201)]

Now suppose you want to get a list of all English students. To do this, you need to join
studentEnrollments with courses. Here’s your query for selecting the name of students
enrolled in an English course.

englishStudentsQ = HINQ (_select (fst . fst))
(_join studentEnrollments

courses
snd
courseId)

(_where ((== "English") . courseTitle . snd))

Notice that your _where clause used data in courses, but your select is concerned only
about which students are in the course. Now you can run your query and get a list of
englishStudents.

englishStudents :: [Name]
englishStudents = runHINQ englishStudentsQ

With HINQ, you were able to join three lists together just as though they were tables in
a relational database.

Listing 33.24 Running a query for studentEnrollments

Listing 33.25 Joining studentEnrollments with courses

Listing 33.26 Running the englishStudentsQ query to list English students

427Summary
You can also use HINQ inside a function to make generic tools for querying your data.
Suppose you want a function getEnrollments that would list all the students enrolled in a
class. You can pass in the course’s name to the query you used last.

getEnrollments :: String -> [Name]
getEnrollments courseName = runHINQ courseQuery
 where courseQuery = HINQ (_select (fst . fst))
 (_join studentEnrollments
 courses
 snd
 courseId)
 (_where ((== courseName) . courseTitle . snd))

In GHCi, you can see that this function works as expected:

GHCi> getEnrollments "English"
[Leslie Silko,Guy Debord,Julia Kristeva]
GHCi> getEnrollments "French"
[Audre Lorde,Leslie Silko,Judith Butler,Guy Debord,Jean Baudrillard]

And there you have it! With the power of monads, you’ve been able to successfully
approximate a relational query engine that’s reasonably similar to both SQL and LINQ.
Not only are your queries easier to read, but you also get lazy evaluation and a powerful
type system to make your system more efficient and robust. Furthermore, for any new
types you have, if you implement Monad and Alternative, you can use HINQ on those data
types for free! Nearly all the code you wrote to implement used the Monad type class. By
combining monads, sum types (your HINQ type), lazy evaluation, and first-class func-
tions, you were able to build a powerful query engine from scratch!

Summary

In this capstone you

 Learned how to easily implement _select and _where for lists
 Used the Cartesian product of two lists to replicate a database join
 Easily changed functions on lists to functions on monads in general

Listing 33.27 getEnrollments queries your data for enrollments

428 Lesson 33 Capstone: SQL-like queries in Haskell
 Saw how lambda functions can allow you to restructure the way functions are
called

 Made working with HINQ queries easier by using a HINQ data type

Extending the exercise

Now that you have the basics of your HINQ queries down, try to extend them the Has-
kell way! See if you can implement Semigroup and Monoid for HINQ. For Monoid, you might
have to refactor your HINQ type to include the empty query. If you can define Monoid for
HINQ, you can concatenate a list of HINQ queries into a single query!

429

U
N

IT

6

Organizing code and
building projects

Congratulations! You’ve made it through the most
challenging topics in the book. Starting with this
unit, the rest of this book focuses on practical uses
of the topics we’ve covered so far. After you’re fin-
ished, you should be comfortable building a wide
range of common programming projects in Haskell.

In this unit, you’ll look at a topic that will be famil-
iar if you’re an experienced programmer: organiz-
ing code and building projects. Haskell still has
some fun tricks up its sleeve, but nothing that’s as
strange as you’ve experienced on your journey to
get here.

You’ll start this unit learning about Haskell’s mod-
ule system. Surprisingly, there’s nothing strange or
unique about the purpose of Haskell’s modules. Just
as in any other programming language, they serve
to group functions into a single namespace and help
organize reusable code. After that, you’ll learn
about Haskell’s build system: stack. Again, stack is a
typical, though solid, build system used to help
automate the building of projects. The one interest-
ing, but not particularly challenging, topic we’ll
cover is Haskell’s QuickCheck testing library. Quick-
Check automatically generates test cases for your
code based on a set of properties that you define.

430 Unit 6 Organizing code and building projects
After you’ve completed this unit, coding in Haskell should feel more like everyday soft-
ware development. You’ll conclude this unit by building a library for working with
prime numbers, and in many ways, this should feel like building a library in just about
any programming language.

34 LESSON
ORGANIZING HASKELL CODE WITH
MODULES

After reading lesson 34, you’ll be able to

 Understand the main module implicitly used when you create a program
 Create namespaces for your functions by using modules
 Separate programs into multiple files
 Selectively import functions from modules

Up to this point in the book, we’ve covered a wide range of interesting topics related to
Haskell. But we haven’t discussed one of the most basic topics: creating namespaces for
your functions. Haskell uses a system of modules to create separate namespaces for
functions and allow you to organize your code much better. This works similarly to
modules in languages such as Ruby and Python, and to packages and namespaces in
languages such as Java and C#.

You’ve already used Haskell’s module system. Every time you use import, you’re includ-
ing a new module in your program. Additionally, all the built-in functions and types
you have—such as [], length, and (:)—are all included in the standard module named
Prelude that’s automatically imported. The full documentation for Prelude can be found on
Hackage (https://hackage.haskell.org/package/base/docs/Prelude.html).
431

https://hackage.haskell.org/package/base/docs/Prelude.html

432 Lesson 34 Organizing Haskell code with modules
So far in this book, we’ve avoided modules by keeping all of your code in the same file
and giving your functions unique names when there’s a conflict. In this lesson, you’ll
start organizing your code correctly into modules. You’ll focus on a simple example:
writing a command-line tool that prompts the user for a word and indicates whether the
word is a palindrome. Ideally, you’d like to keep the main IO action in a separate file from
the functions that work to determine whether text is a palindrome. This keeps your code
better organized and makes it easier to extend your program with more code in the
future. You’ll start by writing your program as a single file, and then correctly separat-
ing the code into two files.

34.1 What happens when you write a function with the same
name as one in Prelude?

To get started, let’s create a better version of the default head function that you’ve been
using throughout the book. In Prelude, head is defined as follows.

head :: [a] -> a
head (x:_) = x
head [] = errorEmptyList "head"

Listing 34.1 The definition in Prelude of head

Consider this You have a type for books and a type for magazines. Each has the
same field names, but they represent different things:

data Book = Book
 { title :: String
 , price :: Double }

data Magazine = Magazine
 { title :: String
 , price :: Double }

Both types are written using record syntax, which creates a problem. Record syntax auto-
matically creates accessor functions title and price. Unfortunately, this causes an error
because you’re attempting to define two functions of the same name. You want to avoid
giving these fields such as bookTitle and bookPrice. How can you resolve this conflict?

errorEmptyList is
a List-specific way
to throw an error.

https://hackage.haskell.org/package/base-4.9.0.0/docs/src/GHC.List.html#local-1627403720
https://hackage.haskell.org/package/base-4.9.0.0/docs/src/GHC.List.html#local-1627403720
https://hackage.haskell.org/package/base-4.9.0.0/docs/src/GHC.List.html#head
https://hackage.haskell.org/package/base-4.9.0.0/docs/src/GHC.List.html#local-1627403721
https://hackage.haskell.org/package/base-4.9.0.0/docs/src/GHC.List.html#local-1627403721
https://hackage.haskell.org/package/base-4.9.0.0/docs/src/GHC.List.html#badHead
https://hackage.haskell.org/package/base-4.9.0.0/docs/src/GHC.List.html#badHead

433What happens when you write a function with the same name as one in Prelude?
The head function has a problem in that it throws an error when it’s applied to an empty
list. This isn’t ideal for Haskell, and lesson 38 covers this in more detail when we talk
about handling errors. The reason head throws an error is that there often isn’t a sensible
value you can return. Languages such as Lisp and Scheme will return the empty list as
the result of calling head on an empty list, but Haskell’s type system doesn’t allow this
(because the empty list is usually a different type than values in the list itself). But you
can come up with a solution to this problem if you constrain head to work on members of
the Monoid type class. You’ll recall from lesson 17 that the Monoid type class is defined as
follows.

class Monoid m where
 mempty :: m
 mappend :: m -> m -> m
 mconcat :: [m] -> m

All Monoids are required to define a mempty element. The mempty element represents the
empty value for instances of Monoid. List is an instance of Monoid, and mempty is just the
empty list, []. For members of Monoid, you can return the mempty element when you have
an empty list. Here’s your new, safer version of head.

head :: Monoid a => [a] -> a
head (x:xs) = x
head [] = mempty

If you write this code in a file, it’ll compile just fine, even though you’ve “accidentally”
used the name of an existing function. That’s because the head you use all the time is part
of the Prelude module. To test your new head function, you need an example of a list with
values that are members of Monoid. In this case, you’ll use an empty list of lists (remem-
ber, the elements of your list must be an instance of Monoid).

example :: [[Int]]
example = []

Listing 34.2 The definition of the Monoid type class

Listing 34.3 Oops, you accidentally created a function that already has a name!

Listing 34.4 An example list that’s a list of values that are an instance of Monoid

434 Lesson 34 Organizing Haskell code with modules
You can compile this code just fine, but something happens if you try to use head in
GHCi. Because there’s already a function called head when you run this code in GHCi,
you get an error that looks something like this:

Ambiguous occurrence 'head'
It could refer to either 'Main.head'
defined at ...
or 'Prelude.head'

The problem is that Haskell doesn’t know which head you mean—the one defined in
Prelude or the one you just wrote. What’s interesting is that the complaint is that there’s a
Main.head function. When you don’t explicitly tell Haskell that you’re in a module,
Haskell assumes that you’re the Main module. You can make this explicit by using the fol-
lowing line at the top of your file.

module Main where

head :: Monoid a => [a] -> a
head (x:xs) = x
head [] = mempty

example :: [[Int]]
example = []

To specify precisely which head you mean, you can fully qualify your function’s name
with the name of the module. You use Main.head to specify your head, and Prelude.head to
use the default Prelude definition of head. Here’s an example in GHCi:

GHCi> Main.head example
[]
GHCi> Prelude.head example
*** Exception: Prelude.head: empty list

Next, you’ll expand on your use of modules to build a simple program that’s spread
over two files.

Listing 34.5 Explicitly defining a module for your code

The error is that you have
two functions named head,
and Haskell doesn’t know
which you want.

The version you wrote is
this version. Haskell has
automatically created a
default module for you.The head function

you’re used to lives in
the Prelude module.

This line is the only code
that’s different from your
original code.

435Building a multifile program with modules

34.2 Building a multifile program with modules

In this section, you’ll build a simple program that reads a line of user input and then
indicates whether the word is a palindrome. You’ll start with a quick, single-file version
of the program that can detect palindromes such as racecar but fails on Racecar! You’ll
then refactor your code into two files, one dealing with the main program logic and the
other a library to put all your code for properly detecting palindromes.

It’s generally good practice to separate groups of related functions into separate mod-
ules. The main module should primarily be concerned with the execution of your pro-
gram. All of the logic for reasoning about palindromes should be kept in a separate file,
because this makes it easier to keep track of the locations of library functions. Addition-
ally, you can hide functions in a module the same way classes in Java or C# can have pri-
vate methods. This allows you to have encapsulation so that only the functions you
wish to export are available for use.

34.2.1 Creating the Main module

So far, you’ve been pretty casual with your filenames. Now that you’re starting to think
about properly organizing code, you should be more careful. As you saw in unit 4, each
Haskell program has a main function the same way that Java programs have a main method.
Normally, you expect the main function to live in the Main module. Convention in Haskell
is that modules should live in files of the same name as the module. When creating your
palindrome project, you should start with a file named Main.hs. Here’s your program.

Quick check 34.1 Suppose you need to store the length of an object as a variable.
For example:

length :: Int
length = 8

How would you use that value without conflicting with the existing length function in Prelude?

QC 34.1 answer You need to qualify the value as Main.length:

length :: Int
length = 8

doubleLength :: Int
doubleLength = Main.length * 2

436 Lesson 34 Organizing Haskell code with modules
module Main where
isPalindrome :: String -> Bool
isPalindrome text = text == reverse text

main :: IO ()
main = do
 print "Enter a word and I'll let you know if it's a palindrome!"
 text <- getLine
 let response = if isPalindrome text

then "it is!"
else "it's not!"

 print response

You can compile this program and test out your code or just load it into GHCi. You can
see that your palindrome program isn’t as robust as you’d like:

GHCi> main
"Enter a word and I'll let you know if it's a palindrome!"
racecar
"it is!"
GHCi> main
"Enter a word and I'll let you know if it's a palindrome!"
A man, a plan, a canal: Panama!
"it's not!"

Your program correctly identifies racecar as a palindrome, but fails to identify A man, a
plan, a canal: Panama! What you need is a bit of preprocessing for your strings to strip
out whitespace, remove punctuation, and ignore case. In the past, you would just add
this code to your file. But it makes sense to pull out your palindrome code into a sepa-
rate file for two reasons. First, it makes your Main cleaner, and second, you can then more
easily reuse your palindrome code in other programs.

Listing 34.6 A first draft of your Main module

Here you’re explicitly
declaring your
module name.

This is your naive
implementation of
isPalindrome.

Your main IO action
reads the user input,
checks whether the
input is a
palindrome, and then
prints the result.

437Building a multifile program with modules
A

R
69

5
61

56
34.2.2 Putting your improved isPalindrome code in its own module

You’ll put your palindrome code in a separate module. The module’s name will be
Palindrome, so your code should be in a file named Palindrome.hs. Your Palindrome module
will have a function, also named isPalindrome, which will be the function used by the Main
module. You want to write a more robust version of isPalindrome so your module will
also contain a series of helper functions: stripWhiteSpace, stripPunctuation, toLowerCase, and
preprocess, which performs all of these. Here’s your full Palindrome.hs file.

module Palindrome(isPalindrome) where

import Data.Char (toLower,isSpace,isPunctuation)

stripWhiteSpace :: String -> String
stripWhiteSpace text = filter (not . isSpace) text

stripPunctuation :: String -> String
stripPunctuation text = filter (not . isPunctuation) text

toLowerCase :: String -> String
toLowerCase text = map toLower text

preprocess :: String -> String
preprocess = stripWhiteSpace . stripPunctuation . toLowerCase

isPalindrome :: String -> Bool
isPalindrome text = cleanText == reverse cleanText
 where cleanText = preProcess text

Let’s walk through this file step-by-step to get a better sense of what’s happening. You
could’ve started your Palindrome function this way:

module Palindrome where

By default, this will export all the functions that you’re defining in Palindrome.hs. But
you don’t want to export your helper functions; all you care about is isPalindrome. You

Listing 34.7 The Palindrome.hs file

You declare that your module
is named Palindrome and
that it exports a single
function isPalindrome.

You could import the
entire Data.Char module,
but you need only the
three functions listed.

The rest of the
code is just like any
other code written
in this book.

438 Lesson 34 Organizing Haskell code with modules
can achieve this by listing all the functions you want to export in parentheses after the
module name:

module Palindrome(isPalindrome) where

Here’s another way to format your export functions so that you can easily accommodate
exporting additional functions:

module Palindrome
 (isPalindrome
) where

Now the only function available from your Palindrome module is isPalindrome.

To create your helper functions, you need a few functions from the Data.Char module. In
the past, you’ve crudely imported the entire module whenever you need to use one. But
just as you can selectively export functions, you can also selectively import them. This
import statement imports only the three functions you’ll need.

import Data.Char (toLower,isSpace,isPunctuation)

The primary benefits of importing functions this way are that it improves readability
and reduces the possibility that you’ll have an unexpected namespace collision when
performing a nonqualified import.

Now the rest of your file is just like any other Haskell file you’ve used so far. All your
helper functions are relatively self-explanatory.

stripWhiteSpace :: String -> String
stripWhiteSpace text = filter (not . isSpace) text

stripPunctuation :: String -> String
stripPunctuation text = filter (not . isPunctuation) text

toLowerCase :: String -> String
toLowerCase text = map toLower text

Listing 34.8 Importing only a specific subset of functions from Data.Char

Listing 34.9 The code in your module for properly detecting palindromes

The last step is to make
sure your String is all
lowercase.

Next you can
remove all the
punctuation.

This function strips
out the whitespace
from your text.

439Building a multifile program with modules

preprocess :: String -> String
preprocess = stripWhiteSpace . stripPunctuation . toLowerCase

isPalindrome :: String -> Bool
isPalindrome text = cleanText == reverse cleanText
 where cleanText = preprocess text

Your Palindrome module doesn’t have a main because it’s just a library of functions. Even
without a main, you can still load your file into GHCi and test it out:

GHCi> isPalindrome "racecar"
True
GHCi> isPalindrome "A man, a plan, a canal: Panama!"
True

Now that you understand your Palindrome module, let’s go back and refactor your Main
module.

34.2.3 Using your Palindrome module in your Main module

To use Palindrome, you add the import to your Main as you would any other module. As
you’ll soon see, when your module is in the same directory as your Main, compiling your
Main will automatically compile your other module.

Let’s suppose you’d like to keep your existing definition of isPalindrome in your Main. In
the past, you’ve used import qualified Module as X to provide a named import for the mod-
ules you’d like to use (such as import qualified Data.Text as T). If you leave off the as X part

Finally, you end up with
a much-improved
version of isPalindrome.

You use function
composition to
put these all
together.

Quick check 34.2 Modify the module declaration so that you also export preprocess.

QC 34.2 answer
module Palindrome(
 isPalindrome
 ,preprocess
) where

440 Lesson 34 Organizing Haskell code with modules
of your qualified import, you use the name of the module itself to reference functions in
that module. Here’s the start of your main refactored.

module Main where
import qualified Palindrome

Now all you have left to do is change your call to isPalindrome to Palindrome.isPalindrome
and you’re all set.

 let response = if Palindrome.isPalindrome text

Here’s your fully refactored Main.hs.

module Main where
import qualified Palindrome

isPalindrome :: String -> Bool
isPalindrome text = text == (reverse text)

main :: IO ()
main = do
 print "Enter a word and I'll let you know if it's a palindrome!"
 text <- getLine
 let response = if Palindrome.isPalindrome text

then "it is!"
else "it's not!"

 print response

Compiling this program is surprisingly simple. You can compile your Main.hs file with
GHC and it’ll automatically find your module:

$ ghc Main.hs
[1 of 2] Compiling Palindrome (Palindrome.hs, Palindrome.o)
[2 of 2] Compiling Main (Main.hs, Main.o)
Linking Main ...

Listing 34.10 Performing a qualified import of your Palindrome module

Listing 34.11 Using the qualified Palindrome.isPalindrome function

Listing 34.12 Your Main.hs file that uses your Palindrome.hs file

441Summary
Finally, you can run your Main executable:

$./Main
"Enter a word and I'll let you know if it's a palindrome!"
A man, a plan, a canal, Panama!
"it is!"

This is a trivial case of having a simple module in the same directory. In the next lesson,
you’ll explore stack, which is a powerful and popular build tool for Haskell. If you’re
going to be building anything nontrivial, make sure you do it with stack. Nonetheless,
it’s still helpful to understand how to compile multiple-file programs by hand.

Summary

In this lesson, our goal was to teach you how to use modules to organize your Haskell
programs. You learned how most of your programs automatically belong to a Main mod-
ule. Next, you saw how to organize programs into separate files and compile them into
a single program. You also learned how to export specific functions from your modules
while hiding the rest. Let’s see if you got this.

Q34.1 Recall that in unit 4 we mentioned that Data.Text is strongly preferred over String
for working with text data. Refactor this project to use Data.Text instead of String (in both
the Main and Palindrome modules).

Q34.2 In unit 4, lesson 25, you wrote a program to “glitch” binary images. Revisit that
program and pull out all the code specific to glitching images into its own Glitch module.

Quick check 34.3 You shouldn’t leave Main.isPalindrome there, as it’s no longer necessary.
If you remove the code for Main.isPalindrome, how can you refactor your code so you no longer
need to qualify Palindrome.isPalindrome?

QC 34.3 answer Change import qualified Palindrome to import Palindrome. Then remove
Palindrome. from Palindrome.isPalindrome.

35LESSON
BUILDING PROJECTS WITH STACK

After reading lesson 35, you’ll be able to

 Work with Haskell’s stack build tool
 Build stack projects
 Configure key files generated by stack

When moving beyond learning a programming language to using it for more serious
projects, one of the most important things to have is proper build automation. One uni-
versal option is to use a tool such as GNU Make. But many languages have their own
build tools. Java has several industrial-strength options such as Ant and Maven, Scala
has sbt, and Ruby has rake. Given Haskell’s academic history, it might come as a sur-
prise that Haskell too has a powerful build tool: stack. The stack build tool is a relatively
recent addition to the Haskell ecosystem, but it has had a tremendous impact. stack
automates and manages several parts of Haskell projects:

 Provides an isolated installation of GHC per project to ensure that you’re always
using the correct version

 Handles the installation of packages and their dependencies
 Automates the building of the project
 Aids you in organizing and running tests on your project
442

443Starting a new stack project
This lesson introduces the basics of creating and building a project by using stack. In the
preceding lesson, you saw how modules in Haskell let you separate your code into mul-
tiple files. In this lesson, you’re going to build the same project but change two things.
First, you’ll use Data.Text rather than String for your program. As mentioned in unit 4,
Data.Text is strongly preferred over String for real-world text. Second, this time, rather
than compile modules, you’ll use stack. stack comes with the Haskell platform (recom-
mended in lesson 1), or if you prefer you can download stack by itself from https://docs
.haskellstack.org/. Because stack handles installing copies of GHC and GHCi, after
you’re familiar with stack, it’s the only tool you need to install to get started with Haskell.

35.1 Starting a new stack project

The first thing you need to do is make sure that stack is up-to-date. You can do this with
the stack update command:

$ stack update

It’s common for this operation to take a long time the first time you run stack (or when it
has been a long time). Because stack is making sure you have a clean environment to
build projects in, many first-time tasks might take a few minutes for everything to run.
Rest assured that after you’re using stack, many of these tasks will run much faster, as
stack is good at managing the resources it needs.

Now that you’re up-to-date, you can build your project. For this, you can use the new
command. You’ll name your project palindrome-checker:

$ stack new palindrome-checker

Running this command causes stack to create a new project. After this command has
run, you should have a new directory named palindrome-checker. If you look inside
palindrome-checker, you’ll find the following files and directories:

LICENSE src
Setup.hs stack.yaml
app test
palindrone-checker.cabal

Next you’ll make sense of everything that stack has created for you.

Consider this Like all languages, Haskell is always changing over time. How can you
make sure that code you’ve written today still builds in five years?

https://docs.haskellstack.org/
https://docs.haskellstack.org/

444 Lesson 35 Building projects with stack
35.2 Understanding the project structure

When you run stack new, stack builds a new project from a template. You didn’t supply
an argument for your template, so stack uses the default one. For now, you’re going to
stick with the default template, but many templates exist that you can choose from
(https://github.com/commercialhaskell/stack-templates is a source for many).

35.2.1 The project .cabal file and autogenerated files

In the top-level directory for your project, you have the following files, and all of these
were created by stack for you:

 LICENSE
 Setup.hs
 palindrome-checker.cabal
 stack.yaml

The only file that you’re primarily interested in at this point is palindrome-
checker.cabal, which is your project configuration file. It contains all the metadata
related to your project. In the beginning of the file, you have the basic information you’d
expect about the project name, version, description, and so forth:

name: palindrome-checker
version: 0.1.0.0
synopsis: Initial project template from stack
description: Please see README.md
homepage: https://github.com/githubuser/palindrone-checker#readme
license: BSD3
license-file: LICENSE
author: Author name here
maintainer: example@example.com
copyright: 2016 Author name here

A section of palindrome-checker.cabal includes information about where your library
files are stored in the project, which libraries you use, and which version of the Haskell
language you’re using:

library
 hs-source-dirs: src
 exposed-modules: Lib

https://github.com/commercialhaskell/stack-templates

445Understanding the project structure
 build-depends: base >= 4.7 && < 5
 default-language: Haskell2010

The most important lines in this part of the configuration are hs-source-dirs and exposed-
modules. The hs-source-dirs value tells you which subdirectory of your project your library
files live in. You can see that the default value for this is src. You’ll notice that stack
already generated a source directory for you. The exposed-modules value tells you which
libraries you’re using. By default, stack creates a Lib module that’s located in src/Lib.hs.
You can add more values to exposed-modules by placing them on separate lines with com-
mas, like this:

exposed-modules: Lib,
 Palindrome,
 Utils

When first getting started with stack, especially for smaller projects, you can put all the
library functions you write in src/Lib.hs. You’ll cover the build-depends argument in a
later section, and for the most part you shouldn’t need to worry about the default-
language value.

You also have information on where the files you’ll be using to build your executable
will be stored, the name of your Main module, and default command-line arguments
you’re going to use when running your program:

executable palindrome-checker-exe
 hs-source-dirs: app
 main-is: Main.hs
 ghc-options: -threaded -rtsopts -with-rtsopts=-N
 build-depends: base
 , palindrone-checker
 default-language: Haskell2010

stack separates the code for your libraries from the code for running your program into
separate directories. The hs-source-dirs value specifies the name of the directory where
the program’s Main module lives. Just like the library section of the .cabal file, the execut-
able section tells you in which file your main is located with the main-is value. Once again,
stack has automatically created the app directory (specified by hs-source-dirs) for you
and placed a Main.hs file inside.

There’s a lot more in the .cabal file, but what we’ve discussed so far should cover the
basics you’ll need for creating new projects. Next you’ll look at some of the directories

446 Lesson 35 Building projects with stack
and code generated for you by stack. We’ll point out other interesting parts of the .cabal
file as you work through projects that use them in the rest of this book.

35.2.2 The app, src, and test directories

stack also automatically creates three directories for you:

 app
 src
 test

In the preceding section, you saw that app and src are created for your executable and
library modules. You’ll ignore test for now, as you’ll explore testing in much more depth
in lesson 36. We also mentioned that stack automatically includes two files in these:
app/Main.hs and src/Lib.hs. These files and directories serve as a template for a minimal
Haskell project.

The Main.hs file generated looks like this.

module Main where

import Lib

main :: IO ()
main = someFunc

This is a simple file, but it provides guidance on how to think about stack projects. The
only thing this Main module does is import the Lib module and then define a main IO
action that’s just the someFunc function. Where does someFunc come from? It’s defined in the
Lib module. The Lib module is located in src/Lib.hs and looks like this.

Listing 35.1 The default Main module generated by stack

Quick check 35.1 Set your name as the project’s author.

QC 35.1 answer Change the author line in the project’s .cabal file to your name, like this:

author: Will Kurt

447Writing your code
module Lib
 (someFunc
) where

someFunc :: IO ()
someFunc = putStrLn "someFunc"

someFunc is a trivial function that prints someFunc. Though simple, these two files give you a
solid foundation for getting started building a project using stack. Your Main module
logic should be minimal, relying primarily on library functions defined in the Lib mod-
ule. Now let’s start translating your project from the last lesson to work with stack!

35.3 Writing your code

Let’s start with your Palindrome module. Remember, unlike last time, this time you’re
going to write a library that works with the Data.Text type, rather than just Strings.
Because you’re using stack, you want to put this file into the src directory. Rather than
create a Palindrome.hs file, you’ll go ahead and overwrite the Lib.hs stack created for
you. For simple programs like this, you can put all of your utilities into a single module.

{-# LANGUAGE OverloadedStrings #-}
module Lib
 (isPalindrome
) where

import qualified Data.Text as T
import Data.Char (toLower,isSpace,isPunctuation)

Listing 35.2 The default Lib module generated by stack

Listing 35.3 Rewriting Palindrome from the preceding lesson to work with Text

Quick check 35.2 We haven’t covered building a project in stack yet, but when you run this
project, what should it do based on the default code you have?

QC 35.2 answer The program should print out someFunc.

448 Lesson 35 Building projects with stack
stripWhiteSpace :: T.Text -> T.Text
stripWhiteSpace text = T.filter (not . isSpace) text

stripPunctuation :: T.Text -> T.Text
stripPunctuation text = T.filter (not . isPunctuation) text

preProcess :: T.Text -> T.Text
preProcess = stripWhiteSpace . stripPunctuation . T.toLower

isPalindrome :: T.Text -> Bool
isPalindrome text = cleanText == T.reverse cleanText
 where cleanText = preProcess text

Next you need to write your Main. This time you won’t use a qualified import (but you’ll
need to make a small change so that your code works with Data.Text). Because your Main
is essential to building your executable, it goes in the app directory (this is declared in
your project’s .cabal file!). You overwrite the generated Main.hs with your own. Here’s
your revised Main.hs.

{-# LANGUAGE OverloadedStrings #-}
module Main where

import Lib
import Data.Text as T
import Data.Text.IO as TIO

main :: IO ()
main = do
 TIO.putStrLn "Enter a word and I'll let you know if it's a palindrome!"
 text <- TIO.getLine
 let response = if isPalindrome text

then "it is!"
else "it's not!"

 TIO.putStrLn response

Now you’re almost ready, except you have to add edit your .cabal file. You have to tell
stack about any modules you’re depending on. For both your Main.hs file and your

Listing 35.4 Writing the Main.hs file for your palindrome checker

449Building and running your project!
Lib.hs file, you’re using Data.Text. For both your library and executable sections of palin-
drome-checker.cabal, you need to add the text package to the list of dependencies:

library
 hs-source-dirs: src
 exposed-modules: Lib
 build-depends: base >= 4.7 && < 5
 , text
 default-language: Haskell2010

executable palindrone-checker-exe
 hs-source-dirs: app
 main-is: Main.hs
 ghc-options: -threaded -rtsopts -with-rtsopts=-N
 build-depends: base
 , palindrone-checker
 , text
 default-language: Haskell2010

Now you’re all set to build your project!

35.4 Building and running your project!

Finally, you’re ready to put everything together and build your project. The first com-
mand you need to run is setup. In your project directory, run this command:

$ stack setup

This command ensures that stack is using the correct version of GHC. For simple pro-
jects like ours, this isn’t a big deal, but with the ever-changing nature of Haskell, ensur-

Quick check 35.3 If you wanted to keep your Palindrome module named Palindrome and in
the original Palindrome.hs file, what would you have to change about your .cabal file?

QC 35.3 answer Change the exposed-modules value to Palindrome:

library
 hs-source-dirs: src
 exposed-modules: Palindrome

450 Lesson 35 Building projects with stack
ing that your project is built with the version of GHC you used to write it is important.
Specifying the version of GHC you want to use is done indirectly by choosing your
stack resolver version. The stack resolver is set in the stack.yaml file:

resolver: lts-7.9

This book was written using the lts-7.9 version of the stack resolver, which uses GHC
version 8.0.1. By default, stack uses the most recent stable resolver. Most of the time, this
is what you want, but if you have any trouble building a project in this book, setting the
resolver to lts-7.9 will likely fix this. You can find a listing of the current resolver ver-
sions at www.stackage.org, and info about a specific resolver can be found by append-
ing the resolver version to that URL (for example, www.stackage.org/lts-7.9 for the
lts-7.9 resolver).

Next you have to build your project. This can be done with the following:

$ stack build

Don’t be concerned if this command takes a bit of time to run the first time you use stack
or build your project. Future builds will go much faster.

After you run this command, you’re ready to run your project. In the past, you manually
used GHC to compile an executable, and then you could run it like any other program.
In the case of stack, you’ll use the exec command. You need to pass in the name of your
executable, which is defined in your palindrome-checker.cabal file:

executable palindrone-checker-exe

The name of the executable comes right after the executable in the executable section. By
default, it’s <project-name>-exe:

$ stack exec palindrone-checker-exe
Enter a word and I'll let you know if it's a palindrome!
A man, a plan, a canal: Panama!
it is!

Great, your program works!

35.4.1 A quick improvement: getting rid of language pragmas

One annoying thing about your program, and any large program involving Data.Text,
is that you have to remember to add your OverloadedStrings pragma to every file.
Thankfully, stack has a great fix for this. You can add the following line to your
palindrome-checker.cabal file and universally apply the OverloadString language extension.

https://www.stackage.org/
https://www.stackage.org/lts-7.9 for the lts-7.9

451Summary
You add the following line after default-language: Haskell2010 to both your library and exe-
cutable sections of palindrome-checker.cabal:

extensions: OverloadedStrings

With this in place, you no longer have to add your pragma or remember compiler flags.
You can build your project again, and everything should run fine.

Summary

In this lesson, our objective was to teach you how to use the stack tool to build and man-
age Haskell projects. You learned by creating a new stack project and exploring the files
and directories it created for you. Next you organized the code from the preceding les-
son into separate files in the stack project directory. Finally, you built your palindrome
project in a reliable and repeatable way. Let's see if you got this.

Q35.1 Make the following changes to this project:

 Set the author, description, and maintainer email to the correct info.
 Return the definition of Lib.hs to the original one created by stack.
 Add the code for isPalindrome into a Palindrome module in src/Palindrome.hs.
 Make sure that OverloadedStrings is set at the project level.

Q35.2 Refactor the code in unit 4, lesson 21, for comparing the cost of two pizzas into a
stack project. All of the supporting code in the original program file should be in either
Lib.hs or an additional library module.

36LESSON
 PROPERTY TESTING WITH QUICKCHECK

After reading lesson 36, you’ll be able to
 Use stack ghci to interact with a stack project
 Run tests with stack test
 Use QuickCheck for property testing
 Install packages with stack install

The preceding lesson introduced Haskell’s powerful build tool, stack. You saw how to
build a project, but we cheated a bit. You copied the code you wrote when learning
about modules and pasted it in. In this lesson, you’re going to rebuild your palindrome
project, but this time you’ll develop it as though you were building a project from the
beginning. Your focus this time will be on testing your code. So far in this book, you’ve
done only manual testing of your functions. With stack, you can make automated tests
from the beginning. You’ll start this lesson by learning about using GHCi with stack for
manual testing of your modules. Then you’ll learn to use stack test to run simple unit
tests you’ll write. Finally, you’ll learn about property testing and the amazing tool
QuickCheck, which allows you to quickly generate many tests.

One thing you may have noticed in this unit is that everything should seem more famil-
iar to you than nearly every other topic we’ve covered in Haskell. Even QuickCheck,
which is a more powerful approach to testing then you may have seen before, is not so
much mind-bending as interesting and useful. The reason for this familiarity is that
452

453Starting a new project
stack has been largely developed by real-world software engineers interested in ship-
ping and maintaining production code. It’s likely that any standard approach to soft-
ware engineering you prefer (such as test-driven development or behavior-driven
development) can be supported easily with stack. Because of tools such as stack, Haskell
is more able to be used for real software than at any time in its history. This unit is meant
to give you only a quick introduction to software development with Haskell and stack.
For more detailed information, visit haskellstack.org and stackage.org.

36.1 Starting a new project

Let’s start a new palindrome project, pretending for a moment that this is a brand new
problem you’re solving. You’ll stick with the same problem you’ve been working on so
you don’t have to worry too much about what your code does and can focus on how
you think about writing programs when using stack. Because the focus of this unit is on
testing, you’ll call this project palindrome-testing. Here’s your command for creating
this new project:

$ stack new palindrome-testing

Rather than jump straight to your Main module, let’s see how to start building out the
functionality you’ll be using in src/Lib.hs. Stack created a default Main for you, so you’ll
want to clean that out because you’ll be overwriting Lib. You’ll replace the default
someFunc function with a simple "Hello World!".

module Main where

import Lib

main :: IO ()
main = putStrLn "Hello World!"

For most of this project, you’ll be working in your src/Lib.hs, creating the library func-
tions that you’ll eventually use in your Main. You’ll start with implementing the simplest

Listing 36.1 Small refactor to Main.hs file so you can focus on your Lib.hs file

Consider this When developing projects with stack, how can you interact with your
code and make sure it behaves as you’d like?

454 Lesson 36 Property testing with QuickCheck
version of isPalindrome, just as you would if you were starting this project completely
from scratch.

module Lib
 (isPalindrome
) where

isPalindrome :: String -> Bool
isPalindrome text = text == reverse text

Now that you have some code, you can start interacting with it and testing it the stack
way!

36.2 Different types of testing

When we typically think of testing code, we often think about unit testing individual
cases of potential bugs. But testing doesn’t need to mean specifically unit testing. When-
ever you load your code into GHCi to play with a function you wrote, you’re testing
your code; you’re just doing it manually. You’ll start this section by looking at how to
use GHCi with stack to manually test your code. Then you’ll use the stack test com-
mand to automatically run crude unit tests you’ll write. Finally, you’ll see that Haskell
offers a powerful alternative to unit testing called property testing. If unit testing is essen-
tially automating manual tests, then property testing is automating unit tests.

This lesson takes a rather traditional approach to testing. You’ll start with writing code,
manually testing it, and only then move on to writing more formal tests for your code.

Listing 36.2 A minimal definition of isPalindrome

Quick check 36.1 You’re going to be adding only a few functions to the Lib module, and you’ll
end up exporting all of them. Given that’s the case, what’s a more efficient way to define this module?

QC 36.1 answer
module Lib where

isPalindrome :: String -> Bool
isPalindrome text = text == reverse text

455Different types of testing
But there’s nothing inherent to Haskell that requires this approach. If you prefer to take
a test-driven development (TDD) approach, you can certainly revisit this lesson in
reverse, writing all of your tests first. Even if you prefer behavior-driven development,
popularized by Ruby’s RSpec, Haskell has an equivalent testing library, Hspec. (Hspec
isn’t covered here but should be straightforward to implement after you finish this unit.)

36.2.1 Manual testing and calling GHCi from stack

Because you’re using stack, you have to approach using GHCi a bit differently. First set
up and build your project to make sure everything works okay:

$ cd palindrome-testing
$ stack setup
...
$ stack build
...

Because stack is creating a safe, reproducible, isolated environment for your project, you
don’t want to run ghci from the command line to interact with your project. This is
because each project has its own libraries and even possibly its own version of GHC
installed just for it. To safely interact with your project, you need to run stack ghci. For
this section, rather than use the GHCi> prompt as you have throughout the book, you’ll
use the actual prompt you get from stack ghci:

$ stack ghci
*Main Lib>

Because you’ve built your project and are running stack GHCi, you’ll notice that you
have the Main and Lib modules loaded as indicated by the prompt. You can test out your
code from here:

*Main Lib> isPalindrome "racecar"
True
*Main Lib> isPalindrome "cat"
False
*Main Lib> isPalindrome "racecar!"
False

And here you find the first error! The string "racecar!" should be a palindrome, but it’s
not. Now you can go back and add a quick fix for this.

456 Lesson 36 Property testing with QuickCheck
isPalindrome :: String -> Bool
isPalindrome text = cleanText == reverse cleanText
 where cleanText = filter (not . (== '!')) text

You don’t even have to run stack build again to test this; you can quit ghci and restart
with stack ghci. If your changes have been made only to code files and no configuration
changes have been made, you can also type :r into GHCi to reload your code without
exiting:

*Main Lib> :r
*Main Lib> isPalindrome "racecar!"
True

And you see that your code works!

36.2.2 Writing your own unit tests and using stack test

Manually testing as you just did is fine for hashing out new ideas. As your program
grows in complexity, you’ll want to automate this. Thankfully, stack has a built-in com-
mand for running tests. In the test directory, you’ll find another file autogenerated for
you called Spec.hs. Like Main.hs and Lib.hs, stack has autogenerated some code there
for you.

main :: IO ()
main = putStrLn "Test suite not yet implemented"

Haskell has packages for unit testing (such as Hspec, similar to Ruby’s RSpec, and HUnit,
similar to Java’s JUnit), but for now you’ll start with a simple unit-testing framework of

Listing 36.3 Iteratively testing and fixing isPalindrome

Listing 36.4 The contents of Spec.hs generated by stack

Quick check 36.2 Test whether sam I mas is a palindrome

QC 36.2 answer
*Main Lib> isPalindrome "sam I mas"
True

457Different types of testing
your own. All you’ll do is define an assert IO action that takes a Bool (in this case, a test of a
function) and prints either a passing message or a fail message.

assert :: Bool -> String -> String -> IO ()
assert test passStatement failStatement = if test
 then putStrLn passStatement
 else putStrLn failStatement

Next you can fill out your main with a few tests. You’ll also need to import the Lib mod-
ule. Here’s your first round of a test suite.

import Lib

assert :: Bool -> String -> String -> IO ()
assert test passStatement failStatement = if test
 then putStrLn passStatement
 else putStrLn failStatement

main :: IO ()
main = do
 putStrLn "Running tests..."
 assert (isPalindrome "racecar") "passed 'racecar'" "FAIL: 'racecar'"
 assert (isPalindrome "racecar!") "passed 'racecar!'" "FAIL: 'racecar!'"
 assert ((not . isPalindrome) "cat") "passed 'cat'" "FAIL: 'cat'"
 putStrLn "done!"

To run these tests, you use the stack test command:

$ stack test

Running tests...
passed 'racecar'
passed 'racecar!'
passed 'cat'
done!

Great! Next let’s add another test, the word racecar. (with a period at the end).

Listing 36.5 A minimal function for unit testing

Listing 36.6 Your Spec.hs file with a few simple unit tests

458 Lesson 36 Property testing with QuickCheck
 assert (isPalindrome "racecar.") "passed 'racecar.'" "FAIL: 'racecar.'"

If you run your tests again, you see that your isPalindrome function is lacking:

Running tests...
passed 'racecar'
passed 'racecar!'
passed 'cat'
FAIL: 'racecar.'
done!

You can come up with a lame fix for this problem by redefining isPalindrome once again.

isPalindrome :: String -> Bool
isPalindrome text = cleanText == reverse cleanText
 where cleanText = filter (not . (`elem` ['!','.'])) text

You already know that the correct solution to this problem is to use the isPunctuation
function in Data.Char. But this iterative approach to fixing bugs is common, if often less
trivial. If you run your tests again, you find you’ve fixed this bug:

Running tests...
passed 'racecar'
passed 'racecar!'
passed 'cat'
passed 'racecar.'
done!

But this fix feels unsatisfactory because you know there’s more punctuation you’re miss-
ing. Even though you know that isPunctuation is the better solution, in order to test this
solution, you still have to think of a huge range of possible tests: race-car, :racecar:,
racecar?, and so forth. In the next section, you’ll learn about a powerful type of testing
available in Haskell called property testing. This automates much of the hassle of creating
individual unit tests.

Listing 36.7 Adding another test to your main IO action

Listing 36.8 Another minimal fix for the issues in your isPalindrome function

459Property testing QuickCheck

36.3 Property testing QuickCheck

Before diving into property testing, let’s clean up your library a bit. It’s pretty clear that
the part of isPalindrome that gives you cleanText is going to get large fast, so you’ll refactor
this out into a preprocess function.

module Lib
 (isPalindrome
 , preprocess
) where

preprocess :: String -> String
preprocess text = filter (not . (`elem` ['!','.'])) text

isPalindrome :: String -> Bool
isPalindrome text = cleanText == reverse cleanText
 where cleanText = preprocess text

Listing 36.9 Your code is starting to get a bit cleaner

Quick check 36.3 Add a test for :racecar: to your list of tests and rerun the test suite.

QC 36.3 answer
main :: IO ()
main = do
 putStrLn "Running tests..."
 assert (isPalindrome "racecar") "passed 'racecar'" "FAIL: 'racecar'"
 assert (isPalindrome "racecar!") "passed 'racecar!'" "FAIL: 'racecar!'"
 assert ((not . isPalindrome) "cat") "passed 'cat'" "FAIL: 'cat'"
 assert (isPalindrome "racecar.") "passed 'racecar.'" "FAIL: 'racecar.'"
 assert (isPalindrome ":racecar:")
 "passed ':racecar:'" "FAIL: ':racecar:'"
 putStrLn "done!"

 This passes because :racecar: is a palindrome even with punctuation.

460 Lesson 36 Property testing with QuickCheck
Now the function you really care about testing is preprocess. You want to test preprocess,
but you’ve already seen that unit testing is going to quickly get tedious, and you’re still
likely to miss something.

36.3.1 Testing properties

In the abstract, what you want to test about the preprocess function is that it has a certain
property. Mainly, you want to test that the output, given the input, is punctuation
invariant, which is a fancy way of saying you don’t care about whether the input string
has punctuation.

You can write a function to express this property. You’ll need to import Data.Char
(isPunctuation) and put this function in your Spec.hs file.

prop_punctuationInvariant text = preprocess text ==
 preprocess noPuncText
 where noPuncText = filter (not . isPunctuation) text

If you read what this code says, it expresses the core of what you’re trying to achieve:

"Calling preprocess on text should give the same answer as calling
preprocess on the same text with no punctuation"

Having this property written in code is great, but you still don’t have a way to test it.
You need a way get a range of possible values for your text automatically. This is where
the QuickCheck library comes in.

Listing 36.10 Expressing the property you want to test in a function

Quick check 36.4 Write a property prop_reverseInvariant that demonstrates the obvious
fact that the results of isPalindrome should be the same whether or not you reverse the input.

QC 36.4 answer
prop_reverseInvariant text = isPalindrome text ==

➥(isPalindrome (reverse text))

461Property testing QuickCheck
36.3.2 Introducing QuickCheck

Haskell’s QuickCheck library is built around the idea of property testing. The prop_
punctuationInvariant function was your first example of a property. The way QuickCheck
works is that you supply properties that your code is supposed to uphold, and then
QuickCheck automatically generates values and tests them on the functions, making
sure the properties are upheld. Now let’s replace your simple unit tests with some prop-
erty tests.

The first thing you have to do is add QuickCheck to your build-depends in the .cabal file.

test-suite palindrome-testing-test
 type: exitcode-stdio-1.0
 hs-source-dirs: test
 main-is: Spec.hs
 build-depends: base
 , palindrome-testing
 , QuickCheck
 ghc-options: -threaded -rtsopts -with-rtsopts=-N
 default-language: Haskell2010

Now you can include import Test.QuickCheck at the top of Spec.hs file. To use Quick-
Check, you call the quickCheck function on your property inside the main.

main :: IO ()
main = do
 quickCheck prop_punctuationInvariant
 putStrLn "done!"

When you run your test, see that you get a failure (as expected):

Progress: 1/2*** Failed! Falsifiable (after 4 tests and 2 shrinks):

"\187"

In passing in values to your prop_punctuationInvariant, QuickCheck tried \187, which is a Uni-
code punctuation mark. In a sense, QuickCheck has automatically created a bunch of unit
tests for you. To show how well QuickCheck catches bugs, let’s take the lazy approach to
removing punctuation and modify your preprocess function to handle \187 as well.

Listing 36.11 Modified palindrome-testing.cabal file

Listing 36.12 Using the quickCheck function in your Spec.hs file

462 Lesson 36 Property testing with QuickCheck
preprocess :: String -> String
preprocess text = filter (not . (`elem` ['!','.','\187'])) text

If you run your tests again, you find that QuickCheck still isn’t happy:

Failed! Falsifiable (after 11 tests and 2 shrinks):
";"

This time, the semicolon is the problem.

NOTE QuickCheck uses carefully chosen but random values, so you might get different
errors when you run this locally.

This time let’s refactor your code the correct way, using isPunctuation.

import Data.Char(isPunctuation)

preprocess :: String -> String
preprocess text = filter (not . isPunctuation) text

This time you get a much happier response when you run stack test:

OK, passed 100 tests.

As you might guess from this message, QuickCheck strategically tried 100 strings on
your property, and they all passed! Is 100 tests not enough to make you feel secure? Let’s
try 1,000 using quickCheckWith. To do this, you’ll use record syntax to update a standard
argument value passed in to the function (see lesson 12).

main :: IO ()
main = do
 quickCheckWith stdArgs { maxSuccess = 1000} prop_punctuationInvariant
 putStrLn "done!"

If you run your tests, you’ll see that QuickCheck is still happy, and you might feel more
secure that you’ve tried enough inputs:

OK, passed 1000 tests.

Listing 36.13 Refactoring preprocess based on feedback from QuickCheck

Listing 36.14 Fixing the issue with punctuation the correct way

Listing 36.15 You can tell QuickCheck to run as many tests as you’d like

463Property testing QuickCheck
Even though you’ve just written a single property test for isPalindrome, you’ve replaced
the need to write countless unit tests!

36.3.3 Using QuickCheck with more types and installing packages

The tricky part of QuickCheck is generating the input values to test on. All types that
QuickCheck can automatically test must be an instance of the type class Arbitrary. A
detailed explanation of implementing Arbitrary is beyond the scope of this book. The bad
news is that only a few base types are instances of Arbitrary. The good news is that you
can install a package that greatly extends the types covered by QuickCheck.

For example, Data.Text by default isn’t an instance of Arbitrary and won’t work with
QuickCheck. You can remedy this by installing the quickcheck-instances package. You
can do this with the stack install command:

$ stack install quickcheck-instances

This installs a new package in your palindrome-testing project.

Let’s first see how to refactor your Lib.hs file to work with text.

module Lib
 (isPalindrome
 , preprocess
) where

Listing 36.16 Refactoring your Lib module to use Data.Text instead of String

Quick check 36.5 Add a quickCheck test for the prop_reverseInvariant defined in the pre-
ceding exercise

QC 36.5 answer
prop_reverseInvariant text = isPalindrome text == isPalindrome

➥(reverse text)

main :: IO ()
main = do
 quickCheckWith stdArgs { maxSuccess = 1000} prop_punctuationInvariant
 quickCheck prop_reverseInvariant
 putStrLn "done!"

464 Lesson 36 Property testing with QuickCheck
import Data.Text as T
import Data.Char(isPunctuation)

preprocess :: T.Text -> T.Text
preprocess text = T.filter (not . isPunctuation) text

isPalindrome :: T.Text -> Bool
isPalindrome text = cleanText == T.reverse cleanText
 where cleanText = preprocess text

Don’t forget to add text to build-depends in the library section of your project’s .cabal file.
You can make a similar refactor to your Spec.hs file.

import Lib
import Test.QuickCheck
import Test.QuickCheck.Instances
import Data.Char(isPunctuation)
import Data.Text as T

prop_punctuationInvariant text = preprocess text == preprocess noPuncText
 where noPuncText = T.filter (not . isPunctuation) text

main :: IO ()
main = do
 quickCheckWith stdArgs { maxSuccess = 1000} prop_punctuationInvariant
 putStrLn "done!"

For this to run, you need to add both text and quickcheck-instances to your test suite build-
depends in the .cabal file.

Finally, you can test your newly refactored code:

$ stack test
...
 OK, passed 1000 tests.

Here you can also see another benefit of property testing. This refactor was relatively
straightforward. Imagine how much work this would have taken if you had handwrit-
ten a suite of unit tests and needed to change the type on all of them!

Listing 36.17 Refactoring Spec.hs to work with Data.Text

465Summary
Summary

In this lesson, our objective was to teach you how to test your Haskell code. You started
by manually testing your code by using stack ghci. Using GHCi inside stack ensures that
your code will build as expected. After manual testing, you used the stack test com-
mand to build and run a series of simple unit tests. Finally, you generalized your unit
testing by creating property tests with QuickCheck. Let’s see if you got this.

Q36.1 Complete this palindrome-testing project so it’s the same as the code in the pre-
ceding lesson. Then implement property tests to fully test preprocess, ensuring that
whitespace doesn’t matter and that capitalization doesn’t matter.

37LESSON
CAPSTONE: BUILDING A PRIME-NUMBER
LIBRARY

This capstone covers

 Building a new project by using stack
 Writing basic library functions for working with prime numbers
 Using stack test and QuickCheck to check for bugs as you go
 Refactoring code to fix errors
 Adding new functions and tests to your project as you go

So far in this unit, you’ve focused on one problem: creating a program for working with
palindromes. For this capstone, you’ll be reiterating over all the work you’ve done creating
modules and learning about stack with a new problem. This time you’ll be working on cre-
ating a library to work with prime numbers. You’ll focus on three essential problems:

 Listing out primes less than a specified number
 Determining whether a given number is prime
 Breaking a number into its prime factors

The first thing that you’ll need is a way to create a list of prime numbers. Here’s the type
signature for that list:

primes :: [Int]
466

467Starting your new project
You’ll achieve this by using a prime sieve, which works by filtering out the prime num-
bers. In terms of types, this will require you to take an [Int] of possible primes and then
return an [Int] of just primes. The function that will perform this work is sieve:

sieve :: [Int] -> [Int]

With a list of primes in hand, you can easily check whether a number is prime by seeing
if it’s a member of the list. Normally, you’d think of this as simply a function Int -> Bool,
but because there are some numbers that you don’t want to consider valid for your pri-
mality check (such as negative numbers), you’ll return a Maybe Bool:

isPrime :: Int -> Maybe Bool

Finally, you’ll look at factoring numbers into primes. Because of the same issue of hav-
ing isPrime return a Maybe Bool, your primeFactors function will return a Maybe [Int] repre-
senting a possible list of factors:

primeFactors :: Int -> Maybe [Int]

You’ll build this entire project by using stack, making sure to build out useful tests
along the way to help you design your program. Your code for this capstone will remain
relatively straightforward, as our main goal is to reinforce the basics of using stack to
build a project.

37.1 Starting your new project

As always, your first step in creating a new project is to use the stack new command to
create your project. You’ll call this project primes:

$ stack new primes

When stack has finished, you should have a nice, new project directory waiting for you.
Let’s go ahead and change to that directory:

$ cd primes

As a refresher, you can look at the files and directories that stack has created. The direc-
tories are as follows:

 app—Where your Main module will live; by default contains Main.hs
 src—All your library files will be here; by default contains Lib.hs
 test—You’ll keep all your testing code in this directory; by default contains

Spec.hs

468 Lesson 37 Capstone: Building a prime-number library
The files created for you are as follows, and shown in figure 37.1:

 primes.cabal—The file where you’ll do most of your configuration
 LICENSE—Describes the license you’re using for your software
 stack.yaml—Contains some extra configuration data used by stack
 Setup.hs—A file used by the underlying cabal system that you can ignore

With these files in place, you have everything you need to get started writing your code!

37.2 Modifying the default files

Stack generated a bunch of useful starter files for you in app/Main.hs and src/Lib.hs,
including example code that you don’t need for this project. Because you’re mostly con-
cerned about your library functions, you’ll start by changing your app/Main.hs into
something that does essentially nothing other than import the Primes module you’ll be
making.

module Main where

import Primes

main :: IO ()
main = return ()

Next, you want to change your src/Lib.hs. Because you’re creating a library of functions
for working with prime numbers, you want to change the name of this file to Primes.hs

Listing 37.1 Your modified Main module in app/Main.hs

Figure 37.1 The files
created by stack

You’re going to
change your Lib.hs
file to Primes.hs.

You removed the someFunc
stack included and return
the empty tuple.

469Writing your core library functions
and likewise change the module name to Primes. You’ll also start by creating a dummy
list of primes that your other functions will use. You’ll start with a list of all numbers
and refactor this later.

module Primes where

primes :: [Int]
primes = [1 ..]

Remember that you must also tell stack that you changed the name of your library file.
To do this, open the primes.cabal file. Find the library section and change the exposed-
modules value.

library
 hs-source-dirs: src
 exposed-modules: Primes
 build-depends: base >= 4.7 && < 5
 default-language: Haskell2010

As a sanity check, set up and build your project:

$ stack setup
...
$ stack build
...

At this point, you haven’t done anything too complex, so if you do get an error, it’s likely
due to a spelling mistake or forgetting to save a modified default file.

37.3 Writing your core library functions

With the basics all set, you’re ready to start writing code. The first thing you need to do
is to generate a list of prime numbers that your other functions will use. In unit 5, you
saw how to use the Applicative type’s <*> operator to generate a list of primes. But this
technique is inefficient. This time you’ll use a better option called the sieve of Eratosthe-
nes. This algorithm works by iterating through a list of numbers and filtering out all the

Listing 37.2 Changing src/Lib.hs to src/Primes.hs

Listing 37.3 Modifying primes.cabal to reflect the change of your library module

This value was
previously Lib.

470 Lesson 37 Capstone: Building a prime-number library
nonprimes. You start with 2, which is the first prime, and then remove all the other
numbers that are evenly divisible by 2. Then you take the next number in your list,
which is 3. You remove all the remaining numbers that are evenly divisible by 3. Here’s
the step-by-step process for finding the primes less than 10:

1 Start with 2–10: [2,3,4,5,6,7,8,9,10]
2 2 is the next number, so you put it in a primes list and remove all the rest:

[2] and [3,5,7,9]
3 Then you get 3, which you add to your list and remove all numbers divisible by 3:

[2,3] and [5,7]
4 You repeat with 5:

[2,3,5] and [7]
5 And finally, with [7]:

[2,3,5,7] and []

You can implement this function recursively. As with many recursive functions, you
know that you’re finished when you reach the end of the list. Otherwise, you repeat the
process described previously. Here’s the code in Haskell for your sieve (this function
belongs in src/Primes.hs).

sieve :: [Int] -> [Int]
sieve [] = []
sieve (nextPrime:rest) = nextPrime : sieve noFactors
 where noFactors = filter (not . (== 0) . (`mod` nextPrime)) rest

You can use the stack ghci command to interact with your new function:

GHCi> sieve [2 .. 20]
[2,3,5,7,11,13,17,19]
GHCi> sieve [2 .. 200]
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,

➥103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,

➥197,199]

The sieve isn’t an end to itself. You’re going to use this sieve to generate a list of prime
numbers that you’ll use for other functions, such as isPrime.

Listing 37.4 Recursive implementation of the sieve of Eratosthenes

471Writing your core library functions
37.3.1 Defining primes

You can easily replace your dummy primes variable with a list of primes generated by
your sieve function. You could write this value as follows.

primes :: [Int]
primes = sieve [2 ..]

This generates a list of all primes smaller than the maximum Int value. Although this is
philosophically great, you can see just how large the maxBound for Int is in GHCi:

GHCi> maxBound :: Int
9223372036854775807

Even with your much more efficient method of computing primes, you don’t want to
allow users of your library to use this algorithm to test for large prime numbers, because
this would still take a long time. Furthermore, the approximate number of primes less
than your maxBound is around 2 × 1017! If you naively assume that each Int is stored as 4
bytes (which isn’t the case), you’d need over 800 petabytes to store this list! Lazy evalua-
tion can be great in these cases, but you don’t want to allow the user of this library to
accidentally request that much memory.

Instead you’ll start with a reasonable upper bound on the primes you’ll be searching for.
For this simple example, you’ll leave it at primes less than 10,000.

primes :: [Int]
primes = sieve [2 .. 10000]

You can play with your new list of primes in GHCi:

GHCi> length primes
1229
GHCi> take 10 primes
[2,3,5,7,11,13,17,19,23,29]

If you do decide to make your limit of primes higher (say, primes less than 100,000), some-
thing annoying happens. The first time you use the primes list, returning your answer will
take an extremely long time. This is partially due to tricky issues that can come up with
lazy evaluation, and because you’re using a list. In most other programming languages,

Listing 37.5 Creating a list of all possible primes

Listing 37.6 Using sieve to generate a reasonable list of primes

472 Lesson 37 Capstone: Building a prime-number library
you’d want to implement your sieve as an array and update the values in place. In unit 7,
you’ll look at how to achieve this in Haskell.

37.3.2 Defining an isPrime function

Now that you have a list of primes, defining an isPrime function seems trivial: you just
check whether the value is in your list. You’d start with a type signature like this:

isPrime :: Int -> Bool

But things aren’t quite that simple. Here are a couple of edge cases:

 What about negative numbers?
 What about values greater than the size of your sieve?

What should you do for these? One solution would be to simply return False. But this
doesn’t seem correct. The biggest issue is that the user of your function could put in a
legitimate, albeit large, prime number and get the wrong answer. Additionally,
although it’s true that –13 isn’t prime, it’s not not prime the same way that 4 isn’t prime.
The number 4 isn’t prime because it’s a composite number. A composite number is one
that has two or more prime factors—in this case, 2 and 2. The number –13 isn’t prime
because we typically don’t consider negative numbers to be prime.

This is a great case for using Maybe. You’ll return Just True for primes within your range,
Just False for composite numbers within your range, and Nothing for all the exceptions we
mentioned. Here’s your slightly more complicated isPrimes function.

isPrime :: Int -> Maybe Bool
isPrime n | n < 0 = Nothing

| n >= length primes = Nothing
| otherwise = Just (n `elem` primes)

In the past, you’ve thought of Maybe types as being just for null values, but you can see
here how this can be used for other cases of missing values. In this case, your result is
missing because the answer doesn’t make sense for several reasons.

After you add your isPrime function to Primes.hs, you can test it out in GHCi:

GHCi> isPrime 8
Just False
GHCi> isPrime 17
Just True
GHCi> map isPrime [2 .. 20]

Listing 37.7 A more robust version of isPrime

473Writing tests for your code
[Just True,Just True,Just False,Just True,Just False,Just True,Just

➥False,Just False,Just False,Just True,Just False,Just True,Just False,

➥Just False,Just False,Just True,Just False,Just True,Just False]
GHCi> isPrime (-13)
Nothing

Because you’re working with a more complicated definition of isPrime than you
expected, now would also be a good time to start with more rigorous testing.

37.4 Writing tests for your code

The next step is to start testing your code by using more than just GHCi, and that means
using the test suite you saw in the previous lesson, QuickCheck. Let’s start with the
basic setup. First, you need to edit your primes.cabal file so that the test-suite section
includes QuickCheck. You won’t need the quickcheck-instances package this time
because you’ll use Ints, which work with QuickCheck by default.

test-suite primes-test
 type: exitcode-stdio-1.0
 hs-source-dirs: test
 main-is: Spec.hs
 build-depends: base
 , primes
 , QuickCheck
 ghc-options: -threaded -rtsopts -with-rtsopts=-N
 default-language: Haskell2010

The next file you need to modify is test/Spec.hs. You’ll start by adding some imports
that you need.

import Test.QuickCheck
import Primes

main :: IO ()
main = putStrLn "Test suite not yet implemented"

Listing 37.8 Changing test-suite in primes.cabal to include QuickCheck

Listing 37.9 Adding necessary imports to test/Spec.hs

This is the only
addition you need
to make to use
QuickCheck.

474 Lesson 37 Capstone: Building a prime-number library
Even though you haven’t written any tests yet, you should still run stack test to make
sure that everything is in good working order:

$ stack test
Test suite not yet implemented

If you get this message, everything should be working. Time to start with some basic
properties that your isPrime function needs to have.

37.4.1 Defining properties for isPrime

The first property to define is a basic one that makes sure that you’re getting your Maybe
types correct. Remember that numbers larger than your list of primes, and numbers less
than 0, should return a Nothing value; anything else should be a Just value. You’ll import
Data.Maybe so that you can use the isJust function to quickly check whether a Maybe value is
a Just value. Here’s the definition of prop_validPrimesOnly.

import Data.Maybe

prop_validPrimesOnly val = if val < 0 || val >= length primes
then result == Nothing
else isJust result

 where result = isPrime val

All you need to do for this test is refactor your main IO action to run the new test.

main :: IO ()
main = do
 quickCheck prop_validPrimesOnly

Before running your test suite, you’ll add a few more tests.

Testing that primes are, in fact, prime

The most obvious property that needs to be upheld is that primes are prime. You can do
this by generating a list of all the numbers less than your prime, starting at 2. Then
you’ll filter this list to see if any of the values evenly divide your input number. In this
test, you’re concerned only with the case in which the function returns Just True, indicat-
ing a prime. Here’s the definition of prop_primesArePrime.

Listing 37.10 prop_validPrimesOnly tests that you get Nothing and Just values

Listing 37.11 Adding prop_validPrimesOnly to your main

475Writing tests for your code
prop_primesArePrime val = if result == Just True
 then length divisors == 0
 else True
 where result = isPrime val
 divisors = filter ((== 0) . (val `mod`)) [2 .. (val - 1)]

This way to verify primes isn’t as efficient as the way you generate them, but that’s okay
because you’ll run this test only occasionally. This is a great demonstration of how pow-
erful property tests can be. You can use a method that’s less efficient but easier to reason
about to test a wide range of possible inputs.

Testing that nonprimes are composite

The final test to add for your isPrime function is the opposite of the preceding one. You’ll
check that if your function returns Just False, the input number has at least one number
that’s less than it and evenly divides it.

prop_nonPrimesAreComposite val = if result == Just False
 then length divisors > 0
 else True
 where result = isPrime val
 divisors = filter ((== 0) . (val `mod`)) [2 .. (val - 1)]

This is another nice example of a property you want your function to uphold. Rather
than just testing a handful of composite number examples, you’re defining what it
means to be not prime.

Running your tests

All you have to do now is to add a few more calls to quickCheck to your main. This time
you’ll do quickCheckWith and run 1,000 tests rather than just 100. After all, a lot of numbers
are possible inputs for an Int type, so you want to make sure you check a good number
of them.

Listing 37.12 Testing that numbers your function thinks are prime, are prime

Listing 37.13 Testing that the nonprimes are composite numbers

476 Lesson 37 Capstone: Building a prime-number library
main :: IO ()
main = do
 quickCheck prop_validPrimesOnly
 quickCheckWith stdArgs { maxSuccess = 1000} prop_primesArePrime
 quickCheckWith stdArgs { maxSuccess = 1000} prop_nonPrimesAreComposite

Now if you run this test, you see you missed something!

+++ OK, passed 100 tests.
+++ OK, passed 1000 tests.
*** Failed! Falsifiable (after 1 test):
0

You fail because 0 isn’t composite! When you decided which numbers should be Nothing,
you decided on numbers less than zero. But your property test has led you to an inter-
esting problem: 0 (and 1 for that matter) isn’t composite and isn’t prime. So what should
you do? Perhaps the best part of your property test is that you have an answer already
written down. You’ve decided that isPrime should return Just True for primes and Just
False for composite numbers. This decision means that any user of isPrime can safely
assume that Just False means that the number used as an input is composite. Your prop-
erty test caught an error in your thinking and helped you to understand what the right
solution should be.

37.4.2 Fixing the bug

Fixing this bug is straightforward. You have to refactor your isPrime function so it
returns Nothing for all values less than 2, rather than 0.

isPrime :: Int -> Maybe Bool
isPrime n | n < 2 = Nothing
 | n >= length primes = Nothing
 | otherwise = Just (n `elem` primes)

You need to change your prop_validPrimesOnly test to reflect this change as well.

Listing 37.14 Modifying your main to test your additional properties

Listing 37.15 Fixing the bug in isPrime

477Adding code to factor numbers
prop_validPrimesOnly val = if val < 2 || val >= length primes
 then result == Nothing
 else isJust result
 where result = isPrime val

Now if you rerun your tests, you get an OK for everything:

+++ OK, passed 100 tests.
+++ OK, passed 1000 tests.
+++ OK, passed 1000 tests.

With the ability to list primes and detect primes, you can move on to a slightly more
interesting problem, which is dividing a number into its prime factors.

37.5 Adding code to factor numbers

The final function you’ll add is a function to generate all the prime factors of a number.
The prime factors are the prime numbers that when multiplied together give you the
original number. For example:

4 = [2,2]
6 = [2,3]
18 = [2,3,3]

For the same reason you needed to with isPrime, you want to return a Maybe list of prime fac-
tors. This is in case your number is negative, or larger than your largest prime number.

You’ll start by making an unsafe version of this function that returns a regular list,
rather than a Maybe list. The algorithm is simple. You’ll start with a number and a list of
primes. Then you check whether the number is easily divisible by each prime in the list.
You’ll remove the primes from the list if they aren’t evenly divisible. You can define this
function recursively as follows.

unsafePrimeFactors :: Int -> [Int] -> [Int]
unsafePrimeFactors 0 [] = []
unsafePrimeFactors n [] = []

Listing 37.16 Updating your prop_validPrimesOnly after updated isPrime

Listing 37.17 An unsafe version of your prime factorization algorithm

478 Lesson 37 Capstone: Building a prime-number library
unsafePrimeFactors n (next:primes) = if n `mod` next == 0
then next:unsafePrimeFactors

➥(n `div` next) (next:primes)
else unsafePrimeFactors n primes

Now all you have to do is wrap this unsafe function in code that handles the cases in
which you want to return missing values.

primeFactors :: Int -> Maybe [Int]
primeFactors n | n < 2 = Nothing

| n >= length primes = Nothing
| otherwise = Just (unsafePrimeFactors n primesLessThanN)

 where primesLessThanN = filter (<= n) primes

The final step is to add tests for your new function.

The most obvious property of your factors is that the product of these factors should
return the original values. You’ll test this with the prop_factorsMakeOriginal property.

prop_factorsMakeOriginal val = if result == Nothing
then True
else product (fromJust result) == val

 where result = primeFactors val

One more error you could have is somehow having a nonprime value in your results.
The prop_allFactorsPrime property tests that all your prime factors are truly prime.
Because you already tested isPrime, you can feel free to use that in this test.

prop_allFactorsPrime val = if result == Nothing
then True
else all (== Just True) resultsPrime

 where result = primeFactors val
resultsPrime = map isPrime (fromJust result)

Listing 37.18 Wrapping unsafePrimeFactors to make it safe

Listing 37.19 Making sure the product of your factors is the original value

Listing 37.20 Ensuring that all your factors are prime

479Summary
Your last step is to update your main.

main :: IO ()
main = do
 quickCheck prop_validPrimesOnly
 quickCheckWith stdArgs { maxSuccess = 1000} prop_primesArePrime
 quickCheckWith stdArgs { maxSuccess = 1000} prop_nonPrimesAreComposite
 quickCheck prop_factorsSumToOriginal
 quickCheck prop_allFactorsPrime

Running these five property tests, which in this case are the equivalent of 2,300 unit
tests, you can see that your code works as you’d expect:

+++ OK, passed 100 tests.
+++ OK, passed 1000 tests.
+++ OK, passed 1000 tests.
+++ OK, passed 100 tests.
+++ OK, passed 100 tests.

You’ve just completed your second project using stack, and this time you’ve walked
through everything in one go. As you can see, stack is a useful tool that makes writing
code in Haskell much more manageable. In the next unit, you’ll use stack for all the
practical code examples.

Summary

In this capstone, you

 Created a new stack project
 Modified the default source files and configuration
 Wrote your basic library code and manually tested it in GHCi
 Implemented property tests to check for bugs
 Used QuickCheck and stack test to find errors in your functions
 Refactored your code to fix the bugs
 Extended your library functions with new code and tests

Listing 37.21 Your final main in src/Spec.hs to run all your property tests

480 Lesson 37 Capstone: Building a prime-number library
Extending the exercise

The easiest way to extend this exercise is to go ahead and put some code in your
app/Main.hs file to allow a user to test numbers for primality, factor primes, or both. An
interesting challenge would be to handle the case of Nothing results from either function.
Here’s an example of how this might look:

$ stack exe primes-exe
Enter a number to check if it's prime:
4
It is prime!

$ stack exe primes-exe
Enter a number to Factor:
100000000000
Sorry, this number is not a valid candidate for primality testing

A trickier challenge would be to consider more sophisticated prime checking algo-
rithms. For example, there’s a probabilistic primality test called the Miller-Rabin primal-
ity test. By implementing this algorithm, you could allow your isPrime function to work
with much larger inputs. Wikipedia provides a good overview of this algorithm:
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test.

https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test

481

U
N

IT

7

Practical Haskell

Welcome to the last unit of Get Programming with
Haskell! By this point, you’ve come a long way from
learning the basics of referential transparency and
the benefits of functional programming. This last
unit is different from most of the others. The goal of
unit 7 is to ease the transition from learning Haskell
to writing real-world code. I’ve often found that
many students of Haskell (myself included) find the
transition from reading about Haskell to writing
everyday code in Haskell to be more challenging
than expected.

To ease this transition, this unit will ensure that you
have some familiarity with a range of tasks that pro-
vide a solid foundation for building larger and
more complex programs. You’ll start by learning
how Haskell handles errors and will then be intro-
duced to a useful type called Either.

Next, you’ll build three practical projects. In the
first, you’ll make a simple HTTP request in Haskell
by using a RESTful API. Interacting with HTTP is an
increasingly large part of what most programmers
have to deal with every day. Even if you aren’t inter-
ested in web development, it won’t be long until you
find yourself needing to fetch data from the web.
You’ll then use the results from this project to learn
how to parse JSON data in Haskell by using the
Aeson library. JSON is perhaps the most ubiquitous

482 Unit 7 Practical Haskell
format for data today; parsing JSON comes up in many common programming projects.
After that, you’ll learn how to use Haskell with a SQL database by building a command-
line tool for a community tool-sharing library. Your application will cover all of the basic
CRUD database tasks.

In the final lesson of this unit, you’ll say goodbye to Get Programming with Haskell by
learning to do something you don’t normally think of using Haskell for: classic array
algorithms. In this lesson, you’ll use the STUArray type to implement a sorting algorithm
that’s stateful, doesn’t use lazy evaluation, and should perform as well as in most non-
functional languages. If you can implement a proper bubble sort in a purely functional
language, you can use Haskell for anything.

38 LESSON
ERRORS IN HASKELL AND
THE EITHER TYPE

After reading lesson 38, you’ll be able to

 Throw errors by using the error function
 Understand the dangers of throwing errors
 Use Maybe as a method for handling errors
 Handle more sophisticated errors with the Either type

Most of what makes Haskell so powerful is based on the language being safe, predict-
able, and reliable. Although Haskell reduces or eliminates many problems, errors are an
unavoidable part of real-world programming. In this lesson, you’ll learn how to think
about handling errors in Haskell. The traditional approach of throwing an exception is
frowned upon in Haskell, as this makes it easy to have runtime errors the compiler can’t
catch. Although Haskell does allow you to throw errors, there are better ways to solve
many problems that come up in your programs. You’ve already spent a lot of time with
one of these methods: using the Maybe type. The trouble with Maybe is that you don’t have
a lot of options for communicating what went wrong. Haskell provides a more powerful
type, Either, that lets you use any value you’d like to provide information about an error.

In this lesson, you’ll use the error function, Maybe type, and Either type in Haskell to
resolve exceptions in your programs. You’ll start by exploring the head function. Though
483

484 Lesson 38 Errors in Haskell and the Either type
head is one of the first functions you learned, its implementation has a major issue: it’s
easy to use head and create runtime errors that can’t be captured by Haskell’s type sys-
tem. You’ll look at several alternative ways to handle the case where head fails. This
problem can be better solved by using the familiar Maybe type, and you can give more
informative errors by using a new type you’ll learn about, called Either. You’ll conclude
by building a simple command-line tool that checks whether a number is prime. You’ll
use the Either type and your own error data type to represent errors and display them to
the user.

38.1 Head, partial functions, and errors

One of the first functions you were introduced to was head. The head function gives you
the first element in the list, if there is one. The trouble with head is what to do when
there’s no first element in the list (an empty list). See figure 38.1.

Initially, head seems like an incredibly useful function. Many recursive functions you
write in Haskell use lists, and accessing the first item in a list is a common requirement.

Consider this You have a list representing employee ID numbers. Employee IDs can’t
be larger than 10000 or less than 0. You have an idInUse function that checks whether
a specific ID is being used. How can you write a function that lets a programmer using
idInUse distinguish between a user that isn’t in the database and a value that’s outside
the range of valid employee IDs?

head [1, 2, 3]

1

head []

??

This case is easy.

You just take the
first element.

What answer can
you give here?

Figure 38.1 How can you solve the case of calling head on
an empty list?

485Head, partial functions, and errors
But head has one big issue. When you call head on an empty list, you get an error:

GHCi> head [1]
1
GHCi> head []
*** Exception: Prelude.head: empty list

In most programming languages, throwing an exception like this is common practice. In
Haskell, this is a big problem, because throwing an exception makes your code unpre-
dictable. One of the key benefits of using Haskell is that your programs are safer and
more predictable. But nothing about the head function, or its type signature, gives you
any indication that it could suddenly blow up:

head :: [a] -> a

By this point in the book, you’ve seen firsthand that if a Haskell program compiles, it
likely runs as expected. But head violates this rule by making it easy to write code that
compiles but then causes an error at runtime.

For example, suppose you naively implement a recursive myTake function using head
and tail.

myTake :: Int -> [a] -> [a]
myTake 0 _ = []
myTake n xs = head xs : myTake (n-1) (tail xs)

Let’s compile this code, only this time you’ll set a compiler flag to warn of any potential
problems with the code. You can do this by using the -Wall flag. This can be done in
stack by adding -Wall to the ghc-options value in the executable section of the .cabal file.
As a refresher from lesson 35, open the headaches.cabal file in the projects root direc-
tory, find the executable section of the .cabal file, and append -Wall to the list of ghc-
options as shown here:

executable headaches-exe
 hs-source-dirs: app
 main-is: Main.hs
 ghc-options: -threaded -rtsopts -with-rtsopts=-N -Wall
 build-depends: base
 , headaches
 default-language: Haskell2010

Listing 38.1 A function that easily causes an error when used but compiles fine

The -Wall argument
sets all warnings to be
checked when the
program is compiled.

486 Lesson 38 Errors in Haskell and the Either type
After you change your file, you need to restart GHCi (which will automatically rebuild
your project). Now if you build your project, you’ll get no complaints from the compiler.
But it’s trivial to see that this code produces an error:

GHCi> myTake 2 [1,2,3] :: [Int]
[1,2]
GHCi> myTake 4 [1,2,3] :: [Int]
[1,2,3,*** Exception: Prelude.head: empty list

Imagine that this code is running and processing requests from a user. This kind of fail-
ure would be frustrating, especially given that you’re using Haskell.

To understand why head is so dangerous, let’s compare this to the exact same version
using pattern matching.

myTakePM :: Int -> [a] -> [a]
myTakePM 0 _ = []
myTakePM n (x:xs) = x : myTakePM (n-1) xs

This code is identical in behavior to myTake, but when you compile with -Wall, you get a
helpful error:

Pattern match(es) are non-exhaustive
 In an equation for 'myTakePM':

Patterns not matched: p [] where p is not one of {0}

This tells you that your function doesn’t have a pattern for the empty list! Even though
this is identical to the code using head, GHC can warn you about this.

NOTE If you don’t want to miss warnings on large projects, you can compile with -error,
which causes an error anytime a warning is found.

Listing 38.2 An identical function to myTake, which throws a compiler warning

487Head, partial functions, and errors

38.1.1 Head and partial functions

The head function is an example of a partial function. In lesson 2, you learned that every
function must take an argument and return a result. Partial functions don’t violate this
rule, but they have one significant failing. They aren’t defined on all inputs. The head
function is undefined on the empty list.

Nearly all errors in software are the result of partial functions. Your program receives
input you don’t expect, and the program has no way of dealing with it. Throwing an
error is an obvious solution to this problem. Throwing errors in Haskell is simple: you
use the error function. Here’s myHead with an error.

myHead :: [a] -> a
myHead [] = error "empty list"
myHead (x:_) = x

In Haskell, throwing errors is considered bad practice. This is because, as you saw with
myTake, it’s easy to introduce bugs into code that the compiler can’t check. In practice, you
should never use head, and instead use pattern matching. If you replace any instance of using
head and tail in your code with pattern matching, the compiler can warn you of errors.

The real question is, what do you do about partial functions in general? Ideally, you
want a way to transform your partial function into one that works on all values. Another
common partial function is (/), which is undefined for 0. But Haskell avoids throwing
an error in this case by providing a different solution:

GHCi> 2 / 0
Infinity

Listing 38.3 myHead, an example of throwing an error

Quick check 38.1 Which of the following is the missing pattern that would fix myTakePM?

myTakePM _0 [] = []

myTakePM _ [] = []

myTakePM 0 (x:xs) = []

QC 38.1 answer You need to add the following pattern:

myTakePM _ [] = []

Throws an error whenever
myHead matches an empty list

488 Lesson 38 Errors in Haskell and the Either type
This is a nice solution to the problem of dividing by zero, but solutions like this exist for
only a few specific cases. What you want is a way to use types to capture when errors
might happen. Your compiler can help in writing more error-resistant code.

38.2 Handling partial functions with Maybe

It turns out you’ve already seen one of the most useful ways to handle partial functions:
Maybe. In many of the examples of Maybe that you’ve used, there would be a Null value in
other languages. But Maybe is a reasonable way to transform any partial function into a
complete function. Here’s your code for maybeHead.

maybeHead :: [a] -> Maybe a
maybeHead [] = Nothing
maybeHead (x:_) = Just x

With maybeHead, you can safely take the head of a list:

GHCi> maybeHead [1]
Just 1
GHCi> maybeHead []
Nothing

In unit 5, you learned that Maybe is an instance of Monad (and therefore Functor and Applicative),
which allows you to perform computation on values in a Maybe context. Recall that the

Listing 38.4 Using Maybe to make head a complete function

Quick check 38.2 The following are all partial functions included in Prelude. For what inputs
do they fail?

 maximum
 succ

 sum

QC 38.2 answer
 maximum—Fails on the empty list

 succ—Fails on maxBound for the type

 sum—Fails on infinite lists

489Handling partial functions with Maybe
Functor type class allows you to use <$> to apply a function to a Maybe value. Here’s an
example of using the maybeHead function, as well as using <$> to operate on the values it
produces:

GHCi> (+2) <$> maybeHead [1]
Just 3
GHCi> (+2) <$> maybeHead []
Nothing

The Applicative type class provides the <*> operator, so you can chain together functions
in a context, most commonly used for multi-argument functions. Here’s how to use <$>
with <*> to cons a result from maybeHead with a Just []:

GHCi> (:) <$> maybeHead [1,2,3] <*> Just []
Just [1]
GHCi> (:) <$> maybeHead [] <*> Just []
Nothing

You can combine maybeHead with <$> and <*> to write a new, safer version of myTake.

myTakeSafer :: Int -> Maybe [a] -> Maybe [a]
myTakeSafer 0 _ = Just []
myTakeSafer n (Just xs) = (:) <$> maybeHead xs
 <*> myTakeSafer (n-1) (Just (tail xs))

In GHCi, you can see that the myTakeSafer function works just fine with error-causing
inputs:

GHCi> myTakeSafer 3 (Just [1,2,3])
Just [1,2,3]
GHCi> myTakeSafer 6 (Just [1,2,3])
Nothing

As you can see, myTakeSafer works as you’d expect (though differently than take, which
would return the full list). Note that the reason you named it safer, not safe, is that,
unfortunately, tail is also a partial function.

Listing 38.5 A safer version of myTake using maybeHead instead of head

490 Lesson 38 Errors in Haskell and the Either type
38.3 Introducing the Either type

We’ve spent a lot of time in this book talking about the power of Maybe, but it does have
one major limitation. As you write more sophisticated programs, the Nothing result
becomes harder to interpret. Recall that in our unit 6 capstone you had an isPrime func-
tion. Here’s a simplified version of isPrime:

primes :: [Int]
primes = [2,3,5,7]

maxN :: Int
maxN = 10

isPrime :: Int -> Maybe Bool
isPrime n
 | n < 2 = Nothing
 | n > maxN = Nothing
 | otherwise = Just (n `elem` primes)

You made this function of type Int -> Maybe Bool because you wanted to handle your
edge cases. The key issue is that you want a False value for isPrime to mean that a number
is composite. But there are two problems. Numbers such as 0 and 1 are neither compos-
ite nor prime. Additionally, the isPrime function limits how large a number can be, and
you don’t want to return False just because a value is too expensive to compute.

Now imagine you’re using isPrime in your own software. When you call isPrime 9997, you
get Nothing as a result. What in the world does this mean? You’d have to look up the doc-
umentation (hoping there is any) to find out. The nice thing about errors is that you get
an error message. Although Maybe does give you lots of safety, unless Nothing has an obvi-
ous interpretation, as in the case of Null values, it’s not useful. Fortunately, Haskell has
another type, similar to Maybe, that allows you to create much more expressive errors
while remaining safe.

The list of primes you’re
using to determine whether
a number is prime

The largest value you’ll
check for primality

If the number is less
than 2, you don’t
consider checking it.

If the number is greater
than your max, you can’t
know whether it’s prime.

If the number is a valid
candidate, check
whether it’s prime.

491Introducing the Either type

The type you’ll be looking at is called Either. Though only a bit more complicated than
Maybe, its definition can be confusing. Here’s the definition of Either:

data Either a b = Left a | Right b

Either has two confusingly named data constructors: Left and Right. For handling errors,
you can consider the Left constructor as the case of having an error, and the Right con-
structor for when things go as planned. A more user-friendly, but less general way to
define Either is as follows:

data Either a b = Fail a | Correct b

In practice, the Right constructor works exactly like Just for Maybe. The key difference
between the two is that Left allows you to have more information than Nothing. Also
notice that Either takes two type parameters. This allows you to have a type for sending
error messages and a type for your actual data. To demonstrate, here’s an example of
making a safer head function with Either.

eitherHead :: [a] -> Either String a
eitherHead [] = Left "There is no head because the list is empty"
eitherHead (x:xs) = Right x

Notice that the Left constructor takes a String, whereas the Right constructor returns the
value from the first item in your list. Here are some example lists you can test on:

intExample :: [Int]
intExample = [1,2,3]

intExampleEmpty :: [Int]
intExampleEmpty = []

Listing 38.6 A safer version of head written using Either

Quick check 38.3 Suppose you have this list:

oddList :: [Maybe Int]
oddList = [Nothing]

QC 38.3 answer
Maybe Int

492 Lesson 38 Errors in Haskell and the Either type
charExample :: [Char]
charExample = "cat"

charExampleEmpty :: [Char]
charExampleEmpty = ""

In GHCi, you can see how Either works, as well as the types you get back:

GHCi> eitherHead intExample
Right 1
GHCi> eitherHead intExampleEmpty
Left "There is no head because the list is empty"
GHCi> eitherHead charExample
Right 'c'
GHCi> eitherHead charExampleEmpty
Left "There is no head because the list is empty"

The Either type is also a member of Monad (and thus Functor and Applicative as well). Here’s
a simple example of using <$> to increment the head of your intExample:

GHCi> (+ 1) <$> (eitherHead intExample)
Right 2
GHCi> (+ 1) <$> (eitherHead intExampleEmpty)
Left "There is no head because the list is empty"

The Either type combines the safety of Maybe with the clarity that error messages provide.

38.3.1 Building a prime check with Either

To demonstrate working with Either, let’s see how to build a basic command-line tool to
check whether a number is prime. You’ll keep your isPrime function minimal, focusing
on using the Either type. You’ll begin by using a String for your error message. Then

Quick check 38.4 Use <$> and <*> to add the first and second numbers in intExample by
using eitherHead.

QC 38.4 answer
(+) <$> eitherHead intExample <*> eitherHead (tail intExample)

493Introducing the Either type
you’ll take advantage of the fact that Either lets you use any type you want to, allowing
you to create your own error types.

The nice thing about Either is you don’t have to stick to a single error message. You can
have as many as you’d like. Your improved isPrime function will let you know whether a
value isn’t a valid candidate for primality checking, or whether the number is too large.

isPrime :: Int -> Either String Bool
isPrime n
 | n < 2 = Left "Numbers less than 2 are not candidates for primes"
 | n > maxN = Left "Value exceeds limits of prime checker"
 | otherwise = Right (n `elem` primes)

Here are a few tests of this function in GHCi:

GHCi> isPrime 5
Right True
GHCi> isPrime 6
Right False
GHCi> isPrime 100
Left "Value exceeds limits of prime checker"
GHCi> isPrime (-29)
Left "Numbers less than 2 are not candidates for primes"

So far, you haven’t taken advantage of Either being able to take two types; you’ve exclu-
sively used String for the Left constructor. In most programming languages, you can rep-
resent errors by using a class. This makes it easier to model specific types of errors. Either
allows you to do this as well. You’ll start by making your errors into a type of their own.

data PrimeError = TooLarge | InvalidValue

Now you can make this an instance of Show so you can easily print out these errors.

instance Show PrimeError where
 show TooLarge = "Value exceed max bound"
 show InvalidValue = "Value is not a valid candidate for prime checking"

Listing 38.7 isPrime refactors to use multiple messages when a number is invalid

Listing 38.8 The PrimeError types for representing your errors as types

Listing 38.9 Making PrimeError an instance of Show

494 Lesson 38 Errors in Haskell and the Either type
With your new PrimeError type, you can refactor your isPrime function to show off these
errors.

isPrime :: Int -> Either PrimeError Bool
isPrime n
 | n < 2 = Left InvalidValue
 | n > maxN = Left TooLarge
 | otherwise = Right (n `elem` primes)

This makes your code much more readable. Additionally, you now have an easily reus-
able data type that will work with your errors. Here are some examples of your new
function in GHCi:

GHCi> isPrime 99
Left Value exceed max bound
GHCi> isPrime 0:
Left Value is not a valid candidate for prime checking

Next you’ll create a displayResult function that will convert your Either response into a
String.

displayResult :: Either PrimeError Bool -> String
displayResult (Right True) = "It's prime"
displayResult (Right False) = "It's composite"
displayResult (Left primeError) = show primeError

Finally, you can put together a simple main IO action that reads as follows.

main :: IO ()
main = do
 print "Enter a number to test for primality:"
 n <- read <$> getLine
 let result = isPrime n
 print (displayResult result)

Listing 38.10 Refactoring isPrime to use PrimeError

Listing 38.11 Translating your isPrime result to be human-readable

Listing 38.12 The main to check for primes from user input

495Summary
Now you can build and run your program:

$ stack build
$ stack exec primechecker-exe
"Enter a number to test for primality:"
6
"It's composite"

$ stack exec headaches-exe
"Enter a number to test for primality:"
5
"It's prime"

$ stack exec headaches-exe
"Enter a number to test for primality:"
213
"Value exceed max bound"

$ stack exec headaches-exe
"Enter a number to test for primality:"
0
"Value is not a valid candidate for prime checking"

With your PrimeError type, you were able to replicate more sophisticated ways of model-
ing errors in OOP languages. The great thing about Either is that because the Left con-
structor can be any type, there’s no limit to how expressive you can be. If you wanted to,
you could return a function!

Summary

In this lesson, our objective was to teach you how to safely handle errors in Haskell. You
started by looking at the way head uses error to signal when you have an empty list with
no head. Neither your type checker nor GHC’s warnings let you know this is a problem.
This is ultimately caused by head being a partial function, a function that doesn’t return a
result for all possible inputs. This can be solved by using a Maybe type. Although Maybe
types do make your code safer, they can make errors hard to understand. Finally, you
saw that the Either type provides the best of both worlds, allowing you to safely handle
errors as well as providing detailed information about them.

496 Lesson 38 Errors in Haskell and the Either type
Q38.1 Make a function addStrInts that takes two Ints represented as Strings and adds
them. The function would return an Either String Int. The Right constructor should return
the result, provided that the two arguments can be parsed into Ints (use Data.Char isDigit
to check). Return a different Left result for the three possible cases:

 First value can’t be parsed.
 Second value can’t be parsed.
 Neither value can be parsed.

Q38.2 The following are all partial functions. Use the type specified to implement a
safer version of the function:

 succ—Maybe

 tail—[a] (Keep the type the same.)
 last—Either (last fails on empty lists and infinite lists; use an upper bound for the

infinite case.)

39 LESSON
MAKING HTTP REQUESTS IN HASKELL

After reading lesson 39, you’ll be able to

 Fetch web pages by using Haskell
 Generate more complex requests by setting headers and using HTTPS
 Understand how to approach learning new Haskell types and libraries

In this lesson, you’ll learn how to make an HTTP request in Haskell and save the results
to a file. The data you’ll fetch is from the National Oceanic and Atmospheric Adminis-
tration (NOAA) Climate Data API. This API requires you to send a custom HTTP
request that uses SSL and has a custom header for authentication. You’ll use the
Network.HTTP.Simple library, which will allow you to make simple requests as well as create
custom HTTP requests. You’ll start by learning how to use Network.HTTP.Simple to fetch a
web page from a URL. Then you’ll create a specific request for the NOAA API. In the
end, you’ll have fetched JSON data from this API to be used in the next lesson.

Consider this How would you go about writing a Haskell program that when ran
would fetch the homepage of reddit.com and write it to a local .html file?
497

498 Lesson 39 Making HTTP requests in Haskell
39.1 Getting your project set up

In this lesson, you’ll look at one of the most common tasks in contemporary program-
ming: making an HTTP request. The aim of this project is to create a script that makes a
request to the NOAA Climate Data API. The NOAA Climate Data API contains access
to a wide range of climate-related data. On the API’s website (https://www.ncdc.noaa
.gov/cdo-web/webservices/v2#gettingStarted), you can find a list of endpoints that the
API offers. Here are a few of them:

 /datasets—Tells you which data sets are available
 /locations—Gives the locations available to look up
 /stations—Provides information on available weather observation stations
 /data—Provides access to the raw data

Building a full wrapper for the NOAA API would be a project beyond the scope of a sin-
gle lesson. You’ll focus on the first step in this process: getting results from the /datasets
endpoint. The /datasets endpoint provides essential metadata you need to pass to the
/data endpoint to request your data. Here’s an example entry:

"uid":"gov.noaa.ncdc:C00822",
"mindate":"2010-01-01",
"maxdate":"2010-12-01",
"name":"Normals Monthly",
"datacoverage":1,
"id":"NORMAL_MLY"

Even though fetching this data is a small part of the overall API, after you understand
the basics of working with HTTP in Haskell, extending the project is straightforward.
After you’ve made the request, you’ll write the body of the request to a JSON file.
Although this is a fairly straightforward task, you’ll learn much about working with
real-world Haskell along the way.

You’ll create a new stack project called http-lesson. As a quick refresher, the following
steps will create and build your project:

$ stack update
$ stack new http-lesson
$ cd http-lesson
$ stack setup
$ stack build

https://www.ncdc.noaa.gov/cdo-web/webservices/v2#gettingStarted
https://www.ncdc.noaa.gov/cdo-web/webservices/v2#gettingStarted

499Getting your project set up
For this simple project, you’ll keep everything in the Main module located in
app/Main.hs.

NOTE This project uses the NOAA Climate Data API to fetch JSON and save it to a file. In
the next lesson, you’ll parse that JSON. This API is free to use but does require the user to
request an API token. To get your token, go to www.ncdc.noaa.gov/cdo-web/token and fill in
the form with your email address. Your token should be sent quickly. You’ll be making a
request to see which data sets the API allows access to.

After you have your API token, you can start coding up your project.

39.1.1 Your starter code

You’ll start with adding imports to your Main module. Notice that you’ll import both
Data.ByteString and Data.ByteString.Lazy. Importing multiple text or ByteString types is com-
mon in real-world Haskell. In this case, you’re doing so because different parts of the
library you’ll be using require using either strict or lazy ByteStrings. You’ll import the
Char8 module for both of these libraries, as it will make using them much easier, as we
discussed in lesson 25. Finally, you’ll add the Network.HTTP.Simple library, which you’ll use
for your HTTP requests.

module Main where

import qualified Data.ByteString as B
import qualified Data.ByteString.Char8 as BC
import qualified Data.ByteString.Lazy as L
import qualified Data.ByteString.Lazy.Char8 as LC
import Network.HTTP.Simple

Before you continue, you also need to update your http-lesson.cabal file to support
these imports. You’ll add bytestring and http-conduit to your build-depends section. Because
you’re working with ByteStrings and Char8, it’s also helpful to include the OverloadedStrings
extension.

executable http-lesson-exe
 hs-source-dirs: app
 main-is: Main.hs
 ghc-options: -threaded -rtsopts -with-rtsopts=-N

Listing 39.1 The imports for your app/Main.hs file

Listing 39.2 Modifying your project’s .cabal file

500 Lesson 39 Making HTTP requests in Haskell

build-depends: base
 , http-lesson
 , bytestring
 , http-conduit
 default-language: Haskell2010
 extensions: OverloadedStrings

Note that stack will handle downloading all of your dependencies for http-conduit, and
you don’t need to explicitly use the stack install command.

Next you can start fleshing out your Main with variables for the data you need. You’re
only going to be concerned about a single API request, which will allow you to list all
the data sets in the NOAA Climate Data API.

myToken :: BC.ByteString
myToken = "<API TOKEN HERE>"

noaaHost :: BC.ByteString
noaaHost = "www.ncdc.noaa.gov"

apiPath :: BC.ByteString
apiPath = "/cdo-web/api/v2/datasets"

You also need placeholder code in your main IO action to ensure that your code will compile.

main :: IO ()
main = print "hi"

Listing 39.3 Variables that will be helpful in making your HTTP requests

Listing 39.4 Placeholder code for your main action

This is necessary for the various
Data.ByteString imports.

http-conduit is the
library that includes
Network.HTTP.Simple.

OverloadedStrings makes
working with ByteStrings

much easier.

Quick check 39.1 If you didn’t include your OverloadedStrings extension in the .cabal file,
how could you modify Main.hs to support OverloadedStrings?

QC 39.1 answer You could use the LANGUAGE pragma:

{-# LANGUAGE OverloadedStrings -#}

501Using the HTTP.Simple module
39.2 Using the HTTP.Simple module

Now that you have the basics in place, you can start playing around with HTTP
requests. You’ll use the module Network.HTTP.Simple, which is part of the http-conduit pack-
age. As the name indicates, HTTP.Simple makes it easy for you to make simple HTTP
requests. You’ll use the httpLBS (the LBS stands for lazy ByteString) function to submit
your request. Normally, you’d have to create an instance of the Request data type to pass
into this function. But httpLBS is able to cleverly take advantage of OverloadedStrings to
make sure the correct type is passed in. Here’s a quick sample of fetching the data from
the popular tech news site, Hacker News (https://news.ycombinator.com):

GHCi> import Network.HTTP.Simple
GHCi> response = httpLBS "http://news.ycombinator.com"

If you type this into GHCi, you’ll notice that the response variable is set instantly, even
though you’re making an HTTP request. Typically, an HTTP request results in a notice-
able delay in time due to the nature of making the request itself. Your variable is
assigned instantly because of lazy evaluation. Even though you’ve defined a request,
you still haven’t used it. If you enter response again, you’ll notice a slight delay:

GHCi> response
<large output>

You want to be able to access different pieces of your response. The first thing to check is
the status code of the response. This is the HTTP code that tells whether your request
was successful.

Network.HTTP.Simple contains the function getResponseStatusCode that gives you the status of
your response. If you run this in GHCi, you immediately come across a problem:

GHCi> getResponseStatusCode response

<interactive>:6:23: error:
 No instance for (Control.Monad.IO.Class.MonadIO Response)
 arising from a use of 'response'

Common HTTP codes
 In case you’re unfamiliar, here are some common HTTP status codes:

 200 OK—The request was successful.
 301 Moved Permanently—The resource being requested has moved.
 404 Not Found—The resource is missing.

502 Lesson 39 Making HTTP requests in Haskell
What happened here? The issue is that getResponseStatusCode is expecting a plain response
type, as you can see from its type signature:

getResponseStatusCode :: Response a -> Int

But to make your HTTP request, you had to use IO, which means that your response
variable is an IO (Response a) type.

You can solve this problem in two ways. The first way is to use your Functor <$> operator:

GHCi> getResponseStatusCode <$> response
200

Remember that <$> allows you to take a pure function and put it in a context. If you look
at the type of your result, you’ll see it’s also in a context:

GHCi> :t getResponseStatusCode <$> response
getResponseStatusCode <$> response
:: Control.Monad.IO.Class.MonadIO f => f Int

An alternative solution is to assign response by using <- rather than =. Just as when you’re
using do-notation, this allows you to treat a value in a context as though it were a pure
value:

GHCi> response <- httpLBS "http://news.ycombinator.com"
GHCi> getResponseStatusCode response
200

Now that you understand the basics of an HTTP request, you’ll move on to make a
more sophisticated request.

A popular alternative to HTTP.Simple
Although Network.HTTP.Simple is fairly straightforward, it’s relatively bare bones. Many
other Haskell packages are available for making HTTP requests. One of the more popular
is the wreq package (https://hackage.haskell.org/package/wreq). Although wreq is a nice
library, it would require you to learn another abstract Haskell topic: Lens. It’s worth point-
ing out that it’s common for Haskell packages to use new and interesting abstractions. If
you loved unit 5 on monads, you may find this one of the more exciting parts of writing
Haskell. But the love of abstraction can also be a frustration for beginners who may not
want to learn yet another new idea when they just want to fetch data from an API.

https://hackage.haskell.org/package/wreq

503Making an HTTP request

39.3 Making an HTTP request

Although your simple use of httpLBS is convenient, you need to change a few things.
Your request to the API requires you to use HTTPS rather than plain HTTP, as well as to
pass your token in the header. You can’t simply put a URL into your request; you also
need to do the following:

 Add your token to the header.
 Specify the host and path for your request.
 Make sure you’re using the GET method for your request.
 Make sure your request works for an SSL connection.

You can do this by using a series of functions that set these properties for your request.
The code to build your request follows. Even though making this request is straightfor-
ward, you’re using an operator that you haven’t used in this book so far: the $ operator.
The $ operator automatically wraps parentheses around your code (for more details, see
the following sidebar).

buildRequest :: BC.ByteString -> BC.ByteString -> BC.ByteString
 -> BC.ByteString -> Request

Listing 39.5 The code for building an HTTPS request for the API

Quick check 39.2 There’s also a getResponseHeader function. Use both <$> and <- to get the
header of the response.

QC 39.2 answer
Method 1:

GHCi> import Network.HTTP.Simple
GHCi> response = httpLBS "http://news.ycombinator.com"
GHCi> getResponseHeader <$> response

Method 2:

GHCi> response <- httpLBS "http://news.ycombinator.com"
GHCi> getResponseHeader response

504 Lesson 39 Making HTTP requests in Haskell
buildRequest token host method path = setRequestMethod method
 $ setRequestHost host
 $ setRequestHeader "token" [token]
 $ setRequestPath path
 $ setRequestSecure True
 $ setRequestPort 443
 $ defaultRequest

request :: Request
request = buildRequest myToken noaaHost "GET" apiPath

The $ operator
The $ operator is most commonly used to automatically create parentheses. You can
visualize the opening parentheses as starting with the $ and ending at the end of the func-
tion definition (covering multiple lines if necessary). For example, suppose you want to dou-
ble 2 + 2. You need to add parentheses to make sure the operation works correctly:

GHCi> (*2) 2 + 2
6
GHCi> (*2) (2 + 2)
8

You could alternatively write this:

GHCi> (*2) $ 2 + 2
8

Here’s another example:

GHCi> head (map (++"!") ["dog","cat"])
"dog!"
GHCi> head $ map (++"!") ["dog","cat"]
"dog!"

For beginners, the $ often makes Haskell code more difficult to parse. In practice, the $
operator is used frequently, and you’ll likely find you prefer using it over many parenthe-
ses. There’s nothing magical about $; if you look at its type signature, you can see how it
works:

($) :: (a -> b) -> a -> b
The arguments are just a function and a value. The trick is that $ is a binary operator, so
it has lower precedence than the other functions you’re using. Therefore, the argument
for the function will be evaluated as though it were in parentheses.

505Putting it all together
The interesting thing about this code is the way you’re handling changing the state of
your request. You have a bunch of setValue functions, but how are they setting a value?
You’ll get a better sense of what’s going on if you explore the types of these set methods:

GHCi> :t setRequestMethod
setRequestMethod :: BC.ByteString -> Request -> Request

GHCi> :t setRequestHeader
setRequestHeader:: HeaderName -> [BC.ByteString] -> Request -> Request

Here you see one functional solution to having state. Each setValue function takes the
argument for the parameter it’s going to set and existing request data. You start with an
initial request, defaultRequest, which is provided by the Network.HTTP.Simple module. You
then create a new copy of the request data with the modified parameter, finally return-
ing the modified request as a result. You saw this type of solution in unit 1, only much
more verbose. You could rewrite your function, explicitly controlling your state with a
let clause. Notice that these function calls are in reverse order.

buildRequest token host method path =
 let state1 = setRequestPort 443 defaultRequest
 in let state2 = setRequestSecure True state1
 in let state3 = setRequestPath path state2
 in let state4 = setRequestHeader "token" [token] state3
 in setRequestHost host state4

Using the $ operator to make each setValue function serve as the argument to the next
function makes the code much more compact. Haskellers strongly prefer terse code
whenever possible, though this can sometimes make reading the code more difficult
when starting out.

39.4 Putting it all together

Now you have to put together your main IO action. You can pass your request into httpLBS.
Then you’ll get the status. After you have the status, you’ll check whether it’s 200. If it’s
200, you’ll write the data to a file by using the getResponseBody function. Otherwise, you’ll
alert the user that there was an error in your request. When you write your file, it’s
important to notice that you’re using the raw lazy ByteStrings with L.writeFile rather than

Listing 39.6 buildRequest rewritten with the state saved as variables

506 Lesson 39 Making HTTP requests in Haskell
the Char8 version LC.writeFile. In lesson 25, we mentioned that when you use binary data
that may include Unicode, you should never write it using the Char8 interface, as it can
corrupt your data.

main :: IO ()
main = do
 response <- httpLBS request
 let status = getResponseStatusCode response
 if status == 200
 then do

print "saving request to file"
let jsonBody = getResponseBody response
L.writeFile "data.json" jsonBody

 else print "request failed with error"

Now you have a basic application that can fetch data from the REST API and write it to
a file. This is just a taste of the type of HTTP request you can make using Haskell. The
full documentation for this library can be found at https://haskell-lang.org/library/
http-client.

Summary

In this lesson, our objective was to give you a quick overview of how to make an HTTP
request in Haskell. In addition to learning how to make an HTTP request, you learned
how to go about learning new libraries in Haskell. Let’s see if you got this.

Q39.1 Build a function buildRequestNOSSL that works exactly like buildRequest, only it
doesn’t support SSL.

Q39.2 Improve the output of your code when something goes wrong. getResponseStatus
will give you a data type including both the statusCode and the statusMessage. Fix main so
that if you do get a non-200 statusCode, you print out the appropriate error.

Listing 39.7 Your final main for writing your request to a JSON file

https://haskell-lang.org/library/http-client
https://haskell-lang.org/library/http-client

40LESSON
WORKING WITH JSON DATA
BY USING AESON

After reading lesson 40, you’ll be able to

 Transform Haskell types into JSON
 Read JSON into a Haskell type
 Use the DeriveGeneric extension to implement needed classes
 Write you own instances of ToJSON and FromJSON

In this lesson, you’ll work with JavaScript Object Notation (JSON) data, one of the most
popular ways to store and transmit data. The JSON format originates in simple Java-
Script objects and is heavily used in transmitting data through HTTP APIs. Because the
format is so simple, it has seen widespread adoption outside the web, frequently being
used as a method of storing data and for tasks such as creating configuration files. Fig-
ure 40.1 shows an example JSON object used with the Google Analytics API.

In the previous lesson, you ended up downloading a JSON file containing information
on data sets available through the NOAA Climate Data API. In this lesson, you’re going
to build a simple command-line application that opens that JSON file and prints out the
data sources in the file. Before you get there, you’ll learn how to work with JSON. You’ll
create types that you can turn into JSON as well as create types representing JSON that
you’ll read in.
507

508 Lesson 40 Working with JSON data by using Aeson
{
 "reportRequests":[
 {
 "viewId":"XXXX",
 "dateRanges":[

{
"startDate":"2015-06-15",
"endDate":"2015-06-30"

}],
 "metrics":[

{
"expression":"ga:sessions"

}],
 "dimensions": [

{
"name":"ga:browser"

}]
 }]
}

JSON objects are simple
collections of fields and values.

Here you have a list
of other JSON objects.

JSON objects
are enclosed
in brackets.

JSON has a limited
number of types, often
resorting to a String
representation.

Figure 40.1 An example of JSON data from the Google Analytics API

Consider this You have a data type representing a user:

data User = User
 { userId :: Int
 , userName :: T.Text
 , email :: T.Text
 }

The process of transforming objects into and out of JSON is known as serialization and
deserialization, respectively. You may have come across this in other languages. If you
have a data type representing a user, how did you serialize and deserialize to and from
this type?

509Getting set up
40.1 Getting set up

The key challenge of working with JSON in Haskell is that JSON supports only a few
simple types: objects, strings, numbers (technically just floats), Booleans, and lists. In
many programming languages, JSON is supported by using a dictionary-like data struc-
ture. You’ll use the Aeson library, which provides a much more appropriate solution for
Haskell. Aeson allows you to translate back and forth between Haskell’s powerful data
types and JSON.

Aeson relies on two key functions for translating back and forth between Haskell data
types and JSON: encode and decode. To use these two functions, you need to make your
data an instance of two type classes: ToJSON (encode) and FromJSON (decode). We’ll demon-
strate two ways to do this. The first is automatically deriving the type classes with the
help of a language extension. The other is to implement these classes yourself.

After you’ve learned how to use Aeson, you can create a data type representing the
JSON data you downloaded from NOAA. The JSON response from the NOAA Climate
Data API involves nested objects, so you’ll implement a nontrivial data type to interact
with this data. Finally, you’ll put everything together that will allow you to list the con-
tents of your file.

40.1.1 Setting up stack

You’ll use a stack project called json-lesson for this lesson. As you did last time, for con-
venience, you’ll keep all of your code in the Main module. The first thing you need to do
is set up your Main.hs file. You’ll start by importing the basics. You’ll use the popular
Aeson library for working with JSON (Aeson was the father of the ancient Greek mythi-
cal hero Jason). In this lesson, all the textual data you’re working with will be in the
form of Data.Text, because this is the preferred method in Haskell for representing text.
You also need to import lazy ByteStrings and the Char8 helper for these. Your JSON will be
represented as ByteStrings by default until you transform it into more meaningful types.
Here’s your starter Main.hs file, which includes all the imports you need for this lesson.

module Main where
import Data.Aeson
import Data.Text as T
import Data.ByteString.Lazy as B

Listing 40.1 Your Main.hs file

510 Lesson 40 Working with JSON data by using Aeson
import Data.ByteString.Lazy.Char8 as BC
import GHC.Generics

main :: IO ()
main = print "hi"

You also have to add these libraries to your json-lesson.cabal file. You want to make sure
you’re using the OverloadedStrings extension. You’ll also use a new extension for this lesson.

 build-depends: base
, json-lesson
, aeson
, bytestring
, text

 default-language: Haskell2010
 extensions: OverloadedStrings

, DeriveGeneric

Now you can start exploring how you’re going to model JSON in Haskell.

40.2 Using the Aeson library

To work with JSON, you’ll use the most popular Haskell library for JSON: Aeson. The
main challenge you face when working with JSON and Haskell is that JSON has little
regard for types, representing most of its data as strings. The great thing about Aeson is
that it lets you apply Haskell’s strong type system to JSON data. You get the ease of
working with a widely adopted and flexible data format without having to sacrifice any
of Haskell’s power and type-related safety.

Aeson relies on two straightforward functions to do the bulk of the work. The decode
function takes JSON data and transforms it into a target type. Here’s the type signature
for decode:

decode :: FromJSON a => ByteString -> Maybe a

Two things are worth noticing here. First is that you return a Maybe type. As mentioned in
lesson 38, Maybe is a good way to handle errors in Haskell. In this case, the type of errors
you’re concerned with are parsing the JSON data correctly. There are many ways your
parse could go wrong; for example, the JSON could be malformed or not match the type

Listing 40.2 Adding your build depends on language extensions

511Making your data types instances of FromJSON and ToJSON
you expect. If something goes wrong with parsing the JSON data, you’ll get a Nothing
value. You also learned that Either is often a better type because it can tell you what went
wrong. Aeson also offers an eitherDecode function that will give you more informative
error messages by using the Left constructor (remember that Left is the constructor used
for errors):

eitherDecode :: FromJSON a => ByteString -> Either String a

The other important thing to notice is that the type parameter of your Maybe (or Either)
type is constrained by the type class FromJSON. Making a type an instance of FromJSON
enables you to convert raw JSON into a Maybe instance of your type. You’ll explore ways
of making data an instance of FromJSON in the next section.

The other important function in Aeson is encode, which performs the opposite function
as decode. Here’s the type signature of encode:

encode :: ToJSON a => a -> ByteString

The encode function takes a type that’s an instance of ToJSON and returns a JSON object
represented as a ByteString. ToJSON is the counterpart to FromJSON. If a type is an instance of
both FromJSON and ToJSON, it can trivially be converted to and from JSON. Next you’ll look
at how to take your data and make it an instance of each of these type classes.

40.3 Making your data types instances of FromJSON and ToJSON

The aim of Aeson is to make it trivial to convert back and forth between Haskell data
types and raw JSON. This is a particularly interesting challenge because JSON has a lim-
ited number of types to work with: numbers (technically just floats), strings, Booleans,
and arrays of values. To do this, Aeson uses two type classes: FromJSON and ToJSON. The
FromJSON type class allows you to parse JSON and turn it into a Haskell data type, and
ToJSON allows you to turn Haskell data types into JSON. Aeson does a remarkably good
job of making this easy in many cases.

Quick check 40.1 Why does encode return a ByteString rather than a Maybe ByteString?

QC 40.1 answer Because there’s no way that your data type could fail to be turned into JSON. The
issue arises only when you have JSON that may not be able to be parsed into your original type.

512 Lesson 40 Working with JSON data by using Aeson
40.3.1 The easy way

For many data types in Haskell, implementing both ToJSON and FromJSON is remarkably
easy. Let’s start with a Book type, which you’ll make an instance of both ToJSON and From-
JSON. Your Book type will be incredibly simple, having only a text value for the title,
another text value for the author, and an Int for the year of publication. Later in this les-
son, you’ll look at more complicated data. Here’s the definition of your Book type.

data Book = Book
 { title :: T.Text
 , author :: T.Text
 , year :: Int
 } deriving Show

There’s an easy way to make the Book type both an instance of FromJSON and ToJSON. To do
this, you need to use another language extension called DeriveGeneric. This extension
adds support for better generic programming in Haskell. This makes it possible to write
generic instances of a type class definition, allowing for new data to easily be an
instance of a class with no extra code required. The DeriveGeneric extension makes it pos-
sible to easily derive instances of FromJSON and ToJSON. All you have to do is add Generic to
your deriving statement.

data Book = Book
 { title :: T.Text
 , author :: T.Text
 , year :: Int
 } deriving (Show,Generic)

Finally, you have to declare Book an instance of FromJSON and ToJSON. You need to do noth-
ing more than add these two lines (no additional where clause or definition is necessary).

instance FromJSON Book
instance ToJSON Book

To demonstrate the power of these type classes, let’s take an example of your type and
encode it.

Listing 40.3 A straightforward Book type

Listing 40.4 Adding deriving Generic to your Book type

Listing 40.5 Making your Book type an instance of both FromJSON and ToJSON

513Making your data types instances of FromJSON and ToJSON

myBook :: Book
myBook = Book {author="Will Kurt"
 ,title="Learn Haskell"
 ,year=2017}

myBookJSON :: BC.ByteString
myBookJSON = encode myBook

In GHCi, you can see how this looks:

GHCi> myBook
Book {title = "Learn Haskell", author = "Will Kurt", year = 2017}
GHCi> myBookJSON
"{\"author\":\"Will Kurt\",\"title\":\"Learn Haskell\",\"year\":2017}"

You can also do the reverse just as easily. Here’s a raw JSON ByteString that you’ll parse
into your data type.

rawJSON :: BC.ByteString
rawJSON = "{\"author\":\"Emil Ciroan\",\"title\":
➥\"A Short History of Decay\",\"year=1949}"

bookFromJSON :: Maybe Book
bookFromJSON = decode rawJSON

In GHCi, you can see that you’ve successfully created a Book from this JSON:

GHCi> bookFromJSON
Just (Book { title = "A Short History of Decay"
 , author = "Emil Ciroan"
 , year = 1949})

This is a powerful feature of Aeson. From a string of JSON, which usually has little type
information, you were able to successfully create a Haskell type. In many languages,
parsing JSON means getting a hash table or a dictionary of keys and values. Because of
Aeson, you can get something much more powerful from your JSON.

Notice that your result is wrapped in the Just data constructor. That’s because a parsing
error could have easily made it impossible to make an instance of your type. If you have
malformed JSON that doesn’t work, you get nothing.

Listing 40.6 Taking a Book type and converting it to JSON

Listing 40.7 Taking a JSON representation of your book and converting it to a Book

514 Lesson 40 Working with JSON data by using Aeson
wrongJSON :: BC.ByteString
wrongJSON = "{\"writer\":\"Emil Cioran\",\"title\":
➥\"A Short History of Decay\",\"year\"=1949}"

bookFromWrongJSON :: Maybe Book
bookFromWrongJSON = decode wrongJSON

As expected, when you load this into GHCi, you see that your result is Nothing:

GHCi> bookFromWrongJSON
Nothing

This is also a great example of the limitations of Maybe. You know what went wrong
when parsing this JSON because you purposefully wrote this code with an error. But in
a real project, this would be an amazingly frustrating error, especially if you didn’t have
easy access to the raw JSON data to inspect. As an alternative, you can use eitherDecode,
which gives you much more information:

GHCi> eitherDecode wrongJSON :: Either String Book
Left "Error in $: The key \"author\" was not found"

Now you know exactly why your parse failed.

Although using DeriveGeneric makes using Aeson incredibly easy, you won’t always be
able to take advantage of this. Occasionally, you’ll have to help Aeson figure out how
exactly to parse your data.

Listing 40.8 Parsing JSON that doesn’t match your type

Quick check 40.2 Use Generic to implement ToJSON and FromJSON for this type:

data Name = Name
 { firstName :: T.Text
 , lastName :: T.Text
 } deriving (Show)

QC 40.2 answer
data Name = Name
 { firstName :: T.Text
 , lastName :: T.Text
 } deriving (Show,Generic)

instance FromJSON Name
instance ToJSON Name

515Making your data types instances of FromJSON and ToJSON
40.3.2 Writing your own instances of FromJSON and ToJSON

In the preceding example, you started with a type you defined and made it work with
JSON. In practice, you’re just as often working with someone else’s JSON data. Here’s an
example of an error message you might get as a response to a JSON request because of
an error on the other person’s server.

sampleError :: BC.ByteString
sampleError = "{\"message\":\"oops!\",\"error\": 123}"

To use Aeson, you need to model this request with your own data type. When you do
this, you’ll immediately see there’s a problem. Here’s the first attempt to model this
error message.

data ErrorMessage = ErrorMessage
 { message :: T.Text
 , error :: Int
 } deriving Show

The problem here is that you have a property named error, but you can’t have this,
because error is already defined in Haskell. You could rewrite your type to avoid this
collision.

data ErrorMessage = ErrorMessage
 { message :: T.Text
 , errorCode :: Int
 } deriving Show

Unfortunately, if you try to automatically derive ToJSON and FromJSON, your programs will
expect an errorCode field instead of error. If you were in control of this JSON, you could
rename the field, but you’re not. You need another solution to this problem.

To make your ErrorMessage type an instance of FromJSON, you need to define one function:
parseJSON. You can do this in the following way.

Listing 40.9 An example of JSON you don’t have control over

Listing 40.10 Unfortunately, you can’t model this JSON by using Haskell

Listing 40.11 Haskell code that works but doesn’t match the original JSON

The error is because
of this property.

516 Lesson 40 Working with JSON data by using Aeson
instance FromJSON ErrorMessage where
 parseJSON (Object v) =
 ErrorMessage <$> v .: "message"

<*> v .: "error"

This code is confusing, so breaking it down is worthwhile. The first part shows the
method you need to define and the argument it takes:

parseJSON (Object v)

The (Object v) is the JSON object being parsed. When you take just the v inside, you’re
accessing that value of that JSON object. Next you have a bunch of infix operators you
need to make sense of. You’ve seen this pattern before, in unit 5, when you learned
about common uses of applicatives:

ErrorMessage <$> value <*> value

As a refresher, suppose the values for your ErrorMessage were in a Maybe context.

exampleMessage :: Maybe T.Text
exampleMessage = Just "Opps"

exampleError :: Maybe Int
exampleError = Just 123

If you want to make an ErrorMessage, you can combine <$> and <*> to safely make this
ErrorMessage in the context of a Maybe:

GHCi> ErrorMessage <$> exampleMessage <*> exampleError
Just (ErrorMessage {message = "Opps", errorCode = 123})

This pattern works with any instance of Monad. In this case, you’re not working with val-
ues in a Maybe context but in a Parser context. This brings you to the final mystery: what’s
the (.:) operator? You can figure this out by looking at its type:

(.:) :: FromJSON a => Object -> Text -> Parser a

This operator takes an Object (your JSON object) and some text and returns a value
parsed into a context. For example, this line of code is trying to parse the message field
from your JSON object:

v .: "message"

Listing 40.12 Making ErrorMessage an instance of FromJSON

Listing 40.13 Values for constructing an ErrorMessage in a Maybe context

517Making your data types instances of FromJSON and ToJSON
The result is a value in a Parser context. The reason you need a context for your parse is
that it can fail if there’s trouble parsing.

Now that your ErrorMessage type is an instance of FromJSON, you can finally parse the
incoming JSON ErrorMessages.

sampleErrorMessage :: Maybe ErrorMessage
sampleErrorMessage = decode sampleError

In GHCi, you find this works as expected:

GHCi> sampleErrorMessage
Just (ErrorMessage {message = "oops!", errorCode = 123})

And of course you want to go back again. The syntax for creating your message is different:

instance ToJSON ErrorMessage where
 toJSON (ErrorMessage message errorCode) =
 object ["message" .= message
 , "error" .= errorCode
]

Listing 40.14 With your custom FromJSON, you can now parse your JSON

Quick check 40.3 Make the Name type into an instance of FromJSON without Generic:

data Name = Name
 { firstName :: T.Text
 , lastName :: T.Text
 } deriving (Show)

QC 40.3 answer
instance FromJSON Name where
 parseJSON (Object v) =
 Name <$> v .: "firstName"
 <*> v .: "lastName"

518 Lesson 40 Working with JSON data by using Aeson
Once again you have a confusing bit of code. This time you’re defining the toJSON
method. You can see that the method takes your data constructor and pattern matches
on its two arguments, message and errorCode:

toJSON (ErrorMessage message errorCode)

You then use the object function to create your JSON object, passing the values of your
data type into the correct fields for the JSON object:

 object ["message" .= message
 , "error" .= errorCode
]

You have another new operator here, (.=). This operator is used to create a key/value
pair matching the value of your data with the field name for the JSON object.

Now you can create your own raw JSON, just like the one you received.

anErrorMessage :: ErrorMessage
anErrorMessage = ErrorMessage "Everything is Okay" 0

Again, you can see that this works exactly as you expect:

GHCi> encode anErrorMessage
"{\"error\":0,\"message\":\"Everything is Okay\"}"

Listing 40.15 Creating an error message to test your instance of ToJSON

Quick check 40.4 Finally, make Name an instance of ToJSON without Generic:

data Name = Name
 { firstName :: T.Text
 , lastName :: T.Text
 } deriving (Show)

QC 40.4 answer
instance ToJSON Name where
 toJSON (Name firstName lastName) =
 object ["firstName" .= firstName
 , "lastName" .= lastName
]

519Putting it all together: reading your NOAA data
Now that you have down all the basics of working with JSON data in Haskell, let’s take
a look at a more complex problem.

40.4 Putting it all together: reading your NOAA data

In the preceding lesson, you learned how to use HTTP.Simple to save a JSON file to disk.
You saved a list of NOAA data sets to a file named data.json. If you didn’t run the code
from lesson 39, you can get the data here: https://gist.github.com/willkurt/
9dc14babbffea1a30c2a1e121a81bc0a. Now you’re going to read in that file and print the
names of the data sets. The interesting thing about this file is that the JSON isn’t a simple
type. Your JSON data has nested results and looks like this.

{
 "metadata":{
 "resultset":{
 "offset":1,
 "count":11,
 "limit":25
 }
 },
 "results":[
 {
 "uid":"gov.noaa.ncdc:C00861",
 "mindate":"1763-01-01",
 "maxdate":"2017-02-01",
 "name":"Daily Summaries",
 "datacoverage":1,
 "id":"GHCND"
 },

You’re going to model the entire response with a NOAAResponse data type. NOAAResponse is
made up of two types: Metadata and Results. Metadata itself contains another type, Resultset.
Then you have NOAAResults, which contains values.

Listing 40.16 The JSON from the NOAA has a nested structure

https://gist.github.com/willkurt/9dc14babbffea1a30c2a1e121a81bc0a
https://gist.github.com/willkurt/9dc14babbffea1a30c2a1e121a81bc0a

520 Lesson 40 Working with JSON data by using Aeson
You’ll start with your basic result, because that’s ultimately what you’re interested in,
and it doesn’t contain any more sophisticated types. Because Result contains an id value,
you need to define a custom implementation of your instances. Here’s the data type for
Result. You’ll name this type NOAAResult to distinguish it from the Result type in Aeson.

data NOAAResult = NOAAResult
{ uid :: T.Text
, mindate :: T.Text
, maxdate :: T.Text
, name :: T.Text
, datacoverage :: Int
, resultId :: T.Text
} deriving Show

Because the data uses id instead of resultId, you need to make your own instance of From-
JSON. You’re not concerned about ToJSON, because you’ll be reading only from the data.

instance FromJSON NOAAResult where
 parseJSON (Object v) =
 NOAAResult <$> v .: "uid"

<*> v .: "mindate"
<*> v .: "maxdate"
<*> v .: "name"
<*> v .: "datacoverage"
<*> v .: "id"

Next you need to tackle the Metadata type. The first part of your Metadata is Resultset.
Thankfully, you don’t need a custom implementation of FromJSON. You just need to define
your type, add deriving (Generic), and make it an instance of your type class.

data Resultset = Resultset
{ offset :: Int
, count :: Int
, limit :: Int

Listing 40.17 Use NOAAResult type to print the names of the data sets

Listing 40.18 Making NOAAResult an instance of FromJSON

Listing 40.19 Using Generic to derive the FromJSON instance for Resultset

521Putting it all together: reading your NOAA data
 } deriving (Show,Generic)

instance FromJSON Resultset

The Metadata data type itself has only the Resultset value, and it’s simple to write.

data Metadata = Metadata
 {
 resultset :: Resultset
 } deriving (Show,Generic)

instance FromJSON Metadata

Finally, you put together these other types into your NOAAResponse. Like your other types,
there’s no issue with the naming of your values so you can derive the necessary class.

data NOAAResponse = NOAAResponse
 { metadata :: Metadata
 , results :: [NOAAResult]
 } deriving (Show,Generic)

instance FromJSON NOAAResponse

Your goal is to print out all the types in the file. To do this, you’ll create a printResults IO
action. Because your data will be a Maybe type, you need to handle the case of the parse
failing. For this, you’ll print a message that an error occurred. Otherwise, you’ll use forM_
from the Control.Monad module (remember to import Control.Monad) to loop through your
results and print them. The forM_ function works just like the mapM_ function, only it
reverses the order of the data and the function used to map over the data.

printResults :: Maybe [NOAAResult] -> IO ()
printResults Nothing = print "error loading data"
printResults (Just results) = do
 forM_ results (print . name)
 print dataName

Listing 40.20 Making the Metadata type

Listing 40.21 Putting all your types together into a NOAAResponse type

Listing 40.22 Printing the results

522 Lesson 40 Working with JSON data by using Aeson
Now you can write your main, which will read in the file, parse the JSON, and iterate
through your results.

main :: IO ()
main = do

jsonData <- B.readFile "data.json"
let noaaResponse = decode jsonData :: Maybe NOAAResponse
let noaaResults = results <$> noaaResponse
printResults noaaResults

Now you can load your project into GHCi (or use stack build to run it if you’d prefer) and
see how it works:

GHCi> main
"Daily Summaries"
"Global Summary of the Month"
"Global Summary of the Year"
"Weather Radar (Level II)"
"Weather Radar (Level III)"
"Normals Annual/Seasonal"
"Normals Daily"
"Normals Hourly"
"Normals Monthly"
"Precipitation 15 Minute"
"Precipitation Hourly"

And there you have it; you’ve successfully used Haskell to parse a nontrivial JSON file.

Summary

In this lesson, our objective was to teach you how to parse and create JSON files by
using Haskell. You used the popular Aeson library, which makes it possible to convert
back and forth between Haskell data types and JSON. The conversion between data
types and JSON is achieved with two type classes: FromJSON and ToJSON. In the best case,
you can use the DeriveGeneric language extension to derive these classes automatically.
Even in the worst case, where you have to help Aeson translate your data types, doing
this is still relatively easy. Let’s see if you got this.

Listing 40.23 Putting everything together into your main

523Summary
Q40.1 Make your NOAAResponse type an instance of ToJSON. This requires making all the
types used by this type instances of ToJSON as well.

Q40.2 Make a Sum type called IntList and use DerivingGeneric to make it an instance of
ToJSON. Don’t use the existing List type, but rather write it from scratch. Here’s an exam-
ple of an IntList:

intListExample :: IntList
intListExample = Cons 1 $
 Cons 2 EmptyList

41LESSON
USING DATABASES IN HASKELL

After reading lesson 41, you’ll be able to

 Connect to a SQLite database from Haskell
 Translate SQL rows into Haskell data types
 Create, read, update, and delete database data with Haskell

In this lesson, you’ll learn how to work with databases when using Haskell. In particu-
lar, you’ll use the SQLite3 relational database management system (RDBMS) and the
sqlite-simple Haskell library. You’ll explore this topic by building a command-line inter-
face for a tool-lending library. This will require you to perform all of the essential CRUD
tasks commonly associated with RDBMS use. The CRUD tasks are as follows:

 Create—Adding new data to the database
 Read—Querying the database for information
 Update—Modifying existing data in the database
 Delete—Removing data from the database

You’ll use the sqlite-simple library to interact with your database. sqlite-simple is a mid-
level abstraction over the database, meaning that while many of the low-level connection
details are abstracted away, you’ll still be writing a large amount of raw SQL queries.
The most important abstraction that sqlite-simple helps with is transforming SQL que-
ries into lists of Haskell data types.
524

525Setting up your project
Here’s the rundown of the project you’ll be building. Suppose you have a friend who’s
setting up a basic community tool-lending library. Your friend needs a system to help
manage the basics of keeping track of the inventory and checking out tools from the
library. From the RDBMS side of things, this project will involve three tables: tools,
users, and checkedout. From the Haskell standpoint, you’ll worry about modeling only
users and tools. By the end of this lesson, you’ll have a command-line application that
supports the following operations:

 Listing all of the users and tools
 Listing all the checked-out and available tools
 Adding new users to the database
 Checking items back in
 Recording the number of times a tool has been checked out, and how recently

By the end of this lesson, we’ll have covered performing the majority of database opera-
tions through Haskell.

41.1 Setting up your project

In this lesson, you’ll keep all of your code in a stack project named db-lesson. As in all the
lessons in this unit, you’ll keep your code in the Main module for simplicity (though this
project could easily be refactored into multiple files). You’ll start with your app/Main.hs
file. Here’s the starter code, including the imports you’ll use for this lesson.

module Main where

import Control.Applicative
import Database.SQLite.Simple
import Database.SQLite.Simple.FromRow
import Data.Time

main :: IO ()
main = print "db-lesson"

The build-depends you need to add to the project’s .cabal file is sqlite-simple, the module
you’ll be using to interact with SQLite, and time, which will help you manage dates.

Listing 41.1 The app/Main.hs file starter code

This is the library
you’ll use to work
with SQLite.

FromRow is an
important type class
you’ll need.

You’ll also explore
using types of dates
in this lesson.

526 Lesson 41 Using databases in Haskell
build-depends: base
, db-notes
, time
, sqlite-simple

You’ll also use the OverloadedStrings extension, because many of your strings will be inter-
preted as SQL queries by the SQLite Simple library.

extensions: OverloadedStrings

After all of this code is in place, you can run the setup and build commands in stack to
ensure that your project is set up correctly.

41.2 Using SQLite and setting up your database

For this lesson, you’ll use the SQLite3 database
management system, because it’s easy to install
and get started with. SQLite can be downloaded
from www.sqlite.org. Because SQLite3 is
designed to be easy to deploy, setup should be
straightforward on your system (if you don’t
already have it installed).

Your tool library will use a database that con-
sists of a users table, a tools table, and a
checkedout table that represents which tools are
checked out to which person. Figure 41.1 pro-
vides a basic entity-relationship diagram to
show how your tables are set up.

You’ll start your project off with sample data as
well. Here’s the code to build your database;
this code will go in a file named build_db.sql,
which should be kept in the root directory of
your db-lesson project.

Listing 41.2 The changes to build-depends in db-lesson.cabal

Listing 41.3 Use the OverloadedStrings extension in db-lesson.cabal

Checkedout

user_id
tool_id

Users

id
username

Tools

id
name
description
lastReturned
timesBorrowed

Figure 41.1 The setup of your database

527Using SQLite and setting up your database
DROP TABLE IF EXISTS checkedout;
DROP TABLE IF EXISTS tools;
DROP TABLE IF EXISTS users;

CREATE TABLE users (
 id INTEGER PRIMARY KEY,
 username TEXT
);

CREATE TABLE tools (
 id INTEGER PRIMARY KEY,
 name TEXT,
 description TEXT,
 lastReturned TEXT,
 timesBorrowed INTEGER
);

CREATE TABLE checkedout (
 user_id INTEGER,
 tool_id INTEGER
);

INSERT INTO users (username) VALUES ('willkurt');

INSERT INTO tools (name,description,lastReturned,timesBorrowed)
VALUES ('hammer','hits stuff','2017-01-01',0);

INSERT INTO tools (name,description,lastReturned,timesBorrowed)
VALUES ('saw','cuts stuff','2017-01-01',0);

To run SQLite, you have to call sqlite3 from the command line. You also need to pass in
the database name, which is tools.db. Finally, you’ll pipe in the build.sql file you just
saved. Here’s the command you need:

$ sqlite3 tools.db < build_db.sql

You can check out your database by using the sqlite3 command along with the path to
your database file. Once there, you can run SQL queries to ensure that everything has
been installed correctly. The sqlite> prompt indicates that you’re using your RDBMS
interactively:

Listing 41.4 The code for building your database

SQLite doesn’t support
date types.

528 Lesson 41 Using databases in Haskell
$ sqlite3 tools.db
sqlite> select * from tools;
1|hammer|hits stuff|2017-01-01|0
2|saw|cuts stuff|2017-01-01|0

Because your goal is to work with SQLite through Haskell, you won’t be directly using
the sqlite command again. If you like, you can always use sqlite directly to double-
check the results of the code you’ve run.

41.2.1 Your Haskell data

One of the challenges when working with Haskell and an RBDMS such as SQLite is that
your types in Haskell are typically much richer and more expressive than those in the
RBDMS. SQLite, for example, doesn’t support any types representing dates. This is a
similar problem to what you have working with JSON data. Before diving into creating
data in your database, let’s look at your data from the Haskell perspective. Here’s the
definition of your Tool data type.

data Tool = Tool
 { toolId :: Int
 , name :: String
 , description :: String
 , lastReturned :: Day
 , timesBorrowed :: Int
 }

There’s one type you haven’t seen before in this definition of Tool, which is the Day type.
The Day type is part of the Data.Time module. Data.Time contains a variety of useful time-
related functions. Here’s an example of getting the current time with getCurrentTime and
transforming it into a Day type by using utctDay:

GHCi> getCurrentTime
2017-02-26 07:05:12.218684 UTC
GHCi> utctDay <$> getCurrentTime
2017-02-26

The other type you need to model is your User. The User type is much simpler than your
Tool type, having values only for its id and userName.

Listing 41.5 The definition of Tool, which should live in app/Main.hs

529Using SQLite and setting up your database
data User = User
 { userId :: Int
 , userName :: String
 }

The User and Tool types enable you to perform computation on any data that comes from
your database. The most common computation will be displaying data about the users
and tools you query. You can make sure the results look as you prefer by making these
types instances of Show.

instance Show User where
 show user = mconcat [show $ userId user
 , ".) "
 , userName user]

instance Show Tool where
 show tool = mconcat [show $ toolId tool
 , ".) "
 , name tool
 , "\n description: "
 , description tool
 , "\n last returned: "
 , show $ lastReturned tool
 , "\n times borrowed: "
 , show $ timesBorrowed tool
 , "\n"]

When you print your results, they should look like this:

1.) willkurt

1.) hammer
 description: hits stuff
 last returned: 2017-01-01
 times borrowed: 0

Listing 41.6 The User data type

Listing 41.7 Making User and Tool instances of Show

530 Lesson 41 Using databases in Haskell
Now you’re ready to start interacting with your database!

41.3 Creating data—inserting users and checking out tools

Of the four operations covered under CRUD, the first is Create. You’ve just used raw
SQL to create your tables and data; now you’re going to do this in Haskell. To insert
data into your database, you need to connect to the database, create a SQL string, and
then execute the SQL.

41.3.1 Adding new users to your database

At this point, you have only one user in your database. You need a command to add a
user. You’ll start with a function that takes a userName and inserts it into your database. To
do this, you’ll use the execute command, which allows you to insert users into your data-
base. Your query string will contain a (?), which allows you to safely pass values into
your string. Before you can insert the user, you also need to establish a connection to
your database. This connection is then passed along with your query and query param-
eters to the execute action. Here’s your addUser action.

addUser :: String -> IO ()
addUser userName = do
 conn <- open "tools.db"
 execute conn "INSERT INTO users (username) VALUES (?)"

Listing 41.8 addUser action connects to database and inserts a user

Quick check 41.1 Why is mconcat preferred for combining your strings over ++?

1 Fewer characters to type
2 ++ works only on lists, not text
3 mconcat makes your code easier to refactor with text types

QC 41.1 answer The answer is 3. Although you used String in this lesson, you often would prefer to
use the Text type. mconcat works on all major string types: String, Text, and ByteString. This makes
refactoring code to change types as easy as changing type signatures.

First you have to open a
connection to your database.

You execute a command by using
the connection, a query, and
query parameters.

531Creating data—inserting users and checking out tools
 (Only userName)
 print "user added"
 close conn

The Only constructor is used to create single-element tuples. This is needed because
execute expects you to pass in a tuple of a particular size for your values.

This is a good start, but most of your code will have to access the database, so the bulk
of this IO action will need to be repeated verbatim. You can abstract this out by creating
a withConn action to automatically handle opening and closing your database.

withConn :: String -> (Connection -> IO ()) -> IO ()
withConn dbName action = do
 conn <- open dbName
 action conn
 close conn

This function takes a String, which is the name of the database, and an action that takes a
connection as an argument. The end result is an action of type IO (). You’ve successfully
made it possible to add users to the database from Haskell.

Listing 41.9 withConn lets you abstract out connecting to the database

The Only constructor is used
for your single-element tuple
of parameters.

It’s important to
close the connection
when you’re finished.

Quick check 41.2 Refactor addUser to use withConn.

QC 41.2 answer
addUser :: String -> IO ()
addUser userName = withConn "tools.db" $
 \conn -> do
 execute conn "INSERT INTO users (username) VALUES (?)"
 (Only userName)
 print "user added"

532 Lesson 41 Using databases in Haskell
41.3.2 Creating checkouts

Another useful insert to perform is to create a checkout. A checkout requires both a userId
and a toolId. The code for your checkout is similar to that of adding a user, but you need
to pass in two values.

checkout :: Int -> Int -> IO ()
checkout userId toolId = withConn "tools.db" $

\conn -> do
execute conn
"INSERT INTO checkedout
(user_id,tool_id) VALUES (?,?)"
(userId,toolId)

Notice that (userId,toolId) is a plain tuple with no Only data constructor needed.

With checkout and addUser, you have the basis for many of the key operations you want
your application to perform. You can test these actions, but you have no way of seeing
whether your results worked without opening SQLite to see if the database has
changed. In the next section, you’ll look at reading data from your database and trans-
forming it into your Haskell data types.

41.4 Reading data from the database and FromRow

The challenge when working with SQL data in Haskell is that you need an easy way to
make instances of Haskell data types from raw data. To achieve this, the sqlite-simple
library includes a type class called FromRow. Here’s the definition of FromRow, which contains
only one method you need to implement, fromRow.

class FromRow a where
 fromRow :: RowParser a

The fromRow method returns a RowParser of type a, where a is the same type as whatever
type you’re making an instance of FromRow. You won’t directly use fromRow, but it will be
used by functions to query your data. The result is that if you implement FromRow, you can
easily transform queries into lists of your data types.

Listing 41.10 Checking out by adding the toolId and userId to checkedout

Listing 41.11 The definition of the FromRow type class

533Reading data from the database and FromRow
41.4.1 Making your data an instance of FromRow

Creating an instance of FromRow is similar to creating an instance of FromJSON in the previ-
ous lesson. You have to tell the RowParser how to construct your data types. The key part
is a function from SQLite.Simple called field. The field function is used internally by
SQLite.Simple to consume the data from a row and transform it into the values used by
your type constructors. Here are the instances of FromRow for both User and Tool.

instance FromRow User where
 fromRow = User <$> field
 <*> field

instance FromRow Tool where
 fromRow = Tool <$> field
 <*> field
 <*> field
 <*> field
 <*> field

Now that User and Tool are both instances of FromRow, you can make queries against your
database and translate them directly into lists of users and tools.

41.4.2 Listing users and tools

To query your data, you use two related functions: query and query_ (notice the under-
score). Looking at their type signatures, you can see the difference:

query :: (FromRow r, ToRow q) => Connection -> Query -> q -> IO [r]
query_ :: FromRow r => Connection -> Query -> IO [r]

The type signatures of these two functions are the same, except the underscore version
takes one less argument. The query function assumes that you’re passing in a query
string and parameter for that query. The query_ function with an underscore is for que-
ries that take queries with no parameters as arguments. Also notice that Query is its own
type. You’ve been treating your queries as strings, but this is all thanks to the Overloaded-
Strings extension, which is automatically translating for you.

Listing 41.12 Making User and Tool instances of FromRow

534 Lesson 41 Using databases in Haskell

You’ll use these queries to print your users and tools. Here’s a printUsers function; notice
that you must specify the type you’re querying.

printUsers :: IO ()
printUsers = withConn "tools.db" $
 \conn -> do
 resp <- query_ conn "SELECT * FROM users;" :: IO [User]
 mapM_ print resp

The printUsers action also takes advantage of the fact that User is an instance of Show, dis-
playing the user data as you expect. Now that you can print users, you can also test add-
ing users:

GHCi> printUsers
1.) willkurt
GHCi> addUser "test user"
"user added"
GHCi> printUsers
1.) willkurt
2.) test user

The next thing you want to do is print tools. The only added complication you have
with tools is that you’d like to run several queries:

 List all of your tools
 List the checked-out tools
 List the available tools

To help you out, you’ll write a printToolQuery function that takes a query and prints out
the tools returned by that query. Here’s the printTool query along with the code for the
other queries’ lists.

Listing 41.13 Printing users from your database

Quick check 41.3 Why do you need two functions, query and query_?

QC 41.3 answer Primarily because of the way Haskell handles types, Haskell doesn’t support vari-
able arguments. An alternative to making two functions is to use a Sum type that represents both sets of
arguments and use pattern matching.

535Reading data from the database and FromRow
printToolQuery :: Query -> IO ()
printToolQuery q = withConn "tools.db" $
 \conn -> do
 resp <- query_ conn q :: IO [Tool]
 mapM_ print resp

printTools :: IO ()
printTools = printToolQuery "SELECT * FROM tools;"

printAvailable :: IO ()
printAvailable = printToolQuery $ mconcat ["select * from tools "
 , "where id not in "
 , "(select tool_id from

➥checkedout);"]

printCheckedout :: IO ()
printCheckedout = printToolQuery $
 mconcat ["select * from tools "
 , "where id in "
 , "(select tool_id from checkedout);"]

In GHCi, you can test these actions as well as make sure that your checkout action from
earlier works as expected:

GHCi> printTools
1.) hammer
description: hits stuff
last returned: 2017-01-01
times borrowed: 0

2.) saw
description: cuts stuff
last returned: 2017-01-01
times borrowed: 0

GHCi> checkout 1 2
GHCi> printCheckedOut
2.) saw

Listing 41.14 A generic way to run any queries of tools from your database

536 Lesson 41 Using databases in Haskell
description: cuts stuff
last returned: 2017-01-01
times borrowed: 0

Two major steps are left until you can put together your project. You need to be able to
check tools back in, and after those tools are back in, you need to update them. Because
updating is next in your CRUD process, you’ll look at updating your data.

41.5 Updating existing data

When a tool is checked back in, you want to do two updates. First, you want to incre-
ment its existing timesBorrowed by 1; second, you want to update the lastReturned date to
the current date. This requires you to update an existing row in your database, which is
the most complex step in your process if you want to ensure that you avoid errors.

The first thing you want to do is select a tool from your database by ID. Your selectTool
function takes a connect and a toolId to look up the tool. It returns a rather complicated
type: IO (Maybe Tool). The IO indicates that your database operations always occur in an IO
context. The inner Maybe type is used because it’s possible to pass in an incorrect ID,
resulting in an empty query. Here’s the code for selectTool, along with a helper function
firstOrNothing.

selectTool :: Connection -> Int -> IO (Maybe Tool)
selectTool conn toolId = do
 resp <- query conn

"SELECT * FROM tools WHERE id = (?)"
(Only toolId) :: IO [Tool]

 return $ firstOrNothing resp

firstOrNothing :: [a] -> Maybe a
firstOrNothing [] = Nothing
firstOrNothing (x:_) = Just x

The firstOrNothing function looks at the list of results returned by your query. If the list is
empty, it returns Nothing; if you have results (presumably just one, because the ID is
unique), it returns the first one.

Listing 41.15 Safely selecting a Tool by ID

537Updating existing data
After you have your tool, you need to update it. Getting the current day requires an IO
action, so you’ll assume that value is passed in to your function so you can keep your update-
Tool function pure. The updateTool function takes an existing tool and returns a new tool with
an updated lastReturned date and timesBorrowed count, using record syntax (lesson 11).

updateTool :: Tool -> Day -> Tool
updateTool tool date = tool
 { lastReturned = date
 , timesBorrowed = 1 + timesBorrowed tool
 }

Next you need a way to insert your update of a Maybe Tool. Because the tool is a Maybe Tool,
you want your code to update your table only if the Maybe value isn’t Nothing. Your update-
OrWarn action will tell you that the item isn’t found if the value is Nothing; otherwise, it’ll
update the necessary fields in your database.

updateOrWarn :: Maybe Tool -> IO ()
updateOrWarn Nothing = print "id not found"
updateOrWarn (Just tool) = withConn "tools.db" $
 \conn -> do
 let q = mconcat ["UPDATE TOOLS SET "
 ,"lastReturned = ?,"
 ," timesBorrowed = ? "
 ,"WHERE ID = ?;"]

 execute conn q (lastReturned tool
 , timesBorrowed tool
 , toolId tool)
 print "tool updated"

Finally, you need to tie all of these steps together. Your final action, updateToolTable, takes
a toolId, fetches the current date, and then performs the necessary steps to update the
tool in the table.

Listing 41.16 updateTool updates your tool

Listing 41.17 Safely updating your database

538 Lesson 41 Using databases in Haskell
updateToolTable :: Int -> IO ()
updateToolTable toolId = withConn "tools.db" $
 \conn -> do
 tool <- selectTool conn toolId
 currentDay <- utctDay <$> getCurrentTime
 let updatedTool = updateTool <$> tool
 <*> pure currentDay
 updateOrWarn updatedTool

The updateToolTable action allows you to safely update the tools table, and will inform
you if an error occurs while updating the data. The final step you have to look at is
checking an ite//m back in, which is the case of deleting a row from checkedout.

Listing 41.18 updateToolTable combines all the steps for updating the tool table

The ToRow type class
You can also use the ToRow type class. But ToRow is much less useful, because it trans-
forms your data types into a tuple of values. As you can see from our examples of creat-
ing and updating values, you either don’t have all the information you need (in the case of
creating) or need only a specific subset. For reference, here’s how to make Tool an
instance of ToRow (note that you need to import Data.Text as T):

instance ToRow Tool where
 toRow tool = [SQLInteger $ fromIntegral $ toolId tool
 , SQLText $ T.pack $ name tool
 , SQLText $ T.pack $ description tool
 , SQLText $ T.pack $ show $ lastReturned tool
 , SQLInteger $ fromIntegral $ timesBorrowed tool]

The SQLText and SQLInteger constructors transform Haskell Text and Integer types to SQL
data. In practice, you’ll likely use ToRow much less often than FromRow. Still, it’s good to know
it exists.

539Putting it all together
41.6 Deleting data from your database

The final step of the CRUD process is deletion. Deleting your data is simple: you use the
execute action just as you did when creating data. Your checkin action takes a toolID and
deletes the row from the checkedout table. Because each tool can be checked out to only
one person at time, the tool ID is all the information you need.

checkin :: Int -> IO ()
checkin toolId = withConn "tools.db" $
 \conn -> do
 execute conn
 "DELETE FROM checkedout WHERE tool_id = (?);"
 (Only toolId)

As mentioned in the preceding section, you never want to check in a tool in isolation,
but want to ensure that the tool’s information is updated. Your final database action will
be checkinAndUpdate, which calls checkin and then updateToolTable.

checkinAndUpdate :: Int -> IO ()
checkinAndUpdate toolId = do
 checkin toolId
 updateToolTable toolId

At this point, you’ve seen every part of the CRUD process for working with a database
when using Haskell. With all these basic tools in place, you can put together the rest of
your command-line interface and check it out!

41.7 Putting it all together

You’ve written all the code you need for your database interaction. All you need now is
to wrap these actions into a usable interface. Most of your database updates require a
prompt from the user requesting either a username or an ID. Here are some IO actions
that capture this behavior.

Listing 41.19 Checking in a tool with checkin

Listing 41.20 Making sure your tool is updated when it’s checked in

540 Lesson 41 Using databases in Haskell
promptAndAddUser :: IO ()
promptAndAddUser = do
 print "Enter new user name"
 userName <- getLine
 addUser userName

promptAndCheckout :: IO ()
promptAndCheckout = do
 print "Enter the id of the user"
 userId <- pure read <*> getLine
 print "Enter the id of the tool"
 toolId <- pure read <*> getLine
 checkout userId toolId

promptAndCheckin :: IO ()
promptAndCheckin = do
 print "enter the id of tool"
 toolId <- pure read <*> getLine
 checkinAndUpdate toolId

You can then bundle all of your actions, prompting the user into a single action that takes
a command from the user and then performs that command. Notice that each of these
commands, except quit, uses the >> operator (which performs an action, throws away the
result, and performs the next) to call main. This allows your command-line interface to
repeatedly prompt the user for more input until the user quits your program.

performCommand :: String -> IO ()
performCommand command
 | command == "users" = printUsers >> main
 | command == "tools" = printTools >> main
 | command == "adduser" = promptAndAddUser >> main
 | command == "checkout" = promptAndCheckout >> main
 | command == "checkin" = promptAndCheckin >> main
 | command == "in" = printAvailable >> main

Listing 41.21 Organizing your database actions

Listing 41.22 performCommand organizes all the commands the user can enter

541Putting it all together
 | command == "out" = printCheckedout >> main
 | command == "quit" = print "bye!"
 | otherwise = print "Sorry command not found" >> main

Finally, here’s your revised main. You’ve been able to factor out most of the code you
need into separate parts so your main IO action is minimal.

main :: IO ()
main = do
 print "Enter a command"
 command <- getLine
 performCommand command

The careful reader may notice that performCommand calls main, and main executes the perform-
Command action, leading to code that’s recursive. In most languages, this would be a
receipt for a stack overflow, but Haskell is smart about handling this. Haskell will notice
that each function calls the other last, and is able to optimize this safely.

Now you can build your program and run it to test it out:

$ stack exec db-lesson-exe
"Enter a command"
users
1.) willkurt
"Enter a command"
adduser
"Enter new user name"

Listing 41.23 Your final main IO action

Quick check 41.4 Why can’t you use >>= instead of >>?

1 You can; it works fine.
2 >>= implies that main accepts an argument, which it doesn’t.
3 >>= isn’t a valid Haskell operator.

QC 41.4 answer The answer is 2. When you use >>=, you’re passing an argument in a context; the

>> operator is used when you want to chain together actions and disregard their output.

542 Lesson 41 Using databases in Haskell
test user
"user added"
"Enter a command"
tools
1.) hammer
 description: hits stuff
 last returned: 2017-01-01
 times borrowed: 0

2.) saw
 description: cuts stuff
 last returned: 2017-01-01
 times borrowed: 0

"Enter a command"
checkout
"Enter the id of the user"
1
"Enter the id of the tool"
2
"Enter a command"
out
2.) saw
 description: cuts stuff
 last returned: 2017-01-01
 times borrowed: 0

"Enter a command"
checkin
"enter the id of tool"
2
"tool updated"
"Enter a command"
in
1.) hammer
 description: hits stuff
 last returned: 2017-01-01
 times borrowed: 0

543Summary
2.) saw
 description: cuts stuff
 last returned: 2017-02-26
 times borrowed: 1

"Enter a command"
quit
"bye!"

You’ve successfully implemented all the CRUD operations in Haskell, and created a
useful tool that your friend can use to manage the tool-lending library.

Summary

In this lesson, our objective was to teach you how to make a simple database-driven
application using SQLite.Simple. You were able to use the FromRow instance to make it easy
for users to transform data from your SQLite3 database into Haskell types. You learned
how to create, read, update, and delete data from a database through Haskell. In the
end, you developed a simple application that allows you to perform a range of tasks
related to managing a tool library. Let’s see if you got this.

Q41.1 Create an IO action named addTool, like addUser, to add a tool to the database.

Q41.2 Add an addtool command that prompts the user for information and then adds
the tool by using the addTool action from the preceding question.

42LESSON
EFFICIENT, STATEFUL ARRAYS IN
HASKELL

After reading lesson 42, you’ll be able to

 Use the UArray type for efficient storage and retrieval
 Perform stateful computation on arrays with STUArray
 Treat properly encapsulated, stateful functions as pure functions

After finishing this book on Haskell, you get a call from a recruiter at GooMicroBook
asking if you’d like to interview. You say you’d love to, and the recruiter mentions that
there will be a coding interview in the programming language of your choice. “Any lan-
guage I want?” you eagerly ask. The recruiter confirms that, yes, you can use any lan-
guage. With delight, you say you’d like to do the interview in Haskell.

You get to your interview, and your interviewer walks in the room. She asks you to
solve some algorithm questions on the whiteboard. After eating, breathing, and dream-
ing about Haskell for many months, you can hardly wait to show of your elite program-
ming skills. She starts off with a common question: “Implement a linked list for me.”
You run up to the board and write this:

data MyList a = EmptyList | Cons a (MyList a)
544

545
To your secret pleasure, the interviewer seems a bit surprised when you say, “Done!”
You go into a long rant explaining the virtues of Haskell, how powerful types are, and
the value of pure functions. After listening to you patiently and kindly refraining from
mentioning her PhD work in type theory, she tells you that she’s impressed. “Okay then,
since you’ve done such a good job on this one, I’ll give you an easy question next.”
You’re ready to show off even more Haskell; maybe you’ll even use Monad! “All that I
want you to do is implement a simple, boring, in-place bubble sort.” Suddenly you real-
ize that maybe Haskell wasn’t the best choice for this interview.

Writing a bubble sort with Haskell has a few large issues. The first is that you’ve relied
heavily on lists as your primary data structure, but they’re not nearly as efficient as
proper arrays for this type of problem. A much larger issue is the requirement that the
sort be in place; You can’t create a copy of your array. Nearly all the code you’ve written
in this book relies on changing the state of a data structure the functional way: creating
a new version of the structure and discarding the original. For the majority of problems,
this is both reasonably efficient and easy to do. Sorting an array is one case where you
absolutely need to modify the state of a data structure for reasons of efficiency.

Thankfully, if you read this lesson, you’ll be prepared for this scenario. You’re going to
finish this book by tackling a problem that seems impossible in Haskell: efficient, in-
place array algorithms. You’ll learn about Haskell’s strict (nonlazy) array type, UArray.
Then you’ll see that there’s a context for performing mutation on an array by using the
STUArray type. Finally, you’ll put it all together to implement a bubble sort algorithm.
Even though a bubble sort algorithm itself is the least efficient sorting algorithm, your
code will run much faster than if you had written it using a list.

Consider this In many cases, using stateful mutation can lead to bugs in your code.
But stateful mutation is essential to nearly all efficient array-based algorithms. The rea-
son Haskell avoids stateful programs is that this makes it trivial to violate the principle
of referential transparency: given the same inputs, a function will always return the
same outputs.

But, even in object-oriented programming it’s desirable and sometimes possible to have
perfect encapsulation. Even though an object may perform stateful changes internally,
the programmer never notices this, and the rules of referential transparency can be
maintained. If you can use types to ensure that your stateful code is perfectly encapsu-
lated, can you somehow safely use stateful code in your Haskell programs?

546 Lesson 42 Efficient, stateful arrays in Haskell
42.1 Creating efficient arrays in Haskell with the UArray type

You’re facing three efficiency problems in your bubble-storing challenge:

 Lists are inherently slower than arrays for operations that involve looking up
values.

 Lazy evaluation can cause major performance problems in practice.
 In-place sorting requires mutation (stateful programming).

The first two of these efficiencies can be solved by using the UArray type. In the next sec-
tion, you’ll go into detail about how the UArray type improves on these as well as learn-
ing basics of creating UArrays.

42.1.1 The inefficiencies of lazy lists

The first problem is that you need an array type. So far in this book, you’ve relied heav-
ily on lists. But for problems such as sorting, lists are often extremely inefficient. One of
the reasons for this inefficiency is that you can’t directly access elements of a list. In unit
1, you learned about the !! operator for looking up an element in a list. If you create a
large list, you can see just how poorly this lookup performs in practice.

aLargeList :: [Int]
aLargeList = [1 .. 10000000]

You learned a while back that you can time functions in GHCi by using :set +s. By using
this command, you can see how long it takes to look up the last element in your list:

GHCi> :set +s
GHCi> aLargeList !! 9999999
10000000
(0.05 secs, 460,064 bytes)

You can see that this took 0.05 seconds to look up, or 50 milliseconds. Although this isn’t
incredibly slow compared to an HTTP request, it’s still a long time to look up an element.

You’ll be using the type UArray on your arrays. For comparison, here’s the equivalent-
sized UArray (we’ll explain building the array in the next section).

Listing 42.1 An example of a reasonably large list of 10 million values

547Creating efficient arrays in Haskell with the UArray type
aLargeArray :: UArray Int Int
aLargeArray = array (0,9999999) []

When you perform the same test in GHCi, using the UArray lookup operator !, you find
it’s essentially instantaneous:

GHCi> aLargeArray ! 9999999
0
(0.00 secs, 456,024 bytes)

The U in UArray stands for unboxed. Unboxed arrays don’t use lazy evaluation (they
use strict evaluation). You’ve seen this come up before in unit 4 in regards to both Text
and ByteString types. Lazy evaluation, although powerful, is another frequent cause of
inefficiency.

To explore the performance issues of lazy evaluation, let’s look at a modified version of
your aLargeList, aLargeArrayList.

aLargeListDoubled :: [Int]
aLargeListDoubled = map (*2) aLargeList

Now in GHCi (with :set +s), you can see what happens when you want to find the
length of aLargeListDoubled:

GHCi> length aLargeListDoubled
10000000
(1.58 secs, 1,680,461,376 bytes)

Wow! It took 1.58 seconds to get the length of your list. Even more astonishing, it took
1.68 gigabytes of memory to perform this operation! The inherent inefficiencies in the list
data structure don’t explain this amazing use of system resources. You can demonstrate
this further by running this exact code a second time in GHCi (in the same session):

GHCi> length aLargeListDoubled
10000000
(0.07 secs, 459,840 bytes)

Listing 42.2 Your UArray, also containing 10 million values

Listing 42.3 Doubling the values in aLargeList impacts performance

548 Lesson 42 Efficient, stateful arrays in Haskell
To understand what’s going on, you have to recall how lazy evaluation works. None of
your computation on the list occurs until you absolutely need it. This includes generating
the list in the first place. When you define aLargeList, Haskell stores the computations that
you need to generate the list. When you multiply that list by 2 to create aLargeListDoubled,
Haskell still hasn’t evaluated anything. Finally, when you print out the length of the list,
Haskell goes through and starts building the list and remembering that it needs to multi-
ply each value. All of these computations Haskell plans to perform (technically called
thunks) are stored in memory. For small lists, this isn’t a notable hit to performance, but you
can see how this affects performance on large lists. Given that 10 million characters isn’t a
particularly large amount of text, this is why Data.Text is strongly preferred over String.

The catch with using unboxed arrays is that they work only with primitive types: Int, Char,
Bool, and Double. Haskell does offer a more general Array type that will work with any data
the same way that List does, but Array is a lazy data structure. Our aim in this lesson is per-
formance with classic computer science algorithms. For this purpose, UArray is definitely
the data type to use. To use the UArray type, you’ll import Data.Array.Unboxed to the top of
your module. Additionally, if using stack, you need to add array to the list of build-depends.

42.1.2 Creating a UArray

As in most programming languages, when you create an array in Haskell, you have to
specify its size. Unlike with most languages, you get to choose what your indices are!
UArrays take two type parameters; the first is for the type of the index, and the second is
for the type of the value. You have some flexibility in the type you can use for the index.
You can use types that are members of Enum and Bounded. This means your index could be
Char or Int, but not Double (not an instance of Enum), and not Integer (not an instance of
Bounded). You could even have the index be of type Bool, but that would always be a two-
element array. For the most part, you want your indices’ Int types to be 0 to length –1. To
create a UArray, you use the array function. The array function takes two arguments:

 The first is a pair of values in a tuple representing your lower and upper bounds
for your indices.

 The second argument is a list of (index, value) pairs.

If you’re missing an index in your pairs, Haskell will provide a default value. For Int
types, this is 0; and for Bools, it’s False. Here’s an example of creating a zero-indexed array
of Bools. You’re setting only a single value to True; the rest will default to False.

549Creating efficient arrays in Haskell with the UArray type
zeroIndexArray :: UArray Int Bool
zeroIndexArray = array (0,9) [(3,True)]

You can look up values in your UArray by using the ! operator (similar to the !! operator
for lists). In GHCi, you can see that all of the values you didn’t specify in the list of pairs
are False:

GHCi> zeroIndexArray ! 5
False
GHCi> zeroIndexArray ! 3
True

If you do much mathematical computing in languages such as R or Matlab, you’re used
to using arrays indexed from 1. Most programming languages targeted toward mathe-
matical computing use 1-indexed arrays, as this aligns more closely with conventions in
mathematical notation. In Haskell, it’s trivial to change your array indexing system by
passing in a different pair for your bounds. Here’s a 1-indexed array with all the Bools set
to True. You’ll use your zip function combined with cycle to generate a list of value pairs
that are all True.

oneIndexArray :: UArray Int Bool
oneIndexArray = array (1,10) $ zip [1 .. 10] $ cycle [True]

As you can see, in GHCi all the values are set to True and your UArray starts at 1 and goes
to 10:

GHCi> oneIndexArray ! 1
True
GHCi> oneIndexArray ! 10
True

Just as with most other programming languages, if you try to access an element outside
your index bounds, you’ll get an error:

GHCi> oneIndexArray ! 0
*** Exception: Ix{Int}.index: Index (0) out of range ((1,10))

Listing 42.4 Creating a zero index array of Bool

Listing 42.5 An array indexed starting with 1

550 Lesson 42 Efficient, stateful arrays in Haskell
42.1.3 Updating your UArray

Although accessing values in your UArray is great, you also need to be able to update it.
The UArray can be updated like any functional data structure, by creating a copy of it
with the appropriate value changes. Let’s suppose you have an array representing the
number of beans in four buckets.

beansInBuckets :: UArray Int Int
beansInBuckets = array (0,3) []

Because you passed in an empty list of pairs for initial values, your UArray has been ini-
tialized to zeros:

GHCi> beansInBuckets ! 0
0
GHCi> beansInBuckets ! 2
0

Listing 42.6 A UArray representing beans in buckets

Quick check 42.1 Create an array with the following signature:

qcArray :: UArray Int Bool

The array contains five elements indexed at 0 and the 2, and three elements are set to True.

QC 42.1 answer
qcArray :: UArray Int Bool
qcArray = array (0,4) [(1,True),(2,True)]

Quick check 42.2 Rather than assume your values will be initialized to zeros, make sure of it.

QC 42.2 answer
beansInBuckets' :: UArray Int Int
beansInBuckets' = array (0,3) $ zip [0 .. 3] $ cycle [0]

551Creating efficient arrays in Haskell with the UArray type
Now suppose you want to add five beans to bucket 1 and six beans to bucket 3 (with
bucket 0 being your first bucket). You can do this by using the (//) operator. The first
argument to (//) is your UArray, and the second argument is a new list of pairs. The result
is a new UArray with the updated values.

updatedBiB :: UArray Int Int
updatedBiB = beansInBuckets // [(1,5),(3,6)]

You can see in GHCi that your values have been updated:

GHCi> updatedBiB ! 1
5
GHCi> updatedBiB ! 2
0
GHCi> updatedBiB ! 3
6

Next you want to add two beans to every bucket. It makes sense that you frequently
want to update an existing value. To do this, you can use the accum function. This func-
tion takes a binary function, a UArray, and a list of values to apply the function to. Here’s
an example of adding two beans to every bucket:

GHCi> accum (+) updatedBiB $ zip [0 .. 3] $ cycle [2]
array (0,3) [(0,2),(1,7),(2,2),(3,8)]

You’ve solved one of the major problems with using lists for your data. With UArray, you
can get efficient lookups as well as a more efficient data structure. But one glaring issue
is still present. Nearly all truly efficient array-based algorithms are in place. Even bub-
ble sort, which is the least efficient of the sorting algorithms, doesn’t require you to use
any new arrays. When you update an array in place, you don’t have to have a second
copy of the array to perform the update. But this is only possible because of an inherent
statefulness of the array. When you used UArray, you were able to replicate an artificial
sense of mutable state. For many examples, this is preferable to making changes to
your data structure. But when you’re using state specifically for efficiency reasons, this
is a terrible solution.

Listing 42.7 Updating your UArray the functional way with //

552 Lesson 42 Efficient, stateful arrays in Haskell

42.2 Mutating state with STUArray

The vast majority of the time, Haskell forcing the programmer to remove statefulness
from the code results in safer, more predictable code with roughly the same perfor-
mance. This isn’t true for most array algorithms. If Haskell had no way to mutate state
in these cases, a wide range of essential algorithms would be off-limits in Haskell.

Haskell does have a solution to this problem. You’ll be using a special type of UArray
called an STUArray. The STUArray uses a more general type called ST. ST allows for stateful,
nonlazy programming. In this lesson, you’ll focus only on STUArray, but it’s important to
recognize that the solutions you present here for working with arrays can be extended
to a larger class of stateful programs.

To use STUArray, you’ll add the following imports:

import Data.Array.ST
import Control.Monad
import Control.Monad.ST

STUArray is an instance of Monad. In unit 5, you spent a lot of time looking at the family of
type classes that include Functor, Applicative, and Monad. The aim of all of these type classes
is to allow you to perform arbitrary computation within a context. You’ve seen a variety
of examples of this throughout the book:

 Maybe types model the context of missing values.
 List types can be used to represent the context of nondeterministic computing.
 IO types allow you to separate stateful, error-prone I/O code from your pure

functions.
 Either types provide a more detailed way to handle errors over Maybe types.

Like IO, STUArray allows you to perform computation normally forbidden in Haskell in a
safe context. Just like IO actions, when working with STUArrays, you’ll use do-notation to
treat types in the STUArray context, just as if they were regular data.

Quick check 42.3 Try doubling the number of beans in each bucket.

QC 42.3 answer
accum (*) updateBib $ zip [0 .. 3] $ cycle [3]

553Mutating state with STUArray
The key power STUArray offers is the ability to change values in a UArray (see figure 42.1
for a visual explanation). This is the final efficiency gain you need in order to achieve
efficiency on par with programming languages that allow state. By being able to change
values in place, you can save tremendously on memory usage, and by not having to re-
create a new copy of your data structure with each change, you can also save on time.
This is the key to writing a bubble sort that’s as efficient as you’d find in an algorithms
text book.

One important thing to understand about STUArrays and the ST type in general is that they
aren’t a hack that allows you to disregard all the functional purity you’ve worked so
hard for. STUArray exists to allow you to perform stateful programming only when that
statefulness is indistinguishable from pure code for the users of your functions. The vast
majority of changes in data structures can be done with both reasonable efficiency and
great safety, using the functional data structures you’ve used throughout the book.

You’ll learn how to use STUArray by writing a function, called listToSTUArray, that takes a
list of Ints and transforms that into an STUArray. In your first draft of listToSTUArray, you’ll
create an empty STUArray the size of your list. This is similar to initializing an empty array
of a fixed size, only you’ll do it in a monad. The STUArray type uses the newArray function,
which takes a pair representing the bounds of the array as well as a value for initializing
the array.

UArray

STUArray context

5 2 4 3 1

5 2 4 3 1

1 2 4 3 5

1 2 3 4 5

In this context,
you can perform
stateful mutations.

Figure 42.1 The STUArray is a context that allows for stateful mutations.

554 Lesson 42 Efficient, stateful arrays in Haskell
listToSTUArray :: [Int] -> ST s (STUArray s Int Int)
listToSTUArray vals = do
 let end = length vals - 1
 stArray <- newArray (0,end) 0
 return stArray

Next you want to add your loop, which you’ll run through your list, and update your
stArray value. You’ll use forM_ from Control.Monad. The forM_ action takes your data and a
function to apply to the data as arguments. This has the nice property of replicating a for
in loop in languages such as Python.

To demonstrate how this replicates using a typical for loop, you’ll use a list of indices
and (!!) to look up values in your list. It’d be more efficient to zip these indices with the
list values, but you want to replicate the feel of working in a more stateful language. The
only thing left is for you to write the values from the list to your stArray value. For this,
you’ll use the writeArray function, which takes an STUArray, an index, and your value. The
writeArray function performs a stateful mutation of your underlying array and doesn’t
create a copy of it.

listToSTUArray :: [Int] -> ST s (STUArray s Int Int)
listToSTUArray vals = do
 let end = length vals - 1
 myArray <- newArray (0,end) 0
 forM_ [0 .. end] $ \i -> do

let val = vals !! i
writeArray myArray i val

 return myArray

With your forM_ loop, you’ve written code that’s similar to what you’d write in other
stateful programming languages if you needed to.

Listing 42.8 A first sketch of your listToSTUArray function

Listing 42.9 The full code for copying a list to an STUArray

The end is a normal
variable so you
assign it with let.

stArray is a mutable
array in a context
assigned with <-.When you’re all done, you

need to return your array
back to its context.

This forM_ action
replicates a for loop
in most languages.

Looking up val from a
list isn’t stateful, so
it’s assigned with a let.Your writeArray

function rewrites the
data in your array.

555Taking values out of the ST context
If you load this in GHCi, you’ll see that your code runs fine, except for one major problem:

GHCi> listToSTUArray [1,2,3]
<<ST action>>

Just as when you use the IO type, when using the ST type through STUArray, you end up
with a program in a context. But unlike IO, there’s no obvious way for you to show this
stateful code. Thankfully, unlike IO, there’s a way for you to take values out of a context
when you’re using STUArray.

42.3 Taking values out of the ST context

When you first learned about the IO type, you saw that it enabled you to keep your rela-
tively dangerous IO code trapped in a context. Although STUArray is similar to IO, you’re
dealing with a much safer context. For starters, even though your code uses state, you’re
still upholding referential transparency. Every time you run listToSTUArray on the same
input, you’ll get exactly the same output. This brings up an important point about refer-
ential transparency and encapsulation in object-oriented programming languages.
Encapsulation in OOP means that objects properly hide all of their implementation
details from the user. Even in OOP, statefulness that breaks encapsulation is bad. The
trouble is that OOP has no mechanism to enforce that state changes are property encap-
sulated. In your listToSTUArray code, because statefulness is contained in a context, you’re
forced to make sure your stateful code obeys encapsulation. Because STUArray is enforc-
ing encapsulation, you’re not constrained by the same limitations of IO. You can take val-
ues out of STUArray by using a function named runSTUArray (visualized in figure 42.2).

UArray

STUArray context

1 2 3 4 5

5 2 4 3 1

1 2 4 3 5

1 2 3 4 5

UArray

5 2 4 3 1

runSTUArray allows
you to take STUArray
out of it’s context

Even though there’s stateful
mutation, because it’s perfectly
encapsulated, you can treat it
as a pure function.

Figure 42.2 Unlike IO, you can take values out of the STUArray context.

556 Lesson 42 Efficient, stateful arrays in Haskell
 The type signature of runSTUArray is as follows:

runSTUArray :: ST s (STUArray s i e) -> UArray i e

With runSTUArray, you can get the best of both worlds. You can keep your stateful code in
a safe context, but still treat it as pure code. Here’s a new function, listToUArray, that uses
stateful programming but appears to be a pure function.

listToUArray :: [Int] -> UArray Int Int
listToUArray vals = runSTUArray $ listToSTUArray vals

Now you can run the program in GHCi and get a meaningful result:

GHCi> listToUArray [1,2,3]
array (0,2) [(0,1),(1,2),(2,3)]

The important thing to realize is that using runSTUArray isn’t cheating or allowing you to
slip dangerous stateful code into your pure programs. Because STUArray forces you to
maintain perfect encapsulation, you can leave the context of the STUArray without violat-
ing any of the core rules of functions introduced in lesson 2. Your code remains safe and
predictable.

One thing worth noting is that it’s common in Haskell to avoid writing an intermediary
function such as listToSTUArray. Instead, you’d typically write listToUArray like this.

listToUArray :: [Int] -> UArray Int Int
listToUArray vals = runSTUArray $ do
 let end = length vals - 1
 myArray <- newArray (0,end) 0
 forM_ [0 .. end] $ \i -> do
 let val = vals !! i
 writeArray myArray i val
 return myArray

This version of listToUArray combines both of your function definitions into one.

Listing 42.10 You can treat listToUArray as a pure function

Listing 42.11 A common way of working with STUArrays and runSTUArray

557Implementing a bubble sort
42.4 Implementing a bubble sort

You’re finally ready to write your own version of a bubble sort in Haskell! In case you’re
not familiar with it, the bubble sort algorithm works as follows:

1 Start at the beginning of the array and compare a value to the value next to it.
2 If the original value is larger than the one next to it, swap them.
3 Repeat this until the largest value has “bubbled” to the end of the array.
4 Repeat this process with the n – 1 elements remaining in the array.

Figure 42.3 illustrates the algorithm.

The ST type
The ST type generalizes the behavior you see in STUArray. The STUArray type relies primarily
on three actions: newArray, readArray, and writeArray. For the ST type, these are replaced
with the more general functions: newSTRef, readSTRef, and writeSTRef. Likewise, instead of
runSTUArray, you use runST. Here’s a simple example of a swapST function that statefully
swaps the values of two variables in a 2-tuple:

swapST :: (Int,Int) -> (Int,Int)
swapST (x,y) = runST $ do
 x' <- newSTRef x
 y' <- newSTRef y
 writeSTRef x' y
 writeSTRef y' x
 xfinal <- readSTRef x'
 yfinal <- readSTRef y'
 return (xfinal,yfinal)

Just as with STUArray, the primary purpose of all ST types is to allow you to implement per-
fectly encapsulated, stateful computation.

558 Lesson 42 Efficient, stateful arrays in Haskell
You’ll start with a UArray that you want to sort. You’ll use the listArray function that’s sim-
ilar to the listToUArry function you wrote, but also takes a pair of bounds as input.

myData :: UArray Int Int
myData = listArray (0,5) [7,6,4,8,10,2]

Listing 42.12 Sample data created using listArray

5 2 4 3 1

Compare these two values. If the first
is greater than the second, swap them.

2 4 3 1 5

After you reach the end of the array, you know
that the largest value has “bubbled” to the top.

2 5 4 3 1

Repeat until you reach
the end of the array.

Now you just have to repeat
this process for the remaining
n–1 elements left in the array.

Figure 42.3 The bubble
sort algorithm

Quick check 42.4 Use your listToUArray function to define myData.

QC 42.4 answer
myData' :: UArray Int Int
myData' = listToUArray [7,6,4,8,10,2]

559Implementing a bubble sort
To implement your bubbleSort, you need to introduce a few new functions. One thing you
haven’t done yet is use an existing UArray in the context of an STUArray. Just because you’re
in a context doesn’t mean that you can treat UArray as though it were stateful. To do this,
you use a function called thaw, which will unfreeze your UArray so you can work with it.
You’ll also use the bounds function, which gives you a pair representing the bounds of
your array so you can figure out where it ends. STUArray has a function called readArray
that reads a stateful value from an array. Finally, you’ll use an interesting function
named when, which works like an if without a then in most programming languages.
Here’s the implementation of bubbleSort.

bubbleSort :: UArray Int Int -> UArray Int Int
bubbleSort myArray = runSTUArray $ do
 stArray <- thaw myArray
 let end = (snd . bounds) myArray
 forM_ [1 .. end] $ \i -> do
 forM_ [0 .. (end - i)] $ \j -> do
 val <- readArray stArray j
 nextVal <- readArray stArray (j + 1)
 let outOfOrder = val > nextVal
 when outOfOrder $ do
 writeArray stArray j nextVal
 writeArray stArray (j + 1) val
 return stArray

You can try out your bubbleSort function on your data:

GHCi> bubbleSort myData
array (0,5) [(0,2),(1,4),(2,6),(3,7),(4,8),(5,10)]

Now you have an imperative algorithm implemented in Haskell. The best part is that to
do this, you didn’t have to give up on any of the features that you’ve grown to love
about Haskell. You’ve written a program that’s efficient (well, for a bubble sort). At the
same time, this code is predictable and obeys referential transparency.

Listing 42.13 Your implementation of bubbleSort

You need to thaw your
UArray into an STUArray.

The end of the array is
the second part of the
bounds tuple.

Here you’re using
readArray to look up your
value from an STUArray.

The when function allows
you to branch only if a
condition is met.

560 Lesson 42 Efficient, stateful arrays in Haskell
Summary

In this lesson, our objective was to teach you how to write stateful, efficient algorithms
in Haskell. You first learned about the UArray type, which allows for strictly evaluated
arrays in Haskell. The downside of UArray is that you still have to treat state as you
would for any other functional data structure. You then saw that STUArray allows you to
perform stateful programming much the same way that IO types allow you to perform
I/O programming. Because of the context of the STUArray, you’re forced to maintain
proper encapsulation. In practice, perfect encapsulation is the same as referential trans-
parency. Therefore, you can transform your STUArray back into a regular UArray. This ulti-
mately allows you to treat your stateful code as a pure function because it behaves like
one. Let’s see if you got this.

Q42.1 One of the most important operations in the implementation of a genetic algo-
rithm is combining two arrays of Booleans through an operation called crossover. Cross-
over takes as input a pair of equal-sized arrays. Then a cutoff point is chosen, and the
top and bottom are swapped. The final value is this new pair of arrays. Here’s an illus-
tration using lists and an example (using 1 for True and 0 for False):

([1,1,1,1,1],[0,0,0,0,0])

If you perform crossover at index 3, your result should be

 [1,1,1,0,0]

Implement crossover where the result is a UArray but the crossover itself is performed
using STUArrays.

Q42.2 Write a function that takes a UArray Int Int as an input. The input will have a
mixture of zeros and other values. The function, replaceZeros, should return the array
with all of the zeros replaced with the value –1.

Afterword
WHAT’S NEXT?

Undoubtedly, the greatest challenge in writing a Haskell book is determining the scope.
The most wonderful and simultaneously terrifying part of Haskell is its seemingly
unlimited number of topics to learn. Unfortunately, it’s impossible to write a Haskell
book without feeling that you’ve left out a great deal of interesting content.

The goal of this book has always been to provide a foundation for a solid understanding
of both Haskell and functional programming in general. The good news is that if you’ve
reached this point in the book, you have many options for taking your journey further.
Even if you stop here, I’m confident that your view of software, programming, and com-
putation in general has been expanded quite a bit. If you’re interested in pursuing the
topics in this book further, this afterword provides a few options of where to go next,
depending on which direction interests you the most.

A deeper dive into Haskell

If you enjoyed unit 5 on Functor, Applicative, and Monad, the good news is that those topics
are the tip of the Haskell iceberg. Many other type classes and topics in Haskell offer
similar levels of interesting abstraction and new ways to think about programs. The best
place to continue this is on the Typeclassopedia, which is part of the Haskell wiki (found
561

562 Afterword What’s next?
at https://wiki.haskell.org/Typeclassopedia). One of the primary goals of this book is to
equip you with a solid-enough understanding of Haskell’s more abstract type classes
that you could explore them on your own. The Typeclassopedia starts with the interest-
ing type classes discussed in this book and then moves on to increasingly more power-
ful and abstract type classes.

One topic that we were unable to cover in this book is parallel and concurrent program-
ming in Haskell. If you’ve done any work with parallel programming in a language
such as C++, you know how tricky it can be to make sure state is maintained effectively
when you have asynchronous computations being called. A major benefit of Haskell’s
obsession with pure functional programming is that it’s much easier to parallelize Has-
kell code. A fantastic book by Simon Marlow, Parallel and Concurrent Programming in
Haskell (O’Reilly Media, 2013), gives this topic the full coverage it deserves. Having
completed this book, you should be able to easily jump in. Marlow’s book is free to read
online: http://chimera.labs.oreilly.com/books/1230000000929/index.html.

The biggest change in Haskell since I first learned the language is the amount of headway
it has gained in becoming a “real” programming language. A growing number of software
engineers are writing production code with Haskell. The stack build system, which is a rel-
atively recent addition to Haskell, is evidence of this. A good place to start exploring pack-
ages and libraries for Haskell is on the Haskell-lang.org libraries page (https://haskell-
lang.org/libraries). This page covers many of the essential packages and tools you can use
for writing Haskell programs (and we’ve touched on many in this book).

More powerful type systems than Haskell?

If Haskell’s powerful type system is what intrigued you the most about Haskell, you’ll
be happy to know that a few languages out there, based on Haskell, try to push the type
envelope even further. Two interesting examples are Idris and Liquid Haskell. Both lan-
guages expand on Haskell’s types by allowing even more detailed and powerful con-
straints on the types used in a program. Imagine if the compiler was able to warn you
that head was a partial function, or you were able to specify the size of a list in your
types. Both of these checks are beyond the power of Haskell’s type system, but are pos-
sible in Liquid Haskell and Idris.

Idris—programming with dependent types

Idris is a programming language that allows for dependent types. Idris has first-class
types in the same way Haskell has first-class functions, so types can be computed and

https://wiki.haskell.org/Typeclassopedia
https://haskell-lang.org/libraries
https://haskell-lang.org/libraries
http://chimera.labs.oreilly.com/books/1230000000929/index.html

563Other functional programming languages
manipulated in Idris the same way that you manipulate functions in Haskell. What sort
of power does this provide? One of the problems in Haskell related to foldl is that
although foldl is often more intuitive than foldr, foldl doesn’t work on infinite lists. This,
incidentally, makes foldl a partial function because you can’t check whether a list is
infinite, and infinite lists are a value the function is undefined on. You could solve this
problem if you could guarantee that your lists were finite. This is beyond the power of
Haskell’s type system, but Idris’s dependent types make it possible to specify that a list
argument must be finite.

You can learn more about Idris by visiting the language’s homepage (www.idris-lang
.org/documentation/). Additionally, Manning has published a book on Idris by the cre-
ator of the language: Type-Driven Development with Idris by Edwin Brady (2017).

Liquid Haskell—provable types

Liquid Haskell expands on Haskell’s type system by allowing you to use logical predi-
cates with your types to ensure proper program behavior. These types are called refine-
ment types. Like Idris, Liquid Haskell’s type system works to eliminate partial functions
through the type system. The constraints assumed on a program are checked at compile
time. One example is that Liquid Haskell makes it possible to ensure that division by zero
isn’t possible at the type level. The amazing thing about this is that division by zero errors
can be caught when your code compiles. The best place to learn more about Liquid Haskell
is on the project’s homepage (https://ucsd-progsys.github.io/liquidhaskell-blog/).

Other functional programming languages

Perhaps after reading through this book you’ve developed a love for functional pro-
gramming but aren’t quite sure that Haskell is the best language for you. There are a
wide variety of mature, powerful functional programming languages that you can
explore. Haskell is certainly the purest of these languages, but that can sometimes be a
downside.

Functional programming languages broadly fall into two families: the Lisp family and
the ML family. Haskell is a good representation of the ML type of functional program-
ming languages, which usually use a similar type system (though each type system has
its own unique features). The Lisp languages are generally dynamically typed and
involve heavy use of parentheses and prefix operators. If you’re interested in functional
programming, I strongly recommend mastering both a Lisp family language and an ML
family language. Although they share many commonalities, they’re both different ways
to think about programs.

http://www.idris-lang.org/documentation/
http://www.idris-lang.org/documentation/
https://ucsd-progsys.github.io/liquidhaskell-blog/

564 Afterword What’s next?
Recommended programming languages in the Lisp family

The biggest shock to most newcomers to any Lisp language is the abundance of paren-
theses. Lisp represents all programs as trees of computation, and nested parentheses are
a good way to represent these trees. The tree structure allows for sophisticated manipu-
lation of programs as data. A hallmark of many Lisp languages is the idea of macros,
which allows for the generation of code at compile type. This allows Lisp programmers
to easily define their own syntax when necessary. Writing a custom domain-specific lan-
guage (DSL) in a Lisp can often require just a few lines of code. The following are a cou-
ple of good options for exploring Lisp in greater depth.

Racket

The Racket programming language is the descendant of a long line of languages from
the Scheme dialect of Lisp. It’s probably the purest contemporary representation of the
Lisp family and has amazing community support. Like Haskell, Racket has a relatively
small commercial community compared to those who use the language to explore pro-
gramming language theory. Despite its academic tendencies, the Racket community has
done a great job making it easy to get started and learn Racket. You can learn more at
the Racket website: https://racket-lang.org/.

Clojure

The Clojure programming language is by far the most commercially viable Lisp. Clojure
sits on top of the Java Virtual Machine (JVM) and therefore has access to all Java librar-
ies. A large community of practically minded, working software developers are using
Clojure. If Lisp sounds interesting to you, but your primary interest is shipping code
and getting things done, you’ll be happy with the Clojure community. More informa-
tion can be found on the Clojure page: https://clojure.org/.

Common Lisp

Although Common Lisp is unfortunately rather dated at this point, it’s one of the most
powerful programming languages ever created. Common Lisp is a language obsessed
with abstracting out code as much as possible and creating, in my opinion, the most
expressive programming language to date. The major downside is that it’s difficult to use
Common Lisp for practical applications today. If you study this language in depth, you’ll
fall tragically in love with it. A great intro to the language is Peter Seibel’s Practical Com-
mon Lisp (Apress, 2005), which is available free online: www.gigamonkeys.com/book/.

Recommended programming languages in the ML family

Haskell belongs to the ML family of functional programming languages. The greatest
defining features of ML languages are their powerful type systems. Haskell is arguably

https://racket-lang.org/
https://clojure.org/
http://www.gigamonkeys.com/book/

565Other functional programming languages
the most challenging of the ML family because of its combination of using lazy evalua-
tion, enforcing pure functional programming, and relying heavily on abstract concepts
such as monads. If you like most of what you learned in the book but feel that Haskell is
just a bit too challenging to work with, you might find your new favorite language in
this group. The ML family typically includes many languages that are as academic as
Haskell, such as Miranda and Standard ML. I’ve excluded these in favor of the follow-
ing more pragmatic alternatives.

F#

The F# programming language is an implementation of another ML variant (OCaml) for
Microsoft’s .NET programming environment. F# is a multiparadigm programming lan-
guage with strong support for functional programming, as well as for object-oriented
programming. If you’re a .NET developer using a language such as C#, you’ll likely find
F# to be a great way to combine many of the things you enjoy about Haskell with the
.NET ecosystem. Supported by Microsoft, F# has great documentation and a large vari-
ety of existing libraries and tools that will allow you to get a lot of practical work done.
More can be learned from the F# homepage: http://fsharp.org/.

Scala

Like F#, Scala combines strong types, functional programming, and object-oriented pro-
gramming. Scala runs on top of the JVM, and like Clojure, can readily make use of the
vast number of libraries supported by that environment. Scala is a remarkably flexible
language that allows you to write everything, from a less verbose form of Java, to code
using monads and functors. Scala has a great community of developers and is probably
your best bet if you’d like to do functional programming for a living. The tools and
resources available for Scala are on par with any other industrial-strength programming
language. You can learn more at the Scala site: www.scala-lang.org.

Elm and PureScript

Elm (http://elm-lang.org/) and PureScript (www.purescript.org) are distinct program-
ming languages that offer the same goal: creating a language resembling Haskell that
can be compiled to JavaScript. The Elm programming language is focused on creating
JavaScript user interfaces using functional programming. The Elm website has a wide
variety of great examples to get you started. PureScript (not to be confused with Type-
Script) is focused on making a Haskell-like language that compiles to JavaScript. Pure-
Script is similar to Haskell in syntax and usage and should be fairly easy to get started
with, now that you’ve completed this book.

http://fsharp.org/
https://www.scala-lang.org/
http://elm-lang.org/
www.purescript.org

Appendix
ANSWERS TO END-OF-LESSON EXERCISES

The beautiful thing about code is that there are no wrong answers as long as you get the
right results. The answers to the exercises shown here should be viewed as simply one
possible solution to the problem. Especially in Haskell, there are many paths to the cor-
rect solution; if you have an alternative answer that gives the correct results, that’s the
correct solution.

Unit 1

Lesson 2

Q2.1
inc x = x + 1
double x = x*2
square x = x^2

Q2.2
ex3 n = if n ‘mod‘ 2 == 0

then n - 2
else 3*n+1
566

567Unit 1
Q2.3
ifEven n = if even n
 then n - 2
 else 3 * n + 1

Lesson 3

Q3.1
simple = (\x -> x)
makeChange = (\owed given ->
 if given - owed > 0
 then given - owed
 else 0)

Q3.2
inc = (\x -> x+1)
double = (\x -> x*2)
square = (\x -> x^2)

counter x = (\x -> x + 1)
 ((\x -> x + 1)
 ((\x -> x) x))

Lesson 4

Q4.1 Note—if the results are equal, you need to compare first names:
compareLastNames name1 name2 = if result == EQ
 then compare (fst name1) (fst name2)
 else result
 where result = compare (snd name1) (snd name2)

Q4.2 And the new DC office:
dcOffice name = nameText ++ " PO Box 1337 - Washington DC, 20001"
 where nameText = (fst name) ++ " " ++ (snd name) ++ ", Esq."

getLocationFunction location = case location of
 "ny" -> nyOffice
 "sf" -> sfOffice
 "reno" -> renoOffice
 "dc" -> dcOffice
 _ -> (\name -> (fst name) ++ " " ++ (snd name))

568 Appendix Answers to end-of-lesson exercises
Lesson 5

Q5.1
ifEven myFunction x = if even x

then myFunction x
else x

inc n = n + 1
double n = n*2
square n = n^2

ifEvenInc = ifEven inc
ifEvenDouble = ifEven double
ifEvenSquare = ifEven square

Q5.2
binaryPartialApplication binaryFunc arg = (\x -> binaryFunc arg x)

Here’s an example:
takeFromFour = binaryPartialApplication (-) 4

Lesson 6

Q6.1
repeat n = cycle [n]

Q6.2
subseq start end myList = take difference (drop start myList)
 where difference = end - start

Q6.3
inFirstHalf val myList = val ‘elem‘ firstHalf
 where midpoint = (length myList) ‘div‘ 2

firstHalf = take midpoint myList

Lesson 7

Q7.1
myTail [] = []
myTail (_:xs) = xs

Q7.2
myGCD a 0 = a
myGCD a b = myGCD b (a ‘mod‘ b)

569Unit 1
Lesson 8

Q8.1
myReverse [] = []
myReverse (x:[]) = [x]
myReverse (x:xs) = (myReverse xs) ++ [x]

Q8.2
fastFib _ _ 0 = 0
fastFib _ _ 1 = 1
fastFib _ _ 2 = 1
fastFib x y 3 = x + y
fastFib x y c = fastFib (x + y) x (c - 1)

Note that you can use a function to hide the fact that you always start with 1 1:
fib n = fastFib 1 1 n

Lesson 9

Q9.1
myElem val myList = (length filteredList) /= 0
 where filteredList = filter (== val) myList

Q9.2
isPalindrome text = processedText == reverse processedText
 where noSpaces = filter (/= ' ') text
 processedText = map toLower noSpaces

Q9.3
harmonic n = sum (take n seriesValues)
 where seriesPairs = zip (cycle [1.0]) [1.0,2.0 ..]
 seriesValues = map
 (\pair -> (fst pair)/(snd pair))
 seriesPairs

570 Appendix Answers to end-of-lesson exercises
Unit 2

Lesson 11

Q11.1
filter :: (a -> Bool) -> [a] -> [a]

If you look at map, you can see there are two differences:
map :: (a -> b) -> [a] -> [b]

First is that the function passed into filter must return a Bool.
Second is that map can transform the type of the list, whereas filter can’t.

Q11.2 For tail, you can return the empty list if the list is empty:
safeTail :: [a] -> [a]
safeTail [] = []
safeTail (x:xs) = xs

You can’t do the same for head, because there’s no sane default value for an element. You
can’t return an empty list, because an empty list is the same type as the elements of the
list. See lesson 37 for a more detailed discussion of this topic.

Q11.3
myFoldl :: (a -> b -> a) -> a -> [b] -> a
myFoldl f init [] = init
myFoldl f init (x:xs) = myFoldl f newInit xs
 where newInit = f init x

Lesson 12

Q12.1 You can make this much easier by reusing canDonateTo:
donorFor :: Patient -> Patient -> Bool
donorFor p1 p2 = canDonateTo (bloodType p1) (bloodType p2)

Q12.2 You add this helper function to display sex:
showSex Male = "Male"
showSex Female = "Female"

patientSummary :: Patient -> String
patientSummary patient = "**************\n" ++

"Sex: " ++ showSex (sex patient) ++ "\n" ++

571Unit 2
 "Age: " ++ show (age patient) ++ "\n" ++
 "Height: " ++ show (height patient) ++ " in.\n" ++
 "Weight: " ++ show (weight patient) ++ " lbs.\n" ++
 "Blood Type: " ++ showBloodType (bloodType patient) ++
 "\n**************\n"

Lesson 13

Q13.1 If you look at the type classes that each belongs to, you get a good sense of your
answer.

For Word:
instance Bounded Word
instance Enum Word
instance Eq Word
instance Integral Word
instance Num Word
instance Ord Word
instance Read Word
instance Real Word
instance Show Word

For Int:
instance Bounded Int
instance Enum Int
instance Eq Int
instance Integral Int
instance Num Int
instance Ord Int
instance Read Int
instance Real Int
instance Show Int

You can see that they share identical type classes. The best guess would be that Word has
different bounds than Int. If you look at maxBound, you can see that Word is larger than Int:
GHCi> maxBound :: Word
18446744073709551615
GHCi> maxBound :: Int
9223372036854775807

572 Appendix Answers to end-of-lesson exercises
But Word also has minBound of 0, whereas Int is much lower:
GHCi> minBound :: Word
0
GHCi> minBound :: Int
-9223372036854775808

So as you might have guessed, Word is an Int that takes on only positive values—essen-
tially an unsigned Int.

Q13.2 You can see the difference if you try inc and succ on the maxBound of Int:
GHCi> inc maxBound :: Int
-9223372036854775808
GHCi> succ maxBound :: Int
*** Exception: Prelude.Enum.succ{Int}: tried to take ‘succ' of maxBound

Because there’s no true successor to a Bounded type, succ throws an error. The inc function
just rotates you back to the beginning.

Q13.3
cycleSucc :: (Bounded a, Enum a, Eq a) => a -> a
cycleSucc n = if n == maxBound

then minBound
else succ n

Lesson 14

Q14.1 Suppose you have a type like this:
data Number = One | Two | Three deriving Enum

Now you can use fromEnum to convert this into an Int.
This makes implementing Eq easy as well as Ord:
instance Eq Number where
 (==) num1 num2 = (fromEnum num1) == (fromEnum num2)

instance Ord Number where
 compare num1 num2 = compare (fromEnum num1) (fromEnum num2)

Q14.2
data FiveSidedDie = Side1 | Side2 | Side3 | Side4 |
➥Side5 deriving (Enum, Eq, Show)

class (Eq a, Enum a) => Die a where

573Unit 3
 roll :: Int -> a

instance Die FiveSidedDie where
 roll n = toEnum (n ‘mod‘ 5)

Unit 3

Lesson 16

Q16.1
data Pamphlet = Pamphlet {
 pamphletTitle :: String,
 description :: String,
 contact :: String
 }

data StoreItem = BookItem Book
 | RecordItem VinylRecord
 | ToyItem CollectibleToy
 | PamphletItem Pamphlet

Now you need to add another pattern for price:
price :: StoreItem -> Double
price (BookItem book) = bookPrice book
price (RecordItem record) = recordPrice record
price (ToyItem toy) = toyPrice toy
price (PamphletItem _) = 0.0

Q16.2
type Radius = Double
type Height = Double
type Width = Double

data Shape = Circle Radius
 | Square Height
 | Rectangle Height Width deriving Show

perimeter :: Shape -> Double
perimeter (Circle r) = 2*pi*r
perimeter (Square h) = 4*h

574 Appendix Answers to end-of-lesson exercises
perimeter (Rectangle h w) = 2*h + 2*w

area :: Shape -> Double
area (Circle r) = pi*r^2
area (Square h) = h^2
area (Rectangle h w) = h*w

Lesson 17

Q17.1
data Color = Red |
 Yellow |
 Blue |
 Green |
 Purple |
 Orange |
 Brown |
 Clear deriving (Show,Eq)

instance Semigroup Color where
 (<>) Clear any = any
 (<>) any Clear = any
 (<>) Red Blue = Purple
 (<>) Blue Red = Purple
 (<>) Yellow Blue = Green
 (<>) Blue Yellow = Green
 (<>) Yellow Red = Orange
 (<>) Red Yellow = Orange
 (<>) a b | a == b = a

| all (‘elem‘ [Red,Blue,Purple]) [a,b] = Purple
| all (‘elem‘ [Blue,Yellow,Green]) [a,b] = Green
| all (‘elem‘ [Red,Yellow,Orange]) [a,b] = Orange
| otherwise = Brown

instance Monoid Color where
 mempty = Clear
 mappend col1 col2 = col1 <> col2

575Unit 3
Q17.2
data Events = Events [String]
data Probs = Probs [Double]

combineEvents :: Events -> Events -> Events
combineEvents (Events e1) (Events e2) = Events (cartCombine combiner e1 e2)
 where combiner = (\x y -> mconcat [x,"-",y])

instance Semigroup Events where
 (<>) = combineEvents

instance Monoid Events where
 mappend = (<>)
 mempty = Events []

combineProbs :: Probs -> Probs -> Probs
combineProbs (Probs p1) (Probs p2) = Probs (cartCombine (*) p1 p2)

instance Semigroup Probs where
 (<>) = combineProbs

instance Monoid Probs where
 mappend = (<>)
 mempty = Probs []

Lesson 18

Q18.1
boxMap :: (a -> b) -> Box a -> Box b
boxMap func (Box val) = Box (func val)

tripleMap :: (a -> b) -> Triple a -> Triple b
tripleMap func (Triple v1 v2 v3) = Triple (func v1) (func v2) (func v3)

Q18.2 The trick is that Organ needs to be of type Ord to be a key for a Map.
You add enum to easily build a list of all organs:
data Organ = Heart | Brain | Kidney | Spleen deriving (Show, Eq, Ord, Enum)

values :: [Organ]
values = map snd (Map.toList organCatalog)

Now you have a list of all organs:
allOrgans :: [Organ]
allOrgans = [Heart .. Spleen]

576 Appendix Answers to end-of-lesson exercises
Then count those organs:
organCounts :: [Int]
organCounts = map countOrgan allOrgans
 where countOrgan = (\organ ->

(length . filter (== organ)) values)

Now build your organ inventory:
organInventory :: Map.Map Organ Int
organInventory = Map.fromList (zip allOrgans organCounts)

Lesson 19

Q19.1
data Organ = Heart | Brain | Kidney | Spleen deriving (Show, Eq)

sampleResults :: [Maybe Organ]
sampleResults = [(Just Brain),Nothing,Nothing,(Just Spleen)]

emptyDrawers :: [Maybe Organ] -> Int
emptyDrawers contents = (length . filter isNothing) contents

Q19.2
maybeMap :: (a -> b) -> Maybe a -> Maybe b
maybeMap func Nothing = Nothing
maybeMap func (Just val) = Just (func val)

Unit 4

Lesson 21

Q21.1
helloPerson :: String -> String
helloPerson name = "Hello" ++ " " ++ name ++ "!"

sampleMap :: Map.Map Int String
sampleMap = Map.fromList [(1,"Will")]

mainMaybe :: Maybe String
mainMaybe = do
 name <- Map.lookup 1 sampleMap
 let statement = helloPerson name
 return statement

577Unit 4
Q21.2
fib 0 = 0
fib 1 = 1
fib 2 = 1
fib n = fib (n-1) + fib (n - 2)

main :: IO ()
main = do
 putStrLn "enter a number"
 number <- getLine
 let value = fib (read number)
 putStrLn (show value)

Lesson 22

Q22.1 Remember that lazy I/O lets you treat your input like a list:
sampleInput :: [String]
sampleInput = ["21","+","123"]

This function isn’t perfect, but the aim is just to get familiar with lazy I/O:
calc :: [String] -> Int
calc (val1:"+":val2:rest) = read val1 + read val2
calc (val1:"*":val2:rest) = read val1 * read val2

main :: IO ()
main = do
 userInput <- getContents
 let values = lines userInput
 print (calc values)

Q22.2
quotes :: [String]
quotes = ["quote 1"
 ,"quote 2"
 ,"quote 3"
 ,"quote 4"
 ,"quote 5"]

lookupQuote :: [String] -> [String]
lookupQuote [] = []

578 Appendix Answers to end-of-lesson exercises
lookupQuote ("n":xs) = []
lookupQuote (x:xs) = quote : (lookupQuote xs)
 where quote = quotes !! (read x - 1)

main :: IO ()
main = do
 userInput <- getContents
 mapM_ putStrLn (lookupQuote (lines userInput))

Lesson 23

Q23.1
import qualified Data.Text as T
import qualified Data.Text.IO as TIO

helloPerson :: T.Text -> T.Text
helloPerson name = mconcat ["Hello "

, name
, "!"]

main :: IO ()
main = do
 TIO.putStrLn "Hello! What's your name?"
 name <- TIO.getLine
 let statement = helloPerson name
 TIO.putStrLn statement

Q23.2
import qualified Data.Text.Lazy as T
import qualified Data.Text.Lazy.IO as TIO

toInts :: T.Text -> [Int]
toInts = map (read . T.unpack) . T.lines

main :: IO ()
main = do
 userInput <- TIO.getContents
 let numbers = toInts userInput
 TIO.putStrLn ((T.pack . show . sum) numbers)

579Unit 4
Lesson 24

Q24.1
import System.IO
import System.Environment
import qualified Data.Text as T
import qualified Data.Text.IO as TI

main :: IO ()
main = do
 args <- getArgs
 let source = args !! 0
 let dest = args !! 1
 input <- TI.readFile source
 TI.writeFile dest input

Q24.2
import System.IO
import System.Environment
import qualified Data.Text as T
import qualified Data.Text.IO as TI

main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 input <- TI.readFile fileName
 TI.writeFile fileName (T.toUpper input)

Lesson 25

Q25.1
import System.IO
import System.Environment
import qualified Data.Text as T
import qualified Data.ByteString as B
import qualified Data.Text.Encoding as E

main :: IO ()
main = do

580 Appendix Answers to end-of-lesson exercises
 args <- getArgs
 let source = args !! 0
 input <- B.readFile source
 putStrLn "Bytes:"
 print (B.length input)
 putStrLn "Characters:"
 print ((T.length . E.decodeUtf8) input)

Q25.2
reverseSection :: Int -> Int -> BC.ByteString -> BC.ByteString
reverseSection start size bytes = mconcat [before,changed,after]
 where (before,rest) = BC.splitAt start bytes

(target,after) = BC.splitAt size rest
changed = BC.reverse target

randomReverseBytes :: BC.ByteString -> IO BC.ByteString
randomReverseBytes bytes = do
 let sectionSize = 25
 let bytesLength = BC.length bytes
 start <- randomRIO (0,(bytesLength - sectionSize))
 return (reverseSection start sectionSize bytes)

Unit 5

Lesson 27

QC27.1
data Box a = Box a deriving Show

instance Functor Box where
 fmap func (Box val) = Box (func val)

QC27.2
myBox :: Box Int
myBox = Box 1

unwrap :: Box a -> a
unwrap (Box val) = val

581Unit 5
QC27.3
printCost :: Maybe Double -> IO()
printCost Nothing = putStrLn "item not found"
printCost (Just cost)= print cost

main :: IO ()
main = do
 putStrLn "enter a part number"
 partNo <- getLine
 let part = Map.lookup (read partNo) partsDB
 printCost (cost <$> part)

Lesson 28

Q28.1 Unlike haversineMaybe, you can’t use pattern matching to get your values, so you
have to use familiar do-notation if you don’t use <*>:
haversineIO :: IO LatLong -> IO LatLong -> IO Double
haversineIO ioVal1 ioVal2 = do
 val1 <- ioVal1
 val2 <- ioVal2
 let dist = haversine val1 val2
 return dist

Q28.2
haversineIO :: IO LatLong -> IO LatLong -> IO Double
haversineIO ioVal1 ioVal2 = haversine <$> ioVal1 <*> ioVal2

Q28.3
printCost :: Maybe Double -> IO()
printCost Nothing = putStrLn "missing item"
printCost (Just cost)= print cost

main :: IO ()
main = do
 putStrLn "enter a part number 1"
 partNo1 <- getLine
 putStrLn "enter a part number 2"
 partNo2 <- getLine
 let part1 = Map.lookup (read partNo1) partsDB
 let part2 = Map.lookup (read partNo2) partsDB

582 Appendix Answers to end-of-lesson exercises
 let cheapest = min <$> (cost <$> part1) <*> (cost <$> part2)
 printCost cheapest

Lesson 29

Q29.1
allFmap :: Applicative f => (a -> b) -> f a -> f b
allFmap func app = (pure func) <*> app

Q29.2
example :: Int
example = (*) ((+) 2 4) 6

exampleMaybe :: Maybe Int
exampleMaybe = pure (*) <*> (pure (+) <*> pure 2 <*> pure 4) <*> pure 6

Q29.3
startingBeer :: [Int]
startingBeer = [6,12]

remainingBeer :: [Int]
remainingBeer = (\count -> count - 4) <$> startingBeer

guests :: [Int]
guests = [2,3]

totalPeople :: [Int]
totalPeople = (+ 2) <$> guests

beersPerGuest :: [Int]
beersPerGuest = [3,4]

totalBeersNeeded :: [Int]
totalBeersNeeded = (pure (*)) <*> beersPerGuest <*> totalPeople

beersToPurchase :: [Int]
beersToPurchase = (pure (-)) <*> totalBeersNeeded <*> remainingBeer

Lesson30

Q30.1
allFmapM :: Monad m => (a -> b) -> m a -> m b
allFmapM func val = val >>= (\x -> return (func x))

583Unit 5
Q30.2
allApp :: Monad m => m (a -> b) -> m a -> m b
allApp func val = func >>= (\f -> val >>= (\x -> return (f x)))

Q30.3
bind :: Maybe a -> (a -> Maybe b) -> Maybe b
bind Nothing _ = Nothing
bind (Just val) func = func val

Lesson 31

Q31.1 Now that you’ve done this once, you’ll never again forget how useful do-nota-
tion is!
main :: IO ()
main = putStrLn "What is the size of pizza 1" >>
 getLine >>=
 (\size1 ->
 putStrLn "What is the cost of pizza 1" >>
 getLine >>=
 (\cost1 ->
 putStrLn "What is the size of pizza 2" >>
 getLine >>=
 (\size2 ->
 putStrLn "What is the cost of pizza 2" >>
 getLine >>=
 (\cost2 ->
 (\pizza1 ->
 (\pizza2 ->
 (\betterPizza ->
 putStrLn (describePizza betterPizza):
) (comparePizzas pizza1 pizza2)
)(read size2,read cost2)
)(read size1, read cost1)
))))

Q31.2
listMain :: [String]
listMain = do

584 Appendix Answers to end-of-lesson exercises
 size1 <- [10,12,17]
 cost1 <- [12.0,15.0,20.0]
 size2 <- [10,11,18]
 cost2 <- [13.0,14.0,21.0]
 let pizza1 = (size1,cost1)
 let pizza2 = (size2,cost2)
 let betterPizza = comparePizzas pizza1 pizza2
 return (describePizza betterPizza)

Q31.3
monadMain :: Monad m => m Double -> m Double

-> m Double -> m Double -> m String
monadMain s1 c1 s2 c2 = do
 size1 <- s1
 cost1 <- c1
 size2 <- s2
 cost2 <- c2
 let pizza1 = (size1,cost1)
 let pizza2 = (size2,cost2)
 let betterPizza = comparePizzas pizza1 pizza2
 return (describePizza betterPizza)

Lesson 32

Q32.1
monthEnds :: [Int]
monthEnds = [31,28,31,30,31,30,31,31,30,31,30,31]

dates :: [Int] -> [Int]
dates ends = [date| end <- ends, date <- [1 ..end]]

Q32.2
datesDo :: [Int] -> [Int]
datesDo ends = do
 end <- ends
 date <- [1 .. end]
 return date

datesMonad :: [Int] -> [Int]
datesMonad ends = ends >>=

585Unit 7
 (\end ->
 [1 .. end] >>=
 (\date -> return date))

Unit 6

The exercises in unit 6 consist of refactoring code into multiple files. This takes up too
much space for an appendix, and the exercises aren’t so much about being correct as
about manually walking through the steps covered in each lesson.

Unit 7

Lesson 38

Q38.1 Make a helper function here:
allDigits :: String -> Bool
allDigits val = all (== True) (map isDigit val)

addStrInts :: String -> String -> Either Int String
addStrInts val1 val2 | allDigits val1 && allDigits val2 =
 Left (read val1 +
 read val2)
 | not (allDigits val1 || allDigits val2) =
 Right "both args invalid"
 | not (allDigits val1) = Right "first arg invalid"
 | otherwise = Right "second arg invalid"

Q38.2
safeSucc :: (Enum a, Bounded a, Eq a) => a -> Maybe a
safeSucc n = if n == maxBound
 then Nothing
 else Just (succ n)

safeTail :: [a] -> [a]
safeTail [] = []
safeTail (x:xs) = xs

safeLast :: [a] -> Either a String
safeLast [] = Right "empty list"
safeLast xs = safeLast' 10000 xs

586 Appendix Answers to end-of-lesson exercises
You know that the empty list isn’t possible, because only safeLast will call this function,
and it already checks for the empty list:
safeLast' :: Int -> [a] -> Either a String
safeLast' 0 _ = Right "List exceeds safe bound"
safeLast' _ (x:[]) = Left x
safeLast' n (x:xs) = safeLast' (n - 1) xs

Lesson 39

Q39.1
buildRequestNOSSL :: BC.ByteString -> BC.ByteString

-> BC.ByteString -> BC.ByteString -> Request
buildRequestNOSSL token host method path = setRequestMethod method

$ setRequestHost host
$ setRequestHeader "token" [token]
$ setRequestSecure False
$ setRequestPort 80
$ setRequestPath path
$ defaultRequest

Q39.2 Note that you also need to add http-types to your project and import Network.HTTP
.Types.Status:
main :: IO ()
main = do
 response <- httpLBS request
 let status = getResponseStatusCode response
 if status == 200
 then do

print "saving request to file"
let jsonBody = getResponseBody response
L.writeFile "data.json" jsonBody

 else print $ statusMessage $ getResponseStatus response

Lesson 40

QC40.1
instance ToJSON NOAAResult where
 toJSON (NOAAResult uid mindate maxdate name datacoverage resultId) =

587Unit 7
 object ["uid" .= uid
 ,"mindate" .= mindate
 ,"maxdate" .= maxdate
 ,"name" .= name
 ,"datacoverage" .= datacoverage
 ,"id" .= resultId]

instance ToJSON Resultset

instance ToJSON Metadata

instance ToJSON NOAAResponse

QC 40.2
data IntList = EmptyList | Cons Int IntList deriving (Show,Generic)

instance ToJSON IntList
instance FromJSON IntList

Lesson 41

Q41.1
addTool :: String -> String -> IO ()
addTool toolName toolDesc = withConn "tools.db" $
 \conn -> do
 execute conn (mconcat ["INSERT INTO tools
 ,"(name,description "
 ,",timesBorrowed)"
 ,"VALUES (?,?,?)"])
 (toolName,toolDesc,(0 :: Int))
 print "tool added"

Q41.2
promptAndAddTool :: IO ()
promptAndAddTool = do
 print "Enter tool name"
 toolName <- getLine
 print "Enter tool description"
 toolDesc <- getLine
 addTool toolName toolDesc

588 Appendix Answers to end-of-lesson exercises
performCommand :: String -> IO ()
performCommand command
 | command == "users" = printUsers >> main
 | command == "tools" = printTools >> main
 | command == "adduser" = promptAndAddUser >> main
 | command == "checkout" = promptAndCheckout >> main
 | command == "checkin" = promptAndCheckin >> main
 | command == "in" = printAvailable >> main
 | command == "out" = printCheckedout >> main
 | command == "quit" = print "bye!"
 | command == "addtool" = promptAndAddTool >> main
 | otherwise = print "Sorry command not found" >> main

Lesson 42

Q42.1
crossOver :: (UArray Int Int ,UArray Int Int) -> Int -> UArray Int Int
crossOver (a1,a2) crossOverPt = runSTUArray $ do
 st1 <- thaw a1
 let end = (snd . bounds) a1
 forM_ [crossOverPt .. end] $ \i -> do
 writeArray st1 i $ a2 ! i
 return st1

Q42.2
replaceZeros :: UArray Int Int -> UArray Int Int
replaceZeros array = runSTUArray $ do
 starray <- thaw array
 let end = (snd . bounds) array
 let count = 0
 forM_ [0 .. end] $ \i -> do
 val <- readArray starray i
 when (val == 0) $ do

writeArray starray i (-1)
 return starray

INDEX
Symbols

_ (underscore) character 41
: (infix operator) 56
! operator 549
!! operator 59–60, 549
' (single quotes) 56
(//) operator 551
(+) operator 349
* operator 36, 52
/ operator 52
/= function 137
` (back-quotes) 61
+ operator 52
++ operator 40, 363
<*> operator

creating user in context of
Maybe 355–356

multi-argument function
in IO using <$> and
352–354

overview of 349–350
<> operator 230
 tag 310
 tag 310
== function 137
-> character 111
>> operator 382
>>= (bind) operator 378–380,

382
$ operator 504

Numerics

200 OK status code 501
301 Moved Permanently sta-

tus code 501
404 Not Found status

code 501

A

accessors, adding to
objects 94–96

accum function 551
Ackermann function 78–79
add3ByAll function 84
addAnA function 86
addAThe function 85
addressLetter function 41, 50
addThenDouble function

135
addUser action 530
Aeson library 507–523

making data types
instances of From-
JSON and ToJSON
511–519

overview of 510–511
setting up 509–510
stack 509–510

aLargeArrayList 547
aLargeList 547–548
aLargeListDoubled

547–548
algebraic data types 175
aList parameter 71
amazonExtractor function 43
and operator, combining

types with 176–180
anonymous function 24
app directory 446–447
append function 194
appendFile function 286–287
Applicative type class

343–371
 operator 348–356

creating user in context
of Maybe 355–356

multi-argument function
in IO using <$>
and 352–354

overview of 349–350
containers versus contexts

361–362
limitations of 373–378
lists as context 363–371

generating first prime
numbers 366–367

lists as containers versus
363–364

quickly generating large
amounts of test data
367–371

overview of 358–360
pure method 359–360

Arbitrary class 463
arguments, function types

with multiple 113–115
array function 548
arrays 544–560

bubble sort 557–560
creating efficient 546–551

creating type 548–549
inefficiencies of lazy

lists 546–548
updating type 550–551

mutating state 552–555
taking values out of

context 555–556
unboxed 547

assert IO action 457
assessCandidate function

398–399
assessCandidateIO function

396, 398
assessCandidateList function

398–399
589

590 Index
assignToGroups function 63
associativity, Color type

191–193
Author class 178
autogenerated files 444–446

B

back-quotes 61
base record 314
BC.readFile 298
BC.splitAt 300
bgText function 279
Bhavagad Gita 279
bibliographic data 313
binary data 294–325

ByteString type 295–296,
306–307

Char8 tool 306–307
glitching JPEGs 297–305

chaining together IO
actions with foldM
303–305

inserting random bytes
299–301

sorting random bytes
302–303

MARC records 313–324
checking leader and iter-

ating through
records 315–317

getting Author and Title
information from
field 321–324

getting data 314–315
processing directory

entries and looking
up fields 320–321

reading directory
318–319

structure of 313–314
using directory to look

up fields 319–320
Unicode 306–307

BinarySearchTree 361
Bits type synonym 164–167
book data 308–325

MARC records 313–324
checking leader and iter-

ating through
records 315–317

getting Author and Title
information from
field 321–324

getting data 314–315
processing directory

entries and looking
up fields 320–321

reading directory
318–319

structure of 313–314
using directory to look

up fields 319–320
overview of 310–313

booksToHtml function 310
bookToHtml function 312
Bounded class 138
bubble sort 557–560
ByteString type 294–296,

306–307

C

.cabal file 444–446
calcChange function 19
candidateDB 396
canDonateTo 570
cartCombine function 198
Char value 158
Char8 tool 306–307
charToBits 165
checkin action 539
Church-Turing thesis 16
Cipher class 169–171
cleanText function 459
Clojure programming

language 564
CLOS (Common Lisp Object

System) 93
closures 43–53

generating URLs for an
API 45–49

overview of 44–45
partial application 48–53

code
using in different contexts

391–401
IO context 393–395
List context 397–399
Maybe context 395–397

working with 6–10
writing 6–10

Collatz conjecture 79–82

Color type 190
associativity 191–193
overview 189–191

combineEvent function 198
combineTS function 232
command history, GHCi 24
command line

interacting with 262–266
interacting with lazy I/O

266–270
Common Lisp programming

language 564
compare method 148
compareLastNames function

38
compareTS function 236–237
composability 187–200

combining functions
188–189

Monoid type class
193–200

building probability
tables 196–200

combining multiple
194–195

laws for 195
Semigroup type class

189–193
adding colors 189–191
guards 191–193
making color associative

191–193
concat function 194
concatAll function 88
consing 56
constructors, creating 94
Control.Monad function 265,

405, 521
countsText function 286
createTS function 228–229,

232
CRUD (Create, Read,

Update, Delete) 524
cryptography 155–171

Cipher class 169–171
ROT13 ciphers 155–162

encoding strings
158–159

implementing 156–157
problem with 159–162
rotN algorithm 157–158

591Index
cryptography (continued)
XOR operator 162–164

Bits type synonym
164–167

one-time pads 167–168
cycle function

overview 63–64
recursion on lists 77–78

D

damage function 99
data constructor 123
Data.Array.Unboxed 548
Data.ByteString 295, 499
Data.ByteString.Lazy 499
Data.Char module 438
Data.List functions 63
Data.List module 37–38, 91
Data.List.Split module 268,

276
Data.Maybe module 220
Data.Text module 272–278

OverloadedStrings
extension 273–275

utilities 275–278
intercalate function 277
Monoid type class

operations 277–278
splitON function 276
unwords and unlines

function 277
words function 276

Data.Text.Encoding 307
Data.Text.Lazy 272
Data.Time module 528
databases 524–543

adding new users to
530–531

creating checkouts 532
deleting data from 539
reading data from 532–536

listing users and tools
533–536

making data instance of
FromRow 533

setting up database
526–530

setting up project 525–526
updating existing

data 536–538
db-lesson project 525–526

decode function 510
default implementations 147
defaultRequest function 505
dependent types

programming with Idris
562–563

DeriveGeneric extension
507, 512

deriving keyword 150
Describable class 136
deserialization 508
Devanagari script 278
dictionaries 211
Dictionary type 210
diffPair function 239
diffTS function 241
DirectoryEntries 320
displayResult function 494
div function 112
do-notation 254–255

in Maybe type 258–260
overview of 389–391
to reuse same code in dif-

ferent contexts
391–401

IO context 393–395
List context 397–399
Maybe context 395–397

double function 111
double quotes 56
drop function 62
DuplicateRecordFields 275
dynamic typing 106

E

echo function 390
Either type

building prime check with
492–496

overview 481, 490–496
eitherDecode function 511,

514
elem function 61
Elm programming language

565
empty function 194
empty list 180
encrypted text 168
Enum type 150
Eq type class 137–140, 146,

218

Equals method 146
error function 71, 483, 487
errorCode field 515
ErrorMessage type 515
errors 483–496

Either type 490–496
partial functions 484–489

handling with Maybe
type class 488–489

head function and
487–488

evenSquares 407
exampleUrlBuilder function

47
execute command 530
exercises, answers to 566,

586
exposed-modules value 445,

469

F

F# programming language
565

failedRequest value 332
field function 533
FieldMetadata 320, 323
FieldText 321
fileCounts function 288
fileCounts.hs program 286
files 282–293

lazy I/O and 288–291
opening and closing

283–285
simple I/O tools for

286–288
strict I/O and 291–293

filter function 87
first-class functions 33–42

custom sorting 37–38
function types for 115
lambda functions as

arguments 36
returning functions 39–42

firstOrNothing function 536
flipBinaryArgs function 51
fmap function 334, 340
foldl and foldr functions,

folding lists 88–91
foldM 303–305
for loops 65
forM_ function 521

592 Index
fourthWord 273
fractions 176
fromEnum 572
fromEnum method 151, 158
fromIntegral function 111
FromJSON type class

511–519
fromList function 211
FromRow type class 532–536
fst function 37
function types 111–115

for converting to and from
strings 112–113

for first-class functions
115

with multiple arguments
113–115

functional object-oriented
programming 92–103

complex objects 96–100
single property objects

93–96
adding accessors 94–96
creating constructors 94

stateless programming
100–102

types 102–103
functional programming

13–22
functions and 14–15
general discussion 11–12,

15–16
value of 16–22
variables 18–20

functions
combining 188–189
overview of 14–15

Functor type class 154, 208,
329, 331–342

computing in Maybe type
class 332–333

converting list of data
types to list of HTML
339–340

converting Map of data
types to HTML
340–341

converting Maybe data
type to Maybe
HTML 338–339

limitations of 347–348,
373–378

transforming IO data types
into IO HTML
341–342

using functions in context
with 333–335

G

GCD (greatest common
divisor) 68–73

genApiRequestBuilder
function 48–49

genHostRequestBuilder
function 49

genIfEven function 44
GET request 45
getArgs function 262
getContents function 267, 288
getCurrentTime function

528
getFieldMetadata 321
getLine function 250, 252,

257, 284, 378
getLocationFunction 41
getOz message 94
getPrice function 34, 43
getRequestURL function 46
getResponseBody function

505
getResponseHeader function

503
getResponseStatusCode

function 501
GHC (Glasgow Haskell

Compiler) 2–4
GHCi interactive interface

calling from stack 455–456
command history 24
interacting with 4–5

ghc-options value 485
glitcher.hs file 297
glitching JPEGs 297–305

chaining together IO
actions with foldM
303–305

inserting random bytes
299–301

sorting random bytes
302–303

global variable 17
guard function 405–406
guards 191–193

H

Hackage 148, 158
halve function 329
Handle type 284
hash tables 211
Haskell 1, 481–482

more powerful type sys-
tems than 562–563

Idris 562–563
Liquid Haskell 563

Haversine formula 344
haversineMaybe 581
hClose (handle close) 284
head function

errors and 484–488
partial functions and

487–488
helloName IO action 387
helloPerson function 250,

254
hGetContents function 288
hGetLine function 284
higher-order functions 83–91

filter function, filtering
lists 87

foldl and foldr functions,
folding lists 88–91

map function 84–85
highlight function 279–280
Hoogle 148
hPutStrLn function 284
hs-source-dirs 445
HTTP requests 497–506

HTTP.Simple module
501–502

making 503–505
starter code 499–500
starting project 498–500

HTTP.Simple module
501–502

httpLBS function 501
http-lesson project 498
http-lesson.cabal file 499

I

I/O
files

lazy I/O and 288–291
simple I/O tools for

286–288
strict I/O and 291–293

593Index
I/O (continued)
IO types 249–260

do-notation 254–255
IO actions 252–253
keeping values in con-

text of IO 254
pizza cost calculator

example 256–260
lazy I/O 261–270

interacting with com-
mand line nonlazy
way 262–266

interacting with com-
mand line with lazy
I/O 266–270

overview 245–247
text and 280–281

identity elements 193–200
idInUse function 484
Idris programming language

programming with depen-
dent types 562–563

ifEvenCube function 35
ifEvenDouble function 34, 44
ifEvenInc function 44
ifEvenNegate function 35
ifEvenSquare function 34, 44
ifEvenX function 44
IIFE (immediately invoked

function expression) 30
inc function 132
incEven function 34
incEvenInc function 34
incMaybe function 333–334
infix operator 56
:info command 147, 283
inheritance 179
init value 89
insertMaybePair function

231
insertSnippet 338
Int argument 108, 329
Integer type 109
intercalate function 220, 277
intToBits function 164–165
intToChar function 299
IO type class

do-notation to reuse same
code in different
contexts 393–395

multi-argument function
in using <$> and
<*> 352–354

transforming IO data types
into IO HTML
341–342

writing echo IO action
377–378

IO types 249–260, 328–330
do-notation 254–255
IO actions 252–253
keeping values in context

of IO 254
pizza cost calculator

example 256–260
isJust function 220, 474
isNothing function 220
isPalindrome function 91,

437, 458
isPrime function 472–476,

480, 490, 492–494
isPunctuation function 458

J

JPEGs, glitching 297–305
chaining together IO

actions with foldM
303–305

inserting random
bytes 299–301

sorting random bytes
302–303

JSON data 507–523
Aeson library 510–511
making data types

instances of From-
JSON and ToJSON
511–519

setting up 509–510
stack 509–510

json-lesson.cabal file 510

K

kinds 208–209

L

L.writeFile 505
lambda calculus 15
lambda functions 23–32

as arguments 36
let expressions 27–29
lexical scope 29–32

overview of 24–25
writing where clause from

scratch 25–27
language extensions 274
LANGUAGE pragma 274,

280
language pragmas, getting

rid of 450–451
lastReturned function 537
lazy evaluation 57–58
lazy I/O 261–270, 577

files and 288–291
interacting with 266–270
interacting with command

line nonlazy way
262–266

strict versus 292–293
lazy lists, inefficiencies of

546–548
LC.writeFile 506
length function

overview 29, 60, 77
recursion on lists 75–76

let expressions 27–29
let keyword 21
lexical scope 23, 29–32
Lib module 445–447, 454,

457, 463
Lib.hs file 449
libraries, prime-number

466–479
adding code to factor

numbers 477–479
modifying default files

468–469
starting new project

467–468
writing core library

functions 469–473
defining isPrime

function 472–473
defining primes

471–472
writing tests for code

473–477
defining properties for

isPrime function
474–476

fixing bugs 476–477
running tests 475–476
testing that nonprimes

are composite 475

594 Index
libraries, prime-number,
writing tests for code
(continued)
testing that primes are,

in fact, prime
474–475

libraryAdd function 29–30
LICENSE file 468
linear congruential generator

171
Liquid Haskell type system

provable types 563
Lisp programming language

family
recommended program-

ming languages in
564

Clojure 564
Common Lisp 564
Racket 564

list comprehensions 407–409
List type 205–207
listArray function 558
lists 54–64, 402–410

anatomy of 55–57
as context 363–371

generating first prime
numbers 366–367

lists as containers versus
363–364

quickly generating large
amounts of test data
367–371

building with list monad
403–406

common functions on
59–64

!! operator 59–60
cycle 63–64
drop 62
elem 61
length 60
reverse 60–61
take 62
zip 62

converting list of data
types to list of
HTML 339–340

filtering 87
folding 88–91
in context 397–399

lazy 268–270
lazy evaluation 57–58
list comprehensions

407–409
recursion on 75–78

cycle function 77–78
length function 75–76
take function 76–77

listToSTUArray 553, 555
listToUArray function 556,

558
literal numbers 112
locationDB 344
lookupFieldMetadata 322
lookupSubfield 323
lookupValue function 323,

325

M

main function 435
main IO action 324, 432
Main.head function 434
Main.hs file 445–446, 448,

509
Main.isPalindrome 441
main-is value 445
makeAddress function 114,

117
makeTriple function 117
makeTSCompare function

236
map function 84–86
Map type class

combining two lookups
374–377

converting Map of data
types to HTML
340–341

overview 209–213
mapM function 263, 266, 521
maps 211
MARC (Machine-Readable

Cataloging) records
313–324

checking leader and iterat-
ing through records
315–317

getting Author and Title
information from field
321–324

getting data 314–315
processing directory

entries and looking up
fields 320–321

reading directory 318–319
structure of 313–314
using directory to look up

fields 319–320
MarcDirectoryEntries 319
MarcDirectoryEntryRaw 320
MarcDirectoryRaw 318
MarcLeader 315
MarcRecord 315
MarcRecordRaw 321, 323
marc_to_html.hs file 309
maxBound 571–572
maxBound value 158, 471
maxBounds value 138
Maybe Organ type 216
Maybe type class 214–224

computing in 332–333
computing with, more-

complex computation
with 221–224

converting Maybe data
type to Maybe HTML
338–339

creating user in context of
355–356

do-notation to reuse same
code in different
contexts 395–397

handling partial functions
with 488–489

null values 216–219
overview of 215–216
running SQL-like queries

423–424
Maybe types 328–329
maybeInc function 348
maybeMain function 259
mconcat method 194–195,

234
mean function 241
meanTS function 235–236
mempty element 433
messages, sending between

objects 99–100
methods 144
minBound value 138
minOfThree function 352

595Index
ML programming language
family recommended
programming lan-
guages in 564–565

Elm 565
F# 565
PureScript 565
Scala 565

modules, building multifile
program with 435–441

creating Main module
435–436

putting code in own
module 437–439

using created module in
Main module 439–441

Monad type class 260,
372–410

>>= (bind) operator
378–380

building Hello program
383–386

combining two Map
lookups 374–377

do-notation
in Maybe 258
overview of 389–391
to reuse same code in

different contexts
391–401

limitations of Applicative
and Functor 373–378

list monad 403–406
writing echo IO action

377–378
Monoid type class 193–200

building probability tables
196–200

combining multiple
194–195

laws for 195
text and 277–278
time-series data 230–235

moving average 240–243
movingAverageTS function

241
mul3ByAll function 84
multifile programs, building

with modules 435–441
creating Main module

435–436
putting code in own

module 437–439

using created module in
Main module 439–441

multiple constructors 127
myAdd function 49
myAny function 188
myGCD function 70
myList 17
myProduct function 88
myReverse function 89
mystery functions 49, 246
mystery1 method 246
mystery2 method 246
myTake function 485
myTakeSafer function 489

N

NA (not available) 228
Name class 182
Network.HTTP.Simple

library 497, 499,
501–502, 505

Network.HTTP.Types.Status
 586

newArray function 553, 557
newList 17
newSTRef function 557
newtype keyword 153
NOAAResponse data type

519
NoImplicitPrelude 275
nondeterministic

computation 363
nondeterministically

computing 368
Not Equals method 146
null pointer exception 217
null values 216–219
Num class 135

O

one-time pads 167–168
OOP (object-oriented

programming) 92–103
complex objects 96–100
single property objects

93–96
adding accessors 94–96
creating constructors 94

stateless programming
100–102

types 102–103
openFile function 283
operator precedence 36
or operator, combining types

with 180–183
Ord type class

implementing 148–149
overview 137–140

Organ type 210
organCatalog function 212
organizing code, with

modules 431–441
multifile programs

435–441
writing functions with

same name as one in
Prelude 432–435

OverloadedStrings extension
273–275, 295, 309, 499–
500, 510, 526, 533

overwrite function 28

P

Palindrome module 437–440
palindrome-checker.cabal

444, 449–450
parameterized types

201–213
IO types 249–260

do-notation 254–255
IO actions 252–253
keeping values in con-

text of IO 254
pizza cost calculator

example 256–260
kinds 208–209
List type 205–207
Map type 209–213
Maybe type 214–224

computing with
219–221, 224

null values 216–219
overview of 215–216

Triple type 203–205
tuples 207–208

partial application 43, 48–50,
52–53

partial functions 484–489
handling with Maybe type

class 488–489
head function and 487–488

596 Index
patientInfo function 121
pattern matching 66, 68–73,

219
performCommand action

541
pizza cost calculator program,

IO types 256–260
polymorphic numbers 112
polymorphism, type classes

and 145–146
powersOfTwo function 407
powersOfTwoAndThree

function 408
Prelude module 59, 431
preprocess function 437, 460
prime-number library

466–479
adding code to factor

numbers 477–479
modifying default files

468–469
starting new project

467–468
writing core library

functions 469–473
defining isPrime

function 472–473
defining primes

471–472
writing tests for code

473–477
defining properties for

isPrime function
474–476

fixing bugs 476–477
running tests 475–476
testing that nonprimes

are composite 475
testing that primes are,

in fact, prime
474–475

Primes module 468
primes.cabal file 468–469,

473
print function 264
printDistance 346
printDouble function 112
printResults IO action 521
printToolQuery function 534
printUsers function 534
probability tables 196–200
process function 222

processRecords function 325
processRequest function 224
product types

hierarchical design and
178–180

overview 176–180
prop_allFactorsPrime

property 478
property testing 452–465

QuickCheck 459–465
overview of 461–463
using with more types

and installing
packages 463–465

starting new projects
453–454

types of testing 454–458
writing unit tests and

using stack test
456–458

prop_factorsMakeOriginal
property 478

prop_primesArePrime 474
prop_punctuationInvariant

function 461
prop_reverseInvariant

property 460
prop_validPrimesOnly 474,

476
prototype-based OOP 98
provable types with Liquid

Haskell 563
PTable function 196
pure code 246
pure function 246, 374
PureScript programming

language 565
putStrLn function 252, 263,

284
putStrln function 378

Q

queries, SQL-like 411–428
building interface and

example queries
419–421

joining data types 417–419
making type for queries

421–422
running queries 422–428

joining multiple
lists 424–428

using with Maybe types
423

select clause and where
clause 415–417

implementing _select
function 415–416

implementing _where
function 416–417

query function 533
QuickCheck 429, 459–465

overview of 461–463
using with more types and

installing packages
463–465

quickCheck function 461
quickcheck-instances 464
quickCheckWith

function 462

R

Racket programming
language 564

randomReplaceByte 300, 303
randomRIO function 252,

254
randomSortSection 303
rawToInt function 316
RDBMS (relational database

management system)
524

readArray action 557
readFile function 286–287
readInt function 355
readSTRef function 557
Real class 235
realToFrac function 235
record syntax, creating types

using 127–131
recordLength 318
records, MARC 313–324

checking leader and iterat-
ing through records
315–317

getting Author and Title
information from field
321–324

getting data 314–315
processing directory

entries and looking up
fields 320–321

reading directory 318–319

597Index
records, MARC (continued)
structure of 313–314
using directory to look up

fields 319–320
recursion 65–73

abstracting away with map
function 85–86

greatest common divisor
68–73

overview of 66
rules for 67–68

determining what hap-
pens when goal is
reached 67

determining your
repetition 68

ensuring that each alter-
ative moves toward
goal 68

identifying end goal(s)
67

listing all alternate
possibilities 68

rules of 75
recursive functions 74–82

Ackermann function
78–79

Collatz conjecture 79–82
lists 75–78

cycle function 77–78
length function 75–76
take function 76–77

referentia 15
renderHtml 339
REPL (Read-Eval-Print Loop)

15
replaceByte function 300
replicateM function 265–266
report function 222, 224
reset function 17
respond function 61
Resultset type 519
return function 382
reverse function 18, 60–61
Roman Numerals library 135
ROT13 ciphers 155–162

encoding strings 158–159
implementing 156–157
problem with 159–162
rotN algorithm 157–158

rotDecoder 161
rotEncoder 161

rotN function 156–159
rotNdecoder 160
RowParser function 532
runSTUArray function 555

S

safeLast 586
sayAmount function 70
Scala programming language

565
select clause 415–417
_select function 415
selectTool function 536
Semigroup type class

189–193
adding colors 189–191
making color associative

and using guards
191–193

time-series data 230–235
serialization 508
Setup.hs file 468
setValue function 505
Show type class 139–140
side effects 17
sieve of Eratosthenes 469
simple function 14, 116,

202–203
simple pad 167
single quotes 56
SixSidedDie type 143
smoothing 238
snd function 37
someFunc function 446, 453
sortBy function 38, 152
sorting, using first-class

functions 37–38
sortSection function 302
splitOn function 269, 276
SQLite 526–530
sqlite command 528
sqlite3 function 527
sqlite-simple library 524, 532
SQL-like queries 411–428

building interface and
example queries
419–421

joining data types 417–419
making type for queries

421–422

running queries 422–428
joining multiple lists

424–428
using with Maybe types

423–424
select clause and where

clause 415–417
implementing _select

function 415–416
implementing _where

function 416–417
squareAll function 84–86
src directory 446–447
ST type 557
stack build tool 442–451

building and running
projects 449–451

calling GHCi from stack
455–456

project structure 444–447
app, src, and test

directories 446–447
autogenerated files

444–446
.cabal file 444–446

property testing 456–458
starting new projects 443
writing code 447–449

stack ghci command 455
stack install command 500
stack new command 467
stack.yaml file 450, 468
_select function 416
stateless programming

100–102
static typing 106
status codes 501
StreamCipher type 171–172
strict I/O

files and 291–293
lazy versus 292–293

String function 275
String type, Text type versus

272
strings, function types for

converting to and from
112–113

stripPunctuation function
437

stripWhiteSpace function
437

STUArray type, mutating
state with 552–555

598 Index
subtract2 function 52
successfulRequest value 332
sum types 180–183
sum.hs program 262
summary statistic 235
sumOfSquares function 89
sumSquareOrSquareSum

function 26–27
swapST function 557
syntactic sugar 56
... (syntactic sugar) notation

56
System.Environment 262

T

take function
overview 62
recursion on lists 76–77

TDD (test-driven
development) 455

TemplateHaskell 275
test directory 446–447
Test.QuickCheck 461
testing properties 452–465

QuickCheck 459–465
overview of 461–463
using with more types

and installing
packages 463–465

starting new projects
453–454

types of testing 454–458
writing unit tests and

using stack test
456–458

text editors 2
Text type 271–281

Data.Text module 272–278
OverloadedStrings

extension 273–275
utilities 275–278

IO type 280–281
String type versus 272
Unicode and 278–280

tick function 17
time-series analysis 225–243

building basic type for
228–230

combining 231
performing calculations

235–238

stitching data together
with Semigroup and
Monoid type classes
230–235

transforming time series
238–243

TIO.putStrLn 280
toEnum method 151
toInts function 269
ToJSON type class 511–519
toList function 204
toLowerCase function 437
Tool type 529
ToRow class 538
toString method 98, 146
transformations 173
Triple type 203–205
tuple argument 96
Tuple type 201
tuples 207–208
Turing machine 16
TwoSidedDie type 145
type classes 132–154

benefits of 134–135
common 136

Bounded type class 138
Eq type class 137–140
Ord type class 137–140
Show type class 139–140

default implementation
146–148

defining 135–136
deriving 140–141, 149–152
for more-complex types

152
minimum complete

definitions 146–148
Ord type class,

implementing 148–
149

overview of 133–134
polymorphism and

145–146
roadmap of 154
Show type class 144

:type command 133
type constructor 207
type inference 106, 108
type keyword 122
type synonyms 121–123
type variables 116–119

types 105–119, 133, 175–186
combining like 189–193
creating 120–131

defining new types
123–127

using record syntax
127–131

using type synonyms
121–123

with newtype 153
function types 111–115

for converting to and
from strings
112–113

for first-class functions
115

with multiple arguments
113–115

overview of 108–110
parameterized 201–224

computing with
219–221, 224

kinds 208–209
List type 205–207
Map type 209–213
null values 216–219
overview of 215–216
Triple type 203–205
tuples 207–208

product types 176–180
programming in 173–174
sum types 180–183
type variables 116–119

types in context 327–330
Applicative type class

343–371
 operator 348–356
containers versus

contexts 361–362
lists as context 363–371
overview of 358–360
pure method 359–360

Functor type class 331–342
computing in Maybe

type class 332–333
converting list of data

types to list of
HTML 339–340

converting Map of data
types to HTML
340–341

599Index
types in context, Functor
type class (continued)
converting Maybe data

type to Maybe
HTML 338–339

transforming IO data
types into IO HTML
341–342

using functions in con-
text with 333–335

lists 402–410
building with list monad

403–406
list comprehensions

407–409
Monad type class 372–401

>>= (bind) operator
378–380

building Hello program
383–386

combining two Map
lookups 374–377

do-notation 389–401
limitations of Applica-

tive and Functor
373–378

writing echo IO action
377–378

U

UArray type
creating 548–549
inefficiencies of lazy lists

546–548
updating 550–551

unboxed arrays 547

uncrackable text 168
underscore character 41
Unicode

Text type and 278–280
using with ByteString type

and Char8 306–307
unlines function 277
until loops 65
unwords function 277
update command 443
updateOrWarn action 537
updateTool function 537
URLs, generating for an

API 45–49
User type 529
utilities 275–278

intercalate function 277
Monoid type class

operations 277–278
splitON function 276
unwords and unlines

function 277
words function 276

V

variables 18–20
reassigning 20–22
type 116–119

ViewPatterns 275
von Neumann architecture

11

W

-Wall flag 485

where clause 20, 415–417
implementing _where

function 416–417
writing from scratch 25–27

_where function 416–417
while loops 65
wildcard 41
withConn action 531
words function 276
wreq package 502
writeArray function 554, 557
writeFile function 286
writeSTRef function 557
writing code 6–10

X

-X flag 274
XOR (exclusive or) operator,

cryptography
Bits type synonym

164–167
one-time pads 167–168

xor function 163–164, 167
xorBool function 163
xorPair function 163
xs variable 71

Z

zero elements 251
zip function 62, 549
zipWith function 197, 240

	Get Programming with Haskell
	Contents
	Preface
	Acknowledgments
	About this book
	Who should read this book
	How this book is organized
	About the code
	Book forum

	About the author
	Lesson 1 Getting started with Haskell
	1.1 Welcome to Haskell
	1.2 The Glasgow Haskell Compiler
	1.3 Interacting with Haskell—GHCi
	1.4 Writing and working with Haskell code
	Summary

	Unit 1 Foundations of functional programming
	Lesson 2 Functions and functional programming
	2.1 Functions
	2.2 Functional programming
	2.3 The value of functional programming in practice
	Summary

	Lesson 3 Lambda functions and lexical scope
	3.1 Lambda functions
	3.2 Writing your own where clause
	3.3 From lambda to let: making your own variable variables!
	3.4 Practical lambda functions and lexical scope
	Summary

	Lesson 4 First-class functions
	4.1 Functions as arguments
	4.2 Returning functions
	Summary

	Lesson 5 Closures and partial application
	5.1 Closures—creating functions with functions
	5.2 Example: Generating URLs for an API
	5.3 Putting it all together
	Summary

	Lesson 6 Lists
	6.1 The anatomy of a list
	6.2 Lists and lazy evaluation
	6.3 Common functions on lists
	Summary

	Lesson 7 Rules for recursion and pattern matching
	7.1 Recursion
	7.2 Rules for recursion
	7.3 Your first recursive function: greatest common divisor
	Summary

	Lesson 8 Writing recursive functions
	8.1 Review: Rules of recursion
	8.2 Recursion on lists
	8.3 Pathological recursion: Ackerman function and the Collatz conjecture
	Summary

	Lesson 9 Higher-order functions
	9.1 Using map
	9.2 Abstracting away recursion with map
	9.3 Filtering a list
	9.4 Folding a list
	Summary

	Lesson 10 Capstone: Functional object- oriented programming with robots!
	10.1 An object with one property: a cup of coffee
	10.2 A more complex object: let’s build fighting robots!
	10.3 Why stateless programming matters
	10.4 Types—objects and so much more!
	Summary

	Unit 2 Introducing types
	Lesson 11 Type basics
	11.1 Types in Haskell
	11.2 Function types
	11.3 Type variables
	Summary

	Lesson 12 Creating your own types
	12.1 Using type synonyms
	12.2 Creating new types
	12.3 Using record syntax
	Summary

	Lesson 13 Type classes
	13.1 Further exploring types
	13.2 Type classes
	13.3 The benefits of type classes
	13.4 Defining a type class
	13.5 Common type classes
	13.6 The Ord and Eq type classes
	13.7 Deriving type classes
	Summary

	Lesson 14 Using type classes
	14.1 A type in need of classes
	14.2 Implementing Show
	14.3 Type classes and polymorphism
	14.4 Default implementation and minimum complete definitions
	14.5 Implementing Ord
	14.6 To derive or not to derive?
	14.7 Type classes for more-complex types
	14.8 Type class roadmap
	Summary

	Lesson 15 Capstone: Secret messages!
	15.1 Ciphers for beginners: ROT13
	15.2 XOR: The magic of cryptography!
	15.3 Representing values as bits
	15.4 The one-time pad
	15.5 A Cipher class
	Summary

	Unit 3 Programming in types
	Lesson 16 Creating types with “and” and “or”
	16.1 Product types—combining types with “and”
	16.2 Sum types—combining types with “or”
	16.3 Putting together your bookstore
	Summary

	Lesson 17 Design by composition— Semigroups and Monoids
	17.1 Intro to composability—combining functions
	17.2 Combining like types: Semigroups
	17.3 Composing with identity: Monoids
	Summary

	Lesson 18 Parameterized types
	18.1 Types that take arguments
	18.2 Types with more than one parameter
	Summary

	Lesson 19 The Maybe type: dealing with missing values
	19.1 Introducing Maybe: solving missing values with types
	19.2 The problem with null
	19.3 Computing with Maybe
	19.4 Back to the lab! More-complex computation with Maybe
	Summary

	Lesson 20 Capstone: Time series
	20.1 Your data and the TS data type
	20.2 Stitching together TS data with Semigroup and Monoid
	20.3 Performing calculations on your time series
	20.4 Transforming time series
	Summary

	Unit 4 IO in Haskell
	Lesson 21 Hello World!—introducing IO types
	21.1 IO types—dealing with an impure world
	21.2 Do-notation
	21.3 An example: command-line pizza cost calculator
	21.4 Summary

	Lesson 22 Interacting with the command line and lazy I/O
	22.1 Interacting with the command line the nonlazy way
	22.2 Interacting with lazy I/O
	Summary

	Lesson 23 Working with text and Unicode
	23.1 The Text type
	23.2 Using Data.Text
	23.3 Text and Unicode
	23.4 Text I/O
	Summary

	Lesson 24 Working with files
	24.1 Opening and closing files
	24.2 Simple I/O tools
	24.3 The trouble with lazy I/O
	24.4 Strict I/O
	Summary

	Lesson 25 Working with binary data
	25.1 Working with binary data by using ByteString
	25.2 Glitching JPEGs
	25.3 ByteStrings, Char8, and Unicode
	Summary

	Lesson 26 Capstone: Processing binary files and book data
	26.1 Working with book data
	26.2 Working with MARC records
	26.3 Putting it all together
	Summary

	Unit 5 Working with type in a context
	Lesson 27 The Functor type class
	27.1 An example: computing in a Maybe
	27.2 Using functions in context with the Functor type class
	27.3 Functors are everywhere!
	Summary

	Lesson 28 A peek at the Applicative type class: using functions in a context
	28.1 A command-line application for calculating the distance between cities
	28.2 Using <*> for partial application in a context
	28.3 Using <*> to create data in a context
	Summary

	Lesson 29 Lists as context: a deeper look at the Applicative type class
	29.1 Introducing the Applicative type class
	29.2 Containers vs. contexts
	29.3 List as a context
	Summary

	Lesson 30 Introducing the Monad type class
	30.1 The limitations of Applicative and Functor
	30.2 The bind operator: >>=
	30.3 The Monad type class
	Summary

	Lesson 31 Making Monads easier with do-notation
	31.1 Do-notation revisited
	31.2 Using do-notation to reuse the same code in different contexts
	Summary

	Lesson 32 The list monad and list comprehensions
	32.1 Building lists with the list monad
	32.2 List comprehensions
	32.3 Monads: much more than just lists
	Summary

	Lesson 33 Capstone: SQL-like queries in Haskell
	33.1 Getting started
	33.2 Basic queries for your list: select and where
	33.3 Joining Course and Teacher data types
	33.4 Building your HINQ interface and example queries
	33.5 Making a HINQ type for your queries
	33.6 Running your HINQ queries
	Summary

	Unit 6 Organizing code and building projects
	Lesson 34 Organizing Haskell code with modules
	34.1 What happens when you write a function with the same name as one in Prelude?
	34.2 Building a multifile program with modules
	Summary

	Lesson 35 Building projects with stack
	35.1 Starting a new stack project
	35.2 Understanding the project structure
	35.3 Writing your code
	35.4 Building and running your project!
	Summary

	Lesson 36 Property testing with QuickCheck
	36.1 Starting a new project
	36.2 Different types of testing
	36.3 Property testing QuickCheck
	Summary

	Lesson 37 Capstone: Building a prime-number library
	37.1 Starting your new project
	37.2 Modifying the default files
	37.3 Writing your core library functions
	37.4 Writing tests for your code
	37.5 Adding code to factor numbers
	Summary

	Unit 7 Practical Haskell
	Lesson 38 Errors in Haskell and the Either type
	38.1 Head, partial functions, and errors
	38.2 Handling partial functions with Maybe
	38.3 Introducing the Either type
	Summary

	Lesson 39 Making HTTP requests in Haskell
	39.1 Getting your project set up
	39.2 Using the HTTP.Simple module
	39.3 Making an HTTP request
	39.4 Putting it all together
	Summary

	Lesson 40 Working with JSON data by using Aeson
	40.1 Getting set up
	40.2 Using the Aeson library
	40.3 Making your data types instances of FromJSON and ToJSON
	40.4 Putting it all together: reading your NOAA data
	Summary

	Lesson 41 Using databases in Haskell
	41.1 Setting up your project
	41.2 Using SQLite and setting up your database
	41.3 Creating data—inserting users and checking out tools
	41.4 Reading data from the database and FromRow
	41.5 Updating existing data
	41.6 Deleting data from your database
	41.7 Putting it all together
	Summary

	Lesson 42 Efficient, stateful arrays in Haskell
	42.1 Creating efficient arrays in Haskell with the UArray type
	42.2 Mutating state with STUArray
	42.3 Taking values out of the ST context
	42.4 Implementing a bubble sort
	Summary

	Afterword: What’s next?
	A deeper dive into Haskell
	More powerful type systems than Haskell?
	Other functional programming languages

	Appendix: Answers to end-of-lesson exercises
	Unit 1
	Unit 2
	Unit 3
	Unit 4
	Unit 5
	Unit 6
	Unit 7

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

